Sample records for affect dry matter

  1. Dry matter and nitrogen accumulation are not affected by superoptimal concentration of ammonium in flowing solution culture with pH control

    NASA Technical Reports Server (NTRS)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.

  2. Silage review: Factors affecting dry matter and quality losses in silages.

    PubMed

    Borreani, G; Tabacco, E; Schmidt, R J; Holmes, B J; Muck, R E

    2018-05-01

    An overview was made of dry matter (DM) and quality losses that occur during the ensiling process from the field through the feeding phase. The aim was to review the relevant published literature of the last 15 yr focusing on developments achieved after the publication of the book Silage Science and Technology. This review discusses the factors affecting DM and quality losses in terms of field and pre-ensiling conditions, respiration and temperature at ensiling, fermentation patterns, methods of covering and weighting the silage cover, and management of aerobic deterioration. The possibility of reducing DM and quality losses during the ensiling process requires knowledge of how to measure losses on farm and establish the status of the silage during the feed-out phase, implementing the most effective management practices to avoid air exposure during conservation and reduce silage aerobic deterioration during feeding. The paper concludes with future perspectives and recommended management practices to reduce losses and increase efficiency over the whole ensiling process in view of increasing sustainability of the livestock production chain. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  3. Accumulation and Distribution of Dry Matter and Nutrients in Aigeiros Poplar Plantations

    Treesearch

    G. L. Switzer; L. E. Nelson; James B. Baker

    1976-01-01

    Patterns of accumulation of dry matter and nutrients through 20 years in Aigeiros poplar plantations are strongly influenced by mode of plantation culture. Accumulation of both dry matter and nutrients in closely spaced thinned plantations is linear through age 12 to 14, after which accumulation declines and then stabilizes. In contrast, dry matter and nutrient...

  4. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    PubMed

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  5. Dry matter, lipids, and proteins of canola seeds as affected by germination and seedling growth under illuminated and dark environments.

    PubMed

    Zhang, Haiyan; Vasanthan, Thava; Wettasinghe, Mahinda

    2004-12-29

    The effect of germination and growth under illuminated and dark environments on canola seed reserves was investigated. Depletion of proteins and lipids in whole seedlings and their top (leaf/cotyledons) and bottom parts (stem/roots/seed coat) was independent of light, whereas the protein solubility increased at a faster rate under an illuminated environment than in the dark. A rapid increase in free fatty acids but a net decrease of dry matter content in seedlings grown in the dark environment was observed. The dry matter content of seedlings grown in the illuminated environment increased due to photosynthetic biomass accumulation.

  6. Effects of Insect-Proof Net Cultivation, Rice-Duck Farming, and Organic Matter Return on Rice Dry Matter Accumulation and Nitrogen Utilization

    PubMed Central

    Liu, Xin; Xu, Guochun; Wang, Qiangsheng; Hang, Yuhao

    2017-01-01

    Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11–4.28 and 4.78–7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52–3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48–4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26–9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield. PMID:28174589

  7. Long-term residual dry matter mapping for monitoring California hardwood rangelands

    Treesearch

    Norman R. Harris; William E. Frost; Neil K. McDougald; Melvin R. George; Donald L. Nielsen

    2002-01-01

    Long-term residual dry matter mapping on the San Joaquin Experimental Range provides a working example of this monitoring technique for grazing management and research. Residual dry matter (RDM) is the amount of old plant material left on the ground at the beginning of a new growing season. RDM indicates the previous season’s use and can be used to describe the health...

  8. Initial assessment on the use of cocoa pulp in complete feed formulation: in vitro dry matter and organic matter digestibility

    NASA Astrophysics Data System (ADS)

    Natsir, A.; Mujnisa, A.; Mide, M. Z.; Purnomo, N.; Saade, M. F.

    2018-05-01

    Cocoa pulp is a by-product from cocoa industry which is produced in large quantity, but very limited study has been carried out in utilizing it as energy source in animal feed. The purpose of this study was to assess the in vitro dry matter (IVDMD) and in vitro organic matter digestibility (IVOMD) of complete feed containing different levels of cocoa pulp. The experiment was carried out according to completely randomised design consisting of four treatments and three replications. The treatments were P0 = Complete feed containing 0% cocoa pulp, P1 = Complete feed containing 5% cocoa pulp, P2 = Complete feed containing 10% cocoa pulp, and P3 = Complete feed containing 15% cocoa pulp on dry matter basis. The results of the study indicated that the average IVDMD was 567, 538, 566, and 526 g kg-1 DM, while the average IVOMD was 522, 491, 502, and 461 g/kg DM, respectively for treatment P0, P1, P2, and P3. Statistical analysis indicated that increasing levels of coca pulp in the feed significantly affected (P<0.05) the IVDMD and IVOMD of the feed. In conclusion, cocoa pulp is potential to be used up to 10% in complete feed with corn cobs as the fibre source.

  9. Remote sensing of total dry-matter accumulation in winter wheat

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Holben, B. N.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Red and photographic-infrared spectral data collected on 21 dates over the growing season with a hand-held radiometer was quantitatively correlated with total dry-matter accumulation in winter wheat. The spectral data were found to be highly related to vigor and condition of the plant canopy. Two periods of drought stress and subsequent recovery from it were readily apparent in the spectral data. Simple ratios of the spectral data compensated for variations in solar intensities and, when integrated over the growing season, explained 79% of the variation in total above-ground accumulation of dry matter.

  10. The repeated drying-wetting and freezing-thawing cycles affect only the active pool of soil organic matter

    NASA Astrophysics Data System (ADS)

    Semenov, Vyacheslav; Zinyakova, Natalya; Tulina, Anastasiya

    2016-04-01

    The decrease in the content of soil organic carbon, particularly in active form, is one of the major problems of the 21st century, which is closely related to the disturbance of the biogeochemical carbon cycle and to the increase in the emission of carbon dioxide into the atmosphere. The main reasons for the SOM losses are the surplus of the SOM active pool losses due to mineralization, erosion, and infiltration over the input of fresh organic matter to the soil, as well as the changes in the soil conditions and processes due to natural and anthropogenic disturbing impacts. Experiments were carried out with mixed samples from the upper layers of soddy-podzolic soil, gray forest soil, and typical chernozems. Soil samples as controls were incubated after wetting for 150 days. The dynamics and cumulative production of C-CO2 under stable temperature (22°C) and moisture conditions were determined; the initial content of potentially mineralizable organic matter (C0) in the soil at the beginning of the incubation was then calculated to use these data as the control. Other soil samples were exposed in flasks to the following successive treatments: wetting →incubation → freezing → thawing → incubation →drying. Six repeated cycles of disturbing impacts were performed for 140 days of the experiment. After six cycles, the soil samples were incubated under stable temperature and moisture conditions for 150 days. The wetting of dried soils and the thawing of frozen soils are accompanied by the pulsed dynamics of the C-CO2 production with an abrupt increase in the rate of the C-CO2 emission within several days by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. The rate of the C-CO2 production pulses under each subsequent impact decreased compared to the preceding one similarly for all studied soils, which could be due to the depletion in potentially mineralizable soil organic matter (C0). The cumulative extra C-CO2 production by

  11. Evaluation of a microwave method for dry matter determination in faecal samples from weaned pigs with or without clinical diarrhoea.

    PubMed

    Pedersen, Ken Steen; Stege, Helle; Nielsen, Jens Peter

    2011-07-01

    Microwave drying as a procedure for determination of faecal dry matter in weaned pigs was evaluated and clinical relevant cut-off values between faecal consistency scores were determined. Repeatability and reproducibility were evaluated. Overall coefficient of variation was 0.03. The 95% confidence limits for any future faecal subsample examined by any operator in any replica were ± 0.85% faecal dry matter. Robustness in relation to weight of wet faeces was evaluated. The weight categories were 0.5, 1.0, 1.5, 2.0 and 3.0 g. Samples of 0.5 g gave significantly different mean faecal dry matter content compared to weighing of 1.0-3.0 g. Agreement with freeze-drying was evaluated. Lin's concordance correlation coefficient was 0.94. On average the faecal dry matter values was 1.7% (SD=1.99%) higher in freeze dried compared to micro waved samples. Non-parametric ROC analyses were used to determine optimal faecal dry matter cut-off values for clinical faecal consistency scores. The 4 consistency scores were score 1=firm and shaped, score 2=soft and shaped, score 3=loose and score 4=watery. The cut-off values were score 1: faecal dry matter content >19.5%, score 2: faecal dry matter content ≤ 19.5% and >18.0%, score 3: faecal dry matter content ≤ 18.0% and >11.3%, score 4: faecal dry matter content ≤ 11.3%. In conclusion, the microwave procedure has an acceptable repeatability/reproducibility and good agreement with freeze drying can be expected. A minimum of 1.0 g of wet faeces must be used for analyses. Faecal dry matter cut-off values between 4 different clinical consistency scores were determined. © 2011 Elsevier B.V. All rights reserved.

  12. Implications of genetic selection on yolk proportion on the dry matter content of eggs in a White Leghorn population.

    PubMed

    Icken, W; Looft, C; Schellander, K; Cavero, D; Blanco, A; Schmutz, M; Preisinger, R

    2014-01-01

    1. The responses to genetic selection on yolk proportion as a technique for increasing egg dry matter content, an important criterion for the egg-product industry, was investigated in a pedigree flock of White Leghorn hens. 2. Parents were preselected on high and low yolk proportion from a base population. The absolute estimated breeding value for yolk proportion of both groups differed by 3%. The realised selection difference in dry matter content of eggs between groups was more than 1% in the analysed offspring population. 3. Heritability estimates were moderate and dry matter had a lower heritability (h(2) = 0.39) than yolk proportion (h(2) = 0.44). 4. The genetic correlation between yolk proportion and dry matter content was highly positive (rg = 0.91). Genetic correlations with egg weight were negative and would have to be compensated for in a breeding programme (rg = -0.76 with yolk proportion and rg = -0.64 with dry matter content). The genetic correlation between the laying performance and yolk proportion was rg = 0.28 and close to zero (rg = -0.05) for dry matter content. 5. Easy recording and lower undesirable correlations make yolk proportion more suitable for commercial selection compared with egg dry matter content in layer breeding.

  13. Dewatering treatments to increase dry matter content of the brown seaweed, kelp (Laminaria digitata ((Hudson) JV Lamouroux)).

    PubMed

    Gallagher, Joe A; Turner, Lesley B; Adams, Jessica M M; Dyer, Philip W; Theodorou, Michael K

    2017-01-01

    Macroalgal water content is an on-going problem for the use of readily accessible seaweeds in sustainable biorefining, including fuel production. Silage is a reduced-water, compactable, easily stored, transportable material. Ensiling could establish a non-seasonal supply of preserved algal biomass, but requires high initial dry matter content to mitigate environmental pollution risks from effluent. This study investigated potential dewatering methods for kelp harvested throughout the year. Treatments included air-drying, osmotic media and acids. Significant interactions between treatment and harvest-time were observed for traits of interest. Fresh weight loss during treatment was composed of changes in water and dry matter content. Air-drying gave reliable increase in final dry matter content; in summer and autumn 30% dry matter content was reached after 24h. Dilute hydrochloric acid reduced stickiness and rendered material suitable for dewatering by screw-pressing; it may be possible to use the consequent pH reduction to promote efficient preservation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Effect of incorporation of walnut cake (Juglans regia) in concentrate mixture on degradation of dry matter, organic matter and production of microbial biomass in vitro in goat

    PubMed Central

    Mir, Mohsin Ahmad; Sharma, R. K.; Rastogi, Ankur; Barman, Keshab

    2015-01-01

    Aim: This study was carried out to investigate the effect of incorporation of different level of walnut cake in concentrate mixture on in vitro dry matter degradation in order to determine its level of supplementation in ruminant ration. Materials and Methods: Walnut cake was used @ 0, 10, 15, 20, 25 and 30% level to formulate an iso-nitrogenous concentrate mixtures and designated as T1, T2, T3, T4, T5 and T6 respectively. The different formulae of concentrate mixtures were used for in vitro gas production studies using goat rumen liquor with wheat straw in 40:60 ratio. Proximate composition, fiber fractionation and calcium and phosphrous content of walnut cake were estimated. Result: The per cent IVDMD value of T1 and T2 diets was 68.42 ± 1.20 and 67.25 ± 1.37 respectively which was found highest (P<0.05) T3, T4, T5 and T6. Similar trend was also found for TDOM and MBP. Inclusion of walnut cake at 10% level in the concentrate mixture does not affect in vitro dry matter digestibility (IVDMD), truly degradable organic matter (TDOM, mg/200 mg DM), total gas production, microbial biomass production (MBP) and efficiency of microbial biomass production (EMP). Conclusion: It is concluded that walnut cake incorporation up to 10% level in the iso -nitrogenous concentrate mixture has no any negative effect on in vitro digestibility of dry matter (DM), TDOM, MBP, EMP and total gas production in goat. PMID:27047013

  15. Dry matter intake and digestibility of rations replacing concentrates with graded levels of Enterolobium cyclocarpum in Pelibuey lambs.

    PubMed

    Piñeiro-Vázquez, Angel Trinidad; Ayala-Burgos, Armín Javier; Chay-Canul, Alfonso Juventino; Ku-Vera, Juan Carlos

    2013-02-01

    The aim of the study was to evaluate the effect of graded levels of Enterolobium cyclocarpum pods in the ration on feed intake and digestibility by Pelibuey lambs. Five dietary treatments were imposed where ground pods replaced concentrate diet at 0, 20, 30, 40 and 50 % of dry matter (DM), respectively. The concentrate portion was composed of ground sorghum, soybean meal, cane molasses and minerals. Five entire Pelibuey lambs with initial bodyweight 34 ± 2 kg were allocated in the treatments in a 5 × 5 Latin square design. Values of dry matter intake (DMI) and dry matter (DMD) and organic matter (OMD) digestibility were measured and metabolisable energy intake (MEI) estimated. Rumen degradation constants for E. cyclocarpum were also measured. There were no differences (P > 0.05) in average DMI (86.6 g/kg(0.75)) and OMI (81.2 g/kg(0.75)) among treatments. As the level of incorporation of E. cyclocarpum pods increased, voluntary DMI and OMI increased, whereas apparent DMD and OMD decreased linearly. Average digestible DM (65 g/kg(0.75)) and OM (61 g/kg(0.75)) intakes were similar (P > 0.05) among treatments. Similarly, MEI (0.976 MJ ME kg(0.75)/day) was not different (P > 0.05) among treatments. The potential rumen degradation (A + B) of ground pods of E. cyclocarpum was 866.4 g/kg DM. Ground pods of E. cyclocarpum can be employed for lamb feeding up to 50 % of the ration, without affecting DMI, DM apparent digestibility and MEI.

  16. Genome-Wide Association Mapping of Correlated Traits in Cassava: Dry Matter and Total Carotenoid Content.

    PubMed

    Rabbi, Ismail Y; Udoh, Lovina I; Wolfe, Marnin; Parkes, Elizabeth Y; Gedil, Melaku A; Dixon, Alfred; Ramu, Punna; Jannink, Jean-Luc; Kulakow, Peter

    2017-11-01

    Cassava is a starchy root crop cultivated in the tropics for fresh consumption and commercial processing. Primary selection objectives in cassava breeding include dry matter content and micronutrient density, particularly provitamin A carotenoids. These traits are negatively correlated in the African germplasm. This study aimed at identifying genetic markers associated with these traits and uncovering whether linkage and/or pleiotropy were responsible for observed negative correlation. A genome-wide association mapping using 672 clones genotyped at 72,279 single nucleotide polymorphism (SNP) loci was performed. Root yellowness was used indirectly to assess variation in carotenoid content. Two major loci for root yellowness were identified on chromosome 1 at positions 24.1 and 30.5 Mbp. A single locus for dry matter content that colocated with the 24.1 Mbp peak for carotenoids was identified. Haplotypes at these loci explained 70 and 37% of the phenotypic variability for root yellowness and dry matter content, respectively. Evidence of megabase-scale linkage disequilibrium (LD) around the major loci of the two traits and detection of the major dry matter locus in independent analysis for the white- and yellow-root subpopulations suggests that physical linkage rather that pleiotropy is more likely to be the cause of the negative correlation between the target traits. Moreover, candidate genes for carotenoid () and starch biosynthesis ( and ) occurred in the vicinity of the identified locus at 24.1 Mbp. These findings elucidate the genetic architecture of carotenoids and dry matter in cassava and provide an opportunity to accelerate breeding of these traits. Copyright © 2017 Crop Science Society of America.

  17. Photoperiod and growing degree days effect on dry matter partitioning in Jerusalem artichoke

    USDA-ARS?s Scientific Manuscript database

    The effect of photoperiod and growing degree days (GDD) on dry matter and dry partitioning in Jerusalem artichoke was investigated during 2008-09 and 2009-10. Three Jerusalem artichoke genotypes (CN-52867, JA-89 and HEL-65) were planted in 15 day-intervals between with thirteen different dates (Sep...

  18. Effects of Saccharomyces cerevisiae fermentation product on ruminal starch digestion are dependent upon dry matter intake for lactating cows.

    PubMed

    Allen, M S; Ying, Y

    2012-11-01

    This experiment was conducted to evaluate ruminal digestion responses to Saccharomyces cerevisiae fermentation product (SCFP) supplementation and to determine if responses are influenced by voluntary feed intake. Fifteen ruminally and duodenally cannulated Holstein cows with a wide range in preliminary dry matter intake (pDMI; 20.1 to 31.0 kg/d) measured during a 14-d preliminary period were used in a crossover design experiment. Treatments were SCFP and control (a mix of dry ground corn and soybean meal), top-dressed at the rate of 56 g/d per head. The base diet contained 28% NDF, 30% starch, and 16.5% CP and included corn silage, alfalfa silage, high-moisture corn, protein supplement, and a mineral and vitamin supplement. Treatment periods were 28 d, with the final 8d used for sample and data collection. Voluntary dry matter intake was determined during the last 4d of the preliminary period. Ruminal digestion kinetics were determined using the pool-and-flux method. Main effects of SCFP treatment and their interaction with pDMI were tested by ANOVA. An interaction was detected between SCFP treatment and pDMI for ruminal digestion rate of starch; SCFP increased the rate of starch digestion compared with the control for cows with pDMI below 26 kg/d and decreased it for cows with higher pDMI. This resulted in an interaction between treatment and pDMI for turnover rate of starch in the rumen and true and apparent ruminal starch digestibility because passage rate of starch from the rumen was not affected by treatment (mean=24.3%/h). Ruminal pH (mean=6.0), dry matter intake, milk yield and component percentages were not affected by treatment or its interaction with pDMI. Supplementation of SCFP reduced the rate of ruminal starch digestion for cows with higher feed intake, which could help stabilize the ruminal environment when large amounts of starch are consumed to support higher milk production. Copyright © 2012 American Dairy Science Association. Published by

  19. Effects of sawdust bedding dry matter on lying behavior of dairy cows: a dose-dependent response.

    PubMed

    Reich, L J; Weary, D M; Veira, D M; von Keyserlingk, M A G

    2010-04-01

    The objective was to determine the effect of sawdust bedding dry matter on the lying behavior of Holstein cows. Dry matter (DM) was varied systematically over 5 treatment levels to test how cows respond to damp bedding. This experiment was repeated during summer and winter to test if the effects of damp bedding varied with season. The 5 bedding treatments averaged (+/-SD) 89.8+/-3.7, 74.2+/-6.4, 62.2+/-6.3, 43.9+/-4.0, and 34.7+/-3.8% DM. Over the course of the trial, minimum and maximum temperatures in the barn were 2.6+/-2.0 and 6.8+/-2.2 degrees C in the winter and 13.3+/-2.5 and 22.6+/-4.1 degrees C in the summer. In both seasons, 5 groups of 3 nonlactating cows were housed in free stalls bedded with sawdust. Following a 5-d acclimation period on dry bedding, groups were exposed to the 5 bedding treatments in a 5 x 5 Latin square. Each treatment lasted 4 d, followed by 1 d when the cows were provided with dry bedding. Stall usage was assessed by 24-h video scanned at 5-min intervals. Responses were analyzed within group (n=5) as the observational unit. Bedding DM affected lying time, averaging 10.4+/-0.4 h/d on the wettest treatment and increasing to 11.5+/-0.4 h/d on the driest bedding. Lying time varied with season, averaging 12.1+/-0.4 h/d across treatments during the winter and 9.9+/-0.6 h/d during the summer, but season and bedding DM did not interact. These results indicate that access to dry bedding is important for dairy cows. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China.

    PubMed

    Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing

    2016-01-01

    Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2) = 0.85 & T2: R(2) = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2) of cumulative ozone uptake. At the regional level, dry matter loss in winter

  1. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China

    PubMed Central

    Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing

    2016-01-01

    Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R2 = 0.85 & T2: R2 = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m-2 of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat

  2. Improvement of dry matter digestibility of water hyacinth by solid state fermentation using white rot fungi.

    PubMed

    Mukherjee, R; Ghosh, M; Nandi, B

    2004-08-01

    Feeding value of water hyacinth biomass colonized by three species of white rot fungi during solid-state fermentation was investigated. All three organisms proved to be efficient degraders and enhanced dry matter digestibility. Loss of organic matter was maximum (23.6+/-0.1% dry wt) after 48 days by P. ostreatus. C. indica showed maximum cellulose degradation (18.5+/-0.1% dry wt) than other two fungi after 48 days of incubation. In all cases, an extensive removal of hemicellulose at the initial growth period and a delayed degradation of lignin were observed. Hemicellulolysis was maximum (46.3+/-0.1% dry wt) by C. indica, but delignification (14.2+/-0.2% dry wt) by P. sajor-caju after 48 days. The amount of reducing sugar in the degraded biomass decreased at early stages, but increased as degradation progressed in all three cases (maximum 1.1+/-0.05% dry wt after 48 days by C. indica). Soluble nitrogen content increased only during 16-32 days of incubation (highest 1.1+/-0.1% dry wt after 32 days by P. sajor-caju). Crude protein of the bioconverted biomass increased gradually up to 32 days but decreased thereafter (maximum 10.3+/-0.1% dry wt after 32 days by P. sajor - caju). Per cent change in in vitro dry matter digestibility of degraded substrates enhanced gradually after 8 days and reached maximum after 32 days but thereafter decreased (highest + 20.4+/-0.3% dry wt by P. sajor-caju). The results demonstrated the efficient degrading capacity of the test fungi and their potential use in conversion of water hyacinth biomass into mycoprotein-rich ruminant feed, more so by P. sajor-caju.

  3. Use of neural image analysis methods in the process to determine the dry matter content in the compost

    NASA Astrophysics Data System (ADS)

    Wojcieszak, D.; Przybył, J.; Lewicki, A.; Ludwiczak, A.; Przybylak, A.; Boniecki, P.; Koszela, K.; Zaborowicz, M.; Przybył, K.; Witaszek, K.

    2015-07-01

    The aim of this research was investigate the possibility of using methods of computer image analysis and artificial neural networks for to assess the amount of dry matter in the tested compost samples. The research lead to the conclusion that the neural image analysis may be a useful tool in determining the quantity of dry matter in the compost. Generated neural model may be the beginning of research into the use of neural image analysis assess the content of dry matter and other constituents of compost. The presented model RBF 19:19-2-1:1 characterized by test error 0.092189 may be more efficient.

  4. [Effects of different colored plastic film mulching and planting density on dry matter accumulation and yield of spring maize.

    PubMed

    Zhang, Lin Lin; Sun, Shi Jun; Chen, Zhi Jun; Jiang, Hao; Zhang, Xu Dong; Chi, Dao Cai

    2018-01-01

    In order to investigate the effect of different colored plastic film mulching and planting density on spring maize dry matter accumulation and yield in the rain-fed area of the Northeast China, a complete combination field experiment which was comprised by three types of mulching (non-mulching, transparent plastic film mulching and black plastic film mulching) and five densities (60000, 67500, 75000, 82500 and 90000 plants·hm -2 ), was conducted to analyze the water and heat effect, dry matter accumulation and yield of spring maize (Liangyu 99). The results showed that, compared with the other mulching treatments, the black plastic film mulching treatment significantly increased the maize dry matter accumulation and maize biomass by 3.2%-8.2%. In mature stage, the biomass increased firstly and then decreased with the increasing plant density. When planting density was 82500 plants·hm -2 , the biomass was the highest, which was 5.2%-28.3% higher than that of other plant density treatments. The mean soil temperature in prophase of transparent plastic film mulching treatment was 0.4-2.7 ℃ higher than that of other treatments, which accelerated the maize growth process and augmented the dry matter transportation amount (T), dry matter transportation efficiency (TE) and contribution rate of dry matter transportation to the grain yield (TC) of maize stalk and leaf. The T, TE, TC of leaf and leaf-stalk under 60000 plants·hm -2 treatment were the highest. The highest T, TE, TC of stalk were observed under 75000 plants·hm -2 treatment. In heading period, the water consumption and daily water consumption intensity of maize under the treatment of black film mulching were the largest, which were 9.4%-10.6% and 10.6%-24.5% higher than that of other mulching treatments, respectively. The highest water consumption and daily water consumption intensity were both obtained under 90000 plants·hm -2 treatment, which increased by 6.8%-15.7% and 7.0%-20.0% compared with other

  5. Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke.

    PubMed

    Shao, Tianyun; Li, Lingling; Wu, Yawen; Chen, Manxia; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2016-10-15

    Salinity is one of the most serious environmental stresses limiting agricultural production. Production of Jerusalem artichoke on saline land is strategically important for using saline land resources. The interaction between plant hormones and salinity stress in governing Jerusalem artichoke (Helianthus tuberosus) growth is unclear. Jerusalem artichoke (variety Nanyu-1) was grown under variable salinity stress in the field, and a role of endogenous hormones [zeatin (ZT), auxins (IAA), gibberellins (GA3) and abscisic acid (ABA)] in regulating sugar and dry matter accumulation in tubers was characterized. Under mild salt stress (≤2.2gNaClkg(-1) soil), Nanyu-1 grew well with no significant alteration of dry matter distribution to stems and tubers. In contrast, under moderate salt stress (2.7gNaClkg(-1) soil), the distribution to stem decreased and to tubers decreased significantly. Mild salt stress induced sugar accumulation in tubers at the beginning of the tuber-expansion period, but significantly inhibited (i) transfer of non-reducing sugars to tubers, and (ii) polymerization and accumulation of fructan during the tuber-expansion stage. Under different salinity stress, before the stolon growth, the ratio of IAA/ABA in leaves increased significantly and that of GA3/ABA increased slightly; during tuber development, these ratios continued to decrease and reached the minimum late in the tuber-expansion period. While, salt stress inhibited (i) underground dry matter accumulation, (ii) tuber dry matter accumulation efficiency, (iii) transport of non-reducing sugars to tubers, and (iv) fructan accumulation efficiency during the tuber-expansion period; these effects were accompanied by significantly decreased tuber yield with an increase in salinity. With soil salinity increasing, the synthesis of IAA and GA3 was inhibited in leaves and tubers, while ABA synthesis was stimulated. In brief, tuber yield would significantly decreased with the increase of salinity

  6. Dry Matter Losses and Greenhouse Gas Emissions From Outside Storage of Short Rotation Coppice Willow Chip.

    PubMed

    Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian

    This study examined the dry matter losses and the greenhouse gas (GHG) concentrations within two short rotation coppice (SRC) willow wood chip storage heaps. One heap was built on a grassland area (East Midlands) and the other (Rothamsted) on a concrete hard standing. A series of 1- and 3-m probes were embedded in the heaps in order to retrieve gas samples for analysis, and pre-weighed net bags were positioned in the core of the heap to detect dry matter losses. The bagged samples showed dry matter losses of 18 and 19 % in the East Midlands and Rothamsted heaps after 210 and 97 days storage, respectively. The Rothamsted heap showed a whole-heap dry matter loss of 21 %. During this time, the wood chips dried from 54 to 39 % moisture content in the East Midlands heap and 50 to 43 % at Rothamsted. The results from analysing the whole Rothamsted heap indicated an overall loss of 1.5 GJ per tonne stored, although measurements from bagged samples in the core suggested that the chips dried sufficiently to have a minimal energy loss from storage. The process of mixing the heap, however, led to incorporation of wet outer layers and hence the average moisture content was higher in an average sample of chip. After establishment of the heaps, the temperature rose rapidly and this correlated with a peak in carbon dioxide (CO 2 ) concentration within the heap. A peak in methane (CH 4 ) concentration was also detected in both heaps, though more noticeably in the East Midlands heap after around 55 days. In both instances, the peak CH 4 concentration occurred as CO 2 concentrations dropped, suggesting that after an active period of aerobic decomposition in the first 2 months of storage, the conditions in the heap became anaerobic. The results from this study suggest that outside wood chip storage is not an efficient method of storing biomass, though this may be location-specific as there are some studies showing lower dry matter losses. It is necessary to explore other

  7. [Influence of an elevation of the temperature of water on the digestibility of dry matter, nitrogen and energy of food distributed to the rainbow trout (Salmo gairdneri Rich)].

    PubMed

    Choubert, G; Fauconneau, B; Luquet, P

    1982-01-01

    Rainbow trout adapted to a water temperature of 10 degrees C were subjected to an abrupt rise in temperature (from 10 to 18 degrees C) in a 24-h period. Fish maintained in recirculated water were fed to satiation twice a day and their feed intakes were recorded. Changes in dry matter, nitrogen and energy digestibility were measured each day at 10 degrees C and during the course of acclimatation to 18 degrees C. Low water temperature (10 degrees C) was characterized by a feed intake of 1.84 g (DM)/fish/day; digestibility values were as follows: dry matter 62.15 p. 100, nitrogen 86.91 p. 100, energy 70.60 p. 100. High water temperature (18 degrees C) was characterized by a feed intake of 3.75 g (DM)/fish/day; digestibility values were as follows: dry matter 66.08 p. 100, nitrogen 89.57 p. 100, energy 73.52 p. 100. The daily patterns in digestibility were affected by the rise in temperature. The digestibility values were stabilized by day 7 after the positive thermal shock.

  8. Dry matter yields and quality of forages derived from grass species and organic production methods (year 111).

    PubMed

    Pholsen, S; Rodchum, P; Higgs, D E B

    2014-07-01

    This third year work was carried on at Khon Kaen University during the 2008-2009 to investigate dry matter yields of grass, grass plus legumes, grown on Korat soil series (Oxic Paleustults). The experiment consisted of twelve-treatment combinations of a 3x4 factorial arranged in a Randomized Complete Block Design (RCBD) with four replications. The results showed that Dry Matter Yields (DMY) of Ruzi and Guinea grass were similar with mean values of 6,585 and 6,130 kg ha(-1) whilst Napier gave the lowest (884 kg ha(-1)). With grass plus legume, grass species and production methods gave highly significant dry matter yields where Guinea and Ruzi gave dry matter yields of 7,165 and 7,181 kg ha(-1), respectively and Napier was the least (2,790 kg ha(-1)). The production methods with the use of cattle manure gave the highest DMY (grass alone) of 10,267 kg ha(-1) followed by Wynn and Verano with values of 6,064 and 3,623 kg ha(-1), respectively. Guinea plus cattle manure gave the highest DMY of 14,599 kg ha(-1) whilst Ruzi gave 12,977 kg ha(-1). Guinea plus Wynn gave DMY of 7,082 kg ha(-1). Ruzi plus Verano gave DMY of 6,501 kg ha(-1). Forage qualities of crude protein were highest with those grown with grass plus legumes. Some prospects in improving production were discussed.

  9. Interspecies differences and variability with time of protein precipitation activity of extractable tannins, crude protein, ash, and dry matter content of leaves from 13 species of Nepalese fodder trees.

    PubMed

    Wood, C D; Tiwari, B N; Plumb, V E; Powell, C J; Roberts, B T; Padmini Sirimane, V D; Rossiter, J T; Gill, M

    1994-12-01

    Dry matter, ash, crude protein, and protein precipitation activity (PPA) of 13 Nepalese tree fodder species were monitored in dried samples prepared monthly between November 1990 and May 1991, and additionally in November 1991, covering the season when they are particularly important as fodder. Monthly levels of dry matter, ash, and crude protein were fairly stable except when there was new leaf growth, although year to year differences in dry matter were found inBrassaiopsis hainla (Bh),Dendrocalamus strictus (Ds),Ficus roxburghii (Fr), andQuercus semecarpifolia (Qs). Tannin PPA fluctuated considerably inArtocarpus lakoocha (Al),Ficus glaberrima (Fg),F. nerrifolia (Fn), Fr,F. semicordata (Fs),Litsea polyantha (Lp), andPrunus cerasoides (Pc), and to a lesser extent in Bh,Castanopsis indica (Ci),C. tribuloides (Ct),Quercus lamellosa (Ql), and Qs. Similar fluctuations in PPA were observed in fresh leaf samples taken weekly. Ds did not have any detectable PPA. Trends in PPA fluctuation were generally similar for trees located at similar altitudes. Fr, Pc, Al, Fn, Ql, and Ci had falling PPAs before shedding leaves. Some of the fluctuations in Fr, Fs, Fg, Pc, and Lp were apparently due to changes in the extractability and quantity of condensed tannins. These fluctuations in PPA may affect the nutritive value of the fodders.

  10. Management type affects composition and facilitative processes in altoandine dry grassland

    NASA Astrophysics Data System (ADS)

    Catorci, Andrea; Cesaretti, Sabrina; Velasquez, Jose Luis; Burrascano, Sabina; Zeballos, Horacio

    2013-10-01

    We performed our study in the Dry Puna of the southern Peruvian Andes. Through a comparative approach we aimed to assess the effects of the two management systems, low grazing pressure by wild camelids vs. high grazing pressure by domestic livestock and periodic burning. Our general hypothesis was that the traditional high disturbance regime affects the dry Puna species diversity and composition through modifications of the magnitude of plant-plant-interactions and changes of the community structure due to shifts in species dominance. In 40 plots of 10 × 10 m, the cover value of each species was recorded and the species richness, floristic diversity, and community similarity of each treatment were compared. For each disturbance regime, differences of soil features (organic matter, carbon/nitrogen ratio, and potassium content) were tested. To evaluate plant-plant interactions, 4 linear transect divided into 500 plots of 10 × 10 cm were laid out and co-occurrence analysis was performed. We found that different disturbance regimes were associated with differences in the floristic composition, and that the high disturbance condition had lower species diversity and evenness. A decrease of tall species such as Festuca orthophylla and increase of dwarf and spiny Tetraglochin cristatum shrubs was observed as well. In addition, different disturbance intensities caused differences in the functional composition of the plant communities, since species with avoidance strategies are selected by high grazing pressure. High disturbance intensity was also associated to differences of soil features and to different clumped spatial structure of the dry Puna. Our results indicate also that: positive interactions are often species-specific mainly depending on the features of nurse and beneficiary species; the importance of positive interaction is higher at low grazing pressure than at high disturbance intensity; the magnitude and direction of the herbivory-mediated facilitation

  11. Quality of pomegranate pomace as affected by drying method.

    PubMed

    Cano-Lamadrid, Marina; Lech, Krzysztof; Calín-Sánchez, Ángel; Rosas-Burgos, Ema Carina; Figiel, Adam; Wojdyło, Aneta; Wasilewska, Malwina; Carbonell-Barrachina, Ángel A

    2018-03-01

    During the industrial manufacturing of pomegranate juice, large amounts of pomace are produced. The aim of this work was to find the effective method to dry pomegranate pomace to open new commercial applications for this co-product. The effects of three drying methods: (i) convective drying (CD) at 50, 60, and 70 °C; (ii) vacuum microwave drying (VMD) at 240, 360, and 480 W, and (iii) a combined method (CPD-VMFD); convective pre-drying (60 °C) followed by vacuum microwave finish drying (360 W), on drying kinetics and quality of PomP (pomegranate pomace obtained after preparing pomegranate juice by squeezing only arils) were evaluated. The shortest treatments were VMD at 240 and 360 W (52 and 33 min, respectively); besides, these treatments led to interesting values of the green-red coordinate, a *, (12.2 and 4.1, respectively), total phenolic content (4.0 and 4.1 mg eq gallic acid g -1  dry weight, respectively), and antioxidant activity (30.8 and 29.0 µmol g -1  dry weight, respectively). On the other hand, this study demonstrated that this co-product is a rich source of punicic acid (average value = 66.4%), being a good opportunity for the pharmaceutical and nutraceutical industries. Moreover, no significant changes in the fatty acid profile was observed as affected by the drying treatments, and no off-flavors were generated by any of the drying methods.

  12. The human milk oligosaccharides are not affected by pasteurization and freeze-drying.

    PubMed

    Hahn, Won-Ho; Kim, Jaehan; Song, Seunghyun; Park, Suyeon; Kang, Nam Mi

    2017-11-06

    Human milk oligosaccharides (HMOs) are known as important factors in neurologic and immunologic development of neonates. Moreover, freeze-drying seems to be a promising storage method to improve the processes of human milk banks. However, the effects of pasteurization and freeze-drying on HMOs were not evaluated yet. The purpose of this study is to analyze and compare the HMOs profiles of human milk collected before and after the pasteurization and freeze-drying. Totally nine fresh human milk samples were collected from three healthy mothers at the first, second, and third week after delivery. The samples were treated with Holder pasteurization and freeze-drying. HMOs profiles were analyzed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight/time-of-flight (TOF/TOF) mass spectrometry and compared between samples collected before and after the treatments. Human milk samples showed significantly different HMO patterns between mothers. However, HMOs were not affected by lactation periods within 3 weeks after delivery (r 2  = 0.972-0.999, p < .001). Moreover, both of pasteurization and freeze-drying were found not to affect HMO patterns in a correlation analysis (r 2  = 0.989-0.999, p < .001). HMO patterns were found not to be affected by pasteurization and freeze-drying of donor milks. We hope that introducing freeze-drying to the human milk banks would be encouraged by the present study. However, the storage length without composition changes of HMOs after freeze-drying needs to be evaluated in the further studies.

  13. Dry matter losses and quality changes during short rotation coppice willow storage in chip or rod form.

    PubMed

    Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian

    2018-05-01

    This study compares dry matter losses and quality changes during the storage of SRC willow as chips and as rods. A wood chip stack consisting of approximately 74 tonnes of fresh biomass, or 31 tonnes dry matter (DM) was built after harvesting in the spring. Three weeks later, four smaller stacks of rods with an average weight of 0.8 tonnes, or 0.4 tonnes DM were built. During the course of the experiment temperature recorders placed in the stacks found that the wood chip pile reached 60 °C within 10 days of construction, but the piles of rods remained mostly at ambient temperatures. Dry matter losses were calculated by using pre-weighed independent samples within the stacks and by weighing the whole stack before and after storage. After 6 months the wood chip stack showed a DM loss of between 19.8 and 22.6%, and mean losses of 23.1% were measured from the 17 independent samples. In comparison, the rod stacks showed an average stack DM loss of between 0 and 9%, and between 1.4% and 10.6% loss from the independent samples. Analysis of the stored material suggests that storing willow in small piles of rods produces a higher quality fuel in terms of lower moisture and ash content; however, it has a higher fine content compared to storage in chip form. Therefore, according to the two storage methods tested here, there may be a compromise between maximising the net dry matter yield from SRC willow and the final fine content of the fuel.

  14. Volatile compounds of Celta dry-cured 'lacón' as affected by cross-breeding with Duroc and Landrace genotypes.

    PubMed

    Lorenzo, José M; Fonseca, Sonia

    2014-11-01

    Dry-cured 'lacón' is a traditional cured meat product made in the north-west of Spain from the pigs' foreleg, with similar manufacturing process to that used in dry-cured ham. The aim of this study was to assess the influence of cross-breeding of Celta pig with Landrace or Duroc breeds on the formation of volatile compounds through the manufacture of 'lacón'. 'Lacón' from the crosses with Duroc presented lower final moisture (534 g kg(-1) ) and higher intra-muscular fat content [144 g kg(-1) dry matter (DM)] than 'lacón' from Celta pure breed (587 g kg(-1) and 36 g kg(-1) DM, respectively). Volatile compounds were extracted by solid-phase microextraction and analysed by gas chromatography-mass spectrometry. Volatile compounds from 'lacón' were affected by cross-breeding. The total amount of volatile compounds significantly (P < 0.001) increased during the manufacturing process, this increase being more marked in samples from the Landrace cross-breed. The most abundant group of flavour compounds at the end of the manufacturing process was esters in the three batches, followed by aldehydes, hydrocarbons and alcohols. The most abundant ester at the end of the process was hexanoic acid methyl ester, while the aldehyde found in a higher amount was hexanal. The profile of volatile compounds was affected by cross-breed, especially at the end of the 'lacón' dry-curing process. © 2014 Society of Chemical Industry.

  15. Dry matter production and nutrient content of longan grown on an acid Ultisol

    USDA-ARS?s Scientific Manuscript database

    Little is known about the adaptability of longan (Dimocarpus longan) to acidic soils high in aluminum (Al). A 2-year field study was conducted to determine the effects of various levels of soil Al on dry matter production, plant growth, and nutrient content in shoots of four cultivars of longan. S...

  16. Genetic analysis and association of simple sequence repeat markers with storage root yield, dry matter, starch and β-carotene content in sweetpotato.

    PubMed

    Yada, Benard; Brown-Guedira, Gina; Alajo, Agnes; Ssemakula, Gorrettie N; Owusu-Mensah, Eric; Carey, Edward E; Mwanga, Robert O M; Yencho, G Craig

    2017-03-01

    Molecular markers are needed for enhancing the development of elite sweetpotato ( Ipomoea batatas (L.) Lam) cultivars with a wide range of commercially important traits in sub-Saharan Africa. This study was conducted to estimate the heritability and determine trait correlations of storage root yield, dry matter, starch and β-carotene content in a cross between 'New Kawogo' × 'Beauregard'. The study was also conducted to identify simple sequence repeat (SSR) markers associated with these traits. A total of 287 progeny and the parents were evaluated for two seasons at three sites in Uganda and genotyped with 250 SSR markers. Broad sense heritability (H 2 ) for storage root yield, dry matter, starch and β-carotene content were 0.24, 0.68, 0.70 and 0.90, respectively. Storage root β-carotene content was negatively correlated with dry matter (r = -0.59, P < 0.001) and starch (r = -0.93, P < 0.001) content, while storage root yield was positively correlated with dry matter (r = 0.57, P = 0.029) and starch (r = 0.41, P = 0.008) content. Through logistic regression, a total of 12, 4, 6 and 8 SSR markers were associated with storage root yield, dry matter, starch and β-carotene content, respectively. The SSR markers used in this study may be useful for quantitative trait loci analysis and selection for these traits in future.

  17. Response of barley to grasshopper defoliation in interior Alaska: dry matter and grain yield.

    PubMed

    Begna, Sultan H; Fielding, Dennis J

    2005-12-01

    Barley, Hordeum vulgare L., is well adapted to subarctic Alaska growing conditions, but little is known about its response to grasshopper defoliation. A field experiment was conducted to study dry matter and grain yield in response to a combination of grasshopper defoliation and weeds in 2002 and 2003 near Delta Junction, AK (63 degrees 55' N, 145 degrees 20' W). Barley plants at third to fourth leaf stage were exposed to a combination of two levels of weeds (present or absent) and four densities of grasshoppers (equivalent to 0, 25, 50, and 75 grasshoppers per m2) of third to fourth instars of Melanoplus sanguinipes (F). Dry matter accumulation by the barley plants was determined at three times during the growing seasons: approximately 10 d after introduction of the grasshoppers, shortly after anthesis, and at maturity. Dry matter accumulation and grain yield were much lower in 2003 than in 2002, probably due to very low levels of soil moisture early in the growing season of 2003. Head clipping accounted for a greater portion of yield loss in 2003 than in 2002. The percentage of reduction in harvestable yield due to grasshoppers remained fairly constant between years (1.9 and 1.4 g per grasshopper per m2 in 2002 and 2003, respectively) despite a large difference in overall yield. Examination of the yield components suggest that yields were reduced by the early season drought in 2003 primarily through fewer seeds per head, whereas grasshoppers in both years reduced average seed weight, but not numbers of seeds.

  18. De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content

    Treesearch

    W. Matt Jolly; Ann M. Hadlow; Kathleen Huguet

    2014-01-01

    Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples from Pinus contorta for...

  19. Intravenous lipid infusion affects dry matter intake, methane yield, and rumen bacteria structure in late-lactating Holstein cows.

    PubMed

    Lamp, Ole; Reyer, Henry; Otten, Winfried; Nürnberg, Gerd; Derno, Michael; Wimmers, Klaus; Metges, Cornelia C; Kuhla, Björn

    2018-03-28

    Increasing the dietary fat content of ruminant diets decreases methane (CH 4 ) production. This effect is caused by the toxic properties of fatty acids on rumen microbial populations, coating of feed particles diminishing the accessibility for microbes, and a reduction in dry matter intake (DMI). The latter effect is caused by postabsorptive long-chain fatty acids eliciting anorexic signaling; however, whether circulating long-chain fatty acids affect rumen CH 4 production alike is unknown. To approach this question, 5 rumen-cannulated Holstein cows in late lactation received 2 jugular catheters and were kept in respiration chambers to measure CH 4 production and DMI for 48 h. In a crossover design, cows were intravenously infused with a 20% lipid emulsion (LIPO) or 0.9% NaCl (CON). The LIPO cows received 2.1 kg of triglycerides/d [0.152 ± 0.007 g of triglycerides/(kg of BW × h) -1 ] consisting of 12.1% palmitic acid, 4.2% stearic acid, 31.1% oleic acid, and 52.7% linoleic acid. Blood and rumen fluid samples were taken hourly during the day. Results showed that LIPO compared with CON infusion increased plasma triglyceride as well as free fatty acid and serotonin concentrations but reduced the proportion of de novo synthesized milk fatty acids (sum of C6 to C16). Daily CH 4 production and DMI were lower, whereas daily CH 4 yield (CH 4 /DMI) was greater in LIPO than CON cows, although CH 4 yield decreased from d 1 to d 2 by 2 to 14% in LIPO-infused cows only. This effect was associated with a higher (acetate + butyrate)/propionate ratio, tending lower propionate concentrations between 24 and 34 h of infusion, reduced relative abundances of genera belonging to Succinivibrio, Ruminococcaceae, and Ruminiclostridium, and greater relative Bacteroidetes genus abundances in the rumen. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Influence of diesel contamination in soil on growth and dry matter partitioning of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Zharare, Godfrey Elijah

    2015-09-01

    Phytotoxic effect of diesel contaminated soil was investigated on growth and dry matter partitioning in Lactuca sativa and Ipomoea batatas in greenhouse pot experiment at two concentration range (0-30 ml and 0-6 ml diesel kg(-1) soil) for 14 weeks. The results indicated thatwhole plant biomass, stem length, root length, number of leaves and leaf chlorophyll in two plants were negatively correlated with increasing diesel concentrations. The critical concentration of diesel associated with 10% decrease in plant growth was 0.33 ml for lettuce and 1.50 ml for sweet potato. Thus, growth of lettuce in diesel contaminated soil was more sensitive than sweet potato. The pattern of dry matter partitioning between root and shoot in both plants were similar. In 0-6 ml diesel contamination range, allocation of dry matter to shoot system was favoured resulting in high shoot: root ratio of 4.54 and 12.91 for lettuce and sweet potato respectively. However, in 0-30 ml diesel contamination range, allocation of dry matter to root was favoured, which may have been an adaptive mechanism in which the root system was used for storage in addition to increasing the capacity for foraging for mineral nutrients and water. Although lettuce accumulated more metals in its tissue than sweet potato, the tissue mineral nutrients in both species did not vary to great extent. The critical diesel concentration for toxicity suggested that the cause of mortality and poor growth of sweet potato and lettuce grown in diesel contaminated soil was due to presence of hydrocarbons in diesel.

  1. Evaluation of hyperspectral reflectance for estimating dry matter and sugar concentration in processing potatoes

    USDA-ARS?s Scientific Manuscript database

    The measurement of sugar concentration and dry matter in processing potatoes is a time and resource intensive activity, cannot be performed in the field, and does not easily measure within tuber variation. A proposed method to improve the phenotyping of processing potatoes is to employ hyperspectral...

  2. Solubility of aluminum and silica in Spodic horizons as affected by drying and freezing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simonsson, M.; Berggren, D.; Gustafsson, J.P.

    The release of toxic Al{sup 3+} is one of the most serious consequences of anthropogenic soil acidification. Therefore, the mechanisms controlling Al solubility have been a topic of intense research for more than a decade. For convenience, soil samples are often dried before storage and experimental use. However, the literature offers examples of drying that results in changes in pH, solubility of organic matter, and dissolution rates of Al. In this study, the authors examined the solubility of Al and Si in fresh soil and in soil that had been dried or deep-frozen. Five Spodosol B horizon soils were subjectedmore » to batch titrations, where portions of each soil were equilibrated with solutions with varying concentrations of acid or base added. Extractions with acid oxalate and Na pyrophosphate indicated the presence of imogolite-type materials (ITM) in three of the soils. In the other two soils most secondary solid-phase Al was associated with humic substances. Deep-freezing did not significantly change pH nor the concentration of Al or Si as compared with fresh soil. Drying, on the other hand, yielded pH increases of up to 0.3 units at a given addition of acid or base, whereas Al{sup 3+} changed only slightly, implying a higher Al solubility in all of the soils. Furthermore, dissolved silica increased by up to 200% after drying, except in a soil that almost completely lacked oxalate-extractable Si. The authors suggest that drying enhanced the dissolution of ITM by disrupting soil organic matter, thus exposing formerly coated mineral surfaces. In the soil where dissolved Si did not change with drying, it has been demonstrated that Al-humus complexes controlled Al solubility. They suggest that fissures in the organic material caused by drying may have exposed formerly occluded binding sites that had a higher Al saturation than had sites at the surface of humus particles.« less

  3. A comparison of fecal percent dry matter and number of Cryptosporidium parvum oocysts shed to observational fecal consistency scoring in dairy calves.

    PubMed

    Bellosa, Mary L; Nydam, Daryl V; Liotta, Janice L; Zambriski, Jennifer A; Linden, Thomas C; Bowman, Dwight D

    2011-04-01

    Evaluation of dairy calf feces is often used in research and for clinical decision making to assess severity of diarrhea. However, this has not been validated for agreement between dry matter content and observed fecal consistency. Therefore, a comparison of observed fecal consistency score to fecal percent dry matter and Cryptosporidium parvum oocyst shedding was performed to assess the accuracy of observational scoring as a measure of diarrhea and its association with number of oocysts shed. Fecal samples from 20 dairy calves experimentally infected with C. parvum oocysts were collected daily post-infection and scored on a scale from 1 to 4, with 1 being normal feces to 4 being severe diarrhea. An aliquot of each sample was analyzed for percent dry matter and Cryptosporidium oocyst counts by using immunofluorescent microscopy. Fecal consistency scores of 1, 2, 3, and 4 had median percent dry matter of 20.9, 16.3, 9.6, and 5.8, respectively. Using percent dry matter assessed by fecal consistency scoring were significantly different from each other (P < 0.001). A higher fecal consistency score also was associated with a greater number of Cryptosporidium oocysts shed (P < 0 .0001). Scores of 1, 2, 3, and 4 had median oocyst counts of 0, 0, 1.3 × 10⁶, and 2.8 × 10⁶, respectively. These results suggest that observational scoring is a useful proxy to assess diarrhea in dairy calves.

  4. Genetic analysis and association of simple sequence repeat markers with storage root yield, dry matter, starch and β-carotene content in sweetpotato

    PubMed Central

    Yada, Benard; Brown-Guedira, Gina; Alajo, Agnes; Ssemakula, Gorrettie N.; Owusu-Mensah, Eric; Carey, Edward E.; Mwanga, Robert O.M.; Yencho, G. Craig

    2017-01-01

    Molecular markers are needed for enhancing the development of elite sweetpotato (Ipomoea batatas (L.) Lam) cultivars with a wide range of commercially important traits in sub-Saharan Africa. This study was conducted to estimate the heritability and determine trait correlations of storage root yield, dry matter, starch and β-carotene content in a cross between ‘New Kawogo’ × ‘Beauregard’. The study was also conducted to identify simple sequence repeat (SSR) markers associated with these traits. A total of 287 progeny and the parents were evaluated for two seasons at three sites in Uganda and genotyped with 250 SSR markers. Broad sense heritability (H2) for storage root yield, dry matter, starch and β-carotene content were 0.24, 0.68, 0.70 and 0.90, respectively. Storage root β-carotene content was negatively correlated with dry matter (r = −0.59, P < 0.001) and starch (r = −0.93, P < 0.001) content, while storage root yield was positively correlated with dry matter (r = 0.57, P = 0.029) and starch (r = 0.41, P = 0.008) content. Through logistic regression, a total of 12, 4, 6 and 8 SSR markers were associated with storage root yield, dry matter, starch and β-carotene content, respectively. The SSR markers used in this study may be useful for quantitative trait loci analysis and selection for these traits in future. PMID:28588391

  5. Effects of aeration strategy on the evolution of dissolved organic matter (DOM) and microbial community structure during sludge bio-drying.

    PubMed

    Zhang, Junya; Cai, Xing; Qi, Lu; Shao, Chunyan; Lin, Yang; Zhang, Jin; Zhang, Yuanli; Shen, Peihong; Wei, Yuansong

    2015-09-01

    Sludge bio-drying in which sludge is dried by means of the heat generated by the aerobic degradation of its own organic substances has been widely used for sludge treatment. A better understanding of the evolution of dissolved organic matter (DOM) and its degradation drivers during sludge bio-drying could facilitate its control. Aeration is one of the key factors that affect sludge bio-drying performance. In this study, two aeration strategies (pile I-the optimized and pile II-the current) were established to investigate their impacts on the evolution of DOM and the microbial community in a full-scale sludge bio-drying plant. A higher pile temperature in pile I caused pile I to enter the DOM and microbiology stable stage approximately2 days earlier than pile II. The degradation of easily degradable components in the DOM primarily occurred in the thermophilic phase; after that degradation, the DOM components changed a little. Along with the evolution of the DOM, its main degradation driver, the microbial community, changed considerably. Phyla Firmicutes and Proteobacteria were dominant in the thermophilic stage, and genus Ureibacillus, which was the primary thermophilic bacteria, was closely associated with the degradation of the DOM. In the mesophilic stage, the microbial community changed significantly at first and subsequently stabilized, and the genus Parapedobacter, which belongs to Bacteriodetes, became dominant. This study elucidates the interplay between the DOM and microbial community during sludge bio-drying.

  6. Studies on mycorrhizal inoculation on dry matter yield and root colonization of some medicinal plants grown in stress and forest soils.

    PubMed

    Chandra, K K; Kumar, Neeraj; Chand, Gireesh

    2010-11-01

    Five medicinal plants viz. Abelmoschatus moschatus Linn., Clitoria tematea L., Plumbagozeylanica L., Psorolea corylifolia L. and Withania sominifera L. were grown in a polypot experiment in five soils representing coal mine soil, coppermine soil, fly ash, skeletal soil and forest soil with and without mycorrhizal inoculations in a completely randomized block design. Dry matter yield and mycorrhizal root colonization of plants varied both in uninoculated and inoculated conditions. The forest soil rendered highest dry matter due to higher yield of A. moschatus, P. zeylanica and P corylifolia while fly ash showed lowest dry matter without any inoculants. P. cematea were best in coalmine soil and W. sominifera in copper mine soil without mycorrhizal inoculation. The mycorrhiza was found to enhance the dry matter yield. This contributed minimum 0.19% to maximum up to 422.0% in different soils as compared to uninoculated plants. The mycorrhizal dependency was noticed maximum in plants grown in fly ash followed by coal mine soil, copper mine soil, skeletal soil and forest soil. The mycorrhizal response was increased maximum in W. sominifera due to survival in fly ash after inoculation followed by P corylifolia and P cematea. Percent root colonization in inoculated plant was increased minimum of 1.10 fold to maximum of 12.0 folds in comparison to un-inoculated plants . The native mycorrhiza fungi were also observed to colonize 4.0 to 32.0% roots in plants understudy. This study suggests that mycorrhizal inoculation increased the dry matter yield of medicinal plants in all soils under study. It also helps in survival of W. sominifera in fly ash.

  7. Dry Matter Production and Leaf Elemental Concentrations of Rambutan Grown on an Acid Ultisol

    USDA-ARS?s Scientific Manuscript database

    Little is known about the adaptability of rambutan (Nephelium lappaceum) to highly acidic soils rich in aluminum (Al). A 2-yr field study was conducted to determine the effects of various levels of soil Al on dry matter production, plant growth, and nutrient concentration in the leaves of four cult...

  8. Dry matter production and nutrient content of mamey sapote grown on an acid ultisol

    USDA-ARS?s Scientific Manuscript database

    Little is known about the adaptability of mamey sapote (Pouteria sapota) to acidic soils high in aluminum (Al). A two-year field study was conducted to determine the effects of various levels of soil Al on dry matter production, stem diameter and nutrient concentration in tissues of four clones of ...

  9. [Drying characteristics and apparent change of sludge granules during drying].

    PubMed

    Ma, Xue-Wen; Weng, Huan-Xin; Zhang, Jin-Jun

    2011-08-01

    Three different weight grades of sludge granules (2.5, 5, 10 g) were dried at constant temperature of 100, 200, 300, 400 and 500 degrees C, respectively. Then characteristics of weight loss and change of apparent form during sludge drying were analyzed. Results showed that there were three stages during sludge drying at 100-200 degrees C: acceleration phase, constant-rate phase, and falling-rate phase. At 300-500 degrees C, there were no constant-rate phase, but due to lots of cracks generated at sludge surface, average drying rates were still high. There was a quadratic nonlinear relationship between average drying rate and drying temperature. At 100-200 degrees C, drying processes of different weight grade sludge granules were similar. At 300-500 degrees C, drying processes of same weight grade of sludge granules were similar. Little organic matter decomposed till sludge burning at 100-300 degrees C, while some organic matter began to decompose at the beginning of sludge drying at 400-500 degrees C.

  10. Development of equations to predict dry matter intake of lactating cows using animal factors

    USDA-ARS?s Scientific Manuscript database

    Our objective was to model dry matter intake (DMI, kg) in Holstein dairy cows based on milk energy (MilkE, Mcal/d), energy required for maintenance, change in body weight (DeltaBW, kg/d), body condition score (BCS, scale 1 to 5), height (Htcm, cm), and parity. The database contained weekly DMI of 4,...

  11. Sewage sludge open-air drying affects on keratinolytic, keratinophilic and actidione-resistant fungi.

    PubMed

    Ulfig, Krzysztof; Płaza, Grazyna; Terakowskip, Maciej; Janda-Ulfig, Katarzyna

    2006-01-01

    The study was to demonstrate the effect of sewage sludge open-air drying on the quantitative and qualitative composition of keratinolytic/keratinophilic and actidione-resistant fungi. The sludge was being dried for up to thirty days (on average fourteen days) at 25-30'C. The composition of these fungi was determined with the hair baiting method along with the dilution method, using the Wiegand medium supplemented with chloramphenicol (100 mgiL) and actidione (500 mg/L). The open-air drying altered the composition of keratinolytic fungi and considerably increased the population of keratinophilic and actidione-resistant fungi in the sludge. This phenomenon can be explained with that the drying process was associated with slow sludge moisture decrease, sludge laceration due to crumbling and the subsequent improvement of sludge aeration and organic matter biodegradation conditions. A considerable increase of fungal populations can be expected in sludges being dried in drying beds at wastewater treatment plants and in sludge-amended soils. Two sludge opportunistic fungi, i.e. Microsporum gypseum and Pseudallescheria boydii, require special attention from the epidemiological point of view. Sludge land applications may increase the number of these fungi in the environment and the subsequent risk to public health posed by them.

  12. Drying Affects the Fiber Network in Low Molecular Weight Hydrogels

    PubMed Central

    2017-01-01

    Low molecular weight gels are formed by the self-assembly of a suitable small molecule gelator into a three-dimensional network of fibrous structures. The gel properties are determined by the fiber structures, the number and type of cross-links and the distribution of the fibers and cross-links in space. Probing these structures and cross-links is difficult. Many reports rely on microscopy of dried gels (xerogels), where the solvent is removed prior to imaging. The assumption is made that this has little effect on the structures, but it is not clear that this assumption is always (or ever) valid. Here, we use small angle neutron scattering (SANS) to probe low molecular weight hydrogels formed by the self-assembly of dipeptides. We compare scattering data for wet and dried gels, as well as following the drying process. We show that the assumption that drying does not affect the network is not always correct. PMID:28631478

  13. Cumulative ventilation air drying potential as an indication of dry mass content in wastewater sludge in a thin-layer solar drying facility

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr

    2013-12-01

    Controlling low-temperature drying facilities which utilise nonprepared air is quite difficult, due to very large variability of ventilation air parameters - both in daily and seasonal cycles. The paper defines the concept of cumulative drying potential of ventilation air and presents experimental evidence that there is a relation between this parameter and condition of the dried matter (sewage sludge). Knowledge on current dry mass content in the dried matter (sewage sludge) provides new possibilities for controlling such systems. Experimental data analysed in the paper was collected in early 2012 during operation of a test solar drying facility in a sewage treatment plant in Błonie near Warsaw, Poland.

  14. [Effects of nitrogen application rate on light interception and dry matter distribution at diffe-rent layers in wheat canopy under supplemental irrigation based on measuring soil moisture.

    PubMed

    Zheng, Xue Jiao; Yu, Zhen Wen; Zhang, Yong Li; Shi, Yu

    2018-02-01

    With the large-spike wheat cultivar Shannong 23 as test material,a field experiment was conducted by increasing the relative soil moisture content to 70% and 65% at jointing and anthesis stages. Four nitrogen levels,0 (N 0 ), 180 (N 1 ), 240 (N 2 ) and 300 kg·hm -2 (N 3 ), were designed to examine the effects of nitrogen application rates on the interception of photosynthetic active radiation (PAR) and dry matter distribution of wheat at different canopy layers. The results showed that the total stem number of wheat population at anthesis stage, the leaf area index at 10, 20 and 30 days after anthesis, PAR capture ratio at upper and middle layers and total PAR capture ratio in wheat canopy on day 20 after anthesis of treatment N 2 were significantly higher than those in the treatments of both N 0 and N 1 . Those indexes showed no significant increase when the application rate increased to 300 kg·hm -2 (N 3 ). The vegetative organ dry matter accumulation of all layers at maturity stage of treatment N 2 were significantly higher than N 0 and N 1 . Compared with treatment N 0 and N 1 , N 2 increased the grain and total dry matter accumulation by 36.7% and 35.4%, 9.5% and 10.2%, respectively, but had no significant difference with treatment N 3 . The vegetative organ dry matter accumulation at all layers, grain and total dry matter accumulation were significantly and positively correlated with PAR capture ratio at upper and middle layers, and had no significant correlation with that at lower layer. The vegetative organ dry matter accumulation at all layers was significantly and positively correlated with grain dry matter accumulation. The application rate at 240 kg·hm -2 (N 2 ) would be the optimum treatment under the present experimental condition.

  15. Analysis of problems with dry fermentation process for biogas production

    NASA Astrophysics Data System (ADS)

    Pilát, Peter; Patsch, Marek; Jandačka, Jozef

    2012-04-01

    The technology of dry anaerobic fermentation is still meeting with some scepticism, and therefore in most biogas plants are used wet fermentation technology. Fermentation process would be not complete without an optimal controlled condition: dry matter content, density, pH, and in particular the reaction temperature. If is distrust of dry fermentation eligible it was on the workplace of the Department of Power Engineering at University of Zilina built an experimental small-scale biogas station that allows analysis of optimal parameters of the dry anaerobic fermentation, in particular, however, affect the reaction temperature on yield and quality of biogas.

  16. Open sun drying of green bean: influence of pretreatments on drying kinetics, colour and rehydration capacity

    NASA Astrophysics Data System (ADS)

    İsmail, Osman; Kantürk Figen, Aysel; Pişkin, Sabriye

    2017-04-01

    Green bean ( Phaseolus Vulgaris L), classified under legume family, is a primary source of dietary protein in human diets especially in the agricultural countries. Green bean is susceptible to rapid deterioration because of their high moisture content and in order to prevent and present the green bean drying process is applied. In this study, effects of pretreatments on drying kinetics, colour and rehydration capacity of green bean were investigated. It was observed that the pretreatment affected the drying time. The shortest drying times were obtained from pretreated samples with blanched. Drying times were determined as 47, 41 and 29 h for natural, salted and blanch, respectively. The results showed that pretreatment and ambient temperature significantly ( P = 0.05) affected the drying rate and the drying time. The effective moisture diffusivity was determined by using Fick's second law and was found to be range between 3.15 × 10-10 and 1.2 × 10-10 m2/s for the pre-treated and natural green bean samples. The rehydration values were obtained 2.75, 2.71, 2.29 (g water/g dry matter) for the blanched, salted and natural samples. The effective diffusion coefficients were calculated using the data collected during the falling rate period and the experimental data are fitted to seven thin layer drying models which found in the literature. The Logarithmic model was found to best describe the drying behavior of fresh green beans under open air sun. Rehydration time and color parameters had been determined in order to improve the quality of dried green bean. Regarding with rehydration time and colour data, the best results were obtained at blanched drying conditions.

  17. Changes on sewage sludge stability after greenhouse drying

    NASA Astrophysics Data System (ADS)

    Soriano-Disla, J. M.; Houot, S.; Imhoff, M.; Valentin, N.; Gómez, I.; Navarro-Pedreño, J.

    2009-04-01

    The progressive implementation of the Urban Waste Water Treatment Directive 91/271/EEC in all the European member states is increasing the quantities of sewage sludge requiring disposal. Sludge application onto cultivated soils as organic fertilizers allows the recycling of nutrients. The application of only dehydrated sludges has generated many problems including unpleasant odours and difficult management (regarding transport and application) related to their high water content. One way to overcome these problems, in a cheap and clean way, is the drying of sludges using the energy of the sun under greenhouse conditions. This drying may affect sludge chemical characteristics including organic matter stability and nitrogen availability, parameters which have to be controlled for the proper management of dry sludge application onto soils. For this reason, the main aim of this work was to study the impact of greenhouse drying of different sewage sludges on their organic matter stability and nitrogen availability, assessed by biochemical fractionation and mineralization assays. Three sewage sludges were sampled before (dehydrated sludges) and after greenhouse drying (dried sludges). The analyses consisted of: humidity, organic matter, mineral and organic N contents, N and C mineralization during 91-day laboratory incubations in controlled conditions, and biochemical fractionation using the Van Soest procedure. Greenhouse drying decreased the water content from 70-80% to 10% and also the odours, both of which will improve the management of the final product from the perspective of application and transport. We also found that drying reduced the organic matter content of the sludges but not the biodegradability of the remaining carbon. Organic N mineralization occurred during greenhouse drying, explaining why mineral N content tended to increase and the potential mineralization of organic nitrogen decreased after greenhouse drying. The biochemical stability did not

  18. Total folate content and retention in rosehips (Rosa ssp.) after drying.

    PubMed

    Strålsjö, Lena; Alklint, Charlotte; Olsson, Marie E; Sjöholm, Ingegerd

    2003-07-16

    Folate concentrations in rosehips and commercial rosehip products and factors affecting folate retention during drying were investigated. On the basis of the raw material studied during 3 years, rosehips were shown to be a rich folate source, 400-600 microg/100 g based on dry matter and 160-185 microg/100 g based on the fresh weight (edible part). Rosehips are not often consumed fresh; therefore, drying to produce stable semimanufactures is a crucial step. The degradation of folate was shown to be dependent on the drying time until the water activity was below 0.75. The required drying time was reduced by cutting the rosehips in slices and to some extent also by increasing the temperature. Retention of folate and ascorbic acid was affected by the same factors, and high content of ascorbic acid could provide a possible protection for folate degradation.

  19. Affective Assemblages: Body Matters in the Pedagogic Practices of Contemporary School Classrooms

    ERIC Educational Resources Information Center

    Mulcahy, Dianne

    2012-01-01

    Set within the affective turn in cultural and social theory, in this paper, I explore the significance of materiality and matter, most specifically, bodily matter, in the pedagogic practices of contemporary school classrooms. The received view in education is that affect is tantamount to emotion or feeling and that materials, such as bodily…

  20. Pre-cure freezing affects proteolysis in dry-cured hams.

    PubMed

    Bañón, S; Cayuela, J M; Granados, M V; Garrido, M D

    1999-01-01

    Several parameters (sodium chloride, moisture, intramuscular fat, total nitrogen, non-protein nitrogen, white precipitates, free tyrosine, L* a* b* values and acceptability) related with proteolysis during the curing were compared in dry-cured hams manufactured from refrigerated and frozen/thawed raw material. Pre-cure freezing increased the proteolysis levels significantly (p<0.05) in the zones of the ham where water losses and absorption of salt is slowest. Frozen hams present a high incidence of white precipitates, formed mainly by tyrosine crystals. The colour and acceptability scores are similar in frozen and refrigerated hams. The previous freezing and thawing process accentuates the water losses, salt absorption and proteolysis of the cured meat, although it does not significantly affect the sensory quality of the dry-cured ham.

  1. Robustness of Tomato Quality Evaluation Using a Portable Vis-SWNIRS for Dry Matter and Colour

    PubMed Central

    Subedi, P. P.; Walsh, K. B.

    2017-01-01

    The utility of a handheld visible-short wave near infrared spectrophotometer utilising an interactance optical geometry was assessed in context of the noninvasive determination of intact tomato dry matter content, as an index of final ripe soluble solids content, and colouration, as an index of maturation to guide a decision to harvest. Partial least squares regression model robustness was demonstrated through the use of populations of different harvest dates or growing conditions for calibration and prediction. Dry matter predictions of independent populations of fruit achieved R2 ranging from 0.86 to 0.92 and bias from −0.14 to 0.03%. For a CIE a⁎ colour model, prediction R2 ranged from 0.85 to 0.96 and bias from −1.18 to −0.08. Updating the calibration model with new samples to extend range in the attribute of interest and in sample matrix is key to better prediction performance. The handheld spectrometry system is recommended for practical implementation in tomato cultivation. PMID:29333161

  2. Quantifying particulate matter deposition in Niwot Ridge, Colorado: Collection of dry deposition using marble inserts and particle imaging using the FlowCAM

    NASA Astrophysics Data System (ADS)

    Goss, Natasha R.; Mladenov, Natalie; Seibold, Christine M.; Chowanski, Kurt; Seitz, Leslie; Wellemeyer, T. Barret; Williams, Mark W.

    2013-12-01

    Atmospheric wet and dry deposition are important sources of carbon for remote alpine lakes and soils. The carbon inputs from dry deposition in alpine National Atmospheric Deposition Program (NADP) collectors, including aeolian dust and biological material, are not well constrained due to difficulties in retaining particulate matter in the collectors. Here, we developed and tested a marble insert for dry deposition collection at the Niwot Ridge Long Term Ecological Research Station (NWT LTER) Soddie site (3345 m) between 24 May and 8 November 2011. We conducted laboratory tests of the insert's effect on particulate matter (PM) mass and non-purgeable organic carbon (DOC) and found that the insert did not significantly change either measurement. Thus, the insert may enable dry deposition collection of PM and DOC at NADP sites. We then developed a method for enumerating the collected wet and dry deposition with the Flow Cytometer and Microscope (FlowCAM), a dynamic-image particle analysis tool. The FlowCAM has the potential to establish morphology, which affects particle settling and retention, through particle diameter and aspect ratio. Particle images were used to track the abundance of pollen grains over time. Qualitative image examination revealed that most particles were biological in nature, such as intact algal cells and pollen. Dry deposition loading to the Soddie site as determined by FlowCAM measurements was highly variable, ranging from 100 to >230 g ha-1 d-1 in June-August 2011 and peaking in late June. No significant difference in diameter or aspect ratio was found between wet and dry deposition, suggesting fundamental similarities between those deposition types. Although FlowCAM statistics and identification of particle types proved insightful, our total-particle enumeration method had a high variance and underestimated the total number of particles when compared to imaging of relatively large volumes (60-125 mL) from a single sample. We recommend use of

  3. Drying-induced physico-chemical changes in cranberry products.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Honke, Joanna; Ciska, Ewa; Andlauer, Wilfried

    2018-02-01

    Sugar-free cranberry juice (XAD) and juice with 15% of maltodextrin were dried by freeze-, vacuum and spray drying methods. Total phenolics (589-6435mg/kg dry matter) including 5 flavonols, 3 phenolic acids, 2 procyanidins and 5 anthocyanins were stronger affected by juice formulation than by drying methods. Spray drying of juice, regardless of its formulation, was competitive to freeze drying in terms of polyphenols' retention. Increase in temperature up to 100°C during vacuum drying of XAD extracts resulted in degradation of polyphenolics (down to 4%), except chlorogenic acid. Its content increased with rise in temperature and accelerated hydroxymethylfurfural formation. The stronger the impact of drying, the more chlorogenic acid is present in cranberry products. In all powders analysed, formation of furoylmethyl amino acids was noted. Antioxidant capacity of cranberry products was influenced by juice formulation and was linked to content of polyphenols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Urinary purine derivatives as a tool to estimate dry matter intake in cattle: a meta-analysis

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were: 1) to investigate the relationship between dry matter intake (DMI) and urinary purine derivatives (PD) excretion in order to develop equations to predict DMI, and 2) to determine the endogenous excretion of PD for beef and dairy cattle using a meta-analytic approac...

  5. Kinetics, biocompounds, antioxidant activity, and sensory attributes of quinces as affected by drying method.

    PubMed

    Szychowski, Przemysław J; Lech, Krzysztof; Sendra-Nadal, Esther; Hernández, Francisca; Figiel, Adam; Wojdyło, Aneta; Carbonell-Barrachina, Ángel A

    2018-07-30

    Quinces are attracting interest due to their health and nutritional benefits. Drying kinetics, bioactive compounds, antioxidant activity, and the main sensory parameters were determined in dried quinces, cultivar Leskovač, as affected by the drying method. The highest total polyphenols content was observed in dried samples obtained after freeze drying and convective drying at 50 °C. The best drying treatment, considering only sensory attributes, was vacuum-microwave drying at 480 W, because it led to intermediate dark color and high intensities of basic tastes and key flavor attributes. The studied parameters were finally used to recommend convective drying at 60 °C as the most appropriate drying method for quinces, because it had a high content of total phenolic compounds (2nd best treatment out of 10), a good sensory profile, was cheap, and caused no negative effects on nutritional or sensory parameters; the only disadvantage was its long drying time. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Regional heritability mapping provides insights into dry matter (DM) content in African white and yellow cassava populations

    USDA-ARS?s Scientific Manuscript database

    The HarvestPlus program for cassava (Manihot esculenta Crantz) fortifies cassava with beta-carotene by breeding for carotene-rich tubers (yellow cassava). However, a negative correlation between yellowness and dry matter (DM) content has been identified. Here, we investigated the genetic control of ...

  7. [Effects of field border length for irrigation on photosynthetic characteristics, dry matter accumulation and water use efficiency of wheat].

