Sample records for affect endocrine function

  1. Affective disorders and endocrine disease. New insights from psychosomatic studies.

    PubMed

    Fava, G A

    1994-01-01

    This is a review of psychosomatic interactions between affective disorders (depressive and anxiety disturbances, irritable mood) and endocrine disease. Particular reference is made to stressful life events in the pathogenesis of endocrine disease, psychopathology of hormonal disturbances, and pathophysiology of hypothalamic-pituitary-adrenal axis function in depression and Cushing's disease. These psychosomatic interactions may lead to appraisal of common etiological mechanisms in endocrine and psychiatric disorders, of the value of retaining the category of organic affective syndromes in psychiatric classification, and of the need for research on quality-of-life measures in endocrine disease. The establishment of "psychoendocrine units," where both endocrinologists and psychiatrists should work, is advocated. Such psychoendocrine units may serve and benefit clinical populations who currently defy traditional medical subdivisions.

  2. Studies of endocrine and affective functions in complex flight manoeuvres.

    PubMed

    Pinter, E J; Peterfy, G; Cleghorn, J M

    1975-01-01

    Endocrine and metabolic changes, as well as affective functions, were studied in eight healthy volunteers anticipating and executing a prearranged sequence of aerobatic flight. Control measurements were made at complete physical and mental rest. The following were determined: anxiety and hostility levels, blood glucose, cholesterol, triglyceride, plasma free fatty acids (FFA), serum thyroxine (T4), corticosteroids, prolactin, growth hormone, immunoreactive insulin and urinary excretion of VMA. The pattern of response was uniform in all subjects. Significant changes were seen in plasma FFA, corticosteroids, growth hormone and immunoreactive insulin following aerobatic flight. Anticipation of flight induced anxiety arousal and significant directional changes in plasma FFA, corticosteroids, as well as in VMA excretion. Hostility scores were highest immediately upon termination of flight.

  3. Marital Conflict and Endocrine Function: Are Men Really More Physiologically Affected than Women?.

    ERIC Educational Resources Information Center

    Kiecolt-Glaser, Janice K.; And Others

    1996-01-01

    Assessed marital conflict and endocrine function in 90 newlywed couples. Blood samples were examined to provide composite and daytime values for three stress hormones and three related hormones. Data provided a window on endocrine function in couples for whom the day included conflicts. Discusses findings in the context of gender models of marital…

  4. Endocrine pancreatic function changes after acute pancreatitis.

    PubMed

    Wu, Deqing; Xu, Yaping; Zeng, Yue; Wang, Xingpeng

    2011-10-01

    This study aimed to investigate the impairment of pancreatic endocrine function and the associated risk factors after acute pancreatitis (AP). Fifty-nine patients were subjected to tests of pancreatic function after an attack of pancreatitis. The mean time after the event was 3.5 years. Pancreatic endocrine function was evaluated by fasting blood glucose (FBG), glycosylated hemoglobin, fasting blood insulin, and C-peptide. Homeostasis model assessment was used to evaluate insulin resistance and islet β-cell function. Pancreatic exocrine function was evaluated by fecal elastase 1. Factors that could influence endocrine function were also investigated. Nineteen patients (32%) were found to have elevated FBG, whereas 5 (8%) had abnormal glycosylated hemoglobin levels. The levels of FBG, fasting blood insulin, and C-peptide were higher in patients than in controls (P < 0.01). The islet β-cell function of patients was lower than that of controls (P < 0.01), whereas insulin resistance index was higher among patients (P < 0.01). Obesity, hyperlipidemia, and diabetes-related symptoms were found to be associated with endocrine insufficiency. Pancreatic exocrine functional impairment was found at the same time. Endocrine functional impairment with insulin resistance was found in patients after AP. Obesity, hyperlipidemia, and diabetes-related symptoms increased the likelihood of developing functional impairment after AP.

  5. Exposure to methylphenidate during peri-adolescence affects endocrine functioning and sexual behavior in female Long-Evans rats.

    PubMed

    Guarraci, Fay A; Holifield, Caroline; Morales-Valenzuela, Jessica; Greene, Kasera; Brown, Jeanette; Lopez, Rebecca; Crandall, Christina; Gibbs, Nicole; Vela, Rebekah; Delgado, Melissa Y; Frohardt, Russell J

    2016-03-01

    The present study was designed to test the effects of methylphenidate (MPH) exposure on the maturation of endocrine functioning and sexual behavior. Female rat pups received either MPH (2.0mg/kg, i.p.) or saline twice daily between postnatal days 20-35. This period of exposure represents the time just prior to puberty as well as puberty onset. Approximately five weeks after the last injection of MPH or saline, female subjects were hormone-primed and tested during their first sexual experience. Subjects were given the choice to interact with a sexually active male or a sexually receptive female rat (i.e., the partner-preference test). The partner-preference paradigm allows us to assess multiple aspects of female sexual behavior. MPH exposure during peri-adolescence delayed puberty and, when mated for the first time, affected sexual behavior (e.g., increased time spent with the male stimulus and decreased the likelihood of leaving after mounts) during the test of partner preference. When monitoring estrous cyclicity, female subjects treated with MPH during peri-adolescence frequently experienced irregular estrous cycles. The results of the present study suggest that chronic exposure to a therapeutic dose of MPH around the onset of puberty alters long-term endocrine functioning, but with hormone priming, increases sensitivity to sexual stimuli. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. How does obesity affect the endocrine system? A narrative review.

    PubMed

    Poddar, M; Chetty, Y; Chetty, V T

    2017-06-01

    Obesity is a chronic, relapsing medical condition that results from an imbalance of energy expenditure and consumption. It is a leading cause of preventable illness, disability and premature death. The causes of obesity are multifactorial and include behavioural, socioeconomic, genetic, environmental and psychosocial factors. Rarely are endocrine diseases, e.g., hypothyroidism or Cushing's syndrome, the cause of obesity. What is less understood is how obesity affects the endocrine system. In this review, we will discuss the impact of obesity on multiple endocrine systems, including the hypothalamic-pituitary axis, changes in vitamin D homeostasis, gender steroids and thyroid hormones. We will also examine the renin angiotensin aldosterone system and insulin pathophysiology associated with obesity. We will provide a general overview of the biochemical changes that can be seen in patients with obesity, review possible aetiologies of these changes and briefly consider current guidelines on their management. This review will not discuss endocrine causes of obesity. © 2017 World Obesity Federation.

  7. ENDOCRINE DISRUPTORS AS A THREAT TO NEUROLOGICAL FUNCTION

    PubMed Central

    Weiss, Bernard

    2011-01-01

    Endocrine disruption is a concept and principle whose origins can be traced to the beginnings of the environmental movement in the 1960s. It began with puzzlement about and the flaring of research on the decline of wildlife, particularly avian species. The proposed causes accented pesticides, especially persistent organochlorines such as DDT. Its scope gradually widened beyond pesticides, and, as endocrine disruption offered an explanation for the wildlife phenomena, it seemed to explain, as well, changes in fertility and disorders of male reproduction such as testicular cancer. Once disturbed gonadal hormone function became the most likely explanation, it provoked other questions. The most challenging arose because of how critical gonadal hormones are to brain function, especially as determinants of brain sexual differentiation. Pursuit of such connections has generated a robust literature embracing a broad swath of chemical classes. How endocrine disrupting chemicals influence the adult and aging brain is a question, so far mostly ignored because of the emphasis on early development, that warrants vigorous investigation. Gonadal hormones are crucial to optimal brain function during maturity and even senescence. They are pivotal to the processes of neurogenesis. They exert protective actions against neurodegenerative disorders such as dementia and support smoothly functioning cognitive activities. The limited research conducted so far on endocrine disruptors, aging, and neurogenesis argues that they should be overlooked no longer. PMID:21474148

  8. Hedgehog signaling: endocrine gland development and function.

    PubMed

    Cohen, M Michael

    2010-01-01

    The role of hedgehog signaling is analyzed in relation to the developing endocrine glands: pituitary, ovary, testis, adrenal cortex, pancreas, prostate, and epiphyseal growth. Experimental and pathological correlates of these organs are also discussed. The second section addresses a number of topics. First, the pituitary gland, no matter how hypoplastic, is present in most cases of human holoprosencephaly, unlike animals in which it is always said to be absent. The difference appears to be that animal mutations and teratogenic models involve both copies of the gene in question, whereas in humans the condition is most commonly heterozygous. Second, tests of endocrine function are not reported with great frequency, and an early demise in severe cases of holoprosencephaly accounts for this trend. Reported tests of endocrine function are reviewed. Third, diabetes insipidus has been recorded in a number of cases of holoprosencephaly. Its frequency is unknown because it could be masked by adrenal insufficiency in some cases and may not be recognized in others. Because of the abnormal hypothalamic-infundibular region in holoprosencephaly, diabetes insipidus could be caused by a defect in the supra-optic or paraventricular hypothalamic nuclei or in release of ADH via the infundibulum and posterior pituitary.

  9. Endocrine system: part 2.

    PubMed

    Hendry, Charles; Farley, Alistair; McLafferty, Ella; Johnstone, Carolyn

    2014-06-03

    This article, the last in the life sciences series, is the second of two articles on the endocrine system. It discusses human growth hormone, the pancreas and adrenal glands. The relationships between hormones and their unique functions are also explored. It is important that nurses understand how the endocrine system works and its role in maintaining health to provide effective care to patients. Several disorders caused by human growth hormone or that affect the pancreas and adrenal glands are examined.

  10. The development and endocrine functions of adipose tissue

    USDA-ARS?s Scientific Manuscript database

    White adipose tissue is a mesenchymal tissue that begins developing in the fetus. Classically known for storing the body’s fuel reserves, adipose tissue is now recognized as an endocrine organ. As such, the secretions from adipose tissue are known to affect several systems such as the vascular and...

  11. The clandestine organs of the endocrine system.

    PubMed

    Garcia-Reyero, Natàlia

    2018-02-01

    This review analyzes what could be regarded as the "clandestine organs" of the endocrine system: the gut microbiome, the immune system, and the stress system. The immune system is very closely related to the endocrine system, with many intertwined processes and signals. Many researchers now consider the microbiome as an 'organ' that affects the organism at many different levels. While stress is certainly not an organ, it affects so many processes, including endocrine-related processes, that the stress response system deserved a special section in this review. Understanding the connections, effects, and feedback mechanisms between the different "clandestine organs" and the endocrine system will provide us with a better understanding of how an organism functions, as well as reinforce the idea that there are no independent organs or systems, but a complex, interacting network of molecules, cells, tissues, signaling pathways, and mechanisms that constitute an individual. Published by Elsevier Inc.

  12. Functional Hypothalamic Amenorrhea: An Endocrine Society Clinical Practice Guideline.

    PubMed

    Gordon, Catherine M; Ackerman, Kathryn E; Berga, Sarah L; Kaplan, Jay R; Mastorakos, George; Misra, Madhusmita; Murad, M Hassan; Santoro, Nanette F; Warren, Michelle P

    2017-05-01

    The American Society for Reproductive Medicine, the European Society of Endocrinology, and the Pediatric Endocrine Society. This guideline was funded by the Endocrine Society. To formulate clinical practice guidelines for the diagnosis and treatment of functional hypothalamic amenorrhea (FHA). The participants include an Endocrine Society-appointed task force of eight experts, a methodologist, and a medical writer. This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation approach to describe the strength of recommendations and the quality of evidence. The task force commissioned two systematic reviews and used the best available evidence from other published systematic reviews and individual studies. One group meeting, several conference calls, and e-mail communications enabled consensus. Endocrine Society committees and members and cosponsoring organizations reviewed and commented on preliminary drafts of this guideline. FHA is a form of chronic anovulation, not due to identifiable organic causes, but often associated with stress, weight loss, excessive exercise, or a combination thereof. Investigations should include assessment of systemic and endocrinologic etiologies, as FHA is a diagnosis of exclusion. A multidisciplinary treatment approach is necessary, including medical, dietary, and mental health support. Medical complications include, among others, bone loss and infertility, and appropriate therapies are under debate and investigation. Copyright © 2017 Endocrine Society

  13. Endocrine profiles and neuropsychologic correlates of functional hypothalamic amenorrhea in adolescents.

    PubMed

    Bomba, Monica; Gambera, Alessandro; Bonini, Luisa; Peroni, Maria; Neri, Francesca; Scagliola, Pasquale; Nacinovich, Renata

    2007-04-01

    To determine trigger factors and neuropsychologic correlates of functional hypothalamic amenorrhea (FHA) in adolescence and to evaluate the correlations with the endocrine-metabolic profile. Cross-sectional comparison of adolescents with FHA and eumenorrheic controls Academic medical institution Twenty adolescent girls with FHA (aged <18 years) and 20 normal cycling girls All subjects underwent endocrine-gynecologic (hormone) and neuropsychiatric (tests and interview) investigations. A separate semistructured interview was also used to investigate parents. Gonadotropins, leptin, prolactin, androgens, estrogens, cortisol, carrier proteins (SHBG, insulin-like growth factor-binding protein 1), and metabolic parameters (insulin, insulin-like growth factor 1, thyroid hormones) were assayed in FHA and control subjects. All girls were evaluated using a test for depression, a test for disordered eating, and a psychodynamic semistructured interview. Adolescents with FHA showed a particular susceptibility to common life events, restrictive disordered eating, depressive traits, and psychosomatic disorders. The endocrine-metabolic profile was strictly correlated to the severity of the psychopathology. Functional hypothalamic amenorrhea in adolescence is due to a particular neuropsychologic vulnerability to stress, probably related to familial relationship styles, expressed by a proportional endocrine impairment.

  14. ALTERATIONS IN DEVELOPMENT OF REPRODUCTIVE AND ENDOCRINE SYSTEMS OF WILDLIFE POPULATIONS EXPOSED TO ENDOCRINE-DISRUPTING CONTAMINANTS.

    EPA Science Inventory

    Wildlife and human populations are affected by contaminants in natural settings. This problem has been a growing concern over the last decade with the realization that various environmental chemicals can alter the development and functioning of endocrine organs, cells and target ...

  15. The Heart of the Matter: Cardiac Manifestations of Endocrine Disease

    PubMed Central

    Binu, Aditya John; Cherian, Kripa Elizabeth; Kapoor, Nitin; Chacko, Sujith Thomas; George, Oommen; Paul, Thomas Vizhalil

    2017-01-01

    Endocrine disorders manifest as a disturbance in the milieu of multiple organ systems. The cardiovascular system may be directly affected or alter its function to maintain the state of homeostasis. In this article, we aim to review the pathophysiology, diagnosis, clinical features and management of cardiac manifestations of various endocrine disorders. PMID:29285459

  16. Environmental endocrine disruption: an effects assessment and analysis.

    PubMed Central

    Crisp, T M; Clegg, E D; Cooper, R L; Wood, W P; Anderson, D G; Baetcke, K P; Hoffmann, J L; Morrow, M S; Rodier, D J; Schaeffer, J E; Touart, L W; Zeeman, M G; Patel, Y M

    1998-01-01

    This report is an overview of the current state of the science relative to environmental endocrine disruption in humans, laboratory testing, and wildlife species. Background information is presented on the field of endocrinology, the nature of hormones, and potential sites for endocrine disruption, with specific examples of chemicals affecting these sites. An attempt is made to present objectively the issue of endocrine disruption, consider working hypotheses, offer opposing viewpoints, analyze the available information, and provide a reasonable assessment of the problem. Emphasis is placed on disruption of central nervous system--pituitary integration of hormonal and sexual behavioral activity, female and male reproductive system development and function, and thyroid function. In addition, the potential role of environmental endocrine disruption in the induction of breast, testicular, and prostate cancers, as well as endometriosis, is evaluated. The interrelationship of the endocrine and immune system is documented. With respect to endocrine-related ecological effects, specific case examples from the peer-reviewed literature of marine invertebrates and representatives of the five classes of vertebrates are presented and discussed. The report identifies some data gaps in our understanding of the environmental endocrine disruption issue and recommends a few research needs. Finally, the report states the U.S. Environmental Protection Agency Science Policy Council's interim position on endocrine disruption and lists some of the ongoing activities to deal with this matter. PMID:9539004

  17. The international spinal cord injury endocrine and metabolic function basic data set.

    PubMed

    Bauman, W A; Biering-Sørensen, F; Krassioukov, A

    2011-10-01

    To develop the International Spinal Cord Injury (SCI) Endocrine and Metabolic Function Basic Data Set within the framework of the International SCI Data Sets that would facilitate consistent collection and reporting of basic endocrine and metabolic findings in the SCI population. International. The International SCI Endocrine and Metabolic Function Data Set was developed by a working group. The initial data set document was revised on the basis of suggestions from members of the Executive Committee of the International SCI Standards and Data Sets, the International Spinal Cord Society (ISCoS) Executive and Scientific Committees, American Spinal Injury Association (ASIA) Board, other interested organizations and societies, and individual reviewers. In addition, the data set was posted for 2 months on ISCoS and ASIA websites for comments. The final International SCI Endocrine and Metabolic Function Data Set contains questions on the endocrine and metabolic conditions diagnosed before and after spinal cord lesion. If available, information collected before injury is to be obtained only once, whereas information after injury may be collected at any time. These data include information on diabetes mellitus, lipid disorders, osteoporosis, thyroid disease, adrenal disease, gonadal disease and pituitary disease. The question of gonadal status includes stage of sexual development and that for females also includes menopausal status. Data will be collected for body mass index and for the fasting serum lipid profile. The complete instructions for data collection and the data sheet itself are freely available on the websites of ISCoS (http://www.iscos.org.uk) and ASIA (http://www.asia-spinalinjury.org).

  18. Gestational bisphenol S impairs placental endocrine function and the fusogenic trophoblast signaling pathway.

    PubMed

    Gingrich, Jeremy; Pu, Yong; Roberts, Jennifer; Karthikraj, Rajendiran; Kannan, Kurunthachalam; Ehrhardt, Richard; Veiga-Lopez, Almudena

    2018-05-01

    Exposure to bisphenolic chemicals during pregnancy occurs in > 90% of pregnancies. Bisphenolic compounds can cross the placental barrier reaching fetal circulation. However, the effects of emerging bisphenolic compounds, such as bisphenol S (BPS), on placental function remain untested. The aim was to determine if bisphenol A (BPA) or BPS, at an environmentally relevant dose, impairs placental function. Pregnant sheep were randomly distributed into three treatment groups (n = 7-8/group): control, BPA, and BPS. All animals received daily injections of corn oil (control), BPA, or BPS (0.5 mg/kg; s.c.; internal fetal doses were ~ 2.6 ng/mL unconjugated BPA and ~ 7.7 ng/mL of BPS) from gestational day 30-100. After a 20-day washout period, placentas were weighed and placentomes collected. Placental endocrine function was assessed on biweekly maternal blood samples. Gestational exposure to BPS, but not BPA, reduced maternal circulating pregnancy-associated glycoproteins without change in placental weight or placental stereology. BPS-exposed placentas had 50% lower e-cadherin protein expression, ~ 20% fewer binucleate cells, and ~ threefold higher glial cell missing-1 protein expression. BPA placentas were not affected highlighting the intrinsic differences among bisphenolic chemicals. This is the first study to demonstrate that gestational BPS can result in placental endocrine dysfunction and points to a dysregulation in the fusogenic trophoblast signaling pathway.

  19. The impact of pancreaticoduodenectomy on endocrine and exocrine pancreatic function: A prospective cohort study based on pre- and postoperative function tests.

    PubMed

    Roeyen, Geert; Jansen, Miet; Hartman, Vera; Chapelle, Thiery; Bracke, Bart; Ysebaert, Dirk; De Block, Christophe

    Studies reporting on function after pancreatic surgery are frequently based on diabetes history, fasting glycemia or random glycemia. The aim of this study was to investigate prospectively the evolution of pancreatic function in patients undergoing pancreaticoduodenectomy based on proper pre- and postoperative function tests. It was hypothesised that pancreatic function deteriorates after pancreaticoduodenectomy. Between 2013 and 2016, 78 patients undergoing pancreaticoduodenectomy for oncologic indications had a prospective evaluation of their endocrine and exocrine pancreatic function. Endocrine function was evaluated with the 75 g oral glucose tolerance test (OGTT) and the 1 mg intravenous glucagon test. Exocrine function was evaluated with a 13C-labelled mixed-triglyceride breath test. Tests were performed pre- and postoperatively. In 90.5% (19/21) of patients with preoperatively known diabetes, no change in endocrine function was observed. In contrast, endocrine function improved in 68.1% (15/22) of patients with newly diagnosed diabetes. 40% (14/35) of patients with a preoperative normal OGTT or prediabetes experienced deterioration in function. In multivariate analysis, improvement of newly diagnosed diabetes was correlated with preoperative bilirubin levels (p = 0.045), while progression towards diabetes was correlated with preoperative C-peptidogenic index T 30 (p = 0.037). A total of 20.5% (16/78) of patients had pancreatic exocrine insufficiency preoperatively. Another 51.3% (40/78) of patients deteriorated on exocrine level. In total, 64.1% (50/78) of patients required pancreatic enzyme-replacement therapy postoperatively. Although deterioration of endocrine function was expected after pancreatic resection, improvement is frequently observed in patients with newly diagnosed diabetes. Exocrine function deteriorates after pancreaticoduodenectomy. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  20. Effects of Alcohol on the Endocrine System

    PubMed Central

    Rachdaoui, Nadia; Sarkar, Dipak K.

    2013-01-01

    Synopsis The endocrine system ensures a proper communication between various organs of the body to maintain a constant internal environment. The endocrine system also plays an essential role in enabling the body to respond and appropriately cope with changes in the internal or external environments, such as respond to stress and injury. These functions of the endocrine system to maintain body homeostasis are aided by its communication with the nervous system, immune system and body’s circadian mechanism. Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiological and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. PMID:24011889

  1. Adipose tissue as an endocrine organ.

    PubMed

    McGown, Christine; Birerdinc, Aybike; Younossi, Zobair M

    2014-02-01

    Obesity is one of the most important health challenges faced by developed countries and is increasingly affecting adolescents and children. Obesity is also a considerable risk factor for the development of numerous other chronic diseases, such as insulin resistance, type 2 diabetes, heart disease and nonalcoholic fatty liver disease. The epidemic proportions of obesity and its numerous comorbidities are bringing into focus the highly complex and metabolically active adipose tissue. Adipose tissue is increasingly being considered as a functional endocrine organ. This article discusses the endocrine effects of adipose tissue during obesity and the systemic impact of this signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Sex steroids effects in normal endocrine pancreatic function and diabetes.

    PubMed

    Morimoto, Sumiko; Jiménez-Trejo, Francisco; Cerbón, Marco

    2011-01-01

    Traditionally the role of sexual steroid hormones was focused primarily on reproductive organs: the breast, female reproductive tract (uterus, mammary gland, and ovary), and male reproductive tract (testes, epididymis and prostate), however our current understanding of tissue-specific effects of sex steroids has elucidated new aspects in its functionality. Recent data have shown that many other tissues are targets of those hormones in addition to classical reproductive organs. The pancreas (which performs both endocrine and exocrine functions), has proven to be an extragonadal target of sexual steroid hormone action. The endocrine pancreas has a pivotal role on carbohydrate homeostasis and deterioration in function produces diabetes. Diabetes is a metabolic disorder that has high prevalence worldwide, particularly in developing countries. It has been shown that steroid hormones have an important role in susceptibility and development of diabetes in animal models, in humans its role is less clear, however the most evident effect is on the perimenopausal women, in this stage the decrease in gonadal steroids produces an increase on susceptibility to develop diabetes mellitus; in men, hypoandrogenism is associated with an increased prevalence of insulin resistance. This review focused on the effects of sexual steroids on pancreatic function and diabetes.

  3. Tumour suppressor menin is essential for development of the pancreatic endocrine cells.

    PubMed

    Fontanière, Sandra; Duvillié, Bertrand; Scharfmann, Raphaël; Carreira, Christine; Wang, Zhao-Qi; Zhang, Chang-Xian

    2008-11-01

    Mutations of the multiple endocrine neoplasia type 1 (MEN1) gene predispose patients to MEN1 that affects mainly endocrine tissues, suggesting important physiological functions of the gene in adult endocrine cells. Homozygous disruption of Men1 in mice causes embryonic lethality, whereas the eventual involvement of the gene in embryonic development of the endocrine cells remains unknown. Here, we show that homozygous Men1 knockout mice demonstrate a reduced number of glucagon-positive cells in the E12.5 pancreatic bud associated with apoptosis, whereas the exocrine pancreas development in these mice is not affected. Our data suggest that menin is involved in the survival of the early pancreatic endocrine cells during the first developmental transition. Furthermore, chimerism assay revealed that menin has an autonomous and specific effect on the development of islet cells. In addition, using pancreatic bud culture mimicking the differentiation of alpha- and beta-cells during the second transition, we show that loss of menin leads to the failure of endocrine cell development, altered pancreatic structure and a markedly decreased number of cells expressing neurogenin 3, indicating that menin is also required at this stage of the endocrine pancreas development. Taken together, our results suggest that menin plays an indispensable role in the development of the pancreatic endocrine cells.

  4. Immune System: An Emerging Player in Mediating Effects of Endocrine Disruptors on Metabolic Health.

    PubMed

    Bansal, Amita; Henao-Mejia, Jorge; Simmons, Rebecca A

    2018-01-01

    The incidence of metabolic disorders like type 2 diabetes and obesity continues to increase. In addition to the well-known contributors to these disorders, such as food intake and sedentary lifestyle, recent research in the exposure science discipline provides evidence that exposure to endocrine-disrupting chemicals like bisphenol A and phthalates via multiple routes (e.g., food, drink, skin contact) also contribute to the increased risk of metabolic disorders. Endocrine-disrupting chemicals (EDCs) can disrupt any aspect of hormone action. It is becoming increasingly clear that EDCs not only affect endocrine function but also adversely affect immune system function. In this review, we focus on human, animal, and in vitro studies that demonstrate EDC exposure induces dysfunction of the immune system, which, in turn, has detrimental effects on metabolic health. These findings highlight how the immune system is emerging as a novel player by which EDCs may mediate their effects on metabolic health. We also discuss studies highlighting mechanisms by which EDCs affect the immune system. Finally, we consider that a better understanding of the immunomodulatory roles of EDCs will provide clues to enhance metabolic function and contribute toward the long-term goal of reducing the burden of environmentally induced diabetes and obesity. Copyright © 2018 Endocrine Society.

  5. Exploring the Relationship of Autonomic and Endocrine Activity with Social Functioning in Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Smeekens, I.; Didden, R.; Verhoeven, E. W. M.

    2015-01-01

    Several studies indicate that autonomic and endocrine activity may be related to social functioning in individuals with autism spectrum disorder (ASD), although the number of studies in adults is limited. The present study explored the relationship of autonomic and endocrine activity with social functioning in young adult males with ASD compared…

  6. Endocrine and exocrine function of the bovine testis. Chapter 2

    USDA-ARS?s Scientific Manuscript database

    This chapter is devoted to the endocrine and exocrine function of the normal bovine male testes. The discussion begins with a historical review of the literature dating back to Aristotle’s (300 BC) initial description of the anatomy of the mammalian testes. The first microscopic examination of the t...

  7. The effect of lead intoxication on endocrine functions.

    PubMed

    Doumouchtsis, K K; Doumouchtsis, S K; Doumouchtsis, E K; Perrea, D N

    2009-02-01

    Studies on the effects of lead on the endocrine system are mainly based on occupationally lead-exposed workers and experimental animal models. Although evidence is conflicting, it has been reported that accumulation of lead affects the majority of the endocrine glands. In particular, it appears to have an effect on the hypothalamic-pituitary axis causing blunted TSH, GH, and FSH/LH responses to TRH, GHRH, and GnRH stimulation, respectively. Suppressed GH release has been reported, probably caused by reduced synthesis of GHRH, inhibition of GHRH release or reduced somatotrope responsiveness. Higher levels of PRL in lead intoxication have been reported. In short-term lead-exposed individuals, high LH and FSH levels are usually associated to normal testosterone concentrations, whereas in long-term exposed individuals' low testosterone levels do not induce high LH and FSH concentrations. These findings suggest that lead initially causes some subclinical testicular damage, followed by hypothalamic or pituitary disturbance when longer periods of exposure take place. Similarly, lead accumulates in granulosa cells of the ovary, causing delays in growth and pubertal development and reduced fertility in females. In the parenchyma of adrenals histological and cytological changes are demonstrated, causing changes in plasma basal and stress-mediated corticosterone concentrations and reduced cytosolic and nuclear glucocorticoid receptor binding. Thyroid hormone kinetics are also affected. Central defect of the thyroid axis or an alteration in T4 metabolism or binding to proteins may be involved in derangements in thyroid hormone action. Lead toxicity involves alterations on calcitropic hormones' homeostasis, which increase the risk of skeletal disorders.

  8. Exposures to Endocrine Disrupting Chemicals in Consumer Products-A Guide for Pediatricians.

    PubMed

    Wong, Katelyn H; Durrani, Timur S

    2017-05-01

    Endocrine disrupting chemicals, a group of exogenous chemicals that can interfere with hormone action in the body, have been implicated in disrupting endocrine function, which negatively affects human health and development. Endocrine disrupting chemicals are ubiquitously detected in consumer products, foods, beverages, personal care products, and household cleaning products. Due to concerns about their negative effects on human health, several professional health provider societies have recommended the reduction of common endocrine disrupting chemical exposures. The purpose of this review is to provide a brief overview of common endocrine disrupting chemicals (bisphenol A, phthalates, triclosan, polybrominated ethers, and parabens) and potential effects on child development and health. In addition, we aim to provide guidance and resources for pediatricians and other health care providers with counseling strategies to help patients to minimize exposures to common endocrine disrupting chemicals. Copyright © 2017 Mosby, Inc. All rights reserved.

  9. Sleep and the Endocrine System.

    PubMed

    Morgan, Dionne; Tsai, Sheila C

    2016-03-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Sleep and the endocrine system.

    PubMed

    Morgan, Dionne; Tsai, Sheila C

    2015-07-01

    In this article, the effect of sleep and sleep disorders on endocrine function and the influence of endocrine abnormalities on sleep are discussed. Sleep disruption and its associated endocrine consequences in the critically ill patient are also reviewed. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The gastrin-releasing peptide analog bombesin preserves exocrine and endocrine pancreas morphology and function during parenteral nutrition

    PubMed Central

    Pierre, Joseph F.; Neuman, Joshua C.; Brill, Allison L.; Brar, Harpreet K.; Thompson, Mary F.; Cadena, Mark T.; Connors, Kelsey M.; Busch, Rebecca A.; Heneghan, Aaron F.; Cham, Candace M.; Jones, Elaina K.; Kibbe, Carly R.; Davis, Dawn B.; Groblewski, Guy E.; Kudsk, Kenneth A.

    2015-01-01

    Stimulation of digestive organs by enteric peptides is lost during total parental nutrition (PN). Here we examine the role of the enteric peptide bombesin (BBS) in stimulation of the exocrine and endocrine pancreas during PN. BBS protects against exocrine pancreas atrophy and dysfunction caused by PN. BBS also augments circulating insulin levels, suggesting an endocrine pancreas phenotype. While no significant changes in gross endocrine pancreas morphology were observed, pancreatic islets isolated from BBS-treated PN mice showed a significantly enhanced insulin secretion response to the glucagon-like peptide-1 (GLP-1) agonist exendin-4, correlating with enhanced GLP-1 receptor expression. BBS itself had no effect on islet function, as reflected in low expression of BBS receptors in islet samples. Intestinal BBS receptor expression was enhanced in PN with BBS, and circulating active GLP-1 levels were significantly enhanced in BBS-treated PN mice. We hypothesized that BBS preserved islet function indirectly, through the enteroendocrine cell-pancreas axis. We confirmed the ability of BBS to directly stimulate intestinal enteroid cells to express the GLP-1 precursor preproglucagon. In conclusion, BBS preserves the exocrine and endocrine pancreas functions during PN; however, the endocrine stimulation is likely indirect, through the enteroendocrine cell-pancreas axis. PMID:26185331

  12. Avian genomics lends insights into endocrine function in birds.

    PubMed

    Mello, C V; Lovell, P V

    2018-01-15

    The genomics era has brought along the completed sequencing of a large number of bird genomes that cover a broad range of the avian phylogenetic tree (>30 orders), leading to major novel insights into avian biology and evolution. Among recent findings, the discovery that birds lack a large number of protein coding genes that are organized in highly conserved syntenic clusters in other vertebrates is very intriguing, given the physiological importance of many of these genes. A considerable number of them play prominent endocrine roles, suggesting that birds evolved compensatory genetic or physiological mechanisms that allowed them to survive and thrive in spite of these losses. While further studies are needed to establish the exact extent of avian gene losses, these findings point to birds as potentially highly relevant model organisms for exploring the genetic basis and possible therapeutic approaches for a wide range of endocrine functions and disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs

    PubMed Central

    Céspedes, María Virtudes; Fernández, Yolanda; Unzueta, Ugutz; Mendoza, Rosa; Seras-Franzoso, Joaquin; Sánchez-Chardi, Alejando; Álamo, Patricia; Toledo-Rubio, Verónica; Ferrer-Miralles, Neus; Vázquez, Esther; Schwartz, Simó; Abasolo, Ibane; Corchero, José Luis; Mangues, Ramon; Villaverde, Antonio

    2016-01-01

    In the human endocrine system many protein hormones including urotensin, glucagon, obestatin, bombesin and secretin, among others, are supplied from amyloidal secretory granules. These granules form part of the so called functional amyloids, which within the whole aggregome appear to be more abundant than formerly believed. Bacterial inclusion bodies (IBs) are non-toxic, nanostructured functional amyloids whose biological fabrication can be tailored to render materials with defined biophysical properties. Since under physiological conditions they steadily release their building block protein in a soluble and functional form, IBs are considered as mimetics of endocrine secretory granules. We have explored here if the in vivo implantation of functional IBs in a given tissue would represent a stable local source of functional protein. Upon intratumoral injection of bacterial IBs formed by a potent protein ligand of CXCR4 we have observed high stability and prevalence of the material in absence of toxicity, accompanied by apoptosis of CXCR4+ cells and tumor ablation. Then, the local immobilization of bacterial amyloids formed by therapeutic proteins in tumors or other tissues might represent a promising strategy for a sustained local delivery of protein drugs by mimicking the functional amyloidal architecture of the mammals’ endocrine system. PMID:27775083

  14. Bone and muscle endocrine functions: Unexpected paradigms of inter-organ communication

    PubMed Central

    Karsenty, Gerard; Olson, Eric N.

    2016-01-01

    Most physiological functions originate with the communication between organs. Mouse genetics has revived this holistic view of physiology through the identification of inter-organ communications that are unanticipated, functionally important and would have been difficult to uncover otherwise. This review highlights this point by showing how two tissues usually not seen as endocrine ones, bone and striated muscles, influence in a significant manner several physiological processes. PMID:26967290

  15. Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets

    PubMed Central

    Olivier, Alicia K.; Yi, Yaling; Sun, Xingshen; Sui, Hongshu; Liang, Bo; Hu, Shanming; Xie, Weiliang; Fisher, John T.; Keiser, Nicholas W.; Lei, Diana; Zhou, Weihong; Yan, Ziying; Li, Guiying; Evans, Turan I.A.; Meyerholz, David K.; Wang, Kai; Stewart, Zoe A.; Norris, Andrew W.; Engelhardt, John F.

    2012-01-01

    Diabetes is a common comorbidity in cystic fibrosis (CF) that worsens prognosis. The lack of an animal model for CF-related diabetes (CFRD) has made it difficult to dissect how the onset of pancreatic pathology influences the emergence of CFRD. We evaluated the structure and function of the neonatal CF endocrine pancreas using a new CFTR-knockout ferret model. Although CF kits are born with only mild exocrine pancreas disease, progressive exocrine and endocrine pancreatic loss during the first months of life was associated with pancreatic inflammation, spontaneous hyperglycemia, and glucose intolerance. Interestingly, prior to major exocrine pancreas disease, CF kits demonstrated significant abnormalities in blood glucose and insulin regulation, including diminished first-phase and accentuated peak insulin secretion in response to glucose, elevated peak glucose levels following glucose challenge, and variably elevated insulin and C-peptide levels in the nonfasted state. Although there was no difference in lobular insulin and glucagon expression between genotypes at birth, significant alterations in the frequencies of small and large islets were observed. Newborn cultured CF islets demonstrated dysregulated glucose-dependent insulin secretion in comparison to controls, suggesting intrinsic abnormalities in CF islets. These findings demonstrate that early abnormalities exist in the regulation of insulin secretion by the CF endocrine pancreas. PMID:22996690

  16. ENDOCRINE-DISRUPTING CHEMICALS: PREPUBERTAL EXPOSURES AND EFFECTS ON SEXUAL MATURATION AND THYROID FUNCTION IN THE MALE RAT. A FOCUS ON THE EDSTAC RECOMMENDATIONS. ENDOCRINE DISRUPTER SCREENING AND TESTING ADVISORY COMMITTEE

    EPA Science Inventory

    Endocrine-disrupting chemicals: prepubertal exposures and effects on sexual maturation and thyroid function in the male rat. A focus on the EDSTAC recommendations. Endocrine Disrupter Screening and Testing Advisory Committee.

    Stoker TE, Parks LG, Gray LE, Cooper RL.

  17. Endocrine system: part 1.

    PubMed

    Johnstone, Carolyn; Hendry, Charles; Farley, Alistair; McLafferty, Ella

    2014-05-27

    This article, which forms part of the life sciences series and is the first of two articles on the endocrine system, examines the structure and function of the organs of the endocrine system. It is important that nurses understand how the endocrine system works and its role in maintaining health. The role of the endocrine system and the types, actions and control of hormones are explored. The gross structure of the pituitary and thyroid glands are described along with relevant physiology. Several disorders of the thyroid gland are outlined. The second article examines growth hormone, the pancreas and adrenal glands.

  18. Food odors trigger an endocrine response that affects food ingestion and metabolism.

    PubMed

    Lushchak, Oleh V; Carlsson, Mikael A; Nässel, Dick R

    2015-08-01

    Food odors stimulate appetite and innate food-seeking behavior in hungry animals. The smell of food also induces salivation and release of gastric acid and insulin. Conversely, sustained odor exposure may induce satiation. We demonstrate novel effects of food odors on food ingestion, metabolism and endocrine signaling in Drosophila melanogaster. Acute exposure to attractive vinegar odor triggers a rapid and transient increase in circulating glucose, and a rapid upregulation of genes encoding the glucagon-like hormone adipokinetic hormone (AKH), four insulin-like peptides (DILPs) and some target genes in peripheral tissues. Sustained exposure to food odors, however, decreases food intake. Hunger-induced strengthening of synaptic signaling from olfactory sensory neurons (OSNs) to brain neurons increases food-seeking behavior, and conversely fed flies display reduced food odor sensitivity and feeding. We show that increasing the strength of OSN signaling chronically by genetic manipulation of local peptide neuromodulation reduces feeding, elevates carbohydrates and diminishes lipids. Furthermore, constitutively strengthened odor sensitivity altered gene transcripts for AKH, DILPs and some of their targets. Thus, we show that food odor can induce a transient anticipatory endocrine response, and that boosted sensitivity to this odor affects food intake, as well as metabolism and hormonal signaling.

  19. Endocrine system and obesity.

    PubMed

    Ashburn, Doyle D; Reed, Mary Jane

    2010-10-01

    Obesity is associated with significant alterations in endocrine function. An association with type 2 diabetes mellitus and dyslipidemia has been well documented. This article highlights the complexities of treating endocrine system disorders in obese patients. Copyright © 2010. Published by Elsevier Inc.

  20. Endocrine Disruptors (Chapter 14) in Mammalian Toxicology Book

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) are exogenous substances that alter endocrine system function(s) and consequently cause adverse health effects in intact organisms or its progeny. The endocrine system is important for a wide range of biological processes, from normal cell si...

  1. Endocrine disruption, parasites and pollutants in wild freshwater fish.

    PubMed

    Jobling, S; Tyler, C R

    2003-01-01

    Disruption of the endocrine system has been shown to occur in wild freshwater fish populations across the globe. Effects range from subtle changes in the physiology and sexual behaviour of fish to permanently altered sexual differentiation, impairment of gonad development and/or altered fertility. A wide variety of adverse environmental conditions may induce endocrine disruption, including sub-optimal temperatures, restricted food supply, low pH, environmental pollutants, and/or parasites. Furthermore, it is conceivable that any/all of these factors could act simultaneously to cause a range of disparate or inter-related effects. Some of the strongest evidence for a link between an adverse health effect, as a consequence of endocrine disruption, and a causative agent(s) is between the condition of intersex in wild roach (Rutlius rutilus) in UK rivers and exposure to effluents from sewage treatment works. The evidence to indicate that intersex in roach (and other cyprinid fish living in these rivers) is caused by chemicals that mimic and/or disrupt hormone function/balance in treated sewage effluent is substantial. There are a few parasites that affect the endocrine system directly in fish, including the tape worm Ligula intestinalis and a few parasites from the micropsora phylum. L. intestinalis acts at the level of the hypothalamus restricting GnRH secretion (resulting in poorly developed gonads) and is one of the very few examples where an endocrine disrupting event has been shown to result in a population-level effect (reducing it). It is well established that many parasites affect the immune system and thus the most common effect of parasites on the endocrine system in fish is likely to be an indirect one.

  2. Elucidating the Links Between Endocrine Disruptors and Neurodevelopment

    PubMed Central

    Blawas, Ashley M.; Gray, Kimberly; Heindel, Jerrold J.; Lawler, Cindy P.

    2015-01-01

    Recent data indicate that approximately 12% of children in the United States are affected by neurodevelopmental disorders, including attention deficit hyperactivity disorder, learning disorders, intellectual disabilities, and autism spectrum disorders. Accumulating evidence indicates a multifactorial etiology for these disorders, with social, physical, genetic susceptibility, nutritional factors, and chemical toxicants acting together to influence risk. Exposure to endocrine-disrupting chemicals during the early stages of life can disrupt normal patterns of development and thus alter brain function and disease susceptibility later in life. This article highlights research efforts and pinpoints approaches that could shed light on the possible associations between environmental chemicals that act on the endocrine system and compromised neurodevelopmental outcomes. PMID:25714811

  3. ANALYTICAL CHALLENGES OF ENVIRONMENTAL ENDOCRINE DISRUPTOR MONITORING

    EPA Science Inventory

    Reported increases in the incidence of endocrine-related conditions have led to speculation about environmental causes. Environmental scientists are focusing increased research effort into understanding the mechanisms by which endocrine disruptors affect human and ecological h...

  4. Avian endocrine responses to environmental pollutants

    USGS Publications Warehouse

    Rattner, B.A.; Eroschenko, V.P.; Fox, G.A.; Fry, D.M.; Gorsline, J.

    1984-01-01

    Many environmental contaminants are hazardous to populations of wild birds. Chlorinated hydrocarbon pesticides and industrial pollutants are thought to be responsible for population declines of several species of predatory birds through eggshell thinning. Studies have demonstrated that these contaminants have estrogenic potency and may affect the functioning of the gonadal and thyroidal endocrine subsystems. Petroleum crude oil exerts toxicity externally, by oiling of plumage, and internally, by way of ingestion of oil while feeding or preening. Extensive ultrastructural damage to the inner zone of the adrenal, diminished adrenal responsiveness to adrenocorticotrophic hormone, and reduced corticosterone secretion rate suggest that low levels of plasma corticosterone reflect a direct effect of petroleum on the adrenal gland. Suppressive effects of oil on the ovary and decreases in circulating prolactin have been associated with impaired reproductive function. Large-scale field studies of free-living seabirds have confirmed some of the inhibitory effects of oil on reproduction that have been observed in laboratory studies. Organophosphorus insecticides, representing the most widely used class of pesticides in North America, have been shown to impair reproductive function, possibly by altering secretion of luteinizing hormone and progesterone. Relevant areas of future research on the effects of contaminants on avian endocrine function are discussed.

  5. Fluoride caused thyroid endocrine disruption in male zebrafish (Danio rerio).

    PubMed

    Jianjie, Chen; Wenjuan, Xue; Jinling, Cao; Jie, Song; Ruhui, Jia; Meiyan, Li

    2016-02-01

    Excessive fluoride in natural water ecosystem has the potential to detrimentally affect thyroid endocrine system, but little is known of such effects or underlying mechanisms in fish. In the present study, we evaluated the effects of fluoride on growth performance, thyroid histopathology, thyroid hormone levels, and gene expressions in the HPT axis in male zebrafish (Danio rerio) exposed to different determined concentrations of 0.1, 0.9, 2.0 and 4.1 M of fluoride to investigate the effects of fluoride on thyroid endocrine system and the potential toxic mechanisms caused by fluoride. The results indicated that the growth of the male zebrafish used in the experiments was significantly inhibited, the thyroid microtrastructure was changed, and the levels of T3 and T4 were disturbed in fluoride-exposed male fish. In addition, the expressional profiles of genes in HPT axis displayed alteration. The expressions of all studied genes were significantly increased in all fluoride-exposed male fish after exposure for 45 days. The transcriptional levels of corticotrophin-releasing hormone (CRH), thyroid-stimulating hormone (TSH), thyroglobulin (TG), sodium iodide symporter (NIS), iodothyronine I (DIO1), and thyroid hormone receptor alpha (TRα) were also elevated in all fluoride-exposed male fish after 90 days of exposure, while the inconsistent expressions were found in the mRNA of iodothyronineⅡ (DIO2), UDP glucuronosyltransferase 1 family a, b (UGT1ab), transthyretin (TTR), and thyroid hormone receptor beta (TRβ). These results demonstrated that fluoride could notably inhibit the growth of zebrafish, and significantly affect thyroid endocrine system by changing the microtrastructure of thyroid, altering thyroid hormone levels and endocrine-related gene expressions in male zebrafish. All above indicated that fluoride could pose a great threat to thyroid endocrine system, thus detrimentally affected the normal function of thyroid of male zebrafish. Copyright © 2015

  6. A GLOBAL PERSPECTIVE ON ENDOCRINE DISRUPTION, WITH COMMENTS ON THE US EXPERIENCE

    EPA Science Inventory

    The last two decades have witnessed a growing concern for chemicals that have the potential to adversely affect the normal functioning of the endocrine system. The International Programme on Chemical Safety (IPCS) of the World Health Organization has recently reviewed the curren...

  7. Restoring Ovarian Endocrine Function with Encapsulated Ovarian Allograft in Immune Competent Mice

    PubMed Central

    David, Anu; Day, James Ronald; Cichon, Alexa Leigh; Lefferts, Adam; Cascalho, Marilia; Shikanov, Ariella

    2017-01-01

    Premature ovarian insufficiency (POI) is a major complication of cytotoxic treatments due to extreme ovarian sensitivity to chemotherapy and radiation. In pediatric cancer patients modern therapy has improved the long-term survival to over 80% in the United States. However, these cancer survivors face long-term health problems related to treatment toxicity. In female cancer survivors POI leads to sterility, along with the consequences of estrogen deficiency such as premature osteopenia, muscle wasting, accelerated cardiovascular diseases and a vast array of other health and developmental problems. These long-lasting effects are particularly significant for young girls reaching puberty. As such, restoring ovarian endocrine function is paramount in this population. In the present study, we evaluated the feasibility of restoring ovarian endocrine function in ovariectomized mice by transplanting syngeneic and allogeneic ovarian tissue encapsulated in alginate capsules or TheraCyte®. Histological analysis of the implants retrieved after 7 and 30 days' post implantation showed follicular development up to the secondary and antral stages in both syngeneic and allogeneic implants. Implantation of syngeneic and allogeneic ovarian grafts encapsulated in TheraCyte devices restored ovarian endocrine function, which was confirmed by decreased serum FSH levels from 60 to 70 ng/mL in ovariectomized mice to 30–40 ng/mL 30 days after implantation. Absence of allo-MHC—specific IgG and IgM antibodies in the sera of implanted mice with allogeneic ovarian tissue encapsulated in TheraCyte indicate that the implants did not evoke an allo-immune response, while the allogeneic controls were rejected 21 days after implantation. Our results show that TheraCyte effectively isolates the graft from immune recognition but also supports follicular growth. PMID:28028710

  8. Restoring Ovarian Endocrine Function with Encapsulated Ovarian Allograft in Immune Competent Mice.

    PubMed

    David, Anu; Day, James Ronald; Cichon, Alexa Leigh; Lefferts, Adam; Cascalho, Marilia; Shikanov, Ariella

    2017-07-01

    Premature ovarian insufficiency (POI) is a major complication of cytotoxic treatments due to extreme ovarian sensitivity to chemotherapy and radiation. In pediatric cancer patients modern therapy has improved the long-term survival to over 80% in the United States. However, these cancer survivors face long-term health problems related to treatment toxicity. In female cancer survivors POI leads to sterility, along with the consequences of estrogen deficiency such as premature osteopenia, muscle wasting, accelerated cardiovascular diseases and a vast array of other health and developmental problems. These long-lasting effects are particularly significant for young girls reaching puberty. As such, restoring ovarian endocrine function is paramount in this population. In the present study, we evaluated the feasibility of restoring ovarian endocrine function in ovariectomized mice by transplanting syngeneic and allogeneic ovarian tissue encapsulated in alginate capsules or TheraCyte ® . Histological analysis of the implants retrieved after 7 and 30 days' post implantation showed follicular development up to the secondary and antral stages in both syngeneic and allogeneic implants. Implantation of syngeneic and allogeneic ovarian grafts encapsulated in TheraCyte devices restored ovarian endocrine function, which was confirmed by decreased serum FSH levels from 60 to 70 ng/mL in ovariectomized mice to 30-40 ng/mL 30 days after implantation. Absence of allo-MHC-specific IgG and IgM antibodies in the sera of implanted mice with allogeneic ovarian tissue encapsulated in TheraCyte indicate that the implants did not evoke an allo-immune response, while the allogeneic controls were rejected 21 days after implantation. Our results show that TheraCyte effectively isolates the graft from immune recognition but also supports follicular growth.

  9. Endocrine Function In Naturally Long-Living Small Mammals

    PubMed Central

    Buffenstein, Rochelle; Pinto, Mario

    2015-01-01

    The complex, highly integrative endocrine system regulates all aspects of somatic maintenance and reproduction and has been widely implicated as an important determinant of longevity in short-lived traditional model organisms of aging research. Genetic or experimental manipulation of hormone profiles in mice has been proven to definitively alter longevity. These hormonally induced lifespan extension mechanisms may not necessarily be relevant to humans and other long-lived organisms that naturally show successful slow aging. Long-lived species may have evolved novel anti-aging defenses germane to naturally retarding the aging process. Here we examine the available endocrine data associated with the vitamin D, insulin, grlucocorticoid and thyroid endocrine systems of naturally long-living small mammals. Generally, long-living rodents and bats maintain tightly regulated lower basal levels of these key pleiotropic hormones than shorter-lived rodents. Similarities with genetically manipulated suggest that evolutionarily wellconserved hormonal mechanisms are integrally involved in lifespan determination. PMID:18674586

  10. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury.

    PubMed

    Reifschneider, Kent; Auble, Bethany A; Rose, Susan R

    2015-07-31

    Traumatic brain injuries (TBI) are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children's quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6-12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life.

  11. Update of Endocrine Dysfunction following Pediatric Traumatic Brain Injury

    PubMed Central

    Reifschneider, Kent; Auble, Bethany A.; Rose, Susan R.

    2015-01-01

    Traumatic brain injuries (TBI) are common occurrences in childhood, often resulting in long term, life altering consequences. Research into endocrine sequelae following injury has gained attention; however, there are few studies in children. This paper reviews the pathophysiology and current literature documenting risk for endocrine dysfunction in children suffering from TBI. Primary injury following TBI often results in disruption of the hypothalamic-pituitary-adrenal axis and antidiuretic hormone production and release, with implications for both acute management and survival. Secondary injuries, occurring hours to weeks after TBI, result in both temporary and permanent alterations in pituitary function. At five years after moderate to severe TBI, nearly 30% of children suffer from hypopituitarism. Growth hormone deficiency and disturbances in puberty are the most common; however, any part of the hypothalamic-pituitary axis can be affected. In addition, endocrine abnormalities can improve or worsen with time, having a significant impact on children’s quality of life both acutely and chronically. Since primary and secondary injuries from TBI commonly result in transient or permanent hypopituitarism, we conclude that survivors should undergo serial screening for possible endocrine disturbances. High indices of suspicion for life threatening endocrine deficiencies should be maintained during acute care. Additionally, survivors of TBI should undergo endocrine surveillance by 6–12 months after injury, and then yearly, to ensure early detection of deficiencies in hormonal production that can substantially influence growth, puberty and quality of life. PMID:26287247

  12. Environmental epigenetics: a role in endocrine disease?

    PubMed

    Fleisch, Abby F; Wright, Robert O; Baccarelli, Andrea A

    2012-10-01

    Endocrine disrupting chemicals that are structurally similar to steroid or amine hormones have the potential to mimic endocrine endpoints at the receptor level. However, more recently, epigenetic-induced alteration in gene expression has emerged as an alternative way in which environmental compounds may exert endocrine effects. We review concepts related to environmental epigenetics and relevance for endocrinology through three broad examples: 1) effect of early-life nutritional exposures on future obesity and insulin resistance, 2) effect of lifetime environmental exposures such as ionizing radiation on endocrine cancer risk, and 3) potential for compounds previously classified as endocrine disrupting to additionally or alternatively exert effects through epigenetic mechanisms. The field of environmental epigenetics is still nascent, and additional studies are needed to confirm and reinforce data derived from animal models and preliminary human studies. Current evidence suggests that environmental exposures may significantly impact expression of endocrine-related genes and thereby affect clinical endocrine outcomes.

  13. [Disperse endocrine system and APUD concept].

    PubMed

    Mil'to, I V; Sukhodolo, I V; Gereng, E A; Shamardina, L A

    2011-01-01

    This review describes the problems of disperse endocrine system and APUD-system morphology, summarizes some debatable issues of single endocrine cell biology. The data presented refer to the history of both systems discovery, morphological methods of their study, developmental sources, their structural organization and physiological roles of their cells. The significance of single endocrine cells in the regulation of the organism functions is discussed.

  14. Threshold-dependent cooperativity of Pdx1 and Oc1 in pancreatic progenitors establishes competency for endocrine differentiation and β-cell function

    PubMed Central

    Wright, Christopher V.E.; Won, Kyoung-Jae

    2016-01-01

    Summary Pdx1 and Oc1 are co-expressed in multipotent pancreatic progenitors and regulate the pro-endocrine gene Neurog3. Their expression diverges in later organogenesis, with Oc1 absent from hormone+ cells and Pdx1 maintained in mature β cells. In a classical genetic test for cooperative functional interactions, we derived mice with combined Pdx1 and Oc1 heterozygosity. Endocrine development in double-heterozygous pancreata was normal at embryonic day (e)13.5, but defects in specification and differentiation were apparent at e15.5, the height of the second wave of differentiation. Pancreata from double heterozygotes showed alterations in the expression of genes crucial for β-cell development and function, decreased numbers and altered allocation of Neurog3-expressing endocrine progenitors, and defective endocrine differentiation. Defects in islet gene expression and β-cell function persisted in double heterozygous neonates. These results suggest that Oc1 and Pdx1 cooperate prior to their divergence, in pancreatic progenitors, to allow for proper differentiation and functional maturation of β cells. PMID:27292642

  15. Endocrine disrupting chemicals affect the adipogenic differentiation of mesenchymal stem cells in distinct ontogenetic windows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biemann, Ronald, E-mail: ronald.biemann@medizin.uni-halle.de; Navarrete Santos, Anne; Navarrete Santos, Alexander

    Highlights: Black-Right-Pointing-Pointer Endocrine disrupting chemicals affect adipogenesis in mesenchymal stem cells (MSC). Black-Right-Pointing-Pointer The adipogenic impact depends strongly on the window of exposure. Black-Right-Pointing-Pointer Bisphenol A reduces the potential of MSC to differentiate into adipocytes. Black-Right-Pointing-Pointer DEHP and TBT trigger the adipogenic differentiation of mesenchymal stem cells. Black-Right-Pointing-Pointer BPA, DEHP and TBT did not affect adipogenesis in embryonic stem cells. -- Abstract: Endocrine disrupting chemicals (EDC) like bisphenol A (BPA), bis(2-ethylhexyl)phthalate (DEHP) and tributyltin (TBT) are ubiquitously present in the environment and in human tissues. They bind to nuclear hormone receptors and affect cellular and developmental processes. In this study,more » we show that BPA, DEHP and TBT affect the adipogenic differentiation of murine mesenchymal stem cells (MSC, C3H/10T1/2) in a concentration-, stage- and compound-specific manner. C3H/10T1/2 cells and embryonic stem cells (CGR8) were exposed to BPA, DEHP or TBT at different stages of cell determination and differentiation (undifferentiated growth, adipogenic induction and terminal adipogenic differentiation). The final amount of differentiated adipocytes, cellular triglyceride content and mRNA expression of adipogenic marker genes (adiponectin, FABP4, PPAR{gamma}2, LPL) were quantified and compared with corresponding unexposed cells. BPA (10 {mu}M) decreased subsequent adipogenic differentiation of MSC, when cells were exposed during undifferentiated growth. In contrast, DEHP (100 {mu}M) during the hormonal induction period, and TBT (100 nM) in all investigated stages, enhanced adipogenesis. Importantly, exposure of undifferentiated murine embryonic stem cells did not show any effect of the investigated EDC on subsequent adipogenic differentiation.« less

  16. Endocrine Profiling and Prioritization Using ToxCast Assays

    EPA Science Inventory

    The U.S. EPA's Endocrine Disruptor Screening Program (EDSP) is charged with screening pesticide chemicals and environmental contaminants for their potential to affect the endocrine systems of humans and wildlife (http://www.epa.gov/endo/). The prioritization of chemicals for test...

  17. The Endocrine Machinery.

    ERIC Educational Resources Information Center

    Fillman, David

    1987-01-01

    Promotes a reductionist approach to teaching about the endocrine system in high school biology and anatomy courses. Encourages the study of how hormones travel to the cells and affect them. Provides suggestions for activities and discussion questions, along with sample diagrams and flow charts. (TW)

  18. Feeding rates affect growth, intestinal digestive and absorptive capabilities and endocrine functions of juvenile blunt snout bream Megalobrama amblycephala.

    PubMed

    Xu, Chao; Li, Xiang-Fei; Tian, Hong-Yan; Jiang, Guang-Zhen; Liu, Wen-Bin

    2016-04-01

    This study aimed to investigate the optimal feeding rate for juvenile blunt snout bream (average initial weight 23.74 ± 0.09 g) based on the results on growth performance, intestinal digestive and absorptive capabilities and endocrine functions. A total of 840 fish were randomly distributed into 24 cages and fed a commercial feed at six feeding rates ranging from 2.0 to 7.0% body weight (BW)/day. The results indicated that weight gain rate increased significantly (P < 0.05) as feeding rates increased from 2.0 to 5.0% BW/day, but decreased with the further increasing feeding rates (P > 0.05). Protein efficiency ratio and nitrogen and energy retention all showed a similar trend. However, feed conversion ratio increased significantly (P < 0.05) with increasing feeding rates. Feeding rates have little effects (P > 0.05) on whole-body moisture, ash and protein contents, but significantly (P < 0.05) affect both lipid and energy contents with the highest values both observed in fish fed 4.0% BW/day. In addition, moderate ration sizes (2.0-4.0% BW/day) resulted in the enhanced activities of intestinal enzymes, including lipase, protease, Na(+), K(+)-ATPase, alkaline phosphatase and creatine kinase. Furthermore, the mRNA levels of growth hormone, insulin-like growth factors-I, growth hormone receptor and neuropeptide all increased significantly (P < 0.05) as feeding rates increased from 2.0 to 5.0% and 6.0% BW/day, but decreased significantly (P < 0.05) with the further increase in feeding rates, whereas both leptin and cholecystokinin expressions showed an opposite trend. Based on the broken-line regression analysis of SGR against feeding rates, the optimal feeding rate for juvenile blunt snout bream was estimated to be 4.57% BW/day.

