Sample records for affect climate change

  1. Landscape fragmentation affects responses of avian communities to climate change.

    PubMed

    Jarzyna, Marta A; Porter, William F; Maurer, Brian A; Zuckerberg, Benjamin; Finley, Andrew O

    2015-08-01

    Forecasting the consequences of climate change is contingent upon our understanding of the relationship between biodiversity patterns and climatic variability. While the impacts of climate change on individual species have been well-documented, there is a paucity of studies on climate-mediated changes in community dynamics. Our objectives were to investigate the relationship between temporal turnover in avian biodiversity and changes in climatic conditions and to assess the role of landscape fragmentation in affecting this relationship. We hypothesized that community turnover would be highest in regions experiencing the most pronounced changes in climate and that these patterns would be reduced in human-dominated landscapes. To test this hypothesis, we quantified temporal turnover in avian communities over a 20-year period using data from the New York State Breeding Atlases collected during 1980-1985 and 2000-2005. We applied Bayesian spatially varying intercept models to evaluate the relationship between temporal turnover and temporal trends in climatic conditions and landscape fragmentation. We found that models including interaction terms between climate change and landscape fragmentation were superior to models without the interaction terms, suggesting that the relationship between avian community turnover and changes in climatic conditions was affected by the level of landscape fragmentation. Specifically, we found weaker associations between temporal turnover and climatic change in regions with prevalent habitat fragmentation. We suggest that avian communities in fragmented landscapes are more robust to climate change than communities found in contiguous habitats because they are comprised of species with wider thermal niches and thus are less susceptible to shifts in climatic variability. We conclude that highly fragmented regions are likely to undergo less pronounced changes in composition and structure of faunal communities as a result of climate change

  2. Will climate change affect insect pheromonal communication?

    PubMed

    Boullis, Antoine; Detrain, Claire; Francis, Frédéric; Verheggen, François J

    2016-10-01

    Understanding how climate change will affect species interactions is a challenge for all branches of ecology. We have only limited understanding of how increasing temperature and atmospheric CO 2 and O 3 levels will affect pheromone-mediated communication among insects. Based on the existing literature, we suggest that the entire process of pheromonal communication, from production to behavioural response, is likely to be impacted by increases in temperature and modifications to atmospheric CO 2 and O 3 levels. We argue that insect species relying on long-range chemical signals will be most impacted, because these signals will likely suffer from longer exposure to oxidative gases during dispersal. We provide future directions for research programmes investigating the consequences of climate change on insect pheromonal communication. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Climate conditions, and changes, affect microalgae communities… should we worry?

    PubMed

    Gimenez Papiol, Gemma

    2018-03-01

    Microalgae play a pivotal role in the regulation of Earth's climate and its cycles, but are also affected by climate change, mainly by changes in temperature, light, ocean acidification, water stratification, and precipitation-induced nutrient inputs. The changes and impacts on microalgae communities are difficult to study, predict, and manage, but there is no doubt that there will be changes. These changes will have impacts beyond microalgae communities, and many of them will be negative. Some actions are currently ongoing for the mitigation of some of the negative impacts, such as harmful algal blooms and water quality, but global efforts for reducing CO 2 emissions, temperature rises, and ocean acidification are paramount for reducing the impact of climate change on microalgae communities, and eventually, on human well-being. Integr Environ Assess Manag 2018;14:181-184. © 2018 SETAC. © 2018 SETAC.

  4. Has solar variability caused climate change that affected human culture?

    NASA Astrophysics Data System (ADS)

    Feynman, Joan

    If solar variability affects human culture it most likely does so by changing the climate in which the culture operates. Variations in the solar radiative input to the Earth's atmosphere have often been suggested as a cause of such climate change on time scales from decades to tens of millennia. In the last 20 years there has been enormous progress in our knowledge of the many fields of research that impinge on this problem; the history of the solar output, the effect of solar variability on the Earth's mean climate and its regional patterns, the history of the Earth's climate and the history of mankind and human culture. This new knowledge encourages revisiting the question asked in the title of this talk. Several important historical events have been reliably related to climate change including the Little Ice Age in northern Europe and the collapse of the Classical Mayan civilization in the 9th century AD. In the first section of this paper we discus these historical events and review the evidence that they were caused by changes in the solar output. Perhaps the most important event in the history of mankind was the development of agricultural societies. This began to occur almost 12,000 years ago when the climate changed from the Pleistocene to the modern climate of the Holocene. In the second section of the paper we will discuss the suggestion ( Feynman and Ruzmaikin, 2007) that climate variability was the reason agriculture developed when it did and not before.

  5. How Do Land-Use and Climate Change Affect Watershed ...

    EPA Pesticide Factsheets

    With the growing emphasis on biofuel crops and potential impacts of climate variability and change, there is a need to quantify their effects on hydrological processes for developing watershed management plans. Environmental consequences are currently estimated by utilizing computer models such as Soil and Water Assessment Tool (SWAT) to simulate watershed hydrology under projected climate and land-use scenarios to assess the effect on water quantity and/or quality. Such studies have largely been deterministic in nature, with the focus being on whether hydrologic variables such as runoff, sediment and/or nutrient loads increase or decrease from the baseline case under projected scenarios. However, studying how these changes would affect watershed health in a risk-based framework has not been attempted. In this study, impacts of several projected land-use and climate change scenarios on the health of the Wildcat Creek watershed in Indiana have been assessed through three risk indicators, namely reliability-resilience-vulnerability (R-R-V). Results indicate that cultivation of biofuel crops such as Miscanthus and switchgrass has the potential to improve risk indicator values with respect to sediment, total N and total P. Climate change scenarios that involved rising precipitation levels were found to negatively impact watershed health indicators. Trends of water quality constituents under risk-based watershed health assessment revealed nuances not readily a

  6. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Global climate change may affect wolves in Canada's High Arctic (80DG N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena.

  7. Weather anomalies affect Climate Change microblogging intensity

    NASA Astrophysics Data System (ADS)

    Molodtsova, T.; Kirilenko, A.

    2012-12-01

    There is a huge gap between the scientific consensus and public understanding of climate change. Climate change has become a political issue and a "hot" topic in mass media that only adds the complexity to forming the public opinion. Scientists operate in scientific terms, not necessarily understandable by general public, while it is common for people to perceive the latest weather anomaly as an evidence of climate change. In 1998 Hansen et al. introduced a concept of an objectively measured subjective climate change indicator, which can relate public feeling that the climate is changing to the observed meteorological parameters. We tested this concept in a simple example of a temperature-based index, which we related to microblogging activity. Microblogging is a new form of communication in which the users describe their current status in short Internet messages. Twitter (http://twitter.com), is currently the most popular microblogging platform. There are multiple reasons, why this data is particularly valuable to the researches interested in social dynamics: microblogging is widely used to publicize one's opinion with the public; has broad, diverse audience, represented by users from many countries speaking different languages; finally, Twitter contains an enormous number of data, e.g., there were 1,284,579 messages related to climate change from 585,168 users in the January-May data collection. We collected the textual data entries, containing words "climate change" or "global warming" from the 1st of January, 2012. The data was retrieved from the Internet every 20 minutes using a specially developed Python code. Using geolocational information, blog entries originating from the New York urbanized area were selected. These entries, used as a source of public opinion on climate change, were related to the surface temperature, obtained from La Guardia airport meteorological station. We defined the "significant change" in the temperature index as deviation of the

  8. Is climate change affecting wolf populations in the high Arctic?

    USGS Publications Warehouse

    Mech, L.D.

    2004-01-01

    Gobal climate change may affect wolves in Canada's High Arctic (80?? N) acting through three trophic levels (vegetation, herbivores, and wolves). A wolf pack dependent on muskoxen and arctic hares in the Eureka area of Ellesmere Island denned and produced pups most years from at least 1986 through 1997. However, when summer snow covered vegetation in 1997 and 2000 for the first time since records were kept, halving the herbivore nutrition-replenishment period, muskox and hare numbers dropped drastically, and the area stopped supporting denning wolves through 2003. The unusual weather triggering these events was consistent with global-climate-change phenomena. ?? 2004 Kluwer Academic Publishers.

  9. Global water resources affected by human interventions and climate change.

    PubMed

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik

    2014-03-04

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.

  10. Global water resources affected by human interventions and climate change

    PubMed Central

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  11. How will climate change affect vine behaviour in different soils?

    NASA Astrophysics Data System (ADS)

    Leibar, Urtzi; Aizpurua, Ana; Morales, Fermin; Pascual, Inmaculada; Unamunzaga, Olatz

    2014-05-01

    and water-deficit had a clear influence on the grape phenological development and composition, whilst soil affected root configuration and anthocyanins concentration. Effects of climate change and water availability on different soil conditions should be considered to take full advantage or mitigate the consequences of the future climate conditions.

  12. Climate change and functional traits affect population dynamics of a long-lived seabird.

    PubMed

    Jenouvrier, Stéphanie; Desprez, Marine; Fay, Remi; Barbraud, Christophe; Weimerskirch, Henri; Delord, Karine; Caswell, Hal

    2018-07-01

    Recent studies unravelled the effect of climate changes on populations through their impact on functional traits and demographic rates in terrestrial and freshwater ecosystems, but such understanding in marine ecosystems remains incomplete. Here, we evaluate the impact of the combined effects of climate and functional traits on population dynamics of a long-lived migratory seabird breeding in the southern ocean: the black-browed albatross (Thalassarche melanophris, BBA). We address the following prospective question: "Of all the changes in the climate and functional traits, which would produce the biggest impact on the BBA population growth rate?" We develop a structured matrix population model that includes the effect of climate and functional traits on the complete BBA life cycle. A detailed sensitivity analysis is conducted to understand the main pathway by which climate and functional trait changes affect the population growth rate. The population growth rate of BBA is driven by the combined effects of climate over various seasons and multiple functional traits with carry-over effects across seasons on demographic processes. Changes in sea surface temperature (SST) during late winter cause the biggest changes in the population growth rate, through their effect on juvenile survival. Adults appeared to respond to changes in winter climate conditions by adapting their migratory schedule rather than by modifying their at-sea foraging activity. However, the sensitivity of the population growth rate to SST affecting BBA migratory schedule is small. BBA foraging activity during the pre-breeding period has the biggest impact on population growth rate among functional traits. Finally, changes in SST during the breeding season have little effect on the population growth rate. These results highlight the importance of early life histories and carry-over effects of climate and functional traits on demographic rates across multiple seasons in population response to climate

  13. Can role-play with interactive simulations enhance climate change knowledge, affect and intent to act?

    NASA Astrophysics Data System (ADS)

    Rooney-varga, J. N.; Sterman, J.; Fracassi, E. P.; Franck, T.; Kapmeier, F.; Kurker, V.; Jones, A.; Rath, K.

    2017-12-01

    The strong scientific consensus about the reality and risks of anthropogenic climate change stands in stark contrast to widespread confusion and complacency among the public. Many efforts to close that gap, grounded in the information deficit model of risk communication, provide scientific information on climate change through reports and presentations. However, research shows that showing people research does not work: the gap between scientific and public understanding of climate change remains wide. Tools that are rigorously grounded in the science and motivate action on climate change are urgently needed. Here we assess the impact of one such tool, an interactive, role-play simulation, World Climate. Participants take the roles of delegates to the UN climate negotiations and are challenged to create an agreement limiting warming to no more than 2°C. The C-ROADS climate simulation model then provides participants with immediate feedback about the expected impacts of their decisions. Participants use C-ROADS to explore the climate system and use the results to refine their negotiating positions, learning about climate change while experiencing the social dynamics of negotiations and decision-making. Pre- and post-survey results from 21 sessions in eight nations showed significant gains in participants' climate change knowledge, affective engagement, intent to take action, and desire to learn. Contrary to the deficit model, gains in participants' desire to learn more and intention to act were associated with gains in affective engagement, particularly feelings of urgency and hope, but not climate knowledge. Gains were just as strong among participants who oppose government regulation, suggesting the simulation's potential to reach across political divides. Results indicate that simulations like World Climate offer a climate change communication tool that enables people to learn and feel for themselves, which together have the potential to motivate action informed

  14. Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities.

    PubMed

    Nadeau, Christopher P; Urban, Mark C; Bridle, Jon R

    2017-10-01

    Climate change is altering life at multiple scales, from genes to ecosystems. Predicting the vulnerability of populations to climate change is crucial to mitigate negative impacts. We suggest that regional patterns of spatial and temporal climatic variation scaled to the traits of an organism can predict where and why populations are most vulnerable to climate change. Specifically, historical climatic variation affects the sensitivity and response capacity of populations to climate change by shaping traits and the genetic variation in those traits. Present and future climatic variation can affect both climate change exposure and population responses. We provide seven predictions for how climatic variation might affect the vulnerability of populations to climate change and suggest key directions for future research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Understanding How Climate Change Could Affect Tornadoes

    NASA Astrophysics Data System (ADS)

    Elsner, James; Guishard, Mark

    2014-11-01

    Current understanding of how tornadoes might change with global warming is limited. Incomplete data sets and the small-scale nature of tornadic events make it difficult to draw definitive conclusions. A consensus report on the climate of extreme storms found little evidence of trends in tornado frequency in the United States. However new research suggests a potential climate change footprint on tornadoes. Some of this research was presented at the First International Summit on Tornadoes and Climate Change, hosted by Aegean Conferences. The summit took place at the Minoa Palace in Chania, Greece, from 25 to 30 May 2014. Thirty delegates from eight countries—Greece, the United States, Germany, the United Kingdom, China, Japan, Israel, and Taiwan—participated.

  16. U.S. Navy Climate Change Roadmap

    DTIC Science & Technology

    2010-04-01

    Climate change is a national security challenge with strategic implications for the Navy. Climate change will lead to increased tensions in nations...with weak economies and political institutions. While climate change alone is not likely to lead to future conflict, it may be a contributing factor... Climate change is affecting, and will continue to affect, U.S. military installations and access to natural resources worldwide. It will affect the

  17. Heating up Climate Literacy Education: Understanding Teachers' and Students' Motivational and Affective Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Sinatra, G. M.

    2011-12-01

    Changing students' ideas about controversial scientific issues, such as human-induced climate change, presents unique challenges for educators (Lombardi & Sinatra, 2010; Sinatra & Mason, 2008). First, climate science is complex and requires "systems thinking," or the ability to think and reason abstractly about emergent systems (Goldstone & Sakamoto, 2003). Appreciating the intricacies of complex systems and emergent processes has proven challenging for students (Chi, 2005). In addition to these challenges, there are specific misconceptions that may lead thinking astray on the issue of global climate change, such as the distinction between weather and climate (Lombardi & Sinatra, 2010). As an example, when students are asked about their views on climate change, they often recall individual storm events or very cold periods and use their personal experiences and recollections of short-term temperature fluctuations to assess whether the planet is warming. Beyond the conceptual difficulties, controversial topics offer another layer of challenge. Such topics are often embedded in complex socio-cultural and political contexts, have a high degree of uncertainty, and may be perceived by individuals as in conflict with their personal or religious beliefs (Levinson, 2006, Sinatra, Kardash, Taasoobshirazi, & Lombardi, 2011). Individuals are often committed to their own views on socio-scientific issues and this commitment may serve as a motivation to actively resist new ideas (Dole & Sinatra, 1998). Individuals may also have strong emotions associated with their misconceptions (Broughton, Pekrun, & Sinatra, 2011). Negative emotions, misconceptions, and resistance do not make a productive combination for learning. Further, teachers who find human-induced climate change implausible have been shown to hold negative emotions about having to teach about climate change (Lombardi & Sinatra, in preparation), which could affect how they present the topic to students. In this

  18. How Has Human-induced Climate Change Affected California Drought Risk?

    NASA Astrophysics Data System (ADS)

    Cheng, L.; Hoerling, M. P.; Aghakouchak, A.; Livneh, B.; Quan, X. W.; Eischeid, J. K.

    2015-12-01

    The current California drought has cast a heavy burden on statewide agriculture and water resources, further exacerbated by concurrent extreme high temperatures. Furthermore, industrial-era global radiative forcing brings into question the role of long-term climate change on CA drought. How has human-induced climate change affected California drought risk? Here, observations and model experimentation are applied to characterize this drought employing metrics that synthesize drought duration, cumulative precipitation deficit, and soil moisture depletion. The model simulations show that increases in radiative forcing since the late 19th Century induces both increased annual precipitation and increased surface temperature over California, consistent with prior model studies and with observed long-term change. As a result, there is no material difference in the frequency of droughts defined using bivariate indicators of precipitation and near-surface (10-cm) soil moisture, because shallow soil moisture responds most sensitively to increased evaporation driven by warming, which compensates the increase in the precipitation. However, when using soil moisture within a deep root zone layer (1-m) as co-variate, droughts become less frequent because deep soil moisture responds most sensitively to increased precipitation. The results illustrate the different land surface responses to anthropogenic forcing that are relevant for near-surface moisture exchange and for root zone moisture availability. The latter is especially relevant for agricultural impacts as the deep layer dictates moisture availability for plants, trees, and many crops. The results thus indicate the net effect of climate change has made agricultural drought less likely, and that the current severe impacts of drought on California's agriculture has not been substantially caused by long-term climate changes.

  19. Bird population trends are linearly affected by climate change along species thermal ranges.

    PubMed

    Jiguet, Frédéric; Devictor, Vincent; Ottvall, Richard; Van Turnhout, Chris; Van der Jeugd, Henk; Lindström, Ake

    2010-12-07

    Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.

  20. Climate change induced rainfall patterns affect wheat productivity and agroecosystem functioning dependent on soil types

    NASA Astrophysics Data System (ADS)

    Tabi Tataw, James; Baier, Fabian; Krottenthaler, Florian; Pachler, Bernadette; Schwaiger, Elisabeth; Whylidal, Stefan; Formayer, Herbert; Hösch, Johannes; Baumgarten, Andreas; Zaller, Johann G.

    2014-05-01

    Wheat is a crop of global importance supplying more than half of the world's population with carbohydrates. We examined, whether climate change induced rainfall patterns towards less frequent but heavier events alter wheat agroecosystem productivity and functioning under three different soil types. Therefore, in a full-factorial experiment Triticum aestivum L. was cultivated in 3 m2 lysimeter plots containing the soil types sandy calcaric phaeozem, gleyic phaeozem or calcic chernozem. Prognosticated rainfall patterns based on regionalised climate change model calculations were compared with current long-term rainfall patterns; each treatment combination was replicated three times. Future rainfall patterns significantly reduced wheat growth and yield, reduced the leaf area index, accelerated crop development, reduced arbuscular mycorrhizal fungi colonisation of roots, increased weed density and the stable carbon isotope signature (δ13C) of both old and young wheat leaves. Different soil types affected wheat growth and yield, ecosystem root production as well as weed abundance and biomass. The interaction between climate and soil type was significant only for the harvest index. Our results suggest that even slight changes in rainfall patterns can significantly affect the functioning of wheat agroecosystems. These rainfall effects seemed to be little influenced by soil types suggesting more general impacts of climate change across different soil types. Wheat production under future conditions will likely become more challenging as further concurrent climate change factors become prevalent.

  1. Will phenotypic plasticity affecting flowering phenology keep pace with climate change?

    PubMed

    Richardson, Bryce A; Chaney, Lindsay; Shaw, Nancy L; Still, Shannon M

    2017-06-01

    Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity can accommodate projected temperature change for this century. Evaluating clines in phenological traits and the extent and variation in plasticity can provide key information on assessing risk of maladaptation and developing strategies to mitigate climate change. In this study, flower phenology was examined in 52 populations of big sagebrush (Artemisia tridentata) growing in three common gardens. Flowering date (anthesis) varied 91 days from late July to late November among gardens. Mixed-effects modeling explained 79% of variation in flowering date, of which 46% could be assigned to plasticity and genetic variation in plasticity and 33% to genetics (conditional R 2  = 0.79, marginal R 2  = 0.33). Two environmental variables that explained the genetic variation were photoperiod and the onset of spring, the Julian date of accumulating degree-days >5 °C reaching 100. The genetic variation was mapped for contemporary and future climates (decades 2060 and 2090), showing flower date change varies considerably across the landscape. Plasticity was estimated to accommodate, on average, a ±13-day change in flowering date. However, the examination of genetic variation in plasticity suggests that the magnitude of plasticity could be affected by variation in the sensitivity to photoperiod and temperature. In a warmer common garden, lower-latitude populations have greater plasticity (+16 days) compared to higher-latitude populations (+10 days). Mapped climatypes of flowering date for contemporary and future climates illustrate the wide breadth of plasticity and large geographic overlap. Our research highlights the importance of integrating information on genetic variation, phenotypic plasticity and climatic niche modeling to evaluate plant responses and elucidate vulnerabilities to climate change. Published 2016. This article is a U.S. Government work and is in the

  2. Exploring the Multifaceted Topic of Climate Change in Our Changing Climate and Living With Our Changing Climate

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Kauffman, C.; Geer, I. W.; Mills, E. W.; Nugnes, K. A.; Stimach, A. E.

    2015-12-01

    As the effects of climate change become more profound, climate literacy becomes increasingly important. The American Meteorological Society (AMS) responds to this need through the publication of Our Changing Climate and Living With Our Changing Climate. Both publications incorporate the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the USGCRP's Third National Climate Assessment. Topic In Depth sections appear throughout each chapter and lead to more extensive, multidisciplinary information related to various topics. Additionally, each chapter closes with a For Further Exploration essay, which addresses specific topics that complement a chapter concept. Web Resources, which encourage additional exploration of chapter content, and Scientific Literature, from which chapter content was derived can also be found at the conclusion of each chapter. Our Changing Climate covers a breadth of topics, including the scientific principles that govern Earth's climate system and basic statistics and geospatial tools used to investigate the system. Released in fall 2015, Living With Our Changing Climate takes a more narrow approach and investigates human and ecosystem vulnerabilities to climate change, the role of energy choices in affecting climate, actions humans can take through adaption, mitigation, and policy to lessen vulnerabilities, and psychological and financial reasons behind climate change denial. While Living With Our Changing Climate is intended for programs looking to add a climate element into their curriculum, Our Changing Climate is part of the AMS Climate Studies course. In a 2015 survey of California University of Pennsylvania undergraduate students using Our Changing Climate, 82% found it comfortable to read and utilized its interactive components and resources. Both ebooks illuminate the multidisciplinary aspect of climate change, providing the opportunity for a more sustainable future.

  3. Turbulence Ahead! How Climate Change Will Affect Air Travel

    NASA Astrophysics Data System (ADS)

    Williams, P.

    2016-12-01

    The climate is changing, not just where we live at ground level, but also where we fly at 35,000 feet. Climate change has important consequences for aviation, because the atmosphere's meteorological characteristics strongly influence flight routes, journey times, and turbulence. This presentation will review the possible impacts of climate change on aviation, which have only recently begun to emerge (as opposed to the impacts of aviation on climate change, which have long been recognised). To investigate the influence of climate change on flight routes and journey times, we feed atmospheric wind fields generated from climate model simulations into a routing algorithm of the type used operationally by flight planners. We focus on transatlantic flights between London and New York, and how they change when the atmospheric CO2 concentration is doubled. We find that a strengthening of the prevailing jet-stream winds causes eastbound flights to significantly shorten and westbound flights to significantly lengthen in all seasons. Eastbound and westbound crossings in winter become approximately twice as likely to take under 5 h 20 min and over 7 h 00 min, respectively. Even assuming no future growth in aviation, the extrapolation of our results to all transatlantic traffic suggests that aircraft will collectively be airborne for an extra 2000 h each year, burning an extra 7.2 million gallons of jet fuel at a cost of US$ 22 million, and emitting an extra 70 million kg CO2. To investigate the influence of climate change on turbulence, we diagnose a basket of 21 clear-air turbulence measures from climate model simulations. We find that turbulence strengthens significantly within the transatlantic flight corridor under climate change. For example, in winter, most turbulence measures show a 10-40% increase in the median strength of turbulence and a 40-170% increase in the frequency of occurrence of moderate-or-greater turbulence. For reference, commercial aircraft currently

  4. Disciplinary reporting affects the interpretation of climate change impacts in global oceans.

    PubMed

    Hauser, Donna D W; Tobin, Elizabeth D; Feifel, Kirsten M; Shah, Vega; Pietri, Diana M

    2016-01-01

    Climate change is affecting marine ecosystems, but different investigative approaches in physical, chemical, and biological disciplines may influence interpretations of climate-driven changes in the ocean. Here, we review the ocean change literature from 2007 to 2012 based on 461 of the most highly cited studies in physical and chemical oceanography and three biological subdisciplines. Using highly cited studies, we focus on research that has shaped recent discourse on climate-driven ocean change. Our review identified significant differences in spatial and temporal scales of investigation among disciplines. Physical/chemical studies had a median duration of 29 years (n = 150) and covered the greatest study areas (median 1.41 × 10(7) km(2) , n = 148). Few biological studies were conducted over similar spatial and temporal scales (median 8 years, n = 215; median 302 km(2) , n = 196), suggesting a more limited ability to separate climate-related responses from natural variability. We linked physical/chemical and biological disciplines by tracking studies examining biological responses to changing ocean conditions. Of the 545 biological responses recorded, a single physical or chemical stressor was usually implicated as the cause (59%), with temperature as the most common primary stressor (44%). The most frequently studied biological responses were changes in physiology (31%) and population abundance (30%). Differences in disciplinary studies, as identified in this review, can ultimately influence how researchers interpret climate-related impacts in marine systems. We identified research gaps and the need for more discourse in (1) the Indian and other Southern Hemisphere ocean basins; (2) research themes such as archaea, bacteria, viruses, mangroves, turtles, and ocean acidification; (3) physical and chemical stressors such as dissolved oxygen, salinity, and upwelling; and (4) adaptive responses of marine organisms to climate-driven ocean change. Our findings reveal

  5. Biocrust spectral response as affected by changing climatic conditions

    NASA Astrophysics Data System (ADS)

    Rodriguez-Caballero, Emilio; Guirado, Emilio; Escribano, Paula; Reyes, Andres; Weber, Bettina

    2017-04-01

    within the Succulent Karoo in South Africa comprise a decrease in rainfall events and aridity that finally resulted in higher water availability, especially on days just after rainfall, where biocrust are active. Our calculations suggest that these climatic alterations cause an increase of 30 % in biocrust NDVI by the end of the century, responding far more drastically than vascular plants. As biocrust NDVI is related to biocrust coverage, developmental stage and physiological activity, this will positively affect their contribution to global biogeochemical cycles and their soil-stabilizing effects, partially compensating the negative impacts of climate change on drylands regions. One has to keep in mind, however, that the investigated scenarios considered only climatic and no land use effects and that this study was restricted to a well-confined region. Nevertheless, our data clearly demonstrate that biocrust data need to be incorporated in land use programs and policies to ensure dryland sustainability under global change scenarios.

  6. Accounting for multiple climate components when estimating climate change exposure and velocity

    USGS Publications Warehouse

    Nadeau, Christopher P.; Fuller, Angela K.

    2015-01-01

    The effect of anthropogenic climate change on organisms will likely be related to climate change exposure and velocity at local and regional scales. However, common methods to estimate climate change exposure and velocity ignore important components of climate that are known to affect the ecology and evolution of organisms.We develop a novel index of climate change (climate overlap) that simultaneously estimates changes in the means, variation and correlation between multiple weather variables. Specifically, we estimate the overlap between multivariate normal probability distributions representing historical and current or projected future climates. We provide methods for estimating the statistical significance of climate overlap values and methods to estimate velocity using climate overlap.We show that climates have changed significantly across 80% of the continental United States in the last 32 years and that much of this change is due to changes in the variation and correlation between weather variables (two statistics that are rarely incorporated into climate change studies). We also show that projected future temperatures are predicted to be locally novel (<1·5% overlap) across most of the global land surface and that exposure is likely to be highest in areas with low historical climate variation. Last, we show that accounting for changes in the variation and correlation between multiple weather variables can dramatically affect velocity estimates; mean velocity estimates in the continental United States were between 3·1 and 19·0 km yr−1when estimated using climate overlap compared to 1·4 km yr−1 when estimated using traditional methods.Our results suggest that accounting for changes in the means, variation and correlation between multiple weather variables can dramatically affect estimates of climate change exposure and velocity. These climate components are known to affect the ecology and evolution of organisms, but are ignored by most measures

  7. Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran).

    PubMed

    Soleimani, Azam; Hosseini, Seyed Mohsen; Massah Bavani, Ali Reza; Jafari, Mostafa; Francaviglia, Rosa

    2017-12-01

    Soil organic carbon (SOC) contains a considerable portion of the world's terrestrial carbon stock, and is affected by changes in land cover and climate. SOC modeling is a useful approach to assess the impact of land use, land use change and climate change on carbon (C) sequestration. This study aimed to: (i) test the performance of RothC model using data measured from different land covers in Hyrcanian forests (northern Iran); and (ii) predict changes in SOC under different climate change scenarios that may occur in the future. The following land covers were considered: Quercus castaneifolia (QC), Acer velutinum (AV), Alnus subcordata (AS), Cupressus sempervirens (CS) plantations and a natural forest (NF). For assessment of future climate change projections the Fifth Assessment IPCC report was used. These projections were generated with nine Global Climate Models (GCMs), for two Representative Concentration Pathways (RCPs) leading to very low and high greenhouse gases concentration levels (RCP 2.6 and RCP 8.5 respectively), and for four 20year-periods up to 2099 (2030s, 2050s, 2070s and 2090s). Simulated values of SOC correlated well with measured data (R 2 =0.64 to 0.91) indicating a good efficiency of the RothC model. Our results showed an overall decrease in SOC stocks by 2099 under all land covers and climate change scenarios, but the extent of the decrease varied with the climate models, the emissions scenarios, time periods and land covers. Acer velutinum plantation was the most sensitive land cover to future climate change (range of decrease 8.34-21.83tCha -1 ). Results suggest that modeling techniques can be effectively applied for evaluating SOC stocks, allowing the identification of current patterns in the soil and the prediction of future conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Malaria ecology and climate change

    NASA Astrophysics Data System (ADS)

    McCord, G. C.

    2016-05-01

    Understanding the costs that climate change will exact on society is crucial to devising an appropriate policy response. One of the channels through while climate change will affect human society is through vector-borne diseases whose epidemiology is conditioned by ambient ecology. This paper introduces the literature on malaria, its cost on society, and the consequences of climate change to the physics community in hopes of inspiring synergistic research in the area of climate change and health. It then demonstrates the use of one ecological indicator of malaria suitability to provide an order-of-magnitude assessment of how climate change might affect the malaria burden. The average of Global Circulation Model end-of-century predictions implies a 47% average increase in the basic reproduction number of the disease in today's malarious areas, significantly complicating malaria elimination efforts.

  9. Mental health effects of climate change.

    PubMed

    Padhy, Susanta Kumar; Sarkar, Sidharth; Panigrahi, Mahima; Paul, Surender

    2015-01-01

    We all know that 2014 has been declared as the hottest year globally by the Meteorological department of United States of America. Climate change is a global challenge which is likely to affect the mankind in substantial ways. Not only climate change is expected to affect physical health, it is also likely to affect mental health. Increasing ambient temperatures is likely to increase rates of aggression and violent suicides, while prolonged droughts due to climate change can lead to more number of farmer suicides. Droughts otherwise can lead to impaired mental health and stress. Increased frequency of disasters with climate change can lead to posttraumatic stress disorder, adjustment disorder, and depression. Changes in climate and global warming may require population to migrate, which can lead to acculturation stress. It can also lead to increased rates of physical illnesses, which secondarily would be associated with psychological distress. The possible effects of mitigation measures on mental health are also discussed. The paper concludes with a discussion of what can and should be done to tackle the expected mental health issues consequent to climate change.

  10. The interplay of climate and land use change affects the distribution of EU bumblebees.

    PubMed

    Marshall, Leon; Biesmeijer, Jacobus C; Rasmont, Pierre; Vereecken, Nicolas J; Dvorak, Libor; Fitzpatrick, Una; Francis, Frédéric; Neumayer, Johann; Ødegaard, Frode; Paukkunen, Juho P T; Pawlikowski, Tadeusz; Reemer, Menno; Roberts, Stuart P M; Straka, Jakub; Vray, Sarah; Dendoncker, Nicolas

    2018-01-01

    Bumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate-only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species-specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns.

  11. Changes in the Perceived Risk of Climate Change: Evidence from Sudden Climatic Events

    NASA Astrophysics Data System (ADS)

    Anttila-Hughes, J. K.

    2009-12-01

    In the course of the past two decades the threat of anthropogenic climate change has moved from a scientific concern of relative obscurity to become one of the largest environmental and public goods problems in history. During this period public understanding of the risk of climate change has shifted from negligible to quite large. In this paper I propose a means of quantifying this change by examining how sudden events supporting the theory of anthropogenic climate change have affected carbon intensive companies' stock prices. Using CAPM event study methodology for companies in several carbon-intensive industries, I find strong evidence that markets have been reacting to changes in the scientific evidence for climate change for some time. Specifically, the change in magnitude of response over time seems to indicate that investors believed climate change was a potentially serious risk to corporate profits as early as the mid 1990s. Moreover, market reaction dependence on event type indicates that investors are differentiating between different advances in the scientific knowledge. Announcements by NASA GISS that the previous year was a “record hot year” for the globe are associated with negative excess returns, while news of ice shelf collapses are associated with strong positive excess returns. These results imply that investors are aware of how different aspects of climate change will affect carbon intensive companies, specifically in terms of the link between warming in general and polar ice cover. This implies that policy choices based on observable public opinion have lagged actual private concern over climate change's potential threat.

  12. Creating Effective Dialogue Around Climate Change

    NASA Astrophysics Data System (ADS)

    Kiehl, J. T.

    2015-12-01

    Communicating climate change to people from diverse sectors of society has proven to be difficult in the United States. It is widely recognized that difficulties arise from a number of sources, including: basic science understanding, the psychologically affect laden content surrounding climate change, and the diversity of value systems that exist in our society. I explore ways of working with the affect that arises around climate change and describe specific methods to work with the resistance often encountered when communicating this important issue. The techniques I describe are rooted in psychology and group process and provide means for creating more effective narratives to break through the barriers to communicating climate change science. Examples are given from personal experiences in presenting climate change to diverse groups.

  13. Flows of the future—How will climate change affect streamflows in the Pacific Northwest?

    Treesearch

    Andrea Watts; Gordon Grant; Mohammad Safeeq

    2016-01-01

    Much of the water supply in the Pacific Northwest originates in national forests. It sustains the region’s aquatic ecosystems, agriculture, hydroelectric power, and community water supplies. Understanding how climate change will affect water supply is one of the most pressing issues of our time. Substantial changes are projected in the types of...

  14. Changes in the Perceived Risk of Climate Change: Evidence from Sudden Climatic Events

    NASA Astrophysics Data System (ADS)

    Anttila-Hughes, J. K.

    2009-12-01

    In the course of the past two decades the threat of anthropogenic climate change has moved from a scientific concern of relative obscurity to become one of the largest environmental and public goods problems in history. During this period public understanding of the risk of climate change has shifted from negligible to quite large. In this paper I propose a means of quantifying this change by examining how sudden events supporting the theory of anthropogenic climate change have affected carbon intensive companies' stock prices. Using CAPM event study methodology for companies in several carbon-intensive industries, I find strong evidence that markets have been reacting to changes in the scientific evidence for climate change for some time. Specifically, the change in magnitude of response over time seems to indicate that investors believed climate change was a potentially serious risk to corporate profits as early as the mid 1990s. Moreover, market reaction dependence on event type indicates that investors are differentiating between different advances in the scientific knowledge. Announcements by NASA GISS that the previous year was a “record hot year” for the globe are associated with negative excess returns, while news of ice shelf collapses are associated with strong positive excess returns. These results imply that investors are aware of how different aspects of climate change will affect carbon intensive companies, specifically in terms of the link between warming in general and polar ice cover.

  15. How Does Climate Change Affect the Bering Sea Ecosystem?

    NASA Astrophysics Data System (ADS)

    Sigler, Michael F.; Harvey, H. Rodger; Ashjian, Carin J.; Lomas, Michael W.; Napp, Jeffrey M.; Stabeno, Phyllis J.; Van Pelt, Thomas I.

    2010-11-01

    The Bering Sea is one of the most productive marine ecosystems in the world, sustaining nearly half of U.S. annual commercial fish catches and providing food and cultural value to thousands of coastal and island residents. Fish and crab are abundant in the Bering Sea; whales, seals, and seabirds migrate there every year. In winter, the topography, latitude, atmosphere, and ocean circulation combine to produce a sea ice advance in the Bering Sea unmatched elsewhere in the Northern Hemisphere, and in spring the retreating ice; longer daylight hours; and nutrient-rich, deep-ocean waters forced up onto the broad continental shelf result in intense marine productivity (Figure 1). This seasonal ice cover is a major driver of Bering Sea ecology, making this ecosystem particularly sensitive to changes in climate. Predicted changes in ice cover in the coming decades have intensified concern about the future of this economically and culturally important region. In response, the North Pacific Research Board (NPRB) and the U.S. National Science Foundation (NSF) entered into a partnership in 2007 to support the Bering Sea Project, a comprehensive $52 million investigation to understand how climate change is affecting the Bering Sea ecosystem, ranging from lower trophic levels (e.g., plankton) to fish, seabirds, marine mammals, and, ultimately, humans. The project integrates two research programs, the NSF Bering Ecosystem Study (BEST) and the NPRB Bering Sea Integrated Ecosystem Research Program (BSIERP), with substantial in-kind contributions from the U.S. National Oceanic and Atmospheric Administration (NOAA) and the U.S. Fish and Wildlife Service.

  16. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    NASA Technical Reports Server (NTRS)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  17. Environmental parameters altered by climate change affect the activity of soil microorganisms involved in bioremediation.

    PubMed

    Alkorta, Itziar; Epelde, Lur; Garbisu, Carlos

    2017-10-16

    Bioremediation, based on the use of microorganisms to break down pollutants, can be very effective at reducing soil pollution. But the climate change we are now experiencing is bound to have an impact on bioremediation performance, since the activity and degrading abilities of soil microorganisms are dependent on a series of environmental parameters that are themselves being altered by climate change, such as soil temperature, moisture, amount of root exudates, etc. Many climate-induced effects on soil microorganisms occur indirectly through changes in plant growth and physiology derived from increased atmospheric CO2 concentrations and temperatures, the alteration of precipitation patterns, etc., with a concomitant effect on rhizoremediation performance (i.e. the plant-assisted microbial degradation of pollutants in the rhizosphere). But these effects are extremely complex and mediated by processes such as acclimation and adaptation. Besides, soil microorganisms form complex networks of interactions with a myriad of organisms from many taxonomic groups that will also be affected by climate change, further complicating data interpretation. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Effects of climate change on Forest Service strategic goals

    Treesearch

    Forest Service U.S. Department of Agriculture

    2010-01-01

    Climate change affects forests and grasslands in many ways. Changes in temperature and precipitation affect plant productivity as well as some species' habitat. Changes in key climate variables affect the length of the fire season and the seasonality of National Forest hydrological regimes. Also, invasive species tend to adapt to climate change more easily and...

  19. Public health impacts of climate change in Nepal.

    PubMed

    Joshi, H D; Dhimal, B; Dhimal, M; Bhusal, C L

    2011-04-01

    Climate change is a global issue in this century which has challenged the survival of living creatures affecting the life supporting systems of the earth: atmosphere, hydrosphere and lithosphere. Scientists have reached in a consensus that climate change is happening. The anthropogenic emission of greenhouse gases is responsible for global warming and therefore climate change. Climate change may directly or indirectly affect human health through a range of pathways related to temperature and precipitation. The aim of this article is to share knowledge on how climate change can affect public health in Nepal based on scientific evidence from global studies and experience gained locally. In this review attempt has been made to critically analyze the scientific studies as well as policy documents of Nepalese Government and shed light on public health impact of climate change in the context of Nepal. Detailed scientific study is recommended to discern impact of climate change on public health problems in Nepal.

  20. Tributaries affect the thermal response of lakes to climate change

    NASA Astrophysics Data System (ADS)

    Råman Vinnå, Love; Wüest, Alfred; Zappa, Massimiliano; Fink, Gabriel; Bouffard, Damien

    2018-01-01

    Thermal responses of inland waters to climate change varies on global and regional scales. The extent of warming is determined by system-specific characteristics such as fluvial input. Here we examine the impact of ongoing climate change on two alpine tributaries, the Aare River and the Rhône River, and their respective downstream peri-alpine lakes: Lake Biel and Lake Geneva. We propagate regional atmospheric temperature effects into river discharge projections. These, together with anthropogenic heat sources, are in turn incorporated into simple and efficient deterministic models that predict future water temperatures, river-borne suspended sediment concentration (SSC), lake stratification and river intrusion depth/volume in the lakes. Climate-induced shifts in river discharge regimes, including seasonal flow variations, act as positive and negative feedbacks in influencing river water temperature and SSC. Differences in temperature and heating regimes between rivers and lakes in turn result in large seasonal shifts in warming of downstream lakes. The extent of this repressive effect on warming is controlled by the lakes hydraulic residence time. Previous studies suggest that climate change will diminish deep-water oxygen renewal in lakes. We find that climate-related seasonal variations in river temperatures and SSC shift deep penetrating river intrusions from summer towards winter. Thus potentially counteracting the otherwise negative effects associated with climate change on deep-water oxygen content. Our findings provide a template for evaluating the response of similar hydrologic systems to on-going climate change.

  1. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests

    Treesearch

    Jorge Durán; Jennifer L. Morse; Peter M. Groffman; John L. Campbell; Lynn M. Christenson; Charles T. Driscoll; Timothy J. Fahey; Melany C. Fisk; Myron J. Mitchell; Pamela H. Templer

    2014-01-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity...

  2. The interplay between climate change, forests, and disturbances.

    PubMed

    Dale, V H; Joyce, L A; McNulty, S; Neilson, R P

    2000-11-15

    Climate change affects forests both directly and indirectly through disturbances. Disturbances are a natural and integral part of forest ecosystems, and climate change can alter these natural interactions. When disturbances exceed their natural range of variation, the change in forest structure and function may be extreme. Each disturbance affects forests differently. Some disturbances have tight interactions with the species and forest communities which can be disrupted by climate change. Impacts of disturbances and thus of climate change are seen over a board spectrum of spatial and temporal scales. Future observations, research, and tool development are needed to further understand the interactions between climate change and forest disturbances.

  3. Invertebrates, ecosystem services and climate change.

    PubMed

    Prather, Chelse M; Pelini, Shannon L; Laws, Angela; Rivest, Emily; Woltz, Megan; Bloch, Christopher P; Del Toro, Israel; Ho, Chuan-Kai; Kominoski, John; Newbold, T A Scott; Parsons, Sheena; Joern, A

    2013-05-01

    The sustainability of ecosystem services depends on a firm understanding of both how organisms provide these services to humans and how these organisms will be altered with a changing climate. Unquestionably a dominant feature of most ecosystems, invertebrates affect many ecosystem services and are also highly responsive to climate change. However, there is still a basic lack of understanding of the direct and indirect paths by which invertebrates influence ecosystem services, as well as how climate change will affect those ecosystem services by altering invertebrate populations. This indicates a lack of communication and collaboration among scientists researching ecosystem services and climate change effects on invertebrates, and land managers and researchers from other disciplines, which becomes obvious when systematically reviewing the literature relevant to invertebrates, ecosystem services, and climate change. To address this issue, we review how invertebrates respond to climate change. We then review how invertebrates both positively and negatively influence ecosystem services. Lastly, we provide some critical future directions for research needs, and suggest ways in which managers, scientists and other researchers may collaborate to tackle the complex issue of sustaining invertebrate-mediated services under a changing climate. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  4. Correlations between Climate Change and the Modern European Construction

    NASA Astrophysics Data System (ADS)

    Gumińska, Anna

    2017-10-01

    The aim of the study was to analyze the links between climate change and the way modern cities are structured and responded to climate change. How do these changes affect building materials and technologies, or does climate change affect the type of technology and materials used? The most important results are the effects of analysing selected examples of a modern European building, the use of materials and technology, the adaptation of buildings to the changing climate. Selected examples of contemporary architecture from Germany, Italy and Denmark, Norway and Sweden. There are also examples in photographic documentation. The most important criteria affecting the objects are elements that shape the changing climate, as well as existing legal and technical requirements. The main conclusion was that modern urban space is adapted to the changing climate. Unprecedented climatic phenomena in this area: intense and sudden rain, snow, floods, strong winds, abundant sunshine, high temperature changes, greenhouse effect of the city - “island heat”, atmospheric pollution. Building materials and technologies contribute to the optimal conservation of natural resources, buildings are shaped in such a way as to ensure safety, resilience and environmental protection. However, there is still a need for continuous monitoring of climate change, criteria affecting the design and construction of urban and central facilities. Key words: energy efficiency, renewable energy, climate change, contemporary architecture.

  5. On the relationship between personal experience, affect and risk perception: The case of climate change

    PubMed Central

    van der Linden, Sander

    2014-01-01

    Examining the conceptual relationship between personal experience, affect, and risk perception is crucial in improving our understanding of how emotional and cognitive process mechanisms shape public perceptions of climate change. This study is the first to investigate the interrelated nature of these variables by contrasting three prominent social-psychological theories. In the first model, affect is viewed as a fast and associative information processing heuristic that guides perceptions of risk. In the second model, affect is seen as flowing from cognitive appraisals (i.e., affect is thought of as a post-cognitive process). Lastly, a third, dual-process model is advanced that integrates aspects from both theoretical perspectives. Four structural equation models were tested on a national sample (N = 808) of British respondents. Results initially provide support for the “cognitive” model, where personal experience with extreme weather is best conceptualized as a predictor of climate change risk perception and, in turn, risk perception a predictor of affect. Yet, closer examination strongly indicates that at the same time, risk perception and affect reciprocally influence each other in a stable feedback system. It is therefore concluded that both theoretical claims are valid and that a dual-process perspective provides a superior fit to the data. Implications for theory and risk communication are discussed. © 2014 The Authors. European Journal of Social Psychology published by John Wiley & Sons, Ltd. PMID:25678723

  6. Climate change and mental health: a causal pathways framework.

    PubMed

    Berry, Helen Louise; Bowen, Kathryn; Kjellstrom, Tord

    2010-04-01

    Climate change will bring more frequent, long lasting and severe adverse weather events and these changes will affect mental health. We propose an explanatory framework to enhance consideration of how these effects may operate and to encourage debate about this important aspect of the health impacts of climate change. Literature review. Climate change may affect mental health directly by exposing people to trauma. It may also affect mental health indirectly, by affecting (1) physical health (for example, extreme heat exposure causes heat exhaustion in vulnerable people, and associated mental health consequences) and (2) community wellbeing. Within community, wellbeing is a sub-process in which climate change erodes physical environments which, in turn, damage social environments. Vulnerable people and places, especially in low-income countries, will be particularly badly affected. Different aspects of climate change may affect mental health through direct and indirect pathways, leading to serious mental health problems, possibly including increased suicide mortality. We propose that it is helpful to integrate these pathways in an explanatory framework, which may assist in developing public health policy, practice and research.

  7. Climate change affecting oil palm agronomy, and oil palm cultivation increasing climate change, require amelioration.

    PubMed

    Paterson, R Russell M; Lima, Nelson

    2018-01-01

    Palm oil is used in various valued commodities and is a large global industry worth over US$ 50 billion annually. Oil palms (OP) are grown commercially in Indonesia and Malaysia and other countries within Latin America and Africa. The large-scale land-use change has high ecological, economic, and social impacts. Tropical countries in particular are affected negatively by climate change (CC) which also has a detrimental impact on OP agronomy, whereas the cultivation of OP increases CC. Amelioration of both is required. The reduced ability to grow OP will reduce CC, which may allow more cultivation tending to increase CC, in a decreasing cycle. OP could be increasingly grown in more suitable regions occurring under CC. Enhancing the soil fauna may compensate for the effect of CC on OP agriculture to some extent. The effect of OP cultivation on CC may be reduced by employing reduced emissions from deforestation and forest degradation plans, for example, by avoiding illegal fire land clearing. Other ameliorating methods are reported herein. More research is required involving good management practices that can offset the increases in CC by OP plantations. Overall, OP-growing countries should support the Paris convention on reducing CC as the most feasible scheme for reducing CC.

  8. Climate change impacts on food system

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  9. Human footprint affects US carbon balance more than climate change

    USGS Publications Warehouse

    Bachelet, Dominique; Ferschweiler, Ken; Sheehan, Tim; Baker, Barry; Sleeter, Benjamin M.; Zhu, Zhiliang

    2017-01-01

    The MC2 model projects an overall increase in carbon capture in conterminous United States during the 21st century while also simulating a rise in fire causing much carbon loss. Carbon sequestration in soils is critical to prevent carbon losses from future disturbances, and we show that natural ecosystems store more carbon belowground than managed systems do. Natural and human-caused disturbances affect soil processes that shape ecosystem recovery and competitive interactions between native, exotics, and climate refugees. Tomorrow's carbon budgets will depend on how land use, natural disturbances, and climate variability will interact and affect the balance between carbon capture and release.

  10. Desertification of forest, range and desert in Tehran province, affected by climate change

    NASA Astrophysics Data System (ADS)

    Eskandari, Hadi; Borji, Moslem; Khosravi, Hassan; Mesbahzadeh, Tayebeh

    2016-06-01

    Climate change has been identified as a leading human and environmental crisis of the twenty-first century. Drylands throughout the world have always undergone periods of degradation due to naturally occurring fluctuation in climate. Persistence of widespread degradation in arid and semiarid regions of Iran necessitates monitoring and evaluation. This paper aims to monitor the desertification trend in three types of land use, including range, forest and desert, affected by climate change in Tehran province for the 2000s and 2030s. For assessing climate change at Mehrabad synoptic station, the data of two emission scenarios, including A2 and B2, were used, utilizing statistical downscaling techniques and data generated by the Statistical DownScaling Model (SDSM). The index of net primary production (NPP) resulting from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images was employed as an indicator of destruction from 2001 to 2010. The results showed that temperature is the most significant driving force which alters the net primary production in rangeland, forest and desert land use in Tehran province. On the basis of monitoring findings under real conditions, in the 2000s, over 60 % of rangelands and 80 % of the forest were below the average production in the province. On the other hand, the long-term average changes of NPP in the rangeland and forests indicated the presence of relatively large areas of these land uses with a production rate lower than the desert. The results also showed that, assuming the existence of circumstances of each emission scenarios, the desertification status will not improve significantly in the rangelands and forests of Tehran province.

  11. Ice Storms in a Changing Climate

    DTIC Science & Technology

    2016-06-01

    CHANGING CLIMATE by Jennifer M. McNitt June 2016 Thesis Advisor: Wendell Nuss Co-Advisor: David W. Titley THIS PAGE INTENTIONALLY LEFT...SUBTITLE ICE STORMS IN A CHANGING CLIMATE 5. FUNDING NUMBERS 6. AUTHOR(S) Jennifer M. McNitt 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS...increase in global temperatures, due to climate change , could affect the frequency, intensity, and geographic location of ice storms. Three known ice

  12. Climate Change, Human Rights, and Social Justice.

    PubMed

    Levy, Barry S; Patz, Jonathan A

    2015-01-01

    The environmental and health consequences of climate change, which disproportionately affect low-income countries and poor people in high-income countries, profoundly affect human rights and social justice. Environmental consequences include increased temperature, excess precipitation in some areas and droughts in others, extreme weather events, and increased sea level. These consequences adversely affect agricultural production, access to safe water, and worker productivity, and, by inundating land or making land uninhabitable and uncultivatable, will force many people to become environmental refugees. Adverse health effects caused by climate change include heat-related disorders, vector-borne diseases, foodborne and waterborne diseases, respiratory and allergic disorders, malnutrition, collective violence, and mental health problems. These environmental and health consequences threaten civil and political rights and economic, social, and cultural rights, including rights to life, access to safe food and water, health, security, shelter, and culture. On a national or local level, those people who are most vulnerable to the adverse environmental and health consequences of climate change include poor people, members of minority groups, women, children, older people, people with chronic diseases and disabilities, those residing in areas with a high prevalence of climate-related diseases, and workers exposed to extreme heat or increased weather variability. On a global level, there is much inequity, with low-income countries, which produce the least greenhouse gases (GHGs), being more adversely affected by climate change than high-income countries, which produce substantially higher amounts of GHGs yet are less immediately affected. In addition, low-income countries have far less capability to adapt to climate change than high-income countries. Adaptation and mitigation measures to address climate change needed to protect human society must also be planned to protect

  13. The interplay between climate change, forests, and disturbances

    Treesearch

    Virginia H. Dale; Linda A. Joyce; Steve McNulty; Ronald P. Neilson

    2000-01-01

    Climate change affects forests both directly and indirectly through disturbances. Disturbances are a natural and integral part of forest ecosystems, and climate change can alter these natural interactions. When disturbances exceed their natural range of variation, the change in forest structure and function may be extreme. Each disturbance affects forests differently....

  14. The effects of climate-change-induced drought and freshwater wetlands

    USGS Publications Warehouse

    Middleton, B.A.; Kleinebecker, Till; Middleton, B.A.

    2012-01-01

    Drought cycles in wetlands may become more frequent and severe in the future, with consequences for wetland distribution and function. According to the Intergovernmental Panel on Climate Change (Intergovernmental Panel on Climate Change [IPCC], Managing the risks of extreme events and disasters to advance climate change adaptation, 2012. Online: http://ipcc-wg2.gov/SREX/images/uploads/SREX-All_FINAL.pdf, climate-change is likely to affect precipitation and evapotranspiration patterns so that the world’s wetlands may have more frequent episodes of extreme flooding and drought. This chapter contributes to a worldwide view of how wetland processes may be affected by these predicted changes in climate. Specifically, the occurrence of drought may increase, and that increase may affect the critical processes that sustain biodiversity in wetlands. We include specific examples that explore the effects of drought and other climate-change factors on wetland function in various parts of the world. In a concluding section we discuss management strategies for climate-change in wetlands. The synthesis of information in this chapter will contribute to a better understanding of how climate-change-induced drought may affect the function and distribution of wetlands in the future.

  15. Climate change is affecting mortality of weasels due to camouflage mismatch.

    PubMed

    Atmeh, Kamal; Andruszkiewicz, Anna; Zub, Karol

    2018-05-24

    Direct phenological mismatch caused by climate change can occur in mammals that moult seasonally. Two colour morphs of the weasel Mustela nivalis (M. n.) occur sympatrically in Białowieża Forest (NE Poland) and differ in their winter pelage colour: white in M. n. nivalis and brown in M. n. vulgaris. Due to their small body size, weasels are vulnerable to attacks by a range of different predators; thus cryptic coat colour may increase their winter survival. By analysing trapping data, we found that the share of white subspecies in the weasel population inhabiting Białowieża Forest decreases with decreasing numbers of days with snow cover. This led us to hypothesise that selective predation pressure should favour one of the two phenotypes, according to the prevailing weather conditions in winter. A simple field experiment with weasel models (white and brown), exposed against different background colours, revealed that contrasting models faced significantly higher detection by predators. Our observations also confirmed earlier findings that the plasticity of moult in M. n. nivalis is very limited. This means that climate change will strongly influence the mortality of the nivalis-type due to prolonged camouflage mismatch, which will directly affect the abundance and geographical distribution of this subspecies.

  16. Interactions between climate change and contaminants.

    PubMed

    Schiedek, Doris; Sundelin, Brita; Readman, James W; Macdonald, Robie W

    2007-12-01

    There is now general consensus that climate change is a global threat and a challenge for the 21st century. More and more information is available demonstrating how increased temperature may affect aquatic ecosystems and living resources or how increased water levels may impact coastal zones and their management. Many ecosystems are also affected by human releases of contaminants, for example from land based sources or the atmosphere, which also may cause severe effects. So far these two important stresses on ecosystems have mainly been discussed independently. The present paper is intended to increase awareness among scientists, coastal zone managers and decision makers that climate change will affect contaminant exposure and toxic effects and that both forms of stress will impact aquatic ecosystems and biota. Based on examples from different ecosystems, we discuss risks anticipated from contaminants in a rapidly changing environment and the research required to understand and predict how on-going and future climate change may alter risks from chemical pollution.

  17. Regulation of snow-fed rivers affects flow regimes more than climate change.

    PubMed

    Arheimer, B; Donnelly, C; Lindström, G

    2017-07-05

    River flow is mainly controlled by climate, physiography and regulations, but their relative importance over large landmasses is poorly understood. Here we show from computational modelling that hydropower regulation is a key driver of flow regime change in snow-dominated regions and is more important than future climate changes. This implies that climate adaptation needs to include regulation schemes. The natural river regime in snowy regions has low flow when snow is stored and a pronounced peak flow when snow is melting. Global warming and hydropower regulation change this temporal pattern similarly, causing less difference in river flow between seasons. We conclude that in snow-fed rivers globally, the future climate change impact on flow regime is minor compared to regulation downstream of large reservoirs, and of similar magnitude over large landmasses. Our study not only highlights the impact of hydropower production but also that river regulation could be turned into a measure for climate adaptation to maintain biodiversity on floodplains under climate change.Global warming and hydropower regulations are major threats to future fresh-water availability and biodiversity. Here, the authors show that their impact on flow regime over a large landmass result in similar changes, but hydropower is more critical locally and may have potential for climate adaptation in floodplains.

  18. Potential effects of climate change on Oregon crops

    EPA Science Inventory

    This talk will discuss: 1) potential changes in the Pacific Northwest climate with global climate change, 2) how climate change can affect crops, 3) the diversity of Oregon agriculture, 4) examples of potential response of Oregon crops – especially dryland winter wheat, and 5) br...

  19. Climate Change and Fish Availability

    NASA Astrophysics Data System (ADS)

    Teng, Paul P. S.; Lassa, Jonatan; Caballero-Anthony, Mely

    Human consumption of fish has been trending upwards in the past decades and this is projected to continue. The main sources of fish are from wild fisheries (marine and freshwater) and aquaculture. Climate change is anticipated to affect the availability of fish through its effect on these two sources as well as on supply chain processes such as storage, transport, processing and retail. Climate change is known to result in warmer and more acid oceans. Ocean acidification due to higher CO2 concentration levels at sea modifies the distribution of phytoplankton and zooplankton to affect wild, capture fisheries. Higher temperature causes warm-water coral reefs to respond with species replacement and bleaching, leading to coral cover loss and habitat loss. Global changes in climatic systems may also cause fish invasion, extinction and turnover. While this may be catastrophic for small scale fish farming in poor tropical communities, there are also potential effects on animal protein supply shifts at local and global scales with food security consequences. This paper discusses the potential impacts of climate change on fisheries and aquaculture in the Asian Pacific region, with special emphasis on Southeast Asia. The key question to be addressed is “What are the impacts of global climate change on global fish harvests and what does it mean to the availability of fish?”

  20. AO/NAO Response to Climate Change. 1; Respective Influences of Stratospheric and Tropospheric Climate Changes

    NASA Technical Reports Server (NTRS)

    Rind, D.; Perlwitz, J.; Lonergan, P.

    2005-01-01

    We utilize the GISS Global Climate Middle Atmosphere Model and 8 different climate change experiments, many of them focused on stratospheric climate forcings, to assess the relative influence of tropospheric and stratospheric climate change on the extratropical circulation indices (Arctic Oscillation, AO; North Atlantic Oscillation, NAO). The experiments are run in two different ways: with variable sea surface temperatures (SSTs) to allow for a full tropospheric climate response, and with specified SSTs to minimize the tropospheric change. The results show that tropospheric warming (cooling) experiments and stratospheric cooling (warming) experiments produce more positive (negative) AO/NAO indices. For the typical magnitudes of tropospheric and stratospheric climate changes, the tropospheric response dominates; results are strongest when the tropospheric and stratospheric influences are producing similar phase changes. Both regions produce their effect primarily by altering wave propagation and angular momentum transports, but planetary wave energy changes accompanying tropospheric climate change are also important. Stratospheric forcing has a larger impact on the NAO than on the AO, and the angular momentum transport changes associated with it peak in the upper troposphere, affecting all wavenumbers. Tropospheric climate changes influence both the A0 and NAO with effects that extend throughout the troposphere. For both forcings there is often vertical consistency in the sign of the momentum transport changes, obscuring the difference between direct and indirect mechanisms for influencing the surface circulation.

  1. Will climate change affect outbreak patterns of planthoppers in Bangladesh?

    PubMed

    Ali, M P; Huang, Dingcheng; Nachman, G; Ahmed, Nur; Begum, Mahfuz Ara; Rabbi, M F

    2014-01-01

    Recently, planthoppers outbreaks have intensified across Asia resulting in heavy rice yield losses. The problem has been widely reported as being induced by insecticides while other factors such as global warming that could be potential drivers have been neglected. Here, we speculate that global warming may increase outbreak risk of brown planthopper (Nilaparvata lugens Stål.). We present data that demonstrate the relationship between climate variables (air temperature and precipitation) and the abundance of brown planthopper (BPH) during 1998-2007. Data show that BPH has become significantly more abundant in April over the 10-year period, but our data do not indicate that this is due to a change in climate, as no significant time trends in temperature and precipitation could be demonstrated. The abundance of BPH varied considerably between months within a year which is attributed to seasonal factors, including the availability of suitable host plants. On the other hand, the variation within months is attributed to fluctuations in monthly temperature and precipitation among years. The effects of these weather variables on BPH abundance were analyzed statistically by a general linear model. The statistical model shows that the expected effect of increasing temperatures is ambiguous and interacts with the amount of rainfall. According to the model, months or areas characterized by a climate that is either cold and dry or hot and wet are likely to experience higher levels of BPH due to climate change, whereas other combinations of temperature and rainfall may reduce the abundance of BPH. The analysis indicates that global warming may have contributed to the recent outbreaks of BPH in some rice growing areas of Asia, and that the severity of such outbreaks is likely to increase if climate change exaggerates. Our study highlights the need to consider climate change when designing strategies to manage planthoppers outbreaks.

  2. Climate change and skin.

    PubMed

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many

  3. Climate change and dead zones.

    PubMed

    Altieri, Andrew H; Gedan, Keryn B

    2015-04-01

    Estuaries and coastal seas provide valuable ecosystem services but are particularly vulnerable to the co-occurring threats of climate change and oxygen-depleted dead zones. We analyzed the severity of climate change predicted for existing dead zones, and found that 94% of dead zones are in regions that will experience at least a 2 °C temperature increase by the end of the century. We then reviewed how climate change will exacerbate hypoxic conditions through oceanographic, ecological, and physiological processes. We found evidence that suggests numerous climate variables including temperature, ocean acidification, sea-level rise, precipitation, wind, and storm patterns will affect dead zones, and that each of those factors has the potential to act through multiple pathways on both oxygen availability and ecological responses to hypoxia. Given the variety and strength of the mechanisms by which climate change exacerbates hypoxia, and the rates at which climate is changing, we posit that climate change variables are contributing to the dead zone epidemic by acting synergistically with one another and with recognized anthropogenic triggers of hypoxia including eutrophication. This suggests that a multidisciplinary, integrated approach that considers the full range of climate variables is needed to track and potentially reverse the spread of dead zones. © 2014 John Wiley & Sons Ltd.

  4. Natural versus anthropogenic climate change: Swedish farmers' joint construction of climate perceptions.

    PubMed

    Asplund, Therese

    2016-07-01

    While previous research into understandings of climate change has usually examined general public perceptions, this study offers an audience-specific departure point. This article analyses how Swedish farmers perceive climate change and how they jointly shape their understandings. The agricultural sector is of special interest because it both contributes to and is directly affected by climate change. Through focus group discussions with Swedish farmers, this study finds that (1) farmers relate to and understand climate change through their own experiences, (2) climate change is understood either as a natural process subject to little or no human influence or as anthropogenic and (3) various communication tools contribute to the formation of natural and anthropogenic climate change frames. The article ends by discussing frame resonance and frame clash in public understanding of climate change and by comparing potential similarities and differences in how various segments of the public make sense of climate change. © The Author(s) 2014.