    PubMed

    Ma, Shang-Yu; Yu, Zhen-Wen; Shi, Yu; Zhao, Jun-Ye; Zhang, Yong-Li

    2014-04-01

    With the high-yielding winter wheat cultivar Jimai 22 as test material, a three-year field experiment was conducted to examine the effects of border length for irrigation on flag leaf water potential, photosynthetic characteristics, dry matter accumulation and distribution of wheat. In the 2010-2011 growing season, six treatments were installed, i. e., the field border length was designed as 10 m (L10), 20 m (L20), 40 m (L40), 60 m (L60), 80 m (L80) and 100 m (L100). In the 2011-2012 and 2012-2013 growing seasons, the field border length was designed as 40 m (L40), 60 m (L60), 80 m (L80) and 100 m (L100). The results showed that the average relative soil water content of the 0-200 cm soil layer was presented as L80, L60>L100>L40>L20>L10 at anthesis in the 2010-2011 growing season and as L80, L60>L100>L40 in the 2011-2012 and 2012-2013 growing seasons. At 11 d and 21 d after anthesis, the water potential, net photosynthetic rate and transpiration rate of flag leaf were presented as L80, L100>L60>L40>L20, L10, and as L80>L60, L100>L40, L20, L10 at 31 d after anthesis. The coefficients of variability both of the dry matter accumulation at anthesis and maturity and of grain yield in different regions of L80 field were lower than those of L100. The average dry matter accumulation, dry matter accumulation after anthesis and the contribution to grain of L80 were dramatically higher than those of L100, L40, L20 and L10. L80 had the highest average grain yield and water use efficiency, being the best treatment for irrigation in our study.

  8. Genetic disorders affecting white matter in the pediatric age.

    PubMed

    Di Rocco, Maja; Biancheri, Roberta; Rossi, Andrea; Filocamo, Mirella; Tortori-Donati, Paolo

    2004-08-15

    Pediatric white matter disorders can be distinguished into well-defined leukoencephalopathies, and undefined leukoencephalopathies. The first category may be subdivided into: (a) hypomyelinating disorders; (b) dysmyelinating disorders; (c) leukodystrophies; (d) disorders related to cystic degeneration of myelin; and (e) disorders secondary to axonal damage. The second category, representing up to 50% of leukoencephalopathies in childhood, requires a multidisciplinar approach in order to define novel homogeneous subgroups of patients, possibly representing "new genetic disorders" (such as megalencephalic leukoencepahlopathy with subcortical cysts and vanishing white matter disease that have recently been identified). In the majority of cases, pediatric white matter disorders are inherited diseases. An integrated description of the clinical, neuroimaging and pathophysiological features is crucial for categorizing myelin disorders and better understanding their genetic basis. A review of the genetic disorders affecting white matter in the pediatric age, including some novel entities, is provided. Copyright 2004 Wiley-Liss, Inc.

  9. Relationship between dry matter content at harvest and maturity index and post-harvest quality of "Fuji" apples

    USDA-ARS?s Scientific Manuscript database

    Two experiments were carried out to evaluate the relationship between dry matter content (DMC) and maturity index of ‘Fuji’ apple fruit sports (‘Mishima’, ‘Fuji Select’ and ‘Fuji Suprema’) during the final stage of fruit growth, and the relationship between DMC at harvest and the post-harvest fruit ...

  10. A New Curve of Critical Nitrogen Concentration Based on Spike Dry Matter for Winter Wheat in Eastern China.

    PubMed

    Zhao, Ben; Ata-Ui-Karim, Syed Tahir; Yao, Xia; Tian, YongChao; Cao, WeiXing; Zhu, Yan; Liu, XiaoJun

    2016-01-01

    Diagnosing the status of crop nitrogen (N) helps to optimize crop yield, improve N use efficiency, and reduce the risk of environmental pollution. The objectives of the present study were to develop a critical N (Nc) dilution curve for winter wheat (based on spike dry matter [SDM] during the reproductive growth period), to compare this curve with the existing Nc dilution curve (based on plant dry matter [DM] of winter wheat), and to explore its ability to reliably estimate the N status of winter wheat. Four field experiments, using varied N fertilizer rates (0-375 kg ha-1) and six cultivars (Yangmai16, Ningmai13, Ningmai9, Aikang58, Yangmai12, Huaimai 17), were conducted in the Jiangsu province of eastern China. Twenty plants from each plot were sampled to determine the SDM and spike N concentration (SNC) during the reproductive growth period. The spike Nc curve was described by Nc = 2.85×SDM-0.17, with SDM ranging from 0.752 to 7.233 t ha-1. The newly developed curve was lower than the Nc curve based on plant DM. The N nutrition index (NNI) for spike dry matter ranged from 0.62 to 1.1 during the reproductive growth period across the seasons. Relative yield (RY) increased with increasing NNI; however, when NNI was greater than 0.96, RY plateaued and remained stable. The spike Nc dilution curve can be used to correctly identify the N nutrition status of winter wheat to support N management during the reproductive growth period for winter wheat in eastern China.

  11. A New Curve of Critical Nitrogen Concentration Based on Spike Dry Matter for Winter Wheat in Eastern China

    PubMed Central

    Zhao, Ben; Ata-UI-Karim, Syed Tahir; Yao, Xia; Tian, YongChao; Cao, WeiXing; Zhu, Yan; Liu, XiaoJun

    2016-01-01

    Diagnosing the status of crop nitrogen (N) helps to optimize crop yield, improve N use efficiency, and reduce the risk of environmental pollution. The objectives of the present study were to develop a critical N (Nc) dilution curve for winter wheat (based on spike dry matter [SDM] during the reproductive growth period), to compare this curve with the existing Nc dilution curve (based on plant dry matter [DM] of winter wheat), and to explore its ability to reliably estimate the N status of winter wheat. Four field experiments, using varied N fertilizer rates (0–375 kg ha-1) and six cultivars (Yangmai16, Ningmai13, Ningmai9, Aikang58, Yangmai12, Huaimai 17), were conducted in the Jiangsu province of eastern China. Twenty plants from each plot were sampled to determine the SDM and spike N concentration (SNC) during the reproductive growth period. The spike Nc curve was described by Nc = 2.85×SDM-0.17, with SDM ranging from 0.752 to 7.233 t ha-1. The newly developed curve was lower than the Nc curve based on plant DM. The N nutrition index (NNI) for spike dry matter ranged from 0.62 to 1.1 during the reproductive growth period across the seasons. Relative yield (RY) increased with increasing NNI; however, when NNI was greater than 0.96, RY plateaued and remained stable. The spike Nc dilution curve can be used to correctly identify the N nutrition status of winter wheat to support N management during the reproductive growth period for winter wheat in eastern China. PMID:27732634

  12. Effects of a wax organogel and alginate gel complex on holy basil (Ocimum sanctum) in vitro ruminal dry matter disappearance and gas production.

    PubMed

    Templeman, James R; Rogers, Michael A; Cant, John P; McBride, Brian W; Osborne, Vern R

    2018-02-20

    The objectives of this study were to: (a) select an ideal organogel for the oil phase of a novel gel encapsulation technology, (b) optimize the formulation of an organogel and sodium alginate-based gel complex, and (c) examine the rumen protective ability of the gel by measuring 48-h in vitro ruminal dry matter disappearance and gas production from encapsulated dried and ground holy basil leaves. A rice-bran wax and canola oil organogel was selected for the oil phase of the gel complex as this combination had a 48-h dry matter disappearance of 6%, the lowest of all organogels analyzed. The gel complex was formulated by homogenizing the organogel with a sodium alginate solution to create a low-viscosity oil-in-water emulsion. Average dry matter disappearance of gel-encapsulated holy basil was 19%, compared to 42% for the free, unprotected holy basil. However, gel encapsulation of holy basil stimulated gas production. Specifically, gas production of encapsulated holy basil was four times higher than the treatment with holy basil added on top of the gel prior to incubation rather than encapsulated within the gel. Although the gel itself was highly degradable, it is speculated encapsulation thwarted holy basil's antimicrobial activity. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  13. Dry matter and energy partitioning in plants under climatic stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolhar-Nordenkampf, H.R.; Postl, W.F.; Meister, M.H.

    1996-12-31

    During ontogenesis plants distribute assimilates quite differently among their organs depending on the environmental conditions. In case of high sink capacity energetically cheap storing compounds such as carbohydrates and/or organic acids are formed, whereas during periods with low demand proteins and lipids may be accumulated. Besides ontogenesis, drought and increased CO{sub 2} are able to modify sink capacity and by this transients in the partitioning pattern of carbon are induced. Plants, well adapted to several dry seasons during the year are able to allocate carbon predominantly to below ground organs. During this period many leaves become senescent. In any casemore » stems and remaining green leaves will loose dry matter and energy. With 80% of plants under investigation CO{sub 2} enrichment was shown to induce an enforced allocation of carbon to below ground organs. Roots and Rhizomes, beets and tubers act as a sink for the additionally fixed carbon. It was demonstrated that sink capacity is controlling photosynthetic activity. With respect to agricultural production, to ecosystems and to single plants, climatic change will modify productivity and plants distribution pattern as a consequence of quite different metabolic changes. These responses are depending on the effect of natural and anthropogenic stress factors on the use of enhanced CO{sub 2} and on the allocation of additionally formed assimilates.« less

  14. Modeling homeorhetic trajectories of milk component yields, body composition and dry-matter intake in dairy cows: Influence of parity, milk production potential and breed.

    PubMed

    Daniel, J B; Friggens, N C; van Laar, H; Ingvartsen, K L; Sauvant, D

    2018-06-01

    The control of nutrient partitioning is complex and affected by many factors, among them physiological state and production potential. Therefore, the current model aims to provide for dairy cows a dynamic framework to predict a consistent set of reference performance patterns (milk component yields, body composition change, dry-matter intake) sensitive to physiological status across a range of milk production potentials (within and between breeds). Flows and partition of net energy toward maintenance, growth, gestation, body reserves and milk components are described in the model. The structure of the model is characterized by two sub-models, a regulating sub-model of homeorhetic control which sets dynamic partitioning rules along the lactation, and an operating sub-model that translates this into animal performance. The regulating sub-model describes lactation as the result of three driving forces: (1) use of previously acquired resources through mobilization, (2) acquisition of new resources with a priority of partition towards milk and (3) subsequent use of resources towards body reserves gain. The dynamics of these three driving forces were adjusted separately for fat (milk and body), protein (milk and body) and lactose (milk). Milk yield is predicted from lactose and protein yields with an empirical equation developed from literature data. The model predicts desired dry-matter intake as an outcome of net energy requirements for a given dietary net energy content. The parameters controlling milk component yields and body composition changes were calibrated using two data sets in which the diet was the same for all animals. Weekly data from Holstein dairy cows was used to calibrate the model within-breed across milk production potentials. A second data set was used to evaluate the model and to calibrate it for breed differences (Holstein, Danish Red and Jersey) on the mobilization/reconstitution of body composition and on the yield of individual milk components

  15. Reconnaissance Assessment of the Potential for Roadside Dry Wells to Affect Water Quality on the Island of Hawai'i

    USGS Publications Warehouse

    Izuka, Scot K.; Senter, Craig A.; Johnson, Adam G.

    2009-01-01

    The County of Hawai'i Department of Public Works (DPW) uses dry wells to dispose of stormwater runoff from roads. Recently, concern has been raised that water entering the dry wells may transport contaminants to groundwater and affect the quality of receiving waters. The DPW operates 2,052 dry wells. Compiling an inventory of these dry wells and sorting it on the basis of presence or absence of urbanization in the drainage area, distance between the bottom of the dry well and the water table, and proximity to receiving waters helps identify the dry wells having greatest potential to affect the quality of receiving waters so that future studies or mitigation efforts can focus on a smaller number of dry wells. The drainage areas of some DPW dry wells encompass urbanized areas, which could be a source of contaminants. Some dry wells penetrate close to or through the water table, eliminating or substantially reducing opportunities for contaminant attenuation between the ground surface and water table. Dry wells that have drainage areas that encompass urbanization, penetrate to near the water table, and are near the coast have the highest potential to affect the quality of coastal waters (this study did not consider specific sections of coastline that may be of greater concern than others). Some DPW dry wells, including a few that have drainage areas that encompass urbanization, lie within the areas contributing recharge (ACR) to drinking-water wells. Numerical groundwater modeling studies by previous investigators indicate that water infiltrating those dry wells could eventually be pumped at drinking-water wells. Dry wells that have a high potential for affecting coastal receiving waters or drinking-water wells can be the focus of studies to further understand the effect of the dry wells on the quality of receiving waters. Possible study approaches include sampling for contaminants at the dry well and receiving water, injecting and monitoring the movement of tracers

  16. Comparison of shortened and conventional dry period management strategies.

    PubMed

    Cermakova, J; Kudrna, V; Simeckova, M; Vyborna, A; Dolezal, P; Illek, J

    2014-09-01

    The aim of this study was to compare 2 dry-cow management strategies and evaluate the effect of shortened dry period strategy on feed intake, metabolism, and postpartum performance of dairy cows in early lactation. Twenty-nine high-yielding dairy cows were divided into 2 groups. The control (CON) group (n=14) was assigned to a traditional dry period of approximately 60 d (57±5.9 d) and was fed a far-off dry cow ration from dry-off to -21 d relative to expected parturition. From d -21 relative to expected parturition, the cows were switched to a precalving ration containing an additional 3kg of concentrates. The cows of the experimental group (n=15) were assigned to a shortened dry period (SDP; 35±6.3 d) and were continuously fed a late-lactation diet from d -60 d relative to expected parturition until calving. After calving, both groups were fed the same lactation diet corresponding to their lactation requirements and cows were followed for 100 d of lactation. Prepartum dry matter intake of the cows assigned to an SDP and fed a late-lactation diet was approximately 4.11kg/cow per day greater compared with the CON group during the 60 d. However, no effect of dry period strategy on postpartum dry matter intake was detected. The cows with an SDP produced approximately 2.78kg/d (6.9%) less milk in the first 100 d of lactation than CON cows; the difference was not statistically significant. No differences were observed in live body weight, body condition score, or back-fat thickness between the treatments. Similarly, no differences existed in concentrations of plasma metabolites. The cows of the SDP group showed lower pH and increased concentrations of lactic acid and volatile fatty acids prepartum than the CON cows. Postpartum concentrations of lactic acid, volatile fatty acids, and NH3 and pH in rumen fluid did not differ between the treatments. Shortening of the dry period did not affect the colostrum quality or birth weights of the calves. Based on the results of

  17. Drying process strongly affects probiotics viability and functionalities.

    PubMed

    Iaconelli, Cyril; Lemetais, Guillaume; Kechaou, Noura; Chain, Florian; Bermúdez-Humarán, Luis G; Langella, Philippe; Gervais, Patrick; Beney, Laurent

    2015-11-20

    Probiotic formulations are widely used and are proposed to have a variety of beneficial effects, depending on the probiotic strains present in the product. The impact of drying processes on the viability of probiotics is well documented. However, the impact of these processes on probiotics functionality remains unclear. In this work, we investigated variations in seven different bacterial markers after various desiccation processes. Markers were composed of four different viability evaluation (combining two growth abilities and two cytometric measurements) and in three in vitro functionalities: stimulation of IL-10 and IL-12 production by PBMCs (immunomodulation) and bacterial adhesion to hexadecane. We measured the impact of three drying processes (air-drying, freeze-drying and spray-drying), without the use of protective agents, on three types of probiotic bacteria: Bifidobacterium bifidum, Lactobacillus plantarum and Lactobacillus zeae. Our results show that the bacteria respond differently to the three different drying processes, in terms of viability and functionality. Drying methods produce important variations in bacterial immunomodulation and hydrophobicity, which are correlated. We also show that adherence can be stimulated (air-drying) or inhibited (spray-drying) by drying processes. Results of a multivariate analysis show no direct correlation between bacterial survival and functionality, but do show a correlation between probiotic responses to desiccation-rewetting and the process used to dry the bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The effect of harvest time, dry matter content and mechanical pretreatments on anaerobic digestion and enzymatic hydrolysis of miscanthus.

    PubMed

    Frydendal-Nielsen, Susanne; Hjorth, Maibritt; Baby, Sanmohan; Felby, Claus; Jørgensen, Uffe; Gislum, René

    2016-10-01

    Miscanthus x giganteus was harvested as both green and mature biomass and the dry matter content of the driest harvest was artificially decreased by adding water in two subsamples, giving a total of five dry matter contents. All five biomass types were mechanically pretreated by roller-milling, extrusion or grinding and accumulated methane production and enzymatically-accessible sugars were measured. Accumulated methane production was studied using sigmoid curves that allowed comparison among the treatments of the rate of the methane production and ultimate methane yield. The green biomass gave the highest methane yield and highest levels of enzymatically-accessible cellulose. The driest biomass gave the best effect from extrusion but with the highest energy consumption, whereas roller-milling was most efficient on wet biomass. The addition of water to the last harvest improved the effect of roller-milling and equalled extrusion of the samples in efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. [Effects of irrigation and planting pattern on winter wheat water consumption characteristics and dry matter production].

    PubMed

    Dong, Hao; Chen, Yu-Hai; Zhou, Xun-Bo

    2013-07-01

    Taking high-yield winter wheat cultivar 'Jimai 22' as test material, a field experiment was conducted in 2008-2010 to study the effects of different irrigation and planting modes on the water consumption characteristics and dry matter accumulation and distribution of winter wheat. Three planting patterns (uniform row, wide-narrow row, and furrow) and four irrigation schedules (no irrigation, W0; irrigation at jointing stage, W1; irrigation at jointing and anthesis stages, W2; and irrigation at jointing, anthesis, and milking stages, W3; with 60 mm per irrigation) were installed. With increasing amount of irrigation, the total water consumption and the ratio of irrigation water to total water consumption under different planting patterns all increased, while the soil water consumption and its ratio to total water consumption decreased significantly. As compared with W0, the other three irrigation schedules had a higher dry matter accumulation after anthesis and a higher grain yield, but a lower water use efficiency (WUE). Under the same irrigation schedules, furrow pattern had higher water consumption ratio, grain yield, and WUE. Taking the grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages would be the optimal water-saving and planting modes for the winter wheat production in North China Plain.

  20. Feeding fat from distillers dried grains with solubles to dairy heifers: I. Effects on growth performance and total tract digestibility of nutrients

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to determine if increased dietary fat from dried distillers grains with solubles (DDGS) in diets of growing heifers affected dry matter intake (DMI), average daily gain (ADG), growth performance, and nutrient digestibility. Thirty-three Holstein heifers (133 ± 18 d ol...

  1. [Effects of controlled release nitrogen fertilizer application on dry matter accumulation and nitrogen balance of summer maize].

    PubMed

    Si, Dong-Xia; Cui, Zhen-Ling; Chen, Xin-Ping; Lü, Fu-Tang

    2014-06-01

    Effects of four controlled release nitrogen (N) fertilizers, including two kinds of polyester coated urea (Ncau, CRU) and phosphate (NhnP) and humic acid (NhnF) coated urea on assimilates accumulation and nitrogen balance of summer maize were investigated in a mode of one-time fertilization at the regional N recommended rate. The results showed that the N release curves of the two controlled release fertilizers CRU and Ncau matched well with the summer maize N uptake. Compared with the regional N recommendation rate, CRU could increase maize yield by 4.2% and Ncau could maintain the same yield level. CRU significantly increased the dry matter accumulation rate after anthesis of summer maize, but Ncau markedly increased the dry matter accumulated ratio before anthesis. Meanwhile, CRU could reduce the apparent N losses by 19 kg N x hm(-2) in the case of large precipitation. However, NhnF and NhnP caused the yield losses by 0.1%-8.9%, and enhanced the apparent N losses. Therefore, both CRU and Ncau with one-time fertilization could be a simplified alternative to the "total control, staging regulation" fertilization technique at the regional N recommended rate for summer maize production.

  2. Effects of climate and lifeform on dry matter yield (epsilon) from simulations using BIOME BGC. [ecosystem process model for vegetation biomass production using daily absorbed photosynthetically active radiation

    NASA Technical Reports Server (NTRS)

    Hunt, E. R., Jr.; Running, Steven W.

    1992-01-01

    An ecosystem process simulation model, BIOME-BGC, is used in a sensitivity analysis to determine the factors that may cause the dry matter yield (epsilon) and annual net primary production to vary for different ecosystems. At continental scales, epsilon is strongly correlated with annual precipitation. At a single location, year-to-year variation in net primary production (NPP) and epsilon is correlated with either annual precipitation or minimum air temperatures. Simulations indicate that forests have lower epsilon than grasslands. The most sensitive parameter affecting forest epsilon is the total amount of living woody biomass, which affects NPP by increasing carbon loss by maintenance respiration. A global map of woody biomass should significantly improve estimates of global NPP using remote sensing.

  3. Influence of management regime and harvest date on the forage quality of rangelands plants: the importance of dry matter content

    PubMed Central

    Bumb, Iris; Garnier, Eric; Bastianelli, Denis; Richarte, Jean; Bonnal, Laurent; Kazakou, Elena

    2016-01-01

    In spite of their recognized ecological value, relatively little is known about the nutritional value of species-rich rangelands for herbivores. We investigated the sources of variation in dry matter digestibility (DMD), neutral detergent fibre content (NDF) and nitrogen concentration (NC) in plants from species-rich Mediterranean rangelands in southern France, and tested whether the dry matter content (DMC) was a good predictor of the forage quality of different plant parts. Sixteen plant species with contrasting growth forms (rosette, tussock, extensive and stemmed-herb) were studied, representative of two management regimes imposed in these rangelands: (i) fertilization and intensive grazing and (ii) non-fertilization and moderate grazing. Among the 16 plant species, four species were found in both treatments, allowing us to assess the intraspecific variability in forage quality and DMC across the treatments. The components of nutritional value (DMD, NDF and NC) as well as the DMC of leaves, stems and reproductive plant parts, were assessed at the beginning of the growing season and at peak standing biomass. All components of nutritional value and DMC were affected by species growth form: rosettes had higher DMD and NC than tussocks; the reverse being found for NDF and DMC. As the season progressed, DMD and NC of the different plant parts decreased while NDF and DMC increased for all species. DMC was negatively related to DMD and NC and positively to NDF, regardless of the source of variation (species, harvest date, management regime or plant part). Path analysis indicated that NDF was the main determinant of DMD. Better assessment of forage quality in species-rich systems requires consideration of their growth form composition. DMC of all plant parts, which is closely related to NDF, emerged as a good predictor and easily measured trait to estimate DMD in these species-rich systems. PMID:27339049

  4. Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest

    NASA Astrophysics Data System (ADS)

    Sfair, Julia C.; de Bello, Francesco; de França, Thaysa Q.; Baldauf, Cristina; Tabarelli, Marcelo

    2018-02-01

    The effects of human disturbance on biodiversity can be mediated by environmental conditions, such as water availability, climate and nutrients. In general, disturbed, dry or nutrient-depleted soils areas tend to have lower taxonomic diversity. However, little is known about how these environmental conditions affect functional composition and intraspecific variability in tropical dry forests. We studied a seasonally dry tropical forest (SDTF) under chronic anthropogenic disturbance (CAD) along rainfall and soil nutrient gradients to understand how these factors influence the taxonomic and functional composition. Specifically we evaluated two aspects of CAD, wood extraction and livestock pressure (goat and cattle grazing), along soil fertility and rainfall gradients on shrub and tree traits, considering species turnover and intraspecific variability. In addition, we also tested how the traits of eight populations of the most frequent species are affected by wood extraction, livestock pressure, rainfall and soil fertility. In general, although CAD and environmental gradients affected each trait of the most widespread species differently, the most abundant species also had a greater variation of traits. Considering species turnover, wood extraction is associated with species with a smaller leaf area and lower investment in leaf mass, probably due to the indirect effects of this disturbance type on the vegetation, i.e. the removal of branches and woody debris clears the vegetation, favouring species that minimize water loss. Livestock pressure, on the other hand, affected intraspecific variation: the herbivory caused by goats and cattle promoted individuals which invest more in wood density and leaf mass. In this case, the change of functional composition observed is a direct effect of the disturbance, such as the decrease of palatable plant abundance by goat and cattle herbivory. In synthesis, CAD, rainfall and soil fertility can affect trait distribution at community

  5. Factors affecting dry-cured ham consumer acceptability.

    PubMed

    Morales, R; Guerrero, L; Aguiar, A P S; Guàrdia, M D; Gou, P

    2013-11-01

    The objectives of the present study were (1) to compare the relative importance of price, processing time, texture and intramuscular fat in purchase intention of dry-cured ham through conjoint analysis, (2) to evaluate the effect of dry-cured ham appearance on consumer expectations, and (3) to describe the consumer sensory preferences of dry-cured ham using external preference mapping. Texture and processing time influenced the consumer preferences in conjoint analysis. Red colour intensity, colour uniformity, external fat and white film presence/absence influenced consumer expectations. The consumer disliked hams with bitter and metallic flavour and with excessive saltiness and piquantness. Differences between expected and experienced acceptability were found, which indicates that the visual preference of consumers does not allow them to select a dry-cured ham that satisfies their sensory preferences of flavour and texture. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. The endogenous plant hormones and ratios regulate sugar and dry matter accumulation in Jerusalem artichoke in salt-soil.

    PubMed

    Li, Lingling; Shao, Tianyun; Yang, Hui; Chen, Manxia; Gao, Xiumei; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2017-02-01

    The changes in content of endogenous hormones in stolons and tubers of Jerusalem artichoke (Helianthus tuberosus L.) regulate tuber growth, but the specific knowledge about the importance of balance among the endogenous hormones is lacking. Two varieties of Jerusalem artichoke (NY-1 and QY-2) were tested for the endogenous zeatin (ZT), auxins (IAA), gibberellins (GA 3 ) and abscisic acid (ABA) in regulating sugar and dry matter accumulation in tubers. The dry matter content and sugar accumulation in tubers were correlated positively with endogenous ZT and negatively with GA 3 content and GA 3 /ABA and IAA/ABA content ratios. Throughout the tuber formation, ZT content was higher in NY-1 than QY-2 tubers, whereas ABA content was higher in QY-2 than NY-1 tubers. The content ratios GA 3 /ABA and IAA/ABA were greater in NY-1 than QY-2 before tuber initiation, but QY-2 surpassed NY-1 during the tuber growth stage. The GA 3 /ABA and IAA/ABA content ratios declined during tuber growth. The results suggested that a dynamic balance of endogenous hormones played an important role in tuber development. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Breakfast staple types affect brain gray matter volume and cognitive function in healthy children.

    PubMed

    Taki, Yasuyuki; Hashizume, Hiroshi; Sassa, Yuko; Takeuchi, Hikaru; Asano, Michiko; Asano, Kohei; Kawashima, Ryuta

    2010-12-08

    Childhood diet is important for brain development. Furthermore, the quality of breakfast is thought to affect the cognitive functioning of well-nourished children. To analyze the relationship among breakfast staple type, gray matter volume, and intelligence quotient (IQ) in 290 healthy children, we used magnetic resonance images and applied voxel-based morphometry. We divided subjects into rice, bread, and both groups according to their breakfast staple. We showed that the rice group had a significantly larger gray matter ratio (gray matter volume percentage divided by intracranial volume) and significantly larger regional gray matter volumes of several regions, including the left superior temporal gyrus. The bread group had significantly larger regional gray and white matter volumes of several regions, including the right frontoparietal region. The perceptual organization index (POI; IQ subcomponent) of the rice group was significantly higher than that of the bread group. All analyses were adjusted for age, gender, intracranial volume, socioeconomic status, average weekly frequency of having breakfast, and number of side dishes eaten for breakfast. Although several factors may have affected the results, one possible mechanism underlying the difference between the bread and the rice groups may be the difference in the glycemic index (GI) of these two substances; foods with a low GI are associated with less blood-glucose fluctuation than are those with a high GI. Our study suggests that breakfast staple type affects brain gray and white matter volumes and cognitive function in healthy children; therefore, a diet of optimal nutrition is important for brain maturation during childhood and adolescence.

  8. Quality properties of fruits as affected by drying operation.

    PubMed

    Omolola, Adewale O; Jideani, Afam I O; Kapila, Patrick F

    2017-01-02

    The increasing consumption of dried fruits requires further attention on the quality parameters. Drying has become necessary because most fruits are highly perishable owing to their high moisture content and the need to make them available all year round and at locations where they are not produced. In addition to preservation, the reduced weight and bulk of dehydrated products decreases packaging, handling and transportation costs. Quality changes associated with drying of fruit products include physical, sensory, nutritional, and microbiological. Drying gives rise to low or moderate glycemic index (GI) products with high calorie, vitamin and mineral contents. This review examines the nutritional benefits of dried fruits, protective compounds present in dried fruits, GI, overview of some fruit drying methods and effects of drying operations on the quality properties such as shrinkage, porosity, texture, color, rehydration, effective moisture diffusivity, nutritional, sensory, microbiological and shelf stability of fruits.

  9. Redox agents and N-ethylmaleimide affect protein polymerization during laboratory scale dry pasta production and cooking.

    PubMed

    Bruneel, Charlotte; Buggenhout, Joke; Lagrain, Bert; Brijs, Kristof; Delcour, Jan A

    2016-04-01

    Durum wheat (Triticum durum Desf.) semolina gluten proteins consist of monomeric gliadin and polymeric glutenin and determine the quality of pasta products made therefrom. During pasta drying, glutenin starts polymerizing already below 60 °C (65% relative humidity (RH)), whereas gliadin only is incorporated in the protein network at temperatures exceeding 68 °C (68% RH) through thiol (SH)/disulfide (SS) exchange reactions. Removal of free SH groups in glutenin by adding 2.3 μmol KBrO3 or KIO3 per g dry matter semolina protein (g protein) or 13.8 μmol N-ethylmaleimide/g protein reduces gliadin-glutenin cross-linking during pasta drying and/or cooking and yields cooked pasta of high quality. Introducing free SH groups by adding 13.8 μmol glutathione/g protein increases gliadin-glutenin cross-linking during pasta processing, resulting in cooked pasta of lower quality. We hypothesize that too much gliadin incorporation in the glutenin network during pasta processing tightens the protein network and results in lower cooking quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. The relationship between rumen bacterial growth, intake of dry matter, digestible organic matter and volatile fatty acid production in buffalo (Bos bubalis) calves.

    PubMed

    Singh, U B; Verma, D N; Varma, A; Ranjhan, S K

    1977-11-01

    1. The production rates of bacteria in the rumen of buffalo (Bos bubalis) calves were estimated using an isotope-dilution technique. A series of fifteen experiments was done with animals given green maize and nine experiments with animals given cowpea (Vigna unguiculata). 2. The turnover time ranged from 205 to 567 min in the group given green maize and from 330 to 648 min in animals offered cowpea. The production rates of bacteria were (mean +/- SE; g/d) 145.77 +/- 7.240 and 237.09 +/- 11.847 in animals given green maize and cowpea respectively. 3. There was a significant correlation between bacterial production rates and dry matter intake, digestible organic matter and total volatile fatty acids formed in the rumen. 4. Regression equations obtained for the two foodstuffs were different suggesting that the bacterial growth rate may vary depending upon the quantity and quality of foodstuff digested and possibly the ratio nitrogen:energy of the foodstuff.

  11. [Effects of applying nitrogen fertilizer at different stages in ploughed furrow on dry matter production and yield of rice].

    PubMed

    Shi, Kun; Hao, Shufeng; Xie, Hongtu; Zhang, Xudong

    2002-12-01

    The effects of applying nitrogen fertilizer in ploughed furrow at different stages on dry matter production and yield of rice were studied in a field experiment in 1999. The results showed that applying N fertilizer at booting stage (BS) had better effects on dry weight (2.9 g.hill-1) of leaf, stem and whole plant than at panicle primordia formation stage (PPFS), tillering stage (TS) and regular N fertilization (RF). Meanwhile, the dry weight of leaf and sheath as well as the leaf area index (LAI, 8.9) could be maintained at a high level for a relative long time in BS treatment, compared with PPFS, TS and RF treatments. Similar phenomenon was observed in the growth velocity (0.73 g.d-1.hill-1) of stem and whole plant, and the dry weight (10434 kg.hm-2) of seed. The grain yield of rice followed the sequence of BS > or = PPFS > TS > or = RF. Thus, the optimum stage of applying N fertilizer in ploughed furrow was the booting stage.

  12. Effect of K-N-humates on dry matter production and nutrient use efficiency of maize in Sarawak, Malaysia.

    PubMed

    Petrus, Auldry Chaddy; Ahmed, Osumanu Haruna; Muhamad, Ab Majid Nik; Nasir, Hassan Mohammad; Jiwan, Make

    2010-07-06

    Agricultural waste, such as sago waste (SW), is one of the sources of pollution to streams and rivers in Sarawak, particularly those situated near sago processing plants. In addition, unbalanced and excessive use of chemical fertilizers can cause soil and water pollution. Humic substances can be used as organic fertilizers, which reduce pollution. The objectives of this study were to produce K- and ammonium-based organic fertilizer from composted SW and to determine the efficiency of the organic-based fertilizer produced. Humic substances were isolated using standard procedures. Liquid fertilizers were formulated except for T2 (NPK fertilizer), which was in solid form. There were six treatments with three replications. Organic fertilizers were applied to soil in pots on the 10th day after sowing (DAS), but on the 28th DAS, only plants of T2 were fertilized. The plant samples were harvested on the 57th DAS during the tassel stage. The dry matter of plant parts (leaves, stems, and roots) were determined and analyzed for N, P, and K using standard procedures. Soil of every treatment was also analyzed for exchangeable K, Ca, Mg, and Na, organic matter, organic carbon, available P, pH, total N, P, nitrate and ammonium contents using standard procedures. Treatments with humin (T5 and T6) showed remarkable results on dry matter production; N, P, and K contents; their uptake; as well as their use efficiency by maize. The inclusion of humin might have loosened the soil and increased the soil porosity, hence the better growth of the plants. Humin plus inorganic fertilizer provided additional nutrients for the plants. The addition of inorganic fertilizer into compost is a combination of quick and slow release sources, which supplies N throughout the crop growth period. Common fertilization by surface application of T2 without any additives (acidic and high CEC materials) causes N and K to be easily lost. High Ca in the soil may have reacted with phosphate from fertilizer to

  13. The effect of environmental and process parameters on flocculation treatment of high dry matter swine manure with polymers.

    PubMed

    Masse, Lucie; Massé, Daniel I

    2010-08-01

    This paper reports on the effects of environmental conditions and process parameters on flocculation of high dry matter (average DM of 7.3%) swine manure with cationic polymers with 10%, 35%, and 55% charge densities (CDs). Polymer solutions prepared with hard and distilled water allowed similar suspended solids (SS) reductions in the initial 24h. After 3-7 days at 20 degrees C, however, the efficiency of the hard water solutions started to decline, while the polymers made with distilled water maintained their performance for up to 10 days. The 10% CD polymer was considerably less affected than the 35% CD polymer by the age of the hard water solutions. During polymer injection, minimum velocity gradients (G) of 108 and 253 s(-1) were required to maximized efficiency of the 10% and 35% CD polymer, respectively. Flocculation mixing velocities up to 84 s(-1) and mixing times between 1 and 30 min had no effect on polymer efficiency. However, mixing at 22s(-1) for more than 30 min decreased SS reduction. Adding polymer in multiple injections did not improve the efficiency of medium and high CD polymers, and adversely affected that of the low CD polymer, maybe because of repeated rapid mixing cycles which ruptured the flocs. Polymer performance was not affected by operating temperature between 6 and 25 degrees C. These results were collected on a laboratory-scale apparatus and remain to be validated at larger scale. Crown Copyright 2010. Published by Elsevier Ltd. All rights reserved.

  14. Dry matter intake, body condition score, and grazing behavior of nonlactating, pregnant dairy cows fed kale or grass once versus twice daily during winter.

    PubMed

    Rugoho, I; Edwards, G R

    2018-01-01

    The objective of this study was to examine the effect of wintering pregnant, nonlactating dairy cows outdoors on either kale or grass, fed in 1 [11 kg dry matter (DM) of kale or grass + 3 kg DM of baled barley straw offered in the morning] or 2 allocations (5.5 kg DM of kale or grass grazed + 1.5 kg DM of barley straw offered morning and afternoon) per day. The body condition score (BCS) gain over the 47-d winter feeding period was higher for grass-fed (0.5 BCS units) than kale-fed cows (0.3 BCS units), but was unaffected by feeding frequency. Forage DM utilization was higher for kale-fed (97%) than grass-fed cows (76%), leading to higher estimated dry matter intake (DMI) in kale-fed (10.7 kg of DM/cow per day) than grass-fed cows (7.7 kg of DM/cow per day). Forage DM utilization and estimated DMI were not affected by feeding frequency. Prehension bite rate was greater for grass-fed (37.3 bites/min) than kale-fed cows (7.6 bites/min), but more mastication bites were required for kale-fed cows. Cumulative DMI after 2, 3, and 6 h was greater in cows allocated forage once than twice a day and for kale than grass after 3 and 6 h. Mean eating time was greater for cows offered forage once (477 min) than twice (414 min) per day. In conclusion, increasing feeding frequency from once to twice per day decreased the intake rate within the first 6 h after allocation, but did not affect total daily DMI, DM utilization or BCS gain. Thus, moving cows more frequently would not have any significant advantage. It may increase labor requirements, thereby creating a more challenging wintering management than feeding once per day. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Nondestructive determination of dry matter and soluble solids content in dehydrator onions and garlics using a handheld visible and near infrared instrument

    USDA-ARS?s Scientific Manuscript database

    A non-destructive method based on visible and near-infrared spectroscopy was investigated for determining the dry matter and soluble solids contents of dehydrator onions at the base, equatorial, and shoulder locations and of garlic cloves at the equatorial location. The interactance spectrum (400-10...

  16. Efficiency of converting nutrient dry matter to milk in Holstein herds.

    PubMed

    Britt, J S; Thomas, R C; Speer, N C; Hall, M B

    2003-11-01

    Production of milk from feed dry matter intakes (DMI), called dairy or feed efficiency, is not commonly measured in dairy herds as is feed conversion to weight gain in swine, beef, and poultry; however, it has relevance to conversion of purchased input to salable product and proportion of dietary nutrients excreted. The purpose of this study was to identify some readily measured factors that affect dairy efficiency. Data were collected from 13 dairy herds visited 34 times over a 14-mo period. Variables measured included cool or warm season (high ambient temperature <21 degrees C or >21 degrees C, respectively), days in milk, DMI, milk yield, milk fat percent, herd size, dietary concentrations (DM basis) and kilograms of crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), and forage. Season, days in milk, CP % and forage % of diet DM, and kilograms of dietary CP affected dairy efficiency. When evaluated using a model containing the significant variables, dairy efficiency was lower in the warm season (1.31) than in the cool season (1.40). In terms of simple correlations, dairy efficiency was negatively correlated with days in milk (r = -0.529), DMI (r = -0.316), forage % (r = -0.430), NDF % (r = -0.308), and kilograms of forage (r = -0.516), NDF (r = -0.434), and ADF (r = -0.313), in the diet, respectively. Dairy efficiency was positively correlated with milk yield (r = 0.707). The same relative patterns of significance and correlation were noted for dairy efficiency calculated with 3.5% fat-corrected milk yield. Diets fed by the herds fell within such a small range of variation (mean +/- standard deviation) for CP % (16.3 +/- 0.696), NDF % (33.2 +/- 2.68), and forage % (46.9 +/- 5.56) that these would not be expected to be useful to evaluate the effect of excessive underfeeding or overfeeding of these dietary components. The negative relationships of dairy efficiency with increasing dietary fiber and forage may reflect the effect of

  17. Physiological characteristics, dry matter, and active component accumulation patterns of Changium smyrnioides in response to a light intensity gradient.

    PubMed

    Wang, Chang-Lin; Guo, Qiao-Sheng; Zhu, Zai-Biao; Cheng, Bo-Xing

    2017-12-01

    Changium smyrnioides Wolff (Apiaceae) is an endangered medicinal plant with numerous pharmacological uses. To investigate the effect of light intensity levels on the growth and accumulation of secondary metabolites of C. smyrnioides, cultivated seedlings were subjected to different relative light intensities via sun-shading. Changium smyrnioides seedlings were subjected to five irradiance treatments (100, 60.54, 44.84, 31.39, and 10.56% sunlight) in glasshouse for 9 months. Enzymatic and non-enzymatic antioxidants with spectrophotometric method, photosynthetic parameters with Li-6400XT, dry matter accumulation and active component contents in the root with spectrophotometric and HPLC method were analyzed. With an increase in relative light intensity levels, activities of enzymatic and non-enzymatic antioxidants, and malondialdehyde (MDA) contents were increased overall, while net photosynthetic rate (P n ) and dry matter accumulation patter first increased and then declined. The highest net photosynthetic rate (30.68 μmol/m 2 ·s) and dry root weight (5.07 g) were achieved under 60.54% sunlight. Lower relative light intensity levels stimulated the accumulation levels of bioactive compounds in the roots so that the highest contents of mannitol (1.35%) and choline (405.58 μg/g) were recorded under 31.39% sunlight, and the highest polysaccharide content (10.80%) were achieved under 44.84% sunlight. With a decrease in the relative light intensity levels, the water-soluble component content increased first and then decreased. The results revealed that 31.39-60.54% sunlight serve as appropriate relative light intensity conditions for cultivated C. smyrnioides.

  18. Comparison of three different wastewater sludge and their respective drying processes: Solar, thermal and reed beds - Impact on organic matter characteristics.

    PubMed

    Collard, Marie; Teychené, Benoit; Lemée, Laurent

    2017-12-01

    Drying process aims at minimising the volume of wastewater sludge (WWS) before disposal, however it can impact sludge characteristics. Due to its high content in organic matter (OM) and lipids, sludge are mainly valorised by land farming but can also be considered as a feedstock for biodiesel production. As sludge composition is a major parameter for the choice of disposal techniques, the objective of this study was to determine the influence of the drying process. To reach this goal, three sludges obtained from solar, reed beds and thermal drying processes were investigated at the global and molecular scales. Before the drying step the sludges presented similar physico-chemical (OM content, elemental analysis, pH, infrared spectra) characteristics and lipid contents. A strong influence of the drying process on lipids and humic-like substances contents was observed through OM fractionation. Thermochemolysis-GCMS of raw sludge and lipids revealed similar molecular content mainly constituted with steroids and fatty acids. Molecular changes were noticeable for thermal drying through differences in branched to linear fatty acids ratio. Finally the thermal drying induced a weakening of OM whereas the solar drying led to a complexification. These findings show that smooth drying processes such as solar or reed-beds are preferable for amendment production whereas thermal process leads to pellets with a high lipid content which could be considered for fuel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) [0.040 grain per dry standard...

  20. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) [0.040 grain per dry standard...

  1. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) [0.040 grain per dry standard...

  2. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) [0.040 grain per dry standard...

  3. Composition of whole and water extractable organic matter of cattle manure affected by management practices

    USDA-ARS?s Scientific Manuscript database

    Organic matter (OM) is a major component of animal manure. In this chapter, we present two case studies on the multiple spectral features of whole and water extractable organic matter (WEOM) of cattle (beef and dairy) manure affected by differing management practices. Using wet chemistry and Fourie...

  4. Feeding fat from distillers dried grains with solubles to dairy heifers: I. Effects on growth performance and total-tract digestibility of nutrients.

    PubMed

    Anderson, J L; Kalscheur, K F; Garcia, A D; Schingoethe, D J

    2015-08-01

    The objective of this study was to determine if increased dietary fat from dried distillers grains with solubles (DDGS) in diets of growing heifers affected dry matter intake, average daily gain (ADG), growth performance, and nutrient digestibility. Thirty-three Holstein heifers (133±18 d old) were used in a 24-wk randomized complete block design. Treatments were (1) control (CON) containing ground corn and soybean products, (2) low-fat (LFDG) containing low-fat, high-protein DDGS and ground corn, and (3) high-fat (HFDG) with traditional DDGS. All diets contained 39.8% grass hay, 24.8% corn silage, and 1.5% vitamins and minerals. The HFDG diet was formulated to contain 4.8% fat compared with 2.8% in the CON and LFDG diets, which were greater in nonfibrous carbohydrate. Diets had a net energy gain of 1.0Mcal/kg of dry matter and were limit-fed at 2.45% of body weight. Heifers were weighed every 2wk and rations were adjusted accordingly. Heart girth, hip and wither heights, body length, and body condition score were recorded every 2wk. Total-tract digestion of nutrients was evaluated during wk16 using fecal grab sampling and an external marker. No treatments by time interactions were found. Dry matter intakes, body weights, ADG, and gain-to-feed ratio were similar among treatments; however, ADG averaged 0.96kg/d among treatments, which is greater than recommended. All body frame measurements and body condition scores were similar among treatments. Total-tract digestibilities of dry matter and organic matter were not different among treatments. However, crude protein and neutral detergent fiber digestibility were increased in the HFDG diet compared with the CON and LFDG diets. These results demonstrate that using DDGS or low-fat DDGS with corn in growing heifer rations can maintain performance. Utilizing the fat in DDGS as a dietary energy source in replacement of starch from corn did not influence growth performance or negatively affect nutrient digestion. Copyright

  5. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...

  6. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...

  7. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...

  8. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...

  9. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...

  10. Transport and solubility of Hetero-disperse dry deposition particulate matter subject to urban source area rainfall-runoff processes

    NASA Astrophysics Data System (ADS)

    Ying, G.; Sansalone, J.

    2010-03-01

    SummaryWith respect to hydrologic processes, the impervious pavement interface significantly alters relationships between rainfall and runoff. Commensurate with alteration of hydrologic processes the pavement also facilitates transport and solubility of dry deposition particulate matter (PM) in runoff. This study examines dry depositional flux rates, granulometric modification by runoff transport, as well as generation of total dissolved solids (TDS), alkalinity and conductivity in source area runoff resulting from PM solubility. PM is collected from a paved source area transportation corridor (I-10) in Baton Rouge, Louisiana encompassing 17 dry deposition and 8 runoff events. The mass-based granulometric particle size distribution (PSD) is measured and modeled through a cumulative gamma function, while PM surface area distributions across the PSD follow a log-normal distribution. Dry deposition flux rates are modeled as separate first-order exponential functions of previous dry hours (PDH) for PM and suspended, settleable and sediment fractions. When trans-located from dry deposition into runoff, PSDs are modified, with a d50m decreasing from 331 to 14 μm after transport and 60 min of settling. Solubility experiments as a function of pH, contact time and particle size using source area rainfall generate constitutive models to reproduce pH, alkalinity, TDS and alkalinity for historical events. Equilibrium pH, alkalinity and TDS are strongly influenced by particle size and contact times. The constitutive leaching models are combined with measured PSDs from a series of rainfall-runoff events to demonstrate that the model results replicate alkalinity and TDS in runoff from the subject watershed. Results illustrate the granulometry of dry deposition PM, modification of PSDs along the drainage pathway, and the role of PM solubility for generation of TDS, alkalinity and conductivity in urban source area rainfall-runoff.

  11. Dry period management and optimization of post-partum reproductive management in dairy cattle.

    PubMed

    Gumen, A; Keskin, A; Yilmazbas-Mecitoglu, G; Karakaya, E; Wiltbank, Mc

    2011-09-01

    Dry period and early post-partum management are decisive factors for fertility in lactating dairy cows. Previous studies have shown that decreased dry matter intake (DMI) and increased non-esterified fatty acids (NEFA) negatively affect fertility and subsequent milk production. The traditional dry period decreases DMI prior to parturition, resulting in a decrease in energy intake. A negative energy balance increases NEFA concentration, and increased NEFA may impair the immune system, especially by decreasing neutrophil function prior to parturition. Earlier studies have shown that post-partum health disorders, including retained placenta and metritis, were correlated with periparturient neutrophil function. In addition, decreased DMI is also linked to a reduced body condition score (BCS) in dairy cows. These events in the periparturient period negatively affect fertility. Some manipulation, such as shortening the dry period, may be a solution to increased DMI in the periparturient period, preventing post-partum disorders and subsequent fertility issues. This article aims to explain the effects of shortening the dry period on reproduction and early post-partum treatments to improve fertility. In addition, timed artificial insemination protocols will be discussed for use during the post-partum period to improve fertility in dairy cows. © 2011 Blackwell Verlag GmbH.

  12. Land-use and hydroperiod affect kettle hole sediment carbon and nitrogen biogeochemistry

    Treesearch

    Kai Nils Nitzsche; Thomas Kalettka; Katrin Premke; Gunnar Lischeid; Arthur Gessler; Zachary Eric Kayler

    2017-01-01

    Kettle holes are glaciofluvially created depressional wetlands that collect organic matter (OM) and nutrients from their surrounding catchment. Kettle holes mostly undergo pronounced wet-dry cycles. Fluctuations in water table, land-use, andmanagement can affect sediment biogeochemical transformations and perhaps threaten the carbon stocks of these unique ecosystems....

  13. Degradation of anionic surfactants during drying of UASBR sludges on sand drying beds.

    PubMed

    Mungray, Arvind Kumar; Kumar, Pradeep

    2008-09-01

    Anionic surfactant (AS) concentrations in wet up-flow anaerobic sludge blanket reactor (UASBR) sludges from five sewage treatment plants (STPs) were found to range from 4480 to 9,233 mg kg(-1)dry wt. (average 7,347 mg kg(-1)dry wt.) over a period of 18 months. After drying on sand drying beds (SDBs), AS in dried-stabilized sludges averaged 1,452 mg kg(-1)dry wt., a reduction of around 80%. The kinetics of drying followed simple first-order reduction of moisture with value of drying constant (k(d))=0.051 d(-1). Reduction of AS also followed first-order kinetics. AS degradation rate constant (k(AS)) was found to be 0.034 d(-1) and half-life of AS as 20 days. The order of rates of removal observed was k(d)>k(AS)>k(COD)>k(OM) (drying >AS degradation>COD reduction>organic matter reduction). For the three applications of dried-stabilized sludges (soil, agricultural soil, grassland), values of risk quotient (RQ) were found to be <1, indicating no risk.

  14. Xiphinema americanum as Affected by Soil Organic Matter and Porosity.

    PubMed

    Ponchillia, P E

    1972-07-01

    The effects of four soil types, soil porosity, particle size, and organic matter were tested on survival and migration of Xiphinema americanum. Survival and migration were significantly greater in silt loam than in clay loam and silty clay soils. Nematode numbers were significantly greater in softs planted with soybeans than in fallow softs. Nematode survival was greatest at the higher of two pore space levels in four softs. Migration of X. americanum through soft particle size fractions of 75-150, 150-250, 250-500, 500-700, and 700-1,000 mu was significantly greater in the middle three fractions, with the least occurring in the smallest fraction. Additions of muck to silt loam and loamy sand soils resulted in reductions in survival and migration of the nematode. The fulvic acid fraction of muck, extracted with sodium hydroxide, had a deleterious effect on nematode activity. I conclude that soils with small amounts of air-filled pore space, extremes in pore size, or high organic matter content are deleterious to the migration and survival of X. americanum, and that a naturally occurring toxin affecting this species may be present in native soft organic matter.

  15. Storage temperature affects distribution of carbon, VFA, ammonia, phosphorus, copper and zinc in raw pig slurry and its separated liquid fraction.

    PubMed

    Popovic, Olga; Jensen, Lars Stoumann

    2012-08-01

    Chemical-mechanical separation of pig slurry into a solid fraction rich in dry matter, P, Cu and Zn and a liquid fraction rich in inorganic N but poor in dry matter may allow farmers to manage surplus slurry by exporting the solid fraction to regions with no nutrient surplus. Pig slurry can be applied to arable land only in certain periods during the year, so it is commonly stored prior to field application. This study investigated the effect of storage duration and temperature on chemical characteristics and P, Cu and Zn distribution between particle size classes of raw slurry and its liquid separation fraction. Dry matter, VFA, total N and ammonium content of both slurry products decreased during storage and were affected by temperature, showing higher losses at higher storage temperatures. In both products, total P, Cu and Zn concentrations were not significantly affected by storage duration or temperature. Particle size distribution was affected by slurry separation, storage duration and temperature. In raw slurry, particles larger than 1 mm decreased, whereas particles 250 μm-1 mm increased. The liquid fraction produced was free of particles >500 μm, with the highest proportions of P, Cu and Zn in the smallest particle size class (<25 μm). The proportion of particles <25 μm increased when the liquid fraction was stored at 5 °C, but decreased at 25 °C. Regardless of temperature, distribution of P, Cu and Zn over particle size classes followed a similar pattern to dry matter. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. 18O Spatial Patterns of Vein Xylem Water, Leaf Water, and Dry Matter in Cotton Leaves

    PubMed Central

    Gan, Kim Suan; Wong, Suan Chin; Yong, Jean Wan Hong; Farquhar, Graham Douglas

    2002-01-01

    Three leaf water models (two-pool model, Péclet effect, and string-of-lakes) were assessed for their robustness in predicting leaf water enrichment and its spatial heterogeneity. This was achieved by studying the 18O spatial patterns of vein xylem water, leaf water, and dry matter in cotton (Gossypium hirsutum) leaves grown at different humidities using new experimental approaches. Vein xylem water was collected from intact transpiring cotton leaves by pressurizing the roots in a pressure chamber, whereas the isotopic content of leaf water was determined without extracting it from fresh leaves with the aid of a purpose-designed leaf punch. Our results indicate that veins have a significant degree of lateral exchange with highly enriched leaf water. Vein xylem water is thus slightly, but progressively enriched in the direction of water flow. Leaf water enrichment is dependent on the relative distances from major veins, with water from the marginal and intercostal regions more enriched and that next to veins and near the leaf base more depleted than the Craig-Gordon modeled enrichment of water at the sites of evaporation. The spatial pattern of leaf water enrichment varies with humidity, as expected from the string-of-lakes model. This pattern is also reflected in leaf dry matter. All three models are realistic, but none could fully account for all of the facets of leaf water enrichment. Our findings acknowledge the presence of capacitance in the ground tissues of vein ribs and highlight the essential need to incorporate Péclet effects into the string-of-lakes model when applying it to leaves. PMID:12376664

  17. Affective traits of psychopathy are linked to white-matter abnormalities in impulsive male offenders.

    PubMed

    Vermeij, Anouk; Kempes, Maaike M; Cima, Maaike J; Mars, Rogier B; Brazil, Inti A

    2018-04-26

    Psychopathy is a personality disorder typified by lack of empathy and impulsive antisocial behavior. Psychopathic traits may partly relate to disrupted connections between brain regions. The aim of the present study was to link abnormalities in microstructural integrity of white-matter tracts to the severity of different psychopathic traits in 15 male offenders with impulse control problems and 10 without impulse control problems. Psychopathic traits were assessed using the Psychopathy Checklist-revised (PCL-R). Diffusion-weighted MRI was used to examine white-matter tracts. Fractional anisotropy (FA), an index of white-matter integrity, was calculated for each voxel. Clusters of voxels showing a significant relationship with psychopathy severity were submitted to probabilistic tractography. No significant correlations between psychopathy severity and FA were present in the whole group of impulsive and nonimpulsive offenders. In impulsive offenders, interpersonal-affective traits (PCL-R Factor 1) were negatively correlated with FA in the anterior and posterior temporal lobe and orbitofrontal area. Further analyses indicated that elevated affective traits (PCL-R Facet 2) were specifically related to reduced FA in the right temporal lobe. Our findings suggest that white-matter abnormalities in temporal and frontotemporal tracts may be linked to the interpersonal-affective deficits of psychopathy in offenders with relatively severe impulse control problems. Our study offers novel insights into the relationships between the four facets of psychopathy and disrupted structural connectivity, and may provide new leads for further characterization of different subtypes of antisocial populations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  18. Soil Water Content Sensor Response to Organic Matter Content under Laboratory Conditions

    PubMed Central

    Fares, Ali; Awal, Ripendra; Bayabil, Haimanote K.

    2016-01-01

    Studies show that the performance of soil water content monitoring (SWCM) sensors is affected by soil physical and chemical properties. However, the effect of organic matter on SWCM sensor responses remains less understood. Therefore, the objectives of this study are to (i) assess the effect of organic matter on the accuracy and precision of SWCM sensors using a commercially available soil water content monitoring sensor; and (ii) account for the organic matter effect on the sensor’s accuracy. Sand columns with seven rates of oven-dried sawdust (2%, 4%, 6%, 8%, 10%, 12% and 18% v/v, used as an organic matter amendment), thoroughly mixed with quartz sand, and a control without sawdust were prepared by packing quartz sand in two-liter glass containers. Sand was purposely chosen because of the absence of any organic matter or salinity, and also because sand has a relatively low cation exchange capacity that will not interfere with the treatment effect of the current work. Sensor readings (raw counts) were monitored at seven water content levels (0, 0.02, 0.04, 0.08, 0.12, 0.18, 0.24, and 0.30 cm3 cm−3) by uniformly adding the corresponding volumes of deionized water in addition to the oven-dry one. Sensor readings were significantly (p < 0.05) affected by the organic matter level and water content. Sensor readings were strongly correlated with the organic matter level (R2 = 0.92). In addition, the default calibration equation underestimated the water content readings at the lower water content range (<0.05 cm3 cm−3), while it overestimated the water content at the higher water content range (>0.05 cm3 cm−3). A new polynomial calibration equation that uses raw count and organic matter content as covariates improved the accuracy of the sensor (RMSE = 0.01 cm3 cm−3). Overall, findings of this study highlight the need to account for the effect of soil organic matter content to improve the accuracy and precision of the tested sensor under different soils and

  19. Soil Water Content Sensor Response to Organic Matter Content under Laboratory Conditions.

    PubMed

    Fares, Ali; Awal, Ripendra; Bayabil, Haimanote K

    2016-08-05

    Studies show that the performance of soil water content monitoring (SWCM) sensors is affected by soil physical and chemical properties. However, the effect of organic matter on SWCM sensor responses remains less understood. Therefore, the objectives of this study are to (i) assess the effect of organic matter on the accuracy and precision of SWCM sensors using a commercially available soil water content monitoring sensor; and (ii) account for the organic matter effect on the sensor's accuracy. Sand columns with seven rates of oven-dried sawdust (2%, 4%, 6%, 8%, 10%, 12% and 18% v/v, used as an organic matter amendment), thoroughly mixed with quartz sand, and a control without sawdust were prepared by packing quartz sand in two-liter glass containers. Sand was purposely chosen because of the absence of any organic matter or salinity, and also because sand has a relatively low cation exchange capacity that will not interfere with the treatment effect of the current work. Sensor readings (raw counts) were monitored at seven water content levels (0, 0.02, 0.04, 0.08, 0.12, 0.18, 0.24, and 0.30 cm³ cm(-3)) by uniformly adding the corresponding volumes of deionized water in addition to the oven-dry one. Sensor readings were significantly (p < 0.05) affected by the organic matter level and water content. Sensor readings were strongly correlated with the organic matter level (R² = 0.92). In addition, the default calibration equation underestimated the water content readings at the lower water content range (<0.05 cm³ cm(-3)), while it overestimated the water content at the higher water content range (>0.05 cm³ cm(-3)). A new polynomial calibration equation that uses raw count and organic matter content as covariates improved the accuracy of the sensor (RMSE = 0.01 cm³ cm(-3)). Overall, findings of this study highlight the need to account for the effect of soil organic matter content to improve the accuracy and precision of the tested sensor under different soils and

  20. The effect of feeding bull Bali cattle kept in extensive husbandry system with concentrates contained gliricidia sepium leaf meal and banana strach tuber meal on their feed consumption and dried organic matter digestability

    NASA Astrophysics Data System (ADS)

    Fattah, S.; Sobang, Y. U. L.; Samba, F. D.; Hartati, E.; Kapa, M. M. J.; Henuk, Y. L.

    2018-02-01

    This study aimed to evaluate the effect of feeding bull Bali Cattle kept in extensive husbnadry system with concentrates contained gliricidia sepium leaf meal and banana strach tuber meal in their feed consumptions and dried organic matter digestibility. Three bull Bali cattle aged 1 - 2 years old with an initial body weight of 135.5 kg - 168.0 kg were used in this study. The three treatments used were T0 = local feeds (consisted of Leucaena leucocephala, Acasia leochophloea, and Ficus sp. leaves as commonly used by local farmers); T1 = T0 + 1 kg concentrate (contained banana strach tuber meal + gliricidia sepium leaf meal); T2 = T1 +2 kg concentrate (contained banana strach tuber meal + gliricidia sepium leaf meal). The results showed that the dry matter intake were: 2.40, 3.52, and 4.14; organic matter intake were: 2.17, 3.32, and 3.62; dry matter digestible was 64.63%, 72.45%, 77.28% and organic matter digestible was 66.79%, 74.66%, 79.33% for T0, T1, and T2, respectively. There was no effect (P>0.05) of treatments on the three parameters observed on bull Bali cattle kept in extensive husbandry system and fed with concentrates contained leaf gliricidia sepium meal and banana starch tuber meal.

  1. DRYING AFFECTS ARTEMISININ, DIHYDROARTEMISINIC ACID, ARTEMISINIC ACID, AND THE ANTIOXIDANT CAPACITY OF ARTEMISIA ANNUA L. LEAVES

    USDA-ARS?s Scientific Manuscript database

    The anti-parasitic, anti-cancer, and anti-viral sesquiterpene lactone artemisinin, commercially extracted from Artemisia annua, is in high demand worldwide. However, limited information is available on how post-harvest drying procedures affect plant biochemistry leading to the biosynthesis of artem...

  2. Rumen Degradability and Post-ruminal Digestion of Dry Matter, Nitrogen and Amino Acids of Three Protein Supplements.

    PubMed

    Gao, Wei; Chen, Aodong; Zhang, Bowen; Kong, Ping; Liu, Chenli; Zhao, Jie

    2015-04-01

    This study evaluated the in situ ruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-step in vitro procedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen micro-organisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance.

  3. Pre-rigor temperature and the relationship between lamb tenderisation, free water production, bound water and dry matter.

    PubMed

    Devine, Carrick; Wells, Robyn; Lowe, Tim; Waller, John

    2014-01-01

    The M. longissimus from lambs electrically stimulated at 15 min post-mortem were removed after grading, wrapped in polythene film and held at 4 (n=6), 7 (n=6), 15 (n=6, n=8) and 35°C (n=6), until rigor mortis then aged at 15°C for 0, 4, 24 and 72 h post-rigor. Centrifuged free water increased exponentially, and bound water, dry matter and shear force decreased exponentially over time. Decreases in shear force and increases in free water were closely related (r(2)=0.52) and were unaffected by pre-rigor temperatures. © 2013.

  4. Do dry roasting, lightly salting nuts affect their cardioprotective properties and acceptability?

    PubMed

    Tey, Siew Ling; Robinson, Terryn; Gray, Andrew R; Chisholm, Alexandra W; Brown, Rachel Clare

    2017-04-01

    Previous studies have reported improvements in cardiovascular disease (CVD) risk factors with the consumption of raw nuts. However, around one-third of nuts consumed are roasted and salted. Thus, it is important to determine whether roasting and salting nuts affect the health benefits observed with raw nuts. This study aimed to compare the effects of consuming two different forms of hazelnuts on cardiovascular risk factors and acceptance. Using a randomised crossover design, 72 participants were asked to consume 30 g/day of either raw or dry roasted, lightly salted hazelnuts for 28 days each. CVD risk factors were measured at the beginning and end of each treatment period. "Desire to consume" and "overall liking" for both forms of hazelnuts were assessed daily using a 150-mm visual analogue scale. Body composition, blood pressure, plasma total and low-density lipoprotein-cholesterol, apolipoprotein A1 and B100, glucose and α-tocopherol concentrations did not differ between forms of hazelnuts (all P ≥ 0.054). High-density lipoprotein (HDL)-cholesterol (P = 0.037) and triacylglycerol (P < 0.001) concentrations were significantly lower following the consumption of dry roasted, lightly salted hazelnuts when compared to the raw hazelnuts. Compared with baseline, consuming both forms of hazelnuts significantly improved HDL-cholesterol and apolipoprotein A1 concentrations, total-C/HDL-C ratio, and systolic blood pressure without significantly changing body composition. Acceptance ratings did not differ between forms of hazelnuts and remained high throughout the study. Dry roasting and lightly salting nuts do not appear to negate the cardioprotective effects observed with raw nut consumption, and both forms of nuts are resistant to monotony. Public health messages could be extended to include dry roasted and lightly salted nuts as part of a heart healthy diet.

  5. Severe dry winter affects plant phenology and carbon balance of a cork oak woodland understorey

    NASA Astrophysics Data System (ADS)

    Correia, A. C.; Costa-e-Silva, F.; Dubbert, M.; Piayda, A.; Pereira, J. S.

    2016-10-01

    Mediterranean climates are prone to a great variation in yearly precipitation. The effects on ecosystem will depend on the severity and timing of droughts. In this study we questioned how an extreme dry winter affects the carbon flux in the understorey of a cork oak woodland? What is the seasonal contribution of understorey vegetation to ecosystem productivity? We used closed-system portable chambers to measure CO2 exchange of the dominant shrub species (Cistus salviifolius, Cistus crispus and Ulex airensis), of the herbaceous layer and on bare soil in a cork oak woodland in central Portugal during the dry winter year of 2012. Shoot growth, leaf shedding, flower and fruit setting, above and belowground plant biomass were measured as well as seasonal leaf water potential. Eddy-covariance and micrometeorological data together with CO2 exchange measurements were used to access the understorey species contribution to ecosystem gross primary productivity (GPP). The herbaceous layer productivity was severely affected by the dry winter, with half of the yearly maximum aboveground biomass in comparison with the 6 years site average. The semi-deciduous and evergreen shrubs showed desynchronized phenophases and lagged carbon uptake maxima. Whereas shallow-root shrubs exhibited opportunistic characteristics in exploiting the understorey light and water resources, deep rooted shrubs showed better water status but considerably lower assimilation rates. The contribution of understorey vegetation to ecosystem GPP was lower during summer with 14% and maximum during late spring, concomitantly with the lowest tree productivity due to tree canopy renewal. The herbaceous vegetation contribution to ecosystem GPP never exceeded 6% during this dry year stressing its sensitivity to winter and spring precipitation. Although shrubs are more resilient to precipitation variability when compared with the herbaceous vegetation, the contribution of the understorey vegetation to ecosystem GPP can

  6. Dry Weight of Several Piedmont Hardwoods

    Treesearch

    Bobby G. Blackmon; Charles W. Ralston

    1968-01-01

    Forty-four sample hardwood trees felled on 24 plots were separated into three above-ground components- stem, branches, and leaves--and weighed for dry matter content. Tree, stand, and site variables were tested for significant relationships with dry weight of tree parts. Weight increase of stems was a logarithmic function ,of both stem diameter and height, whereas for...

  7. Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch.

    PubMed

    Beyene, Getu; Solomon, Felix R; Chauhan, Raj D; Gaitán-Solis, Eliana; Narayanan, Narayanan; Gehan, Jackson; Siritunga, Dimuth; Stevens, Robyn L; Jifon, John; Van Eck, Joyce; Linsler, Edward; Gehan, Malia; Ilyas, Muhammad; Fregene, Martin; Sayre, Richard T; Anderson, Paul; Taylor, Nigel J; Cahoon, Edgar B

    2017-11-28

    Storage roots of cassava (Manihot esculenta Crantz), a major subsistence crop of sub-Saharan Africa, are calorie rich but deficient in essential micronutrients, including provitamin A β-carotene. In this study, β-carotene concentrations in cassava storage roots were enhanced by co-expression of transgenes for deoxy-d-xylulose-5-phosphate synthase (DXS) and bacterial phytoene synthase (crtB), mediated by the patatin-type 1 promoter. Storage roots harvested from field-grown plants accumulated carotenoids to ≤50 μg/g DW, 15- to 20-fold increases relative to roots from nontransgenic plants. Approximately 85%-90% of these carotenoids accumulated as all-trans-β-carotene, the most nutritionally efficacious carotenoid. β-Carotene-accumulating storage roots displayed delayed onset of postharvest physiological deterioration, a major constraint limiting utilization of cassava products. Large metabolite changes were detected in β-carotene-enhanced storage roots. Most significantly, an inverse correlation was observed between β-carotene and dry matter content, with reductions of 50%-60% of dry matter content in the highest carotenoid-accumulating storage roots of different cultivars. Further analysis confirmed a concomitant reduction in starch content and increased levels of total fatty acids, triacylglycerols, soluble sugars and abscisic acid. Potato engineered to co-express DXS and crtB displayed a similar correlation between β-carotene accumulation, reduced dry matter and starch content and elevated oil and soluble sugars in tubers. Transcriptome analyses revealed a reduced expression of genes involved in starch biosynthesis including ADP-glucose pyrophosphorylase genes in transgenic, carotene-accumulating cassava roots relative to nontransgenic roots. These findings highlight unintended metabolic consequences of provitamin A biofortification of starch-rich organs and point to strategies for redirecting metabolic flux to restore starch production. © 2017 The

  8. Soil drying procedure affects the DNA quantification of Lactarius vinosus but does not change the fungal community composition.

    PubMed

    Castaño, Carles; Parladé, Javier; Pera, Joan; Martínez de Aragón, Juan; Alday, Josu G; Bonet, José Antonio

    2016-11-01

    Drying soil samples before DNA extraction is commonly used for specific fungal DNA quantification and metabarcoding studies, but the impact of different drying procedures on both the specific fungal DNA quantity and the fungal community composition has not been analyzed. We tested three different drying procedures (freeze-drying, oven-drying, and room temperature) on 12 different soil samples to determine (a) the soil mycelium biomass of the ectomycorrhizal species Lactarius vinosus using qPCR with a specifically designed TaqMan® probe and (b) the fungal community composition and diversity using the PacBio® RS II sequencing platform. Mycelium biomass of L. vinosus was significantly greater in the freeze-dried soil samples than in samples dried at oven and room temperature. However, drying procedures had no effect on fungal community composition or on fungal diversity. In addition, there were no significant differences in the proportions of fungi according to their functional roles (moulds vs. mycorrhizal species) in response to drying procedures. Only six out of 1139 operational taxonomic units (OTUs) had increased their relative proportions after soil drying at room temperature, with five of these OTUs classified as mould or yeast species. However, the magnitude of these changes was small, with an overall increase in relative abundance of these OTUs of approximately 2 %. These results suggest that DNA degradation may occur especially after drying soil samples at room temperature, but affecting equally nearly all fungi and therefore causing no significant differences in diversity and community composition. Despite the minimal effects caused by the drying procedures at the fungal community composition, freeze-drying resulted in higher concentrations of L. vinosus DNA and prevented potential colonization from opportunistic species.

  9. Use of modified cages attached to growing calves to measure the effect of stable flies on dry matter intake and digestibility, and defensive movements

    USDA-ARS?s Scientific Manuscript database

    The effect of stable flies on growing calves was examined using modified fly cages attached to the animals. Dry matter intake and digestibility as well as behavioral responses of the animals were monitored. Nine Holstein calves, individually housed in 3 x 3 m pens, were exposed to three levels of st...

  10. Rumen Degradability and Post-ruminal Digestion of Dry Matter, Nitrogen and Amino Acids of Three Protein Supplements

    PubMed Central

    Gao, Wei; Chen, Aodong; Zhang, Bowen; Kong, Ping; Liu, Chenli; Zhao, Jie

    2015-01-01

    This study evaluated the in situ ruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-step in vitro procedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen micro-organisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance. PMID:25656208

  11. Learning to Be Affected: Matters of Pedagogy in "The Artists' Soup Kitchen"

    ERIC Educational Resources Information Center

    Springgay, Stephanie; Zaliwska, Zofia

    2017-01-01

    Expanding on the robust contributions by feminist new materialist scholars this essay focuses on two concepts--affect and rhythm--in order to elaborate on matters of pedagogy and a politics of attunement. If one of the key challenges that arises from feminist new materialism is that the human can no longer be taken for granted, then this prompts…

  12. Chemical composition, antioxidant capacity, and sensory quality of dried jujube fruits as affected by cultivar and drying method.

    PubMed

    Wojdyło, Aneta; Figiel, Adam; Legua, Pilar; Lech, Krzysztof; Carbonell-Barrachina, Ángel A; Hernández, Francisca

    2016-09-15

    The aim of this study was to determine the effect of different dying methods, such as convective drying (CD: 50, 60, 70 °C), vacuum-microwave drying (VMD: 120, 480, 480-120 W), a combination of convective pre-drying and vacuum-microwave finish drying [(CPD (60 °C)-VMFD (480-120 W)], and freeze-drying (FD) on key quality parameters of dried jujube fruits (cv. "GAL", "MSI", and "PSI"). The parameters studied included bioactive compounds (flavan-3-ols and flavonols, identified by LC-PDA-MS, and vitamin C), antioxidant capacity (ABTS and FRAP), and sensory attributes (e.g. hardness, jujube-ID, and sweetness). The best quality of the dried product (high contents of bioactive compounds and high intensity of key sensory attributes) was found in fruits treated by FD and VMD 480-120 W. The best cultivars were "PSI" and "GAL" from the point of view of bioactive content and sensory quality, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. 40 CFR 60.62 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... particulate matter in excess of 0.15 kg per metric ton of feed (dry basis) to the kiln (0.30 lb per ton). (2... subpart shall cause to be discharged into the atmosphere from any clinker cooler any gases which: (1) Contain particulate matter in excess of 0.050 kg per metric ton of feed (dry basis) to the kiln (0.10 lb...

  14. Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate.

    PubMed

    Gorniak, Tobias; Meyer, Ulrich; Südekum, Karl-Heinz; Dänicke, Sven

    2014-01-01

    The aim of the present study was to evaluate the impact of summer temperatures in a temperate climate on mid-lactation Holstein dairy cows. Therefore, a data set was examined comprising five trials with dairy cows conducted at the experimental station of the Friedrich-Loeffler-Institute in Braunschweig, Germany. The temperature-humidity index (THI) was calculated using temperature and humidity data from the barns recorded between January 2010 and July 2012. By using a generalised additive mixed model, the impact of increasing THI on dry matter intake, milk yield and milk composition was evaluated. Dry matter intake and milk yield decreased when THI rose above 60, whilst water intake increased in a linear manner beyond THI 30. Furthermore, milk protein and milk fat content decreased continuously with increasing THI. The present results revealed that heat stress exists in Lower Saxony, Germany. However, further research is necessary to describe the mode of action of heat stress. Especially, mild heat stress has to be investigated in more detail and appropriate heat stress thresholds for temperate climates have to be developed.

  15. The effect of yeast (Saccharomyces cerevisiae) on nutrient intake, digestibility and finishing performance of lambs fed a diet based on dried molasses sugar beet-pulp.