  19. Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management.

    PubMed

    Sznol, Mario; Postow, Michael A; Davies, Marianne J; Pavlick, Anna C; Plimack, Elizabeth R; Shaheen, Montaser; Veloski, Colleen; Robert, Caroline

    2017-07-01

    Agents that modulate immune checkpoint proteins, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death receptor-1 (PD-1), have become a mainstay in cancer treatment. The clinical benefit afforded by immune checkpoint inhibitors can be accompanied by immune-related adverse events (irAE) that affect the skin, gastrointestinal tract, liver, and endocrine system. The types of irAEs associated with immune checkpoint inhibitors are generally consistent across tumor types. Immune-related endocrine events can affect the pituitary, thyroid, and adrenal glands, as well as other downstream target organs. These events are unique when compared with other irAEs because the manifestations are often irreversible. Immune-related endocrine events are typically grade 1/2 in severity and often present with non-specific symptoms, making them difficult to diagnose. The mechanisms underlying immune-related target organ damage in select individuals remain mostly undefined. Management includes close patient monitoring, appropriate laboratory testing for endocrine function, replacement of hormones, and consultation with an endocrinologist when appropriate. An awareness of the symptoms and management of immune-related endocrine events may aid in the safe and appropriate use of immune checkpoint inhibitors in clinical practice. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. NASH in Nondiabetic Endocrine Disorders.

    PubMed

    Wang, Timothy; Yang, Wei; Karakas, Sidika; Sarkar, Souvik

    2018-06-06

    Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of disease, including hepatic steatosis, inflammation, and fibrosis. NAFLD carries the risk of progression to cirrhosis with its associated complications and hepatocellular carcinoma. It is now the most common liver disease in the Western world and its prevalence is increasing. While the association between NAFLD and type 2 diabetes has been well documented, there is significantly less understanding of the pathophysiology and progression of NAFLD in patients with other endocrine disorders affecting metabolism in various ways. Some of the more common endocrine disorders such as polycystic ovarian syndrome, growth hormone deficiency, hypothyroidism, and hypogonadism are known in clinical practice to be associated with NAFLD. Medications that alter the endocrine system such as tamoxifen and adrenal steroids have also been attributed to significant NAFLD. The key to management of NAFLD at this time are dietary changes and exercise to achieve weight loss. Unfortunately, a large proportion of the patients with these endocrine disorders are unable to achieve either. This review aims to examine and summarize the current published literature that have evaluated the association between NAFLD and the above endocrine disorders and potential therapeutic interventions in each case.

  1. Changes of Pain Perception, Autonomic Function, and Endocrine Parameters during Treatment of Anorectic Adolescents

    ERIC Educational Resources Information Center

    Bar, Karl-Jurgen; Boettger, Silke; Wagner, Gerd; Wilsdorf, Christine; Gerhard, Uwe Jens; Boettger, Michael K.; Blanz, Bernhard; Sauer, Heinrich

    2006-01-01

    Objectives: The underlying mechanisms of reduced pain perception in anorexia nervosa (AN) are unknown. To gain more insight into the pathology, the authors investigated pain perception, autonomic function, and endocrine parameters before and during successful treatment of adolescent AN patients. Method: Heat pain perception was assessed in 15…

  2. Exhaustion and endocrine functioning in clinical burnout: an in-depth study using the experience sampling method.

    PubMed

    Sonnenschein, Mieke; Mommersteeg, Paula M C; Houtveen, Jan H; Sorbi, Marjolijn J; Schaufeli, Wilmar B; van Doornen, Lorenz J P

    2007-05-01

    The current study investigates the relationship between HPA-axis functioning and burnout symptoms by employing an electronic symptom diary. This diary method circumvents the retrospection bias induced by symptom questionnaires and allows to study relationships within-in addition to between-subjects. Forty two clinically burned-out participants completed the exhaustion subscale of the Maslach burnout inventory and kept an electronic diary for 2 weeks to assess momentary exhaustion and daily recovery through sleep. On 3 consecutive weekdays within the diary period, saliva was sampled to determine the cortisol awakening response (CAR), levels of dehydroepiandrosterone-sulphate (DHEAS) on the first 2 weekdays, and to conduct the dexamethasone suppression test (DST) on the third weekday. We found significant relationships between endocrine values and general momentary symptom severity as assessed with the diary, but not with the retrospective questionnaire-assessed burnout symptoms. Simultaneous assessments of endocrine values and burnout symptoms assessed with the diary after awakening rendered significant associations between persons, and a trend within persons. More severe burnout symptoms were consistently associated with a lower level and smaller increase of CAR, higher DHEAS levels, smaller cortisol/DHEAS ratios and a stronger suppression after DST. Burnout symptoms were significantly related to endocrine functioning in clinical burnout under the best possible conditions of symptom measurement. This adds support to the view that severity of burnout symptoms is associated with HPA-axis functioning.

  3. SCIENTIFIC AND TECHNOLOGICAL SUPPORT ON IN VITRO ASSAYS FOR THE AGENCY'S ENDOCRINE DISRUPTOR SCREENING PROGRAM

    EPA Science Inventory

    In response to the 1996 legislative mandate for an endocrine screening and testing program, we are helping develop, standardize and validate relatively sensitive, robust and relatively simple methods for in vitro screening of chemicals that affect estrogen, and androgen function ...

  4. Development of a Computational Model for Female Fathead Minnows exposed to Two Endocrine Disrupting Chemicals

    EPA Science Inventory

    Endocrine disrupting chemicals (e.g., estrogens and androgens) are known to affect reproductive functions in fish. A synthetic estrogen used in birth control pills, 17á-ethynylestradiol (EE2), is discharged from wastewater treatment plants into water bodies throughout the United ...

  5. New Roles of Carboxypeptidase E in Endocrine and Neural Function and Cancer

    PubMed Central

    Cawley, Niamh X.; Wetsel, William C.; Murthy, Saravana R. K.; Park, Joshua J.; Pacak, Karel

    2012-01-01

    Carboxypeptidase E (CPE) or carboxypeptidase H was first discovered in 1982 as an enkephalin-convertase that cleaved a C-terminal basic residue from enkephalin precursors to generate enkephalin. Since then, CPE has been shown to be a multifunctional protein that subserves many essential nonenzymatic roles in the endocrine and nervous systems. Here, we review the phylogeny, structure, and function of CPE in hormone and neuropeptide sorting and vesicle transport for secretion, alternative splicing of the CPE transcript, and single nucleotide polymorphisms in humans. With this and the analysis of mutant and knockout mice, the data collectively support important roles for CPE in the modulation of metabolic and glucose homeostasis, bone remodeling, obesity, fertility, neuroprotection, stress, sexual behavior, mood and emotional responses, learning, and memory. Recently, a splice variant form of CPE has been found to be an inducer of tumor growth and metastasis and a prognostic biomarker for metastasis in endocrine and nonendocrine tumors. PMID:22402194

  6. Psychosocial approach to endocrine disease.

    PubMed

    Sonino, Nicoletta; Tomba, Elena; Fava, Giovanni A

    2007-01-01

    In recent years, there has been growing interest in the psychosocial aspects of endocrine disease, such as the role of life stress in the pathogenesis of some conditions, their association with affective disorders, and the presence of residual symptoms after adequate treatment. In clinical endocrinology, exploration of psychosocial antecedents may elucidate the temporal relationships between life events and symptom onset, as it has been shown to be relevant for pituitary (Cushing's disease, hyperprolactinemia) or thyroid (Graves' disease) conditions, as well as the role of allostatic load, linked to chronic stress, in uncovering a person's vulnerability. After endocrine abnormalities are established, they are frequently associated with a wide range of psychological symptoms: at times, such symptoms reach the level of psychiatric illness (mainly mood and anxiety disorders); at other times, however, they can only be identified by the subclinical forms of assessment provided by the Diagnostic Criteria for Psychosomatic Research (DCPR). Indeed, in a population study, the majority of patients suffered from at least one of the three DCPR syndromes considered: irritable mood, demoralization, persistent somatization. In particular, irritable mood was found to occur in 46% of 146 patients successfully treated for endocrine conditions, a rate similar to that found in cardiology and higher than in oncology and gastroenterology. Long-standing endocrine disorders may imply a degree of irreversibility of the pathological process and induce highly individualized affective responses. In patients who showed persistence or even worsening of psychological distress upon proper endocrine treatment, the value of appropriate psychiatric interventions was underscored. As it happened in other fields of clinical medicine, a conceptual shift from a merely biomedical care to a psychosomatic consideration of the person and his/her quality of life appears to be necessary for improving

  7. An environmentally relevant endocrine-disrupting antiandrogen, vinclozolin, affects calling behavior of male Xenopus laevis.

    PubMed

    Hoffmann, Frauke; Kloas, Werner

    2010-09-01

    Vinclozolin (VIN) is an antiandrogenic model substance as well as a common fungicide that can affect the endocrine system of vertebrates. The objective of this study was to investigate how VIN affects mate calling behavior of South African clawed frogs (Xenopus laevis) and whether it is effective at environmentally relevant concentrations. Male X. laevis were injected with human chorionic gonadotropin (hCG) to stimulate their androgen-controlled mate calling behavior and were treated with VIN at concentrations of 10(-6), 10(-8) and 10(-10)M. VIN at 10(-6)M reduced calling activity. Furthermore, the vocalization composition of VIN-treated X. laevis was altered. The call types advertisement calls and chirping are uttered by reproductively active males, whereas the call types growling, ticking, and rasping indicate a sexually unaroused state of a male. VIN at any of the tested concentrations led to a decrease in utterance of calls, which indicate a sexually aroused state of the males, and an increase in relative proportions of calls, indicating a sexually unaroused state of the males. Additionally, the mean duration of clicks and the number of accentuated clicks during the advertisement calls decreased at all concentrations of VIN. No significant differences were observed in any other temporal or spectral calling parameters between the treatments. This study illustrates that exposure to the antiandrogen VIN might result in a reduced reproductive success by altering mate calling behavior of X. laevis. Moreover, it suggests that the behavioral parameters examined in this study can be used as sensitive biomarkers for detecting antiandrogenic endocrine disrupting compounds in amphibians. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  8. Differential levels of Neurod establish zebrafish endocrine pancreas cell fates

    PubMed Central

    Dalgin, Gökhan; Prince, Victoria E.

    2015-01-01

    During development a network of transcription factors functions to differentiate foregut cells into pancreatic endocrine cells. Differentiation of appropriate numbers of each hormone-expressing endocrine cell type is essential for the normal development of the pancreas and ultimately for effective maintenance of blood glucose levels. A fuller understanding of the details of endocrine cell differentiation may contribute to development of cell replacement therapies to treat diabetes. In this study, by using morpholino and gRNA/Cas9 mediated knockdown we establish that differential levels of the basic-helix loop helix (bHLH) transcription factor Neurod are required for the differentiation of distinct endocrine cell types in developing zebrafish. While Neurod plays a role in the differentiation of all endocrine cells, we find that differentiation of glucagon-expressing alpha cells is disrupted by a minor reduction in Neurod levels, whereas differentiation of insulin-expressing beta cells is less sensitive to Neurod depletion. The endocrine cells that arise during embryonic stages to produce the primary islet, and those that arise subsequently during larval stages from the intra-pancreatic duct (IPD) to ultimately contribute to the secondary islets, show similar dependence on differential Neurod levels. Intriguingly, Neurod-deficiency triggers premature formation of endocrine precursors from the IPD during early larval stages. However, the Neurod-deficient endocrine precursors fail to differentiate appropriately, and the larvae are unable to maintain normal glucose levels. In summary, differential levels of Neurod are required to generate endocrine pancreas subtypes from precursors during both embryonic and larval stages, and Neurod function is in turn critical to endocrine function. PMID:25797153

  9. Defining pancreatic endocrine precursors and their descendants.

    PubMed

    White, Peter; May, Catherine Lee; Lamounier, Rodrigo N; Brestelli, John E; Kaestner, Klaus H

    2008-03-01

    The global incidence of diabetes continues to increase. Cell replacement therapy and islet transplantation offer hope, especially for severely affected patients. Efforts to differentiate insulin-producing beta-cells from progenitor or stem cells require knowledge of the transcriptional programs that regulate the development of the endocrine pancreas. Differentiation toward the endocrine lineage is dependent on the transcription factor Neurogenin 3 (Neurog3, Ngn3). We utilize a Neurog3-enhanced green fluorescent protein knock-in mouse model to isolate endocrine progenitor cells from embryonic pancreata (embryonic day [E]13.5 through E17.5). Using advanced genomic approaches, we generate a comprehensive gene expression profile of these progenitors and their immediate descendants. A total of 1,029 genes were identified as being temporally regulated in the endocrine lineage during fetal development, 237 of which are transcriptional regulators. Through pathway analysis, we have modeled regulatory networks involving these proteins that highlight the complex transcriptional hierarchy governing endocrine differentiation. We have been able to accurately capture the gene expression profile of the pancreatic endocrine progenitors and their descendants. The list of temporally regulated genes identified in fetal endocrine precursors and their immediate descendants provides a novel and important resource for developmental biologists and diabetes researchers alike.

  10. Toxicological assessment of drugs that affect the endocrine system in puberty-related disorders.

    PubMed

    Maranghi, Francesca; Tassinari, Roberta; Mantovani, Alberto

    2013-10-01

    Toxicologists must ensure that clinical risk-to-benefit analysis should be made both for genders and age groups, with any treatment. Puberty concerns physiological changes leading to organism's maturation. Pubertal growth disorders are increasing in last decades: besides causing physical and psychological distress, they may signal underlying endocrine-metabolic abnormalities with serious health consequences later on. Therapeutic approaches for some health conditions in childhood and adolescence are considered. The authors discuss how some diseases and treatments can impact pubertal growth. The authors look at particular immunological disorders such as asthma and how both the disease and treatment affects pubertal growth. They also discuss how the provision of available data can help to assess the dose-response of the drug, in these cases, and minimize the chance of side effects. The authors also discuss pediatric inflammatory bowel disease and how both the disease and treatment can mitigate the growth delay. Last, but not least, the authors discuss how the effects of the drugs used in the treatment of psychiatric disorders may accentuate endocrine issues in juvenile patients. Hyperprolactinemia induction by some antipsychotics is highlighted as an example. Appropriate risk-benefit analysis of drugs prescribed during childhood and adolescence and intended to be used in the long term is required. Furthermore, future treatment strategies and safer compounds development should be supported by the knowledge of mechanisms underlying adverse side effects in pubertal growth and development.

  11. A Low-Oxygenated Subpopulation of Pancreatic Islets Constitutes a Functional Reserve of Endocrine Cells

    PubMed Central

    Olsson, Richard; Carlsson, Per-Ola

    2011-01-01

    OBJECTIVE The blood perfusion of pancreatic islets is highly variable and tightly regulated by the blood glucose concentration. Thus, oxygen levels are considered crucial for islet metabolism and function. Although islet oxygenation has been extensively studied in vitro, little is known about it in vivo. The current study aimed to investigate the oxygenation of the endocrine pancreas in vivo. RESEARCH DESIGN AND METHODS The reductive metabolism of 2-nitroimidazoles, such as pimonidazole, has previously been extensively used in studies of oxygen metabolism both in vitro and in vivo. At tissue oxygen levels <10 mmHg, pimonidazole accumulates intracellularly and may thereafter be detected by means of immunohistochemistry. Islet oxygenation was investigated in normal, 60% partially pancreatectomized, as well as whole-pancreas–transplanted rats. Moreover, leucine-dependent protein biosynthesis was performed using autoradiography to correlate islet oxygenation with metabolic activity. RESULTS In vivo, 20–25% of all islets in normal rats showed low oxygenation (pO2 <10 mmHg). Changes in the islet mass, by means of whole-pancreas transplantation, doubled the fraction of low-oxygenated islets in the endogenous pancreas of transplanted animals, whereas this fraction almost completely disappeared after a 60% partial pancreatectomy. Moreover, oxygenation was related to metabolism, since well-oxygenated islets in vivo had 50% higher leucine-dependent protein biosynthesis, which includes (pro)insulin biosynthesis. CONCLUSIONS The current study suggests a novel subpopulation of dormant low-oxygenated islets, which seems to constitute a functional reserve of endocrine cells. This study establishes a novel perspective on the use of the endocrine pancreas in glucose homeostasis. PMID:21788581

  12. Effect of Endocrine Disruptor Pesticides: A Review

    PubMed Central

    Mnif, Wissem; Hassine, Aziza Ibn Hadj; Bouaziz, Aicha; Bartegi, Aghleb; Thomas, Olivier; Roig, Benoit

    2011-01-01

    Endocrine disrupting chemicals (EDC) are compounds that alter the normal functioning of the endocrine system of both wildlife and humans. A huge number of chemicals have been identified as endocrine disruptors, among them several pesticides. Pesticides are used to kill unwanted organisms in crops, public areas, homes and gardens, and parasites in medicine. Human are exposed to pesticides due to their occupations or through dietary and environmental exposure (water, soil, air). For several years, there have been enquiries about the impact of environmental factors on the occurrence of human pathologies. This paper reviews the current knowledge of the potential impacts of endocrine disruptor pesticides on human health. PMID:21776230

  13. RELATIONSHIP BETWEEN ETHINYLESTRADIOL-MEDIATED CHANGES IN ENDOCRINE FUNCTION AND REPRODUCTION IMPAIRMENT IN JAPANESE MEDAKA (ORYZIAS LATIPES)

    EPA Science Inventory

    Many biochemical endpoints currently are used to describe endocrine function in fish; however, the sensitivity of these parameters as biomarkers of impaired reproduction or sexual development is not well understood. In the present study, adult Japanese medaka (Oryzias latipes) we...

  14. Purinergic signaling pathways in endocrine system.

    PubMed

    Bjelobaba, Ivana; Janjic, Marija M; Stojilkovic, Stanko S

    2015-09-01

    Adenosine-5'-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5'-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5'-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5'-triphosphate hydrolysis to adenosine-5'-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. Published by Elsevier B.V.

  15. Purinergic Signaling Pathways in Endocrine System

    PubMed Central

    Bjelobaba, Ivana; Janjic, Marija M.; Stojilkovic, Stanko S.

    2015-01-01

    Adenosine-5′-triphosphate is released by neuroendocrine, endocrine, and other cell types and acts as an extracellular agonist for ligand-gated P2X cationic channels and G protein-coupled P2Y receptors in numerous organs and tissues, including the endocrine system. The breakdown of ATP by ectonucleotidases not only terminates its extracellular messenger functions, but also provides a pathway for the generation of two additional agonists: adenosine 5′-diphosphate, acting via some P2Y receptors, and adenosine, a native agonist for G protein-coupled adenosine receptors, also expressed in the endocrine system. This article provides a review of purinergic signaling pathways in the hypothalamic magnocellular neurosecretory cells and neurohypophysis, hypothalamic parvocellular neuroendocrine system, adenohypophysis, and effector glands organized in five axes: hypothalamic-pituitary-gonadal, hypothalamic-pituitary-thyroid, hypothalamic-pituitary-adrenal, hypothalamic-pituitary-growth hormone, and hypothalamic-pituitary-prolactin. We attempted to summarize current knowledge of purinergic receptor subtypes expressed in the endocrine system, including their roles in intracellular signaling, hormone secretion, and other cell functions. We also briefly review the release mechanism for adenosine-5′-triphosphate by neuroendocrine, endocrine and surrounding cells, the enzymes involved in adenosine-5′-triphosphate hydrolysis to adenosine-5′-diphosphate and adenosine, and the relevance of this pathway for sequential activation of receptors and termination of signaling. PMID:25960051

  16. Long-term effects of treatment on endocrine function in children with brain tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffner, P.K.; Cohen, M.E.; Anderson, S.W.

    1983-11-01

    Fourteen children with brain tumors received endocrine evaluations at least one year following completion of cranial irradiation. Treatment consisted of operation (13 patients), craniospinal irradiation (6), whole brain irradiation (5), posterior fossa irradiation (3), and chemotherapy (10). Endocrine evaluation included bone age roentgenography and measurement of growth hormone (using sequential arginine and insulin stimulation), thyroxine, thyroid-stimulating hormone, plasma cortisol, testosterone, prolactin, and urinary follicle-stimulating hormone and luteinizing hormone. Ten of 12 children (83%) had abnormal responses to both tests of growth hormone stimulation. All growth hormone-deficient patients treated prior to puberty and tested at least 2 years following completion ofmore » cranial irradiation had decelerated linear growth. Results of thyroid function tests were abnormal in 4 patients: 2 patients had evidence of primary hypothyroidism, and 2 showed secondary or tertiary hypothyroidism. Two patients had inadequate cortisol responses to insulin hypoglycemia. Urinary follicle-stimulating hormone and luteinizing hormone, serum prolactin, and serum testosterone levels were appropriate for age in all patients.« less

  17. Measuring myokines with cardiovascular functions: pre-analytical variables affecting the analytical output.

    PubMed

    Lombardi, Giovanni; Sansoni, Veronica; Banfi, Giuseppe

    2017-08-01

    In the last few years, a growing number of molecules have been associated to an endocrine function of the skeletal muscle. Circulating myokine levels, in turn, have been associated with several pathophysiological conditions including the cardiovascular ones. However, data from different studies are often not completely comparable or even discordant. This would be due, at least in part, to the whole set of situations related to the preparation of the patient prior to blood sampling, blood sampling procedure, processing and/or store. This entire process constitutes the pre-analytical phase. The importance of the pre-analytical phase is often not considered. However, in routine diagnostics, the 70% of the errors are in this phase. Moreover, errors during the pre-analytical phase are carried over in the analytical phase and affects the final output. In research, for example, when samples are collected over a long time and by different laboratories, a standardized procedure for sample collecting and the correct procedure for sample storage are acknowledged. In this review, we discuss the pre-analytical variables potentially affecting the measurement of myokines with cardiovascular functions.

  18. STATUS OF ENDOCRINE DISRUPTOR SCREENING AND TESTING ACTIVITIES IN THE US: IMPLEMENTATION OF THE EDSTAC RECOMMENDATIONS

    EPA Science Inventory

    The last two decades have witnessed a growing concern for chemicals that have the potential to adversely affect the normal functioning of the endocrine system. In 1996, the US Congress passed the Food Quality Protection Act (FQPA) that mandated the US Environmental Protection Ag...

  19. Effect of the anti-androgenic endocrine disruptor vinclozolin on embryonic testis cord formation and postnatal testis development and function.

    PubMed

    Uzumcu, Mehmet; Suzuki, Hiroetsu; Skinner, Michael K

    2004-01-01

    Vinclozolin is a systemic dicarboximide fungicide that is used on fruits, vegetables, ornamental plants, and turf grass. Vinclozolin and its metabolites are known to be endocrine disruptors and act as androgen receptor antagonists. The hypothesis tested in the current study is that transient embryonic exposure to an anti-androgenic endocrine disruptor at the time of testis determination alters testis development and subsequently influences adult spermatogenic capacity and male reproduction. The effects of vinclozolin on embryonic testicular cord formation in vitro were examined, as well as the effects of transient in utero vinclozolin exposure on postnatal testis development and function. Embryonic day 13 (E13, sperm-positive vaginal smear day = E0) gonads were cultured in the absence or presence of vinclozolin (50-500microM). Vinclozolin treated gonads had significantly fewer cords (P < 0.05) and the histology of the cords that formed were abnormal as compared to vehicle-treated organs. Pregnant rats were exposed to vinclozolin (100 mg/kg/day) between embryonic days 8 and 14 (E8-E14) of development. Testis morphology and function were analyzed from postnatal day (P) 0, pubertal P20, and adult P60. No significant effect of vinclozolin on testis histology or germ cell viability was observed in P0 testis. The pubertal P20 testis from vinclozolin exposed animals had significantly higher numbers of apoptotic germ cells (P < 0.01), but testis weight was not affected. The adult P60 sperm motility was significantly lower in vinclozolin exposed males (P < 0.01). In addition, apoptotic germ cell number in testis of vinclozolin exposed animals was higher in adult P60 animals. Observations demonstrate that vinclozolin can effect embryonic testicular cord formation in vitro and that transient in utero exposure to vinclozolin increases apoptotic germ cell numbers in the testis of pubertal and adult animals. This correlated to reduced sperm motility in the adult. In conclusion

  20. Endocrine glands

    MedlinePlus Videos and Cool Tools

    ... the pancreas, ovaries and testes. The endocrine and nervous systems work very closely together. The brain continuously sends ... endocrine glands. Because of this intimate relationship, the nervous and endocrine systems are referred to as the neuroendocrine system. The ...

  1. Endocrine Disorders in Cystic Fibrosis.

    PubMed

    Blackman, Scott M; Tangpricha, Vin

    2016-08-01

    Cystic fibrosis is frequently complicated by endocrine disorders. Diabetes can be expected to affect most with CF and pancreatic insufficiency and varies widely in age of onset, but early identification and treatment improve morbidity and mortality. Short stature can be exacerbated by relative delay of puberty and by use of inhaled corticosteroids. Bone disease in CF causes fragility fractures and should be assessed by monitoring bone mineral density and optimizing vitamin D status. Detecting and managing endocrine complications in CF can reduce morbidity and mortality in CF. These complications can be expected to become more common as the CF population ages. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Endocrine Dysregulation in Anorexia Nervosa Update

    PubMed Central

    2011-01-01

    Context: Anorexia nervosa is a primary psychiatric disorder with serious endocrine consequences, including dysregulation of the gonadal, adrenal, and GH axes, and severe bone loss. This Update reviews recent advances in the understanding of the endocrine dysregulation observed in this state of chronic starvation, as well as the mechanisms underlying the disease itself. Evidence Acquisition: Findings of this update are based on a PubMed search and the author's knowledge of this field. Evidence Synthesis: Recent studies have provided insights into the mechanisms underlying endocrine dysregulation in states of chronic starvation as well as the etiology of anorexia nervosa itself. This includes a more complex understanding of the pathophysiologic bases of hypogonadism, hypercortisolemia, GH resistance, appetite regulation, and bone loss. Nevertheless, the etiology of the disease remains largely unknown, and effective therapies for the endocrine complications and for the disease itself are lacking. Conclusions: Despite significant progress in the field, further research is needed to elucidate the mechanisms underlying the development of anorexia nervosa and its endocrine complications. Such investigations promise to yield important advances in the therapeutic approach to this disease as well as to the understanding of the regulation of endocrine function, skeletal biology, and appetite regulation. PMID:21976742

  3. The Effects of Nanomaterials as Endocrine Disruptors

    PubMed Central

    Iavicoli, Ivo; Fontana, Luca; Leso, Veruscka; Bergamaschi, Antonio

    2013-01-01

    In recent years, nanoparticles have been increasingly used in several industrial, consumer and medical applications because of their unique physico-chemical properties. However, in vitro and in vivo studies have demonstrated that these properties are also closely associated with detrimental health effects. There is a serious lack of information on the potential nanoparticle hazard to human health, particularly on their possible toxic effects on the endocrine system. This topic is of primary importance since the disruption of endocrine functions is associated with severe adverse effects on human health. Consequently, in order to gather information on the hazardous effects of nanoparticles on endocrine organs, we reviewed the data available in the literature regarding the endocrine effects of in vitro and in vivo exposure to different types of nanoparticles. Our aim was to understand the potential endocrine disrupting risks posed by nanoparticles, to assess their underlying mechanisms of action and identify areas in which further investigation is needed in order to obtain a deeper understanding of the role of nanoparticles as endocrine disruptors. Current data support the notion that different types of nanoparticles are capable of altering the normal and physiological activity of the endocrine system. However, a critical evaluation of these findings suggests the need to interpret these results with caution since information on potential endocrine interactions and the toxicity of nanoparticles is quite limited. PMID:23949635

  4. Pesticides as endocrine-disrupting chemicals

    EPA Science Inventory

    Pesticides are designed to be bioactive against certain targets but can cause toxicity to nontarget species by a variety of other modes of action including disturbance of endocrine function. As such, pesticides have been found to bind and alter the function of hormone receptors, ...

  5. Sox21 deletion in mice causes postnatal growth deficiency without physiological disruption of hypothalamic-pituitary endocrine axes

    PubMed Central

    Cheung, Leonard Y. M.; Okano, Hideyuki

    2016-01-01

    The hypothalamic-pituitary axes are the coordinating centers for multiple endocrine gland functions and physiological processes. Defects in the hypothalamus or pituitary gland can cause reduced growth and severe short stature, affecting approximately 1 in 4000 children, and a large percentage of cases of pituitary hormone deficiencies do not have an identified genetic cause. SOX21 is a protein that regulates hair, neural, and trophoblast stem cell differentiation. Mice lacking Sox21 have reduced growth, but the etiology of this growth defect has not been described. We studied the expression of Sox21 in hypothalamic-pituitary development and examined multiple endocrine axes in these mice. We find no evidence of reduced intrauterine growth, food intake, or physical activity, but there is evidence for increased energy expenditure in mutants. In addition, despite changes in pituitary hormone expression, hypothalamic-pituitary axes appear to be functional. Therefore, SOX21 variants may be a cause of non-endocrine short stature in humans. PMID:27616671

  6. An overview of estrogen-associated endocrine disruption in fishes: evidence of effects on reproductive and immune physiology

    USGS Publications Warehouse

    Iwanowicz, L.R.; Blazer, V.S.

    2011-01-01

    Simply and perhaps intuitively defined, endocrine disruption is the abnormal modulation of normal hormonal physiology by exogenous chemicals. In fish, endocrine disruption of the reproductive system has been observed worldwide in numerous species and is known to affect both males and females. Observations of biologically relevant endocrine disruption most commonly occurs near waste water treatment plant outfalls, pulp and paper mills, and areas of high organic loading sometimes associated with agricultural practices. Estrogenic endocrine disrupting chemicals (EEDCs) have received an overwhelmingly disproportionate amount of scientific attention compared to other EDCs in recent years. In male fishes, exposure to EEDCs can lead to the induction of testicular oocytes (intersex), measurable plasma vitellogenin protein, altered sex steroid profiles, abnormal spawning behavior, skewed population sex ratios, and lessened reproductive success. Interestingly, contemporary research purports that EDCs modulate aspects of non-reproductive physiology including immune function. Here we present an overview of endocrine disruption in fishes associated with estrogenic compounds, implications of this phenomenon, and examples of EDC related research findings by our group in the Potomac River Watershed, USA.

  7. Menin determines K-RAS proliferative outputs in endocrine cells

    PubMed Central

    Chamberlain, Chester E.; Scheel, David W.; McGlynn, Kathleen; Kim, Hail; Miyatsuka, Takeshi; Wang, Juehu; Nguyen, Vinh; Zhao, Shuhong; Mavropoulos, Anastasia; Abraham, Aswin G.; O’Neill, Eric; Ku, Gregory M.; Cobb, Melanie H.; Martin, Gail R.; German, Michael S.

    2014-01-01

    Endocrine cell proliferation fluctuates dramatically in response to signals that communicate hormone demand. The genetic alterations that override these controls in endocrine tumors often are not associated with oncogenes common to other tumor types, suggesting that unique pathways govern endocrine proliferation. Within the pancreas, for example, activating mutations of the prototypical oncogene KRAS drive proliferation in all pancreatic ductal adenocarcimomas but are never found in pancreatic endocrine tumors. Therefore, we asked how cellular context impacts K-RAS signaling. We found that K-RAS paradoxically suppressed, rather than promoted, growth in pancreatic endocrine cells. Inhibition of proliferation by K-RAS depended on antiproliferative RAS effector RASSF1A and blockade of the RAS-activated proproliferative RAF/MAPK pathway by tumor suppressor menin. Consistent with this model, a glucagon-like peptide 1 (GLP1) agonist, which stimulates ERK1/2 phosphorylation, did not affect endocrine cell proliferation by itself, but synergistically enhanced proliferation when combined with a menin inhibitor. In contrast, inhibition of MAPK signaling created a synthetic lethal interaction in the setting of menin loss. These insights suggest potential strategies both for regenerating pancreatic β cells for people with diabetes and for targeting menin-sensitive endocrine tumors. PMID:25133424

  8. Integrated Neural and Endocrine Control of Gastrointestinal Function.

    PubMed

    Furness, John B

    The activity of the digestive system is dynamically regulated by external factors, including body nutritional and activity states, emotions and the contents of the digestive tube. The gut must adjust its activity to assimilate a hugely variable mixture that is ingested, particularly in an omnivore such as human for which a wide range of food choices exist. It must also guard against toxins and pathogens. These nutritive and non-nutritive components of the gut contents interact with the largest and most vulnerable surface in the body, the lining of the gastrointestinal tract. This requires a gut sensory system that can detect many classes of nutrients, non-nutrient components of food, physicochemical conditions, toxins, pathogens and symbionts (Furness et al., Nat Rev Gastroenterol Hepatol 10:729-740, 2013). The gut sensors are in turn coupled to effector systems that can respond to the sensory information. The responses are exerted through enteroendocrine cells (EEC), the enteric nervous system (ENS), the central nervous system (CNS) and the gut immune and tissue defence systems. It is apparent that the control of the digestive organs is an integrated function of these effectors. The peripheral components of the EEC, ENS and CNS triumvirate are extensive. EEC cells have traditionally been classified into about 12 types (disputed in this review), releasing about 20 hormones, together making the gut endocrine system the largest endocrine organ in the body. Likewise, in human the ENS contains about 500 million neurons, far more than the number of neurons in the remainder of the peripheral autonomic nervous system. Together gut hormones, the ENS and the CNS control or influence functions including satiety, mixing and propulsive activity, release of digestive enzymes, induction of nutrient transporters, fluid transport, local blood flow, gastric acid secretion, evacuation and immune responses. Gut content receptors, including taste, free fatty acid, peptide and

  9. Endocrine effects of the herbicide linuron on the American Goldfinch (Carduelis tristis)

    USGS Publications Warehouse

    Sughrue, K.M.; Brittingham, M.C.; French, J.B.

    2008-01-01

    Certain contaminants alter normal physiological function, morphology, and behavior of exposed organisms through an endocrine mechanism. We evaluated how the herbicide linuron, an endocrine-active compound, affects physiological parameters and secondary sex characteristics of the American Goldfinch (Carduelis tristis). When administered at relatively low doses (control, 1.0, 4.0, and 16.0 μg linuron per gram of body mass per day), linuron delayed prealternate molt progression in a dose-dependent manner. At the high dose level, linuron exposure lowered hematocrit and female plasma thyroxine concentrations and increased body mass. Neither plasma testosterone concentrations nor the color of plumage or integument of birds in the treatment groups were different from those of the control group. Overall, the physiological effects that were measured suggested disruption of thyroid function. These results highlight the importance of continual monitoring of avian populations for potential effects of exposure to pesticides and other chemicals at sublethal concentrations.

  10. 77 FR 12297 - Petition To Demonstrate Paperwork Reduction Act Compliance of the Endocrine Disruptor Screening...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-29

    ... Paperwork Reduction Act Compliance of the Endocrine Disruptor Screening Program; Notice of Availability... chemicals to receive orders under the Endocrine Disruptor Screening Program by demonstrating the information... potential endocrine effects. Potentially affected entities identified by the North American Industrial...

  11. Perfluorinated compounds affect the function of sex hormone receptors.

    PubMed

    Kjeldsen, Lisbeth Stigaard; Bonefeld-Jørgensen, Eva Cecilie

    2013-11-01

    Perfluorinated compounds (PFCs) are a large group of chemicals used in different industrial and commercial applications. Studies have suggested the potential of some PFCs to disrupt endocrine homeostasis, increasing the risk of adverse health effects. This study aimed to elucidate mechanisms behind PFC interference with steroid hormone receptor functions. Seven PFCs [perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUnA), and perfluorododecanoate (PFDoA)] were analyzed in vitro for their potential to affect estrogen receptor (ER) and androgen receptor (AR) transactivity as well as aromatase enzyme activity. The PFCs were assessed as single compounds and in an equimolar mixture. PFHxS, PFOS and PFOA significantly induced the ER transactivity, whereas PFHxS, PFOS, PFOA, PFNA and PFDA significantly antagonized the AR activity in a concentration-dependent manner. Moreover, PFDA weakly decreased the aromatase activity at a high test concentration. A mixture effect more than additive was observed on AR function. We conclude that five of the seven PFCs possess the potential in vitro to interfere with the function of the ER and/or the AR. The observed mixture effect emphasizes the importance of considering the combined action of PFCs in future studies to assess related health risks.

  12. Long non-coding RNAs as regulators of the endocrine system.

    PubMed

    Knoll, Marko; Lodish, Harvey F; Sun, Lei

    2015-03-01

    Long non-coding RNAs (lncRNAs) are a large and diverse group of RNAs that are often lineage-specific and that regulate multiple biological functions. Many are nuclear and are essential parts of ribonucleoprotein complexes that modify chromatin segments and establish active or repressive chromatin states; others are cytosolic and regulate the stability of mRNA or act as microRNA sponges. This Review summarizes the current knowledge of lncRNAs as regulators of the endocrine system, with a focus on the identification and mode of action of several endocrine-important lncRNAs. We highlight lncRNAs that have a role in the development and function of pancreatic β cells, white and brown adipose tissue, and other endocrine organs, and discuss the involvement of these molecules in endocrine dysfunction (for example, diabetes mellitus). We also address the associations of lncRNAs with nuclear receptors involved in major hormonal signalling pathways, such as estrogen and androgen receptors, and the relevance of these associations in certain endocrine cancers.

  13. Endocrine disrupting potential of PAHs and their alkylated analogues associated with oil spills.

    PubMed

    Lee, Sangwoo; Hong, Seongjin; Liu, Xiaoshan; Kim, Cheolmin; Jung, Dawoon; Yim, Un Hyuk; Shim, Won Joon; Khim, Jong Seong; Giesy, John P; Choi, Kyungho

    2017-09-20

    Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs are known to be major toxic contaminants in spills of petroleum hydrocarbons (oil). Spilled oil undergoes weathering and over time, PAHs go through a series of compositional changes. PAHs can disrupt endocrine functions, and the type of functions affected and associated potencies vary with the type and alkylation status of PAH. In this study, the potential of five major PAHs of crude oil, i.e., naphthalene, fluorene, dibenzothiophene, phenanthrene, and chrysene, and their alkylated analogues (n = 25), to disrupt endocrine functions was evaluated by use of MVLN-luc and H295R cell lines. In the MVLN-luc bioassay, seven estrogen receptor (ER) agonists were detected among 30 tested PAHs. The greatest ER-mediated potency was observed for 1-methylchrysene (101.4%), followed by phenanthrene and its alkylated analogues (range of %-E2max from 1.6% to 47.3%). In the H295R bioassay, significantly greater syntheses of steroid hormones were observed for 20 PAHs. For major PAHs and their alkylated analogues, disruption of steroidogenesis appeared to be more significant than ER-mediated effects. The number and locations of alkyl-moieties alone could not explain differences in the types or the potencies of toxicities. This observation shows that disruption of endocrine functions by some constituents of oil spills could be underestimated if only parent compounds are considered in assessments of hazard and risk.

  14. HIGH INFORMATION CONTENT TOXICITY SCREENING USING MOUSE AND HUMAN STEM CELL MODELS OF ENDOCRINE DEVELOPMENT AND FUNCTION

    EPA Science Inventory

    The project will result in the rapid assessment of chemicals for adverse effects on the development of gametes, adipocytes, and islet B-cells; and on the adipocyte and B-cell endocrine signaling function in human and murine embryonic stem cells. Based on the data, hierarchical...

  15. Early endocrine alterations reflect prolonged stress and relate to 1-year functional outcome in patients with severe brain injury.

    PubMed

    Marina, Djordje; Klose, Marianne; Nordenbo, Annette; Liebach, Annette; Feldt-Rasmussen, Ulla

    2015-06-01

    Severe brain injury may increase the risk of developing acute and chronic hypopituitarism. Pituitary hormone alterations developed in the early recovery phase after brain injury may have implications for long-term functional recovery. The objective of the present study was to assess the pattern and prevalence of pituitary hormone alterations 3 months after a severe brain injury with relation to functional outcome at a 1-year follow-up. Prospective study at a tertiary university referral centre. A total of 163 patients admitted to neurorehabilitation after severe traumatic brain injury (TBI, n=111) or non-TBI (n=52) were included. The main outcome measures were endocrine alterations 3.3 months (median) after the brain injury and their relationship to the functioning and ability of the patients at a 1-year follow-up, as measured by the Functional Independence Measure and the Glasgow Outcome Scale-Extended. Three months after the injury, elevated stress hormones (i.e. 30 min stimulated cortisol, prolactin and/or IGF1) and/or suppressed gonadal or thyroid hormones were recorded in 68 and 32% of the patients respectively. At 1 year after the injury, lower functioning level (Functional Independence Measure) and lower capability of performing normal life activities (Glasgow Outcome Scale-Extended) were related to both the elevated stress hormones (P≤0.01) and the reduced gonadal and/or thyroid hormones (P≤0.01) measured at 3 months. The present study suggests that brain injury-related endocrine alterations that mimic secondary hypogonadism and hypothyroidism and that occur with elevated stress hormones most probably reflect a prolonged stress response 2-5 months after severe brain injury, rather than pituitary insufficiency per se. These endocrine alterations thus seem to reflect a more severe disease state and relate to 1-year functional outcome. © 2015 European Society of Endocrinology.

  16. Applications of genomic medicine in endocrinology and post-genomic endocrine research.

    PubMed

    Stratakis, Constantine A

    2005-01-01

    In the mid 1980's, two advances revolutionized Medicine in a way that is comparable only to some of the most important events in the approximately 3,000 years of its history. The first was the introduction of the concept of "positional cloning", i.e. the idea that one can identify genes for human disease though knowing nothing or very little about their function. The second was the discovery of the method of polymerase chain reaction (PCR) which made DNA easier to work with for all biomedical researchers and clinicians. Fresh in the history of Endocrinology were the great discoveries of neuroendocrinology, and even more contemporary and potent, the influence of the then emerging field of molecular endocrinology. Cancer medicine and traditional human genetics were the fields that benefited most from the first applications of the new genomic concepts and technologies. Almost two decades later, and after the first successful applications of positional cloning in Endocrine Genetics with the identification of RET, menin, PTEN and PRKAR1A in the various forms of multiple endocrine tumor syndromes, and a number of other genes in developmental diseases affecting the pituitary, thyroid, parathyroid, pancreas, adrenal and gonadal glands, endocrinology has made a comeback to the forefront of "genomically"- influenced as well as post-genomic Medicine. This report, using the example of endocrine tumor genetics, presents the process and some of the accomplishments of positional cloning and discusses the influence of endocrinology on contemporary translational research. The author suggests that some of the most traditional endocrine concepts, established in the previous two centuries, could help us understand the complex pathways recently unraveled in cancer genetics and, consequently, other fields. It is suggested that "Endocrine" genes that control cellular signaling act as "conductor" since they regulate differentiation, growth and proliferation. Their complex function and

  17. Oxidative stress and the ageing endocrine system.

    PubMed

    Vitale, Giovanni; Salvioli, Stefano; Franceschi, Claudio

    2013-04-01

    Ageing is a process characterized by a progressive decline in cellular function, organismal fitness and increased risk of age-related diseases and death. Several hundred theories have attempted to explain this phenomenon. One of the most popular is the 'oxidative stress theory', originally termed the 'free radical theory'. The endocrine system seems to have a role in the modulation of oxidative stress; however, much less is known about the role that oxidative stress might have in the ageing of the endocrine system and the induction of age-related endocrine diseases. This Review outlines the interactions between hormones and oxidative metabolism and the potential effects of oxidative stress on ageing of endocrine organs. Many different mechanisms that link oxidative stress and ageing are discussed, all of which converge on the induction or regulation of inflammation. All these mechanisms, including cell senescence, mitochondrial dysfunction and microRNA dysregulation, as well as inflammation itself, could be targets of future studies aimed at clarifying the effects of oxidative stress on ageing of endocrine glands.

  18. Unmasking the truth behind endocrine disruptors.

    PubMed

    DiDiego, Michele Lamse; Eggert, Julia A; Pruitt, Rosanne H; Larcom, Lyndon L

    2005-10-01

    The increase in reproductive cancers and developmental problems over the past 70 years has led researchers to suspect environmental influences as a root cause. Evidence from wildlife and laboratory studies suggests that exposure to endocrine disruptors (EnDs) may be the cause. An EnD is a foreign substance or mixture that alters the function of the endocrine system. They can be found in food, water, soil, or air. Research into their possible role provides an opportunity to decrease modifiable risk factors.

  19. Multiple endocrine neoplasia type 1

    PubMed Central

    Marini, Francesca; Falchetti, Alberto; Monte, Francesca Del; Sala, Silvia Carbonell; Gozzini, Alessia; Luzi, Ettore; Brandi, Maria Luisa

    2006-01-01

    Multiple Endocrine Neoplasia type 1 (MEN1) is a rare autosomal dominant hereditary cancer syndrome presented mostly by tumours of the parathyroids, endocrine pancreas and anterior pituitary, and characterised by a very high penetrance and an equal sex distribution. It occurs in approximately one in 30,000 individuals. Two different forms, sporadic and familial, have been described. The sporadic form presents with two of the three principal MEN1-related endocrine tumours (parathyroid adenomas, entero-pancreatic tumours and pituitary tumours) within a single patient, while the familial form consists of a MEN1 case with at least one first degree relative showing one of the endocrine characterising tumours. Other endocrine and non-endocrine lesions, such as adrenal cortical tumours, carcinoids of the bronchi, gastrointestinal tract and thymus, lipomas, angiofibromas, collagenomas have been described. The responsible gene, MEN1, maps on chromosome 11q13 and encodes a 610 aminoacid nuclear protein, menin, with no sequence homology to other known human proteins. MEN1 syndrome is caused by inactivating mutations of the MEN1 tumour suppressor gene. This gene is probably involved in the regulation of several cell functions such as DNA replication and repair and transcriptional machinery. The combination of clinical and genetic investigations, together with the improving of molecular genetics knowledge of the syndrome, helps in the clinical management of patients. Treatment consists of surgery and/or drug therapy, often in association with radiotherapy or chemotherapy. Currently, DNA testing allows the early identification of germline mutations in asymptomatic gene carriers, to whom routine surveillance (regular biochemical and/or radiological screenings to detect the development of MEN1-associated tumours and lesions) is recommended. PMID:17014705

  20. 76 FR 49473 - Petition to Maximize Practical Utility of List 1 Chemicals Screened Through EPA's Endocrine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-10

    ... Utility of List 1 Chemicals Screened Through EPA's Endocrine Disruptor Screening Program; Notice of... to the test orders issued under the Endocrine Disruptor Screening Program. DATES: Comments must be... testing of chemical substances for potential endocrine effects. Potentially affected entities, identified...

  1. Ferrocene Functionalized Endocrine Modulators as Anticancer Agents

    NASA Astrophysics Data System (ADS)

    Hillard, Elizabeth A.; Vessières, Anne; Jaouen, Gerard

    We present here some of our studies on the synthesis and behaviour of ferrocenyl selective endocrine receptor modulators against cancer cells, particularly breast and prostate cancers. The proliferative/anti-proliferative effects of compounds based on steroidal and non-steroidal endocrine modulators have been extensively explored in vitro. Structure-activity relationship studies of such molecules, particularly the hydroxyferrocifens and ferrocene phenols, have shown the effect of (1) the presence and the length of the N,N-dimethylamino side chain, (2) the presence and position of the phenol group, (3) the role of the ferrocenyl moiety, (4) that of conjugation, (5) phenyl functionalisation and (6) the placement of the phenyl group. Compounds possessing a ferrocene moiety linked to a p-phenol by a conjugated π-system are among the most potent of the series, with IC50 values ranging from 0.090 to 0.6µM on hormone independent breast cancer cells. Based on the SAR data and electrochemical studies, we have proposed an original mechanism to explain the unusual behaviour of these bioorganometallic species and coin the term "kronatropic" to qualify this effect, involving ROS production and bio-oxidation. In addition, the importance of formulation is underlined. We also discuss the behaviour of ferrocenyl androgens and anti-androgens for possible use against prostate cancers. In sum, ferrocene has proven to be a fascinating substituent due to its vast potential for oncology.

  2. Long non-coding RNAs as regulators of the endocrine system

    PubMed Central

    Knoll, Marko; Lodish, Harvey F.; Sun, Lei

    2015-01-01

    Long non-coding RNAs (lncRNAs) are a large and diverse group of RNAs that are often lineage-specific and that regulate multiple biological functions. Many are nuclear and are essential parts of ribonucleoprotein complexes that modify chromatin segments and establish active or repressive chromatin states; others are cytosolic and regulate the stability of mRNA or act as microRNA sponges. This Review summarizes the current knowledge of lncRNAs as regulators of the endocrine system, with a focus on the identification and mode of action of several endocrine-important lncRNAs. We highlight lncRNAs that have a role in the development and function of pancreatic β cells, white and brown adipose tissue, and other endocrine organs, and discuss the involvement of these molecules in endocrine dysfunction (for example, diabetes mellitus). We also address the associations of lncRNAs with nuclear receptors involved in major hormonal signalling pathways, such as estrogen and androgen receptors, and the relevance of these associations in certain endocrine cancers. PMID:25560704

  3. Growth and Endocrine Function in Tunisian Thalassemia Major Patients.

    PubMed

    Dhouib, Naouel Guirat; Ben Khaled, Monia; Ouederni, Monia; Besbes, Habib; Kouki, Ridha; Mellouli, Fethi; Bejaoui, Mohamed

    2018-01-01

    β-thalassemia major (β-TM) is among the most common hereditary disorders imposing high expenses on health-care system worldwide. The patient's survival is dependent on lifetime blood transfusion which leads to iron overload and its toxicity in various organs including endocrine glands. This article provides an overview of endocrine disorders in beta-TM patients. This single center investigation enrolled 28 β-TM patients (16 males, 12 females) regularly transfused with packed red cell since early years of life. For each patient were determined: age, sex, number of transfusions received, history of splenectomy and anthropometric parameters. All patients underwent an evaluation of hormonal status including growth, gonadal, thyroid, adrenal cortex, and parathyroid glands. Dual-energy X-ray absorptiometry was used to diagnose low bone mass. Assessment of iron overload status was performed by measuring the serum ferritin concentration and the results of magnetic resonance imaging T 2 *. Growth retardation was found in 16 of the 28 studied patients (57 %). Thirteen among them had delayed puberty. Spontaneous puberty was achieved in 16 cases. Growth hormone (GH) deficiency was found in 10 cases (35 %). Seventeen among the studied patients (60 %) developed disorders of glucose homeostasis. Subclinical hypothyroidism was found in six patients (21 %). Intensive chelation therapy had allowed the reversibility of this complication in five cases. Adrenal Insufficiency was observed in 9 cases (32%). Hypoparathyroidism has occurred in one case. Ten of the 28 studied patients had low bone mass (35%). Twenty-three of the 28 studied patients (82%) had at least one endocrine complication.

  4. Monitoring p53 by MDM2 and MDMX is required for endocrine pancreas development and function in a spatio-temporal manner.

    PubMed

    Zhang, Yiwei; Zeng, Shelya X; Hao, Qian; Lu, Hua

    2017-03-01

    Although p53 is not essential for normal embryonic development, it plays a pivotal role in many biological and pathological processes, including cell fate determination-dependent and independent events and diseases. The expression and activity of p53 largely depend on its two biological inhibitors, MDM2 and MDMX, which have been shown to form a complex in order to tightly control p53 to an undetectable level during early stages of embryonic development. However, more delicate studies using conditional gene-modification mouse models show that MDM2 and MDMX may function separately or synergistically on p53 regulation during later stages of embryonic development and adulthood in a cell and tissue-specific manner. Here, we report the role of the MDM2/MDMX-p53 pathway in pancreatic islet morphogenesis and functional maintenance, using mouse lines with specific deletion of MDM2 or MDMX in pancreatic endocrine progenitor cells. Interestingly, deletion of MDM2 results in defects of embryonic endocrine pancreas development, followed by neonatal hyperglycemia and lethality, by inducing pancreatic progenitor cell apoptosis and inhibiting cell proliferation. However, unlike MDM2-knockout animals, mice lacking MDMX in endocrine progenitor cells develop normally. But, surprisingly, the survival rate of adult MDMX-knockout mice drastically declines compared to control mice, as blockage of neonatal development of endocrine pancreas by inhibition of cell proliferation and subsequent islet dysfunction and hyperglycemia eventually lead to type 1 diabetes-like disease with advanced diabetic nephropathy. As expected, both MDM2 and MDMX deletion-caused pancreatic defects are completely rescued by loss of p53, verifying the crucial role of the MDM2 and/or MDMX in regulating p53 in a spatio-temporal manner during the development, functional maintenance, and related disease progress of endocrine pancreas. Also, our study suggests a possible mouse model of advanced diabetic nephropathy

  5. Microbial endocrinology: the interplay between the microbiota and the endocrine system.

    PubMed

    Neuman, Hadar; Debelius, Justine W; Knight, Rob; Koren, Omry

    2015-07-01

    The new field of microbiome research studies the microbes within multicellular hosts and the many effects of these microbes on the host's health and well-being. We now know that microbes influence metabolism, immunity and even behavior. Essential questions, which are just starting to be answered, are what are the mechanisms by which these bacteria affect specific host characteristics. One important but understudied mechanism appears to involve hormones. Although the precise pathways of microbiota-hormonal signaling have not yet been deciphered, specific changes in hormone levels correlate with the presence of the gut microbiota. The microbiota produces and secretes hormones, responds to host hormones and regulates expression levels of host hormones. Here, we summarize the links between the endocrine system and the gut microbiota. We categorize these interactions by the different functions of the hormones, including those affecting behavior, sexual attraction, appetite and metabolism, gender and immunity. Future research in this area will reveal additional connections, and elucidate the pathways and consequences of bacterial interactions with the host endocrine system. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. [Endocrine orbitopathy - the topic still alive].

    PubMed

    Fryšák, Zdeněk; Karásek, David; Halenka, Milan

    Endocrine orbitopathy (EO) must be understood mainly as a result of oxidative stress. The pathological process finally affects both the appearance and vision of the patient. In the case of inappropriate or late treatment or lack of patient cooperation, it significantly influences the quality of life of those affected. In spite of the sophisticated dia-gnostic algorithms, in some cases it is difficult to confirm the diagnosis of EO. The range of laboratory methods, the essential part of the diagnostic process, has only recently been extended by the possibility of quantification of specific, stimulating immunoglobulins (TSI). A major shortcoming may be seen in an undervalued importance of orbital ultrasonography, in particular of the eye muscles (US).Key words: biological treatment - endocrine orbitopathy (EO) - Graves-Basedow disease (GB) - "hashitoxicosis" (HTX) - hyaluronan synthase 2 (HAS2) - thyroid-blocking immunoglobulins (TBI) - thyroid-stimulating immunoglobulins (TSI) - hyaluronic acid (HA) - lymphocytary, Hashimotos thyroiditis (HT) - pulse therapy - TSH-receptor - transcription factors FOXOs - orbital ultrasonography, mainly of the eye muscles (US).

  7. Update on the Mammalian Tier 1 Endocrine Disruptor Screening Protocols

    EPA Science Inventory

    The endocrine system provides a number of target sites that may be susceptible to disruption by environmental agents. In response to emerging concerns that environmental chemicals may have adverse effects on human health by altering the function of the endocrine system (http://w...

  8. Global expression analysis of gene regulatory pathways during endocrine pancreatic development.

    PubMed

    Gu, Guoqiang; Wells, James M; Dombkowski, David; Preffer, Fred; Aronow, Bruce; Melton, Douglas A

    2004-01-01

    To define genetic pathways that regulate development of the endocrine pancreas, we generated transcriptional profiles of enriched cells isolated from four biologically significant stages of endocrine pancreas development: endoderm before pancreas specification, early pancreatic progenitor cells, endocrine progenitor cells and adult islets of Langerhans. These analyses implicate new signaling pathways in endocrine pancreas development, and identified sets of known and novel genes that are temporally regulated, as well as genes that spatially define developing endocrine cells from their neighbors. The differential expression of several genes from each time point was verified by RT-PCR and in situ hybridization. Moreover, we present preliminary functional evidence suggesting that one transcription factor encoding gene (Myt1), which was identified in our screen, is expressed in endocrine progenitors and may regulate alpha, beta and delta cell development. In addition to identifying new genes that regulate endocrine cell fate, this global gene expression analysis has uncovered informative biological trends that occur during endocrine differentiation.

  9. Effects of alcohol on the endocrine system.

    PubMed

    Rachdaoui, Nadia; Sarkar, Dipak K

    2013-09-01

    Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine, and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiologic and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease, and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. [Contamination, endocrine disruptors and cancer].

    PubMed

    Arvelo, Francisco; Sojo, Felipe; Cotte, Carlos

    2016-03-01

    Since the mid-twentieth century, many species, very different from each other and located in all areas and comers of the planet, began presenting various alterations, many of which suggested to be related to endocrine disorders. Research has shown that such alterations were caused by exposure to various chemical contaminants that could affect the health and cause serious illnesses. Among them stands a diverse and large group of compounds, with very different chemical structures, capable of altering the hormonal balance, act at very low doses and with different mechanisms of action, that are called "endocrine disrupting chemicals". When released into the environment or as part of objects, food or medicines, constitute a major risk to animals and humans, which produces not only endocrine dysfunctions but also different cancers, which include the most common types. Despite the importance and significance of the impact of these compounds, they are not sufficiently known or understood, so the aim of this review is to show their origin and impact in the field of human health, highlighting their role as inducers of cancer, which has led to multiple clinical and biological investigations.

  11. Immunologic Endocrine Disorders

    PubMed Central

    Michels, Aaron W.; Eisenbarth, George S.

    2010-01-01

    Autoimmunity affects multiple glands in the endocrine system. Animal models and human studies highlight the importance of alleles in HLA (human leukocyte antigen)-like molecules determining tissue specific targeting that with the loss of tolerance leads to organ specific autoimmunity. Disorders such as type 1A diabetes, Grave's disease, Hashimoto's thyroiditis, Addison's disease, and many others result from autoimmune mediated tissue destruction. Each of these disorders can be divided into stages beginning with genetic susceptibility, environmental triggers, active autoimmunity, and finally metabolic derangements with overt symptoms of disease. With an increased understanding of the immunogenetics and immunopathogenesis of endocrine autoimmune disorders, immunotherapies are becoming prevalent, especially in type 1A diabetes. Immunotherapies are being used more in multiple subspecialty fields to halt disease progression. While therapies for autoimmune disorders stop the progress of an immune response, immunomodulatory therapies for cancer and chronic infections can also provoke an unwanted immune response. As a result, there are now iatrogenic autoimmune disorders arising from the treatment of chronic viral infections and malignancies. PMID:20176260

  12. Neuroendocrine disruption without direct endocrine mode of action: Polychloro-biphenyls (PCBs) and bisphenol A (BPA) as case studies.