  5. Climate change and climate variability: personal motivation for adaptation and mitigation

    PubMed Central

    2011-01-01

    Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. Methods In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Results Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4 - 4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1 - 3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2 - 3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4 - 3.1) or plan, OR = 2.2 (95% CI: 1.5 -3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1 - 2.4) or an emergency plan OR = 1.5 (95%CI: 1.0 - 2.2). Conclusions Motivation for

  6. Climate change and climate variability: personal motivation for adaptation and mitigation.

    PubMed

    Semenza, Jan C; Ploubidis, George B; George, Linda A

    2011-05-21

    Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4-4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1-3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2-3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4-3.1) or plan, OR = 2.2 (95% CI: 1.5-3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1-2.4) or an emergency plan OR = 1.5 (95%CI: 1.0-2.2). Motivation for voluntary mitigation is mostly dependent on

  7. National climate assessment technical report on the impacts of climate and land use and land cover change

    USGS Publications Warehouse

    Loveland, Thomas; Mahmood, Rezaul; Patel-Weynand, Toral; Karstensen, Krista; Beckendorf, Kari; Bliss, Norman; Carleton, Andrew

    2012-01-01

    This technical report responds to the recognition by the U.S. Global Change Research Program (USGCRP) and the National Climate Assessment (NCA) of the importance of understanding how land use and land cover (LULC) affects weather and climate variability and change and how that variability and change affects LULC. Current published, peer-reviewed, scientific literature and supporting data from both existing and original sources forms the basis for this report's assessment of the current state of knowledge regarding land change and climate interactions. The synthesis presented herein documents how current and future land change may alter environment processes and in turn, how those conditions may affect both land cover and land use by specifically investigating, * The primary contemporary trends in land use and land cover, * The land-use and land-cover sectors and regions which are most affected by weather and climate variability,* How land-use practices are adapting to climate change, * How land-use and land-cover patterns and conditions are affecting weather and climate, and * The key elements of an ongoing Land Resources assessment. These findings present information that can be used to better assess land change and climate interactions in order to better assess land management and adaptation strategies for future environmental change and to assist in the development of a framework for an ongoing national assessment.

  8. Climate Change, Soils, and Human Health

    NASA Astrophysics Data System (ADS)

    Brevik, Eric C.

    2013-04-01

    According to the Intergovernmental Panel on Climate Change, global temperatures are expected to increase 1.1 to 6.4 degrees C during the 21st century and precipitation patterns will be altered by climate change (IPCC, 2007). Soils are intricately linked to the atmospheric/climate system through the carbon, nitrogen, and hydrologic cycles. Altered climate will, therefore, have an effect on soil processes and properties. Studies into the effects of climate change on soil processes and properties are still incomplete, but have revealed that climate change will impact soil organic matter dynamics including soil organisms and the multiple soil properties that are tied to organic matter, soil water, and soil erosion. The exact direction and magnitude of those impacts will be dependent on the amount of change in atmospheric gases, temperature, and precipitation amounts and patterns. Recent studies give reason to believe at least some soils may become net sources of atmospheric carbon as temperatures rise; this is particularly true of high latitude regions with permanently frozen soils. Soil erosion by both wind and water is also likely to increase. These soil changes will lead to both direct and indirect impacts on human health. Possible indirect impacts include temperature extremes, food safety and air quality issues, increased and/or expanded disease incidences, and occupational health issues. Potential direct impacts include decreased food security and increased atmospheric dust levels. However, there are still many things we need to know more about. How climate change will affect the nitrogen cycle and, in turn, how the nitrogen cycle will affect carbon sequestration in soils is a major research need, as is a better understanding of soil water-CO2 level-temperature relationships. Knowledge of the response of plants to elevated atmospheric CO2 given limitations in nutrients like nitrogen and phosphorus and how that affects soil organic matter dynamics is a critical

  9. Climate change, tropospheric ozone and particulate matter, and health impacts.

    PubMed

    Ebi, Kristie; McGregor, Glenn

    2009-01-01

    We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health, as well as studies projecting the impacts of climate change on air quality and the impacts of these changes on morbidity/mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty are the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given the uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, increasing morbidity/mortality. There are few projections for low- and middle-income countries. The evidence is less robust for PM, because few studies have been conducted. More research is needed to better understand the possible impacts of climate change on air pollution-related health impacts.

  10. Arctic cities and climate change: climate-induced changes in stability of Russian urban infrastructure built on permafrost

    NASA Astrophysics Data System (ADS)

    Shiklomanov, Nikolay; Streletskiy, Dmitry; Swales, Timothy

    2014-05-01

    Planned socio-economic development during the Soviet period promoted migration into the Arctic and work force consolidation in urbanized settlements to support mineral resources extraction and transportation industries. These policies have resulted in very high level of urbanization in the Soviet Arctic. Despite the mass migration from the northern regions during the 1990s following the collapse of the Soviet Union and the diminishing government support, the Russian Arctic population remains predominantly urban. In five Russian Administrative regions underlined by permafrost and bordering the Arctic Ocean 66 to 82% (depending on region) of the total population is living in Soviet-era urban communities. The political, economic and demographic changes in the Russian Arctic over the last 20 years are further complicated by climate change which is greatly amplified in the Arctic region. One of the most significant impacts of climate change on arctic urban landscapes is the warming and degradation of permafrost which negatively affects the structural integrity of infrastructure. The majority of structures in the Russian Arctic are built according to the passive principle, which promotes equilibrium between the permafrost thermal regime and infrastructure foundations. This presentation is focused on quantitative assessment of potential changes in stability of Russian urban infrastructure built on permafrost in response to ongoing and future climatic changes using permafrost - geotechnical model forced by GCM-projected climate. To address the uncertainties in GCM projections we have utilized results from 6 models participated in most recent IPCC model inter-comparison project. The analysis was conducted for entire extent of Russian permafrost-affected area and on several representative urban communities. Our results demonstrate that significant observed reduction in urban infrastructure stability throughout the Russian Arctic can be attributed to climatic changes and that

  11. Changes in future fire regimes under climate change

    NASA Astrophysics Data System (ADS)

    Thonicke, Kirsten; von Bloh, Werner; Lutz, Julia; Knorr, Wolfgang; Wu, Minchao; Arneth, Almut

    2013-04-01

    Fires are expected to change under future climate change, climatic fire is is increasing due to increase in droughts and heat waves affecting vegetation productivity and ecosystem function. Vegetation productivity influences fuel production, but can also limit fire spread. Vegetation-fire models allow investigating the interaction between wildfires and vegetation dynamics, thus non-linear effects between changes in fuel composition and production on fire as well as changes in fire regimes on fire-related plant mortality and fuel combustion. Here we present results from simulation experiments, where the vegetation-fire models LPJmL-SPITFIRE and LPJ-GUESS are applied to future climate change scenarios from regional climate models in Europe and Northern Africa. Climate change impacts on fire regimes, vegetation dynamics and carbon fluxes are quantified and presented. New fire-prone regions are mapped and changes in fire regimes of ecosystems with a long-fire history are analyzed. Fuel limitation is likely to increase in Mediterranean-type ecosystems, indicating non-linear connection between increasing fire risk and fuel production. Increased warming in temperate ecosystems in Eastern Europe and continued fuel production leads to increases not only in climatic fire risk, but also area burnt and biomass burnt. This has implications for fire management, where adaptive capacity to this new vulnerability might be limited.

  12. Lakes as sentinels of climate change

    PubMed Central

    Adrian, Rita; O’Reilly, Catherine M.; Zagarese, Horacio; Baines, Stephen B.; Hessen, Dag O.; Keller, Wendel; Livingstone, David M.; Sommaruga, Ruben; Straile, Dietmar; Van Donk, Ellen; Weyhenmeyer, Gesa A.; Winder, Monika

    2010-01-01

    While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment. PMID:20396409

  13. Climate change is affecting altitudinal migrants and hibernating species.

    PubMed

    Inouye, D W; Barr, B; Armitage, K B; Inouye, B D

    2000-02-15

    Calendar date of the beginning of the growing season at high altitude in the Colorado Rocky Mountains is variable but has not changed significantly over the past 25 years. This result differs from growing evidence from low altitudes that climate change is resulting in a longer growing season, earlier migrations, and earlier reproduction in a variety of taxa. At our study site, the beginning of the growing season is controlled by melting of the previous winter's snowpack. Despite a trend for warmer spring temperatures the average date of snowmelt has not changed, perhaps because of the trend for increased winter precipitation. This disjunction between phenology at low and high altitudes may create problems for species, such as many birds, that migrate over altitudinal gradients. We present data indicating that this already may be true for American robins, which are arriving 14 days earlier than they did in 1981; the interval between arrival date and the first date of bare ground has grown by 18 days. We also report evidence for an effect of climate change on hibernation behavior; yellow-bellied marmots are emerging 38 days earlier than 23 years ago, apparently in response to warmer spring air temperatures. Migrants and hibernators may experience problems as a consequence of these changes in phenology, which may be exacerbated if climate models are correct in their predictions of increased winter snowfall in our study area. The trends we report for earlier formation of permanent snowpack and for a longer period of snow cover also have implications for hibernating species.

  14. Climate change is affecting altitudinal migrants and hibernating species

    PubMed Central

    Inouye, David W.; Barr, Billy; Armitage, Kenneth B.; Inouye, Brian D.

    2000-01-01

    Calendar date of the beginning of the growing season at high altitude in the Colorado Rocky Mountains is variable but has not changed significantly over the past 25 years. This result differs from growing evidence from low altitudes that climate change is resulting in a longer growing season, earlier migrations, and earlier reproduction in a variety of taxa. At our study site, the beginning of the growing season is controlled by melting of the previous winter's snowpack. Despite a trend for warmer spring temperatures the average date of snowmelt has not changed, perhaps because of the trend for increased winter precipitation. This disjunction between phenology at low and high altitudes may create problems for species, such as many birds, that migrate over altitudinal gradients. We present data indicating that this already may be true for American robins, which are arriving 14 days earlier than they did in 1981; the interval between arrival date and the first date of bare ground has grown by 18 days. We also report evidence for an effect of climate change on hibernation behavior; yellow-bellied marmots are emerging 38 days earlier than 23 years ago, apparently in response to warmer spring air temperatures. Migrants and hibernators may experience problems as a consequence of these changes in phenology, which may be exacerbated if climate models are correct in their predictions of increased winter snowfall in our study area. The trends we report for earlier formation of permanent snowpack and for a longer period of snow cover also have implications for hibernating species. PMID:10677510

  15. Climate change and intertidal wetlands.

    PubMed

    Ross, Pauline M; Adam, Paul

    2013-03-19

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  16. Climate Change and Intertidal Wetlands

    PubMed Central

    Ross, Pauline M.; Adam, Paul

    2013-01-01

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

  17. Decision analysis of shoreline protection under climate change uncertainty

    NASA Astrophysics Data System (ADS)

    Chao, Philip T.; Hobbs, Benjamin F.

    1997-04-01

    If global warming occurs, it could significantly affect water resource distribution and availability. Yet it is unclear whether the prospect of such change is relevant to water resources management decisions being made today. We model a shoreline protection decision problem with a stochastic dynamic program (SDP) to determine whether consideration of the possibility of climate change would alter the decision. Three questions are addressed with the SDP: (l) How important is climate change compared to other uncertainties?, (2) What is the economic loss if climate change uncertainty is ignored?, and (3) How does belief in climate change affect the timing of the decision? In the case study, sensitivity analysis shows that uncertainty in real discount rates has a stronger effect upon the decision than belief in climate change. Nevertheless, a strong belief in climate change makes the shoreline protection project less attractive and often alters the decision to build it.

  18. An Overview of Occupational Risks From Climate Change.

    PubMed

    Applebaum, Katie M; Graham, Jay; Gray, George M; LaPuma, Peter; McCormick, Sabrina A; Northcross, Amanda; Perry, Melissa J

    2016-03-01

    Changes in atmosphere and temperature are affecting multiple environmental indicators from extreme heat events to global air quality. Workers will be uniquely affected by climate change, and the occupational impacts of major shifts in atmospheric and weather conditions need greater attention. Climate change-related exposures most likely to differentially affect workers in the USA and globally include heat, ozone, polycyclic aromatic hydrocarbons, other chemicals, pathogenic microorganisms, vector-borne diseases, violence, and wildfires. Epidemiologic evidence documents a U-, J-, or V-shaped relationship between temperature and mortality. Whereas heat-related morbidity and mortality risks are most evident in agriculture, many other outdoor occupational sectors are also at risk, including construction, transportation, landscaping, firefighting, and other emergency response operations. The toxicity of chemicals change under hyperthermic conditions, particularly for pesticides and ozone. Combined with climate-related changes in chemical transport and distribution, these interactions represent unique health risks specifically to workers. Links between heat and interpersonal conflict including violence require attention because they pose threats to the safety of emergency medicine, peacekeeping and humanitarian relief, and public safety professionals. Recommendations for anticipating how US workers will be most susceptible to climate change include formal monitoring systems for agricultural workers; modeling scenarios focusing on occupational impacts of extreme climate events including floods, wildfires, and chemical spills; and national research agenda setting focusing on control and mitigation of occupational susceptibility to climate change.

  19. Atmospheric Composition Change: Climate-Chemistry Interactions

    NASA Technical Reports Server (NTRS)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; hide

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  20. Climate change, tropospheric ozone and particulate matter, and health impacts.

    PubMed

    Ebi, Kristie L; McGregor, Glenn

    2008-11-01

    Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Additional research is needed to better understand the possible impacts of climate change on air pollution-related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations.

  1. Climate Change, Tropospheric Ozone and Particulate Matter, and Health Impacts

    PubMed Central

    Ebi, Kristie L.; McGregor, Glenn

    2008-01-01

    Objective Because the state of the atmosphere determines the development, transport, dispersion, and deposition of air pollutants, there is concern that climate change could affect morbidity and mortality associated with elevated concentrations of these gases and fine particles. We review how climate change could affect future concentrations of tropospheric ozone and particulate matter (PM), and what changing concentrations could mean for population health. Data sources We review studies projecting the impacts of climate change on air quality and studies projecting the impacts of these changes on morbidity and mortality. Data synthesis Climate change could affect local to regional air quality through changes in chemical reaction rates, boundary layer heights that affect vertical mixing of pollutants, and changes in synoptic airflow patterns that govern pollutant transport. Sources of uncertainty include the degree of future climate change, future emissions of air pollutants and their precursors, and how population vulnerability may change in the future. Given these uncertainties, projections suggest that climate change will increase concentrations of tropospheric ozone, at least in high-income countries when precursor emissions are held constant, which would increase morbidity and mortality. Few projections are available for low- and middle-income countries. The evidence is less robust for PM, primarily because few studies have been conducted. Conclusions Additional research is needed to better understand the possible impacts of climate change on air pollution–related health impacts. If improved models continue to project higher ozone concentrations with climate change, then reducing greenhouse gas emissions would enhance the health of current and future generations. PMID:19057695

  2. Climate Change Adaptation Training

    EPA Pesticide Factsheets

    A list of on-line training modules to help local government officials and those interested in water management issues better understand how the changing climate affects the services and resources they care about

  3. India's National Action Plan on Climate Change.

    PubMed

    Pandve, Harshal T

    2009-04-01

    Climate change is one of the most critical global challenges of our times. Recent events have emphatically demonstrated our growing vulnerability to climate change. Climate change impacts will range from affecting agriculture - further endangering food security - to sea-level rise and the accelerated erosion of coastal zones, increasing intensity of natural disasters, species extinction, and the spread of vector-borne diseases. India released its much-awaited National Action Plan on Climate Change (NAPCC) to mitigate and adapt to climate change on June 30, 2008, almost a year after it was announced. The NAPCC runs through 2017 and directs ministries to submit detailed implementation plans to the Prime Minister's Council on Climate Change by December 2008. This article briefly reviews the plan and opinion about it from different experts and organizations.

  4. Climate change and children's health.

    PubMed

    Bernstein, Aaron S; Myers, Samuel S

    2011-04-01

    To present the latest data that demonstrate how climate change affects children's health and to identify the principal ways in which climate change puts children's health at risk. Data continue to emerge that further implicate climate change as contributing to health burdens in children. Climate models have become even more sophisticated and consistently forecast that greenhouse gas emissions will lead to higher mean temperatures that promote more intense storms and droughts, both of which have profound implications for child health. Recent climate models shed light upon the spread of vector-borne disease, including Lyme disease in North America and malaria in Africa. Modeling studies have found that conditions conducive to forest fires, which generate harmful air pollutants and damage agriculture, are likely to become more prevalent in this century due to the effects of greenhouse gases added to earth's atmosphere. Through many pathways, and in particular via placing additional stress upon the availability of food, clean air, and clean water and by potentially expanding the burden of disease from certain vector-borne diseases, climate change represents a major threat to child health. Pediatricians have already seen and will increasingly see the adverse health effects of climate change in their practices. Because of this, and many other reasons, pediatricians have a unique capacity to help resolve the climate change problem.

  5. Climate change and allergic disease.

    PubMed

    Shea, Katherine M; Truckner, Robert T; Weber, Richard W; Peden, David B

    2008-09-01

    Climate change is potentially the largest global threat to human health ever encountered. The earth is warming, the warming is accelerating, and human actions are largely responsible. If current emissions and land use trends continue unchecked, the next generations will face more injury, disease, and death related to natural disasters and heat waves, higher rates of climate-related infections, and wide-spread malnutrition, as well as more allergic and air pollution-related morbidity and mortality. This review highlights links between global climate change and anticipated increases in prevalence and severity of asthma and related allergic disease mediated through worsening ambient air pollution and altered local and regional pollen production. The pattern of change will vary regionally depending on latitude, altitude, rainfall and storms, land-use patterns, urbanization, transportation, and energy production. The magnitude of climate change and related increases in allergic disease will be affected by how aggressively greenhouse gas mitigation strategies are pursued, but at best an average warming of 1 to 2 degrees C is certain this century. Thus, anticipation of a higher allergic disease burden will affect clinical practice as well as public health planning. A number of practical primary and secondary prevention strategies are suggested at the end of the review to assist in meeting this unprecedented public health challenge.

  6. Climate change and food security.

    PubMed

    Gregory, P J; Ingram, J S I; Brklacich, M

    2005-11-29

    Dynamic interactions between and within the biogeophysical and human environments lead to the production, processing, distribution, preparation and consumption of food, resulting in food systems that underpin food security. Food systems encompass food availability (production, distribution and exchange), food access (affordability, allocation and preference) and food utilization (nutritional and societal values and safety), so that food security is, therefore, diminished when food systems are stressed. Such stresses may be induced by a range of factors in addition to climate change and/or other agents of environmental change (e.g. conflict, HIV/AIDS) and may be particularly severe when these factors act in combination. Urbanization and globalization are causing rapid changes to food systems. Climate change may affect food systems in several ways ranging from direct effects on crop production (e.g. changes in rainfall leading to drought or flooding, or warmer or cooler temperatures leading to changes in the length of growing season), to changes in markets, food prices and supply chain infrastructure. The relative importance of climate change for food security differs between regions. For example, in southern Africa, climate is among the most frequently cited drivers of food insecurity because it acts both as an underlying, ongoing issue and as a short-lived shock. The low ability to cope with shocks and to mitigate long-term stresses means that coping strategies that might be available in other regions are unavailable or inappropriate. In other regions, though, such as parts of the Indo-Gangetic Plain of India, other drivers, such as labour issues and the availability and quality of ground water for irrigation, rank higher than the direct effects of climate change as factors influencing food security. Because of the multiple socio-economic and bio-physical factors affecting food systems and hence food security, the capacity to adapt food systems to reduce their

  7. Climate change and food security

    PubMed Central

    Gregory, P.J; Ingram, J.S.I; Brklacich, M

    2005-01-01

    Dynamic interactions between and within the biogeophysical and human environments lead to the production, processing, distribution, preparation and consumption of food, resulting in food systems that underpin food security. Food systems encompass food availability (production, distribution and exchange), food access (affordability, allocation and preference) and food utilization (nutritional and societal values and safety), so that food security is, therefore, diminished when food systems are stressed. Such stresses may be induced by a range of factors in addition to climate change and/or other agents of environmental change (e.g. conflict, HIV/AIDS) and may be particularly severe when these factors act in combination. Urbanization and globalization are causing rapid changes to food systems. Climate change may affect food systems in several ways ranging from direct effects on crop production (e.g. changes in rainfall leading to drought or flooding, or warmer or cooler temperatures leading to changes in the length of growing season), to changes in markets, food prices and supply chain infrastructure. The relative importance of climate change for food security differs between regions. For example, in southern Africa, climate is among the most frequently cited drivers of food insecurity because it acts both as an underlying, ongoing issue and as a short-lived shock. The low ability to cope with shocks and to mitigate long-term stresses means that coping strategies that might be available in other regions are unavailable or inappropriate. In other regions, though, such as parts of the Indo-Gangetic Plain of India, other drivers, such as labour issues and the availability and quality of ground water for irrigation, rank higher than the direct effects of climate change as factors influencing food security. Because of the multiple socio-economic and bio-physical factors affecting food systems and hence food security, the capacity to adapt food systems to reduce their

  8. Climate change and health research in the Eastern Mediterranean Region.

    PubMed

    Habib, Rima R; Zein, Kareem El; Ghanawi, Joly

    2010-06-01

    Anthropologically induced climate change, caused by an increased concentration of greenhouse gases in the atmosphere, is an emerging threat to human health. Consequences of climate change may affect the prevalence of various diseases and environmental and social maladies that affect population health. In this article, we reviewed the literature on climate change and health in the Eastern Mediterranean Region. This region already faces numerous humanitarian crises, from conflicts to natural hazards and a high burden of disease. Climate change is likely to aggravate these emergencies, necessitating a strengthening of health systems and capacities in the region. However, the existing literature on climate change from the region is sparse and informational gaps stand in the way of regional preparedness and adaptation. Further research is needed to assess climatic changes and related health impacts in the Eastern Mediterranean Region. Such knowledge will allow countries to identify preparedness vulnerabilities, evaluate capacity to adapt to climate change, and develop adaptation strategies to allay the health impacts of climate change.

  9. Climate change threatens European conservation areas

    PubMed Central

    Araújo, Miguel B; Alagador, Diogo; Cabeza, Mar; Nogués-Bravo, David; Thuiller, Wilfried

    2011-01-01

    Europe has the world's most extensive network of conservation areas. Conservation areas are selected without taking into account the effects of climate change. How effectively would such areas conserve biodiversity under climate change? We assess the effectiveness of protected areas and the Natura 2000 network in conserving a large proportion of European plant and terrestrial vertebrate species under climate change. We found that by 2080, 58 ± 2.6% of the species would lose suitable climate in protected areas, whereas losses affected 63 ± 2.1% of the species of European concern occurring in Natura 2000 areas. Protected areas are expected to retain climatic suitability for species better than unprotected areas (P<0.001), but Natura 2000 areas retain climate suitability for species no better and sometimes less effectively than unprotected areas. The risk is high that ongoing efforts to conserve Europe's biodiversity are jeopardized by climate change. New policies are required to avert this risk. PMID:21447141

  10. Serious Simulation Role-Playing Games for Transformative Climate Change Education: "World Climate" and "Future Climate"

    NASA Astrophysics Data System (ADS)

    Rooney-Varga, J. N.; Sterman, J.; Sawin, E.; Jones, A.; Merhi, H.; Hunt, C.

    2012-12-01

    Climate change, its mitigation, and adaption to its impacts are among the greatest challenges of our times. Despite the importance of societal decisions in determining climate change outcomes, flawed mental models about climate change remain widespread, are often deeply entrenched, and present significant barriers to understanding and decision-making around climate change. Here, we describe two simulation role-playing games that combine active, affective, and analytical learning to enable shifts of deeply held conceptions about climate change. The games, World Climate and Future Climate, use a state-of-the-art decision support simulation, C-ROADS (Climate Rapid Overview and Decision Support) to provide users with immediate feedback on the outcomes of their mitigation strategies at the national level, including global greenhouse gas (GHG) emissions and concentrations, mean temperature changes, sea level rise, and ocean acidification. C-ROADS outcomes are consistent with the atmosphere-ocean general circulation models (AOGCMS), such as those used by the IPCC, but runs in less than one second on ordinary laptops, providing immediate feedback to participants on the consequences of their proposed policies. Both World Climate and Future Climate role-playing games provide immersive, situated learning experiences that motivate active engagement with climate science and policy. In World Climate, participants play the role of United Nations climate treaty negotiators. Participant emissions reductions proposals are continually assessed through interactive exploration of the best available science through C-ROADS. Future Climate focuses on time delays in the climate and energy systems. Participants play the roles of three generations: today's policymakers, today's youth, and 'just born.' The game unfolds in three rounds 25 simulated years apart. In the first round, only today's policymakers make decisions; In the next round, the young become the policymakers and inherit the

  11. Evaluating Changes in Climate Literacy among Middle and High School Students who Participate in Climate Change Education Modules

    NASA Astrophysics Data System (ADS)

    DeWaters, J.; Powers, S.; Dhaniyala, S.; Small, M.

    2012-12-01

    Middle school (MS) and high school (HS) teachers have developed and taught instructional modules that were created through their participation in Clarkson University's NASA-funded Project-Based Global Climate Change Education project. A quantitative survey was developed to help evaluate the project's impact on students' climate literacy, which includes content knowledge as well as affective and behavioral attributes. Content objectives were guided primarily by the 2009 document, Climate Literacy: The Essential Principles of Climate Sciences. The survey was developed according to established psychometric principles and methodologies in the sociological and educational sciences which involved developing and evaluating a pool of survey items, adapted primarily from existing climate surveys and questionnaires; preparing, administering, and evaluating two rounds of pilot tests; and preparing a final instrument with revisions informed by both pilot assessments. The resulting survey contains three separate subscales: cognitive, affective, and behavioral, with five self-efficacy items embedded within the affective subscale. Cognitive items use a multiple choice format with one correct response; non-cognitive items use a 5-point Likert-type scale with options generally ranging from "strongly agree" to "strongly disagree" (affective), or "almost always" to "hardly ever" (behavioral). Three versions of the survey were developed and administered using an on-line Zoomerang™ platform to college students/adults; HS students; and MS students, respectively. Instrument validity was supported by using items drawn from existing surveys, by reviewing/applying prior research in climate literacy, and through comparative age-group analysis. The internal consistency reliability of each subscale, as measured by Cronbach's alpha, ranges from 0.78-0.86 (cognitive), 0.87-0.89 (affective) and 0.84-0.85 (behavioral), all satisfying generally accepted criteria for internal reliability of

  12. Winter climate change affects growing-season soil microbial biomass and activity in northern hardwood forests.

    PubMed

    Durán, Jorge; Morse, Jennifer L; Groffman, Peter M; Campbell, John L; Christenson, Lynn M; Driscoll, Charles T; Fahey, Timothy J; Fisk, Melany C; Mitchell, Myron J; Templer, Pamela H

    2014-11-01

    Understanding the responses of terrestrial ecosystems to global change remains a major challenge of ecological research. We exploited a natural elevation gradient in a northern hardwood forest to determine how reductions in snow accumulation, expected with climate change, directly affect dynamics of soil winter frost, and indirectly soil microbial biomass and activity during the growing season. Soils from lower elevation plots, which accumulated less snow and experienced more soil temperature variability during the winter (and likely more freeze/thaw events), had less extractable inorganic nitrogen (N), lower rates of microbial N production via potential net N mineralization and nitrification, and higher potential microbial respiration during the growing season. Potential nitrate production rates during the growing season were particularly sensitive to changes in winter snow pack accumulation and winter soil temperature variability, especially in spring. Effects of elevation and winter conditions on N transformation rates differed from those on potential microbial respiration, suggesting that N-related processes might respond differently to winter climate change in northern hardwood forests than C-related processes. © 2014 John Wiley & Sons Ltd.

  13. How will climate change affect wildland fire severity in the western US?

    Treesearch

    Sean A. Parks; Carol Miller; John T. Abatzoglou; Lisa M. Holsinger; Marc-Andre Parisien; Solomon Z. Dobrowski

    2016-01-01

    Fire regime characteristics in North America are expected to change over the next several decades as a result of anthropogenic climate change. Although some fire regime characteristics (e.g., area burned and fire season length) are relatively well-studied in the context of a changing climate, fire severity has received less attention. In this study, we used...

  14. Climate Change and the Neglected Tropical Diseases.

    PubMed

    Booth, Mark

    2018-01-01

    Climate change is expected to impact across every domain of society, including health. The majority of the world's population is susceptible to pathological, infectious disease whose life cycles are sensitive to environmental factors across different physical phases including air, water and soil. Nearly all so-called neglected tropical diseases (NTDs) fall into this category, meaning that future geographic patterns of transmission of dozens of infections are likely to be affected by climate change over the short (seasonal), medium (annual) and long (decadal) term. This review offers an introduction into the terms and processes deployed in modelling climate change and reviews the state of the art in terms of research into how climate change may affect future transmission of NTDs. The 34 infections included in this chapter are drawn from the WHO NTD list and the WHO blueprint list of priority diseases. For the majority of infections, some evidence is available of which environmental factors contribute to the population biology of parasites, vectors and zoonotic hosts. There is a general paucity of published research on the potential effects of decadal climate change, with some exceptions, mainly in vector-borne diseases. © 2018 Elsevier Ltd All rights reserved.

  15. [Effects of future climate change on climatic suitability of rubber plantation in China].

    PubMed

    Liu, Shao-jun; Zhou, Guang-sheng; Fang, Shi-bo; Zhang, Jing-hong

    2015-07-01

    Global warming may seriously affect the climatic suitability distribution of rubber plantation in China. Five main climate factors affecting rubber planting were mean temperature of the coldest month, mean extremely minimum temperature, the number of monthly, mean temperature ≥18 °C, annual mean temperature and annual mean precipitation. Climatic suitability areas of rubber plantation in 1981-2010, 2041-2060, 2061-2080 were analyzed by the maximum entropy model based on the five main climate factors and the climate data of 1981-2010 and RCP4.5 scenario data. The results showed that under the background of the future climate change, the climatic suitability area of rubber plantation would have a trend of expansion to the north in 2041-2060, 2061-2080. The climatic suitability areas of rubber plantation in 2041-2060 and 2061-2080 increased more obviously than in 1981-2010. The suitable area and optimum area would increase, while the less suitable area would decrease. The climatic suitability might change in some areas, such as the total suitable area would decrease in Yunnan Province, and the suitability grade in both Jinghong and Mengna would change from optimum area to suitable area. However, the optimum area of rubber plantation would increase significantly in Hainan Island and Leizhou Peninsula of Guangdong Province, and a new less suitable area of rubber planting would appear in Taiwan Island due to the climate change.

  16. Climate change and nutrition: creating a climate for nutrition security.

    PubMed

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC

  17. Predicting the Affects of Climate Change on Evapotranspiration and Agricultural Productivity of Semi-arid Basins

    NASA Astrophysics Data System (ADS)

    Peri, L.; Tyler, S. W.; Zheng, C.; Pohll, G. M.; Yao, Y.

    2013-12-01

    Many arid and semi-arid regions around the world are experiencing water shortages that have become increasingly problematic. Since the late 1800s, upstream diversions in Nevada's Walker River have delivered irrigation supply to the surrounding agricultural fields resulting in a dramatic water level decline of the terminal Walker Lake. Salinity has also increased because the only outflow from the lake is evaporation from the lake surface. The Heihe River basin of northwestern China, a similar semi-arid catchment, is also facing losses from evaporation of terminal locations, agricultural diversions and evapotranspiration (ET) of crops. Irrigated agriculture is now experiencing increased competition for use of diminishing water resources while a demand for ecological conservation continues to grow. It is important to understand how the existing agriculture in these regions will respond as climate changes. Predicting the affects of climate change on groundwater flow, surface water flow, ET and agricultural productivity of the Walker and Heihe River basins is essential for future conservation of water resources. ET estimates from remote sensing techniques can provide estimates of crop water consumption. By determining similarities of both hydrologic cycles, critical components missing in both systems can be determined and predictions of impacts of climate change and human management strategies can be assessed.

  18. Assessing climate change impact on complementarity between solar and hydro power in areas affected by glacier shrinkage

    NASA Astrophysics Data System (ADS)

    Diah Puspitarini, Handriyanti; François, Baptiste; Zoccatelli, Davide; Brown, Casey; Creutin, Jean-Dominique; Zaramella, Mattia; Borga, Marco

    2017-04-01

    Variable Renewable Energy (VRE) sources such as wind, solar and runoff sources are variable in time and space, following their driving weather variables. In this work we aim to analyse optimal mixes of energy sources, i.e. mixes of sources which minimize the deviation between energy load and generation, for a region in the Upper Adige river basin (Eastern Italian Alps) affected by glacier shrinking. The study focuses on hydropower (run of the river - RoR) and solar energy, and analyses the current situation as well different climate change scenarios. Changes in glacier extent in response to climate warming and/or altered precipitation regimes have the potential to substantially alter the magnitude and timing, as well as the spatial variation of watershed-scale hydrologic fluxes. This may change the complementarity with solar power as well. In this study, we analyse the climate change impact on complementarity between RoR and solar using the Decision Scaling approach (Brown et al. 2012). With this approach, the system vulnerability is separated from the climatic hazard that can come from any set of past or future climate conditions. It departs from conventional top-down impact studies because it explores the sensitivity of the system response to a plausible range of climate variations rather than its sensitivity to the time-varying outcome of individual GCM projections. It mainly relies on the development of Climate Response Functions that bring together i) the sensitivity of some system success and/or failure indicators to key external drivers (i.e. mean features of regional climate) and ii) the future values of these drivers as simulated from climate simulation chains. The main VRE sources used in the study region are solar- and hydro-power (with an important fraction of run-of-the river hydropower). The considered indicator of success is the 'energy penetration' coefficient, defined as the long-run percentage of energy demand naturally met by the VRE on an hourly

  19. Climate change and avian influenza

    PubMed Central

    Slingenbergh, J.; Xiao, X.

    2009-01-01

    Summary This paper discusses impacts of climate change on the ecology of avian influenza viruses (AI viruses), which presumably co-evolved with migratory water birds, with virus also persisting outside the host in subarctic water bodies. Climate change would almost certainly alter bird migration, influence the AI virus transmission cycle and directly affect virus survival outside the host. The joint, net effects of these changes are rather unpredictable, but it is likely that AI virus circulation in water bird populations will continue with endless adaptation and evolution. In domestic poultry, too little is known about the direct effect of environmental factors on highly pathogenic avian influenza transmission and persistence to allow inference about the possible effect of climate change. However, possible indirect links through changes in the distribution of duck-crop farming are discussed. PMID:18819672

  20. Harvesting wildlife affected by climate change: a modelling and management approach for polar bears.

    PubMed

    Regehr, Eric V; Wilson, Ryan R; Rode, Karyn D; Runge, Michael C; Stern, Harry L

    2017-10-01

    The conservation of many wildlife species requires understanding the demographic effects of climate change, including interactions between climate change and harvest, which can provide cultural, nutritional or economic value to humans.We present a demographic model that is based on the polar bear Ursus maritimus life cycle and includes density-dependent relationships linking vital rates to environmental carrying capacity ( K ). Using this model, we develop a state-dependent management framework to calculate a harvest level that (i) maintains a population above its maximum net productivity level (MNPL; the population size that produces the greatest net increment in abundance) relative to a changing K , and (ii) has a limited negative effect on population persistence.Our density-dependent relationships suggest that MNPL for polar bears occurs at approximately 0·69 (95% CI = 0·63-0·74) of K . Population growth rate at MNPL was approximately 0·82 (95% CI = 0·79-0·84) of the maximum intrinsic growth rate, suggesting relatively strong compensation for human-caused mortality.Our findings indicate that it is possible to minimize the demographic risks of harvest under climate change, including the risk that harvest will accelerate population declines driven by loss of the polar bear's sea-ice habitat. This requires that (i) the harvest rate - which could be 0 in some situations - accounts for a population's intrinsic growth rate, (ii) the harvest rate accounts for the quality of population data (e.g. lower harvest when uncertainty is large), and (iii) the harvest level is obtained by multiplying the harvest rate by an updated estimate of population size. Environmental variability, the sex and age of removed animals and risk tolerance can also affect the harvest rate. Synthesis and applications . We present a coupled modelling and management approach for wildlife that accounts for climate change and can be used to balance trade-offs among multiple conservation

  1. Opinions and knowledge about climate change science in high school students.

    PubMed

    Harker-Schuch, Inez; Bugge-Henriksen, Christian

    2013-10-01

    This study investigates the influence of knowledge on opinions about climate change in the emerging adults' age group (16-17 years). Furthermore, the effects of a lecture in climate change science on knowledge and opinions were assessed. A survey was conducted in Austria and Denmark on 188 students in national and international schools before and after a lecture in climate change science. The results show that knowledge about climate change science significantly affects opinions about climate change. Students with a higher number of correct answers are more likely to have the opinion that humans are causing climate change and that both individuals and governments are responsible for addressing climate change. The lecture in climate change science significantly improved knowledge development but did not affect opinions. Knowledge was improved by 11 % after the lecture. However, the percentage of correct answers was still below 60 % indicating an urgent need for improving climate change science education.

  2. Evaluation of climate change effects on the hydrology of a medium-sized Mediterranean basin affected by data sparseness

    NASA Astrophysics Data System (ADS)

    Piras, Monica; Mascaro, Giuseppe; Deidda, Roberto; Vivoni, Enrique R.

    2014-05-01

    Many studies based on global and regional climate models agree on the prediction that the Mediterranean area will be most likely affected by climate changes with consequent reduced water availability and intensified hydrologic extremes. This study evaluates the effects of climate changes on the hydrologic response of a medium-sized Mediterranean basin through downscaling techniques and hydrologic simulations. The watershed is the Rio Mannu at Monastir basin (473 km2), located in an agricultural area of southern Sardinia, Italy, which has suffered drought issues in the last decades. It is one of the seven study cases of a multidisciplinary European research project, CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins). In such basins, characterized by strong climate variability and by a complex hydrologic response, process based distributed hydrologic models, DHMs, combined with regional climate models, RCMs, and downscaling techniques can help in the evaluation of the local impacts of climate change on water resources decreasing the uncertainty. Since the Rio Mannu basin is affected by data sparseness (meteorological and streamflow data are collected in non overlapping time periods and at diverse time resolutions), two statistical downscaling strategies for precipitation and potential evapotranspiration have been designed which allow to obtain the high-resolution input data required for the calibration of our hydrologic model, the TIN-based Real time Integrated Basin Simulator (tRIBS). We show how the DHM has been calibrated and validated with reasonable accuracy using the disaggregation tools. Next, the same downscaling algorithms have been used to fill the resolution discrepancy between RCMs and the hydrologic model. The outputs of four RCMs, selected as the best performing and bias corrected within the CLIMB project, have been downscaled and used to force the tRIBS during a reference (1971-2000) and a future (2041-2070) period. Several hydro-climatic

  3. Climate Change and Forest Disturbances

    Treesearch

    V. H. Dale; L. A. Joyce; S. McNulty; R. P. Neilson; M. P. Ayres; M. D. Flannigan; P. J. Hanson; L. C. Irland; A. E. Lugo; C. J. Peterson; D. Simberloff; F. J. Swanson; B. J. Stocks; B. M. Wotton

    2001-01-01

    CLIMATE CHANGE CAN AFFECT FORESTS BY ALTERING THE FREQUENCY, INTENSITY, DURATION, AND TIMING OF FIRE, DROUGHT, INTRODUCED SPECIES, INSECT AND PATHOGEN OUTBREAKS, HURRICANES, WINDSTORMS, ICE STORMS, OR LANDSLIDES

  4. Sensitivity of Ocean Chemistry and Oxygen Change to the Uncertainty in Climate Change

    NASA Astrophysics Data System (ADS)

    Cao, L.; Wang, S.; Zheng, M.; Zhang, H.

    2014-12-01

    With increasing atmospheric CO2 and climate change, global ocean is undergoing substantial physical and biogeochemical changes. In particular, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would affect the projection of ocean oxygen and carbonate chemistry. To examine the effect of climate change on ocean oxygen and carbonate chemistry, we used an Earth system model of intermediate complexity to perform simulations that are driven by atmospheric CO2 concentration pathway of RCP 8.5 with climate sensitivity varying from 0.0°C to 4.5 °C. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. Our simulations show that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO2-induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO2-induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude, to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change.

  5. Forests and climate change: forcings, feedbacks, and the climate benefits of forests.

    PubMed

    Bonan, Gordon B

    2008-06-13

    The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.

  6. The ecology of climate change and infectious diseases

    USGS Publications Warehouse

    Lafferty, Kevin D.

    2009-01-01

    The projected global increase in the distribution and prevalence of infectious diseases with climate change suggests a pending societal crisis. The subject is increasingly attracting the attention of health professionals and climate-change scientists, particularly with respect to malaria and other vector-transmitted human diseases. The result has been the emergence of a crisis discipline, reminiscent of the early phases of conservation biology. Latitudinal, altitudinal, seasonal, and interannual associations between climate and disease along with historical and experimental evidence suggest that climate, along with many other factors, can affect infectious diseases in a nonlinear fashion. However, although the globe is significantly warmer than it was a century ago, there is little evidence that climate change has already favored infectious diseases. While initial projections suggested dramatic future increases in the geographic range of infectious diseases, recent models predict range shifts in disease distributions, with little net increase in area. Many factors can affect infectious disease, and some may overshadow the effects of climate.

  7. How changes of climate extremes affect summer and winter crop yields and water productivity in the southeast USA

    NASA Astrophysics Data System (ADS)

    Tian, D.; Cammarano, D.

    2017-12-01

    Modeling changes of crop production at regional scale is important to make adaptation measures for sustainably food supply under global change. In this study, we explore how changing climate extremes in the 20th and 21st century affect maize (summer crop) and wheat (winter crop) yields in an agriculturally important region: the southeast United States. We analyze historical (1950-1999) and projected (2006-2055) precipitation and temperature extremes by calculating the changes of 18 climate extreme indices using the statistically downscaled CMIP5 data from 10 general circulation models (GCMs). To evaluate how these climate extremes affect maize and wheat yields, historical baseline and projected maize and wheat yields under RCP4.5 and RCP8.5 scenarios are simulated using the DSSAT-CERES maize and wheat models driven by the same downscaled GCMs data. All of the changes are examined at 110 locations over the study region. The results show that most of the precipitation extreme indices do not have notable change; mean precipitation, precipitation intensity, and maximum 1-day precipitation are generally increased; the number of rainy days is decreased. The temperature extreme indices mostly showed increased values on mean temperature, number of high temperature days, diurnal temperature range, consecutive high temperature days, maximum daily maximum temperature, and minimum daily minimum temperature; the number of low temperature days and number of consecutive low temperature days are decreased. The conditional probabilistic relationships between changes in crop yields and changes in extreme indices suggested different responses of crop yields to climate extremes during sowing to anthesis and anthesis to maturity periods. Wheat yields and crop water productivity for wheat are increased due to an increased CO2 concentration and minimum temperature; evapotranspiration, maize yields, and crop water productivity for wheat are decreased owing to the increased temperature

  8. Similarities and Differences in Barriers and Opportunities Affecting Climate Change Adaptation Action in Four North American Landscapes

    NASA Astrophysics Data System (ADS)

    Lonsdale, Whitney R.; Kretser, Heidi E.; Chetkiewicz, Cheryl-Lesley B.; Cross, Molly S.

    2017-12-01

    Climate change presents a complex set of challenges for natural resource managers across North America. Despite recognition that climate change poses serious threats to species, ecosystems, and human communities, implementation of adaptation measures is not yet happening on a broad scale. Among different regions, a range of climate change trajectories, varying political contexts, and diverse social and ecological systems generate a myriad of factors that can affect progress on climate change adaptation implementation. In order to understand the general versus site-specific nature of barriers and opportunities influencing implementation, we surveyed and interviewed practitioners, decision-makers, and scientists involved in natural resource management in four different North American regions, northern Ontario (Canada), the Adirondack State Park (US), Arctic Alaska (US), and the Transboundary Rocky Mountains (US and Canada). Common barriers among regions related to a lack of political support and financial resources, as well as challenges related to translating complex and interacting effects of climate change into management actions. Opportunities shared among regions related to collaboration, funding, and the presence of strong leadership. These commonalities indicate the importance of cross-site learning about ways to leverage opportunities and address adaptation barriers; however, regional variations also suggest that adaptation efforts will need to be tailored to fit specific ecological, political, social and economic contexts. Comparative findings on the similarities and differences in barriers and opportunities, as well as rankings of barriers and opportunities by region, offers important contextual insights into how to further refine efforts to advance adaptation actions in those regions.

  9. Similarities and Differences in Barriers and Opportunities Affecting Climate Change Adaptation Action in Four North American Landscapes.

    PubMed

    Lonsdale, Whitney R; Kretser, Heidi E; Chetkiewicz, Cheryl-Lesley B; Cross, Molly S

    2017-12-01

    Climate change presents a complex set of challenges for natural resource managers across North America. Despite recognition that climate change poses serious threats to species, ecosystems, and human communities, implementation of adaptation measures is not yet happening on a broad scale. Among different regions, a range of climate change trajectories, varying political contexts, and diverse social and ecological systems generate a myriad of factors that can affect progress on climate change adaptation implementation. In order to understand the general versus site-specific nature of barriers and opportunities influencing implementation, we surveyed and interviewed practitioners, decision-makers, and scientists involved in natural resource management in four different North American regions, northern Ontario (Canada), the Adirondack State Park (US), Arctic Alaska (US), and the Transboundary Rocky Mountains (US and Canada). Common barriers among regions related to a lack of political support and financial resources, as well as challenges related to translating complex and interacting effects of climate change into management actions. Opportunities shared among regions related to collaboration, funding, and the presence of strong leadership. These commonalities indicate the importance of cross-site learning about ways to leverage opportunities and address adaptation barriers; however, regional variations also suggest that adaptation efforts will need to be tailored to fit specific ecological, political, social and economic contexts. Comparative findings on the similarities and differences in barriers and opportunities, as well as rankings of barriers and opportunities by region, offers important contextual insights into how to further refine efforts to advance adaptation actions in those regions.

  10. Climatic water deficit, tree species ranges, and climate change in Yosemite National Park

    Treesearch

    James A. Lutz; Jan W. van Wagtendonk; Jerry F. Franklin

    2010-01-01

    Modelled changes in climate water deficit between past, present and future climate scenarios suggest that recent past changes in forest structure and composition may accelerate in the future, with species responding individualistically to further declines in water availability. Declining water availability may disproportionately affect Pinus monticola...

  11. Factsheet: Climate Change and Harmful Algal Blooms

    EPA Pesticide Factsheets

    Climate change is predicted to change many environmental conditions that could affect the properties of fresh and marine waters. These changes could favor the growth of harmful algal blooms and habitat changes.

  12. Classification of climate-change-induced stresses on biological diversity.

    PubMed

    Geyer, Juliane; Kiefer, Iris; Kreft, Stefan; Chavez, Veronica; Salafsky, Nick; Jeltsch, Florian; Ibisch, Pierre L

    2011-08-01

    Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate-change-induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate-change-related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate-change-induced stresses. © 2011 Society for Conservation Biology.

  13. Climatic Change--Past, Present & Future

    ERIC Educational Resources Information Center

    Lindholm, Roy C.

    1976-01-01

    Presented is a review of studies investigating factors affecting climatic changes in the Earth's atmosphere--past, present, and future. Dating methods, particularly the Oxygen 18/16 method, are discussed. (SL)

  14. Responding to the Consequences of Climate Change

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.

    2011-01-01

    The talk addresses the scientific consensus concerning climate change, and outlines the many paths that are open to mitigate climate change and its effects on human activities. Diverse aspects of the changing water cycle on Earth are used to illustrate the reality climate change. These include melting snowpack, glaciers, and sea ice; changes in runoff; rising sea level; moving ecosystems, an more. Human forcing of climate change is then explained, including: greenhouse gasses, atmospheric aerosols, and changes in land use. Natural forcing effects are briefly discussed, including volcanoes and changes in the solar cycle. Returning to Earth's water cycle, the effects of climate-induced changes in water resources is presented. Examples include wildfires, floods and droughts, changes in the production and availability of food, and human social reactions to these effects. The lk then passes to a discussion of common human reactions to these forecasts of climate change effects, with a summary of recent research on the subject, plus several recent historical examples of large-scale changes in human behavior that affect the climate and ecosystems. Finally, in the face for needed action on climate, the many options for mitigation of climate change and adaptation to its effects are presented, with examples of the ability to take affordable, and profitable action at most all levels, from the local, through national.

  15. Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees

    PubMed Central

    Luedeling, Eike; Girvetz, Evan H.; Semenov, Mikhail A.; Brown, Patrick H.

    2011-01-01

    Background Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. Methodology/Principal Findings We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the “Dynamic Model” and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. Conclusions/Significance The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops. PMID:21629649

  16. Climate change affects winter chill for temperate fruit and nut trees.

    PubMed

    Luedeling, Eike; Girvetz, Evan H; Semenov, Mikhail A; Brown, Patrick H

    2011-01-01

    Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the "Dynamic Model" and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops.

  17. Community shifts under climate change: mechanisms at multiple scales.

    PubMed

    Gornish, Elise S; Tylianakis, Jason M

    2013-07-01

    Processes that drive ecological dynamics differ across spatial scales. Therefore, the pathways through which plant communities and plant-insect relationships respond to changing environmental conditions are also expected to be scale-dependent. Furthermore, the processes that affect individual species or interactions at single sites may differ from those affecting communities across multiple sites. We reviewed and synthesized peer-reviewed literature to identify patterns in biotic or abiotic pathways underpinning changes in the composition and diversity of plant communities under three components of climate change (increasing temperature, CO2, and changes in precipitation) and how these differ across spatial scales. We also explored how these changes to plants affect plant-insect interactions. The relative frequency of biotic vs. abiotic pathways of climate effects at larger spatial scales often differ from those at smaller scales. Local-scale studies show variable responses to climate drivers, often driven by biotic factors. However, larger scale studies identify changes to species composition and/or reduced diversity as a result of abiotic factors. Differing pathways of climate effects can result from different responses of multiple species, habitat effects, and differing effects of invasions at local vs. regional to global scales. Plant community changes can affect higher trophic levels as a result of spatial or phenological mismatch, foliar quality changes, and plant abundance changes, though studies on plant-insect interactions at larger scales are rare. Climate-induced changes to plant communities will have considerable effects on community-scale trophic exchanges, which may differ from the responses of individual species or pairwise interactions.

  18. Climate change and Public health: vulnerability, impacts, and adaptation

    NASA Astrophysics Data System (ADS)

    Guzzone, F.; Setegn, S.

    2013-12-01

    Climate Change plays a significant role in public health. Changes in climate affect weather conditions that we are accustomed to. Increases in the frequency or severity of extreme weather events such as storms could increase the risk of dangerous flooding, high winds, and other direct threats to people and property. Changes in temperature, precipitation patterns, and extreme events could enhance the spread of some diseases. According to studies by EPA, the impacts of climate change on health will depend on many factors. These factors include the effectiveness of a community's public health and safety systems to address or prepare for the risk and the behavior, age, gender, and economic status of individuals affected. Impacts will likely vary by region, the sensitivity of populations, the extent and length of exposure to climate change impacts, and society's ability to adapt to change. Transmissions of infectious disease have been associated with social, economic, ecological, health care access, and climatic factors. Some vector-borne diseases typically exhibit seasonal patterns in which the role of temperature and rainfall is well documented. Some of the infectious diseases that have been documented by previous studies, include the correlation between rainfall and drought in the occurrence of malaria, the influence of the dry season on epidemic meningococcal disease in the sub-Saharan African, and the importance of warm ocean waters in driving cholera occurrence in the Ganges River delta in Asia The rise of climate change has been a major concern in the public health sector. Climate change mainly affects vulnerable populations especially in developing countries; therefore, it's important that public health advocates are involve in the decision-making process in order to provide resources and preventative measures for the challenges that are associated with climate change. The main objective of this study is to assess the vulnerability and impact of climate change

  19. Forest environmental investments and implications for climate change mitigation.

    Treesearch

    Ralph J. Alig; Lucas S. Bair

    2006-01-01

    Forest environmental conditions are affected by climate change, but investments in forest environmental quality can be used as part of the climate change mitigation strategy. A key question involving the potential use of forests to store more carbon as part of climate change mitigation is the impact of forest investments on the timing and quantity of forest volumes...

  20. Simulated soil organic carbon changes in Maryland are affected by tillage, climate change, and crop yield

    USDA-ARS?s Scientific Manuscript database

    The impact of climate change on soil organic carbon (SOC) stocks in no-till (NT) and conventionally-tilled (CT) agricultural systems is poorly understood. The objective of this study was to simulate the impact of projected climate change (air temperature and precipitation) on SOC to 50 cm soil depth...

  1. From global change to a butterfly flapping: biophysics and behaviour affect tropical climate change impacts.

    PubMed

    Bonebrake, Timothy C; Boggs, Carol L; Stamberger, Jeannie A; Deutsch, Curtis A; Ehrlich, Paul R

    2014-10-22

    Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. From global change to a butterfly flapping: biophysics and behaviour affect tropical climate change impacts

    PubMed Central

    Bonebrake, Timothy C.; Boggs, Carol L.; Stamberger, Jeannie A.; Deutsch, Curtis A.; Ehrlich, Paul R.

    2014-01-01

    Difficulty in characterizing the relationship between climatic variability and climate change vulnerability arises when we consider the multiple scales at which this variation occurs, be it temporal (from minute to annual) or spatial (from centimetres to kilometres). We studied populations of a single widely distributed butterfly species, Chlosyne lacinia, to examine the physiological, morphological, thermoregulatory and biophysical underpinnings of adaptation to tropical and temperate climates. Microclimatic and morphological data along with a biophysical model documented the importance of solar radiation in predicting butterfly body temperature. We also integrated the biophysics with a physiologically based insect fitness model to quantify the influence of solar radiation, morphology and behaviour on warming impact projections. While warming is projected to have some detrimental impacts on tropical ectotherms, fitness impacts in this study are not as negative as models that assume body and air temperature equivalence would suggest. We additionally show that behavioural thermoregulation can diminish direct warming impacts, though indirect thermoregulatory consequences could further complicate predictions. With these results, at multiple spatial and temporal scales, we show the importance of biophysics and behaviour for studying biodiversity consequences of global climate change, and stress that tropical climate change impacts are likely to be context-dependent. PMID:25165769

  3. Assessing the Vulnerability of Eco-Environmental Health to Climate Change

    PubMed Central

    Tong, Shilu; Mather, Peter; Fitzgerald, Gerry; McRae, David; Verrall, Ken; Walker, Dylan

    2010-01-01

    There is an urgent need to assess the vulnerability of eco-environmental health to climate change. This paper aims to provide an overview of current research, to identify knowledge gaps, and to propose future research needs in this challenging area. Evidence shows that climate change is affecting and will, in the future, have more (mostly adverse) impacts on ecosystems. Ecosystem degradation, particularly the decline of the life support systems, will undoubtedly affect human health and wellbeing. Therefore, it is important to develop a framework to assess the vulnerability of eco-environmental health to climate change, and to identify appropriate adaptation strategies to minimize the impact of climate change. PMID:20616990

  4. Incorporating Student Activities into Climate Change Education

    NASA Astrophysics Data System (ADS)

    Steele, H.; Kelly, K.; Klein, D.; Cadavid, A. C.

    2013-12-01

    Under a NASA grant, Mathematical and Geospatial Pathways to Climate Change Education, students at California State University, Northridge integrated Geographic Information Systems (GIS), remote sensing, satellite data technologies, and climate modelling into the study of global climate change under a Pathway for studying the Mathematics of Climate Change (PMCC). The PMCC, which is an interdisciplinary option within the BS in Applied Mathematical Sciences, consists of courses offered by the departments of Mathematics, Physics, and Geography and is designed to prepare students for careers and Ph.D. programs in technical fields relevant to global climate change. Under this option students are exposed to the science, mathematics, and applications of climate change science through a variety of methods including hands-on experience with computer modeling and image processing software. In the Geography component of the program, ESRI's ArcGIS and ERDAS Imagine mapping, spatial analysis and image processing software were used to explore NASA satellite data to examine the earth's atmosphere, hydrosphere and biosphere in areas that are affected by climate change or affect climate. These technology tools were incorporated into climate change and remote sensing courses to enhance students' knowledge and understanding of climate change through hands-on application of image processing techniques to NASA data. Several sets of exercises were developed with specific learning objectives in mind. These were (1) to increase student understanding of climate change and climate change processes; (2) to develop student skills in understanding, downloading and processing satellite data; (3) to teach remote sensing technology and GIS through applications to climate change; (4) to expose students to climate data and methods they can apply to solve real world problems and incorporate in future research projects. In the Math and Physics components of the course, students learned about

  5. National climate assessment technical report on the impacts of climate and land use and land cover change

    Treesearch

    Thomas Loveland; Rezaul Mahmood; Toral Patel-Weynand; Krista Karstensen; Kari Beckendorf; Norman Bliss; Andrew Carleton

    2012-01-01

    This technical report responds to the recognition by the U.S. Global Change Research Program (USGCRP) and the National Climate Assessment (NCA) of the importance of understanding how land use and land cover (LULC) affects weather and climate variability and change and how that variability and change affects LULC. Current published, peer-reviewed, scientific literature...

  6. iSeeChange: Crowdsourced Climate Change Reporting

    NASA Astrophysics Data System (ADS)

    Drapkin, J. K.

    2012-12-01

    Directly engaging local communities about their climate change experiences has never been more important. As weather and climate become more unpredictable, these experiences provide a baseline for community decisions, developing adaptation strategies, and planning for the future. Typically, climate change is documented in a top-down fashion: a scientist has a question, makes observations, and publishes a study; in the best case scenario, a journalist reports on the results; if there's time, a local anecdote is sought to put the results in a familiar context. iSeeChange, a public media project funded by the Corporation for Public Broadcasting, reports local environmental change in reverse and turns community questions and conversations with scientists into reported stories that promote opportunities to learn about climate change's affects on the environment and daily life. iSeeChange engages residents of the North Fork Valley region of western Colorado in a multiplatform conversation with scientists about how they perceive their environment is changing through the course of a year - season to season. By bringing together public radio, a mobile reporting and cellular engagement strategy, and a custom crowdsourcing multimedia platform, iSeeChange provides a central access point to collect observations (texts, photographs, voice recordings, and video), organize conversations and interviews with scientists, and report stories online and on air. In this way, iSeeChange is building a dynamic crowdsourced reservoir of information that can increase awareness of environmental problems and potentially disseminate useful information about climate change and successful adaptation strategies. Ultimately, by understanding the community's information needs in a localized question-driven context, the iSeeChange platform presents opportunities for the science community to better understand the value of information and develop better ways to tailor information for communities to use

  7. Climate change driven plant-metal-microbe interactions.

    PubMed

    Rajkumar, Mani; Prasad, Majeti Narasimha Vara; Swaminathan, Sandhya; Freitas, Helena

    2013-03-01

    Various biotic and abiotic stress factors affect the growth and productivity of crop plants. Particularly, the climatic and/or heavy metal stress influence various processes including growth, physiology, biochemistry, and yield of crops. Climatic changes particularly the elevated atmospheric CO₂ enhance the biomass production and metal accumulation in plants and help plants to support greater microbial populations and/or protect the microorganisms against the impacts of heavy metals. Besides, the indirect effects of climatic change (e.g., changes in the function and structure of plant roots and diversity and activity of rhizosphere microbes) would lead to altered metal bioavailability in soils and concomitantly affect plant growth. However, the effects of warming, drought or combined climatic stress on plant growth and metal accumulation vary substantially across physico-chemico-biological properties of the environment (e.g., soil pH, heavy metal type and its bio-available concentrations, microbial diversity, and interactive effects of climatic factors) and plant used. Overall, direct and/or indirect effects of climate change on heavy metal mobility in soils may further hinder the ability of plants to adapt and make them more susceptible to stress. Here, we review and discuss how the climatic parameters including atmospheric CO₂, temperature and drought influence the plant-metal interaction in polluted soils. Other aspects including the effects of climate change and heavy metals on plant-microbe interaction, heavy metal phytoremediation and safety of food and feed are also discussed. This review shows that predicting how plant-metal interaction responds to altering climatic change is critical to select suitable crop plants that would be able to produce more yields and tolerate multi-stress conditions without accumulating toxic heavy metals for future food security. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. [Climate change - physical and mental consequences].

    PubMed

    Bunz, Maxie; Mücke, Hans-Guido

    2017-06-01

    Climate change has already had a large influence on the human environmental system and directly or indirectly affects physical and mental health. Triggered by extreme meteorological conditions, for example, storms, floods, earth slides and heat periods, the direct consequences range from illnesses to serious accidents with injuries, or in extreme cases fatalities. Indirectly, a changed environment due to climate change affects, amongst other things, the cardiovascular system and respiratory tract, and can also cause allergies and infectious diseases. In addition, increasing confrontation with environmental impacts may cause negative psychological effects such as posttraumatic stress disorders and anxiety, but also aggression, distress and depressive symptoms. The extent and severity of the health consequences depend on individual pre-disposition, resilience, behaviour and adaptation.

  9. Have historical climate changes affected Gentoo penguin (Pygoscelis papua) populations in Antarctica?

    PubMed

    Peña M, Fabiola; Poulin, Elie; Dantas, Gisele P M; González-Acuña, Daniel; Petry, Maria Virginia; Vianna, Juliana A

    2014-01-01

    The West Antarctic Peninsula (WAP) has been suffering an increase in its atmospheric temperature during the last 50 years, mainly associated with global warming. This increment of temperature trend associated with changes in sea-ice dynamics has an impact on organisms, affecting their phenology, physiology and distribution range. For instance, rapid demographic changes in Pygoscelis penguins have been reported over the last 50 years in WAP, resulting in population expansion of sub-Antarctic Gentoo penguin (P. papua) and retreat of Antarctic Adelie penguin (P. adeliae). Current global warming has been mainly associated with human activities; however these climate trends are framed in a historical context of climate changes, particularly during the Pleistocene, characterized by an alternation between glacial and interglacial periods. During the last maximal glacial (LGM∼21,000 BP) the ice sheet cover reached its maximum extension on the West Antarctic Peninsula (WAP), causing local extinction of Antarctic taxa, migration to lower latitudes and/or survival in glacial refugia. We studied the HRVI of mtDNA and the nuclear intron βfibint7 of 150 individuals of the WAP to understand the demographic history and population structure of P. papua. We found high genetic diversity, reduced population genetic structure and a signature of population expansion estimated around 13,000 BP, much before the first paleocolony fossil records (∼1,100 BP). Our results suggest that the species may have survived in peri-Antarctic refugia such as South Georgia and North Sandwich islands and recolonized the Antarctic Peninsula and South Shetland Islands after the ice sheet retreat.

  10. Climate Change Indicators: Health and Society

    MedlinePlus

    ... of the ways that climate change is affecting human health and society, including changes in Lyme disease, West ... season across the United States. Because impacts on human health are complex, often indirect, and dependent on multiple ...