    PubMed

    Payandeh, S; Kafilzadeh, F

    2007-12-15

    This experiment was conducted to determine the effect of yeast (Saccharomyces cerevisiae, SC47) on finishing performance, digestibility, some blood metabolites and carcass characteristics of male lambs fed a diet based on dried Molasses Sugar Beet-Pulp (MSBP). Eighteen Sanjabi male lambs (20.95 +/- 2.7 kg initial body weight and 3 month of age) were used in a completely randomized design. Animals were assigned to one of the two dietary treatments (with or without yeast). Digestibility and nitrogen balance experiment was carried out using six mature rams on finishing diet with and without yeast. Serum metabolites were determined in samples taken from lambs at the end of finishing period. Dry matter digestibility of finishing diet was significantly increased by yeast addition. However, yeast did not have any significant effect on apparent digestibility of OM, NDF, CP and energy. Nitrogen retention was also not affected by yeast addition. Yeast resulted in a significant increase in the average daily gain, dry matter and organic matter intake. However, feed conversion ratio was not significantly affected by addition of yeast. The concentration of the serum metabolites including glucose, urea, cholesterol, sodium, potassium, calcium, phosphorous and cratinine were not affected significantly by yeast supplementation, but triglyceride concentrations increased significantly when yeast was fed. Addition of yeast to the diet did not have any significant effect on the carcass characteristics. Results of this study suggest that feeding saccharomyces cerevisiae with a diet based on MSBP can improve the performance of fattening lambs without any change in carcass characteristics or cuts.

  16. Biochemical resistance of pyrogenic organic matter in fire-affected mineral soils of Southern Europe

    NASA Astrophysics Data System (ADS)

    Knicker, H.; González Vila, F. J.; Clemente Salas, L.

    2012-04-01

    Incorporated into the soil, naturally formed pyrogenic organic matter (PyOM) is considered as highly recalcitrant, but direct estimation of PyOM decomposition rates are scarce. With this aim in mind, we subjected organic matter (OM) of fire-affected and unaffected soils to biochemical degradation under laboratory conditions and monitored CO2 production over a period of seven months. The soils derived from fire affected and unaffected areas of the Sierra de Aznalcóllar and the Doñana National Park, Southern Spain. Virtual fractionation of the solid-state 13C nuclear magnetic resonance (NMR) spectra of the fire affected soils into fire-unaffected soil organic matter (SOM) and PyOM yielded charcoal C contributions of 30 to 50% to the total organic C (Corg) of the sample derived from the Aznalcóllar region. Fitting the respiration data with a double exponential decay model revealed a fast carbon flush during the first three weeks of the experiment. Solid-state 13C NMR spectroscopy evidenced the contribution of aromatic moieties of the PyOM to this initial carbon release and to the biosynthesis of new microbial biomass. The input of PyOM resulted in an increase of the mean residence time (MRT) of the slow OM pool of the soil by a factor of 3 to 4 to approximately 40 years which rises doubts rises doubts about the presumed big influence of PyOM as an additional C-sink in soils. On the other hand, although being small the difference in turnover rates is evident and has some major implication with respect to long-term alteration of the chemical composition of OM in fire-affected soils. Based on the obtained results and the analysis of PyOM in other soil systems, a conceptual model is presented which can explain the different behavior of PyOM under different soil conditions.

  17. What is soil organic matter worth?

    PubMed

    Sparling, G P; Wheeler, D; Vesely, E-T; Schipper, L A

    2006-01-01

    The conservation and restoration of soil organic matter are often advocated because of the generally beneficial effects on soil attributes for plant growth and crop production. More recently, organic matter has become important as a terrestrial sink and store for C and N. We have attempted to derive a monetary value of soil organic matter for crop production and storage functions in three contrasting New Zealand soil orders (Gley, Melanic, and Granular Soils). Soil chemical and physical characteristics of real-life examples of three pairs of matched soils with low organic matter contents (after long-term continuous cropping for vegetables or maize) or high organic matter content (continuous pasture) were used as input data for a pasture (grass-clover) production model. The differences in pasture dry matter yields (non-irrigated) were calculated for three climate scenarios (wet, dry, and average years) and the yields converted to an equivalent weight and financial value of milk solids. We also estimated the hypothetical value of the C and N sequestered during the recovery phase of the low organic matter content soils assuming trading with C and N credits. For all three soil orders, and for the three climate scenarios, pasture dry matter yields were decreased in the soils with lower organic matter contents. The extra organic matter in the high C soils was estimated to be worth NZ$27 to NZ$150 ha(-1) yr(-1) in terms of increased milk solids production. The decreased yields from the previously cropped soils were predicted to persist for 36 to 125 yr, but with declining effect as organic matter gradually recovered, giving an accumulated loss in pastoral production worth around NZ$518 to NZ$1239 ha(-1). This was 42 to 73 times lower than the hypothetical value of the organic matter as a sequestering agent for C and N, which varied between NZ$22,963 to NZ$90,849 depending on the soil, region, discount rates, and values used for carbon and nitrogen credits.

  18. Triple oxygen isotopes indicate urbanization affects sources of nitrate in wet and dry atmospheric deposition

    NASA Astrophysics Data System (ADS)

    Nelson, David M.; Tsunogai, Urumu; Ding, Dong; Ohyama, Takuya; Komatsu, Daisuke D.; Nakagawa, Fumiko; Noguchi, Izumi; Yamaguchi, Takashi

    2018-05-01

    Atmospheric nitrate deposition resulting from anthropogenic activities negatively affects human and environmental health. Identifying deposited nitrate that is produced locally vs. that originating from long-distance transport would help inform efforts to mitigate such impacts. However, distinguishing the relative transport distances of atmospheric nitrate in urban areas remains a major challenge since it may be produced locally and/or be transported from upwind regions. To address this uncertainty we assessed spatiotemporal variation in monthly weighted-average Δ17O and δ15N values of wet and dry nitrate deposition during one year at urban and rural sites along the western coast of the northern Japanese island of Hokkaido, downwind of the East Asian continent. Δ17O values of nitrate in wet deposition at the urban site mirrored those of wet and dry deposition at the rural site, ranging between ˜ +23 and +31 ‰ with higher values during winter and lower values in summer, which suggests the greater relative importance of oxidation of NO2 by O3 during winter and OH during summer. In contrast, Δ17O values of nitrate in dry deposition at the urban site were lower (+19 - +25 ‰) and displayed less distinct seasonal variation. Furthermore, the difference between δ15N values of nitrate in wet and dry nitrate deposition was, on average, 3 ‰ greater at the urban than rural site, and Δ17O and δ15N values were correlated for both forms of deposition at both sites with the exception of dry deposition at the urban site. These results suggest that, relative to nitrate in wet and dry deposition in rural environments and wet deposition in urban environments, nitrate in dry deposition in urban environments forms from relatively greater oxidation of NO by peroxy radicals and/or oxidation of NO2 by OH. Given greater concentrations of peroxy radicals and OH in cities, these results imply that dry nitrate deposition results from local NOx emissions more so than wet

  19. Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows.

    PubMed

    West, J W; Mullinix, B G; Bernard, J K

    2003-01-01

    Lactating cows were exposed to moderate and hot, humid weather to determine the effect of increasing ambient temperature, relative humidity, or temperature-humidity index (THI) on intake, milk yield, and milk temperature. Minimum and maximum temperatures averaged 17.9 and 29.5 degrees C (cool period) and 22.5 and 34.4 degrees C (hot period), and minimum and maximum THI averaged 63.8 and 76.6 (cool period) and 72.1 and 83.6 (hot period). Environmental conditions had minor effects on intake and milk yield during the cool period. During the hot period, the THI 2 d earlier and mean air temperature 2 d earlier had the greatest impact on milk yield and DMI, respectively. Both breeds maintained milk temperature within normal ranges during the cool period, but Holstein and Jersey p.m. milk temperatures averaged 39.6 and 39.2 degrees C during the hot period. Current day mean air temperature during the hot period had the greatest impact on cow p.m. milk temperature, and minimum air temperature had the greatest influence on a.m. milk temperature. Dry matter intake and milk yield declined linearly with respective increases in air temperature or THI during the hot period and milk temperature increased linearly with increasing air temperature. Dry matter intake and milk yield both exhibited a curvilinear relationship with milk temperature. Environmental modifications should target the effects of high temperatures on cow body temperature and should modify the environment at critical times during the day when cows are stressed, including morning hours when ambient temperatures are typically cooler and cows are not assumed to be stressed.

  20. The role of white matter in personality traits and affective processing in bipolar disorder.

    PubMed

    Bauer, Isabelle E; Wu, Mon-Ju; Meyer, Thomas D; Mwangi, Benson; Ouyang, Austin; Spiker, Danielle; Zunta-Soares, Giovana B; Huang, Hao; Soares, Jair C

    2016-09-01

    Bipolar disorder (BD) is characterized by affective processing bias and variations in personality traits. It is still unknown whether these features are linked to the same structural brain alterations. The aim of this study was to investigate relationships between specific personality traits, white matter (WM) properties, and affective processing in BD and HC. 24 healthy controls (HC) and 38 adults with BDI (HC: 29.47 ± 2.23 years, 15 females; BDI: 32.44 ± 1.84 years, 20 females) completed clinical scales and the Big Five Inventory. They were also administered the Affective Go/No-Go (AGN) and the Rapid Visual Processing (RVP) tasks of the Cambridge Neuropsychological Test Automated Battery. Diffusion Tensor Imaging (DTI) assessed the microstructure of WM tracts. In BDI measures of WM properties were reduced across all major brain white matter tracts. As expected, individuals with BDI reported greater neuroticism, lower agreeableness and conscientiousness, and made a greater number of errors in response to affective stimuli in the AGN task compared to HC. High neuroticism scores were associated with faster AGN latency, and overall reduced AGN accuracy in both HC and BDI. Elevated FA values were associated with reduced neuroticism and increased cognitive processing in HC but not in BDI. Our findings showed important potential links between personality, affective processing and WM integrity in BD. In the future therapeutic interventions for BD using brain stimulation protocols might benefit from the use of DTI to target pathways underlying abnormal affective processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Combined effects of Fenton peroxidation and CaO conditioning on sewage sludge thermal drying.

    PubMed

    Liu, Huan; Liu, Peng; Hu, Hongyun; Zhang, Qiang; Wu, Zhenyu; Yang, Jiakuan; Yao, Hong

    2014-12-01

    Joint application of Fenton's reagent and CaO can dramatically enhance sludge dewaterability, thus are also likely to affect subsequent thermal drying process. This study investigated the synergistic effects of the two conditioners on the thermal drying behavior of sewage sludge and the emission characteristics of main sulfur-/nitrogen-containing gases. According to the results, Fenton peroxidation combined with CaO conditioning efficiently promoted sludge heat transfer, reduced the amounts of both free and bound water, and created porous structure in solids to provide evaporation channels, thus producing significant positive effects on sludge drying performance. In this case, the required time for drying was shortened to one-third. Additionally, joint usage of Fenton's reagent and CaO did not increase the losses of organic matter during sludge drying process. Meanwhile, they facilitated the formation of sulfate and sulfonic acid/sulfone, leading to sulfur retention in dried sludge. Both of Fenton peroxidation and CaO conditioning promoted the oxidation, decomposition, and/or dissolution of protein and inorganic nitrogen in sludge pre-treatment. As a consequence, the emissions of sulfurous and nitrogenous gases from dewatered sludge drying were greatly suppressed. These indicate that combining Fenton peroxidation with CaO conditioning is a promising strategy to improve drying efficiency of sewage sludge and to control sulfur and nitrogen contaminants during sludge thermal drying process. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Calcium sources for milk production in Holstein cows via changes in dry matter intake, mineral utilization, and mineral source buffering potential.

    PubMed

    Wohlt, J E; Ritter, D E; Evans, J L

    1986-11-01

    Three supplemental sources of inorganic calcium (calcite flour, aragonite, albacar), each differing in particle size and rate of reactivity, provided .6 or .9% calcium in corn silage:grain (1:1 dry matter) diets of high producing dairy cows. All cows were fed calcite flour at .6% calcium during the first 4 wk of lactation. On d 29 of lactation 5 cows were assigned to each of the six diets. Peak milk yield paralleled dry matter intake and was higher when calcite flour and aragonite provided .9% calcium, intermediate when all sources provided .6% calcium, and lower when albacar provided .9% calcium. However, adaptations to calcium source and to particle sizes of a calcium source (.35 to 1190 mu) were made within 40 d by lactating Holsteins. Starch increased and pH decreased in feces of cows fed albacar. Increasing calcium in the diet provided more buffering capacity in the gastrointestinal tract. True absorption of calcium did not differ from linearity due to source when fecal calcium was regressed on ingested calcium but did vary as a function of diet percentage. Thus, calcium retention was increased when cows were fed .9 vs. .6% calcium. These data suggest that a slow reacting (coarser) inorganic calcium source should be fed at a higher amount to optimize feed intake and milk production.

  3. Effects of Aging in Dry Eye

    PubMed Central

    de Paiva, Cintia S.

    2017-01-01

    Dry eye affects millions of people worldwide and causes eye well recognized risk factors for dry eye. Anatomical and inflammation-induced age-related changes affect all components of the lacrimal gland functional unit, inclusive of lacrimal gland, conjunctiva, meibomian gland and compromise ocular surface health. There is increased evidence that inflammation plays a role in dry eye. This review will summarize the current knowledge about aging and dry eye, inclusive of lessons learned from animal models and promising therapies. PMID:28282314

  4. Factors affecting viability of Bifidobacterium bifidum during spray drying.

    PubMed

    Shokri, Zahra; Fazeli, Mohammad Reza; Ardjmand, Mehdi; Mousavi, Seyyed Mohammad; Gilani, Kambiz

    2015-01-25

    There is substantial clinical data supporting the role of Bifidobacterium bifidum in human health particularly in benefiting the immune system and suppressing intestinal infections. Compared to the traditional lyophilization, spray-drying is an economical process for preparing large quantities of viable microorganisms. The technique offers high production rates and low operating costs but is not usually used for drying of substances prone to high temperature. The aim of this study was to establish the optimized environmental factors in spray drying of cultured bifidobacteria to obtain a viable and stable powder. The experiments were designed to test variables such as inlet air temperature, air pressure and also maltodextrin content. The combined effect of these variables on survival rateand moisture content of bacterial powder was studied using a central composite design (CCD). Sub-lethal heat-adaptation of a B. bifidum strain which was previously adapted to acid-bile-NaCl led to much more resistance to high outlet temperature during spray drying. The resistant B. bifidum was supplemented with cost friendly permeate, sucrose, yeast extract and different amount of maltodextrin before it was fed into a Buchi B-191 mini spray-dryer. Second-order polynomials were established to identify the relationship between the responses andthe three variables. Results of verification experiments and predicted values from fitted correlations were in close agreement at 95% confidence interval. The optimal values of the variables for maximum survival and minimum moisture content of B. bifidum powder were as follows: inlet air temperature of 111.15°C, air pressure of 4.5 bar and maltodextrin concentration of 6%. Under optimum conditions, the maximum survival of 28.38% was achieved while moisture was maintained at 4.05%. Viable and cost effective spray drying of Bifidobacterium bifidum could be achieved by cultivating heat and acid adapted strain into the culture media containing

  5. Removal efficiency of particulate matters at different underlying surfaces in Beijing.

    PubMed

    Liu, Jiakai; Mo, Lichun; Zhu, Lijuan; Yang, Yilian; Liu, Jiatong; Qiu, Dongdong; Zhang, Zhenming; Liu, Jinglan

    2016-01-01

    Particulate matter (PM) pollution has been increasingly becoming serious in Beijing and has drawn the attention of the local government and general public. This study was conducted during early spring of 2013 and 2014 to monitor the concentration of PM at three different land surfaces (bare land, urban forest, and lake) in the Olympic Park in Beijing and to analyze its effect on the concentration of meteorological factors and the dry deposition onto different land cover types. The results showed that diurnal variation of PM concentrations at the three different land surfaces had no significant regulations, and sharp short-term increases in PM10 (particulate matter having an aerodynamic diameter <10 μm) occurred occasionally. The concentrations also differed from one land cover type to another at the same time, but the regulation was insignificant. The most important meteorological factor influencing the PM concentration is relative humidity; it is positively correlated with the PM concentration. While in the forests, the wind speed and irradiance also influenced the PM concentration by affecting the capture capacity of trees and dry deposition velocity. Other factors were not correlated with or influenced by the PM concentration. In addition, the hourly dry deposition in unit area (μg/m(2)) onto the three types of land surfaces and the removal efficiency based on the ratio of dry deposition and PM concentration were calculated. The results showed that the forest has the best removal capacity for both PM2.5 (particulate matter having an aerodynamic diameter <2.5 μm) and PM10 because of the faster deposition velocity and relatively low resuspension rate. The lake's PM10 removal efficiency is higher than that of the bare land because of the relatively higher PM resuspension rates on the bare land. However, the PM2.5 removal efficiency is lower than that of the bare land because of the significantly lower dry deposition velocity.

  6. Messages that matter: Age differences in affective responses to framed health messages.

    PubMed

    Mikels, Joseph A; Shuster, Michael M; Thai, Sydney T; Smith-Ray, Renae; Waugh, Christian E; Roth, Kayla; Keilly, Alexis; Stine-Morrow, Elizabeth A L

    2016-06-01

    Age differences in responses to framed health messages-which can influence judgments and decisions-are critical to understand yet relatively unexplored. Age-related emotional shifts toward positivity would be expected to differentially impact the affective responses of older and younger adults to framed messages. In this study, we measured the subjective and physiological affective responses of older and younger adults to gain- and loss-framed exercise promotion messages. Relative to older adults, younger adults exhibited greater negative reactivity to loss-framed health messages. These results suggest that health message framing does matter, but it depends on the age of the message recipient. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. QTLs associated with dry matter intake, metabolic mid-test weight, growth and feed efficiency have little overlap across 4 beef cattle studies.

    PubMed

    Saatchi, Mahdi; Beever, Jonathan E; Decker, Jared E; Faulkner, Dan B; Freetly, Harvey C; Hansen, Stephanie L; Yampara-Iquise, Helen; Johnson, Kristen A; Kachman, Stephen D; Kerley, Monty S; Kim, JaeWoo; Loy, Daniel D; Marques, Elisa; Neibergs, Holly L; Pollak, E John; Schnabel, Robert D; Seabury, Christopher M; Shike, Daniel W; Snelling, Warren M; Spangler, Matthew L; Weaber, Robert L; Garrick, Dorian J; Taylor, Jeremy F

    2014-11-20

    The identification of genetic markers associated with complex traits that are expensive to record such as feed intake or feed efficiency would allow these traits to be included in selection programs. To identify large-effect QTL, we performed a series of genome-wide association studies and functional analyses using 50 K and 770 K SNP genotypes scored in 5,133 animals from 4 independent beef cattle populations (Cycle VII, Angus, Hereford and Simmental×Angus) with phenotypes for average daily gain, dry matter intake, metabolic mid-test body weight and residual feed intake. A total of 5, 6, 11 and 10 significant QTL (defined as 1-Mb genome windows with Bonferroni-corrected P-value<0.05) were identified for average daily gain, dry matter intake, metabolic mid-test body weight and residual feed intake, respectively. The identified QTL were population-specific and had little overlap across the 4 populations. The pleiotropic or closely linked QTL on BTA 7 at 23 Mb identified in the Angus population harbours a promising candidate gene ACSL6 (acyl-CoA synthetase long-chain family member 6), and was the largest effect QTL associated with dry matter intake and mid-test body weight explaining 10.39% and 14.25% of the additive genetic variance, respectively. Pleiotropic or closely linked QTL associated with average daily gain and mid-test body weight were detected on BTA 6 at 38 Mb and BTA 7 at 93 Mb confirming previous reports. No QTL for residual feed intake explained more than 2.5% of the additive genetic variance in any population. Marker-based estimates of heritability ranged from 0.21 to 0.49 for residual feed intake across the 4 populations. This GWAS study, which is the largest performed for feed efficiency and its component traits in beef cattle to date, identified several large-effect QTL that cumulatively explained a significant percentage of additive genetic variance within each population. Differences in the QTL identified among the different populations may be

  8. Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests

    DOE PAGES

    Waring, Bonnie G.; Powers, Jennifer S.

    2016-10-14

    Tropical dry forests are already undergoing changes in the quantity and timing of rainfall, but there is great uncertainty over how these shifts will affect belowground carbon (C) cycling. While it has long been known that dry soils quickly release carbon dioxide (CO 2) upon rewetting, the mechanisms underlying the so-called 'Birch effect' are still debated. Here, we quantified soil respiration pulses and their biotic predictors in response to simulated precipitation events in a regenerating tropical dry forest in Costa Rica. We also simulated the observed rewetting CO 2 pulses with two soil carbon models: a conventional model assuming first-ordermore » decay rates of soil organic matter, and an enzyme-catalyzed model with Michaelis–Menten kinetics. We found that rewetting of dry soils produced an immediate and dramatic pulse of CO 2, accompanied by rapid immobilization of nitrogen into the microbial biomass. However, the magnitude of the rewetting CO 2 pulse was highly variable at fine spatial scales, and was well correlated with the size of the dissolved organic C pool prior to rewetting. Both the enzyme-catalyzed and conventional models were able to reproduce the Birch effect when respiration was coupled directly to microbial C uptake, although models differed in their ability to yield realistic estimates of SOC and microbial biomass pool sizes and dynamics. Lastly, our results suggest that changes in the timing and intensity of rainfall events in tropical dry forests will exert strong influence on ecosystem C balance by affecting the dynamics of microbial biomass growth.« less

  9. Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waring, Bonnie G.; Powers, Jennifer S.

    Tropical dry forests are already undergoing changes in the quantity and timing of rainfall, but there is great uncertainty over how these shifts will affect belowground carbon (C) cycling. While it has long been known that dry soils quickly release carbon dioxide (CO 2) upon rewetting, the mechanisms underlying the so-called 'Birch effect' are still debated. Here, we quantified soil respiration pulses and their biotic predictors in response to simulated precipitation events in a regenerating tropical dry forest in Costa Rica. We also simulated the observed rewetting CO 2 pulses with two soil carbon models: a conventional model assuming first-ordermore » decay rates of soil organic matter, and an enzyme-catalyzed model with Michaelis–Menten kinetics. We found that rewetting of dry soils produced an immediate and dramatic pulse of CO 2, accompanied by rapid immobilization of nitrogen into the microbial biomass. However, the magnitude of the rewetting CO 2 pulse was highly variable at fine spatial scales, and was well correlated with the size of the dissolved organic C pool prior to rewetting. Both the enzyme-catalyzed and conventional models were able to reproduce the Birch effect when respiration was coupled directly to microbial C uptake, although models differed in their ability to yield realistic estimates of SOC and microbial biomass pool sizes and dynamics. Lastly, our results suggest that changes in the timing and intensity of rainfall events in tropical dry forests will exert strong influence on ecosystem C balance by affecting the dynamics of microbial biomass growth.« less

  10. Unraveling the mechanisms underlying pulse dynamics of soil respiration in tropical dry forests

    NASA Astrophysics Data System (ADS)

    Waring, Bonnie G.; Powers, Jennifer S.

    2016-10-01

    Tropical dry forests are already undergoing changes in the quantity and timing of rainfall, but there is great uncertainty over how these shifts will affect belowground carbon (C) cycling. While it has long been known that dry soils quickly release carbon dioxide (CO2) upon rewetting, the mechanisms underlying the so-called ‘Birch effect’ are still debated. Here, we quantified soil respiration pulses and their biotic predictors in response to simulated precipitation events in a regenerating tropical dry forest in Costa Rica. We also simulated the observed rewetting CO2 pulses with two soil carbon models: a conventional model assuming first-order decay rates of soil organic matter, and an enzyme-catalyzed model with Michaelis-Menten kinetics. We found that rewetting of dry soils produced an immediate and dramatic pulse of CO2, accompanied by rapid immobilization of nitrogen into the microbial biomass. However, the magnitude of the rewetting CO2 pulse was highly variable at fine spatial scales, and was well correlated with the size of the dissolved organic C pool prior to rewetting. Both the enzyme-catalyzed and conventional models were able to reproduce the Birch effect when respiration was coupled directly to microbial C uptake, although models differed in their ability to yield realistic estimates of SOC and microbial biomass pool sizes and dynamics. Our results suggest that changes in the timing and intensity of rainfall events in tropical dry forests will exert strong influence on ecosystem C balance by affecting the dynamics of microbial biomass growth.

  11. Microbial community dynamics induced by rewetting dry soil: summer precipitation matters

    NASA Astrophysics Data System (ADS)

    Barnard, Romain; Osborne, Catherine; Firestone, Mary

    2015-04-01

    The massive soil CO2 efflux associated with rewetting dry soils after the dry summer period significantly contributes to the annual carbon budget of Mediterranean grasslands. Rapid reactivation of soil heterotrophic activity and available carbon are both required to fuel the CO2 pulse. Better understanding of the effects of altered summer precipitation on the metabolic state of indigenous microorganisms may be important in predicting future changes in carbon cycling. We investigated the effects of a controlled rewetting event on the soil CO2 efflux pulse and on the present (DNA-based) and potentially active (rRNA-based) soil bacterial and fungal communities in intact soil cores previously subjected to three different precipitation patterns over four months (full summer dry season, extended wet season, and absent dry season). Phylogenetic marker genes for bacteria (16S) and fungi (28S) were sequenced before and after rewetting, and the abundance of these genes and transcripts was measured. Even after having experienced markedly different antecedent water conditions, the potentially active bacterial communities showed a consistent wet-up response, reflecting contrasting life-strategies for different groups. Moreover, we found a significant positive relation between the extent of change in the structure of the potentially active bacterial community and the magnitude of the CO2 pulse upon rewetting dry soils. We suggest that the duration of severe dry conditions (predicted to change under future climate) is important in conditioning the response potential of the soil bacterial community to wet-up as well as in framing the magnitude of the associated CO2 pulse.

  12. Effect of cooling heat-stressed dairy cows during the dry period on insulin response.

    PubMed

    Tao, S; Thompson, I M; Monteiro, A P A; Hayen, M J; Young, L J; Dahl, G E

    2012-09-01

    Heat stress (HT) during the dry period affects hepatic gene expression and adipose tissue mobilization during the transition period. In addition, it is postulated that HT may alter insulin action on peripheral tissues. Our objective was to evaluate the effect of cooling heat-stressed cows during the dry period on insulin effects on peripheral tissues during the transition period. Cows were dried off 46 d before expected calving and assigned to 1 of 2 treatments: HT (n = 16) or cooling (CL, n = 16). During the dry period, the average temperature-humidity index was 78, but CL cows were cooled with sprinklers and fans, whereas HT cows were not. After calving, all cows were housed and managed under the same conditions. Rectal temperatures were measured twice daily (0730 and 1430 h) and respiration rate recorded 3 times weekly during the dry period. Dry matter intake was recorded daily from dry-off to 42 d relative to calving (DRC). Body weight and body condition score were measured weekly from dry-off to 42 DRC. Milk yield and composition were recorded daily to 42 wk postpartum. Glucose tolerance tests (GTT) and insulin challenges (IC) were performed at dry-off, -14, 7, and 28 DRC in a subset of cows (HT, n = 8; CL, n = 8). Relative to HT, CL cows had lower rectal temperatures (39.3 vs. 39.0°C) in the afternoon and respiration rate (69 vs. 48 breath/min). Cows from the cooling treatment tended to consume more feed than HT cows prepartum and postpartum. Compared with HT, CL cows gained more weight before calving but lost more weight and body condition in early lactation. Cows from the cooling treatment produced more milk than HT cows (34.0 vs. 27.7 kg/d), but treatments did not affect milk composition. Treatments did not affect circulating insulin and metabolites prepartum, but CL cows had decreased glucose, increased nonesterified fatty acid, and tended to have lower insulin concentrations in plasma postpartum compared with HT cows. Cooling prepartum HT cows did not

  13. A sampling study on rock properties affecting drilling rate index (DRI)

    NASA Astrophysics Data System (ADS)

    Yenice, Hayati; Özdoğan, Mehmet V.; Özfırat, M. Kemal

    2018-05-01

    Drilling rate index (DRI) developed in Norway is a very useful index in determining the drillability of rocks and even in performance prediction of hard rock TBMs and it requires special laboratory test equipment. Drillability is one of the most important subjects in rock excavation. However, determining drillability index from physical and mechanical properties of rocks is very important for practicing engineers such as underground excavation, drilling operations in open pit mining, underground mining and natural stone production. That is why many researchers have studied concerned with drillability to find the correlations between drilling rate index (DRI) and penetration rate, influence of geological properties on drillability prediction in tunneling, correlations between rock properties and drillability. In this study, the relationships between drilling rate index (DRI) and some physico-mechanical properties (Density, Shore hardness, uniaxial compressive strength (UCS, σc), Indirect tensile strength (ITS, σt)) of three different rock groups including magmatic, sedimentary and metamorphic were evaluated using both simple and multiple regression analysis. This study reveals the effects of rock properties on DRI according to different types of rocks. In simple regression, quite high correlations were found between DRI and uniaxial compressive strength (UCS) and also between DRI and indirect tensile strength (ITS) values. Multiple regression analyses revealed even higher correlations when compared to simple regression. Especially, UCS, ITS, Shore hardness (SH) and the interactions between them were found to be very effective on DRI values.

  14. A dynamic model to predict fat and protein fluxes and dry matter intake associated with body reserve changes in cattle.

    PubMed

    Tedeschi, Luis O; Fox, Danny G; Kononoff, Paul J

    2013-04-01

    The objective of this paper was to develop the structure and concepts of a dynamic model to simulate dry matter intake (DMI) pattern and the fluxes of fat and protein in the body reserves of cattle associated with changes in body condition score (BCS) for application within the structure of applied nutrition models. This model was developed to add the capability of evaluating the effects of factors affecting pre- and postcalving DMI, daily energy and protein balances, and changes in BCS over a reproductive cycle. Input variables are average DMI, diet metabolizable energy, and animal information (body weight, BCS, milk production, and calf birth body weight) from each diet fed over the reproductive cycle. Because the depletion and repletion of body reserves in cattle is a complex system of coordinated metabolic processes that reflect hormonal and physiological changes caused by negative or positive energy balances, the system dynamics modeling methodology was used to develop this model. The model was used to evaluate the effect of the dynamic interactions between dietary supply and animal requirements for energy and protein on the fluxes of body fat and body protein of dairy cows over the reproductive cycle and Monte Carlo simulations were used to assess the sensitivity of the parameters. The main long-term factor affecting DMI pattern was the growth of the gravid uterus causing an increase in the volume of abdominal organs and a compression of the rumen, consequentially reducing feed intake. Changes in body reserves (fat and protein) were computed based on metabolizable energy balance, assuming different efficiency of utilization coefficients for fat and protein during repletion and mobilization. The model was evaluated with data from 37 dairy cows individually fed 3 different diets over the lactation and dry periods. The model was successful in simulating the observed pattern of DMI (mean square error was 3.59, 3.97, and 3.66 for diets A, B, and C, respectively

  15. Factors affecting ethylene and carbon dioxide concentrations during ripening: Incidence on final dry matter, total soluble solids content and acidity of mango fruit.

    PubMed

    Nordey, Thibault; Léchaudel, Mathieu; Génard, Michel; Joas, Jacques

    2016-06-01

    Ripening of climacteric fruits is associated with pronounced changes in fruit gas composition caused by a concomitant rise in respiration and ethylene production. There is a discrepancy in the literature since some authors reported that changes in fruit gas compositions differ in attached and detached fruits. This study presents for the first time an overview of pre- and post-harvest factors that lead to variations in the climacteric respiration and ethylene production, and attempts to determine their impacts on fruit composition, i.e., dry matter, total soluble solids content and acidity. The impact of growing conditions such as the fruit position in the canopy and the fruit carbon supply; fruit detachment from the tree, including the maturity stage at harvest; and storage conditions after harvest, i.e., relative humidity and temperature were considered as well as changes in fruit skin resistance to gas diffusion during fruit growth and storage. Results showed that fruit gas composition vary with all pre and post-harvest factors studied. Although all mangoes underwent a respiratory climacteric and an autocatalytic ethylene production, whatever pre and post-harvest factors studied, large differences in ethylene production, climacteric respiration and fruit quality were measured. Results suggested that the ripening capacity is not related to the fruit ability to produce great amount of ethylene. In agreement with precedent studies, this work provided several lines of evidence that gas composition of fruit is related to its water balance. Our measurements indicated that skin resistance to gas diffusion increased after the harvest and during storage. It was so suggested that the faster ripening of detached fruit may be explained in part by changes in fruit water balance and skin resistance to gas diffusion caused by fruit detachment. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Dry matter intake and feed efficiency profiles of 3 genotypes of Holstein-Friesian within pasture-based systems of milk production.

    PubMed

    Coleman, J; Berry, D P; Pierce, K M; Brennan, A; Horan, B

    2010-09-01

    The primary objective of the study was to quantify the effect of genetic improvement using the Irish total merit index (Economic Breeding Index) on dry matter intake and feed efficiency across lactation and to quantify the variation in performance among alternative definitions of feed efficiency. Three genotypes of Holstein-Friesian dairy cattle were established from within the Moorepark dairy research herd: 1) low Economic Breeding Index North American Holstein-Friesian representative of the Irish national average dairy cow, 2) high genetic merit North American Holstein-Friesian, and 3) high genetic merit New Zealand Holstein-Friesian. Animals from within each genotype were randomly allocated to 1 of 2 possible intensive pasture-based feed systems: 1) the Moorepark pasture system (2.64 cows/ha and 500 kg of concentrate supplement per cow per lactation) and 2) a high output per hectare pasture system (2.85 cows/ha and 1,200 kg of concentrate supplement per cow per lactation). A total of 128 and 140 spring-calving dairy cows were used during the years 2007 and 2008, respectively. Each group had an individual farmlet of 17 paddocks, and all groups were managed similarly throughout the study. The effects of genotype, feed system, and the interaction between genotype and feed system on dry matter intake, milk production, body weight, body condition score, and different definitions of feed efficiency were studied using mixed models with factorial arrangements of genotypes and feed systems accounting for the repeated cow records across years. No significant genotype-by-feed-system interactions were observed for any of the variables measured. Results showed that aggressive selection using the Irish Economic Breeding Index had no effect on dry matter intake across lactation when managed on intensive pasture-based systems of milk production, although the ranking of genotypes for feed efficiency differed depending on the definition of feed efficiency used. Performance of

  17. Does Dry Eye Affect Repeatability of Corneal Topography Measurements?

    PubMed

    Doğan, Aysun Şanal; Gürdal, Canan; Köylü, Mehmet Talay

    2018-04-01

    The purpose of this study was to assess the repeatability of corneal topography measurements in dry eye patients and healthy controls. Participants underwent consecutive corneal topography measurements (Sirius; Costruzione Strumenti Oftalmici, Florence, Italy). Two images with acquisition quality higher than 90% were accepted. The following parameters were evaluated: minimum and central corneal thickness, aqueous depth, apex curvature, anterior chamber volume, horizontal anterior chamber diameter, iridocorneal angle, cornea volume, and average simulated keratometry. Repeatability was assessed by calculating intra-class correlation coefficient. Thirty-three patients with dry eye syndrome and 40 healthy controls were enrolled to the study. The groups were similar in terms of age (39 [18-65] vs. 30.5 [18-65] years, p=0.198) and gender (M/F: 4/29 vs. 8/32, p=0.366). Intra-class correlation coefficients among all topography parameters within both groups showed excellent repeatability (>0.90). The anterior segment measurements provided by the Sirius corneal topography system were highly repeatable for dry eye patients and are sufficiently reliable for clinical practice and research.

  18. Effect of pre-grazing herbage mass on dairy cow performance, grass dry matter production and output from perennial ryegrass (Lolium perenne L.) pastures.

    PubMed

    Wims, C M; Delaby, L; Boland, T M; O'Donovan, M

    2014-01-01

    A grazing study was undertaken to examine the effect of maintaining three levels of pre-grazing herbage mass (HM) on dairy cow performance, grass dry matter (DM) production and output from perennial ryegrass (Lolium perenne L.) pastures. Cows were randomly assigned to one of three pre-grazing HM treatments: 1150 - Low HM (L), 1400 - Medium HM (M) or 2000 kg DM/ha - High HM (H). Herbage accumulation under grazing was lowest (P<0.01) on the L treatment and cows grazing the L pastures required more grass silage supplementation during the grazing season (+73 kg DM/cow) to overcome pasture deficits due to lower pasture growth rates (P<0.05). Treatment did not affect daily milk production or pasture intake, although cows grazing the L pastures had to graze a greater daily area (P<0.01) and increase grazing time (P<0.05) to compensate for a lower pre-grazing HM (P<0.01). The results indicate that, while pre-grazing HM did not influence daily milk yield per cow, adapting the practise of grazing low HM (1150 kg DM/ha) pasture reduces pasture DM production and at a system level may increase the requirement for imported feed.

  19. Soil organic matter composition affected by potato cropping managements

    USDA-ARS?s Scientific Manuscript database

    Organic matter is a small but important soil component. As a heterogeneous mixture of geomolecules and biomolecules, soil organic matter (SOM) can be fractionated into distinct pools with different solubility and lability. Water extractable organic matter (WEOM) fraction is the most labile and mobil...

  20. Influence of soil conditions on dissolved organic matter leached from forest and wetland soils: a controlled growth chamber study.

    PubMed

    Kim, Eun-Ah; Nguyen, Hang Vo-Minh; Oh, Hae Sung; Hur, Jin; Choi, Jung Hyun

    2016-03-01

    This study investigated the effects of various soil conditions, including drying-rewetting, nitrogen deposition, and temperature rise, on the quantities and the composition of dissolved organic matter leached from forest and wetland soils. A set of forest and wetland soils with and without the nitrogen deposition were incubated in the growth chambers under three different temperatures. The moisture contents were kept constant, except for two-week drying intervals. Comparisons between the original and the treated samples revealed that drying-rewetting was a crucial environmental factor driving changes in the amount of dissolved organic carbon (DOC). The DOC was also notably increased by the nitrogen deposition to the dry forest soil and was affected by the temperature of the dry wetland soil. A parallel factor (PARAFAC) analysis identified three sub-fractions of the fluorescent dissolved organic matter (FDOM) from the fluorescence excitation-emission matrices (EEMs), and their compositions depended on drying-rewetting. The data as a whole, including the DOC and PARAFAC components and other optical indices, were possibly explained by the two main variables, which were closely related with the PARAFAC components and DOC based on principal component analysis (PCA). Our results suggested that the DOC and PARAFAC component information could provide a comprehensive interpretation of the changes in the soil-leached DOM in response to the different environmental conditions.

  1. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...

  2. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...

  3. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...

  4. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...

  5. Test Duration for Water Intake, Average Daily Gain, and Dry Matter Intake in Beef Cattle.

    PubMed

    Ahlberg, C M; Allwardt, K; Broocks, A; Bruno, K; McPhillips, L; Taylor, A; Krehbiel, C R; Calvo-Lorenzo, M; Richards, C J; Place, S E; DeSilva, U; VanOverbeke, D L; Mateescu, R G; Kuehn, L A; Weaber, R L; Bormann, J M; Rolf, M M

    2018-05-22

    Water is an essential nutrient, but the effect it has on performance generally receives little attention. There are few systems and guidelines for collection of water intake phenotypes in beef cattle, which makes large-scale research on water intake a challenge. The Beef Improvement Federation has established guidelines for feed intake and average daily gain tests, but no guidelines exist for water intake. The goal of this study was to determine the test duration necessary for collection of accurate water intake phenotypes. To facilitate this goal, individual daily water intake (WI) and feed intake (FI) records were collected on 578 crossbred steers for a total of 70 d using an Insentec system at the Oklahoma State University Willard Sparks Beef Research Unit. Steers were fed in 5 groups and were individually weighed every 14 days. Within each group, steers were blocked by body weight (low and high) and randomly assigned to 1 of 4 pens containing approximately 30 steers per pen. Each pen provided 103.0 m2 of shade and included an Insentec system containing 6 feed bunks and 1 water bunk. Steers were fed a constant diet across groups and dry matter intake was calculated using the average of weekly percent dry matter within group. Average feed and water intakes for each animal were computed for increasingly large test durations (7, 14, 21, 28, 35, 42, 49, 56, 63 and 70 d), and ADG was calculated using a regression formed from body weights (BW) taken every14 d (0, 14, 28, 42, 56, and 70 d). Intervals for all traits were computed starting from both the beginning (d 0) and the end of the testing period (d 70). Pearson and Spearman correlations were computed for phenotypes from each shortened test period and for the full 70-d test. Minimum test duration was determined when the Pearson correlations were greater than 0.95 for each trait. Our results indicated that minimum test duration for WI, DMI, and ADG were 35, 42, and 70 d, respectively. No comparable studies exist for

  6. Volatile composition and sensory profile of shiitake mushrooms as affected by drying method.

    PubMed

    Politowicz, Joanna; Lech, Krzysztof; Lipan, Leontina; Figiel, Adam; Carbonell-Barrachina, Ángel A

    2018-03-01

    One of the best preservation method for long-term storage is drying. In this work, the influence of different drying methods on aroma and sensory profile of shiitake mushroom was evaluated. The drying methods tested were: convective drying (CD), freeze-drying (FD), vacuum-microwave drying (VMD), and a combination of convective pre-drying and vacuum-microwave finish-drying (CPD-VMFD). The volatile composition of fresh and dried shiitake mushrooms was analysed by SPME, GC-MS and GC-FID, and showed the presence of 71 volatile compounds, most of them present in all dried samples but with quantitative variation. The major volatile compounds in fresh shiitake were 1-octen-3-ol (20.2%), 2-octanone (20.7%), 1,2,4-trithiolane (9.8%), and 1,2,3,5,6-pentathiepane (8.2%). Drying of shiitake mushrooms caused significant losses of C8 compounds and cyclic sulfur compounds, such as 1,2,4-trithiolane (V31) and 1,2,4,5-tetrathiane (V57). Samples dried at CD 80 °C implied a relative short drying time (120 min), had the highest contents of total volatiles (1594 μg 100 g -1 ) and cyclic sulfur compounds (e.g. V57 126 μg 100 g -1 ), and the highest intensity of most of the key positive sensory attributes, such as inner colour (7.0), fresh shiitake flavour (6.7), and sponginess (6.2). The best dehydration methods, resulting in the highest total concentrations of volatile compounds and high intensity of key sensory attributes were FD (if vacuum and liquid nitrogen facilities are available) and CD at 80 °C (for companies with vacuum and liquid nitrogen facilities). © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Kiln Size Affects Energy Required to Dry Lumber

    Treesearch

    Howard N. Rosen

    1980-01-01

    Energy requirements for lumber drying kilns can depend on kiln size and range from 18,000 Btu/lb water evaporated for a 10 board food capacity kiln to 1,600 Btu/lb water evaporated for a 100,000 board foot capacity kiln.

  8. Preparation of High-Grade Powders from Tomato Paste Using a Vacuum Foam Drying Method.

    PubMed

    Sramek, Martin; Schweiggert, Ralf Martin; van Kampen, Andreas; Carle, Reinhold; Kohlus, Reinhard

    2015-08-01

    We present a rapid and gentle drying method for the production of high-grade tomato powders from double concentrated tomato paste, comparing results with powders obtained by foam mat air drying and freeze dried powders. The principle of this method consists of drying tomato paste in foamed state at low temperatures in vacuum. The formulations were dried at temperatures of 50, 60, and 70 °C and vacuum of 200 mbar. Foam stability was affected by low serum viscosity and the presence of solid particles in tomato paste. Consequently, serum viscosity was increased by maltodextrin addition, yielding optimum stability at tomato paste:maltodextrin ratio of 2.4:1 (w/w) in dry matter. Material foamability was improved by addition of 0.5% (w/w, fresh weight) egg white. Because of solid particles in tomato paste, foam air filling had to be limited to critical air volume fraction of Φ = 0.7. The paste was first pre-foamed to Φ = 0.2 and subsequently expanded in vacuo. After drying to a moisture content of 5.6% to 7.5% wet base (w.b.), the materials obtained were in glassy state. Qualities of the resulting powders were compared with those produced by freeze and air drying. Total color changes were the least after vacuum drying, whereas air drying resulted in noticeable color changes. Vacuum foam drying at 50 °C led to insignificant carotenoid losses, being equivalent to the time-consuming freeze drying method. In contrast, air drying caused lycopene and β-carotene losses of 18% to 33% and 14% to 19% respectively. Thus, vacuum foam drying enables production of high-grade tomato powders being qualitatively similar to powders obtained by freeze drying. © 2015 Institute of Food Technologists®

  9. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) [0.040 grain per dry standard... § 60.8 is completed, but not later than 180 days after the initial startup, whichever date comes first...

  10. Comparing the Effects of Particulate Matter on the Ocular Surfaces of Normal Eyes and a Dry Eye Rat Model.

    PubMed

    Han, Ji Yun; Kang, Boram; Eom, Youngsub; Kim, Hyo Myung; Song, Jong Suk

    2017-05-01

    To compare the effect of exposure to particulate matter on the ocular surface of normal and experimental dry eye (EDE) rat models. Titanium dioxide (TiO2) nanoparticles were used as the particulate matter. Rats were divided into 4 groups: normal control group, TiO2 challenge group of the normal model, EDE control group, and TiO2 challenge group of the EDE model. After 24 hours, corneal clarity was compared and tear samples were collected for quantification of lactate dehydrogenase, MUC5AC, and tumor necrosis factor-α concentrations. The periorbital tissues were used to evaluate the inflammatory cell infiltration and detect apoptotic cells. The corneal clarity score was greater in the EDE model than in the normal model. The score increased after TiO2 challenge in each group compared with each control group (normal control vs. TiO2 challenge group, 0.0 ± 0.0 vs. 0.8 ± 0.6, P = 0.024; EDE control vs. TiO2 challenge group, 2.2 ± 0.6 vs. 3.8 ± 0.4, P = 0.026). The tear lactate dehydrogenase level and inflammatory cell infiltration on the ocular surface were higher in the EDE model than in the normal model. These measurements increased significantly in both normal and EDE models after TiO2 challenge. The tumor necrosis factor-α levels and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were also higher in the EDE model than in the normal model. TiO2 nanoparticle exposure on the ocular surface had a more prominent effect in the EDE model than it did in the normal model. The ocular surface of dry eyes seems to be more vulnerable to fine dust of air pollution than that of normal eyes.

  11. White Matter Development in Adolescence: The Influence of Puberty and Implications for Affective Disorders

    PubMed Central

    Ladouceur, Cecile D.; Peper, Jiska S.; Crone, Eveline A.; Dahl, Ronald E.

    2011-01-01

    There have been rapid advances in understanding a broad range of changes in brain structure and function during adolescence, and a growing interest in identifying which of these neurodevelopmental changes are directly linked with pubertal maturation—at least in part because of their potential to provide insights into the numerous emotional and behavioral health problems that emerge during this developmental period. This review focuses on what is known about the influence of puberty on white matter development in adolescence. We focus on white matter because of its role in providing the structural architectural organization of the brain and as a structural correlate of communication within complex neural systems. We begin with a review of studies that report sex differences or sex by age interactions in white matter development as these findings can provide, although indirectly, information relevant to puberty-related changes. Studies are also critically reviewed based on methodological procedures used to assess pubertal maturation and relations with white matter changes. Findings are discussed in light of their implications for the development of neural systems underlying the regulation of emotion and behavior and how alterations in the development of these systems may mediate risk for affective disorders in vulnerable adolescents. PMID:22247751

  12. The Impact of Extreme Weather Events on Dissolved Organic Matter and Microbial Biomass of chernozem soils

    NASA Astrophysics Data System (ADS)

    Müller, Ann-Christin; Blagodatskaya, Evgenia

    2017-04-01

    The aim of this experiment was to study the impact of the extreme weather events freezing-thawing and drying-rewetting on C-, N- and P-dynamics in dissolved organic matter and microbial biomass. The three variants of a chernozem soil (Voronezh region, Russia) are (1) fertilized maize cropping, (2) unfertilized maize cropping and (3) a bare fallow. After both abiotic perturbations the respiration rates were generally lower in the freezing-thawing than in the drying-rewetting treatment, due to the lower temperature. The elevated respiration came along with the decay of organic matter, which was also manifested in increased mineralization of C, N and P immediately after rewetting. However, freezing-thawing had significantly less impact on C-, N- and P-mobilization. We conclude that drying-rewetting leads to an initially increased mobilization of C, N and P, which becomes obvious as increased amounts of DOM immediately after rewetting. Freezing-thawing does not affect mobilization in the same way. There, only an increased mobilization of C can be observed. Especially concerning N and P, the reaction is dependent on the form of use/cropping in both treatments.

  13. Adolescent Toluene Inhalation in Rats Affects White Matter Maturation with the Potential for Recovery Following Abstinence

    PubMed Central

    Egan, Gary; Kolbe, Scott; Gavrilescu, Maria; Wright, David; Lubman, Dan Ian; Lawrence, Andrew John

    2012-01-01

    Inhalant misuse is common during adolescence, with ongoing chronic misuse associated with neurobiological and cognitive abnormalities. While human imaging studies consistently report white matter abnormalities among long-term inhalant users, longitudinal studies have been lacking with limited data available regarding the progressive nature of such abnormalities, including the potential for recovery following periods of sustained abstinence. We exposed adolescent male Wistar rats (postnatal day 27) to chronic intermittent inhaled toluene (3,000 ppm) for 1 hour/day, 3 times/week for 8 weeks to model abuse patterns observed in adolescent and young adult human users. This dosing regimen resulted in a significant retardation in weight gain during the exposure period (p<0.05). In parallel, we performed longitudinal magnetic resonance imaging (T2-weighted) and diffusion tensor imaging prior to exposure, and after 4 and 8 weeks, to examine the integrity of white matter tracts, including the anterior commissure and corpus callosum. We also conducted imaging after 8 weeks of abstinence to assess for potential recovery. Chronic intermittent toluene exposure during adolescence and early adulthood resulted in white matter abnormalities, including a decrease in axial (p<0.05) and radial (p<0.05) diffusivity. These abnormalities appeared region-specific, occurring in the anterior commissure but not the corpus callosum and were not present until after at least 4 weeks of exposure. Toluene-induced effects on both body weight and white matter parameters recovered following abstinence. Behaviourally, we observed a progressive decrease in rearing activity following toluene exposure but no difference in motor function, suggesting cognitive function may be more sensitive to the effects of toluene. Furthermore, deficits in rearing were present by 4 weeks suggesting that toluene may affect behaviour prior to detectable white matter abnormalities. Consequently, exposure to inhalants that

  14. Adolescent toluene inhalation in rats affects white matter maturation with the potential for recovery following abstinence.

    PubMed

    Duncan, Jhodie Rubina; Dick, Alec Lindsay Ward; Egan, Gary; Kolbe, Scott; Gavrilescu, Maria; Wright, David; Lubman, Dan Ian; Lawrence, Andrew John

    2012-01-01

    Inhalant misuse is common during adolescence, with ongoing chronic misuse associated with neurobiological and cognitive abnormalities. While human imaging studies consistently report white matter abnormalities among long-term inhalant users, longitudinal studies have been lacking with limited data available regarding the progressive nature of such abnormalities, including the potential for recovery following periods of sustained abstinence. We exposed adolescent male Wistar rats (postnatal day 27) to chronic intermittent inhaled toluene (3,000 ppm) for 1 hour/day, 3 times/week for 8 weeks to model abuse patterns observed in adolescent and young adult human users. This dosing regimen resulted in a significant retardation in weight gain during the exposure period (p<0.05). In parallel, we performed longitudinal magnetic resonance imaging (T₂-weighted) and diffusion tensor imaging prior to exposure, and after 4 and 8 weeks, to examine the integrity of white matter tracts, including the anterior commissure and corpus callosum. We also conducted imaging after 8 weeks of abstinence to assess for potential recovery. Chronic intermittent toluene exposure during adolescence and early adulthood resulted in white matter abnormalities, including a decrease in axial (p<0.05) and radial (p<0.05) diffusivity. These abnormalities appeared region-specific, occurring in the anterior commissure but not the corpus callosum and were not present until after at least 4 weeks of exposure. Toluene-induced effects on both body weight and white matter parameters recovered following abstinence. Behaviourally, we observed a progressive decrease in rearing activity following toluene exposure but no difference in motor function, suggesting cognitive function may be more sensitive to the effects of toluene. Furthermore, deficits in rearing were present by 4 weeks suggesting that toluene may affect behaviour prior to detectable white matter abnormalities. Consequently, exposure to inhalants that

  15. Effect of drying methods with the application of vacuum microwaves on the bioactive compounds, color, and antioxidant activity of strawberry fruits.

    PubMed

    Wojdyło, Aneta; Figiel, Adam; Oszmiański, Jan

    2009-02-25

    The objective of this study was to evaluate the application of vacuum-microwave drying (240, 360, and 480 W) in the production process of dehydrated strawberry and to compare and contrast the quality of these dehydrated strawberries in terms of their polyphenol compounds, concentration of some heat liable components, and color to that of freeze-dried, convective, and vacuum-dried strawberry. Thus, the effect of vacuum-microwave drying and other drying methods on the antioxidant activity of berries was evaluated. Whole fresh and dried fruits were assessed for phenolics (anthocyanins, flavanols, hydroxycinnamic acids, and flavonols), ascorbic acid, and antioxidant activity (all parameters were calculated on a dry matter basis). Analysis of data shows that ellagic acid and flavanol changes were affected by drying techniques and cultivar. Drying destroyed anthocyanins, flavanols, and ascorbic acid, and there was a significant decrease in antioxidant activity. The most striking result was that conventional and vacuum drying decreased antioxidant activity in both cultivars, whereas contradictory results were found for vacuum-microwave processed strawberry. This study has demonstrated that vacuum-microwave drying, especially at 240 W, can produce high-quality products, with the additional advantage of reduced processing times, compared to other processes such as freeze-drying.

  16. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    PubMed Central

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-01-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change. PMID:25960162

  17. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes.

    PubMed

    Wang, Hui; Boutton, Thomas W; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-11

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two (13)C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  18. Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Boutton, Thomas W.; Xu, Wenhua; Hu, Guoqing; Jiang, Ping; Bai, Edith

    2015-05-01

    Changes in biogeochemical cycles and the climate system due to human activities are expected to change the quantity and quality of plant litter inputs to soils. How changing quality of fresh organic matter (FOM) might influence the priming effect (PE) on soil organic matter (SOM) mineralization is still under debate. Here we determined the PE induced by two 13C-labeled FOMs with contrasting nutritional quality (leaf vs. stalk of Zea mays L.). Soils from two different forest types yielded consistent results: soils amended with leaf tissue switched faster from negative PE to positive PE due to greater microbial growth compared to soils amended with stalks. However, after 16 d of incubation, soils amended with stalks had a higher PE than those amended with leaf. Phospholipid fatty acid (PLFA) results suggested that microbial demand for carbon and other nutrients was one of the major determinants of the PE observed. Therefore, consideration of both microbial demands for nutrients and FOM supply simultaneously is essential to understand the underlying mechanisms of PE. Our study provided evidence that changes in FOM quality could affect microbial utilization of substrate and PE on SOM mineralization, which may exacerbate global warming problems under future climate change.

  19. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel.

    PubMed

    Mphahlele, Rebogile R; Fawole, Olaniyi A; Makunga, Nokwanda P; Opara, Umezuruike L

    2016-05-26

    The use of pomegranate peel is highly associated with its rich phenolic concentration. Series of drying methods are recommended since bioactive compounds are highly sensitive to thermal degradation. The study was conducted to evaluate the effects of drying on the bioactive compounds, antioxidant as well as antibacterial and antityrosinase activities of pomegranate peel. Dried pomegranate peels with the initial moisture content of 70.30 % wet basis were prepared by freeze and oven drying at 40, 50 and 60 °C. Difference in CIE-LAB, chroma (C*) and hue angle (h°) were determined using colorimeter. Individual polyphenol retention was determined using LC-MS and LC-MS(E) while total phenolics concentration (TPC), total flavonoid concentration (TFC), total tannins concentration (TTC) and vitamin C concentration were measured using colorimetric methods. The antioxidant activity was measured by radical scavenging activity (RSA) and ferric reducing antioxidant power (FRAP). Furthermore, the antibacterial activity of methanolic peel extracts were tested on Gram negative (Escherichia coli and Klebsiella pneumonia) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) using the in vitro microdilution assays. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin as positive controls. Oven drying at 60 °C resulted in high punicalin concentration (888.04 ± 141.03 mg CE/kg dried matter) along with poor red coloration (high hue angle). Freeze dried peel contained higher catechin concentration (674.51 mg/kg drying matter) + catechin and -epicatechin (70.56 mg/kg drying matter) compared to oven dried peel. Furthermore, freeze dried peel had the highest total phenolic, tannin and flavonoid concentrations compared to oven dried peel over the temperature range studied. High concentration of vitamin C (31.19 μg AAE/g dried matter) was observed in the oven dried (40 °C) pomegranate peel

  20. Phosphorus geochemistry in a Brazilian semiarid mangrove soil affected by shrimp farm effluents.

    PubMed

    Nóbrega, G N; Otero, X L; Macías, F; Ferreira, T O

    2014-09-01

    Wastewater discharge from shrimp farming is one of the main causes of eutrophication in mangrove ecosystems. We investigated the phosphorus (P) geochemistry in mangrove soils affected by shrimp farming effluents by carrying out a seasonal study of two mangrove forests (a control site (CS); a site affected by shrimp farm effluents (SF)). We determined the soil pH, redox potential (Eh), total organic carbon (TOC), total phosphorus (TP), and dissolved P. We also carried out sequential extraction of the P-solid phases. In SF, the effluents affected the soil physicochemical conditions, resulting in lower Eh and higher pH, as well as lower TOC and higher TP than in CS. Organic P forms were dominant in both sites and seasons, although to a lesser extent in SF. The lower TOC in SF was related to the increased microbial activity and organic matter decomposition caused by fertilization. The higher amounts of P oxides in SF suggest that the effluents alter the dominance of iron and sulfate reduction in mangrove soils, generating more reactive Fe that is available for bonding to phosphates. Strong TP losses were recorded in both sites during the dry season, in association with increased amounts of exchangeable and dissolved P. The higher bioavailability of P during the dry season may be attributed to increased mineralization of organic matter and dissolution of Ca-P in response to more oxidizing and acidic conditions. The P loss has significant environmental implications regarding eutrophication and marine productivity.

  1. Transformation of heavy metal speciation during sludge drying: mechanistic insights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Huanxin; Ma, Xue-Wen; Fu, Feng-Xia

    2014-01-30

    Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized the Cr, Cu, Cd and Pb in sludge by transforming acid-soluble, reducible andmore » oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge.« less

  2. Transformation of heavy metal speciation during sludge drying: mechanistic insights.

    PubMed

    Weng, Huan-Xin; Ma, Xue-Wen; Fu, Feng-Xia; Zhang, Jin-Jun; Liu, Zan; Tian, Li-Xun; Liu, Chongxuan

    2014-01-30

    Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized Cr, Cu, Cd, and Pb in sludge by transforming acid-soluble, reducible, and oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Consumption of endophyte-infected fescue seed during the dry period and lactation affects mammary gland gene expression in dairy cows

    USDA-ARS?s Scientific Manuscript database

    Ergot alkaloids in endophyte-infected grasses inhibit prolactin (PRL) secretion and reduce milk production when fed to lactating cows. However, we have shown this affect is temporal in that pre-partum consumption of inflected seed throughout the dry period does not inhibit subsequent milk productio...

  4. Non-destructive prediction of 'Hass' avocado dry matter via FT-NIR spectroscopy.

    PubMed

    Wedding, Brett B; White, Ronald D; Grauf, Steve; Wright, Carole; Tilse, Bonnie; Hofman, Peter; Gadek, Paul A

    2011-01-30

    The inability to consistently guarantee internal quality of horticulture produce is of major importance to the primary producer, marketers and ultimately the consumer. Currently, commercial avocado maturity estimation is based on the destructive assessment of percentage dry matter (%DM), and sometimes percentage oil, both of which are highly correlated with maturity. In this study the utility of Fourier transform (FT) near-infrared spectroscopy (NIRS) was investigated for the first time as a non-invasive technique for estimating %DM of whole intact 'Hass' avocado fruit. Partial least squares regression models were developed from the diffuse reflectance spectra to predict %DM, taking into account effects of intra-seasonal variation and orchard conditions. It was found that combining three harvests (early, mid and late) from a single farm in the major production district of central Queensland yielded a predictive model for %DM with a coefficient of determination for the validation set of 0.76 and a root mean square error of prediction of 1.53% for DM in the range 19.4-34.2%. The results of the study indicate the potential of FT-NIRS in diffuse reflectance mode to non-invasively predict %DM of whole 'Hass' avocado fruit. When the FT-NIRS system was assessed on whole avocados, the results compared favourably against data from other NIRS systems identified in the literature that have been used in research applications on avocados. 2010 Society of Chemical Industry.

  5. Spectroscopic Analysis of Temporal Changes in Leaf Moisture and Dry Matter Content

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Dennison, P. E.; Brewer, S.; Jolly, W. M.; Kropp, R.

    2013-12-01

    Live fuel moisture (LFM), the ratio of water content to dry matter content (DMC) in live fuel, is critical for determining fire danger and behavior. Remote sensing estimation of LFM often relies on an assumption of changing water content and stable DMC over time. In order to advance understanding of temporal variation in LFM and DMC, we collected field samples and spectroscopic data for two species, lodgepole pine (Pinus contorta) and big sagebrush (Artemisia tridentata), to explore seasonal trends and spectral expression of these trends. New and old needles were measured separately for lodgepole pine. All samples were measured using a visible/NIR/SWIR spectrometer, and coincident samples were processed to provide LFM, DMC, water content and chemical components including structural and non-structural carbohydrates. New needles initially exhibited higher LFM and a smaller proportion of DMC, but differences between new and old needles converged as the new needles hardened. DMC explained more variation in LFM than water content for new pine needles and sagebrush leaves. Old pine needles transported non-structural carbohydrates to new needles to accumulate DMC during the growth season, resulting decreasing LFM in new needles. DMC and water content co-varied with vegetation chemical components and physical structure. Spectral variation in response to changing DMC is difficulty to isolate from the spectral signatures of multiple chemical components. Partial least square regression combined with hyperspectral data may increase modeling performance in LFM estimation.

  6. Milk Production and Income over Feed Costs in Dairy Cows Fed Medium-roasted Soybean Meal and Corn Dried Distiller’s Grains with Solubles

    PubMed Central

    Thanh, Lam Phuoc; Suksombat, Wisitiporn

    2015-01-01

    The aims of this study were to determine the effects of feeding medium-roasted soybean meal (SBM) and corn dried distiller’s grains with solubles (CDDGS) in dairy cows on milk production and income over feed costs. A randomized complete block design experiment was conducted with 24 crossbred multiparous Holstein Friesian dairy cows in early- and mid-lactation. Four dietary treatments were as follows: basal diet without feed substitute (Control), 7.17% dry matter (DM) roasted SBM replaced for concentrate (R-SBM), 11.50% DM CDDGS replaced for concentrate (DDGS), and 3.58% DM roasted SBM plus 5.75% DM CDDGS replaced for concentrate (SB-DG). The roasted SBM was produced using a medium-heated treatment at 100°C for 180 min. Dry matter intake was not affected by feeding high rumen undegradable protein (RUP) sources, but the replacement of roasted SBM and CDDGS for concentrate significantly improved (p<0.001) RUP intake (0.90, 0.86, and 0.88 kg/d corresponding to R-SBM, DDGS, and SB-DG) compared to the control (0.61 kg/d). Feeding roasted SBM and CDDGS alone or in combination had no significant effect on milk composition of dairy cows (p>0.05), whereas milk yield was significantly increased by 3.08 kg/d in the SB-DG group relative to the control group (p<0.01). Net income was meaningfully increased (p<0.05) from 4th week post feeding, the SB-DG group reached the greatest net income ($3.48/head/d) while the control group had the lowest value ($2.60/head/d). In conclusion, the use of CDDGS alone or in combination with medium-roasted SBM as substitute for concentrate in lactating dairy cattle diet led to improved milk production and net income over feed costs without affecting total dry matter intake and milk composition, while feeding medium-roasted SBM seemed to show intermediate values in almost parameters. PMID:25656183

  7. Wet-dry cycles impact DOM retention in subsurface soils

    NASA Astrophysics Data System (ADS)

    Olshansky, Yaniv; Root, Robert A.; Chorover, Jon

    2018-02-01

    Transport and reactivity of carbon in the critical zone are highly controlled by reactions of dissolved organic matter (DOM) with subsurface soils, including adsorption, transformation and exchange. These reactions are dependent on frequent wet-dry cycles common to the unsaturated zone, particularly in semi-arid regions. To test for an effect of wet-dry cycles on DOM interaction and stabilization in subsoils, samples were collected from subsurface (Bw) horizons of an Entisol and an Alfisol from the Catalina-Jemez Critical Zone Observatory and sequentially reacted (four batch steps) with DOM extracted from the corresponding soil litter layers. Between each reaction step, soils either were allowed to air dry (wet-dry treatment) before introduction of the following DOM solution or were maintained under constant wetness (continually wet treatment). Microbial degradation was the dominant mechanism of DOM loss from solution for the Entisol subsoil, which had higher initial organic C content, whereas sorptive retention predominated in the lower C Alfisol subsoil. For a given soil, bulk dissolved organic C losses from solution were similar across treatments. However, a combination of Fourier transform infrared (FTIR) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses revealed that wet-dry treatments enhanced the interactions between carboxyl functional groups and soil particle surfaces. Scanning transmission X-ray microscopy (STXM) data suggested that cation bridging by Ca2+ was the primary mechanism for carboxyl association with soil surfaces. STXM data also showed that spatial fractionation of adsorbed OM on soil organo-mineral surfaces was diminished relative to what might be inferred from previously published observations pertaining to DOM fractionation on reaction with specimen mineral phases. This study provides direct evidence of the role of wet-dry cycles in affecting sorption reactions of DOM to a complex soil matrix. In

  8. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs.

    PubMed

    Park, Kyu Ree; Park, Chan Sol; Kim, Beob Gyun

    2016-01-01

    Two experiments were conducted to determine the effects of enzyme complex on in vitro dry matter (DM) digestibility for feed ingredients. The objective of experiment 1 was to screen feed ingredients that can be effective substrates for an enzyme complex, mainly consisted of β-pentosanase, β-glucanase and α-amylase, using in vitro digestibility methods. In experiment 1, the test ingredients were three grain sources (barley, corn and wheat) and six protein supplements (canola meal, copra expellers, cottonseed meal, distillers dried grains with solubles, palm kernel expellers and soybean meal). In vitro ileal and total tract digestibility (IVID and IVTTD, respectively) of DM for test ingredients were determined. In vitro digestibility methods consisted of two- or three-step procedure simulating in vivo digestion in the pig gastrointestinal tracts with or without enzyme complex. As the enzyme complex added, the IVID of DM for corn and wheat increased (p < 0.05) by 5.0 and 2.6 percentage unit, respectively. The IVTTD of DM for corn increased (p < 0.05) by 3.1 percentage unit with enzyme complex addition. As the effect of enzyme complex was the greatest in corn digestibility, corn grains were selected to determine the in vitro digestibility of the fractions (starch, germ, hull and gluten) that maximally respond to the enzyme complex in experiment 2. The IVID of DM for corn starch, germ and hull increased (p < 0.05) by 16.0, 2.8 and 1.2 percentage unit, respectively. The IVTTD of DM for corn starch and hull also increased (p < 0.05) by 8.6 and 0.9 percentage unit, respectively, with enzyme complex addition. In conclusion, the enzyme complex increases in vitro DM digestibility of corn and wheat, and the digestibility increments of corn are mainly attributed to the increased digestibility of corn starch.

  9. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin.

    PubMed

    Maliki, Raphiou; Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0-10 and 10-20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems.

  10. 40 CFR 60.282a - Standard for filterable particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... matter. 60.282a Section 60.282a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... 23, 2013 § 60.282a Standard for filterable particulate matter. (a) On and after the date on which the... furnace any gases which: (i) Contain filterable particulate matter in excess of 0.10 gram per dry standard...

  11. Investigating alternative solutions for adsorption-contact drying when burning vegetable wastes

    NASA Astrophysics Data System (ADS)

    Golubkovich, A. V.

    2007-06-01

    Results are presented from investigation of three alternative solutions for adsorption-contact drying: combined (with cooling by means of outdoor air), with afterburning of combustible matters, and with limited adsorption of moisture using solid products of fuel combustion. Mathematical models and simplified expressions for calculating the time taken for the fuel drying to proceed are proposed.

  12. Volatile composition and sensory profile of Cantharellus cibarius Fr. as affected by drying method.

    PubMed

    Politowicz, Joanna; Lech, Krzysztof; Sánchez-Rodríguez, Lucía; Szumny, Antoni; Carbonell-Barrachina, Ángel A

    2017-12-01

    In this work, the influence of different drying methods on the aroma composition and sensory quality of chanterelle mushrooms (Cantharellus cibarius Fr.) was evaluated. The drying methods tested were convective drying (CD), freeze drying (FD), vacuum microwave drying (VMD) and a combination of convective pre-drying and vacuum microwave finish drying (CPD-VMFD). Analyses of fresh and dried chanterelle samples by HS-SPME and GC/MS and GC-FID showed the presence of 39 volatile compounds at different concentrations. The most abundant compounds in fresh chanterelle were 1-hexanol (33.4 μg per 100 g dry basis (db)), 1-octen-3-ol (80.2 μg per 100 g db) and 2-octen-1-ol (19.3 μg per 100 g db). The results showed that fresh and dried chanterelle contained very low levels of aroma compounds; however, the highest contents of volatile compounds were found in samples after (i) CD at 80 °C (129 μg per 100 g db), (ii) CPD-VMFD at 70 °C-480/240 W (136 μg per 100 g db) and (iii) CPD-VMFD at 80 °C-480/240 W (136 μg per 100 g db). The best dehydration methods, which resulted in high contents of volatile compounds and appropriate sensory quality, according to descriptive sensory analysis and PCA tools, were CD at 70 and 80 °C. Besides, these methods led to spongy dried mushrooms with high intensities of fresh, mushroom ID, with proper color and without intense shrinkage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  13. Novel Insights into the Influence of Seed Sarcotesta Photosynthesis on Accumulation of Seed Dry Matter and Oil Content in Torreya grandis cv. “Merrillii”

    PubMed Central

    Hu, Yuanyuan; Zhang, Yongling; Yu, Weiwu; Hänninen, Heikki; Song, Lili; Du, Xuhua; Zhang, Rui; Wu, Jiasheng

    2018-01-01

    Seed oil content is an important trait of nut seeds, and it is affected by the import of carbon from photosynthetic sources. Although green leaves are the main photosynthetic organs, seed sarcotesta photosynthesis also supplies assimilates to seed development. Understanding the relationship between seed photosynthesis and seed development has theoretical and practical significance in the cultivation of Torreya grandis cv. “Merrillii.” To assess the role of seed sarcotesta photosynthesis on the seed development, anatomical and physiological traits of sarcotesta were measured during two growing seasons in the field. Compared with the attached current-year leaves, the sarcotesta had higher gross photosynthetic rate at the first stage of seed development. At the late second stage of seed development, sarcotesta showed down-regulation of PSII activity, as indicated by significant decrease in the following chlorophyll fluorescence parameters: the maximum PSII efficiency (Fv/Fm), the PSII quantum yield (ΦPSII), and the photosynthetic quenching coefficient (qP). The ribulose 1, 5—bisphosphate carboxylase (Rubisco) activity, the total chlorophyll content (Chl(a+b)) and nitrogen content in the sarcotesta were also significantly decreased during that period. Treatment with DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] preventing seed photosynthesis decreased the seed dry weight and the oil content by 25.4 and 25.5%, respectively. We conclude that seed photosynthesis plays an important role in the dry matter accumulation at the first growth stage. Our results also suggest that down-regulation of seed photosynthesis is a plant response to re-balance the source-sink ratio at the second growth stage. These results suggest that seed photosynthesis is important for biomass accumulation and oil synthesis of the Torreya seeds. The results will facilitate achieving higher yields and oil contents in nut trees by selection for higher seed photosynthesis cultivars. PMID:29375592

  14. Digestibility, productive performance, and egg quality of laying hens as affected by dried cassava pulp replacement with corn and enzyme supplementation.

    PubMed

    Khempaka, Sutisa; Maliwan, Prapot; Okrathok, Supattra; Molee, Wittawat

    2018-02-24

    Two experiments were conducted to investigate the potential use of dried cassava pulp (DCP) supplemented with enzymes as an alternative feed ingredient in laying hen diets. In experiment 1, 45 laying hens (Isa Brown) aged 45 weeks were placed in individual cages to measure nutrient digestibility for 10 days. Nine dietary treatments were control and DCP as a replacement for corn at 20, 25, 30, and 35% supplemented with mixed enzymes (cellulase, glucanase, and xylanase) at 0.10 and 0.15%. Results showed that the use of DCP at 20-35% added with mixed enzymes had no negative effects on dry matter digestibility, while organic matter digestibility and nitrogen retention decreased with increased DCP up to 30-35% in diets. Both enzyme levels (0.10 and 0.15%) showed similar results on nutrient digestibility and retention. In experiment 2, a total of 336 laying hens aged 32 weeks were randomly allocated to seven dietary treatments (control and DCP-substituted diets at 20, 25, and 30%) supplemented with mixed enzymes (0.10 and 0.15%). Diets incorporated with 20-30% of DCP and supplemented with mixed enzymes at both levels had no significant effects on egg production, egg weight, feed intake, egg mass, feed conversion ratio, protein efficiency ratio, or egg quality, except for egg yolk color being decreased with an increase of DCP in diets (P < 0.05). In conclusion, it is suggested that DCP supplemented with enzymes can be used as an energy source in laying hen diets up to 30% without showing negative effects on nutrient digestibility, productive performance, or egg quality.

  15. Effect of dried rumen digesta pellet levels on feed use, rumen ecology, and blood metabolite in swamp buffalo.

    PubMed

    Seankamsorn, Anuthida; Cherdthong, Anusorn; Wanapat, Metha; Supapong, Chanadol; Khonkhaeng, Benjamad; Uriyapongson, Sutipong; Gunun, Nirawan; Gunun, Pongsatron; Chanjula, Pin

    2017-01-01

    The aim of this experiment was to determine the effect of dried rumen digesta pellet levels on feed intake, digestibility, rumen ecology, and blood metabolites in swamp buffalo. Four 2-year-old male swamp buffalo with an initial body weight (BW) of 150 ± 10.0 kg were randomly assigned according to a 4 × 4 Latin square design to receive four levels of dried rumen digesta pellets (DRDPs). The dietary treatments were supplementation of DRDP at 0, 50, 100, and 150 g dry matter/day, respectively. Total feed intake was significantly different among treatments (p < 0.05) and was highest in the 150 g/day DRDP supplement (2.68 kg/day). Intakes of neutral detergent fiber (NDF) and acid detergent fiber did not affect DRDP levels, while intakes of organic matter and crude protein (CP) were altered significantly when 150 g of DRDP was used (p < 0.05). Buffalo fed with DRDP at 150 g/day had the highest CP and NDF digestibility (p < 0.05). DRDP supplementation did not affect rumen pH, and temperature and the concentration of ruminal ammonia-nitrogen and blood urea nitrogen were not altered among the treatments. The mean value of fungal zoospores in the buffalo was significantly different among treatments and was highest in supplementation with DRDP at 150 g. The mean value of propionic acid was significantly different at various levels of DRDP; it was highest in the group fed with 150 g DRDP (p < 0.05). Thus, supplementation of DRDP at 150 g improved feed use and increased fungal zoospore population. In addition, DRDP feeding is recommended, since it has positive economic impacts and helps control environmental pollution.