    PubMed

    Pinson, Anneline; Franssen, Delphine; Gérard, Arlette; Parent, Anne-Simone; Bourguignon, Jean-Pierre

    Endocrine disruption is commonly thought to be restricted to a direct endocrine mode of action i.e. the perturbation of the activation of a given type of hormonal receptor by its natural ligand. Consistent with the WHO definition of an endocrine disrupter, a key issue is the "altered function(s) of the endocrine system". Such altered functions can result from different chemical interactions, beyond agonistic or antagonistic effect at a given receptor. Based on neuroendocrine disruption by polychlorinated biphenyls and bisphenol A, this paper proposes different mechanistic paradigms that can result in adverse health effects. They are a consequence of altered endocrine function(s) secondary to chemical interaction with different steps in the physiological regulatory processes, thus accounting for a possibly indirect endocrine mode of action. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  13. [Novel concepts in biology of diffuse endocrine system: results and future investigations].

    PubMed

    Iaglov, V V; Iaglova, N V

    2012-01-01

    Diffuse endocrine system is a largest part of endocrine system of vertebrates. Recend findings showed that DES-cells are not neuroectodermal but have ectodermal, mesodermal, and entodermal ontogeny. The article reviews novel concept of diffuse endocrine system anatomy and physiology, functional role of DES hormones and poorly investigated aspects like DES-cell morphology, hormones secretion in normal and pathologic conditions. Further research of diffuse endocrine system has a great significance for biochemistry, morphology, and clinical medicine.

  14. Concurrent endocrine neoplasias in dogs and cats: a retrospective study (2004-2014).

    PubMed

    Beatrice, Laura; Boretti, Felicitas Schär; Sieber-Ruckstuhl, Nadja S; Mueller, Claudia; Kümmerle-Fraune, Claudia; Hilbe, Monika; Grest, Paula; Reusch, Claudia E

    2018-03-17

    Multiple endocrine neoplasia (MEN) is a well-known syndrome in human medicine, whereas only a few cases of concurrent endocrine neoplasias have been reported in dogs and cats. The aim of this study was to evaluate the prevalence of concurrent endocrine neoplasias in dogs and cats at our clinic, identify possible breed and sex predispositions and investigate similarities with MEN syndromes in humans. Postmortem reports of 951 dogs and 1155 cats that died or were euthanased at the Clinic for Small Animal Internal Medicine, University of Zurich, between 2004 and 2014 were reviewed, and animals with at least two concurrent endocrine neoplasias and/or hyperplasias were included. Twenty dogs and 15 cats met the inclusion criteria. In dogs, the adrenal glands were most commonly affected. Multiple tumours affecting the adrenal glands and the association of these tumours with pituitary adenomas were the most common tumour combinations. Only one dog had a combination resembling human MEN type 1 syndrome (pituitary adenoma and insulinoma). In cats, the thyroid glands were most commonly affected and there were no similarities to human MEN syndromes. The prevalence of concurrent endocrine neoplasia was 2.1 per cent in dogs and 1.3 per cent in cats and MEN-like syndromes are very rare in these species. © British Veterinary Association (unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Rhythms in the endocrine system of fish: a review.

    PubMed

    Cowan, Mairi; Azpeleta, Clara; López-Olmeda, Jose Fernando

    2017-12-01

    The environment which living organisms inhabit is not constant and many factors, such as light, temperature, and food availability, display cyclic and predictable variations. To adapt to these cyclic changes, animals present biological rhythms in many of their physiological variables, timing their functions to occur when the possibility of success is greatest. Among these variables, many endocrine factors have been described as displaying rhythms in vertebrates. The aim of the present review is to provide a thorough review of the existing knowledge on the rhythms of the endocrine system of fish by examining the hormones that show rhythmicity, how environmental factors control these rhythms and the variation in the responses of the endocrine system depending on the time of the day. We mainly focused on the hypothalamic-pituitary axis, which can be considered as the master axis of the endocrine system of vertebrates and regulates a great variety of functions, including reproduction, growth, metabolism, energy homeostasis, stress response, and osmoregulation. In addition, the rhythms of other hormones, such as melatonin and the factors, produced in the gastrointestinal system of fish are reviewed.

  16. Bisphenol A affects androgen receptor function via multiple mechanisms.

    PubMed

    Teng, Christina; Goodwin, Bonnie; Shockley, Keith; Xia, Menghang; Huang, Ruili; Norris, John; Merrick, B Alex; Jetten, Anton M; Austin, Christopher P; Tice, Raymond R

    2013-05-25

    Bisphenol A (BPA), is a well-known endocrine disruptor compound (EDC) that affects the normal development and function of the female and male reproductive system, however the mechanisms of action remain unclear. To investigate the molecular mechanisms of how BPA may affect ten different nuclear receptors, stable cell lines containing individual nuclear receptor ligand binding domain (LBD)-linked to the β-Gal reporter were examined by a quantitative high throughput screening (qHTS) format in the Tox21 Screening Program of the NIH. The results showed that two receptors, estrogen receptor alpha (ERα) and androgen receptor (AR), are affected by BPA in opposite direction. To confirm the observed effects of BPA on ERα and AR, we performed transient transfection experiments with full-length receptors and their corresponding response elements linked to luciferase reporters. We also included in this study two BPA analogs, bisphenol AF (BPAF) and bisphenol S (BPS). As seen in African green monkey kidney CV1 cells, the present study confirmed that BPA and BPAF act as ERα agonists (half maximal effective concentration EC50 of 10-100 nM) and as AR antagonists (half maximal inhibitory concentration IC50 of 1-2 μM). Both BPA and BPAF antagonized AR function via competitive inhibition of the action of synthetic androgen R1881. BPS with lower estrogenic activity (EC50 of 2.2 μM), did not compete with R1881 for AR binding, when tested at 30 μM. Finally, the effects of BPA were also evaluated in a nuclear translocation assays using EGPF-tagged receptors. Similar to 17β-estradiol (E2) which was used as control, BPA was able to enhance ERα nuclear foci formation but at a 100-fold higher concentration. Although BPA was able to bind AR, the nuclear translocation was reduced. Furthermore, BPA was unable to induce functional foci in the nuclei and is consistent with the transient transfection study that BPA is unable to activate AR. Published by Elsevier Ireland Ltd.

  17. Overview of air pollution and endocrine disorders

    PubMed Central

    Darbre, Philippa D

    2018-01-01

    Over recent years, many environmental pollutant chemicals have been shown to possess the ability to interfere in the functioning of the endocrine system and have been termed endocrine disrupting chemicals (EDCs). These compounds exist in air as volatile or semi-volatile compounds in the gas phase or attached to particulate matter. They include components of plastics (phthalates, bisphenol A), components of consumer goods (parabens, triclosan, alkylphenols, fragrance compounds, organobromine flame retardants, fluorosurfactants), industrial chemicals (polychlorinated biphenyls), products of combustion (polychlorinated dibenzodioxins/furans, polyaromatic hydrocarbons), pesticides, herbicides, and some metals. This review summarizes current knowledge concerning the sources of EDCs in air, measurements of levels of EDCs in air, and the potential for adverse effects of EDCs in air on human endocrine health. PMID:29872334

  18. Male reprotoxicity and endocrine disruption

    PubMed Central

    Campion, Sarah; Catlin, Natasha; Heger, Nicholas; McDonnell, Elizabeth V.; Pacheco, Sara E.; Saffarini, Camelia; Sandrof, Moses A.; Boekelheide, Kim

    2013-01-01

    Mammalian reproductive tract development is a tightly regulated process that can be disrupted following exposure to drugs, toxicants, endocrine disrupting chemicals or other compounds via alterations to gene and protein expression or epigenetic regulation. Indeed, the impacts of developmental exposure to certain toxicants may not be fully realized until puberty or adulthood when the reproductive tract becomes sexually mature and altered functionality is manifested. Exposures that occur later in life, once development is complete, can also disrupt the intricate hormonal and paracrine interactions responsible for adult functions, such as spermatogenesis. In this chapter, the biology and toxicology of the male reproductive tract is explored, proceeding through the various life stages including in utero development, puberty, adulthood and senescence. Special attention is given to the discussion of endocrine disrupting chemicals, chemical mixtures, low dose effects, transgenerational effects, and potential exposure-related causes of male reproductive tract cancers. PMID:22945574

  19. [Perspectives on endocrine disruption].

    PubMed

    Olea, N; Fernández, M F; Araque, P; Olea-Serrano, F

    2002-01-01

    Two decades ago, reports of alterations in the reproductive function of some wild animal species and clear evidence of human and animal exposure to chemical substances with hormonal activity agonist and antagonist generated what is known now as the hypothesis of endocrine disruption. This is an emerging environmental health problem that has challenged some of the paradigms on which the control and regulation of the use of chemical compounds is based. The need to include in routine toxicology tests new research objectives that specifically refer to the development and growth of species and to the homeostasis and functionality of hormonal systems, has served to complicate both the evaluation of new compounds and the re-evaluation of existing ones. The repercussions on regulation and international trade have not taken long to be felt. On both sides of the Atlantic, screening systems for endocrine disrupters have been designed and established, and research programmes have been launched to characterise and quantify adverse effects on human and animal health and to develop preventive measures.

  20. Precommitment low-level Neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells

    PubMed Central

    Bechard, Matthew E.; Bankaitis, Eric D.; Hipkens, Susan B.; Ustione, Alessandro; Piston, David W.; Yang, Yu-Ping; Magnuson, Mark A.; Wright, Christopher V.E.

    2016-01-01

    The current model for endocrine cell specification in the pancreas invokes high-level production of the transcription factor Neurogenin 3 (Neurog3) in Sox9+ bipotent epithelial cells as the trigger for endocrine commitment, cell cycle exit, and rapid delamination toward proto-islet clusters. This model posits a transient Neurog3 expression state and short epithelial residence period. We show, however, that a Neurog3TA.LO cell population, defined as Neurog3 transcriptionally active and Sox9+ and often containing nonimmunodetectable Neurog3 protein, has a relatively high mitotic index and prolonged epithelial residency. We propose that this endocrine-biased mitotic progenitor state is functionally separated from a pro-ductal pool and endows them with long-term capacity to make endocrine fate-directed progeny. A novel BAC transgenic Neurog3 reporter detected two types of mitotic behavior in Sox9+ Neurog3TA.LO progenitors, associated with progenitor pool maintenance or derivation of endocrine-committed Neurog3HI cells, respectively. Moreover, limiting Neurog3 expression dramatically increased the proportional representation of Sox9+ Neurog3TA.LO progenitors, with a doubling of its mitotic index relative to normal Neurog3 expression, suggesting that low Neurog3 expression is a defining feature of this cycling endocrine-biased state. We propose that Sox9+ Neurog3TA.LO endocrine-biased progenitors feed production of Neurog3HI endocrine-committed cells during pancreas organogenesis. PMID:27585590

  1. Hormones and endocrine disruptors in human seminal plasma.

    PubMed

    Hampl, R; Kubatova, J; Heracek, J; Sobotka, V; Starka, L

    2013-07-01

    Seminal plasma represents a unique environment for maturation, nutrition, and protection of male germ cells from damaging agents. It contains an array of organic as well as inorganic chemicals, encompassing a number of biologically and immunologically active compounds, including hormones. Seminal plasma contains also various pollutants transferred from outer environment known as endocrine disruptors. They interfere with hormones at the receptor level, act as inhibitors of their biosynthesis, and affect hormone regulation.In this minireview, the main groups of hormones detected in seminal plasma are summarized. Seminal gonadal steroids were investigated mostly with aim to use them as biomarkers of impaired spermatogenesis (sperm count, motility, morphology). Concentrations of hormones in the seminal plasma often differ considerably from the blood plasma levels in dependence on their origin. In some instances (dihydrotestosterone, estradiol), their informative value is higher than determination in blood.Out of peptide hormones detected in seminal plasma, peptides of transforming growth factor beta family, especially antimullerian hormone, and oligopeptides related to thyrotropin releasing hormone have the high informative value, while assessment of seminal gonadotropins and prolactin does not bring advantage over determination in blood.Though there is a large body of information about the endocrine disruptors' impact on male reproduction, especially with their potential role in decline of male reproductive functions within the last decades, there are only scarce reports on their presence in seminal plasma. Herein, the main groups of endocrine disruptors found in seminal plasma are reviewed, and the use of their determination for investigation of fertility disorders is discussed.

  2. Diffuse traumatic brain injury affects chronic corticosterone function in the rat.

    PubMed

    Rowe, Rachel K; Rumney, Benjamin M; May, Hazel G; Permana, Paska; Adelson, P David; Harman, S Mitchell; Lifshitz, Jonathan; Thomas, Theresa C

    2016-07-01

    As many as 20-55% of patients with a history of traumatic brain injury (TBI) experience chronic endocrine dysfunction, leading to impaired quality of life, impaired rehabilitation efforts and lowered life expectancy. Endocrine dysfunction after TBI is thought to result from acceleration-deceleration forces to the brain within the skull, creating enduring hypothalamic and pituitary neuropathology, and subsequent hypothalamic-pituitary endocrine (HPE) dysfunction. These experiments were designed to test the hypothesis that a single diffuse TBI results in chronic dysfunction of corticosterone (CORT), a glucocorticoid released in response to stress and testosterone. We used a rodent model of diffuse TBI induced by midline fluid percussion injury (mFPI). At 2months postinjury compared with uninjured control animals, circulating levels of CORT were evaluated at rest, under restraint stress and in response to dexamethasone, a synthetic glucocorticoid commonly used to test HPE axis regulation. Testosterone was evaluated at rest. Further, we assessed changes in injury-induced neuron morphology (Golgi stain), neuropathology (silver stain) and activated astrocytes (GFAP) in the paraventricular nucleus (PVN) of the hypothalamus. Resting plasma CORT levels were decreased at 2months postinjury and there was a blunted CORT increase in response to restraint induced stress. No changes in testosterone were measured. These changes in CORT were observed concomitantly with altered complexity of neuron processes in the PVN over time, devoid of neuropathology or astrocytosis. Results provide evidence that a single moderate diffuse TBI leads to changes in CORT function, which can contribute to the persistence of symptoms related to endocrine dysfunction. Future experiments aim to evaluate additional HP-related hormones and endocrine circuit pathology following diffuse TBI. © 2016 The authors.

  3. Diffuse traumatic brain injury affects chronic corticosterone function in the rat

    PubMed Central

    Rowe, Rachel K; Rumney, Benjamin M; May, Hazel G; Permana, Paska; Adelson, P David; Harman, S Mitchell; Lifshitz, Jonathan

    2016-01-01

    As many as 20–55% of patients with a history of traumatic brain injury (TBI) experience chronic endocrine dysfunction, leading to impaired quality of life, impaired rehabilitation efforts and lowered life expectancy. Endocrine dysfunction after TBI is thought to result from acceleration–deceleration forces to the brain within the skull, creating enduring hypothalamic and pituitary neuropathology, and subsequent hypothalamic–pituitary endocrine (HPE) dysfunction. These experiments were designed to test the hypothesis that a single diffuse TBI results in chronic dysfunction of corticosterone (CORT), a glucocorticoid released in response to stress and testosterone. We used a rodent model of diffuse TBI induced by midline fluid percussion injury (mFPI). At 2months postinjury compared with uninjured control animals, circulating levels of CORT were evaluated at rest, under restraint stress and in response to dexamethasone, a synthetic glucocorticoid commonly used to test HPE axis regulation. Testosterone was evaluated at rest. Further, we assessed changes in injury-induced neuron morphology (Golgi stain), neuropathology (silver stain) and activated astrocytes (GFAP) in the paraventricular nucleus (PVN) of the hypothalamus. Resting plasma CORT levels were decreased at 2months postinjury and there was a blunted CORT increase in response to restraint induced stress. No changes in testosterone were measured. These changes in CORT were observed concomitantly with altered complexity of neuron processes in the PVN over time, devoid of neuropathology or astrocytosis. Results provide evidence that a single moderate diffuse TBI leads to changes in CORT function, which can contribute to the persistence of symptoms related to endocrine dysfunction. Future experiments aim to evaluate additional HP-related hormones and endocrine circuit pathology following diffuse TBI. PMID:27317610

  4. Negative energy balance in a male songbird, the Abert's towhee, constrains the testicular endocrine response to luteinizing hormone stimulation

    PubMed Central

    Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L.; Deviche, Pierre

    2015-01-01

    ABSTRACT Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary–gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. PMID:26333925

  5. [Histological effects of short term endocrine therapy on prostatic cancer].

    PubMed

    Irisawa, C; Yoshimura, Y; Yokota, T; Yamaguchi, O; Kondou, Y; Hamasaki, T; Yamad, Y; Kurosu, S; Chiba, R

    1996-07-01

    The objective of this study is to investigate the pathological changes which occurred in prostatic cancer shortly after the commencement of endocrine therapy. Fourty-three patients underwent radical prostatectomy immediately after the short term endocrine therapy (treatment period was within one month) and the histological pictures of operative specimens were compared to those obtained from the pretreatment biopsy specimens. Degenerative changes of cancer cells, such as nuclear and cytoplasmic vacuole, collapse of the cytoplasm and the appearance of naked hyperchromatic nucleus were noticed after the short term endocrine therapy. Especially in the cases which were histologically evaluated to be poorly differentiated in the biopsy specimens, not only degenerative changes but also destruction of cancer nests caused by cell death were observed. The histological effects affected by short term endocrine treatment had no relation to the prognosis, but in the cases of stage D2, the pathological grade judged by post-therapeutic specimens were found to be useful for the prediction of prognosis. Endocrine therapy induces remarkable pathological changes in prostatic cancer within a very short time after beginning treatment.

  6. ENDOCRINE DISRUPTORS FROM COMBUSTION AND VEHICULAR EMISSIONS: IDENTIFICATION AND SOURCE NOMINATION

    EPA Science Inventory

    During the last decade, concerns have been raised regarding the possible harmful effects of exposure to certain chemicals that are capable of modulating or disrupting the function of the endocrine system. These chemicals, which are referred to as endocrine disrupting chemicals (E...

  7. Nanotoxicity: a growing need for study in the endocrine system.

    PubMed

    Lu, Xuefei; Liu, Ying; Kong, Xiangjun; Lobie, Peter E; Chen, Chunying; Zhu, Tao

    2013-05-27

    Nanomaterials (NMs) are engineered for commercial purposes such as semiconductors, building materials, cosmetics, and drug carriers, while natural nanoparticles (NPs) already exist in the environment. Due to their unique physicochemical properties, they may interact actively with biological systems. Some of these interactions might be detrimental to human health, and therefore studies on the potential 'nanotoxicity' of these materials in different organ systems are warranted. The purpose of developing the concept of nanotoxicity is to recognize and evaluate the hazards and risks of NMs and evaluate safety. This review will summarize and discuss recent reports derived from cell lines or animal models concerning the effects of NMs on, and their application in, the endocrine system of mammalian and other species. It will present an update on current studies of the effects of some typical NMs-such as metal-based NMs, carbon-based NMs, and dendrimers-on endocrine functions, in which some effects are adverse or unwanted and others are favorable or intended. Disruption of endocrine function is associated with adverse health outcomes including reproductive failure, metabolic syndrome, and some types of cancer. Further investigations are therefore required to obtain a thorough understanding of any potential risk of pathological endocrine disruption from products containing NMs. This review aims to provide impetus for further studies on the interactions of NMs with endocrine functions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Highlighting Indication of extracorporeal membrane oxygenation in endocrine emergencies

    PubMed Central

    Chao, Anne; Wang, Chih-Hsien; You, Hao-Chun; Chou, Nai-Kwoun; Yu, Hsi-Yu; Chi, Nai-Hsin; Huang, Shu-Chien; Wu, I-Hui; Tseng, Li-Jung; Lin, Ming-Hsien; Chen, Yih-Sharng

    2015-01-01

    Extracorporeal membrane oxygenation (ECMO) has been repeatedly used to rescue patients with cardiopulmonary arrest. However, its clinical utility in endocrine emergencies remains unclear. Herein, we describe a case series of 12 patients presenting with refractory shock secondary to endocrine emergencies who were rescued by ECMO support. Patients were identified between 2005 and 2012 from our ECMO registry. The diagnostic distribution was as follows: pheochromocytoma crisis (n = 4), thyroid storm (n = 5), and diabetic ketoacidosis (n = 3). The initial presentation of pheochromocytoma crisis was indistinguishable from acute myocardial infarction (AMI) and frequently accompanied by paroxysmal hypertension and limb ischemia. Thyroid storm was characterized by hyperbilirubinemia and severe gastrointestinal bleeding, whereas neurological symptoms were common in diabetic ketoacidosis. The clinical outcomes of patients with endocrine emergencies were compared with those of 80 cases with AMI who received ECMO because of cardiogenic shock. The cardiac function and the general conditions showed a significantly faster recovery in patients with endocrine emergencies than in those with AMI. We conclude that ECMO support can be clinically useful in endocrine emergencies. The screening of endocrine diseases should be considered during the resuscitation of patients with refractory circulatory shock. PMID:26299943

  9. Highlighting Indication of extracorporeal membrane oxygenation in endocrine emergencies.

    PubMed

    Chao, Anne; Wang, Chih-Hsien; You, Hao-Chun; Chou, Nai-Kwoun; Yu, Hsi-Yu; Chi, Nai-Hsin; Huang, Shu-Chien; Wu, I-Hui; Tseng, Li-Jung; Lin, Ming-Hsien; Chen, Yih-Sharng

    2015-08-24

    Extracorporeal membrane oxygenation (ECMO) has been repeatedly used to rescue patients with cardiopulmonary arrest. However, its clinical utility in endocrine emergencies remains unclear. Herein, we describe a case series of 12 patients presenting with refractory shock secondary to endocrine emergencies who were rescued by ECMO support. Patients were identified between 2005 and 2012 from our ECMO registry. The diagnostic distribution was as follows: pheochromocytoma crisis (n = 4), thyroid storm (n = 5), and diabetic ketoacidosis (n = 3). The initial presentation of pheochromocytoma crisis was indistinguishable from acute myocardial infarction (AMI) and frequently accompanied by paroxysmal hypertension and limb ischemia. Thyroid storm was characterized by hyperbilirubinemia and severe gastrointestinal bleeding, whereas neurological symptoms were common in diabetic ketoacidosis. The clinical outcomes of patients with endocrine emergencies were compared with those of 80 cases with AMI who received ECMO because of cardiogenic shock. The cardiac function and the general conditions showed a significantly faster recovery in patients with endocrine emergencies than in those with AMI. We conclude that ECMO support can be clinically useful in endocrine emergencies. The screening of endocrine diseases should be considered during the resuscitation of patients with refractory circulatory shock.

  10. A prospective evaluation of pancreatic exocrine function in patients with acute pancreatitis: correlation with extent of necrosis and pancreatic endocrine insufficiency.

    PubMed

    Boreham, B; Ammori, B J

    2003-01-01

    The aim of this prospective study was to assess pancreatic exocrine function in patients recovering from a first attack of acute pancreatitis, and to evaluate its relationship to severity of attack, extent of pancreatic necrosis and severity of pancreatic endocrine insufficiency. Between December 2000 and November 2001, 23 patients were prospectively evaluated. Pancreatic exocrine function was measured by the faecal elastase-1 test and insufficiency was classified as moderately impaired or severely impaired. Pancreatic necrosis was determined by contrast-enhanced CT scan, and its extent was categorised according to Balthazar's classification. The severity of pancreatic endocrine insufficiency was categorised according to insulin dependence. Attacks were classified as mild (n = 16) or severe (n = 7) according to the Atlanta criteria. Pancreatic exocrine insufficiency was significantly more frequent in patients recovering from severe attacks than mild (n = 6, 86% vs. n = 2, 13%; p = 0.002), and in those who developed pancreatic necrosis or pseudocyst than those who did not (6 of 7 patients vs. 2 of 16 patients, and 5 of 5 patients vs. 3 of 18 patients respectively; p = 0.002). The development of exocrine insufficiency correlated strongly with the extent of pancreatic necrosis (r = -0.754, p < 0.001), and the severity of pancreatic endocrine insufficiency (n = 4, r = -0.453, p = 0.03). Pancreatic exocrine insufficiency is a common occurrence in patients recovering from severe acute pancreatitis, and its severity correlates with the extent of pancreatic necrosis and the severity of concomitant pancreatic endocrine insufficiency. Copyright 2003 S. Karger AG, Basel and IAP

  11. Anthropogenic tracers, endocrine disrupting chemicals, and endocrine disruption in Minnesota lakes

    USGS Publications Warehouse

    Writer, J.H.; Barber, L.B.; Brown, G.K.; Taylor, Howard E.; Kiesling, R.L.; Ferrey, M.L.; Jahns, N.D.; Bartell, S.E.; Schoenfuss, H.L.

    2010-01-01

    Concentrations of endocrine disrupting chemicals and endocrine disruption in fish were determined in 11 lakes across Minnesota that represent a range of trophic conditions and land uses (urban, agricultural, residential, and forested) and in which wastewater treatment plant discharges were absent. Water, sediment, and passive polar organic integrative samplers (POCIS) were analyzed for steroidal hormones, alkylphenols, bisphenol A, and other organic and inorganic molecular tracers to evaluate potential non-point source inputs into the lakes. Resident fish from the lakes were collected, and caged male fathead minnows were deployed to evaluate endocrine disruption, as indicated by the biological endpoints of plasma vitellogenin and gonadal histology. Endocrine disrupting chemicals, including bisphenol A, 17??-estradiol, estrone, and 4-nonylphenol were detected in 90% of the lakes at part per trillion concentrations. Endocrine disruption was observed in caged fathead minnows and resident fish in 90% of the lakes. The widespread but variable occurrence of anthropogenic chemicals in the lakes and endocrine disruption in fish indicates that potential sources are diverse, not limited to wastewater treatment plant discharges, and not entirely predictable based on trophic status and land use. ?? 2010.

  12. Exocrine and endocrine pancreatic function in 21 patients suffering from autoimmune pancreatitis before and after steroid treatment.

    PubMed

    Frulloni, Luca; Scattolini, Chiara; Katsotourchi, Anna Maria; Amodio, Antonio; Gabbrielli, Armando; Zamboni, Giuseppe; Benini, Luigi; Vantini, Italo

    2010-01-01

    Autoimmune pancreatitis (AIP) responds rapidly and dramatically to steroid therapy. The aim of this study was to evaluate pancreatic exocrine and endocrine function in patients suffering from AIP both before and after steroid therapy. Fecal elastase 1 and diabetes were evaluated before steroid therapy and within 1 month of its suspension in 21 patients (13 males and 8 females, mean age 43 +/- 16.5 years) diagnosed as having AIP between 2006 and 2008. At clinical onset, fecal elastase 1 was 107 +/- 126 microg/g stool. Thirteen patients (62%) showed severe pancreatic insufficiency (<100 microg/g stool), 4 (19%) had mild insufficiency (100-200 microg/g stool), while 4 (19%) had normal pancreatic function (>200 microg/g stool). Before steroids, diabetes was diagnosed in 5 patients (24%), all of whom had very low levels of fecal elastase 1 (<19 microg/g stool). Following steroids, fecal elastase 1 increased in all patients (237 +/- 193 microg/g stool) and observed levels were significantly higher than those seen before steroids (p = 0.001). Patients suffering from AIP display exocrine and/or endocrine pancreatic insufficiency at clinical onset. These insufficiencies improve after steroid therapy. Copyright 2010 S. Karger AG, Basel.

  13. Parabens and their effects on the endocrine system.

    PubMed

    Nowak, Karolina; Ratajczak-Wrona, Wioletta; Górska, Maria; Jabłońska, Ewa

    2018-03-27

    Preservatives (ingredients which inhibit growth of microorganisms) are used to prolong shelf life of various foods, cosmetics, and pharmaceutical products. Parabens are one of the most popular preservatives used in the aforementioned products and is currently being used worldwide. Parabens are easily absorbed by the human body. Thus, it is important to discuss about their safety with respect to human physiology. In view of the current literature, which classifies parabens as a group of endocrine disrupting chemicals (EDCs), it seems that the precise assessment of their influence on the human endocrine system is particularly important. Disruption of the endocrine homoeostasis might lead to multidirectional implications causing disruption of fitness and functions of the body. Therefore, in this review article, we aimed to summarize the current literature on properties, occurrence, and metabolism of parabens as well as to present recent progress in knowledge about their influence on the human endocrine system. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Endocrine control of epigenetic mechanisms in male reproduction.

    PubMed

    Ankolkar, Mandar; Balasinor, N H

    2016-01-01

    Endocrine control of reproduction is very well known and has been echoed by many research groups. However, recent developments point to the ability of toxic endocrine disrupting chemicals (EDC) to alter epigenetic information of the gametes which gets transferred to the developing embryo and affects the immediate reproductive outcome or even persists transgenerationally. These epigenetic aberrations contribute to the ensuing pathophysiology of reproductive disorders. Investigations of the female in cases of poor reproductive outcome have been the main strategy towards diagnosis. However, despite the male partner contributing half of his genome to the progeny, thorough investigations in the male have been ignored. Environmental pollutants are all pervading and are encountered in our day-to-day life. Many of these pollutants have potential to disrupt the endocrine system. Here, we discuss how the male gametes (spermatozoa) are susceptible to a myriad of epigenetic insults inflicted by exposure to endocrine disruptors and how important is the contribution of the epigenetic marks of the spermatozoa in healthy reproduction. We advocate that sperm epigenetics should be considered as a significant contributor to reproductive health and should be researched further and be subsequently included in routine diagnostic workup in cases of poor reproductive outcome.

  15. AUTONOMIC AXONS IN THE HUMAN ENDOCRINE PANCREAS SHOW UNIQUE INNERVATION PATTERNS

    PubMed Central

    Rodriguez-Diaz, Rayner; Abdulreda, Midhat H.; Formoso, Alexander L.; Gans, Itai; Ricordi, Camillo; Berggren, Per-Olof; Caicedo, Alejandro

    2011-01-01

    SUMMARY The autonomic nervous system regulates hormone secretion from the endocrine pancreas, the islets of Langerhans, and thus impacts glucose metabolism. The parasympathetic and sympathetic nerves innervate the pancreatic islet, but the precise innervation patterns are not known, particularly in human islets. Here we demonstrate that the innervation of human islets is different from that of mouse islets and that it does not conform to existing models of autonomic control of islet function. By visualizing axons in three dimensions and quantifying axonal densities and contacts within pancreatic islets, we found that, in contrast to mouse endocrine cells, human endocrine cells are sparsely contacted by autonomic axons. Few parasympathetic cholinergic axons penetrate the human islet and the invading sympathetic fibers preferentially innervate smooth muscle cells of blood vessels located within the islet. Thus, rather than modulating endocrine cell function directly, sympathetic nerves may regulate hormone secretion in human islets by controlling local blood flow or by acting on islet regions located downstream. PMID:21723503

  16. Middle-preserving pancreatectomy for advanced transverse colon cancer invading the duodenun and non-functioning endocrine tumor in the pancreatic tail.

    PubMed

    Noda, Hiroshi; Kato, Takaharu; Kamiyama, Hidenori; Toyama, Nobuyuki; Konishi, Fumio

    2011-02-01

    A 73-year-old female was referred to our hospital with a diagnosis of advanced transverse colon cancer with severe anemia and body weight loss. Preoperative evaluations, including colonoscopy, gastroduodenoscopy, and computed tomography, revealed not only a transverse colon cancer massively invading the duodenum, but also a non-functioning endocrine tumor in the pancreatic tail. We performed middle-preserving pancreatectomy (MPP) with right hemicolectomy for these tumors with a curative intent. After the resection, about 6 cm of the body of the pancreas was preserved, and signs of diabetes mellitus have not appeared. The postoperative course was complicated by a grade B pancreatic fistula, but this was successfully treated with conservative management. After a 33-day hospital stay, the patient returned to daily life without signs of pancreatic exocrine insufficiency. Although the long-term follow-up of the patient is indispensable, in this case, MPP might be able to lead to the curative resection of transverse colon cancer massively invading the duodenum and non-functioning endocrine tumor in the pancreatic tail with preservation of pancreatic function.

  17. Clinical review: kinase inhibitors: adverse effects related to the endocrine system.

    PubMed

    Lodish, Maya B

    2013-04-01

    The use of kinase inhibitors (KIs) in the treatment of cancer has become increasingly common, and practitioners must be familiar with endocrine-related side effects associated with these agents. This review provides an update to the clinician regarding the management of potential endocrinological effects of KIs. PubMed was employed to identify relevant manuscripts. A review of the literature was conducted, and data were summarized and incorporated. KIs, including small molecule KIs and monoclonal antibodies directed against kinases, have emerged over the past decade as an important class of anticancer agents. KIs specifically interfere with signaling pathways that are dysregulated in certain types of cancers and also target common mechanisms of growth, invasion, metastasis, and angiogenesis. Currently, at least 20 KIs are approved as cancer therapeutics. However, KIs may affect a broad spectrum of targets and may have additional, unidentified mechanisms of action at the cellular level due to overlap between signaling pathways in the tumor cell and endocrine system. Recent reports in the literature have identified side effects associated with KIs, including alterations in thyroid function, bone metabolism, linear growth, gonadal function, fetal development, adrenal function, and glucose metabolism. Clinicians need to monitor the thyroid functions of patients on KIs. In addition, bone density and vitamin D status should be assessed. Special care should be taken to follow linear growth and development in children taking these agents. Clinicians should counsel patients appropriately on the potential adverse effects of KIs on fetal development.

  18. SPECIES DIFFERENCES IN ANDROGEN AND ESTROGEN RECEPTOR STRUCTURE AND FUNCTION AMONG VERTEBRATES AND INVERTEBRATES: INTERSPECIES EXTRAPOLATIONS REGARDING ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Species Differences in Androgen and Estrogen Receptor Structure and Function Among Vertebrates and Invertebrates: Interspecies Extrapolations regarding Endocrine Disrupting Chemicals
    VS Wilson1, GT Ankley2, M Gooding 1,3, PD Reynolds 1,4, NC Noriega 1, M Cardon 1, P Hartig1,...

  19. The immune-neuro-endocrine interactions.

    PubMed

    Tomaszewska, D; Przekop, F

    1997-06-01

    This article reviews data concerning the interactions between immune, endocrine and neural systems in physiological, pathophysiological and stress conditions in animals and humans. Numerous studies have provided evidence that these systems interact with each other in maintaining homeostasis. This interaction may be classified as follows: immune, endocrine and neural cell products coexist in lymphoid, endocrine and neural tissue. Endocrine and neural mediators modulate immune system activity. Immune, endocrine and neural cells express receptors for cytokines, hormones, neuropeptides and transmitters.

  20. Involvement of endocrine system in a patient affected by glycogen storage disease 1b: speculation on the role of autoimmunity.

    PubMed

    Melis, Daniela; Della Casa, Roberto; Balivo, Francesca; Minopoli, Giorgia; Rossi, Alessandro; Salerno, Mariacarolina; Andria, Generoso; Parenti, Giancarlo

    2014-03-19

    Glycogen storage disease type 1b (GSD1b) is an inherited metabolic defect of glycogenolysis and gluconeogenesis due to mutations of the SLC37A4 gene and to defective transport of glucose-6-phosphate. The clinical presentation of GSD1b is characterized by hepatomegaly, failure to thrive, fasting hypoglycemia, and dyslipidemia. Patients affected by GSD1b also show neutropenia and/or neutrophil dysfunction that cause increased susceptibility to recurrent bacterial infections. GSD1b patients are also at risk for inflammatory bowel disease. Occasional reports suggesting an increased risk of autoimmune disorders in GSD1b patients, have been published. These complications affect the clinical outcome of the patients. Here we describe the occurrence of autoimmune endocrine disorders including thyroiditis and growth hormone deficiency, in a patient affected by GSD1b. This case further supports the association between GSD1b and autoimmune diseases.

  1. Endocrine-Disrupting Chemicals: Associated Disorders and Mechanisms of Action

    PubMed Central

    De Coster, Sam; van Larebeke, Nicolas

    2012-01-01

    The incidence and/or prevalence of health problems associated with endocrine-disruption have increased. Many chemicals have endocrine-disrupting properties, including bisphenol A, some organochlorines, polybrominated flame retardants, perfluorinated substances, alkylphenols, phthalates, pesticides, polycyclic aromatic hydrocarbons, alkylphenols, solvents, and some household products including some cleaning products, air fresheners, hair dyes, cosmetics, and sunscreens. Even some metals were shown to have endocrine-disrupting properties. Many observations suggesting that endocrine disruptors do contribute to cancer, diabetes, obesity, the metabolic syndrome, and infertility are listed in this paper. An overview is presented of mechanisms contributing to endocrine disruption. Endocrine disruptors can act through classical nuclear receptors, but also through estrogen-related receptors, membrane-bound estrogen-receptors, and interaction with targets in the cytosol resulting in activation of the Src/Ras/Erk pathway or modulation of nitric oxide. In addition, changes in metabolism of endogenous hormones, cross-talk between genomic and nongenomic pathways, cross talk with estrogen receptors after binding on other receptors, interference with feedback regulation and neuroendocrine cells, changes in DNA methylation or histone modifications, and genomic instability by interference with the spindle figure can play a role. Also it was found that effects of receptor activation can differ in function of the ligand. PMID:22991565

  2. Human infertility: are endocrine disruptors to blame?

    PubMed Central

    Marques-Pinto, André; Carvalho, Davide

    2013-01-01

    Over recent decades, epidemiological studies have been reporting worrisome trends in the incidence of human infertility rates. Extensive detection of industrial chemicals in human serum, seminal plasma and follicular fluid has led the scientific community to hypothesise that these compounds may disrupt hormonal homoeostasis, leading to a vast array of physiological impairments. Numerous synthetic and natural substances have endocrine-disruptive effects, acting through several mechanisms. The main route of exposure to these chemicals is the ingestion of contaminated food and water. They may disturb intrauterine development, resulting in irreversible effects and may also induce transgenerational effects. This review aims to summarise the major scientific developments on the topic of human infertility associated with exposure to endocrine disruptors (EDs), integrating epidemiological and experimental evidence. Current data suggest that environmental levels of EDs may affect the development and functioning of the reproductive system in both sexes, particularly in foetuses, causing developmental and reproductive disorders, including infertility. EDs may be blamed for the rising incidence of human reproductive disorders. This constitutes a serious public health issue that should not be overlooked. The exposure of pregnant women and infants to EDs is of great concern. Therefore, precautionary avoidance of exposure to EDs is a prudent attitude in order to protect humans and wildlife from permanent harmful effects on fertility. PMID:23985363

  3. DIFFERENCES IN THE STRUCTURE AND FUNCTION OF FATHEAD MINNOW AND HUMAN ERA: IMPLICATIONS FOR IN VITRO TESTING OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Mammalian receptors and assay systems are generally used for in vitro analysis of endocrine disrupting chemicals (EDC) with the assumption that minor differences in amino acid sequences among species do not translate into significant differences in receptor function. We have fou...

  4. The interaction between ER and NFκB in resistance to endocrine therapy

    PubMed Central

    2012-01-01

    Endocrine therapy is a commonly used treatment for estrogen receptor (ER)-positive breast cancer. Although endocrine therapy has a favorable outcome in many patients, development of resistance is common. Recent studies have shown that NFκB, a transcription factor regulating a wide variety of cellular processes, might play a role in the development of endocrine resistance. The precise interaction between ER and NFκB and how this contributes to the attenuated responsiveness of ER-positive breast cancer cells to hormonal treatment remains unclear. This review provides an overview of the mechanisms of action for both transcription factors and focuses on the current knowledge explaining how ER and NFκB affect each other's activity and how this cross-talk might contribute to the development of an endocrine resistance phenotype in breast cancer cells. PMID:22963717

  5. The unique endocrine milieu of the fetus.

    PubMed Central

    Fisher, D A

    1986-01-01

    Table II summarizes in tabular form the major features of the fetal endocrine milieu discussed in the foregoing pages. The mammalian fetus develops in an environment where respiration, alimentation, and excretory functions are provided by the placenta. Fetal tissue metabolism is oriented largely to anabolism; body temperature is modulated by maternal metabolism, and fetal tissue thermogenesis is maintained at a basal level. Tissue and organ growth appear to be regulated by growth factors which probably function by autocrine or paracrine mechanisms during most of gestation (72, 146-148). In this milieu conventional endocrine control systems are largely redundant, and other transient systems more appropriate to the intrauterine environment have evolved. We have developed some insights into these systems, but much more information is necessary before we can truly understand this fascinating environment. PMID:3018041

  6. Long term effects of extended adjuvant endocrine therapy on quality of life in breast cancer patients.

    PubMed

    Kool, M; Fontein, D B Y; Meershoek-Klein Kranenbarg, E; Nortier, J W R; Rutgers, E J T; Marang-van de Mheen, P J; van de Velde, C J H

    2015-06-01

    The standard treatment for hormone-receptor positive, postmenopausal early breast cancer patients is 5 years of adjuvant endocrine therapy. Previous studies demonstrate that prolonging adjuvant endocrine therapy may improve disease-free survival. However, endocrine therapy is known for its adverse events, which may negatively affect Quality of Life (QoL). The aim of this study is to assess the impact of extended adjuvant endocrine therapy on long-term QoL outcomes. 471 patients selected from the IDEAL trial were invited to complete a questionnaire 1-1.5 years after starting with extended therapy. The questionnaire consisted of the EORTC QLQ-C30 and QLQ-BR23 questionnaires. Mean QoL outcomes were compared with EORTC reference values for stage I and II breast cancer patients and the general population. Furthermore, QoL outcomes were compared between different treatment regimens. A difference of eight points was considered clinically relevant. IDEAL patients receiving extended adjuvant endocrine therapy have significantly and clinically relevant better global QoL compared with reference values for stage I and II breast cancer patients (79.6 versus 64.6; p < 0.01) and the general population (79.6 versus 71.2; p < 0.01). Similar results were found for emotional function, pain, appetite loss, diarrhea and financial problems. Between treatment regimens prior to extended adjuvant endocrine therapy, differences were only found on specific QoL domains (e.g. arm symptoms). Breast cancer patients on extended adjuvant endocrine therapy have significantly and clinically relevant better global QoL compared with other stage I-II breast cancer patients and the general population, 6-8.5 years after diagnosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Negative energy balance in a male songbird, the Abert's Towhee, constrains the testicular endocrine response to luteinizing hormone stimulation.

    PubMed

    Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L; Deviche, Pierre

    2015-07-10

    Energy deficiency can suppress reproductive functions in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none has investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's Towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone (T) responsiveness of the HPG axis. Wild-caught birds were either ad libitum-fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma T response to GnRH challenge. Energy deficiency did, however, decrease the plasma T responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting in decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. © 2015. Published by The Company of Biologists Ltd.

  8. Negative energy balance in a male songbird, the Abert's towhee, constrains the testicular endocrine response to luteinizing hormone stimulation.

    PubMed

    Davies, Scott; Gao, Sisi; Valle, Shelley; Bittner, Stephanie; Hutton, Pierce; Meddle, Simone L; Deviche, Pierre

    2015-09-01

    Energy deficiency can suppress reproductive function in vertebrates. As the orchestrator of reproductive function, endocrine activity of the hypothalamo-pituitary-gonadal (HPG) axis is potentially an important mechanism mediating such effects. Previous experiments in wild-caught birds found inconsistent relationships between energy deficiency and seasonal reproductive function, but these experiments focused on baseline HPG axis activity and none have investigated the responsiveness of this axis to endocrine stimulation. Here, we present data from an experiment in Abert's towhees, Melozone aberti, using gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) challenges to investigate whether energy deficiency modulates the plasma testosterone responsiveness of the HPG axis. Wild-caught birds were either ad libitum fed or energetically constrained via chronic food restriction during photoinduced reproductive development. Energy deficiency did not significantly affect the development of reproductive morphology, the baseline endocrine activity of the HPG axis, or the plasma testosterone response to GnRH challenge. Energy deficiency did, however, decrease the plasma testosterone responsiveness to LH challenge. Collectively, these observations suggest that energy deficiency has direct gonadal effects consisting of a decreased responsiveness to LH stimulation. Our study, therefore, reveals a mechanism by which energy deficiency modulates reproductive function in wild birds in the absence of detectable effects on baseline HPG axis activity. © 2015. Published by The Company of Biologists Ltd.

  9. Requirement for Pdx1 in specification of latent endocrine progenitors in zebrafish

    PubMed Central

    2011-01-01

    Background Insulin-producing beta cells emerge during pancreas development in two sequential waves. Recently described later-forming beta cells in zebrafish show high similarity to second wave mammalian beta cells in developmental capacity. Loss-of-function studies in mouse and zebrafish demonstrated that the homeobox transcription factors Pdx1 and Hb9 are both critical for pancreas and beta cell development and discrete stage-specific requirements for these genes have been uncovered. Previously, exocrine and endocrine cell recovery was shown to follow loss of pdx1 in zebrafish, but the progenitor cells and molecular mechanisms responsible have not been clearly defined. In addition, interactions of pdx1 and hb9 in beta cell formation have not been addressed. Results To learn more about endocrine progenitor specification, we examined beta cell formation following morpholino-mediated depletion of pdx1 and hb9. We find that after early beta cell reduction, recovery occurs following loss of either pdx1 or hb9 function. Unexpectedly, simultaneous knockdown of both hb9 and pdx1 leads to virtually complete and persistent beta cell deficiency. We used a NeuroD:EGFP transgenic line to examine endocrine cell behavior in vivo and developed a novel live-imaging technique to document emergence and migration of late-forming endocrine precursors in real time. Our data show that Notch-responsive progenitors for late-arising endocrine cells are predominantly post mitotic and depend on pdx1. By contrast, early-arising endocrine cells are specified and differentiate independent of pdx1. Conclusions The nearly complete beta cell deficiency after combined loss of hb9 and pdx1 suggests functional cooperation, which we clarify as distinct roles in early and late endocrine cell formation. A novel imaging approach permitted visualization of the emergence of late endocrine cells within developing embryos for the first time. We demonstrate a pdx1-dependent progenitor population essential for

  10. Significance of Ovarian Function Suppression in Endocrine Therapy for Breast Cancer in Pre-Menopausal Women

    PubMed Central

    Scharl, A.; Salterberg, A.

    2016-01-01

    Ovarian function suppression (OFS) for treating breast cancer in pre-menopausal women was introduced for the first time in the late 19th century as bilateral oophorectomy. It was not until the 1960s that the oestrogen receptor was identified and a test for detecting endocrine sensitivity of the breast cancer was developed. A weakness of early trials on OFS for breast cancer treatment is therefore their failure to take receptor sensitivity into account when selecting participants. A meta-analysis performed in the early 1990s first proved that adjuvant OFS significantly improved the cure rate of oestrogen receptor-positive breast cancer in pre-menopausal women regardless of whether it was carried out through oophorectomy, radiation-induced ablation or drug therapy. In the 1970s, tamoxifen was synthesized. It became one of the most important cancer drugs and today constitutes the gold standard for endocrine adjuvant therapy. Taking tamoxifen for a five-year period lowers mortality by 30 % over 15 years. Ten years of tamoxifen therapy reduces mortality even further, with increased side effects, however. Research over the past ten years has proven that for post-menopausal women, aromatase inhibitors have benefits over tamoxifen. Current trial results have rekindled the debate about the combination of OFS with tamoxifen or with aromatase inhibitors for adjuvant breast cancer treatment of pre-menopausal women. These trials have reported an improvement in disease-free survival in patients with a high risk of recurrence when they are treated with a combination of OFS plus tamoxifen or aromatase inhibitors, especially in women younger than 35. However, combination therapy causes significantly more side effects, which could negatively impact compliance. Endocrine treatments administered over a period of many years show waning compliance, which tends to be only around 50 % after five years. Inadequate compliance compromises efficacy and increases the risk of mortality. For

  11. Application of endocrine disruptor screening program fish short-term reproduction assay: Reproduction and endocrine function in fathead minnow (Pimephales promelas) and killifish (Fundulus heteroclitus) exposed to Bermuda pond sediment.

    PubMed

    Fort, Douglas J; Mathis, Michael; Fort, Chelsea E; Fort, Hayley M; Bacon, Jamie P

    2015-06-01

    A modified tier 1 Endocrine Disruptor Screening Program (EDSP) 21-d fish short-term reproduction assay (FSTRA) was used to evaluate the effects of sediment exposure from freshwater and brackish ponds in Bermuda on reproductive fecundity and endocrine function in fathead minnow (Pimephales promelas) and killifish (Fundulus heteroclitus). Reproductively active male and female fish were exposed to control sediment and sediment from 2 freshwater ponds (fathead minnow) and 2 marine ponds (killifish) contaminated with polyaromatic hydrocarbons and metals via flow-through exposure for 21 d. Reproductive fecundity was monitored daily. At termination, the status of the reproductive endocrine system was assessed by the gonadosomatic index, gonadal histology, plasma steroids (estrogen [E2], testosterone [T], and 11-ketotestosterone [11-KT]), steroidogenic enzymes (aromatase and combined 3β/17β -hydroxysteroid dehydrogenase [3β/17β-HSD]), and plasma vitellogenin (VTG). Decreased reproductive fecundity, lower male body weight, and altered endocrinological measures of reproductive status were observed in both species. Higher plasma T levels in female minnows and 11-KT levels in both male and female minnows and female killifish exposed to freshwater and brackish sediments, respectively. Decreased female E2 and VTG levels and gonadal cytochrome P19 (aromatase) activity were also found in sediment exposed females from both species. No effect on female 3β/17β-HSD activity was found in either species. The FSTRA provided a robust model capable of modification to evaluate reproductive effects of sediment exposure in fish. © 2015 SETAC.

  12. COMPARISON OF FATHEAD MINNOW AND HUMAN ESTROGEN RECEPTOR BINDING TO ENDOCRINE DISRUPTING COMPOUNDS

    EPA Science Inventory

    Environmental estrogens have the potential to disrupt endocrine function in a myriad of species. However, in vitro assays designed to detect and characterize endocrine disrupting chemicals (EDCs) typically utilize mammalian estrogen receptors. Our overall objective is to charac...

  13. Do endocrine disruptors cause hypospadias?

    PubMed Central

    Botta, Sisir; Cunha, Gerald R.

    2014-01-01

    Introduction Endocrine disruptors or environmental agents, disrupt the endocrine system, leading to various adverse effects in humans and animals. Although the phenomenon has been noted historically in the cases of diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT), the term “endocrine disruptor” is relatively new. Endocrine disruptors can have a variety of hormonal activities such as estrogenicity or anti-androgenicity. The focus of this review concerns on the induction of hypospadias by exogenous estrogenic endocrine disruptors. This has been a particular clinical concern secondary to reported increased incidence of hypospadias. Herein, the recent literature is reviewed as to whether endocrine disruptors cause hypospadias. Methods A literature search was performed for studies involving both humans and animals. Studies within the past 5 years were reviewed and categorized into basic science, clinical science, epidemiologic, or review studies. Results Forty-three scientific articles were identified. Relevant sentinel articles were also reviewed. Additional pertinent studies were extracted from the reference of the articles that obtained from initial search results. Each article was reviewed and results presented. Overall, there were no studies which definitely stated that endocrine disruptors caused hypospadias. However, there were multiple studies which implicated endocrine disruptors as one component of a multifactorial model for hypospadias. Conclusions Endocrine disruption may be one of the many critical steps in aberrant development that manifests as hypospadias. PMID:26816789

  14. Exposure to bisphenol A affects GABAergic neuron differentiation in neurosphere cultures.

    PubMed

    Fukushima, Nobuyuki; Nagao, Tetsuji

    2018-06-13

    Endocrine-disrupting chemicals (EDCs) influence not only endocrine functions but also neuronal development and functions. In-vivo studies have suggested the relationship of EDC-induced neurobehavioral disorders with dysfunctions of neurotransmitter mechanisms including γ-aminobutyric acid (GABA)ergic mechanisms. However, whether EDCs affect GABAergic neuron differentiation remains unclear. In the present study, we show that a representative EDC, bisphenol A (BPA), affects GABAergic neuron differentiation. Cortical neurospheres prepared from embryonic mice were exposed to BPA for 7 days, and then neuronal differentiation was induced. We found that BPA exposure resulted in a decrease in the ratio of GABAergic neurons to total neurons. However, the same exposure stimulated the differentiation of neurons expressing calbindin, a calcium-binding protein observed in a subpopulation of GABAergic neurons. These findings suggested that BPA might influence the formation of an inhibitory neuronal network in developing cerebral cortex involved in the occurrence of neurobehavioral disorders.

  15. Endocrine active chemicals and endocrine disruption in Minnesota streams and lakes: implications for aquatic resources, 1994-2008

    USGS Publications Warehouse

    Lee, Kathy E.; Schoenfuss, Heiko L.; Barber, Larry B.; Writer, Jeff H.; Blazer, Vicki; Keisling, Richard L.; Ferrey, Mark L.

    2010-01-01

    Although these studies indicate that wastewater-treatment plant effluent is a conduit for endocrine active chemicals to surface waters, endocrine active chemicals also were present in surface waters with no obvious wastewater-treatment plant effluent sources. Endocrine active chemicals were detected and indicators of endocrine disruption in fish were measured at numerous sites upstream from discharge of wastewater-treatment plant effluent. These observations indicate that other unidentified sources of endocrine active chemicals exist, such as runoff from land surfaces, atmospheric deposition, inputs from onsite septic systems, or other groundwater sources. Alternatively, some endocrine active chemicals may not yet have been identified or measured. The presence of biological indicators of endocrine disruption in male fish indicates that the fish are exposed to endocrine active chemicals. However indicators of endocrine disruption in male fish does not indicate an effect on fish reproduction or changes in fish populations.

  16. Appetite-Controlling Endocrine Systems in Teleosts

    PubMed Central

    Rønnestad, Ivar; Gomes, Ana S.; Murashita, Koji; Angotzi, Rita; Jönsson, Elisabeth; Volkoff, Hélène

    2017-01-01

    Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms. PMID:28458653

  17. Cosmetics as endocrine disruptors: are they a health risk?

    PubMed

    Nicolopoulou-Stamati, Polyxeni; Hens, Luc; Sasco, Annie J

    2015-12-01

    Exposure to chemicals from different sources in everyday life is widespread; one such source is the wide range of products listed under the title "cosmetics", including the different types of popular and widely-advertised sunscreens. Women are encouraged through advertising to buy into the myth of everlasting youth, and one of the most alarming consequences is in utero exposure to chemicals. The main route of exposure is the skin, but the main endpoint of exposure is endocrine disruption. This is due to many substances in cosmetics and sunscreens that have endocrine active properties which affect reproductive health but which also have other endpoints, such as cancer. Reducing the exposure to endocrine disruptors is framed not only in the context of the reduction of health risks, but is also significant against the background and rise of ethical consumerism, and the responsibility of the cosmetics industry in this respect. Although some plants show endocrine-disrupting activity, the use of well-selected natural products might reduce the use of synthetic chemicals. Instruments dealing with this problem include life-cycle analysis, eco-design, and green labels; in combination with the committed use of environmental management systems, they contribute to "corporate social responsibility".

  18. ENDOCRINE DISRUPTORS IN THE ENVIRONMENT

    EPA Science Inventory

    The endocrine system produces hormones which are powerful natural chemicals that regulate important life processes. Endocrine disruptors are human-made chemicals distributed globally which have the potential to interfere with the endocrine system and produce serious biological e...

  19. Contrasting seasonal and aseasonal environments across stages of the annual cycle in the Rufous-collared Sparrow, Zonotrichia capensis: differences in endocrine function, proteome, and body condition.

    PubMed

    González-Gómez, Paulina L; Echeverria, Valentina; Estades, Cristian F; Perez, Jonathan H; Krause, Jesse S; Sabat, Pablo; Li, Jonathon; Kültz, Dietmar; Wingfield, John C

    2018-05-09

    1.The timing and duration of life history stages (LHS) within the annual cycle can be affected by local environmental cues which are integrated through endocrine signaling mechanisms and changes in protein function. Most animals express a single LHS within a given period of the year because synchronous expression of LHSs is thought to be too costly energetically. However, in very rare and extremely stable conditions, breeding and molt have been observed to overlap extensively in Rufous-collared sparrows (Zonotrichia capensis) living in valleys of the Atacama Desert - one of the most stable and aseasonal environments on Earth. 2.To examine how LHS traits at different levels of organization are affected by environmental variability we compared the temporal organization and duration of LHSs in populations in the Atacama Desert with those in the semiarid Fray Jorge National Park in the north of Chile - an extremely seasonal climate but with unpredictable droughts and heavy rainy seasons. 3.We studied the effects of environmental variability on morphological variables related to body condition, endocrine traits, and proteome. Birds living in the seasonal environment had a strict temporal division LHSs while birds living in the aseasonal environment failed to maintain a temporal division of LHSs resulting in direct overlap of breeding and molt. Further, higher circulating glucocorticoids and androgen concentrations were found in birds from seasonal compared to aseasonal populations. Despite these differences, body condition variables and protein expression were not related to the degree of seasonality but rather showed a strong relationship with hormone levels. 4.These results suggest that animals adjust to their environment through changes in behavioral and endocrine traits and may be limited by less labile traits such as morphological variables or expression of specific proteins under certain circumstances. These data on free-living birds shed light on how different

  20. A review on endocrine disruptors and their possible impacts on human health.

    PubMed

    Kabir, Eva Rahman; Rahman, Monica Sharfin; Rahman, Imon

    2015-07-01

    Endocrine disruption is a named field of research which has been very active for over 10 years, although the effects of endocrine disruptors in wildlife have been studied mainly in vast since the 1940s. A large number of chemicals have been identified as endocrine disruptors and humans can be exposed to them either due to their occupations or through dietary and environmental exposure (water, soil and air). Endocrine disrupting chemicals are compounds that alter the normal functioning of the endocrine system of both humans and wildlife. In order to understand the vulnerability and risk factors of people due to endocrine disruptors as well as the remedies for these, methods need to be developed in order to predict effects on populations and communities from the knowledge of effects on individuals. For several years there have been a growing interest on the mechanism and effect of endocrine disruptors and their relation with environment and human health effect. This paper, based on extensive literature survey, briefly studies the progress mainly in human to provide information concerning causative substances, mechanism of action, ubiquity of effects and important issues related to endocrine disruptors. It also reviews the current knowledge of the potential impacts of endocrine disruptors on human health so that the effects can be known and remedies applied for the problem as soon as possible. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals

    PubMed Central

    Chappell, V. A.; Fenton, S. E.; Flaws, J. A.; Nadal, A.; Prins, G. S.; Toppari, J.; Zoeller, R. T.

    2015-01-01

    The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans—especially during development—may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the

  2. CHARACTERIZATION OF ENDOCRINE-DISRUPTION AND CLINICAL MANIFESTATIONS IN LARGE-MOUTH BASS FROM FLORIDA LAKES

    EPA Science Inventory

    Previous efforts from this laboratory, have documented altered endocrine function and sexual differentiation for alligators and turtles from Lake Apopka in Central Florida. This lake has been exposed to a variety of contaminants which are potentially endocrine-disrupting. Therefo...