  11. Climate Change and Respiratory Infections.

    PubMed

    Mirsaeidi, Mehdi; Motahari, Hooman; Taghizadeh Khamesi, Mojdeh; Sharifi, Arash; Campos, Michael; Schraufnagel, Dean E

    2016-08-01

    The rate of global warming has accelerated over the past 50 years. Increasing surface temperature is melting glaciers and raising the sea level. More flooding, droughts, hurricanes, and heat waves are being reported. Accelerated changes in climate are already affecting human health, in part by altering the epidemiology of climate-sensitive pathogens. In particular, climate change may alter the incidence and severity of respiratory infections by affecting vectors and host immune responses. Certain respiratory infections, such as avian influenza and coccidioidomycosis, are occurring in locations previously unaffected, apparently because of global warming. Young children and older adults appear to be particularly vulnerable to rapid fluctuations in ambient temperature. For example, an increase in the incidence in childhood pneumonia in Australia has been associated with sharp temperature drops from one day to the next. Extreme weather events, such as heat waves, floods, major storms, drought, and wildfires, are also believed to change the incidence of respiratory infections. An outbreak of aspergillosis among Japanese survivors of the 2011 tsunami is one such well-documented example. Changes in temperature, precipitation, relative humidity, and air pollution influence viral activity and transmission. For example, in early 2000, an outbreak of Hantavirus respiratory disease was linked to a local increase in the rodent population, which in turn was attributed to a two- to threefold increase in rainfall before the outbreak. Climate-sensitive respiratory pathogens present challenges to respiratory health that may be far greater in the foreseeable future.

  12. Climate change, food, water and population health in China.

    PubMed

    Tong, Shilu; Berry, Helen L; Ebi, Kristie; Bambrick, Hilary; Hu, Wenbiao; Green, Donna; Hanna, Elizabeth; Wang, Zhiqiang; Butler, Colin D

    2016-10-01

    Anthropogenic climate change appears to be increasing the frequency, duration and intensity of extreme weather events. Such events have already had substantial impacts on socioeconomic development and population health. Climate change's most profound impacts are likely to be on food, health systems and water. This paper explores how climate change will affect food, human health and water in China. Projections indicate that the overall effects of climate change, land conversion and reduced water availability could reduce Chinese food production substantially - although uncertainty is inevitable in such projections. Climate change will probably have substantial impacts on water resources - e.g. changes in rainfall patterns and increases in the frequencies of droughts and floods in some areas of China. Such impacts would undoubtedly threaten population health and well-being in many communities. In the short-term, population health in China is likely to be adversely affected by increases in air temperatures and pollution. In the medium to long term, however, the indirect impacts of climate change - e.g. changes in the availability of food, shelter and water, decreased mental health and well-being and changes in the distribution and seasonality of infectious diseases - are likely to grow in importance. The potentially catastrophic consequences of climate change can only be avoided if all countries work together towards a substantial reduction in the emission of so-called greenhouse gases and a substantial increase in the global population's resilience to the risks of climate variability and change.

  13. Climate change impacts on global food security.

    PubMed

    Wheeler, Tim; von Braun, Joachim

    2013-08-02

    Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a "climate-smart food system" that is more resilient to climate change influences on food security.

  14. A review of climate change effects on terrestrial rangeland birds

    Treesearch

    D. M. Finch; K. E. Bagne; M. M. Friggens; D. M. Smith; K. M. Brodhead

    2011-01-01

    We evaluated existing literature on predicted and known climate change effects on terrestrial rangeland birds. We asked the following questions: 1) How does climate change affect birds? 2) How will birds respond to climate change? 3) Are species already responding? 4) How will habitats be impacted?

  15. Direct and indirect effects of climate change on amphibian populations

    USGS Publications Warehouse

    Blaustein, Andrew R.; Walls, Susan C.; Bancroft, Betsy A.; Lawler, Joshua J.; Searle, Catherine L.; Gervasi, Stephanie S.

    2010-01-01

    As part of an overall decline in biodiversity, populations of many organisms are declining and species are being lost at unprecedented rates around the world. This includes many populations and species of amphibians. Although numerous factors are affecting amphibian populations, we show potential direct and indirect effects of climate change on amphibians at the individual, population and community level. Shifts in amphibian ranges are predicted. Changes in climate may affect survival, growth, reproduction and dispersal capabilities. Moreover, climate change can alter amphibian habitats including vegetation, soil, and hydrology. Climate change can influence food availability, predator-prey relationships and competitive interactions which can alter community structure. Climate change can also alter pathogen-host dynamics and greatly influence how diseases are manifested. Changes in climate can interact with other stressors such as UV-B radiation and contaminants. The interactions among all these factors are complex and are probably driving some amphibian population declines and extinctions.

  16. The fingerprints of global climate change on insect populations.

    PubMed

    Boggs, Carol L

    2016-10-01

    Synthesizing papers from the last two years, I examined generalizations about the fingerprints of climate change on insects' population dynamics and phenology. Recent work shows that populations can differ in response to changes in climate means and variances. The part of the thermal niche occupied by an insect population, voltinism, plasticity and adaptation to weather perturbations, and interactions with other species can all exacerbate or mitigate responses to climate change. Likewise, land use change or agricultural practices can affect responses to climate change. Nonetheless, our knowledge of effects of climate change is still biased by organism and geographic region, and to some extent by scale of climate parameter. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Climate Change

    MedlinePlus

    ... in a place over a period of time. Climate change is major change in temperature, rainfall, snow, or ... by natural factors or by human activities. Today climate changes are occurring at an increasingly rapid rate. Climate ...

  18. Social justice, climate change, and dengue.

    PubMed

    Chang, Aileen Y; Fuller, Douglas O; Carrasquillo, Olveen; Beier, John C

    2014-06-14

    Climate change should be viewed fundamentally as an issue of global justice. Understanding the complex interplay of climatic and socioeconomic trends is imperative to protect human health and lessen the burden of diseases such as dengue fever. Dengue fever is rapidly expanding globally. Temperature, rainfall, and frequency of natural disasters, as well as non-climatic trends involving population growth and migration, urbanization, and international trade and travel, are expected to increase the prevalence of mosquito breeding sites, mosquito survival, the speed of mosquito reproduction, the speed of viral incubation, the distribution of dengue virus and its vectors, human migration patterns towards urban areas, and displacement after natural disasters. The burden of dengue disproportionately affects the poor due to increased environmental risk and decreased health care. Mobilization of social institutions is needed to improve the structural inequalities of poverty that predispose the poor to increased dengue fever infection and worse outcomes. This paper reviews the link between dengue and climatic factors as a starting point to developing a comprehensive understanding of how climate change affects dengue risk and how institutions can address the issues of social justice and dengue outbreaks that increasingly affect vulnerable urban populations. Copyright © 2014 Chang, Fuller, Carrasquillo, Beier. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  19. Interactions between above- and belowground organisms modified in climate change experiments

    NASA Astrophysics Data System (ADS)

    Stevnbak, Karen; Scherber, Christoph; Gladbach, David J.; Beier, Claus; Mikkelsen, Teis N.; Christensen, Søren

    2012-11-01

    Climate change has been shown to affect ecosystem process rates and community composition, with direct and indirect effects on belowground food webs. In particular, altered rates of herbivory under future climate can be expected to influence above-belowground interactions. Here, we use a multifactor, field-scale climate change experiment and independently manipulate atmospheric CO2 concentration, air and soil temperature and drought in all combinations since 2005. We show that changes in these factors modify the interaction between above- and belowground organisms. We use an insect herbivore to experimentally increase aboveground herbivory in grass phytometers exposed to all eight combinations of climate change factors for three years. Aboveground herbivory increased the abundance of belowground protozoans, microbial growth and microbial nitrogen availability. Increased CO2 modified these links through a reduction in herbivory and cascading effects through the soil food web. Interactions between CO2, drought and warming can affect belowground protozoan abundance. Our findings imply that climate change affects aboveground-belowground interactions through changes in nutrient availability.

  20. Current practices and future opportunities for policy on climate change and invasive species.

    PubMed

    Pyke, Christopher R; Thomas, Roxanne; Porter, Read D; Hellmann, Jessica J; Dukes, Jeffrey S; Lodge, David M; Chavarria, Gabriela

    2008-06-01

    Climate change and invasive species are often treated as important, but independent, issues. Nevertheless, they have strong connections: changes in climate and societal responses to climate change may exacerbate the impacts of invasive species, whereas invasive species may affect the magnitude, rate, and impact of climate change. We argue that the design and implementation of climate-change policy in the United States should specifically consider the implications for invasive species; conversely, invasive-species policy should address consequences for climate change. The development of such policies should be based on (1) characterization of interactions between invasive species and climate change, (2) identification of areas where climate-change policies could negatively affect invasive-species management, and (3) identification of areas where policies could benefit from synergies between climate change and invasive-species management.

  1. Harvesting wildlife affected by climate change: a modelling and management approach for polar bears

    USGS Publications Warehouse

    Regehr, Eric V.; Wilson, Ryan R.; Rode, Karyn D.; Runge, Michael C.; Stern, Harry

    2017-01-01

    The conservation of many wildlife species requires understanding the demographic effects of climate change, including interactions between climate change and harvest, which can provide cultural, nutritional or economic value to humans.We present a demographic model that is based on the polar bear Ursus maritimus life cycle and includes density-dependent relationships linking vital rates to environmental carrying capacity (K). Using this model, we develop a state-dependent management framework to calculate a harvest level that (i) maintains a population above its maximum net productivity level (MNPL; the population size that produces the greatest net increment in abundance) relative to a changing K, and (ii) has a limited negative effect on population persistence.Our density-dependent relationships suggest that MNPL for polar bears occurs at approximately 0·69 (95% CI = 0·63–0·74) of K. Population growth rate at MNPL was approximately 0·82 (95% CI = 0·79–0·84) of the maximum intrinsic growth rate, suggesting relatively strong compensation for human-caused mortality.Our findings indicate that it is possible to minimize the demographic risks of harvest under climate change, including the risk that harvest will accelerate population declines driven by loss of the polar bear's sea-ice habitat. This requires that (i) the harvest rate – which could be 0 in some situations – accounts for a population's intrinsic growth rate, (ii) the harvest rate accounts for the quality of population data (e.g. lower harvest when uncertainty is large), and (iii) the harvest level is obtained by multiplying the harvest rate by an updated estimate of population size. Environmental variability, the sex and age of removed animals and risk tolerance can also affect the harvest rate.Synthesis and applications. We present a coupled modelling and management approach for wildlife that accounts for climate change and can be used to balance trade-offs among multiple

  2. Climate change 101 : understanding and responding to global climate change

    DOT National Transportation Integrated Search

    2009-01-01

    To inform the climate change dialogue, the Pew Center on Global Climate Change and the Pew Center on the States have developed a series of brief reports entitled Climate Change 101: Understanding and Responding to Global Climate Change. These reports...

  3. Climate change and Australia's healthcare system - risks, research and responses.

    PubMed

    Weaver, Haylee J; Blashki, Grant A; Capon, Anthony G; McMichael, Anthony J

    2010-11-01

    Climate change will affect human health, mostly adversely, resulting in a greater burden on the health care system, in addition to any other coexistent increases in demand (e.g. from Australia's increasingly ageing population). Understanding the extent to which health is likely to be affected by climate change will enable policy makers and practitioners to prepare for changing demands on the health care system. This will require prioritisation of key research questions and building research capacity in the field. There is an urgent need to better understand the implications of climate change for the distribution and prevalence of diseases, disaster preparedness and multidisciplinary service planning. Research is needed to understand the relationship of climate change to health promotion, policy evaluation and strategic financing of health services. Training of health care professionals about climate change and its effects will also be important in meeting long-term workforce demands.

  4. Climate change as a driver for future human migration

    NASA Astrophysics Data System (ADS)

    Chen, M.; Ricke, K.; Caldeira, K.

    2016-12-01

    Human migration is driven by a multitude of factors, both socioeconomic and environmental. However, as impacts of anthropogenic climate change emerge and grow, it is widely conjectured that climate change will induce migration of human populations from areas that are adversely affected by climate change to areas that are less adversely or positively affected by climate change. Both low- and high-frequency climate changes have been empirically linked to migration in areas across the globe, but there has been little global-scale quantitative analysis projecting the scale and geography of climate-motivated migration. Considering temperature and precipitation in isolation from all other factors, here we project climate-driven impacts on the areal-density of human population. From this, we infer potential destinations and origins for the climate-motivated migration. Our results indicate that tropical and sub-tropical countries are the largest likely sources of migrants, with India being the country with the greatest number of potential climate emigrants. Global warming has the potential to motivate hundreds of millions of people to migrate in the coming decades, largely from warm tropical and subtropical countries to cooler temperate countries. Migration decisions will depend on many factors beyond climate; nevertheless our work establishes a foundation for quantifying future climate-motivated migration that can act as a starting point of more comprehensive assessments. The large number of potential climate migrants indicated by our analyses provides additional incentive to reduce greenhouse gas emissions, take adaptive measures, and carefully consider migration policy.

  5. Global climate change and children's health.

    PubMed

    Shea, Katherine M

    2007-11-01

    There is broad scientific consensus that Earth's climate is warming rapidly and at an accelerating rate. Human activities, primarily the burning of fossil fuels, are very likely (>90% probability) to be the main cause of this warming. Climate-sensitive changes in ecosystems are already being observed, and fundamental, potentially irreversible, ecological changes may occur in the coming decades. Conservative environmental estimates of the impact of climate changes that are already in process indicate that they will result in numerous health effects to children. The nature and extent of these changes will be greatly affected by actions taken or not taken now at the global level. Physicians have written on the projected effects of climate change on public health, but little has been written specifically on anticipated effects of climate change on children's health. Children represent a particularly vulnerable group that is likely to suffer disproportionately from both direct and indirect adverse health effects of climate change. Pediatric health care professionals should understand these threats, anticipate their effects on children's health, and participate as children's advocates for strong mitigation and adaptation strategies now. Any solutions that address climate change must be developed within the context of overall sustainability (the use of resources by the current generation to meet current needs while ensuring that future generations will be able to meet their needs). Pediatric health care professionals can be leaders in a move away from a traditional focus on disease prevention to a broad, integrated focus on sustainability as synonymous with health. This policy statement is supported by a technical report that examines in some depth the nature of the problem of climate change, likely effects on children's health as a result of climate change, and the critical importance of responding promptly and aggressively to reduce activities that are contributing to

  6. Climate Change, Climate Justice, and Environmental Health: Implications for the Nursing Profession.

    PubMed

    Nicholas, Patrice K; Breakey, Suellen

    2017-11-01

    Climate change is an emerging challenge linked to negative outcomes for the environment and human health. Since the 1960s, there has been a growing recognition of the need to address climate change and the impact of greenhouse gas emissions implicated in the warming of our planet. There are also deleterious health outcomes linked to complex climate changes that are emerging in the 21st century. This article addresses the social justice issues associated with climate change and human health and discussion of climate justice. Discussion paper. A literature search of electronic databases was conducted for articles, texts, and documents related to climate change, climate justice, and human health. The literature suggests that those who contribute least to global warming are those who will disproportionately be affected by the negative health outcomes of climate change. The concept of climate justice and the role of the Mary Robinson Foundation-Climate Justice are discussed within a framework of nursing's professional responsibility and the importance of social justice for the world's people. The nursing profession must take a leadership role in engaging in policy and advocacy discussions in addressing the looming problems associated with climate change. Nursing organizations have adopted resolutions and engaged in leadership roles to address climate change at the local, regional, national, and global level. It is essential that nurses embrace concepts related to social justice and engage in the policy debate regarding the deleterious effects on human health related to global warming and climate change. Nursing's commitment to social justice offers an opportunity to offer significant global leadership in addressing the health implications related to climate change. Recognizing the negative impacts of climate change on well-being and the underlying socioeconomic reasons for their disproportionate and inequitable distribution can expand and optimize the profession's role

  7. Socio-economic impacts of climate change on rural United States

    Treesearch

    Pankaj Lal; Janaki R.R. Alavalapati; Evan Mercer

    2011-01-01

    Directly or indirectly, positively or negatively, climate change will affect all sectors and regions of the United States. The impacts, however, will not be homogenous across regions, sectors, population groups or time. The literature specifically related to how climate change will affect rural communities, their resilience, and adaptive capacity in the United States (...

  8. Climatic change controls productivity variation in global grasslands

    PubMed Central

    Gao, Qingzhu; Zhu, Wenquan; Schwartz, Mark W.; Ganjurjav, Hasbagan; Wan, Yunfan; Qin, Xiaobo; Ma, Xin; Williamson, Matthew A.; Li, Yue

    2016-01-01

    Detection and identification of the impacts of climate change on ecosystems have been core issues in climate change research in recent years. In this study, we compared average annual values of the normalized difference vegetation index (NDVI) with theoretical net primary productivity (NPP) values based on temperature and precipitation to determine the effect of historic climate change on global grassland productivity from 1982 to 2011. Comparison of trends in actual productivity (NDVI) with climate-induced potential productivity showed that the trends in average productivity in nearly 40% of global grassland areas have been significantly affected by climate change. The contribution of climate change to variability in grassland productivity was 15.2–71.2% during 1982–2011. Climate change contributed significantly to long-term trends in grassland productivity mainly in North America, central Eurasia, central Africa, and Oceania; these regions will be more sensitive to future climate change impacts. The impacts of climate change on variability in grassland productivity were greater in the Western Hemisphere than the Eastern Hemisphere. Confirmation of the observed trends requires long-term controlled experiments and multi-model ensembles to reduce uncertainties and explain mechanisms. PMID:27243565

  9. How will climate change affect watershed mercury export in a representative Coastal Plain watershed?

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Knightes, C. D.; Conrads, P. A.; Feaster, T.; Davis, G. M.; Benedict, S. T.; Bradley, P. M.

    2012-12-01

    Future climate change is expected to drive variations in watershed hydrological processes and water quality across a wide range of physiographic provinces, ecosystems, and spatial scales. How such shifts in climatic conditions will impact watershed mercury (Hg) dynamics and hydrologically-driven Hg transport is a significant concern. We simulate the responses of watershed hydrological and total Hg (HgT) fluxes and concentrations to a unified set of past and future climate change projections in a Coastal Plain basin using multiple watershed models. We use two statistically downscaled global precipitation and temperature models, ECHO, a hybrid of the ECHAM4 and HOPE-G models, and the Community Climate System Model (CCSM3) across two thirty-year simulations (1980 to 2010 and 2040 to 2070). We apply three watershed models to quantify and bracket potential changes in hydrologic and HgT fluxes, including the Visualizing Ecosystems for Land Management Assessment Model for Hg (VELMA-Hg), the Grid Based Mercury Model (GBMM), and TOPLOAD, a water quality constituent model linked to TOPMODEL hydrological simulations. We estimate a decrease in average annual HgT fluxes in response to climate change using the ECHO projections and an increase with the CCSM3 projections in the study watershed. Average monthly HgT fluxes increase using both climate change projections between in the late spring (March through May), when HgT concentrations and flow are high. Results suggest that hydrological transport associated with changes in precipitation and temperature is the primary mechanism driving HgT flux response to climate change. Our multiple model/multiple projection approach allows us to bracket the relative response of HgT fluxes to climate change, thereby illustrating the uncertainty associated with the projections. In addition, our approach allows us to examine potential variations in climate change-driven water and HgT export based on different conceptualizations of watershed Hg

  10. How does climate warming affect plant-pollinator interactions?

    PubMed

    Hegland, Stein Joar; Nielsen, Anders; Lázaro, Amparo; Bjerknes, Anne-Line; Totland, Ørjan

    2009-02-01

    Climate warming affects the phenology, local abundance and large-scale distribution of plants and pollinators. Despite this, there is still limited knowledge of how elevated temperatures affect plant-pollinator mutualisms and how changed availability of mutualistic partners influences the persistence of interacting species. Here we review the evidence of climate warming effects on plants and pollinators and discuss how their interactions may be affected by increased temperatures. The onset of flowering in plants and first appearance dates of pollinators in several cases appear to advance linearly in response to recent temperature increases. Phenological responses to climate warming may therefore occur at parallel magnitudes in plants and pollinators, although considerable variation in responses across species should be expected. Despite the overall similarities in responses, a few studies have shown that climate warming may generate temporal mismatches among the mutualistic partners. Mismatches in pollination interactions are still rarely explored and their demographic consequences are largely unknown. Studies on multi-species plant-pollinator assemblages indicate that the overall structure of pollination networks probably are robust against perturbations caused by climate warming. We suggest potential ways of studying warming-caused mismatches and their consequences for plant-pollinator interactions, and highlight the strengths and limitations of such approaches.

  11. The Psychological Effects of Climate Change on Children.

    PubMed

    Burke, Susie E L; Sanson, Ann V; Van Hoorn, Judith

    2018-04-11

    We review recent evidence on the psychological effects of climate change on children, covering both direct and indirect impacts, and discuss children's psychological adaptation to climate change. Both the direct and flow-on effects of climate change place children at risk of mental health consequences including PTSD, depression, anxiety, phobias, sleep disorders, attachment disorders, and substance abuse. These in turn can lead to problems with emotion regulation, cognition, learning, behavior, language development, and academic performance. Together, these create predispositions to adverse adult mental health outcomes. Children also exhibit high levels of concern over climate change. Meaning-focused coping promotes well-being and environmental engagement. Both direct and indirect climate change impacts affect children's psychological well-being. Children in the developing world will suffer the worst impacts. Mental health professionals have important roles in helping mitigate climate change, and researching and implementing approaches to helping children cope with its impacts.

  12. Climate change velocity underestimates climate change exposure in mountainous regions

    Treesearch

    Solomon Z. Dobrowski; Sean A. Parks

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not...

  13. The Amazon rainforest, climate change, and drought: How will what is below the surface affect the climate of tropical South America?

    NASA Astrophysics Data System (ADS)

    Harper, A.; Denning, A. S.; Baker, I.; Randall, D.; Dazlich, D.

    2008-12-01

    Several climate models have predicted an increase in long-term droughts in tropical South America due to increased greenhouse gases in the atmosphere. Although the Amazon rainforest is resilient to seasonal drought, multi-year droughts pose a definite problem for the ecosystem's health. Furthermore, drought- stressed vegetation participates in feedbacks with the atmosphere that can exacerbate drought. Namely, reduced evapotranspiration further dries out the atmosphere and affects the regional climate. Trees in the rainforest survive seasonal drought by using deep roots to access adequate stores of soil moisture. We investigate the climatic impacts of deep roots and soil moisture by coupling the Simple Biosphere (SiB3) model to Colorado State University's general circulation model (BUGS5). We compare two versions of SiB3 in the GCM during years with anomalously low rainfall. The first has strong vegetative stress due to soil moisture limitations. The second experiences less stress and has more realistic representations of surface biophysics. In the model, basin-wide reductions in soil moisture stress result in increased evapotranspiration, precipitation, and moisture recycling in the Amazon basin. In the savannah region of southeastern Brazil, the unstressed version of SiB3 produces decreased precipitation and weaker moisture flux, which is more in-line with observations. The improved simulation of precipitation and evaporation also produces a more realistic Bolivian high and Nordeste low. These changes highlight the importance of subsurface biophysics for the Amazonian climate. The presence of deep roots and soil moisture will become even more important if climate change brings more frequent droughts to this region in the future.

  14. Denitrification nitrogen gas formation and gene expression in alpine grassland soil as affected by climate change conditions

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Wang, Changhui; Gschwendtner, Silvia; Schloter, Michael; Butterbach-Bahl, Klaus; Dannenmann, Michael

    2013-04-01

    Due to methodological problems, reliable data on soil dinitrogen (N2) emission by denitrification are extremely scarce, and the impacts of climate change on nitrogen (N) gas formation by denitrification and N gas product ratios as well as the underlying microbial drivers remain unclear. We combined the helium-gas-flow-soil-core technique for simultaneously quantification of nitrous oxide (N2O) and N2 emission with the reverse transcript qPCR technology. Our goals were to characterize denitrification dynamics and N gas product ratios in alpine grassland soil as affected by climate change conditions and to evaluate relationships between denitrification gene expression and N gas emission. We used soils from the pre-alpine grassland Terrestrial Environmental Observatory (TERENO), exposed to ambient temperature and precipitation (control treatment), or three years of simulated climate change conditions (increased temperature, reduction of summer precipitation and reduced snow cover). Soils were amended with glucose and nitrate and incubated subsequently at 1) 5°C and 20% oxygen; 2) 5°C and 0% oxygen; 3) 20°C and 0% oxygen until stabilization of N gas emissions in each incubation step. After switching incubation conditions to 0% oxygen and 20°C, N2O emission peaked immediately and declined again, followed by a delayed peak in N2 emission. The dynamics of cnorB gene expression, encoding the reduction of nitric oxide (NO) to N2O, followed the N2O emission pattern, while nosZ gene expression, encoding N2O reduction to N2 followed the course of N2 emission. The mean N2O:N2 ratios were 1.31 + 0.10 and 1.56 + 0.16 for control and climate change treatment respectively, but the denitrification potential was overall lower in climate change treatment. Hence, simulated climate change promoted N2O but lessened N2 emission. This stimulation of N2O was in accordance with increased cnorB gene expression in soil of the climate change treatment. N mass balance calculations revealed

  15. Overview of global climate change and carbon sequestration

    Treesearch

    Kurt Johnsen

    2004-01-01

    The potential influence of global climate change on southern forests is uncertain. Outputs of climate change models differ considerably in their projections for precipitation and other variables that affect forests. Forest responses, particularly effects on competition among species, are difficult to assess. Even the responses of relatively simple ecosystems, such as...

  16. Climate change, food, water and population health in China

    PubMed Central

    Berry, Helen L; Ebi, Kristie; Bambrick, Hilary; Hu, Wenbiao; Green, Donna; Hanna, Elizabeth; Wang, Zhiqiang; Butler, Colin D

    2016-01-01

    Abstract Anthropogenic climate change appears to be increasing the frequency, duration and intensity of extreme weather events. Such events have already had substantial impacts on socioeconomic development and population health. Climate change’s most profound impacts are likely to be on food, health systems and water. This paper explores how climate change will affect food, human health and water in China. Projections indicate that the overall effects of climate change, land conversion and reduced water availability could reduce Chinese food production substantially – although uncertainty is inevitable in such projections. Climate change will probably have substantial impacts on water resources – e.g. changes in rainfall patterns and increases in the frequencies of droughts and floods in some areas of China. Such impacts would undoubtedly threaten population health and well-being in many communities. In the short-term, population health in China is likely to be adversely affected by increases in air temperatures and pollution. In the medium to long term, however, the indirect impacts of climate change – e.g. changes in the availability of food, shelter and water, decreased mental health and well-being and changes in the distribution and seasonality of infectious diseases – are likely to grow in importance. The potentially catastrophic consequences of climate change can only be avoided if all countries work together towards a substantial reduction in the emission of so-called greenhouse gases and a substantial increase in the global population’s resilience to the risks of climate variability and change. PMID:27843166

  17. Changing climate, changing forests: the impacts of climate change on forests of the northeastern United States and eastern Canada

    USGS Publications Warehouse

    Rustad, Lindsey; Campbell, John; Dukes, Jeffrey S.; Huntington, Thomas; Lambert, Kathy Fallon; Mohan, Jacqueline; Rodenhouse, Nicholas

    2012-01-01

    Decades of study on climatic change and its direct and indirect effects on forest ecosystems provide important insights for forest science, management, and policy. A synthesis of recent research from the northeastern United States and eastern Canada shows that the climate of the region has become warmer and wetter over the past 100 years and that there are more extreme precipitation events. Greater change is projected in the future. The amount of projected future change depends on the emissions scenarios used. Tree species composition of northeast forests has shifted slowly in response to climate for thousands of years. However, current human-accelerated climate change is much more rapid and it is unclear how forests will respond to large changes in suitable habitat. Projections indicate significant declines in suitable habitat for spruce-fir forests and expansion of suitable habitat for oak-dominated forests. Productivity gains that might result from extended growing seasons and carbon dioxide and nitrogen fertilization may be offset by productivity losses associated with the disruption of species assemblages and concurrent stresses associated with potential increases in atmospheric deposition of pollutants, forest fragmentation, and nuisance species. Investigations of links to water and nutrient cycling suggest that changes in evapotranspiration, soil respiration, and mineralization rates could result in significant alterations of key ecosystem processes. Climate change affects the distribution and abundance of many wildlife species in the region through changes in habitat, food availability, thermal tolerances, species interactions such as competition, and susceptibility to parasites and disease. Birds are the most studied northeastern taxa. Twenty-seven of the 38 bird species for which we have adequate long-term records have expanded their ranges predominantly in a northward direction. There is some evidence to suggest that novel species, including pests and

  18. Climate and land-use changes affecting river sediment and brown trout in alpine countries--a review.

    PubMed

    Scheurer, Karin; Alewell, Christine; Bänninger, Dominik; Burkhardt-Holm, Patricia

    2009-03-01

    Catch decline of freshwater fish has been recorded in several countries. Among the possible causes, habitat change is discussed. This article focuses on potentially increased levels of fine sediments going to rivers and their effects on gravel-spawning brown trout. Indications of increased erosion rates are evident from land-use change in agriculture, changes in forest management practices, and from climate change. The latter induces an increase in air and river water temperatures, reduction in permafrost, changes in snow dynamics and an increase in heavy rain events. As a result, an increase in river sediment is likely. Suspended sediment may affect fish health and behaviour directly. Furthermore, sediment loads may clog gravel beds impeding fish such as brown trout from spawning and reducing recruitment rates. To assess the potential impact on fine sediments, knowledge of brown trout reproductive needs and the effects of sediment on brown trout health were evaluated. We critically reviewed the literature and included results from ongoing studies to answer the following questions, focusing on recent decades and rivers in alpine countries. Have climate change and land-use change increased erosion and sediment loads in rivers? Do we have indications of an increase in riverbed clogging? Are there indications of direct or indirect effects on brown trout from increased suspended sediment concentrations in rivers or from an increase in riverbed clogging? Rising air temperatures have led to more intensive precipitation in winter months, earlier snow melt in spring, and rising snow lines and hence to increased erosion. Intensification of land use has supported erosion in lowland and pre-alpine areas in the second half of the twentieth century. In the Alps, however, reforestation of abandoned land at high altitudes might reduce the erosion risk while intensification on the lower, more easily accessible slopes increases erosion risk. Data from laboratory experiments show

  19. Climate change and animal diseases in South America.

    PubMed

    Pinto, J; Bonacic, C; Hamilton-West, C; Romero, J; Lubroth, J

    2008-08-01

    Climate strongly affects agriculture and livestock production and influences animal diseases, vectors and pathogens, and their habitat. Global warming trends predicted in the 2007 Intergovernmental Panel on Climatic Change (IPCC) report for South America are likely to change the temporal and geographical distribution of infectious diseases, including those that are vector-borne such as bluetongue, West Nile fever, vesicular stomatitis and New World screwworm. Changes in distribution will be partially modulated by El Niño Southern Oscillation events, which will become more frequent and lead to a greater frequency of droughts and floods. Active disease surveillance for animal diseases in South America, particularly for vector-borne diseases, is very poor. Disease reporting is often lacking, which affects knowledge of disease distribution and impact, and preparedness for early response. Improved reporting for animal diseases that may be affected by climate change is needed for better prevention and intervention measures in susceptible livestock, wildlife and vectors in South America. This requires contributions from multidisciplinary experts, including meteorologists, epidemiologists, biologists and ecologists, and from local communities.

  20. Climate change velocity underestimates climate change exposure in mountainous regions

    PubMed Central

    Dobrowski, Solomon Z.; Parks, Sean A.

    2016-01-01

    Climate change velocity is a vector depiction of the rate of climate displacement used for assessing climate change impacts. Interpreting velocity requires an assumption that climate trajectory length is proportional to climate change exposure; longer paths suggest greater exposure. However, distance is an imperfect measure of exposure because it does not quantify the extent to which trajectories traverse areas of dissimilar climate. Here we calculate velocity and minimum cumulative exposure (MCE) in degrees Celsius along climate trajectories for North America. We find that velocity is weakly related to MCE; each metric identifies contrasting areas of vulnerability to climate change. Notably, velocity underestimates exposure in mountainous regions where climate trajectories traverse dissimilar climates, resulting in high MCE. In contrast, in flat regions velocity is high where MCE is low, as these areas have negligible climatic resistance to movement. Our results suggest that mountainous regions are more climatically isolated than previously reported. PMID:27476545

  1. Forest ecosystems, disturbance, and climate change in Washington State, USA

    Treesearch

    Jeremy S. Littell; Elaine E. Oneil; Donald McKenzie; Jeffrey A. Hicke; James A. Lutz; Robert A. Norheim; Marketa M. Elsner

    2010-01-01

    Climatic change is likely to affect Pacific Northwest (PNW) forests in several important ways. In this paper, we address the role of climate in four forest ecosystem processes and project the effects of future climatic change on these processes across Washington State. First, we relate Douglas-fir growth to climatic limitation and suggest that where Douglas-fir is...

  2. Impacts of Climate Change on Inequities in Child Health.

    PubMed

    Bennett, Charmian M; Friel, Sharon

    2014-12-03

    This paper addresses an often overlooked aspect of climate change impacts on child health: the amplification of existing child health inequities by climate change. Although the effects of climate change on child health will likely be negative, the distribution of these impacts across populations will be uneven. The burden of climate change-related ill-health will fall heavily on the world's poorest and socially-disadvantaged children, who already have poor survival rates and low life expectancies due to issues including poverty, endemic disease, undernutrition, inadequate living conditions and socio-economic disadvantage. Climate change will exacerbate these existing inequities to disproportionately affect disadvantaged children. We discuss heat stress, extreme weather events, vector-borne diseases and undernutrition as exemplars of the complex interactions between climate change and inequities in child health.

  3. Climate Change and Water Resources Management: A Federal Perspective

    USGS Publications Warehouse

    Brekke, Levi D.; Kiang, Julie E.; Olsen, J. Rolf; Pulwarty, Roger S.; Raff, David A.; Turnipseed, D. Phil; Webb, Robert S.; White, Kathleen D.

    2009-01-01

    Many challenges, including climate change, face the Nation's water managers. The Intergovernmental Panel on Climate Change (IPCC) has provided estimates of how climate may change, but more understanding of the processes driving the changes, the sequences of the changes, and the manifestation of these global changes at different scales could be beneficial. Since the changes will likely affect fundamental drivers of the hydrological cycle, climate change may have a large impact on water resources and water resources managers. The purpose of this interagency report prepared by the U.S. Geological Survey (USGS), U.S. Army Corps of Engineers (USACE), Bureau of Reclamation (Reclamation), and National Oceanic and Atmospheric Administration (NOAA) is to explore strategies to improve water management by tracking, anticipating, and responding to climate change. This report describes the existing and still needed underpinning science crucial to addressing the many impacts of climate change on water resources management.

  4. Climate change

    USGS Publications Warehouse

    Cronin, Thomas M.

    2016-01-01

    Climate change (including climate variability) refers to regional or global changes in mean climate state or in patterns of climate variability over decades to millions of years often identified using statistical methods and sometimes referred to as changes in long-term weather conditions (IPCC, 2012). Climate is influenced by changes in continent-ocean configurations due to plate tectonic processes, variations in Earth’s orbit, axial tilt and precession, atmospheric greenhouse gas (GHG) concentrations, solar variability, volcanism, internal variability resulting from interactions between the atmosphere, oceans and ice (glaciers, small ice caps, ice sheets, and sea ice), and anthropogenic activities such as greenhouse gas emissions and land use and their effects on carbon cycling.

  5. Leveraging the Novel Climates of Arboreta to Understand Tree Responses to Climate Change

    NASA Astrophysics Data System (ADS)

    Ettinger, A.; Wolkovich, E. M.; Joly, S.

    2016-12-01

    Rising global temperatures are expected to cause large-scale changes to forests, including altered mortality and recruitment rates, and dramatic changes in species composition, but exactly how tree growth will be affected by climate change is uncertain. Studies to date suggest that temperate and boreal tree responses to warming range from growing faster, slower, or at unchanged rates. Here we present an approach and preliminary findings that will improve predictions of tree responses to climate change by studying how tree traits, including phenology (e.g. the timing of leaf-out), wood density, leaf mass area, and height, relate to climate sensitivity (i.e. growth responses to annual changes in climate, Figure 1). We demonstrate how arboreta can be used to understand tree responses to climate change using 500 individuals across 65 tree species growing at the Arnold Arboretum, Boston, Massachusetts. Arboretum provide a unique opportunities for understanding temperate tree responses to climate change: they provide large collections of woody species growing together that enable traits to be studied across diverse species in a phylogenetic context. Furthermore, many species in arboreta are nonnative and have been exposed to "novel" climates that may resemble future conditions in their native distributions. We use a phylogenetic approach to understand how annual growth and climate sensitivity relate to focal traits, and asses what these findings may tell us about tree responses to climate change.

  6. Climate change impacts on mycotoxin risks in US maize

    USDA-ARS?s Scientific Manuscript database

    To ensure future food security, it is crucial to understand how potential climate change scenarios will affect agriculture. One key area of interest is how climatic factors, both in the near- and the long-term future, could affect fungal infection of crops and mycotoxin production by these fungi. ...

  7. Abrupt climate change and extinction events

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.

    1988-01-01

    There is a growing body of theoretical and empirical support for the concept of instabilities in the climate system, and indications that abrupt climate change may in some cases contribute to abrupt extinctions. Theoretical indications of instabilities can be found in a broad spectrum of climate models (energy balance models, a thermohaline model of deep-water circulation, atmospheric general circulation models, and coupled ocean-atmosphere models). Abrupt transitions can be of several types and affect the environment in different ways. There is increasing evidence for abrupt climate change in the geologic record and involves both interglacial-glacial scale transitions and the longer-term evolution of climate over the last 100 million years. Records from the Cenozoic clearly show that the long-term trend is characterized by numerous abrupt steps where the system appears to be rapidly moving to a new equilibrium state. The long-term trend probably is due to changes associated with plate tectonic processes, but the abrupt steps most likely reflect instabilities in the climate system as the slowly changing boundary conditions caused the climate to reach some threshold critical point. A more detailed analysis of abrupt steps comes from high-resolution studies of glacial-interglacial fluctuations in the Pleistocene. Comparison of climate transitions with the extinction record indicates that many climate and biotic transitions coincide. The Cretaceous-Tertiary extinction is not a candidate for an extinction event due to instabilities in the climate system. It is quite possible that more detailed comparisons and analysis will indicate some flaws in the climate instability-extinction hypothesis, but at present it appears to be a viable candidate as an alternate mechanism for causing abrupt environmental changes and extinctions.

  8. Global climate change implications for coastal and offshore oil and gas development

    USGS Publications Warehouse

    Burkett, V.

    2011-01-01

    The discussion and debate about climate change and oil and gas resource development has generally focused on how fossil fuel use affects the Earth's climate. This paper explores how the changing climate is likely to affect oil and gas operations in low-lying coastal areas and the outer continental shelf. Oil and gas production in these regions comprises a large sector of the economies of many energy producing nations. Six key climate change drivers in coastal and marine regions are characterized with respect to oil and gas development: changes in carbon dioxide levels and ocean acidity, air and water temperature, precipitation patterns, the rate of sea level rise, storm intensity, and wave regime. These key drivers have the potential to independently and cumulatively affect coastal and offshore oil and gas exploration, production, and transportation, and several impacts of climate change have already been observed in North America. ?? 2011.

  9. Plant functional diversity affects climate-vegetation interaction

    NASA Astrophysics Data System (ADS)

    Groner, Vivienne P.; Raddatz, Thomas; Reick, Christian H.; Claussen, Martin

    2018-04-01

    We present how variations in plant functional diversity affect climate-vegetation interaction towards the end of the African Humid Period (AHP) in coupled land-atmosphere simulations using the Max Planck Institute Earth system model (MPI-ESM). In experiments with AHP boundary conditions, the extent of the green Sahara varies considerably with changes in plant functional diversity. Differences in vegetation cover extent and plant functional type (PFT) composition translate into significantly different land surface parameters, water cycling, and surface energy budgets. These changes have not only regional consequences but considerably alter large-scale atmospheric circulation patterns and the position of the tropical rain belt. Towards the end of the AHP, simulations with the standard PFT set in MPI-ESM depict a gradual decrease of precipitation and vegetation cover over time, while simulations with modified PFT composition show either a sharp decline of both variables or an even slower retreat. Thus, not the quantitative but the qualitative PFT composition determines climate-vegetation interaction and the climate-vegetation system response to external forcing. The sensitivity of simulated system states to changes in PFT composition raises the question how realistically Earth system models can actually represent climate-vegetation interaction, considering the poor representation of plant diversity in the current generation of land surface models.

  10. Choice of baseline climate data impacts projected species' responses to climate change.

    PubMed

    Baker, David J; Hartley, Andrew J; Butchart, Stuart H M; Willis, Stephen G

    2016-07-01

    Climate data created from historic climate observations are integral to most assessments of potential climate change impacts, and frequently comprise the baseline period used to infer species-climate relationships. They are often also central to downscaling coarse resolution climate simulations from General Circulation Models (GCMs) to project future climate scenarios at ecologically relevant spatial scales. Uncertainty in these baseline data can be large, particularly where weather observations are sparse and climate dynamics are complex (e.g. over mountainous or coastal regions). Yet, importantly, this uncertainty is almost universally overlooked when assessing potential responses of species to climate change. Here, we assessed the importance of historic baseline climate uncertainty for projections of species' responses to future climate change. We built species distribution models (SDMs) for 895 African bird species of conservation concern, using six different climate baselines. We projected these models to two future periods (2040-2069, 2070-2099), using downscaled climate projections, and calculated species turnover and changes in species-specific climate suitability. We found that the choice of baseline climate data constituted an important source of uncertainty in projections of both species turnover and species-specific climate suitability, often comparable with, or more important than, uncertainty arising from the choice of GCM. Importantly, the relative contribution of these factors to projection uncertainty varied spatially. Moreover, when projecting SDMs to sites of biodiversity importance (Important Bird and Biodiversity Areas), these uncertainties altered site-level impacts, which could affect conservation prioritization. Our results highlight that projections of species' responses to climate change are sensitive to uncertainty in the baseline climatology. We recommend that this should be considered routinely in such analyses. © 2016 John Wiley

  11. Impacts of climate change on biodiversity, ecosystems, and ecosystem services: technical input to the 2013 National Climate Assessment

    USGS Publications Warehouse

    Staudinger, Michelle D.; Grimm, Nancy B.; Staudt, Amanda; Carter, Shawn L.; Stuart, F. Stuart; Kareiva, Peter; Ruckelshaus, Mary; Stein, Bruce A.

    2012-01-01

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This technical input to the National Climate Assessment synthesizes our scientific understanding of the way climate change is affecting biodiversity, ecosystems, ecosystem services, and what strategies might be employed to decrease current and future risks. Building on past assessments of how climate change and other stressors are affecting ecosystems in the United States and around the world, we approach the subject from several different perspectives. First, we review the observed and projected impacts on biodiversity, with a focus on genes, species, and assemblages of species. Next, we examine how climate change is affecting ecosystem structural elements—such as biomass, architecture, and heterogeneity—and functions—specifically, as related to the fluxes of energy and matter. People experience climate change impacts on biodiversity and ecosystems as changes in ecosystem services; people depend on ecosystems for resources that are harvested, their role in regulating the movement of materials and disturbances, and their recreational, cultural, and aesthetic value. Thus, we review newly emerging research to determine how human activities and a changing climate are likely to alter the delivery of these ecosystem services. This technical input also examines two cross-cutting topics. First, we recognize that climate change is happening against the backdrop of a wide range of other environmental and anthropogenic stressors, many of which have caused dramatic ecosystem degradation already. This broader range of stressors interacts with climate change, and complicates our abilities to predict and manage the impacts on biodiversity, ecosystems, and the services they support. The

  12. Modelling climate change and malaria transmission.

    PubMed

    Parham, Paul E; Michael, Edwin

    2010-01-01

    The impact of climate change on human health has received increasing attention in recent years, with potential impacts due to vector-borne diseases only now beginning to be understood. As the most severe vector-borne disease, with one million deaths globally in 2006, malaria is thought most likely to be affected by changes in climate variables due to the sensitivity of its transmission dynamics to environmental conditions. While considerable research has been carried out using statistical models to better assess the relationship between changes in environmental variables and malaria incidence, less progress has been made on developing process-based climate-driven mathematical models with greater explanatory power. Here, we develop a simple model of malaria transmission linked to climate which permits useful insights into the sensitivity of disease transmission to changes in rainfall and temperature variables. Both the impact of changes in the mean values of these key external variables and importantly temporal variation in these values are explored. We show that the development and analysis of such dynamic climate-driven transmission models will be crucial to understanding the rate at which P. falciparum and P. vivax may either infect, expand into or go extinct in populations as local environmental conditions change. Malaria becomes endemic in a population when the basic reproduction number R0 is greater than unity and we identify an optimum climate-driven transmission window for the disease, thus providing a useful indicator for determing how transmission risk may change as climate changes. Overall, our results indicate that considerable work is required to better understand ways in which global malaria incidence and distribution may alter with climate change. In particular, we show that the roles of seasonality, stochasticity and variability in environmental variables, as well as ultimately anthropogenic effects, require further study. The work presented here

  13. Detection and Attribution of Anthropogenic Climate Change Impacts

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Neofotis, Peter

    2013-01-01

    Human-influenced climate change is an observed phenomenon affecting physical and biological systems across the globe. The majority of observed impacts are related to temperature changes and are located in the northern high- and midlatitudes. However, new evidence is emerging that demonstrates that impacts are related to precipitation changes as well as temperature, and that climate change is impacting systems and sectors beyond the Northern Hemisphere. In this paper, we highlight some of this new evidence-focusing on regions and sectors that the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) noted as under-represented-in the context of observed climate change impacts, direct and indirect drivers of change (including carbon dioxide itself), and methods of detection. We also present methods and studies attributing observed impacts to anthropogenic forcing. We argue that the expansion of methods of detection (in terms of a broader array of climate variables and data sources, inclusion of the major modes of climate variability, and incorporation of other drivers of change) is key to discerning the climate sensitivities of sectors and systems in regions where the impacts of climate change currently remain elusive. Attributing such changes to human forcing of the climate system, where possible, is important for development of effective mitigation and adaptation. Current challenges in documenting adaptation and the role of indigenous knowledge in detection and attribution are described.

  14. Reframing climate change assessments around risk: recommendations for the US National Climate Assessment

    DOE PAGES

    Weaver, C. P.; Moss, Richard H.; Ebi, Kristie L.; ...

    2017-07-21

    Climate change is a risk management challenge for society, with uncertain but potentially severe outcomes affecting natural and human systems, across generations. Managing climate-related risks will be more difficult without a base of knowledge and practice aimed at identifying and evaluating specific risks, and their likelihood and consequences, as well as potential actions to promote resilience in the face of these risks. Here, we suggest three improvements to the process of conducting climate change assessments to better characterize risk and inform risk management actions.

  15. Reframing climate change assessments around risk: recommendations for the US National Climate Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weaver, C. P.; Moss, Richard H.; Ebi, Kristie L.

    Climate change is a risk management challenge for society, with uncertain but potentially severe outcomes affecting natural and human systems, across generations. Managing climate-related risks will be more difficult without a base of knowledge and practice aimed at identifying and evaluating specific risks, and their likelihood and consequences, as well as potential actions to promote resilience in the face of these risks. Here, we suggest three improvements to the process of conducting climate change assessments to better characterize risk and inform risk management actions.

  16. The effects of climate change and land-use change on demographic rates and population viability.

    PubMed

    Selwood, Katherine E; McGeoch, Melodie A; Mac Nally, Ralph

    2015-08-01

    Understanding the processes that lead to species extinctions is vital for lessening pressures on biodiversity. While species diversity, presence and abundance are most commonly used to measure the effects of human pressures, demographic responses give a more proximal indication of how pressures affect population viability and contribute to extinction risk. We reviewed how demographic rates are affected by the major anthropogenic pressures, changed landscape condition caused by human land use, and climate change. We synthesized the results of 147 empirical studies to compare the relative effect size of climate and landscape condition on birth, death, immigration and emigration rates in plant and animal populations. While changed landscape condition is recognized as the major driver of species declines and losses worldwide, we found that, on average, climate variables had equally strong effects on demographic rates in plant and animal populations. This is significant given that the pressures of climate change will continue to intensify in coming decades. The effects of climate change on some populations may be underestimated because changes in climate conditions during critical windows of species life cycles may have disproportionate effects on demographic rates. The combined pressures of land-use change and climate change may result in species declines and extinctions occurring faster than otherwise predicted, particularly if their effects are multiplicative. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  17. Climate change, extinction risks, and reproduction of terrestrial vertebrates.

    PubMed

    Carey, Cynthia

    2014-01-01

    This review includes a broad, but superficial, summary of our understanding about current and future climate changes, the predictions about how these changes will likely affect the risks of extinction of organisms, and how current climate changes are already affecting reproduction in terrestrial vertebrates. Many organisms have become extinct in the last century, but habitat destruction, disease and man-made factors other than climate change have been implicated as the causal factor in almost all of these. Reproduction is certain to be negatively impacted in all vertebrate groups for a variety of reasons, such as direct thermal and hydric effects on mortality of embryos, mismatches between optimal availability of food supplies, frequently determined by temperature, and reproductive capacities, sometimes determined by rigid factors such as photoperiod, and disappearance of appropriate foraging opportunities, such as melting sea ice. The numbers of studies documenting correlations between climate changes and biological phenomena are rapidly increasing, but more direct information about the consequences of these changes for species survival and ecosystem health is needed than is currently available.

  18. Climate change and the ash dieback crisis

    PubMed Central

    Goberville, Eric; Hautekèete, Nina-Coralie; Kirby, Richard R.; Piquot, Yves; Luczak, Christophe; Beaugrand, Grégory

    2016-01-01

    Beyond the direct influence of climate change on species distribution and phenology, indirect effects may also arise from perturbations in species interactions. Infectious diseases are strong biotic forces that can precipitate population declines and lead to biodiversity loss. It has been shown in forest ecosystems worldwide that at least 10% of trees are vulnerable to extinction and pathogens are increasingly implicated. In Europe, the emerging ash dieback disease caused by the fungus Hymenoscyphus fraxineus, commonly called Chalara fraxinea, is causing a severe mortality of common ash trees (Fraxinus excelsior); this is raising concerns for the persistence of this widespread tree, which is both a key component of forest ecosystems and economically important for timber production. Here, we show how the pathogen and climate change may interact to affect the future spatial distribution of the common ash. Using two presence-only models, seven General Circulation Models and four emission scenarios, we show that climate change, by affecting the host and the pathogen separately, may uncouple their spatial distribution to create a mismatch in species interaction and so a lowering of disease transmission. Consequently, as climate change expands the ranges of both species polewards it may alleviate the ash dieback crisis in southern and occidental regions at the same time. PMID:27739483

  19. A Meta-Analysis of Local Climate Change Adaptation Actions

    EPA Science Inventory

    Local governments are beginning to take steps to address the consequences of climate change, such as sea level rise and heat events. However, we do not have a clear understanding of what local governments are doing -- the extent to which they expect climate change to affect their...

  20. Adapting agriculture to climate change: a review

    NASA Astrophysics Data System (ADS)

    Anwar, Muhuddin Rajin; Liu, De Li; Macadam, Ian; Kelly, Georgina

    2013-07-01

    The agricultural sector is highly vulnerable to future climate changes and climate variability, including increases in the incidence of extreme climate events. Changes in temperature and precipitation will result in changes in land and water regimes that will subsequently affect agricultural productivity. Given the gradual change of climate in the past, historically, farmers have adapted in an autonomous manner. However, with large and discrete climate change anticipated by the end of this century, planned and transformational changes will be needed. In light of these, the focus of this review is on farm-level and farmers responses to the challenges of climate change both spatially and over time. In this review of adapting agriculture to climate change, the nature, extent, and causes of climate change are analyzed and assessed. These provide the context for adapting agriculture to climate change. The review identifies the binding constraints to adaptation at the farm level. Four major priority areas are identified to relax these constraints, where new initiatives would be required, i.e., information generation and dissemination to enhance farm-level awareness, research and development (R&D) in agricultural technology, policy formulation that facilitates appropriate adaptation at the farm level, and strengthening partnerships among the relevant stakeholders. Forging partnerships among R&D providers, policy makers, extension agencies, and farmers would be at the heart of transformational adaptation to climate change at the farm level. In effecting this transformational change, sustained efforts would be needed for the attendant requirements of climate and weather forecasting and innovation, farmer's training, and further research to improve the quality of information, invention, and application in agriculture. The investment required for these would be highly significant. The review suggests a sequenced approach through grouping research initiatives into short

  1. Understandings of Climate Change Articulated by Swedish Secondary School Students

    ERIC Educational Resources Information Center

    Holmqvist Olander, Mona; Olander, Clas

    2017-01-01

    This study investigated beliefs about climate change among Swedish secondary school students at the end of their K-12 education. An embedded mixed method approach was used to analyse 51 secondary school students' written responses to two questions: (1) What implies climate change? (2) What affects climate? A quantitative analysis of the responses…

  2. Global change and marine communities: alien species and climate change.

    PubMed

    Occhipinti-Ambrogi, Anna

    2007-01-01

    Anthropogenic influences on the biosphere since the advent of the industrial age are increasingly causing global changes. Climatic change and the rising concentration of greenhouse gases in the atmosphere are ranking high in scientific and public agendas, and other components of global change are also frequently addressed, among which are the introductions of non indigenous species (NIS) in biogeographic regions well separated from the donor region, often followed by spectacular invasions. In the marine environment, both climatic change and spread of alien species have been studied extensively; this review is aimed at examining the main responses of ecosystems to climatic change, taking into account the increasing importance of biological invasions. Some general principles on NIS introductions in the marine environment are recalled, such as the importance of propagule pressure and of development stages during the time course of an invasion. Climatic change is known to affect many ecological properties; it interacts also with NIS in many possible ways. Direct (proximate) effects on individuals and populations of altered physical-chemical conditions are distinguished from indirect effects on emergent properties (species distribution, diversity, and production). Climatically driven changes may affect both local dispersal mechanisms, due to the alteration of current patterns, and competitive interactions between NIS and native species, due to the onset of new thermal optima and/or different carbonate chemistry. As well as latitudinal range expansions of species correlated with changing temperature conditions, and effects on species richness and the correlated extinction of native species, some invasions may provoke multiple effects which involve overall ecosystem functioning (material flow between trophic groups, primary production, relative extent of organic material decomposition, extent of benthic-pelagic coupling). Some examples are given, including a special

  3. Climate-related changes of soil characteristics affect bacterial community composition and function of high altitude and latitude lakes.

    PubMed

    Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa

    2017-06-01

    Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  4. The potential impacts of climate change induced changes to tropical leaf albedo and its feedback on global climate

    NASA Astrophysics Data System (ADS)

    Doughty, C.; Shenkin, A.; Bentley, L. P.; Malhi, Y.

    2017-12-01

    Tropical forest leaf albedo plays a critical role in global climate by determining how much radiation the planet absorbs near the equator. However, little is known about how tropical leaf albedo could be affected by climate change and how any such changes in albedo could, in turn, impact global climate. Here we measure sunlit leaf albedo along two elevation temperature gradients (a 3000-meter gradient in Peru (10 plots) and a 1500 m gradient in Australia (10 plots) and along two wet to dry transects (a 2000 mm yr-1 gradient in Ghana (10 plots) and a 2000 mm yr-1 gradient in Brazil (10 plots). We found a highly significant increase in visible leaf albedo with wetness at both wet to dry gradients. We also found a marginally significant trend of increased albedo with warmer temperatures along one of the elevation gradients. Leaf albedo can also be impacted by changes in species composition, variations in interspecific variation, and changes in leaf chlorophyll concentrations. We removed the dominant two species from the basal area weighting for each plots but found no significant change, a directional change of interspecific variation could change albedo by 0.01 in the NIR, and changes in chlorophyll could decrease visible albedo by 0.005. We then simulated changes in tropical leaf albedo with a climate model and show that such changes could act as a small negative feedback on climate, but most likely will not have a large impact on future climate.

  5. Bird response to future climate and forest management focused on mitigating climate change

    Treesearch

    Jaymi J. LeBrun; Jeffrey E. Schneiderman; Frank R. Thompson; William D. Dijak; Jacob S. Fraser; Hong S. He; Joshua J. Millspaugh

    2016-01-01

    Context. Global temperatures are projected to increase and affect forests and wildlife populations. Forest management can potentially mitigate climateinduced changes through promoting carbon sequestration, forest resilience, and facilitated change. Objectives. We modeled direct and indirect effects of climate change on avian...

  6. Effects of climate change on cultural resources [Chapter 12

    Treesearch

    Tom H. Flanigan; Charmaine Thompson; William G. Reed

    2018-01-01

    As with all resources on public lands, cultural resources are subject to environmental forces such as climate change. Climate change can affect cultural resources directly (e.g., heat, precipitation) or indirectly (e.g., vegetation, wildfire, flooding). Cultural resources include archaeological sites, cultural landscapes, ethnohistoric and historic structures and...

  7. Interactive effects of climate change and biodiversity loss on ecosystem functioning.

    PubMed

    Pires, Aliny P F; Srivastava, Diane S; Marino, Nicholas A C; MacDonald, A Andrew M; Figueiredo-Barros, Marcos Paulo; Farjalla, Vinicius F

    2018-05-01

    Climate change and biodiversity loss are expected to simultaneously affect ecosystems, however research on how each driver mediates the effect of the other has been limited in scope. The multiple stressor framework emphasizes non-additive effects, but biodiversity may also buffer the effects of climate change, and climate change may alter which mechanisms underlie biodiversity-function relationships. Here, we performed an experiment using tank bromeliad ecosystems to test the various ways that rainfall changes and litter diversity may jointly determine ecological processes. Litter diversity and rainfall changes interactively affected multiple functions, but how depends on the process measured. High litter diversity buffered the effects of altered rainfall on detritivore communities, evidence of insurance against impacts of climate change. Altered rainfall affected the mechanisms by which litter diversity influenced decomposition, reducing the importance of complementary attributes of species (complementarity effects), and resulting in an increasing dependence on the maintenance of specific species (dominance effects). Finally, altered rainfall conditions prevented litter diversity from fueling methanogenesis, because such changes in rainfall reduced microbial activity by 58%. Together, these results demonstrate that the effects of climate change and biodiversity loss on ecosystems cannot be understood in isolation and interactions between these stressors can be multifaceted. © 2018 by the Ecological Society of America.

  8. Climate change and coastal environmental risk perceptions in Florida.

    PubMed

    Carlton, Stuart J; Jacobson, Susan K

    2013-11-30

    Understanding public perceptions of climate change risks is a prerequisite for effective climate communication and adaptation. Many studies of climate risk perceptions have either analyzed a general operationalization of climate change risk or employed a case-study approach of specific adaptive processes. This study takes a different approach, examining attitudes toward 17 specific, climate-related coastal risks and cognitive, affective, and risk-specific predictors of risk perception. A survey of 558 undergraduates revealed that risks to the physical environment were a greater concern than economic or biological risks. Perceptions of greater physical environment risks were significantly associated with having more pro-environmental attitudes, being female, and being more Democratic-leaning. Perceptions of greater economic risks were significantly associated with having more negative environmental attitudes, being female, and being more Republican-leaning. Perceptions of greater biological risks were significantly associated with more positive environmental attitudes. The findings suggest that focusing on physical environment risks maybe more salient to this audience than communications about general climate change adaptation. The results demonstrate that climate change beliefs and risk perceptions are multifactorial and complex and are shaped by individuals' attitudes and basic beliefs. Climate risk communications need to apply this knowledge to better target cognitive and affective processes of specific audiences, rather than providing simple characterizations of risks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Weather on Steroids: The Art of Climate Change Science.

    NASA Astrophysics Data System (ADS)

    Boudrias, M. A.; Gershunov, A.; Sizonenko, T.; Wiese, A.; Fox, H.

    2017-12-01

    There have been many different kinds of efforts to improve climate change literacy of diverse audiences in the past several years. The challenge has been to balance science content with audience-specific messaging that engages them in both rational and affective ways. In the San Diego Region, Climate Education Partners (CEP) has been working with business leaders, elected officials, tribal leaders, and other community leaders to develop a suite of programs and activities to enhance the channels of communication outside traditional settings. CEP has partnered with the La Jolla Historical Society and the Scripps Institution of Oceanography in a unique exhibition of art inspired by climate science, a project blending science and art to communicate the science of climate change in a new way and engage audiences more effectively. Weather on Steroids: the Art of Climate Change Science explores the question of consequences, challenges, and opportunities that arise from the changing climate on our planet. The exhibition merges the artistic and scientific to create a visual dialogue about the vexing problem of climate change, explores how weather variability affects the day-to-day life of local communities, and investigates Southern California vulnerability to climate change. Science serves as the inspiration for the creative responses from visual artists, who merge subjective images with empirical observation to reveal how climate variations upset the planet's balance with extreme weather impacts. Both the scientists and artists created didactic pages to explain their perspectives and each pair worked closely to incorporate the information into the creative piece so that the connection of each of 11 art installations to the science that inspired them is clear. By illuminating the reality of climate change, Weather on Steroids aspires to proactively stimulate public dialogue about one of the most important issues of our time.

  10. Climate Change Policy

    NASA Astrophysics Data System (ADS)

    Jepma, Catrinus J.; Munasinghe, Mohan; Bolin, Foreword By Bert; Watson, Robert; Bruce, James P.

    1998-03-01

    There is increasing scientific evidence to suggest that humans are gradually but certainly changing the Earth's climate. In an effort to prevent further damage to the fragile atmosphere, and with the belief that action is required now, the scientific community has been prolific in its dissemination of information on climate change. Inspired by the results of the Intergovernmental Panel on Climate Change's Second Assessment Report, Jepma and Munasinghe set out to create a concise, practical, and compelling approach to climate change issues. They deftly explain the implications of global warming, and the risks involved in attempting to mitigate climate change. They look at how and where to start action, and what organization is needed to be able to implement the changes. This book represents a much needed synopsis of climate change and its real impacts on society. It will be an essential text for climate change researchers, policy analysts, university students studying the environment, and anyone with an interest in climate change issues. A digestible version of the IPCC 1995 Economics Report - written by two of IPCC contributors with a Foreword by two of the editors of Climate Change 1995: Economics of Climate Change: i.e. has unofficial IPCC approval Focusses on policy and economics - important but of marginal interest to scientists, who are more likely to buy this summary than the full IPCC report itself Has case-studies to get the points across Separate study guide workbook will be available, mode of presentation (Web or book) not yet finalized

  11. Climate change and human health: impacts, vulnerability, and mitigation.

    PubMed

    Haines, A; Kovats, R S; Campbell-Lendrum, D; Corvalan, C

    2006-06-24

    It is now widely accepted that climate change is occurring as a result of the accumulation of greenhouse gases in the atmosphere arising from the combustion of fossil fuels. Climate change may affect health through a range of pathways--eg, as a result of increased frequency and intensity of heat waves, reduction in cold-related deaths, increased floods and droughts, changes in the distribution of vector-borne diseases, and effects on the risk of disasters and malnutrition. The overall balance of effects on health is likely to be negative and populations in low-income countries are likely to be particularly vulnerable to the adverse effects. The experience of the 2003 heat wave in Europe shows that high-income countries might also be adversely affected. Adaptation to climate change requires public-health strategies and improved surveillance. Mitigation of climate change by reducing the use of fossil fuels and increasing the use of a number of renewable energy technologies should improve health in the near term by reducing exposure to air pollution.

  12. Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe.

    PubMed

    Liancourt, Pierre; Boldgiv, Bazartseren; Song, Daniel S; Spence, Laura A; Helliker, Brent R; Petraitis, Peter S; Casper, Brenda B

    2015-09-01

    Climate change is expected to modify plant assemblages in ways that will have major consequences for ecosystem functions. How climate change will affect community composition will depend on how individual species respond, which is likely related to interspecific differences in functional traits. The extraordinary plasticity of some plant traits is typically neglected in assessing how climate change will affect different species. In the Mongolian steppe, we examined whether leaf functional traits under ambient conditions and whether plasticity in these traits under altered climate could explain climate-induced biomass responses in 12 co-occurring plant species. We experimentally created three probable climate change scenarios and used a model selection procedure to determine the set of baseline traits or plasticity values that best explained biomass response. Under all climate change scenarios, plasticity for at least one leaf trait correlated with change in species performance, while functional leaf-trait values in ambient conditions did not. We demonstrate that trait plasticity could play a critical role in vulnerability of species to a rapidly changing environment. Plasticity should be considered when examining how climate change will affect plant performance, species' niche spaces, and ecological processes that depend on plant community composition. © 2015 John Wiley & Sons Ltd.