  16. The distribution of dry matter growth between shoot and roots in loblolly pine

    Treesearch

    F. Thomas Ledig; F. Herbert Bormann; Karl F. Wenger

    1970-01-01

    The allometric relationship, log (y) = a + k•log (x)-where x is one plant organ (e g., dry weight of roots) and y is another (e.g., dry weight of shoot)-was used to study the relative distribution of growth within loblolly pine seedlings. The relative...

  17. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin

    PubMed Central

    Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems. PMID:27446635

  18. Pre-anthesis CPPU low dosage application increases 'Hayward' kiwifruit weight without affecting the other qualitative and nutritional characteristics.

    PubMed

    Cruz-Castillo, J G; Baldicchi, A; Frioni, T; Marocchi, F; Moscatello, S; Proietti, S; Battistelli, A; Famiani, F

    2014-09-01

    In 2008, in Central Italy, a low dosage of CPPU solution, 4 μL L(-1) (6 hL/ha), was sprayed on the canopy of vines of 'Hayward' kiwifruit, at the "break of sepals", about one week before anthesis, to study its effects on fruit weight/size and on qualitative and nutritional characteristics. At harvest, CPPU, with respect to control, significantly increased the fresh weight by about 12% (+12.6 g fruit(-1)) and consequently the yield per vine, without affecting fruit shape, firmness, dry matter (%), total soluble solids, glucose, fructose, sucrose, starch, citrate, malate, vitamin C and soluble and insoluble oxalic acid. After 3 months of storage, CPPU-treated kiwifruits and the control fruit showed no difference in dry matter content, fruit firmness and total soluble solids. The results indicate that a low dosage of CPPU applied in pre-anthesis can improve fruit weight/size without any negative effect on fruit qualitative and nutritional characteristics. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Factors affecting decay of Salmonella Birkenhead and coliphage MS2 during mesophilic anaerobic digestion and air drying of sewage sludge.

    PubMed

    Mondal, Tania; Rouch, Duncan A; Thurbon, Nerida; Smith, Stephen R; Deighton, Margaret A

    2015-06-01

    Factors affecting the decay of Salmonella Birkenhead and coliphage, as representatives of bacterial and viral pathogens, respectively, during mesophilic anaerobic digestion (MAD) and air drying treatment of anaerobically digested sewage sludge were investigated. Controlled concentrations of S. Birkenhead were inoculated into non-sterile, autoclaved, γ-irradiated and nutrient-supplemented sludge and cultures were incubated at 37 °C (MAD sludge treatment temperature) or 20 °C (summer air drying sludge treatment temperature). Nutrient limitation caused by microbial competition was the principal mechanism responsible for the decay of S. Birkenhead by MAD and during air drying of digested sludge. The effects of protease activity in sludge on MS2 coliphage decay in digested and air dried sludge were also investigated. MS2 coliphage showed a 3.0-3.5 log10 reduction during incubation with sludge-protease extracts at 37 °C for 25 h. Proteases produced by indigenous microbes in sludge potentially increase coliphage inactivation and may therefore have a significant role in the decay of enteric viruses in sewage sludge. The results help to explain the loss of viability of enteric bacteria and viral pathogens with treatment process time and contribute to fundamental understanding of the various biotic inactivation mechanisms operating in sludge treatment processes at mesophilic and ambient temperatures.

  20. LASIK and dry eye.

    PubMed

    Toda, Ikuko

    2007-01-01

    Dry eye is one of the most common complications after laser-assisted in situ keratomileusis (LASIK). The clinical signs of post-LASIK dry eye include positive vital staining of ocular surface, decreased tear film breakup time and Schirmer test, reduced corneal sensitivity, and decreased functional visual acuity. The symptoms and signs last at least 1 month after LASIK. Although the mechanisms for developing post-LASIK dry eye are not completely understood, loss of corneal innervation by flap-making may affect the reflex loops of the corneal-lacrimal gland, corneal-blinking, and blinking-meibomian gland, and blinking-meibomian gland, resulting in decreased aqueous and lipid tear secretion and mucin expression. As LASIK enhancement by flap-lifting induces less dry eye symptoms and signs than first surgery, it is suggested that other factors rather than loss of neurotrophic effect may be involved in the mechanisms of post-LASIK dry eye. The treatments of dry eye include artificial tears, topical cyclosporine, hot compress, punctal plugs, and autologous serum eye drops. For patients with severe preoperative dry eye, a combination of punctal plugs and serum eye drops is required to be used before surgery.

  1. Characterization of dissolved organic matter in an urbanized estuary located in Northeastern Brazil.

    PubMed

    Arguelho, Maria de Lara Palmeira de Macedo; Alves, José do Patrocínio Hora; Monteiro, Adnívia Santos Costa; Garcia, Carlos Alexandre Borges

    2017-06-01

    The Sal River estuary, which is located in the state of Sergipe, Northeastern Brazil, stands out as an urban estuary, anthropogenically impacted by untreated and treated wastewater discharge. Synchronous fluorescence spectroscopy and measurement of dissolved organic carbon (DOC) were used for characterization of dissolved organic matter (DOM) in the estuarine water. Dissolved organic carbon concentrations ranged from 7.5 to 19.0 mg L -1 and, in general, the highest values were recorded during dry season. For both seasons (dry and rainy), DOC presented an inverse linear relationship with salinity, which indicates a conservative dilution of organic matter coming into the estuary. During rainy season, anthropogenic organic constituents and humic substances from land-based sources predominated in DOM composition, carried by river flow. Whereas during the dry season, it has been observed a significant increase of products generated by microbial degradation of anthropogenic organic matter. The relationships between fluorescence intensity and salinity suggest a conservative behavior during rainy season and a non-conservative behavior during dry season, with addition of fluorescent organic matter into the intermediate zone of the estuary. Photodegradation by action of sunlight caused a decrease in fluorescence intensity of humic and tryptophan-like constituents and the release of photoproducts, resulting in an increase in fluorescence intensity of protein-like constituents.

  2. Effects of four different drying methods on the carotenoid composition and antioxidant capacity of dried Gac peel.

    PubMed

    Chuyen, Hoang V; Roach, Paul D; Golding, John B; Parks, Sophie E; Nguyen, Minh H

    2017-03-01

    Gac fruit (Momordica cochinchinensis Spreng.) is a rich source of carotenoids for the manufacture of powder, oil and capsules for food, cosmetic and pharmaceutical uses. Currently, only the aril of the Gac fruit is processed and the peel, similar to the other components, is discarded, although it contains high level of carotenoids, which could be extracted for commercial use. In the present study, four different drying methods (hot-air, vacuum, heat pump and freeze drying), different temperatures and drying times were investigated for producing dried Gac peel suitable for carotenoid extraction. The drying methods and drying temperatures significantly affected the drying time, carotenoid content and antioxidant capacity of the dried Gac peel. Among the investigated drying methods, hot-air drying at 80  o C and vacuum drying at 50  o C produced dried Gac peel that exhibited the highest retention of carotenoids and the strongest antioxidant capacity. Hot-air drying at 80  o C and vacuum drying at 50  o C are recommended for the drying of Gac peel. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. Influence of Wheat Straw Pelletizing and Inclusion Rate in Dry Rolled or Steam-flaked Corn-based Finishing Diets on Characteristics of Digestion for Feedlot Cattle.

    PubMed

    Manríquez, O M; Montano, M F; Calderon, J F; Valdez, J A; Chirino, J O; Gonzalez, V M; Salinas-Chavira, J; Mendoza, G D; Soto, S; Zinn, R A

    2016-06-01

    Eight Holstein steers (216±48 kg body weight) fitted with ruminal and duodenal cannulas were used to evaluate effects of wheat straw processing (ground vs pelleted) at two straw inclusion rates (7% and 14%; dry matter basis) in dry rolled or steam-flaked corn-based finishing diets on characteristics of digestion. The experimental design was a split plot consisting of two simultaneous 4×4 Latin squares. Increasing straw level reduced ruminal (p<0.01) and total tract (p = 0.03) organic matter (OM) digestion. As expected, increasing wheat straw level from 7% to 14% decreased (p<0.05) ruminal and total tract digestion of OM. Digestion of neutral detergent fiber (NDF) and starch, per se, were not affected (p>0.10) by wheat straw level. Likewise, straw level did not influence ruminal acetate and propionate molar proportions or estimated methane production (p>0.10). Pelleting straw did not affect (p≥0.48) ruminal digestion of OM, NDF, and starch, or microbial efficiency. Ruminal feed N digestion was greater (7.4%; p = 0.02) for ground than for pelleted wheat straw diets. Although ruminal starch digestion was not affected by straw processing, post-ruminal (p<0.01), and total-tract starch (p = 0.05) digestion were greater for ground than for pelleted wheat straw diets, resulting in a tendency for increased post-ruminal (p = 0.06) and total tract (p = 0.07) OM digestion. Pelleting wheat straw decreased (p<0.01) ruminal pH, although ruminal volatile fatty acids (VFA) concentration and estimated methane were not affected (p≥0.27). Ruminal digestion of OM and starch, and post-ruminal and total tract digestion of OM, starch and N were greater (p<0.01) for steam-flaked than for dry rolled corn-based diets. Ruminal NDF digestion was greater (p = 0.02) for dry rolled than for steam-flaked corn, although total tract NDF digestion was unaffected (p = 0.94). Ruminal microbial efficiency and ruminal degradation of feed N were not affected (p>0.14) by corn processing. However

  4. Essential oil and monensin affect ruminal fermentation and the protozoal population in continuous culture.

    PubMed

    Ye, D; Karnati, S K R; Wagner, B; Firkins, J L; Eastridge, M L; Aldrich, J M

    2018-06-01

    The interaction of monensin and essential oil was hypothesized to suppress protozoa and methane production while maintaining normal rumen function. The objective of this study was to determine the effects of feeding monensin (MON) and CinnaGar (CIN, a commercial blend of cinnamaldehyde and garlic oil; Provimi North America, Brookville, OH) on ruminal fermentation characteristics. Continuous culture fermentors (n = 4) were maintained in 4 experimental periods in a 4 × 4 Latin square design. Four dietary treatments were arranged in a 2 × 2 factorial: (1) control diet, 37 g/d of dry matter (40 g/d at ∼92.5% dry matter) of a 50:50 forage:concentrate diet containing no additive; (2) MON at 11 g/909 kg of dry matter; (3) CIN at 0.0043% of dry matter; and (4) a combination of MON and CIN at the levels in (2) and (3). Treatment had no effects on protozoal populations, concentration of NH 3 N, total N flow of effluent, production of total volatile fatty acids, or flows of conjugated linoleic acid and total C18 fatty acids. The MON decreased acetate:propionate ratio and biohydrogenation of both total C18 and 18:1 cis-9 but increased protozoal generation time, concentration of peptide, and flow of 18:1 trans-11. The MON tended to decrease protozoal counts in effluent and flow of 18:0 but tended to increase propionate production. The CIN decreased true organic matter digestibility and protozoal N flow of effluent but increased nonammonia, nonmicrobial N flow. The CIN tended to decrease protozoal counts, microbial N flow, and neutral detergent fiber digestibility but tended to increase biohydrogenation of total C18, 18:2, and 18:3. The CIN tended to increase isovalerate production. The MON and CIN tended to interact for increased methane production and bacterial N flow. A second experiment was conducted to determine the effects of MON and CIN on protozoal nitrogen and cell volume in vitro. Four treatments included (1) control (feed only), (2) feed + 0.0043% dry matter CIN

  5. Drying kinetics and characteristics of combined infrared-vacuum drying of button mushroom slices

    NASA Astrophysics Data System (ADS)

    Salehi, Fakhreddin; Kashaninejad, Mahdi; Jafarianlari, Ali

    2017-05-01

    Infrared-vacuum drying characteristics of button mushroom ( Agaricus bisporus) were evaluated in a combined dryer system. The effects of drying parameters, including infrared radiation power (150-375 W), system pressure (5-15 kPa) and time (0-160 min) on the drying kinetics and characteristics of button mushroom slices were investigated. Both the infrared lamp power and vacuum pressure influenced the drying time of button mushroom slices. The rate constants of the nine different kinetic's models for thin layer drying were established by nonlinear regression analysis of the experimental data which were found to be affected mainly by the infrared power level while system pressure had a little effect on the moisture ratios. The regression results showed that the Page model satisfactorily described the drying behavior of button mushroom slices with highest R value and lowest SE values. The effective moisture diffusivity increases as power increases and range between 0.83 and 2.33 × 10-9 m2/s. The rise in infrared power has a negative effect on the ΔE and with increasing in infrared radiation power it was increased.

  6. Effect of biomass open burning on particulate matter and polycyclic aromatic hydrocarbon concentration levels and PAH dry deposition in ambient air.

    PubMed

    Chiu, Jui C; Shen, Yun H; Li, Hsing W; Chang, Shun S; Wang, Lin C; Chang-Chien, Guo P

    2011-01-01

    The objectives of the present study were to investigate particulate matter (PM) and polycyclic aromatic hydrocarbon (PAH) concentrations in ambient air during rice straw open burning and non-open burning periods. In the ambient air of a rice field, the mean PM concentration during and after an open burning event were 1828 and 102 μg m⁻³, respectively, which demonstrates that during a rice field open burning event, the PM concentration in the ambient air of rice field is over 17 times higher than that of the non-open burning period. During an open burning event, the mean total PAH and total toxic equivalence (BaP(eq)) concentrations in the ambient air of a rice field were 7206 ng m⁻³ and 10.3 ng m⁻³, respectively, whereas after the open burning event, they were 376 ng m⁻³ and 1.50 ng m⁻³, respectively. Open burning thus increases total PAH and total BaP(eq) concentrations by 19-fold and 6.8-fold, respectively. During a rice straw open burning event, in the ambient air of a rice field, the mean dry deposition fluxes of total PAHs and total BaP(eq) were 1222 μg m⁻² day⁻¹ and 4.80 μg m⁻² day⁻¹, respectively, which are approximately 60- and 3-fold higher than those during the non-open burning period, respectively. During the non-open burning period, particle-bound PAHs contributed 79.2-84.2% of total dry deposition fluxes (gas + particle) of total PAHs. However, an open burning event increases the contribution to total PAH dry deposition by particle-bound PAHs by up to 85.9-95.5%. The results show that due to the increased amount of PM in the ambient air resulting from rice straw open burning, particle-bound PAHs contributed more to dry deposition fluxes of total PAHs than they do during non-open burning periods. The results show that biomass (rice straw) open burning is an important PAH emission source that significantly increases both PM and PAH concentration levels and PAH dry deposition in ambient air.

  7. HIV disease and diabetes interact to affect brain white matter hyperintensities and cognition.

    PubMed

    Wu, Minjie; Fatukasi, Omalara; Yang, Shaolin; Alger, Jeffery; Barker, Peter B; Hetherington, Hoby; Kim, Tae; Levine, Andrew; Martin, Eileen; Munro, Cynthia A; Parrish, Todd; Ragin, Ann; Sacktor, Ned; Seaberg, Eric; Becker, James T

    2018-05-22

    Since the onset of combination antiretroviral therapy (cART) use, the incidence of HIV-associated dementia and of HIV encephalitis have fallen dramatically. The present study investigates the extent of white matter hyperintensities (WMHs) among individuals with HIV disease, and factors that predict their presence and their impact on psychomotor speed. 322 men participating in the Multicenter AIDS Cohort Study (MACS) (185 HIV-infected, age: 57.5 ± 6.0) underwent MRI scans of the brain. T1-weighted MP-RAGE and T2-weighted Fluid Attenuated Inversion Recovery (FLAIR) images were obtained and processed using an automated method for identifying and measuring WMHs. WMH burden was expressed as the log10 transformed percentage of total white matter that was abnormal. There were no significant associations between WMHs and HIV disease. However, the extent of WMHs was predicted by age > 60 (β=.17), non-Caucasian race (β=.14), glomerular filtration rate (β= -.11) and the presence of diabetes (β=.12). There were no interactions between HIV status and age (β = -.03) or between age and diabetes (β = .07). However, the interaction between HIV infection and diabetes was significant (β = .26). The extent of WMHs was significantly associated with performance on measures of psychomotor speed (β = .15). In today's therapeutic environment, in HIV-infected and HIV seronegative individuals those factors which affect the cerebrovasculature are the best predictors of WMHs. Diabetes has a specific impact among HIV-infected, but not uninfected men, suggesting the need for more aggressive treatment even in the prediabetes state, especially as WMHs affect cognitive functions.

  8. EMISSIONS OF PERCHLOROETHYLENE FROM DRY CLEANED FABRICS

    EPA Science Inventory

    A study was conducted to evaluate the emissions of perchloroethylene (tetrachloroethylene) from dry cleaned fabrics to determine: (a) how the introduction of fresh dry cleaning into a home affects the indoor concentration of perchloroethylene, and (b) the effectiveness of ‘airing...

  9. Drying of restructured chips made from the old stalks of Asparagus officinalis: impact of different drying methods.

    PubMed

    Liu, Zhenbin; Zhang, Min; Wang, Yuchuan

    2016-06-01

    Old stalks of Asparagus officinalis, which account for one third of the total length of each spear, are always discarded as waste. To make full use of the resource, a kind of restructured Asparagus officinalis chip was made. The effects of pulse-spouted microwave-assisted vacuum drying (PSMVD), microwave-assisted vacuum drying (MVD) and vacuum drying (VD) on texture, color and other quality parameters of restructured chips were then studied to obtain high-quality dried chips. Results indicated that the drying time was significantly affected by drying methods, and PSMVD had much better drying uniformity than MVD. The expansion ratio and crispness of chips increased with increasing microwave power and vacuum degree. The browning reaction of samples in VD was more serious, which was confirmed by the results of color test and electronic nose. The PSMVD drying method showed much better drying uniformity than MVD. The dried chips obtained by PSMVD showed optimal quality and were more readily accepted by consumers. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Dry socket: incidence, clinical features, and predisposing factors.

    PubMed

    Akinbami, Babatunde O; Godspower, Thikan

    2014-01-01

    Background. Dry socket is a global phenomenon. The purpose of the study was to investigate the incidence of dry socket in recent times in a Nigerian Tertiary Hospital. Methods. Patients who were referred for dental extractions were included in the study. The case files of patients were obtained and information retrieved included biodata, indication for extraction, number and type of teeth extracted, oral hygiene status, compliance to oral hygiene instructions, and development of dry socket. Results. One thousand, one hundred and eighty two patients with total of 1362 teeth extracted during the 4-year period of the study were analyzed, out of which 1.4% teeth developed dry socket. The mean age (SD) was 35.2 (16.0) years. Most of the patients who presented with dry socket were in the fourth decade of life. Mandibular teeth were affected more than maxillary teeth. Molars were more affected. Retained roots and third molars were conspicuous in the cases with dry socket. Conclusion. The incidence of dry socket in our centre was lower than previous reports. Oral hygiene status, lower teeth, and female gender were significantly associated with development of dry socket. Treatment with normal saline irrigation and ZnO eugenol dressings allowed relief of the symptoms.

  11. Dry Socket: Incidence, Clinical Features, and Predisposing Factors

    PubMed Central

    Akinbami, Babatunde O.; Godspower, Thikan

    2014-01-01

    Background. Dry socket is a global phenomenon. The purpose of the study was to investigate the incidence of dry socket in recent times in a Nigerian Tertiary Hospital. Methods. Patients who were referred for dental extractions were included in the study. The case files of patients were obtained and information retrieved included biodata, indication for extraction, number and type of teeth extracted, oral hygiene status, compliance to oral hygiene instructions, and development of dry socket. Results. One thousand, one hundred and eighty two patients with total of 1362 teeth extracted during the 4-year period of the study were analyzed, out of which 1.4% teeth developed dry socket. The mean age (SD) was 35.2 (16.0) years. Most of the patients who presented with dry socket were in the fourth decade of life. Mandibular teeth were affected more than maxillary teeth. Molars were more affected. Retained roots and third molars were conspicuous in the cases with dry socket. Conclusion. The incidence of dry socket in our centre was lower than previous reports. Oral hygiene status, lower teeth, and female gender were significantly associated with development of dry socket. Treatment with normal saline irrigation and ZnO eugenol dressings allowed relief of the symptoms. PMID:24987419

  12. Warm Dry Weather Conditions Cause of 2016 Fort McMurray Wild Forest Fire and Associated Air Quality

    NASA Astrophysics Data System (ADS)

    de Azevedo, S. C.; Singh, R. P.; da Silva, E. A., Sr.

    2016-12-01

    The climate change is evident from the increasing temperature around the world, day to day life and increasing frequency of natural hazards. The warm and dry conditions are the cause of frequent forest fires around the globe. Forest fires severely affect the air quality and human health. Multi sensor satellites and dense network of ground stations provide information about vegetation health, meteorological, air quality and atmospheric parameters. We have carried out detailed analysis of satellite and ground data of wild forest fire that occurred in May 2016 in Fort McMurray, Alberta, Canada. This wild forest fire destroyed 10 per cent of Fort McMurray's housing and forced more than 90,000 people to evacuate the surrounding areas. Our results show that the warm and dry conditions with low rainfall were the cause of Fort McMurray wild fire. The air quality parameters (particulate matter, CO, ozone, NO2, methane) and greenhouse gases measured from Atmospheric Infrared Sounder (AIRS) satellite show enhanced levels soon after the forest fire. The emissions from the forest fire affected health of population living in surrounding areas up to 300 km radius.

  13. Water level fluctuations in a tropical reservoir: the impact of sediment drying, aquatic macrophyte dieback, and oxygen availability on phosphorus mobilization.

    PubMed

    Keitel, Jonas; Zak, Dominik; Hupfer, Michael

    2016-04-01

    Reservoirs in semi-arid areas are subject to water level fluctuations (WLF) that alter biogeochemical processes in the sediment. We hypothesized that wet-dry cycles may cause internal eutrophication in such systems when they affect densely vegetated shallow areas. To assess the impact of WLF on phosphorus (P) mobilization and benthic P cycling of iron-rich sediments, we tested the effects of (i) sediment drying and rewetting, (ii) the impact of organic matter availability in the form of dried Brazilian Waterweed (Egeria densa), and (iii) alternating redox conditions in the surface water. In principle, drying led to increased P release after rewetting both in plant-free and in plant-amended sediments. Highest P mobilization was recorded in plant amendments under oxygen-free conditions. After re-establishment of aerobic conditions, P concentrations in surface water decreased substantially owing to P retention by sediments. In desiccated and re-inundated sediments, P retention decreased by up to 30% compared to constantly inundated sediments. We showed that WLF may trigger biochemical interactions conducive to anaerobic P release. Thereby, E. densa showed high P release and even P uptake that was redox-controlled and superimposed sedimentary P cycling. Macrophytes play an important role in the uptake of P from the water but may be also a significant source of P in wet-dry cycles. We estimated a potential for the abrupt release of soluble reactive phosphorus (SRP) by E. densa of 0.09-0.13 g SRP per m(2) after each wet-dry cycle. Released SRP may exceed critical P limits for eutrophication, provoking usage restrictions. Our results have implications for management of reservoirs in semi-arid regions affected by WLF.

  14. The surface area of soil organic matter

    USGS Publications Warehouse

    Chiou, C.T.; Lee, J.-F.; Boyd, S.A.

    1990-01-01

    The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.

  15. Development of automated control system for wood drying

    NASA Astrophysics Data System (ADS)

    Sereda, T. G.; Kostarev, S. N.

    2018-05-01

    The article considers the parameters of convective wood drying which allows changing the characteristics of the air that performs drying at different stages: humidity, temperature, speed and direction of air movement. Despite the prevalence of this type of drying equipment, the main drawbacks of it are: the high temperature and humidity, negatively affecting the working conditions of maintenance personnel when they enter the drying chambers. It makes the automation of wood drying process necessary. The synthesis of a finite state of a machine control of wood drying process is implemented on a programmable logic device Omron.

  16. Effect of diet grinding and pelleting fed either dry or liquid feed on dry matter and pH in the stomach of pigs and the development of gastric ulcers.

    PubMed

    Mösseler, A; Wintermann, M; Sander, S J; Kamphues, J

    2012-12-01

    The physical form of diets has a marked impact on the development of gastric ulcers in pigs. Earlier studies showed effects of fine grinding and pelleting on the integrity of gastric mucosa as well as on local intragastric milieu. This study was conducted to evaluate the effects of dry or liquid feeding on intragastric milieu (DM and pH) in pigs. The 23 piglets were housed individually and fed with test diets and water ad lib for 6 wk. Both experimental diets [coarsely ground diet fed as mash (CM) vs. finely ground pelleted diet (FP)] were identical in ingredients (39.5% wheat, 34% barley, 20% soybean meal) and chemical composition and were either offered dry or in liquid (25% DM) form. At the end of the trial the animals were slaughtered; the stomach was removed and samples were taken from different localizations. Feeding diets dry or liquid had no effect on the pH (P > 0.05). The diet noticeably affected the gastric content. The FP diets resulted in a more liquid chyme (P < 0.05), and the intragastric pH did not differ between regions. Feeding CM caused marked effects of localization regarding pH (highest values: pars nonglandularis; lowest values: fundus). None of the pigs fed CM showed signs of gastric ulcers, but the score was markedly higher (P < 0.05) when pigs were fed FP. Therefore the predominant factor for development of gastric ulcers seems to be the structure (particle size) of the diet.

  17. soil organic matter fractionation

    NASA Astrophysics Data System (ADS)

    Osat, Maryam; Heidari, Ahmad

    2010-05-01

    Carbon is essential for plant growth, due to its effects on other soil properties like aggregation. Knowledge of dynamics of organic matter in different locations in the soil matrix can provide valuable information which affects carbon sequestration and soil the other soil properties. Extraction of soil organic matter (SOM) fractions has been a long standing approach to elucidating the roles of soil organic matter in soil processes. Several kind fractionation methods are used and all provide information on soil organic matter function. Physical fractionation capture the effects on SOM dynamics of the spatial arrangement of primary and secondary organomineral particles in soil while chemical fractionation can not consider the spatial arrangement but their organic fractions are suitable for advanced chemical characterization. Three method of physical separation of soil have been used, sieving, sedimentation and densitometry. The distribution of organic matter within physical fractions of the soil can be assessed by sieving. Sieving separates soil particles based strictly on size. The study area is located on north central Iran, between 35° 41'- 36° 01' N and 50° 42'- 51° 14' E. Mean annual precipitation about 243.8 mm and mean annual air temperature is about 14.95 °C. The soil moisture and temperature regime vary between aridic-thermic in lower altitudes to xeric-mesic in upper altitudes. More than 36 surface soil samples (0-20 cm) were collected according to land-use map units. After preliminary analyzing of samples 10 samples were selected for further analyses in five size fractions and three different time intervals in September, January and April 2008. Fractionation carried out by dry sieving in five classes, 1-2 mm, 0.5-1 mm, 270 μm-0.5mm, 53-270 μm and <53 μm. Organic matter and C/N ratio were determined for all fractions at different time intervals. Chemical fractionation of organic matter also carried out according to Tan (2003), also Mineralogical

  18. Characterization and source identification of organic matter in view of land uses and heavy rainfall in the Lake Shihwa, Korea.

    PubMed

    Lee, Yeonjung; Hur, Jin; Shin, Kyung-Hoon

    2014-07-15

    The characteristics and sources of organic matter in water of the Lake Shihwa, which receives inputs from rural, urban, and industrial areas, were evaluated by examining the biodegradable organic carbon concentration, fluorescence spectra, and carbon and nitrogen isotope ratios, especially during rainy season and dry season. The organic matter transported from rural areas was of refractory nature, while that of industrial origin decomposed rapidly. As compared to the dry season, the organic matter in the rainy season was characterized by a reduced labile fraction. During the dry season, the autochthonous organic matter dominated in the lake, however, the contributions of allochthonous organic sources by industrial and rural areas significantly increased at rainy season. This investigation revealed that the transport of organic matter of anthropogenic origin to the Lake Shihwa was mainly influenced by heavy rainfall. Moreover, each anthropogenic source could differently influence the occurrence of organic matter in water of the Lake Shihwa. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. A sustainable approach towards rural development: dry toilets in Nepal.

    PubMed

    Regmi, M R

    2005-01-01

    Existing inadequate sewerage systems and direct disposal of household waste into water courses has tremendously increased water pollution. Dry toilets are feasible in rural and peri-urban areas to reduce the consumption of costlier water that is required for flushing. As conventional treatment technologies require high investment, and operation and maintenance costs, dry toilets are the only suitable option left for sanitation in the 21st century when working with limited financial resources. To reduce environmental degradation and overcome this problem, the dry toilet is only the realistic option in Nepal. Two reactors, one exposed to sunrays and the other without sunrays, were constructed. In the model with sunrays, it was found that in 48 days of observation faecal coliform presence depleted to 610 cells per gm from the initial value of 7 x 10(10) and volatile organic matter came down from 98.09% to 70.18%. Similarly, in the other model, the destruction of faecal coliform in 65 days was found to be 920 cells/gm while the destruction of organic matter took 75 days. Also, observing from 313 people in a cluster on the pilot project, the annually recovered value of N, P and K was found to be 1565 kg, 125 kg, 344 kg, respectively. This paper deals with the different types of dry ecological toilet, their performance and feasibility study in Nepal, with the full involvement of local people, based on complete laboratory analysis and regular monitoring. Using dry toilets will save 14 LPCD, which is equivalent to 14 MLD and the resulting demand will become only 80 MLD for the urban area of Kathmandu. The result advocates the implementation of ecological dry toilets to save valuable water wasted in flushing, as well as saving the resources needed to treat the waste.

  20. Diallel analysis of provitamin A carotenoid and dry matter content in cassava (Manihot esculenta Crantz)

    PubMed Central

    Esuma, Williams; Kawuki, Robert S.; Herselman, Liezel; Labuschagne, Maryke Tine

    2016-01-01

    Global efforts are underway to biofortify cassava (Manihot esculenta Crantz) with provitamin A carotenoids to help combat dietary vitamin A deficiency afflicting the health of more than 500 million resource-poor people in Sub-Saharan Africa. To further the biofortification initiative in Uganda, a 6×6 diallel analysis was conducted to estimate combining ability of six provitamin A clones and gene actions controlling total carotenoid content (TCC), dry matter content (DMC) in cassava roots and other relevant traits. Fifteen F1 families generated from the diallel crosses were evaluated in two environments using a randomized complete block design. General combining ability (GCA) effects were significant for TCC and DMC, suggesting the relative importance of additive gene effects in controlling these traits in cassava. On the other hand, non-additive effects were predominant for root and shoot weight. MH02-073HS, with the highest level of TCC, was the best general combiner for TCC while NASE 3, a popular white-fleshed variety grown by farmers in Uganda, was the best general combiner for DMC. Such progenitors with superior GCA effects could form the genetic source for future programs targeting cassava breeding for TCC and DMC. A negative correlation was observed between TCC and DMC, which will require breeding strategies to combine both traits for increased adoption of provitamin A cassava varieties. PMID:27795688

  1. Effect of different drying technologies on drying characteristics and quality of red pepper (Capsicum frutescens L.): a comparative study.

    PubMed

    Cao, Zhen-Zhen; Zhou, Lin-Yan; Bi, Jin-Feng; Yi, Jian-Yong; Chen, Qin-Qin; Wu, Xin-Ye; Zheng, Jin-Kai; Li, Shu-Rong

    2016-08-01

    Hot air drying and sun drying are traditional drying technologies widely used in the drying of agricultural products for a long time, but usually recognized as time-consuming or producing lower-quality products. Infrared drying is a rather effective drying technology that has advantages over traditional drying technologies. Thus, in order to investigate the application of infrared drying in the dehydration of red pepper, the drying characteristics and quality of infrared-dried red pepper were compared with those of sun-dried and hot air-dried red pepper. The infrared drying technology significantly enhanced the drying rate when compared with hot air drying and sun drying. Temperature was the most important factor affecting the moisture transfer during the process of infrared drying as well as hot air drying. Effective moisture diffusivity (Deff ) values of infrared drying ranged from 1.58 × 10(-9) to 3.78 × 10(-9) m(2) s(-1) . The Ea values of infrared drying and hot air drying were 42.67 and 44.48 kJ mol(-1) respectively. Infrared drying and hot air drying produced color loss to a similar extent. Relatively higher crispness values were observed for infrared-dried samples. Sun drying produced dried red pepper with the best color when compared with hot air drying and infrared drying. Meanwhile, infrared drying markedly improved the drying rate at the same drying temperature level of hot air drying, and the products obtained had relatively better quality with higher crispness values. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. [Dry toilets: a means of alternative sanitation].

    PubMed

    García-Ubaque, César A; Vaca-Bohórquez, Martha L; García-Ubaque, Juan C

    2014-01-01

    Evaluating dry toilet use in a rural area of Colombia. Fifteen families were selected by convenience sampling from the rural area of a municipality in the Cundinamarca department in Colombia. A dry (composting) toilet was installed in one house and used for demonstration purposes over a five-month period. An ex-post evaluation was made concerning technical and economic matters. A dry toilet is easy to construct/install and has environmental benefits associated with less contamination of water sources reduction and a reduced amount of chemical fertilizer. Dry toilets’ construction and operating costs may represent savings of Col$616973456 (US$308487) in the municipality being studied, compared to the costs involved in conventional toilet use. However, cultural barriers were found regarding their use. A large percentage of households in many countries’ rural sectors do not have a sewerage system for disposing of human waste. This situation creates significant challenges regarding environmental health and ecosystem conservation. Dry toilets represent an environmentally-acceptable solution from a technical and economic perspective; however, work is required concerning social and cultural factors producing cultural perceptions and prejudices about handling excreta to provide the necessary coverage and produce a significant impact on people’s awareness.

  3. Drying of Pigment-Cellulose Nanofibril Substrates

    PubMed Central

    Timofeev, Oleg; Torvinen, Katariina; Sievänen, Jenni; Kaljunen, Timo; Kouko, Jarmo; Ketoja, Jukka A.

    2014-01-01

    A new substrate containing cellulose nanofibrils and inorganic pigment particles has been developed for printed electronics applications. The studied composite structure contains 80% fillers and is mechanically stable and flexible. Before drying, the solids content can be as low as 20% due to the high water binding capacity of the cellulose nanofibrils. We have studied several drying methods and their effects on the substrate properties. The aim is to achieve a tight, smooth surface keeping the drying efficiency simultaneously at a high level. The methods studied include: (1) drying on a hot metal surface; (2) air impingement drying; and (3) hot pressing. Somewhat surprisingly, drying rates measured for the pigment-cellulose nanofibril substrates were quite similar to those for the reference board sheets. Very high dewatering rates were observed for the hot pressing at high moisture contents. The drying method had significant effects on the final substrate properties, especially on short-range surface smoothness. The best smoothness was obtained with a combination of impingement and contact drying. The mechanical properties of the sheets were also affected by the drying method and associated temperature. PMID:28788220

  4. Performance of Clarias gariepinus Fed Dried Brewer's Yeast (Saccharomyces cerevisiae) Slurry in Replacement for Soybean Meal.

    PubMed

    Solomon, Shola Gabriel; Ataguba, Gabriel Arome; Itodo, Gabriel Enemona

    2017-01-01

    Following disparity of earlier results, this study tested the performance of African catfish Clarias gariepinus fed dried brewer's yeast slurry meal (DBYM) based diets. Fingerlings of C. gariepinus with pooled mean initial weight of 1.58 ± 0.01 g were stocked in hapas (1 m × 1 m × 1 m) immersed in an earthen pond at a density of 15 fish per cage. Five diets with increasing substitution of soybean meal with 25%, 50%, 75%, and 100% of dried brewer's yeast and a control without dried brewer's yeast (0% substitution) were evaluated for 8 weeks. Palatability of diets reduced with increasing levels of DBYM. Growth and utilization parameters such as weight gain, feed conversion ratio, protein efficiency ratio, and specific growth rate differed significantly ( p < 0.05) among treated groups. Specific growth rate decreased with increasing substitution while the best feed conversion ratio was obtained in the diet devoid of DBYM. Protein efficiency and utilization decreased with increasing levels of DBYM. Body composition was also affected by inclusion of DBYM with significant differences ( p < 0.05) being observed across the diets. The trend in body composition follows the utilization of the diets. We conclude that the optimal range of inclusion and substitution of soybean meal with DBYM in C. gariepinus feed is between 1% and 14% of dry matter.

  5. Performance of Clarias gariepinus Fed Dried Brewer's Yeast (Saccharomyces cerevisiae) Slurry in Replacement for Soybean Meal

    PubMed Central

    Solomon, Shola Gabriel; Itodo, Gabriel Enemona

    2017-01-01

    Following disparity of earlier results, this study tested the performance of African catfish Clarias gariepinus fed dried brewer's yeast slurry meal (DBYM) based diets. Fingerlings of C. gariepinus with pooled mean initial weight of 1.58 ± 0.01 g were stocked in hapas (1 m × 1 m × 1 m) immersed in an earthen pond at a density of 15 fish per cage. Five diets with increasing substitution of soybean meal with 25%, 50%, 75%, and 100% of dried brewer's yeast and a control without dried brewer's yeast (0% substitution) were evaluated for 8 weeks. Palatability of diets reduced with increasing levels of DBYM. Growth and utilization parameters such as weight gain, feed conversion ratio, protein efficiency ratio, and specific growth rate differed significantly (p < 0.05) among treated groups. Specific growth rate decreased with increasing substitution while the best feed conversion ratio was obtained in the diet devoid of DBYM. Protein efficiency and utilization decreased with increasing levels of DBYM. Body composition was also affected by inclusion of DBYM with significant differences (p < 0.05) being observed across the diets. The trend in body composition follows the utilization of the diets. We conclude that the optimal range of inclusion and substitution of soybean meal with DBYM in C. gariepinus feed is between 1% and 14% of dry matter. PMID:28239492

  6. Prediction of carotenoids, cyanide and dry matter contents in fresh cassava root using NIRS and Hunter color techniques.

    PubMed

    Sánchez, T; Ceballos, H; Dufour, D; Ortiz, D; Morante, N; Calle, F; Zum Felde, T; Domínguez, M; Davrieux, F

    2014-05-15

    Efforts are currently underway to improve carotenoids content in cassava roots through conventional breeding as a strategy to reduce vitamin A deficiency. However, only few samples can be quantified each day for total carotenoids (TCC) and β-carotene (TBC) contents, limiting the gains from breeding. A database with >3000 samples was used to evaluate the potential of NIRS and chromameter devices to predict root quality traits. Maximum TTC and TBC were up to 25.5 and 16.6 μg/g (fresh weight basis), respectively. NIRS predictions were highly satisfactory for dry matter content (DMC, R(2): 0.96), TCC (R(2): 0.92) and TBC (R(2): 0.93). NIRS could also distinguish roots with high or low cyanogenic potential (R(2): 0.86). Hunter color parameters could also be used for predictions, but with lower accuracy than NIRS. NIRS or chromameter improve selection protocols, allowing faster gains from breeding. Results also demonstrate that TBC and DMC can be improved simultaneously (required for the adoption of biofortified cassava). Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. A mouse dry eye model induced by topical administration of the air pollutant particulate matter 10.

    PubMed

    Li, Juan; Tan, Gang; Ding, Xiaoyan; Wang, Yahong; Wu, Anhua; Yang, Qichen; Ye, Lei; Shao, Yi

    2017-12-01

    To introduce a novel dry eye mouse model induced by topical administration of the air pollutant particulate matter 10 (PM 10 ). A total of 60 male BALB/c mice were used in this study and divided into two groups: group A (PBS eye drops, n=30) and group B (PM 10 eye drop group, n=30). Each treatment was dosed four times a day, every time 50ul with the concentration of 5mg/ml PM10, for 14 consecutive days in the right eye. The clinical manifestations of dry eye were measured before therapy and 4, 7 and 14days post-treatment respectively, which included the tear volume, tear break-up (BUT) time, corneal fluorescein staining, rose bengal staining, Lissamine Green staining and inflammatory index. Eye samples were collected on D14 and examined by histologic light microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM), corneal cytokeration 10 (K10) immunnostaining, and tumor necrosis factor-α (TNF-α), NF-κB-p65 and NF-κB Western Blot analysis. At 0d, 7d and 14d, there were no statistical changes in tear volume, BUT after treatment (P>0.05) with PBS in group A. In group B, all items showed statistical differences at each time point (P<0.05). At 14d after therapy, the fluorescein staining score of group B was higher than group A (P<0.05). The score of rose bengal staining and Lissamine Green staining in group B was also higher than that in group A (P<0.05). The number of mean layers of corneal epithelial cells in the group A was significantly lower than that in the group B (P<0.05). TEM and SEM revealed that the number of corneal epithelial microvilli were drastically reduced in group B. The number of corneal chondriosome/desmosomes was also reduced in group B by TEM. PM 10 induced apoptosis in the superficial and basal corneal epithelium, and leaded to abnormal differentiation and proliferation of the ocular surface with higher expression levels of K10 and reduced number of goblet cells in the conjunctival fornix in group B. PM 10

  8. Quality of dry-cured ham compared with quality of dry-cured shoulder.

    PubMed

    Reina, Raquel; Sánchez del Pulgar, José; Tovar, Jorge; López-Buesa, Pascual; García, Carmen

    2013-08-01

    The physicochemical and sensory properties of 30 dry-cured hams and 30 dry-cured shoulders were analyzed to determine the relationships between them. The variables used to characterize both products were: compositional parameters, instrumental texture, amino acid and fatty acid composition, and sensory profile. Despite being products from the same animal and composed mainly of fat, lean, and bone, their morphological differences determine the conditions of the processing time, which produced differences between products in most of the parameters evaluated. Dry-cured shoulders showed lower moisture content and greater instrumental hardness due to their morphology and muscular structure. Besides, these samples showed lower amino acid content according to the shorter ripening time. For the same reason, the dry-cured hams showed higher moisture content, lower instrumental hardness, and higher amino acid content. However, the differences in the muscular structure did not affect the sensory characteristics, which were more related with some compositional parameters, such as chloride, moisture, and amino acid content and with the length of the curing process. © 2013 Extremadura University.

  9. Decreased Central Nervous System Grey Matter Volume (GMV) in Smokers Affects Cognitive Abilities: A Systematic Review.

    PubMed

    Vňuková, Martina; Ptáček, Radek; Raboch, Jiří; Stefano, George B

    2017-04-20

    Although cigarette smoking is a leading cause of preventable mortality, tobacco is consumed by approximately 22% of the adult population worldwide. Smoking is also a risk factor for cardiovascular disease, affects brain processing, and is a recognized risk factor for Alzheimer disease (AD). Tobacco toxins (e.g., nicotine at high levels) inhaled in smoke may cause disorders resulting in preclinical brain changes. Researchers suggest that there are differences in brain volume between smokers and non-smokers. This review examines these differences in brain grey matter volume (GMV). In March/April 2015, MedLine, Embase, and PsycINFO were searched using the terms: "grey matter" AND "voxel-based" AND "smoking" AND "cigarette". The 4 studies analyzed found brain GMV decreases in smokers compared to non-smokers. Furthermore, sex-specific differences were found; while the thalamus and cerebellum were affected in both sexes, decreased GMV in the olfactory gyrus was found only in male smokers. Age-group differences were also found, and these may suggest pre-existing abnormalities that lead to nicotine dependence in younger individuals. Only 1 study found a positive correlation between number of pack-years smoked and GMV. Smoking decreases GMV in most brain areas. This decrease may be responsible for the cognitive impairment and difficulties with emotional regulation found in smokers compared with non-smokers.

  10. Altered precipitation regime affects the function and composition of soil microbial communities on multiple time scales.

    PubMed

    Zeglin, L H; Bottomley, P J; Jumpponen, A; Rice, C W; Arango, M; Lindsley, A; McGowan, A; Mfombep, P; Myrold, D D

    2013-10-01

    Climate change models predict that future precipitation patterns will entail lower-frequency but larger rainfall events, increasing the duration of dry soil conditions. Resulting shifts in microbial C cycling activity could affect soil C storage. Further, microbial response to rainfall events may be constrained by the physiological or nutrient limitation stress of extended drought periods; thus seasonal or multiannual precipitation regimes may influence microbial activity following soil wet-up. We quantified rainfall-driven dynamics of microbial processes that affect soil C loss and retention, and microbial community composition, in soils from a long-term (14-year) field experiment contrasting "Ambient" and "Altered" (extended intervals between rainfalls) precipitation regimes. We collected soil before, the day following, and five days following 2.5-cm rainfall events during both moist and dry periods (June and September 2011; soil water potential = -0.01 and -0.83 MPa, respectively), and measured microbial respiration, microbial biomass, organic matter decomposition potential (extracellular enzyme activities), and microbial community composition (phospholipid fatty acids). The equivalent rainfall events caused equivalent microbial respiration responses in both treatments. In contrast, microbial biomass was higher and increased after rainfall in the Altered treatment soils only, thus microbial C use efficiency (CUE) was higher in Altered than Ambient treatments (0.70 +/- 0.03 > 0.46 +/- 0.10). CUE was also higher in dry (September) soils. C-acquiring enzyme activities (beta-glucosidase, cellobiohydrolase, and phenol oxidase) increased after rainfall in moist (June), but not dry (September) soils. Both microbial biomass C:N ratios and fungal:bacterial ratios were higher at lower soil water contents, suggesting a functional and/or population-level shift in the microbiota at low soil water contents, and microbial community composition also differed following wet

  11. Categorization of endometritis and its association with ovarian follicular growth and ovulation, reproductive performance, dry matter intake, and milk yield in dairy cattle.

    PubMed

    Gobikrushanth, M; Salehi, R; Ambrose, D J; Colazo, M G

    2016-10-15

    The objectives were to evaluate the effect of different categories of endometritis on follicular growth and ovulation, reproductive performance, dry matter intake (DMI), and milk yield (MY) in dairy cows. Lactating Holstein cows (n = 126) were examined for endometritis on 25 ± 1 day postpartum (DPP) using vaginoscopy, transrectal ultrasonography, and endometrial cytology to determine the presence and type of vaginal discharge, uterine fluid, and proportion of polymorphonuclear (PMN) cells, respectively. Cows that had mucopurulent vaginal discharge and/or presence of uterine fluid, no mucopurulent vaginal discharge or uterine fluid but 8% or more PMN, and mucopurulent vaginal discharge and/or uterine fluid and 8% or more of PMN were defined as having clinical (CLIN; n = 45), cytological (CYTO; n = 15), and clinical and cytological (CLINCYTO; n = 30) endometritis, respectively. Cows that had none of the above pathological conditions were classified as unaffected (UNAF; n = 36). The diameter of the largest follicle at first examination, intervals from calving to first dominant (diameter = 10 mm) follicle, preovulatory size (diameter = 16 mm) follicle, ovulation, presence of follicular cyst, and proportion of ovular cows at 35 and 65 DPP were recorded as the measures of follicular growth and ovulation. None of the ovarian follicular parameters analyzed was affected by categories of endometritis. The first service conception rate tended (P = 0.06) to differ among categories of endometritis; cows that had CLIN and CLINCYTO endometritis were four times less likely to conceive to the first insemination compared to UNAF cows. Cows that had CLIN (hazard ratio: 0.52) and CLINCYTO (hazard ratio: 0.40) endometritis had decreased likelihood of pregnancy at 150 DPP compared to UNAF cows. Similarly, cows diagnosed as having CLINCYTO endometritis had decreased likelihood (hazard ratio: 0.48) of pregnancy at 250 DPP compared to UNAF cows. The DMI and MY up to 5

  12. Enhanced summer warming reduces fungal decomposer diversity and litter mass loss more strongly in dry than in wet tundra.

    PubMed

    Christiansen, Casper T; Haugwitz, Merian S; Priemé, Anders; Nielsen, Cecilie S; Elberling, Bo; Michelsen, Anders; Grogan, Paul; Blok, Daan

    2017-01-01

    Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface-incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open-top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by

  13. Effects of the Application of Digestates from Wet and Dry Anaerobic Fermentation to Japanese Paddy and Upland Soils on Short-Term Nitrification

    PubMed Central

    Sawada, Kozue; Toyota, Koki

    2015-01-01

    Wet and dry anaerobic fermentation processes are operated for biogas production from organic matter, resulting in wet and dry digestates as by-products, respectively. The application of these digestates to soil as fertilizer has increased in recent years. Therefore, we herein compared the effects of applying wet digestates (pH 8.2, C/N ratio 4.5), dry digestates (pH 8.8, C/N ratio 23.4), and a chemical fertilizer to Japanese paddy and upland soils on short-term nitrification under laboratory aerobic conditions. Chloroform-labile C, an indicator of microbial biomass, was only minimally affected by these applications, indicating that a small amount of labile N was immobilized by microbes. All applications led to rapid increases in NO3 -N contents in both soils, and ammonia-oxidizing bacteria, but not archaea may play a critical role in net nitrification in the amended soils. The net nitrification rates for both soils were the highest after the application of dry digestates, followed by wet digestates and then the chemical fertilizer in order of decreasing soil pH. These results suggest that the immediate effects of applying digestates, especially dry digestates with the highest pH, on nitrate leaching need to be considered when digestates are used as alternative fertilizers. PMID:25740173

  14. Effects of the application of digestates from wet and dry anaerobic fermentation to Japanese paddy and upland soils on short-term nitrification.

    PubMed

    Sawada, Kozue; Toyota, Koki

    2015-01-01

    Wet and dry anaerobic fermentation processes are operated for biogas production from organic matter, resulting in wet and dry digestates as by-products, respectively. The application of these digestates to soil as fertilizer has increased in recent years. Therefore, we herein compared the effects of applying wet digestates (pH 8.2, C/N ratio 4.5), dry digestates (pH 8.8, C/N ratio 23.4), and a chemical fertilizer to Japanese paddy and upland soils on short-term nitrification under laboratory aerobic conditions. Chloroform-labile C, an indicator of microbial biomass, was only minimally affected by these applications, indicating that a small amount of labile N was immobilized by microbes. All applications led to rapid increases in NO3 -N contents in both soils, and ammonia-oxidizing bacteria, but not archaea may play a critical role in net nitrification in the amended soils. The net nitrification rates for both soils were the highest after the application of dry digestates, followed by wet digestates and then the chemical fertilizer in order of decreasing soil pH. These results suggest that the immediate effects of applying digestates, especially dry digestates with the highest pH, on nitrate leaching need to be considered when digestates are used as alternative fertilizers.

  15. Effects of nitrogen fertilization strategies on nitrogen use efficiency in physiology, recovery, and agronomy and redistribution of dry matter accumulation and nitrogen accumulation in two typical rice cultivars in Zhejiang, China.

    PubMed

    Xie, Wen-xia; Wang, Guang-huo; Zhang, Qi-chun; Guo, Hai-chao

    2007-03-01

    Field experiments were conducted in farmers' rice fields in 2001 and 2002 to study the effects of nitrogen (N) management strategies on N use efficiency in recovery (RE), agronomy (AE) and physiology (PE) and redistribution of dry matter accumulation (DMA) and nitrogen accumulation (NA) in two typical rice cultivars in Jinhua, Zhejiang Province. This study aimed mainly at identifying the possible causes of poor fertilizer N use efficiency (NUE) of rice in Zhejiang by comparing farmers' fertilizer practice (FFP) with advanced site-specific nutrient management (SSNM) and real-time N management (RTNM). The results showed that compared to FFP, SSNM and RTNM reduced DMA and NA before panicle initiation and increased DMA and NA at post-flowering. There is no significant difference between SSNM and FFP in post-flowering dry matter redistribution (post-DMR) and post-flowering nitrogen redistribution (post-NR). These results suggest that high input rate of fertilizer N and improper fertilizer N timing are the main factors causing low NUE of irrigated rice in the farmer's routine practice of Zhejiang. With SSNM, about 15% of the current total N input in direct-seeding early rice and 45% in single rice could be reduced without yield loss in Zhejiang, China.

  16. Improved methods for the determination of drying conditions and fraction insoluble solids (FIS) in biomass pretreatment slurry

    DOE PAGES

    Sluiter, Amie; Sluiter, Justin; Wolfrum, Ed; ...

    2016-05-20

    Accurate and precise chemical characterization of biomass feedstocks and process intermediates is a requirement for successful technical and economic evaluation of biofuel conversion technologies. The uncertainty in primary measurements of the fraction insoluble solid (FIS) content of dilute acid pretreated corn stover slurry is the major contributor to uncertainty in yield calculations for enzymatic hydrolysis of cellulose to glucose. This uncertainty is propagated through process models and impacts modeled fuel costs. The challenge in measuring FIS is obtaining an accurate measurement of insoluble matter in the pretreated materials, while appropriately accounting for all biomass derived components. Three methods were testedmore » to improve this measurement. One used physical separation of liquid and solid phases, and two utilized direct determination of dry matter content in two fractions. We offer a comparison of drying methods. Lastly, our results show utilizing a microwave dryer to directly determine dry matter content is the optimal method for determining FIS, based on the low time requirements and the method optimization done using model slurries.« less

  17. Characteristics and model of sludge adhesion during thermal drying.

    PubMed

    Li, Huan; Zou, Shuxin; Li, Yangyang; Jin, Yiying

    2013-01-01

    During sludge thermal drying, the sludge adhered on the heated surface of drying equipments may affect drying efficiency. Sludge thermal drying experiments were conducted to investigate the effect of different drying conditions on sludge adhesion. The mass of sludge adhered on the heated surface (dryer wall) reached the maximum when sludge water content was about 60%. A high drying temperature would result in more sludge adhered on the heated surface in the temperature range of 80-160 degrees C. The convection heating and rougher surface would also lead to more sludge adhered on the heated surface. The relation between the maximum mass of adherent sludge and drying temperatures could be described by an exponential equation.

  18. Mechanisms and implications of a type IV functional response for short-term intake rate of dry matter in large mammalian herbivores.

    PubMed

    Mezzalira, Jean C; Bonnet, Olivier J F; Carvalho, Paulo C de F; Fonseca, Lidiane; Bremm, Carolina; Mezzalira, Carlos C; Laca, Emilio A

    2017-09-01

    The functional response (i.e. the relationship between consumers' intake rate and resource density) is central in plant-herbivore interactions. Its shape and the biological processes leading to it have significant implications for both foraging theory and ecology of grazing systems. A type IV functional response (i.e. dome-shaped relationship) of short-term intake rate of dry matter (intake while grazing) has rarely been reported for large herbivores and the conditions that can lead to it are poorly understood. We report a type IV functional response observed in heifers grazing monocultures of Cynodon sp. and Avena strigosa. The mechanisms and consequences of this type of functional response for grazed system dynamics are discussed. Intake rate was higher at intermediate than at short or tall sward heights in both grass species. The type IV functional response resulted from changes in bite mass instead of a longer time needed to encounter and process bites. Thus, the decrease of intake rate of dry matter in tall swards is not explained by a shift from process 3 (potential bites are concentrated and apparent) to process 2 (potential bites are apparent but dispersed, Spalinger & Hobbs 1992). Bite mass was smaller in tall than in intermediate swards due to a reduction of bite volume possibly caused by the greater proportion of stem and sheath acting as a physical barrier to bite formation. It is generally accepted that potential bites are abundant and apparent in most grassland and meadow systems, as they were in the present experiments. Therefore, a type IV response of intake rate not directly related to digestive constraints may determine the dynamics of intake and defoliation under a much larger set of conditions than previously thought. These results have implications for foraging theory and stability of grazing systems. For example, if animals prefer patches of intermediate stature that yield the highest intake rate, grazing should lead to the widely observed

  19. Ketoprofen spray-dried microspheres based on Eudragit RS and RL: study of the manufacturing parameters.

    PubMed

    Rassu, Giovanna; Gavini, Elisabetta; Spada, Gianpiera; Giunchedi, Paolo; Marceddu, Salvatore

    2008-11-01

    The preparation of ketoprofen spray-dried microspheres can be affected by the long drug recrystallization time. Polymer type and drug-polymer ratio as well as manufacturing parameters affect the preparation. The purpose of this work was to evaluate the possibility to obtain ketoprofen spray-dried microspheres using the Eudragit RS and RL; the influence of the spray-drying parameters on morphology, dimension, and physical stability of microspheres was studied. Ketoprofen microspheres based on Eudragit blend can be prepared by spray-drying and the nebulization parameters do not influence significantly particle properties; nevertheless, they can be affected by drying and storage methods. No effect of the container material is found.

  20. Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying.

    PubMed

    Jiang, Hao; Zhang, Min; Mujumdar, Arun S; Lim, Rui-Xin

    2014-07-01

    To overcome the flaws of high energy consumption of freeze drying (FD) and the non-uniform drying of microwave freeze drying (MFD), pulse-spouted microwave vacuum drying (PSMVD) was developed. The results showed that the drying time can be dramatically shortened if microwave was used as the heating source. In this experiment, both MFD and PSMVD could shorten drying time by 50% as compared to the FD process. Depending on the heating method, MFD and PSMVD dried banana cubes showed trends of expansion while FD dried samples demonstrated trends of shrinkage. Shrinkage also brought intensive structure and highest fracturability of all three samples dried by different methods. The residual ascorbic acid content of PSMVD dried samples can be as high as in FD dried samples, which were superior to MFD dried samples. The tests confirmed that PSMVD could bring about better drying uniformity than MFD. Besides, compared with traditional MFD, PSMVD can provide better extrinsic feature, and can bring about improved nutritional features because of the higher residual ascorbic acid content. © 2013 Society of Chemical Industry.

  1. The sources of trace element pollution of dry depositions nearby a drinking water source.

    PubMed

    Guo, Xinyue; Ji, Hongbing; Li, Cai; Gao, Yang; Ding, Huaijian; Tang, Lei; Feng, Jinguo

    2017-02-01

    Miyun Reservoir is one of the most important drinking water sources for Beijing. Thirteen atmospheric PM sampling sites were established around this reservoir to analyze the mineral composition, morphological characteristics, element concentration, and sources of atmospheric PM pollution, using transmission electron microscope, X-ray diffraction, and inductively coupled plasma mass spectrometry analyses. The average monthly dry deposition flux of aerosols was 15.18 g/m 2 , with a range of 5.78-47.56 g/m 2 . The maximum flux season was winter, followed by summer, autumn, and spring. Zn and Pb pollution in this area was serious, and some of the sample sites had Cr, Co, Ni, and Cu pollution. Deposition fluxes of Zn/Pb in winter and summer reached 99.77/143.63 and 17.04/33.23 g/(hm 2 month), respectively. Principal component analysis showed two main components in the dry deposition; the first was Cr, Co, Ni, Cu, and Zn, and the other was Pb and Cd. Principal sources of the trace elements were iron mining and other anthropogenic activities in the surrounding areas and mountainous area north of the reservoir. Mineralogy analysis and microscopic conformation results showed many iron minerals and some unweathered minerals in dry deposition and atmospheric particulate matter, which came from an iron ore yard in the northern mountainous area of Miyun County. There was possible iron-rich dry deposition into Miyun Reservoir, affecting its water quality and harming the health of people living in areas around the reservoir and Beijing.

  2. Nitrogen and dry-matter partitioning in soybean plants during onset of and recovery from nitrogen stress

    NASA Technical Reports Server (NTRS)

    Tolley-Henry, L.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1986-01-01

    The study tested the hypothesis that resupplying nitrogen after a period of nitrogen stress leads to restoration of the balance between root and shoot growth and normal functional activity. Nonnodulated soybean plants were grown hydroponically for 14 days with 1.0 mM NO3- in a complete nutrient solution. One set of plants was continued on the complete nutrient solution for 25 days; a second set was given 0.0 mM NO3- for 25 days; and the third set was given 0.0 mM NO3- for 10 days followed by transfer to the complete solution with 1.0 mM NO3- for 15 days. In continuously nitrogen-stressed plants, emergence and expansion of main-stem and branch leaves were severely inhibited as low nitrogen content limited further growth. This was followed by a shift in partitioning of dry matter from the leaves to the roots, resulting in an initial stimulation of root growth and a decreased shoot:root ratio. Reduced nitrogen also was redistributed from the leaves into the stem and roots. When nitrogen stress was relieved, leaf initiation and expansion were renewed. With the restoration of the balance between root and shoot function, the shoot:root ratio and distribution of reduced nitrogen within the plant organs returned to levels similar to those of nonstressed plants.

  3. Evaluation of different drying temperatures on physico-chemical and antioxidant properties of water-soluble tomato powders and on their use in pork patties.

    PubMed

    Kim, Hyeong Sang; Chin, Koo Bok

    2016-02-01

    Tomato and tomato products provide various antioxidant activities, which could be changed by the processing method. This study was performed to evaluate the antioxidant activity of water-soluble tomato powder (WSTP) as affected by different oven temperatures (60, 80 and 100°C), and to evaluate the physico-chemical properties and antioxidative activities of pork patties containing these powders. The contents of total phenolic compounds of WSTP ranged from 22.2 to 69.6 g kg(-1) dry matter. The antioxidant activities increased significantly with increasing drying temperatures (P < 0.05). The physico-chemical properties of pork patties containing tomato powders were also evaluated. WSTP at 100°C showed the highest redness value compared to those dried at 60 and 80°C. Lipid oxidation of pork patties was retarded by 7 days with the addition of WSTP. In particular, pork patties containing WSTP showed antimicrobial activity at 14 days of refrigerated storage, regardless of drying temperatures. WSTP, especially prepared at 100°C, could be used as a natural antioxidant and antimicrobial agent in meat products. © 2015 Society of Chemical Industry.

  4. Bacterial communities and their association with the bio-drying of sewage sludge.

    PubMed

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Yu, Jie

    2016-03-01

    Bio-drying is a technology that aims to remove water from a material using the microbial heat originating from organic matter degradation. However, the evolution of bacterial communities that are associated with the drying process has not been researched systematically. This study was performed to investigate the variations of bacterial communities and the relationships among bacterial communities, water evaporation, water generation, and organic matter degradation during the bio-drying of sewage sludge. High-throughput pyrosequencing was used to analyze the bacterial communities, while water evaporation and water generation were determined based on an in situ water vapor monitoring device. The values of water evaporation, water generation, and volatile solids degradation were 412.9 g kg(-1) sewage sludge bio-drying material (SSBM), 65.0 g kg(-1) SSBM, and 70.2 g kg(-1) SSBM, respectively. Rarefaction curves and diversity indices showed that bacterial diversity plummeted after the temperature of the bio-drying pile dramatically increased on d 2, which coincided with a remarkable increase of water evaporation on d 2. Bacterial diversity increased when the pile cooled. During the thermophilic phase, in which Acinetobacter and Bacillus were the dominant genera, the rates of water evaporation, water generation, and VS degradation peaked. These results implied that the elevated temperature reshaped the bacterial communities, which played a key role in water evaporation, and the high temperature also contributed to the effective elimination of pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. New Perspectives on Dry Eye Definition and Diagnosis: A Consensus Report by the Asia Dry Eye Society.

    PubMed

    Tsubota, Kazuo; Yokoi, Norihiko; Shimazaki, Jun; Watanabe, Hitoshi; Dogru, Murat; Yamada, Masakazu; Kinoshita, Shigeru; Kim, Hyo-Myung; Tchah, Hung-Won; Hyon, Joon Young; Yoon, Kyung-Chul; Seo, Kyoung Yul; Sun, Xuguang; Chen, Wei; Liang, Lingyi; Li, Mingwu; Liu, Zuguo

    2017-01-01

    For the last 20 years, a great amount of evidence has accumulated through epidemiological studies that most of the dry eye disease encountered in daily life, especially in video display terminal (VDT) workers, involves short tear film breakup time (TFBUT) type dry eye, a category characterized by severe symptoms but minimal clinical signs other than short TFBUT. An unstable tear film also affects the visual function, possibly due to the increase of higher order aberrations. Based on the change in the understanding of the types, symptoms, and signs of dry eye disease, the Asia Dry Eye Society agreed to the following definition of dry eye: "Dry eye is a multifactorial disease characterized by unstable tear film causing a variety of symptoms and/or visual impairment, potentially accompanied by ocular surface damage." The definition stresses instability of the tear film as well as the importance of visual impairment, highlighting an essential role for TFBUT assessment. This paper discusses the concept of Tear Film Oriented Therapy (TFOT), which evolved from the definition of dry eye, emphasizing the importance of a stable tear film. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  6. Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake.

    PubMed

    Jørgensen, Henning; Sanadi, Anand R; Felby, Claus; Lange, Niels Erik Krebs; Fischer, Morten; Ernst, Steffen

    2010-05-01

    Palm kernel press cake (PKC) is a residue from palm oil extraction presently only used as a low protein feed supplement. PKC contains 50% fermentable hexose sugars present in the form of glucan and mainly galactomannan. This makes PKC an interesting feedstock for processing into bioethanol or in other biorefinery processes. Using a combination of mannanase, beta-mannosidase, and cellulases, it was possible without any pretreatment to hydrolyze PKC at solid concentrations of 35% dry matter with mannose yields up to 88% of theoretical. Fermentation was tested using Saccharomyces cerevisiae in both a separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) setup. The hydrolysates could readily be fermented without addition of nutrients and with average fermentation yields of 0.43 +/- 0.02 g/g based on consumed mannose and glucose. Employing SSF, final ethanol concentrations of 70 g/kg was achieved in 216 h, corresponding to an ethanol yield of 70% of theoretical or 200 g ethanol/kg PKC. Testing various enzyme mixtures revealed that including cellulases in combination with mannanases significantly improved ethanol yields. Processing PKC to ethanol resulted in a solid residue enriched in protein from 17% to 28%, a 70% increase, thereby potentially making a high-protein containing feed supplement.

  7. Selection signatures in four lignin genes from switchgrass populations divergently selected for in vitro dry matter digestibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shiyu; Kaeppler, Shawn M.; Vogel, Kenneth P.

    Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four locimore » in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. As a result, this study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality.« less

  8. Selection signatures in four lignin genes from switchgrass populations divergently selected for in vitro dry matter digestibility

    DOE PAGES

    Chen, Shiyu; Kaeppler, Shawn M.; Vogel, Kenneth P.; ...

    2016-11-28

    Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four locimore » in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. As a result, this study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality.« less

  9. Cultivar and Year Rather than Agricultural Practices Affect Primary and Secondary Metabolites in Apple Fruit

    PubMed Central

    Renard, Catherine M. G. C.; Plenet, Daniel; Gautier, Hélène; Touloumet, Line; Girard, Thierry; Simon, Sylvaine

    2015-01-01

    Many biotic and abiotic parameters affect the metabolites involved in the organoleptic and health value of fruits. It is therefore important to understand how the growers' decisions for cultivar and orchard management can affect the fruit composition. Practices, cultivars and/or year all might participate to determine fruit composition. To hierarchize these factors, fruit weight, dry matter, soluble solids contents, titratable acidity, individual sugars and organics acids, and phenolics were measured in three apple cultivars (‘Ariane’, ‘Melrose’ and ‘Smoothee’) managed under organic, low-input and conventional management. Apples were harvested at commercial maturity in the orchards of the cropping system experiment BioREco at INRA Gotheron (Drôme, 26) over the course of three years (2011, 2012 and 2013). The main factors affecting primary and secondary metabolites, in both apple skin and flesh, were by far the cultivar and the yearly conditions, while the management system had a very limited effect. When considering the three cultivars and the year 2011 to investigate the effect of the management system per se, only few compounds differed significantly between the three systems and in particular the total phenolic content did not differ significantly between systems. Finally, when considering orchards grown in the same pedoclimatic conditions and of the same age, instead of the usual organic vs. conventional comparison, the effect of the management system on the apple fruit quality (Fruit weight, dry matter, soluble solids content, titratable acidity, individual sugars, organic acids, and phenolics) was very limited to non-significant. The main factors of variation were the cultivar and the year of cropping rather than the cropping system. More generally, as each management system (e.g. conventional, organic…) encompasses a great variability of practices, this highlights the importance of accurately documenting orchard practices and design beside the

  10. Dry mouth and older people.

    PubMed

    Thomson, W M

    2015-03-01

    Dry mouth is more common among older people than in any other age group. Appropriate definition and accurate measurement of dry mouth is critical for better understanding, monitoring and treatment of the condition. Xerostomia is the symptom(s) of dry mouth; it can be measured using methods ranging from single questions to multi-item summated rating scales. Low salivary flow (known as salivary gland hypofunction, or SGH) must be determined by measuring that flow. The relationship between SGH and xerostomia is not straightforward, but both conditions are common among older people, and they affect sufferers' day-to-day lives in important ways. The major risk factor for dry mouth is the taking of particular medications, and older people take more of those than any other age group, not only for symptomatic relief of various age-associated chronic diseases, but also in order to reduce the likelihood of complications which may arise from those conditions. The greater the number taken, the greater the associated anticholinergic burden, and the more likely it is that the individual will suffer from dry mouth. Since treating dry mouth is such a challenge for clinicians, there is a need for dentists, doctors and pharmacists to work together to prevent it occurring. © 2015 Australian Dental Association.

  11. Heavy metals in atmospheric surrogate dry deposition

    PubMed

    Morselli; Cecchini; Grandi; Iannuccilli; Barilli; Olivieri

    1999-02-01

    This paper describes a methodological approach for the assessment of the amount of surrogate dry deposition of several toxic heavy metals (Cd, Cr, Cu, Ni, Pb, V, Zn) associated with atmospheric particulate matter at ground level. The objectives of the study were twofold: i) the evaluation of several techniques for the digestion of dry deposition samples for trace metal analysis; ii) the comparison of the results from two samplers with different collecting surfaces. A dry solid surface sampler (DRY sampler, Andersen--USA) and a water layer surface sampler (DAS sampler--MTX Italy) were employed. The samples were collected over a one-year period in an urban site of Bologna (northern Italy). A description is given of the complete procedure, from sampling to data elaboration, including sample storage, digestion and analytical methods. According to the results obtained with three different digestion techniques (Teflon bomb, microwave digester and Teflon flask with vapour cooling system), the highest recovery rate was achieved by the Teflon bomb procedure employing an NBS 1648 Standard Reference Material; 90-95% of the elements considered were recovered by dissolution in a pressurized Teflon bomb with an HNO3-HF mixture. Given these results, the technique was adopted for dry deposition sample digestion. On the basis of the amount of heavy metals measured as monthly deposition fluxes (microg/m2), the collecting efficiency of the DAS sampler for a number of elements was found to be as much as two to three times greater than that of the DRY sampler.

  12. Relationship between environmental factors, dry matter loss and mycotoxin levels in stored wheat and maize infected with Fusarium species.

    PubMed

    Mylona, Kalliopi; Sulyok, Michael; Magan, Naresh

    2012-01-01

    This study examined the relationship between storage environmental factors (water activity (a(w)) (0.89-0.97) and temperature (15°C-30°C)), colonisation of wheat and maize by Fusarium graminearum and F. verticillioides respectively and the dry matter losses (DMLs) caused and quantified by contamination with deoxynivalenol (DON), zearalenone (ZEA) and fumonisins (FUMs) during storage. Fungal growth was assessed by the amount of CO(2) produced under different interacting conditions of a(w) and temperature. DMLs were quantified using the cumulative CO(2) data, and these were shown to increase as temperature and a(w) increased. The amount of DON, ZEA (wheat for human consumption) and FUMs (feed maize) produced was significantly affected by the storage conditions. The three toxins however showed different patterns of production. Optimum for DON was at the wettest conditions (0.97a(w)) and the highest temperature assessed (30°C), whereas for ZEA this shifted to 25°C. FUMs were produced in higher amounts in maize at 30°C and 0.97a(w); however, at intermediate a(w) levels (0.955a(w)), the highest production occurred at 25°C followed by 20°C. Polynomial models were developed for the effect of the storage factors on DMLs and toxin production. DMLs under different environmental conditions were significantly correlated with DON and FUMs. DON contamination was above the EU limits in at least 80% of the wheat samples with DMLs >1%, whereas at least 70% of the same samples contained ZEA above the respective EU legislative limits. Similarly, at least 75% of the maize samples with DMLs ≥ 0.9% exceeded the EU limits for the sum of FUMs in feed. These results show that it may be possible to use temporal CO(2) production during storage of grains as an indicator of the level of contamination of the grain with mycotoxins.

  13. 10 CFR 603.600 - Administrative matters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Administrative matters. 603.600 Section 603.600 Energy... Affecting Participants' Financial, Property, and Purchasing Systems § 603.600 Administrative matters. This subpart addresses “systemic” administrative matters that place requirements on the operation of a...

  14. 10 CFR 603.600 - Administrative matters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Administrative matters. 603.600 Section 603.600 Energy... Affecting Participants' Financial, Property, and Purchasing Systems § 603.600 Administrative matters. This subpart addresses “systemic” administrative matters that place requirements on the operation of a...

  15. 10 CFR 603.600 - Administrative matters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Administrative matters. 603.600 Section 603.600 Energy... Affecting Participants' Financial, Property, and Purchasing Systems § 603.600 Administrative matters. This subpart addresses “systemic” administrative matters that place requirements on the operation of a...

  16. 10 CFR 603.600 - Administrative matters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Administrative matters. 603.600 Section 603.600 Energy... Affecting Participants' Financial, Property, and Purchasing Systems § 603.600 Administrative matters. This subpart addresses “systemic” administrative matters that place requirements on the operation of a...

  17. 10 CFR 603.600 - Administrative matters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Administrative matters. 603.600 Section 603.600 Energy... Affecting Participants' Financial, Property, and Purchasing Systems § 603.600 Administrative matters. This subpart addresses “systemic” administrative matters that place requirements on the operation of a...