  3. Early endocrine disruptors exposure acts on 3T3-L1 differentiation and endocrine activity

    PubMed Central

    Boudalia, Sofiane; Belloir, Christine; Miller, Marie-Louise; Canivenc-Lavier, Marie-Chantal

    2017-01-01

    Introduction: Data from last years suggested that early exposure to endocrine disruptors (EDs) can predispose newborns to endocrine dysfunction of adipocytes, obesity, and associated disorders. The implication of EDs at low doses on adipocyte development has been poorly investigated. For instance, vinclozolin (V) is a dicarboximide fungicide widely used in agriculture since the 90's, alone or in mixture with genistein (G), an isoflavonoid from Leguminosae. This study aims to identify the effect of vinclozolin alone or with genistein, on adipose tissue properties using cell culture. Methods: In steroid-free conditions, 3T3-L1 pre-adipocytes were induced to differentiate in the presence of EDs, singularly or in mixtures, for 2 days. DNA and triglyceride (TG) levels were measured on days 0, 2 and 8 of differentiation. Leptin secretion was measured only on the eighth day. Results: We show that low doses of G (25 µM) and V (0.1 µM) inhibit pre-adipocytes differentiation. This inhibition has been represented by a decreasing in DNA content (µg/well) and decreasing in TG accumulation (mg/mL) in 3T3-L1 cells. Nevertheless, V increased the anti-adipogenic properties of G. Conclusion: This study confirms that EDs singularly or in mixtures, introduced during early stages of life, could affect the differentiation and the endocrine activity of adipocytes, and can act as potential factors for obesity. PMID:28752072

  4. Circadian, endocrine, and metabolic effects of prolonged bedrest: Two 56-day bedrest studies

    NASA Technical Reports Server (NTRS)

    Vernikos-Danellis, J.; Winget, C. M.; Leach, C. S.; Rambaut, P. C.

    1974-01-01

    Two bedrest studies of 56 days each have been conducted to evaluate the effects of prolonged bedrest on circadian synchrony and endocrine and metabolic function. Measurements included the pituitary-adrenal, thyroid, parathyroid, insulin-glucose-growth hormones, catecholamine excretion, body temperature, and heart rate. The results indicated that a rigorous regimen of exercise did not prevent the endocrine and metabolic effects of prolonged bedrest. Changes in circadian, endocrine, and metabolic functions in bedrest appear to be due to changes in hydrostatic pressure and lack of postural cues rather than to inactivity, confinement, or the bleeding schedule. Prolonged bedrest, particularly beyond 24 days, resulted in rhythm desynchronization in spite of well regulated light/dark cycles, temperature, humidity, activity, and meal times and meal composition and in increased lability of all endocrine parameter measured. It also resulted in an apparent insensitivity of the glucose response to insulin, of cortisol secretion to ACTH, and of growth hormone secretion to hypoglycemia.

  5. Radiofrequency (RF) effects on blood cells, cardiac, endocrine, and immunological functions.

    PubMed

    Black, David R; Heynick, Louis N

    2003-01-01

    Effects of radiofrequency electromagnetic fields (RFEMF) on the pituitary adrenocortical (ACTH), growth (GH), and thyroid (TSH) hormones have been extensively studied, and there is coherent research on reproductive hormones (FSH and LH). Those effects which have been identified are clearly caused by heating. The exposure thresholds for these effects in living mammals, including primates, have been established. There is limited evidence that indicates no interaction between RFEMF and the pineal gland or an effect on prolactin from the pituitary gland. Studies of RFEMF exposed blood cells have shown that changes or damage do not occur unless the cells are heated. White cells (leukocytes) are much more sensitive than red cells (erythrocytes) but white cell effects remain consistent with normal physiological responses to systemic temperature fluctuation. Lifetime studies of RFEMF exposed animals show no cumulative adverse effects in their endocrine, hematological, or immune systems. Cardiovascular tissue is not directly affected adversely in the absence of significant RFEMF heating or electric currents. The regulation of blood pressure is not influenced by ultra high frequency (UHF) RFEMF at levels commonly encountered in the use of mobile communication devices. Copyright 2003 Wiley-Liss, Inc.

  6. [The immuno-endocrine system. A new endocrine theory: the problem of the packed transport].

    PubMed

    Csaba, György

    2011-05-15

    Since the eighties of the last century hormone content was justified in immune cells (lymphocytes, granulocytes, monocytes, macrophages and mast cells), which produce, store and secrete these hormones. Although the amount of these materials in immune cells is relatively small, the mass of the producers (immune cells) is so large, that the phenomenon must be considered from endocrinological point of view, underlying the important differences between the "classical" and immuno-endocrine systems. Cells of the classic (built-in) endocrine system are mono-producers, while immune cells can synthesize many types of hormones (polyproducers). In addition, these cells can transport the whole hormone-producing machinery to the site of need, producing a local effect. This can be observed, for example, in the case of endorphin producing immune cells during inflammation and during early pregnancy around the chorionic villi. Hormone producing immune cells also have receptors for many hormones, so that they are poly-receivers. Via hormone producing and receiving capacity there is a bidirectional connection between the neuro-endocrine and immuno-endocrine systems. In addition, there is a network inside the immuno-endocrine system. The packed transport theory attempts to explain the mechanism and importance of the immuno-endocrine system.

  7. ENDOCRINE DISRUPTING CONTAMINANTS AND ALLIGATOR EMBRYOS: A LESSON FROM WILDLIFE?

    EPA Science Inventory

    Many xenobiotic compounds introduced into the environment by human activity adversely affect wildlife. A number of these contaminants have been hypothesized to induce non lethal, multigenerational effects by acting as endocrine disrupting agents. One case is that of the alligator...

  8. Fructose-rich diet-induced abdominal adipose tissue endocrine dysfunction in normal male rats.

    PubMed

    Alzamendi, Ana; Giovambattista, Andrés; Raschia, Agustina; Madrid, Viviana; Gaillard, Rolf C; Rebolledo, Oscar; Gagliardino, Juan J; Spinedi, Eduardo

    2009-04-01

    We have currently studied the changes induced by administration of a fructose-rich diet (FRD) to normal rats in the mass and the endocrine function of abdominal (omental) adipose tissue (AAT). Rats were fed ad libitum a standard commercial chow and tap water, either alone (control diet, CD) or containing fructose (10%, w/vol) (FRD). Three weeks after treatment, circulating metabolic markers and leptin release from adipocytes of AAT were measured. Plasma free fatty acids (FFAs), leptin, adiponectin, and plasminogen activator inhibitor-1 (PAI-1) levels were significantly higher in FRD than in CD rats. AAT mass was greater in FRD than in CD rats and their adipocytes were larger, they secreted more leptin and showed impaired insulin sensitivity. While leptin mRNA expression increased in AAT from FRD rats, gene expression of insulin receptor substrate, IRS1 and IRS2 was significantly reduced. Our study demonstrates that administration of a FRD significantly affects insulin sensitivity and several AAT endocrine/metabolic functions. These alterations could be part of a network of interacting abnormalities triggered by FRD-induced oxidative stress at the AAT level. In view of the impaired glucose tolerance observed in FRD rats, these alterations could play a key role in both the development of metabolic syndrome (MS) and beta-cell failure.

  9. Endocrine radionuclide scintigraphy with fusion single photon emission computed tomography/computed tomography

    PubMed Central

    Wong, Ka-Kit; Gandhi, Arpit; Viglianti, Benjamin L; Fig, Lorraine M; Rubello, Domenico; Gross, Milton D

    2016-01-01

    AIM: To review the benefits of single photon emission computed tomography (SPECT)/computed tomography (CT) hybrid imaging for diagnosis of various endocrine disorders. METHODS: We performed MEDLINE and PubMed searches using the terms: “SPECT/CT”; “functional anatomic mapping”; “transmission emission tomography”; “parathyroid adenoma”; “thyroid cancer”; “neuroendocrine tumor”; “adrenal”; “pheochromocytoma”; “paraganglioma”; in order to identify relevant articles published in English during the years 2003 to 2015. Reference lists from the articles were reviewed to identify additional pertinent articles. Retrieved manuscripts (case reports, reviews, meta-analyses and abstracts) concerning the application of SPECT/CT to endocrine imaging were analyzed to provide a descriptive synthesis of the utility of this technology. RESULTS: The emergence of hybrid SPECT/CT camera technology now allows simultaneous acquisition of combined multi-modality imaging, with seamless fusion of three-dimensional volume datasets. The usefulness of combining functional information to depict the bio-distribution of radiotracers that map cellular processes of the endocrine system and tumors of endocrine origin, with anatomy derived from CT, has improved the diagnostic capability of scintigraphy for a range of disorders of endocrine gland function. The literature describes benefits of SPECT/CT for 99mTc-sestamibi parathyroid scintigraphy and 99mTc-pertechnetate thyroid scintigraphy, 123I- or 131I-radioiodine for staging of differentiated thyroid carcinoma, 111In- and 99mTc- labeled somatostatin receptor analogues for detection of neuroendocrine tumors, 131I-norcholesterol (NP-59) scans for assessment of adrenal cortical hyperfunction, and 123I- or 131I-metaiodobenzylguanidine imaging for evaluation of pheochromocytoma and paraganglioma. CONCLUSION: SPECT/CT exploits the synergism between the functional information from radiopharmaceutical imaging and anatomy

  10. Effects of elevated glucocorticoids on reproduction and development: relevance to endocrine disruptor screening.

    PubMed

    Witorsch, Raphael J

    2016-01-01

    This article reviews the influence of the hypothalamo-pituitary-adrenocortical (HPA) axis on mammalian male and female reproduction and development of offspring and its potential impact on the identification of endocrine disruptive chemicals by in vivo assays. In the adult male rat and baboon, stress suppresses testosterone secretion via a direct inhibitory effect of elevated glucocorticoids on Leydig cells. In adult female sheep, stress disrupts reproductive function via multi-stage mechanisms involving glucocorticoid-mediated suppression of LH secretion, LH action on the ovary and the action of estradiol on its target cells (e.g., uterus). While physiological concentrations of endogenous glucocorticoids are supportive of fetal development, excessive glucocorticoids in utero (i.e., maternal stress) adversely affect mammalian offspring by "programing" abnormalities that are primarily manifest postpartum. The influence of stress on reproduction and development can also be mediated by 11β-hydroxysteroid dehydrogenase (HSD), a bi-directional oxidative:reductive pathway, which governs the balance between biologically active (reduced) endogenous glucocorticoid and inactive (oxidized) metabolites. This pathway is mediated primarily by two isozymes, 11β - HSD1 (reductase) and 11β-HSD2 (oxidase) which act both in an intracrine (intracellular) and endocrine (systemic) fashion. The 11β-HSD pathway appears to play a variety of physiological roles in mammalian reproduction and development and is a target for selected xenobiotics. The effects of the HPA axis on mammalian reproduction and development are potential confounders for in vivo bioassays in rodents employed to identify endocrine disruptive chemicals. Accordingly, consideration of the impact of the HPA axis should be incorporated into the design of bioassays for evaluating endocrine disruptors.

  11. Effects of environmental pollution with aromatic hydrocarbons on endocrine and metabolic functions of the human placenta.

    PubMed

    Wierzba, Waldemar; Radowicki, Stanisław; Bojar, Iwona; Pinkas, Jarosław

    2018-03-14

    Phenol and 1-hydroxypyrene are biological markers of exposure to polycyclic aromatic hydrocarbons (PAH) that have certain negative effects on parenchymal organs such as the human placenta. The literature presents only few reports regarding the effects of elevated PAH levels on the functions of the human placenta. The aim of the work is to assess the effects of elevated PAH levels in excreted urine on the endocrine and metabolic functions of the human placenta obtained from a normal pregnancy. Tissue material from 50 afterbirths from Płock constituted a study group, whereas 50 afterbirths from Kutno constituted a control group. Immunohistochemical reactions with the peroxidase method using LSAB kits (DAKO, Denmark) were performed. The extent and intensity of reactions were analysed. The levels of phenols and 1-hydroxypyrene in the excreted urine of pregnant women (undergoing delivery) were detected using gas chromatography and colorimetry. The statistical analysis used the PQStat v.1.6.2 software; moreover, t-student and chi-square tests were used. Differences were considered to be significant at the significance level of 95% (p<0.05). The levels of phenol and 1-hydroxypyrene in the excreted urine were demonstrated to be statistically significantly higher in patients living in the area of Płock. Statistically lower expression of placental glutathione transferase and lower immunohistochemical demonstration of the placental phosphatase activity were observed in placentas from Płock. It has been demonstrated that the expression of the oestrogen receptor activity and placental gonadotropin is significantly higher in placentas from areas not contaminated with aromatic hydrocarbons (Kutno). The course of pregnancy in the environment with elevated levels of aromatic hydrocarbons leads to impaired placental functioning and reduced endocrine and metabolic activity of the placenta.

  12. Mixed endocrine gastric tumors associated with hypergastrinemia of antral origin.

    PubMed Central

    Larsson, L. I.; Rehfeld, J. F.; Stockbrügger, R.; Blohme, G.; Schöön, I. M.; Lundqvist, G.; Kindblom, L. G.; Säve-Söderberg, J.; Grimelius, L.; Olbe, L.

    1978-01-01

    A patient with atrophic gastritis and excessively raised serum gastrin concentrations (4000 to 5000 pg/ml) was found to have multiple polypous tumors of the gastric corpus mucosa. Following gastrectomy, serum gastrin concentrations decreased to undetectable levels. The tumors consisted of a mixed population of endocrine cells. The majority of tumor cells were of the ECL type, but, in addition, enterochromaffin cells of various subtypes as well as agranular cells were found. The tumors were locally invasive and invaded the walls of submucosal blood vessels. The surrounding mucosa showed a severe atrophic gastritis with intestinalization and contained numerous goblet cells, enterochromaffin cells, and cholecystokinin cells. Cholecystokinin cells do not occur in the normal oxyntic mucosa. Hence, the observation of this cell type in intestinalized gastric epithelium suggests that "intestinalization also is associated with changes in endocrine cell populations. Gastrin has been shown to affect the function of the ECL cells. Indications for a trophic action of gastrin on these cells have been obtained. It is discussed whether greatly raised serum gastrin levels in patients with atrophic gastritis may be associated with increased risks for the development of certain types of gastric tumors. Images Figure 4 Figure 5 Figure 6 Figure 7 Figure 1 Figure 2 Figure 3 PMID:696807

  13. Androgen Receptor Involvement in Rat Amelogenesis: An Additional Way for Endocrine-Disrupting Chemicals to Affect Enamel Synthesis.

    PubMed

    Jedeon, Katia; Loiodice, Sophia; Salhi, Khaled; Le Normand, Manon; Houari, Sophia; Chaloyard, Jessica; Berdal, Ariane; Babajko, Sylvie

    2016-11-01

    Endocrine-disrupting chemicals (EDCs) that interfere with the steroid axis can affect amelogenesis, leading to enamel hypomineralization similar to that of molar incisor hypomineralization, a recently described enamel disease. We investigated the sex steroid receptors that may mediate the effects of EDCs during rat amelogenesis. The expression of androgen receptor (AR), estrogen receptor (ER)-α, and progesterone receptor was dependent on the stage of ameloblast differentiation, whereas ERβ remained undetectable. AR was the only receptor selectively expressed in ameloblasts involved in final enamel mineralization. AR nuclear translocation and induction of androgen-responsive element-containing promoter activity upon T treatment, demonstrated ameloblast responsiveness to androgens. T regulated the expression of genes involved in enamel mineralization such as KLK4, amelotin, SLC26A4, and SLC5A8 but not the expression of genes encoding matrix proteins, which determine enamel thickness. Vinclozolin and to a lesser extent bisphenol A, two antiandrogenic EDCs that cause enamel defects, counteracted the actions of T. In conclusion, we show, for the first time, the following: 1) ameloblasts express AR; 2) the androgen signaling pathway is involved in the enamel mineralization process; and 3) EDCs with antiandrogenic effects inhibit AR activity and preferentially affect amelogenesis in male rats. Their action, through the AR pathway, may specifically and irreversibly affect enamel, potentially leading to the use of dental defects as a biomarker of exposure to environmental pollutants. These results are consistent with the steroid hormones affecting ameloblasts, raising the issue of the hormonal influence on amelogenesis and possible sexual dimorphism in enamel quality.

  14. Impact of endocrine disrupting chemicals on onset and development of female reproductive disorders and hormone-related cancer.

    PubMed

    Scsukova, Sona; Rollerova, Eva; Bujnakova Mlynarcikova, Alzbeta

    2016-12-01

    A growing body of evidence suggests that exposure to chemical substances designated as endocrine disrupting chemicals (EDCs) due to their ability to disturb endocrine (hormonal) activity in humans and animals, may contribute to problems with fertility, pregnancy, and other aspects of reproduction. The presence of EDCs has already been associated with reproductive malfunction in wildlife species, but it remains difficult to prove causal relationships between the presence of EDCs and specific reproductive problems in vivo, especially in females. On the other hand, the increasing number of experiments with laboratory animals and in vitro research indicate the ability of different EDCs to influence the normal function of female reproductive system, and even their association with cancer development or progression. Research shows that EDCs may pose the greatest risk during prenatal and early postnatal development when organ and neural systems are forming. In this review article, we aim to point out a possible contribution of EDCs to the onset and development of female reproductive disorders and endocrine-related cancers with regard to the period of exposure to EDCs and affected endpoints (organs or processes). Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  15. Opposing actions of Arx and Pax4 in endocrine pancreas development

    PubMed Central

    Collombat, Patrick; Mansouri, Ahmed; Hecksher-Sørensen, Jacob; Serup, Palle; Krull, Jens; Gradwohl, Gerard; Gruss, Peter

    2003-01-01

    Genes encoding homeodomain-containing proteins potentially involved in endocrine pancreas development were isolated by combined in silico and nested-PCR approaches. One such transcription factor, Arx, exhibits Ngn3-dependent expression throughout endocrine pancreas development in α, β-precursor, and δ cells. We have used gene targeting in mouse embryonic stem cells to generate Arx loss-of-function mice. Arx-deficient animals are born at the expected Mendelian frequency, but develop early-onset hypoglycemia, dehydration, and weakness, and die 2 d after birth. Immunohistological analysis of pancreas from Arx mutants reveals an early-onset loss of mature endocrine α cells with a concomitant increase in β-and δ-cell numbers, whereas islet morphology remains intact. Our study indicates a requirement of Arx for α-cell fate acquisition and a repressive action on β-and δ-cell destiny, which is exactly the opposite of the action of Pax4 in endocrine commitment. Using multiplex reverse transcriptase PCR (RT-PCR), we demonstrate an accumulation of Pax4 and Arx transcripts in Arx and Pax4 mutant mice, respectively. We propose that the antagonistic functions of Arx and Pax4 for proper islet cell specification are related to the pancreatic levels of the respective transcripts. PMID:14561778

  16. Opposing actions of Arx and Pax4 in endocrine pancreas development.

    PubMed

    Collombat, Patrick; Mansouri, Ahmed; Hecksher-Sorensen, Jacob; Serup, Palle; Krull, Jens; Gradwohl, Gerard; Gruss, Peter

    2003-10-15

    Genes encoding homeodomain-containing proteins potentially involved in endocrine pancreas development were isolated by combined in silico and nested-PCR approaches. One such transcription factor, Arx, exhibits Ngn3-dependent expression throughout endocrine pancreas development in alpha, beta-precursor, and delta cells. We have used gene targeting in mouse embryonic stem cells to generate Arx loss-of-function mice. Arx-deficient animals are born at the expected Mendelian frequency, but develop early-onset hypoglycemia, dehydration, and weakness, and die 2 d after birth. Immunohistological analysis of pancreas from Arx mutants reveals an early-onset loss of mature endocrine alpha cells with a concomitant increase in beta-and delta-cell numbers, whereas islet morphology remains intact. Our study indicates a requirement of Arx for alpha-cell fate acquisition and a repressive action on beta-and delta-cell destiny, which is exactly the opposite of the action of Pax4 in endocrine commitment. Using multiplex reverse transcriptase PCR (RT-PCR), we demonstrate an accumulation of Pax4 and Arx transcripts in Arx and Pax4 mutant mice, respectively. We propose that the antagonistic functions of Arx and Pax4 for proper islet cell specification are related to the pancreatic levels of the respective transcripts.

  17. Physiology of the endocrine pancreas.

    PubMed

    Engelking, L R

    1997-11-01

    The endocrine pancreas is composed of nests of cells called the islets of Langerhans, which comprise only about 20% of pancreatic cell mass and secrete insulin, glucagon, somatostatin, and pancreatic polypeptide. Insulin is anabolic, increasing storage of glucose, fatty acids and amino acids, while glucagon namely stimulates hepatic glycogenolysis, gluconeogenesis, and ketogenesis. Somatostatin acts as a paracrine agent to inhibit both insulin and glucagon release, and, therefore, to modulate their output. This article explores factors controlling release of these hormones, as well as the way in which they affect fuel metabolism in the whole animal.

  18. [Arterial hypertension secondary to endocrine disorders].

    PubMed

    Minder, Anna; Zulewski, Henryk

    2015-06-01

    Endocrine hypertension offers a potentially curative therapy if the underlying cause is identified and treated accordingly. In contrast to the high prevalence of arterial hypertension especially in the elderly, the classical endocrine causes remain a rare entity. Among patients with arterial hypertension the prevalence of Cushing's syndrome or pheochromocytoma is less than 1%. Primary hyperaldosteronism is more frequent with a reported prevalence of up to 9%. In order to avoid unnecessary, costly and potentially harmful evaluations and therapies due to the limited sensitivity and specificity of the critical endocrine tests it is mandatory to limit the exploration for endocrine causes to preselected patients with high pretest probability for an endocrine disorder. Younger age at manifestation of arterial hypertension or drug resistant hypertension together with other clinical signs of an endocrine disorder should raise the suspicion and prompt the appropriate evaluation.

  19. Maternal stress and diet may influence affective behavior and stress-response in offspring via epigenetic regulation of central peptidergic function.

    PubMed

    Thorsell, Annika; Nätt, Daniel

    2016-08-01

    It has been shown that maternal stress and malnutrition, or experience of other adverse events, during the perinatal period may alter susceptibility in the adult offspring in a time-of-exposure dependent manner. The mechanism underlying this may be epigenetic in nature. Here, we summarize some recent findings on the effects on gene-regulation following maternal malnutrition, focusing on epigenetic regulation of peptidergic activity. Numerous neuropeptides within the central nervous system are crucial components in regulation of homeostatic energy-balance, as well as affective health (i.e. health events related to affective disorders, psychiatric disorders also referred to as mood disorders). It is becoming evident that expression, and function, of these neuropeptides can be regulated via epigenetic mechanisms during fetal development, thereby contributing to the development of the adult phenotype and, possibly, modulating disease susceptibility. Here, we focus on two such neuropeptides, neuropeptide Y (NPY) and corticotropin-releasing hormone (CRH), both involved in regulation of endocrine function, energy homeostasis, as well as affective health. While a number of published studies indicate the involvement of epigenetic mechanisms in CRH-dependent regulation of the offspring adult phenotype, NPY has been much less studied in this context and needs further work.

  20. The effects of fractional microablative CO2 laser therapy on sexual function in postmenopausal women and women with a history of breast cancer treated with endocrine therapy.

    PubMed

    Gittens, Paul; Mullen, Gregory

    2018-06-08

    To examine the outcomes of sexual function in postmenopausal women and women with a history of breast cancer treated with endocrine therapy who were experiencing the symptoms of GSM for which they were treated with fractional microablative CO 2 laser. From July 2015 to October 2016, a retrospective chart review of women who underwent fractional microablative CO 2 laser therapy (MonaLisa Touch, DEKA) for GSM was conducted. Several validated questionnaires were used to assess changes in symptoms and sexual function including the Female Sexual Function Index (FSFI), the Wong-Baker Faces Scale (WBFS), and the Female Sexual Distress Scale-Revised (FSDSR). Comparisons of mean symptom scores were described at baseline and six weeks after each treatment. There was a statistically significant improvement in every domain of FSFI, WBFS, and FSDS-R when comparing baseline symptom scores to after treatment three symptom scores for all patients. The secondary outcome was to evaluate the differences, if any, in outcomes of sexual function between postmenopausal women and women with a history of breast cancer treated with endocrine therapy. Both groups had statistically significant improvements in many domains studied. Fractional microablative CO 2 laser therapy (MonaLisa Touch, DEKA) is an effective modality in treating the symptoms of GSM in postmenopausal women and women with a history of breast cancer treated with endocrine therapy.

  1. The Role of ARX in Human Pancreatic Endocrine Specification

    PubMed Central

    Gage, Blair K.; Asadi, Ali; Baker, Robert K.; Webber, Travis D.; Wang, Rennian; Itoh, Masayuki; Hayashi, Masaharu; Miyata, Rie; Akashi, Takumi; Kieffer, Timothy J.

    2015-01-01

    The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs. PMID:26633894

  2. The Role of ARX in Human Pancreatic Endocrine Specification.

    PubMed

    Gage, Blair K; Asadi, Ali; Baker, Robert K; Webber, Travis D; Wang, Rennian; Itoh, Masayuki; Hayashi, Masaharu; Miyata, Rie; Akashi, Takumi; Kieffer, Timothy J

    2015-01-01

    The in vitro differentiation of human embryonic stem cells (hESCs) offers a model system to explore human development. Humans with mutations in the transcription factor Aristaless Related Homeobox (ARX) often suffer from the syndrome X-linked lissencephaly with ambiguous genitalia (XLAG), affecting many cell types including those of the pancreas. Indeed, XLAG pancreatic islets lack glucagon and pancreatic polypeptide-positive cells but retain somatostatin, insulin, and ghrelin-positive cells. To further examine the role of ARX in human pancreatic endocrine development, we utilized genomic editing in hESCs to generate deletions in ARX. ARX knockout hESCs retained pancreatic differentiation capacity and ARX knockout endocrine cells were biased toward somatostatin-positive cells (94% of endocrine cells) with reduced pancreatic polypeptide (rarely detected), glucagon (90% reduced) and insulin-positive (65% reduced) lineages. ARX knockout somatostatin-positive cells shared expression patterns with human fetal and adult δ-cells. Differentiated ARX knockout cells upregulated PAX4, NKX2.2, ISL1, HHEX, PCSK1, PCSK2 expression while downregulating PAX6 and IRX2. Re-expression of ARX in ARX knockout pancreatic progenitors reduced HHEX and increased PAX6 and insulin expression following differentiation. Taken together these data suggest that ARX plays a key role in pancreatic endocrine fate specification of pancreatic polypeptide, somatostatin, glucagon and insulin positive cells from hESCs.

  3. Endocrine and reproductive dysfunction in men associated with occupational inorganic lead intoxication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cullen, M.R.; Kayne, R.D.; Robins, J.M.

    In an attempt to define a postulated effect of lead on male endocrine function, seven men with symptomatic occupational lead intoxication (maximum whole blood lead levels 66-139 ..mu..g/dl) underwent in-patient endocrine evaluation at the time of diagnosis. Defects in thyroid function probably of central origin, were present in three patients. Six patients had subnormal glucocorticoid production measured by 24-hr urinary 17-hydroxy-corticosteroids and plasma cortisol responses to vasopressin- and/or insulin-induced hypoglycemia. Although serum testosterone concentration was normal in six patients, five had defects in spermatogenesis, including two with ologospermia and two with azoospermia. Repeat examinations after chelation therapy showed only partialmore » improvement. It is concluded that heavy occupational exposure to lead, sufficient to cause clinical poisoning, may be associated with diffuse disturbances of endocrine and reproductive functions in men which are not rapidly reversible with standard treatment. Since men without overt poisoning have not been studied, these results cannot yet be included as sequelae of low-dose exposures.« less

  4. Overcoming Endocrine Resistance by Targeting ER/FoxA1/IL 8 Axis

    DTIC Science & Technology

    2016-10-01

    INTRODUCTION Approximately 75% of breast cancers express the hormone estrogen receptor α (ER). As a critical determinant in estrogen response and oncogenic...factor of estrogen receptor α (ER)–chromatin binding and function, yet its aberration in endocrine-resistant (Endo-R) breast cancer is unknown. Here, we...positive tumors. FOXA1 | estrogen receptor | breast cancer | transcriptional reprogramming | endocrine resistance About 75% of breast cancers express

  5. Central control of glucose homeostasis: the brain--endocrine pancreas axis.

    PubMed

    Thorens, B

    2010-10-01

    A large body of data gathered over the last decades has delineated the neuronal pathways that link the central nervous system with the autonomic innervation of the endocrine pancreas, which controls alpha- and beta-cell secretion activity and mass. These are important regulatory functions that are certainly keys for preserving the capacity of the endocrine pancreas to control glucose homeostasis over a lifetime. Identifying the cells involved in controlling the autonomic innervation of the endocrine pancreas, in response to nutrient, hormonal and environmental cues and how these cues are detected to activate neuronal activity are important goals of current research. Elucidation of these questions may possibly lead to new means for preserving or restoring defects in insulin and glucagon secretion associated with type 2 diabetes. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  6. Discovery of naturally occurring ESR1 mutations in breast cancer cell lines modelling endocrine resistance.

    PubMed

    Martin, Lesley-Ann; Ribas, Ricardo; Simigdala, Nikiana; Schuster, Eugene; Pancholi, Sunil; Tenev, Tencho; Gellert, Pascal; Buluwela, Laki; Harrod, Alison; Thornhill, Allan; Nikitorowicz-Buniak, Joanna; Bhamra, Amandeep; Turgeon, Marc-Olivier; Poulogiannis, George; Gao, Qiong; Martins, Vera; Hills, Margaret; Garcia-Murillas, Isaac; Fribbens, Charlotte; Patani, Neill; Li, Zheqi; Sikora, Matthew J; Turner, Nicholas; Zwart, Wilbert; Oesterreich, Steffi; Carroll, Jason; Ali, Simak; Dowsett, Mitch

    2017-11-30

    Resistance to endocrine therapy remains a major clinical problem in breast cancer. Genetic studies highlight the potential role of estrogen receptor-α (ESR1) mutations, which show increased prevalence in the metastatic, endocrine-resistant setting. No naturally occurring ESR1 mutations have been reported in in vitro models of BC either before or after the acquisition of endocrine resistance making functional consequences difficult to study. We report the first discovery of naturally occurring ESR1 Y537C and ESR1 Y537S mutations in MCF7 and SUM44 ESR1-positive cell lines after acquisition of resistance to long-term-estrogen-deprivation (LTED) and subsequent resistance to fulvestrant (ICIR). Mutations were enriched with time, impacted on ESR1 binding to the genome and altered the ESR1 interactome. The results highlight the importance and functional consequence of these mutations and provide an important resource for studying endocrine resistance.

  7. Daily affect and female sexual function.

    PubMed

    Kalmbach, David A; Pillai, Vivek

    2014-12-01

    The specific affective experiences related to changes in various aspects of female sexual function have received little attention as most prior studies have focused instead on the role of clinical mood and anxiety disorders and their influence on sexual dysfunction. We sought to understand the transaction between daily affect and female sexual function in effort to provide a more nuanced understanding of the interplay between affective and sexual experiences. The present study used a 2-week daily diary approach to examine same-day and temporal relations between positive and negative affect states and sexual function in young women. We examined the unique relations between positive (i.e., joviality, serenity, self-assurance) and negative (i.e., fear, sadness, hostility) affects and female sexual response (i.e., desire, subjective arousal, vaginal lubrication, orgasmic function, and sexual pain) while controlling for higher order sexual distress, depression, and anxiety, as well as age effects and daily menstruation. Analyses revealed different aspects of both positive and negative affects to be independently related to sexual response indices. Specifically, results indicated that joviality was related to same-day sexual desire and predicted increased desire the following day. This latter relation was partially mediated by sexual activity. Further, greater sexual desire predicted next-day calmness, which was partially mediated by sexual activity. Notably, fear was related to same-day subjective arousal, lubrication, orgasmic function, and vaginal pain, whereas poorer orgasmic function predicted greater next-day sadness. These findings describe the manner in which changes in affect correspond to variations in female sexual function, thus highlighting the inextricability of mental and sexual health. Further, these findings may offer insight into the progression of normative levels of affect and sexual function as they develop into comorbid depression, anxiety, and

  8. How can we estimate natural selection on endocrine traits? Lessons from evolutionary biology

    PubMed Central

    2016-01-01

    An evolutionary perspective can enrich almost any endeavour in biology, providing a deeper understanding of the variation we see in nature. To this end, evolutionary endocrinologists seek to describe the fitness consequences of variation in endocrine traits. Much of the recent work in our field, however, follows a flawed approach to the study of how selection shapes endocrine traits. Briefly, this approach relies on among-individual correlations between endocrine phenotypes (often circulating hormone levels) and fitness metrics to estimate selection on those endocrine traits. Adaptive plasticity in both endocrine and fitness-related traits can drive these correlations, generating patterns that do not accurately reflect natural selection. We illustrate why this approach to studying selection on endocrine traits is problematic, referring to work from evolutionary biologists who, decades ago, described this problem as it relates to a variety of other plastic traits. We extend these arguments to evolutionary endocrinology, where the likelihood that this flaw generates bias in estimates of selection is unusually high due to the exceptional responsiveness of hormones to environmental conditions, and their function to induce adaptive life-history responses to environmental variation. We end with a review of productive approaches for investigating the fitness consequences of variation in endocrine traits that we expect will generate exciting advances in our understanding of endocrine system evolution. PMID:27881753

  9. Pulmonary complications of endocrine and metabolic disorders.

    PubMed

    Milla, Carlos E; Zirbes, Jacquelyn

    2012-03-01

    There are many important respiratory manifestations of endocrine and metabolic diseases in children. Acute and chronic pulmonary infections are the most common respiratory abnormalities in patients with diabetes mellitus, although cardiogenic and non-cardiogenic pulmonary oedema are also possible. Pseudohypoaldosteronism type 1 may be indistinguishable from cystic fibrosis (CF) unless serum aldosterone, plasma renin activity, and urinary electrolytes are measured and mutation analysis rules out CF. Hypo- and hyperthyroidism may alter lung function and affect the central respiratory drive. The thyroid hormone plays an essential role in lung development, surfactant synthesis, and lung defence. Complications of hypoparathyroidism are largely due to hypocalcaemia. Laryngospasm can lead to stridor and airway obstruction. Ovarian tumours, benign or malignant, may present with unilateral or bilateral pleural effusions. Metabolic storage disorders, primarily as a consequence of lysosomal dysfunction from enzymatic deficiencies, constitute a diverse group of rare conditions that can have profound effects on the respiratory system. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Spectrum of Endocrine Disorders in Central Ghana

    PubMed Central

    Sarfo, Fred Stephen; Ansah, Eunice Oparebea; Kyei, Ishmael

    2017-01-01

    Background. Although an increasing burden of endocrine disorders is recorded worldwide, the greatest increase is occurring in developing countries. However, the spectrum of these disorders is not well described in most developing countries. Objective. The objective of this study was to profile the frequency of endocrine disorders and their basic demographic characteristics in an endocrine outpatient clinic in Kumasi, central Ghana. Methods. A retrospective review was conducted on endocrine disorders seen over a five-year period between January 2011 and December 2015 at the outpatient endocrine clinic of Komfo Anokye Teaching Hospital. All medical records of patients seen at the endocrine clinic were reviewed by endocrinologists and all endocrinological diagnoses were classified according to ICD-10. Results. 3070 adults enrolled for care in the endocrine outpatient service between 2011 and 2015. This comprised 2056 females and 1014 males (female : male ratio of 2.0 : 1.0) with an overall median age of 54 (IQR, 41–64) years. The commonest primary endocrine disorders seen were diabetes, thyroid, and adrenal disorders at frequencies of 79.1%, 13.1%, and 2.2%, respectively. Conclusions. Type 2 diabetes and thyroid disorders represent by far the two commonest disorders seen at the endocrine clinic. The increased frequency and wide spectrum of endocrine disorders suggest the need for well-trained endocrinologists to improve the health of the population. PMID:28326101

  11. Thirty-day outcomes underestimate endocrine and exocrine insufficiency after pancreatic resection.

    PubMed

    Lim, Pei-Wen; Dinh, Kate H; Sullivan, Mary; Wassef, Wahid Y; Zivny, Jaroslav; Whalen, Giles F; LaFemina, Jennifer

    2016-04-01

    Long-term incidence of endocrine and exocrine insufficiency after pancreatectomy is poorly described. We analyze the long-term risks of pancreatic insufficiency after pancreatectomy. Subjects who underwent pancreatectomy from 2002 to 2012 were identified from a prospective database (n = 227). Subjects who underwent total pancreatectomy or pancreatitis surgery were excluded. New post-operative endocrine and exocrine insufficiency was defined as the need for new pharmacologic intervention within 1000 days from resection. 28 (16%) of 178 subjects without pre-existing endocrine insufficiency developed post-operative endocrine insufficiency: 7 (25%) did so within 30 days, 8 (29%) between 30 and 90 days, and 13 (46%) after 90 days. 94 (43%) of 214 subjects without pre-operative exocrine insufficiency developed exocrine insufficiency: 20 (21%) did so within 30 days, 29 (31%) between 30 and 90 days, and 45 (48%) after 90 days. Adjuvant radiation was associated with new endocrine insufficiency. On multivariate regression, pancreaticoduodenectomy and chemotherapy were associated with a greater risk of exocrine insufficiency. Reporting 30-day functional outcomes for pancreatic resection is insufficient, as nearly 45% of subjects who develop disease do so after 90 days. Reporting of at least 90-day outcomes may more reliably assess risk for post-operative endocrine and exocrine insufficiency. Copyright © 2016 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.

  12. Overview of the Pathophysiological Implications of Organotins on the Endocrine System.

    PubMed

    Marques, Vinicius Bermond; Faria, Rodrigo Alves; Dos Santos, Leonardo

    2018-01-01

    Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic-pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed.

  13. Multiple endocrine neoplasia syndrome type 1: institution, management, and data analysis of a nationwide multicenter patient database.

    PubMed

    Giusti, Francesca; Cianferotti, Luisella; Boaretto, Francesca; Cetani, Filomena; Cioppi, Federica; Colao, Annamaria; Davì, Maria Vittoria; Faggiano, Antongiulio; Fanciulli, Giuseppe; Ferolla, Piero; Ferone, Diego; Fossi, Caterina; Giudici, Francesco; Gronchi, Giorgio; Loli, Paola; Mantero, Franco; Marcocci, Claudio; Marini, Francesca; Masi, Laura; Opocher, Giuseppe; Beck-Peccoz, Paolo; Persani, Luca; Scillitani, Alfredo; Sciortino, Giovanna; Spada, Anna; Tomassetti, Paola; Tonelli, Francesco; Brandi, Maria Luisa

    2017-11-01

    The aim of this study was to integrate European epidemiological data on patients with multiple endocrine neoplasia type 1 by creating an Italian registry of this syndrome, including clinical and genetic characteristics and therapeutic management. Clinical, familial and genetic data of patients with multiple endocrine neoplasia type 1, diagnosed, treated, and followed-up for a mean time of 11.3 years, in 14 Italian referral endocrinological centers, were collected, over a 3-year course (2011-2013), to build a national electronic database. The Italian multiple endocrine neoplasia type 1 database includes 475 patients (271 women and 204 men), of whom 383 patients (80.6%) were classified as familial cases (from 136 different pedigrees), and 92 (19.4%) patients were sporadic cases. A MEN1 mutation was identified in 92.6% of familial cases and in 48.9% of sporadic cases. Four hundred thirty-six patients were symptomatic, presenting primary hyperparathyroidism, gastroenteropancreatic neuroendocrine tumors and pituitary tumors in 93, 53, and 41% of cases, respectively. Thirty-nine subjects, belonging to affected pedigrees positive for a MEN1 mutation, were asymptomatic at clinical and biochemical screening. Age at diagnosis of multiple endocrine neoplasia type 1 probands was similar for both familial and simplex cases (mean age 47.2 ± 15.3 years). In familial cases, diagnosis of multiple endocrine neoplasia type 1 in relatives of affected probands was made more than 10 years in advance (mean age at diagnosis 36.5 ± 17.6 years). The analysis of Italian registry of multiple endocrine neoplasia type 1 patients revealed that clinical features of Italian multiple endocrine neoplasia type 1 patients are similar to those of other western countries, and confirmed that the genetic test allowed multiple endocrine neoplasia type 1 diagnosis 10 years earlier than biochemical or clinical diagnosis.

  14. Endocrine Disruptor Screening Program: Tier I Screening Battery

    EPA Science Inventory

    In response to emerging concerns that environmental chemicals may have adverse effects on human health by altering the function of the endocrine system,' the Food Quality Protection Act and subsequent amendments to the Safe Drinking Water Act and Federal Food, Drug and Cosmetic A...

  15. Endocrine disruption in aquatic systems: up-scaling research to address ecological consequences.

    PubMed

    Windsor, Fredric M; Ormerod, Steve J; Tyler, Charles R

    2018-02-01

    Endocrine-disrupting chemicals (EDCs) can alter biological function in organisms at environmentally relevant concentrations and are a significant threat to aquatic biodiversity, but there is little understanding of exposure consequences for populations, communities and ecosystems. The pervasive nature of EDCs within aquatic environments and their multiple sub-lethal effects make assessments of their impact especially important but also highly challenging. Herein, we review the data on EDC effects in aquatic systems focusing on studies assessing populations and ecosystems, and including how biotic and abiotic processes may affect, and be affected by, responses to EDCs. Recent research indicates a significant influence of behavioural responses (e.g. enhancing feeding rates), transgenerational effects and trophic cascades in the ecological consequences of EDC exposure. In addition, interactions between EDCs and other chemical, physical and biological factors generate uncertainty in our understanding of the ecological effects of EDCs within aquatic ecosystems. We illustrate how effect thresholds for EDCs generated from individual-based experimental bioassays of the types commonly applied using chemical test guidelines [e.g. Organisation for Economic Co-operation and Development (OECD)] may not necessarily reflect the hazards associated with endocrine disruption. We argue that improved risk assessment for EDCs in aquatic ecosystems urgently requires more ecologically oriented research as well as field-based assessments at population-, community- and food-web levels. © 2017 The Authors. Biological Reviews published by John Wiley & Sons Ltd on behalf of Cambridge Philosophical Society.

  16. Paracetamol, aspirin and indomethacin display endocrine disrupting properties in the adult human testis in vitro.

    PubMed

    Albert, O; Desdoits-Lethimonier, C; Lesné, L; Legrand, A; Guillé, F; Bensalah, K; Dejucq-Rainsford, N; Jégou, B

    2013-07-01

    Do mild analgesics affect the endocrine system of the human adult testis? Mild analgesics induce multiple endocrine disturbances in the human adult testis in vitro. Mild analgesics have recently been incriminated as potential endocrine disruptors. Studies of the effects of these widely used molecules on the androgenic status of men are limited and somewhat contradictory. This prompted us to investigate whether these compounds could alter the adult human testicular function. We therefore assessed in parallel the effects of paracetamol, aspirin and indomethacin on organo-cultured adult human testis and on the NCI-H295R steroid-producing human cell line. Adult human testis explants or NCI-H295R adrenocortical human cells were cultured with 10(-4) or 10(-5) M paracetamol, aspirin or indomethacin for 24-48 h. The effect of 10(-5) M ketoconazole, used as an anti-androgenic reference molecule, was also assessed. Testes were obtained from prostate cancer patients, who had not received any hormone therapy. The protocol was approved by the local ethics committee of Rennes, France and informed consent was given by the donors. Only testes displaying spermatogenesis, as assessed by transillumination, were used in this study. Hormone levels in the culture media were determined by radioimmunoassay (testosterone, insulin-like factor 3), Enzyme-Linked Immunosorbent Assay (inhibin B) or Enzyme Immunosorbent Assay [prostaglandin (PG) D2, and PGE2]. Tissues were observed and cells counted using classical immunohistochemical methods. The three mild analgesics caused multiple endocrine disturbances in the adult human testis. This was particularly apparent in the interstitial compartment. Effective doses were in the same range as those measured in blood plasma following standard analgesic treatment. The production of testosterone and insulin-like factor 3 by Leydig cells was altered by exposure to all these drugs. Inhibin B production by Sertoli cells was marginally affected by aspirin

  17. Overcoming Endocrine Resistance by Targeting ER/FoxA1/IL-8 Axis

    DTIC Science & Technology

    2015-10-01

    residual disease after 6-month neoadjuvant endocrine therapy 45 . Recent studies unveiled gain-of- function mutations in ESR1 , the gene encoding ER...described previously 61 . SYBR dye (Life Technologies) was used in real- time PCR and the target primer sequences are as follows: ESR1 forward...Breast Cancer Symposium (ed^(eds). Cancer Res (2013). 46. Li S, et al. Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of

  18. Effects of endocrine disrupters on the expression of growth hormone and prolactin mRNA in the rainbow trout pituitary.

    USDA-ARS?s Scientific Manuscript database

    It is now widely accepted that chemical pollutants in the environment can interfere with the endocrine system of animals, thus affecting development and reproduction. Some of these endocrine disrupters (EDs) can have estrogenic or antiestrogenic effects. Most studies to date have focused on the ef...

  19. Novel Functions of MicroRNA-17-92 Cluster in the Endocrine System.

    PubMed

    Wan, Shan; Chen, Xiang; He, Yuedong; Yu, Xijie

    2018-01-01

    MiR-17-92 cluster is coded by MIR17HG in chromosome 13, which is highly conserved in vertebrates. Published literatures have proved that miR-17-92 cluster critically regulates tumorigenesis and metastasis. Recent researches showed that the miR-17-92 cluster also plays novel functions in the endocrine system. To summarize recent findings on the physiological and pathological roles of miR-17-92 cluster in bone, lipid and glucose metabolisms. MiR-17-92 cluster plays significant regulatory roles in bone development and metabolism through regulating the differentiation and function of osteoblasts and osteoclasts. In addition, miR-17- 92 cluster is nearly involved in every aspect of lipid metabolism. Last but not the least, the miR-17-92 cluster is closely bound up with pancreatic beta cell function, development of type 1 diabetes and insulin resistance. However, whether miR-17-92 cluster is involved in the communication among bone, fat and glucose metabolisms remains unknown. Growing evidence indicates that miR-17-92 cluster plays significant roles in bone, lipid and glucose metabolisms through a variety of signaling pathways. Fully understanding its modulating mechanisms may necessarily facilitate to comprehend the clinical and molecule features of some metabolic disorders such as osteoporosis, arthrosclerosis and diabetes mellitus. It may provide new drug targets to prevent and cure these disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Endocrine Disruptor Screening Program Reports to Congress

    EPA Pesticide Factsheets

    This page includes EPA reports to congress on pesticide licensing and endocrine disruptor screening activities, Endocrine Disruptor Methods Validation Subcomittee (EDMVS) progress, and Endocrine Disruptor Screening Program (EDSP) implementation progress.

  1. Analyzing endocrine system conservation and evolution.

    PubMed

    Bonett, Ronald M

    2016-08-01

    Analyzing variation in rates of evolution can provide important insights into the factors that constrain trait evolution, as well as those that promote diversification. Metazoan endocrine systems exhibit apparent variation in evolutionary rates of their constituent components at multiple levels, yet relatively few studies have quantified these patterns and analyzed them in a phylogenetic context. This may be in part due to historical and current data limitations for many endocrine components and taxonomic groups. However, recent technological advancements such as high-throughput sequencing provide the opportunity to collect large-scale comparative data sets for even non-model species. Such ventures will produce a fertile data landscape for evolutionary analyses of nucleic acid and amino acid based endocrine components. Here I summarize evolutionary rate analyses that can be applied to categorical and continuous endocrine traits, and also those for nucleic acid and protein-based components. I emphasize analyses that could be used to test whether other variables (e.g., ecology, ontogenetic timing of expression, etc.) are related to patterns of rate variation and endocrine component diversification. The application of phylogenetic-based rate analyses to comparative endocrine data will greatly enhance our understanding of the factors that have shaped endocrine system evolution. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Adrenomedullin and endocrine control of immune cells during pregnancy.

    PubMed

    Matson, Brooke C; Caron, Kathleen M

    2014-09-01

    The immunology of pregnancy is complex and incompletely understood. Aberrant immune activity in the decidua and in the placenta is believed to play a role in diseases of pregnancy, such as infertility, miscarriage, fetal growth restriction and preeclampsia. Here, we briefly review the endocrine control of uterine natural killer cell populations and their functions by the peptide hormone adrenomedullin. Studies in genetic animal models have revealed the critical importance of adrenomedullin dosage at the maternal-fetal interface, with cells from both the maternal and fetal compartments contributing to essential aspects underlying appropriate uterine receptivity, implantation and vascular remodeling of spiral arteries. These basic insights into the crosstalk between the endocrine and immune systems within the maternal-fetal interface may ultimately translate to a better understanding of the functions and consequences of dysregulated adrenomedullin levels in clinically complicated pregnancies.

  3. Society for Endocrinology Competency Framework for Adult Endocrine Nursing: 2nd edition.

    PubMed

    Kieffer, Veronica; Davies, Kate; Gibson, Christine; Middleton, Morag; Munday, Jean; Shalet, Shashana; Shepherd, Lisa; Yeoh, Phillip

    2015-03-01

    This competency framework was developed by a working group of endocrine specialist nurses with the support of the Society for Endocrinology to enhance the clinical care that adults with an endocrine disorder receive. Nurses should be able to demonstrate that they are functioning at an optimal level in order for patients to receive appropriate care. By formulating a competency framework from which an adult endocrine nurse specialist can work, it is envisaged that their development as professional practitioners can be enhanced. This is the second edition of the Competency Framework for Adult Endocrine Nursing. It introduces four new competencies on benign adrenal tumours, hypo- and hyperparathyroidism, osteoporosis and polycystic ovary syndrome. The authors and the Society for Endocrinology welcome constructive feedback on the document, both nationally and internationally, in anticipation that further developments and ideas can be incorporated into future versions. © 2015 Society for Endocrinology.

  4. Influence of exocrine and endocrine pancreatic function on intestinal brush border enaymatic activities.

    PubMed Central

    Caspary, W F; Winckler, K; Lankisch, P G; Creutzfeldt, W

    1975-01-01

    Digestive enzymatic activities (disaccharidases, alkaline phosphatase, peptide hydrolases) have been determined in the mucosa of 14 patients with chronic pancreatitis. All had an abnormal secretin-pancreozymin test. Four patients had insulin-dependent diabetes mellitus, four a pathological glucose tolerance test. Nine patients had steatorrhoea. Maltase, sucrase, and alkaline phosphatase activity was significantly elevated in patients with exocrine pancreatic insufficiency, whereas those of lactase, trehalase, and peptide hydrolase were normal. Patients with steatorrhoea had higher maltase and sucrase activity than those without steatorrhoea, whereas decreased glucose tolerance had no effect on brush border enzymatic activity. It is suggested thatdecreased exocrine rather than decreased endocrine pancreatic function is responsible for the increase in intestinal disaccharidase and alkaline phosphatase activity, possible by the influence of pacreatic enzymes on the turnover of brush border enzymes from the luminal side of the mucosal membranes or by direct hormonal stimulation though cholecystokinin. PMID:1092602

  5. Endocrine Profiling and Prioritization of Environmental Chemicals Using ToxCast Data

    PubMed Central

    Reif, David M.; Martin, Matthew T.; Tan, Shirlee W.; Houck, Keith A.; Judson, Richard S.; Richard, Ann M.; Knudsen, Thomas B.; Dix, David J.; Kavlock, Robert J.

    2010-01-01

    Background The prioritization of chemicals for toxicity testing is a primary goal of the U.S. Environmental Protection Agency (EPA) ToxCast™ program. Phase I of ToxCast used a battery of 467 in vitro, high-throughput screening assays to assess 309 environmental chemicals. One important mode of action leading to toxicity is endocrine disruption, and the U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) has been charged with screening pesticide chemicals and environmental contaminants for their potential to affect the endocrine systems of humans and wildlife. Objective The goal of this study was to develop a flexible method to facilitate the rational prioritization of chemicals for further evaluation and demonstrate its application as a candidate decision-support tool for EDSP. Methods Focusing on estrogen, androgen, and thyroid pathways, we defined putative endocrine profiles and derived a relative rank or score for the entire ToxCast library of 309 unique chemicals. Effects on other nuclear receptors and xenobiotic metabolizing enzymes were also considered, as were pertinent chemical descriptors and pathways relevant to endocrine-mediated signaling. Results Combining multiple data sources into an overall, weight-of-evidence Toxicological Priority Index (ToxPi) score for prioritizing further chemical testing resulted in more robust conclusions than any single data source taken alone. Conclusions Incorporating data from in vitro assays, chemical descriptors, and biological pathways in this prioritization schema provided a flexible, comprehensive visualization and ranking of each chemical’s potential endocrine activity. Importantly, ToxPi profiles provide a transparent visualization of the relative contribution of all information sources to an overall priority ranking. The method developed here is readily adaptable to diverse chemical prioritization tasks. PMID:20826373

  6. β-Cell-Specific Mafk Overexpression Impairs Pancreatic Endocrine Cell Development

    PubMed Central

    Abdellatif, Ahmed M.; Oishi, Hisashi; Itagaki, Takahiro; Jung, Yunshin; Shawki, Hossam H.; Okita, Yukari; Hasegawa, Yoshikazu; Suzuki, Hiroyuki; El-Morsy, Salah E.; El-Sayed, Mesbah A.; Shoaib, Mahmoud B.; Sugiyama, Fumihiro; Takahashi, Satoru

    2016-01-01

    The MAF family transcription factors are homologs of v-Maf, the oncogenic component of the avian retrovirus AS42. They are subdivided into 2 groups, small and large MAF proteins, according to their structure, function, and molecular size. MAFK is a member of the small MAF family and acts as a dominant negative form of large MAFs. In previous research we generated transgenic mice that overexpress MAFK in order to suppress the function of large MAF proteins in pancreatic β-cells. These mice developed hyperglycemia in adulthood due to impairment of glucose-stimulated insulin secretion. The aim of the current study is to examine the effects of β-cell-specific Mafk overexpression in endocrine cell development. The developing islets of Mafk-transgenic embryos appeared to be disorganized with an inversion of total numbers of insulin+ and glucagon+ cells due to reduced β-cell proliferation. Gene expression analysis by quantitative RT-PCR revealed decreased levels of β-cell-related genes whose expressions are known to be controlled by large MAF proteins. Additionally, these changes were accompanied with a significant increase in key β-cell transcription factors likely due to compensatory mechanisms that might have been activated in response to the β-cell loss. Finally, microarray comparison of gene expression profiles between wild-type and transgenic pancreata revealed alteration of some uncharacterized genes including Pcbd1, Fam132a, Cryba2, and Npy, which might play important roles during pancreatic endocrine development. Taken together, these results suggest that Mafk overexpression impairs endocrine development through a regulation of numerous β-cell-related genes. The microarray analysis provided a unique data set of differentially expressed genes that might contribute to a better understanding of the molecular basis that governs the development and function of endocrine pancreas. PMID:26901059

  7. The eye as a window to rare endocrine disorders

    PubMed Central

    Chopra, Rupali; Chander, Ashish; Jacob, Jubbin J.

    2012-01-01

    The human eye, as an organ, can offer critical clues to the diagnosis of various systemic illnesses. Ocular changes are common in various endocrine disorders such as diabetes mellitus and Graves’ disease. However there exist a large number of lesser known endocrine disorders where ocular involvement is significant. Awareness of these associations is the first step in the diagnosis and management of these complex patients. The rare syndromes involving the pituitary hypothalamic axis with significant ocular involvement include Septo-optic dysplasia, Kallman's syndrome, and Empty Sella syndrome all affecting the optic nerve at the optic chiasa. The syndromes involving the thyroid and parathyroid glands that have ocular manifestations and are rare include Mc Cune Albright syndrome wherein optic nerve decompression may occur due to fibrous dysplasia, primary hyperparathyroidism that may present as red eye due to scleritis and Ascher syndrome wherein ptosis occurs. Allgrove's syndrome, Cushing's disease, and Addison's disease are the rare endocrine syndromes discussed involving the adrenals and eye. Ocular involvement is also seen in gonadal syndromes such as Bardet Biedl, Turner's, Rothmund's, and Klinefelter's syndrome. This review also highlights the ocular manifestation of miscellaneous syndromes such as Werner's, Cockayne's, Wolfram's, Kearns Sayre's, and Autoimmune polyendocrine syndrome. The knowledge of these relatively uncommon endocrine disorders and their ocular manifestations will help an endocrinologist reach a diagnosis and will alert an ophthalmologist to seek specialty consultation of an endocrinologist when encountered with such cases. PMID:22629495

  8. Prenatal acetaminophen affects maternal immune and endocrine adaptation to pregnancy, induces placental damage, and impairs fetal development in mice.

    PubMed

    Thiele, Kristin; Solano, M Emilia; Huber, Samuel; Flavell, Richard A; Kessler, Timo; Barikbin, Roja; Jung, Roman; Karimi, Khalil; Tiegs, Gisa; Arck, Petra C

    2015-10-01

    Acetaminophen (APAP; ie, Paracetamol or Tylenol) is generally self-medicated to treat fever or pain and recommended to pregnant women by their physicians. Recent epidemiological studies reveal an association between prenatal APAP use and an increased risk for asthma. Our aim was to identify the effects of APAP in pregnancy using a mouse model. Allogeneically mated C57Bl/6J females were injected i.p. with 50 or 250 mg/kg APAP or phosphate-buffered saline on gestation day 12.5; nonpregnant females served as controls. Tissue samples were obtained 1 or 4 days after injection. APAP-induced liver toxicity was mirrored by significantly increased plasma alanine aminotransferase levels. In uterus-draining lymph nodes of pregnant dams, the frequencies of mature dendritic cells and regulatory T cells significantly increased on 250 mg/kg APAP. Plasma progesterone levels significantly decreased in dams injected with APAP, accompanied by a morphologically altered placenta. Although overall litter sizes and number of fetal loss remained unaltered, a reduced fetal weight and a lower frequency of hematopoietic stem cells in the fetal liver were observed on APAP treatment. Our data provide strong evidence that prenatal APAP interferes with maternal immune and endocrine adaptation to pregnancy, affects placental function, and impairs fetal maturation and immune development. The latter may have long-lasting consequences on children's immunity and account for the increased risk for asthma observed in humans. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Endocrine and metabolic changes in transition dairy cows are affected by prepartum infusions of a serotonin precursor.