  13. America's Climate Choices: Informing an Effective Response to Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Liverman, D. M.; McConnell, M. C.; Raven, P.

    2010-12-01

    climate-related decisions that society will confront over the coming decades will require an informed and engaged public and an education system that provides students with the knowledge to make informed choices. Although nearly all Americans have now heard of climate change, many have yet to understand the full implications of the issue and the opportunities and risks that lie in the solutions. Nonetheless, national surveys demonstrate a clear public desire for more information about climate change and how it might affect local communities. A majority of Americans want the government to take action in response to climate change and are willing to take action themselves. Although communicating about climate change and choices is vitally important, it can be difficult. This report summarizes some simple guidelines for more effective communications.

  14. Scanning the conservation horizon: A guide to climate change vulnerability assessment

    Treesearch

    Patty Glick; Bruce A. Stein; Naomi A. Edelson

    2011-01-01

    Rapid climate change is the defining conservation issue of our generation. The effects of climate change are increasingly apparent, from drowned coastal marshes and drying prairie potholes to melting glaciers. These climate-driven changes will profoundly affect our ability to conserve fish and wildlife and the habitats on which they depend. Indeed, preparing for and...

  15. Climate Change Impact on Sugarcane Production in Developing Countries

    USDA-ARS?s Scientific Manuscript database

    A combination of long-term change in the weather patterns worldwide (Global climate change), caused by natural processes and anthropogenic factors, may result in major environmental issues that have affected and will continuously affect agriculture. Increases in atmospheric carbon dioxide concentrat...

  16. Climate change. A global threat to cardiopulmonary health.

    PubMed

    Rice, Mary B; Thurston, George D; Balmes, John R; Pinkerton, Kent E

    2014-03-01

    Recent changes in the global climate system have resulted in excess mortality and morbidity, particularly among susceptible individuals with preexisting cardiopulmonary disease. These weather patterns are projected to continue and intensify as a result of rising CO2 levels, according to the most recent projections by climate scientists. In this Pulmonary Perspective, motivated by the American Thoracic Society Committees on Environmental Health Policy and International Health, we review the global human health consequences of projected changes in climate for which there is a high level of confidence and scientific evidence of health effects, with a focus on cardiopulmonary health. We discuss how many of the climate-related health effects will disproportionally affect people from economically disadvantaged parts of the world, who contribute relatively little to CO2 emissions. Last, we discuss the financial implications of climate change solutions from a public health perspective and argue for a harmonized approach to clean air and climate change policies.

  17. Uncertainty in Simulating Wheat Yields Under Climate Change

    NASA Technical Reports Server (NTRS)

    Asseng, S.; Ewert, F.; Rosenzweig, Cynthia; Jones, J. W.; Hatfield, J. W.; Ruane, A. C.; Boote, K. J.; Thornburn, P. J.; Rotter, R. P.; Cammarano, D.; hide

    2013-01-01

    Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1,3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.

  18. Uncertainty in simulating wheat yields under climate change

    NASA Astrophysics Data System (ADS)

    Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P. J.; Rötter, R. P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P. K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A. J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L. A.; Ingwersen, J.; Izaurralde, R. C.; Kersebaum, K. C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.; Olesen, J. E.; Osborne, T. M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M. A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J. W.; Williams, J. R.; Wolf, J.

    2013-09-01

    Projections of climate change impacts on crop yields are inherently uncertain. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models are difficult. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development andpolicymaking.

  19. Food-borne disease and climate change in the United Kingdom.

    PubMed

    Lake, Iain R

    2017-12-05

    This review examined the likely impact of climate change upon food-borne disease in the UK using Campylobacter and Salmonella as example organisms. Campylobacter is an important food-borne disease and an increasing public health threat. There is a reasonable evidence base that the environment and weather play a role in its transmission to humans. However, uncertainty as to the precise mechanisms through which weather affects disease, make it difficult to assess the likely impact of climate change. There are strong positive associations between Salmonella cases and ambient temperature, and a clear understanding of the mechanisms behind this. However, because the incidence of Salmonella disease is declining in the UK, any climate change increases are likely to be small. For both Salmonella and Campylobacter the disease incidence is greatest in older adults and young children. There are many pathways through which climate change may affect food but only a few of these have been rigorously examined. This provides a high degree of uncertainty as to what the impacts of climate change will be. Food is highly controlled at the National and EU level. This provides the UK with resilience to climate change as well as potential to adapt to its consequences but it is unknown whether these are sufficient in the context of a changing climate.

  20. Cinematic climate change, a promising perspective on climate change communication.

    PubMed

    Sakellari, Maria

    2015-10-01

    Previous research findings display that after having seen popular climate change films, people became more concerned, more motivated and more aware of climate change, but changes in behaviors were short-term. This article performs a meta-analysis of three popular climate change films, The Day after Tomorrow (2005), An Inconvenient Truth (2006), and The Age of Stupid (2009), drawing on research in social psychology, human agency, and media effect theory in order to formulate a rationale about how mass media communication shapes our everyday life experience. This article highlights the factors with which science blends in the reception of the three climate change films and expands the range of options considered in order to encourage people to engage in climate change mitigation actions. © The Author(s) 2014.

  1. U.S. Global Climate Change Impacts Report, Overview of Sectors

    NASA Astrophysics Data System (ADS)

    Wuebbles, D.

    2009-12-01

    The assessment of the Global Climate Change Impacts in the United States includes analyses of the potential climate change impacts by sector, including water resources, energy supply and use, transportation, agriculture, ecosystems, human health and society. The resulting findings for the climate change impacts on these sectors are discussed in this presentation, with the effects on water resources discussed separately. Major findings include: Widespread climate-related impacts are occurring now and are expected to increase. Climate changes are already affecting water, energy, transportation, agriculture, ecosystems, and health. These impacts are different from region to region and will grow under projected climate change. Crop and livestock production will be increasingly challenged. Agriculture is considered one of the sectors most adaptable to changes in climate. However, increased heat, pests, water stress, diseases, and weather extremes will pose adaptation challenges for crop and livestock production. Coastal areas are at increasing risk from sea-level rise and storm surge. Sea-level rise and storm surge place many U.S. coastal areas at increasing risk. Energy and transportation infrastructure and other property in coastal areas are very likely to be adversely affected. Threats to human health will increase. Health impacts of climate change are related to heat stress, waterborne diseases, poor air quality, extreme weather events, and diseases transmitted by insects and rodents. Robust public health infrastructure can reduce the potential for negative impacts. Climate change will interact with many social and environmental stresses. Climate change will combine with pollution, population growth, overuse of resources, urbanization, and other social, economic, and environmental stresses to create larger impacts than from any of these factors alone. Thresholds will be crossed, leading to large changes in climate and ecosystems. There are a variety of thresholds in

  2. Managing climate change refugia for climate adaptation

    USGS Publications Warehouse

    Morelli, Toni L.; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  3. Managing Climate Change Refugia for Climate Adaptation.

    PubMed

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  4. Managing Climate Change Refugia for Climate Adaptation

    PubMed Central

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  5. Climate change, water resources and child health.

    PubMed

    Kistin, Elizabeth J; Fogarty, John; Pokrasso, Ryan Shaening; McCally, Michael; McCornick, Peter G

    2010-07-01

    Climate change is occurring and has tremendous consequences for children's health worldwide. This article describes how the rise in temperature, precipitation, droughts, floods, glacier melt and sea levels resulting from human-induced climate change is affecting the quantity, quality and flow of water resources worldwide and impacting child health through dangerous effects on water supply and sanitation, food production and human migration. It argues that paediatricians and healthcare professionals have a critical leadership role to play in motivating and sustaining efforts for policy change and programme implementation at the local, national and international level.

  6. Will phenotypic plasticity affecting flowering phenology keep pace with climate change?

    Treesearch

    Bryce A. Richardson; Linsay Chaney; Nancy L. Shaw; Shannon M. Still

    2016-01-01

    Rising temperatures have begun to shift flowering time, but it is unclear whether phenotypic plasticity can accommodate projected temperature change for this century. Evaluating clines in phenological traits and the extent and variation in plasticity can provide key information on assessing risk of maladaptation and developing strategies to mitigate climate change. In...

  7. Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts.

    PubMed

    Bonebrake, Timothy C; Mastrandrea, Michael D

    2010-07-13

    Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.

  8. More harmful climate change impacts in polluted forests – a review

    Treesearch

    E Paoletti; NE Grulke; A Bytnerowicz

    2009-01-01

    Forests are facing significant pressures from climate change and air pollution. Air pollution is the main driver of the ongoing climate change. Current knowledge suggests that climate change may become more harmful to pollution-affected forests, although the magnitude of these feedbacks is still to be determined. At present, the air pollutants of most concern to...

  9. Forecasting conditional climate-change using a hybrid approach

    USGS Publications Warehouse

    Esfahani, Akbar Akbari; Friedel, Michael J.

    2014-01-01

    A novel approach is proposed to forecast the likelihood of climate-change across spatial landscape gradients. This hybrid approach involves reconstructing past precipitation and temperature using the self-organizing map technique; determining quantile trends in the climate-change variables by quantile regression modeling; and computing conditional forecasts of climate-change variables based on self-similarity in quantile trends using the fractionally differenced auto-regressive integrated moving average technique. The proposed modeling approach is applied to states (Arizona, California, Colorado, Nevada, New Mexico, and Utah) in the southwestern U.S., where conditional forecasts of climate-change variables are evaluated against recent (2012) observations, evaluated at a future time period (2030), and evaluated as future trends (2009–2059). These results have broad economic, political, and social implications because they quantify uncertainty in climate-change forecasts affecting various sectors of society. Another benefit of the proposed hybrid approach is that it can be extended to any spatiotemporal scale providing self-similarity exists.

  10. Climate change effects on above- and below-ground interactions in a dryland ecosystem.

    PubMed

    González-Megías, Adela; Menéndez, Rosa

    2012-11-19

    Individual species respond to climate change by altering their abundance, distribution and phenology. Less is known, however, about how climate change affects multitrophic interactions, and its consequences for food-web dynamics. Here, we investigate the effect of future changes in rainfall patterns on detritivore-plant-herbivore interactions in a semiarid region in southern Spain by experimentally manipulating rainfall intensity and frequency during late spring-early summer. Our results show that rain intensity changes the effect of below-ground detritivores on both plant traits and above-ground herbivore abundance. Enhanced rain altered the interaction between detritivores and plants affecting flower and fruit production, and also had a direct effect on fruit and seed set. Despite this finding, there was no net effect on plant reproductive output. This finding supports the idea that plants will be less affected by climatic changes than by other trophic levels. Enhanced rain also affected the interaction between detritivores and free-living herbivores. The effect, however, was apparent only for generalist and not for specialist herbivores, demonstrating a differential response to climate change within the same trophic level. The complex responses found in this study suggest that future climate change will affect trophic levels and their interactions differentially, making extrapolation from individual species' responses and from one ecosystem to another very difficult.

  11. Adapting the US Food System to Climate Change Goes Beyond the Farm Gate

    NASA Astrophysics Data System (ADS)

    Easterling, W. E.

    2014-12-01

    The literature on climate change effects on food and agriculture has concentrated primarily on how crops and livestock likely will be directly affected by climate variability and change and by elevated carbon dioxide. Integrated assessments have simulated large-scale economic response to shifting agricultural productivity caused by climate change, including possible changes in food costs and prices. A small but growing literature has shown how different facets of agricultural production inside the farm gate could be adapted to climate variability and change. Very little research has examined how the full food system (production, processing and storage, transportation and trade, and consumption) is likely to be affected by climate change and how different adaptation approaches will be required by different parts of the food system. This paper will share partial results of a major assessment sponsored by USDA to determine how climate change-induced changes in global food security could affect the US food system. Emphasis is given to understanding how adaptation strategies differ widely across the food system. A common thread, however, is risk management-based decision making. Technologies and management strategies may co-evolve with climate change but a risk management framework for implementing those technologies and strategies may provide a stable foundation.

  12. Impact of Climate Change on Food Security in Kenya

    NASA Astrophysics Data System (ADS)

    Yator, J. J.

    2016-12-01

    This study sought to address the existing gap on the impact of climate change on food security in support of policy measures to avert famine catastrophes. Fixed and random effects regressions for crop food security were estimated. The study simulated the expected impact of future climate change on food insecurity based on the Representative Concentration Pathways scenario (RCPs). The study makes use of county-level yields estimates (beans, maize, millet and sorghum) and daily climate data (1971 to 2010). Climate variability affects food security irrespective of how food security is defined. Rainfall during October-November-December (OND), as well as during March-April-May (MAM) exhibit an inverted U-shaped relationship with most food crops; the effects are most pronounced for maize and sorghum. Beans and Millet are found to be largely unresponsive to climate variability and also to time-invariant factors. OND rains and fall and summer temperature exhibit a U-shaped relationship with yields for most crops, while MAM rains temperature exhibits an inverted U-shaped relationship. However, winter temperatures exhibit a hill-shaped relationship with most crops. Project future climate change scenarios on crop productivity show that climate change will adversely affect food security, with up to 69% decline in yields by the year 2100. Climate variables have a non-linear relationship with food insecurity. Temperature exhibits an inverted U-shaped relationship with food insecurity, suggesting that increased temperatures will increase crop food insecurity. However, maize and millet, benefit from increased summer and winter temperatures. The simulated effects of different climate change scenarios on food insecurity suggest that adverse climate change will increase food insecurity in Kenya. The largest increases in food insecurity are predicted for the RCP 8.5Wm2, compared to RCP 4.5Wm2. Climate change is likely to have the greatest effects on maize insecurity, which is likely

  13. Cultural impacts to tribes from climate change influences on forests

    Treesearch

    Garrit Voggesser; Kathy Lynn; John Daigle; Frank K. Lake; Darren Ranco

    2013-01-01

    Climate change related impacts, such as increased frequency and intensity of wildfires, higher temperatures, extreme changes to ecosystem processes, forest conversion and habitat degradation are threatening tribal access to valued resources. Climate change is and will affect the quantity and quality of resources tribes depend upon to perpetuate their cultures and...

  14. The impacts of climate change on tribal traditional foods

    Treesearch

    Kathy Lynn; John Daigle; Jennie Hoffman; Frank Lake; Natalie Michelle; Darren Ranco; Carson Viles; Garrit Voggesser; Paul Williams

    2013-01-01

    American Indian and Alaska Native tribes are uniquely affected by climate change. Indigenous peoples have depended on a wide variety of native fungi, plant and animal species for food, medicine, ceremonies, community and economic health for countless generations. Climate change stands to impact the species and ecosystems that constitute tribal traditional foods that...

  15. [Effects of climate change on forest soil organic carbon storage: a review].

    PubMed

    Zhou, Xiao-yu; Zhang, Cheng-yi; Guo, Guang-fen

    2010-07-01

    Forest soil organic carbon is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. Climate change would affect the photosynthesis of forest vegetation and the decomposition and transformation of forest soil organic carbon, and further, affect the storage and dynamics of organic carbon in forest soils. Temperature, precipitation, atmospheric CO2 concentration, and other climatic factors all have important influences on the forest soil organic carbon storage. Understanding the effects of climate change on this storage is helpful to the scientific management of forest carbon sink, and to the feasible options for climate change mitigation. This paper summarized the research progress about the distribution of organic carbon storage in forest soils, and the effects of elevated temperature, precipitation change, and elevated atmospheric CO2 concentration on this storage, with the further research subjects discussed.

  16. Incorporating climate change into systematic conservation planning

    USGS Publications Warehouse

    Groves, Craig R.; Game, Edward T.; Anderson, Mark G.; Cross, Molly; Enquist, Carolyn; Ferdana, Zach; Girvetz, Evan; Gondor, Anne; Hall, Kimberly R.; Higgins, Jonathan; Marshall, Rob; Popper, Ken; Schill, Steve; Shafer, Sarah L.

    2012-01-01

    The principles of systematic conservation planning are now widely used by governments and non-government organizations alike to develop biodiversity conservation plans for countries, states, regions, and ecoregions. Many of the species and ecosystems these plans were designed to conserve are now being affected by climate change, and there is a critical need to incorporate new and complementary approaches into these plans that will aid species and ecosystems in adjusting to potential climate change impacts. We propose five approaches to climate change adaptation that can be integrated into existing or new biodiversity conservation plans: (1) conserving the geophysical stage, (2) protecting climatic refugia, (3) enhancing regional connectivity, (4) sustaining ecosystem process and function, and (5) capitalizing on opportunities emerging in response to climate change. We discuss both key assumptions behind each approach and the trade-offs involved in using the approach for conservation planning. We also summarize additional data beyond those typically used in systematic conservation plans required to implement these approaches. A major strength of these approaches is that they are largely robust to the uncertainty in how climate impacts may manifest in any given region.

  17. Nevada Infrastructure for Climate Change Science, Education, and Outreach

    NASA Astrophysics Data System (ADS)

    Dana, G. L.; Lancaster, N.; Mensing, S. A.; Piechota, T.

    2008-12-01

    Great Basin Ranges, one anticipated on a mountain range in southern Nevada and the second to be located in north-central Nevada. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions key to understanding the effects of future climate change on Great Basin mountain ecosystems and the potential management strategies for responding to these changes: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems? Infrastructure developed through this project will provide new interdisciplinary capability to detect, analyze, and model effects of regional climate change in mountainous regions of the west and provide a major contribution to existing climate change research and monitoring networks.

  18. Climate-driven changes in riverine inputs affecting the stoichiometry of Earth's largest lake

    NASA Astrophysics Data System (ADS)

    Sterner, R.; Small, G. E.

    2014-12-01

    Lake Superior, Earth's largest lake by area, has seen a steady increase in nitrate levels over the past century, while phosphorus remains exceedingly low, resulting in an increasingly imbalanced stoichiometry. Although its ratio of watershed area:lake area is relatively small, rivers emptying into Lake Superior could be important drivers of long-term changes in lake stoichiometry. To better assess how the Lake Superior watershed affects its stoichiometry, we examined the chemistry of two of its largest tributaries, the Saint Louis River and the Nipigon River, at their confluences with Lake Superior. Both of these rivers have high dissolved organic carbon (DOC) but low nitrate (NO3) concentrations relative to the lake. Using simple mixing models, we found these nearshore confluences to create sinks of lake NO3 as a result of relatively high rates of denitrification. Climate change is altering the amounts and patterns of delivery of materials from land to lakes and we also examined the plume from a June, 2012 100-year flood in the Saint Louis River. Three days after this historic rain event, we found elevated chlorophyll levels throughout the plume, up to 5-fold higher than in the open lake. Combining our samples with satellite imagery, we conservatively estimate that this plume contained 598,000 kg of phosphorus in dissolved and particulate form, or 40% of the average annual P input to the lake. If storm events such as this occur with increasing frequency as predicted in climate change scenarios, the lake's productivity may increase and stoichiometry could become more balanced, through greater P input and increased N retention due to sedimentation and denitrification.

  19. Climate change and wildlife health: direct and indirect effects

    USGS Publications Warehouse

    Hofmeister, Erik K.; Moede Rogall, Gail; Wesenberg, Katherine; Abbott, Rachel C.; Work, Thierry M.; Schuler, Krysten; Sleeman, Jonathan M.; Winton, James

    2010-01-01

    Climate change, habitat destruction and urbanization, the introduction of exotic and invasive species, and pollution—all affect ecosystem and human health. Climate change can also be viewed within the context of other physical and climate cycles, such as the El Niño Southern Oscillation (El Niño), the North Atlantic Oscillation, and cycles in solar radiation that have profound effects on the Earth’s climate. The effects of climate change on wildlife disease are summarized in several areas of scientific study discussed briefly below: geographic range and distribution of wildlife diseases, plant and animal phenology (Walther and others, 2002), and patterns of wildlife disease, community and ecosystem composition, and habitat degradation.

  20. Planning for climate change: the need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases

    PubMed Central

    Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-01-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies. PMID:26799810

  1. Community-Based Adaptation To A Changing Climate

    EPA Pesticide Factsheets

    This resource discusses how climate change is affecting community services, presents sample adaptation strategies, gives examples of successful community adaptation actions, and provides links to other key federal resources.

  2. Regional and global implications of land-use change and climate change

    NASA Astrophysics Data System (ADS)

    Stauffer, Heidi Lada

    This dissertation has two main components. The first is a longterm regional climate modeling study of the effects of different types of land use changes on Southeast Asian climate under present-day climate conditions and under future projected climate conditions at the end of the 21st Century. The focus of the second component is to estimate daily heat index for projected extreme temperatures at the end of the 21st Century and projecting the number of people affected by those heat conditions. The first component of this study uses a high-resolution regional climate model centered on the Southeast Asian region to compare two land use change scenarios under modern climate and future projected climate conditions. Results from experiments under modern climate conditions indicate that changes in regional climate including widespread surface cooling, increased precipitation, and increased latent heat flux are primarily due to deforestation. As expected from other studies, future climate projections indicate increasing surface temperature and total precipitation. However, the combination of increasing global temperatures and irrigation appears to increase latent heat flux and evapotranspiration, leading to decrease in the surface temperature nearly the same magnitude, increasing both specific humidity and relative humidity. The increasing relative humidity causes low clouds to form, and the net surface solar absorbed flux decreases in response, which further cools the surface. These results imply that deforestation and irrigation have differing complex regional climate responses and the presence of irrigation could mask future surface temperature increases, at least in the short term and reinforce the importance of incorporating land use changes, particularly irrigation, into any studies of future regional climate. The second component of this study uses global daily maximum heat indices derived from future climate future climate simulations for 2098 and projected

  3. Climate change and health modeling: horses for courses.

    PubMed

    Ebi, Kristie L; Rocklöv, Joacim

    2014-01-01

    Mathematical and statistical models are needed to understand the extent to which weather, climate variability, and climate change are affecting current and may affect future health burdens in the context of other risk factors and a range of possible development pathways, and the temporal and spatial patterns of any changes. Such understanding is needed to guide the design and the implementation of adaptation and mitigation measures. Because each model projection captures only a narrow range of possible futures, and because models serve different purposes, multiple models are needed for each health outcome ('horses for courses'). Multiple modeling results can be used to bracket the ranges of when, where, and with what intensity negative health consequences could arise. This commentary explores some climate change and health modeling issues, particularly modeling exposure-response relationships, developing early warning systems, projecting health risks over coming decades, and modeling to inform decision-making. Research needs are also suggested.

  4. Detecting and Attributing Health Burdens to Climate Change.

    PubMed

    Ebi, Kristie L; Ogden, Nicholas H; Semenza, Jan C; Woodward, Alistair

    2017-08-07

    Detection and attribution of health impacts caused by climate change uses formal methods to determine a ) whether the occurrence of adverse health outcomes has changed, and b ) the extent to which that change could be attributed to climate change. There have been limited efforts to undertake detection and attribution analyses in health. Our goal was to show a range of approaches for conducting detection and attribution analyses. Case studies for heatwaves, Lyme disease in Canada, and Vibrio emergence in northern Europe highlight evidence that climate change is adversely affecting human health. Changes in rates and geographic distribution of adverse health outcomes were detected, and, in each instance, a proportion of the observed changes could, in our judgment, be attributed to changes in weather patterns associated with climate change. The results of detection and attribution studies can inform evidence-based risk management to reduce current, and plan for future, changes in health risks associated with climate change. Gaining a better understanding of the size, timing, and distribution of the climate change burden of disease and injury requires reliable long-term data sets, more knowledge about the factors that confound and modify the effects of climate on health, and refinement of analytic techniques for detection and attribution. At the same time, significant advances are possible in the absence of complete data and statistical certainty: there is a place for well-informed judgments, based on understanding of underlying processes and matching of patterns of health, climate, and other determinants of human well-being. https://doi.org/10.1289/EHP1509.

  5. Dryland feedbacks to climatic change: Results from a climate manipulation experiment on the Colorado Plateau

    NASA Astrophysics Data System (ADS)

    Reed, S.; Belnap, J.; Ferrenberg, S.; Wertin, T. M.; Darrouzet-Nardi, A.; Tucker, C.; Rutherford, W. A.

    2015-12-01

    Arid and semiarid ecosystems cover ~40% of Earth's terrestrial surface and make up ~35% of the U.S., yet we know surprisingly little about how climate change will affect these widespread landscapes. Like many dryland regions, the Colorado Plateau in the southwestern U.S. is predicted to experience climate change as elevated temperature and altered timing and amount of annual precipitation. We are using a long-term (>10 yr) factorial warming and supplemental rainfall experiment on the Colorado Plateau to explore how predicted changes in climate will affect vascular plant and biological soil crust community composition, biogeochemical cycling, and energy balance (biocrusts are a surface soil community of moss, lichen, and cyanobacteria that can make up as much as 70% of the living cover in drylands). While some of the responses we have observed were expected, many of the results are surprising. For example, we documented biocrust community composition shifts in response to altered climate that were significantly faster and more dramatic than considered likely for these soil communities that typically change over decadal and centennial timescales. Further, while we continue to observe important climate change effects on carbon cycling - including reduced net photosynthesis in vascular plants, increased CO2 losses from biocrust soils during some seasons, and changes to the interactions between water and carbon cycles - we have also found marked treatment effects on the albedo and spectral signatures of dryland soils. In addition to demonstrating the effects of these treatments, the strong relationships we observed in our experiments between biota and climate provide a quantitative framework for improving our representation of dryland responses to climate change. In this talk we will cover a range of datasets that, taken together, show: (1) large climate-driven changes to dryland biogeochemical cycling may be the result of both effects on existing communities, as well

  6. Framing Climate Change to Account for Values

    NASA Astrophysics Data System (ADS)

    Hassol, S. J.

    2011-12-01

    Belief, trust and values are important but generally overlooked in efforts to communicate climate change. Because climate change has often been framed too narrowly as an environmental issue, it has failed to engage segments of the public for whom environmentalism is not an important value. Worse, for some of these people, environmentalism and the policies that accompany it may be seen as a threat to their core values, such as the importance of personal freedoms and the free market. Climate science educators can improve this situation by more appropriately framing climate change as an issue affecting the economy and our most basic human needs: food, water, shelter, security, health, jobs, and the safety of our families. Further, because people trust and listen to those with whom they share cultural values, climate change educators can stress the kinds of values their audiences share. They can also enlist the support of opinion leaders known for holding these values. In addition, incorporating messages about solutions to climate change and their many benefits to economic prosperity, human health, and other values is an important component of meeting this challenge. We must also recognize that local impacts are of greater concern to most people than changes that feel distant in place and time. Different audiences have different concerns, and effective educators will learn what their audiences care about and tailor their messages accordingly.

  7. Climate Change, Disaster and Sentiment Analysis over Social Media Mining

    NASA Astrophysics Data System (ADS)

    Lee, J.; McCusker, J. P.; McGuinness, D. L.

    2012-12-01

    Accelerated climate change causes disasters and disrupts people living all over the globe. Disruptive climate events are often reflected in expressed sentiments of the people affected. Monitoring changes in these sentiments during and after disasters can reveal relationships between climate change and mental health. We developed a semantic web tool that uses linked data principles and semantic web technologies to integrate data from multiple sources and analyze them together. We are converting statistical data on climate change and disaster records obtained from the World Bank data catalog and the International Disaster Database into a Resource Description Framework (RDF) representation that was annotated with the RDF Data Cube vocabulary. We compare these data with a dataset of tweets that mention terms from the Emotion Ontology to get a sense of how disasters can impact the affected populations. This dataset is being gathered using an infrastructure we developed that extracts term uses in Twitter with controlled vocabularies. This data was also converted to RDF structure so that statistical data on the climate change and disasters is analyzed together with sentiment data. To visualize and explore relationship of the multiple data across the dimensions of time and location, we use the qb.js framework. We are using this approach to investigate the social and emotional impact of climate change. We hope that this will demonstrate the use of social media data as a valuable source of understanding on global climate change.

  8. Climate change and mental health: risks, impacts and priority actions.

    PubMed

    Hayes, Katie; Blashki, G; Wiseman, J; Burke, S; Reifels, L

    2018-01-01

    This article provides an overview of the current and projected climate change risks and impacts to mental health and provides recommendations for priority actions to address the mental health consequences of climate change. The authors argue the following three points: firstly, while attribution of mental health outcomes to specific climate change risks remains challenging, there are a number of opportunities available to advance the field of mental health and climate change with more empirical research in this domain; secondly, the risks and impacts of climate change on mental health are already rapidly accelerating, resulting in a number of direct, indirect, and overarching effects that disproportionally affect those who are most marginalized; and, thirdly, interventions to address climate change and mental health need to be coordinated and rooted in active hope in order to tackle the problem in a holistic manner. This discussion paper concludes with recommendations for priority actions to address the mental health consequences of climate change.

  9. Evolution of plant–pollinator mutualisms in response to climate change

    PubMed Central

    Gilman, R Tucker; Fabina, Nicholas S; Abbott, Karen C; Rafferty, Nicole E

    2012-01-01

    Climate change has the potential to desynchronize the phenologies of interdependent species, with potentially catastrophic effects on mutualist populations. Phenologies can evolve, but the role of evolution in the response of mutualisms to climate change is poorly understood. We developed a model that explicitly considers both the evolution and the population dynamics of a plant–pollinator mutualism under climate change. How the populations evolve, and thus whether the populations and the mutualism persist, depends not only on the rate of climate change but also on the densities and phenologies of other species in the community. Abundant alternative mutualist partners with broad temporal distributions can make a mutualism more robust to climate change, while abundant alternative partners with narrow temporal distributions can make a mutualism less robust. How community composition and the rate of climate change affect the persistence of mutualisms is mediated by two-species Allee thresholds. Understanding these thresholds will help researchers to identify those mutualisms at highest risk owing to climate change. PMID:25568025

  10. Climate Change & Social Justice: Why We Should Care

    NASA Astrophysics Data System (ADS)

    Nesbitt, Nathan T.

    2015-03-01

    In the past several years the global impacts brought about by climate change have become increasingly apparent through the advent of numerous natural disasters. In these events the social costs of climate change have materialized demonstrating high costs in lives, livelihoods, and equity. Due to geographic bad-luck many of the countries most affected by climate change are those that contributed least, a challenge that's exacerbated by a lack of robust infrastructure in these countries. Wealthy nations remain at risk themselves and incidents such as Hurricanes Sandy & Katrina have demonstrated that in times of crisis even institutions like the Red Cross will abandon the poor to their deaths. As necessary action on climate change would cost the fossil fuel industry 20 trillion, money in politics has stymied action. Recently, however, a groundswell grassroots movement (e.g. People's Climate March in NYC) and great strides in energy technology and policy have begun to create necessary change. Reports quantifying the impacts of climate change will be discussed, as well as an update on the current state of the global climate justice movement. The important contributions from scientists to this movement will be highlighted. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. (DGE-1258923).

  11. Climate change: what competencies and which medical education and training approaches?

    PubMed

    Bell, Erica J

    2010-04-30

    Much research has been devoted to identifying healthcare needs in a climate-changing world. However, while there are now global and national policy statements about the importance of health workforce development for climate change, little has been published about what competencies might be demanded of practitioners in a climate-changing world. In such a context, this debate and discussion paper aims to explore the nature of key competencies and related opportunities for teaching climate change in medical education and training. Particular emphasis is made on preparation for practice in rural and remote regions likely to be greatly affected by climate change. The paper describes what kinds of competencies for climate change might be included in medical education and training. It explores which curricula, teaching, learning and assessment approaches might be involved. Rather than arguing for major changes to medical education and training, this paper explores well established precedents to offer practical suggestions for where a particular kind of literacy--eco-medical literacy--and related competencies could be naturally integrated into existing elements of medical education and training. The health effects of climate change have, generally, not yet been integrated into medical education and training systems. However, the necessary competencies could be taught by building on existing models, best practice and innovative traditions in medicine. Even in crowded curricula, climate change offers an opportunity to reinforce and extend understandings of how interactions between people and place affect health.

  12. Variability in climate change simulations affects needed long-term riverine nutrient reductions for the Baltic Sea.

    PubMed

    Bring, Arvid; Rogberg, Peter; Destouni, Georgia

    2015-06-01

    Changes to runoff due to climate change may influence management of nutrient loading to the sea. Assuming unchanged river nutrient concentrations, we evaluate the effects of changing runoff on commitments to nutrient reductions under the Baltic Sea Action Plan. For several countries, climate projections point to large variability in load changes in relation to reduction targets. These changes either increase loads, making the target more difficult to reach, or decrease them, leading instead to a full achievement of the target. The impact of variability in climate projections varies with the size of the reduction target and is larger for countries with more limited commitments. In the end, a number of focused actions are needed to manage the effects of climate change on nutrient loads: reducing uncertainty in climate projections, deciding on frameworks to identify best performing models with respect to land surface hydrology, and increasing efforts at sustained monitoring of water flow changes.

  13. Variability in climate change simulations affects needed long-term riverine nutrient reductions for the Baltic Sea

    DOE PAGES

    Bring, Arvid; Rogberg, Peter; Destouni, Georgia

    2015-05-28

    Changes to runoff due to climate change may influence management of nutrient loading to the sea. Assuming unchanged river nutrient concentrations, we evaluate the effects of changing runoff on commitments to nutrient reductions under the Baltic Sea Action Plan. For several countries, climate projections point to large variability in load changes in relation to reduction targets. These changes either increase loads, making the target more difficult to reach, or decrease them, leading instead to a full achievement of the target. The impact of variability in climate projections varies with the size of the reduction target and is larger for countriesmore » with more limited commitments. Finally, in the end, a number of focused actions are needed to manage the effects of climate change on nutrient loads: reducing uncertainty in climate projections, deciding on frameworks to identify best performing models with respect to land surface hydrology, and increasing efforts at sustained monitoring of water flow changes.« less

  14. Variability in climate change simulations affects needed long-term riverine nutrient reductions for the Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bring, Arvid; Rogberg, Peter; Destouni, Georgia

    Changes to runoff due to climate change may influence management of nutrient loading to the sea. Assuming unchanged river nutrient concentrations, we evaluate the effects of changing runoff on commitments to nutrient reductions under the Baltic Sea Action Plan. For several countries, climate projections point to large variability in load changes in relation to reduction targets. These changes either increase loads, making the target more difficult to reach, or decrease them, leading instead to a full achievement of the target. The impact of variability in climate projections varies with the size of the reduction target and is larger for countriesmore » with more limited commitments. Finally, in the end, a number of focused actions are needed to manage the effects of climate change on nutrient loads: reducing uncertainty in climate projections, deciding on frameworks to identify best performing models with respect to land surface hydrology, and increasing efforts at sustained monitoring of water flow changes.« less

  15. Climate Change, Nutrition, and Bottom-Up and Top-Down Food Web Processes.

    PubMed

    Rosenblatt, Adam E; Schmitz, Oswald J

    2016-12-01

    Climate change ecology has focused on climate effects on trophic interactions through the lenses of temperature effects on organismal physiology and phenological asynchronies. Trophic interactions are also affected by the nutrient content of resources, but this topic has received less attention. Using concepts from nutritional ecology, we propose a conceptual framework for understanding how climate affects food webs through top-down and bottom-up processes impacted by co-occurring environmental drivers. The framework integrates climate effects on consumer physiology and feeding behavior with effects on resource nutrient content. It illustrates how studying responses of simplified food webs to simplified climate change might produce erroneous predictions. We encourage greater integrative complexity of climate change research on trophic interactions to resolve patterns and enhance predictive capacities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Contrasted demographic responses facing future climate change in Southern Ocean seabirds.

    PubMed

    Barbraud, Christophe; Rivalan, Philippe; Inchausti, Pablo; Nevoux, Marie; Rolland, Virginie; Weimerskirch, Henri

    2011-01-01

    1. Recent climate change has affected a wide range of species, but predicting population responses to projected climate change using population dynamics theory and models remains challenging, and very few attempts have been made. The Southern Ocean sea surface temperature and sea ice extent are projected to warm and shrink as concentrations of atmospheric greenhouse gases increase, and several top predator species are affected by fluctuations in these oceanographic variables. 2. We compared and projected the population responses of three seabird species living in sub-tropical, sub-Antarctic and Antarctic biomes to predicted climate change over the next 50 years. Using stochastic population models we combined long-term demographic datasets and projections of sea surface temperature and sea ice extent for three different IPCC emission scenarios (from most to least severe: A1B, A2, B1) from general circulation models of Earth's climate. 3. We found that climate mostly affected the probability to breed successfully, and in one case adult survival. Interestingly, frequent nonlinear relationships in demographic responses to climate were detected. Models forced by future predicted climatic change provided contrasted population responses depending on the species considered. The northernmost distributed species was predicted to be little affected by a future warming of the Southern Ocean, whereas steep declines were projected for the more southerly distributed species due to sea surface temperature warming and decrease in sea ice extent. For the most southerly distributed species, the A1B and B1 emission scenarios were respectively the most and less damaging. For the two other species, population responses were similar for all emission scenarios. 4. This is among the first attempts to study the demographic responses for several populations with contrasted environmental conditions, which illustrates that investigating the effects of climate change on core population dynamics

  17. The Changing Climate.

    ERIC Educational Resources Information Center

    Schneider, Stephen H.

    1989-01-01

    Discusses the global change of climate. Presents the trend of climate change with graphs. Describes mathematical climate models including expressions for the interacting components of the ocean-atmosphere system and equations representing the basic physical laws governing their behavior. Provides three possible responses on the change. (YP)

  18. EPA Region 10 Climate Change and TMDL Pilot - Project Research Plan

    EPA Science Inventory

    Global climate change affects the fundamental drivers of the hydrological cycle. Evidence is growing that climate change will have significant ramifications for the nation’s freshwater ecosystems, as deviations in atmospheric temperature and precipitation patterns are more ...

  19. Refutation Texts for Effective Climate Change Education

    ERIC Educational Resources Information Center

    Nussbaum, E. Michael; Cordova, Jacqueline R.; Rehmat, Abeera P.

    2017-01-01

    Refutation texts, which are texts that rebut scientific misconceptions and explain the normative concept, can be effective devices for addressing misconceptions and affecting conceptual change. However, few, if any, refutation texts specifically related to climate change have been validated for effectiveness. In this project, we developed and…

  20. Climate change projections for Greek viticulture as simulated by a regional climate model

    NASA Astrophysics Data System (ADS)

    Lazoglou, Georgia; Anagnostopoulou, Christina; Koundouras, Stefanos

    2017-07-01

    Viticulture represents an important economic activity for Greek agriculture. Winegrapes are cultivated in many areas covering the whole Greek territory, due to the favorable soil and climatic conditions. Given the dependence of viticulture on climate, the vitivinicultural sector is expected to be affected by possible climatic changes. The present study is set out to investigate the impacts of climatic change in Greek viticulture, using nine bioclimatic indices for the period 1981-2100. For this purpose, reanalysis data from the European Centre for Medium-Range Weather Forecasts (ECMWF) and data from the regional climatic model Regional Climate Model Version 3 (RegCM3) are used. It was found that the examined regional climate model estimates satisfactorily these bioclimatic indices. The results of the study show that the increasing trend of temperature and drought will affect all wine-producing regions in Greece. In vineyards in mountainous regions, the impact is positive, while in islands and coastal regions, it is negative. Overall, it should be highlighted that for the first time that Greece is classified into common climatic characteristic categories, according to the international Geoviticulture Multicriteria Climatic Classification System (MCC system). According to the proposed classification, Greek viticulture regions are estimated to have similar climatic characteristics with the warmer wine-producing regions of the world up to the end of twenty-first century. Wine growers and winemakers should take the findings of the study under consideration in order to take measures for Greek wine sector adaptation and the continuation of high-quality wine production.

  1. Climate change, vector-borne diseases and working population.

    PubMed

    Vonesch, Nicoletta; D'Ovidio, Maria Concetta; Melis, Paola; Remoli, Maria Elena; Ciufolini, Maria Grazia; Tomao, Paola

    2016-01-01

    Risks associated with climate change are increasing worldwide and the global effects include altered weather and precipitation patterns, rising temperatures and others; human health can be affected directly and indirectly. This paper is an overview of literature regarding climate changes, their interaction with vector-borne diseases and impact on working population. Articles regarding climate changes as drivers of vector-borne diseases and evidences of occupational cases have been picked up by public databank. Technical documents were also included in the study. Evidences regarding the impact of climate changes on vector-borne diseases in Europe, provided by the analysis of the literature, are presented. Climate-sensitive vector-borne diseases are likely to be emerging due to climate modifications, with impacts on public and occupational health. However, other environmental and anthropogenic drivers such as increasing travelling and trade, deforestation and reforestation, altered land use and urbanization can influence their spread. Further studies are necessary to better understand the phenomenon and implementation of adaptation strategies to protect human health should be accelerated and strengthened.

  2. Recent droughts and effect of climate change on climate extremes in the East African region.

    NASA Astrophysics Data System (ADS)

    Mekonnen, Z. T.; Gebremichael, M.

    2016-12-01

    East Africa is a region that has been affected by droughts, floods, famine one too many times. 2015 was one of the worst droughts in the region in decades and created a food crisis in the region leading to 15 million people needing food and water assistance. In a region where the climate resilience of the society is low, understanding of the climate and how it's changing is very important. Unfortunately, only a few studies have been done in this area. In this study we looked at the recent droughts in the region and analyzed the trends in relation to historical data. A combination of remote sensing products like TRMM, GPM and MERRA were used in conjunction with gridded observed products like CPC as well as gauge observations to carry out the analysis. The second part of the analysis focused on how climate change will affect the climate extremes in the region focusing on precipitation, temperature and evapotranspiration. 20 selected GCMs from CMIP5 were used at a daily timescale to look at climate extremes. Changes in daily intensity of precipitation, seasonal shifts and total rainfall were analyzed for mid-century and end of the century RCP 6.0 scenario and compared to the historical figures. In addition, daily extreme temperature and evapotranspiration as well seasonal shifts were focuses of this study. Spatial variations were also shown to be important in understanding the changes. Even though studies have shown the total rainfall in the region didn't show a significant change in that region under climate change, seasonal shifts, extreme precipitation, extreme temperatures, prolonged droughts, and increase in evapotranspiration were observed in East Africa. In a region where population is expected to double by mid-century this extreme can put the lives of millions in danger. This study will be followed with another focusing on how these changes in extremes and distribution will affect the water resources in the region specifically the Nile.

  3. Nevada Infrastructure for Climate Change Science, Education, and Outreach

    NASA Astrophysics Data System (ADS)

    Dana, G. L.; Piechota, T. C.; Lancaster, N.; Mensing, S. A.

    2009-12-01

    , and the second to be located in the Snake Range of eastern Nevada which will reach bristlecone pine stands. Climatic, hydrologic and ecological data from these transects will be downloaded into high capacity data storage units and made available to researchers through creation of the Nevada climate change portal. Our research will aim to answer two interdisciplinary science questions: 1) How will climate change affect water resources and linked ecosystem resources and human systems? And 2) How will climate change affect disturbance regimes (e.g., wildland fires, invasive species, insect outbreaks, droughts) and linked systems?

  4. Perception of climate change in patients with chronic lung disease

    PubMed Central

    Götschke, Jeremias; Mertsch, Pontus; Bischof, Michael; Kneidinger, Nikolaus; Matthes, Sandhya; Renner, Ellen D.; Schultz, Konrad; Traidl-Hoffmann, Claudia; Duchna, Hans-Werner; Behr, Jürgen; Schmude, Jürgen; Huber, Rudolf M.

    2017-01-01

    Background Climate change affects human health. The respective consequences are predicted to increase in the future. Patients with chronic lung disease are particularly vulnerable to the involved environmental alterations. However, their subjective perception and reactions to these alterations remain unknown. Methods In this pilot study, we surveyed 172 adult patients who underwent pulmonary rehabilitation and 832 adult tourists without lung disease in the alpine region about their perception of being affected by climate change and their potential reaction to specific consequences. The patients’ survey also contained the COPD Assessment Test (CAT) to rate the severity of symptoms. Results Most of the patients stated asthma (73.8%), COPD (9.3%) or both (11.0%) as underlying disease while 5.8% suffered from other chronic lung diseases. Patients and tourists feel equally affected by current climate change in general, while allergic subjects in both groups feel significantly more affected (p = 0.04). The severity of symptoms assessed by CAT correlates with the degree of feeling affected (p<0.01). The main disturbing consequences for patients are decreased air quality, increasing numbers of ticks and mosquitos and a rising risk for allergy and extreme weather events such as thunderstroms, while tourists are less disturbed by these factors. Increasing number of heat-days is of little concern to both groups. Conclusion Overall patients are more sensitive to health-related consequences of climate change. Yet, the hazard of heat-days seems underestimated and awareness should be raised. PMID:29045479

  5. Perception of climate change in patients with chronic lung disease.

    PubMed

    Götschke, Jeremias; Mertsch, Pontus; Bischof, Michael; Kneidinger, Nikolaus; Matthes, Sandhya; Renner, Ellen D; Schultz, Konrad; Traidl-Hoffmann, Claudia; Duchna, Hans-Werner; Behr, Jürgen; Schmude, Jürgen; Huber, Rudolf M; Milger, Katrin

    2017-01-01

    Climate change affects human health. The respective consequences are predicted to increase in the future. Patients with chronic lung disease are particularly vulnerable to the involved environmental alterations. However, their subjective perception and reactions to these alterations remain unknown. In this pilot study, we surveyed 172 adult patients who underwent pulmonary rehabilitation and 832 adult tourists without lung disease in the alpine region about their perception of being affected by climate change and their potential reaction to specific consequences. The patients' survey also contained the COPD Assessment Test (CAT) to rate the severity of symptoms. Most of the patients stated asthma (73.8%), COPD (9.3%) or both (11.0%) as underlying disease while 5.8% suffered from other chronic lung diseases. Patients and tourists feel equally affected by current climate change in general, while allergic subjects in both groups feel significantly more affected (p = 0.04). The severity of symptoms assessed by CAT correlates with the degree of feeling affected (p<0.01). The main disturbing consequences for patients are decreased air quality, increasing numbers of ticks and mosquitos and a rising risk for allergy and extreme weather events such as thunderstroms, while tourists are less disturbed by these factors. Increasing number of heat-days is of little concern to both groups. Overall patients are more sensitive to health-related consequences of climate change. Yet, the hazard of heat-days seems underestimated and awareness should be raised.

  6. Long-Term Analysis and Appropriate Metrics of Climate Change in Mongolia

    ERIC Educational Resources Information Center

    Jamiyansharav, Khishigbayar

    2010-01-01

    This study addresses three important issues related to long-term climate change study in Mongolia. Mongolia is one of the biggest land-locked countries in Asia and 75--80 percent of the land is rangeland, which is highly vulnerable to climate change. Climate will affect many sectors critical to the country's economic, social, and ecological…

  7. Wintertime urban heat island modified by global climate change over Japan

    NASA Astrophysics Data System (ADS)

    Hara, M.

    2015-12-01

    Urban thermal environment change, especially, surface air temperature (SAT) rise in metropolitan areas, is one of the major recent issues in urban areas. The urban thermal environmental change affects not only human health such as heat stroke, but also increasing infectious disease due to spreading out virus vectors habitat and increase of industry and house energy consumption. The SAT rise is mostly caused by global climate change and urban heat island (hereafter UHI) by urbanization. The population in Tokyo metropolitan area is over 30 millions and the Tokyo metropolitan area is one of the biggest megacities in the world. The temperature rise due to urbanization seems comparable to the global climate change in the major megacities. It is important to project how the urbanization and the global climate change affect to the future change of urban thermal environment to plan the adaptation and mitigation policy. To predict future SAT change in urban scale, we should estimate future UHI modified by the global climate change. This study investigates change in UHI intensity (UHII) of major metropolitan areas in Japan by effects of the global climate change. We performed a series of climate simulations. Present climate simulations with and without urban process are conducted for ten seasons using a high-resolution numerical climate model, the Weather Research and Forecasting (WRF) model. Future climate projections with and without urban process are also conducted. The future projections are performed using the pseudo global warming method, assuming 2050s' initial and boundary conditions estimated by a GCM under the RCP scenario. Simulation results indicated that UHII would be enhanced more than 30% in Tokyo during the night due to the global climate change. The enhancement of urban heat island is mostly caused by change of lower atmospheric stability.

  8. How fire history, fire suppression practices and climate change affect wildfire regimes in Mediterranean landscapes.

    PubMed

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  9. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes

    PubMed Central

    Brotons, Lluís; Aquilué, Núria; de Cáceres, Miquel; Fortin, Marie-Josée; Fall, Andrew

    2013-01-01

    Available data show that future changes in global change drivers may lead to an increasing impact of fires on terrestrial ecosystems worldwide. Yet, fire regime changes in highly humanised fire-prone regions are difficult to predict because fire effects may be heavily mediated by human activities We investigated the role of fire suppression strategies in synergy with climate change on the resulting fire regimes in Catalonia (north-eastern Spain). We used a spatially-explicit fire-succession model at the landscape level to test whether the use of different firefighting opportunities related to observed reductions in fire spread rates and effective fire sizes, and hence changes in the fire regime. We calibrated this model with data from a period with weak firefighting and later assess the potential for suppression strategies to modify fire regimes expected under different levels of climate change. When comparing simulations with observed fire statistics from an eleven-year period with firefighting strategies in place, our results showed that, at least in two of the three sub-regions analysed, the observed fire regime could not be reproduced unless taking into account the effects of fire suppression. Fire regime descriptors were highly dependent on climate change scenarios, with a general trend, under baseline scenarios without fire suppression, to large-scale increases in area burnt. Fire suppression strategies had a strong capacity to compensate for climate change effects. However, strong active fire suppression was necessary to accomplish such compensation, while more opportunistic fire suppression strategies derived from recent fire history only had a variable, but generally weak, potential for compensation of enhanced fire impacts under climate change. The concept of fire regime in the Mediterranean is probably better interpreted as a highly dynamic process in which the main determinants of fire are rapidly modified by changes in landscape, climate and

  10. Sociology: Drivers of climate change beliefs

    NASA Astrophysics Data System (ADS)

    Givens, Jennifer E.

    2014-12-01

    Direct experience of global warming is expected to increase the number of people who accept that it is real and human-caused. A study now shows that people's perceptions about abnormal temperatures mostly match actual measurements but do not affect climate change beliefs.

  11. Impact of climate change on occupational exposure to solar radiation.

    PubMed

    Grandi, Carlo; Borra, Massimo; Militello, Andrea; Polichetti, Alessandro

    2016-01-01

    Occupational exposure to solar radiation may induce both acute and long-term effects on skin and eyes. Personal exposure is very difficult to assess accurately, as it depends on environmental, organisational and individual factors. The ongoing climate change interacting with stratospheric ozone dynamics may affect occupational exposure to solar radiation. In addition, tropospheric levels of environmental pollutants interacting with solar radiation may be altered by climate dynamics, so introducing another variable affecting the overall exposure to solar radiation. Given the uncertainties regarding the direction of changes in exposure to solar radiation due to climate change, compliance of outdoor workers with protective measures and a proper health surveillance are crucial. At the same time, education and training, along with the promotion of healthier lifestyles, are of paramount importance.

  12. The Effect of Information Provision on Public Consensus about Climate Change.

    PubMed

    Deryugina, Tatyana; Shurchkov, Olga

    2016-01-01

    Despite over 20 years of research and scientific consensus on the topic, climate change continues to be a politically polarizing issue. We conducted a survey experiment to test whether providing the public with information on the exact extent of scientific agreement about the occurrence and causes of climate change affects respondents' own beliefs and bridges the divide between conservatives and liberals. First, we show that the public significantly underestimated the extent of the scientific consensus. We then find that those given concrete information about scientists' views were more likely to report believing that climate change was already underway and that it was caused by humans. However, their beliefs about the necessity of making policy decisions and their willingness to donate money to combat climate change were not affected. Information provision affected liberals, moderates, and conservatives similarly, implying that the gap in beliefs between liberals and conservatives is not likely to be bridged by information treatments similar to the one we study. Finally, we conducted a 6-month follow-up with respondents to see if the treatment effect persisted; the results were statistically inconclusive.

  13. Managing Climate Change Refugia for Climate Adaptation ...

    EPA Pesticide Factsheets

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, locations that may be unusually buffered from climate change effects so as to increase persistence of valued resources. Here we distinguish between paleoecological and contemporary viewpoints, characterize physical and ecological processes that create and maintain climate change refugia, summarize the process of identifying and mapping them, and delineate how refugia can fit into the existing framework of natural resource management. We also suggest three primary courses of action at these sites: prioritization, protection, and propagation. Although not a panacea, managing climate change refugia can be an important adaptation option for conserving valuable resources in the face of ongoing and future climate change. “In a nutshell” (100 words) • Climate change refugia are defined as areas relatively buffered from contemporary climate change, enabling persistence of valued physical, ecological, and cultural resources. • Refugia can be incorporated as key components of a climate adaptation strategy because their prioritization by management may enable their associated resources to persist locally and eventually spread to future suitable habitat. • Steps for

  14. Large-scale climatic anomalies affect marine predator foraging behaviour and demography.

    PubMed

    Bost, Charles A; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-27

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  15. Large-scale climatic anomalies affect marine predator foraging behaviour and demography

    NASA Astrophysics Data System (ADS)

    Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri

    2015-10-01

    Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.

  16. The integration of climate change, spatial dynamics, and habitat fragmentation: A conceptual overview.

    PubMed

    Holyoak, Marcel; Heath, Sacha K

    2016-01-01

    A growing number of studies have looked at how climate change alters the effects of habitat fragmentation and degradation on both single and multiple species; some raise concern that biodiversity loss and its effects will be exacerbated. The published literature on spatial dynamics (such as dispersal and metapopulation dynamics), habitat fragmentation and climate change requires synthesis and a conceptual framework to simplify thinking. We propose a framework that integrates how climate change affects spatial population dynamics and the effects of habitat fragmentation in terms of: (i) habitat quality, quantity and distribution; (ii) habitat connectivity; and (iii) the dynamics of habitat itself. We use the framework to categorize existing autecological studies and investigate how each is affected by anthropogenic climate change. It is clear that a changing climate produces changes in the geographic distribution of climatic conditions, and the amount and quality of habitat. The most thorough published studies show how such changes impact metapopulation persistence, source-sink dynamics, changes in species' geographic range and community composition. Climate-related changes in movement behavior and quantity, quality and distribution of habitat have also produced empirical changes in habitat connectivity for some species. An underexplored area is how habitat dynamics that are driven by climatic processes will affect species that live in dynamic habitats. We end our discussion by suggesting ways to improve current attempts to integrate climate change, spatial population dynamics and habitat fragmentation effects, and suggest distinct areas of study that might provide opportunities for more fully integrative work. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  17. Climate change and human health: impacts, vulnerability and public health.

    PubMed

    Haines, A; Kovats, R S; Campbell-Lendrum, D; Corvalan, C

    2006-07-01

    It is now widely accepted that climate change is occurring as a result of the accumulation of greenhouse gases in the atmosphere arising from the combustion of fossil fuels. Climate change may affect health through a range of pathways, for example as a result of increased frequency and intensity of heat waves, reduction in cold related deaths, increased floods and droughts, changes in the distribution of vector-borne diseases and effects on the risk of disasters and malnutrition. The overall balance of effects on health is likely to be negative and populations in low-income countries are likely to be particularly vulnerable to the adverse effects. The experience of the 2003 heat wave in Europe shows that high-income countries may also be adversely affected. Adaptation to climate change requires public health strategies and improved surveillance. Mitigation of climate change by reducing the use of fossil fuels and increasing a number of uses of the renewable energy technologies should improve health in the near-term by reducing exposure to air pollution.

  18. The climate change-infectious disease nexus: is it time for climate change syndemics?

    PubMed

    Heffernan, Claire

    2013-12-01

    Conceptualizing climate as a distinct variable limits our understanding of the synergies and interactions between climate change and the range of abiotic and biotic factors, which influence animal health. Frameworks such as eco-epidemiology and the epi-systems approach, while more holistic, view climate and climate change as one of many discreet drivers of disease. Here, I argue for a new paradigmatic framework: climate-change syndemics. Climate-change syndemics begins from the assumption that climate change is one of many potential influences on infectious disease processes, but crucially is unlikely to act independently or in isolation; and as such, it is the inter-relationship between factors that take primacy in explorations of infectious disease and climate change. Equally importantly, as climate change will impact a wide range of diseases, the frame of analysis is at the collective rather than individual level (for both human and animal infectious disease) across populations.

  19. Assessing reservoir operations risk under climate change

    USGS Publications Warehouse

    Brekke, L.D.; Maurer, E.P.; Anderson, J.D.; Dettinger, M.D.; Townsley, E.S.; Harrison, A.; Pruitt, T.

    2009-01-01

    Risk-based planning offers a robust way to identify strategies that permit adaptive water resources management under climate change. This paper presents a flexible methodology for conducting climate change risk assessments involving reservoir operations. Decision makers can apply this methodology to their systems by selecting future periods and risk metrics relevant to their planning questions and by collectively evaluating system impacts relative to an ensemble of climate projection scenarios (weighted or not). This paper shows multiple applications of this methodology in a case study involving California's Central Valley Project and State Water Project systems. Multiple applications were conducted to show how choices made in conducting the risk assessment, choices known as analytical design decisions, can affect assessed risk. Specifically, risk was reanalyzed for every choice combination of two design decisions: (1) whether to assume climate change will influence flood-control constraints on water supply operations (and how), and (2) whether to weight climate change scenarios (and how). Results show that assessed risk would motivate different planning pathways depending on decision-maker attitudes toward risk (e.g., risk neutral versus risk averse). Results also show that assessed risk at a given risk attitude is sensitive to the analytical design choices listed above, with the choice of whether to adjust flood-control rules under climate change having considerably more influence than the choice on whether to weight climate scenarios. Copyright 2009 by the American Geophysical Union.

  20. Physiological basis of climate change impacts on North American inland fishes

    USGS Publications Warehouse

    Whitney, James E.; Al-Chokhachy, Robert K.; Bunnell, David B.; Caldwell, Colleen A.; Cooke, Steven J.; Eliason, Erika J.; Rogers, Mark W.; Lynch, Abigail J.; Paukert, Craig P.

    2016-01-01

    Global climate change is altering freshwater ecosystems and affecting fish populations and communities. Underpinning changes in fish distribution and assemblage-level responses to climate change are individual-level physiological constraints. In this review, we synthesize the mechanistic effects of climate change on neuroendocrine, cardiorespiratory, immune, osmoregulatory, and reproductive systems of freshwater and diadromous fishes. Observed climate change effects on physiological systems are varied and numerous, including exceedance of critical thermal tolerances, decreased cardiorespiratory performance, compromised immune function, and altered patterns of individual reproductive investment. However, effects vary widely among and within species because of species, population, and even sex-specific differences in sensitivity and resilience and because of habitat-specific variation in the magnitude of climate-related environmental change. Research on the interactive effects of climate change with other environmental stressors across a broader range of fish diversity is needed to further our understanding of climate change effects on fish physiology.

  1. Contribution of human and climate change impacts to changes in streamflow of Canada.

    PubMed

    Tan, Xuezhi; Gan, Thian Yew

    2015-12-04

    Climate change exerts great influence on streamflow by changing precipitation, temperature, snowpack and potential evapotranspiration (PET), while human activities in a watershed can directly alter the runoff production and indirectly through affecting climatic variables. However, to separate contribution of anthropogenic and natural drivers to observed changes in streamflow is non-trivial. Here we estimated the direct influence of human activities and climate change effect to changes of the mean annual streamflow (MAS) of 96 Canadian watersheds based on the elasticity of streamflow in relation to precipitation, PET and human impacts such as land use and cover change. Elasticities of streamflow for each watershed are analytically derived using the Budyko Framework. We found that climate change generally caused an increase in MAS, while human impacts generally a decrease in MAS and such impact tends to become more severe with time, even though there are exceptions. Higher proportions of human contribution, compared to that of climate change contribution, resulted in generally decreased streamflow of Canada observed in recent decades. Furthermore, if without contributions from retreating glaciers to streamflow, human impact would have resulted in a more severe decrease in Canadian streamflow.

  2. Climate Change Schools Project...

    ERIC Educational Resources Information Center

    McKinzey, Krista

    2010-01-01

    This article features the award-winning Climate Change Schools Project which aims to: (1) help schools to embed climate change throughout the national curriculum; and (2) showcase schools as "beacons" for climate change teaching, learning, and positive action in their local communities. Operating since 2007, the Climate Change Schools…

  3. The threat of climate change to freshwater pearl mussel populations.

    PubMed

    Hastie, Lee C; Cosgrove, Peter J; Ellis, Noranne; Gaywood, Martin J

    2003-02-01

    Changes in climate are occurring around the world and the effects on ecosystems will vary, depending on the extent and nature of these changes. In northern Europe, experts predict that annual rainfall will increase significantly, along with dramatic storm events and flooding in the next 50-100 years. Scotland is a stronghold of the endangered freshwater pearl mussel, Margaritifera margaritifera (L.), and a number of populations may be threatened. For example, large floods have been shown to adversely affect mussels, and although these stochastic events were historically rare, they may now be occurring more often as a result of climate change. Populations may also be affected by a number of other factors, including predicted changes in temperature, sea level, habitat availability, host fish stocks and human activity. In this paper, we explain how climate change may impact M. margaritifera and discuss the general implications for the conservation management of this species.

  4. Planning for climate change: The need for mechanistic systems-based approaches to study climate change impacts on diarrheal diseases.

    PubMed

    Mellor, Jonathan E; Levy, Karen; Zimmerman, Julie; Elliott, Mark; Bartram, Jamie; Carlton, Elizabeth; Clasen, Thomas; Dillingham, Rebecca; Eisenberg, Joseph; Guerrant, Richard; Lantagne, Daniele; Mihelcic, James; Nelson, Kara

    2016-04-01

    Increased precipitation and temperature variability as well as extreme events related to climate change are predicted to affect the availability and quality of water globally. Already heavily burdened with diarrheal diseases due to poor access to water, sanitation and hygiene facilities, communities throughout the developing world lack the adaptive capacity to sufficiently respond to the additional adversity caused by climate change. Studies suggest that diarrhea rates are positively correlated with increased temperature, and show a complex relationship with precipitation. Although climate change will likely increase rates of diarrheal diseases on average, there is a poor mechanistic understanding of the underlying disease transmission processes and substantial uncertainty surrounding current estimates. This makes it difficult to recommend appropriate adaptation strategies. We review the relevant climate-related mechanisms behind transmission of diarrheal disease pathogens and argue that systems-based mechanistic approaches incorporating human, engineered and environmental components are urgently needed. We then review successful systems-based approaches used in other environmental health fields and detail one modeling framework to predict climate change impacts on diarrheal diseases and design adaptation strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Climate Change and Cities in Africa: Current Dilemmas and Future Challenges

    DTIC Science & Technology

    2014-10-01

    naturally emanates from Earth’s atmosphere .8 One piece of scientific evidence of climate change has been an increase in the average global temperature...is just one element of climate change . Atmospheric temperature interacts with other natural systems, such as the oceanic system, in complex ways with...SECURITY CLASSIFICATION OF: How will climate change affect people living in African cities? The answer to this complex question has two interrelated

  6. Potential impacts of climate change on neotropical migrants: management implications

    Treesearch

    Jeff T. Price; Terry L. Root

    2005-01-01

    The world is warming. Over the last 100 years, the global average temperature has increased by approximately 0.7°C. The United Nations Intergovernmental Panel on Climate Change projects a further increase in global mean temperatures of between 1.4° - 5.8° C by the year 2100. How will climate change affect Neotropical migrants? Models of changes...

  7. Adapting dairy farms to climate change

    USDA-ARS?s Scientific Manuscript database

    Climate change is projected to affect many aspects of dairy production. These aspects include the growing season length, crop growth processes, harvest timing and losses, heat stress on cattle, nutrient emissions and losses, and ultimately farm profitability. To assess the sensitivity of dairy farms...