  18. The amount of food ingested in a single meal by rainbow trout offered chopped herring, dry and wet diets

    PubMed

    Ruohonen; Grove; McIlroy

    1997-07-01

    Two-year-old 1·5-kg rainbow trout were held in cages and conditioned by feeding either on low-fat chopped herring (H trout) or dry pellets (P trout) for 15 weeks. Their satiation amounts were then determined under standard conditions. On a wet weight basis H trout ate 2·5-3·5 times more food than P trout; this was sufficient to compensate for the high water content of herring and thereby maintain the dry matter intake. When P trout were offered herring (PH trout) they consumed more food than when offered dry pellets but not as much as H trout. Stomach capacity restricted the intake and their dry matter intake was reduced by c. 40%. When H trout were offered dry pellets (HP trout) they adjusted their intake immediately close to the level of P trout although their larger stomachs could have accommodated more than twice this volume of dry food. The return of appetite after a satiation meal was almost linear with time. Appetite increased at c. 556 mg g-1 body weight h-1 for H trout and at 142 mg g-1 bw h-1 for P trout. The return of appetite in PH trout was significantly slower (c. 370 mg g-1 bw h-1) than in H trout; the previous dietary history of the PH trout limited their capacity to process larger volumes of wet food in a single meal. Fish offered dry diet (P and HP trout) had similar rates of appetite return despite their previous feeding history suggesting that the property of the dry feed itself might limit meal size. The total gastric emptying time of diets of similar dry matter content (with and without large amounts of water) was similar, but the delay time before gastric emptying starts tended to be longer for dry diets. Dry pellets appear to impose a demand for water that prolongs the gastric delay. This water demand is met partly by drinking since the trout fed on dry pellets drank significantly more (436±189 mg kg-1 h-1) than unfed and herring-fed trout which drank little or not at all (65±113 and 70±66 mg kg-1 h

  19. A randomised controlled trial comparing fresh, dried, and dried-then-rehydrated temporalis fascia in myringoplasty.

    PubMed

    Loock, J W; Naude, N

    2008-04-01

    To determine whether the way in which temporalis fascia is treated during myringoplasty affects the rate of successful perforation closure. A randomised controlled trial. A tertiary ENT Department within the Tygerberg Academic Hospital. One hundred and fifty patients with perforations between 30% and 70% of the surface area of the eardrum undergoing elective myringoplasty were randomised into three groups by the way in which the temporalis fascia used was treated prior to insertion: fresh fascia; dried fascia; and fascia which was dried and then rehydrated. The outcome measure was intactness of the tympanic membrane 6 weeks after surgery. Preoperative and follow-up audiometry was obtained, but was not evaluated as an outcome measure. Successful closure of the perforation was achieved in 89% in the dried fascia group (42 of 47 patients), 84% in the fresh fascia group (37 of 44 patients), and 85% in the dried and rehydrated group (39 of 46 patients). The study showed no statistically significant difference between the three groups (P = 0.728). The study would have to had more than 800 patients in each group to have the power to show a 5% difference in take rates. While the dessication of temporalis fascia prior to use in myringoplasy results in degeneration of cellular and stromal elements histologically, this does not affect the successful closure of perforations. Clinicians should feel free to prepare the fascia in whichever way they find easiest to work with.

  20. Effects of wheat dried distillers' grains with solubles and cinnamaldehyde on in vitro fermentation and protein degradation using the Rusitec technique.

    PubMed

    Lia, Yangling; He, Maolong; Li, Chun; Forster, Robert; Beauchemin, Karen Anne; Yang, Wenzhu

    2012-04-01

    This study was conducted to evaluate the effect of wheat dried distillers' grains with solubles (DDGS) and cinnamaldehyde (CIN) on in vitro fermentation and microbial profiles using the rumen simulation technique. The control substrate (10% barley silage, 85% barley grain and 5% supplement, on dry matter basis) and the wheat DDGS substrate (30% wheat DDGS replaced an equal portion of barley grain) were combined with 0 and 300 mg CIN/l of culture fluid. The inclusion of DDGS increased (p < 0.05) the concentration of volatile fatty acids (VFA) and the molar proportion of acetate and propionate. Dry matter disappearance (p = 0.03) and production of bacterial protein (p < 0.01) were greater, whereas the disappearances of crude protein (CP) and neutral detergent fibre were less (p < 0.01) for the DDGS than for the control substrate. With addition of CIN, concentration of total VFA decreased and fermentation pattern changed to greater acetate and less propionate proportions (p < 0.01). The CIN reduced (p < 0.01) methane production and CP degradability. The copy numbers of Fibrobacter, Prevotella and Archaea were not affected by DDGS but were reduced (p < 0.05) by CIN. The results indicate that replacing barley grain by DDGS increased nutrient fermentability and potentially increase protein flows to the intestine. Supplementation of high-grain substrates with CIN reduced methane production and potentially increased the true protein reaching the small intestine; however, overall reduction of feed fermentation may lower the feeding value of a high-grain diet.

  1. Clumpy cold dark matter

    NASA Technical Reports Server (NTRS)

    Silk, Joseph; Stebbins, Albert

    1993-01-01

    A study is conducted of cold dark matter (CDM) models in which clumpiness will inhere, using cosmic strings and textures suited to galaxy formation. CDM clumps of 10 million solar mass/cu pc density are generated at about z(eq) redshift, with a sizable fraction surviving. Observable implications encompass dark matter cores in globular clusters and in galactic nuclei. Results from terrestrial dark matter detection experiments may be affected by clumpiness in the Galactic halo.

  2. Relationship soil-water-plant after the dry season in dry Mediterranean areas

    NASA Astrophysics Data System (ADS)

    Hueso-González, P.; Jiménez-Donaire, V.; Ruiz-Sinoga, J. D.

    2012-04-01

    Preliminary studies have determined the existence of a pluviometric gradient around Mediterranean system, which varies from 240 to 1 100 mm mean annual rainfall. This gradient has an incidence in the physical, chemical and hydrological properties in soils with the same litology. Empiric results conclude that humid eco-geomorphological systems are controlled by biotic processes, whereas in arid eco-geomorphological systems, are abiotic factors which have more importance in soil degradation processes. The study area of the present work is located in Málaga (Andalusia, Spain), in the southern part of the Natural Park "Sierra Tejeda, Almijara y Alhama". There, the mean annual temperature is around 18 °C and the mean rainfall is 650 mm. Predominant vegetation corresponds to the termomediterranean serie Smilaci Mauritanicae-Querceto Rotundifoliae Sigmetum, typical of basic soils. The aim of this study is to analyse the immediate hydrological response of the soil under different vegetation covers, through the analysis of certain properties, all this, under subhumid ombrotipe. A random choice of ten representative plants has been done. These plants, with different sizes, were located in the same Southern slope. The soil samples were taken right beside the plant log, and also within a distance of 0.4 to 1 metre from them, depending on the plant size. The sampling was carried out between the end of the dry season and the beginning of the wet one, after a 20% of the mean annual rainfall had rained. The physical, chemical and hydrological analyzes -both in the field and the laboratory- were: exchange-base, total carbon, cation exchange capacity, soil infiltration capacity, salt content, hydrophobia, organic matter, soil organic carbon, total nitrogen, wetting profile in bared soil, wetting profile under vegetation cover (shrubland), and p.H. Literature reveals that rainfall affects significantly the edafogenetic factors, regarding the pluviometric gradient level. In the

  3. 40 CFR 60.620 - Applicability and designation of affected facility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Performance for Petroleum Dry Cleaners § 60.620 Applicability and designation of affected facility. (a) The provisions of this subpart are applicable to the following affected facilities located at a petroleum dry... pounds): Petroleum solvent dry cleaning dryers, washers, filters, stills, and settling tanks. (1) When...

  4. Effect of repeated drying-wetting-freezing-thawing cycles on the active soil organic carbon pool

    NASA Astrophysics Data System (ADS)

    Semenov, V. M.; Kogut, B. M.; Lukin, S. M.

    2014-04-01

    Samples of soddy-podzolic soil (long-term overgrown fallow and continuous bare fallow), gray forest soil (forest, farming agrocenosis), and a typical chernozem (virgin steppe, forest area, farming agrocenosis, continuous bare fallow) have been incubated under stable conditions; other samples of these soils have been subjected to six drying-wetting-incubation-freezing-thawing-incubation cycles during 136 days. The wetting of dried soils and the thawing of frozen soils result in an abrupt but short increase in the emission rate of C-CO2 by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. As the soil is depleted in potentially mineralizable organic matter, the rate of the C-CO2 emission pulses initiated by disturbing impacts decreases. The cumulative extra production of C-CO2 by soils of natural lands for six cycles makes up 21-40% of that in the treatments with stable incubation conditions; the corresponding value for cultivated soils, including continuous clean fallow, is in the range of 45-82%. The content of potentially mineralizable organic matter in the soils subjected to recurrent drying-wetting-freezingthawing cycles decreased compared to the soils without disturbing impacts by 1.6-4.4 times, and the mineralization constants decreased by 1.9-3.6 times. It has been emphasized that the cumulative effect of drying-wetting-freezing-thawing cycles is manifested not only in the decrease in the total Corg from the soil but also in the reduction of the mineralization potential of the soil organic matter.

  5. Differential vulnerability of gray matter and white matter to intrauterine growth restriction in preterm infants at 12 months corrected age.

    PubMed

    Padilla, Nelly; Junqué, Carme; Figueras, Francesc; Sanz-Cortes, Magdalena; Bargalló, Núria; Arranz, Angela; Donaire, Antonio; Figueras, Josep; Gratacos, Eduard

    2014-01-30

    Intrauterine growth restriction (IUGR) is associated with a high risk of abnormal neurodevelopment. Underlying neuroanatomical substrates are partially documented. We hypothesized that at 12 months preterm infants would evidence specific white-matter microstructure alterations and gray-matter differences induced by severe IUGR. Twenty preterm infants with IUGR (26-34 weeks of gestation) were compared with 20 term-born infants and 20 appropriate for gestational age preterm infants of similar gestational age. Preterm groups showed no evidence of brain abnormalities. At 12 months, infants were scanned sleeping naturally. Gray-matter volumes were studied with voxel-based morphometry. White-matter microstructure was examined using tract-based spatial statistics. The relationship between diffusivity indices in white matter, gray matter volumes, and perinatal data was also investigated. Gray-matter decrements attributable to IUGR comprised amygdala, basal ganglia, thalamus and insula bilaterally, left occipital and parietal lobes, and right perirolandic area. Gray-matter volumes positively correlated with birth weight exclusively. Preterm infants had reduced FA in the corpus callosum, and increased FA in the anterior corona radiata. Additionally, IUGR infants had increased FA in the forceps minor, internal and external capsules, uncinate and fronto-occipital white matter tracts. Increased axial diffusivity was observed in several white matter tracts. Fractional anisotropy positively correlated with birth weight and gestational age at birth. These data suggest that IUGR differentially affects gray and white matter development preferentially affecting gray matter. At 12 months IUGR is associated with a specific set of structural gray-matter decrements. White matter follows an unusual developmental pattern, and is apparently affected by IUGR and prematurity combined. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Geo-environmetal characterization of dry riverbeds affected by mine tailings in the Mazarrón district, Murcia (Spain)

    NASA Astrophysics Data System (ADS)

    Martín-Crespo, Tomás.; Gómez-Ortiz, David; Martínez-Pagán, Pedro; Martín-Velázquez, Silvia; de Ignacio, Cristina; Lillo, Javier; Faz, Angel

    2010-05-01

    Mine tailings constitute an environmental issue of public concern because they represent accumulations and emission sources of heavy metals and acid mine drainage by sulphide oxidation. In this work, two geophysical methods, electrical resistivity tomography (ERT) and ground-penetrating radar (GPR), as well as mineralogical and geochemical techniques have been used in order to obtain a geo-environmental characterization of two dry riverbeds in a mining district. The abandoned San Cristóbal and Los Perules mining group (Mazarrón, Murcia) has generated a huge amount of sludge from the Ag, Pb and Zn extraction operations. These tailings were piled up in ponds or directly dumped to the San Cristóbal dry riverbed located at the mining site, and Las Moreras dry riverbed, where San Cristóbal flows into a few meters downstream. Furthermore, Las Moreras watercourse flows into the Mediterranean Sea five kilometres downstream. Samples from two boreholes have been analyzed in order to obtain thickness, mineralogical and chemical composition of tailings and watercourse sedimentary materials affected by them. San Cristóbal sampling point shows a thickness of 3,5 m of mine tailings, 2 m of sedimentary materials, and the in situ volcanic rocks to 5,5 m depth. Las Moreras site shows a thickness of 2 m of a mine tailings deposit, 4 m of sedimentary materials, and the in situ metamorphic rocks 6 m depth. In both sites, significant amounts of pyrite (15-20 wt %), sphalerite (10-15 wt %) and galena (5-10 wt %) have been determined, and secondary oxides (hematite) and sulphates (gypsum, jarosite) minerals have been also identified. Ag, As, Cd, Co, Cu, Sb, V, Pb and Zn contents are also significant in all studied samples from tailings samples, and acid mine drainage has been clearly detected affecting the San Cristóbal dry riverbed. Regarding the alluvial materials from the riverbeds, pyrite, sphalerite and galena have been only identified in the San Cristóbal sampling point

  7. Influence of Freeze-Drying and Oven-Drying Post Blanching on the Nutrient Composition of the Edible Insect Ruspolia differens.

    PubMed

    Fombong, Forkwa Tengweh; Van Der Borght, Mik; Vanden Broeck, Jozef

    2017-09-16

    The longhorn grasshopper, Ruspolia differens (Serville), plays an important role as a food source across Sub-Saharan Africa, where it is consumed as a delicacy in both rural and urban areas. The effect of two drying methods (freeze-drying and oven-drying), employed after blanching, on the proximate, fatty acid and mineral composition of the two most common morphs was determined. Ruspolia differens grasshoppers were harvested in Uganda and Kenya from wild swarms during the rainy periods of November-December 2016. Based on cuticular coloration, we identified three morphs, green, brown and purple, which occurred at a ratio of 65:33:2, respectively. Results indicated that these insects have a high lipid content of 36%, as well as significant protein levels ranging between 33% and 46% dry matter. Oleic acid (44%) and palmitic acid (28%) were the two most abundant fatty acids; while the presence of arachidonic acid (0.6%) and docosahexaenoic acid (0.21%) suggests that Ruspolia differens is also a source of polyunsaturated fatty acids. The observed amino acid profile showed similar trends in all morphs, and all essential amino acids were present. Calcium (896-1035 mg/100 g), potassium (779-816 mg/100 g) and phosphorus (652-685 mg/100 g) were quite high among the minerals. The presence of the trace elements iron (217-220 mg/100 g), zinc (14.2-14.6 mg/100 g), manganese (7.4-8.3 mg/100 g) and copper (1.66 mg/100 g) suggests that inclusion of these grasshoppers in human diets may aid in combatting micronutrient deficiencies. Oven-drying Ruspolia differens delivered the same nutritional quality as freeze-drying. Hence, both drying approaches can be adequately used to formulate insect-based food products without noticeable nutritional changes.

  8. Influence of Freeze-Drying and Oven-Drying Post Blanching on the Nutrient Composition of the Edible Insect Ruspolia differens

    PubMed Central

    Fombong, Forkwa Tengweh; Van Der Borght, Mik; Vanden Broeck, Jozef

    2017-01-01

    The longhorn grasshopper, Ruspolia differens (Serville), plays an important role as a food source across Sub-Saharan Africa, where it is consumed as a delicacy in both rural and urban areas. The effect of two drying methods (freeze-drying and oven-drying), employed after blanching, on the proximate, fatty acid and mineral composition of the two most common morphs was determined. Ruspolia differens grasshoppers were harvested in Uganda and Kenya from wild swarms during the rainy periods of November–December 2016. Based on cuticular coloration, we identified three morphs, green, brown and purple, which occurred at a ratio of 65:33:2, respectively. Results indicated that these insects have a high lipid content of 36%, as well as significant protein levels ranging between 33% and 46% dry matter. Oleic acid (44%) and palmitic acid (28%) were the two most abundant fatty acids; while the presence of arachidonic acid (0.6%) and docosahexaenoic acid (0.21%) suggests that Ruspolia differens is also a source of polyunsaturated fatty acids. The observed amino acid profile showed similar trends in all morphs, and all essential amino acids were present. Calcium (896–1035 mg/100 g), potassium (779–816 mg/100 g) and phosphorus (652–685 mg/100 g) were quite high among the minerals. The presence of the trace elements iron (217–220 mg/100 g), zinc (14.2–14.6 mg/100 g), manganese (7.4–8.3 mg/100 g) and copper (1.66 mg/100 g) suggests that inclusion of these grasshoppers in human diets may aid in combatting micronutrient deficiencies. Oven-drying Ruspolia differens delivered the same nutritional quality as freeze-drying. Hence, both drying approaches can be adequately used to formulate insect-based food products without noticeable nutritional changes. PMID:28926949

  9. Rapid high throughput amylose determination in freeze dried potato tuber samples

    USDA-ARS?s Scientific Manuscript database

    Approximately 80% of the fresh weight of a potato tuber is water; nearly all of the remaining dry matter is starch. Most of the starch (70%) is composed of amylopectin, while the remainder is amylose. The ratio between amylose and amylopectin is the most important property influencing the physical p...

  10. Differences on nitrogen availability in a soil amended with fresh, composted and thermally-dried sewage sludge.

    PubMed

    Tarrasón, D; Ojeda, G; Ortiz, O; Alcañiz, J M

    2008-01-01

    Anaerobically-digested sludge called fresh sludge (F), composted sludge (C) and thermally-drying sludge (T), all from the same batch, were applied to the surface of a calcareous Udic Calciustept with loamy texture. Dosage equivalent was 10 t ha(-1) of dry matter. The concentration of mineral nitrogen (ammonium and nitrate) in the soil was measured in order to estimate the effects of the post-treatments to which the different kinds of sewage sludge are subjected in relation to the availability of N in the surface layer of the soil. The most significant differences in NH(4)-N and NO(3)-N concentrations due to the transformation of the organic matter were observed during the first three weeks following soil amendment. Thermally-dried and composted sludge initially displayed higher concentrations of ammonium and nitrate in soil. Five months after the amendment, soil applied with fresh sludge showed the highest concentrations of NH(4)-N and NO(3)-N (6.1 and 36.6 mg kg(-1), respectively). It is clear that the processes of composting and thermal-drying influence the bioavailability of nitrogen from the different types of sewage sludge.

  11. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves.

    PubMed

    Figiel, Adam; Michalska, Anna

    2016-12-30

    The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying.

  12. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves

    PubMed Central

    Figiel, Adam; Michalska, Anna

    2016-01-01

    The seasonality of fruits and vegetables makes it impossible to consume and use them throughout the year, thus numerous processing efforts have been made to offer an alternative to their fresh consumption and application. To prolong their availability on the market, drying has received special attention as currently this method is considered one of the most common ways for obtaining food and pharmaceutical products from natural sources. This paper demonstrates the weakness of common drying methods applied for fruits and vegetables and the possible ways to improve the quality using different drying techniques or their combination with an emphasis on the microwave energy. Particular attention has been drawn to the combined drying with the assistance of vacuum-microwaves. The quality of the dried products was ascribed by chemical properties including the content of polyphenols, antioxidant capacity and volatiles as well as physical parameters such as color, shrinkage, porosity and texture. Both these fields of quality classification were considered taking into account sensory attributes and energy aspects in the perspective of possible industrial applications. In conclusion, the most promising way for improving the quality of dried fruit and vegetable products is hybrid drying consisting of osmotic dehydration in concentrated fruit juices followed by heat pump drying and vacuum-microwave finish drying. PMID:28042845

  13. Drying parameters greatly affect the destruction of Cronobacter sakazakii and Salmonella Typhimurium in standard buffer and milk.

    PubMed

    Lang, Emilie; Iaconelli, Cyril; Zoz, Fiona; Guyot, Stéphane; Alvarez-Martin, Pablo; Beney, Laurent; Perrier-Cornet, Jean-Marie; Gervais, Patrick

    2017-04-01

    Salmonella Typhimurium and Cronobacter sakazakii are two foodborne pathogens involved in neonatal infections from milk powder and infant formula. Their ability to survive in low-moisture food and during processing from the decontamination to the dried state is a major issue in food protection. In this work, we studied the effects of the drying process on Salmonella Typhimurium and Cronobacter sakazakii, with the aim of identifying the drying parameters that could promote greater inactivation of these two foodborne pathogens. These two bacteria were dried under different atmospheric relative humidities in milk and phosphate-buffered saline, and the delays in growth recovery and cultivability were followed. We found that water activity was related to microorganism resistance. C. sakazakii was more resistant to drying than was S. Typhimurium, and milk increased the cultivability and recovery of these two species. High drying rates and low final water activity levels (0.11-0.58) had a strong negative effect on the growth recovery and cultivability of these species. In conclusion, we suggest that effective use of drying processes may provide a complementary tool for food decontamination and food safety during the production of low-moisture foods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Dry habitats sustain high CO2 emissions from temporary ponds across seasons.

    PubMed

    Obrador, Biel; von Schiller, Daniel; Marcé, Rafael; Gómez-Gener, Lluís; Koschorreck, Matthias; Borrego, Carles; Catalán, Núria

    2018-02-14

    Despite the increasing understanding of the magnitude and drivers of carbon gas emissions from inland waters, the relevance of water fluctuation and associated drying on their dynamics is rarely addressed. Here, we quantified CO 2 and CH 4 fluxes from a set of temporary ponds across seasons. The ponds were in all occasion net CO 2 emitters irrespective of the presence or absence of water. While the CO 2 fluxes were in the upper range of emissions for freshwater lentic systems, CH 4 fluxes were mostly undetectable. Dry habitats substantially contributed to these emissions and were always a source of CO 2 , whereas inundated habitats acted either as a source or a sink of atmospheric CO 2 along the year. Higher concentrations of coloured and humic organic matter in water and sediment were linked to higher CO 2 emissions. Composition of the sediment microbial community was related both to dissolved organic matter concentration and composition, but we did not find a direct link with CO 2 fluxes. The presence of methanogenic archaea in most ponds suggested the potential for episodic CH 4 production and emission. Our results highlight the need for spatially and temporally inclusive approaches that consider the dry phases and habitats to characterize carbon cycling in temporary systems.

  15. Effect of Microwave Vacuum Drying on the Drying Characteristics, Color, Microstructure, and Antioxidant Activity of Green Coffee Beans.

    PubMed

    Dong, Wenjiang; Cheng, Ke; Hu, Rongsuo; Chu, Zhong; Zhao, Jianping; Long, Yuzhou

    2018-05-11

    The aim of this study is to investigate the effect of microwave vacuum drying (MVD) on the drying characteristics and quality attributes of green coffee beans. We specifically focused on the effective moisture diffusion coefficient ( D eff ), surface temperature, glass transition temperature ( T g ), water state, and microstructure. The kinetics of color changes during drying, total phenolic content (TPC), and antioxidant activity (DPPH, FRAP, and ABTS) were also characterized. Microwave power during MVD affected the porosity of coffee beans, their color, TPC, and antioxidant activity. The Allometric 1 model was the most suitable for simulating surface temperature rise kinetics. Thermal processing of green coffee beans resulted in increased b* , L* , Δ E , and TPC values, and greater antioxidant capacity. These findings may provide a theoretical reference for the technical improvement, mechanisms of flavor compound formation, and quality control of dried green coffee beans.

  16. Freeze-dried spermatozoa: A future tool?

    PubMed

    Olaciregui, M; Gil, L

    2017-04-01

    Cryopreservation has been routinely used to preserve sperm of human and different animal species. However, frozen sperm storage for a long time brings many inconveniences because of liquid nitrogen. Many attempts have been made to overcome the disadvantages of the current cryopreservation method. Freeze-drying has been proposed as alternative method for sperm preservation to achieve the ability to store sperm doses indefinitely at ambient temperature or in ordinary refrigerators. At present, it has been reported successfully sperm freeze-drying on many animal species including canine and feline. It is well known that during freeze-drying process, sperm DNA could be damaged, but if suitable protection is provided, the sperm nucleus could preserve the ability to activate the oocyte and embryos could be generated by intracytoplasmic sperm injection (ICSI). Many factors influence the freeze-drying efficacy, so current researches have been conducted to find strategies to control these factors to maintain the sperm DNA integrity. This review describes the latest method of sperm freeze-drying for practical application in preserving and transporting genetic resources. In addition, the approaches to improve the efficiency of the technique were studied. We demonstrated that the DNA integrity of freeze-dried dog sperm is affected by the composition of the freeze-drying solution as well as the temperature and period of storage. Further studies are necessary to refine freeze-drying protocol in order to protect the DNA and maintain the sperm functionality and obtain offspring from freeze-dried sperm. © 2016 Blackwell Verlag GmbH.

  17. The Effects of Plastic Film Mulching on Maize Growth and Water Use in Dry and Rainy Years in Northeast China

    PubMed Central

    Xu, Jie; Li, Congfeng; Liu, Huitao; Zhou, Peilu; Tao, Zhiqiang; Wang, Pu; Meng, Qingfeng; Zhao, Ming

    2015-01-01

    Plastic film mulching (PM) has been widely used to improve maize (Zea mays L.) yields and water use efficiency (WUE) in Northeast China, but the effects of PM in a changing climate characterized by highly variable precipitation are not well understood. Six site-year field experiments were conducted in the dry and rainy years to investigate the effects of PM on maize growth, grain yield, and WUE in Northeast China. Compared to crops grown without PM treatment (control, CK), PM significantly increased the grain yield by 15-26% in the dry years, but no significant yield increase was observed in the rainy years. Yield increase in the dry years was mainly due to a large increase in dry matter accumulation pre-silking compared to the CK, which resulted from a greater dry matter accumulation rate due to the higher topsoil temperature and water content. As a result, the WUE of the crops that underwent PM (3.27 kg m-3) treatment was also increased by around 16% compared to the CK, although the overall evapotranspiration was similar between the two treatments. In the rainy years, due to frequent precipitation and scant sunshine, the topsoil temperature and water content in the field that received PM treatment was improved only at some stages and failed to cause higher dry matter accumulation, except at the 8th leaf stage. Consequently, the grain yield and WUE were not improved by PM in the rainy years. In addition, we found that PM caused leaf senescence at the late growth stage in both dry and rainy years. Therefore, in practice, PM should be applied cautiously, especially when in-season precipitation is taken into account. PMID:25970582

  18. Optimization of machining parameters in dry EDM of EN31 steel

    NASA Astrophysics Data System (ADS)

    Brar, G. S.

    2018-03-01

    Dry electric discharge machining (Dry EDM) is one of the novel EDM technology in which gases namely helium, argon, oxygen, nitrogen etc. are used as a dielectric medium at high pressure instead of oil based liquid dielectric. The present study investigates dry electric discharge machining (with rotary tool) of EN-31 steel to achieve lower tool wear rate (TWR) and better surface roughness (Ra) by performing a set of exploratory experiments with oxygen gas as dielectric. The effect of polarity, discharge current, gas flow pressure, pulse-on time, R.P.M. and gap voltage on the MRR, TWR and surface roughness (Ra) in dry EDM was studied with copper as rotary tool. The significant factors affecting MRR are discharge current and pulse on time. The significant factors affecting TWR are gas flow pressure, pulse on time and R.P.M. TWR was found close to zero in most of the experiments. The significant factors affecting Ra are pulse on time, gas flow pressure and R.P.M. It was found that polarity has nearly zero effect on all the three output variables.

  19. Restoration of soils affected by oil exploitation activities based in functional diversity studies

    NASA Astrophysics Data System (ADS)

    Villacis, Jaime; Casanoves, Fernando; Hang, Susana; Armas, Cristina

    2017-04-01

    The functional characteristics of 25 forest species used in the restoration of areas affected by oil extraction activities were determined and species functional groups were constructed. Subsequently, the functional characteristics of the groups were related with performance variables of the species obtained in complementary studies, to make use recommendations. Three functional groups of species with similar responses and / or performance were characterized that showed significant differences between them for quantitative and qualitative traits. The first group formed by all shrubs and the rest of trees, most do not fix nitrogen, have single leaves and all species are evergreen and characterized by having lower values of specific foliar area, foliar nitrogen, dry matter leaf content and wood density, was denominated as intermediate acquisitions. The second group composed only for trees that do not fix nitrogen and with deciduous leaves and characterized by having the highest values of dry matter leaf content and foliar tensile force and intermediate values of specific foliar area and foliar nitrogen, was denominated as low conservative. Finally the third group formed only by trees that fix nitrogen, composed of leaves and mostly evergreen and characterized by having higher values of specific foliar area, foliar nitrogen, foliar phosphorus and lower foliar tensile force, was denominated as acquisitive. The intermediary acquisitions species Apeiba membranacea, Myrcia aff. fallax and Zygia longifolia, and the acquisitive species Cedrelinga cateniformis, Inga densiflora, Myroxylon balsamum, Piptadenia pteroclada and Platymiscium pinnatum, which showed excellent performance in nursery and / or field, represent the most suitable species to be used in reforestation programs of the sites affected by oil extraction activities in the Amazon region of Ecuador, because they have greater potential to protect soil and recycle nutrients in the initial stages of planting.

  20. Former land-use and tree species affect nitrogen oxide emissions from a tropical dry forest.

    Treesearch

    Heather Erickson; Eric A. Davidson; Michael Keller

    2002-01-01

    Species composition in successional dry forests in the tropics varies widely, but the effect of this variation on biogeochemical processes is not well known. We examined fluxes of N oxides (nitrous and nitric oxide), soil N cycling, and litter chemistry (C/N ratio) in four successional dry forests on similar soils in western Puerto Rico with differing species...

  1. Research on the drying kinetics of household food waste for the development and optimization of domestic waste drying technique.

    PubMed

    Sotiropoulos, A; Malamis, D; Michailidis, P; Krokida, M; Loizidou, M

    2016-01-01

    Domestic food waste drying foresees the significant reduction of household food waste mass through the hygienic removal of its moisture content at source. In this manuscript, a new approach for the development and optimization of an innovative household waste dryer for the effective dehydration of food waste at source is presented. Food waste samples were dehydrated with the use of the heated air-drying technique under different air-drying conditions, namely air temperature and air velocity, in order to investigate their drying kinetics. Different thin-layer drying models have been applied, in which the drying constant is a function of the process variables. The Midilli model demonstrated the best performance in fitting the experimental data in all tested samples, whereas it was found that food waste drying is greatly affected by temperature and to a smaller scale by air velocity. Due to the increased moisture content of food waste, an appropriate configuration of the drying process variables can lead to a total reduction of its mass by 87% w/w, thus achieving a sustainable residence time and energy consumption level. Thus, the development of a domestic waste dryer can be proved to be economically and environmentally viable in the future.

  2. Soil aggregate stability and rainfall-induced sediment transport on field plots as affected by amendment with organic matter inputs

    NASA Astrophysics Data System (ADS)

    Shi, Pu; Arter, Christian; Liu, Xingyu; Keller, Martin; Schulin, Rainer

    2017-04-01

    Aggregate stability is an important factor in soil resistance against erosion, and, by influencing the extent of sediment transport associated with surface runoff, it is thus also one of the key factors which determine on- and off-site effects of water erosion. As it strongly depends on soil organic matter, many studies have explored how aggregate stability can be improved by organic matter inputs into the soil. However, the focus of these studies has been on the relationship between aggregate stability and soil organic matter dynamics. How the effects of organic matter inputs on aggregate stability translate into soil erodibility under rainfall impacts has received much less attention. In this study, we performed field plot experiments to examine how organic matter inputs affect aggregate breakdown and surface sediment transport under field conditions in artificial rainfall events. Three pairs of plots were prepared by adding a mixture of grass and wheat straw to one of plots in each pair but not to the other, while all plots were treated in the same way otherwise. The rainfall events were applied some weeks later so that the applied organic residues had sufficient time for decomposition and incorporation into the soil. Surface runoff rate and sediment concentration showed substantial differences between the treatments with and without organic matter inputs. The plots with organic inputs had coarser and more stable aggregates and a rougher surface than the control plots without organic inputs, resulting in a higher infiltration rate and lower transport capacity of the surface runoff. Consequently, sediments exported from the amended plots were less concentrated but more enriched in suspended particles (<20 µm) than from the un-amended plots, indicating a more size-selective sediment transport. In contrast to the amended plots, there was an increase in the coarse particle fraction (> 250 µm) in the runoff from the plots with no organic matter inputs towards the

  3. Wettability, soil organic matter and structure-properties of typical chernozems under the forest and under the arable land

    NASA Astrophysics Data System (ADS)

    Bykova, Galina; Umarova, Aminat; Tyugai, Zemfira; Milanovskiy, Evgeny; Shein, Evgeny

    2017-04-01

    Intensive tillage affects the properties of soil: decrease in content of soil organic matter and in hydrophobicity of the soil's solid phase, the reduction of amount of water stable aggregates - all this leads to deterioration of the structure of the soil and affects the process of movement of moisture in the soil profile. One of the hypotheses of soil's structure formation ascribes the formation of water stable aggregates with the presence of hydrophobic organic substances on the surface of the soil's solid phase. The aim of this work is to study the effect of tillage on properties of typical chernozems (pachic Voronic Chernozems, Haplic Chernozems) (Russia, Kursk region), located under the forest and under the arable land. The determination of soil-water contact angle was performed by a Drop Shape Analyzer DSA100 (Krüss GmbH, Germany) by the static sessile drop method. For all samples the content of total and organic carbon by dry combustion in oxygen flow and the particle size distribution by the laser diffraction method on the device Analysette 22 comfort, FRITCH, Germany were determined. The estimation of aggregate composition was performed by dry sieving (AS 200, Retsch, Germany), the content of water stable aggregates was estimated by the Savvinov method. There was a positive correlation between the content of organic matter and soil's wettability in studied soils, a growth of contact angle with the increasing the content of organic matter. Under the forest the content of soil organic matter was changed from 6,41% on the surface up to 1,9% at the depth of 100 cm. In the Chernozem under the arable land the organic carbon content in arable horizon is almost two times less. The maximum of hydrophobicity (78.1o) was observed at the depth of 5 cm under the forest. In the profile under the arable land the contact angle value at the same depth was 50o. The results of the structure analysis has shown a decrease in the content of agronomically valuable and water

  4. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa × hybrida but does not affect time to flower opening.

    PubMed

    Terfa, Meseret Tesema; Solhaug, Knut Asbjørn; Gislerød, Hans Ragnar; Olsen, Jorunn Elisabeth; Torre, Sissel

    2013-05-01

    Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance-dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light-emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS-grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax ) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED-grown leaves also displayed a more sun-type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower. Copyright © Physiologia Plantarum 2012.

  5. Condensed milk storage and evaporation affect the flavor of nonfat dry milk.

    PubMed

    Park, Curtis W; Drake, MaryAnne

    2016-12-01

    Unit operations in nonfat dry milk (NFDM) manufacture influence sensory properties, and consequently, its use and acceptance in ingredient applications. Condensed skim milk may be stored at refrigeration temperatures for extended periods before spray drying due to shipping or lack of drying capacity. Currently, NFDM processors have 2 options for milk concentration up to 30% solids: evaporation (E) or reverse osmosis (RO). The objective of this study was to determine the effect of condensed milk storage and milk concentration method (E vs. RO) on the flavor of NFDM and investigate mechanisms behind flavor differences. For experiment 1, skim milk was pasteurized and concentrated to 30% solids by E or RO and then either stored for 24h at 4°C or concentrated to 50% solids by E and spray dried immediately. To investigate mechanisms behind the results from experiment 1, experiment 2 was constructed. In experiment 2, pasteurized skim milk was subjected to 1 of 4 treatments: control (no E), heated in the evaporator without vacuum, E concentration to 30% solids, or E concentration to 40% solids. The milks were then diluted to the same solids content and evaluated. Volatile compounds were also measured during concentration in the vapor separator of the evaporator. Sensory properties were evaluated by descriptive sensory analysis and instrumental volatile compound analysis was conducted to evaluate volatile compounds. Interaction effects between storage and method of concentration were investigated. In experiment 1, E decreased sweet aromatic flavor and many characteristic milk flavor compounds and increased cardboard and cooked flavors in NFDM compared with RO. Liquid storage increased cardboard flavor and hexanal and octanal and decreased sweet aromatic flavors and vanillin concentration. Results from experiment 2 indicated that the characteristic milk flavors and their associated volatile compounds were removed by the vapor separator in the evaporator due to the heat and

  6. Colloid Mobilization in a Fractured Soil during Dry-Wet Cycles: Role of Drying Duration and Flow Path Permeability.

    PubMed

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2015-08-04

    In subsurface soils, colloids are mobilized by infiltrating rainwater, but the source of colloids and the process by which colloids are generated between rainfalls are not clear. We examined the effect of drying duration and the spatial variation of soil permeability on the mobilization of in situ colloids in intact soil cores (fractured and heavily weathered saprolite) during dry-wet cycles. Measuring water flux at multiple sampling ports at the core base, we found that water drained through flow paths of different permeability. The duration of antecedent drying cycles affected the amount of mobilized colloids, particularly in high-flux ports that received water from soil regions with a large number of macro- and mesopores. In these ports, the amount of mobilized colloids increased with increased drying duration up to 2.5 days. For drying durations greater than 2.5 days, the amount of mobilized colloids decreased. In contrast, increasing drying duration had a limited effect on colloid mobilization in low-flux ports, which presumably received water from soil regions with fewer macro- and mesopores. On the basis of these results, we attribute this dependence of colloid mobilization upon drying duration to colloid generation from dry pore walls and distribution of colloids in flow paths, which appear to be sensitive to the moisture content of soil after drying and flow path permeability. The results are useful for improving the understanding of colloid mobilization during fluctuating weather conditions.

  7. Mass and size growth of early-type galaxies by dry mergers in cluster environments

    NASA Astrophysics Data System (ADS)

    Oogi, Taira; Habe, Asao; Ishiyama, Tomoaki

    2016-02-01

    We perform dry merger simulations to investigate the role of dry mergers in the size growth of early-type galaxies in high-density environments. We replace the virialized dark matter haloes obtained by a large cosmological N-body simulation with N-body galaxy models consisting of two components, a stellar bulge and a dark matter halo, which have higher mass resolution than the cosmological simulation. We then resimulate nine cluster-forming regions, whose masses range from 1 × 1014 to 5 × 1014 M⊙. Masses and sizes of stellar bulges are also assumed to satisfy the stellar mass-size relation of high-z compact massive early-type galaxies. We find that dry major mergers considerably contribute to the mass and size growth of central massive galaxies. One or two dry major mergers double the average stellar mass and quadruple the average size between z = 2 and 0. These growths favourably agree with observations. Moreover, the density distributions of our simulated central massive galaxies grow from the inside-out, which is consistent with recent observations. The mass-size evolution is approximated as R∝ M_{{ast }}^{α }, with α ˜ 2.24. Most of our simulated galaxies are efficiently grown by dry mergers, and their stellar mass-size relations match the ones observed in the local Universe. Our results show that the central galaxies in the cluster haloes are potential descendants of high-z (z ˜ 2-3) compact massive early-type galaxies. This conclusion is consistent with previous numerical studies which investigate the formation and evolution of compact massive early-type galaxies.

  8. Can soil drying affect the sorption of pesticides in soil?

    NASA Astrophysics Data System (ADS)

    Chaplain, Véronique; Saint, Philippe; Mamy, Laure; Barriuso, Enrique

    2010-05-01

    The sorption of pesticides in soils mainly controls their further dispersion into the environment. Sorption is usually related to the physico-chemical properties of molecules but it also depends on the hydrophobic features of soils. However, the hydrophobicity of soils changes with wetting and drying cycles and this can be enhanced with climate change. The objective of this study was to measure by using controlled artificial soils the influence of the hydrophobic characteristic of soils on the retention of a model pesticide. Artificial soils consisted in silica particles covered by synthetic cationic polymers. Polymers were characterized by the molar ratio of monomers bearing an alkyl chain of 12C. Two polymers were used, with 20 and 80 % ratios, and the same degree of polymerization. In addition, porous and non-porous particles were used to study the accessibility notion and to measure the influence of diffusion on pesticide sorption kinetics. Lindane was chosen as model molecule because its adsorption is supposed mainly due to hydrophobic interactions. Results on polymers adsorption on silica showed that it was governed by electrostatic interactions, without any dependency of the hydrophobic ratio. Polymers covered the entire surface of porous particles. Kinetic measurements showed that lindane sorption was slowed in porous particles due to the molecular diffusion inside the microporosity. The adsorption of lindane on covered silica particles corresponded to a partition mechanism described by linear isotherms. The slope was determined by the hydrophobic ratio of polymers: the sorption of lindane was highest in the most hydrophobic artificial soil. As a result, modification in soil hydrophobicity, that can happen with climate change, might affect the sorption and the fate of pesticides. However additional experiments are needed to confirm these first results. Such artificial soils should be used as reference materials to compare the reactivity of pesticides, to

  9. Isotopic Evolution of Soil Organic Matter Affects Paleo-vegetation and Paleo-pCO2 Reconstructions

    NASA Astrophysics Data System (ADS)

    Bowen, G. J.; Beerling, D. J.

    2004-12-01

    The stable carbon isotope ratio (\\delta13C) of fossil terrestrial organic matter is used to study several aspects of biosphere/atmosphere coupling in the geologic past. These range from vegetation response to climatic and pCO2 shifts to reconstruction of paleo-pCO2 levels. Although screening for diagenesis is typical in these studies, few have taken into account the ubiquitous but poorly understood phenomenon of progressive 13C-enrichment of soil organic matter during its decay, which is observed in modern soils worldwide. We present a simple model that describes this phenomenon and the interaction of soil organic carbon and CO2 concentrations, fluxes and \\delta13C values. At its most basic level, the model suggests that bulk organic matter from sub-surface soil horizons will be variably enriched in 13C relative to the vegetation living on the soil surface. This complicates interpretation of paleo-isotopic records used in C3/C4 vegetation reconstructions, and may account for anomalously heavy fossil organic carbon isotope values measured in some paleosols pre-dating the end-Miocene expansion of C4 floras. The model also demonstrates that the \\delta13C evolution of soil organic carbon during its decay generates 2 types of biases that may affect soil mineral paleo-pCO2 proxies. The first type of bias results from a steady-state inequality between the \\delta13C of organic carbon at a single depth within the soil and that of respired CO2 in the soil. This bias is present when fossil organic matter is used to reconstruct the \\delta13C of soil-respired carbon, and can be minimized with appropriate sampling methods. The second type of bias results from a dynamic, seasonal imbalance in respiration, which may cause the soil \\delta13CO2 flux during times of soil mineral formation to deviate from that of the annually integrated flux. At present, this bias can not be fully described or corrected for due to inadequacies in our knowledge of soil \\delta13C dynamics and the

  10. Quality by Design approach to spray drying processing of crystalline nanosuspensions.

    PubMed

    Kumar, Sumit; Gokhale, Rajeev; Burgess, Diane J

    2014-04-10

    Quality by Design (QbD) principles were explored to understand spray drying process for the conversion of liquid nanosuspensions into solid nano-crystalline dry powders using indomethacin as a model drug. The effects of critical process variables: inlet temperature, flow and aspiration rates on critical quality attributes (CQAs): particle size, moisture content, percent yield and crystallinity were investigated employing a full factorial design. A central cubic design was employed to generate the response surface for particle size and percent yield. Multiple linear regression analysis and ANOVA were employed to identify and estimate the effect of critical parameters, establish their relationship with CQAs, create design space and model the spray drying process. Inlet temperature was identified as the only significant factor (p value <0.05) to affect dry powder particle size. Higher inlet temperatures caused drug surface melting and hence aggregation of the dried nano-crystalline powders. Aspiration and flow rates were identified as significant factors affecting yield (p value <0.05). Higher yields were obtained at higher aspiration and lower flow rates. All formulations had less than 3% (w/w) moisture content. Formulations dried at higher inlet temperatures had lower moisture compared to those dried at lower inlet temperatures. Published by Elsevier B.V.

  11. Impact of drying on pore structures in ettringite-rich cements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, I., E-mail: isabelgalan@abdn.ac.uk; Beltagui, H.; García-Maté, M.

    Drying techniques affect the properties of cement pastes to varying extents. The effect of different drying techniques on calcium sulfoaluminate-based (C$A) cements and their constituent phases is reported for a range of simulated and commercial C$A pastes which are benchmarked against an OPC paste. The recommended methodologies used to dry samples were identified from the literature and include D-drying and solvent exchange. These methods were used in conjunction with mercury intrusion porosimetry (MIP) and X-ray powder diffraction (XRPD) measurements to assess the changes in pore structure and the damage to crystalline phases, respectively. D-drying and isopropanol exchange are the mostmore » satisfactory and least damaging methods for drying C$A based pastes.« less

  12. Management factors affecting ammonia volatilization from land-applied cattle slurry in the Mid-Atlantic USA.

    PubMed

    Thompson, R B; Meisinger, J J

    2002-01-01

    Ammonia (NH3) volatilization commonly causes a substantial loss of crop-available N from surface-applied cattle slurry. Field studies were conducted with small wind tunnels to assess the effect of management factors on NH3 volatilization. Two studies compared NH3 volatilization from grass sward and bare soil. The average total NH3 loss was 1.5 times greater from slurry applied to grass sward. Two studies examined the effect of slurry dry matter (DM) content on NH3 loss under hot, summer conditions in Maryland, USA. Slurry DM contents were between 54 and 134 g kg(-1). Dry matter content did not affect total NH3 loss, but did influence the time course of NH3 loss. Higher DM content slurries had relatively higher rates of NH3 volatilization during the first 12 to 24 h, but lower rates thereafter. Under the hot conditions, the higher DM content slurries appeared to dry and crust more rapidly causing smaller rates of NH3 volatilization after 12 to 24 h, which offset the earlier positive effects of DM content on NH3 volatilization. Three studies compared immediate incorporation with different tillage implements. Total NH3 loss from unincorporated slurry was 45% of applied slurry NH4+-N, while losses following immediate incorporation with a moldboard plow, tandem-disk harrow, or chisel plow were, respectively, 0 to 3, 2 to 8, and 8 to 12%. These ground cover and DM content data can be used to improve predictions of NH3 loss under specific farming conditions. The immediate incorporation data demonstrate management practices that can reduce NH3 volatilization, which can improve slurry N utilization in crop-forage production.

  13. Acidic mammalian chitinase in dry eye conditions.

    PubMed

    Musumeci, Maria; Aragona, Pasquale; Bellin, Milena; Maugeri, Francesco; Rania, Laura; Bucolo, Claudio; Musumeci, Salvatore

    2009-07-01

    An acidic mammalian chitinase (AMCase) seems to be implicated in allergic asthma and allergic ocular pathologies. The aim of this work was to investigate the role of AMCase during Sjögren's Syndrome (SS) and Meibomian Gland Dysfunction (MGD) dry eye diseases. Six patients with MGD dry eye (20-58 years, median 40) and six patients with dry eye associated to SS (32-60 years, median 47) were enrolled in this study. AMCase activity was measured in tears and AMCase mRNA expression was evaluated by real-time polymerase chain reaction from RNA extracted from epithelial cells of the conjunctiva. Six healthy adult subjects of the same age (34-44 years, median 39) were also studied as the control group. AMCase activity was significantly increased in patients affected by MGD dry eye (18.54 +/- 1.5 nmol/ml/h) and SS dry eye (8.94 +/- 1.0 nmol/ml/h) respectively, compared to healthy controls (1.6 +/- 0.2 nmol/ml/h). AMCase activity was higher in the tears of subjects with MGD dry eye (P < 0.001). AMCase mRNA was detected in conjunctival epithelial cells and the expression was significantly higher in MGD dry eye than SS dry eye. A significant correlation between AMCase activity in the tears and mRNA in conjunctival epithelial cells was found. AMCase may be an important marker in the pathogenesis of dry eye, suggesting the potential role of AMCase as a therapeutic target in these frequent pathologies.

  14. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying.

    PubMed

    Lovalenti, Phillip M; Anderl, Jeff; Yee, Luisa; Nguyen, Van; Ghavami, Behnaz; Ohtake, Satoshi; Saxena, Atul; Voss, Thomas; Truong-Le, Vu

    2016-05-01

    The goal of this research is to develop stable formulations for live attenuated influenza vaccines (LAIV) by employing the drying methods freeze drying, spray drying, and foam drying. Formulated live attenuated Type-A H1N1 and B-strain influenza vaccines with a variety of excipient combinations were dried using one of the three drying methods. Process and storage stability at 4, 25 and 37°C of the LAIV in these formulations was monitored using a TCID50 potency assay. Their immunogenicity was also evaluated in a ferret model. The thermal stability of H1N1 vaccine was significantly enhanced through application of unique formulation combinations and drying processes. Foam dried formulations were as much as an order of magnitude more stable than either spray dried or freeze dried formulations, while exhibiting low process loss and full retention of immunogenicity. Based on long-term stability data, foam dried formulations exhibited a shelf life at 4, 25 and 37°C of >2, 1.5 years and 4.5 months, respectively. Foam dried LAIV Type-B manufactured using the same formulation and process parameters as H1N1 were imparted with a similar level of stability. Foam drying processing methods with appropriate selection of formulation components can produce an order of magnitude improvement in LAIV stability over other drying methods.

  15. Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots.

    PubMed

    Balyejusa Kizito, Elizabeth; Rönnberg-Wästljung, Ann-Christin; Egwang, Thomas; Gullberg, Urban; Fregene, Martin; Westerbergh, Anna

    2007-09-01

    Cassava (Manihot esculenta Crantz) is a starchy root crop grown in the tropics mainly by small-scale farmers even though agro-industrial processing is rapidly increasing. For this processing market improved varieties with high dry matter root content (DMC) is required. Potentially toxic cyanogenic glucosides are synthesized in the leaves and translocated to the roots. Selection for varieties with low cyanogenic glucoside potential (CNP) and high DMC is among the principal objectives in cassava breeding programs. However, these traits are highly influenced by the environmental conditions and the genetic control of these traits is not well understood. An S(1) population derived from a cross between two bred cassava varieties (MCOL 1684 and Rayong 1) that differ in CNP and DMC was used to study the heritability and genetic basis of these traits. A broad-sense heritability of 0.43 and 0.42 was found for CNP and DMC, respectively. The moderate heritabilities for DMC and CNP indicate that the phenotypic variation of these traits is explained by a genetic component. We found two quantitative trait loci (QTL) on two different linkage groups controlling CNP and six QTL on four different linkage groups controlling DMC. One QTL for CNP and one QTL for DMC mapped near each other, suggesting pleiotrophy and/or linkage of QTL. The two QTL for CNP showed additive effects while the six QTL for DMC showed additive effect, dominance or overdominance. This study is a first step towards developing molecular marker tools for efficient breeding of CNP and DMC in cassava.

  16. Dynamics of shearing force and its correlations with chemical compositions and in vitro dry matter digestibility of stylo (Stylosanthes guianensis) stem.

    PubMed

    Zi, Xuejuan; Li, Mao; Zhou, Hanlin; Tang, Jun; Cai, Yimin

    2017-12-01

    The study explored the dynamics of shearing force and its correlation with chemical compositions and in vitro dry matter digestibility (IVDMD) of stylo. The shearing force, diameter, linear density, chemical composition, and IVDMD of different height stylo stem were investigated. Linear regression analysis was done to determine the relationships between the shearing force and cut height, diameter, chemical composition, or IVDMD. The results showed that shearing force of stylo stem increased with plant height increasing and the crude protein (CP) content and IVDMD decreased but fiber content increased over time, resulting in decreased forage value. In addition, tall stem had greater shearing force than short stem. Moreover, shearing force is positively correlated with stem diameter, linear density and fiber fraction, but negatively correlated with CP content and IVDMD. Overall, shearing force is an indicator more direct, easier and faster to measure than chemical composition and digestibility for evaluation of forage nutritive value related to animal performance. Therefore, it can be used to evaluate the nutritive value of stylo.

  17. Fluid dynamics simulation for design on sludge drying equipment

    NASA Astrophysics Data System (ADS)

    Li, Shuiping; Liang, Wang; Kai, Zhang

    2017-10-01

    Sludge drying equipment is a key component in the sludge drying disposal, the structure of drying equipment directly affects the drying disposal of the sludge, so it is necessary to analyse the performance of the drying equipment with different structure. Fluent software can be very convenient to get the distribution of the flow field and temperature field inside the drying equipment which reflects the performance of the structure. In this paper, the outlet position of the sludge and the shape of the sludge inlet are designed. The geometrical model of the drying equipment is established by using pre-processing software Gambit, and the meshing of the model is carried out. The Eulerian model is used to simulate the flow of each phase and the interaction between them, and the realizable turbulence model is used to simulate the turbulence of each phase. Finally, the simulation results of the scheme are compared and the optimal structure scheme is obtained, the operational requirement is proposed. The CFD theory provides a reliable basis for the drying equipment research and reduces the time and costs of the research.

  18. Pre-dementia memory impairment is associated with white matter tract affection.

    PubMed

    Grambaite, Ramune; Reinvang, Ivar; Selnes, Per; Fjell, Anders M; Walhovd, Kristine B; Stenset, Vidar; Fladby, Tormod

    2011-01-01

    Mild cognitive impairment (MCI), especially amnestic, often represents pre-dementia Alzheimer's disease, characterized by medial temporal lobe atrophy, while white matter (WM) alterations are insufficiently described. We analyze both cortical morphometric and WM diffusivity differences in amnestic versus non-amnestic subtypes and ask if memory and WM tract affection are related independently of cortical atrophy. Forty-nine patients from a university-hospital based memory clinic with a score of 3 on the Global Deterioration Scale aged 43-77 years (45% female) were included. Two neuropsychologists have classified cases as amnestic (aMCI), non-amnestic (naMCI), or less advanced (laMCI), not satisfying criteria for aMCI/naMCI. Diffusion tensor imaging (DTI) WM tract and morphometric data of the temporal-parietal memory network were compared among patient subtypes and related to story, word list, and visual memory. WM radial and mean diffusivity (DR and MD), underlying the entorhinal cortex, were higher in aMCI compared with laMCI. WM DR and MD, underlying the entorhinal, parahippocampal, and middle temporal cortex, explained unique variance in word list and story memory, and this was not due to secondary effects of cortical thinning. DTI may thus potentially aid diagnosis in early disease stages. ).

  19. Graphene oxide for acid catalyzed-reactions: Effect of drying process

    NASA Astrophysics Data System (ADS)

    Gong, H. P.; Hua, W. M.; Yue, Y. H.; Gao, Z.

    2017-03-01

    Graphene oxides (GOs) were prepared by Hummers method through various drying processes, and characterized by XRD, SEM, FTIR, XPS and N2 adsorption. Their acidities were measured using potentiometric titration and acid-base titration. The catalytic properties were investigated in the alkylation of anisole with benzyl alcohol and transesterification of triacetin with methanol. GOs are active catalysts for both reaction, whose activity is greatly affected by their drying processes. Vacuum drying GO exhibits the best performance in transesterification while freezing drying GO is most active for alkylation. The excellent catalytic behavior comes from abundant surface acid sites as well as proper surface functional groups, which can be obtained by selecting appropriate drying process.

  20. Sources and Processes Affecting Particulate Matter Pollution over North China

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Shao, J.; Lu, X.; Zhao, Y.; Gong, S.; Henze, D. K.

    2015-12-01

    Severe fine particulate matter (PM2.5) pollution over North China has received broad attention worldwide in recent years. Better understanding the sources and processes controlling pollution over this region is of great importance with urgent implications for air quality policy. We will present a four-dimensional variational (4D-Var) data assimilation system using the GEOS-Chem chemical transport model and its adjoint model at 0.25° × 0.3125° horizontal resolution, and apply it to analyze the factors affecting PM2.5 concentrations over North China. Hourly surface observations of PM2.5 and sulfur dioxide (SO2) from the China National Environmental Monitoring Center (CNEMC) can be assimilated into the model to evaluate and constrain aerosol (primary and precursors) emissions. Application of the data assimilation system to the APEC period (the Asia-Pacific Economic Cooperation summit; 5-11 November 2014) shows that 46% of the PM2.5 pollution reduction during APEC ("The APEC Blue") can be attributed to meteorology conditions and the rest 54% to emission reductions due to strict emission controls. Ammonia emissions are shown to significantly contribute to PM2.5 over North China in the fall. By converting sulfuric acid and nitric acid to longer-lived ammonium sulfate and ammonium nitrate aerosols, ammonia plays an important role in promoting their regional transport influences. We will also discuss the pathways and mechanisms of external long-range transport influences to the PM2.5 pollution over North China.

  1. Effect of drying temperatures on starch-related functional and thermal properties of acorn flours.

    PubMed

    Correia, P R; Beirão-da-Costa, M L

    2011-03-01

    The application of starchy flours from different origins in food systems depends greatly on information about the chemical and functional properties of such food materials. Acorns are important forestry resources in the central and southern regions of Portugal. To preserve these fruits and to optimize their use, techniques like drying are needed. The effects of different drying temperatures on starch-related functional properties of acorn flours obtained from dried fruits of Quercus rotundifolia (QR) and Quercus suber (QS) were evaluated. Flours were characterized for amylose and resistant starch (RS) contents, swelling ability, and gelatinization properties. Drying temperature mainly affected amylose content and viscoamylographic properties. Amylograms of flours from fruits dried at 60 °C displayed higher consistency (2102 B.U. and 1560 B.U., respectively, for QR and QS). The transition temperatures and enthalpy were less affected by drying temperature, suggesting few modifications in starch structure during drying. QR flours presented different functional properties to those obtained from QS acorn flours. The effect of drying temperatures were more evident in QR.

  2. Comparison of metal lability in air-dried and fresh dewatered drinking water treatment residuals.

    PubMed

    Wang, Changhui; Pei, Yuansheng; Zhao, Yaqian

    2015-01-01

    In this work, the labilities of Al, As, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Pb, Sr, V and Zn in air-dried (for 60 days) and fresh dewatered WTRs were compared using the Toxicity Characteristic Leaching Procedure (TCLP), fractionation, in vitro digestion and a plant enrichment test. The results showed that the air-dried and fresh dewatered WTRs had different properties, e.g., organic matter composition and available nutrients. The air-dried and fresh dewatered WTRs were non-haf zardous according to the TCLP assessment method used in the United States; however, the metals in the two types of WTRs had different lability. Compared with the metals in the fresh dewatered WTRs, those in the air-dried WTRs tended to be in more stable fractions and also exhibited lower bioaccessibility and bioavailability. Therefore, air-drying can decrease the metal lability and thereby reduce the potential metal pollution risk of WTRs.

  3. Determination of the dried product resistance variability and its influence on the product temperature in pharmaceutical freeze-drying.

    PubMed

    Scutellà, Bernadette; Trelea, Ioan Cristian; Bourlès, Erwan; Fonseca, Fernanda; Passot, Stephanie

    2018-07-01

    During the primary drying step of the freeze-drying process, mass transfer resistance strongly affects the product temperature, and consequently the final product quality. The main objective of this study was to evaluate the variability of the mass transfer resistance resulting from the dried product layer (R p ) in a manufacturing batch of vials, and its potential effect on the product temperature, from data obtained in a pilot scale freeze-dryer. Sublimation experiments were run at -25 °C and 10 Pa using two different freezing protocols: with spontaneous or controlled ice nucleation. Five repetitions of each condition were performed. Global (pressure rise test) and local (gravimetric) methods were applied as complementary approaches to estimate R p . The global method allowed to assess variability of the evolution of R p with the dried layer thickness between different experiments whereas the local method informed about R p variability at a fixed time within the vial batch. A product temperature variability of approximately ±4.4 °C was defined for a product dried layer thickness of 5 mm. The present approach can be used to estimate the risk of failure of the process due to mass transfer variability when designing freeze-drying cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Factors affecting the abundance of leaf-litter arthropods in unburned and thrice-burned seasonally-dry Amazonian forests.

    PubMed

    Silveira, Juliana M; Barlow, Jos; Louzada, Julio; Moutinho, Paulo

    2010-09-21

    Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance.

  5. Factors Affecting the Abundance of Leaf-Litter Arthropods in Unburned and Thrice-Burned Seasonally-Dry Amazonian Forests

    PubMed Central

    Silveira, Juliana M.; Barlow, Jos; Louzada, Julio; Moutinho, Paulo

    2010-01-01

    Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance. PMID:20877720

  6. Study of overlength on red oak lumber drying quality and rough mill yield

    Treesearch

    Brian Bond; Janice Wiedenbeck

    2006-01-01

    Lumber stacking practices can directly affect drying defects, drying rate, and moisture content uniformity. The effect of overlength on drying is generally thought to be detrimental, yet large volumes of overlength lumber are used by secondary manufacturers. Managers of secondary manufacturing facilities need quantitative information to assist them in determining if...

  7. A priming effect of benthic gastropod mucus on sedimentary organic matter remineralization

    NASA Astrophysics Data System (ADS)

    Hannides, A. K.; Aller, R. C.

    2016-02-01

    Mucous gels are produced by benthic animals rapidly and in copious amounts, and have previously been shown to significantly affect diffusion rates of redox-sensitive ions and organic compounds in sediment pore waters. They are also a highly likely priming substrate whose addition in modest amounts affects sedimentary organic matter remineralization. We tested the priming effect of benthic infaunal mucus using secretions of the common gastropod Neverita duplicata as model substrate. Their composition is typical of marine molluscan mucus, consisting primarily of water (>96% by weight), which is in relative equilibrium with seawater. Salt-free dry weight constitutes 0.7% and 0.6% of total pedal and hypobranchial mucus, respectively. The C:N ratios of pedal and hypobranchial mucus indicate that the organic component consists of a mucopolysaccharide-glycoprotein complex that varies depending on its function, while low C:S ratios of the insoluble component and positive staining with Alcian Blue dye are indicative of S-ester and alkyl-SO42- groups bridging mucopolysaccharide and glycoprotein components. Anoxic incubations of pedal mucus of N. duplicata, sediment, and mucus-sediment mixture, resulted in the anaerobic generation of ΣCO2 and NH4+ at ratios lower than initial C:N ratios, indicating the preferential decomposition of N-rich moieties. Production rates of SCO2 and NH4+ in mucus-sediment incubations are higher, by 9±16% and 29±11%, respectively, than those predicted from linear addition of mucus-only and sediment-only rates. The statistically significant accelerated remineralization rate of N in the presence of modest mucus contribution (0.2% of total N), suggests that benthic mucus addition affects sedimentary organic matter remineralization processes through a "priming" effect.

  8. Role of organic matter on aggregate stability and related mechanisms through organic amendments

    NASA Astrophysics Data System (ADS)

    Zaher, Hafida

    2010-05-01

    To date, only a few studies have tried to simultaneously compare the role of neutral and uronic sugars and lipids on soil structural stability. Moreover, evidence for the mechanisms involved has often been established following wetting of moist aggregates after various pre-treatments thus altering aggregate structure and resulting in manipulations on altered aggregates on which the rapid wetting process may not be involved anymore. To the best of our knowledge, the objective of this work was to study the role of neutral and uronic sugars and lipids in affecting key mechanisms (swelling rate, pressure evolution) involved in the stabilization of soil structure. A long-term incubation study (48-wk) was performed on a clay loam and a silty-clay loam amended with de-inking-secondary sludge mix at three rates (8, 16 and 24 Mg dry matter ha-1), primary-secondary sludge mix at one rate (18 Mg oven-dry ha-1) and composted de-inking sludge at one rate (24 Mg ha-1). Different structural stability indices (stability of moist and dry aggregates, the amount of dispersible clay and loss of soil material following sudden wetting) were measured on a regular basis during the incubation, along with CO2 evolved, neutral and uronic sugar, and lipid contents. During the course of the incubations, significant increases in all stability indices were measured for both soil types. In general, the improvements in stability were proportional to the amount of C added as organic amendments. These improvements were linked to a very intense phase of C mineralization and associated with increases in neutral and uronic sugars as well as lipid contents. The statistical relationships found between the different carbonaceous fractions and stability indices were all highly significant and indicated no clear superiority of one fraction over another. Paper sludge amendments also resulted in significant decreases in maximum internal pressure of aggregate and aggregate swelling following immersion in water

  9. Analgesic and anti-inflammatory effects of the dry matter of culture broth of Termitomyces albuminosus and its extracts.

    PubMed

    Lu, Yi-Yu; Ao, Zong-Hua; Lu, Zhen-Ming; Xu, Hong-Yu; Zhang, Xiao-Mei; Dou, Wen-Fang; Xu, Zheng-Hong

    2008-12-08

    The objectives of this study were to investigate the analgesic and anti-inflammatory effects of the dry matter of culture broth (DMCB) of Termitomyces albuminosus in submerged culture and its crude saponin extract (CSE) and crude polysaccharide extract (CPE). The analgesic effects of DMCB, CSE and CPE were evaluated with models of acetic acid-induced writhing response and formalin test in mouse. The anti-inflammatory effects of DMCB, CSE and CPE were evaluated by using models of xylene-induced mouse ear swelling and carrageen-induced mouse paw edema. The DMCB, CSE and CPE significantly decreased the acetic acid-induced writhing response and the licking time on the late phase in the formalin test. Treatment of DMCB (1000mg/kg), CSE (200mg/kg) or CPE (200mg/kg) inhibited the mouse ear swelling by 61.8%, 79.0% and 81.6%, respectively. In the carrageen-induced mouse paw edema test, the group treated with indomethacin showed the strongest inhibition of edema formation by 77.8% in the third hour after carrageenan administration, while DMCB (1000mg/kg), CSE (200mg/kg) and CPE (200mg/kg) showed 48.4%, 55.6% and 40.5%, respectively. The results suggested that DMCB of Termitomyces albuminosus possessed the analgesic and anti-inflammatory activities. Saponins and polysaccharides were proposed to be the major active constituents of Termitomyces albuminosus in submerged culture.

  10. Dry and Semi-Dry Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Chavas, D. R.

    2017-12-01

    Our understanding of dynamics in our real moist atmosphere is strongly informed by idealized dry models. It is widely believed that tropical cyclones (TCs) are an intrinsically moist phenomenon - relying fundamentally on evaporation and latent heat release - yet recent numerical modeling work has found formation of dry axisymmetric tropical cyclones from a state of dry radiative-convective equilibrium. What can such "dry hurricanes" teach us about intensity, structure, and size of real moist tropical cyclones in nature? Are dry TCs even stable in 3D? What about surfaces that are nearly dry but have some latent heat flux - can they also support TCs? To address these questions, we use the SAM cloud-system resolving model to simulate radiative-convective equilibrium on a rapidly rotating f-plane, subject to constant tropospheric radiative cooling. We use a homogeneous surface with fixed temperature and with surface saturation vapor pressure scaled by a factor 0-1 relative to that over pure water - allowing for continuous variation between moist and dry limits. We also explore cases with surface enthalpy fluxes that are uniform in space and time, where partitioning between latent and sensible heat fluxes is specified directly. We find that a completely moist surface yields a TC-world where multiple vortices form spontaneously and persist for tens of days. A completely dry surface can also yield a parallel dry TC-world with many vortices that are even more stable and persistent. Spontaneous cyclogenesis, however, is impeded for a range of low to intermediate surface wetness values, and by the combination of large rotation rates and a dry surface. We discuss whether these constraints on spontaneous cyclogenesis might arise from: 1) rain evaporation in the subcloud layer limiting the range of viable surface wetness values, and 2) a natural convective Rossby number limiting the range of viable rotation rates. Finally, we discuss simulations with uniform surface enthalpy

  11. Is leaf dry matter content a better predictor of soil fertility than specific leaf area?

    PubMed Central

    Hodgson, J. G.; Montserrat-Martí, G.; Charles, M.; Jones, G.; Wilson, P.; Shipley, B.; Sharafi, M.; Cerabolini, B. E. L.; Cornelissen, J. H. C.; Band, S. R.; Bogard, A.; Castro-Díez, P.; Guerrero-Campo, J.; Palmer, C.; Pérez-Rontomé, M. C.; Carter, G.; Hynd, A.; Romo-Díez, A.; de Torres Espuny, L.; Royo Pla, F.

    2011-01-01

    Background and Aims Specific leaf area (SLA), a key element of the ‘worldwide leaf economics spectrum’, is the preferred ‘soft’ plant trait for assessing soil fertility. SLA is a function of leaf dry matter content (LDMC) and leaf thickness (LT). The first, LDMC, defines leaf construction costs and can be used instead of SLA. However, LT identifies shade at its lowest extreme and succulence at its highest, and is not related to soil fertility. Why then is SLA more frequently used as a predictor of soil fertility than LDMC? Methods SLA, LDMC and LT were measured and leaf density (LD) estimated for almost 2000 species, and the capacity of LD to predict LDMC was examined, as was the relative contribution of LDMC and LT to the expression of SLA. Subsequently, the relationships between SLA, LDMC and LT with respect to soil fertility and shade were described. Key Results Although LD is strongly related to LDMC, and LDMC and LT each contribute equally to the expression of SLA, the exact relationships differ between ecological groupings. LDMC predicts leaf nitrogen content and soil fertility but, because LT primarily varies with light intensity, SLA increases in response to both increased shade and increased fertility. Conclusions Gradients of soil fertility are frequently also gradients of biomass accumulation with reduced irradiance lower in the canopy. Therefore, SLA, which includes both fertility and shade components, may often discriminate better between communities or treatments than LDMC. However, LDMC should always be the preferred trait for assessing gradients of soil fertility uncoupled from shade. Nevertheless, because leaves multitask, individual leaf traits do not necessarily exhibit exact functional equivalence between species. In consequence, rather than using a single stand-alone predictor, multivariate analyses using several leaf traits is recommended. PMID:21948627

  12. Is leaf dry matter content a better predictor of soil fertility than specific leaf area?

    PubMed

    Hodgson, J G; Montserrat-Martí, G; Charles, M; Jones, G; Wilson, P; Shipley, B; Sharafi, M; Cerabolini, B E L; Cornelissen, J H C; Band, S R; Bogard, A; Castro-Díez, P; Guerrero-Campo, J; Palmer, C; Pérez-Rontomé, M C; Carter, G; Hynd, A; Romo-Díez, A; de Torres Espuny, L; Royo Pla, F

    2011-11-01

    Specific leaf area (SLA), a key element of the 'worldwide leaf economics spectrum', is the preferred 'soft' plant trait for assessing soil fertility. SLA is a function of leaf dry matter content (LDMC) and leaf thickness (LT). The first, LDMC, defines leaf construction costs and can be used instead of SLA. However, LT identifies shade at its lowest extreme and succulence at its highest, and is not related to soil fertility. Why then is SLA more frequently used as a predictor of soil fertility than LDMC? SLA, LDMC and LT were measured and leaf density (LD) estimated for almost 2000 species, and the capacity of LD to predict LDMC was examined, as was the relative contribution of LDMC and LT to the expression of SLA. Subsequently, the relationships between SLA, LDMC and LT with respect to soil fertility and shade were described. Although LD is strongly related to LDMC, and LDMC and LT each contribute equally to the expression of SLA, the exact relationships differ between ecological groupings. LDMC predicts leaf nitrogen content and soil fertility but, because LT primarily varies with light intensity, SLA increases in response to both increased shade and increased fertility. Gradients of soil fertility are frequently also gradients of biomass accumulation with reduced irradiance lower in the canopy. Therefore, SLA, which includes both fertility and shade components, may often discriminate better between communities or treatments than LDMC. However, LDMC should always be the preferred trait for assessing gradients of soil fertility uncoupled from shade. Nevertheless, because leaves multitask, individual leaf traits do not necessarily exhibit exact functional equivalence between species. In consequence, rather than using a single stand-alone predictor, multivariate analyses using several leaf traits is recommended.

  13. Storage Stability of Dried Microsclerotia of the Biological Control Pathogen Mycoleptodiscus Terrestris

    DTIC Science & Technology

    2009-09-01

    asexual spores (sporogenic germination), or by sexual fruit bodies (carpogenic germination) (Webster and Weber 2007). Plating of dried microsclerotia...While drying the fungus does not appear to impact efficacy, it is unknown how prolonged storage might affect the viability and virulence of the organism...agar (Table 1). Warm water temperatures (25 ºC ± 1 ºC) and the presence of a host plant may have affected both germination and sporulation of the

  14. Contact lens strategies for the patient with dry eye.

    PubMed

    Sindt, Christine W; Longmuir, Reid A

    2007-10-01

    Dry eye is the most common reason for contact lens (CL) discontinuation, and the patient with pre-existing dry eye presents particular challenges to the CL fitter. Poor tear film quality/stability, oxygen deprivation, lens deposits, and adverse reactions to CL solutions all contribute to dry eye, and lid disease, allergies, environmental factors, and medications can further hamper successful CL wear by the patient with dry eye. Health and comfort of the ocular surface is affected by the water content, ionicity, oxygen permeability, and modulus of elasticity of the lens, as well as by surface characteristics, such as protein, lipid, and mucin deposition; protein adsorption; and wettability. The choice of CL cleaning solutions with regard to action, cytotoxicity, and biocompatibility are as important as the choice of the CL itself. With appropriate management of the lid, meibomian gland, and ocular surface conditions that produce dry eye, careful selection of lenses and solutions, and vigilant follow-up, successful CL wear should be achievable for the dry eye patient.

  15. Impact of Ice Morphology on Design Space of Pharmaceutical Freeze-Drying.

    PubMed

    Goshima, Hiroshika; Do, Gabsoo; Nakagawa, Kyuya

    2016-06-01

    It has been known that the sublimation kinetics of a freeze-drying product is affected by its internal ice crystal microstructures. This article demonstrates the impact of the ice morphologies of a frozen formulation in a vial on the design space for the primary drying of a pharmaceutical freeze-drying process. Cross-sectional images of frozen sucrose-bovine serum albumin aqueous solutions were optically observed and digital pictures were acquired. Binary images were obtained from the optical data to extract the geometrical parameters (i.e., ice crystal size and tortuosity) that relate to the mass-transfer resistance of water vapor during the primary drying step. A mathematical model was used to simulate the primary drying kinetics and provided the design space for the process. The simulation results predicted that the geometrical parameters of frozen solutions significantly affect the design space, with large and less tortuous ice morphologies resulting in wide design spaces and vice versa. The optimal applicable drying conditions are influenced by the ice morphologies. Therefore, owing to the spatial distributions of the geometrical parameters of a product, the boundary curves of the design space are variable and could be tuned by controlling the ice morphologies. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  16. Prediction of porosity of food materials during drying: Current challenges and directions.

    PubMed

    Joardder, Mohammad U H; Kumar, C; Karim, M A

    2017-07-18

    Pore formation in food samples is a common physical phenomenon observed during dehydration processes. The pore evolution during drying significantly affects the physical properties and quality of dried foods. Therefore, it should be taken into consideration when predicting transport processes in the drying sample. Characteristics of pore formation depend on the drying process parameters, product properties and processing time. Understanding the physics of pore formation and evolution during drying will assist in accurately predicting the drying kinetics and quality of food materials. Researchers have been trying to develop mathematical models to describe the pore formation and evolution during drying. In this study, existing porosity models are critically analysed and limitations are identified. Better insight into the factors affecting porosity is provided, and suggestions are proposed to overcome the limitations. These include considerations of process parameters such as glass transition temperature, sample temperature, and variable material properties in the porosity models. Several researchers have proposed models for porosity prediction of food materials during drying. However, these models are either very simplistic or empirical in nature and failed to consider relevant significant factors that influence porosity. In-depth understanding of characteristics of the pore is required for developing a generic model of porosity. A micro-level analysis of pore formation is presented for better understanding, which will help in developing an accurate and generic porosity model.