    PubMed

    Hernández-Castellano, Lorenzo E; Hernandez, Laura L; Sauerwein, Helga; Bruckmaier, Rupert M

    2017-06-01

    Serotonin (5-HT) has been shown to be involved in calcium homeostasis, modulating calcium concentration in blood. In addition, 5-HT participates in a variety of metabolic pathways, mainly through the modulation of glucose and lipid metabolism. The hypothesis of the present study was that the prepartum administration of 5-hydroxy-l-tryptophan (5-HTP), a 5-HT precursor, would affect endocrine systems related to calcium homeostasis, and interact with other endocrine and metabolic pathways during the transition period. In this study, 20 Holstein dairy cows were randomly assigned to 2 experimental groups. Both groups received a daily i.v. infusion of 1 L of either 0.9% NaCl (control group; n = 10) or 0.9% NaCl containing 1 mg of 5-HTP/kg of BW (5-HTP group, n = 10). Infusions started d 10 before estimated parturition date and ended the day of parturition, resulting in a minimum of 4 d of infusion (8.4 ± 0.7 d of infusion). Until parturition, blood samples were collected before the daily infusions, and postpartum daily until d 7, and on d 30. Plasma concentrations of parathyroid hormone (PTH) were transiently increased at parturition and on d 1 in control cows. In the 5-HTP group PTH remained unchanged. The concentration of pyridinoline (PYD), an established marker for calcium release from the bone to the bloodstream, increased on d 1 postpartum only in the 5-HTP group. In control cows, PYD concentrations did not change on d 1 postpartum. Melatonin concentrations were slightly but significantly increased in the 5-HTP group compared with the control group. Insulin concentrations decreased in both groups postpartum. Before parturition, leptin concentrations decreased in both groups and remained at this level until d 30 postpartum. Plasma IgG concentrations decreased in both groups on d -1 postpartum. Haptoglobin increased in both groups on d -1 and remained at this level until d 7 postpartum. No differences between groups were observed for insulin, glucagon, IgG, leptin

  10. Overview of the Pathophysiological Implications of Organotins on the Endocrine System

    PubMed Central

    Marques, Vinicius Bermond; Faria, Rodrigo Alves; Dos Santos, Leonardo

    2018-01-01

    Organotins (OTs) are pollutants that are used widely by industry as disinfectants, pesticides, and most frequently as biocides in antifouling paints. This mini-review presents the main evidences from the literature about morphophysiological changes induced by OTs in the mammal endocrine system, focusing on the metabolism and reproductive control. Similar to other toxic compounds, the main effects with potential health risks to humans and experimental animals are not only related to dose and time of exposure but also to age, gender, and tissue/cell exposed. Regarding the underlying mechanisms, current literature indicates that OTs can directly damage endocrine glands, as well as interfere with neurohormonal control of endocrine function (i.e., in the hypothalamic–pituitary axis), altering hormone synthesis and/or bioavailability or activity of hormone receptors in the target cells. Importantly, OTs induces biochemical and morphological changes in gonads, abnormal steroidogenesis, both associated with reproductive dysfunctions such as irregular estrous cyclicity in female or spermatogenic disorders in male animals. Additionally, due to their role on endocrine systems predisposing to obesity, OTs are also included in the metabolism disrupting chemical hypothesis, either by central (e.g., accurate nucleus and lateral hypothalamus) or peripheral (e.g., adipose tissue) mechanisms. Thus, OTs should be indeed considered a major endocrine disruptor, being indispensable to understand the main toxic effects on the different tissues and its causative role for endocrine, metabolic, and reproductive dysfunctions observed. PMID:29615977

  11. EVALUATION OF METHOXYCHLOR AS AN ENDOCRINE DISRUPTOR IN FATHEAD MINNOWS (PIMEPHALES PROMELAS)

    EPA Science Inventory

    Recent concerns over the possible effects of endocrine-disrupting chemicals (EDCs) on humans and wildlife has resulted in considerable interest in environmental contaminants that adversely affect aspects of sexual reproduction and early development. The U.S. Environmental Protect...

  12. Endocrine Disruptors

    PubMed Central

    2015-01-01

    Law and science combine in the estimation of risks from endocrine disruptors (EDs) and actions for their regulation. For both, dose–response models are the causal link between exposure and probability (or percentage change) of adverse response. The evidence that leads to either regulations or judicial decrees is affected by uncertainty and limited knowledge, raising difficult policy issues that we enumerate and discuss. In the United States, some courts have dealt with EDs, but causation based on animal studies has been a stumbling block for plaintiffs seeking compensation, principally because those courts opt for epidemiological evidence. The European Union (EU) has several regulatory tools and ongoing research on the risks associated with bisphenol A, under the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) Regulation and other regulations or directives. The integration of a vast (in kind and in scope) number of research papers into a statement of causation for either policy or to satisfy legal requirements, in both the United States and the EU, relies on experts. We outline the discursive dilemma and issues that may affect consensus-based results and a Bayesian causal approach that accounts for the evolution of information, yielding both value of information and flexibility associated with public choices. PMID:26740809

  13. Endocrine Disrupting Chemicals Mediated through Binding Androgen Receptor Are Associated with Diabetes Mellitus

    PubMed Central

    Sakkiah, Sugunadevi; Wang, Tony; Zou, Wen; Wang, Yuping; Pan, Bohu; Tong, Weida; Hong, Huixiao

    2017-01-01

    Endocrine disrupting chemicals (EDCs) can mimic natural hormone to interact with receptors in the endocrine system and thus disrupt the functions of the endocrine system, raising concerns on the public health. In addition to disruption of the endocrine system, some EDCs have been found associated with many diseases such as breast cancer, prostate cancer, infertility, asthma, stroke, Alzheimer’s disease, obesity, and diabetes mellitus. EDCs that binding androgen receptor have been reported associated with diabetes mellitus in in vitro, animal, and clinical studies. In this review, we summarize the structural basis and interactions between androgen receptor and EDCs as well as the associations of various types of diabetes mellitus with the EDCs mediated through androgen receptor binding. We also discuss the perspective research for further understanding the impact and mechanisms of EDCs on the risk of diabetes mellitus. PMID:29295509

  14. Endocrine Disrupting Contaminants—Beyond the Dogma

    PubMed Central

    Guillette, Louis J.

    2006-01-01

    Descriptions of endocrine disruption have largely been associated with wildlife and driven by observations documenting estrogenic, androgenic, antiandrogenic, and antithyroid actions. These actions, in response to exposure to ecologically relevant concentrations of various environmental contaminants, have now been established in numerous vertebrate species. However, many potential mechanisms and endocrine actions have not been studied. For example, the DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] metabolite, p,p′-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene] is known to disrupt prostaglandin synthesis in the uterus of birds, providing part of the explanation for DDT-induced egg shell thinning. Few studies have examined prostaglandin synthesis as a target for endocrine disruption, yet these hormones are active in reproduction, immune responses, and cardiovascular physiology. Future studies must broaden the basic science approach to endocrine disruption, thereby expanding the mechanisms and endocrine end points examined. This goal should be accomplished even if the primary influence and funding continue to emphasize a narrower approach based on regulatory needs. Without this broader approach, research into endocrine disruption will become dominated by a narrow dogma, focusing on a few end points and mechanisms. PMID:16818240

  15. Long-term follow-up of endocrine function among young children with newly diagnosed malignant central nervous system tumors treated with irradiation-avoiding regimens.

    PubMed

    Cochrane, Anne M; Cheung, Clement; Rangan, Kasey; Freyer, David; Nahata, Leena; Dhall, Girish; Finlay, Jonathan L

    2017-11-01

    The adverse effects of irradiation on endocrine function among patients with pediatric brain tumor are well documented. Intensive induction chemotherapy followed by marrow-ablative chemotherapy with autologous hematopoietic cell rescue (AuHCR) without central nervous system (CNS) irradiation has demonstrated efficacy in a proportion of very young children with some malignant CNS tumors. This study assessed the long-term endocrine function of young children following chemotherapy-only treatment regimens. A retrospective chart review was performed on 99 patients under 6 years of age with malignant brain tumors newly diagnosed between May 1991 and October 2010 treated with irradiation-avoiding strategies. Thirty patients survived post-AuHCR without cranial irradiation for a mean of 8.1 years (range 3.0-22.25 years). The patient cohort included 18 males and 12 females (mean age at AuHCR of 2.5 years, range 0.8-5.1 years). All 30 surviving patients had documented normal age-related thyroid function, insulin-like growth factor binding protein 3 (IGF-BP3), prolactin, testosterone, and estradiol levels. Insulin-like growth factor 1 age-related levels were abnormal in one child with normal height. Ninety-seven percent of patients had normal cortisol levels, while follicle-stimulating hormone and LH levels among females were normal in 83% and 92%, respectively, and in 100% of males. Growth charts demonstrated age-associated growth within 2 standard deviations of the mean in 67% of patients. Of 10 patients (33%) with short stature, 6 had proportional diminutions in both height and weight. These findings demonstrate that the use of relatively brief, intensive chemotherapy regimens including marrow-ablative chemotherapy with AuHCR results in fewer endocrine sequelae than treatment schemes utilizing CNS irradiation. © 2017 Wiley Periodicals, Inc.

  16. Obesity: an endocrine tumor?

    PubMed

    Dizdar, Omer; Alyamaç, Evrim

    2004-01-01

    Obesity is one of the most common disorders in clinical practice. The prevalance of obesity has increased by more than 60% since 1990. Adipose tissue acts as an endocrine organ secreting many factors into the blood, known as adipokines, including leptin, adipsin, acylation-stimulating protein, adiponectin, etc. This article examines the hypothesis that obesity may be evaluated as an endocrine tumor, regarding its genetic basis, hyperplasia and hypertrophy of adipocytes, neovascularisation within the adipose tissue associated with growth, and beneficisal metabolic effects of surgical removal of excess adipose tissue by liposuction. Assuming obesity as an endocrine tumor may bring out new treatment modalities. Liposuction as "cytoreductive surgery", antiangiogenic teraphy or anti-neoplastic drugs may be important components of obesity treatment in future.

  17. International spinal cord injury endocrine and metabolic extended data set.

    PubMed

    Bauman, W A; Wecht, J M; Biering-Sørensen, F

    2017-05-01

    The objective of this study was to develop the International Spinal Cord Injury (SCI) Endocrine and Metabolic Extended Data Set (ISCIEMEDS) within the framework of the International SCI Data Sets that would facilitate consistent collection and reporting of endocrine and metabolic findings in the SCI population. This study was conducted in an international setting. The ISCIEMEDS was developed by a working group. The initial ISCIEMEDS was revised based on suggestions from members of the International SCI Data Sets Committee, the International Spinal Cord Society (ISCoS) Executive and Scientific Committees, American Spinal Injury Association (ASIA) Board, other interested organizations, societies and individual reviewers. The data set was posted for two months on ISCoS and ASIA websites for comments. Variable names were standardized, and a suggested database structure for the ISCIEMEDS was provided by the Common Data Elements (CDEs) project at the National Institute on Neurological Disorders and Stroke (NINDS) of the US National Institute of Health (NIH), and are available at https://commondataelements.ninds.nih.gov/SCI.aspx#tab=Data_Standards. The final ISCIEMEDS contains questions on the endocrine and metabolic conditions related to SCI. Because the information may be collected at any time, the date of data collection is important to determine the time after SCI. ISCIEMEDS includes information on carbohydrate metabolism (6 variables), calcium and bone metabolism (12 variables), thyroid function (9 variables), adrenal function (2 variables), gonadal function (7 variables), pituitary function (6 variables), sympathetic nervous system function (1 variable) and renin-aldosterone axis function (2 variables). The complete instructions for data collection and the data sheet itself are freely available on the website of ISCoS (http://www.iscos.org.uk/international-sci-data-sets).

  18. [Disorders of endocrine function after brain tumor therapy in childhood].

    PubMed

    Marx, M; Langer, T; Beck, J D; Dörr, H G

    1999-07-01

    Advances in the therapy of malignant brain tumors in children have led to a significant improvement in survival rates over the last few decades. As a result, the recognition and treatment of late effects have become more important. In addition to secondary tumors and deficiencies in cognitive and intellectual skills, the resulting endocrine disturbances play an important role. Own data and literature review. Deviations from the normal growth hormone secretion are usually recognized first and are most common, and have already been observed after conventional whole brain irradiation with 18 Gy. With some delay, other hypothalamo-pituitary deficiencies may occur, including panhypopituitarism. Puberty may come too early or too late or may not appear at all. Girls in particular, frequently experience an early and rapid pubertal development after brain tumor therapy, which may lead to further reduction in height due to an accelerated bone maturation. Functional disturbances of the thyroid and adrenal glands due to hypothalamic or pituitary deficiency are less common, and usually seen only after a radiation dose of over 40 Gy. Survivors of childhood brain tumors must be considered as long-term survivors, in whom the first therapy-induced long-term side effects appear almost immediately after the end of therapy. Maximum quality of life for the individual patient can only be achieved by long-term care and close cooperation of specialists in the different medical disciplines involved.

  19. Adjuvant endocrine therapy for premenopausal women with hormone-responsive breast cancer.

    PubMed

    Mathew, Aju; Davidson, Nancy E

    2015-11-01

    Multiple strategies for endocrine treatment of premenopausal women with hormone-responsive breast cancer have been assessed and results have been presented over the last two years. These include tamoxifen for 5-10 years (ATLAS and aTTom), tamoxifen for 5 years followed by aromatase inhibitor (AI) for 5 years for women who have become postmenopausal (MA-17); ovarian ablation (OA) by surgery (EBCTCG overview); ovarian function suppression (OFS) by LHRH agonist (LHRH agonist meta-analysis); or combinations of approaches including OFS plus tamoxifen or AI (SOFT, TEXT, ABCSG 12 and E3193). Many of these trials have taken place in the backdrop of (neo)adjuvant chemotherapy which can confound interpretation because such therapy can suppress ovarian function either transiently or permanently. Nonetheless these trials suggest in aggregate that 10 years of tamoxifen are better than 5 years and that a program of extended adjuvant therapy of tamoxifen for 5 years followed by aromatase inhibitor for 5 years is effective for suitable candidates. The SOFT and E3193 trials do not show a major advantage for use of OFS + tamoxifen compared to tamoxifen alone. The joint SOFT/TEXT analysis and ABCGS12 trials both suggest that outcomes can be excellent with the use of combined endocrine therapy alone in properly selected patients but give conflicting results with regard to potential benefits for OFS + AI compared with OFS + tamoxifen. Further work will be needed to ascertain long-term outcomes, identify factors that predict who will benefit from extended adjuvant endocrine therapy, and assess role of OFS by medical or surgical means. It is clear, however, that endocrine therapy is a critical part of the adjuvant regimen for most premenopausal women with hormone-responsive breast cancer, and a subset of these women with luminal A-type tumors can be safely treated with endocrine therapy alone. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Early morphological and functional changes in pancreas following necrosectomy for acute severe necrotizing pancreatitis.

    PubMed

    Bavare, Charudatta; Prabhu, Ramkrishna; Supe, Avinash

    2004-01-01

    Morphological and functional changes in the pancreas after surgical pancreatic necrosectomy have not been studied extensively. To study morphological changes in the pancreas, and exocrine and endocrine pancreatic function following pancreatic necrosectomy. Eighteen adult patients surviving at least one month after pancreatic necrosectomy for acute necrotizing pancreatitis were followed up. Contrast-enhanced computed tomography was done every six months. Stool fat was estimated at 3-month intervals, and need for and response to enzyme supplements were recorded. Blood sugar was measured every fortnight; in patients with hyperglycemia, need for oral hypoglycemic agents or insulin was recorded. Additional pancreatic imaging was done in some cases. Six weeks after surgery, nine of 18 patients had exocrine insufficiency. Thirteen patients developed endocrine insufficiency, including 5 who also had exocrine insufficiency. At the end of the study, 13 patients had endocrine insufficiency and 2 had exocrine insufficiency. Pancreatic size was subnormal in all patients at the end of six months. Pancreatography in three cases did not reveal any ductal abnormality. Necrotizing pancreatitis affects pancreatic exocrine or endocrine function in more than half the patients.

  1. The US EPA's Endocrine Disruptor Screening Program: In VItro and In Vivo Mammalian Tier 1 Screening Assays

    EPA Science Inventory

    In response to emerging concerns that environmental chemicals may have adverse effects on human health by altering the function of the endocrine system, the Food Quality Protection Act mandated that the U.S. EPA develop and implement an endocrine disruptor screening program (EDSP...

  2. [Effects of magnesium valproate on endocrine system and reproductive functions of female epileptics].

    PubMed

    Xiang, Li; Ding, Jun-Qing; Huang, Xi-Shun

    2011-08-09

    To explore the effects of valproate (VPA) on endocrine system in adolescent and reproductive female patients with epilepsy. A total of 30 adolescent and reproductive female patients with a diagnosis of epilepsy at our hospital during July 2009 to March 2010 were recruited. All cases with magnesium VPA alone were included. The levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), prolactin (PRL), estradiol (E2), progesterone (P) and testosterone (T) were detected respectively at pre-therapy and 3, 6 and 12 months post-therapy. And the changes of menstruation and ovaries were recorded. The serum concentration of PRL was lower at 3 and 6 months post-therapy than that at pre-therapy. There was significant difference (P = 0.010 and 0.014). The serum concentration of E2 significantly decreased after a 3-month therapy of valproate (P < 0.05). While comparing the parameter's level between the initial test and at a 3, 6 and 12-month follow-up, the level of P significantly decreased in the later groups than that of the former one while the level of T showed a marked increase. The levels of FSH and LH were not significantly different at pre- and post-therapy. And 6 (20%) of them presented with menstrual dysfunctions and 3 (10%) polycystic ovary. The valproate therapy can not only cause the changes of endocrine system and hormonal levels, but also induce such endocrine dysfunction syndromes as menstrual suspension and polycystic ovary. It eventually causes polycystic ovary syndrome.

  3. Congenital hypogonadotropic hypogonadism and Kallmann syndrome as models for studying hormonal regulation of human testicular endocrine functions.

    PubMed

    Trabado, Séverine; Lamothe, Sophie; Maione, Luigi; Bouvattier, Claire; Sarfati, Julie; Brailly-Tabard, Sylvie; Young, Jacques

    2014-05-01

    Men with Kallmann syndrome (KS) and those with congenital isolated hypogonadotropic hypogonadism with normal olfaction share a chronic, usually profound deficit, in FSH and LH, the two pituitary gonadotropins. Many studies indicate that this gonadotropin deficiency is already present during fetal life, thus explaining the micropenis, cryptorchidism and marked testicular hypotrophy already present at birth. In addition, neonatal activation of gonadotropin secretion is compromised in boys with severe CHH/Kallmann, preventing the first phase of postnatal testicular activation. Finally, CHH is characterized by the persistence, in the vast majority of cases, of gonadotropin deficiency at the time of puberty and during adulthood. This prevents the normal pubertal testicular reactivation required for physiological sex steroid and testicular peptide production, and for spermatogenesis. CHH/KS thus represents a pathological paradigm that can help to unravel, in vivo, the role of each gonadotropin in human testicular exocrine and endocrine functions at different stages of development. Recombinant gonadotropins with pure LH or FSH activity have been used to stimulate Leydig's cells and Sertoli's cells, respectively, and thereby to clarify their paracrine interaction in vivo. The effects of these pharmacological probes can be assessed by measuring the changes they provoke in circulating testicular hormone concentrations. This review discusses the impact of chronic gonadotropin deficiency on the endocrine functions of the interstitial compartment, which contains testosterone-, estradiol- and INSL3-secreting Leydig's cells. It also examines the regulation of inhibin B and anti-Mullerian hormone (AMH) secretion in the seminiferous tubules, and the insights provided by studies of human testicular stimulation with recombinant gonadotropins, used either individually or in combination. Copyright © 2014. Published by Elsevier Masson SAS.

  4. Are endocrine disruptors among the causes of the deterioration of aquatic biodiversity?

    PubMed

    Zhou, Jin; Cai, Zhong-Hua; Zhu, Xiao-Shan

    2010-07-01

    Exposure to environmental pollutants such as endocrine-disrupting compounds (EDCs) is now taken into account to explain partially the biodiversity decline of aquatic ecosystems. Much research has demonstrated that EDCs can adversely affect the endocrine system, reproductive health, and immune function in aquatic species. These toxicological effects include 1) interference with normal hormonal synthesis, release, and transport, 2) impairment of growth, development, and gonadal maturation, and 3) increased sensitivity to environmental stressors. Recent studies also have confirmed that EDCs have carcinogenic and mutagenic potential. In essence, these changes in physiological and biochemical parameters reflect, to some extent, some phenotypic characteristics of the deterioration of aquatic biodiversity. At present, evidence at the molecular level shows that exposure to EDCs can trigger genotoxicity, such as DNA damage, and can reduce genetic diversity. Field studies have also provided more direct evidence that EDCs contribute to the population decrease and biodiversity decline. Evolutionary toxicology and multigenerational toxicity tests have further demonstrated that EDCs can damage an organism's offspring and eventually likely lead to loss of evolutionary potential. Taken together, these results provide some basis for understanding the relationship between variety deterioration and EDC exposure. It is conceivable that there is a causal association between EDC exposure and variety deterioration of aquatic organisms. (c) 2010 SETAC.

  5. Endocrine disruption: In silico interactions between phthalate plasticizers and corticosteroid binding globulin.

    PubMed

    Sheikh, Ishfaq A; Beg, Mohd A

    2017-12-01

    Endocrine disruption is a phenomenon when a man-made or natural compound interferes with normal hormone function in human or animal body systems. Endocrine-disrupting compounds (EDCs) have assumed considerable importance as a result of industrial activity, mass production of synthetic chemicals and environmental pollution. Phthalate plasticizers are a group of chemicals used widely and diversely in industry especially in the plastic industry, and many of the phthalate compounds have endocrine-disrupting properties. Increasing evidence indicates that steroid nuclear receptors and steroid binding proteins are the main targets of endocrine disruption. Corticosteroid-binding globulin (CBG) is a steroid binding protein that binds and transports cortisol in the blood circulation and is a potential target for endocrine disruption. An imbalance of cortisol in the body leads to many health problems. Induced fit docking of nine important and environmentally relevant phthalate plasticizers (DMP, BBP, DBP, DIBP, DnHP, DEHP, DINP, DnOP, DIDP) showed interactions with 10-19 amino acid residues of CBG. Comparison of the interacting residues of CBG with phthalate ligands and cortisol showed an overlapping of the majority (53-82%) of residues for each phthalate. Five of nine phthalate compounds and cortisol shared a hydrogen bonding interaction with the Arg-252 residue of CBG. Long-chain phthalates, such as DEHP, DINP, DnOP and DIDP displayed a higher binding affinity and formed a number of interactions with CBG in comparison to short-chain phthalates. The similarity in structural binding characteristics of phthalate compounds and native ligand cortisol suggested potential competitive conflicts in CBG-cortisol binding function and possible disruption of cortisol and progesterone homeostasis. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Endocrine Disrupting Effects of Triclosan on the Placenta in Pregnant Rats

    PubMed Central

    Zhang, Zhaobin; Shi, Jiachen; Jiao, Zhihao; Shao, Bing

    2016-01-01

    Triclosan (TCS) is a broad-spectrum antimicrobial agent that is frequently used in pharmaceuticals and personal care products. Reports have shown that TCS is a potential endocrine disruptor; however, the potential effects of TCS on placental endocrine function are unclear. The aim of this study was to investigate the endocrine disrupting effects of TCS on the placenta in pregnant rats. Pregnant rats from gestational day (GD) 6 to GD 20 were treated with 0, 30, 100, 300 and 600 mg/kg/d TCS followed by analysis of various biochemical parameters. Of the seven tissues examined, the greatest bioaccumulation of TCS was observed in the placenta. Reduction of gravid uterine weight and the occurrence of abortion were observed in the 600 mg/kg/d TCS-exposed group. Moreover, hormone detection demonstrated that the serum levels of progesterone (P), estradiol (E2), testosterone (T), human chorionic gonadotropin (hCG) and prolactin (PRL) were decreased in groups exposed to higher doses of TCS. Real-time quantitative reverse transcriptase-polymerase chain reaction (Q-RT-PCR) analysis revealed a significant increase in mRNA levels for placental steroid metabolism enzymes, including UDP-glucuronosyltransferase 1A1 (UGT1A1), estrogen sulfotransferase 1E1 (SULT1E1), steroid 5α-reductase 1 (SRD5A1) and steroid 5α-reductase 2 (SRD5A2). Furthermore, the transcriptional expression levels of progesterone receptor (PR), estrogen receptor (ERα) and androgen receptor (AR) were up-regulated. Taken together, these data demonstrated that the placenta was a target tissue of TCS and that TCS induced inhibition of circulating steroid hormone production might be related to the altered expression of hormone metabolism enzyme genes in the placenta. This hormone disruption might subsequently affect fetal development and growth. PMID:27149376

  7. The endocrine disruptor bisphenol A increases the expression of HSP70 and ecdysone receptor genes in the aquatic larvae of Chironomus riparius.

    PubMed

    Planelló, R; Martínez-Guitarte, J L; Morcillo, G

    2008-05-01

    Bisphenol A (BPA) is an endocrine disruptor that can mimic the action of estrogens by interacting with hormone receptors and is, therefore, potentially able to influence reproductive functions in vertebrates. Although information about the interaction with the endocrine systems in invertebrates is limited, it has also been shown its effect on reproductive and developmental parameters in these organisms. As little is known about its mechanism of action in aquatic invertebrates, we have examined the effects of BPA on the expression of some selected genes, including housekeeping, stress-induced and hormone-related genes in Chironomus riparius larvae, a widely used organism in aquatic ecotoxicology. The levels of different gene transcripts were measured by Northern blot or by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR). Exposure to BPA (3 mgl(-1), 12-24h) did not affect the levels of rRNA or those of mRNAs for both L11 or L13 ribosomal proteins, selected as examples of housekeeping genes involved in ribosome biogenesis. Nevertheless, BPA treatment induced the expression of the HSP70 gene. Interestingly, it was found that BPA significantly increases the mRNA level of the ecdysone receptor (EcR). These results show for the first time that exposure to endocrine disrupting chemicals, such as BPA, can selectively affect the expression of the ecdysone receptor gene suggesting a direct interaction with the insect endocrine system. Furthermore, this finding suggests a common way of BPA action, shared by vertebrates and invertebrates, through interaction with steroid hormone receptors. Our study adds a new element, the EcR, which may be a useful tool for the screening of environmental xenoestrogens in insects.

  8. Microcystin-LR impairs zebrafish reproduction by affecting oogenesis and endocrine system.

    PubMed

    Zhao, Yanyan; Xie, Liqiang; Yan, Yunjun

    2015-02-01

    Previous studies have shown that microcystins (MCs) are able to exert negative effects on the reproductive system of fish. However, few data are actually available on the effects of MC-LR on the reproductive system of female fish. In the present study, female zebrafish were exposed to 2, 10, and 50 μg L(-1) of MC-LR for 21 d, and its effects on oogenesis, sex hormones, transcription of genes on the hypothalamic-pituitary-gonad (HPG) axis, and reproduction were investigated for the first time. It was observed that egg production significantly declined at ⩾ 10 μg L(-1) MC-LR. MC-LR exposure to zebrafish increased the concentrations of 17β-estradiol (E2) and vitellogenin (VTG) at 10 μg L(-1) level, whereas concentrations of E2, VTG and testosterone declined at 50 μg L(-1) MC-LR. The transcriptions of steroidogenic pathway gene (cyp19a, cyp19b, 17βhsd, cyp17 and hmgra) changed as well after the exposure and corresponded well with the alterations of hormone levels. A number of intra- and extra-ovarian factors, such as gnrh3, gnrhr1, fshβ, fshr, lhr, bmp15, mrpβ, ptgs2 and vtg1 which regulate oogenesis, were significantly changed with a different dose-related effect. Moreover, MC-LR exposure to female zebrafish resulted in decreased fertilization and hatching rates, and may suggest the possibility of trans-generational effects of MC-LR exposure. The results demonstrate that MC-LR could modulate endocrine function and oogenesis, eventually leading to disruption of reproductive performance in female zebrafish. These data suggest there is a risk for aquatic population living in MC polluted areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Impact of nitrite exposure on endocrine, osmoregulatory and cytoprotective functions in the marine teleost Sparus sarba.

    PubMed

    Deane, Eddie E; Woo, Norman Y S

    2007-05-01

    The effects of nitrite, at varying concentrations (0, 25 and 50mg/l), on silver sea bream (Sparus sarba), was assessed after 7 days exposure. Nitrite exposure resulted in an elevated renosomatic index in parallel with increased kidney water content. Measurements of serum thyroid hormones demonstrated that levels of thyroxine (T(4)) were decreased upon nitrite exposure whereas triiodothyronine (T(3)) concentrations remained unchanged. Nitrite did not affect serum K and Na levels but did cause an increase in gill sodium pump (Na(+)-K(+)-ATPase) activity. Using immunoassays, it was found that the abundance of the water channel protein, aquaporin 3 (AQP3) was unchanged in gills but decreased in kidneys of sea bream upon nitrite exposure. Immunoassay analysis also demonstrated that the amount of the heat shock protein 70 (HSP70) family were increased in gills, kidney and liver during nitrite exposure whereas amounts of the heat shock protein 90 (HSP90) family increased in kidneys and liver. Taken together, the findings from this study provide new insights into how nitrite affects osmoregulatory, endocrine processes and heat shock protein expression in a marine fish.

  10. Executive Summary to EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals

    PubMed Central

    Chappell, V. A.; Fenton, S. E.; Flaws, J. A.; Nadal, A.; Prins, G. S.; Toppari, J.; Zoeller, R. T.

    2015-01-01

    This Executive Summary to the Endocrine Society's second Scientific Statement on environmental endocrine-disrupting chemicals (EDCs) provides a synthesis of the key points of the complete statement. The full Scientific Statement represents a comprehensive review of the literature on seven topics for which there is strong mechanistic, experimental, animal, and epidemiological evidence for endocrine disruption, namely: obesity and diabetes, female reproduction, male reproduction, hormone-sensitive cancers in females, prostate cancer, thyroid, and neurodevelopment and neuroendocrine systems. EDCs such as bisphenol A, phthalates, pesticides, persistent organic pollutants such as polychlorinated biphenyls, polybrominated diethyl ethers, and dioxins were emphasized because these chemicals had the greatest depth and breadth of available information. The Statement also included thorough coverage of studies of developmental exposures to EDCs, especially in the fetus and infant, because these are critical life stages during which perturbations of hormones can increase the probability of a disease or dysfunction later in life. A conclusion of the Statement is that publications over the past 5 years have led to a much fuller understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability. These findings will prove useful to researchers, physicians, and other healthcare providers in translating the science of endocrine disruption to improved public health. PMID:26414233

  11. SMALL FISH MODELS FOR IDENTIFYING AND ASSESSING THE EFFECTS OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Endocrine-disrupting chemicals (EDCs), in particular those which affect the hypothalamic-pituitary-gonadal (HPG) axis of vertebrates, have become a focus of regulatory screening and testing throughout the world. Small fish species, principally the fathead minnow (Pimephales prom...

  12. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement

    PubMed Central

    Diamanti-Kandarakis, Evanthia; Bourguignon, Jean-Pierre; Giudice, Linda C.; Hauser, Russ; Prins, Gail S.; Soto, Ana M.; Zoeller, R. Thomas; Gore, Andrea C.

    2009-01-01

    There is growing interest in the possible health threat posed by endocrine-disrupting chemicals (EDCs), which are substances in our environment, food, and consumer products that interfere with hormone biosynthesis, metabolism, or action resulting in a deviation from normal homeostatic control or reproduction. In this first Scientific Statement of The Endocrine Society, we present the evidence that endocrine disruptors have effects on male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology. Results from animal models, human clinical observations, and epidemiological studies converge to implicate EDCs as a significant concern to public health. The mechanisms of EDCs involve divergent pathways including (but not limited to) estrogenic, antiandrogenic, thyroid, peroxisome proliferator-activated receptor γ, retinoid, and actions through other nuclear receptors; steroidogenic enzymes; neurotransmitter receptors and systems; and many other pathways that are highly conserved in wildlife and humans, and which can be modeled in laboratory in vitro and in vivo models. Furthermore, EDCs represent a broad class of molecules such as organochlorinated pesticides and industrial chemicals, plastics and plasticizers, fuels, and many other chemicals that are present in the environment or are in widespread use. We make a number of recommendations to increase understanding of effects of EDCs, including enhancing increased basic and clinical research, invoking the precautionary principle, and advocating involvement of individual and scientific society stakeholders in communicating and implementing changes in public policy and awareness. PMID:19502515

  13. Bisphenol A (BPA) modulates the expression of endocrine and stress response genes in the freshwater snail Physa acuta.

    PubMed

    Morales, Mónica; Martínez-Paz, Pedro; Sánchez-Argüello, Paloma; Morcillo, Gloria; Martínez-Guitarte, José Luis

    2018-05-15

    Bisphenol A (BPA), a known endocrine disrupting chemical (EDC) that can mimic the action of oestrogens by interacting with hormone receptors, is potentially able to influence reproductive functions in vertebrates and invertebrates. The freshwater pulmonate Physa acuta is a sensitive organism to xenobiotics appropriate for aquatic toxicity testing in environmental studies. This study was conducted to explore the effects of BPA on the Gastropoda endocrine system. The effects following a range of exposure times (5-96h) to BPA in P. acuta were evaluated at the molecular level by analysing changes in the transcriptional activity of the endocrine-related genes oestrogen receptor (ER), oestrogen-related receptor (ERR), and retinoid X receptor (RXR), as well as in genes involved in the stress response, such as hsp70 and hsp90. Real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis showed that BPA induced a significant increase in the mRNA levels of ER, ERR, and RXR, suggesting that these receptors could be involved in similar pathways or regulation events in the endocrine disruptor activity of this chemical at the molecular level in Gastropoda. Additionally, the hsp70 expression was upregulated after 5 and 72h of BPA exposures, but hsp90 was only upregulated after 5h of BPA exposure. Finally, we assessed the glutathione-S-transferase (GST) activity after BPA treatment and found that it was affected after 48h. In conclusion, these data provide, for the first time, evidences of molecular effects produced by BPA in the endocrine system of Gastropoda, supporting the potential of ER, ERR and RXR as biomarkers to analyse putative EDCs in ecotoxicological studies. Moreover, our results suggest that P. acuta is an appropriate sentinel organism to evaluate the effect of EDCs in the freshwater environment. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Endocrine Disruptors

    MedlinePlus

    ... cans, detergents, flame retardants, food, toys, cosmetics, and pesticides. NIEHS supports studies to determine whether exposure to endocrine disruptors may result in human health effects including lowered fertility and an increased incidence ...

  15. Drug residues and endocrine disruptors in drinking water: risk for humans?

    PubMed

    Touraud, Evelyne; Roig, Benoit; Sumpter, John P; Coetsier, Clémence

    2011-11-01

    The presence of pharmaceuticals and endocrine disruptors in the environment raises many questions about risk to the environment and human health. Environmental exposure has been largely studied, providing to date a realistic picture of the degree of contamination of the environment by pharmaceuticals and hormones. Conversely, little information is available regarding human exposure. NSAIDS, carbamazepine, iodinated contrast media, β-blockers, antibiotics have been detected in drinking water, mostly in the range of ng/L. it is questioned if such concentrations may affect human health. Currently, no consensus among the scientific community exists on what risk, if any, pharmaceuticals and endocrine disruptors pose to human health. Future European research will focus, on one hand, on genotoxic and cytotoxic anti-cancer drugs and, on the other hand, on the induction of genetic resistance by antibiotics. This review does not aim to give a comprehensive overview of human health risk of drug residues and endocrine disruptors in drinking water but rather highlight important topics of discussion. Copyright © 2011. Published by Elsevier GmbH.

  16. Health Disparities in Endocrine Disorders: Biological, Clinical, and Nonclinical Factors—An Endocrine Society Scientific Statement

    PubMed Central

    Brown, Arleen; Cauley, Jane A.; Chin, Marshall H.; Gary-Webb, Tiffany L.; Kim, Catherine; Sosa, Julie Ann; Sumner, Anne E.; Anton, Blair

    2012-01-01

    Objective: The aim was to provide a scholarly review of the published literature on biological, clinical, and nonclinical contributors to race/ethnic and sex disparities in endocrine disorders and to identify current gaps in knowledge as a focus for future research needs. Participants in Development of Scientific Statement: The Endocrine Society's Scientific Statement Task Force (SSTF) selected the leader of the statement development group (S.H.G.). She selected an eight-member writing group with expertise in endocrinology and health disparities, which was approved by the Society. All discussions regarding the scientific statement content occurred via teleconference or written correspondence. No funding was provided to any expert or peer reviewer, and all participants volunteered their time to prepare this Scientific Statement. Evidence: The primary sources of data on global disease prevalence are from the World Health Organization. A comprehensive literature search of PubMed identified U.S. population-based studies. Search strategies combining Medical Subject Headings terms and keyword terms and phrases defined two concepts: 1) racial, ethnic, and sex differences including specific populations; and 2) the specific endocrine disorder or condition. The search identified systematic reviews, meta-analyses, large cohort and population-based studies, and original studies focusing on the prevalence and determinants of disparities in endocrine disorders. Consensus Process: The writing group focused on population differences in the highly prevalent endocrine diseases of type 2 diabetes mellitus and related conditions (prediabetes and diabetic complications), gestational diabetes, metabolic syndrome with a focus on obesity and dyslipidemia, thyroid disorders, osteoporosis, and vitamin D deficiency. Authors reviewed and synthesized evidence in their areas of expertise. The final statement incorporated responses to several levels of review: 1) comments of the SSTF and the

  17. Endocrine causes of calcium disorders.

    PubMed

    Greco, Deborah S

    2012-11-01

    Endocrine diseases that may cause hypercalcemia and hypocalcemia include hyperparathyroidism, hypoparathyroidism, thyroid disorders, hyperadrenocorticism, hypoadrenocorticism, and less commonly pheochromocytoma and multiple endocrine neoplasias. The differential diagnosis of hypercalcemia may include malignancy (lymphoma, anal sac carcinoma, and squamous cell carcinoma), hyperparathyroidism, vitamin D intoxication, chronic renal disease, hypoadrenocorticism, granulomatous disorders, osteolysis, or spurious causes. Hypocalcemia may be caused by puerperal tetany, pancreatitis, intestinal malabsorption, ethlyene glycol intoxication, acute renal failure, hypopararthyroidism, hypovitaminosis D, hypomagnesemia, and low albumin. This article focuses on the endocrine causes of calcium imbalance and provides diagnostic and therapeutic guidelines for identifying the cause of hypercalcemia and hypocalcemia in veterinary patients. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Subjective cognitive complaints one year after ceasing adjuvant endocrine treatment for early-stage breast cancer.

    PubMed

    Ribi, K; Aldridge, J; Phillips, K-A; Thompson, A; Harvey, V; Thürlimann, B; Cardoso, F; Pagani, O; Coates, A S; Goldhirsch, A; Price, K N; Gelber, R D; Bernhard, J

    2012-05-08

    In the BIG 1-98 trial objective cognitive function improved in postmenopausal women 1 year after cessation of adjuvant endocrine therapy for breast cancer. This report evaluates changes in subjective cognitive function (SCF). One hundred postmenopausal women, randomised to receive 5 years of adjuvant tamoxifen, letrozole, or a sequence of the two, completed self-reported measures on SCF, psychological distress, fatigue, and quality of life during the fifth year of trial treatment (year 5) and 1 year after treatment completion (year 6). Changes between years 5 and 6 were evaluated using the Wilcoxon signed-rank test. Subjective cognitive function and its correlates were explored. Subjective cognitive function and the other patient-reported outcomes did not change significantly after cessation of endocrine therapy with the exception of improvement for hot flushes (P=0.0005). No difference in changes was found between women taking tamoxifen or letrozole. Subjective cognitive function was the only psychosocial outcome with a substantial correlation between year 5 and 6 (Spearman's R=0.80). Correlations between SCF and the other patient-reported outcomes were generally low. Improved objective cognitive function but not SCF occur following cessation of adjuvant endocrine therapy in the BIG 1-98 trial. The substantial correlation of SCF scores over time may represent a stable attribute.

  19. A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals.

    PubMed

    Hong, Huixiao; Shen, Jie; Ng, Hui Wen; Sakkiah, Sugunadevi; Ye, Hao; Ge, Weigong; Gong, Ping; Xiao, Wenming; Tong, Weida

    2016-03-25

    Endocrine disruptors such as polychlorinated biphenyls (PCBs), diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT) are agents that interfere with the endocrine system and cause adverse health effects. Huge public health concern about endocrine disruptors has arisen. One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood affects its entrance into the target cells and, thus, is very informative for the assessment of potential endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using the novel pattern recognition method (Decision Forest) and the molecular descriptors calculated from two-dimensional structures by Mold² software. The predictive capability of the model has been evaluated through internal validation using 125 training chemicals (average balanced accuracy of 69%) and external validations using 22 chemicals (balanced accuracy of 71%). Prediction confidence analysis revealed the model performed much better at high prediction confidence. Our results indicate that the model is useful (when predictions are in high confidence) in endocrine disruption risk assessment of environmental chemicals though improvement by increasing number of training chemicals is needed.

  20. Endocrine Diseases

    MedlinePlus

    ... low, you may have a hormone disorder. Hormone diseases also occur if your body does not respond ... In the United States, the most common endocrine disease is diabetes. There are many others. They are ...

  1. SCREENING CALIFORNIA SURFACE WATERS FOR ESTROGENIC ENDOCRINE DISRUPTING CHEMICALS (EEDC) WITH A JUVENILE RAINBOW TROUT LIVER VITELLOGENIN MRNA PROCEDURE

    EPA Science Inventory

    Concern regarding the occurrence of chemicals that disrupt endocrine system functions in aquatic species has heightened over the last 15 years. However, little attention has been given to monitoring for estrogenic endocrine disrupting chemicals (EEDCs) in California's freshwater ...

  2. Endocrine regulation of airway contractility is overlooked.

    PubMed

    Bossé, Ynuk

    2014-08-01

    Asthma is a prevalent respiratory disorder triggered by a variety of inhaled environmental factors, such as allergens, viruses, and pollutants. Asthma is characterized by an elevated activation of the smooth muscle surrounding the airways, as well as a propensity of the airways to narrow excessively in response to a spasmogen (i.e. contractile agonist), a feature called airway hyperresponsiveness. The level of airway smooth muscle (ASM) activation is putatively controlled by mediators released in its vicinity. In asthma, many mediators that affect ASM contractility originate from inflammatory cells that are mobilized into the airways, such as eosinophils. However, mounting evidence indicates that mediators released by remote organs can also influence the level of activation of ASM, as well as its level of responsiveness to spasmogens and relaxant agonists. These remote mediators are transported through circulating blood to act either directly on ASM or indirectly via the nervous system by tuning the level of cholinergic activation of ASM. Indeed, mediators generated from diverse organs, including the adrenals, pancreas, adipose tissue, gonads, heart, intestines, and stomach, affect the contractility of ASM. Together, these results suggest that, apart from a paracrine mode of regulation, ASM is subjected to an endocrine mode of regulation. The results also imply that defects in organs other than the lungs can contribute to asthma symptoms and severity. In this review, I suggest that the endocrine mode of regulation of ASM contractility is overlooked. © 2014 Society for Endocrinology.

  3. A critical review of histopathological findings associated with endocrine and non-endocrine hepatic toxicity in fish models.

    PubMed

    Wolf, Jeffrey C; Wheeler, James R

    2018-04-01

    Although frequently examined as a target organ for non-endocrine toxicity, histopathological evaluation of the liver is becoming a routine component of endocrine disruption studies that utilize various fish species as test subjects. However, the interpretation of microscopic liver findings can be challenging, especially when attempting to distinguish adverse changes associated with endocrine disrupting substances from those caused by systemic or direct hepatic toxicity. The purpose of this project was to conduct a critical assessment of the available peer-reviewed and grey literature concerning the histopathologic effects of reproductive endocrine active substances (EAS) and non-endocrine acting substances in the livers of fish models, and to determine if liver histopathology can be used to reliably distinguish endocrine from non-endocrine etiologies. The results of this review suggest that few compound-specific histopathologic liver effects have been identified, among which are estrogen agonist-induced increases in hepatocyte basophilia and proteinaceous intravascular fluid in adult male teleosts, and potentially, decreased hepatocyte basophilia in female fish exposed to substances that possess androgenic, anti-estrogenic, or aromatase inhibitory activity. This review also used published standardized methodology to assess the credibility of the histopathology data in each of the 117 articles that reported liver effects of treatment, and consequently it was determined that in only 37% of those papers were the data considered either highly credible or credible. The outcome of this work highlights the value of histopathologic liver evaluation as an investigative tool for EAS studies, and provides information that may have implications for EAS hazard assessment. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  4. Role of adipocytokines and its correlation with endocrine pancreatic function in patients with pancreatic cancer.

    PubMed

    Gąsiorowska, Anita; Talar-Wojnarowska, Renata; Kaczka, Aleksandra; Borkowska, Anna; Czupryniak, Leszek; Małecka-Panas, Ewa

    2013-01-01

    Some authors suggest that adipocytokines contribute to the induction of pancreatic carcinogenesis as well as the development of endocrine insufficiency. We evaluate the circulating concentrations of leptin, resistin and visfatin in patients with newly diagnosed pancreatic cancer (PC) and relationship between serum adipocytokines level and clinicopathological features of PC. Moreover the usefulness of those adipocytokines as possible biomarkers of endocrine pancreatic function in PC has been assessed. The pilot study group consisted of 45 individuals (mean age 65.6 ± 11.5 years, BMI 21.8 ± 3.4 kg/m(2)) with newly diagnosed PC (within last 1-3 months) and 13 healthy individuals with age, gender and BMI matched to the study group. Among PC patients 18 (40%) had recently diagnosed diabetes. Fasting plasma leptin, resistin, visfatin concentrations were determined with ELISA (R&D Systems, Phoenix Pharmaceuticals) and insulin by RIA (DakoCytomation). Patients with PC as compared to controls had significantly lower plasma leptin (40.6 ± 21.3 vs 63.2 ± 16.3 pg/mL; p < 0,0008). In contrast PC patients showed more than six fold higher level of resistin (126.2 ± 143.2 vs 18.9 ± 7.2 ng/mL; p < 0.009) than controls. The median plasma visfatin was 2.8 ± 1.8 ng/mL, which was not significantly different from the controls (3.8 ± 1.1 ng/mL). When PC patients with and without diabetes were considered separately, plasma leptin concentrations among nondiabetic patients were slightly, but not significantly higher (44.6 ± 21.0) as compared to diabetics (34.5 ± 20.7). Moreover there was no difference between visfatin and resistin level in PC, among patients with and without diabetes. No significant differences between serum level of leptin, visfatin and resistin and age, gender, BMI, smoking status, tumor localization, distant metastases and pain has been found. The results of this study confirm previous findings that patients with newly diagnosed pancreatic cancer are

  5. [Development of ocular motility following modified 3-wall decompression of the orbita in endocrine orbitopathy for functional and rehabilitative indication].

    PubMed

    Grenzebach, Ulrike H; Schnorbus, Ulrike; Büchner, Thomas; Busse, Holger; Stoll, Wolfgang

    2003-05-01

    Permanent visual damage due to an increase in volume of the orbital contents may be the result of the failure of conservative therapeutic concepts in the treatment of endocrine orbitopathy. Considerable progress has been achieved in developing successful orbital decompression techniques with regard to functional and cosmetic outcome. Decompression techniques with resection of the bony orbital walls are adequate tools in restoring visual acuity and reducing exophthalmus. A considerable degree of deterioration of motility disorders has been described in the literature depending on the techniques being used. The purpose of this study was to investigate whether a modified technique of 3-wall orbital decompression with preservation of a medial part of the periorbital tissue to support the medial rectus muscle, is able to reduce the postoperative risk of diplopia. A modified technique of orbital 3-wall decompression with resection of the medial orbital wall, the medial orbital floor and the floor of the frontal sinus has been used in patients with compressive optic neuropathy (n = 20) and for cosmetic reasons (n = 7) in cases of uni- or bilateral proptosis. Analysis of the results was performed concerning visual outcome, exophthalmus reduction and development of horizontal and vertical motility changes. In all cases of optic neuropathy improvement of visual function at an average of 4.63 +/- 4.5 lines could be achieved. Exophthalmus reduction was 3.2 +/- 2.4 mm in the functional group and 3.9 +/- 1.7 mm in the rehabilitative group. In this group motility of the medial rectus muscle remained unaffected except in one eye. In the functional group motility deterioration was observed in 62 %. The modified 3-wall decompression technique with preservation of a medial periorbital tissue strip is an adequate alternative technique in the therapy of optic neuropathy and exophthalmus reduction in endocrine orbitopathy with a low risk of postoperative motility disorders.

  6. Key Lessons from Performance of the U.S. EPA Endocrine Disruptor Screening Program (EDSP) Tier 1 Male and Female Pubertal Assays

    PubMed Central

    Stump, Donald G; O'Connor, John C; Lewis, Joseph M; Marty, M Sue

    2014-01-01

    The male and female pubertal assays, which are included in the U.S. Environmental Protection Agency's (EPA) Endocrine Disruptor Screening Program (EDSP) Tier 1 battery, can detect endocrine-active compounds operating by various modes of action. This article uses the collective experience of three laboratories to provide information on pubertal assay conduct, interlaboratory reproducibility, endpoint redundancy, and data interpretation. The various criteria used to select the maximum tolerated dose are described. A comparison of historical control data across laboratories confirmed reasonably good interlaboratory reproducibility. With a reliance on apical endpoints, interpretation of pubertal assay effects as specifically endocrine-mediated or secondary to other systemic effects can be problematic and mode of action may be difficult to discern. Across 21–23 data sets, relative liver weight, a nonspecific endocrine endpoint, was the most commonly affected endpoint in male and female assays. For endocrine endpoints, patterns of effects were generally seen; rarely was an endocrine-sensitive endpoint affected in isolation. In males, most frequently missed EPA-established performance criteria included mean weights for kidney and thyroid, and the coefficient of variation for age and body weight at preputial separation, seminal vesicle weight, and final body weight. In females, the frequently missed EPA-established performance criteria included mean adrenal weight and mean age at vaginal opening. To ensure specificity for endocrine effects, the pubertal assays should be interpreted using a weight-of-evidence approach as part of the entire EDSP battery. Based on the frequency with which certain performance criteria were missed, an EPA review of these criteria is warranted. PMID:24510766

  7. Once and for all, LXRα and LXRβ are gatekeepers of the endocrine system.

    PubMed

    Maqdasy, Salwan; Trousson, Amalia; Tauveron, Igor; Volle, David H; Baron, Silvère; Lobaccaro, Jean-Marc A

    2016-06-01

    Liver X receptors (LXRs) α and β are nuclear receptors whose transcriptional activity is regulated by oxysterols, the oxidized forms of cholesterol. Described in the late 1990s as lipid sensors, both LXRs regulate cholesterol and fatty acid homeostasis. Over the years, deep phenotypic analyses of mouse models deficient for LXRα and/or LXRβ have pointed out various other physiological functions including glucose homeostasis, immunology, and neuroprotection. This review enlightens the "endocrine" functions of LXRs; they deeply impact plasma glucose directly and by modulating insulin signaling, renin-angiotensin-aldosterone axis, thyroid and pituitary hormone levels, and bone homeostasis. Besides, LXR signaling is also involved in adrenal physiology, steroid synthesis, and male and female reproduction. Hence, LXRs are definitely involved in the endocrine system and could thus be considered as endocrine receptors, even though oxysterols do not fully correspond to the definition of hormones. Finally, because they are ligand-regulated transcription factors, LXRs are potential pharmacological targets with promising beneficial metabolic effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A Multi-Receptor and Multi-Species Assay for Potential Endocrine Disruptor Targets (SLAS meeting)

    EPA Science Inventory

    Screening methods for detecting potential endocrine disrupting chemicals rely chiefly on transactivation assays targeting nuclear receptors such as the estrogen (ER) and androgen receptors (AR). These assays are predominately human-based; yet environmental exposure can affect div...

  9. Endocrine and Metabolic Aspects of Tuberculosis

    PubMed Central

    Vinnard, Christopher; Blumberg, Emily A.

    2017-01-01

    Endocrine and metabolic derangements are infrequent in patients with tuberculosis, but they are important when they occur. The basis for these abnormalities is complex. While Mycobacterium tuberculosis has been described to infect virtually every endocrine gland, the incidence of gland involvement is low, especially in the era of effective antituberculosis therapy. Furthermore, endocrine and metabolic abnormalities do not always reflect direct infection of the gland but may result from physiological response or as a consequence of therapy. Metabolic disease may also predispose patients to the development of active tuberculosis, particularly in the case of diabetes mellitus. While hormonal therapy may be necessary in some instances, frequently these endocrine complications do not require specific interventions other than antituberculous therapy itself. With the exception of diabetes mellitus, which will be covered elsewhere, this chapter reviews the endocrinologic and metabolic issues related to tuberculosis. PMID:28233510

  10. [Diabetes and prediabetes in endocrine disorders].

    PubMed

    Krysiak, Robert; Rudzki, Henryk; Okopień, Bogusław

    2012-01-01

    Complex hormonal regulation of carbohydrate metabolism causes that presence of many endocrine disorders may disturb glucose homeostasis. Impaired fasting glucose, impaired glucose tolerance and frank diabetes are observed in patients with both common and rare endocrine disorders, particularly in patients with polycystic ovary syndrome, hyperthyroidism, Cushing's syndrome, pheochromocytoma, primary aldosteronism, acromegaly, growth hormone deficiency and endocrine tumors of the digestive system. Because most of these disorders may be effectively treated and the treatment often results in a restoration of normal insulin secretion and receptor action as well as glucose absorption, production and metabolism, it is important to differentiate these disorders from other more common types of diabetes. This article reviews the etiology, clinical manifestation, diagnosis and management of endocrine disorders leading to diabetes and prediabetic states with special emphasis on the pathogenesis and clinical consequences of these disorders.

  11. Higher risk of death among MEN1 patients with mutations in the JunD interacting domain: a Groupe d'etude des Tumeurs Endocrines (GTE) cohort study.

    PubMed

    Thevenon, Julien; Bourredjem, Abderrahmane; Faivre, Laurence; Cardot-Bauters, Catherine; Calender, Alain; Murat, Arnaud; Giraud, Sophie; Niccoli, Patricia; Odou, Marie-Françoise; Borson-Chazot, Françoise; Barlier, Anne; Lombard-Bohas, Catherine; Clauser, Eric; Tabarin, Antoine; Parfait, Béatrice; Chabre, Olivier; Castermans, Emilie; Beckers, Albert; Ruszniewski, Philippe; Le Bras, Morgane; Delemer, Brigitte; Bouchard, Philippe; Guilhem, Isabelle; Rohmer, Vincent; Goichot, Bernard; Caron, Philippe; Baudin, Eric; Chanson, Philippe; Groussin, Lionel; Du Boullay, Hélène; Weryha, Georges; Lecomte, Pierre; Penfornis, Alfred; Bihan, Hélène; Archambeaud, Françoise; Kerlan, Véronique; Duron, Françoise; Kuhn, Jean-Marc; Vergès, Bruno; Rodier, Michel; Renard, Michel; Sadoul, Jean-Louis; Binquet, Christine; Goudet, Pierre

    2013-05-15

    Multiple endocrine neoplasia syndrome type 1 (MEN1), which is secondary to mutation of the MEN1 gene, is a rare autosomal-dominant disease that predisposes mutation carriers to endocrine tumors. Although genotype-phenotype studies have so far failed to identify any statistical correlations, some families harbor recurrent tumor patterns. The function of MENIN is unclear, but has been described through the discovery of its interacting partners. Mutations in the interacting domains of MENIN functional partners have been shown to directly alter its regulation abilities. We report on a cohort of MEN1 patients from the Groupe d'étude des Tumeurs Endocrines. Patients with a molecular diagnosis and a clinical follow-up, totaling 262 families and 806 patients, were included. Associations between mutation type, location or interacting factors of the MENIN protein and death as well as the occurrence of MEN1-related tumors were tested using a frailty Cox model to adjust for potential heterogeneity across families. Accounting for the heterogeneity across families, the overall risk of death was significantly higher when mutations affected the JunD interacting domain (adjusted HR = 1.88: 95%-CI = 1.15-3.07). Patients had a higher risk of death from cancers of the MEN1 spectrum (HR = 2.34; 95%-CI = 1.23-4.43). This genotype-phenotype correlation study confirmed the lack of direct genotype-phenotype correlations. However, patients with mutations affecting the JunD interacting domain had a higher risk of death secondary to a MEN1 tumor and should thus be considered for surgical indications, genetic counseling and follow-up.

  12. A consensus endocrine profile for chronically stressed wild animals does not exist.

    PubMed

    Dickens, Molly J; Romero, L Michael

    2013-09-15

    Given the connection between chronic stress and health, there has been a growing emphasis on identifying chronically stressed wild animals, especially in relation to anthropogenic disturbances. There is considerable confusion, however, in how to identify chronically stressed wild animals, but the most common assumption is that measures of glucocorticoid (GC) function will increase. In an attempt to determine an "endocrine profile" of a chronically stressed wild animal, this review collected papers from the literature that measured baseline GC, stress-induced GC, measures of integrated GC, negative feedback, hypothalamic-pituitary-adrenal axis sensitivity, and/or body weight in chronically stressed animals. The collected studies encompassed laboratory and field studies, numerous diverse species, and multiple techniques for inducing chronic stress. Each paper was ranked according to its relevance to wild animals and scored as to whether the measured response increased, decreased, or stayed the same after exposure to chronic stress. The analyses uncovered so much variation between studies that the literature does not support a generalized endocrine profile in how wild animals respond to chronic stress. The common predictions appear to be based almost entirely on theoretical models rather than empirical data. The three most important variables affecting GC responses were the stressors used to induce chronic stress, the potential for those stressors to induce habituation, and the taxon of the focal species. The best approach for identifying a chronically stressed population appears to be documentation of changes at multiple levels of GC regulation, but the direction of the change (increase or decrease) may be relatively unimportant compared to the fact that the response changes at all. The conclusion is that a consistent, predictable, endocrine response to chronic stress, regardless of the protocol used to induce chronic stress and the species under study, does not

  13. ENVIRONMENTAL ENGINEERING AND ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Endocrine disruptors are a class of chemicals of growing interest to the environmental community. USEPA's Risk Assessment Forum defined an endocrine disrupting chemical (EDC) as "an exogenous agent that interferes with the synthesis, secretion, transport, binding, action, or elim...

  14. Steroids, reproductive endocrine function, and affect. A review.

    PubMed

    Frye, C A

    2009-12-01

    Although the effects of estrogen (E2) on mood have been studied for some time, there is controversy over the utility of hormone replacement therapy (HRT). Administration of E2 and/or other steroid hormones (e.g., progestogens, androgens, etc.) may be able to reduce increased anxiety and depression that is present with the onset of menopause. However, some studies indicate that E2 replacement does not significantly improve anxiety and/or depressive symptoms in all postmenopausal subjects. More recent data suggests that the efficacy of HRT could be based on a number of factors, including variety of E2-replacements available, the timing during or after menopause when HRT is initiated, and/or effects of other steroid hormones, such as progestogens and androgens. Notably, little attention has been paid to the possible synergistic effects of E2 that may require progestogens and/or androgens to produce positive outcomes in mood. Additionally, steroid hormones have a number of effects that influence anxiety and depression across the lifespan. As such, dose, timing, and combination of steroid replacement may explain these differences in behavioral outcome. With the increasing peri- to postmenopausal population, many women can expect to live nearly half their lifetime in a postmenopausal state. Therefore, examining these ambiguous findings is of critical importance. This review will focus on a synthesis of the available information regarding findings from animal and human studies in terms of effects of steroid hormones across the lifespan, different HRT options and their subsequent interactions in the brain and/or the hypothalamic-pituitary-adrenal axis, and effects on anxiety and depression.

  15. Genetic mapping and predictive testing for multiple endocrine neoplasia type 1 (MEN1)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pandit, S.D.; Read, C.; Liu, L.