  8. Climatic change and wildland recreation: Examining the changing patterns of wilderness recreation in response to the effects of global climate change and the El Nino phenomenon

    Treesearch

    Vinod Sasidharan

    2000-01-01

    Impacts of global climate change on the biophysical components of wilderness areas have the potential to alter their recreational utility of wilderness areas. Concomitantly, the frequency and patterns of both land-based and water-based wilderness recreation activities will be affected. Despite the difficulty of responding to the unclear dimensions of global climate...

  9. Managing the Nation's water in a changing climate

    USGS Publications Warehouse

    Lins, H.F.; Stakhiv, E.Z.

    1998-01-01

    Among the many concerns associated with global climate change, the potential effects on water resources are frequently cited as the most worrisome. In contrast, those who manage water resources do not rate climatic change among their top planning and operational concerns. The difference in these views can be associated with how water managers operate their systems and the types of stresses, and the operative time horizons, that affect the Nation's water resources infrastructure. Climate, or more precisely weather, is an important variable in the management of water resources at daily to monthly time scales because water resources systems generally are operated on a daily basis. At decadal to centennial time scales, though, climate is much less important because (1) forecasts, particularly of regional precipitation, are extremely uncertain over such time periods, and (2) the magnitude of effects due to changes in climate on water resources is small relative to changes in other variables such as population, technology, economics, and environmental regulation. Thus, water management agencies find it difficult to justify changing design features or operating rules on the basis of simulated climatic change at the present time, especially given that reservoir-design criteria incorporate considerable buffering capacity for extreme meteorological and hydrological events.

  10. Bahamians and Climate Change: An Analysis of Risk Perception and Climate Change Literacy

    NASA Astrophysics Data System (ADS)

    Neely, R.; Owens, M. A.

    2011-12-01

    The Commonwealth of the Bahamas is forecasted to be adversely impacted by the effects of climate change. This presentation will present the results of an assessment of the risk perception toward climate change and climate change literacy among Bahamians. 499 Bahamians from the health care and hospitality industries participated in surveys and/or focus groups and three (3) areas of climate change literacy (attitude, behavior and knowledge) were analyzed as well as risk perception. In general, 1) Bahamians demonstrated an elementary understanding of the underlying causes of climate change, 2) possessed positive attitudes toward adopting new climate change policies, and 3) are already adjusting their behaviors in light of the current predictions. This research also resulted in the development of a model of the relationships between the climate literacy subscales (attitude, behavior and knowledge) and risk perception. This study also examined information sources and their impacts on climate change literacy. As the source of information is important in assessing the quality of the information, participants also identified the source(s) of most of their climate change information. The TV news was cited as the most common source for climate change information among Bahamians. As there is limited active research generating specific climate change information in the Bahamas, all the information Bahamians receive as it pertains to climate change is generated abroad. As a result, Bahamians must decipher through to make sense of it on an individual level. From the focus groups, many of the participants have been able to view possible changes through a cultural lens and are willing to make adjustments to maintain the uniqueness and viability of the Bahamas and to preserve it for generations. Continued study of Bahamians' climate change literacy will inform adaption and mitigation policy as well as individual action.

  11. Learning and Risk Exposure in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Moore, F.

    2015-12-01

    Climate change is a gradual process most apparent over long time-scales and large spatial scales, but it is experienced by those affected as changes in local weather. Climate change will gradually push the weather people experience outside the bounds of historic norms, resulting in unprecedented and extreme weather events. However, people do have the ability to learn about and respond to a changing climate. Therefore, connecting the weather people experience with their perceptions of climate change requires understanding how people infer the current state of the climate given their observations of weather. This learning process constitutes a first-order constraint on the rate of adaptation and is an important determinant of the dynamic adjustment costs associated with climate change. In this paper I explore two learning models that describe how local weather observations are translated into perceptions of climate change: an efficient Bayesian learning model and a simpler rolling-mean heuristic. Both have a period during which the learner's beliefs about the state of the climate are different from its true state, meaning the learner is exposed to a different range of extreme weather outcomes then they are prepared for. Using the example of surface temperature trends, I quantify this additional exposure to extreme heat events under both learning models and both RCP 8.5 and 2.6. Risk exposure increases for both learning models, but by substantially more for the rolling-mean learner. Moreover, there is an interaction between the learning model and the rate of climate change: the inefficient rolling-mean learner benefits much more from the slower rates of change under RCP 2.6 then the Bayesian. Finally, I present results from an experiment that suggests people are able to learn about a trending climate in a manner consistent with the Bayesian model.

  12. Estimating wildfire response costs in Alaska's changing climate

    EPA Science Inventory

    Climate change is altering wildfire activity across Alaska, with increased area burned projected for the future. Changes in wildfire are expected to affect the need for management and suppression resources, however the potential economic implications of these needs have not been ...

  13. Public Health Nurses’ Knowledge and Attitudes Regarding Climate Change

    PubMed Central

    Chaudry, Rosemary V.; Mac Crawford, John

    2011-01-01

    Background: Climate change affects human health, and health departments are urged to act to reduce the severity of these impacts. Yet little is known about the perspective of public health nurses—the largest component of the public health workforce—regarding their roles in addressing health impacts of climate change. Objectives: We determined the knowledge and attitudes of public health nurses concerning climate change and the role of public health nursing in divisions of health departments in addressing health-related impacts of climate change. Differences by demographic subgroups were explored. Methods: An online survey was distributed to nursing directors of U.S. health departments (n = 786) with Internet staff directories. Results: Respondents (n = 176) were primarily female, white public health nursing administrators with ≥ 5 years of experience. Approximately equal percentages of respondents self-identified as having moderate, conservative, and liberal political views. Most agreed that the earth has experienced climate change and that climate change is somewhat controllable. Respondents identified an average of 5 of the 12 listed health-related impacts of climate change, but the modal response was zero impact. Public health nursing was perceived as having responsibility to address health-related impacts of climate change but lacking the ability to address these impacts. Conclusions: Public health nurses view the environment as under threat and see a role for nursing divisions in addressing health effects of climate change. However, they recognize the limited resources and personnel available to devote to this endeavor. PMID:22128069

  14. Climate change, keystone predation, and biodiversity loss.

    PubMed

    Harley, Christopher D G

    2011-11-25

    Climate change can affect organisms both directly via physiological stress and indirectly via changing relationships among species. However, we do not fully understand how changing interspecific relationships contribute to community- and ecosystem-level responses to environmental forcing. I used experiments and spatial and temporal comparisons to demonstrate that warming substantially reduces predator-free space on rocky shores. The vertical extent of mussel beds decreased by 51% in 52 years, and reproductive populations of mussels disappeared at several sites. Prey species were able to occupy a hot, extralimital site if predation pressure was experimentally reduced, and local species richness more than doubled as a result. These results suggest that anthropogenic climate change can alter interspecific interactions and produce unexpected changes in species distributions, community structure, and diversity.

  15. Reassessing emotion in climate change communication

    NASA Astrophysics Data System (ADS)

    Chapman, Daniel A.; Lickel, Brian; Markowitz, Ezra M.

    2017-12-01

    Debate over effective climate change communication must be grounded in rigorous affective science. Rather than treating emotions as simple levers to be pulled to promote desired outcomes, emotions should be viewed as one integral component of a cognitive feedback system guiding responses to challenging decision-making problems.

  16. Sensitivity of ocean acidification and oxygen to the uncertainty in climate change

    NASA Astrophysics Data System (ADS)

    Cao, Long; Wang, Shuangjing; Zheng, Meidi; Zhang, Han

    2014-05-01

    Due to increasing atmospheric CO2 concentrations and associated climate change, the global ocean is undergoing substantial physical and biogeochemical changes. Among these, changes in ocean oxygen and carbonate chemistry have great implication for marine biota. There is considerable uncertainty in the projections of future climate change, and it is unclear how the uncertainty in climate change would also affect the projection of oxygen and carbonate chemistry. To investigate this issue, we use an Earth system model of intermediate complexity to perform a set of simulations, including that which involves no radiative effect of atmospheric CO2 and those which involve CO2-induced climate change with climate sensitivity varying from 0.5 °C to 4.5 °C. Atmospheric CO2 concentration is prescribed to follow RCP 8.5 pathway and its extensions. Climate change affects carbonate chemistry and oxygen mainly through its impact on ocean temperature, ocean ventilation, and concentration of dissolved inorganic carbon and alkalinity. It is found that climate change mitigates the decrease of carbonate ions at the ocean surface but has negligible effect on surface ocean pH. Averaged over the whole ocean, climate change acts to decrease oxygen concentration but mitigates the CO2-induced reduction of carbonate ion and pH. In our simulations, by year 2500, every degree increase of climate sensitivity warms the ocean by 0.8 °C and reduces ocean-mean dissolved oxygen concentration by 5.0%. Meanwhile, every degree increase of climate sensitivity buffers CO2-induced reduction in ocean-mean carbonate ion concentration and pH by 3.4% and 0.02 units, respectively. Our study demonstrates different sensitivities of ocean temperature, carbonate chemistry, and oxygen, in terms of both the sign and magnitude to the amount of climate change, which have great implications for understanding the response of ocean biota to climate change.

  17. Population trends influence species ability to track climate change.

    PubMed

    Ralston, Joel; DeLuca, William V; Feldman, Richard E; King, David I

    2017-04-01

    Shifts of distributions have been attributed to species tracking their fundamental climate niches through space. However, several studies have now demonstrated that niche tracking is imperfect, that species' climate niches may vary with population trends, and that geographic distributions may lag behind rapid climate change. These reports of imperfect niche tracking imply shifts in species' realized climate niches. We argue that quantifying climate niche shifts and analyzing them for a suite of species reveal general patterns of niche shifts and the factors affecting species' ability to track climate change. We analyzed changes in realized climate niche between 1984 and 2012 for 46 species of North American birds in relation to population trends in an effort to determine whether species differ in the ability to track climate change and whether differences in niche tracking are related to population trends. We found that increasingly abundant species tended to show greater levels of niche expansion (climate space occupied in 2012 but not in 1980) compared to declining species. Declining species had significantly greater niche unfilling (climate space occupied in 1980 but not in 2012) compared to increasing species due to an inability to colonize new sites beyond their range peripheries after climate had changed at sites of occurrence. Increasing species, conversely, were better able to colonize new sites and therefore showed very little niche unfilling. Our results indicate that species with increasing trends are better able to geographically track climate change compared to declining species, which exhibited lags relative to changes in climate. These findings have important implications for understanding past changes in distribution, as well as modeling dynamic species distributions in the face of climate change. © 2016 John Wiley & Sons Ltd.

  18. Quantifying impacts of historical climate change in American River basin

    NASA Astrophysics Data System (ADS)

    Sultana, R.

    2017-12-01

    There is a near consensus among scientists that climate has been changing for the last few decades in different parts of the world. Some regions are already experiencing the impacts of these changes. Warmer climate can alter the hydrology and water resources around the globe. Historical data shows the temperature has been rising in California and affecting California's water resource by reducing snowfall and snowmelt runoff during spring season. In this study, Soil and Water Assessment Tool (SWAT) model is used to simulate the historical climate in American River basin, a mountainous watershed in California. The results show that warmer climate in the recent decades (1995-2014) have already have affected streamflow characteristics of the watershed. Compared to the 1965-1974, the mean annual streamflow has decreased more than 6% and the peak streamflow has shifted from May to April. Understanding the changes will assist the water resource managers with valuable insight on the effectiveness of mitigation strategies considered as of now.

  19. Assessing the Agricultural Vulnerability for India under Changing Climate

    NASA Astrophysics Data System (ADS)

    Sharma, Tarul; Vardhan Murari, Harsha; Karmakar, Subhankar; Ghosh, Subimal; Singh, Jitendra

    2016-04-01

    Global climate change has proven to show majorly negative impacts for the far future. These negative impacts adversely affect almost all the fields including agriculture, water resources, tourism, and marine ecosystem. Among these, the effects on agriculture are considered to be of prime importance since its regional impacts can directly affect the global food security. Under such lines, it becomes essential to understand how climate change directs agricultural production for a region along with its vulnerability. In India, rice and wheat are considered as major staple diet and hence understanding its production loss/gain due to regional vulnerability to climate change becomes necessary. Here, an attempt has been made to understand the agricultural vulnerability for rice and wheat, considering yield as a function of temperature and precipitation during growing period. In order to accomplish this objective, the ratio of actual to potential evapo-transpiration has been considered which serves as a reliable indicator; with more this ratio towards unity, less vulnerable will be the region. The current objective needs an integration of climatic, hydrological and agricultural parameters; that can be achieved by simulating a climate data driven hydrologic (Variable Infiltration Capacity, VIC) model and a crop (Decision Support System for Agrotechnology Transfer, DSSAT) model. The proposed framework is an attempt to derive a crop vulnerability map that can facilitate in strategizing adaption practices which can reduce the adverse impacts of climate change in future.

  20. Identifying alternate pathways for climate change to impact inland recreational fishers

    USGS Publications Warehouse

    Hunt, Len M.; Fenichel, Eli P.; Fulton, David C.; Mendelsohn, Robert; Smith, Jordan W.; Tunney, Tyler D.; Lynch, Abigail J.; Paukert, Craig P.; Whitney, James E.

    2016-01-01

    Fisheries and human dimensions literature suggests that climate change influences inland recreational fishers in North America through three major pathways. The most widely recognized pathway suggests that climate change impacts habitat and fish populations (e.g., water temperature impacting fish survival) and cascades to impact fishers. Climate change also impacts recreational fishers by influencing environmental conditions that directly affect fishers (e.g., increased temperatures in northern climates resulting in extended open water fishing seasons and increased fishing effort). The final pathway occurs from climate change mitigation and adaptation efforts (e.g., refined energy policies result in higher fuel costs, making distant trips more expensive). To address limitations of past research (e.g., assessing climate change impacts for only one pathway at a time and not accounting for climate variability, extreme weather events, or heterogeneity among fishers), we encourage researchers to refocus their efforts to understand and document climate change impacts to inland fishers.

  1. Advancing Australia's role in climate change and health research

    NASA Astrophysics Data System (ADS)

    Green, Donna; Pitman, Andrew; Barnett, Adrian; Kaldor, John; Doherty, Peter; Stanley, Fiona

    2017-02-01

    A major Australian government report published 25 years ago called for urgent investment in research on the impacts of climate change on human health. Since that report's release, less than 0.1% of Australian health funding has been allocated to this area. As the world continues on a high emissions pathway, the health impacts from climate change are increasing in size and complexity. While Australia has established leadership roles in climate science and health research, it must now link these two strengths. Doing so would boost regional understanding of how climate change will affect health and what adaptation strategies are needed to reduce these threats. Such research would support better health planning and decision-making in partnership with other regional countries.

  2. Microbial contributions to climate change through carbon cycle feedbacks.

    PubMed

    Bardgett, Richard D; Freeman, Chris; Ostle, Nicholas J

    2008-08-01

    There is considerable interest in understanding the biological mechanisms that regulate carbon exchanges between the land and atmosphere, and how these exchanges respond to climate change. An understanding of soil microbial ecology is central to our ability to assess terrestrial carbon cycle-climate feedbacks, but the complexity of the soil microbial community and the many ways that it can be affected by climate and other global changes hampers our ability to draw firm conclusions on this topic. In this paper, we argue that to understand the potential negative and positive contributions of soil microbes to land-atmosphere carbon exchange and global warming requires explicit consideration of both direct and indirect impacts of climate change on microorganisms. Moreover, we argue that this requires consideration of complex interactions and feedbacks that occur between microbes, plants and their physical environment in the context of climate change, and the influence of other global changes which have the capacity to amplify climate-driven effects on soil microbes. Overall, we emphasize the urgent need for greater understanding of how soil microbial ecology contributes to land-atmosphere carbon exchange in the context of climate change, and identify some challenges for the future. In particular, we highlight the need for a multifactor experimental approach to understand how soil microbes and their activities respond to climate change and consequences for carbon cycle feedbacks.

  3. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices.more » The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.« less

  4. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    NASA Astrophysics Data System (ADS)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  5. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    NASA Astrophysics Data System (ADS)

    Reyer, Christopher P. O.; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G.; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P.; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Guerra Hernández, Juan; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J.; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A.; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E.; Hanewinkel, Marc

    2017-03-01

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

  6. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    PubMed Central

    Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João HN; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc

    2017-01-01

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures. PMID:28855959

  7. Are forest disturbances amplifying or canceling out climate change-induced productivity changes in European forests?

    PubMed

    Reyer, Christopher P O; Bathgate, Stephen; Blennow, Kristina; Borges, Jose G; Bugmann, Harald; Delzon, Sylvain; Faias, Sonia P; Garcia-Gonzalo, Jordi; Gardiner, Barry; Gonzalez-Olabarria, Jose Ramon; Gracia, Carlos; Hernández, Juan Guerra; Kellomäki, Seppo; Kramer, Koen; Lexer, Manfred J; Lindner, Marcus; van der Maaten, Ernst; Maroschek, Michael; Muys, Bart; Nicoll, Bruce; Palahi, Marc; Palma, João Hn; Paulo, Joana A; Peltola, Heli; Pukkala, Timo; Rammer, Werner; Ray, Duncan; Sabaté, Santiago; Schelhaas, Mart-Jan; Seidl, Rupert; Temperli, Christian; Tomé, Margarida; Yousefpour, Rasoul; Zimmermann, Niklaus E; Hanewinkel, Marc

    2017-03-16

    Recent studies projecting future climate change impacts on forests mainly consider either the effects of climate change on productivity or on disturbances. However, productivity and disturbances are intrinsically linked because 1) disturbances directly affect forest productivity (e.g. via a reduction in leaf area, growing stock or resource-use efficiency), and 2) disturbance susceptibility is often coupled to a certain development phase of the forest with productivity determining the time a forest is in this specific phase of susceptibility. The objective of this paper is to provide an overview of forest productivity changes in different forest regions in Europe under climate change, and partition these changes into effects induced by climate change alone and by climate change and disturbances. We present projections of climate change impacts on forest productivity from state-of-the-art forest models that dynamically simulate forest productivity and the effects of the main European disturbance agents (fire, storm, insects), driven by the same climate scenario in seven forest case studies along a large climatic gradient throughout Europe. Our study shows that, in most cases, including disturbances in the simulations exaggerate ongoing productivity declines or cancel out productivity gains in response to climate change. In fewer cases, disturbances also increase productivity or buffer climate-change induced productivity losses, e.g. because low severity fires can alleviate resource competition and increase fertilization. Even though our results cannot simply be extrapolated to other types of forests and disturbances, we argue that it is necessary to interpret climate change-induced productivity and disturbance changes jointly to capture the full range of climate change impacts on forests and to plan adaptation measures.

  8. Separating sensitivity from exposure in assessing extinction risk from climate change.

    PubMed

    Dickinson, Maria G; Orme, C David L; Suttle, K Blake; Mace, Georgina M

    2014-11-04

    Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk.

  9. Separating sensitivity from exposure in assessing extinction risk from climate change

    PubMed Central

    Dickinson, Maria G.; Orme, C. David L.; Suttle, K. Blake; Mace, Georgina M.

    2014-01-01

    Predictive frameworks of climate change extinction risk generally focus on the magnitude of climate change a species is expected to experience and the potential for that species to track suitable climate. A species' risk of extinction from climate change will depend, in part, on the magnitude of climate change the species experiences, its exposure. However, exposure is only one component of risk. A species' risk of extinction will also depend on its intrinsic ability to tolerate changing climate, its sensitivity. We examine exposure and sensitivity individually for two example taxa, terrestrial amphibians and mammals. We examine how these factors are related among species and across regions and how explicit consideration of each component of risk may affect predictions of climate change impacts. We find that species' sensitivities to climate change are not congruent with their exposures. Many highly sensitive species face low exposure to climate change and many highly exposed species are relatively insensitive. Separating sensitivity from exposure reveals patterns in the causes and drivers of species' extinction risk that may not be evident solely from predictions of climate change. Our findings emphasise the importance of explicitly including sensitivity and exposure to climate change in assessments of species' extinction risk. PMID:25367429

  10. Challenges of climate change: an Arctic perspective.

    PubMed

    Corell, Robert W

    2006-06-01

    Climate change is being experienced particularly intensely in the Arctic. Arctic average temperature has risen at almost twice the rate as that of the rest of the world in the past few decades. Widespread melting of glaciers and sea ice and rising permafrost temperatures present additional evidence of strong Arctic warming. These changes in the Arctic provide an early indication of the environmental and societal significance of global consequences. The Arctic also provides important natural resources to the rest of the world (such as oil, gas, and fish) that will be affected by climate change, and the melting of Arctic glaciers is one of the factors contributing to sea level rise around the globe. An acceleration of these climatic trends is projected to occur during this century, due to ongoing increases in concentrations of greenhouse gases in the Earth's atmosphere. These Arctic changes will, in turn, impact the planet as a whole.

  11. How does spatial variability of climate affect catchment streamflow predictions?

    EPA Science Inventory

    Spatial variability of climate can negatively affect catchment streamflow predictions if it is not explicitly accounted for in hydrologic models. In this paper, we examine the changes in streamflow predictability when a hydrologic model is run with spatially variable (distribute...

  12. A Methodology for Meta-Analysis of Local Climate Change Adaptation Policies

    EPA Science Inventory

    Local governments are beginning to take steps to address the consequences of climate change, such as sea level rise and heat events. However, we donot have a clear understanding of what local governments are doing -- the extent to which they expect climate change to affect their ...

  13. Fight Swack, Adapt to Climate Change or How to Use Humor to Engage the Public in Climate Issues

    NASA Astrophysics Data System (ADS)

    Ellis, R.; Elinich, K.; Johnson, R.; Fink, J.; Crawford, J.

    2014-12-01

    We are carefully considering how a humor-based campaign can help us communicate important climate change messages. Using pilot campaign strategies, we have engaged local residents in focus groups and interviews to understand how effective the approach can be. Growing educational research suggests learning about climate change can lead to feelings of depression, fear and inaction. Climate change seems too big of a task to take on. But with sweaty back (or "swack" as it's known in some circles), there's a public enemy that can be defeated. As only one piece of an innovative model for informal climate change education, the Climate and Urban Systems Partnership repositions the war on climate change by declaring a war on swack instead. This way, we can talk about climate change in a way it has never been talked about before that will certainly get people's attention. It also answers the common question of, "Yeah, but how does it affect me?" We're educating about responses to climate change because heat waves, floods, and excessive back sweat all kinda suck a lot.

  14. How light competition between plants affects their response to climate change.

    PubMed

    van Loon, Marloes P; Schieving, Feike; Rietkerk, Max; Dekker, Stefan C; Sterck, Frank; Anten, Niels P R

    2014-09-01

    How plants respond to climate change is of major concern, as plants will strongly impact future ecosystem functioning, food production and climate. Here, we investigated how vegetation structure and functioning may be influenced by predicted increases in annual temperatures and atmospheric CO2 concentration, and modeled the extent to which local plant-plant interactions may modify these effects. A canopy model was developed, which calculates photosynthesis as a function of light, nitrogen, temperature, CO2 and water availability, and considers different degrees of light competition between neighboring plants through canopy mixing; soybean (Glycine max) was used as a reference system. The model predicts increased net photosynthesis and reduced stomatal conductance and transpiration under atmospheric CO2 increase. When CO2 elevation is combined with warming, photosynthesis is increased more, but transpiration is reduced less. Intriguingly, when competition is considered, the optimal response shifts to producing larger leaf areas, but with lower stomatal conductance and associated vegetation transpiration than when competition is not considered. Furthermore, only when competition is considered are the predicted effects of elevated CO2 on leaf area index (LAI) well within the range of observed effects obtained by Free air CO2 enrichment (FACE) experiments. Together, our results illustrate how competition between plants may modify vegetation responses to climate change. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  15. A conceptual model of plant responses to climate with implications for monitoring ecosystem change

    Treesearch

    C. David Bertelsen

    2013-01-01

    Climate change is affecting natural systems on a global scale and is particularly rapid in the Southwest. It is important to identify impacts of a changing climate before ecosystems become unstable. Recognizing plant responses to climate change requires knowledge of both species present and plant responses to variable climatic conditions. A conceptual model derived...

  16. Climate change. Accelerating extinction risk from climate change.

    PubMed

    Urban, Mark C

    2015-05-01

    Current predictions of extinction risks from climate change vary widely depending on the specific assumptions and geographic and taxonomic focus of each study. I synthesized published studies in order to estimate a global mean extinction rate and determine which factors contribute the greatest uncertainty to climate change-induced extinction risks. Results suggest that extinction risks will accelerate with future global temperatures, threatening up to one in six species under current policies. Extinction risks were highest in South America, Australia, and New Zealand, and risks did not vary by taxonomic group. Realistic assumptions about extinction debt and dispersal capacity substantially increased extinction risks. We urgently need to adopt strategies that limit further climate change if we are to avoid an acceleration of global extinctions. Copyright © 2015, American Association for the Advancement of Science.

  17. Simulation of Land-Cover Change in Taipei Metropolitan Area under Climate Change Impact

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Ching; Huang, Thomas C. C.

    2014-02-01

    Climate change causes environment change and shows up on land covers. Through observing the change of land use, researchers can find out the trend and potential mechanism of the land cover change. Effective adaptation policies can affect pattern of land cover change and may decrease the risks of climate change impacts. By simulating land use dynamics with scenario settings, this paper attempts to explore the relationship between climate change and land-cover change through efficient adaptation polices. It involves spatial statistical model in estimating possibility of land-cover change, cellular automata model in modeling land-cover dynamics, and scenario analysis in response to adaptation polices. The results show that, without any control, the critical eco-areas, such as estuarine areas, will be destroyed and people may move to the vulnerable and important economic development areas. In the other hand, under the limited development condition for adaptation, people migration to peri-urban and critical eco-areas may be deterred.

  18. Public understanding of climate change in the United States.

    PubMed

    Weber, Elke U; Stern, Paul C

    2011-01-01

    This article considers scientific and public understandings of climate change and addresses the following question: Why is it that while scientific evidence has accumulated to document global climate change and scientific opinion has solidified about its existence and causes, U.S. public opinion has not and has instead become more polarized? Our review supports a constructivist account of human judgment. Public understanding is affected by the inherent difficulty of understanding climate change, the mismatch between people's usual modes of understanding and the task, and, particularly in the United States, a continuing societal struggle to shape the frames and mental models people use to understand the phenomena. We conclude by discussing ways in which psychology can help to improve public understanding of climate change and link a better understanding to action. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  19. Climate-Change Impacts on Major Societal and Environmental Sectors: a National View

    NASA Astrophysics Data System (ADS)

    Melillo, J. M.

    2009-05-01

    The U.S. Climate Change Science Program's Unified Synthesis Product reports on extant and possible future impacts of climate change for seven sectors at the national level - water resources, energy supply and use, transportation, agriculture, ecosystems, human health and society. The sectoral analyses provide an integrated national picture of the climate-change consequences, now and in the future, for society and the environment, albeit a picture with regional texture. Major report findings for each sector will be presented. In addition to the specific sectoral findings, several overarching messages emerge from this component of the synthesis activity. First, it is important to think about interactions between and among sectors with regard to climate impacts. For example, the projected changes in the timing and amount of precipitation, and hence water supply, will very likely have significant implications for other sectors considered in the report. Changes in water supply have the potential to affect hydropower generation, river transportation, crop timing and management, in-stream ecosystem services including fish habitat, and human health issues related to links between heavy rains ad water-borne diseases. Second, the report concludes that climate-change impacts on the sectors must be considered in the context of a range of environmental and social factors including pollution, population growth, over use of resources, and urbanization. The multi-factor analysis provides insight into our understanding of where, when and how climate change combines with other environmental and social changes to affect the sectors. It also provides some understanding of how these interactions can either amplify or dampen climate-change impacts. This message has profound implications for the design of research programs and information systems at the national, regional and local levels. Furthermore, it demands that a true partnership be forged between the natural and social sciences

  20. Climate change assessments

    Treesearch

    Linda A. Joyce

    2008-01-01

    The science associated with climate and its effects on ecosystems, economies, and social systems is developing rapidly. Climate change assessments can serve as an important synthesis of this science and provide the information and context for management and policy decisions on adaptation and mitigation. This topic paper describes the variety of climate change...

  1. Exploiting temporal variability to understand tree recruitment response to climate change

    Treesearch

    Ines Ibanez; James S. Clark; Shannon LaDeau; Janneke Hill Ris Lambers

    2007-01-01

    Predicting vegetation shifts under climate change is a challenging endeavor, given the complex interactions between biotic and abiotic variables that influence demographic rates. To determine how current trends and variation in climate change affect seedling establishment, we analyzed demographic responses to spatiotemporal variation to temperature and soil moisture in...

  2. Student Media Production to Meet Challenges in Climate Change Science Education

    ERIC Educational Resources Information Center

    Rooney-Varga, Juliette N.; Brisk, Angelica Allende; Adams, Elizabeth; Shuldman, Elizabeth; Rath, Kenneth

    2014-01-01

    While the need for effective climate change education is growing, this area of geoscience also poses unique educational challenges. These challenges include the politicization of climate change, the psychological and affective responses it elicits, and common misconceptions, which can all create barriers to learning. Here, we present an…

  3. Land-use change may exacerbate climate change impacts on water resources in the Ganges basin

    NASA Astrophysics Data System (ADS)

    Tsarouchi, Gina; Buytaert, Wouter

    2018-02-01

    Quantifying how land-use change and climate change affect water resources is a challenge in hydrological science. This work aims to quantify how future projections of land-use and climate change might affect the hydrological response of the Upper Ganges river basin in northern India, which experiences monsoon flooding almost every year. Three different sets of modelling experiments were run using the Joint UK Land Environment Simulator (JULES) land surface model (LSM) and covering the period 2000-2035: in the first set, only climate change is taken into account, and JULES was driven by the CMIP5 (Coupled Model Intercomparison Project Phase 5) outputs of 21 models, under two representative concentration pathways (RCP4.5 and RCP8.5), whilst land use was held fixed at the year 2010. In the second set, only land-use change is taken into account, and JULES was driven by a time series of 15 future land-use pathways, based on Landsat satellite imagery and the Markov chain simulation, whilst the meteorological boundary conditions were held fixed at years 2000-2005. In the third set, both climate change and land-use change were taken into consideration, as the CMIP5 model outputs were used in conjunction with the 15 future land-use pathways to force JULES. Variations in hydrological variables (stream flow, evapotranspiration and soil moisture) are calculated during the simulation period. Significant changes in the near-future (years 2030-2035) hydrologic fluxes arise under future land-cover and climate change scenarios pointing towards a severe increase in high extremes of flow: the multi-model mean of the 95th percentile of streamflow (Q5) is projected to increase by 63 % under the combined land-use and climate change high emissions scenario (RCP8.5). The changes in all examined hydrological components are greater in the combined land-use and climate change experiment. Results are further presented in a water resources context, aiming to address potential implications of

  4. Economic Evidence on the Health Impacts of Climate Change in Europe

    PubMed Central

    Hutton, Guy; Menne, Bettina

    2014-01-01

    BACKGROUND In responding to the health impacts of climate change, economic evidence and tools inform decision makers of the efficiency of alternative health policies and interventions. In a time when sweeping budget cuts are affecting all tiers of government, economic evidence on health protection from climate change spending enables comparison with other public spending. METHODS The review included 53 countries of the World Health Organization (WHO) European Region. Literature was obtained using a Medline and Internet search of key terms in published reports and peer-reviewed literature, and from institutions working on health and climate change. Articles were included if they provided economic estimation of the health impacts of climate change or adaptation measures to protect health from climate change in the WHO European Region. Economic studies are classified under health impact cost, health adaptation cost, and health economic evaluation (comparing both costs and impacts). RESULTS A total of 40 relevant studies from Europe were identified, covering the health damage or adaptation costs related to the health effects of climate change and response measures to climate-sensitive diseases. No economic evaluation studies were identified of response measures specific to the impacts of climate change. Existing studies vary in terms of the economic outcomes measured and the methods for evaluation of health benefits. The lack of robust health impact data underlying economic studies significantly affects the availability and precision of economic studies. CONCLUSIONS Economic evidence in European countries on the costs of and response to climate-sensitive diseases is extremely limited and fragmented. Further studies are urgently needed that examine health impacts and the costs and efficiency of alternative responses to climate-sensitive health conditions, in particular extreme weather events (other than heat) and potential emerging diseases and other conditions

  5. Economic evidence on the health impacts of climate change in europe.

    PubMed

    Hutton, Guy; Menne, Bettina

    2014-01-01

    In responding to the health impacts of climate change, economic evidence and tools inform decision makers of the efficiency of alternative health policies and interventions. In a time when sweeping budget cuts are affecting all tiers of government, economic evidence on health protection from climate change spending enables comparison with other public spending. The review included 53 countries of the World Health Organization (WHO) European Region. Literature was obtained using a Medline and Internet search of key terms in published reports and peer-reviewed literature, and from institutions working on health and climate change. Articles were included if they provided economic estimation of the health impacts of climate change or adaptation measures to protect health from climate change in the WHO European Region. Economic studies are classified under health impact cost, health adaptation cost, and health economic evaluation (comparing both costs and impacts). A total of 40 relevant studies from Europe were identified, covering the health damage or adaptation costs related to the health effects of climate change and response measures to climate-sensitive diseases. No economic evaluation studies were identified of response measures specific to the impacts of climate change. Existing studies vary in terms of the economic outcomes measured and the methods for evaluation of health benefits. The lack of robust health impact data underlying economic studies significantly affects the availability and precision of economic studies. Economic evidence in European countries on the costs of and response to climate-sensitive diseases is extremely limited and fragmented. Further studies are urgently needed that examine health impacts and the costs and efficiency of alternative responses to climate-sensitive health conditions, in particular extreme weather events (other than heat) and potential emerging diseases and other conditions threatening Europe.

  6. Climate Change and Food Security: Health Impacts in Developed Countries

    PubMed Central

    Hooper, Lee; Abdelhamid, Asmaa; Bentham, Graham; Boxall, Alistair B.A.; Draper, Alizon; Fairweather-Tait, Susan; Hulme, Mike; Hunter, Paul R.; Nichols, Gordon; Waldron, Keith W.

    2012-01-01

    Background: Anthropogenic climate change will affect global food production, with uncertain consequences for human health in developed countries. Objectives: We investigated the potential impact of climate change on food security (nutrition and food safety) and the implications for human health in developed countries. Methods: Expert input and structured literature searches were conducted and synthesized to produce overall assessments of the likely impacts of climate change on global food production and recommendations for future research and policy changes. Results: Increasing food prices may lower the nutritional quality of dietary intakes, exacerbate obesity, and amplify health inequalities. Altered conditions for food production may result in emerging pathogens, new crop and livestock species, and altered use of pesticides and veterinary medicines, and affect the main transfer mechanisms through which contaminants move from the environment into food. All these have implications for food safety and the nutritional content of food. Climate change mitigation may increase consumption of foods whose production reduces greenhouse gas emissions. Impacts may include reduced red meat consumption (with positive effects on saturated fat, but negative impacts on zinc and iron intake) and reduced winter fruit and vegetable consumption. Developed countries have complex structures in place that may be used to adapt to the food safety consequences of climate change, although their effectiveness will vary between countries, and the ability to respond to nutritional challenges is less certain. Conclusions: Climate change will have notable impacts upon nutrition and food safety in developed countries, but further research is necessary to accurately quantify these impacts. Uncertainty about future impacts, coupled with evidence that climate change may lead to more variable food quality, emphasizes the need to maintain and strengthen existing structures and policies to regulate

  7. Climate change and food security: health impacts in developed countries.

    PubMed

    Lake, Iain R; Hooper, Lee; Abdelhamid, Asmaa; Bentham, Graham; Boxall, Alistair B A; Draper, Alizon; Fairweather-Tait, Susan; Hulme, Mike; Hunter, Paul R; Nichols, Gordon; Waldron, Keith W

    2012-11-01

    Anthropogenic climate change will affect global food production, with uncertain consequences for human health in developed countries. We investigated the potential impact of climate change on food security (nutrition and food safety) and the implications for human health in developed countries. Expert input and structured literature searches were conducted and synthesized to produce overall assessments of the likely impacts of climate change on global food production and recommendations for future research and policy changes. Increasing food prices may lower the nutritional quality of dietary intakes, exacerbate obesity, and amplify health inequalities. Altered conditions for food production may result in emerging pathogens, new crop and livestock species, and altered use of pesticides and veterinary medicines, and affect the main transfer mechanisms through which contaminants move from the environment into food. All these have implications for food safety and the nutritional content of food. Climate change mitigation may increase consumption of foods whose production reduces greenhouse gas emissions. Impacts may include reduced red meat consumption (with positive effects on saturated fat, but negative impacts on zinc and iron intake) and reduced winter fruit and vegetable consumption. Developed countries have complex structures in place that may be used to adapt to the food safety consequences of climate change, although their effectiveness will vary between countries, and the ability to respond to nutritional challenges is less certain. Climate change will have notable impacts upon nutrition and food safety in developed countries, but further research is necessary to accurately quantify these impacts. Uncertainty about future impacts, coupled with evidence that climate change may lead to more variable food quality, emphasizes the need to maintain and strengthen existing structures and policies to regulate food production, monitor food quality and safety, and

  8. Thermal plasticity in young snakes: how will climate change affect the thermoregulatory tactics of ectotherms?

    PubMed

    Aubret, F; Shine, R

    2010-01-15

    Climate change will result in some areas becoming warmer and others cooler, and will amplify the magnitude of year-to-year thermal variation in many areas. How will such changes affect animals that rely on ambient thermal heterogeneity to behaviourally regulate their body temperatures? To explore this question, we raised 43 captive-born tiger snakes Notechis scutatus in enclosures that provided cold (19-22 degrees C), intermediate (19-26 degrees C) or hot (19-37 degrees C) thermal gradients. The snakes adjusted their diel timing of thermoregulatory behaviour so effectively that when tested 14 months later, body temperatures (mean and maximum), locomotor speeds and anti-predator behaviours did not differ among treatment groups. Thus, the young snakes modified their behaviour to compensate for restricted thermal opportunities. Then, we suddenly shifted ambient conditions to mimic year-to-year variation. In contrast to the earlier plasticity, snakes failed to adjust to this change, e.g. snakes raised at cooler treatments but then shifted to hot conditions showed a higher mean body temperature for at least two months after the onset of the new thermal regime. Hence, thermal conditions experienced early in life influenced subsequent thermoregulatory tactics; the mean selected temperature of a snake depended more upon its prior raising conditions than upon its current thermoregulatory opportunities. Behavioural plasticity thus allows snakes to adjust to suboptimal thermal conditions but this plasticity is limited. The major thermoregulatory challenge from global climate change may not be the shift in mean values (to which our young snakes adjusted) but the increased year-to-year variation (with which our snakes proved less able to deal).

  9. The Impact of Project-Based Climate Change Learning Experiences on Students' Broad Climate Literacy

    NASA Astrophysics Data System (ADS)

    DeWaters, J.; Powers, S. E.; Dhaniyala, S.

    2014-12-01

    Evidence-based pedagogical approaches such as project- and inquiry-based techniques have been shown to promote effective learning in science and engineering. The impact of project-based learning experiences on middle school (MS), high school (HS), and undergraduate (UG) students' climate literacy was investigated as part of a NASA Innovations in Climate Education (NICE) project. Project-based modules were developed and taught by MS and HS teachers who participated in climate change education workshops. UG students enrolled in a climate science course completed independent research projects that provided the basis for several of the HS/MS modules. All modules required students to acquire and analyze historical temperature data and future climate predictions, and apply their analysis to the solution of a societal or environmental problem related to our changing climate. Three versions of a quantitative survey were developed and used in a pre-test/post-test research design to help evaluate the project's impact on MS, HS, and UG students' climate literacy, which includes broad climate knowledge as well as affective and behavioral aspects. Content objectives were guided primarily by the 2009 document, Climate Literacy: The Essential Principles of Climate Sciences. All three groups of students made modest but statistically significant cognitive (p<<0.001) and affective (p<0.01) gains; UG students also showed an increase in behavior scores (p=0.001). Results of an ANCOVA showed significant differences in students' cognitive (p<0.001), behavioral (p=0.005) and self-efficacy (p=0.012) outcomes among the 9 participating MS and HS classrooms, where both teacher and module content varied. The presentation will include a description of some key aspects of the project-based curricula developed and used in this research, the development and content of the climate literacy survey, and the interpretation of specific pre/post changes in participating students relative to the content

  10. Combining satellite derived phenology with climate data for climate change impact assessment

    NASA Astrophysics Data System (ADS)

    Ivits, E.; Cherlet, M.; Tóth, G.; Sommer, S.; Mehl, W.; Vogt, J.; Micale, F.

    2012-05-01

    The projected influence of climate change on the timing and volume of phytomass production is expected to affect a number of ecosystem services. In order to develop coherent and locally effective adaptation and mitigation strategies, spatially explicit information on the observed changes is needed. Long-term variations of the vegetative growing season in different environmental zones of Europe for 1982-2006 have been derived by analysing time series of GIMMS NDVI data. The associations of phenologically homogenous spatial clusters to time series of temperature and precipitation data were evaluated. North-east Europe showed a trend to an earlier and longer growing season, particularly in the northern Baltic areas. Despite the earlier greening up large areas of Europe exhibited rather stable season length indicating the shift of the entire growing season to an earlier period. The northern Mediterranean displayed a growing season shift towards later dates while some agglomerations of earlier and shorter growing season were also seen. The correlation of phenological time series with climate data shows a cause-and-effect relationship over the semi natural areas consistent with results in literature. Managed ecosystems however appear to have heterogeneous change pattern with less or no correlation to climatic trends. Over these areas climatic trends seemed to overlap in a complex manner with more pronounced effects of local biophysical conditions and/or land management practices. Our results underline the importance of satellite derived phenological observations to explain local nonconformities to climatic trends for climate change impact assessment.

  11. Changes of the Shrub/Grass balance under Climate Change: Mechanisms and Consequences

    NASA Astrophysics Data System (ADS)

    Sala, O.; Gherardi, L.; Anadon, J.

    2016-12-01

    Most arid and semiarid ecosystems are made up of grasses and shrubs; and their balance could be altered by changes in climate, fire and grazing among others. Here, we focus on the effects of climate change on the shrub/grass balance and the mechanisms mediating alterations of the balance. We assess hypotheses that state that climate change affects shrub/grass balance by affecting the distribution of soil water in the profile. We report on studies that range from the plot to the sub-continental scale using manipulative experiments, simulation modelling and remote sensing tools. Specifically, we evaluate the effect of amount of precipitation on the shrub/grass balance. In Chihuahuan desert ecosystems, prolonged drought drove shrub encroachment as a result of a-symmetric competition between shrubs and grasses. Demise of shallow-rooted grasses after prolonged drought resulted in an increase in soil-water resources for deep-rooted shrubs. We also quantitatively assessed the effect of changes in shrub/grass balance on the provisioning of ecosystem services in North and South America. In both regions, woody-plant encroachment reduced livestock production, which is the main ecosystem service provided by drylands. However, the effect of woody-plant encroachment had a larger impact in South than North America. The differential effect of changes in the shrub/balance was mediated by differences in the demand of ecosystem services.

  12. Utilizing the social media data to validate 'climate change' indices

    NASA Astrophysics Data System (ADS)

    Molodtsova, T.; Kirilenko, A.; Stepchenkova, S.

    2013-12-01

    Reporting the observed and modeled changes in climate to public requires the measures understandable by the general audience. E.g., the NASA GISS Common Sense Climate Index (Hansen et al., 1998) reports the change in climate based on six practically observable parameters such as the air temperature exceeding the norm by one standard deviation. The utility of the constructed indices for reporting climate change depends, however, on an assumption that the selected parameters are felt and connected with the changing climate by a non-expert, which needs to be validated. Dynamic discussion of climate change issues in social media may provide data for this validation. We connected the intensity of public discussion of climate change in social networks with regional weather variations for the territory of the USA. We collected the entire 2012 population of Twitter microblogging activity on climate change topic, accumulating over 1.8 million separate records (tweets) globally. We identified the geographic location of the tweets and associated the daily and weekly intensity of twitting with the following parameters of weather for these locations: temperature anomalies, 'hot' temperature anomalies, 'cold' temperature anomalies, heavy rain/snow events. To account for non-weather related events we included the articles on climate change from the 'prestige press', a collection of major newspapers. We found that the regional changes in parameters of weather significantly affect the number of tweets published on climate change. This effect, however, is short-lived and varies throughout the country. We found that in different locations different weather parameters had the most significant effect on climate change microblogging activity. Overall 'hot' temperature anomalies had significant influence on climate change twitting intensity.

  13. Climate Change Contribution to the Emergence or Re-Emergence of Parasitic Diseases.

    PubMed

    Short, Erica E; Caminade, Cyril; Thomas, Bolaji N

    2017-01-01

    The connection between our environment and parasitic diseases may not always be straightforward, but it exists nonetheless. This article highlights how climate as a component of our environment, or more specifically climate change, has the capability to drive parasitic disease incidence and prevalence worldwide. There are both direct and indirect implications of climate change on the scope and distribution of parasitic organisms and their associated vectors and host species. We aim to encompass a large body of literature to demonstrate how a changing climate will perpetuate, or perhaps exacerbate, public health issues and economic stagnation due to parasitic diseases. The diseases examined include those caused by ingested protozoa and soil helminths, malaria, lymphatic filariasis, Chagas disease, human African trypanosomiasis, leishmaniasis, babesiosis, schistosomiasis, and echinococcus, as well as parasites affecting livestock. It is our goal to impress on the scientific community the magnitude a changing climate can have on public health in relation to parasitic disease burden. Once impending climate changes are now upon us, and as we see these events unfold, it is critical to create management plans that will protect the health and quality of life of the people living in the communities that will be significantly affected.

  14. A National Road Map to a Climate Literate Society: Advancing Climate Literacy by Coordinating Federal Climate Change Educational Programs (Invited)

    NASA Astrophysics Data System (ADS)

    Niepold, F.; Karsten, J. L.

    2009-12-01

    Over the 21st century, climate scientists expect Earth's temperature to continue increasing, very likely more than it did during the 20th century. Two anticipated results are rising global sea level and increasing frequency and intensity of heat waves, droughts, and floods. [IPCC 2007, USGCRP 2009] These changes will affect almost every aspect of human society, including economic prosperity, human and environmental health, and national security. Climate change will bring economic and environmental challenges as well as opportunities, and citizens who have an understanding of climate science will be better prepared to respond to both. Society needs citizens who understand the climate system and know how to apply that knowledge in their careers and in their engagement as active members of their communities. Climate change will continue to be a significant element of public discourse. Understanding the essential principles of climate science will enable all people to assess news stories and contribute to their everyday conversations as informed citizens. Key to our nations response to climate change will be a Climate Literate society that understands their influence on climate and climate’s influence on them and society. In order to ensure the nation increases its literacy, the Climate Literacy: Essential Principles of Climate Science document has been endorsed by the 13 Federal agencies that make up the US Global Change Research Program (http://globalchange.gov/resources/educators/climate-literacy) and twenty-four other science and educational institutions. This session will explore the coordinated efforts by the federal agencies and partner organizations to ensure a climate literate society. "Climate Literacy: The Essential Principles of Climate Sciences: A Guide for Individuals and Communities" produced by the U.S. Global Change Research Program in March 2009

  15. Communicating Urban Climate Change

    NASA Astrophysics Data System (ADS)

    Snyder, S.; Crowley, K.; Horton, R.; Bader, D.; Hoffstadt, R.; Labriole, M.; Shugart, E.; Steiner, M.; Climate; Urban Systems Partnership

    2011-12-01

    While cities cover only 2% of the Earth's surface, over 50% of the world's people live in urban environments. Precisely because of their population density, cities can play a large role in reducing or exacerbating the global impact of climate change. The actions of cities could hold the key to slowing down climate change. Urban dwellers are becoming more aware of the need to reduce their carbon usage and to implement adaptation strategies. However, messaging around these strategies has not been comprehensive and adaptation to climate change requires local knowledge, capacity and a high level of coordination. Unless urban populations understand climate change and its impacts it is unlikely that cities will be able to successfully implement policies that reduce anthropogenic climate change. Informal and formal educational institutions in urban environments can serve as catalysts when partnering with climate scientists, educational research groups, and public policy makers to disseminate information about climate change and its impacts on urban audiences. The Climate and Urban Systems Partnership (CUSP) is an interdisciplinary network designed to assess and meet the needs and challenges of educating urban audiences about climate change. CUSP brings together organizations in Philadelphia, Pittsburgh, Queens, NY and Washington, DC to forge links with informal and formal education partners, city government, and policy makers. Together this network will create and disseminate learner-focused climate education programs and resources for urban audiences that, while distinct, are thematically and temporally coordinated, resulting in the communication of clear and consistent information and learning experiences about climate science to a wide public audience. Working at a community level CUSP will bring coordinated programming directly into neighborhoods presenting the issues of global climate change in a highly local context. The project is currently exploring a number of

  16. Climate change impacts on coffee rust disease

    NASA Astrophysics Data System (ADS)

    Alfonsi, W. M. V.; Koga-Vicente, A.; Pinto, H. S.; Alfonsi, E. L., Sr.; Coltri, P. P.; Zullo, J., Jr.; Patricio, F. R.; Avila, A. M. H. D.; Gonçalves, R. R. D. V.

    2016-12-01

    Changes in climate conditions and in extreme weather events may affect the food security due to impacts in agricultural production. Despite several researches have been assessed the impacts of extremes in yield crops in climate change scenarios, there is the need to consider the effects in pests and diseases which increase losses in the sector. Coffee Arabica is an important commodity in world and plays a key role in Brazilian agricultural exports. Although the coffee crop has a world highlight, its yield is affected by several factors abiotic or biotic. The weather as well pests and diseases directly influence the development and coffee crop yield. These problems may cause serious damage with significant economic impacts. The coffee rust, caused by the fungus Hemileia vastarix,is among the diseases of greatest impact for the crop. The disease emerged in Brazil in the 70s and is widely spread in all producing regions of coffee in Brazil, and in the world. Regions with favorable weather conditions for the pathogen may exhibit losses ranging from 30% to 50% of the total grain production. The evaluation of extreme weather events of coffee rust disease in futures scenarios was carried out using the climatic data from CMIP5 models, data field of coffee rust disease incidence and, incubation period simulation data for Brazilian municipalities. Two Regional Climate Models were selected, Eta-HadGEM2-ES and Eta-MIROC5, and the Representative Concentration Pathways 8.5 w/m2 was adopted. The outcomes pointed out that in these scenarios the period of incubation tends to decrease affecting the coffee rust disease incidence, which tends to increase. Nevertheless, the changing in average trends tends to benefit the reproduction of the pathogen. Once the temperature threshold for the disease reaches the adverse conditions it may be unfavorable for the incidence.

  17. Investigating Climate Change Issues With Web-Based Geospatial Inquiry Activities

    NASA Astrophysics Data System (ADS)

    Dempsey, C.; Bodzin, A. M.; Sahagian, D. L.; Anastasio, D. J.; Peffer, T.; Cirucci, L.

    2011-12-01

    In the Environmental Literacy and Inquiry middle school Climate Change curriculum we focus on essential climate literacy principles with an emphasis on weather and climate, Earth system energy balance, greenhouse gases, paleoclimatology, and how human activities influence climate change (http://www.ei.lehigh.edu/eli/cc/). It incorporates a related set of a framework and design principles to provide guidance for the development of the geospatial technology-integrated Earth and environmental science curriculum materials. Students use virtual globes, Web-based tools including an interactive carbon calculator and geologic timeline, and inquiry-based lab activities to investigate climate change topics. The curriculum includes educative curriculum materials that are designed to promote and support teachers' learning of important climate change content and issues, geospatial pedagogical content knowledge, and geographic spatial thinking. The curriculum includes baseline instructional guidance for teachers and provides implementation and adaptation guidance for teaching with diverse learners including low-level readers, English language learners and students with disabilities. In the curriculum, students use geospatial technology tools including Google Earth with embedded spatial data to investigate global temperature changes, areas affected by climate change, evidence of climate change, and the effects of sea level rise on the existing landscape. We conducted a designed-based research implementation study with urban middle school students. Findings showed that the use of the Climate Change curriculum showed significant improvement in urban middle school students' understanding of climate change concepts.

  18. [Lake eutrophication modeling in considering climatic factors change: a review].

    PubMed

    Su, Jie-Qiong; Wang, Xuan; Yang, Zhi-Feng

    2012-11-01

    Climatic factors are considered as the key factors affecting the trophic status and its process in most lakes. Under the background of global climate change, to incorporate the variations of climatic factors into lake eutrophication models could provide solid technical support for the analysis of the trophic evolution trend of lake and the decision-making of lake environment management. This paper analyzed the effects of climatic factors such as air temperature, precipitation, sunlight, and atmosphere on lake eutrophication, and summarized the research results about the lake eutrophication modeling in considering in considering climatic factors change, including the modeling based on statistical analysis, ecological dynamic analysis, system analysis, and intelligent algorithm. The prospective approaches to improve the accuracy of lake eutrophication modeling with the consideration of climatic factors change were put forward, including 1) to strengthen the analysis of the mechanisms related to the effects of climatic factors change on lake trophic status, 2) to identify the appropriate simulation models to generate several scenarios under proper temporal and spatial scales and resolutions, and 3) to integrate the climatic factors change simulation, hydrodynamic model, ecological simulation, and intelligent algorithm into a general modeling system to achieve an accurate prediction of lake eutrophication under climatic change.

  19. Climate change helplessness and the (de)moralization of individual energy behavior.

    PubMed

    Salomon, Erika; Preston, Jesse L; Tannenbaum, Melanie B

    2017-03-01

    Although most people understand the threat of climate change, they do little to modify their own energy conservation behavior. One reason for this gap between belief and behavior may be that individual actions seem unimpactful and therefore are not morally relevant. This research investigates how climate change helplessness-belief that one's actions cannot affect climate change-can undermine the moralization of climate change and personal energy conservation. In Study 1, climate change efficacy predicted both moralization of energy use and energy conservation intentions beyond individual belief in climate change. In Studies 2 and 3, participants read information about climate change that varied in efficacy message, that is, whether individual actions (e.g., using less water, turning down heat) make a difference in the environment. Participants who read that their behavior made no meaningful impact reported weaker moralization and intentions (Study 2), and reported more energy consumption 1 week later (Study 3). Moreover, effects on intentions and actions were mediated by changes in moralization. We discuss ways to improve climate change messages to foster environmental efficacy and moralization of personal energy use. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  20. Climate change and skin disease.

    PubMed

    Lundgren, Ashley D

    2018-04-01

    Despite commanding essentially universal scientific consensus, climate change remains a divisive and poorly understood topic in the United States. Familiarity with this subject is not just for climate scientists. The impact of climate change on human morbidity and mortality may be considerable; thus, physicians also should be knowledgeable in this realm. Climate change science can seem opaque and inferential, creating fertile ground for political polemics and undoubtedly contributing to confusion among the general public. This puts physicians in a pivotal position to facilitate a practical understanding of climate change in the public sphere by discussing changes in disease patterns and their possible relationship to a changing climate. This article provides a background on climate change for dermatologists and highlights how climate change may impact the management of skin disease across the United States.

  1. Selenium deficiency risk predicted to increase under future climate change.

    PubMed

    Jones, Gerrad D; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P; Seneviratne, Sonia I; Smith, Pete; Winkel, Lenny H E

    2017-03-14

    Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980-1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate-soil interactions. Using moderate climate-change scenarios for 2080-2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate-soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change.

  2. [Perceptions and adaptation strategies of herders in desert steppe of Inner Mongolia to climate change].

    PubMed

    Han, Ying; Hou, Xiang-yang

    2011-04-01

    Desert steppe is very vulnerable to climate change. The herders caring for their livestock in such a natural environment have to face the challenges of rapid climate change. In this paper, a household-level questionnaire was conducted in the Suniteyou District of Inner Mongolia, China, aimed to analyze the herders' perceptions and adaptation strategies to climate change, extreme climate events in particular. In this Steppe where precipitation is rare and meteorological disasters are frequent, drought is the main extreme climate event with the broadest affecting area, the highest affecting degree, and the greatest frequency. The sensitivity of the herders to drought is far higher than that to other extreme climate events, and also, the perceptions to drought induce the herders having deep perceptions to the extreme climate events such as strong wing, dust storm, and heavy snow. Relative to the perceptions to long-term climate change, the perceptions to short-term climate change are more deep and precise. The herders can estimate the long-term climate change trend according to their perceptions to the latest 10 years climate change. They attribute the poor livestock health and the reduced forage yield greatly to climate change. Yet, the herders are inexperienced in implementing efficient adaptation strategies. Generally, their adaptation measures are quite simplex and rather passive.

  3. The climate change consensus extends beyond climate scientists

    NASA Astrophysics Data System (ADS)

    Carlton, J. S.; Perry-Hill, Rebecca; Huber, Matthew; Prokopy, Linda S.

    2015-09-01

    The existence of anthropogenic climate change remains a public controversy despite the consensus among climate scientists. The controversy may be fed by the existence of scientists from other disciplines publicly casting doubt on the validity of climate science. The extent to which non-climate scientists are skeptical of climate science has not been studied via direct survey. Here we report on a survey of biophysical scientists across disciplines at universities in the Big 10 Conference. Most respondents (93.6%) believe that mean temperatures have risen and most (91.9%) believe in an anthropogenic contribution to rising temperatures. Respondents strongly believe that climate science is credible (mean credibility score 6.67/7). Those who disagree about climate change disagree over basic facts (e.g., the effects of CO2 on climate) and have different cultural and political values. These results suggest that scientists who are climate change skeptics are outliers and that the majority of scientists surveyed believe in anthropogenic climate change and that climate science is credible and mature.

  4. Implications of climate change for Alaska's seabirds

    USGS Publications Warehouse

    Meehan, Rosa; Byrd, G. Vernon; Divoky, George J.; Piatt, John F.; Weller, Gunter; Anderson, Patricia A.

    1999-01-01

    Seabirds are prominent and highly visible components of marine ecosystems that will be affected by global climate change. The Bering Sea region is particularly important to seabirds; populations there are larger and more diverse than in any similar region in North America—over 90% of seabirds breeding in the continental United States are found in this region. Seabirds, so named because they spend at least 80% of their lives at sea, are dependent upon marine resources for food. As prey availability changes in response to climatically driven factors such as surface sea temperature and extent of sea ice, so will populations of seabirds be affected.Seabirds are valued as indicators of healthy marine ecosystems and provide a “vicarious use value” or existence value—people appreciate and value seabirds simply because they are there and enjoy them through venues such as pictures, nature programs, and written accounts without ever directly observing seabirds in their native environment. A direct measure of this value is demonstrated by Federal legislation that established specific national wildlife refuges to protect seabirds and international treaty obligations that provide additional protection for seabirds. Seabirds are also an important subsistence resource for many who live within the Bering Sea region. Furthermore, the rich knowledge base about seabirds makes them a valuable resource as indicator species for measurement of change in the marine environment. Understanding this latter relationship is particularly important for seabirds as they can be dramatically affected by development-related activities (e.g., oil spills, fishing); understanding the population effects due to climatic change is critical to interpreting the actual effects of specific human activities or events.

  5. Climate change adaptation: where does global health fit in the agenda?

    PubMed

    Bowen, Kathryn J; Friel, Sharon

    2012-05-27

    Human-induced climate change will affect the lives of most populations in the next decade and beyond. It will have greatest, and generally earliest, impact on the poorest and most disadvantaged populations on the planet. Changes in climatic conditions and increases in weather variability affect human wellbeing, safety, health and survival in many ways. Some impacts are direct-acting and immediate, such as impaired food yields and storm surges. Other health effects are less immediate and typically occur via more complex causal pathways that involve a range of underlying social conditions and sectors such as water and sanitation, agriculture and urban planning. Climate change adaptation is receiving much attention given the inevitability of climate change and its effects, particularly in developing contexts, where the effects of climate change will be experienced most strongly and the response mechanisms are weakest. Financial support towards adaptation activities from various actors including the World Bank, the European Union and the United Nations is increasing substantially. With this new global impetus and funding for adaptation action come challenges such as the importance of developing adaptation activities on a sound understanding of baseline community needs and vulnerabilities, and how these may alter with changes in climate. The global health community is paying heed to the strengthening focus on adaptation, albeit in a slow and unstructured manner. The aim of this paper is to provide an overview of adaptation and its relevance to global health, and highlight the opportunities to improve health and reduce health inequities via the new and additional funding that is available for climate change adaptation activities.

  6. Climatically-mediated landcover change: impacts on Brazilian territory.

    PubMed

    Zanin, Marina; Tessarolo, Geiziane; Machado, Nathália; Albernaz, Ana Luisa M

    2017-01-01

    In the face of climate change threats, governments are drawing attention to policies for mitigating its effects on biodiversity. However, the lack of distribution data makes predictions at species level a difficult task, mainly in regions of higher biodiversity. To overcome this problem, we use native landcover as a surrogate biodiversity, because it can represent specialized habitat for species, and investigate the effects of future climate change on Brazilian biomes. We characterize the climatic niches of native landcover and use ecological niche modeling to predict the potential distribution under current and future climate scenarios. Our results highlight expansion of the distribution of open vegetation and the contraction of closed forests. Drier Brazilian biomes, like Caatinga and Cerrado, are predicted to expand their distributions, being the most resistant to climate change impacts. However, these would also be affected by losses of their closed forest enclaves and their habitat-specific or endemic species. Replacement by open vegetation and overall reductions are a considerable risk for closed forest, threatening Amazon and Atlantic forest biomes. Here, we evidence the impacts of climate change on Brazilian biomes, and draw attention to the necessity for management and attenuation plans to guarantee the future of Brazilian biodiversity.

  7. Force majeure: Will climate change affect our ability to attain Good Environmental Status for marine biodiversity?

    PubMed

    Elliott, Michael; Borja, Ángel; McQuatters-Gollop, Abigail; Mazik, Krysia; Birchenough, Silvana; Andersen, Jesper H; Painting, Suzanne; Peck, Myron

    2015-06-15

    The EU Marine Strategy Framework Directive (MSFD) requires that Good Environmental Status (GEnS), is achieved for European seas by 2020. These may deviate from GEnS, its 11 Descriptors, targets and baselines, due to endogenic managed pressures (from activities within an area) and externally due to exogenic unmanaged pressures (e.g. climate change). Conceptual models detail the likely or perceived changes expected on marine biodiversity and GEnS Descriptors in the light of climate change. We emphasise that marine management has to accommodate 'shifting baselines' caused by climate change particularly during GEnS monitoring, assessment and management and 'unbounded boundaries' given the migration and dispersal of highly-mobile species. We suggest climate change may prevent GEnS being met, but Member States may rebut legal challenges by claiming that this is outside its control, force majeure or due to 'natural causes' (Article 14 of the MSFD). The analysis is relevant to management of other global seas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Climate Change and Health: Transcending Silos to Find Solutions.