  17. Drying and decontamination of raw pistachios with sequential infrared drying, tempering and hot air drying.

    PubMed

    Venkitasamy, Chandrasekar; Brandl, Maria T; Wang, Bini; McHugh, Tara H; Zhang, Ruihong; Pan, Zhongli

    2017-04-04

    Pistachio nuts have been associated with outbreaks of foodborne disease and the industry has been impacted by numerous product recalls due to contamination with Salmonella enterica. The current hot air drying of pistachios has low energy efficiency and drying rates, and also does not guarantee the microbial safety of products. In the study described herein, dehulled and water-sorted pistachios with a moisture content (MC) of 38.14% (wet basis) were dried in a sequential infrared and hot air (SIRHA) drier to <9% MC. The decontamination efficacy was assessed by inoculating pistachios with Enterococcus faecium, a surrogate of Salmonella enterica used for quality control in the almond industry. Drying with IR alone saved 105min (34.4%) of drying time compared with hot air drying. SIRHA drying of pistachios for 2h with infrared (IR) heat followed by tempering at a product temperature of 70°C for 2h and then by hot air drying shortened the drying time by 40min (9.1%) compared with drying by hot air only. This SIRHA method also reduced the E. faecium cell population by 6.1-logCFU/g kernel and 5.41-logCFU/g shell of pistachios. The free fatty acid contents of SIRHA dried pistachios were on par with that of hot air dried samples. Despite significant differences in peroxide values (PV) of pistachio kernels dried with the SIRHA method compared with hot air drying at 70°C, the PV were within the permissible limit of 5Meq/kg for edible oils. Our findings demonstrate the efficacy of SIRHA drying in achieving simultaneous drying and decontamination of pistachios. Published by Elsevier B.V.

  18. Sludge-Drying Lagoons: a Potential Significant Methane Source in Wastewater Treatment Plants.

    PubMed

    Pan, Yuting; Ye, Liu; van den Akker, Ben; Ganigué Pagès, Ramon; Musenze, Ronald S; Yuan, Zhiguo

    2016-02-02

    "Sludge-drying lagoons" are a preferred sludge treatment and drying method in tropical and subtropical areas due to the low construction and operational costs. However, this method may be a potential significant source of methane (CH4) because some of the organic matter would be microbially metabolized under anaerobic conditions in the lagoon. The quantification of CH4 emissions from lagoons is difficult due to the expected temporal and spatial variations over a lagoon maturing cycle of several years. Sporadic ebullition of CH4, which cannot be easily quantified by conventional methods such as floating hoods, is also expected. In this study, a novel method based on mass balances was developed to estimate the CH4 emissions and was applied to a full-scale sludge-drying lagoon over a three year operational cycle. The results revealed that processes in a sludge-drying lagoon would emit 6.5 kg CO2-e per megaliter of treated sewage. This would represent a quarter to two-thirds of the overall greenhouse gas (GHG) emissions from wastewater-treatment plants (WWTPs). This work highlights the fact that sludge-drying lagoons are a significant source of CH4 that adds substantially to the overall GHG footprint of WWTPs despite being recognized as a cheap and energy-efficient means of drying sludge.

  19. Determining consumer purchase intentions: the importance of dry matter, size, and price of kiwifruit.

    PubMed

    Jaeger, Sara R; Harker, Roger; Triggs, Chris M; Gunson, Anne; Campbell, Rachel L; Jackman, Richard; Requejo-Jackman, Cecilia

    2011-04-01

    Knowledge of the relative importance of food quality attributes in determining consumer purchase intention is critical for robust assessment of economic opportunities for industry growth. The aim of this study is to demonstrate how conjoint analysis methodology that incorporates tasting of fruit can be used to collect such information. Three hundred Japanese consumers took part in research designed to measure the importance of dry matter (DM), size, and price of kiwifruit (Actinidia deliciosa "Hayward" and Actinidia chinensis "Hort16A") for purchase intention. Measurement of consumer liking for kiwifruit of different DM content was a key first step. Liking increased as DM increased and was accompanied by increased purchase likelihood/choice probability for kiwifruit. The size of kiwifruit presented to consumers varied from "small" to "extra large." Consumers liked "mid-sized" kiwifruit over "small" or "extra-large" kiwifruit. Despite these differences in liking, size was of little importance in determining purchase likelihood/choice probability for kiwifruit. Price was a very important factor in determining purchase likelihood/choice probability but was less important than DM content. As price increased, purchase likelihood/choice probability decreased. Beneath these general findings, heterogeneity existed. Some consumers placed more/less importance on the focal purchase drivers than suggested by the aggregate model. Overall, the results suggest that incentive schemes already implemented by industry should consider rewarding high-DM fruit more than fruit size.   This research has contributed to the New Zealand kiwifruit industry gaining a better understanding of the relative importance consumers place on DM, size, and price of kiwifruit and has resulted in changes to grower incentive schemes. The research approach presented forces consumer to tradeoff attributes of kiwifruit against each other and decide on how important two key quality attributes-DM and

  20. Effects of calcium montmorillonite clay and aflatoxin exposure on dry matter intake, milk production, and milk composition.

    PubMed

    Maki, C R; Thomas, A D; Elmore, S E; Romoser, A A; Harvey, R B; Ramirez-Ramirez, H A; Phillips, T D

    2016-02-01

    Fifteen primiparous crossbred dairy cows that were 114±14d in milk and weighed 533±56kg were used in a replicated 5×5 Latin square to test the efficacy of a calcium montmorillonite clay, NovaSil Plus (NSP; BASF Corp., Ludwigshaven, Germany), for the reduction of aflatoxin (AF) metabolite (AFM1) in milk and the effect of NSP on milk composition. Cows were housed in a freestall barn, fed once a day and milked twice a day. The experiment consisted of five 14-d periods: d 1 through 7 were considered for data collection, and d 8 through 14 were considered a wash-out phase. In each period, cows were randomly assigned to 1 of 5 dietary treatments: (1) control (CON), consisting of a basal total mixed ration (TMR); (2) high-dose NSP diet (NSP-1%), consisting of TMR plus 230 g of NSP; (3) aflatoxin diet (AFD), consisting of the TMR plus AF challenge; (4) low-dose NSP with AF (NSP-0.5%+AFD), composed of TMR plus 115 g of NSP and AF challenge; and (5) high-dose NSP with AF (NSP-1%+AFD), consisting of TMR plus 230 g of NSP and AF challenge. The AF challenge consisted of top dressing a daily dose of 100 µg/kg estimated dry matter intake (DMI); similarly, NSP was fed at 1.0 or 0.5% of estimated DMI. Milk yield and DMI were similar across treatments averaging 21.1±1.33 kg/d and 19.7±0.56 kg/d, respectively. Concentration of milk fat, protein, and lactose were similar across treatments with averages of 4.91±0.20%, 3.85±0.10%, and 4.70±0.06%, respectively. Concentration of vitamin A averaged 0.28±0.03 µg/mL and riboflavin concentration averaged 1.57±0.13 µg/mL across treatments. The concentration of minerals in milk were similar for all treatments. Cows fed CON and NSP-1% yielded the lowest concentration of AFM1 in milk with 0.03 and 0.01±0.06 µg/L. Addition of NSP reduced milk AFM1 from 1.10±0.06 µg/L with the AF diet to 0.58 and 0.32±0.06 µg/L with the NSP-0.5%+AF and NSP-1%+AF diets, respectively. Excretion of AFM1 was reduced by NSP; mean values were 24.38, 11

  1. Vitamin and trace element supplementation in grazing dairy ewe during the dry season: effect on milk yield, composition, and clotting aptitude.

    PubMed

    Tufarelli, Vincenzo; Petrera, F; Khan, R U; Laudadio, Vito

    2011-06-01

    A study was carried out to evaluate the influence of vitamin and trace mineral supplementation on milk production and composition in grazing dairy ewes during the dry season. Ewes (n = 50) were assigned at weaning to blocks and treatments. Ewes were daily conducted (8 h/day) on a pasture based on Italian ryegrass (Lolium multiflorum). At fold, ewes received a basal diet composed by ad libitum oat hay and a definite amount of a pelleted concentrate. Dietary treatments included: (1) the control concentrate containing background of vitamin and trace mineral only, and (2) the experimental concentrate containing the premix supplement (10 g/kg of dry matter). Vitamin and trace mineral supplementation did not affect ewes' body weight. Milk, fat- and protein-corrected milk, fat percentage, and clotting properties were improved in ewes fed supplemented concentrate. There was a week × treatment interaction (P < 0.05) for yield of milk and corrected milk that was greatest at peak production in ewes fed the premix. Our findings indicate that in grazing dairy ewe, the dietary vitamin and trace mineral supplementation during dry season led to an increase of milk production and quality, with positive improvement in milk clotting aptitude.

  2. Bioaccessibility and Speciation of Potential Toxicants in Some Geogenic Sources of Atmospheric Particulate Matter

    NASA Astrophysics Data System (ADS)

    Morman, S. A.; Wolf, R. E.; Plumlee, G.; Reynolds, R. L.

    2008-12-01

    The correlation of exposure to particulate matter (PM) and increased morbidity and mortality was established in the 1970's. Research focused on elucidating mechanisms of action (i.e. particle size, composition, and biodurability), has generally examined anthropogenic sources such as solid or liquid combustion byproducts of fossil fuels, byproducts from the smelting of metal ores, and commercial/industrial mineral dusts (asbestos, crystalline silica. metal dusts). While many studies exist on agricultural exposures to inorganic dust, far fewer have examined health issues related to particulate matter contributions from rural, non-agricultural dusts or other geogenic sources. Geogenic PM (produced by natural processes such as volcanic ash, volcanic fog (vog), dusts from dry lakes or glacial deposits, smoke and windborne ash from wildfires, and dusts containing various soil pathogens) and geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities such as dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices etc.) are increasingly recognized as potential agents of toxicity and disease, via both environmental and occupational exposures. Surface sediment on some dry lake beds may contribute significant amounts of mineral dusts to the atmospheric load. For example, Owens Lake (a dry lake in southern California) has been a major source of PM10 (particulate matter less than 10 micrometers) dust in the United States. Dusts from dry and drying saline lakes may contain high concentrations of metals, such as arsenic, with known human health toxicity. Wildfires, consuming over nine million acres in 2007, also contribute significant amounts of particulate matter in addition to their other hazards. Designed to estimate the bioaccessibility of metals in soils, dusts and other environmental materials by measuring the reactivity of the

  3. Formation of monodisperse mesoporous silica microparticles via spray-drying.

    PubMed

    Waldron, Kathryn; Wu, Winston Duo; Wu, Zhangxiong; Liu, Wenjie; Selomulya, Cordelia; Zhao, Dongyuan; Chen, Xiao Dong

    2014-03-15

    In this work, a protocol to synthesize monodisperse mesoporous silica microparticles via a unique microfluidic jet spray-drying route is reported for the first time. The microparticles demonstrated highly ordered hexagonal mesostructures with surface areas ranging from ~900 up to 1500 m(2)/g and pore volumes from ~0.6 to 0.8 cm(3)/g. The particle size could be easily controlled from ~50 to 100 μm from the same diameter nozzle via changing the initial solute content, or changing the drying temperature. The ratio of the surfactant (CTAB) and silica (TEOS), and the amount of water in the precursor were found to affect the degree of ordering of mesopores by promoting either the self-assembly of the surfactant-silica micelles or the condensation of the silica as two competing processes in evaporation induced self-assembly. The drying rate and the curvature of particles also affected the self-assembly of the mesostructure. The particle mesostructure is not influenced by the inlet drying temperature in the range of 92-160 °C, with even a relatively low temperature of 92 °C producing highly ordered mesoporous microparticles. The spray-drying derived mesoporous silica microparticles, while of larger sizes and more rapidly synthesized, showed a comparable performance with the conventional mesoporous silica MCM-41 in controlled release of a dye, Rhodamine B, indicating that these spray dried microparticles could be used for the immobilisation and controlled release of small molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. 40 CFR 60.532 - Standards for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected..., 1992, shall comply with the following particulate matter emission limits as determined by the test...

  5. 40 CFR 60.532 - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected..., 1992, shall comply with the following particulate matter emission limits as determined by the test...

  6. 40 CFR 60.532 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected..., 1992, shall comply with the following particulate matter emission limits as determined by the test...

  7. 40 CFR 60.532 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected..., 1992, shall comply with the following particulate matter emission limits as determined by the test...

  8. Lyophilization, Reconstitution, and DBP Formation in Reverse-Osmosis Concentrated Natural Organic Matter

    EPA Science Inventory

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking w...

  9. Impact of blanching, sweating and drying operations on pungency, aroma and color of Piper borbonense.

    PubMed

    Weil, M; Shum Cheong Sing, A; Méot, J M; Boulanger, R; Bohuon, P

    2017-03-15

    Low pungency, high aromatic potential and red color, give to Piper borbonense its originality when compared to Piper nigrum. Effects of blanching, sweating and drying on these characteristics were assessed. The three operations had no impact on the concentration of piperine and essential oil but affected the composition of essential oil slightly and considerably affected the color of the pepper. The "wet process", including blanching, sweating and drying, had the largest impact on the composition of aroma, increasing para-cymene content by 89% and reducing safrole content by 33% in dried pepper compared to fresh. Blanching increased the drying rate thus reducing drying time. Drying had a major impact on color, which changed from red to brown. The biggest differences observed led to reductions of 2.2, 7.9 and 8.4units in L ∗ , a ∗ and b ∗ values, when chromatic values measured in fresh pepper were compared to those of dried pepper. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Standardization of spray-dried powder of Piper betle hot water extract

    PubMed Central

    Arawwawala, Liyanage Dona Ashanthi Menuka; Hewageegana, Horadugoda Gamage Sujatha Pushpakanthi; Arambewela, Lakshmi Sriyani Rajapaksha; Ariyawansa, Hettiarachchige Sami

    2011-01-01

    The leaves of Piper betle Linn. (Family: Piperaceae) possess several bioactivities and are used in the Traditional Medical systems of Sri Lanka. The present investigation was carried out to standardize the spray-dried powder of P. betle by (a) determination of physicochemical parameters, presence or absence of heavy metals, and microbial contamination; (b) screening for phytochemicals; and (c) development of High Pressure Liquid Chromatography (HPLC) fingerprint and densitogram. The percentages of moisture content, total ash, acid insoluble ash, water-soluble ash, and ethanol extractable matter of spray-dried powder of P. betle were 2.2-2.5, 6.8-7.0, 0.003-0.005, 4.1-4.3, and 15.8-16.2, respectively. The concentrations of all the tested heavy metals were below the WHO acceptable limits and bacterial species, such as Escherichia coli, Salmonella spp, Staphylococcus aureus, and Pseudomonas aeroginosa were not present in the P. betle spray-dried powder. Phenolic compounds, tannins, flavonoids steroids, and alkaloids were found to be present in the spray-dried powder of P. betle and HPLC fingerprint and densitogram clearly demonstrated the proportional differences of these chemical constituents. In conclusion, the results obtained from this study can be used to standardize the spray-dried powder of P. betle. PMID:21716924

  11. Standardization of spray-dried powder of Piper betle hot water extract.

    PubMed

    Arawwawala, Liyanage Dona Ashanthi Menuka; Hewageegana, Horadugoda Gamage Sujatha Pushpakanthi; Arambewela, Lakshmi Sriyani Rajapaksha; Ariyawansa, Hettiarachchige Sami

    2011-04-01

    The leaves of Piper betle Linn. (Family: Piperaceae) possess several bioactivities and are used in the Traditional Medical systems of Sri Lanka. The present investigation was carried out to standardize the spray-dried powder of P. betle by (a) determination of physicochemical parameters, presence or absence of heavy metals, and microbial contamination; (b) screening for phytochemicals; and (c) development of High Pressure Liquid Chromatography (HPLC) fingerprint and densitogram. The percentages of moisture content, total ash, acid insoluble ash, water-soluble ash, and ethanol extractable matter of spray-dried powder of P. betle were 2.2-2.5, 6.8-7.0, 0.003-0.005, 4.1-4.3, and 15.8-16.2, respectively. The concentrations of all the tested heavy metals were below the WHO acceptable limits and bacterial species, such as Escherichia coli, Salmonella spp, Staphylococcus aureus, and Pseudomonas aeroginosa were not present in the P. betle spray-dried powder. Phenolic compounds, tannins, flavonoids steroids, and alkaloids were found to be present in the spray-dried powder of P. betle and HPLC fingerprint and densitogram clearly demonstrated the proportional differences of these chemical constituents. In conclusion, the results obtained from this study can be used to standardize the spray-dried powder of P. betle.

  12. Regional Heritability Mapping Provides Insights into Dry Matter Content in African White and Yellow Cassava Populations.

    PubMed

    Okeke, Uche Godfrey; Akdemir, Deniz; Rabbi, Ismail; Kulakow, Peter; Jannink, Jean-Luc

    2018-03-01

    The HarvestPlus program for cassava ( Crantz) fortifies cassava with β-carotene by breeding for carotene-rich tubers (yellow cassava). However, a negative correlation between yellowness and dry matter (DM) content has been identified. We investigated the genetic control of DM in white and yellow cassava. We used regional heritability mapping (RHM) to associate DM with genomic segments in both subpopulations. Significant segments were subjected to candidate gene analysis and candidates were validated with prediction accuracies. The RHM procedure was validated via a simulation approach and revealed significant hits for white cassava on chromosomes 1, 4, 5, 10, 17, and 18, whereas hits for the yellow were on chromosome 1. Candidate gene analysis revealed genes in the carbohydrate biosynthesis pathway including plant serine-threonine protein kinases (SnRKs), UDP (uridine diphosphate)-glycosyltransferases, UDP-sugar transporters, invertases, pectinases, and regulons. Validation using 1252 unique identifiers from the SnRK gene family genome-wide recovered 50% of the predictive accuracy of whole-genome single nucleotide polymorphisms for DM, whereas validation using 53 likely genes (extracted from the literature) from significant segments recovered 32%. Genes including an acid invertase, a neutral or alkaline invertase, and a glucose-6-phosphate isomerase were validated on the basis of an a priori list for the cassava starch pathway, and also a fructose-biphosphate aldolase from the Calvin cycle pathway. The power of the RHM procedure was estimated as 47% when the causal quantitative trait loci generated 10% of the phenotypic variance (sample size = 451). Cassava DM genetics are complex and RHM may be useful for complex traits. Copyright © 2018 Crop Science Society of America.

  13. Sheep numbers required for dry matter digestibility evaluations when fed fresh perennial ryegrass or forage rape.

    PubMed

    Sun, Xuezhao; Krijgsman, Linda; Waghorn, Garry C; Kjestrup, Holly; Koolaard, John; Pacheco, David

    2017-03-01

    Research trials with fresh forages often require accurate and precise measurement of digestibility and variation in digestion between individuals, and the duration of measurement periods needs to be established to ensure reliable data are obtained. The variation is likely to be greater when freshly harvested feeds are given, such as perennial ryegrass ( Lolium perenne L.) and forage rape ( Brassica napus L.), because the nutrient composition changes over time and in response to weather conditions. Daily feed intake and faeces output data from a digestibility trial with these forages were used to calculate the effects of differing lengths of the measurement period and differing numbers of sheep, on the precision of digestibility, with a view towards development of a protocol. Sixteen lambs aged 8 months and weighing 33 kg at the commencement of the trial were fed either perennial ryegrass or forage rape (8/treatment group) over 2 periods with 35 d between measurements. They had been acclimatised to the diets, having grazed them for 42 d prior to 11 days of indoor measurements. The sheep numbers required for a digestibility trial with different combinations of acclimatisation and measurement period lengths were subsequently calculated for 3 levels of imposed precision upon the estimate of mean dry matter (DM) digestibility. It is recommended that if the standard error of the mean for digestibility is equal to or higher than 5 g/kg DM, and if sheep are already used to a fresh perennial ryegrass or forage rape diet, then a minimum of 6 animals are needed and 4 acclimatisation days being fed individually in metabolic crates followed by 7 days of measurement.

  14. Effect of residual water content on the physico-chemical properties of sucralfate dried gel obtained by microwave drying.

    PubMed

    Gainotti, Alessandro; Losi, Elena; Bettini, Ruggero; Colombo, Paolo; Sonvico, Fabio; Baroni, Daniela; Santi, Patrizia; Colombo, Gaia

    2005-08-01

    The purpose of this study was to investigate the physico-chemical characteristics of sucralfate humid gel dried by microwaves, in relation to the residual water content. Differential scanning calorimetry (DSC) allowed for the determination of the water state in sucralfate samples. Fourier-transform infrared (FT-IR) spectroscopy was used to monitor the changes in sucralfate gel structure induced by the microwave drying. A boundary value of total water content for sucralfate gel samples was found at 42% (w/w). Below this value only bound water was present, whereas above this value, the increase in total water was due to free water. In the physical form of gel, the strength of the coordination between sulfate anions and the positively charged aluminum hydroxide was dependent on the residual water content. The study of the sedimentation behavior of water suspensions prepared with dried sucralfate allowed for the evaluation of the retention of gel properties. We found that the microwave drying process affected the sedimentation of sucralfate dried gel suspensions independent of the residual water content: when suspensions were prepared from sucralfate dried gel powders containing more than 42% (w/w) of residual water, the sedimentation ratio was higher than 0.9. The non-gel powder suspension showed a sedimentation ratio of 0.68 +/- 0.02, whereas the sucralfate humid gel suspension did not sediment.

  15. Optimization of Sour Cherry Juice Spray Drying as
Affected by Carrier Material and Temperature

    PubMed Central

    Zorić, Zoran; Pedisić, Sandra; Dragović-Uzelac, Verica

    2016-01-01

    Summary Response surface methodology was applied for optimization of the sour cherry Marasca juice spray drying process with 20, 30 and 40% of carriers maltodextrin with dextrose equivalent (DE) value of 4–7 and 13–17 and gum arabic, at three drying temperatures: 150, 175 and 200 °C. Increase in carrier mass per volume ratio resulted in lower moisture content and powder hygroscopicity, higher bulk density, solubility and product yield. Higher temperatures decreased the moisture content and bulk density of powders. Temperature of 200 °C and 27% of maltodextrin with 4–7 DE were found to be the most suitable for production of sour cherry Marasca powder. PMID:28115901

  16. Study on parameters affecting the mechanical properties of dry fiber bundles during continuous composite manufacturing processes

    NASA Astrophysics Data System (ADS)

    Maier, A.; Schledjewski, R.

    2016-07-01

    For continuous manufacturing processes mechanical preloading of the fibers occurs during the delivery of the fibers from the spool creel to the actual manufacturing process step. Moreover preloading of the dry roving bundles might be mandatory, e.g. during winding, to be able to produce high quality components. On the one hand too high tensile loads within dry roving bundles might result in a catastrophic failure and on the other hand the part produced under too low pre-tension might have low quality and mechanical properties. In this work, load conditions influencing mechanical properties of dry glass fiber bundles during continuous composite manufacturing processes were analyzed. Load conditions, i.e. fiber delivery speed, necessary pre-tension and other effects of the delivery system during continuous fiber winding, were chosen in process typical ranges. First, the strain rate dependency under static tensile load conditions was investigated. Furthermore different free gauge lengths up to 1.2 m, interactions between fiber points of contact regarding influence of sizing as well as impregnation were tested and the effect of twisting on the mechanical behavior of dry glass fiber bundles during the fiber delivery was studied.

  17. Impact of critical process and formulation parameters affecting in-process stability of lactate dehydrogenase during the secondary drying stage of lyophilization: a mini freeze dryer study.

    PubMed

    Luthra, Sumit; Obert, Jean-Philippe; Kalonia, Devendra S; Pikal, Michael J

    2007-09-01

    The stresses during the secondary-drying stage of lyophilization were investigated using a controlled humidity mini-freeze-dryer [Luthra S, Obert J-P, Kalonia DS, Pikal MJ. 2007. Investigation of drying stresses on proteins during lyophilization: Differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer. J Pharm Sci 96: 61-70.]. Lactate dehydrogenase (LDH), was formulated in: (1) Tween 80, (2) citrate buffer, and (3) both Tween 80 and citrate buffer. Protein activity recovery was measured as a function of relative humidity (RH), product temperature, and drying duration. Studies were also conducted with different concentrations of sucrose, sorbitol, and poly (vinyl pyrrolidone) (PVP). LDH stability was affected to a small extent by RH and significantly by drying temperature and duration. Complete stabilization of LDH was observed when lyophilized with sucrose and PVP but only a partial stabilization was observed with sorbitol. The mini-freeze-dryer enabled studying the process parameters independently, unlike a conventional study where these effects are generally convoluted. The results suggest that the stability of the protein is a function of the dynamics of the system during lyophilization. The origin of the stabilization effect of sucrose, which could, in principle, be attributed both to direct interaction with the protein or vitrification of the protein was elucidated using lyoprotectants that can either hydrogen bond well with the protein (sorbitol) or form a good glass (PVP). It appears both effects are required for complete stabilization of the protein. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  18. Differing effects of 2 active dried yeast (Saccharomyces cerevisiae) strains on ruminal acidosis and methane production in nonlactating dairy cows.

    PubMed

    Chung, Y-H; Walker, N D; McGinn, S M; Beauchemin, K A

    2011-05-01

    Fifteen ruminally cannulated, nonlactating Holstein cows were used to measure the effects of 2 strains of Saccharomyces cerevisiae, fed as active dried yeasts, on ruminal pH and fermentation and enteric methane (CH(4)) emissions. Nonlactating cows were blocked by total duration (h) that their ruminal pH was below 5.8 during a 6-d pre-experimental period. Within each block, cows were randomly assigned to control (no yeast), yeast strain 1 (Levucell SC), or yeast strain 2 (a novel strain selected for enhanced in vitro fiber degradation), with both strains (Lallemand Animal Nutrition, Montréal, QC, Canada) providing 1 × 10(10) cfu/head per day. Cows were fed once daily a total mixed ration consisting of a 50:50 forage to concentrate ratio (dry matter basis). The yeast strains were dosed via the rumen cannula daily at the time of feeding. During the 35-d experiment, ruminal pH was measured continuously for 7 d (d 22 to 28) by using an indwelling system, and CH(4) gas was measured for 4 d (d 32 to 35) using the sulfur hexafluoride tracer gas technique (with halters and yokes). Rumen contents were sampled on 2 d (d 22 and 26) at 0, 3, and 6h after feeding. Dry matter intake, body weight, and apparent total-tract digestibility of nutrients were not affected by yeast feeding. Strain 2 decreased the average daily minimum (5.35 vs. 5.65 or 5.66), mean (5.98 vs. 6.24 or 6.34), and maximum ruminal pH (6.71 vs. 6.86 or 6.86), and prolonged the time that ruminal pH was below 5.8 (7.5 vs. 3.3 or 1.0 h/d) compared with the control or strain 1, respectively. The molar percentage of acetate was lower and that of propionate was greater in the ruminal fluid of cows receiving strain 2 compared with cows receiving no yeast or strain 1. Enteric CH(4) production adjusted for intake of dry matter or gross energy, however, did not differ between either yeast strain compared with the control but it tended to be reduced by 10% when strain 2 was compared with strain 1. The study shows that

  19. Ration formulations containing reduced-fat dried distillers grains with solubles and their effect on lactation performance, rumen fermentation, and intestinal flow of microbial nitrogen in Holstein cows.

    PubMed

    Castillo-Lopez, E; Ramirez Ramirez, H A; Klopfenstein, T J; Hostetler, D; Karges, K; Fernando, S C; Kononoff, P J

    2014-03-01

    Sixteen multiparous lactating Holstein cows were used in 2 experiments to evaluate the effects of reduced-fat dried distillers grains with solubles (RFDG) on milk production, rumen fermentation, intestinal microbial N flow, and total-tract nutrient digestibility. In experiment 1, RFDG was fed at 0, 10, 20, or 30% of diet dry matter (DM) to 12 noncannulated Holstein cows (mean ± standard deviation: 89 ± 11 d in milk and 674 ± 68.2 kg of body weight) to determine effects on milk production. In experiment 2, the same diets were fed to 4 ruminally and duodenally cannulated Holstein cows (mean ± standard deviation: 112 ± 41 d in milk; 590 ± 61.14 kg of body weight) to evaluate the effects on rumen fermentation, intestinal flow of microbial N, and total-tract nutrient digestibility. In both experiments, cows were randomly assigned to 4 × 4 Latin squares over 21-d periods. Treatments (DM basis) were (1) control (0% RFDG), (2) 10% RFDG, (3) 20% RFDG, and (4) 30% RFDG. Feed intake and milk yield were recorded daily. In both experiments, milk samples were collected on d 19 to 21 of each period for analysis of milk components. In experiment 2, ruminal pH was measured; samples of rumen fluid, duodenal digesta, and feces were collected on d 18 to 21. Microbial N was estimated by using purines and DNA as microbial markers. Milk yield was not affected by treatment and averaged 34.0 ± 1.29 kg/d and 31.4 ± 2.81 kg/d in experiments 1 and 2, respectively. Percentage of milk protein tended to increase in experiment 1; estimates were 3.08, 3.18, 3.15, and 3.19 ± 0.06% when RFDG increased from 0 to 30% in the diets. However, milk protein concentration was not affected in experiment 2 and averaged 3.02 ± 0.07%. Percentage of milk fat was not affected and averaged 3.66 ± 0.05% and 3.25 ± 0.14% in experiments 1 and 2, respectively. Total ruminal volatile fatty acids and ammonia concentrations were not affected by treatment and averaged 135.18 ± 6.45 mM and 18.66 ± 2.32 mg

  20. Assessing the stability in dry mycelial fertilizer of Penicillium chrysogenum as soil amendment via fluorescence excitation-emission matrix spectra: organic matter's transformation and maturity.

    PubMed

    Wang, Bing; Cai, Chen; Li, Guomin; Liu, Huiling

    2017-12-01

    Utilization as dry mycelial fertilizer (DMF) produced from penicillin fermentation fungi mycelium (PFFM) with an acid-heating pretreatment is a potential way. To study the transformation and stability of water-extractable organic matter in DMF-amended soil via fluorescence regional integration (FRI) of fluorescence excitation-emission matrix (EEM), a soil experiment in pot was carried out. The results showed that residual penicillin (about 32 mg/kg) was almost degraded in the first 5 days, indicating that the drug pollution was in control. The pH value, DOC, DON, and DOC/DON presented a classical profile, but germination index (GI) leveled off about 0.13 till day 13 in DMF-12% treatment due to the severe phytotoxicity. The addition of DMF significantly increased the soil microbial populations in contrast to the CON treatment. The EEM showed that the protein-like and microbial byproduct-like matters vanished on the 25th and 33rd days, whereas the fulvic-like substances appeared on the 7th day. The humic-like substances existed in original samples but their content greatly enhanced finally. The FRI results showed that P V, n /P III, n reached the highest value of 1.84 on the 25th day, suggesting that DMF maintained stable in amended soil. Because of its consistency with the results of GI and DOC/DON, the EEM-FRI has a potential to evaluate the stability of DMF in soil.

  1. Influences of the alternation of wet-dry periods on the variability of chromophoric dissolved organic matter in the water level fluctuation zone of the Three Gorges Reservoir area, China.

    PubMed

    Jiang, Tao; Wang, Dingyong; Wei, Shiqiang; Yan, Jinlong; Liang, Jian; Chen, Xueshuang; Liu, Jiang; Wang, Qilei; Lu, Song; Gao, Jie; Li, Lulu; Guo, Nian; Zhao, Zheng

    2018-04-26

    Dissolved organic matter (DOM) is a crucial driver of various biogeochemical processes in aquatic systems. Thus, many lakes and streams have been investigated in the past several decades. However, fewer studies have sought to understand the changes in DOM characteristics in the waters of the Three Gorges Reservoir (TGR) areas, which are the largest artificial reservoir areas in the world. Thus, a field investigation of dissolved organic carbon (DOC) concentrations and of chromophoric dissolved organic matter (CDOM) properties was conducted from 2013 to 2015 to track the spatial-temporal variability of DOM properties in the TGR areas. The results showed that the alternations of wet and dry periods due to hydrological management have a substantial effect on the quantity and quality of aquatic DOM in TGR areas. Increases in DOC concentrations in the wet period show an apparent "dilution effect" that decreases CDOM compounds with relatively lower aromaticity (i.e., SUVA 254 ) and molecular weight (i.e., S R ). In contrast to the obvious temporal variations of DOM, significant spatial variability was not observed in this study. Additionally, DOM showed more terrigenous characteristics in the dry period but weak terrigenous characteristics in the wet period. Furthermore, the positive correlation between SUVA 254 and CDOM suggests that the aromatic component controls the CDOM dynamics in TGR areas. The first attempt to investigate the DOM dynamics in TGR areas since the Three Gorges Dam was conducted in 2012, and the unique patterns of spatial-temporal variations in DOM that are highlighted in this study might provide a new insight for understanding the role of DOM in the fates of contaminants and may help in the further management of flow loads and water quality in the TGR area. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Hydrodynamics of soft active matter

    NASA Astrophysics Data System (ADS)

    Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, Madan; Simha, R. Aditi

    2013-07-01

    This review summarizes theoretical progress in the field of active matter, placing it in the context of recent experiments. This approach offers a unified framework for the mechanical and statistical properties of living matter: biofilaments and molecular motors in vitro or in vivo, collections of motile microorganisms, animal flocks, and chemical or mechanical imitations. A major goal of this review is to integrate several approaches proposed in the literature, from semimicroscopic to phenomenological. In particular, first considered are “dry” systems, defined as those where momentum is not conserved due to friction with a substrate or an embedding porous medium. The differences and similarities between two types of orientationally ordered states, the nematic and the polar, are clarified. Next, the active hydrodynamics of suspensions or “wet” systems is discussed and the relation with and difference from the dry case, as well as various large-scale instabilities of these nonequilibrium states of matter, are highlighted. Further highlighted are various large-scale instabilities of these nonequilibrium states of matter. Various semimicroscopic derivations of the continuum theory are discussed and connected, highlighting the unifying and generic nature of the continuum model. Throughout the review, the experimental relevance of these theories for describing bacterial swarms and suspensions, the cytoskeleton of living cells, and vibrated granular material is discussed. Promising extensions toward greater realism in specific contexts from cell biology to animal behavior are suggested, and remarks are given on some exotic active-matter analogs. Last, the outlook for a quantitative understanding of active matter, through the interplay of detailed theory with controlled experiments on simplified systems, with living or artificial constituents, is summarized.

  3. Relationship between dissolved organic matter quality and microbial community composition across polar glacial environments.

    PubMed

    Smith, H J; Dieser, M; McKnight, D M; SanClements, M D; Foreman, C M

    2018-05-14

    Vast expanses of Earth's surface are covered by ice, with microorganisms in these systems affecting local and global biogeochemical cycles. We examined microbial assemblages from habitats fed by glacial meltwater within the McMurdo Dry Valleys, Antarctica, and on the west Greenland Ice Sheet, (GrIS) evaluating potential physicochemical factors explaining trends in community structure. Microbial assemblages present in the different Antarctic dry valley habitats were dominated by Sphingobacteria and Flavobacteria, while Gammaproteobacteria and Sphingobacteria prevailed in west GrIS supraglacial environments. Microbial assemblages clustered by location (Canada Glacier, Cotton Glacier, west GrIS) and were separated by habitat type (i.e. ice, cryoconite holes, supraglacial lakes, sediment, and stream water). Community dissimilarities were strongly correlated with dissolved organic matter (DOM) quality. Microbial meltwater assemblages were most closely associated with different protein-like components of the DOM pool. Microbes in environments with mineral particles (i.e. stream sediments, cryoconite holes) were linked to DOM containing more humic-like fluorescence. Our results demonstrate the establishment of distinct microbial communities within ephemeral glacial meltwater habitats, with DOM-microbe interactions playing an integral role in shaping communities on local and polar spatial scales.

  4. Mechanical pressure and momentum conservation in dry active matter

    NASA Astrophysics Data System (ADS)

    Fily, Y.; Kafri, Y.; Solon, A. P.; Tailleur, J.; Turner, A.

    2018-01-01

    We relate the breakdown of equations of states (EOS) for the mechanical pressure of generic dry active systems to the lack of momentum conservation in such systems. We show how net sources and sinks of momentum arise generically close to confining walls. These typically depend on the interactions of the container with the particles, which makes the mechanical pressure a container-dependent quantity. We show that an EOS is recovered if the dynamics of the propulsive forces of the particles are decoupled from other degrees of freedom and lead to an apolar bulk steady-state. This recovery of an EOS stems from the mean steady-state active force density being the divergence of the flux of ‘active impulse’, an observable which measures the mean momentum particles will receive from the substrate in the future. ), which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Julien Tailleur was selected by the Editorial Board of J. Phys. A as an Emerging Talent.

  5. Colloidal transport phenomena of milk components during convective droplet drying.

    PubMed

    Fu, Nan; Woo, Meng Wai; Chen, Xiao Dong

    2011-10-15

    Material segregation has been reported for industrial spray-dried milk powders, which indicates potential material migration during drying process. The relevant colloidal transport phenomenon and the underlying mechanism are still under debate. This study extended the glass-filament single droplet drying technique to observe not only the drying behaviour but also the dissolution behaviour of the correspondingly dried single particle. At progressively longer drying stage, a solvent droplet (water or ethanol) was attached to the semi-dried milk particle and the interaction between the solvent and the particle was video-recorded. Based on the different dissolution and wetting behaviours observed, material migration during milk drying was studied. Fresh skim milk and fresh whole milk were investigated using water and ethanol as solvents. Fat started to accumulate on the surface as soon as drying was started. At the initial stage of drying, the fat layer remained thin and the solubility of the semi-dried milk particle was much affected by lactose and protein present underneath the fat layer. Fat kept accumulating at the surface as drying progressed and the accumulation was completed by the middle stage of drying. The results from drying of model milk materials (pure sodium caseinate solution and lactose/sodium caseinate mixed solution) supported the colloidal transport phenomena observed for the milk drying. When mixed with lactose, sodium caseinate did not form an apparent solvent-resistant protein shell during drying. The extended technique of glass-filament single droplet approach provides a powerful tool in examining the solubility of individual particle after drying. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. The Change of Total Anthocyanins in Blueberries and Their Antioxidant Effect After Drying and Freezing

    PubMed Central

    Srzednicki, George

    2004-01-01

    This study examined the effects of freezing, storage, and cabinet drying on the anthocyanin content and antioxidant activity of blueberries (Vaccinium corymbosum L). Fresh samples were stored for two weeks at 5°C while frozen samples were kept for up to three months at −20°C. There were two drying treatments, one including osmotic pretreatment followed by cabinet drying and the other involving only cabinet drying. Total anthocyanins found in fresh blueberries were 7.2 ± 0.5 mg/g dry matter, expressed as cyanidin 3-rutinoside equivalents. In comparison with fresh samples, total anthocyanins in untreated and pretreated dried blueberries were significantly reduced to 4.3 ± 0.1 mg/g solid content, 41% loss, and 3.7 ± 0.2 mg/g solid content, 49% loss, respectively. Osmotic treatment followed by a thermal treatment had a greater effect on anthocyanin loss than the thermal treatment alone. In contrast, the frozen samples did not show any significant decrease in anthocyanin level during three months of storage. Measurement of the antioxidant activity of anthocyanin extracts from blueberries showed there was no significant difference between fresh, dried, and frozen blueberries. PMID:15577185

  7. Permafrost Thaw, Soil Moisture and Plant Community Change Alter Organic Matter Decomposition in Alaskan Tundra

    NASA Astrophysics Data System (ADS)

    Natali, S.; Mauritz, M.; Pegoraro, E.; Schuur, E.

    2015-12-01

    Climate warming in arctic tundra has been associated with increased plant productivity and a shift in plant community composition, specifically an increase in shrub cover, which can impact soil organic matter through changes in the size and composition of the leaf litter pool. Shifts in litter quantity and quality will in turn interact with changes in the soil environment as the climate continues to warm. We examined the effects of permafrost thaw, soil moisture changes, and plant community composition on leaf litter decomposition in an upland tundra ecosystem in Interior Alaska. We present warming and drying effects on decomposition rates of graminoid-dominated and shrub-dominated leaf litter mixtures over three years (2 cm depth), and annual decomposition of a common cellulose substrate (0-10 cm and 10-20 cm) over five years at a permafrost thaw and soil drying experiment. We expected that warming and drying would increase decomposition, and that decomposition would be greater in the shrub litter than in the graminoid litter mix. Decomposition of Betula nana, the dominant shrub, was 50% greater in the shrub-dominated litter mix compared to the graminoid-dominated litter. Surprisingly, there was no significant difference in total litter mass loss between graminoid and shrub litter mixtures, despite significant differences in decomposition rates of the dominant plant species when decomposed alone and in community mixtures. Drying decreased decomposition of B. nana and of the shrub community litter overall, but after two years there was no detected warming effect on shrub-community decomposition. In contrast to leaf litter decomposition, both warming and drying increased decomposition of the common substrate. Warming caused an almost twofold increase in cellulose decomposition in surface soil (0-10cm), and drying caused a twofold increase in cellulose decomposition from deeper organic layer soils (10-20cm). These results demonstrate the importance of interactions

  8. 40 CFR 60.52 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm (0...

  9. 40 CFR 60.52 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm (0...

  10. 40 CFR 60.52 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm (0...

  11. 40 CFR 60.52 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm (0...

  12. 40 CFR 60.52 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm (0...

  13. Spatial and temporal assessment of mercury and organic matter in thermokarst affected lakes of the Mackenzie Delta uplands, NT, Canada.

    PubMed

    Deison, Ramin; Smol, John P; Kokelj, Steve V; Pisaric, Michael F J; Kimpe, Linda E; Poulain, Alexandre J; Sanei, Hamed; Thienpont, Joshua R; Blais, Jules M

    2012-08-21

    We examined dated sediment cores from 14 thermokarst affected lakes in the Mackenzie Delta uplands, NT, Arctic Canada, using a case-control analysis to determine how retrogressive thaw slump development from degrading permafrost affected the delivery of mercury (Hg) and organic carbon (OC) to lakes. We show that sediments from the lakes with retrogressive thaw slump development on their shorelines (slump-affected lakes) had higher sedimentation rates and lower total Hg (THg), methyl mercury (MeHg), and lower organic carbon concentrations compared to lakes where thaw slumps were absent (reference lakes). There was no difference in focus-corrected Hg flux to sediments between reference lakes and slump-affected lakes, indicating that the lower sediment Hg concentration in slump-affected lakes was due to dilution by rapid inorganic sedimentation in the slump-affected lakes. Sedimentation rates were inversely correlated with THg concentrations in sediments among the 14 lakes considered, and explained 68% of the variance in THg concentration in surface sediment, further supporting the dilution hypothesis. We observed higher S2 (algal-derived carbon) and particulate organic carbon (POC) concentrations in sediment profiles from reference lakes than in slump lakes, likely because of dilution by inorganic siliciclastic matter in cores from slump-affected lakes. We conclude that retrogressive thaw slump development increases inorganic sedimentation in lakes, and decreases concentrations of organic carbon and associated Hg and MeHg in sediments.

  14. Measuring dry plant residues in grasslands: A case study using AVIRIS

    NASA Technical Reports Server (NTRS)

    Fitzgerald, Michael; Ustin, Susan L.

    1992-01-01

    Grasslands, savannah, and hardwood rangelands are critical ecosystems and sensitive to disturbance. Approximately 20 percent of the Earth's surface are grasslands and represent 3 million ha. in California alone. Developing a methodology for estimating disturbance and the effects of cumulative impacts on grasslands and rangelands is needed to effectively monitor these ecosystems. Estimating the dry biomass residue remaining on rangelands at the end of the growing season provides a basis for evaluating the effectiveness of land management practices. The residual biomass is indicative of the grazing pressure and provides a measure of the system capacity for nutrient cycling since it represents the maximum organic matter available for decomposition, and finally, provides a measure of the erosion potential for the ecosystem. Remote sensing presents a possible method for measuring dry residue. However, current satellites have had limited application due to the coarse spatial scales (relative to the patch dynamics) and insensitivity of the spectral coverage to resolve dry plant material. Several hypotheses for measuring the biochemical constituents of dry plant material, particularly cellulose and lignin, using high spectral resolution sensors were proposed. The use of Airborne Visible/Infrared Imaging Spectrometers (AVIRIS) to measure dry plant residues over an oak savannah on the eastern slopes of the Coast Range in central California was investigated and it was asked what spatial and spectral resolutions are needed to quantitatively measure dry plant biomass in this ecosystem.

  15. The effect of operating and formulation variables on the morphology of spray-dried protein particles.

    PubMed

    Maa, Y F; Costantino, H R; Nguyen, P A; Hsu, C C

    1997-08-01

    The purpose of this research was to investigate the shape and morphology of various spray-dried protein powders as a function of spray-drying conditions and protein formulations. A benchtop spray dryer was used to spray dry three model proteins in formulation with a sugar or a surfactant. Physical characterizations of the powder included morphology (scanning electron microscopy), particle size, residual moisture, and X-ray powder diffraction analyses. A significant change in particle shape from irregular (e.g., "donut") to spherical was observed as the outlet temperature of the dryer was decreased. The drying air outlet temperature was shown to depend on various operating parameters and was found to correlate with the drying rate of atomized droplets in the drying chamber. The morphology of spray-dried protein particles was also affected by formulation. In protein:sugar formulations, spray-dried particles exhibited a smooth surface regardless of the protein-to-lactose ratio, whereas roughness was observed when mannitol was present at > 30% of total solids, due to recrystallization. Protein particles containing trehalose at concentrations > 50% were highly agglomerated. The presence of surfactant resulted in noticeably smoother, more spherical particles. The shape and the morphology of spray-dried powders are affected by spray drying conditions and protein formulation. This study provides information useful for development of dry proteins for fine powder (e.g., aerosol) applications.

  16. Quality evaluation of onion bulbs during low temperature drying

    NASA Astrophysics Data System (ADS)

    Djaeni, M.; Asiah, N.; Wibowo, Y. P.; Yusron, D. A. A.

    2016-06-01

    A drying technology must be designed carefully by evaluating the foods' final quality properties as a dried material. Thermal processing should be operated with the minimum chance of substantial flavour, taste, color and nutrient loss. The main objective of this research was to evaluate the quality parameters of quercetin content, color, non-enzymatic browning and antioxidant activity. The experiments showed that heating at different temperatures for several drying times resulted in a percentage of quercetin being generally constant. The quercetin content maintained at the value of ±1.2 % (dry basis). The color of onion bulbs was measured by CIE standard illuminant C. The red color (a*) of the outer layer of onion bulbs changed significantly when the drying temperature was increased. However the value of L* and b* changed in a fluctuating way based on the temperature. The change of onion colors was influenced by temperature and moisture content during the drying process. The higher the temperature, the higher it affects the rate of non-enzymatic browning reaction. The correlation between temperature and reaction rate constant was described as Arrhenius equation. The rate of non-enzymatic browning increases along with the increase of drying temperature. The results showed that higher drying temperatures were followed by a lower IC10. This condition indicated the increase of antioxidant activity after the drying process.

  17. Wearable carbon nanotube based dry-electrodes for electrophysiological sensors

    NASA Astrophysics Data System (ADS)

    Kang, Byeong-Cheol; Ha, Tae-Jun

    2018-05-01

    In this paper, we demonstrate all-solution-processed carbon nanotube (CNT) dry-electrodes for the detection of electrophysiological signals such as electrocardiograms (ECG) and electromyograms (EMG). The key parameters of P, Q, R, S, and T peaks are successfully extracted by such CNT based dry-electrodes, which is comparable with conventional silver/chloride (Ag/AgCl) wet-electrodes with a conducting gel film for the ECG recording. Furthermore, the sensing performance of CNT based dry-electrodes is secured during the bending test of 200 cycles, which is essential for wearable electrophysiological sensors in a non-invasive method on human skin. We also investigate the application of wearable CNT based dry-electrodes directly attached to the human skins such as forearm for sensing the electrophysiological signals. The accurate and rapid sensing response can be achieved by CNT based dry-electrodes to supervise the health condition affected by excessive physical movements during the real-time measurements.

  18. Effect of ambient temperature and sodium bicarbonate supplementation on water and electrolyte balances in dry and lactating Holstein cows.

    PubMed

    Khelil-Arfa, H; Faverdin, P; Boudon, A

    2014-01-01

    The aim of this study was to quantify the effect of the interaction between 2 constant ambient temperatures [thermoneutrality (TN; 15°C) and high temperature (HT; 28°C)] and 2 levels of Na bicarbonate supplementation [calculated to provide diet Na contents of 0.20%DM (Na-) and 0.50%DM (Na+)] on water partitioning in dairy cows. Treatments were compared on 4 dry and 4mid-lactation Holstein cows according to 2 Latin squares (1 for each physiological stage) over the course of 4 periods of 15d. Diets consisted of a total mixed ration based on maize silage. Dry cows were restricted to their protein and energy requirements, whereas lactating cows were fed ad libitum. The daily average temperature-humidity index was 59.4 for TN and 73.2 for HT. Lactating and dry cows had higher vaginal temperatures at HT than at TN, but the increase was more pronounced in lactating cows (+1.05 vs. +0.12°C for vaginal temperature, respectively). Dry matter intake (DMI) of lactating cows decreased by 2.3kg/d at HT. Free water intake (FWI) and estimated volume of water lost to evaporation increased at HT in both lactating and dry cows; no interactions were observed between temperature and physiological stage. When expressed as a proportion of DMI, the increase in evaporation that occurred with increasing temperature was completely compensated for by an increase in FWI for both physiological stages. The urinary water excretion increased slightly at HT in lactating cows but not in dry cows, which may be related to the low chloride content of the offered diet. High Na supplementation increased DMI slightly in lactating cows, but milk yield was not affected. Sodium supplementation did not limit the decrease in DMI observed in lactating cows at HT; this observation is likely due to the high diet electrolyte balance of the offered diets. Sodium supplementation increased FWI in lactating cows and urinary flow in both physiological states. The interaction between ambient temperature and Na

  19. Ecohydrology and biogeochemistry of seasonally-dry ecosystems

    NASA Astrophysics Data System (ADS)

    Feng, X.; Porporato, A. M.

    2010-12-01

    The composition and the dynamic in various types of seasonally dry ecosystems are largely determined by rainfall seasonality and distribution. The intermittency of rainfall in these ecosystems has played a dominant role in the life cycle of native plants such that phenological events such as growth or reproduction have oftentimes become synchronized with the onset of the dry or the wet season. Characteristic amongst such types of ecosystems are the tropical dry and Mediterranean ecosystems, both of which receive similar amount of precipitation yet are markedly distinct in their synchronization of rainfall fluctuations and temperature. Seasonally dry ecosystems cover more than 16 million square kilometers in the tropics, with short but intense wet seasons followed by long dry seasons and elevated temperature throughout the year. Native vegetation grows during the wet season and adopts dormancy or seasonal deciduousness to cope with the dry season. In the Mediterranean climates, precipitations and temperature are out of phase, with wet temperate winters and hot dry summers. Dimorphic root systems are prevalent, where deep rooted plants exploit the winter recharge while the shallow rooted species take advantage of the infrequent summer rains. Using a stochastic soil moisture model we analyze how temporal shifts, or the lack thereof, in temperature and precipitation patterns affect the development of water stress during the dry season and its feedbacks on soil-plant biogeochemistry. We especially focus on the role of differences in temperature and seasonal potential evapotranspiration between tropical dry and Mediterranean climates. We also compare irrigation needs and the effects of projected climatic conditions in those regions. Understanding how plants adopt different water use strategies in the context of shifted climatic patterns will shed light on how these regions of high biodiversity may cope with rapidly-changing climatic conditions.

  20. Effect of drying conditions on crystallinity of amylose nanoparticles prepared by nanoprecipitation.

    PubMed

    Yan, Xiaoxia; Chang, Yanjiao; Wang, Qian; Fu, Youjia; Zhou, Jiang

    2017-04-01

    In this study, amylose nanoparticles prepared by nanoprecipitation were dried at different conditions. The crystalline structure, crystallinity, re-dispersibility and morphological characteristic of the amylose nanoparticles after drying were investigated. X-ray diffraction analysis revealed that the V-type crystalline structure of the amylose nanoparticles formed in the drying process instead of the precipitation process, and drying condition significantly affects the crystallinity. The temperature cycles drying at 4°C and 40°C considerably increased crystallinity of the amylose nanoparticles, 24h (4/40°C, 12h/12h) drying under 11% relative humidity could give rise to a crystallinity up to 50.05%. The applied drying procedures had no obvious effect on the appearance of the amylose nanoparticles. The Z average-size (d. nm) and polydispersity index (PDI) obtained from dynamic light scattering analysis suggested that the drying processes caused some aggregates, but the dried amylose nanoparticles could be well dispersed in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Effect of hot-dry environment on fiber-reinforced self-compacting concrete

    NASA Astrophysics Data System (ADS)

    Tioua, Tahar; Kriker, Abdelouahed; Salhi, Aimad; Barluenga, Gonzalo

    2016-07-01

    Drying shrinkage can be a major reason for the deterioration of concrete structures. Variation in ambient temperature and relative humidity cause changes in the properties of hardened concrete which can affect their mechanical and drying shrinkage characteristics. The present study investigated mechanical strength and particularly drying shrinkage properties of self-compacting concretes (SCC) reinforced with date palm fiber exposed to hot and dry environment. In this study a total of nine different fibers reinforced self compacting concrete (FRSCC) mixtures and one mixture without fiber were prepared. The volume fraction and the length of fibers reinforcement were 0.1-0.2-0.3% and 10-20-30 mm. It was observed that drying shrinkage lessened with adding low volumetric fraction and short length of fibers in curing condition (T = 20 °C and RH = 50 ± 5 %), but increased in hot and dry environment.

  2. Effect of Hot Water Blanching Time and Drying Temperature on the Thin Layer Drying Kinetics of and Anthocyanin Degradation in Black Carrot (Daucus carota L.) Shreds.

    PubMed

    Garba, Umar; Kaur, Sawinder; Gurumayum, Sushma; Rasane, Prasad

    2015-09-01

    This study was conducted to investigate the effect of blanching treatment (98 °C for 3 and 6 min) and air drying temperature of 40, 50 and 60 °C on the thin layer drying characteristics such as drying time, drying rate constant, effective moisture diffusivity and activation energy, as well as on anthocyanin content of black carrot shreds. It was observed that drying temperature affected the drying rate but blanching did not have an effect on drying time. Three thin layer drying models, i.e. Page, Lewis and Henderson-Pabis were evaluated. The goodness of these models was evaluated based on the coefficient of determination (R 2 ), root mean square error, reduced chi square (χ 2 ) and standard error. Page model showed the best fit to the drying data. The effective diffusivity ranges of 1.4·10 -9 to 2.6·10 -9 m 2 /s, 1.3·10 -9 to 2.1·10 -9 m 2 /s and 1.5·10 -9 to 2.2·10 -9 m 2 /s after 3 or 6 min of blanching and control samples respectively were calculated using Fick's second law. The activation energy of 37.5, 26.0 and 34.6 kJ/(mol·K) of the control samples and samples blanched for 3 or 6 min respectively was determined from the Arrhenius plot. The blanching treatment affected the anthocyanin content to a great extent. The anthocyanin content of (231.7±2.9) and (278.8±7.8) mg per 100 g was recorded in samples blanched for 3 and 6 min and then dried at 60 °C, and (153.0±4.3) and (247.0±5.5) mg per 100 g was recorded at 40 °C as compared to the control of (580.1±1.3) at 60 °C and (466.7±1.1) mg per 100 g at 40 °C.

  3. Two-dimensional CFD modeling of the heat and mass transfer process during sewage sludge drying in a solar dryer

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr; Badyda, Krzysztof

    2011-12-01

    The paper presents key assumptions of the mathematical model which describes heat and mass transfer phenomena in a solar sewage drying process, as well as techniques used for solving this model with the Fluent computational fluid dynamics (CFD) software. Special attention was paid to implementation of boundary conditions on the sludge surface, which is a physical boundary between the gaseous phase - air, and solid phase - dried matter. Those conditions allow to model heat and mass transfer between the media during first and second drying stages. Selection of the computational geometry is also discussed - it is a fragment of the entire drying facility. Selected modelling results are presented in the final part of the paper.

  4. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems.

    PubMed

    Campo, Julio; Merino, Agustín

    2016-05-01

    The effect of precipitation regime on the C cycle of tropical forests is poorly understood, despite the existence of models that suggest a drier climate may substantially alter the source-sink function of these ecosystems. Along a precipitation regime gradient containing 12 mature seasonally dry tropical forests growing under otherwise similar conditions (similar annual temperature, rainfall seasonality, and geological substrate), we analyzed the influence of variation in annual precipitation (1240 to 642 mm) and duration of seasonal drought on soil C. We investigated litterfall, decomposition in the forest floor, and C storage in the mineral soil, and analyzed the dependence of these processes and pools on precipitation. Litterfall decreased slightly - about 10% - from stands with 1240 mm yr(-1) to those with 642 mm yr(-1), while the decomposition decreased by 56%. Reduced precipitation strongly affected C storage and basal respiration in the mineral soil. Higher soil C storage at the drier sites was also related to the higher chemical recalcitrance of litter (fine roots and forest floor) and the presence of charcoal across sites, suggesting an important indirect influence of climate on C sequestration. Basal respiration was controlled by the amount of recalcitrant organic matter in the mineral soil. We conclude that in these forest ecosystems, the long-term consequences of decreased precipitation would be an increase in organic layer and mineral soil C storage, mainly due to lower decomposition and higher chemical recalcitrance of organic matter, resulting from changes in litter composition and, likely also, wildfire patterns. This could turn these seasonally dry tropical forests into significant soil C sinks under the predicted longer drought periods if primary productivity is maintained. © 2016 John Wiley & Sons Ltd.

  5. Exploring the biological activity of condensed tannins and nutritional value of tree and shrub leaves from native species of the Argentinean Dry Chaco.

    PubMed

    García, Elisa M; Cherry, Nicole; Lambert, Barry D; Muir, James P; Nazareno, Mónica A; Arroquy, Jose I

    2017-11-01

    Tropical tree or shrub leaves are an important source of nutrients for ruminants and a potential source of biologically active compounds that may affect ruminal metabolism of nutrients. Therefore, eight woody species from the native flora of Argentinean Dry Chaco, rich in secondary compounds such as condensed tannins (CT), were assessed for their nutritional value, CT fractions and in vitro true digestibility of dry matter, as well as biological activity (BA). Differences among species were found in contents of total phenol, protein-precipitating phenols (PPP), bound proteins to PPP (BP) and BP/PPP (P < 0.0001). The BP/PPP ratio reveals differences among species in potential BA as indicated by protein precipitation. The major CT of each species were isolated and purified for use as a standard. Although Schinopsis balansae had the most (P ≤ 0.05) total CT (19.59% DM), Caesalpinia paraguariensis had greater (P ≤ 0.05) BA with the most PPP (530.21% dry matter). Larrea divaricata, at 0.97, followed by Acacia aroma, at 0.89, had CT with the highest (P ≤ 0.05) BP/PPP ratios, followed by Prosopis alba (0.59). There were differences in nutritive value and bioactivity among species. Those with the greatest CT were not necessarily those with the most BA. Caesalpinia paraguariensis, S. balansae and L. divaricata were the most promising species as native forage CT sources. Cercidiurm praecox (20.87% CP; 18.14% acid detergent fiber) and Prosopis nigra (19.00% CP; 27.96% acid detergent fiber) showed the best (P ≤ 0.05) nutritive values. According to their nutritive traits, these species might be complementary in grass-based ruminant diets. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Power ultrasound as a pretreatment to convective drying of mulberry (Morus alba L.) leaves: Impact on drying kinetics and selected quality properties.

    PubMed

    Tao, Yang; Wang, Ping; Wang, Yilin; Kadam, Shekhar U; Han, Yongbin; Wang, Jiandong; Zhou, Jianzhong

    2016-07-01

    The effect of ultrasound pretreatment prior to convective drying on drying kinetics and selected quality properties of mulberry leaves was investigated in this study. Ultrasound pretreatment was carried out at 25.2-117.6 W/L for 5-15 min in a continuous mode. After sonication, mulberry leaves were dried in a hot-air convective dryer at 60 °C. The results revealed that ultrasound pretreatment not only affected the weight of mulberry leaves, it also enhanced the convective drying kinetics and reduced total energy consumption. The drying kinetics was modeled using a diffusion model considering external resistance and effective diffusion coefficient De and mass transfer coefficient hm were identified. Both De and hm during convective drying increased with the increase of acoustic energy density (AED) and ultrasound duration. However, De and hm increased slowly at high AED levels. Furthermore, ultrasound pretreatment had a more profound influence on internal mass transfer resistance than on external mass transfer resistance during drying according to Sherwood numbers. Regarding the quality properties, the color, antioxidant activity and contents of several bioactive compounds of dried mulberry leaves pretreated by ultrasound at 63.0 W/L for 10 min were similar to that of mulberry leaves without any pretreatments. Overall, ultrasound pretreatment is effective to shorten the subsequent drying time of mulberry leaves without damaging the quality of final product. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effects of pregrazing herbage mass in late spring on enteric methane emissions, dry matter intake, and milk production of dairy cows.

    PubMed

    Muñoz, C; Letelier, P A; Ungerfeld, E M; Morales, J M; Hube, S; Pérez-Prieto, L A

    2016-10-01

    Few studies have examined the effects of fresh forage quality on enteric methane (CH4) emissions of dairy cows under grazing conditions. The aim of the current study was to evaluate the effects of 2 contrasting forage qualities induced by different pregrazing herbage masses in late spring on enteric CH4 emissions and milk production of grazing dairy cows. The experiment was conducted as a crossover design with 24 lactating Holstein Friesian dairy cows randomly assigned to 1 of 2 treatments in 2 experimental periods. Each period had a duration of 3wk (2wk for diet adaptation and 1wk for measurements), and the interval between them was 2wk. Treatments consisted of 2 target pregrazing herbage masses [2,200 and 5,000kg of dry matter (DM)/ha above 3cm], generated by different regrowth periods, corresponding to low (LHM) and high (HHM) herbage mass treatments, respectively. Daily herbage allowance (Lolium perenne) for both treatments was 20kg of DM per cow measured above 3cm. Enteric CH4 emissions were individually determined during the last week of each period using the sulfur hexafluoride tracer technique. Daily herbage intakes by individual cows during the CH4 measurement weeks were estimated using the n-alkanes technique. During the CH4 measurement weeks, milk yield and body mass were determined twice daily, whereas milk composition was determined once in the week. The LHM pasture had a higher crude protein concentration, lower neutral detergent fiber and acid detergent fiber concentrations, and higher in vitro digestibility, with a lower proportion of ryegrass pseudostems, than the HHM pasture. Cows offered the LHM pasture had greater herbage (+13%) and total DM (+12%) intakes, increased milk (+13%) and energy-corrected milk (+11%) yields, and tendencies toward higher milk protein (+4.5%) and higher milk urea nitrogen (+15%) concentrations than their counterparts offered the HHM pasture. No differences were found between treatments in total daily CH4 production

  8. Coping with dry eyes: a qualitative approach.

    PubMed

    Yeo, Sharon; Tong, Louis

    2018-01-16

    Dry eye is a common problem that affects many people worldwide, reducing quality of life and impacting daily activities. A qualitative approach often used in medicine and other disciplines is used to evaluate how people with dry eye cope with this impact. Six focus group sessions were conducted at the Singapore National Eye Centre (SNEC), premises of an eye research institute. These focus groups consist of a spectrum of dry eye sufferers (30 women, 8 men, aged 61 ± 11.8 years). Standard methods of coding followed by determination of themes were adhered to. Where classification was difficult, consensus was made between 3 assessors. Audio-recorded transcripts were coded in 10 themes by 3 assessors independently. Four of the themes involved traditional measures such as lid warming, cleansing, lubrication and oral dietary supplements. The other themes discovered were Traditional Chinese Medicine, modification of eye-care habits (e.g. wearing sunglasses), environmental humidity, lifestyle (e.g. sleeping habits), psychological attitude, and lastly sharing and communication. Holistic coping strategies were found to be prominent in dry eye sufferers from these focus groups, and people tend to find personalised ways of coping with the impact of dry eye on daily living.

  9. Application of Taguchi Method for Analyzing Factors Affecting the Performance of Coated Carbide Tool When Turning FCD700 in Dry Cutting Condition

    NASA Astrophysics Data System (ADS)

    Ghani, Jaharah A.; Mohd Rodzi, Mohd Nor Azmi; Zaki Nuawi, Mohd; Othman, Kamal; Rahman, Mohd. Nizam Ab.; Haron, Che Hassan Che; Deros, Baba Md

    2011-01-01

    Machining is one of the most important manufacturing processes in these modern industries especially for finishing an automotive component after the primary manufacturing processes such as casting and forging. In this study the turning parameters of dry cutting environment (without air, normal air and chilled air), various cutting speed, and feed rate are evaluated using a Taguchi optimization methodology. An orthogonal array L27 (313), signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to analyze the effect of these turning parameters on the performance of a coated carbide tool. The results show that the tool life is affected by the cutting speed, feed rate and cutting environment with contribution of 38%, 32% and 27% respectively. Whereas for the surface roughness, the feed rate is significantly controlled the machined surface produced by 77%, followed by the cutting environment of 19%. The cutting speed is found insignificant in controlling the machined surface produced. The study shows that the dry cutting environment factor should be considered in order to produce longer tool life as well as for obtaining a good machined surface.

  10. Modified Anaerobic Digestion Model No.1 for dry and semi-dry anaerobic digestion of solid organic waste.

    PubMed

    Liotta, Flavia; Chatellier, Patrice; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; van Hullebusch, Eric D; Lens, Piet N L; Pirozzi, Francesco

    2015-01-01

    The role of total solids (TS) content in anaerobic digestion of selected complex organic matter, e.g. rice straw and food waste, was investigated. A range of TS from wet (4.5%) to dry (23%) was evaluated. A modified version of the Anaerobic Digestion Model No.1 for a complex organic substrate is proposed to take into account the effect of the TS content on anaerobic digestion. A linear function that correlates the kinetic constants of three specific processes (i.e. disintegration, acetate and propionate up-take) was included in the model. Results of biomethanation and volatile fatty acids production tests were used to calibrate the proposed model. Model simulations showed a good agreement between numerical and observed data.

  11. Ratio of dietary rumen degradable protein to rumen undegradable protein affects nitrogen partitioning but does not affect the bovine milk proteome produced by mid-lactation Holstein dairy cows.

    PubMed

    Tacoma, R; Fields, J; Ebenstein, D B; Lam, Y-W; Greenwood, S L

    2017-09-01

    Little is known about the bovine milk proteome or whether it can be affected by diet. The objective of this study was to determine if the dietary rumen degradable protein (RDP):rumen undegradable protein (RUP) ratio could alter the bovine milk proteome. Six Holstein cows (parity: 2.5 ± 0.8) in mid lactation were blocked by days in milk (80 ± 43 d in milk) and milk yield (57.5 ± 6.0 kg) and randomly assigned to treatment groups. The experiment was conducted as a double-crossover design consisting of three 21-d periods. Within each period, treatment groups received diets with either (1) a high RDP:RUP ratio (RDP treatment: 62.4:37.6% of crude protein) or (2) a low RDP:RUP ratio (RUP treatment: 51.3:48.7% of crude protein). Both diets were isonitrogenous and isoenergetic (crude protein: 18.5%, net energy for lactation: 1.8 Mcal/kg of dry matter). To confirm N and energy status of cows, dry matter intake was determined daily, rumen fluid samples were collected for volatile fatty acid analysis, blood samples were collected for plasma glucose, β-hydroxybutyrate, urea nitrogen, and fatty acid analysis, and total 24-h urine and fecal samples were collected for N analysis. Milk samples were collected to determine the general milk composition and the protein profile. Milk samples collected for high-abundance protein analysis were subjected to HPLC analysis to determine the content of α-casein, β-casein, and κ-casein, as well as α-lactalbumin and β-lactoglobulin. Samples collected for low-abundance protein analysis were fractionated, enriched using ProteoMiner treatment, and separated using sodium dodecyl sulfate-PAGE. After excision and digestion, the peptides were analyzed using liquid chromatography (LC) tandem mass spectrometry (MS/MS). The LC-MS/MS data were analyzed using PROC GLIMMIX of SAS (version 9.4, SAS Institute Inc., Cary, NC) and adjusted using the MULTTEST procedure. All other parameters were analyzed using PROC MIXED of SAS. No treatment differences

  12. Effect of the Iberian pig line on dry-cured ham characteristics.

    PubMed

    Carrapiso, Ana I; García, Carmen

    2008-10-01

    The purpose of this study was to compare the characteristics (chemical composition, instrumental colour, sensory characteristics and acceptance) of dry-cured hams obtained form three genetic lines of Iberian pig (Censyra, Torbiscal and Entrepelado). The instrumental colour of fat was affected by the genetic line (b(∗), p=0.008; and h°, p=0.024), the Censyra group having the largest values. The genetic line did not affect the chemical composition of the subcutaneous fat and lean of the dry-cured hams or the instrumental colour of the lean. Data from a descriptive analysis showed that the only characteristic significantly affected was the toasted flavour (p=0.004), and juiciness and sweetness were slightly affected (p=0.062 and 0.061, respectively). In spite of the slight effect on the physical-chemical and sensory characteristics, acceptance was significantly different, Torbiscal hams having the highest scores.

  13. A rapid method for concentrating sedimentary organic matter for vitrinite reflectance analysis.

    USGS Publications Warehouse

    Barker, C.E.

    1982-01-01

    The tecnique discussed in this paper utilizes crushing, high-speed blending, and ultrasonic treatment to mechanically disaggregate rock and release the sedimentary organic matter (OM) in a suitable heavy liquid. This new method can provide freeze-dried concentrated OM in approximately 8 to 24 hours (longer time is necessary for removing carbonate). Under optimal conditions, it is possible to concentrate the OM and prepare a hardened epoxy microscope slide in about 24 hours. Subsequent grinding, polishing, and drying allows microscopic examination of the organic concentrate the next day.-from Author

  14. Infrared Drying as a Quick Preparation Method for Dried Tangerine Peel

    PubMed Central

    Xu, Mingyue; Zhao, Chengying; Ahmad, Aftab; Zhang, Huijuan; Xiao, Hang

    2017-01-01

    To establish the most convenient and effective method to dry tangerine peels, different methods (sun drying, hot-air drying, freeze drying, vacuum drying, and medium- and short-wave infrared drying) were exploited. Our results indicated that medium- and short-wave infrared drying was the best method to preserve nutraceutical components; for example, vitamin C was raised to 6.77 mg/g (D.W.) from 3.39 mg/g (sun drying). Moreover, the drying time can be shortened above 96% compared with sun drying. Importantly, the efficiency of DPPH radical scavenging was enhanced from 26.66% to 55.92%. These findings would provide a reliable and time-saving methodology to produce high-quality dried tangerine peels. PMID:29348752

  15. Spray drying for preservation of erythrocytes: effect of atomization on hemolysis.

    PubMed

    McLean, Mary; Han, Xiao-Yue; Higgins, Adam Z

    2013-04-01

    Spray drying has the potential to enable storage of erythrocytes at room temperature in the dry state. The spray drying process involves atomization of a liquid into small droplets and drying of the droplets in a gas stream. In this short report, we focus on the atomization process. To decouple atomization from drying, erythrocyte suspensions were sprayed with a two-fluid atomizer nozzle using humid nitrogen as the atomizing gas. The median droplet size was less than 100 μm for all of the spray conditions investigated, indicating that the suspensions were successfully atomized. Hemolysis was significantly affected by the hematocrit of the erythrocyte suspension, the suspension flow rate, and the atomizing gas flow rate (p<0.01 in all cases). Under appropriate conditions, it was possible to achieve less than 2% hemolysis, suggesting that spray drying may be a feasible option for erythrocyte biopreservation.

  16. Effect of dry period length on the effect of an intramammary teat sealant on the risk of mastitis in cattle treated with antibiotics at drying off.

    PubMed

    Laven, R A; Balcomb, C C; Tulley, W T; Lawrence, K E

    2014-07-01

    The aim of this study was to evaluate, under farm conditions, the use of a teat sealant in addition to whole herd dry cow antibiotic therapy on the risk of clinical mastitis in dairy cattle at pasture, and to evaluate the impact of dry period length on that risk and the impact of the teat sealant on that risk. Dairy cows in three herds which used routine whole herd antibiotic therapy were randomly assigned to receive either treatment with an internal teat sealant (n=322) or no additional treatment (n=313) at drying-off between March and May 2010. All clinical mastitis cases during the dry period and to the end of the subsequent lactation were recorded by farm staff; factors affecting risk of clinical mastitis were then analysed using a Cox proportional hazards model. Median duration of the dry period was 112 days with >25% of cows having a dry period >130 days. The incidence risk of mastitis during lactation for cows treated with teat sealant was 9.9 (95% CI=6.9-13.7) cases per 100 cows compared with 17.9 (95% CI=13.8-22.6) cases per 100 cows for cows treated with antibiotic alone. The addition of a teat sealant to dry cow antibiotic therapy decreased the risk of clinical mastitis only in the first 33 days after calving (Hazard risk 0.24 (95% CI=0.12-0.48)). Length of dry period did not significantly affect the risk of clinical mastitis, or the effect of adding teat sealant to dry cow antibiotic therapy on the risk of clinical mastitis. In these herds where, based on the mastitis history, whole herd antibiotic therapy had been recommended, the use of a teat sealant significantly reduced the risk of clinical mastitis. This effect was limited to the first 33 days after calving; subsequently there was no significant effect of treatment. There was no effect of dry period length on risk of clinical mastitis, nor any significant interaction with treatment. Combination therapy with teat sealant and antibiotic was effective under New Zealand conditions in herds using whole

  17. Dry eye disease: an immune-mediated ocular surface disorder

    PubMed Central

    Stevenson, William; Chauhan, Sunil K.; Dana, Reza

    2013-01-01

    Dry eye disease is a multifactorial disorder of the tears and ocular surface characterized by symptoms of dryness and irritation. Although the pathogenesis of dry eye disease is not fully understood, it is recognized that inflammation has a prominent role in the development and propagation of this debilitating condition. Factors that adversely affect tear film stability and osmolarity can induce ocular surface damage and initiate an inflammatory cascade that generates innate and adaptive immune responses. These immunoinflammatory responses lead to further ocular surface damage and the development of a self-perpetuating inflammatory cycle. Herein, we review the fundamental links between inflammation and dry eye disease and discuss the clinical implications of inflammation in disease management. PMID:22232476

  18. Formation and Stability of Microbially Derived Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Waldrop, M. P.; Creamer, C.; Foster, A. L.; Lawrence, C. R.; Mcfarland, J. W.; Schulz, M. S.

    2017-12-01

    Soil carbon is vital to soil health, food security, and climate change mitigation, but the underlying mechanisms controlling the stabilization and destabilization of soil carbon are still poorly understood. There has been a conceptual paradigm shift in how soil organic matter is formed which now emphasizes the importance of microbial activity to build stable (i.e. long-lived) and mineral-associated soil organic matter. In this conceptual model, the consumption of plant carbon by microorganisms, followed by subsequent turnover of microbial bodies closely associated with mineral particles, produces a layering of amino acid and lipid residues on the surfaces of soil minerals that remains protected from destabilization by mineral-association and aggregation processes. We tested this new model by examining how isotopically labeled plant and microbial C differ in their fundamental stabilization and destabilization processes on soil minerals through a soil profile. We used a combination of laboratory and field-based approaches to bridge multiple spatial scales, and used soil depth as well as synthetic minerals to create gradients of soil mineralogy. We used Raman microscopy as a tool to probe organic matter association with mineral surfaces, as it allows for the simultaneous quantification and identification of living microbes, carbon, minerals, and isotopes through time. As expected, we found that the type of minerals present had a strong influence on the amount of C retained, but the stabilization of new C critically depends on growth, death, and turnover of microbial cells. Additionally, the destabilization of microbial residue C on mineral surfaces was little affected by flushes of DOC relative to wet-dry cycles alone. We believe this new insight into microbial mechanisms of C stabilization in soils will eventually lead to new avenues for measuring and modeling SOM dynamics in soils, and aid in the management of soil C to mediate global challenges.