    1994-09-01

    Multiple endocrine neoplasia type 1 (MEN1) is an autosomal dominant disorder with an estimated prevalance of 20-200 per million persons. It is characterized by the combined occurence of tumors involving two or more endocrine glands, namely the parathyroid glands, the endocrine pancreas and the anterior pituitary. This disorder affects virtually all age groups with an average range of 20-60 years. Linkage analysis mapped the MEN1 locus to 11q13 near the human muscle glycogen phosphorylase (PYGM) locus. Additional genetic mapping and deletion analysis studies have refined the region containing the MEN1 locus to a 3 cM interval flanked by markers PYGMmore » and D11S146/D11S97, a physical distance of approximately 1.5 Mb. We have identified 8 large families segregating MEN1 (71 affected from a population of 389 individuals). A high resolution reference map for the 11q13 region has been constructed using four new microsatellite markers, the CEPH reference (40 family) pedigree resource, and the CRI-MAP program package. Subsequent analyses using the LINKAGE program package and 8 MEN 1 families placed the MEN1 locus within the context of the microsatellite map. This map was used to develop a linkage-based predictive test. These markers have also been used to further refine the interval containing the MEN1 locus from the study of chromosome deletions (loss of heterozygosity, LOH studies) in paired sets of tumor and germline DNA from 87 MEN 1 affected individuals.« less

  16. Endocrine-disrupting chemicals in aquatic environment: what are the risks for fish gametes?

    PubMed

    Carnevali, Oliana; Santangeli, Stefania; Forner-Piquer, Isabel; Basili, Danilo; Maradonna, Francesca

    2018-06-11

    Over the past 25 years, extensive research in vertebrate species has identified several genomic pathways altered by exposures to anthropogenic chemicals with hormone-like activity mediated by their interaction with nuclear receptors. In addition, many pollutants have been shown to interfere with non-genomic (non-classical) pathways, but this mechanism of endocrine disruption is still poorly understood. Recently, the number of publications describing the effects of Endocrine disrupting chemicals (EDCs) on fish reproduction, focusing on the deregulation of the hypothalamus-pituitary-gonadal axis as well as on gamete quality, significantly increased. Depending on their ability to mimic endogenous hormones, the may differently affect male or female reproductive physiology. Inhibition of gametogenesis, development of intersex gonads, alteration of the gonadosomatic index, and decreased fertility rate have been largely documented. In males, alterations of sperm density, motility, and fertility have been observed in several wild species. Similar detrimental effects were described in females, including negative outcomes on oocyte growth and maturation plus the occurrence of apoptotic/autophagic processes. These pathways may affect gamete viability considered as one of the major indicators of reproductive endocrine disruption. Pollutants act also at DNA level producing DNA mutations and changes in epigenetic pathways inducing specific mechanisms of toxicity and/or aberrant cellular responses that may affect subsequent generation(s) through the germline. In conclusion, this review summarizes the effects caused by EDC exposure on fish reproduction, focusing on gametogenesis, giving a general overview of the different aspects dealing with this issue, from morphological alteration, deregulation of steroidogenesis, hormonal synthesis, and occurrence of epigenetic process.

  17. Developmental Programming and Endocrine Disruptor Effects on Reproductive Neuroendocrine Systems

    PubMed Central

    Gore, Andrea C.

    2009-01-01

    The ability of a species to reproduce successfully requires the careful orchestration of developmental processes during critical time points, particularly the late embryonic and early postnatal periods. This article begins with a brief presentation of the evidence for how gonadal steroid hormones exert these imprinting effects upon the morphology of sexually differentiated hypothalamic brain regions, the mechanisms underlying these effects, and their implications in adulthood. Then, I review the evidence that aberrant exposure to hormonally-active substances such as exogenous endocrine-disrupting chemicals (EDCs), may result in improper hypothalamic programming, thereby decreasing reproductive success in adulthood. The field of endocrine disruption has shed new light on the discipline of basic reproductive neuroendocrinology through studies on how early life exposures to EDCs may alter gene expression via non-genomic, epigenetic mechanisms, including DNA methylation and histone acetylation. Importantly, these effects may be transmitted to future generations if the germline is affected via transgenerational, epigenetic actions. By understanding the mechanisms by which natural hormones and xenobiotics affect reproductive neuroendocrine systems, we will gain a better understanding of normal developmental processes, as well as to develop the potential ability to intervene when development is disrupted. PMID:18394690

  18. Epigenetic Transgenerational Effects of Endocrine Disruptors on Male Reproduction

    PubMed Central

    Guerrero-Bosagna, Carlos M.; Skinner, Michael K.

    2013-01-01

    Endocrine-disrupting chemicals generally function as steroid receptor signaling antagonists or agonists that influence development to promote adult-onset disease. Exposure to the endocrine disruptors during the initiation of male reproductive tract development interferes with the normal hormonal signaling and formation of male reproductive organs. In particular, exposure to the endocrine disruptor vinclozolin promotes transgenerational transmission of adult-onset disease states such as male infertility, increased frequencies of tumors, prostate disease, kidney diseases, and immune abnormalities that develop as males age. An epigenetic change in the germ line would be involved in the transgenerational transmission of these induced phenotypes. Nevertheless, other studies have also reported transgenerational transmission of induced epigenetic changes, without altering the germ line. Here we propose a nomenclature to help clarify both cases of transgenerational epigenetic transmission. An intrinsic epigenetic transgenerational process would require a germ-line involvement, a permanent alteration in the germ cell epigenome, and only one exposure to the environmental factor. An extrinsic epigenetic transgenerational process would involve an epigenetic alteration in a somatic tissue and require exposure at each generation to maintain the transgenerational phenotype. PMID:19711250

  19. Endocrine and metabolic assessment in adults with Langerhans cell histiocytosis.

    PubMed

    Montefusco, L; Harari, S; Elia, D; Rossi, A; Specchia, C; Torre, O; Adda, G; Arosio, M

    2018-05-01

    Diabetes insipidus (DI) is one of most common complications of Langerhans cell histiocytosis (LCH) but prevalence of anterior pituitary deficiencies and metabolic alterations have not been clearly defined yet. Evaluate prevalence of endocrine and metabolic manifestations in a cohort of patients affected by Pulmonary LCH. Observational cross-sectional study on 18 adults (7 M/11 F, 42±12years) studied for complete basal and dynamic endocrine lab tests and glucose metabolism. Hypothalamic-pituitary endocrine alterations were found in 9 patients: 9 had DI, 5 Growth Hormone Deficiency (GHD), 5 central hypogonadism, 3 central hypothyroidism and 1 central hypoadrenalism. Hyperprolactinemia and hypothalamic syndrome were found in 2 patients each. All these central endocrine alterations were always associated to DI. Five of the 10 MRI performed showed abnormalities. Prevalence of obesity and glucose alterations (either DM or IFG/IGT) were respectively 39% and 33%, higher than expected basing on epidemiological data on general Italian population. Multi-system-LCH without risk-organ involvement (LCH MS-RO - ) seems to have slightly higher prevalence of insulin resistance, glucose alterations and metabolic syndrome than LCH with isolated lung involvement (LCH SS lung + ). A papillary BRAFV600E positive thyroid carcinoma was diagnosed in one patient. The presence of anterior pituitary deficiencies should be systematically sought in all LCH patients with DI both at diagnosis and during the follow-up by basal and dynamic hormonal assessment. Patients with pulmonary LCH, particularly those with MS disease, have a worse metabolic profile than general population. Occurrence of papillary thyroid carcinoma has been reported. Copyright © 2017. Published by Elsevier B.V.

  20. Endocrine-Disrupting Chemicals and Public Health Protection: A Statement of Principles from The Endocrine Society

    PubMed Central

    Brown, T. R.; Doan, L. L.; Gore, A. C.; Skakkebaek, N. E.; Soto, A. M.; Woodruff, T. J.; Vom Saal, F. S.

    2012-01-01

    An endocrine-disrupting chemical (EDC) is an exogenous chemical, or mixture of chemicals, that can interfere with any aspect of hormone action. The potential for deleterious effects of EDC must be considered relative to the regulation of hormone synthesis, secretion, and actions and the variability in regulation of these events across the life cycle. The developmental age at which EDC exposures occur is a critical consideration in understanding their effects. Because endocrine systems exhibit tissue-, cell-, and receptor-specific actions during the life cycle, EDC can produce complex, mosaic effects. This complexity causes difficulty when a static approach to toxicity through endocrine mechanisms driven by rigid guidelines is used to identify EDC and manage risk to human and wildlife populations. We propose that principles taken from fundamental endocrinology be employed to identify EDC and manage their risk to exposed populations. We emphasize the importance of developmental stage and, in particular, the realization that exposure to a presumptive “safe” dose of chemical may impact a life stage when there is normally no endogenous hormone exposure, thereby underscoring the potential for very low-dose EDC exposures to have potent and irreversible effects. Finally, with regard to the current program designed to detect putative EDC, namely, the Endocrine Disruptor Screening Program, we offer recommendations for strengthening this program through the incorporation of basic endocrine principles to promote further understanding of complex EDC effects, especially due to developmental exposures. PMID:22733974

  1. Multiple Endocrine Disrupting Effects in Rats Perinatally Exposed to Butylparaben.

    PubMed

    Boberg, J; Axelstad, M; Svingen, T; Mandrup, K; Christiansen, S; Vinggaard, A M; Hass, U

    2016-07-01

    Parabens comprise a group of preservatives commonly added to cosmetics, lotions, and other consumer products. Butylparaben has estrogenic and antiandrogenic properties and is known to reduce sperm counts in rats following perinatal exposure. Whether butylparaben exposure can affect other endocrine sensitive endpoints, however, remains largely unknown. In this study, time-mated Wistar rats (n = 18) were orally exposed to 0, 10, 100, or 500 mg/kg bw/d of butylparaben from gestation day 7 to pup day 22. Several endocrine-sensitive endpoints were adversely affected. In the 2 highest dose groups, the anogenital distance of newborn male and female offspring was significantly reduced, and in prepubertal females, ovary weights were reduced and mammary gland outgrowth was increased. In male offspring, sperm count was significantly reduced at all doses from 10 mg/kg bw/d. Testicular CYP19a1 (aromatase) expression was reduced in prepubertal, but not adult animals exposed to butylparaben. In adult testes, Nr5a1 expression was reduced at all doses, indicating persistent disruption of steroidogenesis. Prostate histology was altered at prepuberty and adult prostate weights were reduced in the high dose group. Thus, butylparaben exerted endocrine disrupting effects on both male and female offspring. The observed adverse developmental effect on sperm count at the lowest dose is highly relevant to risk assessment, as this is the lowest observed adverse effect level in a study on perinatal exposure to butylparaben. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Adjuvant ovarian function suppression and cognitive function in women with breast cancer

    PubMed Central

    Phillips, Kelly-Anne; Regan, Meredith M; Ribi, Karin; Francis, Prudence A; Puglisi, Fabio; Bellet, Meritxell; Spazzapan, Simon; Karlsson, Per; Budman, Daniel R; Zaman, Khalil; Abdi, Ehtesham A; Domchek, Susan M; Feng, Yang; Price, Karen N; Coates, Alan S; Gelber, Richard D; Maruff, Paul; Boyle, Frances; Forbes, John F; Ahles, Tim; Fleming, Gini F; Bernhard, Jürg

    2016-01-01

    Background: To examine the effect on cognitive function of adjuvant ovarian function suppression (OFS) for breast cancer. Methods: The Suppression of Ovarian Function (SOFT) trial randomised premenopausal women with hormone receptor-positive breast cancer to 5 years adjuvant endocrine therapy with tamoxifen+OFS, exemestane+OFS or tamoxifen alone. The Co-SOFT substudy assessed objective cognitive function and patient reported outcomes at randomisation (T0), and 1 year later (T1); the primary endpoint was change in global cognitive function, measured by the composite objective cognitive function score. Data were compared for the pooled tamoxifen+OFS and exemestane+OFS groups vs the tamoxifen alone group using the Wilcoxon rank-sum test. Results: Of 86 participants, 74 underwent both T0 and T1 cognitive testing; 54 randomised to OFS+ either tamoxifen (28) or exemestane (26) and 20 randomised to tamoxifen alone. There was no significant difference in the changes in the composite cognitive function scores between the OFS+ tamoxifen or exemestane groups and the tamoxifen group (mean±s.d., −0.21±0.92 vs −0.04±0.49, respectively, P=0.71, effect size=−0.20), regardless of prior chemotherapy status, and adjusting for baseline characteristics. Conclusions: The Co-SOFT study, although limited by small samples size, provides no evidence that adding OFS to adjuvant oral endocrine therapy substantially affects global cognitive function. PMID:27092785

  3. Neuroendocrine and behavioral implications of endocrine disrupting chemicals in quail

    USGS Publications Warehouse

    Ottinger, M.A.; Abdelnabi, M.A.; Henry, P.; McGary, S.; Thompson, N.; Wu, J.M.

    2001-01-01

    Studies in our laboratory have focused on endocrine, neuroendocrine, and behavioral components of reproduction in the Japanese quail. These studies considered various stages in the life cycle, including embryonic development, sexual maturation, adult reproductive function, and aging. A major focus of our research has been the role of neuroendocrine systems that appear to synchronize both endocrine and behavioral responses. These studies provide the basis for our more recent research on the impact of endocrine disrupting chemicals (EDCs) on reproductive function in the Japanese quail. These endocrine active chemicals include pesticides, herbicides, industrial products, and plant phytoestrogens. Many of these chemicals appear to mimic vertebrate steroids, often by interacting with steroid receptors. However, most EDCs have relatively weak biological activity compared to native steroid hormones. Therefore, it becomes important to understand the mode and mechanism of action of classes of these chemicals and sensitive stages in the life history of various species. Precocial birds, such as the Japanese quail, are likely to be sensitive to EDC effects during embryonic development, because sexual differentiation occurs during this period. Accordingly, adult quail may be less impacted by EDC exposure. Because there are a great many data available on normal development and reproductive function in this species, the Japanese quail provides an excellent model for examining the effects of EDCs. Thus, we have begun studies using a Japanese quail model system to study the effects of EDCs on reproductive endocrine and behavioral responses. In this review, we have two goals: first, to provide a summary of reproductive development and sexual differentiation in intact Japanese quail embryos, including ontogenetic patterns in steroid hormones in the embryonic and maturing quail. Second, we discuss some recent data from experiments in our laboratory in which EDCs have been tested in

  4. Endocrine regulation of carbohydrate metabolism in hypometabolic animals

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.

    1988-01-01

    Experimental hypothermia and natural hibernation are two forms of hypometabolism with recognized physiological changes, including depression of endocrine and metabolic functions. To better understand functional changes, helox (i.e., helium and oxygen (80:20) mixtures) and low ambient temperatures have been used to induce hypothermia in hamsters and rats. Both clinical and biological survival, i.e., survival without recovery and survival with recovery from hypothermia, respectively, are related to depth and length of hypothermia. In the rat, body temperatures of 15 degrees C for periods greater than 6-10 h greatly restrict biological survival. The role of glucocorticoids in enhancing thermogenic capacity of rats was assessed using triamcinolone [correction of triamcinalone] acetonide. In the hamster, treatment with cortisone acetate prolonged both clinical and biological survival. Hypothermic hamsters continue utilizing circulating glucose until they become hypoglycemic and die. Hypothermic rats do not utilize glucose and respond with a significant hypoinsulinema. The role of endocrines in the regulation of carbohydrate homeostasis and metabolism differs in hibernation and hypothermia. Glucocorticoids influence the hypothermic response in both species, specifically by prolonging induction of hypothermia in rats and by prolonging survival in hypothermic hamsters.

  5. A Comparison of Pathology Found in Three Marine Fish Treated with Endocrine Disrupting Compounds

    EPA Science Inventory

    Endocrine-disrupting chemicals (EDCs), such as the estrogen estradiol (E2) have been reported to affect fish reproduction. This study histopathologically compared and evaluated the effect of EDCs in three species of treated fish. Juvenile male summer flounder (Paralichthys dentat...

  6. Long-Term Effects of Environmental Endocrine Disruptors on Reproductive Physiology and Behavior

    PubMed Central

    Patisaul, Heather B.; Adewale, Heather B.

    2009-01-01

    It is well established that, over the course of development, hormones shape the vertebrate brain such that sex specific physiology and behaviors emerge. Much of this occurs in discrete developmental windows that span gestation through the prenatal period, although it is now becoming clear that at least some of this process continues through puberty. Perturbation of this developmental progression can permanently alter the capacity for reproductive success. Wildlife studies have revealed that exposure to endocrine disrupting compounds (EDCs), either naturally occurring or man made, can profoundly alter reproductive physiology and ultimately impact entire populations. Laboratory studies in rodents and other species have elucidated some of the mechanisms by which this occurs and strongly indicate that humans are also vulnerable to disruption. Use of hormonally active compounds in human medicine has also unfortunately revealed that the developing fetus can be exposed to and affected by endocrine disruptors, and that it might take decades for adverse effects to manifest. Research within the field of environmental endocrine disruption has also contributed to the general understanding of how early life experiences can alter reproductive physiology and behavior through non-genomic, epigenetic mechanisms such as DNA methylation and histone acetylation. These types of effects have the potential to impact future generations if the germ line is affected. This review provides an overview of how exposure to EDCs, particularly those that interfere with estrogen action, impacts reproductive physiology and behaviors in vertebrates. PMID:19587848

  7. Endocrine-Therapy-Resistant ESR1 Variants Revealed by Genomic Characterization of Breast-Cancer-Derived Xenografts

    PubMed Central

    Li, Shunqiang; Shen, Dong; Shao, Jieya; Crowder, Robert; Liu, Wenbin; Prat, Aleix; He, Xiaping; Liu, Shuying; Hoog, Jeremy; Lu, Charles; Ding, Li; Griffith, Obi L.; Miller, Christopher; Larson, Dave; Fulton, Robert S.; Harrison, Michelle; Mooney, Tom; McMichael, Joshua F.; Luo, Jingqin; Tao, Yu; Goncalves, Rodrigo; Schlosberg, Christopher; Hiken, Jeffrey F.; Saied, Laila; Sanchez, Cesar; Giuntoli, Therese; Bumb, Caroline; Cooper, Crystal; Kitchens, Robert T.; Lin, Austin; Phommaly, Chanpheng; Davies, Sherri R.; Zhang, Jin; Kavuri, Megha Shyam; McEachern, Donna; Dong, Yi Yu; Ma, Cynthia; Pluard, Timothy; Naughton, Michael; Bose, Ron; Suresh, Rama; McDowell, Reida; Michel, Loren; Aft, Rebecca; Gillanders, William; DeSchryver, Katherine; Wilson, Richard K.; Wang, Shaomeng; Mills, Gordon B.; Gonzalez-Angulo, Ana; Edwards, John R.; Maher, Christopher; Perou, Charles M.; Mardis, Elaine R.; Ellis, Matthew J.

    2013-01-01

    SUMMARY To characterize patient-derived xenografts (PDXs) for functional studies, we made whole-genome comparisons with originating breast cancers representative of the major intrinsic subtypes. Structural and copy number aberrations were found to be retained with high fidelity. However, at the single-nucleotide level, variable numbers of PDX-specific somatic events were documented, although they were only rarely functionally significant. Variant allele frequencies were often preserved in the PDXs, demonstrating that clonal representation can be transplantable. Estrogen-receptor-positive PDXs were associated with ESR1 ligand-binding-domain mutations, gene amplification, or an ESR1/YAP1 translocation. These events produced different endocrine-therapy-response phenotypes in human, cell line, and PDX endocrine-response studies. Hence, deeply sequenced PDX models are an important resource for the search for genome-forward treatment options and capture endocrine-drug-resistance etiologies that are not observed in standard cell lines. The originating tumor genome provides a benchmark for assessing genetic drift and clonal representation after transplantation. PMID:24055055

  8. Chronology of endocrine differentiation and beta-cell neogenesis.

    PubMed

    Miyatsuka, Takeshi

    2016-01-01

    Diabetes is a chronic and incurable disease, which results from absolute or relative insulin insufficiency. Therefore, pancreatic beta cells, which are the only type of cell that expresses insulin, is considered to be a potential target for the cure of diabetes. Although the findings regarding beta-cell neogenesis during pancreas development have been exploited to induce insulin-producing cells from non-beta cells, there are still many hurdles towards generating fully functional beta cells that can produce high levels of insulin and respond to physiological signals. To overcome these problems, a solid understanding of pancreas development and beta-cell formation is required, and several mouse models have been developed to reveal the unique features of each endocrine cell type at distinct developmental time points. Here I review our understanding of pancreas development and endocrine differentiation focusing on recent progresses in improving temporal cell labeling in vivo.

  9. Scientific and Regulatory Policy Committee (SRPC) Points to Consider*: Histopathology Evaluation of the Pubertal Development and Thyroid Function Assay (OPPTS 890.1450, OPPTS 890.1500) in Rats to Screen for Endocrine Disruptors

    PubMed Central

    Keane, Kevin A.; Parker, George A.; Regan, Karen S.; Picut, Catherine; Dixon, Darlene; Creasy, Dianne; Giri, Dipak; Hukkanen, Renee R.

    2015-01-01

    The U.S. Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a multitiered approach to determine the potential for environmental chemicals to alter the endocrine system. The Pubertal Development and Thyroid Function in Intact Juvenile/Peripubertal Female and Male Rats (OPPTS 890.1450, 890.1500) are 2 of the 9 EDSP tier 1 test Guidelines, which assess upstream mechanistic pathways along with downstream morphological end points including histological evaluation of the kidneys, thyroid, and select male/female reproductive tissues (ovaries, uterus, testes, and epididymides). These assays are part of a battery of in vivo and in vitro screens used for initial detection of test article endocrine activity. In this Points to Consider article, we describe tissue processing, evaluation, and nomenclature to aid in standardization of assay results across laboratories. Pubertal assay end points addressed include organ weights, estrous cyclicity, clinical pathology, hormonal assays, and histological evaluation. Potential treatment-related findings that may indicate endocrine disruption are reviewed. Additional tissues that may be useful in assessment of endocrine disruption (vagina, mammary glands, and liver) are discussed. This Points to Consider article is intended to provide information for evaluating peripubertal tissues within the context of individual assay end points, the overall pubertal assay, and tier I assays of the EDSP program. PMID:25948506

  10. Environmental signaling: from environmental estrogens to endocrine-disrupting chemicals and beyond.

    PubMed

    McLachlan, J A

    2016-07-01

    The landmark report (Herbst et al. 1971) linking prenatal treatment with a synthetic estrogen, diethylstilbestrol (DES), to cancer at puberty in women whose mothers took the drug while pregnant ushered in an era of research on delayed effects of such exposures on functional outcomes in offspring. An animal model developed in our laboratory at the National Institute of Environmental Health Sciences confirmed that DES was the carcinogen and exposure to DES caused, as well, functional alterations in the reproductive, endocrine, and immune systems of male and female mice treated in utero. DES was also being used in agriculture and we discovered, at the first meeting on Estrogens in the Environment in 1979 (Estrogens in the Environment, 1980), that many environmental contaminants were also estrogenic. Many laboratories sought to discern the basis for estrogenicity in environmental chemicals and to discover other hormonally active xenobiotics. Our laboratory elucidated how DES and other estrogenic compounds worked by altering differentiation through epigenetic gene imprinting, helping explain the transgenerational effects found in mice and humans. At the Wingspread Conference on the Human-Wildlife Connection in 1991 (Advances in Modern Environmental Toxicology, 1992), we learned that environmental disruption of the endocrine system occurred in many species and phyla, and the term endocrine disruption was introduced. Further findings of transgenerational effects of environmental agents that mimicked or blocked various reproductive hormones and the ubiquity of environmental signals, such as bisphenol A increased concern for human and ecological health. Scientists began to look at other endocrine system aspects, such as cardiovascular and immune function, and other nuclear receptors, with important observations regarding obesity and metabolism. Laboratories, such as ours, are now using stem cells to try to understand the mechanisms by which various environmental signals

  11. An overview of the endocrine and metabolic changes in manned space flight

    NASA Astrophysics Data System (ADS)

    Leach, Carolyns.

    In the years since the Skylab Program, endocrinology and metabolism have gone through stages of development that can be characterized as descriptive, both physiological and biochemical. At the present time, this area demonstrates a significant increase in knowledge of endocrine and metabolic function in physiology and pathology at the biochemical level. The development of sensitive techniques for the measurement of hormones, their precursors and metabolites and the increasing amount of information on integrated endocrine responses in various physiologic processes make it valuable for us to retrospectively consider our space flight findings especially in considering future work.

  12. Endocrine Disruptors in Domestic Animal Reproduction: A Clinical Issue?

    PubMed Central

    Magnusson, Ulf; Persson, Sara

    2015-01-01

    Contents The objective of this review was to discuss whether endocrine disruption is a clinical concern in domestic animal reproduction. To that end, we firstly summarize the phenomenon of endocrine disruption, giving examples of the agents of concern and their effects on the mammalian reproductive system. Then there is a brief overview of the literature on endocrine disruptors and domestic animal reproduction. Finally, the clinical implications of endocrine disruptors on the reproductive system of farm animals as well as in dogs and cats are discussed. It is concluded that the evidence for clinical cases of endocrine disruption by chemical pollutants is weak, whereas for phytooestrogens, it is well established. However, there is concern that particular dogs and cats may be exposed to man-made endocrine disruptors. PMID:26382024

  13. Autoimmunity in endocrine diseases.

    PubMed

    Rose, N R; Burek, C L

    1982-01-01

    The realization that autoimmunity underlies many endocrine disorders of previously unknown etiology has greatly broadened our understanding of the pathogenesis of these diseases. It has provided new explanations for their heredity and their association with particular HLA haplotypes. It has also offered new tools for diagnosing these diseases as well as monitoring their course or predicting their outcome. Finally, establishing the autoimmune basis of these diseases offers new potential for their treatment. The next quarter century of research into immunologic aspects of endocrine diseases promises to be as fruitful as the last.

  14. Development of the Drosophila entero-endocrine lineage and its specification by the Notch signaling pathway

    PubMed Central

    Takashima, Shigeo; Adams, Katrina L.; Ortiz, Paola A.; Ying, Chong T.; Moridzadeh, Rameen; Younossi-Hartenstein, Amelia; Hartenstein, Volker

    2013-01-01

    In this paper we have investigated the developmental-genetic steps that shape the entero-endocrine system of Drosophila melanogaster from the embryo to the adult. The process starts in the endoderm of the early embryo where precursors of endocrine cells and enterocytes of the larval midgut, as well as progenitors of the adult midgut, are specified by a Notch signaling-dependent mechanism. In a second step that occurs during the late larval period, enterocytes and endocrine cells of a transient pupal midgut are selected from within the clusters of adult midgut progenitors. As in the embryo, activation of the Notch pathway triggers enterocyte differentiation, and inhibits cells from further proliferation or choosing the endocrine fate. The third step of entero-endocrine cell development takes place at a mid-pupal stage. Before this time point, the epithelial layer destined to become the adult midgut is devoid of endocrine cells. However, precursors of the intestinal midgut stem cells (pISCs) are already present. After an initial phase of symmetric divisions which causes an increase in their own population size, pISCs start to spin off cells that become postmitotic and express the endocrine fate marker, Prospero. Activation of Notch in pISCs forces these cells into an enterocyte fate. Loss of Notch function causes an increase in the proliferatory activity of pISCs, as well as a higher ratio of Prospero-positive cells. PMID:21382366

  15. RESPONSE OF JAPANESE MEDAKA TO 17B-ESTRADIOL: A TIME COURSE OF ENDOCRINE-MEDIATED EFFECTS

    EPA Science Inventory

    Estrogenic compounds have been measured in the aquatic environment in concentrations subsequently found to affect reproduction and development in fish. Further investigations have described several endocrine-mediated events that indicate exposure of organisms to estrogens and/or ...

  16. The impact of acute stress on hormones and cytokines, and how their recovery is affected by music-evoked positive mood

    PubMed Central

    Koelsch, Stefan; Boehlig, Albrecht; Hohenadel, Maximilian; Nitsche, Ines; Bauer, Katrin; Sack, Ulrich

    2016-01-01

    Stress and recovery from stress significantly affect interactions between the central nervous system, endocrine pathways, and the immune system. However, the influence of acute stress on circulating immune-endocrine mediators in humans is not well known. Using a double-blind, randomized study design, we administered a CO2 stress test to n = 143 participants to identify the effects of acute stress, and recovery from stress, on serum levels of several mediators with immune function (IL-6, TNF-α, leptin, and somatostatin), as well as on noradrenaline, and two hypothalamic–pituitary–adrenal axis hormones (ACTH and cortisol). Moreover, during a 1 h-recovery period, we repeatedly measured these serum parameters, and administered an auditory mood-induction protocol with positive music and a neutral control stimulus. The acute stress elicited increases in noradrenaline, ACTH, cortisol, IL-6, and leptin levels. Noradrenaline and ACTH exhibited the fastest and strongest stress responses, followed by cortisol, IL-6 and leptin. The music intervention was associated with more positive mood, and stronger cortisol responses to the acute stressor in the music group. Our data show that acute (CO2) stress affects endocrine, immune and metabolic functions in humans, and they show that mood plays a causal role in the modulation of responses to acute stress. PMID:27020850

  17. Mouse pancreas tissue slice culture facilitates long-term studies of exocrine and endocrine cell physiology in situ.

    PubMed

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ.

  18. Mouse Pancreas Tissue Slice Culture Facilitates Long-Term Studies of Exocrine and Endocrine Cell Physiology in situ

    PubMed Central

    Marciniak, Anja; Selck, Claudia; Friedrich, Betty; Speier, Stephan

    2013-01-01

    Studies on pancreatic cell physiology rely on the investigation of exocrine and endocrine cells in vitro. Particularly, in the case of the exocrine tissue these studies have suffered from a reduced functional viability of acinar cells in culture. As a result not only investigations on dispersed acinar cells and isolated acini were limited in their potential, but also prolonged studies on pancreatic exocrine and endocrine cells in an intact pancreatic tissue environment were unfeasible. To overcome these limitations, we aimed to establish a pancreas tissue slice culture platform to allow long-term studies on exocrine and endocrine cells in the intact pancreatic environment. Mouse pancreas tissue slice morphology was assessed to determine optimal long-term culture settings for intact pancreatic tissue. Utilizing optimized culture conditions, cell specificity and function of exocrine acinar cells and endocrine beta cells were characterized over a culture period of 7 days. We found pancreas tissue slices cultured under optimized conditions to have intact tissue specific morphology for the entire culture period. Amylase positive intact acini were present at all time points of culture and acinar cells displayed a typical strong cell polarity. Amylase release from pancreas tissue slices decreased during culture, but maintained the characteristic bell-shaped dose-response curve to increasing caerulein concentrations and a ca. 4-fold maximal over basal release. Additionally, endocrine beta cell viability and function was well preserved until the end of the observation period. Our results show that the tissue slice culture platform provides unprecedented maintenance of pancreatic tissue specific morphology and function over a culture period for at least 4 days and in part even up to 1 week. This analytical advancement now allows mid -to long-term studies on the cell biology of pancreatic disorder pathogenesis and therapy in an intact surrounding in situ. PMID:24223842

  19. Application of Adverse Outcome Pathways to U.S. EPA’s Endocrine Disruptor Screening Program

    PubMed Central

    Noyes, Pamela D.; Casey, Warren M.; Dix, David J.

    2017-01-01

    Background: The U.S. EPA’s Endocrine Disruptor Screening Program (EDSP) screens and tests environmental chemicals for potential effects in estrogen, androgen, and thyroid hormone pathways, and it is one of the only regulatory programs designed around chemical mode of action. Objectives: This review describes the EDSP’s use of adverse outcome pathway (AOP) and toxicity pathway frameworks to organize and integrate diverse biological data for evaluating the endocrine activity of chemicals. Using these frameworks helps to establish biologically plausible links between endocrine mechanisms and apical responses when those end points are not measured in the same assay. Results: Pathway frameworks can facilitate a weight of evidence determination of a chemical’s potential endocrine activity, identify data gaps, aid study design, direct assay development, and guide testing strategies. Pathway frameworks also can be used to evaluate the performance of computational approaches as alternatives for low-throughput and animal-based assays and predict downstream key events. In cases where computational methods can be validated based on performance, they may be considered as alternatives to specific assays or end points. Conclusions: A variety of biological systems affect apical end points used in regulatory risk assessments, and without mechanistic data, an endocrine mode of action cannot be determined. Because the EDSP was designed to consider mode of action, toxicity pathway and AOP concepts are a natural fit. Pathway frameworks have diverse applications to endocrine screening and testing. An estrogen pathway example is presented, and similar approaches are being used to evaluate alternative methods and develop predictive models for androgen and thyroid pathways. https://doi.org/10.1289/EHP1304 PMID:28934726

  20. Endocrine considerations in the red-cell-mass and plasma volume changes of the Skylab 2 and 3 crews

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Leach, C. S.; Driscoll, T.

    1975-01-01

    The effect of unknown endocrine changes on blood volume of crewmembers was investigated. The results are presented in tabular form. The fact that some of the changes were in the wrong direction suggests that changes in endocrine function were not the primary cause of the decreases in the plasma volume and red cell mass.

  1. Global deficits in development, function, and gene expression in the endocrine pancreas in a deletion mouse model of Prader-Willi syndrome.

    PubMed

    Stefan, Mihaela; Simmons, Rebecca A; Bertera, Suzanne; Trucco, Massimo; Esni, Farzad; Drain, Peter; Nicholls, Robert D

    2011-05-01

    Prader-Willi syndrome (PWS) is a multisystem disorder caused by genetic loss of function of a cluster of imprinted, paternally expressed genes. Neonatal failure to thrive in PWS is followed by childhood-onset hyperphagia and obesity among other endocrine and behavioral abnormalities. PWS is typically assumed to be caused by an unknown hypothalamic-pituitary dysfunction, but the underlying pathogenesis remains unknown. A transgenic deletion mouse model (TgPWS) has severe failure to thrive, with very low levels of plasma insulin and glucagon in fetal and neonatal life prior to and following onset of progressive hypoglycemia. In this study, we tested the hypothesis that primary deficits in pancreatic islet development or function may play a fundamental role in the TgPWS neonatal phenotype. Major pancreatic islet hormones (insulin, glucagon) were decreased in TgPWS mice, consistent with plasma levels. Immunohistochemical analysis of the pancreas demonstrated disrupted morphology of TgPWS islets, with reduced α- and β-cell mass arising from an increase in apoptosis. Furthermore, in vivo and in vitro studies show that the rate of insulin secretion is significantly impaired in TgPWS β-cells. In TgPWS pancreas, mRNA levels for genes encoding all pancreatic hormones, other secretory factors, and the ISL1 transcription factor are upregulated by either a compensatory response to plasma hormone deficiencies or a primary effect of a deleted gene. Our findings identify a cluster of imprinted genes required for the development, survival, coordinate regulation of genes encoding hormones, and secretory function of pancreatic endocrine cells, which may underlie the neonatal phenotype of the TgPWS mouse model.

  2. Trauma and the endocrine system.

    PubMed

    Mesquita, Joana; Varela, Ana; Medina, José Luís

    2010-12-01

    The endocrine system may be the target of different types of trauma with varied consequences. The present article discusses trauma of the hypothalamic-pituitary axes, adrenal glands, gonads, and pancreas. In addition to changes in circulating hormone levels due to direct injury to these structures, there may be an endocrine response in the context of the stress caused by the trauma. Copyright © 2010 SEEN. Published by Elsevier Espana. All rights reserved.

  3. Diagnosis and management of endocrine gland neoplasmas. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weller, R.E.

    1994-03-01

    Functional and nonfunctional neoplasms of the endocrine glands constitute some of the more challenging diagnostic and therapeutic problems in veterinary cancer medicine. This discussion will focus on the clinical signs and syndromes associated with neoplasms of the thyroid, adrenal, and parathyroid glands, and pancreas in companion animals and will concentrate on the mechanisms producing the clinical signs, diagnosis, staging, therapy and prognosis.

  4. [Cardiac failure in endocrine diseases].

    PubMed

    Hashizume, K

    1993-05-01

    Several endocrine diseases show the symptoms of cardiac failure. Among them, patients with acromegaly show a specific cardiomyopathy which results in a severe left-sided cardiac failure. Hypoparathyroidism also induces cardiac failure, which is resulted from hypocalcemia and low levels of serum parathyroid hormone. In the cases of hypothyroidism, the patients with myxedemal coma show a severe cardiac failure, which is characterized by disturbance of central nervous system, renal function, and cardiac function. In the patients with thyroid crisis (storm), the cardiac failure comes from the great reduction of cardiac output with dehydration. The reduction of circulation volume, observed in the patients with pheochromocytoma easily induces cardiac failure (shock) just after the removal of adrenal tumor. In patients with malignant carcinoid syndrome, right-sided ventricular failure which may be occurred through the actions of biogenic amines is observed.

  5. SIGNIFICANCE OF EXPERIMENTAL STUDIES FOR ASSESSING ADVERSE EFFECTS OF ENDOCRINE-DISRUPTING CHEMICALS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (US EPA) is developing an endocrine disruptor screening and testing program to detect chemicals that alter hypothalamic-pituitary-gonadal (HPG) function, estrogen, androgen, and thyroid (EAT) hormone synthesis or metabolism and induce andr...

  6. Endocrine disruptor & nutritional effects of heavy metals in ovarian hyperstimulation.

    PubMed

    Dickerson, E H; Sathyapalan, T; Knight, R; Maguiness, S M; Killick, S R; Robinson, J; Atkin, S L

    2011-12-01

    There is increasing concern that environmental chemicals have a direct effect on fertility. Heavy metals such as mercury have been shown to affect various organ systems in humans including nervous system and skin, however they could also act as endocrine disrupting chemicals adversely affecting fertility. Metals such as zinc and selenium are essential micronutrients with diverse functions that may be important for reproductive outcomes. We measured mercury, zinc and selenium levels in the hair, a reliable reflection of long term environmental exposure and dietary status, to correlate with the outcome of ovarian hyperstimulation for in vitro fertilisation (IVF) treatment. We analysed the hair of 30 subfertile women for mercury, zinc and selenium using inductively coupled mass spectrometry. Each woman underwent one cycle of IVF treatment. Correlation between the levels of these trace metals and treatment outcomes was investigated. Thirty women were recruited with mean (±SD) age of 32.7(4.4) years and BMI of 25.4(5.0)kg/m(2). Hair mercury concentration showed a negative correlation with oocyte yield (p < 0.05,βcoefficient 0.38) and follicle number (p = 0.03,β coefficient0.19) after ovarian stimulation. Zinc and selenium levels in hair correlated positively with oocyte yield after ovarian stimulation (p < 0.05,β coefficient0.15) and (p = 0.03,β coefficient0.21) respectively. Selenium levels in hair correlated significantly with follicle number following stimulation (p = 0.04, βcoefficient0.22). There was no correlation between mercury, zinc and selenium in hair and their corresponding serum levels. These data suggest that mercury had a deleterious effect whilst there was a positive effect for zinc and selenium in the ovarian response to gonadotrophin therapy for IVF. Hair analysis offers a novel method of investigating the impact of long-term exposure to endocrine disruptors and nutritional status on reproductive outcomes.

  7. Gestational Exposure to Bisphenol A Affects the Function and Proteome Profile of F1 Spermatozoa in Adult Mice.

    PubMed

    Rahman, Md Saidur; Kwon, Woo-Sung; Karmakar, Polash Chandra; Yoon, Sung-Jae; Ryu, Buom-Yong; Pang, Myung-Geol

    2017-02-01

    Maternal exposure to the endocrine disruptor bisphenol A (BPA) has been linked to offspring reproductive abnormalities. However, exactly how BPA affects offspring fertility remains poorly understood. The aim of the present study was to evaluate the effects of gestational BPA exposure on sperm function, fertility, and proteome profile of F1 spermatozoa in adult mice. Pregnant CD-1 mice (F0) were gavaged with BPA at three different doses (50 μg/kg bw/day, 5 mg/kg bw/day, and 50 mg/kg bw/day) on embryonic days 7 to 14. We investigated the function, fertility, and related processes of F1 spermatozoa at postnatal day 120. We also evaluated protein profiles of F1 spermatozoa to monitor their functional affiliation to disease. BPA inhibited sperm count, motility parameters, and intracellular ATP levels in a dose-dependent manner. These effects appeared to be caused by reduced numbers of stage VIII seminiferous epithelial cells in testis and decreased protein kinase A (PKA) activity and tyrosine phosphorylation in spermatozoa. We also found that BPA compromised average litter size. Proteins differentially expressed in spermatozoa from BPA treatment groups are known to play a critical role in ATP generation, oxidative stress response, fertility, and in the pathogenesis of several diseases. Our study provides mechanistic support for the hypothesis that gestational exposure to BPA alters sperm function and fertility via down-regulation of tyrosine phosphorylation through a PKA-dependent mechanism. In addition, we anticipate that the BPA-induced changes in the sperm proteome might be partly responsible for the observed effects in spermatozoa. Citation: Rahman MS, Kwon WS, Karmakar PC, Yoon SJ, Ryu BY, Pang MG. 2017. Gestational exposure to bisphenol-A affects the function and proteome profile of F1 spermatozoa in adult mice. Environ Health Perspect 125:238-245; http://dx.doi.org/10.1289/EHP378.

  8. Endocrine manifestations related to inherited metabolic diseases in adults

    PubMed Central

    2012-01-01

    Most inborn errors of metabolism (IEM) are recessive, genetically transmitted diseases and are classified into 3 main groups according to their mechanisms: cellular intoxication, energy deficiency, and defects of complex molecules. They can be associated with endocrine manifestations, which may be complications from a previously diagnosed IEM of childhood onset. More rarely, endocrinopathies can signal an IEM in adulthood, which should be suspected when an endocrine disorder is associated with multisystemic involvement (neurological, muscular, hepatic features, etc.). IEM can affect all glands, but diabetes mellitus, thyroid dysfunction and hypogonadism are the most frequent disorders. A single IEM can present with multiple endocrine dysfunctions, especially those involving energy deficiency (respiratory chain defects), and metal (hemochromatosis) and storage disorders (cystinosis). Non-autoimmune diabetes mellitus, thyroid dysfunction and/or goiter and sometimes hypoparathyroidism should steer the diagnosis towards a respiratory chain defect. Hypogonadotropic hypogonadism is frequent in haemochromatosis (often associated with diabetes), whereas primary hypogonadism is reported in Alström disease and cystinosis (both associated with diabetes, the latter also with thyroid dysfunction) and galactosemia. Hypogonadism is also frequent in X-linked adrenoleukodystrophy (with adrenal failure), congenital disorders of glycosylation, and Fabry and glycogen storage diseases (along with thyroid dysfunction in the first 3 and diabetes in the last). This is a new and growing field and is not yet very well recognized in adulthood despite its consequences on growth, bone metabolism and fertility. For this reason, physicians managing adult patients should be aware of these diagnoses. PMID:22284844

  9. Endocrine Disrupting Chemicals and Disease Susceptibility

    PubMed Central

    Schug, Thaddeus T.; Janesick, Amanda; Blumberg, Bruce; Heindel, Jerrold J.

    2011-01-01

    Environmental chemicals have significant impacts on biological systems. Chemical exposures during early stages of development can disrupt normal patterns of development and thus dramatically alter disease susceptibility later in life. Endocrine disrupting chemicals (EDCs) interfere with the body's endocrine system and produce adverse developmental, reproductive, neurological, cardiovascular, metabolic and immune effects in humans. A wide range of substances, both natural and man-made, are thought to cause endocrine disruption, including pharmaceuticals, dioxin and dioxin-like compounds, polychlorinated biphenyls, DDT and other pesticides, and components of plastics such as bisphenol A (BPA) and phthalates. EDCs are found in many everyday products– including plastic bottles, metal food cans, detergents, flame retardants, food additives, toys, cosmetics, and pesticides. EDCs interfere with the synthesis, secretion, transport, activity, or elimination of natural hormones. This interference can block or mimic hormone action, causing a wide range of effects. This review focuses on the mechanisms and modes of action by which EDCs alter hormone signaling. It also includes brief overviews of select disease endpoints associated with endocrine disruption. PMID:21899826

  10. Endocrine disrupting chemicals and disease susceptibility.

    PubMed

    Schug, Thaddeus T; Janesick, Amanda; Blumberg, Bruce; Heindel, Jerrold J

    2011-11-01

    Environmental chemicals have significant impacts on biological systems. Chemical exposures during early stages of development can disrupt normal patterns of development and thus dramatically alter disease susceptibility later in life. Endocrine disrupting chemicals (EDCs) interfere with the body's endocrine system and produce adverse developmental, reproductive, neurological, cardiovascular, metabolic and immune effects in humans. A wide range of substances, both natural and man-made, are thought to cause endocrine disruption, including pharmaceuticals, dioxin and dioxin-like compounds, polychlorinated biphenyls, DDT and other pesticides, and components of plastics such as bisphenol A (BPA) and phthalates. EDCs are found in many everyday products--including plastic bottles, metal food cans, detergents, flame retardants, food additives, toys, cosmetics, and pesticides. EDCs interfere with the synthesis, secretion, transport, activity, or elimination of natural hormones. This interference can block or mimic hormone action, causing a wide range of effects. This review focuses on the mechanisms and modes of action by which EDCs alter hormone signaling. It also includes brief overviews of select disease endpoints associated with endocrine disruption. Published by Elsevier Ltd.

  11. Regulating effect of epithalone on gastric endocrine cells in pinealectomized rats.

    PubMed

    Khavinson, V K; Popuchiev, V V; Kvetnoii, I M; Yuzhakov, V V; Kotlova, L N

    2000-12-01

    Endocrine cells in the stomach of pinealectomized rats after injection of epithalone (pineal gland peptide) were studied by immunohistochemical tests, morphometry, and image analysis microscopic images. A functional relationship was found between the pineal gland and stomach, which is regulated by peptides produced by the pineal gland.

  12. Positive and negative affective processing exhibit dissociable functional hubs during the viewing of affective pictures.

    PubMed

    Zhang, Wenhai; Li, Hong; Pan, Xiaohong

    2015-02-01

    Recent resting-state functional magnetic resonance imaging (fMRI) studies using graph theory metrics have revealed that the functional network of the human brain possesses small-world characteristics and comprises several functional hub regions. However, it is unclear how the affective functional network is organized in the brain during the processing of affective information. In this study, the fMRI data were collected from 25 healthy college students as they viewed a total of 81 positive, neutral, and negative pictures. The results indicated that affective functional networks exhibit weaker small-worldness properties with higher local efficiency, implying that local connections increase during viewing affective pictures. Moreover, positive and negative emotional processing exhibit dissociable functional hubs, emerging mainly in task-positive regions. These functional hubs, which are the centers of information processing, have nodal betweenness centrality values that are at least 1.5 times larger than the average betweenness centrality of the network. Positive affect scores correlated with the betweenness values of the right orbital frontal cortex (OFC) and the right putamen in the positive emotional network; negative affect scores correlated with the betweenness values of the left OFC and the left amygdala in the negative emotional network. The local efficiencies in the left superior and inferior parietal lobe correlated with subsequent arousal ratings of positive and negative pictures, respectively. These observations provide important evidence for the organizational principles of the human brain functional connectome during the processing of affective information. © 2014 Wiley Periodicals, Inc.

  13. Fish Consumption, Levels of Nutrients and Contaminants, and Endocrine-Related Health Outcomes Among Older Male Anglers in Wisconsin.

    PubMed

    Christensen, Krista Y; Raymond, Michelle R; Thompson, Brooke A; Anderson, Henry A

    2016-07-01

    The aim of this study was to examine associations between endocrine disorders, fish consumption habits, and biomarkers of contaminants and nutrients : Male anglers aged at least 50 years living in Wisconsin (n = 154) completed a questionnaire and provided biological samples. Adjusted logistic regression models were used to evaluate risk factors for endocrine outcomes. Nineteen percent of anglers reported either pre-diabetes or diabetes, while 4.6% reported thyroid disease. There were few associations between endocrine disease and fish consumption, fish meal source, or species, aside from a notable increase in diabetes risk with lake trout consumption. Docosahexaenoic acid, certain polychlorinated biphenyls (PCBs), and perfluorinated compounds were associated with an increased risk of diabetes or pre-diabetes. PCBs were associated with a decreased risk of thyroid disease. Fish consumption patterns may affect risk for endocrine outcomes, but direction and magnitude of association may depend on the balance of the contaminants and nutrients in the individual diet.

  14. Predicting the risk of multiple endocrine neoplasia type 1 for patients with commonly occurring endocrine tumors.

    PubMed

    de Laat, Joanne M; Tham, Emma; Pieterman, Carolina R C; Vriens, Menno R; Dorresteijn, Johannes A N; Bots, Michiel L; Nordenskjöld, Magnus; van der Luijt, Rob B; Valk, Gerlof D

    2012-08-01

    Endocrine diseases that can be part of the rare inheritable syndrome multiple endocrine neoplasia type 1 (MEN1) commonly occur in the general population. Patients at risk for MEN1, and consequently their families, must be identified to prevent morbidity through periodic screening for the detection and treatment of manifestations in an early stage. The aim of the study was to develop a model for predicting MEN1 in individual patients with sporadically occurring endocrine tumors. Cross-sectional study. In a nationwide study in The Netherlands, patients with sporadically occurring endocrine tumors in whom the referring physician suspected the MEN1 syndrome were identified between 1998 and 2011 (n=365). Logistic regression analysis with internal validation using bootstrapping and external validation with a cohort from Sweden was used. A MEN1 mutation was found in 15.9% of 365 patients. Recurrent primary hyperparathyroidism (pHPT; odds ratio (OR) 162.40); nonrecurrent pHPT (OR 25.78); pancreatic neuroendocrine tumors (pNETs) and duodenal NETs (OR 17.94); pituitary tumor (OR 4.71); NET of stomach, thymus, or bronchus (OR 25.84); positive family history of NET (OR 4.53); and age (OR 0.96) predicted MEN1. The c-statistic of the prediction model was 0.86 (95% confidence interval (95% CI) 0.81-0.90) in the derivation cohort and 0.77 (95% CI 0.66-0.88) in the validation cohort. With the prediction model, the risk of MEN1 can be calculated in patients suspected for MEN1 with sporadically occurring endocrine tumors.

  15. EDCs DataBank: 3D-Structure database of endocrine disrupting chemicals.

    PubMed

    Montes-Grajales, Diana; Olivero-Verbel, Jesus

    2015-01-02

    Endocrine disrupting chemicals (EDCs) are a group of compounds that affect the endocrine system, frequently found in everyday products and epidemiologically associated with several diseases. The purpose of this work was to develop EDCs DataBank, the only database of EDCs with three-dimensional structures. This database was built on MySQL using the EU list of potential endocrine disruptors and TEDX list. It contains the three-dimensional structures available on PubChem, as well as a wide variety of information from different databases and text mining tools, useful for almost any kind of research regarding EDCs. The web platform was developed employing HTML, CSS and PHP languages, with dynamic contents in a graphic environment, facilitating information analysis. Currently EDCs DataBank has 615 molecules, including pesticides, natural and industrial products, cosmetics, drugs and food additives, among other low molecular weight xenobiotics. Therefore, this database can be used to study the toxicological effects of these molecules, or to develop pharmaceuticals targeting hormone receptors, through docking studies, high-throughput virtual screening and ligand-protein interaction analysis. EDCs DataBank is totally user-friendly and the 3D-structures of the molecules can be downloaded in several formats. This database is freely available at http://edcs.unicartagena.edu.co. Copyright © 2014. Published by Elsevier Ireland Ltd.

  16. [Vitamin D and endocrine diseases].

    PubMed

    Schuch, Natielen Jacques; Garcia, Vivian Cristina; Martini, Ligia Araújo

    2009-07-01

    Vitamin D insufficiency/deficiency has been worldwide reported in all age groups in recent years. It has been considered a Public Health matter since decreased levels of vitamin D has been related to several chronic diseases, as type 2 diabetes mellitus (T2DM), obesity and hypertension. Glucose intolerance and insulin secretion has been observed during vitamin D deficiency, both in animals and humans resulting in T2DM. The supposed mechanism underlying these findings is presence of vitamin D receptor in several tissues and cells, including pancreatic beta-cells, adipocyte and muscle cells. In obese individuals, the impaired vitamin D endocrine system, characterized by high levels of PTH and 1,25(OH)(2)D(3) could induce a negative feedback for the hepatic synthesis of 25(OH)D and also contribute to a higher intracellular calcium, which in turn secrete less insulin and deteriorate insulin sensitivity. In hypertension, vitamin D could act on renin-angiotensin system and also in vascular function. Administration of 1,25(OH)(2)D(3) could decreases renin gene expression and inhibit vascular smooth muscle cell proliferation. However, prospective and intervention human studies that clearly demonstrates the benefits of vitamin D status adequacy in the prevention and treatment of endocrine metabolic diseases are lacking. Further research still necessary to assure the maximum benefit of vitamin D in such situations.

  17. Behavior of Selected Endocrine Disrupting Chemicals in Sewage Treatment Plant

    NASA Astrophysics Data System (ADS)

    Wang, Xinze; Lu, Jiaming; Ollivier, Natacha; Saturnino, Anais; Gomez, Elena; Casellas, Claude; Picot, Bernadette

    2010-11-01

    The behavior of endocrine disrupting chemicals in sewage treatment plant affects their final fate in water environment. We selected six endocrine disrupting chemicals: 4 alkylphenols (4-tert-octylphenol, octylphenol, 4-nonylphenol, bisphenol A) and 2 steroids (17α-ethinylestradiol and estriol) as targets, their removal and transformation in wastewater treatment plant were studied. Five mixed liquors were sampled respectively from different stages of Minhang wastewater treatment plant in Shanghai. EDCs concentration were analyzed with GC-MS. The main removal pathways of EDCs include initial adsorption by suspended solids and following biodegradation in biological sludge. The removal efficiency of six targets was more than 86%. The concentration of OP and 4-n-NP in water significantly increased in anoxic stage, the reason may be the releases of EDCs from sludge to water on the condition of low DO. And it was also found that the EDCs could be released to water phase in the secondary clarifier, which may cause potential risk of EDCs entering the environment with discharge.

  18. Neural-endocrine-immune complex in the central modulation of tumorigenesis: facts, assumptions, and hypotheses.

    PubMed

    Mravec, Boris; Gidron, Yori; Kukanova, Barbara; Bizik, Jozef; Kiss, Alexander; Hulin, Ivan

    2006-11-01

    For the precise coordination of systemic functions, the nervous system uses a variety of peripherally and centrally localized receptors, which transmit information from internal and external environments to the central nervous system. Tight interconnections between the immune, nervous, and endocrine systems provide a base for monitoring and consequent modulation of immune system functions by the brain and vice versa. The immune system plays an important role in tumorigenesis. On the basis of rich interconnections between the immune, nervous and endocrine systems, the possibility that the brain may be informed about tumorigenesis is discussed in this review article. Moreover, the eventual modulation of tumorigenesis by central nervous system is also considered. Prospective consequences of the interactions between tumor and brain for diagnosis and therapy of cancer are emphasized.

  19. Effects of chronic exposure to 12‰ saltwater on the endocrine physiology of juvenile American alligator (Alligator mississippiensis).

    PubMed

    Faulkner, P C; Burleson, M L; Simonitis, L; Marshall, C; Hala, D; Petersen, L H

    2018-05-18

    American alligator ( Alligator mississippiensis , Linnaeus) habitats are prone to saltwater intrusion following major storms, hurricanes or droughts. Anthropogenic impacts affecting hydrology of freshwater systems may exacerbate saltwater intrusion into freshwater habitats. The endocrine system of alligators is susceptible to changes in the environment but it is currently not known how the crocodilian physiological system responds to environmental stressors such as salinity. Juvenile alligators were exposed to 12‰ saltwater for 5 weeks to determine effects of chronic exposure to saline environments. Following 5 weeks, plasma levels of hormones (e.g., progesterone, testosterone, estradiol, corticosterone, aldosterone, angiotensin II) were quantified using LC-MS/MS. Compared to freshwater kept subjects, saltwater exposed alligators had significantly elevated plasma levels of corticosterone, 11-deoxycortisol, 17α-hydroxyprogesterone, testosterone, 17β-estradiol, estrone and estriol while pregnenolone and angiotensin II (ANG II) were significantly depressed and aldosterone (ALDO) levels were unchanged (slightly depressed). However, saltwater exposure did not affect gene expression of renal mineralo- and glucorticoid (MR, GR) and angiotensin type 1 (AT-1) receptors or morphology of lingual glands. On the other hand, saltwater exposure significantly reduced plasma glucose concentrations whereas parameters diagnostic of perturbed liver function (enzymes AST, ALT) and kidney function (creatinine, creatine kinase) were significantly elevated. Except for plasma potassium levels (K + ), plasma ions Na + and Cl - were significantly elevated in saltwater alligators. Overall, this study demonstrated significant endocrine and physiological effects in juvenile alligators chronically exposed to a saline environment. Results provide novel insights into the effects of a natural environmental stressor (salinity) on renin-angiotensin-aldosterone system and steroidogenesis of

  20. The endocrine effects of nicotine and cigarette smoke

    PubMed Central

    Tweed, Jesse Oliver; Hsia, Stanley H.; Lutfy, Kabirullah; Friedman, Theodore C.

    2012-01-01

    With a current prevalence of approximately 20%, smoking continues to impact negatively upon health. Tobacco or nicotine use influences the endocrine system, with important clinical implications. In this review we critically evaluate the literature concerning the impact of nicotine as well as tobacco use on several parameters of the endocrine system and on glucose and lipid homeostasis. Emphasis is on the effect of smoking on diabetes mellitus and obesity and the consequences of smoking cessation on these disorders. Understanding the effects of nicotine and cigarettes on the endocrine system and how these changes contribute to the pathogenesis of various endocrine diseases will allow for targeted therapies and more effective approaches for smoking cessation. PMID:22561025

  1. Endocrine Abnormalities in Patients with Chronic Kidney Disease.

    PubMed

    Kuczera, Piotr; Adamczak, Marcin; Wiecek, Andrzej

    2015-01-01

    In patients with chronic kidney disease the alterations of the endocrine system may arise from several causes. The kidney is the site of degradation as well as synthesis of many different hormones. Moreover, a number of concomitant pathological conditions such as inflammation, metabolic acidosis and malnutrition may participate in the pathogenesis of endocrine abnormalities in this group of patients. The most pronounced endocrine abnormalities in patients with chronic kidney disease are the deficiencies of: calcitriol, testosterone, insulin-like growth factor and, erythropoietin (EPO). Additionally accumulation of several hormones, such as: prolactin, growth hormone and insulin frequently also occur. The clinical consequences of the abovementioned endocrine abnormalities are among others: anemia, infertility and bone diseases.

  2. Endocrine Glands and Hearing: Auditory Manifestations of Various Endocrine and Metabolic Conditions

    PubMed Central

    Cherian, Kripa Elizabeth; Kapoor, Nitin; Mathews, Suma Susan; Paul, Thomas Vizhalil

    2017-01-01

    The aetiology of hearing loss in humans is multifactorial. Besides genetic, environmental and infectious causes, several endocrine and metabolic abnormalities are associated with varying degrees of hearing impairment. The pattern of hearing loss may be conductive, sensori-neural or mixed. The neurophysiology of hearing as well as the anatomical structure of the auditory system may be influenced by changes in the hormonal and metabolic milieu. Optimal management of these conditions requires the integrated efforts of the otolaryngologist and the endocrinologist. The presence of hearing loss especially in the young age group should prompt the clinician to explore the possibility of an associated endocrine or metabolic disorder for timely referral and early initiation of treatment. PMID:28553606

  3. Effects of Wastewater Discharges on Endocrine and Reproductive Function of Western Mosquitofish (Gambusia spp.) and Implications for the Threatened Santa Ana Sucker (Catostomus santaanae)

    USGS Publications Warehouse

    Jenkins, Jill A.; Goodbred, Steven L.; Olivier, Heather M.; Draugelis-Dale, Rassa O.; Alvarez, David A.