    PubMed

    Machalaba, Catherine; Romanelli, Cristina; Stoett, Peter; Baum, Sarah E; Bouley, Timothy A; Daszak, Peter; Karesh, William B

    2015-01-01

    Climate change has myriad implications for the health of humans, our ecosystems, and the ecological processes that sustain them. Projections of rising greenhouse gas emissions suggest increasing direct and indirect burden of infectious and noninfectious disease, effects on food and water security, and other societal disruptions. As the effects of climate change cannot be isolated from social and ecological determinants of disease that will mitigate or exacerbate forecasted health outcomes, multidisciplinary collaboration is critically needed. The aim of this article was to review the links between climate change and its upstream drivers (ie, processes leading to greenhouse gas emissions) and health outcomes, and identify existing opportunities to leverage more integrated global health and climate actions to prevent, prepare for, and respond to anthropogenic pressures. We conducted a literature review of current and projected health outcomes associated with climate change, drawing on findings and our collective expertise to review opportunities for adaptation and mitigation across disciplines. Health outcomes related to climate change affect a wide range of stakeholders, providing ready collaborative opportunities for interventions, which can be differentiated by addressing the upstream drivers leading to climate change or the downstream effects of climate change itself. Although health professionals are challenged with risks from climate change and its drivers, the adverse health outcomes cannot be resolved by the public health community alone. A phase change in global health is needed to move from a passive responder in partnership with other societal sectors to drive innovative alternatives. It is essential for global health to step outside of its traditional boundaries to engage with other stakeholders to develop policy and practical solutions to mitigate disease burden of climate change and its drivers; this will also yield compound benefits that help address

  9. Climate Change and Global Food Security: Food Access, Utilization, and the US Food System

    NASA Astrophysics Data System (ADS)

    Brown, M. E.; Antle, J. M.; Backlund, P. W.; Carr, E. R.; Easterling, W. E.; Walsh, M.; Ammann, C. M.; Attavanich, W.; Barrett, C. B.; Bellemare, M. F.; Dancheck, V.; Funk, C.; Grace, K.; Ingram, J. S. I.; Jiang, H.; Maletta, H.; Mata, T.; Murray, A.; Ngugi, M.; Ojima, D. S.; O'Neill, B. C.; Tebaldi, C.

    2015-12-01

    This paper will summarize results from the USDA report entitled 'Climate change, Global Food Security and the U.S. Food system'. The report focuses on the impact of climate change on global food security, defined as "when all people at all times have physical, social, and economic access to sufficient, safe, and nutritious food to meet their dietary needs and food preferences for an active and healthy life". The assessment brought together authors and contributors from twenty federal, academic, nongovernmental, intergovernmental, and private organizations in four countries to identify climate change effects on food security through 2100, and analyze the U.S.'s likely connections with that world. This talk will describe how climate change will likely affect food access and food utilization, and summarize how the U.S. food system contributes to global food security, and will be affected by climate change.

  10. Indicators of climate change in agricultural systems

    USDA-ARS?s Scientific Manuscript database

    Climate change affects all segments of the agricultural enterprise and there is mounting evidence that the continuing warming trend with shifting seasonality and intensity in precipitation will increase the vulnerability of agricultural systems. Agriculture is a complex system within the United Stat...

  11. The Interplay of Climate Change and Air Pollution on Health.

    PubMed

    Orru, H; Ebi, K L; Forsberg, B

    2017-12-01

    Air pollution significantly affects health, causing up to 7 million premature deaths annually with an even larger number of hospitalizations and days of sick leave. Climate change could alter the dispersion of primary pollutants, particularly particulate matter, and intensify the formation of secondary pollutants, such as near-surface ozone. The purpose of the review is to evaluate the recent evidence on the impacts of climate change on air pollution and air pollution-related health impacts and identify knowledge gaps for future research. Several studies modelled future ozone and particulate matter concentrations and calculated the resulting health impacts under different climate scenarios. Due to climate change, ozone- and fine particle-related mortalities are expected to increase in most studies; however, results differ by region, assumed climate change scenario and other factors such as population and background emissions. This review explores the relationships between climate change, air pollution and air pollution-related health impacts. The results highly depend on the climate change scenario used and on projections of future air pollution emissions, with relatively high uncertainty. Studies primarily focused on mortality; projections on the effects on morbidity are needed.

  12. Climate change and the water cycle in newly irrigated areas.

    PubMed

    Abrahão, Raphael; García-Garizábal, Iker; Merchán, Daniel; Causapé, Jesús

    2015-02-01

    Climate change is affecting agriculture doubly: evapotranspiration is increasing due to increments in temperature while the availability of water resources is decreasing. Furthermore, irrigated areas are expanding worldwide. In this study, the dynamics of climate change impacts on the water cycle of a newly irrigated watershed are studied through the calculation of soil water balances. The study area was a 752-ha watershed located on the left side of the Ebro river valley, in Northeast Spain. The soil water balance procedures were carried out throughout 1827 consecutive days (5 years) of hydrological and agronomical monitoring in the study area. Daily data from two agroclimatic stations were used as well. Evaluation of the impact of climate change on the water cycle considered the creation of two future climate scenarios for comparison: 2070 decade with climate change and 2070 decade without climate change. The main indicators studied were precipitation, irrigation, reference evapotranspiration, actual evapotranspiration, drainage from the watershed, and irrigation losses. The aridity index was also applied. The results represent a baseline scenario in which adaptation measures may be included and tested to reduce the impacts of climate change in the studied area and other similar areas.

  13. Community-level phenological response to climate change

    PubMed Central

    Ovaskainen, Otso; Skorokhodova, Svetlana; Yakovleva, Marina; Sukhov, Alexander; Kutenkov, Anatoliy; Kutenkova, Nadezhda; Shcherbakov, Anatoliy; Meyke, Evegeniy; Delgado, Maria del Mar

    2013-01-01

    Climate change may disrupt interspecies phenological synchrony, with adverse consequences to ecosystem functioning. We present here a 40-y-long time series on 10,425 dates that were systematically collected in a single Russian locality for 97 plant, 78 bird, 10 herptile, 19 insect, and 9 fungal phenological events, as well as for 77 climatic events related to temperature, precipitation, snow, ice, and frost. We show that species are shifting their phenologies at dissimilar rates, partly because they respond to different climatic factors, which in turn are shifting at dissimilar rates. Plants have advanced their spring phenology even faster than average temperature has increased, whereas migratory birds have shown more divergent responses and shifted, on average, less than plants. Phenological events of birds and insects were mainly triggered by climate cues (variation in temperature and snow and ice cover) occurring over the course of short periods, whereas many plants, herptiles, and fungi were affected by long-term climatic averages. Year-to-year variation in plants, herptiles, and insects showed a high degree of synchrony, whereas the phenological timing of fungi did not correlate with any other taxonomic group. In many cases, species that are synchronous in their year-to-year dynamics have also shifted in congruence, suggesting that climate change may have disrupted phenological synchrony less than has been previously assumed. Our results illustrate how a multidimensional change in the physical environment has translated into a community-level change in phenology. PMID:23901098

  14. Climate change and disaster management.

    PubMed

    O'Brien, Geoff; O'Keefe, Phil; Rose, Joanne; Wisner, Ben

    2006-03-01

    Climate change, although a natural phenomenon, is accelerated by human activities. Disaster policy response to climate change is dependent on a number of factors, such as readiness to accept the reality of climate change, institutions and capacity, as well as willingness to embed climate change risk assessment and management in development strategies. These conditions do not yet exist universally. A focus that neglects to enhance capacity-building and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks. Reducing vulnerability is a key aspect of reducing climate change risk. To do so requires a new approach to climate change risk and a change in institutional structures and relationships. A focus on development that neglects to enhance governance and resilience as a prerequisite for managing climate change risks will, in all likelihood, do little to reduce vulnerability to those risks.

  15. CLIMATE CHANGE EFFECTS ON ECOSYSTEM SERVICES AND HUMAN HEALTH

    EPA Science Inventory

    Human health and well-being are and will be affected by climate change, both directly through changes in extreme weather events and indirectly through weather induced changes in societal systems and their supporting ecosystems. The goal of this study was to develop and apply a b...

  16. Improving the community-temperature index as a climate change indicator.

    PubMed

    Bowler, Diana; Böhning-Gaese, Katrin

    2017-01-01

    Climate change indicators are tools to assess, visualize and communicate the impacts of climate change on species and communities. Indicators that can be applied to different taxa are particularly useful because they allow comparative analysis to identify which kinds of species are being more affected. A general prediction, supported by empirical data, is that the abundance of warm-adapted species should increase over time, relative to the cool-adapted ones within communities, under increasing ambient temperatures. The community temperature index (CTI) is a community weighted mean of species' temperature preferences and has been used as an indicator to summarize this temporal shift. The CTI has the advantages of being a simple and generalizable indicator; however, a core problem is that temporal trends in the CTI may not only reflect changes in temperature. This is because species' temperature preferences often covary with other species attributes, and these other attributes may affect species response to other environmental drivers. Here, we propose a novel model-based approach that separates the effects of temperature preference from the effects of other species attributes on species' abundances and subsequently on the CTI. Using long-term population data of breeding birds in Denmark and demersal marine fish in the southeastern North Sea, we find differences in CTI trends with the original approach and our model-based approach, which may affect interpretation of climate change impacts. We suggest that our method can be used to test the robustness of CTI trends to the possible effects of other drivers of change, apart from climate change.

  17. Climate change and our environment: the effect on respiratory and allergic disease.

    PubMed

    Barne, Charles; Alexis, Neil E; Bernstein, Jonathan A; Cohn, John R; Demain, Jeffrey G; Horner, Elliot; Levetin, Estelle; Nei, Andre; Phipatanakul, Wanda

    2013-03-01

    Climate change is a constant and ongoing process. It is postulated that human activities have reached a point at which we are producing global climate change. It provides suggestions to help the allergist/environmental physician integrate recommendations about improvements in outdoor and indoor air quality and the likely response to predicted alterations in the earth's environment into his or her patient's treatment plan. It incorporates references retrieved from Pub Med searches for topics, including:climate change, global warming, global climate change, greenhouse gasses, air pollution, particulates, black carbon, soot and sea level, as well as references contributed by the individual authors. Many changes that affect respiratory disease are anticipated.Examples of responses to climate change include energy reduction retrofits in homes that could potentially affect exposure to allergens and irritants, more hot sunny days that increase ozone-related difficulties, and rises in sea level or altered rainfall patterns that increase exposure to damp indoor environments.Climate changes can also affect ecosystems, manifested as the appearance of stinging and biting arthropods in new areas.Higher ambient carbon dioxide concentrations, warmer temperatures, and changes in floristic zones could potentially increase exposure to ragweed and other outdoor allergens,whereas green practices such as composting can increase allergen and irritant exposure. Finally, increased energy costs may resultin urban crowding and human source pollution, leading to changes in patterns of infectious respiratory illnesses. Improved governmental controls on airborne pollutants could lead to cleaner air and reduced respiratory diseases but will meet strong opposition because of their effect on business productivity. The allergy community must therefore adapt, as physician and research scientists always have, by anticipating the needs of patients and by adopting practices and research methods to

  18. Implication of global climate change on the distribution and activity of Phytophthora ramorum

    Treesearch

    Robert C. Venette

    2009-01-01

    Global climate change is predicted to alter the distribution and activity of several forest pathogens. Boland et al. (2004) suggested that climate change might affect pathogen establishment, rate of disease progress, and the duration of...

  19. Quantitative Assessment of Antarctic Climate Variability and Change

    NASA Astrophysics Data System (ADS)

    Ordonez, A.; Schneider, D. P.

    2013-12-01

    The Antarctic climate is both extreme and highly variable, but there are indications it may be changing. As the climate in Antarctica can affect global sea level and ocean circulation, it is important to understand and monitor its behavior. Observational and model data have been used to study climate change in Antarctica and the Southern Ocean, though observational data is sparse and models have difficulty reproducing many observed climate features. For example, a leading hypothesis that ozone depletion has been responsible for sea ice trends is struggling with the inability of ozone-forced models to reproduce the observed sea ice increase. The extent to which this data-model disagreement represents inadequate observations versus model biases is unknown. This research assessed a variety of climate change indicators to present an overview of Antarctic climate that will allow scientists to easily access this data and compare indicators with other observational data and model output. Indicators were obtained from observational and reanalysis data for variables such as temperature, sea ice area, and zonal wind stress. Multiple datasets were used for key variables. Monthly and annual anomaly data from Antarctica and the Southern Ocean as well as tropical indices were plotted as time series on common axes for comparison. Trends and correlations were also computed. Zonal wind, surface temperature, and austral springtime sea ice had strong relationships and were further discussed in terms of how they may relate to climate variability and change in the Antarctic. This analysis will enable hypothesized mechanisms of Antarctic climate change to be critically evaluated.

  20. Climate change and respiratory disease: European Respiratory Society position statement.

    PubMed

    Ayres, J G; Forsberg, B; Annesi-Maesano, I; Dey, R; Ebi, K L; Helms, P J; Medina-Ramón, M; Windt, M; Forastiere, F

    2009-08-01

    Climate change will affect individuals with pre-existing respiratory disease, but the extent of the effect remains unclear. The present position statement was developed on behalf of the European Respiratory Society in order to identify areas of concern arising from climate change for individuals with respiratory disease, healthcare workers in the respiratory sector and policy makers. The statement was developed following a 2-day workshop held in Leuven (Belgium) in March 2008. Key areas of concern for the respiratory community arising from climate change are discussed and recommendations made to address gaps in knowledge. The most important recommendation was the development of more accurate predictive models for predicting the impact of climate change on respiratory health. Respiratory healthcare workers also have an advocatory role in persuading governments and the European Union to maintain awareness and appropriate actions with respect to climate change, and these areas are also discussed in the position statement.

  1. Climate Justice in Rural Southeastern United States: A Review of Climate Change Impacts and Effects on Human Health

    PubMed Central

    Gutierrez, Kristie S.; LePrevost, Catherine E.

    2016-01-01

    Climate justice is a local, national, and global movement to protect at-risk populations who are disproportionately affected by climate change. The social context for this review is the Southeastern region of the United States, which is particularly susceptible to climate change because of the geography of the area and the vulnerabilities of the inhabiting populations. Negative human health effects on variable and vulnerable populations within the Southeast region due to changing climate are concerning, as health threats are not expected to produce parallel effects among all individuals. Vulnerable communities, such as communities of color, indigenous people, the geographically isolated, and those who are socioeconomically disadvantaged and already experiencing poor environmental quality, are least able to respond and adapt to climate change. Focusing on vulnerable populations in the Southeastern United States, this review is a synthesis of the recent (2010 to 2015) literature-base on the health effects connected to climate change. This review also addresses local and regional mitigation and adaptation strategies for citizens and leaders to combat direct and indirect human health effects related to a changing climate. PMID:26848673

  2. Climate Justice in Rural Southeastern United States: A Review of Climate Change Impacts and Effects on Human Health.

    PubMed

    Gutierrez, Kristie S; LePrevost, Catherine E

    2016-02-03

    Climate justice is a local, national, and global movement to protect at-risk populations who are disproportionately affected by climate change. The social context for this review is the Southeastern region of the United States, which is particularly susceptible to climate change because of the geography of the area and the vulnerabilities of the inhabiting populations. Negative human health effects on variable and vulnerable populations within the Southeast region due to changing climate are concerning, as health threats are not expected to produce parallel effects among all individuals. Vulnerable communities, such as communities of color, indigenous people, the geographically isolated, and those who are socioeconomically disadvantaged and already experiencing poor environmental quality, are least able to respond and adapt to climate change. Focusing on vulnerable populations in the Southeastern United States, this review is a synthesis of the recent (2010 to 2015) literature-base on the health effects connected to climate change. This review also addresses local and regional mitigation and adaptation strategies for citizens and leaders to combat direct and indirect human health effects related to a changing climate.

  3. Climate change and forest diseases

    Treesearch

    R.N. Sturrock; Susan Frankel; A. V. Brown; Paul Hennon; J. T. Kliejunas; K. J. Lewis; J. J. Worrall; A. J. Woods

    2011-01-01

    As climate changes, the effects of forest diseases on forest ecosystems will change. We review knowledge of relationships between climate variables and several forest diseases, as well as current evidence of how climate, host and pathogen interactions are responding or might respond to climate change. Many forests can be managed to both adapt to climate change and...

  4. Managing climate change refugia for climate adaptation

    Treesearch

    Toni Lyn Morelli; Christopher Daly; Solomon Z. Dobrowski; Deanna M. Dulen; Joseph L. Ebersole; Stephen T. Jackson; Jessica D. Lundquist; Connie Millar; Sean P. Maher; William B. Monahan; Koren R. Nydick; Kelly T. Redmond; Sarah C. Sawyer; Sarah Stock; Steven R. Beissinger

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that...

  5. Multimodel assessment of water scarcity under climate change.

    PubMed

    Schewe, Jacob; Heinke, Jens; Gerten, Dieter; Haddeland, Ingjerd; Arnell, Nigel W; Clark, Douglas B; Dankers, Rutger; Eisner, Stephanie; Fekete, Balázs M; Colón-González, Felipe J; Gosling, Simon N; Kim, Hyungjun; Liu, Xingcai; Masaki, Yoshimitsu; Portmann, Felix T; Satoh, Yusuke; Stacke, Tobias; Tang, Qiuhong; Wada, Yoshihide; Wisser, Dominik; Albrecht, Torsten; Frieler, Katja; Piontek, Franziska; Warszawski, Lila; Kabat, Pavel

    2014-03-04

    Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (<500 m(3) per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 °C, whereas indicators of very severe impacts increase unabated beyond 2 °C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.

  6. Multimodel assessment of water scarcity under climate change

    PubMed Central

    Schewe, Jacob; Heinke, Jens; Gerten, Dieter; Haddeland, Ingjerd; Arnell, Nigel W.; Clark, Douglas B.; Dankers, Rutger; Eisner, Stephanie; Fekete, Balázs M.; Colón-González, Felipe J.; Gosling, Simon N.; Kim, Hyungjun; Liu, Xingcai; Masaki, Yoshimitsu; Portmann, Felix T.; Satoh, Yusuke; Stacke, Tobias; Tang, Qiuhong; Wada, Yoshihide; Wisser, Dominik; Albrecht, Torsten; Frieler, Katja; Piontek, Franziska; Warszawski, Lila; Kabat, Pavel

    2014-01-01

    Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (<500 m3 per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 °C, whereas indicators of very severe impacts increase unabated beyond 2 °C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development. PMID:24344289

  7. Detecting Evidence of Climate Change in the Forests of the Eastern United States

    USGS Publications Warehouse

    Jones, John W.; Osborne, Jesse D.

    2008-01-01

    Changes in land use or disturbances such as defoliation by insects, disease, or fire all affect the composition and amount of tree canopy in a forest. These changes are easy to detect. Noticing and understanding the complex ways that global or regional-scale climate change combines with these disturbances to affect forest growth patterns and succession is difficult. This is particularly true for regions where changes in climate are not the most extreme, such as the mid-latitude forests of the Eastern United States. If land and water resources are to be managed responsibly, it is important to know how well the impacts of climate change on these forests can be measured in order to provide the best information possible to respond to any future changes. The goal of this study is to test whether climate-induced changes in forests in the Eastern United States can be detected and characterized using satellite imagery.

  8. Climate change effects on watershed hydrological and biogeochemical processes

    EPA Science Inventory

    Projected changes in climate are widely expected to alter watershed processes. However, the extent of these changes is difficult to predict because complex interactions among affected hydrological and biogeochemical processes will likely play out over many decades and spatial sc...

  9. Climate Change Impacts on US Agriculture and Forestry: Implications of Global Climate Stabilization

    EPA Science Inventory

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. Although there have been n...

  10. Climatic Change and Dynamics of Northern Hemisphere Storm-tracks: Changes in Transient Eddies Behavior

    NASA Astrophysics Data System (ADS)

    Martynova, Yuliya; Krupchatnikov, Vladimir

    2013-04-01

    An evidence of our understanding of the general circulation is whether we can predict changes in the general circulation that might be associated with past or future climate changes. Changes in the location, intensity or seasonality of major climatological features of the general circulation could be more important than average temperature changes, particularly where these changes could affect local hydrology, energy balances, etc. Under these major climatological features we assume the poleward expansion of the tropical circulation (Hadley circulation), static stability (changes in the vertical temperature structure of the atmosphere), role of SST forcing, sea ice extension, extratropical eddies behavior. We have a question: would the climate change significantly affect the location and intensity of midlatitude storm-tracks and associated jets? Mean-flow interaction in midlatitudes produces low-frequency variations in the latitude of the jets. It is reasonable to think that a modest climate change might significantly affects the jets location and their associated storm tracks. The storm-tracks are defined as the region of strong baroclinicity (maximum meridional temperature gradient), which are determined on the basis of eddy statistics like eddy fluxes of angular momentum, energy, and water (with the use of high-bandpass filter). In the Northern Hemisphere, there are two major storms: in the region of Atlantic and Pacific. The storm-tracks play important role in the dynamics of weather and climate. They affect the global energy cycle and the hydrological cycle, and as a result they bring heavy rains and other hazardous weather phenomena in the middle latitudes. The recent increase in global tropopause heights is closely associated with systematic temperature changes below and above the tropopause. Temperature increases in the troposphere and decreases in the stratosphere. The pattern of warming and cooling also affects the zonal wind structure in the region of

  11. Climate variability and vulnerability to climate change: a review

    PubMed Central

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  12. Climate Change and ENSO Effects on Southeastern US Climate Patterns and Maize Yield.

    PubMed

    Mourtzinis, Spyridon; Ortiz, Brenda V; Damianidis, Damianos

    2016-07-19

    Climate change has a strong influence on weather patterns and significantly affects crop yields globally. El Niño Southern Oscillation (ENSO) has a strong influence on the U.S. climate and is related to agricultural production variability. ENSO effects are location-specific and in southeastern U.S. strongly connect with climate variability. When combined with climate change, the effects on growing season climate patterns and crop yields might be greater than expected. In our study, historical monthly precipitation and temperature data were coupled with non-irrigated maize yield data (33-43 years depending on the location) to show a potential yield suppression of ~15% for one °C increase in southeastern U.S. growing season maximum temperature. Yield suppression ranged between -25 and -2% among locations suppressing the southeastern U.S. average yield trend since 1981 by 17 kg ha(-1)year(-1) (~25%), mainly due to year-to-year June temperature anomalies. Yields varied among ENSO phases from 1971-2013, with greater yields observed during El Niño phase. During La Niña years, maximum June temperatures were higher than Neutral and El Niño, whereas June precipitation was lower than El Niño years. Our data highlight the importance of developing location-specific adaptation strategies quantifying both, climate change and ENSO effects on month-specific growing season climate conditions.

  13. How Will Climate Change Impact Cholera Outbreaks?

    NASA Astrophysics Data System (ADS)

    Nasr Azadani, F.; Jutla, A.; Rahimikolu, J.; Akanda, A. S.; Huq, A.; Colwell, R. R.

    2014-12-01

    Environmental parameters associated with cholera are well documented. However, cholera continues to be a global public health threat. Uncertainty in defining environmental processes affecting growth and multiplication of the cholera bacteria can be affected significantly by changing climate at different temporal and spatial scales, either through amplification of the hydroclimatic cycle or by enhanced variability of large scale geophysical processes. Endemic cholera in the Bengal Delta region of South Asia has a unique pattern of two seasonal peaks and there are associated with asymmetric and episodic variability in river discharge. The first cholera outbreak in spring is related with intrusion of bacteria laden coastal seawater during low river discharge. Cholera occurring during the fall season is hypothesized to be associated with high river discharge related to a cross-contamination of water resources and, therefore, a second wave of disease, a phenomenon characteristic primarily in the inland regions. Because of difficulties in establishing linkage between coarse resolutions of the Global Climate Model (GCM) output and localized disease outbreaks, the impact of climate change on diarrheal disease has not been explored. Here using the downscaling method of Support Vector Machines from HADCM3 and ECHAM models, we show how cholera outbreak patterns are changing in the Bengal Delta. Our preliminary results indicate statistically significant changes in both seasonality and magnitude in the occurrence of cholera over the next century. Endemic cholera is likely to transform into epidemic forms and new geographical areas will be at risk for cholera outbreaks.

  14. Climate change and older Americans: state of the science.

    PubMed

    Gamble, Janet L; Hurley, Bradford J; Schultz, Peter A; Jaglom, Wendy S; Krishnan, Nisha; Harris, Melinda

    2013-01-01

    Older adults make up 13% of the U.S. population, but are projected to account for 20% by 2040. Coinciding with this demographic shift, the rate of climate change is accelerating, bringing rising temperatures; increased risk of floods, droughts, and wildfires; stronger tropical storms and hurricanes; rising sea levels; and other climate-related hazards. Older Americans are expected to be located in places that may be relatively more affected by climate change, including coastal zones and large metropolitan areas. The objective of this review is to assess the vulnerability of older Americans to climate change and to identify opportunities for adaptation. We performed an extensive literature survey and summarized key findings related to demographics; climate stressors relevant to older adults; factors contributing to exposure, sensitivity, and adaptive capacity; and adaptation strategies. A range of physiological and socioeconomic factors make older adults especially sensitive to and/or at risk for exposure to heat waves and other extreme weather events (e.g., hurricanes, floods, droughts), poor air quality, and infectious diseases. Climate change may increase the frequency or severity of these events. Older Americans are likely to be especially vulnerable to stressors associated with climate change. Although a growing body of evidence reports the adverse effects of heat on the health of older adults, research gaps remain for other climate-related risks. We need additional study of the vulnerability of older adults and the interplay of vulnerability, resilience, and adaptive responses to projected climate stressors.

  15. Scaling Climate Change Communication for Behavior Change

    NASA Astrophysics Data System (ADS)

    Rodriguez, V. C.; Lappé, M.; Flora, J. A.; Ardoin, N. M.; Robinson, T. N.

    2014-12-01

    Ultimately, effective climate change communication results in a change in behavior, whether the change is individual, household or collective actions within communities. We describe two efforts to promote climate-friendly behavior via climate communication and behavior change theory. Importantly these efforts are designed to scale climate communication principles focused on behavior change rather than soley emphasizing climate knowledge or attitudes. Both cases are embedded in rigorous evaluations (randomized controlled trial and quasi-experimental) of primary and secondary outcomes as well as supplementary analyses that have implications for program refinement and program scaling. In the first case, the Girl Scouts "Girls Learning Environment and Energy" (GLEE) trial is scaling the program via a Massive Open Online Course (MOOC) for Troop Leaders to teach the effective home electricity and food and transportation energy reduction programs. The second case, the Alliance for Climate Education (ACE) Assembly Program, is advancing the already-scaled assembly program by using communication principles to further engage youth and their families and communities (school and local communities) in individual and collective actions. Scaling of each program uses online learning platforms, social media and "behavior practice" videos, mastery practice exercises, virtual feedback and virtual social engagement to advance climate-friendly behavior change. All of these communication practices aim to simulate and advance in-person train-the-trainers technologies.As part of this presentation we outline scaling principles derived from these two climate change communication and behavior change programs.

  16. Climate change and children.

    PubMed

    Ebi, Kristie L; Paulson, Jerome A

    2007-04-01

    Climate change is increasing the burden of climate-sensitive health determinants and outcomes worldwide. Acting through increasing temperature, changes in the hydrologic cycle, and sea level rise, climate change is projected to increase the frequency and intensity of heat events and extreme events (floods and droughts), change the geographic range and incidence of climate-sensitive vector-, food-, and waterborne diseases, and increase diseases associated with air pollution and aeroallergens. Children are particularly vulnerable to these health outcomes because of their potentially greater exposures, greater sensitivity to certain exposures, and their dependence on caregivers.

  17. Climate Change Contribution to the Emergence or Re-Emergence of Parasitic Diseases

    PubMed Central

    Short, Erica E; Caminade, Cyril; Thomas, Bolaji N

    2017-01-01

    The connection between our environment and parasitic diseases may not always be straightforward, but it exists nonetheless. This article highlights how climate as a component of our environment, or more specifically climate change, has the capability to drive parasitic disease incidence and prevalence worldwide. There are both direct and indirect implications of climate change on the scope and distribution of parasitic organisms and their associated vectors and host species. We aim to encompass a large body of literature to demonstrate how a changing climate will perpetuate, or perhaps exacerbate, public health issues and economic stagnation due to parasitic diseases. The diseases examined include those caused by ingested protozoa and soil helminths, malaria, lymphatic filariasis, Chagas disease, human African trypanosomiasis, leishmaniasis, babesiosis, schistosomiasis, and echinococcus, as well as parasites affecting livestock. It is our goal to impress on the scientific community the magnitude a changing climate can have on public health in relation to parasitic disease burden. Once impending climate changes are now upon us, and as we see these events unfold, it is critical to create management plans that will protect the health and quality of life of the people living in the communities that will be significantly affected. PMID:29317829

  18. Modeling forest mortality caused by drought stress: implications for climate change

    Treesearch

    Eric J Gustafson; Brian R. Sturtevant

    2013-01-01

    Climate change is expected to affect forest landscape dynamics in many ways, but it is possible that the most important direct impact of climate change will be drought stress. We combined data from weather stations and forest inventory plots (FIA) across the upper Great Lakes region (USA) to study the relationship between measures of drought stress and mortality for...

  19. Reservoir operations under climate change: Storage capacity options to mitigate risk

    NASA Astrophysics Data System (ADS)

    Ehsani, Nima; Vörösmarty, Charles J.; Fekete, Balázs M.; Stakhiv, Eugene Z.

    2017-12-01

    Observed changes in precipitation patterns, rising surface temperature, increases in frequency and intensity of floods and droughts, widespread melting of ice, and reduced snow cover are some of the documented hydrologic changes associated with global climate change. Climate change is therefore expected to affect the water supply-demand balance in the Northeast United States and challenge existing water management strategies. The hydrological implications of future climate will affect the design capacity and operating characteristics of dams. The vulnerability of water resources systems to floods and droughts will increase, and the trade-offs between reservoir releases to maintain flood control storage, drought resilience, ecological flow, human water demand, and energy production should be reconsidered. We used a Neural Networks based General Reservoir Operation Scheme to estimate the implications of climate change for dams on a regional scale. This dynamic daily reservoir module automatically adapts to changes in climate and re-adjusts the operation of dams based on water storage level, timing, and magnitude of incoming flows. Our findings suggest that the importance of dams in providing water security in the region will increase. We create an indicator of the Effective Degree of Regulation (EDR) by dams on water resources and show that it is expected to increase, particularly during drier months of year, simply as a consequence of projected climate change. The results also indicate that increasing the size and number of dams, in addition to modifying their operations, may become necessary to offset the vulnerabilities of water resources systems to future climate uncertainties. This is the case even without considering the likely increase in future water demand, especially in the most densely populated regions of the Northeast.

  20. Projecting Climate Change Impacts on Wildfire Probabilities

    NASA Astrophysics Data System (ADS)

    Westerling, A. L.; Bryant, B. P.; Preisler, H.

    2008-12-01

    We present preliminary results of the 2008 Climate Change Impact Assessment for wildfire in California, part of the second biennial science report to the California Climate Action Team organized via the California Climate Change Center by the California Energy Commission's Public Interest Energy Research Program pursuant to Executive Order S-03-05 of Governor Schwarzenegger. In order to support decision making by the State pertaining to mitigation of and adaptation to climate change and its impacts, we model wildfire occurrence monthly from 1950 to 2100 under a range of climate scenarios from the Intergovernmental Panel on Climate Change. We use six climate change models (GFDL CM2.1, NCAR PCM1, CNRM CM3, MPI ECHAM5, MIROC3.2 med, NCAR CCSM3) under two emissions scenarios--A2 (C02 850ppm max atmospheric concentration) and B1(CO2 550ppm max concentration). Climate model output has been downscaled to a 1/8 degree (~12 km) grid using two alternative methods: a Bias Correction and Spatial Donwscaling (BCSD) and a Constructed Analogues (CA) downscaling. Hydrologic variables have been simulated from temperature, precipitation, wind and radiation forcing data using the Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model. We model wildfire as a function of temperature, moisture deficit, and land surface characteristics using nonlinear logistic regression techniques. Previous work on wildfire climatology and seasonal forecasting has demonstrated that these variables account for much of the inter-annual and seasonal variation in wildfire. The results of this study are monthly gridded probabilities of wildfire occurrence by fire size class, and estimates of the number of structures potentially affected by fires. In this presentation we will explore the range of modeled outcomes for wildfire in California, considering the effects of emissions scenarios, climate model sensitivities, downscaling methods, hydrologic simulations, statistical model specifications for

  1. A design for a sustained assessment of climate forcings and feedbacks on land use land cover change

    USGS Publications Warehouse

    Loveland, Thomas; Mahmood, Rezaul

    2014-01-01

    Land use and land cover change (LULCC) significantly influences the climate system. Hence, to prepare the nation for future climate change and variability, a sustained assessment of LULCC and its climatic impacts needs to be undertaken. To address this objective, not only do we need to determine contemporary trends in land use and land cover that affect, or are affected by, weather and climate but also identify sectors and regions that are most affected by weather and climate variability. Moreover, it is critical that we recognize land cover and regions that are most vulnerable to climate change and how end-use practices are adapting to climate change. This paper identifies a series of steps that need to be undertaken to address these key items. In addition, national-scale institutional capabilities are identified and discussed. Included in the discussions are challenges and opportunities for collaboration among these institutions for a sustained assessment.

  2. Human-experienced temperature changes exceed global average climate changes for all income groups

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.; Parshall, L.

    2009-12-01

    Global climate change alters local climates everywhere. Many climate change impacts, such as those affecting health, agriculture and labor productivity, depend on these local climatic changes, not global mean change. Traditional, spatially averaged climate change estimates are strongly influenced by the response of icecaps and oceans, providing limited information on human-experienced climatic changes. If used improperly by decision-makers, these estimates distort estimated costs of climate change. We overlay the IPCC’s 20 GCM simulations on the global population distribution to estimate local climatic changes experienced by the world population in the 21st century. The A1B scenario leads to a well-known rise in global average surface temperature of +2.0°C between the periods 2011-2030 and 2080-2099. Projected on the global population distribution in 2000, the median human will experience an annual average rise of +2.3°C (4.1°F) and the average human will experience a rise of +2.4°C (4.3°F). Less than 1% of the population will experience changes smaller than +1.0°C (1.8°F), while 25% and 10% of the population will experience changes greater than +2.9°C (5.2°F) and +3.5°C (6.2°F) respectively. 67% of the world population experiences temperature changes greater than the area-weighted average change of +2.0°C (3.6°F). Using two approaches to characterize the spatial distribution of income, we show that the wealthiest, middle and poorest thirds of the global population experience similar changes, with no group dominating the global average. Calculations for precipitation indicate that there is little change in average precipitation, but redistributions of precipitation occur in all income groups. These results suggest that economists and policy-makers using spatially averaged estimates of climate change to approximate local changes will systematically and significantly underestimate the impacts of climate change on the 21st century population. Top: The

  3. How Might Recharge Change Under Projected Climate Change in the Western U.S.?

    NASA Astrophysics Data System (ADS)

    Niraula, R.; Meixner, T.; Dominguez, F.; Bhattarai, N.; Rodell, M.; Ajami, H.; Gochis, D.; Castro, C.

    2017-10-01

    Although groundwater is a major water resource in the western U.S., little research has been done on the impacts of climate change on groundwater storage and recharge in the West. Here we assess the impact of projected changes in climate on groundwater recharge in the near (2021-2050) and far (2071-2100) future across the western U.S. Variable Infiltration Capacity model was run with RCP 6.0 forcing from 11 global climate models and "subsurface runoff" output was considered as recharge. Recharge is expected to decrease in the West (-5.8 ± 14.3%) and Southwest (-4.0 ± 6.7%) regions in the near future and in the South region (-9.5 ± 24.3%) in the far future. The Northern Rockies region is expected to get more recharge in the near (+5.3 ± 9.2%) and far (+11.8 ± 12.3%) future. Overall, southern portions of the western U.S. are expected to get less recharge in the future and northern portions will get more. Climate change interacts with land surface properties to affect the amount of recharge that occurs in the future. Effects on recharge due to change in vegetation response from projected changes in climate and CO2 concentration, though important, are not considered in this study.

  4. The impact of climate change on photovoltaic power generation in Europe

    PubMed Central

    Jerez, Sonia; Tobin, Isabelle; Vautard, Robert; Montávez, Juan Pedro; López-Romero, Jose María; Thais, Françoise; Bartok, Blanka; Christensen, Ole Bøssing; Colette, Augustin; Déqué, Michel; Nikulin, Grigory; Kotlarski, Sven; van Meijgaard, Erik; Teichmann, Claas; Wild, Martin

    2015-01-01

    Ambitious climate change mitigation plans call for a significant increase in the use of renewables, which could, however, make the supply system more vulnerable to climate variability and changes. Here we evaluate climate change impacts on solar photovoltaic (PV) power in Europe using the recent EURO-CORDEX ensemble of high-resolution climate projections together with a PV power production model and assuming a well-developed European PV power fleet. Results indicate that the alteration of solar PV supply by the end of this century compared with the estimations made under current climate conditions should be in the range (−14%;+2%), with the largest decreases in Northern countries. Temporal stability of power generation does not appear as strongly affected in future climate scenarios either, even showing a slight positive trend in Southern countries. Therefore, despite small decreases in production expected in some parts of Europe, climate change is unlikely to threaten the European PV sector. PMID:26658608

  5. Implications of climate change damage for agriculture: sectoral evidence from Pakistan.

    PubMed

    Ahmed, Adeel; Devadason, Evelyn S; Al-Amin, Abul Quasem

    2016-10-01

    This paper gives a projection of the possible damage of climate change on the agriculture sector of Pakistan for the period 2012-2037, based on a dynamic approach, using an environment-related applied computable general equilibrium model (CGE). Climate damage projections depict an upward trend for the period of review and are found to be higher than the global average. Further, the damage to the agricultural sector exceeds that for the overall economy. By sector, climatic damage disproportionately affects the major and minor crops, livestock and fisheries. The largest losses following climate change, relative to the other agricultural sectors, are expected for livestock. The reason for this is the orthodox system of production for livestock, with a low adaptability to negative shocks of climate change. Overall, the findings reveal the high exposure of the agriculture sector to climate damage. In this regard, policymakers in Pakistan should take seriously the effects of climate change on agriculture and consider suitable technology to mitigate those damages.

  6. Climate@Home: Crowdsourcing Climate Change Research

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Li, J.; Sun, M.; Bambacus, M.

    2011-12-01

    Climate change deeply impacts human wellbeing. Significant amounts of resources have been invested in building super-computers that are capable of running advanced climate models, which help scientists understand climate change mechanisms, and predict its trend. Although climate change influences all human beings, the general public is largely excluded from the research. On the other hand, scientists are eagerly seeking communication mediums for effectively enlightening the public on climate change and its consequences. The Climate@Home project is devoted to connect the two ends with an innovative solution: crowdsourcing climate computing to the general public by harvesting volunteered computing resources from the participants. A distributed web-based computing platform will be built to support climate computing, and the general public can 'plug-in' their personal computers to participate in the research. People contribute the spare computing power of their computers to run a computer model, which is used by scientists to predict climate change. Traditionally, only super-computers could handle such a large computing processing load. By orchestrating massive amounts of personal computers to perform atomized data processing tasks, investments on new super-computers, energy consumed by super-computers, and carbon release from super-computers are reduced. Meanwhile, the platform forms a social network of climate researchers and the general public, which may be leveraged to raise climate awareness among the participants. A portal is to be built as the gateway to the climate@home project. Three types of roles and the corresponding functionalities are designed and supported. The end users include the citizen participants, climate scientists, and project managers. Citizen participants connect their computing resources to the platform by downloading and installing a computing engine on their personal computers. Computer climate models are defined at the server side. Climate

  7. Development of climate risk services under climate change scenarios in the North Adriatic coast (Italy).

    NASA Astrophysics Data System (ADS)

    Valentina, Gallina; Silvia, Torresan; Anna, Sperotto; Elisa, Furlan; Andrea, Critto; Antonio, Marcomini

    2014-05-01

    Nowadays, the challenge for coastal stakeholders and decision makers is to incorporate climate change in land and policy planning in order to ensure a sustainable integrated coastal zone management aimed at preserve coastal environments and socio-economic activities. Consequently, an increasing amount of information on climate variability and its impact on human and natural ecosystem is requested. Climate risk services allows to bridge the gap between climate experts and decision makers communicating timely science-based information about impacts and risks related to climate change that could be incorporated into land planning, policy and practice. Within the CLIM-RUN project (FP7), a participatory Regional Risk Assessment (RRA) methodology was applied for the evaluation of water-related hazards in coastal areas (i.e. pluvial flood and sea-level rise inundation risks) taking into consideration future climate change scenarios in the case study of the North Adriatic Sea for the period 2040-2050. Specifically, through the analysis of hazard, exposure, vulnerability and risk and the application of Multi-Criteria Decision Analysis (MCDA), the RRA methodology allowed to identify and prioritize targets (i.e. residential and commercial-industrial areas, beaches, infrastructures, wetlands, agricultural typology) and sub-areas that are more likely to be affected by pluvial flood and sea-level rise impacts in the same region. From the early stages of the climate risk services development and application, the RRA followed a bottom-up approach taking into account the needs, knowledge and perspectives of local stakeholders dealing with the Integrated Coastal Zone Management (ICZM), by means of questionnaires, workshops and focus groups organized within the project. Specifically, stakeholders were asked to provide their needs in terms of time scenarios, geographical scale and resolution, choice of receptors, vulnerability factors and thresholds that were considered in the

  8. Susceptibility of the Batoka Gorge hydroelectric scheme to climate change

    NASA Astrophysics Data System (ADS)

    Harrison, Gareth P.; Whittington, H.(Bert) W.

    2002-07-01

    The continuing and increased use of renewable energy sources, including hydropower, is a key strategy to limit the extent of future climate change. Paradoxically, climate change itself may alter the availability of this natural resource, adversely affecting the financial viability of both existing and potential schemes. Here, a model is described that enables the assessment of the relationship between changes in climate and the viability, technical and financial, of hydro development. The planned Batoka Gorge scheme on the Zambezi River is used as a case study to validate the model and to predict the impact of climate change on river flows, electricity production and scheme financial performance. The model was found to perform well, given the inherent difficulties in the task, although there is concern regarding the ability of the hydrological model to reproduce the historic flow conditions of the upper Zambezi Basin. Simulations with climate change scenarios illustrate the sensitivity of the Batoka Gorge scheme to changes in climate. They suggest significant reductions in river flows, declining power production, reductions in electricity sales revenue and consequently an adverse impact on a range of investment measures.

  9. Climate change, agricultural insecticide exposure, and risk for freshwater communities.

    PubMed

    Kattwinkel, Mira; Kühne, Jan-Valentin; Foit, Kaarina; Liess, Matthias

    2011-09-01

    Climate change exerts direct effects on ecosystems but has additional indirect effects due to changes in agricultural practice. These include the increased use of pesticides, changes in the areas that are cultivated, and changes in the crops cultivated. It is well known that pesticides, and in particular insecticides, affect aquatic ecosystems adversely. To implement effective mitigation measures it is necessary to identify areas that are affected currently and those that will be affected in the future. As a consequence, we predicted potential exposure to insecticide (insecticide runoff potential, RP) under current conditions (1990) and under a model scenario of future climate and land use (2090) using a spatially explicit model on a continental scale, with a focus on Europe. Space-for-time substitution was used to predict future levels of insecticide application, intensity of agricultural land use, and cultivated crops. To assess the indirect effects of climate change, evaluation of the risk of insecticide exposure was based on a trait-based, climate-insensitive indicator system (SPEAR, SPEcies At Risk). To this end, RP and landscape characteristics that are relevant for the recovery of affected populations were combined to estimate the ecological risk (ER) of insecticides for freshwater communities. We predicted a strong increase in the application of, and aquatic exposure to, insecticides under the future scenario, especially in central and northern Europe. This, in turn, will result in a severe increase in ER in these regions. Hence, the proportion of stream sites adjacent to arable land that do not meet the requirements for good ecological status as defined by the EU Water Framework Directive will increase (from 33% to 39% for the EU-25 countries), in particular in the Scandinavian and Baltic countries (from 6% to 19%). Such spatially explicit mapping of risk enables the planning of adaptation and mitigation strategies including vegetated buffer strips and

  10. Path Dependence of Regional Climate Change

    NASA Astrophysics Data System (ADS)

    Herrington, Tyler; Zickfeld, Kirsten

    2013-04-01

    Path dependence of the climate response to CO2 forcing has been investigated from a global mean perspective, with evidence suggesting that long-term global mean temperature and precipitation changes are proportional to cumulative CO2 emissions, and independent of emissions pathway. Little research, however, has been done on path dependence of regional climate changes, particularly in areas that could be affected by tipping points. Here, we utilize the UVic Earth System Climate Model version 2.9, an Earth System Model of Intermediate Complexity. It consists of a 3-dimensional ocean general circulation model, coupled with a dynamic-thermodynamic sea ice model, and a thermodynamic energy-moisture balance model of the atmosphere. This is then coupled with a terrestrial carbon cycle model and an ocean carbon-cycle model containing an inorganic carbon and marine ecosystem component. Model coverage is global with a zonal resolution of 3.6 degrees and meridional resolution of 1.8 degrees. The model is forced with idealized emissions scenarios across five cumulative emission groups (1300 GtC, 2300 GtC, 3300 GtC, 4300 GtC, and 5300 GtC) to explore the path dependence of (and the possibility of hysteresis in) regional climate changes. Emission curves include both fossil carbon emissions and emissions from land use changes, and span a variety of peak and decline scenarios with varying emission rates, as well as overshoot and instantaneous pulse scenarios. Tipping points being explored include those responsible for the disappearance of summer Arctic sea-ice, the irreversible melt of the Greenland Ice Sheet, the collapse of the Atlantic Thermohaline Circulation, and the dieback of the Amazonian Rainforest. Preliminary results suggest that global mean climate change after cessation of CO2 emissions is independent of the emissions pathway, only varying with total cumulative emissions, in accordance with results from earlier studies. Forthcoming analysis will investigate path

  11. How do the methodological choices of your climate change study affect your results? A hydrologic case study across the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Chegwidden, O.; Nijssen, B.; Rupp, D. E.; Kao, S. C.; Clark, M. P.

    2017-12-01

    We describe results from a large hydrologic climate change dataset developed across the Pacific Northwestern United States and discuss how the analysis of those results can be seen as a framework for other large hydrologic ensemble investigations. This investigation will better inform future modeling efforts and large ensemble analyses across domains within and beyond the Pacific Northwest. Using outputs from the Coupled Model Intercomparison Project Phase 5 (CMIP5), we provide projections of hydrologic change for the domain through the end of the 21st century. The dataset is based upon permutations of four methodological choices: (1) ten global climate models (2) two representative concentration pathways (3) three meteorological downscaling methods and (4) four unique hydrologic model set-ups (three of which entail the same hydrologic model using independently calibrated parameter sets). All simulations were conducted across the Columbia River Basin and Pacific coastal drainages at a 1/16th ( 6 km) resolution and at a daily timestep. In total, the 172 distinct simulations offer an updated, comprehensive view of climate change projections through the end of the 21st century. The results consist of routed streamflow at 400 sites throughout the domain as well as distributed spatial fields of relevant hydrologic variables like snow water equivalent and soil moisture. In this presentation, we discuss the level of agreement with previous hydrologic projections for the study area and how these projections differ with specific methodological choices. By controlling for some methodological choices we can show how each choice affects key climatic change metrics. We discuss how the spread in results varies across hydroclimatic regimes. We will use this large dataset as a case study for distilling a wide range of hydroclimatological projections into useful climate change assessments.

  12. Vulnerability of the global terrestrial ecosystems to climate change.

    PubMed

    Li, Delong; Wu, Shuyao; Liu, Laibao; Zhang, Yatong; Li, Shuangcheng

    2018-05-27

    Climate change has far-reaching impacts on ecosystems. Recent attempts to quantify such impacts focus on measuring exposure to climate change but largely ignore ecosystem resistance and resilience, which may also affect the vulnerability outcomes. In this study, the relative vulnerability of global terrestrial ecosystems to short-term climate variability was assessed by simultaneously integrating exposure, sensitivity, and resilience at a high spatial resolution (0.05°). The results show that vulnerable areas are currently distributed primarily in plains. Responses to climate change vary among ecosystems and deserts and xeric shrublands are the most vulnerable biomes. Global vulnerability patterns are determined largely by exposure, while ecosystem sensitivity and resilience may exacerbate or alleviate external climate pressures at local scales; there is a highly significant negative correlation between exposure and sensitivity. Globally, 61.31% of the terrestrial vegetated area is capable of mitigating climate change impacts and those areas are concentrated in polar regions, boreal forests, tropical rainforests, and intact forests. Under current sensitivity and resilience conditions, vulnerable areas are projected to develop in high Northern Hemisphere latitudes in the future. The results suggest that integrating all three aspects of vulnerability (exposure, sensitivity, and resilience) may offer more comprehensive and spatially explicit adaptation strategies to reduce the impacts of climate change on terrestrial ecosystems. © 2018 John Wiley & Sons Ltd.

  13. Modeling U.S. water resources under climate change

    NASA Astrophysics Data System (ADS)

    Blanc, Elodie; Strzepek, Kenneth; Schlosser, Adam; Jacoby, Henry; Gueneau, Arthur; Fant, Charles; Rausch, Sebastian; Reilly, John

    2014-04-01

    Water is at the center of a complex and dynamic system involving climatic, biological, hydrological, physical, and human interactions. We demonstrate a new modeling system that integrates climatic and hydrological determinants of water supply with economic and biological drivers of sectoral and regional water requirement while taking into account constraints of engineered water storage and transport systems. This modeling system is an extension of the Massachusetts Institute of Technology (MIT) Integrated Global System Model framework and is unique in its consistent treatment of factors affecting water resources and water requirements. Irrigation demand, for example, is driven by the same climatic conditions that drive evapotranspiration in natural systems and runoff, and future scenarios of water demand for power plant cooling are consistent with energy scenarios driving climate change. To illustrate the modeling system we select "wet" and "dry" patterns of precipitation for the United States from general circulation models used in the Climate Model Intercomparison Project (CMIP3). Results suggest that population and economic growth alone would increase water stress in the United States through mid-century. Climate change generally increases water stress with the largest increases in the Southwest. By identifying areas of potential stress in the absence of specific adaptation responses, the modeling system can help direct attention to water planning that might then limit use or add storage in potentially stressed regions, while illustrating how avoiding climate change through mitigation could change likely outcomes.

  14. Climate-change scenarios

    USGS Publications Warehouse

    Wagner, Frederic H.; Stohlgren, T.J.; Baldwin, C.K.; Mearns, L.O.; Wagner, Frederic H.

    2003-01-01

    Three procedures were used to develop a set of plausible scenarios of anthropogenic climate change by the year 2100 that could be posed to the sectors selected for assessment (Fig. 2.2). First, a workshop of climatologists with expertise in western North American climates was convened from September 10-12, 1998 at the National Center for Ecological Analysis and Synthesis in Santa Barbara, CA to discuss and propose a set of scenarios for the Rocky Mountain/Great Basin (RMGB) region.Secondly, the 20th-century climate record was analyzed to determine what trends might have occurred during the period. Since CO2 and other greenhouse gases increased during the century, it was reasonable to examine whether the changes projected for the 21st century had begun to appear during the 20th, at least qualitatively though not quantitatively.Third, on the assumption of a two-fold increase in atmospheric CO2 by 2100, climate-change scenarios for the 21st century were projected with two, state-of-the-art computer models that simulate the complex interactions between earth, atmosphere, and ocean to produce the earth’s climate system. Each of the last two procedures has its strengths and weaknesses, and each can function to some degree as a check on the other. The historical analysis has the advantage of using empirical measurements of actual climate change taken over an extensive network of measuring stations. These make it possible to subdivide a large region like the RMGB into subreqions to assess the uniformity of climate and climate change over the region. And the historical measurements can to some degree serve as a check on the GCM simulations when the two are compared over the same time period.

  15. NPOESS, Essential Climates Variables and Climate Change

    NASA Astrophysics Data System (ADS)

    Forsythe-Newell, S. P.; Bates, J. J.; Barkstrom, B. R.; Privette, J. L.; Kearns, E. J.

    2008-12-01

    Advancement in understanding, predicting and mitigating against climate change implies collaboration, close monitoring of Essential Climate Variable (ECV)s through development of Climate Data Record (CDR)s and effective action with specific thematic focus on human and environmental impacts. Towards this end, NCDC's Scientific Data Stewardship (SDS) Program Office developed Climate Long-term Information and Observation system (CLIO) for satellite data identification, characterization and use interrogation. This "proof-of-concept" online tool provides the ability to visualize global CDR information gaps and overlaps with options to temporally zoom-in from satellite instruments to climate products, data sets, data set versions and files. CLIO provides an intuitive one-stop web site that displays past, current and planned launches of environmental satellites in conjunction with associated imagery and detailed information. This tool is also capable of accepting and displaying Web-based input from Subject Matter Expert (SME)s providing a global to sub-regional scale perspective of all ECV's and their impacts upon climate studies. SME's can access and interact with temporal data from the past and present, or for future planning of products, datasets/dataset versions, instruments, platforms and networks. CLIO offers quantifiable prioritization of ECV/CDR impacts that effectively deal with climate change issues, their associated impacts upon climate, and this offers an intuitively objective collaboration and consensus building tool. NCDC's latest tool empowers decision makers and the scientific community to rapidly identify weaknesses and strengths in climate change monitoring strategies and significantly enhances climate change collaboration and awareness.

  16. Tracking lags in historical plant species' shifts in relation to regional climate change.

    PubMed

    Ash, Jeremy D; Givnish, Thomas J; Waller, Donald M

    2017-03-01

    Can species shift their distributions fast enough to track changes in climate? We used abundance data from the 1950s and the 2000s in Wisconsin to measure shifts in the distribution and abundance of 78 forest-understory plant species over the last half-century and compare these shifts to changes in climate. We estimated temporal shifts in the geographic distribution of each species using vectors to connect abundance-weighted centroids from the 1950s and 2000s. These shifts in distribution reflect colonization, extirpation, and changes in abundance within sites, separately quantified here. We then applied climate analog analyses to compute vectors representing the climate change that each species experienced. Species shifted mostly to the northwest (mean: 49 ± 29 km) primarily reflecting processes of colonization and changes in local abundance. Analog climates for these species shifted even further to the northwest, however, exceeding species' shifts by an average of 90 ± 40 km. Most species thus failed to match recent rates of climate change. These lags decline in species that have colonized more sites and those with broader site occupancy, larger seed mass, and higher habitat fidelity. Thus, species' traits appear to affect their responses to climate change, but relationships are weak. As climate change accelerates, these lags will likely increase, potentially threatening the persistence of species lacking the capacity to disperse to new sites or locally adapt. However, species with greater lags have not yet declined more in abundance. The extent of these threats will likely depend on how other drivers of ecological change and interactions among species affect their responses to climate change. © 2016 John Wiley & Sons Ltd.

  17. Climate Change and Climate Variability in the Latin American Region

    NASA Astrophysics Data System (ADS)

    Magrin, G. O.; Gay Garcia, C.; Cruz Choque, D.; Gimenez-Sal, J. C.; Moreno, A. R.; Nagy, G. J.; Nobre, C.; Villamizar, A.

    2007-05-01

    Over the past three decades LA was subjected to several climate-related impacts due to increased El Niño occurrences. Two extremely intense episodes of El Niño and other increased climate extremes happened during this period contributing greatly to augment the vulnerability of human systems to natural disasters. In addition to weather and climate, the main drivers of the increased vulnerability are demographic pressure, unregulated urban growth, poverty and rural migration, low investment in infrastructure and services, and problems in inter-sector coordination. As well, increases in temperature and increases/decreases in precipitation observed during the last part of 20th century have yet led to intensification of glaciers melting, increases in floods/droughts and forest fires frequency, increases in morbidity and mortality, increases in plant diseases incidence; lost of biodiversity, reduction in dairy cattle production, and problems with hydropower generation, highly affecting LA human system. For the end of the 21st century, the projected mean warming for LA ranges from 1 to 7.5ºC and the frequency of weather and climate extremes could increase. Additionally, deforestation is projected to continue leading to a reduction of 25 percent in Amazonia forest in 2020 and 40 percent in 2050. Soybeans planted area in South America could increase by 55 percent by 2020 enhancing aridity/desertification in many of the already water- stressed regions. By 2050 LA population is likely to be 50 percent larger than in 2000, and migration from the country sides to the cities will continue. In the near future, these predicted changes are very likely to severely affect a number of ecosystems and sectors distribution; b) Disappearing most tropical glaciers; c) Reducing water availability and hydropower generation; d) Increasing desertification and aridity; e) Severely affecting people, resources and economic activities in coastal areas; f) Increasing crop's pests and diseases

  18. Temperate Mountain Forest Biodiversity under Climate Change: Compensating Negative Effects by Increasing Structural Complexity

    PubMed Central

    Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt

    2014-01-01

    Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species’ occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species’ occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying

  19. Temperate mountain forest biodiversity under climate change: compensating negative effects by increasing structural complexity.

    PubMed

    Braunisch, Veronika; Coppes, Joy; Arlettaz, Raphaël; Suchant, Rudi; Zellweger, Florian; Bollmann, Kurt

    2014-01-01

    Species adapted to cold-climatic mountain environments are expected to face a high risk of range contractions, if not local extinctions under climate change. Yet, the populations of many endothermic species may not be primarily affected by physiological constraints, but indirectly by climate-induced changes of habitat characteristics. In mountain forests, where vertebrate species largely depend on vegetation composition and structure, deteriorating habitat suitability may thus be mitigated or even compensated by habitat management aiming at compositional and structural enhancement. We tested this possibility using four cold-adapted bird species with complementary habitat requirements as model organisms. Based on species data and environmental information collected in 300 1-km2 grid cells distributed across four mountain ranges in central Europe, we investigated (1) how species' occurrence is explained by climate, landscape, and vegetation, (2) to what extent climate change and climate-induced vegetation changes will affect habitat suitability, and (3) whether these changes could be compensated by adaptive habitat management. Species presence was modelled as a function of climate, landscape and vegetation variables under current climate; moreover, vegetation-climate relationships were assessed. The models were extrapolated to the climatic conditions of 2050, assuming the moderate IPCC-scenario A1B, and changes in species' occurrence probability were quantified. Finally, we assessed the maximum increase in occurrence probability that could be achieved by modifying one or multiple vegetation variables under altered climate conditions. Climate variables contributed significantly to explaining species occurrence, and expected climatic changes, as well as climate-induced vegetation trends, decreased the occurrence probability of all four species, particularly at the low-altitudinal margins of their distribution. These effects could be partly compensated by modifying

  20. How Do Marine Pelagic Species Respond to Climate Change? Theories and Observations

    NASA Astrophysics Data System (ADS)

    Beaugrand, Grégory; Kirby, Richard R.

    2018-01-01

    In this review, we show how climate affects species, communities, and ecosystems, and why many responses from the species to the biome level originate from the interaction between the species’ ecological niche and changes in the environmental regime in both space and time. We describe a theory that allows us to understand and predict how marine species react to climate-induced changes in ecological conditions, how communities form and are reconfigured, and so how biodiversity is arranged and may respond to climate change. Our study shows that the responses of species to climate change are therefore intelligible—that is, they have a strong deterministic component and can be predicted.

  1. Inadvertent Weather Modification in Urban Areas: Lessons for Global Climate Change.

    NASA Astrophysics Data System (ADS)

    Changnon, Stanley A.

    1992-05-01

    Large metropolitan areas in North America, home to 65% of the nation's population, have created major changes in their climates over the past 150 years. The rate and amount of the urban climate change approximate those being predicted globally using climate models. Knowledge of urban weather and climate modification holds lessons for the global climate change issue. First, adjustments to urban climate changes can provide guidance for adjusting to global change. A second lesson relates to the difficulty but underscores the necessity of providing scientifically credible proof of change within the noise of natural climatic variability. The evolution of understanding about how urban conditions influence weather reveals several unexpected outcomes, particularly relating to precipitation changes. These suggest that similar future surprises can be expected in a changed global climate, a third lesson. In-depth studies of how urban climate changes affected the hydrologic cycle, the regional economy, and human activities were difficult because of data problems, lack of impact methodology, and necessity for multi disciplinary investigations. Similar impact studies for global climate change will require diverse scientific talents and funding commitments adequate to measure the complexity of impacts and human adjustments. Understanding the processes whereby urban areas and other human activities have altered the atmosphere and changed clouds and precipitation regionally appears highly relevant to the global climate-change issue. Scientific and governmental policy development needs to recognize an old axiom that became evident in the studies of inadvertent urban and regional climate change and their behavioral implications: Think globally but act locally. Global climate change is an international issue, and the atmosphere must be treated globally. But the impacts and the will to act and adjust will occur regionally.

  2. Assessment of Coastal Governance for Climate Change Adaptation in Kenya

    NASA Astrophysics Data System (ADS)

    Ojwang, Lenice; Rosendo, Sergio; Celliers, Louis; Obura, David; Muiti, Anastasia; Kamula, James; Mwangi, Maina

    2017-11-01

    The coastline of Kenya already experiences effects of climate change, adding to existing pressures such as urbanization. Integrated coastal management (ICM) is increasingly recognized as a key policy response to deal with the multiple challenges facing coastal zones, including climate change. It can create an enabling governance environment for effective local action on climate change by facilitating a structured approach to dealing with coastal issues. It encompasses the actions of a wide range of actors, including local governments close to people and their activities affected by climate change. Functioning ICM also offers opportunities for reducing risks and building resilience. This article applied a modified capitals approach framework (CAF), consisting of five "capitals," to assess the status of county government capacity to respond to climate change within the context of coastal governance in three county governments in Kenya. The baseline was defined in terms of governance relating to the implementation of the interrelated policy systems of ICM and coastal climate change adaptation (CCA). The CAF framework provided a systematic approach to building a governance baseline against which to assess the progress of county governments in responding to climate change. It identified gaps in human capacity, financial resource allocation to adaptation and access to climate change information. Furthermore, it showed that having well-developed institutions, including regulatory frameworks at the national level can facilitate but does not automatically enable adaptation at the county level.

  3. Direct and indirect effects of climate change on the risk of infection by water-transmitted pathogens.

    PubMed

    Sterk, Ankie; Schijven, Jack; de Nijs, Ton; de Roda Husman, Ana Maria

    2013-11-19

    Climate change is likely to affect the infectious disease burden from exposure to pathogens in water used for drinking and recreation. Effective intervention measures require quantification of impacts of climate change on the distribution of pathogens in the environment and their potential effects on human health. Objectives of this systematic review were to summarize current knowledge available to estimate how climate change may directly and indirectly affect infection risks due to Campylobacter, Cryptosporidium, norovirus, and Vibrio. Secondary objectives were to prioritize natural processes and interactions that are susceptible to climate change and to identify knowledge gaps. Search strategies were determined based on a conceptual model and scenarios with the main emphasis on The Netherlands. The literature search resulted in a large quantity of publications on climate variables affecting pathogen input and behavior in aquatic environments. However, not all processes and pathogens are evenly covered by the literature, and in many cases, the direction of change is still unclear. To make useful predictions of climate change, it is necessary to combine both negative and positive effects. This review provides an overview of the most important effects of climate change on human health and shows the importance of QMRA to quantify the net effects.

  4. Misconceptions Surrounding Climate Change: A Review of the Literature

    NASA Astrophysics Data System (ADS)

    Templeton, C. M.; McNeal, K. S.; Libarkin, J.