  19. Role of minerals in the thermal alteration of organic matter. I - Generation of gases and condensates under dry condition

    NASA Technical Reports Server (NTRS)

    Tannenbaum, E.; Kaplan, I. R.

    1985-01-01

    Pyrolysis experiments conducted at 200 and 300 C on kerogen and bitumen from the Monterey formation and on the Green River Formation kerogen with montmorillonite, illite, and calcite added are described. The pyrolysis products are identified and gas and condensate analyses are performed. A catalytic effect is detected in the pyrolysis of kerogen with montmorillonite; however, illite and calcite display no catalytic activity. The increased production of C1-C6 hydrocarbons and the dominance of branched hydrocarbons in the C4-C6 range reveals a catalytic influence. It is observed that the catalysis of montmorillonite is greater during bitumen pyrolysis than for kerogen, and catalysis with minerals affects the production of CO2. It is concluded that a mineral matrix is important in determining the type and amount of gases and condensates forming from organic matter under thermal stress.

  20. Two Measurement Methods of Leaf Dry Matter Content Produce Similar Results in a Broad Range of Species

    PubMed Central

    Vaieretti, María Victoria; Díaz, Sandra; Vile, Denis; Garnier, Eric

    2007-01-01

    Background and Aims Leaf dry matter content (LDMC) is widely used as an indicator of plant resource use in plant functional trait databases. Two main methods have been proposed to measure LDMC, which basically differ in the rehydration procedure to which leaves are subjected after harvesting. These are the ‘complete rehydration’ protocol of Garnier et al. (2001, Functional Ecology 15: 688–695) and the ‘partial rehydration’ protocol of Vendramini et al. (2002, New Phytologist 154: 147–157). Methods To test differences in LDMC due to the use of different methods, LDMC was measured on 51 native and cultivated species representing a wide range of plant families and growth forms from central-western Argentina, following the complete rehydration and partial rehydration protocols. Key Results and Conclusions The LDMC values obtained by both methods were strongly and positively correlated, clearly showing that LDMC is highly conserved between the two procedures. These trends were not altered by the exclusion of plants with non-laminar leaves. Although the complete rehydration method is the safest to measure LDMC, the partial rehydration procedure produces similar results and is faster. It therefore appears as an acceptable option for those situations in which the complete rehydration method cannot be applied. Two notes of caution are given for cases in which different datasets are compared or combined: (1) the discrepancy between the two rehydration protocols is greatest in the case of high-LDMC (succulent or tender) leaves; (2) the results suggest that, when comparing many studies across unrelated datasets, differences in the measurement protocol may be less important than differences among seasons, years and the quality of local habitats. PMID:17353207

  1. Effect of feeding dried distillers' grains with solubles on milk yield and milk composition of cows in mid-lactation and digestibility in sheep.

    PubMed

    Westreicher-Kristen, E; Kaiser, R; Steingass, H; Rodehutscord, M

    2014-04-01

    We evaluated the effect of three sources of dried distillers' grains with solubles (DDGS) in diets of mid-lactating dairy cows on milk production and milk composition and on digestibility in sheep. DDGS from wheat, corn and barley (DDGS1 ), wheat and corn (DDGS2 ) and wheat (DDGS3 ) were studied and compared with a rapeseed meal (RSM). RSM and DDGS were characterized through in situ crude protein (CP) degradability. Nutrient digestibility was determined in sheep. Twenty-four multiparous cows were used in a 4 × 4 Latin square design with 28-day periods. Treatments included total mixed rations containing as primary protein sources RSM (control), DDGS1 (D1), DDGS2 (D2) or DDGS3 (D3). RSM contained less rapidly degradable CP (fraction a), more potentially degradable CP (fraction b) and more rumen undegradable CP (UDP) than the three DDGS. In vivo digestibility of RSM organic matter was similar to DDGS. Calculated net energy for lactation (NEL ) was lower for RSM (7.4 MJ/kg DM) than for DDGS, which averaged 7.7 MJ/kg DM. Cows' dry matter intake did not differ between diets (21.7 kg/day). Cows fed D1 yielded more milk than those fed D3 (31.7 vs. 30.4 kg/day); no differences were found between control and DDGS diets (31.3 vs. 31.1 kg/day). Energy-corrected milk was similar among diets (31.2 kg/day). Diets affected neither milk fat concentration (4.0%) nor milk fat yield (1.24 kg/day). Milk protein yield of control (1.12 kg/day) was significantly higher than D3 (1.06 kg/day) but not different form D1 and D2 (1.08 kg/day each). Feeding DDGS significantly increased milk lactose concentration (4.91%) in relation to control (4.81%). DDGS can be a suitable feed in relation to RSM and can be fed up to 4 kg dry matter per day in rations of dairy cows in mid-lactation. However, high variation of protein and energy values of DDGS should be considered when included in diets of dairy cows. Journal of Animal Physiology and Animal Nutrition © 2013 Blackwell Verlag GmbH.

  2. Effects of dietary energy allowance and decline in dry matter intake during the dry period on responses to glucose and insulin in transition dairy cows.

    PubMed

    Salin, S; Vanhatalo, A; Elo, K; Taponen, J; Boston, R C; Kokkonen, T

    2017-07-01

    We assessed whether high energy intake during the early dry period [144% of metabolizable energy (ME) requirements/d] followed by a gradual restriction of energy intake in the close-up dry period (119% of ME/d; HEI) impaired whole-body insulin sensitivity compared with a controlled energy intake (100% of ME/d; CEI) throughout the 6-wk dry period. Multiparous Ayrshire dairy cows (n = 16) were blocked by body weight, body condition score, and expected date of parturition and were used in a randomized complete block design until 10 d after parturition. Cows were fed either HEI or CEI diets based on grass silage during the first 3 wk of the dry period and grass silage supplemented with a commercial concentrate (30% of ME intake) during the final 3 wk of gestation. After calving, all cows were fed grass silage ad libitum and an increasing amount of commercial concentrate (maximum 9 kg at d 10 postpartum). Intravenous glucose tolerance tests (IVGTT) and intravenous insulin challenges were performed -10 ± 5 d (n = 15) and +10 ± 1 d (n = 14) relative to parturition. Following glucose injection, we did not find any treatment effects on glucose and insulin responses. The prepartal nonesterified fatty acid (NEFA) response of the HEI group was blunted, basal NEFA and the decrement of NEFA were smaller, and the area under the response curve (AUC) of NEFA was less negative in HEI cows than in CEI cows. The NEFA response reversed after parturition; the NEFA AUC of the HEI group was more negative than that of the CEI group. We did not find similar responses after insulin injection. Across the treatments, NEFA AUC correlated strongly with the basal NEFA concentration during the IVGTT pre- and postpartum. Calculated and model-based indices characterizing the overall glucose tolerance and β-cell function and the insulin sensitivity were higher after parturition than during the dry period. Consistent with the lower basal insulin, the acute insulin release after the glucose infusion

  3. 40 CFR Table 1a to Subpart Ec of... - Emissions Limits for Small, Medium, and Large HMIWI at Affected Facilities as Defined in § 60.50c...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... limits HMIWI size Small Medium Large Averaging time 1 Methodfor demonstrating compliance 2 Particulate matter Milligrams per dry standard cubic meter (grains per dry standard cubic foot) 69 (0.03) 34 (0.015.../furans (grains per billion dry standard cubic feet) or nanograms per dry standard cubic meter TEQ (grains...

  4. 40 CFR Table 1b to Subpart Ec of... - Emissions Limits for Small, Medium, and Large HMIWI at Affected Facilities as Defined in § 60.50c...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HMIWI size Small Medium Large Averaging time 1 Method fordemonstrating compliance 2 Particulate matter Milligrams per dry standard cubic meter (grains per dry standard cubic foot) 66 (0.029) 22 (0.0095) 18 (0.../furans (grains per billion dry standard cubic feet) or nanograms per dry standard cubic meter TEQ (grains...

  5. Dry patches in a flowing film : Predicting rewetting and the effects of inertia

    NASA Astrophysics Data System (ADS)

    Lebon, Luc; Sebilleau, Julien; Limat, Laurent

    2016-11-01

    We study the effects of inertia on the shape and stability of dry patches using liquids of decreasing viscosities. These dry patches are formed when a liquid film flows down along a substrate under partial wetting conditions. They become stationary and exhibit an "arch" shape well described by a simple viscous model developed long ago by Podgorski. Surprisingly, this "arch" shape appears to be robust when one decreases the fluid viscosity which increases inertial effects, but the evolution of the apex curvature upon flow rate is strongly affected. We here proposed an improved description of the dry patch evolution taking into account several physical effects as the hydrostatic pressure in the liquid film, the curvature of the contact line, and these inertial effects. These ones affect both the mechanical equilibrium of the rim surrounding the dry patch and the flow inside the rim. This model allows us to show that the dry patch shape remains extremely close to the viscous -Podgorski- prediction but with a rescaling of the apex curvature. It also allows us to get a better prediction of the apex curvature dependence upon flow rate and a prediction of the rewetting threshold above which dry patches are swept away by the film flow.

  6. Effects of cow diet on the microbial community and organic matter and nitrogen content of feces.

    PubMed

    van Vliet, P C J; Reijs, J W; Bloem, J; Dijkstra, J; de Goede, R G M

    2007-11-01

    Knowledge of the effects of cow diet on manure composition is required to improve nutrient use efficiency and to decrease emissions of N to the environment. Therefore, we performed an experiment with nonlactating cows to determine the consequences of changes in cow rations for the chemical characteristics and the traits of the microbial community in the feces. In this experiment, 16 cows were fed 8 diets, differing in crude protein, neutral detergent fiber, starch, and net energy content. These differences were achieved by changing dietary ingredients or roughage to concentrate ratio. After an adaptation period of 3 wk, fecal material was collected and analyzed. Observed results were compared with simulated values using a mechanistic model that provides insight into the mechanisms involved in the effect of dietary variation on fecal composition. Feces produced on a high-fiber, low-protein diet had a high C:N ratio (>16) and had lower concentrations of both organic and inorganic N than feces on a low-fiber, high-protein diet. Fecal bacterial biomass concentration was highest in high-protein, high-energy diets. The fraction of inorganic N in the feces was not significantly different between the different feces. Microbial biomass in the feces ranged from 1,200 to 8,000 microg of C/g of dry matter (average: 3,700 microg of C/g of dry matter). Bacterial diversity was similar for all fecal materials, but the different protein levels in the feeding regimens induced changes in the community structure present in the different feces. The simulated total N content (N(total)) in the feces ranged from 1.0 to 1.5 times the observed concentrations, whereas the simulated C:N(total) of the feces ranged from 0.7 to 0.9 times the observed C:N(total). However, bacterial biomass C was not predicted satisfactorily (simulated values being on average 3 times higher than observed), giving rise to further discussion on the definition of microbial C in feces. Based on these observations, it

  7. Effective Use of Water and Increased Dry Matter Partitioned to Grain Contribute to Yield of Common Bean Improved for Drought Resistance

    PubMed Central

    Polania, Jose A.; Poschenrieder, Charlotte; Beebe, Stephen; Rao, Idupulapati M.

    2016-01-01

    Common bean (Phaseolus vulgaris L.) is the most important food legume in the diet of poor people in the tropics. Drought causes severe yield loss in this crop. Identification of traits associated with drought resistance contributes to improving the process of generating bean genotypes adapted to these conditions. Field studies were conducted at the International Center for Tropical Agriculture (CIAT), Palmira, Colombia, to determine the relationship between grain yield and different parameters such as effective use of water (EUW), canopy biomass, and dry partitioning indices (pod partitioning index, harvest index, and pod harvest index) in elite lines selected for drought resistance over the past decade. Carbon isotope discrimination (CID) was used for estimation of water use efficiency (WUE). The main objectives were: (i) to identify specific morpho-physiological traits that contribute to improved resistance to drought in lines developed over several cycles of breeding and that could be useful as selection criteria in breeding; and (ii) to identify genotypes with desirable traits that could serve as parents in the corresponding breeding programs. A set of 36 bean genotypes belonging to the Middle American gene pool were evaluated under field conditions with two levels of water supply (irrigated and drought) over two seasons. Eight bean lines (NCB 280, NCB 226, SEN 56, SCR 2, SCR 16, SMC 141, RCB 593, and BFS 67) were identified as resistant to drought stress. Resistance to terminal drought stress was positively associated with EUW combined with increased dry matter partitioned to pod and seed production and negatively associated with days to flowering and days to physiological maturity. Differences in genotypic response were observed between grain CID and grain yield under irrigated and drought stress. Based on phenotypic differences in CID, leaf stomatal conductance, canopy biomass, and grain yield under drought stress, the lines tested were classified into two

  8. Drying and decontamination of pistachios with sequential infrared drying, tempering and hot air drying

    USDA-ARS?s Scientific Manuscript database

    The pistachio industry is in need of improved drying technology as the current hot air drying has low energy efficiency and drying rate and high labor cost and also does not produce safe products against microbial contamination. In the current study, dehulled and water- sorted pistachios with a mois...

  9. Experimental soft-matter science

    NASA Astrophysics Data System (ADS)

    Nagel, Sidney R.

    2017-04-01

    Soft materials consist of basic units that are significantly larger than an atom but much smaller than the overall dimensions of the sample. The label "soft condensed matter" emphasizes that the large basic building blocks of these materials produce low elastic moduli that govern a material's ability to withstand deformations. Aside from softness, there are many other properties that are also caused by the large size of the constituent building blocks. Soft matter is dissipative, disordered, far from equilibrium, nonlinear, thermal and entropic, slow, observable, gravity affected, patterned, nonlocal, interfacially elastic, memory forming, and active. This is only a partial list of how matter created from large component particles is distinct from "hard matter" composed of constituents at an atomic scale. Issues inherent in soft matter raise problems that are broadly important in diverse areas of science and require multiple modes of attack. For example, far-from-equilibrium behavior is confronted in biology, chemistry, geophysics, astrophysics, and nuclear physics. Similarly, issues dealing with disorder appear broadly throughout many branches of inquiry wherever rugged landscapes are invoked. This article reviews the discussions that occurred during a workshop held on 30-31 January 2016 in which opportunities in soft-matter experiment were surveyed. Soft matter has had an exciting history of discovery and continues to be a fertile ground for future research.

  10. Drying hardwood lumber

    Treesearch

    Joseph Denig; Eugene M. Wengert; William T. Simpson

    2000-01-01

    Drying Hardwood Lumber focuses on common methods for drying lumber of different thickness, with minimal drying defects, for high quality applications. This manual also includes predrying treatments that, when part of an overall quality-oriented drying system, reduce defects and improve drying quality, especially of oak lumber. Special attention is given to drying white...

  11. Distinct Trajectories of Cortisol Response to Prolonged Acute Stress Are Linked to Affective Responses and Hippocampal Gray Matter Volume in Healthy Females

    PubMed Central

    Treadway, Michael T.; Valeri, Linda; Douglas, Samuel

    2017-01-01

    The development of robust laboratory procedures for acute stress induction over the last decades has greatly advanced our understanding of stress responses in humans and their underlying neurobiological mechanisms. Nevertheless, attempts to uncover linear relationships among endocrine, neural, and affective responses to stress have generally yielded inconsistent results. Here, 79 healthy females completed a well established laboratory procedure of acute stress induction that was modified to prolong its effect. Endocrinological and subjective affect assessments revealed stress-induced increases in cortisol release and negative affect that persisted 65 and 100 min after stress onset, respectively, confirming a relatively prolonged acute stress induction. Applying latent class linear mixed modeling on individuals' patterns of cortisol responses identified three distinct trajectories of cortisol response: the hyper-response (n = 10), moderate-response (n = 21), and mild-response (n = 48) groups. Notably, whereas all three groups exhibited a significant stress-induced increase in cortisol release and negative affect, the hyper-response and mild-response groups both reported more negative affect relative to the moderate-response group. Structural MRI revealed no group differences in hippocampal and amygdala volumes, yet a continuous measure of cortisol response (area under the curve) showed that high and low levels of stress-induced cortisol release were associated with less hippocampal gray matter volume compared with moderate cortisol release. Together, these results suggest that distinct trajectories of cortisol response to prolonged acute stress among healthy females may not be captured by conventional linear analyses; instead, quadratic relations may better describe links between cortisol response to stress and affective responses, as well as hippocampal structural variability. SIGNIFICANCE STATEMENT Despite substantial research, it is unclear whether and how

  12. Distinct Trajectories of Cortisol Response to Prolonged Acute Stress Are Linked to Affective Responses and Hippocampal Gray Matter Volume in Healthy Females.

    PubMed

    Admon, Roee; Treadway, Michael T; Valeri, Linda; Mehta, Malavika; Douglas, Samuel; Pizzagalli, Diego A

    2017-08-16

    The development of robust laboratory procedures for acute stress induction over the last decades has greatly advanced our understanding of stress responses in humans and their underlying neurobiological mechanisms. Nevertheless, attempts to uncover linear relationships among endocrine, neural, and affective responses to stress have generally yielded inconsistent results. Here, 79 healthy females completed a well established laboratory procedure of acute stress induction that was modified to prolong its effect. Endocrinological and subjective affect assessments revealed stress-induced increases in cortisol release and negative affect that persisted 65 and 100 min after stress onset, respectively, confirming a relatively prolonged acute stress induction. Applying latent class linear mixed modeling on individuals' patterns of cortisol responses identified three distinct trajectories of cortisol response: the hyper-response ( n = 10), moderate-response ( n = 21), and mild-response ( n = 48) groups. Notably, whereas all three groups exhibited a significant stress-induced increase in cortisol release and negative affect, the hyper-response and mild-response groups both reported more negative affect relative to the moderate-response group. Structural MRI revealed no group differences in hippocampal and amygdala volumes, yet a continuous measure of cortisol response (area under the curve) showed that high and low levels of stress-induced cortisol release were associated with less hippocampal gray matter volume compared with moderate cortisol release. Together, these results suggest that distinct trajectories of cortisol response to prolonged acute stress among healthy females may not be captured by conventional linear analyses; instead, quadratic relations may better describe links between cortisol response to stress and affective responses, as well as hippocampal structural variability. SIGNIFICANCE STATEMENT Despite substantial research, it is unclear whether and how

  13. Coffee-stain growth dynamics on dry and wet surfaces

    NASA Astrophysics Data System (ADS)

    Boulogne, François; Ingremeau, François; Stone, Howard A.

    2017-02-01

    The drying of a drop containing particles often results in the accumulation of the particles at the contact line. In this work, we investigate the drying of an aqueous colloidal drop surrounded by a hydrogel that is also evaporating. We combine theoretical and experimental studies to understand how the surrounding vapor concentration affects the particle deposit during the constant radius evaporation mode. In addition to the common case of evaporation on an otherwise dry surface, we show that in a configuration where liquid is evaporating from a flat surface around the drop, the singularity of the evaporative flux at the contact line is suppressed and the drop evaporation is homogeneous. For both conditions, we derive the velocity field and we establish the temporal evolution of the number of particles accumulated at the contact line. We predict the growth dynamics of the stain and the drying timescales. Thus, dry and wet conditions are compared with experimental results and we highlight that only the dynamics is modified by the evaporation conditions, not the final accumulation at the contact line.

  14. Leaching of heavy metals and alkylphenolic compounds from fresh and dried sewage sludge.

    PubMed

    Milinovic, Jelena; Vidal, Miquel; Lacorte, Silvia; Rigol, Anna

    2014-02-01

    Reusing sewage sludge as a soil fertiliser has become a common alternative to disposal. Although this practice has a few benefits, it may contribute to the medium- and long-term contamination of the trophic chain because sewage sludge may contain heavy metals and organic contaminants. As the leaching of contaminants may depend on the sludge pre-treatment, the leaching of heavy metals (Cu, Ni, Pb, Zn and Cr) and alkylphenolic compounds (APCs) (octylphenol (OP), nonylphenol (NP), nonylphenol-mono-ethoxylate (NP1EO)) was investigated in five fresh and 40 °C dried sewage sludge samples from north-eastern Spain. FT-IR analyses and full-scan GC-MS chromatograms showed that sludge drying changed the nature of organic compounds leading to changes in their solubility. Moreover, sludge drying led to a higher relative contribution of dissolved organic carbon than the particulate organic carbon in the leachates. Leaching of Pb, Zn and Cr was below 5 % in both fresh and dried sludge samples, whereas Cu and Ni leached at rates up to 12 and 43 %, respectively, in some of the dried sludge samples. The leaching yields of OP, NP and NP1EO ranged from 1.3 to 35 % for fresh samples, but they decreased from 0.8 to 3.4 % in dried samples. The decrease in the leachability of APCs observed in dried sludge samples might be attributed to the fact that these compounds are associated with particulate organic matter, with significantly lower concentration or even absent in dried sludge than in fresh sludge samples. Therefore, it is recommended to dry the sludge before its disposal.

  15. White clover fractions as protein source for monogastrics: dry matter digestibility and protein digestibility-corrected amino acid scores.

    PubMed

    Stødkilde, Lene; Damborg, Vinni K; Jørgensen, Henry; Laerke, Helle N; Jensen, Søren K

    2018-05-01

    The present study aimed to evaluate the use of white clover as an alternative protein source for monogastrics. White clover plant and leaves were processed using a screw-press resulting in a solid pulp and a juice from which protein was acid-precipitated. The chemical composition of all fractions was determined and digestibility of dry matter (DM) and protein was assessed in an experiment with growing rats. Protein concentrates were produced with crude protein (CP) contents of 451 g kg -1 and 530 g kg -1 DM for white clover plant and leaves, respectively, and a pulp with CP contents of 313 and 374 g kg -1 DM from plant and leaves, respectively. The amino acid composition ranged from 4.72 to 6.49 g per 16 g of nitrogen (N) for lysine, 1.82-2.6 g per 16 g N for methionine and cysteine, and 3.66-5.24 g per 16 g N for threonine. True faecal digestibility of protein varied from 0.81 to 0.88, whereas DM digestibility was in the range 0.72-0.80. Methionine and cysteine were found to be limiting in all fractions, regardless of the reference group used. A high digestibility of white clover protein was found irrespective of the physical fractionation. Together with a well-balanced amino acid composition, this makes white clover a promising protein source for monogastrics. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Spray washing, absorbent cornstarch powder, and dry time to reduce bacterial numbers on soiled transport cage flooring

    USDA-ARS?s Scientific Manuscript database

    Broiler transport cages are often used repeatedly without washing and fecal matter deposited on the floor surface can transfer Campylobacter from one flock to another. Allowing feces to dry is an effective but slow and logistically impractical means to kill Campylobacter in soiled transport cages. ...

  17. Fermentation and dry fractionation increase bioactivity of cloudberry (Rubus chamaemorus).

    PubMed

    Puupponen-Pimiä, Riitta; Nohynek, Liisa; Juvonen, Riikka; Kössö, Tuija; Truchado, Pilar; Westerlund-Wikström, Benita; Leppänen, Tiina; Moilanen, Eeva; Oksman-Caldentey, Kirsi-Marja

    2016-04-15

    Phenolic composition and bioactivity of cloudberry was modified by bioprocessing, and highly bioactive fractions were produced by dry fractionation of the press cake. During fermentation polymeric ellagitannins were partly degraded into ellagic acid derivatives. Phenolic compounds were differentially distributed in seed coarse and fine fractions after dry fractionation process. Tannins concentrated in fine fraction, and flavonol derivatives were mainly found in coarse fraction. Ellagic acid derivatives were equally distributed between the dry fractions. Fermentation and dry fractionation increased statistically significantly anti-adhesion and anti-inflammatory activity of cloudberry. The seed fine fraction showed significant inhibition of P fimbria-mediated haemagglutination assay of uropathogenic Escherichia coli. The seed coarse fraction significantly reduced NO and IL-6 production and iNOS expression in activated macrophages. Fermentation did not affect antimicrobial activity, but slight increase in activity was detected in dry fractions. The results indicate the potential of cloudberry in pharma or health food applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Stage of lactation and corresponding diets affect in situ protein degradation by dairy cows.

    PubMed

    Schadt, I; Mertens, D R; Van Soest, P J; Azzaro, G; Licitra, G

    2014-12-01

    The influence of stage of lactation and corresponding diets on rates of protein degradation (kd) is largely unstudied. Study objectives were to measure and compare in situ ruminal kd of crude protein (CP) and estimate rumen CP escape (rumen-undegradable protein; RUP) of selected feeds by cows at 3 stages of lactation fed corresponding diets, and to determine the incubation times needed in an enzymatic in vitro procedure, using 0.2 units of Streptomyces griseus protease per percent of true CP, that predicted in situ RUP. Residue CP was measured after in situ fermentation for 4, 8, 12, 24, 36, 48, and 72 h of 5 protein sources and 3 total mixed rations, which were fed to the in situ cows. Two nonlactating (dry) cows and 2 cows each at 190 (mid) and 90 (peak) days of lactation were used. Each pair of cows was offered free-choice diets that differed in composition to meet their corresponding nutrient requirements. Diets had decreasing proportions of forages and contained (dry matter basis) 11.9, 15.1 and 16.4% CP and 54.3, 40.3 and 35.3% neutral detergent fiber, for dry, mid, and peak TMR (TMR1, TMR2, and TMR3), respectively. Intakes were 10.3, 21.4, and 23.8kg of dry matter/d, respectively. Kinetic CP fractions (extractable, potentially degradable, undegradable, or slowly degradable) were unaffected by treatment. Lag time and kd varied among feeds. The kd was faster for all feeds (0.136/h) when incubated in dry-TMR1 cows compared with mid-TMR2 (0.097/h) or peak-TMR3 (0.098/h) cows, and no differences in lag time were detected. Calculated RUP, using estimated passage rates for each cow based on intake, differed between dry-TMR1 (0.382) and mid-TMR2 (0.559) or peak-TMR3 (0.626) cows, with a tendency for mid-TMR2 to be different from peak-TMR3. Using the average kd and lag time obtained from dry-TMR1 to calculate RUP for mid-TMR2 and peak-TMR3 cows using their passage rates reduced RUP values by 6.3 and 9.5 percentage units, respectively. Except for that of herring meal

  19. Structural stability, microbial biomass and community composition of sediments affected by the hydric dynamics of an urban stormwater infiltration basin. Dynamics of physical and microbial characteristics of stormwater sediment.

    PubMed

    Badin, Anne Laure; Monier, Armelle; Volatier, Laurence; Geremia, Roberto A; Delolme, Cécile; Bedell, Jean-Philippe

    2011-05-01

    The sedimentary layer deposited at the surface of stormwater infiltration basins is highly organic and multicontaminated. It undergoes considerable moisture content fluctuations due to the drying and inundation cycles (called hydric dynamics) of these basins. Little is known about the microflora of the sediments and its dynamics; hence, the purpose of this study is to describe the physicochemical and biological characteristics of the sediments at different hydric statuses of the infiltration basin. Sediments were sampled at five time points following rain events and dry periods. They were characterized by physical (aggregation), chemical (nutrients and heavy metals), and biological (total, bacterial and fungal biomasses, and genotypic fingerprints of total bacterial and fungal communities) parameters. Data were processed using statistical analyses which indicated that heavy metal (1,841 μg/g dry weight (DW)) and organic matter (11%) remained stable through time. By contrast, aggregation, nutrient content (NH₄⁺, 53-717 μg/g DW), pH (6.9-7.4), and biological parameters were shown to vary with sediment water content and sediment biomass, and were higher consecutive to stormwater flows into the basin (up to 7 mg C/g DW) than during dry periods (0.6 mg C/g DW). Coinertia analysis revealed that the structure of the bacterial communities is driven by the hydric dynamics of the infiltration basin, although no such trend was found for fungal communities. Hydric dynamics more than rain events appear to be more relevant for explaining variations of aggregation, microbial biomass, and shift in the microbial community composition. We concluded that the hydric dynamics of stormwater infiltration basins greatly affects the structural stability of the sedimentary layer, the biomass of the microbial community living in it and its dynamics. The decrease in aggregation consecutive to rewetting probably enhances access to organic matter (OM), explaining the consecutive release

  20. Leaf and shoot water content and leaf dry matter content of Mediterranean woody species with different post-fire regenerative strategies.

    PubMed

    Saura-Mas, S; Lloret, F

    2007-03-01

    Post-fire regeneration is a key process in Mediterranean shrubland dynamics, strongly determining the functional properties of the community. In this study, a test is carried out to determine whether there is co-variation between species regenerative types and functional attributes related to water use. An analysis was made of the seasonal variations in leaf relative water content (RWC), leaf dry matter content (LDMC), leaf moisture (LM) and live fine fuel moisture (LFFM) in 30 woody species of a coastal shrubland, with different post-fire regenerative strategies (seeding, resprouting or both). RWC results suggest that the studied resprouters have more efficient mechanisms to reduce water losses and maintain water supply between seasons. In contrast, seeders are more drought tolerant. LDMC is higher in resprouters over the course of the year, suggesting a more efficient conservation of nutrients. The weight of the phylogenetic constraint to understand differences between regenerative strategies tends to be important for LDMC, while it is not the case for variables such as RWC. Groups of species with different post-fire regenerative strategies (seeders and resprouters) have different functional traits related to water use. In addition to the role of phylogenetical constraints, these differences are also likely to be related to the respective life history characteristics. Therefore, the presence and abundance of species with different post-fire regenerative responses influence the functional properties of the communities.

  1. Hybrid Drying of Carrot Preliminary Processed with Ultrasonically Assisted Osmotic Dehydration

    PubMed Central

    2017-01-01

    Summary In this paper the kinetics of osmotic dehydration of carrot and the influence of this pretreatment on the post-drying processes and the quality of obtained products are analysed. Osmotic dehydration was carried out in the aqueous fructose solution in two different ways: with and without ultrasound assistance. In the first part of the research, the kinetics of osmotic dehydration was analysed on the basis of osmotic dewatering rate, water loss and solid gain. Next, the effective time of dehydration was determined and in the second part of research samples were initially dehydrated for 30 min and dried. Five different procedures of drying were established on the grounds of convective method enhanced with microwave and infrared radiation. The influence of osmotic dehydration on the drying kinetics and final product quality was analysed. It was found that it did not influence the drying kinetics significantly but positively affected the final product quality. Negligible influence on the drying kinetics was attributed to solid uptake, which may block the pores, hindering heat and mass transfer. It was also concluded that the application of microwave and/or infrared radiation during convective drying significantly influenced the kinetics of the final stage of drying. A proper combination of aforementioned techniques of hybrid drying allows reducing the drying time. Differences between the particular dehydration methods and drying schedules were discussed. PMID:28867949

  2. Fundamentals of freeze-drying.

    PubMed

    Nail, Steven L; Jiang, Shan; Chongprasert, Suchart; Knopp, Shawn A

    2002-01-01

    Given the increasing importance of reducing development time for new pharmaceutical products, formulation and process development scientists must continually look for ways to "work smarter, not harder." Within the product development arena, this means reducing the amount of trial and error empiricism in arriving at a formulation and identification of processing conditions which will result in a quality final dosage form. Characterization of the freezing behavior of the intended formulation is necessary for developing processing conditions which will result in the shortest drying time while maintaining all critical quality attributes of the freeze-dried product. Analysis of frozen systems was discussed in detail, particularly with respect to the glass transition as the physical event underlying collapse during freeze-drying, eutectic mixture formation, and crystallization events upon warming of frozen systems. Experiments to determine how freezing and freeze-drying behavior is affected by changes in the composition of the formulation are often useful in establishing the "robustness" of a formulation. It is not uncommon for seemingly subtle changes in composition of the formulation, such as a change in formulation pH, buffer salt, drug concentration, or an additional excipient, to result in striking differences in freezing and freeze-drying behavior. With regard to selecting a formulation, it is wise to keep the formulation as simple as possible. If a buffer is needed, a minimum concentration should be used. The same principle applies to added salts: If used at all, the concentration should be kept to a minimum. For many proteins a combination of an amorphous excipient, such as a disaccharide, and a crystallizing excipient, such as glycine, will result in a suitable combination of chemical stability and physical stability of the freeze-dried solid. Concepts of heat and mass transfer are valuable in rational design of processing conditions. Heat transfer by conduction

  3. Reproducibility of Macular Thickness Measurements in Eyes Affected by Dry Age-Related Macular Degeneration From Two Different SD-OCT Instruments.

    PubMed

    Tepelus, Tudor C; Hariri, Amir H; Balasubramanian, Siva; Sadda, SriniVas R

    2018-06-01

    To compare macular thickness measurement algorithms of two different spectral-domain optical coherence tomography (SD-OCT) devices in eyes affected by dry age-related macular degeneration (AMD). Patients with dry AMD and healthy volunteers from the retina clinic of the Doheny Eye Center - UCLA were imaged using two different SD-OCT devices: the RS-3000 Advance (Nidek, Padova, Italy) and the Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA). All patients had been previously diagnosed with drusen or geographic atrophy due to AMD. The commercial instrument software was used to generate the macular retinal thickness measurements, and measurements were compared between devices. Eighty-five diseased eyes from 49 patients and 16 healthy control eyes from eight normal volunteers were included in this study. The macular thickness measurements generated by the two instruments in eyes with AMD differed significantly in mean retinal thickness in the foveal center subfield (257.34 μm ± 51.72 μm using the Nidek OCT vs. 238.20 μm ± 51.89 μm using the Cirrus OCT; P < .001). The mean difference in macular thickness between the two devices was 19.14 μm ± 5.84 μm for diseased eyes and 17.06 μm ± 5.28 μm in normal control eyes, and this was not statistically different between the two groups (P > .05). The macular thickness measurements in diseased eyes, as evaluated by the two different instruments, however, showed excellent correlation (r = 0.99; P < .001), with an intraclass correlation coefficient of 0.99 (95% confidence interval, 0.98-0.99). Post hoc evaluation of cases with larger differences also showed differences in foveal center selection and variabilities in boundary selection with specific pathology. Macular thickness measurements provided by the Nidek and Cirrus OCT instruments in eyes with dry AMD are highly correlated but show a consistent difference, which may allow the use of a standard correction factor to be applied to better interrelate measurements between

  4. Dry period plane of energy: Effects on feed intake, energy balance, milk production, and composition in transition dairy cows.

    PubMed

    Mann, S; Yepes, F A Leal; Overton, T R; Wakshlag, J J; Lock, A L; Ryan, C M; Nydam, D V

    2015-05-01

    The objective was to investigate the effect of different dry cow feeding strategies on the degree of ketonemia postpartum. Epidemiologic studies provide evidence of an association between elevated β-hydroxybutyrate (BHBA) concentrations in postpartum dairy cows and a decreased risk for reproductive success as well as increased risk for several diseases in early lactation, such as displacement of the abomasum and metritis. The plane of energy fed to cows in the prepartum period has been shown to influence ketogenesis and the degree of negative energy balance postpartum. Our hypothesis was that a high-fiber, controlled-energy diet (C) fed during the dry period would lead to a lower degree of hyperketonemia in the first weeks postpartum compared with either a high-energy diet (H), or a diet where an intermediate level of energy would only be fed in the close-up period (starting at 28d before expected parturition), following the same controlled-energy diet in the far-off period. Hyperketonemia in this study was defined as a blood BHBA concentration of ≥1.2mmol/L. Holstein cows (n=84) entering parity 2 or greater were enrolled using a randomized block design and housed in individual tiestalls. All treatment diets were fed for ad libitum intake and contained monensin. Cows received the same fresh cow ration after calving. Blood samples were obtained 3 times weekly before and after calving and analyzed for BHBA and nonesterified fatty acids (NEFA). Milk components, production, and dry matter intake were recorded and energy balance was calculated. Repeated measures ANOVA was conducted for the outcomes dry matter intake, energy balance, BHBA and NEFA concentrations, milk and energy-corrected milk yield, as well as milk composition. Predicted energy balance tended to be less negative postpartum in group C and cows in this group had fewer episodes of hyperketonemia compared with both the intermediate group and group H in the first 3 wk after calving. Postpartum BHBA and

  5. The brain in myotonic dystrophy 1 and 2: evidence for a predominant white matter disease

    PubMed Central

    Weber, Bernd; Schoene-Bake, Jan-Christoph; Roeske, Sandra; Mirbach, Sandra; Anspach, Christian; Schneider-Gold, Christiane; Betz, Regina C.; Helmstaedter, Christoph; Tittgemeyer, Marc; Klockgether, Thomas; Kornblum, Cornelia

    2011-01-01

    Myotonic dystrophy types 1 and 2 are progressive multisystemic disorders with potential brain involvement. We compared 22 myotonic dystrophy type 1 and 22 myotonic dystrophy type 2 clinically and neuropsychologically well-characterized patients and a corresponding healthy control group using structural brain magnetic resonance imaging at 3 T (T1/T2/diffusion-weighted). Voxel-based morphometry and diffusion tensor imaging with tract-based spatial statistics were applied for voxel-wise analysis of cerebral grey and white matter affection (Pcorrected < 0.05). We further examined the association of structural brain changes with clinical and neuropsychological data. White matter lesions rated visually were more prevalent and severe in myotonic dystrophy type 1 compared with controls, with frontal white matter most prominently affected in both disorders, and temporal lesions restricted to myotonic dystrophy type 1. Voxel-based morphometry analyses demonstrated extensive white matter involvement in all cerebral lobes, brainstem and corpus callosum in myotonic dystrophy types 1 and 2, while grey matter decrease (cortical areas, thalamus, putamen) was restricted to myotonic dystrophy type 1. Accordingly, we found more prominent white matter affection in myotonic dystrophy type 1 than myotonic dystrophy type 2 by diffusion tensor imaging. Association fibres throughout the whole brain, limbic system fibre tracts, the callosal body and projection fibres (e.g. internal/external capsules) were affected in myotonic dystrophy types 1 and 2. Central motor pathways were exclusively impaired in myotonic dystrophy type 1. We found mild executive and attentional deficits in our patients when neuropsychological tests were corrected for manual motor dysfunctioning. Regression analyses revealed associations of white matter affection with several clinical parameters in both disease entities, but not with neuropsychological performance. We showed that depressed mood and fatigue were

  6. Evolutionary clade affects resistance of Clostridium difficile spores to Cold Atmospheric Plasma

    NASA Astrophysics Data System (ADS)

    Connor, Mairéad; Flynn, Padrig B.; Fairley, Derek J.; Marks, Nikki; Manesiotis, Panagiotis; Graham, William G.; Gilmore, Brendan F.; McGrath, John W.

    2017-02-01

    Clostridium difficile is a spore forming bacterium and the leading cause of colitis and antibiotic associated diarrhoea in the developed world. Spores produced by C. difficile are robust and can remain viable for months, leading to prolonged healthcare-associated outbreaks with high mortality. Exposure of C. difficile spores to a novel, non-thermal atmospheric pressure gas plasma was assessed. Factors affecting sporicidal efficacy, including percentage of oxygen in the helium carrier gas admixture, and the effect on spores from different strains representing the five evolutionary C. difficile clades was investigated. Strains from different clades displayed varying resistance to cold plasma. Strain R20291, representing the globally epidemic ribotype 027 type, was the most resistant. However all tested strains displayed a ~3 log reduction in viable spore counts after plasma treatment for 5 minutes. Inactivation of a ribotype 078 strain, the most prevalent clinical type seen in Northern Ireland, was further assessed with respect to surface decontamination, pH, and hydrogen peroxide concentration. Environmental factors affected plasma activity, with dry spores without the presence of organic matter being most susceptible. This study demonstrates that cold atmospheric plasma can effectively inactivate C. difficile spores, and highlights factors that can affect sporicidal activity.

  7. Influence of material structure on air-borne ultrasonic application in drying.

    PubMed

    Ozuna, César; Gómez Álvarez-Arenas, Tomás; Riera, Enrique; Cárcel, Juan A; Garcia-Perez, Jose V

    2014-05-01

    This work aims to contribute to the understanding of how the properties of the material being dried affect air-borne ultrasonic application. To this end, the experimental drying kinetics (40°C and 1m/s) of cassava (Manihot esculenta) and apple (Malus domestica var. Granny Smith) were carried out applying different ultrasonic powers (0, 6, 12, 19, 25 and 31 kW/m(3)). Furthermore, the power ultrasound-assisted drying kinetics of different fruits and vegetables (potato, eggplant, carrot, orange and lemon peel) already reported in previous studies were also analyzed. The structural, textural and acoustic properties of all these products were assessed, and the drying kinetics modeled by means of the diffusion theory. A significant linear correlation (r>0.95) was established between the identified effective diffusivity (DW) and the applied ultrasonic power for the different products. The slope of this relationship (SDUP) was used as an index of the effectiveness of the ultrasonic application; thus the higher the SDUP, the more effective the ultrasound application. SDUP was well correlated (r ⩾ 0.95) with the porosity and hardness. In addition, SDUP was largely affected by the acoustic impedance of the material being dried, showing a similar pattern with the impedance than the transmission coefficient of the acoustic energy on the interface. Thus, soft and open-porous product structures exhibited a better transmission of acoustic energy and were more prone to the mechanical effects of ultrasound. However, materials with a hard and closed-compact structure were less affected by acoustic energy due to the fact that the significant impedance differences between the product and the air cause high energy losses on the interface. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Urban tree effects on fine particulate matter and human health

    Treesearch

    David J. Nowak

    2014-01-01

    Overall, city trees reduce particulate matter and provide substantial health benefits; but under certain conditions, they can locally increase particulate matter concentrations. Urban foresters need to understand how trees affect particulate matter so they can select proper species and create appropriate designs to improve air quality. This article details trees'...

  9. Wetting and drying of liquid on crossed fibers

    NASA Astrophysics Data System (ADS)

    Sauret, Alban; Bick, Alison D.; Stone, Howard A.; Complex Fluids Group Team

    2013-11-01

    Fibrous media are common in various engineered systems such as filters, paper or the textile industry. Many of these materials can be described as a network of fibers in which a wetting liquid tends to accumulate at its nodes and changes the bulk properties. Here we study a drop of silicone oil sitting on the simplest element of the array: two rigid crossed fibers. In particular, we investigate experimentally how the structure of the material affects the wetting and drying dynamics of that liquid drop. We first show that the liquid can adopt different shapes from a long liquid column to a drop. The transition between these morphologies depends on the volume of liquid, the tilting angle between the fibers, as well as the fiber radius. The wetting length in the column state can be predicted analytically. Because of these different shapes, the liquid exhibits different drying kinetics, which effects the overall drying time. Our study suggests that shearing a wetted array of fibers, by tuning the liquid morphology, may enhance the drying rate.

  10. Quality and Antioxidant Activity of Buckwheat-Based Cookies Designed for a Raw Food Vegan Diet as Affected by Moderate Drying Temperature.

    PubMed

    Brožková, Iveta; Dvořáková, Veronika; Michálková, Kateřina; Červenka, Libor; Velichová, Helena

    2016-12-01

    Buckwheat cookies with various ingredients for raw food vegan diet are usually prepared by soaking them in water at ambient temperature followed by drying at moderate temperature. The aim of this study was to examine the temperature effect on the microbiological quality, antioxidant properties and oxidative stability of lipids of final dried samples. The mixture of ingredients was soaked for 20 h in distilled water, and then cookies were formed and dried in air-forced oven at constant temperature in the range from 40 to 60 °C. Total viable counts, fungi, yeasts, coliform and aerobic spore-forming bacteria counts were evaluated in dried samples and were found to decrease during drying at 50 and 60 °C. Antioxidant activity was determined by DPPH and ABTS assays, and the former showed the highest value at 40 °C. Superoxide dismutase activity was also higher at 40 °C in comparison with that at 60 °C. The percentage of lipid peroxidation inhibition increased with the increase in drying temperature until 4th day of incubation. While peroxide value was significantly higher in samples dried at 40 °C, TBARS values did not show significant changes during the drying process. The results of this study suggest that drying buckwheat-based cookies at 40 °C retained their good antioxidant properties but represent a potentially serious microbial hazard.

  11. Chemically and size-resolved particulate matter dry deposition on stone and surrogate surfaces inside and outside the low emission zone of Milan: application of a newly developed "Deposition Box".

    PubMed

    Ferrero, Luca; Casati, Marco; Nobili, Lara; D'Angelo, Luca; Rovelli, Grazia; Sangiorgi, Giorgia; Rizzi, Cristiana; Perrone, Maria Grazia; Sansonetti, Antonio; Conti, Claudia; Bolzacchini, Ezio; Bernardi, Elena; Vassura, Ivano

    2018-04-01

    The collection of atmospheric particles on not-filtering substrates via dry deposition, and the subsequent study of the particle-induced material decay, is trivial due to the high number of variables simultaneously acting on the investigated surface. This work reports seasonally resolved data of chemical composition and size distribution of particulate matter deposed on stone and surrogate surfaces obtained using a new method, especially developed at this purpose. A "Deposition Box" was designed allowing the particulate matter dry deposition to occur selectively removing, at the same time, variables that can mask the effect of airborne particles on material decay. A pitched roof avoided rainfall and wind variability; a standardised gentle air exchange rate ensured a continuous "sampling" of ambient air leaving unchanged the sampled particle size distribution and, at the same time, leaving quite calm condition inside the box, allowing the deposition to occur. Thus, the "Deposition Box" represents an affordable tool that can be used complementary to traditional exposure systems. With this system, several exposure campaigns, involving investigated stone materials (ISMs) (Carrara Marble, Botticino limestone, Noto calcarenite and Granite) and surrogate (Quartz, PTFE, and Aluminium) substrates, have been performed in two different sites placed in Milan (Italy) inside and outside the low emission zone. Deposition rates (30-90 μg cm -2  month -1 ) showed significant differences between sites and seasons, becoming less evident considering long-period exposures due to a positive feedback on the deposition induced by the deposited particles. Similarly, different stone substrates influenced the deposition rates too. The collected deposits have been observed with optical and scanning electron microscopes and analysed by ion chromatography. Ion deposition rates were similar in the two sites during winter, whereas it was greater outside the low emission zone during summer and

  12. Noise Pollution and How it Can Indirectly Affect the Amounts of Particulate Matter in the Environment

    NASA Astrophysics Data System (ADS)

    Swamy, S.; Power, J.; Pham, D.; Preston, K. B.; Iqbal, A.

    2007-12-01

    Human and animal activity that occurs on gravel and dirt roads tends to contribute to high levels of particulate matter in the atmosphere. Birds molt their feathers, automobiles emit unused residues, and humans and animals stir up debris on the ground. Not only do these activities generate particulate matter, but they also generate noise. The aim of our study was to determine if a direct correlation exists between the amount of particulate matter and the noise levels in select areas within the Lake Merritt Park region of downtown Oakland, California. In addition, our research was aimed at determining if the level of noise at various locations conforms to City of Oakland regulations. Over a four-week period we measured noise levels and particulate matter concentrations at 27 different sites within the Park region. Preliminary results indicate that at a construction site and a residential area near the lake a direct correlation between our two variables existed; high noise level accompanied high particulate matter while low noise level accompanied low particulate matter, respectively. However, at the majority of the areas around the lake either indirect or no correlation was observed. Based on our results thus far, we conclude that noise levels are not indicative of particulate matter levels and that noise levels around Lake Merritt do conform to the city's regulations.

  13. Physicochemical properties of whole fruit plum powders obtained using different drying technologies.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Lech, Krzysztof; Łysiak, Grzegorz P; Figiel, Adam

    2016-09-15

    Physicochemical quality parameters of plum powders obtained by applying conventional drying methods and their combination devised to process plums were evaluated. The effect of freeze-drying (FD), vacuum drying (VD), convective drying (CD), microwave-vacuum drying (MVD) and combination of convective pre-drying and microwave finish-drying (CPD-MVFD) affected physical (bulk density, porosity, colour, solubility) and chemical (polyphenolic compounds determined by UPLC and antioxidant capacity by TEAC ABTS and FRAP methods) properties of plum powders. The MVD at 1.2 W g(-1) and a novel combination for plum powders production - CPD-MVFD at 70 °C/1.2 W g(-1) allowed the best preservation of phenolic compounds and increased the efficiency of production. Results obtained support the use of MVD and its combination for better quality of dried plum products. The study proved that the determination of the browning index and HMF level (formed via Maillard reaction) might be good tool for monitoring the thermal processing of plum powders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Factors affecting energy and nitrogen efficiency of dairy cows: a meta-analysis.

    PubMed

    Phuong, H N; Friggens, N C; de Boer, I J M; Schmidely, P

    2013-01-01

    A meta-analysis was performed to explore the correlation between energy and nitrogen efficiency of dairy cows, and to study nutritional and animal factors that influence these efficiencies, as well as their relationship. Treatment mean values were extracted from 68 peer-reviewed studies, including 306 feeding trials. The main criterion for inclusion of a study in the meta-analysis was that it reported, or permitted calculation of, energy efficiency (Eeff; energy in milk/digestible energy intake) and nitrogen efficiency (Neff; nitrogen in milk/digestible nitrogen intake) at the digestible level (digestible energy or digestible protein). The effect of nutritional and animal variables, including neutral detergent fiber, acid detergent fiber (ADF), digestible energy, digestible protein, proportion of concentrate (PCO), dry matter intake, milk yield, days in milk, and body weight, on Eeff, Neff, and the Neff:Eeff ratio was analyzed using mixed models. The interstudy correlation between Eeff and Neff was 0.62, whereas the intrastudy correlation was 0.30. The higher interstudy correlation was partly due to milk yield and dry matter intake being present in both Eeff and Neff. We, therefore, also explored the Neff:Eeff ratio. Energy efficiency was negatively associated with ADF and PCO, whereas Neff was negatively associated with ADF and digestible energy. The Neff:Eeff ratio was affected by ADF and PCO only. In conclusion, the results indicate a possibility to maximize feed efficiency in terms of both energy and nitrogen at the same time. In other words, an improvement in Eeff would also mean an improvement in Neff. The current study also shows that these types of transverse data are not sufficient to study the effect of animal factors, such as days in milk, on feed efficiency. Longitudinal measurements per animal would probably be more appropriate. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Hydrodesulfurization and hydrodenitrogenation catalysts obtained from coal mineral matter

    DOEpatents

    Liu, Kindtoken H. D.; Hamrin, Jr., Charles E.

    1982-01-01

    A hydrotreating catalyst is prepared from coal mineral matter obtained by low temperature ashing coals of relatively low bassanite content by the steps of: (a) depositing on the low temperature ash 0.25-3 grams of an iron or nickel salt in water per gram of ash and drying a resulting slurry; (b) crushing and sizing a resulting solid; and (c) heating the thus-sized solid powder in hydrogen.

  16. Dry Eye as a Mucosal Autoimmune Disease

    PubMed Central

    Stern, Michael E.; Schaumburg, Chris S.; Pflugfelder, Stephen C.

    2013-01-01

    Dry eye is a common ocular surface inflammatory disease that significantly affects quality of life. Dysfunction of the lacrimal function unit (LFU) alters tear composition and breaks ocular surface homeostasis, facilitating chronic inflammation and tissue damage. Accordingly, the most effective treatments to date are geared towards reducing inflammation and restoring normal tear film. The pathogenic role of CD4+ T cells is well known, and the field is rapidly realizing the complexity of other innate and adaptive immune factors involved in the development and progression of disease. The data support the hypothesis that dry eye is a localized autoimmune disease originating from an imbalance in the protective immunoregulatory and proinflammatory pathways of the ocular surface. PMID:23360156

  17. Report on UQ and PCMM Analysis of Vacuum Drying for UFD S&T Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. Fluss

    2015-08-31

    This report discusses two phenomena that could affect the safety, licensing, transportation, storage, and disposition of the spent fuel storage casks and their contents (radial hydriding during drying and water retention after drying) associated with the drying of canisters for dry spent fuel storage. The report discusses modeling frameworks and evaluations that are, or have been, developed as a means to better understand these phenomena. Where applicable, the report also discusses data needs and procedures for monitoring or evaluating the condition of storage containers during and after drying. A recommendation for the manufacturing of a fully passivated fuel rod, resistantmore » to oxidation and hydriding is outlined.« less

  18. Contents and composition of organic matter in subsurface soils affected by land use and soil mineralogy

    NASA Astrophysics Data System (ADS)

    Ellerbrock, Ruth H.; Kaiser, Michael

    2010-05-01

    Land use and mineralogy affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigate the greenhouse effect. This study aimed to investigate the long-term impact of land use (i.e., arable and forest) and soil mineralogy on contents and composition of soil organic matter (SOM) from subsurface soils. Seven soils different in mineralogy (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected within Germany. Soil samples were taken from forest and adjacent arable sites. First, particulate and water soluble organic matter were separated from the subsurface soil samples. From the remaining solid residues the OM(PY) fractions were separated, analyzed for its OC content (OCPY) and characterized by FTIR spectroscopy. For the arable subsurface soils multiple regression analyses indicate significant positive relationships between the soil organic carbon contents and the contents of i) exchangeable Ca and oxalate soluble Fe, and Alox contents. Further for the neutral arable subsurface soils the contents OCPY weighted by its C=O contents were found to be related to the contents of Ca indicating interactions between OM(PY) and Ca cations. For the forest subsurface soils (pH <5) the OCPY contents were positively related with the contents of Na-pyrophosphate soluble Fe and Al. For the acidic forest subsurface soils such findings indicate interactions between OM(PY) and Fe3+ and Al3+ cations. The effects of land use and soil mineralogy on contents and composition of SOM and OM(PY) will be discussed.

  19. Effects of pulse and press drying disturbance on benthic stream communities

    USGS Publications Warehouse

    Lynch, Dustin T.; Magoulick, Daniel D.

    2016-01-01

    Natural disturbance is an integral component of most ecosystems and occurs in 3 different forms: pulse, press, and ramp. In lotic ecosystems, seasonal drought is a major form of disturbance, particularly in intermittent headwater streams, which often are reduced to pools that serve as refuges for biota. We used simulated intermittent stream pools to compare the effects of control, pulse, and press drying on growth and survival in 3 fish species (Lepomis megalotis, Campostoma anomalum, and Etheostoma spectabile) commonly found together in drought-prone streams in the Ozark Highlands, USA. We also compared effects on benthic community structure, including periphyton and chironomid density and sediment in deep (permanently watered) and shallow (intermittently dewatered) habitat. Only one species, L. megalotis, showed a significant reduction in length and mass growth in press drying compared with control treatments. Drying and type of drying had no effect on survival of any fish species. Drying and type of drying had strong overall effects on periphyton growth in shallow habitats, where ash-free dry mass decreased and the autotrophic index (the ratio of chlorophyll a to total biomass) increased significantly in drying relative to control and in press relative to pulse treatments. Drying negatively affected sediment accumulation in shallow habitat and chironomid density in deep habitat. Drying in intermittent streams has species-dependent effects on fish growth and benthic structure, and pulse and press drying differ in their effects on periphyton in these systems. These effects may have important consequences in seasonally drying streams as anthropogenic influence on stream drying increases.

  20. Global Particulate Matter Source Apportionment

    NASA Astrophysics Data System (ADS)

    Lamancusa, C.; Wagstrom, K.

    2017-12-01

    As our global society develops and grows it is necessary to better understand the impacts and nuances of atmospheric chemistry, in particular those associated with atmospheric particulate matter. We have developed a source apportionment scheme for the GEOS-Chem global atmospheric chemical transport model. While these approaches have existed for several years in regional chemical transport models, the Global Particulate Matter Source Apportionment Technology (GPSAT) represents the first incorporation into a global chemical transport model. GPSAT runs in parallel to a standard GEOS-Chem run. GPSAT uses the fact that all molecules of a given species have the same probability of undergoing any given process as a core principle. This allows GPSAT to track many different species using only the flux information provided by GEOS-Chem's many processes. GPSAT accounts for the change in source specific concentrations as a result of aqueous and gas-phase chemistry, horizontal and vertical transport, condensation and evaporation on particulate matter, emissions, and wet and dry deposition. By using fluxes, GPSAT minimizes computational cost by circumventing the computationally costly chemistry and transport solvers. GPSAT will allow researchers to address many pertinent research questions about global particulate matter including the global impact of emissions from different source regions and the climate impacts from different source types and regions. For this first application of GPSAT, we investigate the contribution of the twenty largest urban areas worldwide to global particulate matter concentrations. The species investigated include: ammonium, nitrates, sulfates, and the secondary organic aerosols formed by the oxidation of benzene, isoprene, and terpenes. While GPSAT is not yet publically available, we will incorporate it into a future standard release of GEOS-Chem so that all GEOS-Chem users will have access to this new tool.

  1. Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wildfire

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Meyer, W. S.; Koerber, G. R.; Marschner, P.

    2015-08-01

    Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wildfire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content, which could be further modulated by wildfire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy mallee woodland, where part of the woodland experienced a wildfire which destroyed or damaged most of the aboveground plant parts 4 months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80 % of maximum water holding capacity (WHC) for 19 days; in DRW, soils were dried for 4 days, kept dry for another 5 days, then rewetted to 80 % WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per gram of soil in CM and DRW was greater under trees, but lower when expressed per gram of total organic carbon (TOC). Organic matter content, available P, and microbial biomass C, but not available N, were greater under trees than in open areas. Wild fire decreased the flush of respiration per gram of TOC in the open areas and under shrubs, and reduced TOC and microbial biomass C (MBC) concentrations only under trees, but had little effect on available N and P concentrations. We conclude that the impact of wildfire and DRW events on nutrient cycling differs among vegetation patches of a native semi-arid woodland which is related to organic matter amount and availability.

  2. How surface functional groups influence fracturation in nanofluids droplets dry-outs

    NASA Astrophysics Data System (ADS)

    Brutin, David; Carle, Florian

    2012-11-01

    We report an experimental investigation of the drying of a deposited droplets of nanofluids with different surface functional groups. For identical nano-particles diameter, material and concentration, identical drying conditions, the substrate and the functional groups at the nano-particles surface are changed. Both flow motion, adhesion, gelation and fracturation occur during the evaporation of this complex matter leading to different final typical patterns. The differences in between the patterns are explained based on the surface chemical potential. Crack shapes and wavelengths are globally proportional to the electrical charges carried at the nano- particles surface which is a new parameter to implement in existing predicting models. Presently only the colloid concentration and softness and the deposit thickness are used (Allain and Limat, 1995). The authors gratefully acknowledge the help and the fruitful discussions raised with J.B. Lang.

  3. Study of particulate matter from Primary/Secondary Marine Aerosol and anthropogenic sources collected by a self-made passive sampler for the evaluation of the dry deposition impact on built heritage.

    PubMed

    Morillas, Héctor; Maguregui, Maite; García-Florentino, Cristina; Marcaida, Iker; Madariaga, Juan Manuel

    2016-04-15

    Dry deposition is one of the most dangerous processes that can take place in the environment where the compounds that are suspended in the atmosphere can react directly on different surrounding materials, promoting decay processes. Usually this process is related with industrial/urban fog and/or marine aerosol in the coastal areas. Particularly, marine aerosol transports different types of salts which can be deposited on building materials and by dry deposition promotes different decay pathways. A new analytical methodology based on the combined use of Raman Spectroscopy and SEM-EDS (point-by-point and imaging) was applied. For that purpose, firstly evaporated seawater (presence of Primary Marine Aerosol (PMA)) was analyzed. After that, using a self-made passive sampler (SMPS), different suspended particles coming from marine aerosol (transformed particles in the atmosphere (Secondary Marine Aerosol (SMA)) and metallic airborne particulate matter coming from anthropogenic sources, were analyzed. Finally in order to observe if SMA and metallic particles identified in the SMPS can be deposited on a building, sandstone samples from La Galea Fortress (Getxo, north of Spain) located in front of the sea and in the place where the passive sampler was mounted were analyzed. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Effect of drying methods (microwave vacuum, freeze, hot air and sun drying) on physical, chemical and nutritional attributes of five pepper (Capsicum annuum var. annuum) cultivars.

    PubMed

    Maurya, Vaibhav Kumar; Gothandam, Kodiveri Muthukaliannan; Ranjan, Vijay; Shakya, Amita; Pareek, Sunil

    2018-07-01

    A randomized block design experiment was performed to investigate the influence of drying on the physical, chemical and nutritional quality attributes of five prominent cultivars of India under sun drying (SD) (mean temperature 35.5 °C, average daily radiation 5.26 kW h m -2 and mean relative humidity 73.66% RH), hot air drying (HD) at 65 °C, microwave vacuum drying (MVD) (800 W, 5 kPa) and freeze drying (FD) (-50 °C, 5 kPa). Water activity, pH, total phenolic content (TPC), ascorbic acid (AA), capsaicin, β-carotene, color and Scoville heat unit were studied. TPC, AA, capsaicin content, β-carotene, color and water activity were significantly affected by the drying method. FD was observed to be most efficient in minimizing the loss of color, capsaicin and β-carotene. The hotness of analyzed samples decreased in the order 'Bird's Eye' > 'Sannam S4' > 'CO-4' > 'PLR-1' > 'PKM-1' among the studied cultivars, and FD > MVD > HD > SD among the drying methods. The FD method was observed to be the most efficient drying method for retaining capsaicin content over other drying methods (SD, HD, MVD), whereas MVD was found to be most efficient in minimizing the loss to nutritional attributes for all five pepper cultivars. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  5. Dry coolers and air-condensing units (Review)

    NASA Astrophysics Data System (ADS)

    Milman, O. O.; Anan'ev, P. A.

    2016-03-01

    The analysis of factors affecting the growth of shortage of freshwater is performed. The state and dynamics of the global market of dry coolers used at electric power plants are investigated. Substantial increase in number and maximum capacity of air-cooled condensers, which have been put into operation in the world in recent years, are noted. The key reasons facilitating the choice of developers of the dry coolers, in particular the independence of the location of thermal power plant from water sources, are enumerated. The main steam turbine heat removal schemes using air cooling are considered, their comparison of thermal efficiency is assessed, and the change of three important parameters, such as surface area of heat transfer, condensate pump flow, and pressure losses in the steam exhaust system, are estimated. It is shown that the most effective is the scheme of direct steam condensation in the heat-exchange tubes, but other schemes also have certain advantages. The air-cooling efficiency may be enhanced much more by using an air-cooling hybrid system: a combination of dry and wet cooling. The basic applied constructive solutions are shown: the arrangement of heat-exchange modules and the types of fans. The optimal mounting design of a fully shopassembled cooling system for heat-exchange modules is represented. Different types of heat-exchange tubes ribbing that take into account the operational features of cooling systems are shown. Heat transfer coefficients of the plants from different manufacturers are compared, and the main reasons for its decline are named. When using evaporative air cooling, it is possible to improve the efficiency of air-cooling units. The factors affecting the faultless performance of dry coolers (DC) and air-condensing units (ACU) and the ways of their elimination are described. A high velocity wind forcing reduces the efficiency of cooling systems and creates preconditions for the development of wind-driven devices. It is noted that

  6. Interplanting Annual Ryegrass, Wheat, Oat, and Corn to Mitigate Iron Deficiency in Dry Beans

    PubMed Central

    Omondi, Emmanuel Chiwo; Kniss, Andrew R.

    2014-01-01

    This study evaluated whether grass intercropping can be used to alleviate Fe deficiency chlorosis in dry beans (Phaseolus vulgaris L.) grown in high pH, calcareous soils with low organic matter. Field studies were conducted at the University of Wyoming Sustainable Agriculture Research and Extension Center in 2009 and 2010. Black- and navy beans were grown alone or intercropped with annual ryegrass (Lolium multiflorum Lam.), oat (Avena sativa L.), corn (Zea mays L.), or spring wheat (Triticum aestivum L.) in a two-factor factorial strip-plot randomized complete block design. All four grass species increased chlorophyll intensity in dry beans. However, grass species did not increase iron (Fe) concentration in dry bean tissues suggesting inefficient utilization of Fe present in the dry bean tissues. In 2009, nitrate-nitrogen (NO3-N) and manganese (Mn) concentration in bean tissue were greater in bean monoculture than in grass intercropped beans. Bean monoculture also had greater soil NO3-N concentrations than grass intercropped treatments. In 2009, grass intercrops reduced dry bean yield >25% compared to bean monoculture. Annual ryegrass was the least competitive of the four annual grass species. This suggests that competition from grasses for nutrients, water, or light may have outweighed benefits accruing from grass intercropping. Additional studies are required to determine the appropriate grass and dry bean densities, as well as the optimum time of grass removal. PMID:25536084

  7. Interplanting annual ryegrass, wheat, oat, and corn to mitigate iron deficiency in dry beans.

    PubMed

    Omondi, Emmanuel Chiwo; Kniss, Andrew R

    2014-01-01

    This study evaluated whether grass intercropping can be used to alleviate Fe deficiency chlorosis in dry beans (Phaseolus vulgaris L.) grown in high pH, calcareous soils with low organic matter. Field studies were conducted at the University of Wyoming Sustainable Agriculture Research and Extension Center in 2009 and 2010. Black- and navy beans were grown alone or intercropped with annual ryegrass (Lolium multiflorum Lam.), oat (Avena sativa L.), corn (Zea mays L.), or spring wheat (Triticum aestivum L.) in a two-factor factorial strip-plot randomized complete block design. All four grass species increased chlorophyll intensity in dry beans. However, grass species did not increase iron (Fe) concentration in dry bean tissues suggesting inefficient utilization of Fe present in the dry bean tissues. In 2009, nitrate-nitrogen (NO3-N) and manganese (Mn) concentration in bean tissue were greater in bean monoculture than in grass intercropped beans. Bean monoculture also had greater soil NO3-N concentrations than grass intercropped treatments. In 2009, grass intercrops reduced dry bean yield >25% compared to bean monoculture. Annual ryegrass was the least competitive of the four annual grass species. This suggests that competition from grasses for nutrients, water, or light may have outweighed benefits accruing from grass intercropping. Additional studies are required to determine the appropriate grass and dry bean densities, as well as the optimum time of grass removal.

  8. Transformation of phosphorus during drying and roasting of sewage sludge.

    PubMed

    Li, Rundong; Yin, Jing; Wang, Weiyun; Li, Yanlong; Zhang, Ziheng

    2014-07-01

    Sewage sludge (SS), a by-product of wastewater treatment, consists of highly concentrated organic and inorganic pollutants, including phosphorus (P). In this study, P with different chemical fractions in SS under different drying and roasting temperatures was investigated with the use of appropriate standards, measurements, and testing protocol. The drying and roasting treatment of SS was conducted in a laboratory-scale furnace. Two types of SS samples under different treatment temperatures were analyzed by (31)P NMR spectroscopy. These samples were dried by a vacuum freeze dryer at -50°C and a thermoelectric thermostat drying box at 105°C. Results show that the inorganic P (IP) content increased as the organic P content decreased, and the bio-availability of P increased because IP is a form of phosphorousthat can be directly absorbed by plants. (31)P NMR analysis results indicate the change in P fractions at different temperatures. Non-apatite P was the dominant form of P under low-temperature drying and roasting, whereas apatite P was the major one under high-temperature drying and roasting. Results indicate that temperature affects the transformation of P. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Zebrafish Locomotor Responses Predict Irritant Potential of Smoke Particulate Matter from Five Biomass Fuels

    EPA Science Inventory

    Over the past few decades, the drying and warming trends of global climate change have increased wildland fire (WF) season length, as well as geographic area impacted. Consequently, exposures to WF fine particulate matter (PM2.5; aerodynamic diameter <2.5 µm) are likely ...

  10. Effects of spray-dried whole egg and biotin in calf milk replacer.

    PubMed

    Quigley, J D

    2002-01-01

    Holstein bull calves (n = 120) were fed milk replacers containing 0, 10, or 20% of the formulation (0, 22, or 44% of crude protein) as spray-dried whole egg powder in a 56-d feeding trial. Milk replacer was medicated with oxytetracycline and neomycin and was fed from d 1 to 42 of the study in a phase-fed program. All experimental milk replacers were supplemented with B vitamins, except biotin. One half of all calves were supplemented with 1 mg/kg of supplemental biotin to determine whether avidin in the egg protein product inhibited growth. Increasing spray-dried whole egg caused a linear reduction in body weight, body weight gain at 28 and 56 d of the study, calf starter intake, and feed efficiency. Calves fed milk replacers containing 0, 10, and 20% spray-dried whole egg gained an average of 486, 369, and 302 g/d, respectively, during the 56-d trial. Efficiency of feed utilization was 446, 318, and 231 g of body weight gain per kilogram of dry matter intake. Improvement in body weight and feed efficiency occurred when calves began consuming calf starter on d 29. Digestibility of protein or fat from egg may have been reduced during the trial; however, the addition of biotin to the milk replacer did not influence animal performance, suggesting that avidin in spray-dried whole egg was not responsible for impaired performance. The spray-dried whole egg product used in this study did not provide nutrients to support adequate growth of milk-fed calves.

  11. Dietary supplementation with flaxseed mucilage alone or in combination with calcium in dogs: effects on apparent digestibility of fat and energy and fecal characteristics.

    PubMed

    Nybroe, S; Astrup, A; Bjørnvad, C R

    2016-12-01

    In humans, dietary supplementation with flaxseed mucilage and calcium decrease apparent digestibility of fat and energy. These supplements could prove useful for weight management in dogs. To examine dry matter, energy and fat apparent digestibility, and fecal characteristics following dietary flaxseed mucilage supplementation alone or in combination with calcium. A single-blinded crossover feeding trial was conducted on 11 privately owned dogs. During three consecutive 14-day periods, dogs where fed commercial dog food supplemented with potato starch (control diet), flaxseed mucilage or flaxseed mucilage and calcium. Feces from the past 2 days of each period were collected for analysis. Owners recorded fecal score (1-7: 1=very hard/dry feces, 2-3=ideal and 7=diarrhea). Apparent digestibility of fat was lower in both flaxseed mucilage diet (94.5±0.8%), and flaxseed mucilage and calcium diet (92.9±0.9%) compared with control diet (96.9±0.2%, P<0.0001) with fat digestibility in flaxseed mucilage and calcium diet being significantly lower than the diet supplemented with only flaxseed mucilage. Dry matter and energy digestibility was not significantly affected by diet. Fecal wet weight, dry weight and dry matter percentage was not affected by diet despite a higher fecal score for test diets (3.7±0.3) compared with control (2.8±0.2, P<0.007). In dogs, flaxseed mucilage decreased fat apparent digestibility and this effect was enhanced when combined with calcium. Dry matter and energy apparent digestibility was not affected. Decreased fecal quality may limit the acceptable level of supplementation. Further studies on incorporating flaxseed mucilage in pet food products for weight management are needed.

  12. Effect of Corn Dried Distiller Grains with Solubles (DDGS) in Dairy Cow Diets on Manure Bioenergy Production Potential

    PubMed Central

    Massé, Daniel I.; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M. Cata

    2014-01-01

    Simple Summary Among the measures proposed to reduce environmental pollution from the livestock sector, animal nutrition has a strong potential to reduce enteric and manure storages methane emissions. Changes in diet composition also affect the bioenergy potential of dairy manures. Corn dried distillers grains with solubles (DDGS), which are rich in fat, can be included in animal diets to reduce enteric methane (CH4) emissions, while increasing the bioenergy potential of the animal manure during anaerobic digestion. The inclusion of 30% DDGS in the cow diet caused a significant increase of 14% in daily bioenergy production (NL methane day−1·cow−1). abstract The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L−1·day−1 during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows’ daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH4 production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH4 production by 14% compared to the control diet. PMID:26479885

  13. Is the continuous matter creation cosmology an alternative to ΛCDM?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fabris, J.C.; Pacheco, J.A. de Freitas; Piattella, O.F., E-mail: fabris@pq.cnpq.br, E-mail: pacheco@oca.eu, E-mail: oliver.piattella@pq.cnpq.br

    2014-06-01

    The matter creation cosmology is revisited, including the evolution of baryons and dark matter particles. The creation process affects only dark matter and not baryons. The dynamics of the ΛCDM model can be reproduced only if two conditions are satisfied: 1) the entropy density production rate and the particle density variation rate are equal and 2) the (negative) pressure associated to the creation process is constant. However, the matter creation model predicts a present dark matter-to-baryon ratio much larger than that observed in massive X-ray clusters of galaxies, representing a potential difficulty for the model. In the linear regime, amore » fully relativistic treatment indicates that baryons are not affected by the creation process but this is not the case for dark matter. Both components evolve together at early phases but lately the dark matter density contrast decreases since the background tends to a constant value. This behaviour produces a negative growth factor, in disagreement with observations, being a further problem for this cosmology.« less

  14. Near-infrared spectrometry allows fast and extensive predictions of functional traits from dry leaves and branches.

    PubMed

    Costa, Flávia R C; Lang, Carla; Almeida, Danilo R A; Castilho, Carolina V; Poorter, Lourens

    2018-05-16

    The linking of individual functional traits to ecosystem processes is the basis for making generalizations in ecology, but the measurement of individual values is laborious and time consuming, preventing large-scale trait mapping. Also, in hyper-diverse systems, errors occur because identification is difficult, and species level values ignore intra-specific variation. To allow extensive trait mapping at the individual level, we evaluated the potential of Fourrier-Transformed Near Infra-Red Spectrometry (FT-NIR) to adequately describe 14 traits that are key for plant carbon, water, and nutrient balance. FT-NIR absorption spectra (1,000-2,500 nm) were obtained from dry leaves and branches of 1,324 trees of 432 species from a hyper-diverse Amazonian forest. FT-NIR spectra were related to measured traits for the same plants using partial least squares regressions. A further 80 plants were collected from a different site to evaluate model applicability across sites. Relative prediction error (RMSE rel ) was calculated as the percentage of the trait value range represented by the final model RMSE. The key traits used in most functional trait studies; specific leaf area, leaf dry matter content, wood density and wood dry matter content can be well predicted by the model (R 2  = 0.69-0.78, RMSE rel  = 9-11%), while leaf density, xylem proportion, bark density and bark dry matter content can be moderately well predicted (R 2  = 0.53-0.61, RMSE rel  = 14-17%). Community-weighted means of all traits were well estimated with NIR, as did the shape of the frequency distribution of the community values for the above key traits. The model developed at the core site provided good estimations of the key traits of a different site. An evaluation of the sampling effort indicated that 400 or less individuals may be sufficient for establishing a good local model. We conclude that FT-NIR is an easy, fast and cheap method for the large-scale estimation of individual plant traits

  15. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods

    NASA Astrophysics Data System (ADS)

    Elhussein, Elaf Abdelillah Ali; Şahin, Selin

    2018-07-01

    Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient ( R 2 ), varience ( S 2 ) and root mean square deviation ( D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.