    2009-01-01

    The Santa Ana River (SAR) in southern California is impacted by effluents from wastewater treatment plants (WWTP), which are sources of organic wastewater compounds (OWCs) and urban runoff. The Santa Ana River is one of only three river basins supporting native populations of the federally listed Santa Ana sucker (Catostomus santaanae) at the time the fish was included on the list 2000. In 2004 and 2005, a U.S. Geological Survey and U.S. Fish and Wildlife Service study was undertaken to determine if the threatened Santa Ana sucker was potentially exposed to OWCs and endocrine disrupting compounds (EDCs) in the SAR by using the western mosquitofish (Gambusia affinis) as a surrogate fish model. Four Santa Ana River sites were chosen along a gradient of proximity to WWTP effluents: (1) a point source of tertiary treated wastewater effluent (TTWE), (2) Rialto Drain (just below a WWTP), (3) Prado Dam (11 kilometers [km] below WWTPs), and (4) Sunnyslope Creek (no WWTP but having urban runoff influence). A reference site having no WWTPs or urban runoff, Thousand Palms, was also sampled. Chemical analyses of passive sampler extracts results showed that 15 OWCs and EDCs were detected in water from the Santa Ana River sites. Many of these compounds contributed to activity from an estrogenic in-vitro assay that showed a significant potential for impacting endocrine and reproductive systems compared to the 25 organochlorine compounds detected in aquatic biota. The site showing compounds having highest influence on sex steroid hormone activities was the point source for TTWE. Sex steroid hormone levels, secondary sex characteristics, organosomatic indices, and sperm quality parameters indicated impairment of endocrine and reproductive function of male western mosquitofish in the Santa Ana River. Exposure to EDCs and consequent impairment in mosquitofish followed the gradient of proximity to WWTP effluents, where the most significant effects were found at TTWE point source and

  4. Multiple endocrine diseases in dogs: 35 cases (1996-2009).

    PubMed

    Blois, Shauna L; Dickie, Erica; Kruth, Stephen A; Allen, Dana G

    2011-06-15

    To characterize a population of dogs from a tertiary care center with 2 or more endocrine disorders, including the specific disorders and time intervals between diagnosis of each disorder. Retrospective case series. 35 dogs with 2 or more endocrine disorders. Medical records were reviewed, and the following was recorded: clinical signs, physical examination findings, and the results of CBC, serum biochemical analysis, urinalysis, aerobic bacterial culture of urine samples, endocrine testing, diagnostic imaging, and necropsy. 35 dogs with more than 1 endocrine disorder were identified. Seventy-seven percent (27/35) of the dogs were male, and the mean age at the time of diagnosis of the first endocrinopathy was 7.9 years. Miniature Schnauzer was the most common breed. Twenty-eight of 35 (80%) dogs had 2 disorders; 7 (20%) had 3 disorders. The most common combinations of disorders included diabetes mellitus and hyperadrenocorticism in 57.1 % (20/35) of dogs; hypoadrenocorticism and hypothyroidism in 22.9% (8/35) of dogs; and diabetes mellitus and hypothyroidism in 28.6% (10/35) of dogs. A mean of 14.5 months elapsed between diagnosis of the first and second endocrine disorders, whereas there was a mean of 31.1 months between diagnosis of the first and third endocrine disorders. Results suggested that the occurrence of multiple endocrine disorders was uncommon in dogs. The most common combinations of endocrine disorders in this population of dogs were diabetes mellitus and hyperadrenocorticism, followed by hypoadrenocorticism and hypothyroidism.

  5. Endocrine Treatment of Gender-Dysphoric/Gender-Incongruent Persons: An Endocrine Society Clinical Practice Guideline.

    PubMed

    Hembree, Wylie C; Cohen-Kettenis, Peggy T; Gooren, Louis; Hannema, Sabine E; Meyer, Walter J; Murad, M Hassan; Rosenthal, Stephen M; Safer, Joshua D; Tangpricha, Vin; T'Sjoen, Guy G

    2017-11-01

    To update the "Endocrine Treatment of Transsexual Persons: An Endocrine Society Clinical Practice Guideline," published by the Endocrine Society in 2009. The participants include an Endocrine Society-appointed task force of nine experts, a methodologist, and a medical writer. This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation approach to describe the strength of recommendations and the quality of evidence. The task force commissioned two systematic reviews and used the best available evidence from other published systematic reviews and individual studies. Group meetings, conference calls, and e-mail communications enabled consensus. Endocrine Society committees, members and cosponsoring organizations reviewed and commented on preliminary drafts of the guidelines. Gender affirmation is multidisciplinary treatment in which endocrinologists play an important role. Gender-dysphoric/gender-incongruent persons seek and/or are referred to endocrinologists to develop the physical characteristics of the affirmed gender. They require a safe and effective hormone regimen that will (1) suppress endogenous sex hormone secretion determined by the person's genetic/gonadal sex and (2) maintain sex hormone levels within the normal range for the person's affirmed gender. Hormone treatment is not recommended for prepubertal gender-dysphoric/gender-incongruent persons. Those clinicians who recommend gender-affirming endocrine treatments-appropriately trained diagnosing clinicians (required), a mental health provider for adolescents (required) and mental health professional for adults (recommended)-should be knowledgeable about the diagnostic criteria and criteria for gender-affirming treatment, have sufficient training and experience in assessing psychopathology, and be willing to participate in the ongoing care throughout the endocrine transition. We recommend treating gender

  6. [Physiology and disease of the endocrine function of the pancreas (author's transl)].

    PubMed

    Stubbe, P

    1980-12-01

    Qualitative and quantitative immunocytochemistry, electronmicroscopy and radio-immuno-assays led to the discovery of 5 pancreatic polypeptide hormones under physiological conditions. The active endocrine cells and the produced hormones are termed A, B, D, D1, and PP cell and glucagon, insulin, somatostatin, vasoactive intestinal polypeptide (VIP) and pancreatic polypeptide (PP) respectively. Beside the physiology of secretion and action a survey of pathological conditions in the paediatric age group is given. Insulin is the most important of pancreatic hormones in childhood. Therefore diagnosis and treatment of hyperinsulinism are described in extension.

  7. INTERLABORATORY STUDY ON THE USE OF STEROID HORMONES IN EXAMINING ENDOCRINE DISRUPTION.

    EPA Science Inventory

    In recent years, there has been an increased use of the measurement of sex steroid hormone levels in the blood of animals exposed to chemicals as an indicator of reproductive impairment or an alteration in endocrine function. Although levels of hormones are often compared among ...

  8. Message-adjusted network (MAN) hypothesis in gastro-entero-pancreatic (GEP) endocrine system.

    PubMed

    Aykan, N Faruk

    2007-01-01

    Several types of communication coordinate body functions to maintain homeostasis. Clarifying intercellular communication systems is as important as intracellular signal mechanisms. In this study, we propose an intercellular network model to establish novel targets in GEP-endocrine system, based on up-to-date information from medical publications. As materials, two physiologic events which are Pavlov's sham-feeding assay and bicarbonate secretion into the duodenum from pancreas were explored by new biologic data from the literature. Major key words used in Pub-Med were modes of regulations (autocrine, paracrine, endocrine, neurocrine, juxtacrine, lumencrine), GEP cells, hormones, peptides and neuro-transmitters. In these two examples of physiologic events, we can design a model of network to clarify transmission of a message. When we take a simple, unique message, we can observe a complete intercellular network. In our examples, these messages are "food is coming" and "hydrogen ions are increasing" in human language (humanese). We need to find molecular counterparts of these unique messages in cell language (cellese). In this network (message-adjusted network; MAN), message is an input which can affect the physiologic equilibrium, mission is an output to improve the disequilibrium and aim is always maintenance of homeostasis. If we orientate to a transmission of a unique message we can distinguish that different cells use different chemical messengers in different modes of regulations to transmit the same message. This study also supports Shannon's information theory and cell language theories such as von Neumann-Patte principles. After human genome project (HU-GO) and protein organisations (HU-PO), finding true messages and the establishment of their networks (in our model HU-MAN project) can be a novel and exciting field in cell biology. We established an intercellular network model to understand intercellular communication in the physiology of GEP endocrine

  9. Schedule for Rating Disabilities; the Endocrine System. Final rule.

    PubMed

    2017-11-02

    This document amends the Department of Veterans Affairs (VA) Schedule for Rating Disabilities (VASRD) by revising the portion of the Schedule that addresses endocrine conditions and disorders of the endocrine system. The effect of this action is to ensure that the VASRD uses current medical terminology and to provide detailed and updated criteria for evaluation of endocrine disorders.

  10. Endocrine causes of nonalcoholic fatty liver disease

    PubMed Central

    Marino, Laura; Jornayvaz, François R

    2015-01-01

    Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in the industrialized world. The prevalence of NAFLD is increasing, becoming a substantial public health burden. NAFLD includes a broad spectrum of disorders, from simple conditions such as steatosis to severe manifestations such as fibrosis and cirrhosis. The relationship of NAFLD with metabolic alterations such as type 2 diabetes is well described and related to insulin resistance, with NAFLD being recognized as the hepatic manifestation of metabolic syndrome. However, NAFLD may also coincide with endocrine diseases such as polycystic ovary syndrome, hypothyroidism, growth hormone deficiency or hypercortisolism. It is therefore essential to remember, when discovering altered liver enzymes or hepatic steatosis on radiological exams, that endocrine diseases can cause NAFLD. Indeed, the overall prognosis of NAFLD may be modified by treatment of the underlying endocrine pathology. In this review, we will discuss endocrine diseases that can cause NALFD. Underlying pathophysiological mechanisms will be presented and specific treatments will be reviewed. PMID:26494962

  11. Endocrine disorders and diabetes in Japan.

    PubMed

    Seino, Y; Imura, H

    1994-10-01

    The frequency of glucose intolerance including diabetes and IGT in endocrine diseases was compared between Japan and foreign countries. It was revealed that the frequency of diabetes in endocrine diseases is generally higher in Japan than in foreign countries. In addition, plasma insulin response to glucose was exaggerated in Cushing's syndrome with glucose intolerance, but was impaired in acromegaly and pheochromocytoma with glucose intolerance.

  12. Effects of Two Endocrine-active Pharmaceuticals, Tamoxifen and Anastrozole, on Reproduction in a Marine Fish, Tautogolabrus adspersus

    EPA Science Inventory

    Endocrine-active pharmaceuticals entering the aquatic environment through sewage effluent may have unintended, adverse impacts on the reproduction of aquatic organisms, which in turn may affect the sustainability of exposed populations. Laboratory experiments were conducted with ...

  13. Rare and Unusual Endocrine Cancer Syndromes with Mutated Genes

    PubMed Central

    Lodish, Maya B.; Stratakis, Constantine A.

    2010-01-01

    The study of a number of rare familial syndromes associated with endocrine tumor development has led to the identification of genes involved in the development of these tumors. Major advances have been made expanding our understanding of the pathophysiology of these rare endocrine tumors, resulting in the elucidation of causative genes in rare familial diseases and a better understanding of the signaling pathways implicated in endocrine cancers. Recognition of the familial syndrome associated with a particular patient’s endocrine tumor has important implications in terms of prognosis, screening of family members, and screening for associated conditions. PMID:21167385

  14. Syndromes that Link the Endocrine System and Genitourinary Tract.

    PubMed

    Özlük, Yasemin; Kılıçaslan, Işın

    2015-01-01

    The endocrine system and genitourinary tract unite in various syndromes. Genitourinary malignancies may cause paraneoplastic endocrine syndromes by secreting hormonal substances. These entities include Cushing`s syndrome, hypercalcemia, hyperglycemia, polycythemia, hypertension, and inappropriate ADH or HCG production. The most important syndromic scenarios that links these two systems are hereditary renal cancer syndromes with specific genotype/phenotype correlation. There are also some very rare entities in which endocrine and genitourinary systems are involved such as Carney complex, congenital adrenal hyperplasia and Beckwith-Wiedemann syndrome. We will review all the syndromes regarding manifestations present in endocrine and genitourinary organs.

  15. Endocrine Activity of Extraembryonic Membranes Extends beyond Placental Amniotes

    PubMed Central

    Albergotti, Lori C.; Hamlin, Heather J.; McCoy, Michael W.; Guillette,, Louis J.

    2009-01-01

    Background During development, all amniotes (mammals, reptiles, and birds) form extraembryonic membranes, which regulate gas and water exchange, remove metabolic wastes, provide shock absorption, and transfer maternally derived nutrients. In viviparous (live-bearing) amniotes, both extraembryonic membranes and maternal uterine tissues contribute to the placenta, an endocrine organ that synthesizes, transports, and metabolizes hormones essential for development. Historically, endocrine properties of the placenta have been viewed as an innovation of placental amniotes. However, an endocrine role of extraembryonic membranes has not been investigated in oviparous (egg-laying) amniotes despite similarities in their basic structure, function, and shared evolutionary ancestry. In this study, we ask whether the oviparous chorioallantoic membrane (CAM) of chicken (Gallus gallus) has the capability to synthesize and receive signaling of progesterone, a major placental steroid hormone. Methodology/Principal Findings We quantified mRNA expression of key steroidogenic enzymes involved in progesterone synthesis and found that 3β-hydroxysteroid dehydrogenase, which converts pregnenolone to progesterone exhibited a 464 fold increase in the CAM from day 8 to day 18 of embryonic development (F5, 68 = 89.282, p<0.0001). To further investigate progesterone synthesis, we performed explant culture and found that the CAM synthesizes progesterone in vitro in the presence of a steroid precursor. Finally, we quantified mRNA expression and performed protein immunolocalization of the progesterone receptor in the CAM. Conclusions/Significance Collectively, our data indicate that the chick CAM is steroidogenic and has the capability to both synthesize progesterone and receive progesterone signaling. These findings represent a paradigm shift in evolutionary reproductive biology by suggesting that endocrine activity of extraembryonic membranes is not a novel characteristic of placental

  16. Acetyl-L-carnitine (ALC) administration positively affects reproductive axis in hypogonadotropic women with functional hypothalamic amenorrhea.

    PubMed

    Genazzani, A D; Lanzoni, C; Ricchieri, F; Santagni, S; Rattighieri, E; Chierchia, E; Monteleone, P; Jasonni, V M

    2011-04-01

    Hypothalamic amenorrhea (HA) is characterized by neuroendocrine impairment that, in turn, negatively modulates endocrine function, mainly within the reproductive axis. HA presents with hypo-LH, hypoestrogenism and, until now, a definite therapeutic strategy has not yet been found. The aim of the following study was to test the efficacy of acetyl-L-carnitine (ALC) administration in HA-affected subjects. Twenty-four patients affected by stress-induced HA were divided into two groups according to LH plasma levels: group A, hypo-LH (LH≤3 mIU/ml; no.=16), and group B, normo-LH (LH>3 mIU/ml; no.=8), were treated with ALC (1 g/day, per os) for 16 weeks. Patients underwent baseline hormonal assessment, pulsatility test (for LH and FSH), naloxone test (for LH, FSH and cortisol) both before and after 16 weeks of treatment. Under ALC administration hypo-LH patients showed a significant increase in LH plasma levels (from 1.4±0.3 to 3.1±0.5 mIU/ml, p<0.01) and in LH pulse amplitude (p<0.001). No changes were observed in the normo-LH group. LH response to naloxone was restored under ALC therapy. Maximal LH response and area under the curve under naloxone were significantly increased (p<0.05 and p<0.01, respectively). No changes were observed in the normo-LH patients. Our data support the hypothesis of a specific role of ALC on counteracting the stress-induced abnormalities in hypo-LH patients affected by hypothalamic amenorrhea.

  17. ESR1 mutations as a mechanism for acquired endocrine resistance in breast cancer

    PubMed Central

    Jeselsohn, Rinath; Buchwalter, Gilles; De Angelis, Carmine; Brown, Myles; Schiff, Rachel

    2016-01-01

    Most breast cancers are estrogen receptor α (ER)-positive (+) and are treated with endocrine therapies targeting ER activity. Despite efforts, the mechanisms of the frequent clinical resistance to these therapies remain largely unknown. Several recent parallel studies unveiled gain-of-function recurrent ESR1 mutations in up to 20% of patients with metastatic ER+ disease who all received endocrine therapies, which for more cases included an aromatase inhibitor. These mutations, clustered in a hotspot within the ligand-binding domain (LBD), lead to ligand independent ER activity and tumor growth, partial resistance to tamoxifen and fulvestrant, and potentially increased metastatic capacity. Together, these findings suggest that the ESR1 LBD mutations account for acquired endocrine resistance in a substantial fraction of patients with metastatic disease. The absence of detectable ESR1 mutations in treatment-naïve disease and the correlation with the number of endocrine treatments indicate a clonal expansion of rare mutant clones, selected under the pressure of treatment. New technologies to detect low/ultra rare ESR1 mutations together with tissue and liquid biopsies are required to fully expose their clinical relevance in prognosis and treatment. Pre-clinical and clinical development of rationale-based novel therapeutic strategies to inhibit these mutants has the potential to substantially improve treatment outcomes. PMID:26122181

  18. Analysis of Endocrine Disrupting Pesticides by Capillary GC with Mass Spectrometric Detection

    PubMed Central

    Matisová, Eva; Hrouzková, Svetlana

    2012-01-01

    Endocrine disrupting chemicals, among them many pesticides, alter the normal functioning of the endocrine system of both wildlife and humans at very low concentration levels. Therefore, the importance of method development for their analysis in food and the environment is increasing. This also covers contributions in the field of ultra-trace analysis of multicomponent mixtures of organic pollutants in complex matrices. With this fact conventional capillary gas chromatography (CGC) and fast CGC with mass spectrometric detection (MS) has acquired a real importance in the analysis of endocrine disrupting pesticide (EDP) residues. This paper provides an overview of GC methods, including sample preparation steps, for analysis of EDPs in a variety of matrices at ultra-trace concentration levels. Emphasis is put on separation method, mode of MS detection and ionization and obtained limits of detection and quantification. Analysis time is one of the most important aspects that should be considered in the choice of analytical methods for routine analysis. Therefore, the benefits of developed fast GC methods are important. PMID:23202677

  19. Studying the effects of genistein on gene expression of fish embryos as an alternative testing approach for endocrine disruption.

    PubMed

    Schiller, Viktoria; Wichmann, Arne; Kriehuber, Ralf; Muth-Köhne, Elke; Giesy, John P; Hecker, Markus; Fenske, Martina

    2013-01-01

    Assessment of endocrine disruption currently relies on testing strategies involving adult vertebrates. In order to minimize the use of animal tests according to the 3Rs principle of replacement, reduction and refinement, we propose a transcriptomics and fish embryo based approach as an alternative to identify and analyze an estrogenic activity of environmental chemicals. For this purpose, the suitability of 48 h and 7 days post-fertilization zebrafish and medaka embryos to test for estrogenic disruption was evaluated. The embryos were exposed to the phytoestrogen genistein and subsequently analyzed by microarrays and quantitative real-time PCR. The functional analysis showed that the genes affected related to multiple metabolic and signaling pathways in the early fish embryo, which reflect the known components of genistein's mode of actions, like apoptosis, estrogenic response, hox gene expression and steroid hormone synthesis. Moreover, the transcriptomic data also suggested a thyroidal mode of action and disruption of the nervous system development. The parallel testing of two fish species provided complementary data on the effects of genistein at gene expression level and facilitated the separation of common from species-dependent effects. Overall, the study demonstrated that combining fish embryo testing with transcriptomics can deliver abundant information about the mechanistic effects of endocrine disrupting chemicals, rendering this strategy a promising alternative approach to test for endocrine disruption in a whole organism in-vitro scale system. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Discovery of the porcine NGN3 gene and testing its endocrine function in the pig

    USDA-ARS?s Scientific Manuscript database

    Neurogenin 3 (NGN3) is a member of the basic helix-loop-helix transcription factor family. NGN3 is both necessary and sufficient to drive endocrine differentiation in the developing pancreas in mouse and humans. Until now, the sequence for NGN3 eluded discovery despite completion of the pig genome a...

  1. Human biological monitoring of suspected endocrine-disrupting compounds

    PubMed Central

    Faniband, Moosa; Lindh, Christian H; Jönsson, Bo AG

    2014-01-01

    Endocrine-disrupting compounds are exogenous agents that interfere with the natural hormones of the body. Human biological monitoring is a powerful method for monitoring exposure to endocrine disrupting compounds. In this review, we describe human biological monitoring systems for different groups of endocrine disrupting compounds, polychlorinated biphenyls, brominated flame retardants, phthalates, alkylphenols, pesticides, metals, perfluronated compounds, parabens, ultraviolet filters, and organic solvents. The aspects discussed are origin to exposure, metabolism, matrices to analyse, analytical determination methods, determinants, and time trends. PMID:24369128

  2. Endocrine therapy toxicity: management options.

    PubMed

    Henry, N Lynn

    2014-01-01

    Treatment with adjuvant endocrine therapy, including tamoxifen and the aromatase inhibitors, has resulted in notable improvements in disease-free and overall survival for patients with hormone receptor-positive breast cancer. Despite their proven benefit, however, adherence to and persistence with the medications is poor in part because of bothersome side effects that can negatively affect quality of life. Retrospective analyses have identified possible predictors of development of toxicity. Reports have also suggested that development of toxicity may be a biomarker of better response to therapy. In addition, there has been considerable research investment into the management of these side effects, which may lead to improved adherence and persistence with therapy. However, although notable advances have been made, much more remains to be done to provide patients with truly personalized therapy for hormone receptor-positive breast cancer.

  3. Tributyltin: Advancing the science on assessing endocrine disruption with an unconventional endocrine-disrupting compound

    USGS Publications Warehouse

    Lagadic, Laurent; Katsiadaki, Ioanna; Biever, Ronald C.; Guiney, Patrick; Karouna-Renier, Natalie K.; Schwarz, Tamar; Meador, James P.

    2018-01-01

    Tributyltin (TBT) has been recognized as an endocrine disrupting chemical (EDC) for several decades. However, only in the last decade, was its primary endocrine mechanism of action (MeOA) elucidated—interactions with the nuclear retinoid-X receptor (RXR), peroxisome proliferator-activated receptor γ (PPARγ), and their heterodimers. This molecular initiating event (MIE) alters a range of reproductive, developmental, and metabolic pathways at the organism level. It is noteworthy that a variety of MeOAs have been proposed over the years for the observed endocrine-type effects of TBT; however, convincing data for the MIE was provided only recently and now several researchers have confirmed and refined the information on this MeOA. One of the most important lessons learned from years of research on TBT concerns apparent species sensitivity. Several aspects such as the rates of uptake and elimination, chemical potency, and metabolic capacity are all important for identifying the most sensitive species for a given chemical, including EDCs. For TBT, much of this was discovered by trial and error, hence important relationships and important sensitive taxa were not identified until several decades after its introduction to the environment. As recognized for many years, TBT-induced responses are known to occur at very low concentrations for molluscs, a fact that has more recently also been observed in fish species. This review explores the MeOA and effects of TBT in different species (aquatic molluscs and other invertebrates, fish, amphibians, birds, and mammals) according to the OECD Conceptual Framework for Endocrine Disruptor Testing and Assessment (CFEDTA). The information gathered on biological effects that are relevant for populations of aquatic animals was used to construct Species Sensitivity Distributions (SSDs) based on No Observed Effect Concentrations (NOECs) and Lowest Observed Effect Concentrations (LOECs). Fish appear at the lower end of these distributions

  4. Tributyltin: Advancing the Science on Assessing Endocrine Disruption with an Unconventional Endocrine-Disrupting Compound.

    PubMed

    Lagadic, Laurent; Katsiadaki, Ioanna; Biever, Ron; Guiney, Patrick D; Karouna-Renier, Natalie; Schwarz, Tamar; Meador, James P

    Tributyltin (TBT) has been recognized as an endocrine disrupting chemical (EDC) for several decades. However, only in the last decade, was its primary endocrine mechanism of action (MeOA) elucidated-interactions with the nuclear retinoid-X receptor (RXR), peroxisome proliferator-activated receptor γ (PPARγ), and their heterodimers. This molecular initiating event (MIE) alters a range of reproductive, developmental, and metabolic pathways at the organism level. It is noteworthy that a variety of MeOAs have been proposed over the years for the observed endocrine-type effects of TBT; however, convincing data for the MIE was provided only recently and now several researchers have confirmed and refined the information on this MeOA. One of the most important lessons learned from years of research on TBT concerns apparent species sensitivity. Several aspects such as the rates of uptake and elimination, chemical potency, and metabolic capacity are all important for identifying the most sensitive species for a given chemical, including EDCs. For TBT, much of this was discovered by trial and error, hence important relationships and important sensitive taxa were not identified until several decades after its introduction to the environment. As recognized for many years, TBT-induced responses are known to occur at very low concentrations for molluscs, a fact that has more recently also been observed in fish species. This review explores the MeOA and effects of TBT in different species (aquatic molluscs and other invertebrates, fish, amphibians, birds, and mammals) according to the OECD Conceptual Framework for Endocrine Disruptor Testing and Assessment (CFEDTA). The information gathered on biological effects that are relevant for populations of aquatic animals was used to construct Species Sensitivity Distributions (SSDs) based on No Observed Effect Concentrations (NOECs) and Lowest Observed Effect Concentrations (LOECs). Fish appear at the lower end of these distributions

  5. Endocrine Dysfunction in Diamond-Blackfan Anemia (DBA): A Report from the DBA Registry (DBAR).

    PubMed

    Lahoti, Amit; Harris, Yael T; Speiser, Phyllis W; Atsidaftos, Evangelia; Lipton, Jeffrey M; Vlachos, Adrianna

    2016-02-01

    Diamond-Blackfan anemia (DBA) is a rare inherited bone marrow failure syndrome. The mainstays of treatment involve chronic red cell transfusions, long-term glucocorticoid therapy, and stem cell transplantation. Systematic data concerning endocrine function in DBA are limited. We studied patients in the DBA Registry (DBAR) of North America to assess the prevalence of various endocrinopathies. In a pilot study, retrospective data were collected for 12 patients with DBA. Subsequently, patients with DBA aged 1-39 years were recruited prospectively. Combined, 57 patients were studied; 38 chronically transfused, 12 glucocorticoid-dependent, and seven in remission. Data were collected on anthropometric measurements, systematic screening of pituitary, thyroid, parathyroid, adrenal, pancreatic, and gonadal function, and ferritin levels. Descriptive statistics were tabulated and group differences were assessed. Fifty-three percent of patients had ≥ 1 endocrine disorder, including adrenal insufficiency (32%), hypogonadism (29%), hypothyroidism (14%), growth hormone dysfunction (7%), diabetes mellitus (2%), and/or diabetes insipidus (2%). Ten of the 33 patients with available heights had height standard deviation less than -2. Low 25-hydroxy vitamin D (25(OH)D) levels were present in 50%. A small proportion also had osteopenia, osteoporosis, or hypercalciuria. Most with adrenal insufficiency were glucocorticoid dependent; other endocrinopathies were more common in chronically transfused patients. Endocrine dysfunction is common in DBA, as early as the teenage years. Although prevalence is highest in transfused patients, patients taking glucocorticoids or in remission also have endocrine dysfunction. Longitudinal studies are needed to better understand the etiology and true prevalence of these disorders. © 2015 Wiley Periodicals, Inc.

  6. Altered time structure of neuro-endocrine-immune system function in lung cancer patients.

    PubMed

    Mazzoccoli, Gianluigi; Vendemiale, Gianluigi; De Cata, Angelo; Carughi, Stefano; Tarquini, Roberto

    2010-06-21

    patients. The melatonin/cortisol mean nocturnal level ratio was decreased in cancer patients. The altered secretion and loss of circadian rhythmicity of many studied factors observed in the subjects suffering from neoplastic disease may be expression of gradual alteration of the integrated function of the neuro-immune-endocrine system.

  7. Altered time structure of neuro-endocrine-immune system function in lung cancer patients

    PubMed Central

    2010-01-01

    cancer patients. The melatonin/cortisol mean nocturnal level ratio was decreased in cancer patients. Conclusion The altered secretion and loss of circadian rhythmicity of many studied factors observed in the subjects suffering from neoplastic disease may be expression of gradual alteration of the integrated function of the neuro-immune-endocrine system PMID:20565977

  8. [Reproduction, endocrine disorders and celiac disease: risk factors of osteoporosis].

    PubMed

    Stazi, A V; Trinti, B

    2006-04-01

    In genetically predisposed individuals, celiac disease (CD) is permanent intolerance to gluten. Besides the overt enteropathy, there are clinical and subclinical forms which appear later in life; target organs include liver, thyroid, skin and reproductive systems. CD interference is related to the different concurrent genetic-environmental factors, showing multifactorial nature. CD induces malabsorption with consequent deficiencies of micronutrients essential for organogenesis, spermatogenesis and bone structure, such as vitamin D and calcium. In fact, among extraintestinal manifestations of CD, osteoporosis deserves attention because it can be a sign of silent CD. In celiac patients' serum, cytochinic imbalance related to bone loss is present; in vitro these sera act on the osteoblastic activity. The IL-1b is also present in celiac patients' relatives, confirming the genetic predisposition to its etiopathogenesis which is also regulated by endocrine-environmental factors. In females, CD acts indirectly on the bone, determining early menopause and amenorrhea. Even frequent pregnancies and long periods of lactation can bring to bone loss; in such periods, silent CD can appear, suggesting the presence of endocrine-immunology factors. In celiac males, osteoporosis presence, besides calcium and vitamin D deficiencies, is associated to growth hormone deficit and hypogonadism, which is related to hyperprolactinemia, endocrine factors which affect the reproduction. Osteoporosis is relevant among the elderly and vitamin D and calcium supplementations are important to people diagnosed with CD later in life. Thus, to prevent damages such as osteoporosis, early CD screening among people with reproductive problems is necessary.

  9. Disruption of protein-tyrosine phosphatase 1B expression in the pancreas affects β-cell function.

    PubMed

    Liu, Siming; Xi, Yannan; Bettaieb, Ahmed; Matsuo, Kosuke; Matsuo, Izumi; Kulkarni, Rohit N; Haj, Fawaz G

    2014-09-01

    Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and energy balance. However, the role of PTP1B in pancreatic endocrine function remains largely unknown. To investigate the metabolic role of pancreatic PTP1B, we generated mice with pancreas PTP1B deletion (panc-PTP1B KO). Mice were fed regular chow or a high-fat diet, and metabolic parameters, insulin secretion and glucose tolerance were determined. On regular chow, panc-PTP1B KO and control mice exhibited comparable glucose tolerance whereas aged panc-PTP1B KO exhibited mild glucose intolerance. Furthermore, high-fat feeding promoted earlier impairment of glucose tolerance and attenuated glucose-stimulated insulin secretion in panc-PTP1B KO mice. The secretory defect in glucose-stimulated insulin secretion was recapitulated in primary islets ex vivo, suggesting that the effects were likely cell-autonomous. At the molecular level, PTP1B deficiency in vivo enhanced basal and glucose-stimulated tyrosyl phosphorylation of EphA5 in islets. Consistently, PTP1B overexpression in the glucose-responsive MIN6 β-cell line attenuated EphA5 tyrosyl phosphorylation, and substrate trapping identified EphA5 as a PTP1B substrate. In summary, these studies identify a novel role for PTP1B in pancreatic endocrine function.

  10. European Union's strategy on endocrine disrupting chemicals and the current position of Slovenia.

    PubMed

    Perharič, Lucija; Fatur, Tanja; Drofenik, Jernej

    2016-06-01

    In view of the European Union regulations 1107/2009 and 528/2012, which say that basic substances in plant protection and biocidal products marketed in the European Union (EU) should not have an inherent capacity to cause endocrine disruption, an initiative was started to define scientific criteria for the identification of endocrine disruptors (EDs). The objectives of the EU strategy on EDs are to protect human health and the environment, to assure the functioning of the market, and to provide clear and coherent criteria for the identification of EDs that could have broad application in the EU legislation. Policy issues were to be addressed by the Ad-hoc group of Commission Services, EU Agencies and Member States established in 2010, whereas the scientific issues were to be addressed by the Endocrine Disruptors Expert Advisory Group (ED EAG), established in 2011. The ED EAG adopted the 2002 World Health Organization (WHO) definition of endocrine disruptor and agreed that for its identification it is necessary to produce convincing evidence of a biologically plausible causal link between an adverse effect and endocrine disrupting mode of action. In 2014, the European Commission proposed four ED identification criteria options and three regulatory options, which are now being assessed for socio-economic, environmental, and health impact. Slovenia supports the establishing of identification criteria and favours option 4, according to which ED identification should be based on the WHO definition with the addition of potency as an element of hazard characterisation. As for regulatory options, Slovenia favours the risk-based rather than hazard-based regulation.

  11. Effects of preoperative oral carbohydrates and peptides on postoperative endocrine response, mobilization, nutrition and muscle function in abdominal surgery.

    PubMed

    Henriksen, M G; Hessov, I; Dela, F; Hansen, H Vind; Haraldsted, V; Rodt, S A

    2003-02-01

    Surgery is succeeded by long-lasting state of relative peripheral insulin resistance, which is reduced by giving glucose infusion or oral carbohydrate-rich drinks immediate before operating instead of fasting. The aim of the present study was to investigate whether oral carbohydrate or carbohydrate with peptide drinks preoperatively instead of fasting would improve postoperative voluntary muscle strength, nutritional intake and ambulation, decrease postoperative fatigue, anxiety and discomfort, and reduce the endocrine response to surgery. Forty-eight patients were included and randomized into three groups to receive 2 x 400 ml of carbohydrate-rich drinks or to fast overnight and allowed only water. Voluntary grip and quadriceps strength, body composition, pulmonary function, VAS-score of eight parameters of wellbeing, muscle biopsies and insulin, glucagon, IGF-1 and free fatty acids were measured before and after the operation. The basic postoperative regimen for all groups were immediate oral nutrition and early enforced mobilization. Significant postoperative decrease in glycogen synthase activity in the muscle biopsies was reduced in the intervention groups, and in combination, the intervention groups had a less reduced quadriceps strength after one week (-10% vs. -16%, NS) and one month (-5% vs. -13%, P < 0.05). Minor changes in the endocrine response to surgery were found without differences between the groups, and there were no differences between the groups in ambulation time, nutritional intake or subjective measures of wellbeing. Copyright Acta Anaesthesiologica Scandinavica 47 (2003)

  12. IDENTIFYING ENDOCRINE DISRUPTORS BY HIGH-RESOLUTION MASS SPECTROMETRY

    EPA Science Inventory

    The EPA is currently interested in human and ecosystem exposure to endocrine disruptors (1)-compounds that interfere with endogenous hormone systems. Possible endocrine disruptors in the environment include certain pesticides, industrial by-products, and pharmaceuticals. Such c...

  13. USE OF THE LABORATORY RAT AS A MODEL IN ENDOCRINE DISRUPTOR SCREENING AND TESTING

    EPA Science Inventory

    The screening and testing program the US Environmental Protection Agency is currently developing to detect endocrine-disrupting chemicals (EDCs) is described. EDCs have been shown to alter the following activities: hypothalamic-pituitary-gonadal [HPG] function; estrogen, androge...

  14. Research on Endocrine Disruptors

    EPA Pesticide Factsheets

    EPA researchers are developing innovative approaches, tools, models and data to improve the understanding of potential risks to human health and wildlife from chemicals that could disrupt the endocrine system.

  15. Developing Predictive Approaches to Characterize Adaptive Responses of the Reproductive Endocrine Axis to Aromatase Inhibition: Computational Modeling

    EPA Science Inventory

    Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We developed a mechanistic mathematical model of the hypothalamic-pituitary-gonadal (HPG) axis in female fathead minnows to predict dose-response and time-course (DRTC)...

  16. Developing Predictive Approaches to Characterize Adaptive Responses of the Reproductive Endocrine Axis to Aromatase Inhibition II: Computational Modeling

    EPA Science Inventory

    ABSTRACT Exposure to endocrine disrupting chemicals can affect reproduction and development in both humans and wildlife. We developed a mechanistic mathematical model of the hypothalamic­ pituitary-gonadal (HPG) axis in female fathead minnows to predic...

  17. Removal of phenolic endocrine disruptors by Portulaca oleracea.

    PubMed

    Imai, Sofue; Shiraishi, Atsuhiko; Gamo, Kazuaki; Watanabe, Ippei; Okuhata, Hiroshi; Miyasaka, Hitoshi; Ikeda, Kazunori; Bamba, Takeshi; Hirata, Kazumasa

    2007-05-01

    Portulaca oleracea, a garden plant prevalent from spring to autumn in Japan, showed the ability to efficiently remove from water bisphenol A (BPA), which is well known as an endocrine disrupting compound (EDC) having estrogenic properties. In water culture, 50 muM BPA was almost completely removed within 24 h when the ratio of whole plant weight to the water volume was set up at 1 g to 25 ml. The estrogenic activity of the water decreased in parallel with the elimination of BPA. This plant also rapidly removed other EDCs having a phenol group including octylphenol (OP), nonylphenol (NP), 2,4-dichlorophenol (2,4-DCP) and 17beta-estradiol and, thereby, removed the endocrine disrupting activities. In addition, the ability of P. oleracea to remove BPA was not affected by BPA concentration (up to 250 microM), by cultivation in the dark, by temperatures ranging from 15 degrees C to 30 degrees C, or by pH ranging from 4 to 7. Moreover, the ability of P. oleracea to individually remove BPA, NP, and OP was the same as when they were all present. These results suggest that P. oleracea is a promising material for practical phytoremediation of landfill leachates and industrial wastewater contaminated with the tested EDCs.

  18. Controversial endocrine interventions for the aged.

    PubMed

    Leow, M K S; Loh, K C

    2006-07-01

    Specific endocrine changes occur with the ageing process. The last decade has witnessed significant progress in the basic and clinical science of ageing, thereby rejuvenating the interest in anti-ageing medicine, especially that of hormone replacement, by medical professionals and the lay public. However, endocrine manipulation as a therapeutic strategy for ageing is still evolving as continuing research attempts to answer the many questions of what it can achieve at the risk of incurring unknown long-term adverse effects. The current day doctor is confronted with a host of options, and will benefit from a synopsis of the latest evidence before making the most appropriate decision for aged patients seeking hormonal replacement therapy as a means to counter the effects of ageing. This review aims to give a rapid overview of the endocrine profile of geriatric population and the studies on the more controversial hormonal replacement therapies for the aged.

  19. In silico predicted reproductive endocrine transcriptional regulatory networks during zebrafish (Danio rerio) development.

    PubMed

    Hala, D

    2017-03-21

    The interconnected topology of transcriptional regulatory networks (TRNs) readily lends to mathematical (or in silico) representation and analysis as a stoichiometric matrix. Such a matrix can be 'solved' using the mathematical method of extreme pathway (ExPa) analysis, which identifies uniquely activated genes subject to transcription factor (TF) availability. In this manuscript, in silico multi-tissue TRN models of brain, liver and gonad were used to study reproductive endocrine developmental programming in zebrafish (Danio rerio) from 0.25h post fertilization (hpf; zygote) to 90 days post fertilization (dpf; adult life stage). First, properties of TRN models were studied by sequentially activating all genes in multi-tissue models. This analysis showed the brain to exhibit lowest proportion of co-regulated genes (19%) relative to liver (23%) and gonad (32%). This was surprising given that the brain comprised 75% and 25% more TFs than liver and gonad respectively. Such 'hierarchy' of co-regulatory capability (brainendocrine function. Second, TRN models were constrained with varying TF availabilities during zebrafish development. Normalized numbers of genes active during development showed concomitant activations between brain and gonad from 10 to 12 hpf (embryonic life stage) up to 30-90 dpf (adult life stage). This indicated a putative 'syncing' between the brain and gonad, and initiation of an early reproductive endocrine developmental program. Finally, comparison of in vivo active genes with those predicted in silico showed relatively good agreement for brain (49%), liver (27%) and gonad (32%). The multi-tissue TRN models presented can lend diagnostic insights into the effects of changing environmental and/or genetic constraints on reproductive endocrine function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Endocrine disrupting effects of domestic wastewater on reproduction, sexual behavior, and gene expression in the brackish medaka Oryzias melastigma.

    PubMed

    Chen, Te-Hao; Chou, Shi-Ming; Tang, Cheng-Hao; Chen, Chia-Yang; Meng, Pei-Jie; Ko, Fung-Chi; Cheng, Jing-O

    2016-05-01

    The objective of this study was to investigate the endocrine disrupting effects of domestic wastewater on fish using the brackish medaka Oryzias melastigma as the animal model. Estuarine water samples were collected from Sihchong Creek and Baoli Creek estuaries, Taiwan, in March of 2012 to assess the whole effluent toxicity (WET) of domestic wastewater produced by the local residents and tourists. Chemical analysis detected various pharmaceuticals and personal care products (PPCPs) in the field water samples. Some of these PPCPs are endocrine disrupting chemicals. In the laboratory-based bioassay, breeding pairs were exposed to the water samples (Sihchong, Baoli, and control) for 21 days. Cumulative number of eggs spawned was significantly higher in the Sihchong group. While fish swimming activity was not affected, sexual behavior of the male fish was significantly induced in both Sihchong and Baoli groups. Male and female gonad histology was not affected. Expression level of biomarker genes CYP1A1, HSP70, and VTG was significantly induced in the Sihchong group. This study indicates that the mixture of contaminants contained in the estuarine water may cause endocrine disrupting effects in fish. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Endocrine-immune interactions in human endometrium.

    PubMed

    Kayisli, U A; Guzeloglu-Kayisli, O; Arici, A

    2004-12-01

    The immune system is a complex entity designed to eliminate foreign intruding antigens and is influenced by and, in turn, influences the function of the reproductive system. Despite the widespread associations between immunology and reproductive medicine, the study of system interactions remains in its infancy. Many diverse facts are accumulating, and pieces of the puzzle are becoming available to provide a clearer picture. In this review article, we focus on the interactions between endocrine and immune systems in the human endometrium. Understanding the molecular pathways in endocrine-immune interactions in the human endometrium is crucial to understand events such as menstrual bleeding, tissue repair and regeneration, inflammation, angiogenesis, blastocyst implantation, and progression of pregnancy. These events require a balanced regulation of endometrial differentiation, proliferation, cell survival, leukocyte recruitment, apoptosis, and angiogenesis by sex steroids. In this review, we first outline the role of survival factors such as phosphoinositol 3-kinase/protein kinase B, PTEN, NFkappaB, and apoptotic molecules (Fas-FasL, Bcl-2). We then discuss their regulation by estrogen and progesterone in the endometrium. We present evidence for direct and/or indirect roles of steroid hormones on the expression of chemotactic cytokines (interleukin-8 and monocyte chemotactic protein-1) and on the survival versus apoptosis of resident endometrial cells (stromal, epithelial, and endothelial cells) and nonresident cells (leukocytes).

  2. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy.

    PubMed

    Hofmann, Lars; Forschner, Andrea; Loquai, Carmen; Goldinger, Simone M; Zimmer, Lisa; Ugurel, Selma; Schmidgen, Maria I; Gutzmer, Ralf; Utikal, Jochen S; Göppner, Daniela; Hassel, Jessica C; Meier, Friedegund; Tietze, Julia K; Thomas, Ioannis; Weishaupt, Carsten; Leverkus, Martin; Wahl, Renate; Dietrich, Ursula; Garbe, Claus; Kirchberger, Michael C; Eigentler, Thomas; Berking, Carola; Gesierich, Anja; Krackhardt, Angela M; Schadendorf, Dirk; Schuler, Gerold; Dummer, Reinhard; Heinzerling, Lucie M

    2016-06-01

    Anti-programmed cell death receptor-1 (PD-1) antibodies represent an effective treatment option for metastatic melanoma as well as for other cancer entities. They act via blockade of the PD-1 receptor, an inhibitor of the T-cell effector mechanisms that limit immune responses against tumours. As reported for ipilimumab, the anti-PD-1 antibodies pembrolizumab and nivolumab can induce immune-related adverse events (irAEs). These side-effects affect skin, gastrointestinal tract, liver, endocrine system and other organ systems. Since life-threatening and fatal irAEs have been reported, adequate diagnosis and management are essential. In total, 496 patients with metastatic melanoma from 15 skin cancer centers were treated with pembrolizumab or nivolumab; 242 side-effects were described in 138 patients. In 116 of the 138 patients, side-effects affected the skin, gastrointestinal tract, liver, endocrine, and renal system. Rare side-effects included diabetes mellitus, lichen planus, and pancreas insufficiency due to pancreatitis. Anti-PD1 antibodies can induce a plethora of irAEs. The knowledge of them will allow prompt diagnosis and improve the management resulting in decreased morbidity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Pancreas Volume and Fat Deposition in Diabetes and Normal Physiology: Consideration of the Interplay Between Endocrine and Exocrine Pancreas.

    PubMed

    Saisho, Yoshifumi

    2016-01-01

    The pancreas is comprised of exocrine and endocrine components. Despite the fact that they are derived from a common origin in utero, these two compartments are often studied individually because of the different roles and functions of the exocrine and endocrine pancreas. Recent studies have shown that not only type 1 diabetes (T1D), but also type 2 diabetes (T2D), is characterized by a deficit in beta-cell mass, suggesting that pathological changes in the pancreas are critical events in the natural history of diabetes. In both patients with T1D and those with T2D, pancreas mass and exocrine function have been reported to be reduced. On the other hand, pancreas volume and pancreatic fat increase with obesity. Increased beta-cell mass with increasing obesity has also been observed in humans, and ectopic fat deposits in the pancreas have been reported to cause beta-cell dysfunction. Moreover, neogenesis and transdifferentiation from the exocrine to the endocrine compartment in the postnatal period are regarded as a source of newly formed beta-cells. These findings suggest that there is important interplay between the endocrine and exocrine pancreas throughout life. This review summarizes the current knowledge on physiological and pathological changes in the exocrine and endocrine pancreas (i.e., beta-cell mass), and discusses the potential mechanisms of the interplay between the two compartments in humans to understand the pathophysiology of diabetes better.

  4. Pancreas Volume and Fat Deposition in Diabetes and Normal Physiology: Consideration of the Interplay Between Endocrine and Exocrine Pancreas

    PubMed Central

    Saisho, Yoshifumi

    2016-01-01

    The pancreas is comprised of exocrine and endocrine components. Despite the fact that they are derived from a common origin in utero, these two compartments are often studied individually because of the different roles and functions of the exocrine and endocrine pancreas. Recent studies have shown that not only type 1 diabetes (T1D), but also type 2 diabetes (T2D), is characterized by a deficit in beta-cell mass, suggesting that pathological changes in the pancreas are critical events in the natural history of diabetes. In both patients with T1D and those with T2D, pancreas mass and exocrine function have been reported to be reduced. On the other hand, pancreas volume and pancreatic fat increase with obesity. Increased beta-cell mass with increasing obesity has also been observed in humans, and ectopic fat deposits in the pancreas have been reported to cause beta-cell dysfunction. Moreover, neogenesis and transdifferentiation from the exocrine to the endocrine compartment in the postnatal period are regarded as a source of newly formed beta-cells. These findings suggest that there is important interplay between the endocrine and exocrine pancreas throughout life. This review summarizes the current knowledge on physiological and pathological changes in the exocrine and endocrine pancreas (i.e., beta-cell mass), and discusses the potential mechanisms of the interplay between the two compartments in humans to understand the pathophysiology of diabetes better. PMID:28012279

  5. [The relative analysis of clinical endocrine features and pathological types of pituitary microadenomas].

    PubMed

    Yan, Qing; Zhang, Hua-qiu; Wang, He-ping; Guo, Dong-sheng; Lei, Ting; Li, Ling

    2010-06-15

    To study the relationship between the clinical presentation, endocrinal findings and pathological types in patients with pituitary microadenomas, so as to improve the accuracy of clinical diagnosis and choose the best therapy strategy before the operation. From January 2007 to June 2009, the clinical data of 94 patients who were surgically removed pituitary microadenomas were obtained, including the clinical presentation, endocrinal findings and pathological diagnosis. The analysis was accomplished with Chi-square test. Hormonal symptoms were found in 86 patients (91.5%), it occurred more frequently in immunopositive patients (85/92, 92.4%) than in immunonegative patients (1/2, 50.0%) (P < 0.05). The coincidence of hormonal symptoms and immunohistochemistry diagnosis was 71.7%; 88.9% patients had the symptoms of amenorrhea, galactorrhea and sexual function diseases in prolactin (PRL) positive group and 28.1% patients had the symptoms of gigantism or acromegaly in growth hormone (GH) positive group. The coincidence of endocrinal findings and immunohistochemistry diagnosis was 69.0%; 87.7% patients had high level of blood PRL in PRL positive group and 21.9% patients had high level of blood GH in GH positive group. There is an obvious relationship between the clinical presentation, endocrinal findings and pathological diagnosis in patients with pituitary microadenomas, which may contribute to the clinical diagnosis and treatment of pituitary secreting microadenomas.

  6. Endocrine Disruptor Screening Program (EDSP) 1998 Federal Register Notices

    EPA Pesticide Factsheets

    EPA outlined the Endocrine Disruptor Screening Program (EDSP), which incorporated many of the Endocrine Disruptor Screening and Testing Advisory Committee's (EDSTAC) recommendations, in two Federal Register Notices published in 1998.

  7. Predominant Improvement of Alpha Cell Function after Steroid Therapy in a Patient with Autoimmune Pancreatitis: Case Report.

    PubMed

    Takeshima, Ken; Ariyasu, Hiroyuki; Iwakura, Hiroshi; Kawai, Shintaro; Uraki, Shinsuke; Inaba, Hidefumi; Furuta, Machi; Warigaya, Kenji; Murata, Shin-Ichi; Akamizu, Takashi

    2018-06-01

    Autoimmune pancreatitis (AIP) is a subset of inflammatory pancreatic disease, responsive to corticosteroid therapy. It is prone to being affected by diabetes mellitus, but the effectiveness of steroid therapy on pancreatic endocrine function is still controversial. We present a case of AIP, focusing on pancreatic endocrine function after steroid therapy. The patient was referred to our hospital with exacerbation of diabetic control and pancreatic swelling. By admission, the insulin secretory capacity was severely impaired. The patient was diagnosed with AIP and treated with prednisolone, resulting in marked improvement of the pancreatic swelling. Glycemic control worsened transiently after initiation of steroid therapy, but insulin requirements decreased along with tapering prednisolone dosage. Pancreatic cytology showed that the acinar structure had been destroyed, and the islets had disappeared. Insulin and glucagon immunostaining revealed slightly scattered alpha and beta cells within the fibrotic stroma. The patient notably showed improved pancreatic alpha cell function predominantly after steroid therapy, despite partial improvement of beta cell function. An imbalance between alpha and beta cell function may contribute to insufficient diabetic control in some patients with AIP. The pancreatic endocrine function test in combination with pancreatic cytology could be helpful when considering the treatment strategy for diabetic control in patients with AIP.

  8. Tumors of the endocrine/neuroendocrine system: an overview.

    PubMed

    Erlandson, R A; Nesland, J M

    1994-01-01

    For the sake of discussion, the markedly diversified tumors of the endocrine/neuroendocrine system are classified as those originating in classic epithelial endocrine organs (eg, adrenal cortical adenomas), from the diffuse endocrine cells (eg, jejunal carcinoid tumors), or from clusters of these cells (eg, islet cell tumors); and those arising from neurosecretory neurons (eg, neuroblastoma) or paraganglia (eg, carotid body tumor). Although traditional transmission electron microscopy is useful for identifying neurosecretory or endosecretory granules as such, with few exceptions (eg, insulin-containing granules with a complex paracrystalline core) it is not possible to ascribe a granule type (size, shape, or ultrastructure) to a distinct nosologic entity or secretory product because of their overlapping fine structures in different cell types. Immunoelectron microscopy methods utilizing colloidal gold-labeled secondary antibodies can be used to localize virtually any antigen (peptide or neuroamine) to a specific neurosecretory or endosecretory granule or other cell structure. General endocrine/neuroendocrine cell markers such as neuron-specific enolase, the chromogranins, and synaptophysin are useful in identifying neuroendocrine differentiation in a neoplasm using routine immunohistochemical procedures. The current relevance of the APUD concept of Pearse as well as the biologic importance of endocrine/neuroendocrine secretory products such as bombesin and insulinlike growth factors also are discussed.

  9. Gestational Exposure to Bisphenol A Affects the Function and Proteome Profile of F1 Spermatozoa in Adult Mice

    PubMed Central

    Rahman, Md Saidur; Kwon, Woo-Sung; Karmakar, Polash Chandra; Yoon, Sung-Jae; Ryu, Buom-Yong; Pang, Myung-Geol

    2016-01-01

    Background: Maternal exposure to the endocrine disruptor bisphenol A (BPA) has been linked to offspring reproductive abnormalities. However, exactly how BPA affects offspring fertility remains poorly understood. Objectives: The aim of the present study was to evaluate the effects of gestational BPA exposure on sperm function, fertility, and proteome profile of F1 spermatozoa in adult mice. Methods: Pregnant CD-1 mice (F0) were gavaged with BPA at three different doses (50 μg/kg bw/day, 5 mg/kg bw/day, and 50 mg/kg bw/day) on embryonic days 7 to 14. We investigated the function, fertility, and related processes of F1 spermatozoa at postnatal day 120. We also evaluated protein profiles of F1 spermatozoa to monitor their functional affiliation to disease. Results: BPA inhibited sperm count, motility parameters, and intracellular ATP levels in a dose-dependent manner. These effects appeared to be caused by reduced numbers of stage VIII seminiferous epithelial cells in testis and decreased protein kinase A (PKA) activity and tyrosine phosphorylation in spermatozoa. We also found that BPA compromised average litter size. Proteins differentially expressed in spermatozoa from BPA treatment groups are known to play a critical role in ATP generation, oxidative stress response, fertility, and in the pathogenesis of several diseases. Conclusions: Our study provides mechanistic support for the hypothesis that gestational exposure to BPA alters sperm function and fertility via down-regulation of tyrosine phosphorylation through a PKA-dependent mechanism. In addition, we anticipate that the BPA-induced changes in the sperm proteome might be partly responsible for the observed effects in spermatozoa. Citation: Rahman MS, Kwon WS, Karmakar PC, Yoon SJ, Ryu BY, Pang MG. 2017. Gestational exposure to bisphenol-A affects the function and proteome profile of F1 spermatozoa in adult mice. Environ Health Perspect 125:238–245; http://dx.doi.org/10.1289/EHP378 PMID:27384531

  10. Caloric restriction: Impact upon pituitary function and reproduction

    PubMed Central

    Martin, Bronwen; Golden, Erin; Carlson, Olga D.; Egan, Josephine M.; Mattson, Mark P.; Maudsley, Stuart

    2008-01-01

    Reduced energy intake, or caloric restriction (CR), is known to extend life span and to retard age-related health decline in a number of different species, including worms, flies, fish, mice and rats. CR has been shown to reduce oxidative stress, improve insulin sensitivity, and alter neuroendocrine responses and central nervous system (CNS) function in animals. CR has particularly profound and complex actions upon reproductive health. At the reductionist level the most crucial physiological function of any organism is its capacity to reproduce. For a successful species to thrive, the balance between available energy (food) and the energy expenditure required for reproduction must be tightly linked. An ability to coordinate energy balance and fecundity involves complex interactions of hormones from both the periphery and the CNS and primarily centers upon the master endocrine gland, the anterior pituitary. In this review article we review the effects of CR on pituitary gonadotrope function and on the male and female reproductive axes. A better understanding of how dietary energy intake affects reproductive axis function and endocrine pulsatility could provide novel strategies for the prevention and management of reproductive dysfunction and its associated comorbidities. PMID:18329344

  11. AN INTERLABORATORY STUDY ON THE USE OF STEROID HORMONES IN EVALUATING ENDOCRINE DISRUPTION

    EPA Science Inventory

    In recent years, there has been an increased use of the measurement of sex steroid hormone levels in the blood of animals exposed to chemicals as an indicator of reproductive impairment or an alteration in endocrine function. Although levels of hormones are often compared among a...

  12. AN INTERLABORATORY STUDY ON THE USE OF STERIOD HORMONES IN EXAMINING ENDOCRINE DISRUPTION.

    EPA Science Inventory

    In recent years, there has been an increased use of the measurement of sex steroid hormone levels in the blood of animals exposed to chemicals as an indicator of reproductive impairment or an alteration in endocrine function. Although levels of hormones are often compared among a...

  13. Subjective, Autonomic, and Endocrine Reactivity during Social Stress in Children with Social Phobia

    ERIC Educational Resources Information Center

    Kramer, Martina; Seefeldt, Wiebke Lina; Heinrichs, Nina; Tuschen-Caffier, Brunna; Schmitz, Julian; Wolf, Oliver Tobias; Blechert, Jens

    2012-01-01

    Reports of exaggerated anxiety and physiological hyperreactivity to social-evaluative situations are characteristic of childhood social phobia (SP). However, laboratory research on subjective, autonomic and endocrine functioning in childhood SP is scarce, inconsistent and limited by small sample sizes, limited breadth of measurements, and the use…

  14. Endocrine and exocrine pancreatic insufficiency after acute pancreatitis: long-term follow-up study.

    PubMed

    Tu, Jianfeng; Zhang, Jingzhu; Ke, Lu; Yang, Yue; Yang, Qi; Lu, Guotao; Li, Baiqiang; Tong, Zhihui; Li, Weiqin; Li, Jieshou

    2017-10-27

    Patients could develop endocrine and exocrine pancreatic insufficiency after acute pancreatitis (AP), but the morbidity, risk factors and outcome remain unclear. The aim of the present study was to evaluate the incidence of endocrine and exocrine pancreatic insufficiency after AP and the risk factors of endocrine pancreatic insufficiency through a long-term follow-up investigation. Follow-up assessment of the endocrine and exocrine function was conducted for the discharged patients with AP episodes. Oral Glucose Tolerance Test (OGTT) and faecal elastase-1(FE-1) test were used as primary parameters. Fasting blood-glucose (FBG), fasting insulin (FINS), glycosylated hemoglobin HBA1c, 2-h postprandial blood glucose (2hPG), Homa beta cell function index (HOMA-β), homeostasis model assessment of insulin resistance (HOMA-IR) and FE-1 were collected. Abdominal contrast-enhanced computed tomography (CECT) was performed to investigate the pancreatic morphology and the other related data during hospitalization was also collected. One hundred thirteen patients were included in this study and 34 of whom (30.1%) developed diabetes mellitus (DM), 33 (29.2%) suffered impaired glucose tolerance (IGT). Moreover, 33 patients (29.2%) developed mild to moderate exocrine pancreatic insufficiency with 100μg/gendocrine pancreatic insufficiency. HOMA-IR (P = 0.002, OR = 6.626), Wall-off necrosis (WON) (P = 0.013, OR = 184.772) were the risk factors. The integrated morbidity of DM and IGT after AP was 59.25%, which was higher than exocrine pancreatic

  15. Neuro-Modulation of Immuno-Endocrine Response Induced by Kaliotoxin of Androctonus Scorpion Venom.

    PubMed

    Ladjel-Mendil, Amina; Martin-Eauclaire, Marie-France; Laraba-Djebari, Fatima

    2016-12-01

    Kaliotoxin (KTX), a specific blocker of potassium channels, exerts various toxic effects due to its action on the central nervous system. Its use in experimental model could help the understanding of the cellular and molecular mechanisms involved in the neuropathological processes related to potassium channel dysfunctions. In this study, the ability of KTX to stimulate neuro-immuno-endocrine axis was investigated. As results, the intracerebroventricular injection of KTX leads to severe structural-functional alterations of both hypothalamus and thyroid. These alterations were characterized by a massive release of hormones' markers of thyroid function associated with damaged tissue which was infiltrated by inflammatory cell and an imbalanced redox status. Taken together, these data highlight that KTX is able to modulate the neuro-endocrine response after binding to its targets leading to the hypothalamus and the thyroid stimulation, probably by inflammatory response activation and the installation of oxidative stress in these organs. © 2016 Wiley Periodicals, Inc.