    2011-12-01

    Misconceptions about climate change abound in every corner of society. The result manifests itself ranging from apprehension to total disregard for climate change conditions. According to several sources, however, a large percentage of the U. S. population do, indeed indicate some concern over global warming and climate change in general. These climate change misconceptions are numerous and include, to name a few; confusion between weather and climate, how greenhouse gases are affecting the earth, the effects of ozone depletion, earth's natural cycles, volcanic activity, nuclear waste and a host of other anthropogenic influences. This paper is a review of the current research literature relating to climate change misconceptions. These errant views will be addressed, cataloged, enumerated, and ranked to get a grasp on where the general population, politicians, scientists, and educators as well as students stand on informed climate change information. The categories where misconceptions arise have been identified in this literature review study and include the following: Natural cycles of the earth, ecological which include deforestation, urban development and any human intervention on the environment, educational - including teacher strategies, student understanding and textbook updates, emotional, ozone layer and its interactions, polar ice, political regulations, mandates and laws, pollution from human sources as well as from nature, religious beliefs and dogma and social beliefs. We suggest appropriate solutions for addressing these misconceptions, especially in the classroom setting, and broadly include available funding sources for work in climate change education. Some solutions include need for compilation of appropriate education resources and materials for public use, need for the development of educational materials that appropriately address the variety of publics, and need for programs that are conducting climate change education research and EPO work to

  5. Reliability of flipper-banded penguins as indicators of climate change.

    PubMed

    Saraux, Claire; Le Bohec, Céline; Durant, Joël M; Viblanc, Vincent A; Gauthier-Clerc, Michel; Beaune, David; Park, Young-Hyang; Yoccoz, Nigel G; Stenseth, Nils C; Le Maho, Yvon

    2011-01-13

    In 2007, the Intergovernmental Panel on Climate Change highlighted an urgent need to assess the responses of marine ecosystems to climate change. Because they lie in a high-latitude region, the Southern Ocean ecosystems are expected to be strongly affected by global warming. Using top predators of this highly productive ocean (such as penguins) as integrative indicators may help us assess the impacts of climate change on marine ecosystems. Yet most available information on penguin population dynamics is based on the controversial use of flipper banding. Although some reports have found the effects of flipper bands to be deleterious, some short-term (one-year) studies have concluded otherwise, resulting in the continuation of extensive banding schemes and the use of data sets thus collected to predict climate impact on natural populations. Here we show that banding of free-ranging king penguins (Aptenodytes patagonicus) impairs both survival and reproduction, ultimately affecting population growth rate. Over the course of a 10-year longitudinal study, banded birds produced 41% [corrected] fewer chicks and had a survival rate 16 percentage points [corrected] lower than non-banded birds, demonstrating a massive long-term impact of banding and thus refuting the assumption that birds will ultimately adapt to being banded. Indeed, banded birds still arrived later for breeding at the study site and had longer foraging trips even after 10 years. One of our major findings is that responses of flipper-banded penguins to climate variability (that is, changes in sea surface temperature and in the Southern Oscillation index) differ from those of non-banded birds. We show that only long-term investigations may allow an evaluation of the impact of flipper bands and that every major life-history trait can be affected, calling into question the banding schemes still going on. In addition, our understanding of the effects of climate change on marine ecosystems based on flipper

  6. Predicted changes in climatic niche and climate refugia of conservation priority salamander species in the northeastern United States

    USGS Publications Warehouse

    Sutton, William B.; Barrett, Kyle; Moody, Allison T.; Loftin, Cynthia S.; deMaynadier, Phillip G.; Nanjappa, Priya

    2015-01-01

    Global climate change represents one of the most extensive and pervasive threats to wildlife populations. Amphibians, specifically salamanders, are particularly susceptible to the effects of changing climates due to their restrictive physiological requirements and low vagility; however, little is known about which landscapes and species are vulnerable to climate change. Our study objectives included, (1) evaluating species-specific predictions (based on 2050 climate projections) and vulnerabilities to climate change and (2) using collective species responses to identify areas of climate refugia for conservation priority salamanders in the northeastern United States. All evaluated salamander species were projected to lose a portion of their climatic niche. Averaged projected losses ranged from 3%–100% for individual species, with the Cow Knob Salamander (Plethodon punctatus), Cheat Mountain Salamander (Plethodon nettingi), Shenandoah Mountain Salamander (Plethodon virginia), Mabee’s Salamander (Ambystoma mabeei), and Streamside Salamander (Ambystoma barbouri) predicted to lose at least 97% of their landscape-scale climatic niche. The Western Allegheny Plateau was predicted to lose the greatest salamander climate refugia richness (i.e., number of species with a climatically-suitable niche in a landscape patch), whereas the Central Appalachians provided refugia for the greatest number of species during current and projected climate scenarios. Our results can be used to identify species and landscapes that are likely to be further affected by climate change and potentially resilient habitats that will provide consistent climatic conditions in the face of environmental change.

  7. Climate Change In Indonesia (Case Study : Medan, Palembang, Semarang)

    NASA Astrophysics Data System (ADS)

    Suryadi, Yadi; Sugianto, Denny Nugroho; Hadiyanto

    2018-02-01

    Indonesia's maritime continent is one of the most vulnerable regions regarding to climate change impacts. One of the vulnerable areas affected are the urban areas, because they are home to almost half of Indonesia's population where they live and earn a living, so that environmental management efforts need to be done. To support such efforts, climate change analysis is required. The analysis was carried out in several big cities in Indonesia. The method used in the research was trend analysis of temperature, rainfall, shifts in rainfall patterns, and extreme climatic trend. The data of rainfall and temperature were obtained from Meteorology and Geophysics Agency (BMKG). The result shows that the air temperature and rainfall have a positive trend, except in Semarang City which having a negative rainfall trend. The result also shows heavy rainfall trends. These indicate that climate is changing in these three cities.

  8. Bipolar correlation of volcanism with millennial climate change

    PubMed Central

    Bay, Ryan C.; Bramall, Nathan; Price, P. Buford

    2004-01-01

    Analyzing data from our optical dust logger, we find that volcanic ash layers from the Siple Dome (Antarctica) borehole are simultaneous (with >99% rejection of the null hypothesis) with the onset of millennium-timescale cooling recorded at Greenland Ice Sheet Project 2 (GISP2; Greenland). These data are the best evidence yet for a causal connection between volcanism and millennial climate change and lead to possibilities of a direct causal relationship. Evidence has been accumulating for decades that volcanic eruptions can perturb climate and possibly affect it on long timescales and that volcanism may respond to climate change. If rapid climate change can induce volcanism, this result could be further evidence of a southern-lead North–South climate asynchrony. Alternatively, a volcanic-forcing viewpoint is of particular interest because of the high correlation and relative timing of the events, and it may involve a scenario in which volcanic ash and sulfate abruptly increase the soluble iron in large surface areas of the nutrient-limited Southern Ocean, stimulate growth of phytoplankton, which enhance volcanic effects on planetary albedo and the global carbon cycle, and trigger northern millennial cooling. Large global temperature swings could be limited by feedback within the volcano–climate system. PMID:15096586

  9. The neurobiology of climate change

    NASA Astrophysics Data System (ADS)

    O'Donnell, Sean

    2018-02-01

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  10. The neurobiology of climate change.

    PubMed

    O'Donnell, Sean

    2018-01-06

    Directional climate change (global warming) is causing rapid alterations in animals' environments. Because the nervous system is at the forefront of animals' interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

  11. Transient simulations of historical climate change including interactive carbon emissions from land-use change.

    NASA Astrophysics Data System (ADS)

    Matveev, A.; Matthews, H. D.

    2009-04-01

    Carbon fluxes from land conversion are among the most uncertain variables in our understanding of the contemporary carbon cycle, which limits our ability to estimate both the total human contribution to current climate forcing and the net effect of terrestrial biosphere changes on atmospheric CO2 increases. The current generation of coupled climate-carbon models have made significant progress in simulating the coupled climate and carbon cycle response to anthropogenic CO2 emissions, but do not typically include land-use change as a dynamic component of the simulation. In this work we have incorporated a book-keeping land-use carbon accounting model into the University of Victoria Earth System Climate Model (UVic ESCM), and intermediate-complexity coupled climate-carbon model. The terrestrial component of the UVic ESCM allows an aerial competition of five plant functional types (PFTs) in response to climatic conditions and area availability, and tracks the associated changes in affected carbon pools. In order to model CO2 emissions from land conversion in the terrestrial component of the model, we calculate the allocation of carbon to short and long-lived wood products following specified land-cover change, and use varying decay timescales to estimate CO2 emissions. We use recently available spatial datasets of both crop and pasture distributions to drive a series of transient simulations and estimate the net contribution of human land-use change to historical carbon emissions and climate change.

  12. Climate change, extreme weather events, and us health impacts: what can we say?

    PubMed

    Mills, David M

    2009-01-01

    Address how climate change impacts on a group of extreme weather events could affect US public health. A literature review summarizes arguments for, and evidence of, a climate change signal in select extreme weather event categories, projections for future events, and potential trends in adaptive capacity and vulnerability in the United States. Western US wildfires already exhibit a climate change signal. The variability within hurricane and extreme precipitation/flood data complicates identifying a similar climate change signal. Health impacts of extreme events are not equally distributed and are very sensitive to a subset of exceptional extreme events. Cumulative uncertainty in forecasting climate change driven characteristics of extreme events and adaptation prevents confidently projecting the future health impacts from hurricanes, wildfires, and extreme precipitation/floods in the United States attributable to climate change.

  13. Development of risk-based air quality management strategies under impacts of climate change.

    PubMed

    Liao, Kuo-Jen; Amar, Praveen; Tagaris, Efthimios; Russell, Armistead G

    2012-05-01

    Climate change is forecast to adversely affect air quality through perturbations in meteorological conditions, photochemical reactions, and precursor emissions. To protect the environment and human health from air pollution, there is an increasing recognition of the necessity of developing effective air quality management strategies under the impacts of climate change. This paper presents a framework for developing risk-based air quality management strategies that can help policy makers improve their decision-making processes in response to current and future climate change about 30-50 years from now. Development of air quality management strategies under the impacts of climate change is fundamentally a risk assessment and risk management process involving four steps: (1) assessment of the impacts of climate change and associated uncertainties; (2) determination of air quality targets; (3) selections of potential air quality management options; and (4) identification of preferred air quality management strategies that minimize control costs, maximize benefits, or limit the adverse effects of climate change on air quality when considering the scarcity of resources. The main challenge relates to the level of uncertainties associated with climate change forecasts and advancements in future control measures, since they will significantly affect the risk assessment results and development of effective air quality management plans. The concept presented in this paper can help decision makers make appropriate responses to climate change, since it provides an integrated approach for climate risk assessment and management when developing air quality management strategies. Development of climate-responsive air quality management strategies is fundamentally a risk assessment and risk management process. The risk assessment process includes quantification of climate change impacts on air quality and associated uncertainties. Risk management for air quality under the impacts of

  14. Changing Climates @ Colorado State: 100 (Multidisciplinary) Views of Climate Change

    NASA Astrophysics Data System (ADS)

    Campbell, S.; Calderazzo, J.; Changing Climates, Cmmap Education; Diversity Team

    2011-12-01

    We would like to talk about a multidisciplinary education and outreach program we co-direct at Colorado State University, with support from an NSF-funded STC, CMMAP, the Center for Multiscale Modeling of Atmospheric Processes. We are working to raise public literacy about climate change by providing information that is high quality, up to date, thoroughly multidisciplinary, and easy for non-specialists to understand. Our primary audiences are college-level students, their teachers, and the general public. Our motto is Climate Change is Everybody's Business. To encourage and help our faculty infuse climate-change content into their courses, we have organized some 115 talks given by as many different speakers-speakers drawn from 28 academic departments, all 8 colleges at CSU, and numerous other entities from campus, the community, and farther afield. We began with a faculty-teaching-faculty series and then broadened our attentions to the whole campus and surrounding community. Some talks have been for narrowly focused audiences such as extension agents who work on energy, but most are for more eclectic groups of students, staff, faculty, and citizens. We count heads at most events, and our current total is roughly 6,000. We have created a website (http://changingclimates.colostate.edu) that includes videotapes of many of these talks, short videos we have created, and annotated sources that we judge to be accurate, interesting, clearly written, and aimed at non-specialists, including books, articles and essays, websites, and a few items specifically for college teachers (such as syllabi). Pages of the website focus on such topics as how the climate works / how it changes; what's happening / what might happen; natural ecosystems; agriculture; impacts on people; responses from ethics, art, literature; communication; daily life; policy; energy; and-pulling all the pieces together-the big picture. We have begun working on a new series of very short videos that can be

  15. Using physiology to understand climate-driven changes in disease and their implications for conservation.

    PubMed

    Rohr, Jason R; Raffel, Thomas R; Blaustein, Andrew R; Johnson, Pieter T J; Paull, Sara H; Young, Suzanne

    2013-01-01

    Controversy persists regarding the contributions of climate change to biodiversity losses, through its effects on the spread and emergence of infectious diseases. One of the reasons for this controversy is that there are few mechanistic studies that explore the links among climate change, infectious disease, and declines of host populations. Given that host-parasite interactions are generally mediated by physiological responses, we submit that physiological models could facilitate the prediction of how host-parasite interactions will respond to climate change, and might offer theoretical and terminological cohesion that has been lacking in the climate change-disease literature. We stress that much of the work on how climate influences host-parasite interactions has emphasized changes in climatic means, despite a hallmark of climate change being changes in climatic variability and extremes. Owing to this gap, we highlight how temporal variability in weather, coupled with non-linearities in responses to mean climate, can be used to predict the effects of climate on host-parasite interactions. We also discuss the climate variability hypothesis for disease-related declines, which posits that increased unpredictable temperature variability might provide a temporary advantage to pathogens because they are smaller and have faster metabolisms than their hosts, allowing more rapid acclimatization following a temperature shift. In support of these hypotheses, we provide case studies on the role of climatic variability in host population declines associated with the emergence of the infectious diseases chytridiomycosis, withering syndrome, and malaria. Finally, we present a mathematical model that provides the scaffolding to integrate metabolic theory, physiological mechanisms, and large-scale spatiotemporal processes to predict how simultaneous changes in climatic means, variances, and extremes will affect host-parasite interactions. However, several outstanding questions

  16. Current Climate Variability & Change

    NASA Astrophysics Data System (ADS)

    Diem, J.; Criswell, B.; Elliott, W. C.

    2013-12-01

    Current Climate Variability & Change is the ninth among a suite of ten interconnected, sequential labs that address all 39 climate-literacy concepts in the U.S. Global Change Research Program's Climate Literacy: The Essential Principles of Climate Sciences. The labs are as follows: Solar Radiation & Seasons, Stratospheric Ozone, The Troposphere, The Carbon Cycle, Global Surface Temperature, Glacial-Interglacial Cycles, Temperature Changes over the Past Millennium, Climates & Ecosystems, Current Climate Variability & Change, and Future Climate Change. All are inquiry-based, on-line products designed in a way that enables students to construct their own knowledge of a topic. Questions representative of various levels of Webb's depth of knowledge are embedded in each lab. In addition to the embedded questions, each lab has three or four essential questions related to the driving questions for the lab suite. These essential questions are presented as statements at the beginning of the material to represent the lab objectives, and then are asked at the end as questions to function as a summative assessment. For example, the Current Climate Variability & Change is built around these essential questions: (1) What has happened to the global temperature at the Earth's surface, in the middle troposphere, and in the lower stratosphere over the past several decades?; (2) What is the most likely cause of the changes in global temperature over the past several decades and what evidence is there that this is the cause?; and (3) What have been some of the clearly defined effects of the change in global temperature on the atmosphere and other spheres of the Earth system? An introductory Prezi allows the instructor to assess students' prior knowledge in relation to these questions, while also providing 'hooks' to pique their interest related to the topic. The lab begins by presenting examples of and key differences between climate variability (e.g., Mt. Pinatubo eruption) and

  17. Climate change and prairie pothole wetlands: mitigating water-level and hydroperiod effects through upland management

    USGS Publications Warehouse

    Renton, David A.; Mushet, David M.; DeKeyser, Edward S.

    2015-01-01

    Prairie pothole wetlands offer crucial habitat for North America’s waterfowl populations. The wetlands also support an abundance of other species and provide ecological services valued by society. The hydrology of prairie pothole wetlands is dependent on atmospheric interactions. Therefore, changes to the region’s climate can have profound effects on wetland hydrology. The relevant literature related to climate change and upland management effects on prairie pothole wetland water levels and hydroperiods was reviewed. Climate change is widely expected to affect water levels and hydroperiods of prairie pothole wetlands, as well as the biota and ecological services that the wetlands support. In general, hydrologic model projections that incorporate future climate change scenarios forecast lower water levels in prairie pothole wetlands and longer periods spent in a dry condition, despite potential increases in precipitation. However, the extreme natural variability in climate and hydrology of prairie pothole wetlands necessitates caution when interpreting model results. Recent changes in weather patterns throughout much of the Prairie Pothole Region have been in increased precipitation that results in increased water inputs to wetlands above losses associated with warmer temperatures. However, observed precipitation increases are within the range of natural climate variability and therefore, may not persist. Identifying management techniques with the potential to affect water inputs to prairie pothole wetlands would provide increased options for managers when dealing with the uncertainties associated with a changing climate. Several grassland management techniques (for example, grazing and burning) have the potential to affect water levels and hydroperiods of prairie pothole by affecting infiltration, evapotranspiration, and snow deposition.

  18. Climate Change and Older Americans: State of the Science

    PubMed Central

    Hurley, Bradford J.; Schultz, Peter A.; Jaglom, Wendy S.; Krishnan, Nisha; Harris, Melinda

    2012-01-01

    Background: Older adults make up 13% of the U.S. population, but are projected to account for 20% by 2040. Coinciding with this demographic shift, the rate of climate change is accelerating, bringing rising temperatures; increased risk of floods, droughts, and wildfires; stronger tropical storms and hurricanes; rising sea levels; and other climate-related hazards. Older Americans are expected to be located in places that may be relatively more affected by climate change, including coastal zones and large metropolitan areas. Objective: The objective of this review is to assess the vulnerability of older Americans to climate change and to identify opportunities for adaptation. Methods: We performed an extensive literature survey and summarized key findings related to demographics; climate stressors relevant to older adults; factors contributing to exposure, sensitivity, and adaptive capacity; and adaptation strategies. Discussion: A range of physiological and socioeconomic factors make older adults especially sensitive to and/or at risk for exposure to heat waves and other extreme weather events (e.g., hurricanes, floods, droughts), poor air quality, and infectious diseases. Climate change may increase the frequency or severity of these events. Conclusions: Older Americans are likely to be especially vulnerable to stressors associated with climate change. Although a growing body of evidence reports the adverse effects of heat on the health of older adults, research gaps remain for other climate-related risks. We need additional study of the vulnerability of older adults and the interplay of vulnerability, resilience, and adaptive responses to projected climate stressors. PMID:23033457

  19. Climate change and the ecology and evolution of Arctic vertebrates.

    PubMed

    Gilg, Olivier; Kovacs, Kit M; Aars, Jon; Fort, Jérôme; Gauthier, Gilles; Grémillet, David; Ims, Rolf A; Meltofte, Hans; Moreau, Jérôme; Post, Eric; Schmidt, Niels Martin; Yannic, Glenn; Bollache, Loïc

    2012-02-01

    Climate change is taking place more rapidly and severely in the Arctic than anywhere on the globe, exposing Arctic vertebrates to a host of impacts. Changes in the cryosphere dominate the physical changes that already affect these animals, but increasing air temperatures, changes in precipitation, and ocean acidification will also affect Arctic ecosystems in the future. Adaptation via natural selection is problematic in such a rapidly changing environment. Adjustment via phenotypic plasticity is therefore likely to dominate Arctic vertebrate responses in the short term, and many such adjustments have already been documented. Changes in phenology and range will occur for most species but will only partly mitigate climate change impacts, which are particularly difficult to forecast due to the many interactions within and between trophic levels. Even though Arctic species richness is increasing via immigration from the South, many Arctic vertebrates are expected to become increasingly threatened during this century. © 2012 New York Academy of Sciences.

  20. Effects of climate change on forest vegetation [Chapter 6

    Treesearch

    Patrick N. Behrens; Robert E. Keane; David L. Peterson; Joanne J. Ho

    2018-01-01

    Projected rapid changes in climate will affect vegetation assemblages in the Intermountain Adaptation Partnership (IAP) region directly and indirectly. Direct effects include altered vegetation growth, mortality, and regeneration, and indirect effects include changes in disturbance regimes (Chapter 8) and interactions with altered ecosystem processes (e.g., hydrology,...

  1. Assessment of Climate Change in the Southwest United States: Key Findings

    NASA Astrophysics Data System (ADS)

    Garfin, G. M.

    2012-12-01

    The Assessment of Climate Change in the Southwest United States, is a technical input to the National Climate Assessment. The 121-author report summarizes knowledge about climate change and its impacts across Arizona, California, Colorado, Nevada, New Mexico, and Utah. The report looks at links between climate and natural resources, vulnerabilities to climate variability and change across the region and along the U.S.-Mexico border, and adaptation and mitigation choices for addressing future changes. The period since 1950 has been warmer than any period of comparable length in the last 600 years. Droughts of the past 2,000 years have exceeded the most severe and sustained drought during 1901-2010. In the last decade, flows in the major river basins of the Southwest have been lower than their 20th century averages; many snowmelt-fed streams in the region exhibited earlier snowmelt and earlier center of mass of annual streamflows. Climate models project continued temperature increases, with longer and hotter summer heat waves. Average precipitation is projected to decrease in the southern part of the region. Reduced streamflows are projected for the Rio Grande, Colorado, and San Joaquin rivers. More frequent and intense winter flooding is projected for the western Sierra Nevada, whereas Colorado Front Range summer flooding is projected to increase. Observed ecosystems impacts include changes in phenology, widespread forest disturbance due to the confluence of drought, increased temperatures, and changes to insect life cycles. Area burned by wildfire is projected to increase in most of the Southwest. Plant and animal species' distributions will be affected by climate change, and studies show that observed climate changes are strongly associated with observed changes in species' distributions. California coastal ecosystems will be affected by a combination of ocean warming, reduced oxygen content, sea level rise and ocean acidification. When west coast sea levels are

  2. Interactions of forest disturbance-recovery dynamics with a changing climate

    NASA Astrophysics Data System (ADS)

    Anderson-Teixeira, K. J.; Miller, A. D.; Tepley, A. J.; Bennett, A. C.; Wang, M.

    2015-12-01

    As the climate changes, altered disturbance-recovery dynamics in forests worldwide are likely to result in significant biogeochemical and biophysical feedbacks to the climate system. Climate shapes forest disturbance events including tree mortality and fire, with consequent climate feedbacks. For instance, in forests globally, drought increases tree mortality rates, having a stronger impact on larger trees and resulting in greater feedbacks to climate change than would occur if drought sensitivities were equal across tree size classes. Forest regeneration and associated biogeochemical and biophysical feedbacks are also shaped by climate: across the tropics the rate of biomass accumulation is faster in everwet than in seasonally dry climates, and in the Klamath region (N California / S Oregon), post-fire vegetation dynamics and microclimate are shaped by aridity. Forest recovery dynamics will be affected by elevated CO2 and climate change; for instance, models predict that forest regeneration rate, successional dynamics, and climate feedbacks will all be altered under elevated CO2. In combination, climatic impacts on disturbance and recovery can result in dramatic shifts in forest cover on the landscape level. For instance, in fire-prone forested landscapes, forest cover decreases with increasing frequency of high-severity fire and decreasing forest recovery rate, both of which could be altered by climate change, producing rapid loss of forest on the landscape level. Such effects may be amplified by the existence of alternative stable states, which can cause systems to experience non-reversible changes in cover type. Critical transitions in landscape-level forest cover would have significant biogeochemical and biophysical feedbacks. Thus, altered disturbance-recovery dynamics under a changing climate may have sudden and dramatic impacts on forest-climate interactions.

  3. Gender and climate change-induced migration: proposing a framework for analysis

    NASA Astrophysics Data System (ADS)

    Chindarkar, Namrata

    2012-06-01

    This paper proposes frameworks to analyze the gender dimensions of climate change-induced migration. The experiences, needs and priorities of climate migrants will vary by gender and these differences need to be accounted for if policies are to be inclusive. Among the vulnerable groups, women are likely to be disproportionately affected due to climate change because on average women tend to be poorer, less educated, have a lower health status and have limited direct access to or ownership of natural resources. Both the process (actual movement) and the outcomes (rural-rural or rural-urban migration, out-migration mainly of men) of climate change-induced migration are also likely to be highly gendered.

  4. Future Climate Change Will Favour Non-Specialist Mammals in the (Sub)Arctics

    PubMed Central

    Hof, Anouschka R.; Jansson, Roland; Nilsson, Christer

    2012-01-01

    Arctic and subarctic (i.e., [sub]arctic) ecosystems are predicted to be particularly susceptible to climate change. The area of tundra is expected to decrease and temperate climates will extend further north, affecting species inhabiting northern environments. Consequently, species at high latitudes should be especially susceptible to climate change, likely experiencing significant range contractions. Contrary to these expectations, our modelling of species distributions suggests that predicted climate change up to 2080 will favour most mammals presently inhabiting (sub)arctic Europe. Assuming full dispersal ability, most species will benefit from climate change, except for a few cold-climate specialists. However, most resident species will contract their ranges if they are not able to track their climatic niches, but no species is predicted to go extinct. If climate would change far beyond current predictions, however, species might disappear. The reason for the relative stability of mammalian presence might be that arctic regions have experienced large climatic shifts in the past, filtering out sensitive and range-restricted taxa. We also provide evidence that for most (sub)arctic mammals it is not climate change per se that will threaten them, but possible constraints on their dispersal ability and changes in community composition. Such impacts of future changes in species communities should receive more attention in literature. PMID:23285098

  5. Climate change impacts on forest fires: the stakeholders' perspective

    NASA Astrophysics Data System (ADS)

    Giannakopoulos, C.; Roussos, A.; Karali, A.; Hatzaki, M.; Xanthopoulos, G.; Chatzinikos, E.; Fyllas, N.; Georgiades, N.; Karetsos, G.; Maheras, G.; Nikolaou, I.; Proutsos, N.; Sbarounis, T.; Tsaggari, K.; Tzamtzis, I.; Goodess, C.

    2012-04-01

    In this work, we present a synthesis of the presentations and discussions which arose during a workshop on 'Impacts of climate change on forest fires' held in September 2011 at the National Observatory of Athens, Greece in the framework of EU project CLIMRUN. At first, a general presentation about climate change and extremes in the Greek territory provided the necessary background to the audience and highlighted the need for data and information exchange between scientists and stakeholders through climate services within CLIMRUN. Discussions and presentations that followed linked climate with forest science through the use of a meteorological index for fire risk and future projections of fire danger using regional climate models. The current situation on Greek forests was also presented, as well as future steps that should be taken to ameliorate the situation under a climate change world. A time series analysis of changes in forest fires using available historical data on forest ecosystems in Greece was given in this session. This led to the topic of forest fire risk assessment and fire prevention, stating all actions towards sustainable management of forests and effective mechanisms to control fires under climate change. Options for a smooth adaptation of forests to climate change were discussed together with the lessons learned on practical level on prevention, repression and rehabilitation of forest fires. In between there were useful interventions on sustainable hunting and biodiversity protection and on climate change impacts on forest ecosystems dynamics. The importance of developing an educational program for primary/secondary school students on forest fire management was also highlighted. The perspective of forest stakeholders on climate change and how this change can affect their current or future activities was addressed through a questionnaire they were asked to complete. Results showed that the majority of the participants consider climate variability

  6. Climate change refugia as a tool for climate adaptation

    EPA Science Inventory

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  7. Mapping Climate Change Vulnerabilities to Infectious Diseases in Europe

    PubMed Central

    Suk, Jonathan E.; Estevez, Virginia; Ebi, Kristie L.; Lindgren, Elisabet

    2011-01-01

    Background: The incidence, outbreak frequency, and distribution of many infectious diseases are generally expected to change as a consequence of climate change, yet there is limited regional information available to guide decision making. Objective: We surveyed government officials designated as Competent Bodies for Scientific Advice concerning infectious diseases to examine the degree to which they are concerned about potential effects of climate change on infectious diseases, as well as their perceptions of institutional capacities in their respective countries. Methods: In 2007 and 2009/2010, national infectious disease experts from 30 European Economic Area countries were surveyed about recent and projected infectious disease patterns in relation to climate change in their countries and the national capacity to cope with them. Results: A large majority of respondents agreed that climate change would affect vector-borne (86% of country representatives), food-borne (70%), water-borne (68%), and rodent-borne (68%) diseases in their countries. In addition, most indicated that institutional improvements are needed for ongoing surveillance programs (83%), collaboration with the veterinary sector (69%), management of animal disease outbreaks (66%), national monitoring and control of climate-sensitive infectious diseases (64%), health services during an infectious disease outbreak (61%), and diagnostic support during an epidemic (54%). Conclusions: Expert responses were generally consistent with the peer-reviewed literature regarding the relationship between climate change and vector- and water-borne diseases, but were less so for food-borne diseases. Shortcomings in institutional capacity to manage climate change vulnerability, identified in this assessment, should be addressed in impact, vulnerability, and adaptation assessments. PMID:22113877

  8. Climate change impacts and adaptive strategies: lessons from the grapevine.

    PubMed

    Mosedale, Jonathan R; Abernethy, Kirsten E; Smart, Richard E; Wilson, Robert J; Maclean, Ilya M D

    2016-11-01

    The cultivation of grapevines for winemaking, known as viticulture, is widely cited as a climate-sensitive agricultural system that has been used as an indicator of both historic and contemporary climate change. Numerous studies have questioned the viability of major viticulture regions under future climate projections. We review the methods used to study the impacts of climate change on viticulture in the light of what is known about the effects of climate and weather on the yields and quality of vineyard harvests. Many potential impacts of climate change on viticulture, particularly those associated with a change in climate variability or seasonal weather patterns, are rarely captured. Key biophysical characteristics of viticulture are often unaccounted for, including the variability of grapevine phenology and the exploitation of microclimatic niches that permit successful cultivation under suboptimal macroclimatic conditions. We consider how these same biophysical characteristics permit a variety of strategies by which viticulture can adapt to changing climatic conditions. The ability to realize these strategies, however, is affected by uneven exposure to risks across the winemaking sector, and the evolving capacity for decision-making within and across organizational boundaries. The role grape provenance plays in shaping perceptions of wine value and quality illustrates how conflicts of interest influence decisions about adaptive strategies within the industry. We conclude by considering what lessons can be taken from viticulture for studies of climate change impacts and the capacity for adaptation in other agricultural and natural systems. © 2016 John Wiley & Sons Ltd.

  9. Climate change. Climate in Medieval time.

    PubMed

    Bradley, Raymond S; Hughes, Malcolm K; Diaz, Henry F

    2003-10-17

    Many papers have referred to a "Medieval Warm Period." But how well defined is climate in this period, and was it as warm as or warmer than it is today? In their Perspective, Bradley et al. review the evidence and conclude that although the High Medieval (1100 to 1200 A.D.) was warmer than subsequent centuries, it was not warmer than the late 20th century. Moreover, the warmest Medieval temperatures were not synchronous around the globe. Large changes in precipitation patterns are a particular characteristic of "High Medieval" time. The underlying mechanisms for such changes must be elucidated further to inform the ongoing debate on natural climate variability and anthropogenic climate change.

  10. Climate change, cranes, and temperate floodplain ecosystems

    USGS Publications Warehouse

    King, Sammy L.

    2010-01-01

    Floodplain ecosystems provide important habitat to cranes globally. Lateral, longitudinal, vertical, and temporal hydrologic connectivity in rivers is essential to maintaining the functions and values of these systems. Agricultural development, flood control, water diversions, dams, and other anthropogenic activities have greatly affected hydrologic connectivity of river systems worldwide and altered the functional capacity of these systems. Although the specific effects of climate change in any given area are unknown, increased intensity and frequency of flooding and droughts and increased air and water temperatures are among many potential effects that can act synergistically with existing human modifications in these systems to create even greater challenges in maintaining ecosystem productivity. In this paper, I review basic hydrologic and geomorphic processes of river systems and use three North American rivers (Guadalupe, Platte, and Rio Grande) that are important to cranes as case studies to illustrate the challenges facing managers tasked with balancing the needs of cranes and people in the face of an uncertain climatic future. Each river system has unique natural and anthropogenic characteristics that will affect conservation strategies. Mitigating the effects of climate change on river systems necessitates an understanding of river/floodplain/landscape linkages, which include people and their laws as well as existing floodplain ecosystem conditions.

  11. Climate change and children's health--a call for research on what works to protect children.

    PubMed

    Xu, Zhiwei; Sheffield, Perry E; Hu, Wenbiao; Su, Hong; Yu, Weiwei; Qi, Xin; Tong, Shilu

    2012-09-10

    Climate change is affecting and will increasingly influence human health and wellbeing. Children are particularly vulnerable to the impact of climate change. An extensive literature review regarding the impact of climate change on children's health was conducted in April 2012 by searching electronic databases PubMed, Scopus, ProQuest, ScienceDirect, and Web of Science, as well as relevant websites, such as IPCC and WHO. Climate change affects children's health through increased air pollution, more weather-related disasters, more frequent and intense heat waves, decreased water quality and quantity, food shortage and greater exposure to toxicants. As a result, children experience greater risk of mental disorders, malnutrition, infectious diseases, allergic diseases and respiratory diseases. Mitigation measures like reducing carbon pollution emissions, and adaptation measures such as early warning systems and post-disaster counseling are strongly needed. Future health research directions should focus on: (1) identifying whether climate change impacts on children will be modified by gender, age and socioeconomic status; (2) refining outcome measures of children's vulnerability to climate change; (3) projecting children's disease burden under climate change scenarios; (4) exploring children's disease burden related to climate change in low-income countries; and (5) identifying the most cost-effective mitigation and adaptation actions from a children's health perspective.

  12. Assessment of Climate Change Adaptation Costs for the U.S. Road Network

    EPA Science Inventory

    The U.S. road network is one of the nation’s most important capital assets and is vital to the functioning of the U.S. economy. Climate change may represent a risk or an opportunity to this network, as changes in climate stress will affect the resources necessary for both road m...

  13. Climate change and food safety: an emerging issue with special focus on Europe.

    PubMed

    Miraglia, M; Marvin, H J P; Kleter, G A; Battilani, P; Brera, C; Coni, E; Cubadda, F; Croci, L; De Santis, B; Dekkers, S; Filippi, L; Hutjes, R W A; Noordam, M Y; Pisante, M; Piva, G; Prandini, A; Toti, L; van den Born, G J; Vespermann, A

    2009-05-01

    According to general consensus, the global climate is changing, which may also affect agricultural and livestock production. The potential impact of climate change on food security is a widely debated and investigated issue. Nonetheless, the specific impact on safety of food and feed for consumers has remained a less studied topic. This review therefore identifies the various food safety issues that are likely to be affected by changes in climate, particularly in Europe. Amongst the issues identified are mycotoxins formed on plant products in the field or during storage; residues of pesticides in plant products affected by changes in pest pressure; trace elements and/or heavy metals in plant products depending on changes in their abundance and availability in soils; polycyclic aromatic hydrocarbons in foods following changes in long-range atmospheric transport and deposition into the environment; marine biotoxins in seafood following production of phycotoxins by harmful algal blooms; and the presence of pathogenic bacteria in foods following more frequent extreme weather conditions, such as flooding and heat waves. Research topics that are amenable to further research are highlighted.

  14. Climate change and environmental concentrations of POPs: A review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadal, Martí, E-mail: marti.nadal@urv.cat; Marquès, Montse; Mari, Montse

    In recent years, the climate change impact on the concentrations of persistent organic pollutants (POPs) has become a topic of notable concern. Changes in environmental conditions such as the increase of the average temperature, or the UV-B radiation, are likely to influence the fate and behavior of POPs, ultimately affecting human exposure. The state of the art of the impact of climate change on environmental concentrations of POPs, as well as on human health risks, is here reviewed. Research gaps are also identified, while future studies are suggested. Climate change and POPs are a hot issue, for which wide attentionmore » should be paid not only by scientists, but also and mainly by policy makers. Most studies reported in the scientific literature are focused on legacy POPs, mainly polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and pesticides. However, the number of investigations aimed at estimating the impact of climate change on the environmental levels of polycyclic aromatic hydrocarbons (PAHs) is scarce, despite of the fact that exposure to PAHs and photodegradation byproducts may result in adverse health effects. Furthermore, no data on emerging POPs are currently available in the scientific literature. In consequence, an intensification of studies to identify and mitigate the indirect effects of the climate change on POP fate is needed to minimize the human health impact. Furthermore, being this a global problem, interactions between climate change and POPs must be addressed from an international perspective.« less

  15. Global Climate Change, Food Security and the U.S. Food System

    NASA Technical Reports Server (NTRS)

    Brown, Molly Elizabeth; Walsh, Margaret; Hauser, Rachel; Murray, Anthony; Jadin, Jenna; Baklund, Peter; Robinson, Paula

    2013-01-01

    Climate change influences on the major pillars of food security. Each of the four elements of food security (availability,access,utilization,andstability) is vulnerable to changes in climate. For example,reductions in production related to regional drought influence food availability at multiple scales. Changes in price influences the ability of certain populations to purchase food (access). Utilization maybe affected when production zones shift, reducing the availability of preferred or culturally appropriate types of food within a region. Stability of the food supply may be highly uncertain given an increased incidence of extreme climatic events and their influence on production patterns.

  16. Quantifying climate change impacts on runoff of zoonotic pathogens from land

    NASA Astrophysics Data System (ADS)

    Sterk, Ankie; de Roda Husman, Ana Maria; Stergiadi, Maria; de Nijs, Ton; Schijven, Jack

    2013-04-01

    Several studies have shown a correlation between rainfall and waterborne disease outbreaks. One of the mechanisms whereby rainfall may cause outbreaks is through an increase in runoff of animal faeces from fields to surface waters. Faeces originating from wildlife, domestic animals or manure-fertilized fields, is considered an important source of zoonotic pathogens to which people may be exposed by water recreation or drinking-water consumption. Climate changes affect runoff because of increasing winter precipitation and more extreme precipitation events, as well as changes in evaporation. Furthermore, drier summers are leading to longer periods of high soil moisture deficits, increasing the hydrophobicity of soil and consequently changing infiltration capacities. A conceptual model is designed to describe the impacts of climate changes on the terrestrial and aquatic ecosystems, which are both directly and indirectly affecting pathogen loads in the environment and subsequent public health risks. One of the major outcomes was the lack of quantitative data and limited qualitative analyses of impacts of climate changes on pathogen runoff. Quantifying the processes by which micro-organisms are transported from fields to waters is important to be able to estimate such impacts to enable targeted implementation of effective intervention measures. A quantitative model using Mathematica software will be developed to estimate concentrations of pathogens originating from overland flow during runoff events. Different input sources will be included by applying different land-use scenarios, including point source faecal pollution from dairy cows and geese and diffuse source pollution by fertilization. Zoonotic pathogens, i.e. Cryptosporidium and Campylobacter, were selected based on transport properties, faecal loads and disease burden. Transport and survival rates of these pathogens are determined including effects of changes in precipitation but also temperature induced

  17. Negative impacts of climate change on cereal yields: statistical evidence from France

    NASA Astrophysics Data System (ADS)

    Gammans, Matthew; Mérel, Pierre; Ortiz-Bobea, Ariel

    2017-05-01

    In several world regions, climate change is predicted to negatively affect crop productivity. The recent statistical yield literature emphasizes the importance of flexibly accounting for the distribution of growing-season temperature to better represent the effects of warming on crop yields. We estimate a flexible statistical yield model using a long panel from France to investigate the impacts of temperature and precipitation changes on wheat and barley yields. Winter varieties appear sensitive to extreme cold after planting. All yields respond negatively to an increase in spring-summer temperatures and are a decreasing function of precipitation about historical precipitation levels. Crop yields are predicted to be negatively affected by climate change under a wide range of climate models and emissions scenarios. Under warming scenario RCP8.5 and holding growing areas and technology constant, our model ensemble predicts a 21.0% decline in winter wheat yield, a 17.3% decline in winter barley yield, and a 33.6% decline in spring barley yield by the end of the century. Uncertainty from climate projections dominates uncertainty from the statistical model. Finally, our model predicts that continuing technology trends would counterbalance most of the effects of climate change.

  18. Climate change and water availability for vulnerable agriculture

    NASA Astrophysics Data System (ADS)

    Dalezios, Nicolas; Tarquis, Ana Maria

    2017-04-01

    Climatic projections for the Mediterranean basin indicate that the area will suffer a decrease in water resources due to climate change. The key climatic trends identified for the Mediterranean region are continuous temperature increase, further drying with precipitation decrease and the accentuation of climate extremes, such as droughts, heat waves and/or forest fires, which are expected to have a profound effect on agriculture. Indeed, the impact of climate variability on agricultural production is important at local, regional, national, as well as global scales. Agriculture of any kind is strongly influenced by the availability of water. Climate change will modify rainfall, evaporation, runoff, and soil moisture storage patterns. Changes in total seasonal precipitation or in its pattern of variability are both important. Similarly, with higher temperatures, the water-holding capacity of the atmosphere and evaporation into the atmosphere increase, and this favors increased climate variability, with more intense precipitation and more droughts. As a result, crop yields are affected by variations in climatic factors, such as air temperature and precipitation, and the frequency and severity of the above mentioned extreme events. The aim of this work is to briefly present the main effects of climate change and variability on water resources with respect to water availability for vulnerable agriculture, namely in the Mediterranean region. Results of undertaken studies in Greece on precipitation patterns and drought assessment using historical data records are presented. Based on precipitation frequency analysis, evidence of precipitation reductions is shown. Drought is assessed through an agricultural drought index, namely the Vegetation Health Index (VHI), in Thessaly, a drought-prone region in central Greece. The results justify the importance of water availability for vulnerable agriculture and the need for drought monitoring in the Mediterranean basin as part of

  19. Effects of climate change on ecological disturbance in the northern Rockies

    USGS Publications Warehouse

    Loehman, Rachel A.; Bentz, Barbara J.; DeNitto, Gregg A.; Keane, Robert E.; Manning, Mary E.; Duncan, Jacob P.; Egan, Joel M.; Jackson, Marcus B.; Kegley, Sandra; Lockman, I. Blakey; Pearson, Dean E.; Powell, James A.; Shelly, Steve; Steed, Brytten E.; Zambino, Paul J.; Halofsky, Jessica E.; Peterson, David L.

    2018-01-01

    Disturbances alter ecosystem, community, or population structure and change elements of the biological and/or physical environment. Climate changes can alter the timing, magnitude, frequency, and duration of disturbance events, as well as the interactions of disturbances on a landscape, and climate change may already be affecting disturbance events and regimes. Interactions among disturbance regimes, such as the cooccurrence in space and time of bark beetle outbreaks and wildfires, can result in highly visible, rapidly occurring, and persistent changes in landscape composition and structure. Understanding how altered disturbance patterns and multiple disturbance interactions might result in novel and emergent landscape behaviors is critical for addressing climate change impacts and for designing land management strategies that are appropriate for future climates This chapter describes the ecology of important disturbance regimes in the Northern Rockies region, and potential shifts in these regimes as a consequence of observed and projected climate change. We summarize five disturbance types present in the Northern Rockies that are sensitive to a changing climate--wildfires, bark beetles, white pine blister rust (Cronartium ribicola), other forest diseases, and nonnative plant invasions—and provide information that can help managers anticipate how, when, where, and why climate changes may alter the characteristics of disturbance regimes.

  20. Factors Influencing Smallholder Farmers' Climate Change Perceptions: A Study from Farmers in Ethiopia

    NASA Astrophysics Data System (ADS)

    Habtemariam, Lemlem Teklegiorgis; Gandorfer, Markus; Kassa, Getachew Abate; Heissenhuber, Alois

    2016-08-01

    Factors influencing climate change perceptions have vital roles in designing strategies to enrich climate change understanding. Despite this, factors that influence smallholder farmers' climate change perceptions have not yet been adequately studied. As many of the smallholder farmers live in regions where climate change is predicted to have the most negative impact, their climate change perception is of particular interest. In this study, based on data collected from Ethiopian smallholder farmers, we assessed farmers' perceptions and anticipations of past and future climate change. Furthermore, the factors influencing farmers' climate change perceptions and the relation between farmers' perceptions and available public climate information were assessed. Our findings revealed that a majority of respondents perceive warming temperatures and decreasing rainfall trends that correspond with the local meteorological record. Farmers' perceptions about the past climate did not always reflect their anticipations about the future. A substantial number of farmers' anticipations of future climate were less consistent with climate model projections. The recursive bivariate probit models employed to explore factors affecting different categories of climate change perceptions illustrate statistical significance for explanatory variables including location, gender, age, education, soil fertility status, climate change information, and access to credit services. The findings contribute to the literature by providing evidence not just on farmers' past climate perceptions but also on future climate anticipations. The identified factors help policy makers to provide targeted extension and advisory services to enrich climate change understanding and support appropriate farm-level climate change adaptations.

  1. Factors Influencing Smallholder Farmers' Climate Change Perceptions: A Study from Farmers in Ethiopia.

    PubMed

    Habtemariam, Lemlem Teklegiorgis; Gandorfer, Markus; Kassa, Getachew Abate; Heissenhuber, Alois

    2016-08-01

    Factors influencing climate change perceptions have vital roles in designing strategies to enrich climate change understanding. Despite this, factors that influence smallholder farmers' climate change perceptions have not yet been adequately studied. As many of the smallholder farmers live in regions where climate change is predicted to have the most negative impact, their climate change perception is of particular interest. In this study, based on data collected from Ethiopian smallholder farmers, we assessed farmers' perceptions and anticipations of past and future climate change. Furthermore, the factors influencing farmers' climate change perceptions and the relation between farmers' perceptions and available public climate information were assessed. Our findings revealed that a majority of respondents perceive warming temperatures and decreasing rainfall trends that correspond with the local meteorological record. Farmers' perceptions about the past climate did not always reflect their anticipations about the future. A substantial number of farmers' anticipations of future climate were less consistent with climate model projections. The recursive bivariate probit models employed to explore factors affecting different categories of climate change perceptions illustrate statistical significance for explanatory variables including location, gender, age, education, soil fertility status, climate change information, and access to credit services. The findings contribute to the literature by providing evidence not just on farmers' past climate perceptions but also on future climate anticipations. The identified factors help policy makers to provide targeted extension and advisory services to enrich climate change understanding and support appropriate farm-level climate change adaptations.

  2. Rainfall changes affect the algae dominance in tank bromeliad ecosystems.

    PubMed

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T H M

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors.

  3. Rainfall changes affect the algae dominance in tank bromeliad ecosystems

    PubMed Central

    Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T. H. M.

    2017-01-01

    Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors. PMID:28422988

  4. Predicting Vulnerabilities of North American Shorebirds to Climate Change

    PubMed Central

    Galbraith, Hector; DesRochers, David W.; Brown, Stephen; Reed, J. Michael

    2014-01-01

    Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively secure species might become at–risk species. Virtually all of the shorebird species breeding in the USA and Canada are migratory, which means climate change could affect extinction risk via changes on the breeding, wintering, and/or migratory refueling grounds, and that ecological synchronicities could be disrupted at multiple sites. To predict the effects of climate change on shorebird extinction risks, we created a categorical risk model complementary to that used by Partners–in–Flight and the U.S. Shorebird Conservation Plan. The model is based on anticipated changes in breeding, migration, and wintering habitat, degree of dependence on ecological synchronicities, migration distance, and degree of specialization on breeding, migration, or wintering habitat. We evaluated 49 species, and for 3 species we evaluated 2 distinct populations each, and found that 47 (90%) taxa are predicted to experience an increase in risk of extinction. No species was reclassified into a lower–risk category, although 6 species had at least one risk factor decrease in association with climate change. The number of species that changed risk categories in our assessment is sensitive to how much of an effect of climate change is required to cause the shift, but even at its least sensitive, 20 species were at the highest risk category for extinction. Based on our results it appears that shorebirds are likely to be highly vulnerable to climate change. Finally, we discuss both how our approach can be integrated with existing risk assessments and potential future directions for predicting change in extinction risk due to climate change. PMID:25268907

  5. Predicting vulnerabilities of North American shorebirds to climate change.

    PubMed

    Galbraith, Hector; DesRochers, David W; Brown, Stephen; Reed, J Michael

    2014-01-01

    Despite an increase in conservation efforts for shorebirds, there are widespread declines of many species of North American shorebirds. We wanted to know whether these declines would be exacerbated by climate change, and whether relatively secure species might become at-risk species. Virtually all of the shorebird species breeding in the USA and Canada are migratory, which means climate change could affect extinction risk via changes on the breeding, wintering, and/or migratory refueling grounds, and that ecological synchronicities could be disrupted at multiple sites. To predict the effects of climate change on shorebird extinction risks, we created a categorical risk model complementary to that used by Partners-in-Flight and the U.S. Shorebird Conservation Plan. The model is based on anticipated changes in breeding, migration, and wintering habitat, degree of dependence on ecological synchronicities, migration distance, and degree of specialization on breeding, migration, or wintering habitat. We evaluated 49 species, and for 3 species we evaluated 2 distinct populations each, and found that 47 (90%) taxa are predicted to experience an increase in risk of extinction. No species was reclassified into a lower-risk category, although 6 species had at least one risk factor decrease in association with climate change. The number of species that changed risk categories in our assessment is sensitive to how much of an effect of climate change is required to cause the shift, but even at its least sensitive, 20 species were at the highest risk category for extinction. Based on our results it appears that shorebirds are likely to be highly vulnerable to climate change. Finally, we discuss both how our approach can be integrated with existing risk assessments and potential future directions for predicting change in extinction risk due to climate change.

  6. Using physiology to understand climate-driven changes in disease and their implications for conservation

    PubMed Central

    Rohr, Jason R.; Raffel, Thomas R.; Blaustein, Andrew R.; Johnson, Pieter T. J.; Paull, Sara H.; Young, Suzanne

    2013-01-01

    Controversy persists regarding the contributions of climate change to biodiversity losses, through its effects on the spread and emergence of infectious diseases. One of the reasons for this controversy is that there are few mechanistic studies that explore the links among climate change, infectious disease, and declines of host populations. Given that host–parasite interactions are generally mediated by physiological responses, we submit that physiological models could facilitate the prediction of how host–parasite interactions will respond to climate change, and might offer theoretical and terminological cohesion that has been lacking in the climate change–disease literature. We stress that much of the work on how climate influences host–parasite interactions has emphasized changes in climatic means, despite a hallmark of climate change being changes in climatic variability and extremes. Owing to this gap, we highlight how temporal variability in weather, coupled with non-linearities in responses to mean climate, can be used to predict the effects of climate on host–parasite interactions. We also discuss the climate variability hypothesis for disease-related declines, which posits that increased unpredictable temperature variability might provide a temporary advantage to pathogens because they are smaller and have faster metabolisms than their hosts, allowing more rapid acclimatization following a temperature shift. In support of these hypotheses, we provide case studies on the role of climatic variability in host population declines associated with the emergence of the infectious diseases chytridiomycosis, withering syndrome, and malaria. Finally, we present a mathematical model that provides the scaffolding to integrate metabolic theory, physiological mechanisms, and large-scale spatiotemporal processes to predict how simultaneous changes in climatic means, variances, and extremes will affect host–parasite interactions. However, several outstanding

  7. Grapevine phenology and climate change in Georgia.

    PubMed

    Cola, G; Failla, O; Maghradze, D; Megrelidze, L; Mariani, L

    2017-04-01

    While the climate of Western Europe has been deeply affected by the abrupt climate change that took place in the late '1980s of the twentieth century, a similar signal is detected only few years later, in 1994, in Georgia. Grapevine phenology is deeply influenced by climate and this paper aimed to analyze how phenological timing changed before and after the climatic change of 1994. Availability of thermal resources in the two climatic phases for the five altitudinal belts in the 0-1250-m range was analyzed. A phenological dataset gathered in two experimental sites during the period 2012-2014, and a suitable thermal dataset was used to calibrate a phenological model based on the normal approach and able to describe BBCH phenological stages 61 (beginning of flowering), 71 (fruit set), and 81 (veraison). Calibration was performed for four relevant Georgian varieties (Mtsvane Kakhuri, Rkatsiteli, Ojaleshi, and Saperavi). The model validation was performed on an independent 3-year dataset gathered in Gorizia (Italy). Furthermore, in the case of variety Rkatsiteli, the model was applied to the 1974-2013 thermal time series in order to obtain phenological maps of the Georgian territory. Results show that after the climate change of 1994, Rkatsiteli showed an advance, more relevant at higher altitudes where the whole increase of thermal resource was effectively translated in phenological advance. For instance the average advance of veraison was 5.9 days for 250-500 m asl belt and 18.1 days for 750-1000 m asl). On the other hand, at lower altitudes, phenological advance was depleted by superoptimal temperatures. As a final result, some suggestions for the adaptation of viticultural practices to the current climatic phase are provided.

  8. Population exposure to heat-related extremes: Demographic change vs climate change

    NASA Astrophysics Data System (ADS)

    Jones, B.; O'Neill, B. C.; Tebaldi, C.; Oleson, K. W.

    2014-12-01

    the population across larger US regions, strongly affects outcomes while smaller-scale spatial patterns of population change have smaller effects. [1] Collins, M. et al. (2013) Contribution of WG I to the 5th AR of the IPCC[2] Romero-Lankao, P. et al (2014) Contribution of WG II to the 5th AR of the IPCC[3] Walsh, J. et al. (2014) The 3rd National Climate Assessment

  9. Gray Wolves as Climate Change Buffers in Yellowstone

    PubMed Central

    Getz, Wayne M

    2005-01-01

    Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change. PMID:15757363

  10. Gray wolves as climate change buffers in Yellowstone.

    PubMed

    Wilmers, Christopher C; Getz, Wayne M

    2005-04-01

    Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change.

  11. Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks

    NASA Technical Reports Server (NTRS)

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlik, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(sup 2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  12. Climate change effects on agriculture: economic responses to biophysical shocks.

    PubMed

    Nelson, Gerald C; Valin, Hugo; Sands, Ronald D; Havlík, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, Page; Von Lampe, Martin; Lotze-Campen, Hermann; Mason d'Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, Erwin; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2014-03-04

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change's representative concentration pathway with end-of-century radiative forcing of 8.5 W/m(2). The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

  13. Physiological plasticity increases resilience of ectothermic animals to climate change

    NASA Astrophysics Data System (ADS)

    Seebacher, Frank; White, Craig R.; Franklin, Craig E.

    2015-01-01

    Understanding how climate change affects natural populations remains one of the greatest challenges for ecology and management of natural resources. Animals can remodel their physiology to compensate for the effects of temperature variation, and this physiological plasticity, or acclimation, can confer resilience to climate change. The current lack of a comprehensive analysis of the capacity for physiological plasticity across taxonomic groups and geographic regions, however, constrains predictions of the impacts of climate change. Here, we assembled the largest database to date to establish the current state of knowledge of physiological plasticity in ectothermic animals. We show that acclimation decreases the sensitivity to temperature and climate change of freshwater and marine animals, but less so in terrestrial animals. Animals from more stable environments have greater capacity for acclimation, and there is a significant trend showing that the capacity for thermal acclimation increases with decreasing latitude. Despite the capacity for acclimation, climate change over the past 20 years has already resulted in increased physiological rates of up to 20%, and we predict further future increases under climate change. The generality of these predictions is limited, however, because much of the world is drastically undersampled in the literature, and these undersampled regions are the areas of greatest need for future research efforts.

  14. CLIMATE CHANGE AND TERRESTRIAL BIOMASS: WHAT IF TREES DO NOT MIGRATE?

    EPA Science Inventory

    Climate changes induced by doubling atmospheric greenhouse gas (2XGHG) concentrations are expected to affect the distribution of global vegetation and thereby, the amount of carbon it stores. The role of the terrestrial biosphere as a source or sink for carbon during climate chan...

  15. Climate change hampers endangered species through intensified moisture-related plant stresses

    NASA Astrophysics Data System (ADS)

    (Ruud) Bartholomeus, R. P.; (Flip) Witte, J. P. M.; (Peter) van Bodegom, P. M.; (Jos) van Dam, J. C.; (Rien) Aerts, R.

    2010-05-01

    With recent climate change, extremes in meteorological conditions are forecast and observed to increase globally, and to affect vegetation composition. More prolonged dry periods will alternate with more intensive rainfall events, both within and between years, which will change soil moisture dynamics. In temperate climates, soil moisture, in concert with nutrient availability and soil acidity, is the most important environmental filter in determining local plant species composition, as it determines the availability of both oxygen and water to plant roots. These resources are indispensable for meeting the physiological demands of plants. The consequences of climate change for our natural environment are among the most pressing issues of our time. The international research community is beginning to realise that climate extremes may be more powerful drivers of vegetation change and species extinctions than slow-and-steady climatic changes, but the causal mechanisms of such changes are presently unknown. The roles of amplitudes in water availability as drivers of vegetation change have been particularly elusive owing to the lack of integration of the key variables involved. Here we show that the combined effect of increased rainfall variability, temperature and atmospheric CO2-concentration will lead to an increased variability in both wet and dry extremes in stresses faced by plants (oxygen and water stress, respectively). We simulated these plant stresses with a novel, process-based approach, incorporating in detail the interacting processes in the soil-plant-atmosphere interface. In order to quantify oxygen and water stress with causal measures, we focused on interacting meteorological, soil physical, microbial, and plant physiological processes in the soil-plant-atmosphere system. The first physiological process inhibited at high soil moisture contents is plant root respiration, i.e. oxygen consumption in the roots, which responds to increased temperatures. High

  16. Experimental climate change weakens the insurance effect of biodiversity.

    PubMed

    Eklöf, Johan S; Alsterberg, Christian; Havenhand, Jonathan N; Sundbäck, Kristina; Wood, Hannah L; Gamfeldt, Lars

    2012-08-01

    Ecosystems are simultaneously affected by biodiversity loss and climate change, but we know little about how these factors interact. We predicted that climate warming and CO (2) -enrichment should strengthen trophic cascades by reducing the relative efficiency of predation-resistant herbivores, if herbivore consumption rate trades off with predation resistance. This weakens the insurance effect of herbivore diversity. We tested this prediction using experimental ocean warming and acidification in seagrass mesocosms. Meta-analyses of published experiments first indicated that consumption rate trades off with predation resistance. The experiment then showed that three common herbivores together controlled macroalgae and facilitated seagrass dominance, regardless of climate change. When the predation-vulnerable herbivore was excluded in normal conditions, the two resistant herbivores maintained top-down control. Under warming, however, increased algal growth outstripped control by herbivores and the system became algal-dominated. Consequently, climate change can reduce the relative efficiency of resistant herbivores and weaken the insurance effect of biodiversity. © 2012 Blackwell Publishing Ltd/CNRS.

  17. Assessing Mammal Exposure to Climate Change in the Brazilian Amazon.

    PubMed

    Ribeiro, Bruno R; Sales, Lilian P; De Marco, Paulo; Loyola, Rafael

    2016-01-01

    Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species' response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species' range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species' vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species' ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts.

  18. Assessing Mammal Exposure to Climate Change in the Brazilian Amazon

    PubMed Central

    Ribeiro, Bruno R.; Sales, Lilian P.; De Marco, Paulo; Loyola, Rafael

    2016-01-01

    Human-induced climate change is considered a conspicuous threat to biodiversity in the 21st century. Species’ response to climate change depends on their exposition, sensitivity and ability to adapt to novel climates. Exposure to climate change is however uneven within species’ range, so that some populations may be more at risk than others. Identifying the regions most exposed to climate change is therefore a first and pivotal step on determining species’ vulnerability across their geographic ranges. Here, we aimed at quantifying mammal local exposure to climate change across species’ ranges. We identified areas in the Brazilian Amazon where mammals will be critically exposed to non-analogue climates in the future with different variables predicted by 15 global circulation climate forecasts. We also built a null model to assess the effectiveness of the Amazon protected areas in buffering the effects of climate change on mammals, using an innovative and more realistic approach. We found that 85% of species are likely to be exposed to non-analogue climatic conditions in more than 80% of their ranges by 2070. That percentage is even higher for endemic mammals; almost all endemic species are predicted to be exposed in more than 80% of their range. Exposure patterns also varied with different climatic variables and seem to be geographically structured. Western and northern Amazon species are more likely to experience temperature anomalies while northeastern species will be more affected by rainfall abnormality. We also observed an increase in the number of critically-exposed species from 2050 to 2070. Overall, our results indicate that mammals might face high exposure to climate change and that protected areas will probably not be efficient enough to avert those impacts. PMID:27829036

  19. Talking Climate Science in a Changing Media Landscape

    NASA Astrophysics Data System (ADS)

    Cullen, H. M.

    2014-12-01

    Founded in 2008 by leading scientists and communications experts at Princeton, Yale and Stanford, Climate Central brings together award-winning journalists and internationally recognized scientists to report the science and impacts of climate change through its research and journalism programs. Climate Central works to tackle the misperception that climate change is a distant thing - affecting other people and other places - by demonstrating the local and personal impacts of global warming. This talk will focus on describing three important Climate Central initiatives. First, our Climate Matters program delivers localized climate information at the regional and local level to weathercasters around the U.S., providing ready-to-use, broadcast quality graphics and analyses that put climate change in a local context. After three years, the program has grown from a pilot with just one TV meteorologist in Columbia, South Carolina to a network of more than 150 weathercasters across the country. Climate Central was also closely involved in the development and production of Years of Living Dangerously - a 9-part global warming documentary that premiered in April 2014. Finally, the World Weather Attribution project is a new initiative that aims to identify the human fingerprint in certain types of extreme weather events, including sea level rise and its contribution to storm surges, extreme heat events, heavy rainfall events/flooding, and drought. Our goal is to objectively and transparently assess certain extreme events and equip journalists and scientists with the tools to provide the larger global warming context in real-time while there is still media interest.

  20. Population response to climate change: linear vs. non-linear modeling approaches.

    PubMed

    Ellis, Alicia M; Post, Eric

    2004-03-31

    Research on the ecological consequences of global climate change has elicited a growing interest in the use of time series analysis to investigate population dynamics in a changing climate. Here, we compare linear and non-linear models describing the contribution of climate to the density fluctuations of the population of wolves on Isle Royale, Michigan from 1959 to 1999. The non-linear self excitatory threshold autoregressive (SETAR) model revealed that, due to differences in the strength and nature of density dependence, relatively small and large populations may be differentially affected by future changes in climate. Both linear and non-linear models predict a decrease in the population of wolves with predicted changes in climate. Because specific predictions differed between linear and non-linear models, our study highlights the importance of using non-linear methods that allow the detection of non-linearity in the strength and nature of density dependence. Failure to adopt a non-linear approach to modelling population response to climate change, either exclusively or in addition to linear approaches, may compromise efforts to quantify ecological consequences of future warming.

  1. Using Web GIS "Climate" for Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  2. Multi-model assessment of water scarcity under climate change

    NASA Astrophysics Data System (ADS)

    Schewe, J.; Heinke, J.; Gerten, D.; Haddeland, I.; Arnell, N. W.; Clark, D. B.; Dankers, R.; Eisner, S.; Fekete, B. M.; Colon-Gonzalez, F. J.; Gosling, S. N.; KIM, H.; Liu, X.; Masaki, Y.; Portmann, F. T.; Satoh, Y.; Stacke, T.; Tang, Q.; Wada, Y.; Wisser, D.; albrecht, T.; Frieler, K.; Piontek, F.; Warszawski, L.; Kabat, P.

    2013-12-01

    Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. In the framework of the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) we use a large ensemble of global hydrological models (GHMs) forced by five global climate models (GCMs) and the latest greenhouse--gas concentration scenarios (RCPs) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that up to a global warming of 2°C above present (approx. 2.7°C above pre--industrial), each additional degree of warming will confront an additional approx. 7% of the global population with a severe decrease in water resources; and that climate change will increase the number of people living under absolute water scarcity (<500m3/capita/year) by another 40% (according to some models, more than 100%) compared to the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between present--day and 2°C, while indicators of very severe impacts increase unabated beyond 2°C. At the same time, the study highlights large uncertainties associated with these estimates, with both GCMs and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development. Relative change in annual discharge at 2°C compared to present-day, under RCP8.5, from an ensemble of 11 global hydrological models (GHMs) driven by five

  3. Assessing the Impacts of Climate Change on Drinking Water Treatment

    EPA Science Inventory

    Climate change may affect both surface water and ground water quality. Increases (or decreases) in precipitation and related changes in flow can result in problematic turbidity levels, increased levels of organic matter, high levels of bacteria, virus and parasites and increased...