  16. Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods

    NASA Astrophysics Data System (ADS)

    Elhussein, Elaf Abdelillah Ali; Şahin, Selin

    2018-01-01

    Drying is the crucial food processing for bioactive components from plant materials before strating extraction in addition to preservation of raw plant materials during storage period. Olive leaves were dried by various methods such as microwave drying (MD), oven drying (OD) and vacuum drying (VD) at several temperature values in the present study. Mathematical models allow to develop, design and control the processes. 14 emprical equations were used to estimate the drying behaviour and the time required for drying. Convenience of the models were evaluated according to the correlation coefficient (R 2 ), varience (S 2 ) and root mean square deviation (D RMS ). On the other hand, the effective diffusion coefficient and energy for activation were also calculated. Effects of the drying methods on the total phenolic (TPC), flavonoid (TFC) and oleuropein contents and free radical scavenging activity (FRSA) of the olive leaves were also investigated to take into considiration the quality of the dried product. MD has proved to be the fastest drying method having the highest effective diffusivity and the lowest activation energy with a more qualitive product.

  17. Neuropathic ocular pain: an important yet underevaluated feature of dry eye

    PubMed Central

    Galor, A; Levitt, R C; Felix, E R; Martin, E R; Sarantopoulos, C D

    2015-01-01

    Dry eye has gained recognition as a public health problem given its prevalence, morbidity, and cost implications. Dry eye can have a variety of symptoms including blurred vision, irritation, and ocular pain. Within dry eye-associated ocular pain, some patients report transient pain whereas others complain of chronic pain. In this review, we will summarize the evidence that chronicity is more likely to occur in patients with dysfunction in their ocular sensory apparatus (ie, neuropathic ocular pain). Clinical evidence of dysfunction includes the presence of spontaneous dysesthesias, allodynia, hyperalgesia, and corneal nerve morphologic and functional abnormalities. Both peripheral and central sensitizations likely play a role in generating the noted clinical characteristics. We will further discuss how evaluating for neuropathic ocular pain may affect the treatment of dry eye-associated chronic pain. PMID:25376119

  18. Rapid analyses of dry matter content and carotenoids in fresh cassava roots using a portable visible and near infrared spectrometer (Vis/NIRS).

    PubMed

    Ikeogu, Ugochukwu N; Davrieux, Fabrice; Dufour, Dominique; Ceballos, Hernan; Egesi, Chiedozie N; Jannink, Jean-Luc

    2017-01-01

    Portable Vis/NIRS are flexible tools for fast and unbiased analyses of constituents with minimal sample preparation. This study developed calibration models for dry matter content (DMC) and carotenoids in fresh cassava roots using a portable Vis/NIRS system. We examined the effects of eight data pre-treatment combinations on calibration models and assessed calibrations on processed and intact root samples. We compared Vis/NIRS derived-DMC to other phenotyping methods. The results of the study showed that the combination of standard normal variate and de-trend (SNVD) with first derivative calculated on two data points and no smoothing (SNVD+1111) was adequate for a robust model. Calibration performance was higher with processed than the intact root samples for all the traits although intact root models for some traits especially total carotenoid content (TCC) (R2c = 96%, R2cv = 90%, RPD = 3.6 and SECV = 0.63) were sufficient for screening purposes. Using three key quality traits as templates, we developed models with processed fresh root samples. Robust calibrations were established for DMC (R2c = 99%, R2cv = 95%, RPD = 4.5 and SECV = 0.9), TCC (R2c = 99%, R2cv = 91%, RPD = 3.5 and SECV = 2.1) and all Trans β-carotene (ATBC) (R2c = 98%, R2cv = 91%, RPD = 3.5 and SECV = 1.6). Coefficient of determination on independent validation set (R2p) for these traits were also satisfactory for ATBC (91%), TCC (88%) and DMC (80%). Compared to other methods, Vis/NIRS-derived DMC from both intact and processed roots had very high correlation (>0.95) with the ideal oven-drying than from specific gravity method (0.49). There was equally a high correlation (0.94) between the intact and processed Vis/NIRS DMC. Therefore, the portable Vis/NIRS could be employed for the rapid analyses of DMC and quantification of carotenoids in cassava for nutritional and breeding purposes.

  19. A field survey on coffee beans drying methods of Indonesian small holder farmers

    NASA Astrophysics Data System (ADS)

    Siagian, Parulian; Setyawan, Eko Y.; Gultom, Tumiur; Napitupulu, Farel H.; Ambarita, Himsar

    2017-09-01

    Drying agricultural product is a post-harvest process that consumes significant energy. It can affect the quality of the product. This paper deals with literature review and field survey of drying methods of coffee beans of Indonesia farmers. The objective is to supply the necessary information on developing continuous solar drier. The results show that intermittent characteristic of sun drying results in a better quality of coffee beans in comparison with constant convective drying. In order to use energy efficiently, the drying process should be divided into several stages. In the first stage when the moist content is high, higher drying air temperature is more effective. After this step, where the moist content is low, lower drying air temperature is better. The field survey of drying coffee beans in Sumatera Utara province reveals that the used drying process is very traditional. It can be divided into two modes and depend on the coffee beans type. The Arabica coffee is firstly fermented and dried to moisture content of 80% using sun drying method, then followed by Green House model of drying up to moisture content about 12%. The latter typically spends 3 days of drying time. On the other hand, The Robusta coffee is dried by exposing to the sun directly without any treatment. After the coffee beans dried follow by peeled process. These findings can be considered to develop a continuous solar drying that suitable for coffee beans drying.

  20. Decreased Central Nervous System Grey Matter Volume (GMV) in Smokers Affects Cognitive Abilities: A Systematic Review

    PubMed Central

    Vňuková, Martina; Ptáček, Radek; Raboch, Jiří; Stefano, George B.

    2017-01-01

    Although cigarette smoking is a leading cause of preventable mortality, tobacco is consumed by approximately 22% of the adult population worldwide. Smoking is also a risk factor for cardiovascular disease, affects brain processing, and is a recognized risk factor for Alzheimer disease (AD). Tobacco toxins (e.g., nicotine at high levels) inhaled in smoke may cause disorders resulting in preclinical brain changes. Researchers suggest that there are differences in brain volume between smokers and non-smokers. This review examines these differences in brain grey matter volume (GMV). In March/April 2015, MedLine, Embase, and PsycINFO were searched using the terms: “grey matter” AND “voxel-based” AND “smoking” AND “cigarette”. The 4 studies analyzed found brain GMV decreases in smokers compared to non-smokers. Furthermore, sex-specific differences were found; while the thalamus and cerebellum were affected in both sexes, decreased GMV in the olfactory gyrus was found only in male smokers. Age-group differences were also found, and these may suggest pre-existing abnormalities that lead to nicotine dependence in younger individuals. Only 1 study found a positive correlation between number of pack-years smoked and GMV. Smoking decreases GMV in most brain areas. This decrease may be responsible for the cognitive impairment and difficulties with emotional regulation found in smokers compared with non-smokers. PMID:28426638

  1. Effect of maturity at harvest for whole-crop barley and oat on dry matter intake, sorting, and digestibility when fed to beef cattle.

    PubMed

    Rosser, C L; Beattie, A D; Block, H C; McKinnon, J J; Lardner, H A; Górka, P; Penner, G B

    2016-02-01

    The objectives were to evaluate the effect of harvest maturity of whole-crop oat (Study 1) and whole-crop barley (Study 2) on forage intake and sorting, ruminal fermentation, ruminal digestibility, and total tract digestibility when fed to beef heifers. In Study 1, 3 ruminally cannulated heifers (417 ± 5 kg) were used in a 3 × 3 Latin square design with 24-d periods. Whole-crop oat forage harvested at the late milk (LMILK), hard dough (HD), or ripe (RP) stages was fed for ad libitum intake and heifers were supplemented (1% of BW) with alfalfa pellets, barley grain, canola meal, and a mineral and vitamin pellet. Maturity at harvest for whole-crop oat did not affect ( ≥ 0.058) forage intake, DE intake, amount of forage refused, ruminal short-chain fatty acid concentration, or digestibility of DM, OM, NDF, and ADF. Ruminal starch digestibility decreased ( < 0.001) from 92.6% at the LMILK stage to 90.0% at the RP stage, with total tract starch digestibility decreasing ( = 0.043) from 95.8% at the LMILK stage to 94.8% at the RP stage. Ruminal CP digestibility was reduced at the HD stage compared with the LMILK and RP stages ( < 0.001). Mean ruminal pH was greatest for the LMILK stage (6.36; = 0.003) compared with the HD and RP stages (6.30 and 6.28, respectively). In Study 2, 6 ruminally cannulated heifers (273 ± 16 kg) were used in a replicated 3 × 3 Latin square design with 24-d periods. Dietary treatments included ad libitum access to whole-crop barley harvested at the LMILK, HD, or RP stage and a constant rate (0.8% BW) of supplement containing alfalfa pellets, barley grain, canola meal, and a mineral and vitamin pellet. Dry matter intake, ruminal content mass, and feeding behavior were not affected by harvest maturity ( ≥ 0.16). There was a decrease in total tract digestibility of DM, OM, and NDF observed at the HD stage compared with the LMILK and RP stages ( ≤ 0.004). Ruminal NDF digestibility decreased from 69.7% at the LMILK stage to 54.4% at the HD

  2. BIOMASS DRYING TECHNOLOGIES

    EPA Science Inventory

    The report examines the technologies used for drying of biomass and the energy requirements of biomass dryers. Biomass drying processes, drying methods, and the conventional types of dryers are surveyed generally. Drying methods and dryer studies using superheated steam as the d...

  3. Indigenous microbes survive in situ ozonation improving biodegradation of dissolved organic matter in aged oil sands process-affected waters.

    PubMed

    Brown, Lisa D; Pérez-Estrada, Leonidas; Wang, Nan; El-Din, Mohamed Gamal; Martin, Jonathan W; Fedorak, Phillip M; Ulrich, Ania C

    2013-11-01

    The oil sands industry faces significant challenges in developing effective remediation technologies for process-affected water stored in tailings ponds. Naphthenic acids, a complex mixture of cycloaliphatic carboxylic acids, have been of particular concern because they concentrate in tailings ponds and are a component of the acutely toxic fraction of process water. Ozone treatment has been demonstrated as an effective means of rapidly degrading naphthenic acids, reducing process water toxicity, and increasing its biodegradability following seeding with the endogenous process water bacteria. This study is the first to examine subsequent in situ biodegradation following ozone pretreatment. Two aged oil sands process-affected waters from experimental reclamation tailings ponds were ozonated to reduce the dissolved organic carbon, to which naphthenic acids contributed minimally (<1mgL(-1)). Treatment with an ozone dose of 50mgL(-1) improved the 84d biodegradability of remaining dissolved organic carbon during subsequent aerobic incubation (11-13mgL(-1) removed from aged process-affected waters versus 5mgL(-1) when not pretreated with ozone). The ozone-treated indigenous microbial communities were as capable of degrading organic matter as the same community not exposed to ozone. This supports ozonation coupled with biodegradation as an effective and feasible treatment option. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Stability of Proteins in Dried Blood Spot Biobanks*

    PubMed Central

    Björkesten, Johan; Enroth, Stefan; Shen, Qiujin; Wik, Lotta; Hougaard, David M.; Cohen, Arieh S.; Sörensen, Lene; Giedraitis, Vilmantas; Ingelsson, Martin; Larsson, Anders; Kamali-Moghaddam, Masood; Landegren, Ulf

    2017-01-01

    An important motivation for the construction of biobanks is to discover biomarkers that identify diseases at early, potentially curable stages. This will require biobanks from large numbers of individuals, preferably sampled repeatedly, where the samples are collected and stored under conditions that preserve potential biomarkers. Dried blood samples are attractive for biobanking because of the ease and low cost of collection and storage. Here we have investigated their suitability for protein measurements. Ninety-two proteins with relevance for oncology were analyzed using multiplex proximity extension assays (PEA) in dried blood spots collected on paper and stored for up to 30 years at either +4 °C or −24 °C. Our main findings were that (1) the act of drying only slightly influenced detection of blood proteins (average correlation of 0.970), and in a reproducible manner (correlation of 0.999), (2) detection of some proteins was not significantly affected by storage over the full range of three decades (34 and 76% of the analyzed proteins at +4 °C and −24 °C, respectively), whereas levels of others decreased slowly during storage with half-lives in the range of 10 to 50 years, and (3) detectability of proteins was less affected in dried samples stored at −24 °C compared with at +4 °C, as the median protein abundance had decreased to 80 and 93% of starting levels after 10 years of storage at +4 °C or −24 °C, respectively. The results of our study are encouraging as they suggest an inexpensive means to collect large numbers of blood samples, even by the donors themselves, and to transport, and store biobanked samples as spots of whole blood dried on paper. Combined with emerging means to measure hundreds or thousands of protein, such biobanks could prove of great medical value by greatly enhancing discovery as well as routine analysis of blood biomarkers. PMID:28501802

  5. Design Matters: How School Environment Affects Children.

    ERIC Educational Resources Information Center

    Hebert, Elizabeth A.

    1998-01-01

    The organization of space profoundly affects learning. Students feel better connected to a building that anticipates their needs and respects them as individuals. Built in 1971, Crow Island School, in Winnetka, Illinois, is a prize-winning facility that has provided generations of children with windowed classrooms, skylights, adjacent workrooms,…

  6. Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wild fire

    NASA Astrophysics Data System (ADS)

    Sun, Q.; Meyer, W. S.; Koerber, G.; Marschner, P.

    2015-06-01

    Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wild fire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well-known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content which could be further modulated by wild fire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy Mallee woodland, where part of the woodland experienced a wild fire which destroyed or damaged most of the aboveground plant parts four months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80% of maximum water holding capacity for 19 days; In DRW, soils were dried for four days, kept dry for another five days, then rewet to 80% WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per g soil in CM and DRW was greater under trees, but lower when expressed per g TOC. Organic matter content, available P, and microbial biomass C, but not available N were greater under trees than in open areas. Wild fire decreased the flush of respiration per g TOC in the open areas and under shrubs, and reduced TOC and MBC concentrations only under trees, but had little effect on available N and P concentrations. We conclude that of the impact wild fire and DRW events on nutrient cycling differ among vegetation patches of a native semiarid woodland which is related to organic matter amount and availability.

  7. Decomposition and nutrient release from fresh and dried pine roots under two fertilizer regimes

    Treesearch

    Kim H. Ludovici; Lance W. Kress

    2006-01-01

    Root decomposition and nutrient release are typically estimated from dried root tissues; however, it is unlikely that roots dehydrate prior to decomposing. Soil fertility and root diameter may also affect the rate of decomposition. This study monitored mass loss and nutrient concentrations of dried and fresh roots of two size classes (

  8. Development of a distributed air pollutant dry deposition modeling framework.

    PubMed

    Hirabayashi, Satoshi; Kroll, Charles N; Nowak, David J

    2012-12-01

    A distributed air pollutant dry deposition modeling system was developed with a geographic information system (GIS) to enhance the functionality of i-Tree Eco (i-Tree, 2011). With the developed system, temperature, leaf area index (LAI) and air pollutant concentration in a spatially distributed form can be estimated, and based on these and other input variables, dry deposition of carbon monoxide (CO), nitrogen dioxide (NO(2)), sulfur dioxide (SO(2)), and particulate matter less than 10 microns (PM10) to trees can be spatially quantified. Employing nationally available road network, traffic volume, air pollutant emission/measurement and meteorological data, the developed system provides a framework for the U.S. city managers to identify spatial patterns of urban forest and locate potential areas for future urban forest planting and protection to improve air quality. To exhibit the usability of the framework, a case study was performed for July and August of 2005 in Baltimore, MD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Lipid and protein oxidation and sensory properties of vacuum-packaged dry-cured ham subjected to high hydrostatic pressure.

    PubMed

    Fuentes, Verónica; Ventanas, Jesús; Morcuende, David; Estévez, Mario; Ventanas, Sonia

    2010-07-01

    The effect of HHP treatment (600 MPa) on the oxidative stability of lipids and proteins of vacuum-packaged Iberian dry-cured ham and the impact on the sensory characteristics of the product was investigated. In order to assess how different commercial presentations are affected by HHP treatment, three different presentations of vacuum-packaged Iberian dry-cured ham were considered, namely, (i) intact format (IF) corresponding to non-sliced vacuum-packaged dry-cured ham, (ii) conventional-sliced format (CSF) corresponding to dry-cured ham slices placed stretched out in the package and (iii) alternative-sliced format (ASF) corresponding to dry-cured ham slices piled up horizontally. The oxidation of dry-cured ham lipids and proteins was enhanced by HHP-treatment with the presentation being highly influential on these oxidative reactions. Pre-slicing dry-cured ham results in a more susceptible product to oxidative reactions during pressurisation and subsequent refrigerated storage. Possible mechanisms, by which HHP-induced oxidative reactions would affect particular sensory traits in vacuum-packaged Iberian dry-cured ham such as colour, texture and flavour attributes, are discussed. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. The effect of spray-drying parameters on the flavor of nonfat dry milk and milk protein concentrate 70.

    PubMed

    Park, Curtis W; Stout, Mark A; Drake, MaryAnne

    2016-12-01

    Unit operations during production influence the sensory properties of nonfat dry milk (NFDM) and milk protein concentrate (MPC). Off-flavors in dried dairy ingredients decrease consumer acceptance of ingredient applications. Previous work has shown that spray-drying parameters affect physical and sensory properties of whole milk powder and whey protein concentrate. The objective of this study was to determine the effect of inlet temperature and feed solids concentration on the flavor of NFDM and MPC 70% (MPC70). Condensed skim milk (50% solids) and condensed liquid MPC70 (32% solids) were produced using pilot-scale dairy processing equipment. The condensed products were then spray dried at either 160, 210, or 260°C inlet temperature and 30, 40, or 50% total solids for NFDM and 12, 22, or 32% for MPC70 in a randomized order. The entire experiment was replicated 3 times. Flavor of the NFDM and MPC70 was evaluated by sensory and instrumental volatile compound analyses. Surface free fat, particle size, and furosine were also analyzed. Both main effects (30, 40, and 50% solids and 160, 210, and 260°C inlet temperature) and interactions between solids concentration and inlet temperature were investigated. Interactions were not significant. In general, results were consistent for NFDM and MPC70. Increasing inlet temperature and feed solids concentration increased sweet aromatic flavor and decreased cardboard flavor and associated lipid oxidation products. Increases in furosine with increased inlet temperature and solids concentration indicated increased Maillard reactions during drying. Particle size increased and surface free fat decreased with increasing inlet temperature and solids concentration. These results demonstrate that increasing inlet temperatures and solids concentration during spray drying decrease off-flavor intensities in NFDM and MPC70 even though the heat treatment is greater compared with low temperature and low solids. Copyright © 2016 American

  11. Diffusion and emissions of 1,3-dichloro propene in Florida sandy soil in microplots affected by soil moisture, organic matter, and plastic film.

    PubMed

    Thomas, John E; Allen, L Hartwell; McCormack, Leslie A; Vu, Joseph C; Dickson, Donald W; Ou, Li-Tse

    2004-04-01

    The main objective of this study was to determine the influence of soil moisture, organic matter amendment and plastic cover (a virtually impermeable film, VIF) on diffusion and emissions of (Z)- and (E)-1,3-dichloropropene (1,3-D) in microplots of Florida sandy soil (Arredondo fine sand). Upward diffusion of the two isomers in the Arredondo soil without a plastic cover was greatly influenced by soil-water content and (Z)-1,3-D diffused faster than (E)-1,3-D. In less than 5 h after 1,3-D injection to 30 cm depth, (Z)- and (E)-1,3-D in air dry soil had diffused to a 10 cm depth, whereas diffusion for the two isomers was negligible in near-water-saturated soil, even 101 h after injection. The diffusion rate of (Z)- and (E)-1,3-D in near-field-capacity soil was between the rates in the two water regimes. Yard waste compost (YWC) amendment greatly reduced diffusion of (Z)- and (E)-1,3-D, even in air-dry soil. Although upward diffusion of (Z)- and (E)-1,3-D in soil with VIF cover was slightly less than in the corresponding bare soil; the cover promoted retention of vapors of the two isomers in soil pore air in the shallow subsurface. More (Z)-1,3-D vapor was found initially in soil pore air than (E)-1,3-D although the difference declined thereafter. As a result of rapid upward movement in air-dry bare soil, (Z)- and (E)-1,3-D were rapidly volatilized into the atmosphere, but emissions from the near-water-saturated soil were minimal. Virtually impermeable film and YWC amendment retarded emissions. This study indicated that adequate soil water in this sandy soil is needed to prevent rapid emissions, but excess soil water slows diffusion of (Z)- and (E)-1,3-D. Thus, management for optimum water in soil is critical for pesticidal efficacy and the environment.

  12. Dry period plane of energy: Effects on glucose tolerance in transition dairy cows.

    PubMed

    Mann, S; Leal Yepes, F A; Duplessis, M; Wakshlag, J J; Overton, T R; Cummings, B P; Nydam, D V

    2016-01-01

    Overfeeding energy in the dry period can affect glucose metabolism and the energy balance of transition dairy cows with potential detrimental effects on the ability to successfully adapt to early lactation. The objectives of this study were to investigate the effect of different dry cow feeding strategies on glucose tolerance and on resting concentrations of blood glucose, glucagon, insulin, nonesterified fatty acids (NEFA), and β-hydroxybutyrate (BHB) in the peripartum period. Cows entering second or greater lactation were enrolled at dry-off (57 d before expected parturition) into 1 of 3 treatment groups following a randomized block design: cows that received a total mixed ration (TMR) formulated to meet but not exceed energy requirements during the dry period (n=28, controlled energy); cows that received a TMR supplying approximately 150% of energy requirements during the dry period (n=28, high energy); and cows that were fed the same diet as the controlled energy group for the first 28 d, after which the TMR was formulated to supply approximately 125% of energy requirements until calving (n=28, intermediate energy). Intravenous glucose tolerance tests (IVGTT) with rapid administration of 0.25 g of glucose/kg of body weight were performed 28 and 10d before expected parturition, as well as at 4 and 21 d after calving. Area under the curve for insulin and glucose, maximal concentration and time to half-maximal concentration of insulin and glucose, and clearance rates were calculated. Insulin resistance (IR) indices were calculated from baseline samples obtained during IVGTT and Spearman rank correlations determined between IVGTT parameters and IR indices. Treatment did not affect IVGTT parameters at any of the 4 time points. Correlation between IR indices and IVGTT parameters was generally poor. Overfeeding cows energy in excess of predicted requirements by approximately 50% during the entire dry period resulted in decreased postpartum basal plasma glucose and

  13. [Characteristics of odors and VOCs from sludge direct drying process].

    PubMed

    Chen, Wen-He; Deng, Ming-Jia; Luo, Hui; Zhang, Jing-Ying; Ding, Wen-Jie; Liu, Jun-Xin; Liu, Jun-Xin

    2014-08-01

    Co-processing sewage sludge by using the high-temperature feature of cement kiln can realize harmless disposal and energy recycling. In this paper, investigation on characteristics of the flue gas from sludge drying process was carried out in Guangzhou Heidelberg Yuexiu Cement Co., LTD. The composition and the main source of odors and volatile organic compounds (VOCs) emitted during the drying process were analyzed, aimed to provide scientific basis for the treatment of sewage sludge. Results showed that there were a large number of malodorous substances and VOCs in the flue gas. Sulfur dioxide and other sulfur-containing compounds were the main components in the malodorous substances, while benzene derivatives were predominant in VOCs. The compositions of odors and VOCs were influenced by the characteristics of the sludge and the heat medium (kiln tail gas). Total organic compounds in the sludge were significantly decreased after drying. Other organic substances such as volatile fatty acid, protein, and polysaccharide were also obviously reduced. The organic matter in sludge was the main source of VOCs in the flue gas. Part of sulfurous substances, such as sulfur dioxide, carbon disulfide, were from sulfur-containing substances in the sludge, and the rest were from the kiln tail gas itself.

  14. Holographic vortices in the presence of dark matter sector

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek; Wysokinski, Karol I.

    2015-12-01

    The dark matter seem to be an inevitable ingredient of the total matter configuration in the Universe and the knowledge how the dark matter affects the properties of superconductors is of vital importance for the experiments aimed at its direct detection. The homogeneous magnetic field acting perpendicularly to the surface of (2+1) dimensional s-wave holographic superconductor in the theory with dark matter sector has been modeled by the additional U(1)-gauge field representing dark matter and coupled to the Maxwell one. As expected the free energy for the vortex configuration turns out to be negative. Importantly its value is lower in the presence of dark matter sector. This feature can explain why in the Early Universe first the web of dark matter appeared and next on these gratings the ordinary matter forming cluster of galaxies has formed.

  15. Biologically Active Organic Matter in Soils of European Russia

    NASA Astrophysics Data System (ADS)

    Semenov, V. M.; Kogut, B. M.; Zinyakova, N. B.; Masyutenko, N. P.; Malyukova, L. S.; Lebedeva, T. N.; Tulina, A. S.

    2018-04-01

    Experimental and literature data on the contents and stocks of active organic matter in 200 soil samples from the forest-tundra, southern-taiga, deciduous-forest, forest-steppe, dry-steppe, semidesert, and subtropical zones have been generalized. Natural lands, agrocenoses, treatments of long-term field experiments (bare fallow, unfertilized and fertilized crop rotations, perennial plantations), and different layers of soil profile are presented. Sphagnum peat and humus-peat soil in the tundra and forest-tundra zones are characterized by a very high content of active organic matter (300-600 mg C/100 g). Among the zonal soils, the content of active organic matter increases from the medium (75-150 mg C/100 g) to the high (150-300 mg C/100 g) level when going from soddy-podzolic soil to gray forest and dark-gray forest soils and then to leached chernozem. In the series from typical chernozem to ordinary and southern chernozem and chestnut and brown semidesert soils, a decrease in the content of active organic matter to the low (35-75 mg C/100 g) and very low (<35 mg C/100 g) levels is observed. Acid brown forest soil in the subtropical zone is characterized by a medium supply with active organic matter. Most arable soils are mainly characterized by low or very low contents of active organic matter. In the upper layers of soils, active organic matter makes up 1.2-11.1% of total Corg. The profile distribution of active organic matter in the studied soils coincides with that of Corg: their contents appreciably decrease with depth, except for brown semidesert soil. The stocks of active organic matter vary from 0.4 to 5.4 t/ha in the layer of 0-20 cm and from 1.0 to 12.4/ha in the layer of 0-50 cm of different soil types.

  16. Cosmological simulations of decaying dark matter: implications for small-scale structure of dark matter haloes

    NASA Astrophysics Data System (ADS)

    Wang, Mei-Yu; Peter, Annika H. G.; Strigari, Louis E.; Zentner, Andrew R.; Arant, Bryan; Garrison-Kimmel, Shea; Rocha, Miguel

    2014-11-01

    We present a set of N-body simulations of a class of models in which an unstable dark matter particle decays into a stable dark matter particle and a non-interacting light particle with decay lifetime comparable to the Hubble time. We study the effects of the recoil kick velocity (Vk) received by the stable dark matter on the structures of dark matter haloes ranging from galaxy-cluster to Milky Way-mass scales. For Milky Way-mass haloes, we use high-resolution, zoom-in simulations to explore the effects of decays on Galactic substructure. In general, haloes with circular velocities comparable to the magnitude of kick velocity are most strongly affected by decays. We show that models with lifetimes Γ-1 ˜ H_0^{-1} and recoil speeds Vk ˜ 20-40 km s-1 can significantly reduce both the abundance of Galactic subhaloes and their internal densities. We find that decaying dark matter models that do not violate current astrophysical constraints can significantly mitigate both the `missing satellites problem' and the more recent `too big to fail problem'. These decaying models predict significant time evolution of haloes, and this implies that at high redshifts decaying models exhibit the similar sequence of structure formation as cold dark matter. Thus, decaying dark matter models are significantly less constrained by high-redshift phenomena than warm dark matter models. We conclude that models of decaying dark matter make predictions that are relevant for the interpretation of small galaxies observations in the Local Group and can be tested as well as by forthcoming large-scale surveys.

  17. Americium-241 uptake by Bahiagrass as influenced by soil type, lime, and organic matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyt, G.D.; Adriano, D.C.

    1979-07-01

    Availability of /sup 241/Am to bahiagrass (Paspalum notatum), a major forage crop in the southeastern US, was studied under greenhouse conditions using two soil types, two rates of lime, and four rates of organic matter. The plants were grown in pots until three clippings were obtained. Americium-241 concentrations in plant tissues from the unlimed Dothan (24% clay) soil were, on the average, approximately twice as high as those from unlimed Troup (10% clay) soil. Lime significantly reduced /sup 241/Am uptake from both soils. The americium concentration ratios (americium concentration in dry plant tissue/average americium concentration in dry soil) for limedmore » treatments were, in general, one order of magnitude lower than those for unlimed treatments. Organic matter, added to the soils as bermuda grass hay, somewhat reduced /sup 241/Am uptake, especially when added at high rates in unlimed soils. The effect of lime on uptake could be attributed to immobilization of americium ions external to the roots as a result of decreased solubility of this radionuclide and/or antagonistic effect of increased calcium ion concentration in the soil solution on americium ions. The effect of organic matter on uptake could be attributed to its fixing capacity for metals.« less

  18. Ambient Dried Aerogels

    NASA Technical Reports Server (NTRS)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  19. Improving the Sun Drying of Apricots (Prunus armeniaca) with Photo-Selective Dryer Cabinet Materials.

    PubMed

    Milczarek, Rebecca R; Avena-Mascareno, Roberto; Alonzo, Jérôme; Fichot, Mélissa I

    2016-10-01

    Photo-selective materials have been studied for their effects on the preharvest quality of horticultural crops, but little work has been done on potential postharvest processing effects. The aim of this work was to characterize the effects of 5 different photo-selective acrylic materials (used as the lid to a single-layer sun drying cabinet) on the drying rate and quality of apricots (Prunus armeniaca). Photo-selective cabinet materials that transmit light in the visible portion of the solar spectrum accelerate the apricots' drying rate in both the early period of drying and the course of drying as a whole. These materials do not significantly affect the measured quality metrics during the first day of sun drying. However, when drying is taken to completion, some minor but significant quality differences are observed. Infrared-blocking material produces dried apricot with lower red color, compared to clear, opaque black, and ultraviolet-blocking materials. Clear material produced dried apricot with significantly lower antioxidant activity, compared to black and infrared-blocking materials. Using appropriate photo-selective drying cabinet materials can reduce the required sun drying time for apricots by 1 to 2 d, compared with fully shaded drying. Ultraviolet-blocking material is recommended to maximize drying rate and minimize quality degradation. © 2016 Institute of Food Technologists®.

  20. Impact of dry heating on physicochemical properties of corn starch and lysine mixture.

    PubMed

    Ji, Ying; Yu, Jicheng; Xu, Yongbin; Zhang, Yinghui

    2016-10-01

    Corn starch was modified with lysine by dry heat treatment and to investigate how they can affect the pasting and structural properties of the treated starches. Dry heating with lysine reduced the pasting temperature and resulting in viscosity increase. The particle size of heated starch-lysine mixture increased, suggesting that starch granules were cross-linked to lysine. After dry heating, the onset temperature, peak temperature and conclusion temperature of corn starch-lysine mixture were lower than those of other starches. The degree of crystallinity decreased for the starch after dry heat treatment while these heated starch samples still have the same X-ray diffraction types as the original starch. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Physicochemical characterization of commercial freeze-dried snake antivenoms.

    PubMed

    Herrera, María; Solano, Daniela; Gómez, Aarón; Villalta, Mauren; Vargas, Mariángela; Sánchez, Andrés; Gutiérrez, José María; León, Guillermo

    2017-02-01

    Freeze-drying is a process used to improve the stability of pharmaceutical proteins, including snake antivenoms. This additional step confers these with a higher stability in comparison to liquid formulations, especially in tropical regions where high temperatures could affect the activity of immunoglobulins. Currently, the knowledge about freeze-drying process conditions for snake antivenoms is very limited. Some of the scarce scientific works on this subject reported reconstitution times up to 90 min for these preparations, which could imply a delay in the beginning of the antivenom therapy at the clinical setting. Therefore there is a reasonable concern about whether freeze-dried antivenoms exhibit the desired attributes for solid pharmaceutical proteins. In this work, a physicochemical characterization of seven commercial freeze-dried snake antivenoms was performed based on tests recommended by the World Health Organization (WHO). No significant differences were observed between the products regarding macroscopic appearance of the solid cakes, reconstitution times, residual humidity and monomers content. On the other hand, total protein concentration, turbidity and electrophoretic profile were different among samples. Microscopic analysis by scanning electron microscopy showed no collapsed structure and, instead, most of the samples showed a characteristic protein morphology composed of smooth plates and channels. All the parameters tested in this study were according to literature recommendations and evidenced that, in spite of slight variations found for some products, formulation and freeze-drying conditions chosen by manufacturers are adequate to prevent aggregation and generate, in physicochemical terms, freeze-dried antivenoms of acceptable quality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. A new approach for modeling dry deposition velocity of particles

    NASA Astrophysics Data System (ADS)

    Giardina, M.; Buffa, P.

    2018-05-01

    The dry deposition process is recognized as an important pathway among the various removal processes of pollutants in the atmosphere. In this field, there are several models reported in the literature useful to predict the dry deposition velocity of particles of different diameters but many of them are not capable of representing dry deposition phenomena for several categories of pollutants and deposition surfaces. Moreover, their applications is valid for specific conditions and if the data in that application meet all of the assumptions required of the data used to define the model. In this paper a new dry deposition velocity model based on an electrical analogy schema is proposed to overcome the above issues. The dry deposition velocity is evaluated by assuming that the resistances that affect the particle flux in the Quasi-Laminar Sub-layers can be combined to take into account local features of the mutual influence of inertial impact processes and the turbulent one. Comparisons with the experimental data from literature indicate that the proposed model allows to capture with good agreement the main dry deposition phenomena for the examined environmental conditions and deposition surfaces to be determined. The proposed approach could be easily implemented within atmospheric dispersion modeling codes and efficiently addressing different deposition surfaces for several particle pollution.

  3. [Emphasis on standardization and refinement in the diagnosis and treatment of dry eye].

    PubMed

    Liu, Z G

    2017-09-11

    Dry eye is the second most common ocular disease. In China, the incidence rate of dry eye has reached 21% to 30%, and dry eye patients have accounted for more than 30% of the total ophthalmology outpatients. Dry eye has become a common health problem that affects the working efficiency and life quality of Chinese people. Over the past decade, due to the rapid development of diagnostic equipments and new treatments for dry eye, dry eye has become one of the areas with greatest concerns in ophthalmology, and many eye institutions have set up their dry eye clinics. Although the diagnosis and treatment of dry eye has been improved in recent years, the awareness of dry eye in Chinese ophthalmologists is still too simple. In the diagnosis, the interrogation and basic examination are not given enough attention, and we are over-relying on equipments. Clinical examination and instrument operation also have not been standardized. This article emphasizes that we should pay attention to the interrogation, basic examination and standardization of clinical examination and equipment operation in diagnosing dry eye. The treatment regimen should be mostly refined and optimized to be individualized and comprehensive based on the causes, types and severity of dry eye. In addition, the physical and adjuvant therapy of dry eye should be given sufficient attention and applied reasonably. (Chin J Ophthalmol, 2017, 53: 641-644) .

  4. Drying and control of moisture content and dimensional changes

    Treesearch

    Richard Bergman

    2010-01-01

    The discussion in this chapter is concerned with moisture content determination, recommended moisture content values, drying methods, methods of calculating dimensional changes, design factors affecting such changes in structures, and moisture content control during transit, storage, and construction. Data on green moisture content, fiber saturation point, shrinkage,...

  5. The impact of controlled nutrition during the dry period on dairy cow health, fertility and performance.

    PubMed

    Beever, David E

    2006-12-01

    problems which can affect peri-parturient cows. A new feeding strategy based on a low energy: high fibre ration (9 MJ metabolisable energy and 130 g crude protein/kg ration dry matter) containing high levels of chopped straw and offered ad libitum as a total mixed ration throughout the whole dry period is proposed. The performance of 32 dairy farms in France where this strategy has been adopted for at least 3 years is provided, with positive outcomes now being obtained by UK and Irish dairy farmers. Independent US research evidence has confirmed some of these benefits whilst limited data on cow fertility is presented. It is hypothesised that luxury feeding during the dry period can cause cows to become insulin resistant leading to an increased risk of type II diabetes. Such cows are likely to have poorer fertility whilst possible mechanisms which increase the risk of peri-parturient health problems are discussed. Further research to understand the mechanisms of these effects is required and is currently ongoing. However the magnitude of the effects noted on an increasing number of dairy farms suggests this approach to feeding the dry cow is capable of bringing real benefits to many dairy herds in terms of fewer health problems, reduced body condition loss and improved fertility.

  6. Highly Viscous States Affect the Browning of Atmospheric Organic Particulate Matter

    PubMed Central

    2018-01-01

    Initially transparent organic particulate matter (PM) can become shades of light-absorbing brown via atmospheric particle-phase chemical reactions. The production of nitrogen-containing compounds is one important pathway for browning. Semisolid or solid physical states of organic PM might, however, have sufficiently slow diffusion of reactant molecules to inhibit browning reactions. Herein, organic PM of secondary organic material (SOM) derived from toluene, a common SOM precursor in anthropogenically affected environments, was exposed to ammonia at different values of relative humidity (RH). The production of light-absorbing organonitrogen imines from ammonia exposure, detected by mass spectrometry and ultraviolet–visible spectrophotometry, was kinetically inhibited for RH < 20% for exposure times of 6 min to 24 h. By comparison, from 20% to 60% RH organonitrogen production took place, implying ammonia uptake and reaction. Correspondingly, the absorption index k across 280 to 320 nm increased from 0.012 to 0.02, indicative of PM browning. The k value across 380 to 420 nm increased from 0.001 to 0.004. The observed RH-dependent behavior of ammonia uptake and browning was well captured by a model that considered the diffusivities of both the large organic molecules that made up the PM and the small reactant molecules taken up from the gas phase into the PM. Within the model, large-molecule diffusivity was calculated based on observed SOM viscosity and evaporation. Small-molecule diffusivity was represented by the water diffusivity measured by a quartz-crystal microbalance. The model showed that the browning reaction rates at RH < 60% could be controlled by the low diffusivity of the large organic molecules from the interior region of the particle to the reactive surface region. The results of this study have implications for accurate modeling of atmospheric brown carbon production and associated influences on energy balance. PMID:29532020

  7. Highly Viscous States Affect the Browning of Atmospheric Organic Particulate Matter.

    PubMed

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; Bateman, Adam P; Zhang, Yue; Gong, Zhaoheng; Bertram, Allan K; Martin, Scot T

    2018-02-28

    Initially transparent organic particulate matter (PM) can become shades of light-absorbing brown via atmospheric particle-phase chemical reactions. The production of nitrogen-containing compounds is one important pathway for browning. Semisolid or solid physical states of organic PM might, however, have sufficiently slow diffusion of reactant molecules to inhibit browning reactions. Herein, organic PM of secondary organic material (SOM) derived from toluene, a common SOM precursor in anthropogenically affected environments, was exposed to ammonia at different values of relative humidity (RH). The production of light-absorbing organonitrogen imines from ammonia exposure, detected by mass spectrometry and ultraviolet-visible spectrophotometry, was kinetically inhibited for RH < 20% for exposure times of 6 min to 24 h. By comparison, from 20% to 60% RH organonitrogen production took place, implying ammonia uptake and reaction. Correspondingly, the absorption index k across 280 to 320 nm increased from 0.012 to 0.02, indicative of PM browning. The k value across 380 to 420 nm increased from 0.001 to 0.004. The observed RH-dependent behavior of ammonia uptake and browning was well captured by a model that considered the diffusivities of both the large organic molecules that made up the PM and the small reactant molecules taken up from the gas phase into the PM. Within the model, large-molecule diffusivity was calculated based on observed SOM viscosity and evaporation. Small-molecule diffusivity was represented by the water diffusivity measured by a quartz-crystal microbalance. The model showed that the browning reaction rates at RH < 60% could be controlled by the low diffusivity of the large organic molecules from the interior region of the particle to the reactive surface region. The results of this study have implications for accurate modeling of atmospheric brown carbon production and associated influences on energy balance.

  8. Disinfection Byproduct Formation in Reverse-Osmosis Concentrated and Lyophilized Natural Organic Matter from a Drinking Water Source

    EPA Science Inventory

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking wa...

  9. Selected chemical composition changes in microwave-convective dried parsley leaves affected by ultrasound and steaming pre-treatments - An optimization approach.

    PubMed

    Dadan, Magdalena; Rybak, Katarzyna; Wiktor, Artur; Nowacka, Malgorzata; Zubernik, Joanna; Witrowa-Rajchert, Dorota

    2018-01-15

    Parsley leaves contain a high amount of bioactive components (especially lutein), therefore it is crucial to select the most appropriate pre-treatment and drying conditions, in order to obtain high quality of dried leaves, which was the aim of this study. The optimization was done using response surface methodology (RSM) for the following factors: microwave power (100, 200, 300W), air temperature (20, 30, 40°C) and pre-treatment variant (ultrasound, steaming and dipping as a control). Total phenolic content (TPC), antioxidant activity, chlorophyll and lutein contents (using UPLC-PDA) were determined in dried leaves. The analysed responses were dependent on the applied drying parameters and the pre-treatment type. The possibility of ultrasound and steam treatment application was proven and the optimal processing conditions were selected. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Microwave-Assisted Drying for the Conservation of Honeybee Pollen.

    PubMed

    Canale, Angelo; Benelli, Giovanni; Castagna, Antonella; Sgherri, Cristina; Poli, Piera; Serra, Andrea; Mele, Marcello; Ranieri, Annamaria; Signorini, Francesca; Bientinesi, Matteo; Nicolella, Cristiano

    2016-05-12

    Bee pollen is becoming an important product thanks to its nutritional properties, including a high content of bioactive compounds such as essential amino acids, antioxidants, and vitamins. Fresh bee pollen has a high water content (15%-30% wt %), thus it is a good substrate for microorganisms. Traditional conservation methods include drying in a hot air chamber and/or freezing. These techniques may significantly affect the pollen organoleptic properties and its content of bioactive compounds. Here, a new conservation method, microwave drying, is introduced and investigated. The method implies irradiating the fresh pollen with microwaves under vacuum, in order to reduce the water content without reaching temperatures capable of thermally deteriorating important bioactive compounds. The method was evaluated by taking into account the nutritional properties after the treatment. The analyzed parameters were phenols, flavonoids, with special reference to rutin content, and amino acids. Results showed that microwave drying offers important advantages for the conservation of bee pollen. Irrespective of microwave power and treatment time, phenol and flavonoid content did not vary over untreated fresh pollen. Similarly, rutin content was unaffected by the microwave drying, suggesting that the microwave-assisted drying could be a powerful technology to preserve bioprotective compounds in fresh pollen.

  11. Effect of Corn Dried Distiller Grains with Solubles (DDGS) in Dairy Cow Diets on Manure Bioenergy Production Potential.

    PubMed

    Massé, Daniel I; Jarret, Guillaume; Benchaar, Chaouki; Saady, Noori M Cata

    2014-03-05

    The main objective of this study was to obtain scientifically sound data on the bioenergy potential of dairy manures from cows fed different levels of corn dried distillers grains with solubles (DDGS). Three diets differing in corn DDGS content were formulated: 0% corn DDGS (DDGS0; control diet), 10% corn DDGS (DDGS10) and 30% corn DDGS (DDGS30). Bioenergy production was determined in psychrophilic (25 ± 1 °C) sequencing batch reactors (SBRs) fed 3 g COD L(-1)·day(-1) during a two-week feeding period followed by a two-week react period. Compared to the control diet, adding DDGS10 and DDGS30 to the dairy cow diet increased the daily amount of fat excreted in slurry by 29% and 70%, respectively. The addition of DDGS30 increased the cows' daily production of fresh feces and slurry by 15% and 11%, respectively. Furthermore, the incorporation of DDGS30 in the diet increased the daily amounts of dry matter (DM), volatile solids (VS), neutral detergent fiber (NDF), acid detergent fiber (ADF) and hemicellulose by 18%, 18%, 30%, 15% and 53%, respectively, compared to the control diet. While the addition of DDGS did not significantly affect the specific CH₄ production per kg VS compared to the control diet, DDGS30 increased the per cow daily CH₄ production by 14% compared to the control diet.

  12. A review on recent advances in dry eye: Pathogenesis and management

    PubMed Central

    Bhavsar, Ankita S.; Bhavsar, Samir G.; Jain, Sunita M.

    2011-01-01

    Keratoconjunctivitis sicca, more commonly known as dry eye, is an extremely common and often unrecognized disease. It is the condition in ophthalmology that in its mild grade of severity will affect most of the population at one time or other. Due to a wide variety of presentations and symptoms, it often frustrates the ophthalmologists as well as patients. Due to multifactorial and elusive etiology, it is often challenging to treat dry eye. Ocular surface disorders are also clinically important to treat especially in terms of visual acuity. Xero-dacryology is therefore becoming a very important branch of ophthalmology. Recent studies have given insight into the inflammatory etiology of dry eye. The conventional and main approach to the treatment of dry eye is providing lubricating eye drops or tear substitutes. However, the newer treatment approach is to target the underlying cause of dry eye instead of conventional symptomatic relief. In light of the above knowledge, the present article focuses on newer theories on pathogenesis of dry eye and their impact on dry eye management. Method of Literature Search: A systematic literature review was performed using PubMed databases in two steps. The first step was oriented to articles published for dry eye. The second step was focused on the role of inflammation and anti-inflammatory therapy for dry eye. The search strategy was not limited by year of publication. A manual literature search was also undertaken from authentic reference books on ocular surface disease. PMID:21897618

  13. White Matter Changes in Tinnitus: Is It All Age and Hearing Loss?

    PubMed

    Yoo, Hye Bin; De Ridder, Dirk; Vanneste, Sven

    2016-02-01

    Tinnitus is a condition characterized by the perception of auditory phantom sounds. It is known as the result of complex interactions between auditory and nonauditory regions. However, previous structural imaging studies on tinnitus patients showed evidence of significant white matter changes caused by hearing loss that are positively correlated with aging. Current study focused on which aspects of tinnitus pathologies affect the white matter integrity the most. We used the diffusion tensor imaging technique to acquire images that have higher contrast in brain white matter to analyze how white matter is influenced by tinnitus-related factors using voxel-based methods, region of interest analysis, and deterministic tractography. As a result, white matter integrity in chronic tinnitus patients was both directly affected by age and also mediated by the hearing loss. The most important changes in white matter regions were found bilaterally in the anterior corona radiata, anterior corpus callosum, and bilateral sagittal strata. In the tractography analysis, the white matter integrity values in tracts of right parahippocampus were correlated with the subjective tinnitus loudness.

  14. [Effects of tillage pattern on the flag leaf senescence and grain yield of winter wheat under dry farming].

    PubMed

    Huang, Ming; Wu, Jin-Zhi; Li, You-Jun; Yao, Yu-Qing; Zhang, Can-Jun; Cai, Dian-Xiong; Jin, Ke

    2009-06-01

    A field experiment was conducted to study the effects of different tillage patterns, i.e., deep plowing once, no-tillage, subsoiling, and conventional tillage, on the flag leaf senescence and grain yield of winter wheat, as well as the soil moisture and nutrient status under dry farming. No-tillage and subsoiling increased the SOD and POD activities and the chlorophyll and soluble protein contents, decreased the MDA and O2(-.) contents, and postponed the senescence of flag leaf. Under non-tillage and subsoiling, the moisture content in 0-40 cm soil layer at anthesis and grain-filling stages was decreased by 4.13% and 6.23% and by 5.50% and 9.27%, respectively, and the contents of alkali-hydrolysable N, available P, and available K in this soil layer also increased significantly, compared with those under conventional tillage. Deep plowing once decreased the moisture content and increased the nutrients contents in 0-40 cm soil layer, but the decrement and increment were not significant. The post-anthesis biomass, post-anthesis dry matter translocation rate, and grain yield under no-tillage and subsoiling were 4.34% and 4.76%, 15.56% and 13.51%, and 10.22% and 9.26% higher than those under conventional tillage, respectively. It could be concluded that no-tillage and subsoiling provided better soil conditions for the post-anthesis growth of winter wheat, under which, the flag leaf senescence postponed, post-anthesis dry matter accumulation and translocation accelerated, and grain yield increased significantly, being the feasible tillage practices in dry farming winter wheat areas.

  15. Study on rapid bio-drying technology of cow dung with CaO2

    NASA Astrophysics Data System (ADS)

    Chen, Xiaotian; Qu, Guangfei; Liu, Shugen; Xie, Ruosong; He, Yanhua

    2017-05-01

    Effect of CaO2 on cow dung rapid bio-drying technology was researched. A static aerobic composting system was applied to this experiment which combining natural ventilation with Turing in the process of composting. The physical characteristics of cow dung was observed and the compost temperature, moisture content, organic matter, total nitrogen, total phosphorus, potassium content was determined which in order to study the effect of CaO2 on rapid drying of cattle in the compost. In the initial stage of compost, adding CaO2 groups compared with the control group, the temperature rise faster, 4-6 days in advance to the thermophilic phase; at the end of composting, the CaO2 composition and moisture content decreased significantly to below 30%. The addition of CaO2 in fertilizer was shorten the composting time, extend the thermophilic phase, to provide sufficient oxygen meeting the growth needs of aerobic microorganisms. It convinced that the rapid bio-drying of dairy manure has a good effect and provided a new idea for the effective treatment of cow dung.

  16. Foreign Bodies in Dried Mushrooms Marketed in Italy.

    PubMed

    Schiavo, Maria Rita; Manno, Claudia; Zimmardi, Antonina; Vodret, Bruna; Tilocca, Maria Giovanna; Altissimi, Serena; Haouet, Naceur M

    2015-11-02

    The presence of foreign bodies in mushrooms affects their marketability and may result in health risks to consumers. The inspection of fresh or dried mushrooms today is very important in view of the increased consumption of this kind of food. Ten samples of dried mushrooms collected in supermarkets were examined for evidence of entomological contamination by macro and microscopic analytical methods, the so-called filth-test . A total of 49 46 determinations, comprising 15 g of the vegetable matrix, were made. The microscopic filth test consistently detected an irregular distribution of physical contaminants following repeated determinations of the same sample. Visual examination, on the other hand, was not sufficient to ensure a product free of contaminants.

  17. Ultrasound as pretreatment to convective drying of Andean blackberry (Rubus glaucus Benth).

    PubMed

    Romero J, Carlos A; Yépez V, Byron D

    2015-01-01

    In this study, we evaluated the use of ultrasound as a pretreatment for convective drying of Andean blackberry (Rubus glaucus Benth). For this, a Box-Behnken experimental design was used to study the effect of ultrasound vibration amplitude (0-90μm), time of sonication (10-30min) and air temperature (40-60°C) on the retention of antioxidant compounds and on the kinetics of convective drying. The results showed that the antioxidant activity on fruit was reduced as the vibration amplitude and time of sonication increased, while was found that vibration amplitude ultrasound and air drying temperature were the variables that more affect the drying rate of blackberries. The drying rate increased by almost five times when samples were treated with ultrasound at 90μm for 20min. They were then dried using air at 60°C. It is concluded that the application of ultrasound in blackberry processing allows to obtain a dehydrated product with better functional quality and shows to be effective in reducing the time necessary to achieve a given value of moisture during convective drying. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Feed rate affecting surface roughness and tool wear in dry hard turning of AISI 4140 steel automotive parts using TiN+AlCrN coated inserts

    NASA Astrophysics Data System (ADS)

    Paengchit, Phacharadit; Saikaew, Charnnarong

    2018-02-01

    This work aims to investigate the effects of feed rate on surface roughness (Ra) and tool wear (VB) and to obtain the optimal operating condition of the feed rate in dry hard turning of AISI 4140 chromium molybdenum steel for automotive industry applications using TiN+AlCrN coated inserts. AISI 4140 steel bars were employed in order to carry out the dry hard turning experiments by varying the feed rates of 0.06, 0.08 and 0.1 mm/rev based on experimental design technique that can be analyzed by analysis of variance (ANOVA). In addition, the cutting tool inserts were examined after machining experiments by SEM to evaluate the effect of turning operations on tool wear. The results showed that averages Ra and VB were significantly affected by the feed rate at the level of significance of 0.05. Averages Ra and VB values at the feed rate of 0.06 mm/rev were lowest compared to average values at the feed rates of 0.08 and 0.1 mm/rev, based on the main effect plot.

  19. THE INFLUENCE OF ORGANIC MATTER QUALITY ON THE TOXICITY AND PARTIONING OF SEDIMENT-ASSOCIATED FLUORANTHENE

    EPA Science Inventory

    Organic matter in sediment is derived from many sources, including dead plants and animals, fecal matter, and flocculated colloidal organic matter. hemical partitioning and toxicity of nonpolar organic contaminants is strongly affected by the quantity of sediment organic matter. ...

  20. Spatial and Temporal Patterns of Dissolved Organic Matter Characteristics in the Upper Willamette River Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Lee, B. S.; Lajtha, K.

    2014-12-01

    Dissolved organic matter (DOM) leaching through soil affects soil carbon sequestration and the carbon metabolism of receiving water bodies. Improving our understanding of the sources and fate of DOM at varying spatial and temporal patterns is crucial for land management decisions. However, little is known about how DOM sources change with land use types and seasonal flow patterns. In the Willamette River Basin (WRB), which is home to Oregon's major cities including Portland and Salem, forested headwaters transition to agricultural and urban land. The climate of WRB has a distinctive seasonal pattern with dry warm summers and wet winters driven by winter precipitation and snowmelt runoff between November and March. This study examined DOM fluorescence characteristic in stream water from 21 locations collected monthly and 16 locations collected seasonally to identify the sources and fate of DOM in the upper WRB in contrasting land uses. DOC and dissolved organic nitrogen concentrations increased as the flow rate increased during winter precipitation at all sites. This indicates that increased flow rate increased the connectivity between land and nearby water bodies. DOM fluorescent properties varied among land use types. During the first precipitation event after a long dry summer, a microbial DOM signature in agricultural areas increased along with nitrate concentrations. This may be because accumulated nutrients on land during the dry season flowed to nearby streams during the first rain event and promoted microbial growth in the streams. During the month of the highest flow rate in 2014, sampling sites near forest showed evidence of a greater terrestrial DOM signature compared to its signature during the dry season. This indicates fluorescent DOM characteristics in streams vary as the flow connectivity changes even within the same land type.

  1. Numerical Convergence in the Dark Matter Halos Properties Using Cosmological Simulations

    NASA Astrophysics Data System (ADS)

    Mosquera-Escobar, X. E.; Muñoz-Cuartas, J. C.

    2017-07-01

    Nowadays, the accepted cosmological model is the so called -Cold Dark Matter (CDM). In such model, the universe is considered to be homogeneous and isotropic, composed of diverse components as the dark matter and dark energy, where the latter is the most abundant one. Dark matter plays an important role because it is responsible for the generation of gravitational potential wells, commonly called dark matter halos. At the end, dark matter halos are characterized by a set of parameters (mass, radius, concentration, spin parameter), these parameters provide valuable information for different studies, such as galaxy formation, gravitational lensing, etc. In this work we use the publicly available code Gadget2 to perform cosmological simulations to find to what extent the numerical parameters of the simu- lations, such as gravitational softening, integration time step and force calculation accuracy affect the physical properties of the dark matter halos. We ran a suite of simulations where these parameters were varied in a systematic way in order to explore accurately their impact on the structural parameters of dark matter halos. We show that the variations on the numerical parameters affect the structural pa- rameters of dark matter halos, such as concentration, virial radius, and concentration. We show that these modifications emerged when structures become non- linear (at redshift 2) for the scale of our simulations, such that these variations affected the formation and evolution structure of halos mainly at later cosmic times. As a quantitative result, we propose which would be the most appropriate values for the numerical parameters of the simulations, such that they do not affect the halo properties that are formed. For force calculation accuracy we suggest values smaller or equal to 0.0001, integration time step smaller o equal to 0.005 and for gravitational softening we propose equal to 1/60th of the mean interparticle distance, these values, correspond to the

  2. Application of airborne ultrasound in the convective drying of fruits and vegetables: A review.

    PubMed

    Fan, Kai; Zhang, Min; Mujumdar, Arun S

    2017-11-01

    The application of airborne ultrasound is a promising technology in the drying of foods, particularly to fruits and vegetables. In this paper, designs of dryers using ultrasound to combine the convective drying process are described. The main factors affecting the drying kinetics with the ultrasound application are discussed. The results show that the ultrasound application accelerated the drying kinetics. Ultrasound application during the convective drying of fruits and vegetables shorten the drying time. Ultrasound application can produce an increase of the effective moisture diffusivity and the mass transfer coefficient. The influence of ultrasound on physical and chemical parameters evaluating the product quality is reviewed. Ultrasound application can decrease the total color change, reveal a low water activity and reduce the loss of some nutrient elements. Meanwhile, ultrasound application can also better preserve the microstructure of fruits and vegetables in comparison to convective drying. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Dry powder inhaler performance of spray dried mannitol with tailored surface morphologies as carrier and salbutamol sulphate.

    PubMed

    Mönckedieck, M; Kamplade, J; Fakner, P; Urbanetz, N A; Walzel, P; Steckel, H; Scherließ, R

    2017-05-30

    Nowadays, dry powder inhalation as applied in the therapy of pulmonary diseases is known as a very effective route of drug delivery to the lungs. Here, the system of coarse carrier and fine drug particles attached to the carrier surface has successfully been applied to overcome the cohesiveness of small drug particles. Particle properties of both carrier and drug are known to affect drug dispersion as has widely been discussed for lactose monohydrate and various drugs. This study utilises particle-engineered mannitol as an alternative carrier to discover the effect of mannitol carrier particle properties like particle shape, surface roughness, flowability or particle size on aerodynamic performance during inhalation. Spray drying as a technique to accurately control those properties was chosen for the generation of carrier sizes between 50 and 80 μm and different morphologies and therefore various carrier flowabilities. A set of these carriers has then been blended with different spray dried and jet-milled qualities of salbutamol sulphate as model drug to examine the influence of carrier particle properties on aerodynamic behaviour and at the same time to cover the effect of drug particle properties on particle-particle interactions. This experimental setup allowed a general view on how drug and carrier properties affect the Fine Particle Fraction (FPF) as indicator for inhalation performance and gave the first study to distinguish between mannitol carrier particle shape and surface roughness. Further it was possible to relate carrier particle size and shape to drug accumulation and detachment mechanisms during inhalation as size and shape had the main influence on drug detachment. The addition of jet-milled mannitol fines provided an initial insight into the improving effect of ternary powder blends as has been intensively studied for lactose monohydrate but not for mannitol yet. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Strange quark matter fragmentation in astrophysical events

    NASA Astrophysics Data System (ADS)

    Paulucci, L.; Horvath, J. E.

    2014-06-01

    The conjecture of Bodmer-Witten-Terazawa suggesting a form of quark matter (Strange Quark Matter) as the ground state of hadronic interactions has been studied in laboratory and astrophysical contexts by a large number of authors. If strange stars exist, some violent events involving these compact objects, such as mergers and even their formation process, might eject some strange matter into the interstellar medium that could be detected as a trace signal in the cosmic ray flux. To evaluate this possibility, it is necessary to understand how this matter in bulk would fragment in the form of strangelets (small lumps of strange quark matter in which finite effects become important). We calculate the mass distribution outcome using the statistical multifragmentation model and point out several caveats affecting it. In particular, the possibility that strangelets fragmentation will render a tiny fraction of contamination in the cosmic ray flux is discussed.

  5. The volatile oil composition of fresh and air-dried buds of Cannabis sativa.

    PubMed

    Ross, S A; ElSohly, M A

    1996-01-01

    The composition of the steam-distilled volatile oil of fresh and air-dried, indoor-grown marijuana was studied by GC/FID and GC/MS. In all, 68 components were detected of which 57 were fully identified. Drying of the plant material had no effect on the qualitative composition of the oil and did not affect the ability of individuals familiar with marijuana smell to recognize the odor.

  6. Effects of different drying methods on the product quality and volatile compounds of whole shiitake mushrooms.

    PubMed

    Tian, Yuting; Zhao, Yingting; Huang, Jijun; Zeng, Hongliang; Zheng, Baodong

    2016-04-15

    Various drying methods play important roles in the preservation of foods. However, how the different drying methods affect the quality of some foods is not clear. This paper evaluates the effects of hot air, vacuum, microwave, and microwave vacuum drying techniques on important qualities and volatile compounds of whole shiitake (Lentinus edodes) mushrooms. These four drying methods resulted in a significantly (p<0.05) increase in the content of total free amino acids and the relative content of sulfur compounds of dried products. Microwave vacuum drying helped to maintain larger amounts of taste-active amino acids, and improved nutrient retention and color attributes. Furthermore, the uniform honeycomb network created by microwave vacuum drying along with a less collapsed structure of dried samples can be used to explain the observed high rehydration ratio. Therefore, microwave vacuum drying should be a potential method for obtaining high-quality dried mushrooms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper.

    PubMed

    Szadzińska, Justyna; Łechtańska, Joanna; Kowalski, Stefan Jan; Stasiak, Marcin

    2017-01-01

    The effectiveness of hybrid drying based on convective drying with application of ultrasound and microwave enhancement is the main subject of the studies. The drying kinetics, energy consumption as well as the quality aspect of green pepper is analysed. It was shown that hybrid drying methods shorten significantly the drying time, reduce the energy consumption and affect positively the quality factors. Each of the analysed aspects depend on combination of the convective-ultrasound-microwave drying programs. Besides, based on the drying model elaborated earlier by one of the authors, the effects of ultrasound on convective drying assessed by such phenomena as "heating effect", "vibration effect" and "synergistic effect" are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A New Method for Non-destructive Measurement of Biomass, Growth Rates, Vertical Biomass Distribution and Dry Matter Content Based on Digital Image Analysis

    PubMed Central

    Tackenberg, Oliver

    2007-01-01

    Background and Aims Biomass is an important trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive. Thus, they do not allow the development of individual plants to be followed and they require many individuals to be cultivated for repeated measurements. Non-destructive methods do not have these limitations. Here, a non-destructive method based on digital image analysis is presented, addressing not only above-ground fresh biomass (FBM) and oven-dried biomass (DBM), but also vertical biomass distribution as well as dry matter content (DMC) and growth rates. Methods Scaled digital images of the plants silhouettes were taken for 582 individuals of 27 grass species (Poaceae). Above-ground biomass and DMC were measured using destructive methods. With image analysis software Zeiss KS 300, the projected area and the proportion of greenish pixels were calculated, and generalized linear models (GLMs) were developed with destructively measured parameters as dependent variables and parameters derived from image analysis as independent variables. A bootstrap analysis was performed to assess the number of individuals required for re-calibration of the models. Key Results The results of the developed models showed no systematic errors compared with traditionally measured values and explained most of their variance (R2 ≥ 0·85 for all models). The presented models can be directly applied to herbaceous grasses without further calibration. Applying the models to other growth forms might require a re-calibration which can be based on only 10–20 individuals for FBM or DMC and on 40–50 individuals for DBM. Conclusions The methods presented are time and cost effective compared with traditional methods, especially if development or growth rates are to be measured repeatedly. Hence, they offer an alternative way of determining biomass, especially as they are non-destructive and address not only FBM and DBM, but also vertical

  9. 2-D hydro-viscoelastic model for convective drying of deformable and unsaturated porous material

    NASA Astrophysics Data System (ADS)

    Hassini, Lamine; Raja, Lamloumi; Lecompte-Nana, Gisèle Laure; Elcafsi, Mohamed Afif

    2017-04-01

    The aim of this work was to simulate in two dimensions the spatio-temporal evolution of the moisture content, the temperature, the solid (dry matter) concentration, the dry product total porosity, the gas porosity, and the mechanical stress within a deformable and unsaturated product during convective drying. The material under study was an elongated cellulose-clay composite sample with a square section placed in hot air flow. Currently, this innovative composite is used in the processing of boxes devoted to the preservation of heritage and precious objects against fire damage and other degradation (moisture, insects, etc.). A comprehensive and rigorous hydrothermal model had been merged with a dynamic linear viscoelasticity model based on Bishop's effective stress theory, assuming that the stress tensor is the sum of solid, liquid, and gas stresses. The material viscoelastic properties were measured by means of stress relaxation tests for different water contents. The viscoelastic behaviour was described by a generalized Maxwell model whose parameters were correlated to the water content. The equations of our model were solved by means of the 'COMSOL Multiphysics' software. The hydrothermal part of the model was validated by comparison with experimental drying curves obtained in a laboratory hot-air dryer. The simulations of the spatio-temporal distributions of mechanical stress were performed and interpreted in terms of material potential damage. The sample shape was also predicted all over the drying process.

  10. Dry hair

    MedlinePlus

    ... harsh soaps or alcohols Excessive blow-drying Dry air due to the climate Menkes kinky hair syndrome Malnutrition Underactive parathyroid ( hypoparathyroidism ) Underactive thyroid ( hypothyroidism ) Other hormone abnormalities

  11. Effect of moisture of municipal biowaste on start-up and efficiency of mesophilic and thermophilic dry anaerobic digestion.

    PubMed

    Li, Chaoran; Mörtelmaier, Christoph; Winter, Josef; Gallert, Claudia

    2014-09-01

    Methane production from biowaste with 20-30% dry matter (DM) by box-type dry anaerobic digestion and contributing bacteria were determined for incubation at 20, 37 and 55 °C. The same digestion efficiency as for wet anaerobic digestion of biowaste was obtained for dry anaerobic digestion with 20% DM content at 20, 37 and 55 °C and with 25% DM content at 37 and 55 °C. No or only little methane was produced in dry anaerobic reactors with 30% DM at 20, 37 or 55 °C. Population densities in the 20-30% DM-containing biowaste reactors were similar although in mesophilic and thermophilic biowaste reactors with 30% DM content significantly less but phylogenetically more diverse archaea existed. Biogas production in the 20% and 25% DM assays was catalyzed by Methanosarcinales and Methanomicrobiales. In all assays Pelotomaculum and Syntrophobacter species were dominant propionate degraders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Treatment of contact lens related dry eye with antibacterial honey.

    PubMed

    Wong, Daniel; Albietz, Julie M; Tran, Huan; Du Toit, Cimonette; Li, Anita Hui; Yun, Tina; Han, Jee; Schmid, Katrina L

    2017-12-01

    Contact lens induced dry eye affects approximately 50% of contact lens wearers. The aim was to assess the effects of Manuka (Leptospermum sp.) honey eye drops (Optimel, Melcare, Australia) on dry eye in contact lens wearers. The safety of the honey eye drops in contact lens wear and contact lens wearers' compliance were also evaluated. Prospective, randomised, cross over study, examiner masked, pilot treatment trial. Twenty-four participants aged 20 to 55 years with contact lens related dry eye were recruited and randomised to two treatment groups; 20 completed the study. One group used Optimel eye drops twice a day for two weeks followed by conventional lubricant (Systane Ultra, Alcon) therapy for two weeks; the other group completed the treatments in the reverse order. Before and after each treatment dry eye symptomology, ocular surface inflammation, and tear quantity and quality were assessed. Participants completed a daily log detailing their usage of treatments and any issues. Dry eye symptoms improved significantly after Optimel treatment. Patients with more severe symptoms at baseline showed a greater improvement in symptoms. No significant differences were observed in the objective signs of dry eye; presumably because of the short treatment duration. Seventy-five% of contact lens wearers reported good adherence to Optimel treatment and 95% reported no issues using this product. Optimel Eye Drops reduce the symptoms of dry eye in contact lens wearers and are safe to use. A longer treatment period to assess the effect on clinical signs of dry eye is required. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  13. 40 CFR Table 1a to Subpart Ec of... - Emissions Limits for Small, Medium, and Large HMIWI at Affected Facilities as Defined in § 60.50c...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Waste Incinerators for Which Construction is Commenced After June 20, 1996 Pt. 60, Subpt. Ec, Table 1A... Facilities as Defined in § 60.50c(a)(1) and (2) Pollutant Units (7 percent oxygen, dry basis) Emissions... matter Milligrams per dry standard cubic meter (grains per dry standard cubic foot) 69 (0.03) 34 (0.015...

  14. 40 CFR Table 1b to Subpart Ec of... - Emissions Limits for Small, Medium, and Large HMIWI at Affected Facilities as Defined in § 60.50c...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Waste Incinerators for Which Construction is Commenced After June 20, 1996 Pt. 60, Subpt. Ec, Table 1B... Facilities as Defined in § 60.50c(a)(3) and (4) Pollutant Units (7 percent oxygen, dry basis) Emissions... matter Milligrams per dry standard cubic meter (grains per dry standard cubic foot) 66 (0.029) 22 (0.0095...

  15. Spray washing, absorbent corn starch powder and dry time to reduce bacterial numbers on soiled boiler transport cage flooring

    USDA-ARS?s Scientific Manuscript database

    Most broilers in the U.S. are transported live to slaughter facilities in cages with fiberglass floors. Cages are often used repeatedly without washing and fecal matter deposited on the floor surface can transfer Campylobacter from one flock to another. Drying feces out between uses is an effectiv...

  16. Classification of dried vegetables using computer image analysis and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Koszela, K.; Łukomski, M.; Mueller, W.; Górna, K.; Okoń, P.; Boniecki, P.; Zaborowicz, M.; Wojcieszak, D.

    2017-07-01

    In the recent years, there has been a continuously increasing demand for vegetables and dried vegetables. This trend affects the growth of the dehydration industry in Poland helping to exploit excess production. More and more often dried vegetables are used in various sectors of the food industry, both due to their high nutritional qualities and changes in consumers' food preferences. As we observe an increase in consumer awareness regarding a healthy lifestyle and a boom in health food, there is also an increase in the consumption of such food, which means that the production and crop area can increase further. Among the dried vegetables, dried carrots play a strategic role due to their wide application range and high nutritional value. They contain high concentrations of carotene and sugar which is present in the form of crystals. Carrots are also the vegetables which are most often subjected to a wide range of dehydration processes; this makes it difficult to perform a reliable qualitative assessment and classification of this dried product. The many qualitative properties of dried carrots determining their positive or negative quality assessment include colour and shape. The aim of the research was to develop and implement the model of a computer system for the recognition and classification of freeze-dried, convection-dried and microwave vacuum dried products using the methods of computer image analysis and artificial neural networks.

  17. Axonal abnormalities in vanishing white matter.

    PubMed

    Klok, Melanie D; Bugiani, Marianna; de Vries, Sharon I; Gerritsen, Wouter; Breur, Marjolein; van der Sluis, Sophie; Heine, Vivi M; Kole, Maarten H P; Baron, Wia; van der Knaap, Marjo S

    2018-04-01

    We aimed to study the occurrence and development of axonal pathology and the influence of astrocytes in vanishing white matter. Axons and myelin were analyzed using electron microscopy and immunohistochemistry on Eif2b4 and Eif2b5 single- and double-mutant mice and patient brain tissue. In addition, astrocyte-forebrain co-culture studies were performed. In the corpus callosum of Eif2b5- mutant mice, myelin sheath thickness, axonal diameter, and G-ratio developed normally up to 4 months. At 7 months, however, axons had become thinner, while in control mice axonal diameters had increased further. Myelin sheath thickness remained close to normal, resulting in an abnormally low G-ratio in Eif2b5- mutant mice. In more severely affected Eif2b4-Eif2b5 double-mutants, similar abnormalities were already present at 4 months, while in milder affected Eif2b4 mutants, few abnormalities were observed at 7 months. Additionally, from 2 months onward an increased percentage of thin, unmyelinated axons and increased axonal density were present in Eif2b5 -mutant mice. Co-cultures showed that Eif2b5 mutant astrocytes induced increased axonal density, also in control forebrain tissue, and that control astrocytes induced normal axonal density, also in mutant forebrain tissue. In vanishing white matter patient brains, axons and myelin sheaths were thinner than normal in moderately and severely affected white matter. In mutant mice and patients, signs of axonal transport defects and cytoskeletal abnormalities were minimal. In vanishing white matter, axons are initially normal and atrophy later. Astrocytes are central in this process. If therapy becomes available, axonal pathology may be prevented with early intervention.

  18. Dry cell battery poisoning

    MedlinePlus

    Batteries - dry cell ... Acidic dry cell batteries contain: Manganese dioxide Ammonium chloride Alkaline dry cell batteries contain: Sodium hydroxide Potassium hydroxide Lithium dioxide dry cell batteries ...

  19. Experimental investigation of drying characteristics of cornelian cherry fruits ( Cornus mas L.)

    NASA Astrophysics Data System (ADS)

    Ozgen, Filiz

    2015-03-01

    Major target of present paper is to investigate the drying kinetics of cornelian cherry fruits ( Cornus mas L.) in a convective dryer, by varying the temperature and the velocity of drying air. Freshly harvested fruits are dried at drying air temperature of 35, 45 and 55 °C. The considered drying air velocities are V air = 1 and 1.5 m/s for each temperature. The required drying time is determined by taking into consideration the moisture ratio measurements. When the moisture ratio reaches up to 10 % at the selected drying air temperature, then the time is determined ( t = 40-67 h). The moisture ratio, fruit temperature and energy requirement are presented as the functions of drying time. The lowest drying time (40 h) is obtained when the air temperature is 55 °C and air velocity is 1.5 m/s. The highest drying time (67 h) is found under the conditions of 35 °C temperature and 1 m/s velocity. Both the drying air temperature and the air velocity significantly affect the required energy for drying system. The minimum amount of required energy is found as 51.12 kWh, at 55 °C and 1 m/s, whilst the maximum energy requirement is 106.7 kWh, at 35 °C and 1.5 m/s. It is also found that, air temperature significantly influences the total drying time. Moreover, the energy consumption is decreasing with increasing air temperature. The effects of three parameters (air temperature, air velocity and drying time) on drying characteristics have also been analysed by means of analysis of variance method to show the effecting levels. The experimental results have a good agreement with the predicted ones.

  20. Effect of different drying procedures on the bioactive polysaccharide acemannan from Aloe vera (Aloe barbadensis Miller).

    PubMed

    Minjares-Fuentes, Rafael; Rodríguez-González, Víctor Manuel; González-Laredo, Rubén Francisco; Eim, Valeria; González-Centeno, María Reyes; Femenia, Antoni

    2017-07-15

    The main effects of different drying procedures: spray-, industrial freeze-, refractance window- and radiant zone-drying, on acemannan, the main bioactive polysaccharide from Aloe vera gel, were investigated. All the drying procedures caused a considerable decrease in the acemannan yield (∼40%). Degradation affected not only the backbone, as indicated by the important losses of (1→4)-linked mannose units, but also the side-chains formed by galactose. In addition, methylation analysis suggested the deacetylation of mannose units (>60%), which was confirmed by 1 H NMR analysis. Interestingly, all these changes were reflected in the functional properties which were severely affected. Thus, water retention capacity values from processed samples decreased ∼50%, and a reduction greater than 80% was determined in swelling and fat adsorption capacity values. Therefore, these important modifications should be taken into consideration, since not only the functionality but also the physiological effects attributed to many Aloe vera-based products could also be affected. Copyright © 2017 Elsevier Ltd. All rights reserved.