  4. Future fire probability modeling with climate change data and physical chemistry

    Treesearch

    Richard P. Guyette; Frank R. Thompson; Jodi Whittier; Michael C. Stambaugh; Daniel C. Dey

    2014-01-01

    Climate has a primary influence on the occurrence and rate of combustion in ecosystems with carbon-based fuels such as forests and grasslands. Society will be confronted with the effects of climate change on fire in future forests. There are, however, few quantitative appraisals of how climate will affect wildland fire in the United States. We demonstrated a method for...

  5. Climate change and environmental impacts on maternal and newborn health with focus on Arctic populations.

    PubMed

    Rylander, Charlotta; Odland, Jon Ø; Sandanger, Torkjel M

    2011-01-01

    In 2007, the Intergovernmental Panel on Climate Change (IPCC) presented a report on global warming and the impact of human activities on global warming. Later the Lancet commission identified six ways human health could be affected. Among these were not environmental factors which are also believed to be important for human health. In this paper we therefore focus on environmental factors, climate change and the predicted effects on maternal and newborn health. Arctic issues are discussed specifically considering their exposure and sensitivity to long range transported contaminants. Considering that the different parts of pregnancy are particularly sensitive time periods for the effects of environmental exposure, this review focuses on the impacts on maternal and newborn health. Environmental stressors known to affects human health and how these will change with the predicted climate change are addressed. Air pollution and food security are crucial issues for the pregnant population in a changing climate, especially indoor climate and food security in Arctic areas. The total number of environmental factors is today responsible for a large number of the global deaths, especially in young children. Climate change will most likely lead to an increase in this number. Exposure to the different environmental stressors especially air pollution will in most parts of the world increase with climate change, even though some areas might face lower exposure. Populations at risk today are believed to be most heavily affected. As for the persistent organic pollutants a warming climate leads to a remobilisation and a possible increase in food chain exposure in the Arctic and thus increased risk for Arctic populations. This is especially the case for mercury. The perspective for the next generations will be closely connected to the expected temperature changes; changes in housing conditions; changes in exposure patterns; predicted increased exposure to Mercury because of increased

  6. Climate change, flooding, urbanisation and leptospirosis: fuelling the fire?

    PubMed

    Lau, Colleen L; Smythe, Lee D; Craig, Scott B; Weinstein, Philip

    2010-10-01

    Flooding and heavy rainfall have been associated with numerous outbreaks of leptospirosis around the world. With global climate change, extreme weather events such as cyclones and floods are expected to occur with increasing frequency and greater intensity and may potentially result in an upsurge in the disease incidence as well as the magnitude of leptospirosis outbreaks. In this paper, we examine mechanisms by which climate change can affect various ecological factors that are likely to drive an increase in the overall incidence as well as the frequency of outbreaks of leptospirosis. We will discuss the geographical areas that are most likely to be at risk of an increase in leptospirosis disease burden owing to the coexistence of climate change hazard risk, environmental drivers of leptospirosis outbreaks, local socioeconomic circumstances, and social and demographic trends. To reduce this disease burden, enhanced surveillance and further research is required to understand the environmental drivers of infection, to build capacity in emergency response and to promote community adaptation to a changing climate. Copyright © 2010 Royal Society of Tropical Medicine and Hygiene.

  7. Impacts of Land Cover Changes on Climate over China

    NASA Astrophysics Data System (ADS)

    Chen, L.; Frauenfeld, O. W.

    2014-12-01

    Land cover changes can influence regional climate through modifying the surface energy balance and water fluxes, and can also affect climate at large scales via changes in atmospheric general circulation. With rapid population growth and economic development, China has experienced significant land cover changes, such as deforestation, grassland degradation, and farmland expansion. In this study, the Community Earth System Model (CESM) is used to investigate the climate impacts of anthropogenic land cover changes over China. To isolate the climatic effects of land cover change, we focus on the CAM and CLM models, with prescribed climatological sea surface temperature and sea ice cover. Two experiments were performed, one with current vegetation and the other with potential vegetation. Current vegetation conditions were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, and potential vegetation over China was obtained from Ramankutty and Foley's global potential vegetation dataset. Impacts of land cover changes on surface air temperature and precipitation are assessed based on the difference of the two experiments. Results suggest that land cover changes have a cold-season cooling effect in a large region of China, but a warming effect in summer. These temperature changes can be reconciled with albedo forcing and evapotranspiration. Moreover, impacts on atmospheric circulation and the Asian Monsoon is also discussed.

  8. A global database with parallel measurements to study non-climatic changes

    NASA Astrophysics Data System (ADS)

    Venema, Victor; Auchman, Renate; Aguilar, Enric

    2017-04-01

    In this work we introduce the rationale behind the ongoing compilation of a parallel measurements database, in the framework of the International Surface Temperatures Initiative (ISTI) and with the support of the World Meteorological Organization. We intend this database to become instrumental for a better understanding of inhomogeneities affecting the evaluation of long-term changes in daily climate data. Long instrumental climate records are usually affected by non-climatic changes, due to, e.g., (i) station re- locations, (ii) instrument height changes, (iii) instrumentation changes, (iv) observing environment changes, (v) different sampling intervals or data collection procedures, among others. These so-called inhomogeneities distort the climate signal and can hamper the assessment of long-term trends and variability of climate. Thus to study climatic changes we need to accurately distinguish non-climatic and climatic signals. The most direct way to study the influence of non-climatic changes on the distribution and to understand the reasons for these biases is the analysis of parallel measurements representing the old and new situation (in terms of e.g. instruments, location, different radiation shields, etc.). According to the limited number of available studies and our understanding of the causes of inhomogeneity, we expect that they will have a strong impact on the tails of the distribution of air temperatures and most likely of other climate elements. Our abilities to statistically homogenize daily data will be increased by systematically studying different causes of inhomogeneity replicated through parallel measurements. Current studies of non-climatic changes using parallel data are limited to local and regional case studies. However, the effect of specific transitions depends on the local climate and the most interesting climatic questions are about the systematic large-scale biases produced by transitions that occurred in many regions. Important

  9. The effect of education on climate change risks

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.; KC, S.; Jiang, L.; Fuchs, R.; Pachauri, S.; Ren, X.; Zhang, T.; Laidlaw, E.

    2017-12-01

    Changes in the demographic and socio-economic compositions of populations are relevant to the climate change issue because these characteristics can be important determinants both of the capacity to adapt to climate change impacts as well as of energy use and greenhouse gas emissions, and therefore climate change. However, the incorporation of major trends such as aging, urbanization, and changes in household size into projections of future energy use and emissions is rare. Here we build on our previous work in this area by exploring the implications of future changes in educational attainment for the climate issue. Changes in the educational composition of the population may reduce the vulnerability of the population to climate change impacts, reducing risks. However they may also have effects on energy use and land use, and the resulting greenhouse gas emissions that drive climate change and increase risks. The direction of the effect of education on emissions is itself ambiguous. On the one hand, improvements in education can be expected to lead to faster fertility decline and slower population growth which, all else equal, would be expected to reduce emissions. On the other hand, education can also be expected to lead to faster economic growth, which would tend to increase emissions, and also to changes in consumption patterns. We employ iPETS, an integrated assessment model that includes a multi-region model of the world economy, driven with a new set of country-specific projections of future educational composition, to test the net effect of education on energy use and emissions on four world regions (China, India, Latin America, and Rest of Asia + Middle East) and therefore on climate. We also calculate the Human Development Index (HDI) for each region resulting from these scenarios, as an indicator of vulnerability to climate impacts. We find that the net effect of improved education is to increase emissions in the medium term driven primarily by increased

  10. Climate change adaptation strategies for resource management and conservation planning.

    PubMed

    Lawler, Joshua J

    2009-04-01

    Recent rapid changes in the Earth's climate have altered ecological systems around the globe. Global warming has been linked to changes in physiology, phenology, species distributions, interspecific interactions, and disturbance regimes. Projected future climate change will undoubtedly result in even more dramatic shifts in the states of many ecosystems. These shifts will provide one of the largest challenges to natural resource managers and conservation planners. Managing natural resources and ecosystems in the face of uncertain climate requires new approaches. Here, the many adaptation strategies that have been proposed for managing natural systems in a changing climate are reviewed. Most of the recommended approaches are general principles and many are tools that managers are already using. What is new is a turning toward a more agile management perspective. To address climate change, managers will need to act over different spatial and temporal scales. The focus of restoration will need to shift from historic species assemblages to potential future ecosystem services. Active adaptive management based on potential future climate impact scenarios will need to be a part of everyday operations. And triage will likely become a critical option. Although many concepts and tools for addressing climate change have been proposed, key pieces of information are still missing. To successfully manage for climate change, a better understanding will be needed of which species and systems will likely be most affected by climate change, how to preserve and enhance the evolutionary capacity of species, how to implement effective adaptive management in new systems, and perhaps most importantly, in which situations and systems will the general adaptation strategies that have been proposed work and how can they be effectively applied.

  11. Climate change, conflict and health.

    PubMed

    Bowles, Devin C; Butler, Colin D; Morisetti, Neil

    2015-10-01

    Future climate change is predicted to diminish essential natural resource availability in many regions and perhaps globally. The resulting scarcity of water, food and livelihoods could lead to increasingly desperate populations that challenge governments, enhancing the risk of intra- and interstate conflict. Defence establishments and some political scientists view climate change as a potential threat to peace. While the medical literature increasingly recognises climate change as a fundamental health risk, the dimension of climate change-associated conflict has so far received little attention, despite its profound health implications. Many analysts link climate change with a heightened risk of conflict via causal pathways which involve diminishing or changing resource availability. Plausible consequences include: increased frequency of civil conflict in developing countries; terrorism, asymmetric warfare, state failure; and major regional conflicts. The medical understanding of these threats is inadequate, given the scale of health implications. The medical and public health communities have often been reluctant to interpret conflict as a health issue. However, at times, medical workers have proven powerful and effective peace advocates, most notably with regard to nuclear disarmament. The public is more motivated to mitigate climate change when it is framed as a health issue. Improved medical understanding of the association between climate change and conflict could strengthen mitigation efforts and increase cooperation to cope with the climate change that is now inevitable. © The Royal Society of Medicine.

  12. Implications of climate change for the fishes of the British Isles.

    PubMed

    Graham, C T; Harrod, C

    2009-04-01

    Recent climatic change has been recorded across the globe. Although environmental change is a characteristic feature of life on Earth and has played a major role in the evolution and global distribution of biodiversity, predicted future rates of climatic change, especially in temperature, are such that they will exceed any that has occurred over recent geological time. Climate change is considered as a key threat to biodiversity and to the structure and function of ecosystems that may already be subject to significant anthropogenic stress. The current understanding of climate change and its likely consequences for the fishes of Britain and Ireland and the surrounding seas are reviewed through a series of case studies detailing the likely response of several marine, diadromous and freshwater fishes to climate change. Changes in climate, and in particular, temperature have and will continue to affect fish at all levels of biological organization: cellular, individual, population, species, community and ecosystem, influencing physiological and ecological processes in a number of direct, indirect and complex ways. The response of fishes and of other aquatic taxa will vary according to their tolerances and life stage and are complex and difficult to predict. Fishes may respond directly to climate-change-related shifts in environmental processes or indirectly to other influences, such as community-level interactions with other taxa. However, the ability to adapt to the predicted changes in climate will vary between species and between habitats and there will be winners and losers. In marine habitats, recent changes in fish community structure will continue as fishes shift their distributions relative to their temperature preferences. This may lead to the loss of some economically important cold-adapted species such as Gadus morhua and Clupea harengus from some areas around Britain and Ireland, and the establishment of some new, warm-adapted species. Increased

  13. Abrupt climate change: can society cope?

    PubMed

    Hulme, Mike

    2003-09-15

    Consideration of abrupt climate change has generally been incorporated neither in analyses of climate-change impacts nor in the design of climate adaptation strategies. Yet the possibility of abrupt climate change triggered by human perturbation of the climate system is used to support the position of both those who urge stronger and earlier mitigative action than is currently being contemplated and those who argue that the unknowns in the Earth system are too large to justify such early action. This paper explores the question of abrupt climate change in terms of its potential implications for society, focusing on the UK and northwest Europe in particular. The nature of abrupt climate change and the different ways in which it has been defined and perceived are examined. Using the example of the collapse of the thermohaline circulation (THC), the suggested implications for society of abrupt climate change are reviewed; previous work has been largely speculative and has generally considered the implications only from economic and ecological perspectives. Some observations about the implications from a more social and behavioural science perspective are made. If abrupt climate change simply implies changes in the occurrence or intensity of extreme weather events, or an accelerated unidirectional change in climate, the design of adaptation to climate change can proceed within the existing paradigm, with appropriate adjustments. Limits to adaptation in some sectors or regions may be reached, and the costs of appropriate adaptive behaviour may be large, but strategy can develop on the basis of a predicted long-term unidirectional change in climate. It would be more challenging, however, if abrupt climate change implied a directional change in climate, as, for example, may well occur in northwest Europe following a collapse of the THC. There are two fundamental problems for society associated with such an outcome: first, the future changes in climate currently being

  14. Climate Change and Our Environment: The Effect on Respiratory and Allergic Disease

    PubMed Central

    Barnes, Charles S.; Alexis, Neil E.; Bernstein, Jonathan A.; Cohn, John R.; Demain, Jeffrey G.; Horner, Elliott; Levetin, Estelle; Nel, Andre; Phipatanakul, Wanda

    2013-01-01

    Climate change is a constant and ongoing process. It is postulated that human activities have reached a point at which we are producing global climate change. This article provides suggestions to help the allergist/environmental physician integrate recommendations about improvements in outdoor and indoor air quality and the likely response to predicted alterations in the earth’s environment into their patient’s treatment plan. Many changes that affect respiratory disease are anticipated. Examples of responses to climate change include energy reduction retrofits in homes that could potentially affect exposure to allergens and irritants, more hot sunny days that increase ozone-related difficulties, and rises in sea level or altered rainfall patterns that increase exposure to damp indoor environments. Climate changes can also affect ecosystems, manifested as the appearance of stinging and biting arthropods in new areas. Higher ambient carbon dioxide concentrations, warmer temperatures, and changes in floristic zones could potentially increase exposure to ragweed and other outdoor allergens, whereas green practices such as composting can increase allergen and irritant exposure. Finally, increased energy costs may result in urban crowding and human source pollution, leading to changes in patterns of infectious respiratory illnesses. Improved governmental controls on airborne pollutants could lead to cleaner air and reduced respiratory diseases but will meet strong opposition because of their effect on business productivity. The allergy community must therefore adapt, as physician and research scientists always have, by anticipating the needs of patients and by adopting practices and research methods to meet changing environmental conditions. PMID:23687635

  15. CLIMATE CHANGE. Climate change impacts on bumblebees converge across continents.

    PubMed

    Kerr, Jeremy T; Pindar, Alana; Galpern, Paul; Packer, Laurence; Potts, Simon G; Roberts, Stuart M; Rasmont, Pierre; Schweiger, Oliver; Colla, Sheila R; Richardson, Leif L; Wagner, David L; Gall, Lawrence F; Sikes, Derek S; Pantoja, Alberto

    2015-07-10

    For many species, geographical ranges are expanding toward the poles in response to climate change, while remaining stable along range edges nearest the equator. Using long-term observations across Europe and North America over 110 years, we tested for climate change-related range shifts in bumblebee species across the full extents of their latitudinal and thermal limits and movements along elevation gradients. We found cross-continentally consistent trends in failures to track warming through time at species' northern range limits, range losses from southern range limits, and shifts to higher elevations among southern species. These effects are independent of changing land uses or pesticide applications and underscore the need to test for climate impacts at both leading and trailing latitudinal and thermal limits for species. Copyright © 2015, American Association for the Advancement of Science.

  16. Adapting Buildings for Indoor Air Quality in a Changing Climate

    EPA Pesticide Factsheets

    Climate change presents many challenges, including the production of severe weather events. These events and efforts to minimize their effects through weatherization can adversely affect indoor environments.

  17. Impact of Climate Change and Human Intervention on River Flow Regimes

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra; Mittal, Neha; Mishra, Ashok

    2017-04-01

    Climate change and human interventions like dam construction bring freshwater ecosystem under stress by changing flow regime. It is important to analyse their impact at a regional scale along with changes in the extremes of temperature and precipitation which further modify the flow regime components such as magnitude, timing, frequency, duration, and rate of change of flow. In this study, the Kangsabati river is chosen to analyse the hydrological alterations in its flow regime caused by dam, climate change and their combined impact using Soil and Water Assessment Tool (SWAT) and the Indicators of Hydrologic Alteration (IHA) program based on the Range of Variability Approach (RVA). Results show that flow variability is significantly reduced due to dam construction with high flows getting absorbed and pre-monsoon low flows being augmented by the reservoir. Climate change alone reduces the high peaks whereas a combination of dam and climate change significantly reduces variability by affecting both high and low flows, thereby further disrupting the functioning of riverine ecosystems. Analysis shows that in the Kangsabati basin, influence of dam is greater than that of the climate change, thereby emphasising the significance of direct human intervention. Keywords: Climate change, human impact, flow regime, Kangsabati river, SWAT, IHA, RVA.

  18. Developing a National Climate Indicators System to Track Climate Changes, Impacts, Vulnerabilities, and Preparedness

    NASA Astrophysics Data System (ADS)

    Kenney, M. A.; Janetos, A. C.; Arndt, D.; Chen, R. S.; Pouyat, R.; Anderson, S. M.

    2013-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. Part of the vision, which is now under development, for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks, Atmospheric Composition, Physical Climate Variability and Change, Sectors and Resources of Concern, and Adaptation and Mitigation Responses. This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at spatial

  19. Climate change and managing water crisis: Pakistan's perspective.

    PubMed

    Hussain, Mumtaz; Mumtaz, Saniea

    2014-01-01

    Climate change is a global phenomenon manifested mainly through global warming. The International Panel on Climate Change (IPCC) has reported its negative consequences on natural resources, anthropogenic activities, and natural disasters. The El Nino and La Nina have affected hydrologic regimes and ecosystems. It has been observed that the average temperature in 1995 was 0.4°C higher than that in 1895. By the end of the 21st century, 10% of the area of Bangladesh is likely to be submerged by the sea. Most of the islands of Pacific Ocean will disappear. A major part of Maldives will be submerged. The sea level is expected to rise by 30-150 cm. Extreme events such as floods, cyclones, tsunamis, and droughts have become regular phenomena in many parts of the world. Other adverse impacts are proliferation of water-borne diseases, sea water intrusion, salinization of coastal areas, loss of biodiversity, eco-degradation of watersheds and global glacial decline, and haphazard snow melts/thaws. In turn, these factors have serious effect on water resources. Pakistan is confronting similar climate change. Meteorological data reveal that winter temperatures are rising and summers are getting cooler. Temperature is expected to increase by 0.9°C and 1.5°C by years 2020 and 2050, respectively. Water resources in Pakistan are affected by climate change as it impacts the behavior of glaciers, rainfall patterns, greenhouse gas emissions, recurrence of extreme events such as floods and droughts. Severe floods have occurred in the years 1950, 1956, 1957, 1973, 1976, 1978, 1988, 1992, 2010, 2011, and 2012. Pakistan has faced the worst-ever droughts during the period from 1998 to 2004. Pakistan has surface water potential of 140 million acre feet (MAF) and underground water reserve of 56 MAF. It is one of the most water-stressed countries in the world. The per capita annual availability of water has reduced from 5140 m3 in 1950 to 1000 m3 now. It is fast approaching towards water

  20. The impact of climate change on transportation in the gulf coast

    USGS Publications Warehouse

    Savonis, M.J.; Burkett, V.R.; Potter, J.R.; Kafalenos, R.; Hyman, R.; Leonard, K.

    2009-01-01

    Climate affects the design, construction, safety, operations, and maintenance of transportation infrastructure and systems. The prospect of a changing climate raises critical questions regarding how alterations in temperature, precipitation, storm events, and other aspects of the climate could affect the nation's transportation system. This regional assessment of climate change and its potential impacts on transportation systems addresses these questions for the central Gulf Coast between Houston and Mobile. Warming temperatures are likely to increase the costs of transportation construction, maintenance, and operations. More frequent extreme precipitation events will likely disrupt transportation networks with flooding and visibility problems. Relative sea level rise will make much of the existing infrastructure more prone to frequent or permanent inundation. Increased storm intensity may lead to increased service disruption and damage. Consideration of these factors in today's transportation decisions should lead to a more robust, resilient, and cost-effective transportation network in the coming decades. ?? 2009 ASCE.

  1. Large-scale changes in community composition: determining land use and climate change signals.

    PubMed

    Kampichler, Christian; van Turnhout, Chris A M; Devictor, Vincent; van der Jeugd, Henk P

    2012-01-01

    Human land use and climate change are regarded as the main driving forces of present-day and future species extinction. They may potentially lead to a profound reorganisation of the composition and structure of natural communities throughout the world. However, studies that explicitly investigate both forms of impact--land use and climate change--are uncommon. Here, we quantify community change of Dutch breeding bird communities over the past 25 years using time lag analysis. We evaluate the chronological sequence of the community temperature index (CTI) which reflects community response to temperature increase (increasing CTI indicates an increase in relative abundance of more southerly species), and the temporal trend of the community specialisation index (CSI) which reflects community response to land use change (declining CSI indicates an increase of generalist species). We show that the breeding bird fauna underwent distinct directional change accompanied by significant changes both in CTI and CSI which suggests a causal connection between climate and land use change and bird community change. The assemblages of particular breeding habitats neither changed at the same speed and nor were they equally affected by climate versus land use changes. In the rapidly changing farmland community, CTI and CSI both declined slightly. In contrast, CTI increased in the more slowly changing forest and heath communities, while CSI remained stable. Coastal assemblages experienced both an increase in CTI and a decline in CSI. Wetland birds experienced the fastest community change of all breeding habitat assemblages but neither CTI nor CSI showed a significant trend. Overall, our results suggest that the interaction between climate and land use changes differs between habitats, and that comparing trends in CSI and CTI may be useful in tracking the impact of each determinant.

  2. Climate Change Indicators

    EPA Pesticide Factsheets

    Presents information, charts and graphs showing measured climate changes across 40 indicators related to greenhouse gases, weather and climate, oceans, snow and ice, heath and society, and ecosystems.

  3. Climate change and water resources in a tropical island system: propagation of uncertainty from statistically downscaled climate models to hydrologic models

    Treesearch

    Ashley E. Van Beusekom; William A. Gould; Adam J. Terando; Jaime A. Collazo

    2015-01-01

    Many tropical islands have limited water resources with historically increasing demand, all potentially affected by a changing climate. The effects of climate change on island hydrology are difficult to model due to steep local precipitation gradients and sparse data. Thiswork uses 10 statistically downscaled general circulationmodels (GCMs) under two greenhouse gas...

  4. When climate science became climate politics: British media representations of climate change in 1988.

    PubMed

    Jaspal, Rusi; Nerlich, Brigitte

    2014-02-01

    Climate change has become a pressing environmental concern for scientists, social commentators and politicians. Previous social science research has explored media representations of climate change in various temporal and geographical contexts. Through the lens of Social Representations Theory, this article provides a detailed qualitative thematic analysis of media representations of climate change in the 1988 British broadsheet press, given that this year constitutes an important juncture in this transition of climate change from the domain of science to that of the socio-political sphere. The following themes are outlined: (i) "Climate change: a multi-faceted threat"; (ii) "Collectivisation of threat"; (iii) "Climate change and the attribution of blame"; and (iv) "Speculative solutions to a complex socio-environmental problem." The article provides detailed empirical insights into the "starting-point" for present-day disputes concerning climate change and lays the theoretical foundations for tracking the continuities and discontinuities characterising social representations of climate change in the future.

  5. How range shifts induced by climate change affect neutral evolution

    PubMed Central

    McInerny, G.J.; Turner, J.R.G.; Wong, H.Y.; Travis, J.M.J.; Benton, T.G.

    2009-01-01

    We investigate neutral evolution during range shifts in a strategic model of a metapopulation occupying a climate gradient. Using heritable, neutral markers, we track the spatio-temporal fate of lineages. Owing to iterated founder effects (‘mutation surfing’), survival of lineages derived from the leading range limit is enhanced. At trailing limits, where habitat suitability decreases, survival is reduced (mutations ‘wipe out’). These processes alter (i) the spatial spread of mutations, (ii) origins of persisting mutations and (iii) the generation of diversity. We show that large changes in neutral evolution can be a direct consequence of range shifting. PMID:19324824

  6. How range shifts induced by climate change affect neutral evolution.

    PubMed

    McInerny, G J; Turner, J R G; Wong, H Y; Travis, J M J; Benton, T G

    2009-04-22

    We investigate neutral evolution during range shifts in a strategic model of a metapopulation occupying a climate gradient. Using heritable, neutral markers, we track the spatio-temporal fate of lineages. Owing to iterated founder effects ('mutation surfing'), survival of lineages derived from the leading range limit is enhanced. At trailing limits, where habitat suitability decreases, survival is reduced (mutations 'wipe out'). These processes alter (i) the spatial spread of mutations, (ii) origins of persisting mutations and (iii) the generation of diversity. We show that large changes in neutral evolution can be a direct consequence of range shifting.

  7. Climate change and pastoralism: impacts, consequences and adaptation.

    PubMed

    Herrero, M; Addison, J; Bedelian, C; Carabine, E; Havlík, P; Henderson, B; Van De Steeg, J; Thornton, P K

    2016-11-01

    The authors discuss the main climate change impacts on pastoralist societies, including those on rangelands, livestock and other natural resources, and their extended repercussions on food security, incomes and vulnerability. The impacts of climate change on the rangelands of the globe and on the vulnerability of the people who inhabit them will be severe and diverse, and will require multiple, simultaneous responses. In higher latitudes, the removal of temperature constraints might increase pasture production and livestock productivity, but in tropical arid lands, the impacts are highly location specific, but mostly negative. The authors outline several adaptation options, ranging from implementing new technical practices and diversifying income sources to finding institutional support and introducing new market mechanisms, all of which are pivotal for enhancing the capacity of pastoralists to adapt to climate variability and change. Due to the dynamism of all the changes affecting pastoral societies, strategies that lock pastoral societies into specified development pathways could be maladaptive. Flexible and evolving combinations of practices and policies are the key to successful pastoral adaptation.

  8. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.

    PubMed

    Jantz, Samuel M; Barker, Brian; Brooks, Thomas M; Chini, Louise P; Huang, Qiongyu; Moore, Rachel M; Noel, Jacob; Hurtt, George C

    2015-08-01

    Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by

  9. Evidence for climate change in the satellite cloud record.

    PubMed

    Norris, Joel R; Allen, Robert J; Evan, Amato T; Zelinka, Mark D; O'Dell, Christopher W; Klein, Stephen A

    2016-08-04

    Clouds substantially affect Earth's energy budget by reflecting solar radiation back to space and by restricting emission of thermal radiation to space. They are perhaps the largest uncertainty in our understanding of climate change, owing to disagreement among climate models and observational datasets over what cloud changes have occurred during recent decades and will occur in response to global warming. This is because observational systems originally designed for monitoring weather have lacked sufficient stability to detect cloud changes reliably over decades unless they have been corrected to remove artefacts. Here we show that several independent, empirically corrected satellite records exhibit large-scale patterns of cloud change between the 1980s and the 2000s that are similar to those produced by model simulations of climate with recent historical external radiative forcing. Observed and simulated cloud change patterns are consistent with poleward retreat of mid-latitude storm tracks, expansion of subtropical dry zones, and increasing height of the highest cloud tops at all latitudes. The primary drivers of these cloud changes appear to be increasing greenhouse gas concentrations and a recovery from volcanic radiative cooling. These results indicate that the cloud changes most consistently predicted by global climate models are currently occurring in nature.

  10. Evidence for climate change in the satellite cloud record

    NASA Astrophysics Data System (ADS)

    Norris, Joel R.; Allen, Robert J.; Evan, Amato T.; Zelinka, Mark D.; O'Dell, Christopher W.; Klein, Stephen A.

    2016-08-01

    Clouds substantially affect Earth’s energy budget by reflecting solar radiation back to space and by restricting emission of thermal radiation to space. They are perhaps the largest uncertainty in our understanding of climate change, owing to disagreement among climate models and observational datasets over what cloud changes have occurred during recent decades and will occur in response to global warming. This is because observational systems originally designed for monitoring weather have lacked sufficient stability to detect cloud changes reliably over decades unless they have been corrected to remove artefacts. Here we show that several independent, empirically corrected satellite records exhibit large-scale patterns of cloud change between the 1980s and the 2000s that are similar to those produced by model simulations of climate with recent historical external radiative forcing. Observed and simulated cloud change patterns are consistent with poleward retreat of mid-latitude storm tracks, expansion of subtropical dry zones, and increasing height of the highest cloud tops at all latitudes. The primary drivers of these cloud changes appear to be increasing greenhouse gas concentrations and a recovery from volcanic radiative cooling. These results indicate that the cloud changes most consistently predicted by global climate models are currently occurring in nature.

  11. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.

    PubMed

    Hisano, Masumi; Searle, Eric B; Chen, Han Y H

    2018-02-01

    Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.

  12. Combined effects of climate, restoration measures and slope position in change in soil chemical properties and nutrient loss across lands affected by the Wenchuan Earthquake in China.

    PubMed

    Lin, Yongming; Deng, Haojun; Du, Kun; Rafay, Loretta; Zhang, Guang-Shuai; Li, Jian; Chen, Can; Wu, Chengzhen; Lin, Han; Yu, Wei; Fan, Hailan; Ge, Yonggang

    2017-10-15

    change in soil properties were affected by climate types and treatments, but not slope positions. Our results provide useful information for the selection of restoration countermeasures in different climate types to facilitate ecological restoration and reconstruction strategies in earthquake-affected areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Climate change: Cropping system changes and adaptations

    USDA-ARS?s Scientific Manuscript database

    Climate change impacts the life of every person; however, there is little comprehensive understanding of the direct and indirect effects of climate change on agriculture. Since our food, feed, fiber, and fruit is derived from agricultural systems, understanding the effects of changing temperature, p...

  14. Climate change and environmental concentrations of POPs: A review.

    PubMed

    Nadal, Martí; Marquès, Montse; Mari, Montse; Domingo, José L

    2015-11-01

    In recent years, the climate change impact on the concentrations of persistent organic pollutants (POPs) has become a topic of notable concern. Changes in environmental conditions such as the increase of the average temperature, or the UV-B radiation, are likely to influence the fate and behavior of POPs, ultimately affecting human exposure. The state of the art of the impact of climate change on environmental concentrations of POPs, as well as on human health risks, is here reviewed. Research gaps are also identified, while future studies are suggested. Climate change and POPs are a hot issue, for which wide attention should be paid not only by scientists, but also and mainly by policy makers. Most studies reported in the scientific literature are focused on legacy POPs, mainly polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and pesticides. However, the number of investigations aimed at estimating the impact of climate change on the environmental levels of polycyclic aromatic hydrocarbons (PAHs) is scarce, despite of the fact that exposure to PAHs and photodegradation byproducts may result in adverse health effects. Furthermore, no data on emerging POPs are currently available in the scientific literature. In consequence, an intensification of studies to identify and mitigate the indirect effects of the climate change on POP fate is needed to minimize the human health impact. Furthermore, being this a global problem, interactions between climate change and POPs must be addressed from an international perspective. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Large-Scale Changes in Community Composition: Determining Land Use and Climate Change Signals

    PubMed Central

    Kampichler, Christian; van Turnhout, Chris A. M.; Devictor, Vincent; van der Jeugd, Henk P.

    2012-01-01

    Human land use and climate change are regarded as the main driving forces of present-day and future species extinction. They may potentially lead to a profound reorganisation of the composition and structure of natural communities throughout the world. However, studies that explicitly investigate both forms of impact—land use and climate change—are uncommon. Here, we quantify community change of Dutch breeding bird communities over the past 25 years using time lag analysis. We evaluate the chronological sequence of the community temperature index (CTI) which reflects community response to temperature increase (increasing CTI indicates an increase in relative abundance of more southerly species), and the temporal trend of the community specialisation index (CSI) which reflects community response to land use change (declining CSI indicates an increase of generalist species). We show that the breeding bird fauna underwent distinct directional change accompanied by significant changes both in CTI and CSI which suggests a causal connection between climate and land use change and bird community change. The assemblages of particular breeding habitats neither changed at the same speed and nor were they equally affected by climate versus land use changes. In the rapidly changing farmland community, CTI and CSI both declined slightly. In contrast, CTI increased in the more slowly changing forest and heath communities, while CSI remained stable. Coastal assemblages experienced both an increase in CTI and a decline in CSI. Wetland birds experienced the fastest community change of all breeding habitat assemblages but neither CTI nor CSI showed a significant trend. Overall, our results suggest that the interaction between climate and land use changes differs between habitats, and that comparing trends in CSI and CTI may be useful in tracking the impact of each determinant. PMID:22523579

  16. Our Changing Climate: A Brand New Way to Study Climate Science

    NASA Astrophysics Data System (ADS)

    Brey, J. A.; Kauffman, C.; Geer, I.; Nugnes, K. A.; Mills, E. W.

    2014-12-01

    Earth's climate is inherently variable, but is currently changing at rates unprecedented in recent Earth history. Human activity plays a major role in this change and is projected to do so well into the future. This is the stance taken in Our Changing Climate, the brand new climate science ebook from the American Meteorological Society (AMS). Our Changing Climate investigates Earth's climate system, explores humans' impact on it, and identifies actions needed in response to climate change. Released in August 2014, Our Changing Climate is the result of a year's worth of intensive research and writing, incorporating the latest scientific understandings of Earth's climate system from reports such as IPCC AR5 and the Third National Climate Assessment. To encourage additional exploration of climate science information, scientific literature, from which chapter content was derived, is cited at the conclusion of each chapter. In addition, Topic In Depth sections appear throughout each chapter and lead to more extensive information related to various topics. For example, a Topic In Depth in Chapter 11 describes the effect of climate extremes on ranching enterprises in Nebraska. Climate science is multi-disciplinary and therefore Our Changing Climate covers a breadth of topics. From understanding basic statistics and geospatial tools used to investigate Earth's climate system to examining the psychological and financial reasons behind climate change denial, the AMS believes that a multi-disciplinary approach is the most effective way to increase climate literacy. Our Changing Climate is part of the AMS Climate Studies course which is intended for undergraduate-level students. Other course materials include an eInvestigations Manual and access to the RealTime Climate Portal, both of which provide weekly activities corresponding to that week's chapter content. The RealTime Climate Portal also has links to climate data as well as societal interactions and climate policy

  17. Climate change effects on agriculture: Economic responses to biophysical shocks

    PubMed Central

    Nelson, Gerald C.; Valin, Hugo; Sands, Ronald D.; Havlík, Petr; Ahammad, Helal; Deryng, Delphine; Elliott, Joshua; Fujimori, Shinichiro; Hasegawa, Tomoko; Heyhoe, Edwina; Kyle, Page; Von Lampe, Martin; Lotze-Campen, Hermann; Mason d’Croz, Daniel; van Meijl, Hans; van der Mensbrugghe, Dominique; Müller, Christoph; Popp, Alexander; Robertson, Richard; Robinson, Sherman; Schmid, Erwin; Schmitz, Christoph; Tabeau, Andrzej; Willenbockel, Dirk

    2014-01-01

    Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W/m2. The mean biophysical yield effect with no incremental CO2 fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, cropland area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change. PMID:24344285

  18. Climate change and One Health.

    PubMed

    Zinsstag, Jakob; Crump, Lisa; Schelling, Esther; Hattendorf, Jan; Maidane, Yahya Osman; Ali, Kadra Osman; Muhummed, Abdifatah; Umer, Abdurezak Adem; Aliyi, Ferzua; Nooh, Faisal; Abdikadir, Mohammed Ibrahim; Ali, Seid Mohammed; Hartinger, Stella; Mäusezahl, Daniel; de White, Monica Berger Gonzalez; Cordon-Rosales, Celia; Castillo, Danilo Alvarez; McCracken, John; Abakar, Fayiz; Cercamondi, Colin; Emmenegger, Sandro; Maier, Edith; Karanja, Simon; Bolon, Isabelle; de Castañeda, Rafael Ruiz; Bonfoh, Bassirou; Tschopp, Rea; Probst-Hensch, Nicole; Cissé, Guéladio

    2018-06-01

    The journal The Lancet recently published a countdown on health and climate change. Attention was focused solely on humans. However, animals, including wildlife, livestock and pets, may also be impacted by climate change. Complementary to the high relevance of awareness rising for protecting humans against climate change, here we present a One Health approach, which aims at the simultaneous protection of humans, animals and the environment from climate change impacts (climate change adaptation). We postulate that integrated approaches save human and animal lives and reduce costs when compared to public and animal health sectors working separately. A One Health approach to climate change adaptation may significantly contribute to food security with emphasis on animal source foods, extensive livestock systems, particularly ruminant livestock, environmental sanitation, and steps towards regional and global integrated syndromic surveillance and response systems. The cost of outbreaks of emerging vector-borne zoonotic pathogens may be much lower if they are detected early in the vector or in livestock rather than later in humans. Therefore, integrated community-based surveillance of zoonoses is a promising avenue to reduce health effects of climate change.

  19. Climate change and One Health

    PubMed Central

    Crump, Lisa; Schelling, Esther; Hattendorf, Jan; Maidane, Yahya Osman; Ali, Kadra Osman; Muhummed, Abdifatah; Umer, Abdurezak Adem; Aliyi, Ferzua; Nooh, Faisal; Abdikadir, Mohammed Ibrahim; Ali, Seid Mohammed; Hartinger, Stella; Mäusezahl, Daniel; de White, Monica Berger Gonzalez; Cordon-Rosales, Celia; Castillo, Danilo Alvarez; McCracken, John; Abakar, Fayiz; Cercamondi, Colin; Emmenegger, Sandro; Maier, Edith; Karanja, Simon; Bolon, Isabelle; de Castañeda, Rafael Ruiz; Bonfoh, Bassirou; Tschopp, Rea; Probst-Hensch, Nicole; Cissé, Guéladio

    2018-01-01

    Abstract The journal The Lancet recently published a countdown on health and climate change. Attention was focused solely on humans. However, animals, including wildlife, livestock and pets, may also be impacted by climate change. Complementary to the high relevance of awareness rising for protecting humans against climate change, here we present a One Health approach, which aims at the simultaneous protection of humans, animals and the environment from climate change impacts (climate change adaptation). We postulate that integrated approaches save human and animal lives and reduce costs when compared to public and animal health sectors working separately. A One Health approach to climate change adaptation may significantly contribute to food security with emphasis on animal source foods, extensive livestock systems, particularly ruminant livestock, environmental sanitation, and steps towards regional and global integrated syndromic surveillance and response systems. The cost of outbreaks of emerging vector-borne zoonotic pathogens may be much lower if they are detected early in the vector or in livestock rather than later in humans. Therefore, integrated community-based surveillance of zoonoses is a promising avenue to reduce health effects of climate change. PMID:29790983

  20. Weighing the relative potential impacts of climate change and land-use change on an endangered bird.

    PubMed

    Bancroft, Betsy A; Lawler, Joshua J; Schumaker, Nathan H

    2016-07-01

    Climate change and land-use change are projected to be the two greatest drivers of biodiversity loss over the coming century. Land-use change has resulted in extensive habitat loss for many species. Likewise, climate change has affected many species resulting in range shifts, changes in phenology, and altered interactions. We used a spatially explicit, individual-based model to explore the effects of land-use change and climate change on a population of the endangered Red-cockaded Woodpecker (RCW; Picoides borealis). We modeled the effects of land-use change using multiple scenarios representing different spatial arrangements of new training areas for troops across Fort Benning. We used projected climate-driven changes in habitat and changes in reproductive output to explore the potential effects of climate change. We summarized potential changes in habitat based on the output of the dynamic vegetation model LPJ-GUESS, run for multiple climate change scenarios through the year 2100. We projected potential changes in reproduction based on an empirical relationship between spring precipitation and the mean number of successful fledglings produced per nest attempt. As modeled in our study, climate change had virtually no effect on the RCW population. Conversely, simulated effects of land-use change resulted in the loss of up to 28 breeding pairs by 2100. However, the simulated impacts of development depended on where the development occurred and could be completely avoided if the new training areas were placed in poor-quality habitat. Our results demonstrate the flexibility inherent in many systems that allows seemingly incompatible human land uses, such as development, and conservation actions to exist side by side.

  1. Risk communication, public engagement, and climate change: a role for emotions.

    PubMed

    Roeser, Sabine

    2012-06-01

    This article discusses the potential role that emotions might play in enticing a lifestyle that diminishes climate change. Climate change is an important challenge for society. There is a growing consensus that climate change is due to our behavior, but few people are willing to significantly adapt their lifestyle. Empirical studies show that people lack a sense of urgency: they experience climate change as a problem that affects people in distant places and in a far future. Several scholars have claimed that emotions might be a necessary tool in communication about climate change. This article sketches a theoretical framework that supports this hypothesis, drawing on insights from the ethics of risk and the philosophy of emotions. It has been shown by various scholars that emotions are important determinants in risk perception. However, emotions are generally considered to be irrational states and are hence excluded from communication and political decision making about risky technologies and climate change, or they are used instrumentally to create support for a position. However, the literature on the ethics of risk shows that the dominant, technocratic approach to risk misses the normative-ethical dimension that is inherent to decisions about acceptable risk. Emotion research shows that emotions are necessary for practical and moral decision making. These insights can be applied to communication about climate change. Emotions are necessary for understanding the moral impact of the risks of climate change, and they also paradigmatically provide for motivation. Emotions might be the missing link in effective communication about climate change. © 2012 Society for Risk Analysis.

  2. Deducing Climatic Elasticity to Assess Projected Climate Change Impacts on Streamflow Change across China

    NASA Astrophysics Data System (ADS)

    Liu, Jianyu; Zhang, Qiang; Zhang, Yongqiang; Chen, Xi; Li, Jianfeng; Aryal, Santosh K.

    2017-10-01

    Climatic elasticity has been widely applied to assess streamflow responses to climate changes. To fully assess impacts of climate under global warming on streamflow and reduce the error and uncertainty from various control variables, we develop a four-parameter (precipitation, catchment characteristics n, and maximum and minimum temperatures) climatic elasticity method named PnT, based on the widely used Budyko framework and simplified Makkink equation. We use this method to carry out the first comprehensive evaluation of the streamflow response to potential climate change for 372 widely spread catchments in China. The PnT climatic elasticity was first evaluated for a period 1980-2000, and then used to evaluate streamflow change response to climate change based on 12 global climate models under Representative Concentration Pathway 2.6 (RCP2.6) and RCP 8.5 emission scenarios. The results show that (1) the PnT climatic elasticity method is reliable; (2) projected increasing streamflow takes place in more than 60% of the selected catchments, with mean increments of 9% and 15.4% under RCP2.6 and RCP8.5 respectively; and (3) uncertainties in the projected streamflow are considerable in several regions, such as the Pearl River and Yellow River, with more than 40% of the selected catchments showing inconsistent change directions. Our results can help Chinese policy makers to manage and plan water resources more effectively, and the PnT climatic elasticity should be applied to other parts of the world.

  3. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts.

    PubMed

    Rutherford, William A; Painter, Thomas H; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S; Flagg, Cody; Reed, Sasha C

    2017-03-10

    Drylands represent the planet's largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness-changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  4. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts

    NASA Astrophysics Data System (ADS)

    Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody; Reed, Sasha C.

    2017-03-01

    Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  5. Albedo feedbacks to future climate via climate change impacts on dryland biocrusts

    USGS Publications Warehouse

    Rutherford, William A.; Painter, Thomas H.; Ferrenberg, Scott; Belnap, Jayne; Okin, Gregory S.; Flagg, Cody B.; Reed, Sasha C.

    2017-01-01

    Drylands represent the planet’s largest terrestrial biome and evidence suggests these landscapes have large potential for creating feedbacks to future climate. Recent studies also indicate that dryland ecosystems are responding markedly to climate change. Biological soil crusts (biocrusts) ‒ soil surface communities of lichens, mosses, and/or cyanobacteria ‒ comprise up to 70% of dryland cover and help govern fundamental ecosystem functions, including soil stabilization and carbon uptake. Drylands are expected to experience significant changes in temperature and precipitation regimes, and such alterations may impact biocrust communities by promoting rapid mortality of foundational species. In turn, biocrust community shifts affect land surface cover and roughness—changes that can dramatically alter albedo. We tested this hypothesis in a full-factorial warming (+4 °C above ambient) and altered precipitation (increased frequency of 1.2 mm monsoon-type watering events) experiment on the Colorado Plateau, USA. We quantified changes in shortwave albedo via multi-angle, solar-reflectance measurements. Warming and watering treatments each led to large increases in albedo (>30%). This increase was driven by biophysical factors related to treatment effects on cyanobacteria cover and soil surface roughness following treatment-induced moss and lichen mortality. A rise in dryland surface albedo may represent a previously unidentified feedback to future climate.

  6. Heat Exposure and Maternal Health in the Face of Climate Change.

    PubMed

    Kuehn, Leeann; McCormick, Sabrina

    2017-07-29

    Climate change will increasingly affect the health of vulnerable populations, including maternal and fetal health. This systematic review aims to identify recent literature that investigates increasing heat and extreme temperatures on pregnancy outcomes globally. We identify common research findings in order to create a comprehensive understanding of how immediate effects will be sustained in the next generation. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide, we systematically reviewed articles from PubMed and Cochrane Reviews. We included articles that identify climate change-related exposures and adverse health effects for pregnant women. There is evidence that temperature extremes adversely impact birth outcomes, including, but not limited to: changes in length of gestation, birth weight, stillbirth, and neonatal stress in unusually hot temperature exposures. The studies included in this review indicate that not only is there a need for further research on the ways that climate change, and heat in particular, may affect maternal health and neonatal outcomes, but that uniform standards for assessing the effects of heat on maternal fetal health also need to be established.

  7. Heat Exposure and Maternal Health in the Face of Climate Change

    PubMed Central

    Kuehn, Leeann; McCormick, Sabrina

    2017-01-01

    Climate change will increasingly affect the health of vulnerable populations, including maternal and fetal health. This systematic review aims to identify recent literature that investigates increasing heat and extreme temperatures on pregnancy outcomes globally. We identify common research findings in order to create a comprehensive understanding of how immediate effects will be sustained in the next generation. Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guide, we systematically reviewed articles from PubMed and Cochrane Reviews. We included articles that identify climate change-related exposures and adverse health effects for pregnant women. There is evidence that temperature extremes adversely impact birth outcomes, including, but not limited to: changes in length of gestation, birth weight, stillbirth, and neonatal stress in unusually hot temperature exposures. The studies included in this review indicate that not only is there a need for further research on the ways that climate change, and heat in particular, may affect maternal health and neonatal outcomes, but that uniform standards for assessing the effects of heat on maternal fetal health also need to be established. PMID:28758917

  8. Attitudes to climate change, perceptions of disaster risk, and mitigation and adaptation behavior in Yunlin County, Taiwan.

    PubMed

    Lee, Yung-Jaan; Tung, Chuan-Ming; Lin, Shih-Chien

    2018-02-08

    Issues that are associated with climate change have global importance. Most related studies take a national or regional perspective on the impact of climate change. Taiwan is constrained by its geographical conditions, which increase its vulnerability to climate change, especially in its western coastal areas. The county that is most affected by climate change is Yunlin. In 2013-2014, projects that were sponsored by Taiwan's government analyzed the relationship among synthesized vulnerability, ecological footprint (EF) and adaptation to climate change and proposed 15 categories of synthesized vulnerability and EF values. This study further examines the relationship between vulnerability and EF values and examines how residents of four townships-Linnei, Sihu, Mailiao, and Huwei-cope with the effects of climate change. This study investigates whether the residents of the four townships vary in their attitudes to climate change, their perceptions of disaster risk, and their behavioral intentions with respect to coping with climate change. The structural equation model (SEM) is used to examine the relationships among attitudes to climate change, perceptions of disaster risk, and the behavioral intentions of residents in townships with various vulnerabilities to climate change. The results that are obtained using the SEM reveal that climate change mitigation/adaptation behavior is affected by attitudes to climate change and perceptions of disaster risk. However, the effects of attitudes and perceptions on mitigation and adaptation that are mediated by place attachment are not statistically significant.

  9. Household perceptions of coastal hazards and climate change in the Central Philippines.

    PubMed

    Combest-Friedman, Chelsea; Christie, Patrick; Miles, Edward

    2012-12-15

    As a tropical archipelagic nation, the Philippines is particularly susceptible to coastal hazards, which are likely to be exacerbated by climate change. To improve coastal hazard management and adaptation planning, it is imperative that climate information be provided at relevant scales and that decision-makers understand the causes and nature of risk in their constituencies. Focusing on a municipality in the Central Philippines, this study examines local meteorological information and explores household perceptions of climate change and coastal hazard risk. First, meteorological data and local perceptions of changing climate conditions are assessed. Perceived changes in climate include an increase in rainfall and rainfall variability, an increase in intensity and frequency of storm events and sea level rise. Second, factors affecting climate change perceptions and perceived risk from coastal hazards are determined through statistical analysis. Factors tested include social status, economic standing, resource dependency and spatial location. Results indicate that perceived risk to coastal hazards is most affected by households' spatial location and resource dependency, rather than socio-economic conditions. However, important differences exist based on the type of hazard and nature of risk being measured. Resource dependency variables are more significant in determining perceived risk from coastal erosion and sea level rise than flood events. Spatial location is most significant in determining households' perceived risk to their household assets, but not perceived risk to their livelihood. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Atmospheric Teleconnection and Climate Variability: Affecting Rice Productivity of Bihar, India

    NASA Astrophysics Data System (ADS)

    Saini, A.

    2017-12-01

    Climate variability brought various negative results to the environment around us and area under rice crop in Bihar has also faced a lot of negative impacts due to variability in temperature and rainfall. Location of Bihar in Northern Plain of India automatically makes it prime location for agriculture and therefore variability in climatic variables brings highly sensitive results to the agricultural production (especially rice). In this study, rainfall and temperature variables are taken into consideration to investigate the impact on rice cultivated area. Change in climate variable with the passage of time is prevailing since the start of geological time scale, how the variability in climate variables has affected the major crops. Climate index of Pacific Ocean and Indian Ocean influences the seasonal weather in Bihar and therefore role of ENSO and IOD is an interesting point of inquiry. Does there exists direct relation between climate variability and area under agricultural crops? How many important variables directly signals towards the change in area under agriculture production? These entire questions are answered with respect to change in area under rice cultivation of Bihar State of India. Temperature, rainfall and ENSO are a good indicator with respect to rice cultivation in Indian subcontinent. Impact on the area under rice has been signaled through ONI, Niño3 and DMI. Increasing range of temperature in the rice productivity declining years is observed since 1990.

  11. Climate change matters.

    PubMed

    Macpherson, Cheryl Cox

    2014-04-01

    One manifestation of climate change is the increasingly severe extreme weather that causes injury, illness and death through heat stress, air pollution, infectious disease and other means. Leading health organisations around the world are responding to the related water and food shortages and volatility of energy and agriculture prices that threaten health and health economics. Environmental and climate ethics highlight the associated challenges to human rights and distributive justice but rarely address health or encompass bioethical methods or analyses. Public health ethics and its broader umbrella, bioethics, remain relatively silent on climate change. Meanwhile global population growth creates more people who aspire to Western lifestyles and unrestrained socioeconomic growth. Fulfilling these aspirations generates more emissions; worsens climate change; and undermines virtues and values that engender appreciation of, and protections for, natural resources. Greater understanding of how virtues and values are evolving in different contexts, and the associated consequences, might nudge the individual and collective priorities that inform public policy toward embracing stewardship and responsibility for environmental resources necessary to health. Instead of neglecting climate change and related policy, public health ethics and bioethics should explore these issues; bring transparency to the tradeoffs that permit emissions to continue at current rates; and offer deeper understanding about what is at stake and what it means to live a good life in today's world.

  12. The Women's Role in the Adaptation to Climate Variability and Climate Change: Its Contribution to the Risk Management

    NASA Astrophysics Data System (ADS)

    Quintero Angel, M.; Carvajal Escobar, Y.; Garcia Vargas, M.

    2007-05-01

    Recently, there is evidence of an increase in the amount of severity in extreme events associated with the climate variability or climate change; which demonstrates that climate in this planet is changing. There is an observation of increasing damages, and of social economical cost associated with these phenomena's, mostly do to more people are living in hazard vulnerable conditions. The victims of natural disasters have increase from 147 to 211 million between 1991 and 2000. In same way more than 665.000 people have died in 2557 natural disasters, which 90% are associated with water and climate. (UNESCO & WWAP, 2003). The actual tendency and the introduction of new factors of risk, suggest lost increase in the future, obligating actions to manage and reduce risk of disaster. Bind work, health, poverty, education, water, climate, and disasters is not an error, is an obligation. Vulnerability of society to natural hazards and to poverty are bond, to reduce the risk of disasters is frequently united with the reduction of poverty and in the other way too (Sen, 2000). In this context, extreme events impact societies in all the world, affecting differently men and women, do to the different roles they play in the society, the different access in the control of resources, the few participation that women have in taking decisions with preparedness, mitigation, rehabilitation of disasters, impacting more women in developing countries. Although, women understand better the causes and local consequences in changes of climate conditions. They have a pile of knowledge and abilities for guiding adaptation, playing a very important role in vulnerable communities. This work shows how these topics connect with the millennium development goals; particularly how it affects its accomplishment. It also describes the impact of climate variability and climate change in developing countries. Analyzing adaptation responses that are emerging; especially from women initiation.

  13. Quantifying the effects of climate and post-fire landscape change on hydrologic processes

    NASA Astrophysics Data System (ADS)

    Steimke, A.; Han, B.; Brandt, J.; Som Castellano, R.; Leonard, A.; Flores, A. N.

    2016-12-01

    Seasonally snow-dominated, forested mountain watersheds supply water to many human populations globally. However, the timing and magnitude of water delivery from these watersheds has already and will continue to change as the climate warms. Changes in vegetation also affect the runoff response of watersheds. The largest driver of vegetation change in many mountainous regions is wildfire, whose occurrence is affected by both climate and land management decisions. Here, we quantify how direct (i.e. changes in precipitation and temperature) and indirect (i.e. changing fire regimes) effects of climate change influence hydrologic parameters such as dates of peak streamflow, annual discharge, and snowpack levels. We used the Boise River Basin, ID as a model laboratory to calculate the relative magnitude of change stemming from direct and indirect effects of climate change. This basin is relevant to study as it is well-instrumented and major drainages have experienced burning at different spatial and temporal intervals, aiding in model calibration. We built a hydrology-based integrated model of the region using a multiagent simulation framework, Envision. We used a modified HBV (Hydrologiska Byråns Vattenbalansavdelning) rainfall-runoff model and calibrated it to historic streamflow and snowpack observations. We combined a diverse set of climate projections with wildfire scenarios (low vs. high) representing two distinct intervals in the regional historic fire record. In fire simulations, we altered land cover coefficients to reflect a burned state post-fire, which decreased overall evapotranspiration rates and increased water yields. However, direct climate effects had a larger signal on annual variations of hydrologic parameters. By comparing and analyzing scenario outputs, we identified links and sensitivities between land cover and regional hydrology in the context of a changing climate, with potential implications for local land and water managers. In future

  14. Design standards for U.S. transportation infrastructure : the implications of climate change

    DOT National Transportation Integrated Search

    2008-01-01

    This paper examines the changes to engineering design practice that might occur given : climate-induced changes in environmental factors. A project design is separated into the : individual components that might be affected by changing environmental ...

  15. A climate robust integrated modelling framework for regional impact assessment of climate change

    NASA Astrophysics Data System (ADS)

    Janssen, Gijs; Bakker, Alexander; van Ek, Remco; Groot, Annemarie; Kroes, Joop; Kuiper, Marijn; Schipper, Peter; van Walsum, Paul; Wamelink, Wieger; Mol, Janet

    2013-04-01

    Decision making towards climate proofing the water management of regional catchments can benefit greatly from the availability of a climate robust integrated modelling framework, capable of a consistent assessment of climate change impacts on the various interests present in the catchments. In the Netherlands, much effort has been devoted to developing state-of-the-art regional dynamic groundwater models with a very high spatial resolution (25x25 m2). Still, these models are not completely satisfactory to decision makers because the modelling concepts do not take into account feedbacks between meteorology, vegetation/crop growth, and hydrology. This introduces uncertainties in forecasting the effects of climate change on groundwater, surface water, agricultural yields, and development of groundwater dependent terrestrial ecosystems. These uncertainties add to the uncertainties about the predictions on climate change itself. In order to create an integrated, climate robust modelling framework, we coupled existing model codes on hydrology, agriculture and nature that are currently in use at the different research institutes in the Netherlands. The modelling framework consists of the model codes MODFLOW (groundwater flow), MetaSWAP (vadose zone), WOFOST (crop growth), SMART2-SUMO2 (soil-vegetation) and NTM3 (nature valuation). MODFLOW, MetaSWAP and WOFOST are coupled online (i.e. exchange information on time step basis). Thus, changes in meteorology and CO2-concentrations affect crop growth and feedbacks between crop growth, vadose zone water movement and groundwater recharge are accounted for. The model chain WOFOST-MetaSWAP-MODFLOW generates hydrological input for the ecological prediction model combination SMART2-SUMO2-NTM3. The modelling framework was used to support the regional water management decision making process in the 267 km2 Baakse Beek-Veengoot catchment in the east of the Netherlands. Computations were performed for regionalized 30-year climate change

  16. Climate change and the Rocky Mountains: Chapter 20

    USGS Publications Warehouse

    Byrne, James M.; Fagre, Daniel B.; MacDonald, Ryan; Muhlfeld, Clint C.

    2014-01-01

    sensitivities. The chapter emphasizes how climate change affects aquatic resources of the Rockies because they are impacted so directly by the changing snow and ice regimes. The chapter also suggests some approaches for coping with these impacts. Climate change is real and ever present, and the role of each of us in changing the climate is also real and present. The Rocky Mountains are a vast and complex region that is valuable both for resources and ecosystems, but the Rockies cannot provide the valuable resources we need, unless we protect and conserve mountain ecosystems. Hopefully this discussion of the major changes ongoing in the Rocky Mountains due to climate change will add to the collective societal will to minimize this change in the future.

  17. The Green Sahara: Climate Change, Hydrologic History and Human Occupation

    NASA Technical Reports Server (NTRS)

    Blom, Ronald G.; Farr, Tom G.; Feynmann, Joan; Ruzmaikin, Alexander; Paillou, Philippe

    2009-01-01

    Archaeology can provide insight into interactions of climate change and human activities in sensitive areas such as the Sahara, to the benefit of both disciplines. Such analyses can help set bounds on climate change projections, perhaps identify elements of tipping points, and provide constraints on models. The opportunity exists to more precisely constrain the relationship of natural solar and climate interactions, improving understanding of present and future anthropogenic forcing. We are beginning to explore the relationship of human occupation of the Sahara and long-term solar irradiance variations synergetic with changes in atmospheric-ocean circulation patterns. Archaeological and climate records for the last 12 K years are gaining adequate precision to make such comparisons possible. We employ a range of climate records taken over the globe (e.g. Antarctica, Greenland, Cariaco Basin, West African Ocean cores, records from caves) to identify the timing and spatial patterns affecting Saharan climate to compare with archaeological records. We see correlation in changing ocean temperature patterns approx. contemporaneous with drying of the Sahara approx. 6K years BP. The role of radar images and other remote sensing in this work includes providing a geographically comprehensive geomorphic overview of this key area. Such coverage is becoming available from the Japanese PALSAR radar system, which can guide field work to collect archaeological and climatic data to further constrain the climate change chronology and link to models. Our initial remote sensing efforts concentrate on the Gilf Kebir area of Egypt.

  18. Impacts of climate change on land-use and wetland productivity in the Prairie Pothole Region of North America

    USGS Publications Warehouse

    Rashford, Benjamin S.; Adams, Richard M.; Wu, Jun; Voldseth, Richard A.; Guntenspergen, Glenn R.; Werner, Brett; Johnson, W. Carter

    2016-01-01

    Wetland productivity in the Prairie Pothole Region (PPR) of North America is closely linked to climate. A warmer and drier climate, as predicted, will negatively affect the productivity of PPR wetlands and the services they provide. The effect of climate change on wetland productivity, however, will not only depend on natural processes (e.g., evapotranspiration), but also on human responses. Agricultural land use, the predominant use in the PPR, is unlikely to remain static as climate change affects crop yields and prices. Land use in uplands surrounding wetlands will further affect wetland water budgets and hence wetland productivity. The net impact of climate change on wetland productivity will therefore depend on both the direct effects of climate change on wetlands and the indirect effects on upland land use. We examine the effect of climate change and land-use response on semipermanent wetland productivity by combining an economic model of agricultural land-use change with an ecological model of wetland dynamics. Our results suggest that the climate change scenarios evaluated are likely to have profound effects on land use in the North and South Dakota PPR, with wheat displacing other crops and pasture. The combined pressure of land-use and climate change significantly reduces wetland productivity. In a climate scenario with a +4 °C increase in temperature, our model predicts that almost the entire region may lack the wetland productivity necessary to support wetland-dependent species.

  19. Potential effect of climate change on malaria transmission in Africa.

    PubMed

    Tanser, Frank C; Sharp, Brian; le Sueur, David

    2003-11-29

    Climate change is likely to affect transmission of vector-borne diseases such as malaria. We quantitatively estimated current malaria exposure and assessed the potential effect of projected climate scenarios on malaria transmission. We produced a spatiotemporally validated (against 3791 parasite surveys) model of Plasmodium falciparum malaria transmission in Africa. Using different climate scenarios from the Hadley Centre global climate model (HAD CM3) climate experiments, we projected the potential effect of climate change on transmission patterns. Our model showed sensitivity and specificity of 63% and 96%, respectively (within 1 month temporal accuracy), when compared with the parasite surveys. We estimate that on average there are 3.1 billion person-months of exposure (445 million people exposed) in Africa per year. The projected scenarios would estimate a 5-7% potential increase (mainly altitudinal) in malaria distribution with surprisingly little increase in the latitudinal extents of the disease by 2100. Of the overall potential increase (although transmission will decrease in some countries) of 16-28% in person-months of exposure (assuming a constant population), a large proportion will be seen in areas of existing transmission. The effect of projected climate change indicates that a prolonged transmission season is as important as geographical expansion in correct assessment of the effect of changes in transmission patterns. Our model constitutes a valid baseline against which climate scenarios can be assessed and interventions planned.

  20. Interdisciplinarity, Climate, and Change

    NASA Astrophysics Data System (ADS)

    Pulwarty, R. S.

    2016-12-01

    Interdisciplinarity has become synonymous with all things progressive about research and education. This is so not simply because of a philosophical belief in the heterogeneity of knowledge but because of the scientific and social complexities of problems of major concern. The increased demand for improved climate knowledge and information has increased pressure to support planning under changing rates of extremes event occurrence, is well-documented. The application of useful climate data, information and knowledge requires multiple networks and information services infrastructure that support planning and implementation. As widely quoted, Pasteur's quadrant is a label given to a class of scientific research methodologies that seeks fundamental understanding of scientific problems and, simultaneously, to benefit society-what Stokes called "use-inspired research". Innovation, in this context, has been defined as "the process by which individuals and organizations generate new ideas and put them into practice". A growing number of research institutes and programs have begun developing a cadre of professionals focused on integrating basic and applied research in areas such as climate risk assessment and adaptation. There are now several examples of where researchers and teams have crafted examples that include affected communities. In this presentation we will outline the lessons from several efforts including the PACE program, the RISAs, NIDIS, the Climate Services Information System and other interdisciplinary service-oriented efforts in which the author has been involved. Some early lessons include the need to: Recognize that key concerns of social innovation go beyond the projections of climate and other global changes to embrace multiple methods Continue to train scientists of all stripes of disciplinary norms, but higher education should also prepare students who plan to seek careers outside of academia by increasing flexibility in graduate training programs