  16. Endocrine Aspects of Environmental “Obesogen” Pollutants

    PubMed Central

    Nappi, Francesca; Barrea, Luigi; Di Somma, Carolina; Savanelli, Maria Cristina; Muscogiuri, Giovanna; Orio, Francesco; Savastano, Silvia

    2016-01-01

    Growing evidence suggests the causal link between the endocrine-disrupting chemicals (EDCs) and the global obesity epidemics, in the context in the so-called “obesogenic environment”. Dietary intake of contaminated foods and water, especially in association with unhealthy eating pattern, and inhalation of airborne pollutants represent the major sources of human exposure to EDCs. This is of particular concern in view of the potential impact of obesity on chronic non-transmissible diseases, such as type 2 diabetes, cardiovascular disease, and hormone-sensitive cancers. The key concept is the identification of adipose tissue not only as a preferential site of storage of EDCs, but also as an endocrine organ and, as such, susceptible to endocrine disruption. The timing of exposure to EDCs is critical to the outcome of that exposure, with early lifetime exposures (e.g., fetal or early postnatal) particularly detrimental because of their permanent effects on obesity later in life. Despite that the mechanisms operating in EDCs effects might vary enormously, this minireview is aimed to provide a general overview on the possible association between the pandemics of obesity and EDCs, briefly describing the endocrine mechanisms linking EDCs exposure and latent onset of obesity. PMID:27483295

  17. Adipose Tissue as an Endocrine Organ: An Update on Pro-inflammatory and Anti-inflammatory Microenvironment.

    PubMed

    Smitka, Kvido; Marešová, Dana

    2015-01-01

    Adipose tissue is recognized as an active endocrine organ that produces a number of endocrine substances referred to as "adipokines" including leptin, adiponectin, adipolin, visfatin, omentin, tumour necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), resistin, pigment epithelium-derived factor (PEDF), and progranulin (PGRN) which play an important role in the food intake regulation and significantly influence insulin sensitivity and in some cases directly affect insulin resistance in skeletal muscle, liver, and adipose tissue. The review summarizes current knowledge about adipose tissue-derived hormones and their influence on energy homeostasis regulation. The possible therapeutic potential of these adipokines in the treatment of insulin resistance, endothelial dysfunction, a pro-inflammatory response, obesity, eating disorders, progression of atherosclerosis, type 1 diabetes, and type 2 diabetes is discussed.

  18. Training our Future Endocrine Surgeons: A Look at the Endocrine Surgery Operative Experience of U.S. Surgical Residents

    PubMed Central

    Zarebczan, Barbara; Rajamanickam, Victoria; Leverson, Glen; Chen, Herbert; Sippel, Rebecca S

    2010-01-01

    Background Over the last 10 years the number of endocrine procedures performed in the US has increased significantly. We sought to determine if this has translated into an increase in operative volume for general surgery and otolaryngology residents. Method We evaluated records from the Resident Statistic Summaries of the RRC for US general surgery and otolaryngology residents for the years 2004-2008, specifically examining data on thyroidectomies and parathyroidectomies. Results Between 2004 and 2008, the average endocrine case volume of US general surgery and otolaryngology residents increased by approximately 15%, but otolaryngology residents performed over twice as many operations as US general surgery residents. The growth in case volume was mostly due to increases in the number of thyroidectomies performed by US general surgery and otolaryngology residents (17.9 to 21.8, p=0.007 and 46.5 to 54.4, p=0.04). Overall, otolaryngology residents also performed more parathyroidectomies than their general surgery counterparts (11.6 vs. 8.8, p=0.007). Conclusion Although there has been an increase in the number of endocrine cases performed by graduating US general surgery residents, this is significantly smaller than that of otolaryngology residents. In order to remain competitive, general surgery residents wishing to practice endocrine surgery may need to pursue additional fellowship training. PMID:21134536

  19. Diagnosis and treatment of endocrine comorbidities in patients with cystic fibrosis.

    PubMed

    Siwamogsatham, Oranan; Alvarez, Jessica A; Tangpricha, Vin

    2014-10-01

    The aim of this review is to provide an update on various relevant endocrine aspects of care in adolescents and adults with cystic fibrosis. As life expectancy in cystic fibrosis has continuously improved, endocrine complications have become more apparent. The common endocrine complications include cystic fibrosis related diabetes, cystic fibrosis related bone disease, vitamin D deficiency and poor growth and pubertal development. Thyroid and adrenal disorders have also been reported, although the prevalence appears to be less common. Endocrine diseases are an increasingly recognized complication that has a significant impact on the overall health of individuals with cystic fibrosis. This review summarizes the updated screening and management of endocrine diseases in the cystic fibrosis population.

  20. The multigenerational effects of water contamination and endocrine disrupting chemicals on the fitness of Drosophila melanogaster.

    PubMed

    Quesada-Calderón, Suany; Bacigalupe, Leonardo Daniel; Toro-Vélez, Andrés Fernando; Madera-Parra, Carlos Arturo; Peña-Varón, Miguel Ricardo; Cárdenas-Henao, Heiber

    2017-08-01

    Water pollution due to human activities produces sedimentation, excessive nutrients, and toxic chemicals, and this, in turn, has an effect on the normal endocrine functioning of living beings. Overall, water pollution may affect some components of the fitness of organisms (e.g., developmental time and fertility). Some toxic compounds found in polluted waters are known as endocrine disruptors (ED), and among these are nonhalogenated phenolic chemicals such as bisphenol A and nonylphenol. To evaluate the effect of nonhalogenated phenolic chemicals on the endocrine system, we subjected two generations (F0 and F1) of Drosophila melanogaster to different concentrations of ED. Specifically, treatments involved wastewater, which had the highest level of ED (bisphenol A and nonylphenol) and treated wastewater from a constructed Heliconia psittacorum wetland with horizontal subsurface water flow (He); the treated wastewater was the treatment with the lowest level of ED. We evaluated the development time from egg to pupa and from pupa to adult as well as fertility. The results show that for individuals exposed to treated wastewater, the developmental time from egg to pupae was shorter in individuals of the F1 generation than in the F0 generation. Additionally, the time from pupae to adult was longer for flies growing in the H. psittacorum treated wastewater. Furthermore, fertility was lower in the F1 generation than in the F0 generation. Although different concentrations of bisphenol A and nonylphenol had no significant effect on the components of fitness of D. melanogaster (developmental time and fertility), there was a trend across generations, likely as a result of selection imposed on the flies. It is possible that the flies developed different strategies to avoid the effects of the various environmental stressors.

  1. Retinol Dehydrogenase-10 Regulates Pancreas Organogenesis and Endocrine Cell Differentiation via Paracrine Retinoic Acid Signaling.

    PubMed

    Arregi, Igor; Climent, Maria; Iliev, Dobromir; Strasser, Jürgen; Gouignard, Nadège; Johansson, Jenny K; Singh, Tania; Mazur, Magdalena; Semb, Henrik; Artner, Isabella; Minichiello, Liliana; Pera, Edgar M

    2016-12-01

    Vitamin A-derived retinoic acid (RA) signals are critical for the development of several organs, including the pancreas. However, the tissue-specific control of RA synthesis in organ and cell lineage development has only poorly been addressed in vivo. Here, we show that retinol dehydrogenase-10 (Rdh10), a key enzyme in embryonic RA production, has important functions in pancreas organogenesis and endocrine cell differentiation. Rdh10 was expressed in the developing pancreas epithelium and surrounding mesenchyme. Rdh10 null mutant mouse embryos exhibited dorsal pancreas agenesis and a hypoplastic ventral pancreas with retarded tubulogenesis and branching. Conditional disruption of Rdh10 from the endoderm caused increased mortality, reduced body weight, and lowered blood glucose levels after birth. Endodermal Rdh10 deficiency led to a smaller dorsal pancreas with a reduced density of early glucagon + and insulin + cells. During the secondary transition, the reduction of Neurogenin3 + endocrine progenitors in the mutant dorsal pancreas accounted for fewer α- and β-cells. Changes in the expression of α- and β-cell-specific transcription factors indicated that Rdh10 might also participate in the terminal differentiation of endocrine cells. Together, our results highlight the importance of both mesenchymal and epithelial Rdh10 for pancreogenesis and the first wave of endocrine cell differentiation. We further propose a model in which the Rdh10-expressing exocrine tissue acts as an essential source of RA signals in the second wave of endocrine cell differentiation.

  2. Polychlorinated biphenyls, mercury, and potential endocrine disruption in fish from the Hudson River, New York, USA

    USGS Publications Warehouse

    Baldigo, Barry P.; Sloan, R.J.; Smith, S.B.; Denslow, N.D.; Blazer, V.S.; Gross, T.S.

    2006-01-01

    Tissue residues of total mercury (Hg), total polychlorinated biphenyls (PCBs), and lipid-based PCBs; plasma concentrations of endocrine biomarkers; and reproductive and histologic biomarkers were assessed in 460 carp (Cyprinus carpio), bass (Micropterus salmoides and Micropterus dolomieui), and bullhead (Ameiurus nebulosus) collected from eight sites across the Hudson River Basin in the spring of 1998 to determine if endocrine disruption was evident in resident fish species and to evaluate contaminant-biomarker interrelations. Total PCBs in bed sediments (maximum 2,500 ??g kg-1) could explain 64 to 90% of the variability in lipid-based PCB residues in tissues (maximum 1,250 ??g PCB g-lipid-1) of the four species. The 17??-estradiol to 11-ketotestosterone ratio, typically less than 1.0 in male fish and greater than 1.0 in females, exceeded 1.4 in all male largemouth bass and 35% of male carp and bullhead at one site 21 km downstream from a major PCB source. Endocrine biomarkers were significantly correlated with total Hg in female smallmouth bass and carp, and with lipid-based PCBs in males of all four species. Empirical evidence of endocrine modulation in blood plasma of male and female fish from sites with and without high PCB residues in bed sediments and fish tissues suggest that PCBs, Hg, or other contaminants may disrupt normal endocrine function in fish of the Hudson River. ?? Eawag, 2006.

  3. In vitro steroid profiling system for the evaluation of endocrine disruptors.

    PubMed

    Nakano, Yosuke; Yamashita, Toshiyuki; Okuno, Masashi; Fukusaki, Eiichiro; Bamba, Takeshi

    2016-09-01

    Endocrine disruptors (ED) are chemicals that affect various aspects of the endocrine system, often leading to the inhibition of steroidogenesis. Current chemical safety policies that restrict human exposure to such chemicals describe often time-consuming and costly methods for the evaluation of ED effects. We aimed to develop an effective tool for accurate phenotypic chemical toxicology studies. We developed an in vitro ED evaluation system using gas chromatography/mass spectrometry (GC/MS/MS) methods for metabolomic analysis of multi-marker profiles. Accounting for sample preparation and GC/MS/MS conditions, we established a screening method that allowed the simultaneous analysis of 17 steroids with good reproducibility and a linear calibration curve. Moreover, we applied the developed system to H295R human adrenocortical cells exposed to forskolin and prochloraz in accordance with the Organization for Economic Cooperation and Development (OECD) guidelines and observed dose-dependent variations in steroid profiles. While the OECD guidelines include only testosterone and 17β-estradiol, our system enabled a comprehensive and highly sensitive analysis of steroid profile alteration due to ED exposure. The application of our ED evaluation screen could be economical and provide novel insights into the hazards of ED exposure to the endocrine system. Copyright © 2016 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Environmental Analysis of Endocrine Disrupting Effects from Hydrocarbon Contaminants in the Ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLachlan, John A.

    2000-06-01

    This annual report summarizes the progress of three years of a three-year grant awarded to the Center for Bioenvironmental Research (CBR) at Tulane and Xavier Universities. The objective of this project is to determine how environmental contaminants, namely hydrocarbons, can act as hormones or anti-hormones in different species present in aquatic ecosystems. The three major areas of research include (1) a biotechnology based screening system to identify potential hormone mimics and antagonists; (2) an animal screening system to identify biomarkers of endocrine effects; and (3) a literature review to identify compounds at various DOE sites that are potential endocrine disruptors.more » Species of particular focus in this study are those which can serve as sentinel species (e.g., amphibians) and, thus, provide early warning signals for more widespread impacts on an ecosystem and its wildlife and human inhabitants. The focus of the literature research was to provide an analysis of the contaminants located on or around various Department of Energy (DOE) sites that are or have the potential to function as endocrine disruptors and to correlate the need for studying endocrine disruptors to DOE's programmatic needs. Previous research within the Center for Bioenvironmental Research at Tulane and Xavier Universities has focused on understanding the effects of environmental agents on the human and wildlife health and disease. In particular this research has focused on how exogenous agents can function to mimic or disrupt normal endocrine signaling, i.e. estrogen, thyroid within various systems from whole animal studies with fish, amphibians and insects to human cancer cell lines. Significant work has focused on the estrogenic and anti-estrogenic action of both synthetic organochlorine chemicals and naturally produced phytochemicals. Recent projects have extended these research objectives to examination of these environmental agents on the symbiotic relationship between

  5. Bisphenol A: an endocrine and metabolic disruptor.

    PubMed

    Fenichel, Patrick; Chevalier, Nicolas; Brucker-Davis, Françoise

    2013-07-01

    Bisphenol A (BPA), initially designed, like diethylstilbestrol, as a synthetic estrogen, has been rapidly and widely used for its cross-linking properties in the manufacture of polycarbonate plastics and epoxy resins. Because of incomplete polymerization and degradation of the polymers by exposure to higher than usual temperatures, BPA leaches out from food and beverage containers, as well as from dental sealants. In humans, free active unconjugated BPA is metabolized by rapid glucurono- or sulfo-conjugation and eliminated via renal clearance. However, exposure to environmental nanomolar concentrations of BPA is ubiquitous and continuous via different routes: oral, air, skin. In rodents, fetal and perinatal exposure to such environmentally relevant doses of BPA has been shown to affect the brain, liver, gut, adipose tissue, endocrine pancreas, mammary gland and reproductive tract and function. Similar concentrations are also able in vitro to impact human malignant breast, prostate, male germ or adipocyte cell lines (with a promoting effect and by interfering with chemotherapy drugs), or to stimulate pancreatic β cell insulin secretion. High levels of BPA have recently been correlated with obesity, diabetes, cardiovascular diseases, polycystic ovarian disease or low sperm count. However, before the real impact of BPA on human health can be clearly assessed, prospective longitudinal epidemiological studies are needed as well as characterization of selective biomarkers to verify long-term exposure and selective imprinting. Copyright © 2013. Published by Elsevier Masson SAS.

  6. Advancing Research on Endocrine Disrupting Chemicals in Breast Cancer: Expert Panel Recommendations

    PubMed Central

    Teitelbaum, Susan L.; Belpoggi, Fiorella; Reinlib, Les

    2015-01-01

    Breast cancer incidence continues to increase in the US and Europe, a reflection of the growing influence of environment factors that interact with personal genetics. The US Environmental Protection Agency estimates that over 85,000 endocrine disrupting chemicals are among the common daily exposures that could affect the risk of disease. The daunting tasks of identifying, characterizing, and elucidating the mechanisms of endocrine disrupting chemicals in breast cancer need to be addressed to produce a comprehensive model that will facilitate preventive strategies and public policy. An expert panel met to describe and bring attention to needs linking common environmental exposures, critical windows of exposure, and optimal times of assessment in investigating breast cancer risk. The group included investigators with extensive experience in the use of rodent models and in leading population studies and produced a set of recommendations for effective approaches to gaining insights into the environmental origins of breast cancer across the lifespan. PMID:25549947

  7. Gene Expression Changes Related to Endocrine Function and Decline in Reproduction in Fathead Minnow (Pimephales promelas) after Dietary Methylmercury Exposure

    PubMed Central

    Klaper, Rebecca; Rees, Christopher B.; Drevnick, Paul; Weber, Daniel; Sandheinrich, Mark; Carvan, Michael J.

    2006-01-01

    Background Methylmercury (MeHg) is a known neurotoxic agent, but the mechanisms by which MeHg may act on reproductive pathways are relatively unknown. Several studies have indicated potential changes in hormone levels as well as declines in vertebrates with increasing dietary MeHg exposure. Objectives The purpose of this study was to identify alterations in gene expression associated with MeHg exposure, specifically those associated with previously observed changes in reproduction and reproductive biomarkers. Fathead minnows, Pimephales promelas, were fed one of three diets that were similar to documented concentrations of MeHg in the diets of wild invertivorous and piscivorous fish. We used a commercial macroarray in conjunction with quantitative polymerase chain reaction to examine gene expression in fish in relation to exposure to these environmentally relevant doses of MeHg. Results Expression of genes commonly associated with endocrine disruption was altered with Hg exposure. Specifically, we observed a marked up-regulation in vitellogenin mRNA in individual Hg-exposed males and a significant decline in vitellogenin gene expression in female fish with increasing Hg concentrations. Other genes identified by the macroarray experiment included those associated with egg fertilization and development, sugar metabolism, apoptosis, and electron transport. We also observed differences in expression patterns between male and female fish not related to genes specifically associated with reproduction, indicating a potential physiological difference in the reaction of males and females to MeHg. Conclusion Gene expression data may provide insight into the mechanisms by which MeHg affects reproduction in fish and indicate how MeHg differs in its effect from other heavy metals and endocrine-disrupting compounds. PMID:16966085

  8. A differential diagnosis of inherited endocrine tumors and their tumor counterparts

    PubMed Central

    Toledo, Sergio P. A.; Lourenço, Delmar M.; Toledo, Rodrigo A.

    2013-01-01

    Inherited endocrine tumors have been increasingly recognized in clinical practice, although some difficulties still exist in differentiating these conditions from their sporadic endocrine tumor counterparts. Here, we list the 12 main topics that could add helpful information and clues for performing an early differential diagnosis to distinguish between these conditions. The early diagnosis of patients with inherited endocrine tumors may be performed either clinically or by mutation analysis in at-risk individuals. Early detection usually has a large impact in tumor management, allowing preventive clinical or surgical therapy in most cases. Advice for the clinical and surgical management of inherited endocrine tumors is also discussed. In addition, recent clinical and genetic advances for 17 different forms of inherited endocrine tumors are briefly reviewed. PMID:23917672

  9. Endocrine Consequences of Anorexia Nervosa

    PubMed Central

    Misra, Madhusmita; Klibanski, Anne

    2014-01-01

    Summary Anorexia nervosa (AN) is prevalent in adolescents and young adults, and endocrine changes include hypothalamic amenorrhea, a nutritionally acquired growth hormone resistance with low insulin like growth factor-1 (IGF-1), relative hypercortisolemia, decreases in leptin, insulin, amylin and incretins, and increases in ghrelin, PYY and adiponectin. These changes in turn have deleterious effects on bone, and may affect neurocognition, anxiety, depression and eating disorder psychopathology. Low bone density is particularly concerning; clinical fractures occur and changes in both bone microarchitecture and strength estimates have been reported. Recovery causes improvement of many, but not all, hormonal changes, and deficits in bone accrual may persist despite recovery. Physiologic, primarily transdermal, estrogen replacement increases bone density in adolescents, although catch-up is incomplete. In adults, oral estrogen co-administered with rhIGF-1 in one study, and bisphosphonates in another increased bone density, though not to normal. More studies are necessary to determine the optimal therapeutic approach in AN. PMID:24731664

  10. Exocrine Dysfunction Correlates with Endocrinal Impairment of Pancreas in Type 2 Diabetes Mellitus.

    PubMed

    Prasanna Kumar, H R; Gowdappa, H Basavana; Hosmani, Tejashwi; Urs, Tejashri

    2018-01-01

    Diabetes mellitus (DM) is a chronic abnormal metabolic condition, which manifests elevated blood sugar level over a prolonged period. The pancreatic endocrine system generally gets affected during diabetes, but often abnormal exocrine functions are also manifested due to its proximity to the endocrine system. Fecal elastase-1 (FE-1) is found to be an ideal biomarker to reflect the exocrine insufficiency of the pancreas. The aim of this study was conducted to assess exocrine dysfunction of the pancreas in patients with type-2 DM (T2DM) by measuring FE levels and to associate the level of hyperglycemia with exocrine pancreatic dysfunction. A prospective, cross-sectional comparative study was conducted on both T2DM patients and healthy nondiabetic volunteers. FE-1 levels were measured using a commercial kit (Human Pancreatic Elastase ELISA BS 86-01 from Bioserv Diagnostics). Data analysis was performed based on the important statistical parameters such as mean, standard deviation, standard error, t -test-independent samples, and Chi-square test/cross tabulation using SPSS for Windows version 20.0. Statistically nonsignificant ( P = 0.5051) relationship between FE-1 deficiency and age was obtained, which implied age as a noncontributing factor toward exocrine pancreatic insufficiency among diabetic patients. Statistically significant correlation ( P = 0.003) between glycated hemoglobin and FE-1 levels was also noted. The association between retinopathy ( P = 0.001) and peripheral pulses ( P = 0.001) with FE-1 levels were found to be statistically significant. This study validates the benefit of FE-1 estimation, as a surrogate marker of exocrine pancreatic insufficiency, which remains unmanifest and subclinical.

  11. Dermatologic manifestations of endocrine disorders

    PubMed Central

    Lause, Michael; Kamboj, Alisha

    2017-01-01

    The skin serves as a window for clinicians to understand, diagnose, and monitor endocrine disease. Dermatologic manifestations of endocrinopathies contribute significantly to an individual’s health and quality of life. In this review, we outline various disorders of the hypothalamic-pituitary axis, thyroid gland, pancreas, adrenal gland, and androgen axis as well as hereditary endocrine syndromes. In acromegaly, glycosaminoglycan deposition contributes to a thickening of skin and soft tissue, which manifests as coarsening and enlargement of facial and acral structures. Stimulation of the thyrotropin receptor in hyperthyroidism results in mesenchymal tissue proliferation and consequent pretibial myxedema; other associated cutaneous features include onycholysis, and hyperhidrosis. Individuals with hypothyroidism exhibit cold, dry skin and brittle hair as well as a jaundice-like appearance due to carotene excess. The cutaneous features of diabetes mellitus (DM), mediated to a large extent by hyperglycemia and hyperinsulinemia, include necrobiosis lipoidica diabeticorum (NLD), diabetic dermopathy, and acanthosis nigricans. Pediatric patients with Cushing’s syndrome almost invariably present with truncal obesity and growth retardation; disruption of collagen formation and the catabolic effects of hypercortisolism result in skin atrophy and purple abdominal striae. In patients with Addison’s disease, generalized hyperpigmentation, secondary to elevated levels of melanocyte-stimulating hormone (MSH), is most prominent in sun-exposed areas. Due to hyperandrogenism, individuals with polycystic ovarian syndrome (PCOS) often exhibit hirsutism, acne vulgaris, and androgenetic alopecia. In multiple endocrine neoplasia (MEN) syndromes, specific gene mutations may lead to angiofibromas, lichen amyloidosis, and ganglioneuromas. Disruptions of immune regulation result in autoimmune polyglandular syndromes (APS) and associated clinical features including chronic mucocutaneous

  12. Immunohistochemical study on gastrointestinal endocrine cells of four reptiles

    PubMed Central

    Huang, Xu-Gen; Wu, Xiao-Bing

    2005-01-01

    AIM: To clarify the types, regional distributions and distribution densities as well as morphological features of gastrointestinal (GI) endocrine cells in various parts of the gastrointestinal track (GIT) of four reptiles, Gekko japonicus, Eumeces chinensis, Sphenomorphus indicus and Eumeces elegans. METHODS: Paraffin-embedded sections (5 μm) of seven parts (cardia, fundus, pylorus, duodenum, jejunum, ileum, rectum) of GIT dissected from the four reptiles were prepared. GI endocrine cells were revealed by using immunohistochemical techniques of streptavidin-peroxidase (S-P) method. Seven types of antisera against 5-hydroxy-tryptamine (5-HT), somatostatin (SS), gastrin (GAS), glucagon (GLU), substance P (SP), insulin and pancreatic polypeptide were identified and then GI endocrine cells were photomicrographed and counted. RESULTS: The GI endocrine system of four reptiles was a complex structure containing many endocrine cell types similar in morphology to those found in higher vertebrates. Five types of GI endocrine cells, namely 5-HT, SS, GAS, SP and GLU immunoreactive (IR) cells were identified in the GIT of G. japonicus, E. chinensis and S. indicus; while in the GIT of E. elegans only the former three types of endocrine cells were observed. No PP- and INS- IR cells were found in all four reptiles. 5-HT-IR cells, which were most commonly found in the pylorus or duodenum, distributed throughout the whole GIT of four reptiles. However, their distribution patterns varied from each other. SS-IR cells, which were mainly found in the stomach especially in the pylorus and/or fundus, were demonstrated in the whole GIT of E. chinensis, only showed restricted distribution in the other three species. GAS-IR cells, with a much restricted distribution, were mainly demonstrated in the pylorus and/or the proximal small intestine of four reptiles. GLU-IR cells exhibited a limited and species-dependent variant distribution in the GIT of four reptiles. SP-IR cells were found

  13. CHANGES IN GENE AND PROTEIN EXPRESSION IN ZEBRAFISH (DANIO RERIO) FOLLOWING EXPOSURE TO ENVIRONMENTALLY-RELEVANT ENDOCRINE DISRUPTING COMPOUNDS (EDCS)

    EPA Science Inventory

    Endocrine-disrupting chemicals (EDCs) are increasingly being reported in waterways worldwide and have been shown to affect fish species by disrupting numerous aspects of development, behavior, reproduction, and survival. Furthermore, new data have suggested that the reduced repr...

  14. The Impact of Endocrine Therapy on Cognitive Functions of Breast Cancer Patients: A Systematic Review.

    PubMed

    Bakoyiannis, Ioannis; Tsigka, Eleousa-Alexandra; Perrea, Despina; Pergialiotis, Vasilios

    2016-02-01

    The purpose of the present review was to study the impact of endocrine therapy (ET) on the cognitive outcomes of breast cancer patients. We systematically searched the literature using the MEDLINE (1966-2015), Scopus (2004-2015), ClinicalTrials.gov (2008-2015) and Cochrane Central Register (CENTRAL) databases, as well as the references of the electronically retrieved articles. Twelve studies were included in the present systematic review, which assessed the cognitive function of 2756 patients. Among these patients, 2381 received ET, whereas the remaining 375 served as controls (placebo or no therapy). The majority of patients were postmenopausal, and the minimum follow-up period was 3 months and the maximum 2 years. Treatment with ET seems to be accompanied by altered cognitive abilities, including verbal memory, verbal fluency, motor speed, attention and working memory. Tamoxifen seems to be related to decreased cognitive performances compared with treatment with an aromatase inhibitor. ET among breast cancer patients seems to negatively alter the cognitive outcomes of breast cancer patients. However, the methodological heterogeneity of the included studies, as well as the relatively small follow-up period, render imperative the conduct of further studies in the field.

  15. Endocrine-disrupting chemicals-Mechanisms of action on male reproductive system.

    PubMed

    Sidorkiewicz, Iwona; Zaręba, Kamil; Wołczyński, Sławomir; Czerniecki, Jan

    2017-07-01

    Endocrine-disrupting chemicals (EDCs) are exogenous compounds that can cause disturbances in the endocrine system and have multiple harmful effects on health by targeting different organs and systems in the human body. Mass industrial production and widespread use of EDCs have resulted in worldwide contamination. Accumulating evidence suggest that human exposure to EDCs is related to the impairment of male reproductive function and can interrupt other hormonally regulated metabolic processes, particularly if exposure occurs during early development. Investigation of studies absent in previous reviews and meta-analysis of adverse effects of EDCs on functioning of the male reproductive system is the core of this work. Four main modes of action of EDCs on male fertility have been summarized in this review. First, studies describing estrogen- pathway disturbing chemicals are investigated. Second, androgen-signaling pathway alterations and influence on androgen sensitive tissues are examined. Third, evaluation of steroidogenesis dysfunction is discussed by focusing on the steroid hormone biosynthesis pathway, which is targeted by EDCs. Last, the reportedly destructive role of reactive oxygen species (ROS) on sperm function is discussed. Spermatogenesis is a remarkably complex process, hence multiple studies point out various dysfunctions depending on the development state at which the exposure occurred. Collected data show the need to account for critical windows of exposure such as fetal, perinatal and pubertal periods as well as effects of mixtures of several compounds in future research.

  16. Endocrine tumours in neurofibromatosis type 1, tuberous sclerosis and related syndromes

    PubMed Central

    Lodish, Maya B.; Stratakis, Constantine A.

    2010-01-01

    Neurofibromatosis type 1 (NF-1) and tuberous sclerosis complex (TSC) are two familial syndromes known as phakomatoses that may be associated with endocrine tumors. These hereditary cutaneous conditions affect the central nervous system and are characterized by the development of hamartomas. Over the past 20 years, there have been major advances in our understanding of the molecular basis of these diseases. Both NF-1 and TSC are disorders of unregulated progression through the cell cycle, in which causative genes behave as characteristic tumor suppressor genes. The pathogenesis of these familial syndromes is linked by the shared regulation of a common pathway, the protein kinase mammalian target of rapamycin (mTOR). Additional related disorders that also converge on the mTOR pathway include Peutz-Jeghers syndrome and Cowden syndrome. All of these inherited cancer syndromes are associated with characteristic skin findings that offer a clue to their recognition and treatment. The discovery of mTOR inhibitors has led to a possible new therapeutic modality for patients with endocrine tumors as part of these familial syndromes. PMID:20833335

  17. Endocrine tumours in neurofibromatosis type 1, tuberous sclerosis and related syndromes.

    PubMed

    Lodish, Maya B; Stratakis, Constantine A

    2010-06-01

    Neurofibromatosis type 1 (NF-1) and tuberous sclerosis complex (TSC) are two familial syndromes known as phakomatoses that may be associated with endocrine tumours. These hereditary cutaneous conditions affect the central nervous system and are characterised by the development of hamartomas. Over the past 20 years, there have been major advances in our understanding of the molecular basis of these diseases. Both NF-1 and TSC are disorders of unregulated progression through the cell cycle, in which causative genes behave as tumour suppressor genes. The pathogenesis of these familial syndromes is linked by the shared regulation of a common pathway, the protein kinase mammalian target of rapamycin (mTOR). Additional related disorders that also converge on the mTOR pathway include Peutz-Jeghers syndrome and Cowden syndrome. All of these inherited cancer syndromes are associated with characteristic skin findings that offer a clue to their recognition and treatment. The discovery of mTOR inhibitors has led to a possible new therapeutic modality for patients with endocrine tumours as part of these familial syndromes. Published by Elsevier Ltd.

  18. Boric Acid Is Reproductively Toxic to Adult Xenopus laevis, but Not Endocrine Active.

    PubMed

    Fort, Douglas J; Fort, Troy D; Mathis, Michael B; Ball, R Wayne

    2016-11-01

    The potential reproductive and endocrine toxicity of boric acid (BA) in the African clawed frog, Xenopus laevis, was evaluated using a 30-day exposure of adult frogs. Adult female and male frogs established as breeders were exposed to a culture water control and 4 target (nominal) test concentrations [5.0, 7.5, 10.0, and 15 mg boron (B)/L, equivalent to 28.5, 42.8, 57.0, and 85.5 mg BA/L] using flow-through diluter exposure system. The primary endpoints measured were adult survival, growth (weight and snout-vent length [SVL]), necropsy data, reproductive fecundity, and development of progeny (F1) from the exposed frogs. Necropsy endpoints included gonad weight, gonado-somatic index (GSI), ovary profile (oocyte normalcy and stage distribution), sperm count, and dysmorphology. Endocrine endpoints included plasma estradiol (E2), testosterone (T), dihydrotestosteone (DHT), gonadal CYP 19 (aromatase), and gonadal 5α-reductase (5-AR). BA exposure to adult female X. laevis increased the proportion of immature oocytes (< stage II) in the ovaries of females, reduced sperm counts and increased sperm cell dysmorphology frequency in male frogs exposed to 15 mg B/L. No effects on the other general, developmental (F1), or endocrine endpoints were observed. Based on the results of the present study, the no observed adverse effects concentration (NOAEC) for the reproductive endpoints was 10 mg B/L; and 15 mg B/L for reproductive fecundity, F1 embryo larval development, and endocrine function. These results confirmed that although BA is capable of inducing reproductive toxicity at high concentrations, it is not an endocrine disrupting agent. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. Three-dimensional ultrastructural analyses of anterior pituitary gland expose spatial relationships between endocrine cell secretory granule localization and capillary distribution.

    PubMed

    Yoshitomi, Munetake; Ohta, Keisuke; Kanazawa, Tomonoshin; Togo, Akinobu; Hirashima, Shingo; Uemura, Kei-Ichiro; Okayama, Satoko; Morioka, Motohiro; Nakamura, Kei-Ichiro

    2016-10-31

    Endocrine and endothelial cells of the anterior pituitary gland frequently make close appositions or contacts, and the secretory granules of each endocrine cell tend to accumulate at the perivascular regions, which is generally considered to facilitate secretory functions of these cells. However, three-dimensional relationships between the localization pattern of secretory granules and blood vessels are not fully understood. To define and characterize these spatial relationships, we used scanning electron microscopy (SEM) three-dimensional reconstruction method based on focused ion-beam slicing and scanning electron microscopy (FIB/SEM). Full three-dimensional cellular architectures of the anterior pituitary tissue at ultrastructural resolution revealed that about 70% of endocrine cells were in apposition to the endothelial cells, while almost 30% of endocrine cells were entirely isolated from perivascular space in the tissue. Our three-dimensional analyses also visualized the distribution pattern of secretory granules in individual endocrine cells, showing an accumulation of secretory granules in regions in close apposition to the blood vessels in many cases. However, secretory granules in cells isolated from the perivascular region tended to distribute uniformly in the cytoplasm of these cells. These data suggest that the cellular interactions between the endocrine and endothelial cells promote an uneven cytoplasmic distribution of the secretory granules.

  20. Training our future endocrine surgeons: a look at the endocrine surgery operative experience of U.S. surgical residents.

    PubMed

    Zarebczan, Barbara; McDonald, Robert; Rajamanickam, Victoria; Leverson, Glen; Chen, Herbert; Sippel, Rebecca S

    2010-12-01

    During the last 10 years, the number of endocrine procedures performed in the United States has increased significantly. We sought to determine whether this has translated into an increase in operative volume for general surgery and otolaryngology residents. We evaluated records from the Resident Statistic Summaries of the Residency Review Committee (RRC) for U.S. general surgery and otolaryngology residents for the years 2004-2008, specifically examining data on thyroidectomies and parathyroidectomies. Between 2004 and 2008, the average endocrine case volume of U.S. general surgery and otolaryngology residents increased by approximately 15%, but otolaryngology residents performed more than twice as many operations as U.S. general surgery residents. The growth in case volume was mostly from increases in the number of thyroidectomies performed by U.S. general surgery and otolaryngology residents (17.9 to 21.8, P = .007 and 46.5 to 54.4, P = .04). Overall, otolaryngology residents also performed more parathyroidectomies than their general surgery counterparts (11.6 vs 8.8, P = .007). Although there has been an increase in the number of endocrine cases performed by graduating U.S. general surgery residents, this is significantly smaller than that of otolaryngology residents. To remain competitive, general surgery residents wishing to practice endocrine surgery may need to pursue additional fellowship training. Copyright © 2010 Mosby, Inc. All rights reserved.

  1. QSAR PRIORITIZATION OF CHEMICAL INVENTORIES FOR ENDOCRINE DISRUPTOR TESTING

    EPA Science Inventory

    Binding affinity between chemicals and the estrogen receptor (ER) serves as an indicator of the potential to cause endocrine disruption through this receptor-mediated endocrine pathway. Estimating ER binding affinity is, therefore, one strategic approach to reducing the costs of ...

  2. Does balneotherapy with low radon concentration in water influence the endocrine system? A controlled non-randomized pilot study.

    PubMed

    Nagy, Katalin; Berhés, István; Kovács, Tibor; Kávási, Norbert; Somlai, János; Bender, Tamás

    2009-08-01

    Radon bath is a well-established modality of balneotherapy for the management of degenerative musculoskeletal disorders. The present study was conducted to ascertain whether baths of relatively low (80 Bq/l) radon concentration have any influence on the functioning of the endocrine system. In the study, a non-randomized pilot study, 27 patients with degenerative musculoskeletal disorders received 30-min radon baths (of 31-32 degrees C temperature and 80 Bq/l average radon concentration) daily, for 15 days. Twenty-five patients with matching pathologies were subjected to balneotherapy according to the same protocol, using thermal water with negligible radon content (6 Bq/l). Serum thyroid stimulating hormone, prolactin, cortisol, adrenocorticotropic hormone, and dehydroepiandrosterone levels were measured before and after a balneotherapy course of 15 sessions. Comparison of the accumulated data using the Wilcoxon test did not reveal any significant difference between pre- and post-treatment values or between the two patient groups. It is noted that while the beneficial effects of balneotherapy with radon-containing water on degenerative disorders is widely known, only few data have been published in the literature on its effect on endocrine functions. The present study failed to demonstrate any substantial effect of thermal water with relatively low radon content on the functioning of the endocrine system.

  3. Circadian Clock Control of Endocrine Factors

    PubMed Central

    Gamble, Karen L.; Berry, Ryan; Frank, Stuart J.; Young, Martin E.

    2015-01-01

    Organisms experience dramatic fluctuations in demands/stresses over the course of the day. In order to maintain biological processes within physiologic boundaries, it is imperative that mechanisms have evolved for anticipation of, and adaptation to, these daily fluctuations. Endocrine factors undoubtedly play an integral role in homeostasis. Not only do circulating levels of various endocrine factors oscillate over the 24 period, but so too does responsiveness of target tissues to these signals/stimuli. Emerging evidence suggests that these daily oscillations do not occur solely in response to behavioral fluctuations associated with sleep/wake and feeding/fasting cycles, but are orchestrated in part by an intrinsic timekeeping mechanism known as the circadian clock. Disruption of circadian clocks, through genetic and/or environmental means, appears to precipitate numerous common disorders, including cardiometabolic diseases and cancer. Collectively, these observations, which are reviewed within the current article, have led to suggestion that strategies designed to realign normal circadian rhythmicities hold a therapeutic potential for the treatment of various endocrine-related disorders. PMID:24863387

  4. Abnormal gastrointestinal endocrine cells in patients with diabetes type 1: relationship to gastric emptying and myoelectrical activity.

    PubMed

    El-Salhy, M; Sitohy, B

    2001-11-01

    Gastrointestinal symptoms in patients with diabetes are believed to be caused by gastrointestinal dysmotility and secretion/absorption disturbances, and the gut endocrine cells play an important part in regulating these two functions. Studies on animal models of human diabetes type I revealed abnormality in these cells, but it is unknown whether abnormality also occurs in patients with diabetes. Eleven patients with long duration of diabetes type I and organ complications, as well as gastrointestinal symptoms, were studied. Endocrine cells in different segments of the gastrointestinal tract were detected by immunocytochemistry and quantified by computerized image analysis. Gastric emptying was measured by scintigraphy and gastric myoelectric activity was determined by electrogastrography. An abnormal density of gastrointestinal endocrine cells was found in patients with diabetes. This abnormality occurred in all segments of the upper and lower gastrointestinal tract investigated, and included most of the endocrine cell types. The patients showed delayed gastric emptying, which correlated closely with the acute glucose level, but did not correlate with HbA1c. Gastric emptying also correlated closely with the density of duodenal serotonin and secretin cells. The patients exhibited bradygastrias and tachygastrias. These dysrhythmias, however, did not differ significantly from controls. The endocrine cells are the anatomical units responsible for the production of gut hormones, and the change in their density would reflect a change in the capacity of producing these hormones. The abnormality in density of the gastrointestinal endocrine cells may contribute to the development of gastrointestinal dysmotility and the symptoms encountered in patients with diabetes.

  5. Endocrine disorders which manifest in the lower extremity.

    PubMed

    Rubenstein, S A; Boxer, M C

    1985-10-01

    This article has attempted to alert the podiatric medical practitioner to those endocrine disorders which have pedal manifestations. With the clinical information presented here, the podiatrist is in a unique position to identify early signs of endocrine disease. By doing so, the podiatric practitioner may play a vital role as a member of the primary care team.

  6. Fish and wildlife species as sentinels of environmental endocrine disruption

    USGS Publications Warehouse

    Sheffield, S.R.; Matter, J.M.; Rattner, B.A.; Guiney, P.D.; Kendall, Ronald J.; Dickerson, Richard L.; Giesy, John P.; Suk, William P.

    1998-01-01

    This chapter provides an overview of the history and criteria for use of captive and free-ranging fish and wildlife (amphibians, reptiles, birds, and mammals) species as sentinels of potential environmental endocrine disruption. Biochemical, behavioral, physiological, immunological, genetic, reproductive, developmental, and ecological correlates of endocrine disruption in these sentinels are presented and reviewed. In addition, data needs to promote better use of sentinel species in the assessment of endocrine disruption are discussed.

  7. Endocrine disruptors affect larval zebrafish behavior: Testing potential mechanisms and comparisons of behavioral sensitivity to alternative biomarkers.

    PubMed

    Fraser, Thomas W K; Khezri, Abdolrahman; Lewandowska-Sabat, Anna M; Henry, Theodore; Ropstad, Erik

    2017-12-01

    Larval zebrafish (Danio rerio) are a tool for assessing endocrine disruption during early development. Here, we investigated the extent to which a simple light/dark behavioral test at five days post fertilization could compliment current methods within the field. We exposed fertilized embryos to hormones (17β-estradiol, testosterone, dihydrotestosterone, 11-ketotestosterone, thyroxine, triiodothyronine, progesterone, and hydrocortisone) and other relevant compounds (17α ethinylestradiol, bisphenol A, bisphenol S, nonylphenol, flutamide, nilutamide, linuron, drospirenone, potassium perchlorate, mifepristone, and fadrozole) to screen for behavioral effects between 96 and 118h post fertilization (hpf). With the exception of progesterone, all the hormones tested resulted in altered behaviors. However, some inconsistencies were observed regarding the age of the larvae at testing. For example, the xenoestrogens 17α- ethinylestradiol and nonylphenol had behavioral effects at 96hpf, but not at 118hpf. Furthermore, although thyroxine exposure had pronounced effects on behavior, the thyroid disruptor potassium perchlorate did not. Finally, we were unable to demonstrate a role of nuclear receptors following testosterone and 17α- ethinylestradiol exposure, as neither the androgen receptor antagonist flutamide nor the general estrogen receptor inhibitor fulvestrant (ICI) could rescue the observed behavioral effects, respectively. Similarly, molecular markers for androgen and estrogen disruption were upregulated at concentrations below which behavioral effects were observed. These results demonstrate hormones and endocrine disruptors can alter the behavior of larval zebrafish, but the mechanistic pathways remain unclear. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Next-generation sequencing for endocrine cancers: Recent advances and challenges.

    PubMed

    Suresh, Padmanaban S; Venkatesh, Thejaswini; Tsutsumi, Rie; Shetty, Abhishek

    2017-05-01

    Contemporary molecular biology research tools have enriched numerous areas of biomedical research that address challenging diseases, including endocrine cancers (pituitary, thyroid, parathyroid, adrenal, testicular, ovarian, and neuroendocrine cancers). These tools have placed several intriguing clues before the scientific community. Endocrine cancers pose a major challenge in health care and research despite considerable attempts by researchers to understand their etiology. Microarray analyses have provided gene signatures from many cells, tissues, and organs that can differentiate healthy states from diseased ones, and even show patterns that correlate with stages of a disease. Microarray data can also elucidate the responses of endocrine tumors to therapeutic treatments. The rapid progress in next-generation sequencing methods has overcome many of the initial challenges of these technologies, and their advantages over microarray techniques have enabled them to emerge as valuable aids for clinical research applications (prognosis, identification of drug targets, etc.). A comprehensive review describing the recent advances in next-generation sequencing methods and their application in the evaluation of endocrine and endocrine-related cancers is lacking. The main purpose of this review is to illustrate the concepts that collectively constitute our current view of the possibilities offered by next-generation sequencing technological platforms, challenges to relevant applications, and perspectives on the future of clinical genetic testing of patients with endocrine tumors. We focus on recent discoveries in the use of next-generation sequencing methods for clinical diagnosis of endocrine tumors in patients and conclude with a discussion on persisting challenges and future objectives.

  9. ENDOCRINE DISRUPTORS: LESSONS LEARNED

    EPA Science Inventory

    For more than ten years, major international efforts have been aimed at understanding the mechanism and extent of endocrine disruption in experimental models, wildlife, and people; its occurrence in the real world; and in developing tools for screening and prediction of risk. Mu...

  10. Assessment of the Effects of Endocrine Disrupting Compounds on the Development of Vertebrate Neural Network Function Using Multi-electrode Arrays.

    PubMed

    Sanchez, Karla R; Mersha, Mahlet D; Dhillon, Harbinder S; Temburni, Murali K

    2018-04-26

    Bis-phenols, such as bis-phenol A (BPA) and bis-phenol-S (BPS), are polymerizing agents widely used in the production of plastics and numerous everyday products. They are classified as endocrine disrupting compounds (EDC) with estradiol-like properties. Long-term exposure to EDCs, even at low doses, has been linked with various health defects including cancer, behavioral disorders, and infertility, with greater vulnerability during early developmental periods. To study the effects of BPA on the development of neuronal function, we used an in vitro neuronal network derived from the early chick embryonic brain as a model. We found that exposure to BPA affected the development of network activity, specifically spiking activity and synchronization. A change in network activity is the crucial link between the molecular target of a drug or compound and its effect on behavioral outcome. Multi-electrode arrays are increasingly becoming useful tools to study the effects of drugs on network activity in vitro. There are several systems available in the market and, although there are variations in the number of electrodes, the type and quality of the electrode array and the analysis software, the basic underlying principles, and the data obtained is the same across the different systems. Although currently limited to analysis of two-dimensional in vitro cultures, these MEA systems are being improved to enable in vivo network activity in brain slices. Here, we provide a detailed protocol for embryonic exposure and recording neuronal network activity and synchrony, along with representative results.

  11. COULD ETHINYL ESTRADIOL AFFECT THE POPULATION BIOLOGY OF CUNNER, TAUTOGOLABRUS ADSPERSUS

    EPA Science Inventory

    Endocrine disrupting chemicals in the environment may disturb the population dynamics of wildlife by affecting reproductive output and embryonic development of organisms. This study used a population model to evaluate whether ethinyl estradiol (EE2 could affect cunner Tautogolabr...

  12. Multiple endocrine diseases in cats: 15 cases (1997-2008).

    PubMed

    Blois, Shauna L; Dickie, Erica L; Kruth, Stephen A; Allen, Dana G

    2010-08-01

    The objective of this retrospective study was to characterize a population of cats from a tertiary care center diagnosed with multiple endocrine disorders, including the specific disorders and time intervals between diagnosis of each disorder. Medical records of 15 cats diagnosed with more than one endocrine disorder were reviewed. The majority of cats were domestic shorthairs, and the mean age at the time of diagnosis of the first disorder was 10.3 years. The most common combination of disorders was diabetes mellitus and hyperthyroidism. Two cats had concurrent diabetes mellitus and hyperadrenocorticism, one cat had concurrent central diabetes insipidus and diabetes mellitus. A mean of 25.7 months elapsed between diagnoses of the first and second endocrine disorder, but this was variable. This study suggests the occurrence of multiple endocrine disorders is uncommon in cats. Copyright 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  13. Costs and Benefits of Extended Endocrine Strategies for Premenopausal Breast Cancer.

    PubMed

    Kwon, Janice S; Pansegrau, Gary; Nourmoussavi, Melica; Hammond, Geoffrey L; Carey, Mark S

    2017-08-01

    Background: After completing 5 years of adjuvant tamoxifen, women with estrogen receptor (ER)-positive breast cancer benefit from 5 more years of endocrine therapy, either with tamoxifen or an aromatase inhibitor (AI). For premenopausal women, ovarian ablation (OA) would be required before starting an AI (OA/AI). According to the SOFT/TEXT studies, OA/AI improves 5-year disease-free survival compared with tamoxifen alone, suggesting that OA/AI could be superior to tamoxifen as extended endocrine therapy. The long-term costs and consequences of premature menopause from OA are unknown, but could be estimated through a cost-effectiveness analysis. Methods: A Markov chain Monte Carlo simulation model estimated the costs and benefits of 3 extended endocrine strategies in a hypothetical cohort of premenopausal women with ER-positive early breast cancer: (1) no further treatment; (2) tamoxifen for 5 years (extended tamoxifen); or (3) OA/AI for 5 years. Effectiveness was measured in years of life expectancy gain. Sensitivity analyses accounted for uncertainty surrounding various parameters. Monte Carlo simulation estimated the number of adverse events and deaths from each strategy in the US population over a 40-year period. Results: Extended tamoxifen yielded a higher average life expectancy gain than OA/AI (17.31 vs 17.06 years) at lower average cost ($3,550 vs $14,312). For 18,000 premenopausal ER-positive women, the simulation estimated 13,236, 12,557, and 11,338 deaths with no further treatment, extended tamoxifen, and OA/AI, respectively, but an additional 1,897 deaths from OA, for a total of 13,235 deaths associated with OA/AI. After 24.6 years of follow-up, more women are expected to die from OA/AI than extended tamoxifen. Conclusions: For premenopausal women with ER-positive cancer who have completed adjuvant tamoxifen, another 5 years of tamoxifen is the preferable extended endocrine strategy. The potential long-term health consequences of OA could affect overall

  14. STRATEGIES TO REDUCE OR REPLACE THE USE OF ANIMALS IN THE ENDOCRINE SCREENING AND TESTING PROGRAM.

    EPA Science Inventory

    Abstract: The US Environmental Protection Agency (EPA) is developing a screening and testing program for endocrine disrupting chemicals (EDCs) to detect alterations of hypothalamic-pituitary-gonadal (HPG) function, estrogen, androgen and thyroid hormone synthesis and androgen (AR...

  15. 78 FR 57859 - Draft Guidance for Industry on Endocrine Disruption Potential of Drugs: Nonclinical Evaluation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-20

    ... include the sex hormones (e.g., estrogen and androgen), the hypothalamic-pituitary-adrenal axis, the thyroid hormone, and the hormones involved in the feedback regulation of those components (e.g., gonadotropin releasing hormone and corticotropin). Changes in endocrine function can result in...

  16. Designing Endocrine Disruption Out of the Next Generation of Chemicals.

    PubMed

    Schug, T T; Abagyan, R; Blumberg, B; Collins, T J; Crews, D; DeFur, P L; Dickerson, S M; Edwards, T M; Gore, A C; Guillette, L J; Hayes, T; Heindel, J J; Moores, A; Patisaul, H B; Tal, T L; Thayer, K A; Vandenberg, L N; Warner, J; Watson, C S; Saal, F S Vom; Zoeller, R T; O'Brien, K P; Myers, J P

    2013-01-01

    A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical's potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at "the drawing board." It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability. In a 'proof-of-principle' test, we ran 6 endocrine disrupting chemicals (EDCs) that act via

  17. Designing Endocrine Disruption Out of the Next Generation of Chemicals

    PubMed Central

    Schug, T.T; Abagyan, R.; Blumberg, B.; Collins, T.J.; Crews, D.; DeFur, P.L.; Dickerson, S.M.; Edwards, T.M.; Gore, A.C.; Guillette, L.J.; Hayes, T.; Heindel, J.J.; Moores, A.; Patisaul, H.B.; Tal, T.L.; Thayer, K.A.; Vandenberg, L.N.; Warner, J.; Watson, C.S.; Saal, F.S. vom; Zoeller, R.T.; O’Brien, K.P.; Myers, J.P.

    2013-01-01

    A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical’s potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at “the drawing board.” It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability. In a ‘proof-of-principle’ test, we ran 6 endocrine disrupting chemicals (EDCs) that act

  18. Neonatal endocrine emergencies: a primer for the emergency physician.

    PubMed

    Park, Elizabeth; Pearson, Nadia M; Pillow, M Tyson; Toledo, Alexander

    2014-05-01

    The resuscitation principles of securing the airway and stabilizing hemodynamics remain the same in any neonatal emergency. However, stabilizing endocrine disorders may prove especially challenging. Several organ systems are affected simultaneously and the clinical presentation can be subtle. Although not all-inclusive, the implementation of newborn screening tests has significantly reduced morbidity and mortality in neonates. Implementing routine screening tests worldwide and improving the accuracy of present tests remains the challenge for healthcare providers. With further study of these disorders and best treatment practices we can provide neonates presenting to the emergency department with the best possible outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Endocrine correlates of susceptibility to motion sickness

    NASA Technical Reports Server (NTRS)

    Kohl, R. L.

    1985-01-01

    Motion sickness releases ACTH, epinerphrine, and norepinephrine. The endocrine responses to motion sickness, adaptive responses leading to the resolution of the syndrome, and the way in which antimotion-sickness drugs influence the endocrine responses were studied. Susceptible or insusceptible subjects were administered antimotion-sickness drugs prior to stressful stimulation. Insusceptible subjects displayed more pronounced elevations of ACTH, epinephrine, and norepinephrine after stressful motion. Predrug levels of ACTH were higher in insusceptible subjects (p less than 0.01). Acute blockade of hormone responses to stressful motion or alteration of levels of ACTH by drugs were not correlated with individual susceptibility. No correlation was apparent between epinephrine and ACTH release. These endocrine differences may represent neurochemical markers for susceptibility to motion, stress, or general adaptability, and it may be that the chronic modulation of their levels might be more effective in preventing motion sickness than the acute blockage or stimulation of specific receptors.

  20. International network on endocrine complications in thalassaemia (I-CET): an opportunity to grow.

    PubMed

    De Sanctis, V; Soliman, A T; Angastiniotis, M; Eleftheriou, A; Kattamis, Ch; Karimi, M; El Kholy, M; Elsedfy, H; Yassin, Mohd Abdel Daem Mohd; El Awwa, A; Stoeva, I; Skordis, N; Raiola, G; Fiscina, B

    2012-04-01

    Most of the endocrine complications in thalassaemia are attributable to iron overload which may be the result of economic circumstances (expense of the chelation therapy), late onset of chelation therapy or poor compliance with the iron chelation therapy. The major difficulties reported by hematologists or pediatric endocrinologists experienced in thalassaemias or thalassaemia syndromes in following growth disorders and endocrine complications were: lack of familiarity with medical treatment of endocrine complications (40%), interpretation of endocrine tests (30%), costs (65%), absence of paediatric endocrinologist for consultation on growth disorders and endocrine complications (27%), facilities (27%), other (e.g. lack of collaboration and on-time consultation between thalassaemic Centers supervised by hematologists and endocrinologists) (17%). Because any progress we make in research into growth disorders and endocrine complications in thalassaemia should be passed on to all those suffering from it, guaranteeing them the same therapeutic benefits and the same quality of life, on the 8th of May, 2009 in Ferrara (Italy), the International Network on Endocrine Complications in Thalassemia (I-CET) was founded. The I-CET group is planning to conduct, in Ferrara in May 2012, a workshop, "MRI and Endocrine Complications in Thalassaemia", and in Doha (Qatar) in September 2012, a 3-day intensive course entitled, "Growth disorders and Endocrine Complications in Thalassaemia", to provide interested pediatricians, physicians and hematologists from all over the world with an in-depth approach to the diagnosis and management of growth and endocrine disorders in thalassaemic patients.

  1. Growing Up with Type 1 Narcolepsy: Its Anthropometric and Endocrine Features

    PubMed Central

    Ponziani, Virginia; Gennari, Monia; Pizza, Fabio; Balsamo, Antonio; Bernardi, Filippo; Plazzi, Giuseppe

    2016-01-01

    Study Objectives: To evaluate the effect of type 1 narcolepsy (NT1) on anthropometric and endocrine features in childhood/adolescence, focusing on patterns and correlates of weight, pubertal development, and growth in treated and untreated patients. Methods: We collected anthropometric (height, weight, body mass index (BMI) z-scores), pubertal, metabolic, and endocrine data from 72 NT1 patients at diagnosis and all available premorbid anthropometric parameters of patients from their pediatric files (n = 30). New measurements at 1-y reassessment in patients undergoing different treatments were compared with baseline data. Results: We detected a high prevalence of overweight (29.2%), obesity (25%), metabolic syndrome (18.8%), and precocious puberty (16.1%), but no signs of linear growth alterations at diagnosis. According to anthropometric records, weight gain started soon after NT1 onset. At 1-y follow-up reassessment, sodium oxybate treatment was associated with a significant BMI z-score reduction (−1.29 ± 0.30, p < 0.0005) after adjusting for baseline age, sex, sleepiness, and BMI. Conclusions: NT1 onset in children/adolescents is associated with rapid weight gain up to overweight/obesity and precocious puberty without affecting growth. In our study, sodium oxybate treatment resulted in a significant weight reduction in NT1 overweight/obese patients at 1-y follow-up. Citation: Ponziani V, Gennari M, Pizza F, Balsamo A, Bernardi F, Plazzi G. Growing up with type 1 narcolepsy: its anthropometric and endocrine features. J Clin Sleep Med 2016;12(12):1649–1657. PMID:27707443

  2. Specifying pancreatic endocrine cell fates.

    PubMed

    Collombat, Patrick; Hecksher-Sørensen, Jacob; Serup, Palle; Mansouri, Ahmed

    2006-07-01

    Cell replacement therapy could represent an attractive alternative to insulin injections for the treatment of diabetes. However, this approach requires a thorough understanding of the molecular switches controlling the specification of the different pancreatic cell-types in vivo. These are derived from an apparently identical pool of cells originating from the early gut endoderm, which are successively specified towards the pancreatic, endocrine, and hormone-expressing cell lineages. Numerous studies have outlined the crucial roles exerted by transcription factors in promoting the cell destiny, defining the cell identity and maintaining a particular cell fate. This review focuses on the mechanisms regulating the morphogenesis of the pancreas with particular emphasis on recent findings concerning the transcription factor hierarchy orchestrating endocrine cell fate allocation.

  3. How does adjuvant chemotherapy affect menopausal symptoms, sexual function, and quality of life after breast cancer?

    PubMed

    Marino, Jennifer L; Saunders, Christobel M; Emery, Laura I; Green, Helena; Doherty, Dorota A; Hickey, Martha

    2016-09-01

    The aim of the study was to determine the association between adjuvant chemotherapy for breast cancer and menopausal symptoms, sexual function, and quality of life. Participants attended a menopause clinic with a dedicated service for cancer survivors at a large tertiary women's hospital. Information about breast cancer treatments including adjuvant chemotherapy was collected from medical records. Menopausal symptoms were recorded with the Greene Climacteric Scale and Functional Assessment of Cancer Therapy, Breast Cancer, and Endocrine Symptom Subscales. Sexual symptoms were recorded using Fallowfield's Sexual Activity Questionnaire. Quality of life was measured with Functional Assessment of Cancer Therapy scales. The severity of vasomotor, psychological, or sexual symptoms (apart from pain) did not differ between those who had received adjuvant chemotherapy (n = 339) and other breast cancer survivors (n = 465). After adjustment for current age, time since menopause, and current use of antiestrogen endocrine therapy, the risk of "severe pain" with sexual intercourse was twice as common after chemotherapy (31.6% vs 20.0%, odds ratio [OR] 2.18, 95% CI 1.25-3.79). Those treated with chemotherapy were more likely to report "severe problems" with physical well-being (OR 1.92, 95% CI 1.12-3.28) and lower breast cancer-specific quality of life (OR 1.89 95% CI 1.13-3.18), but did not differ in other quality of life measures. In this large study of breast cancer patients presenting to a specialty menopause clinic, previous chemotherapy was not associated with current vasomotor or psychological symptoms. Severe pain with intercourse was significantly more common in those treated with adjuvant chemotherapy.

  4. Endocrine Disruptors: Adverse Health Effects Mediated by EGFR?

    PubMed

    Stolz, Ailine; Schönfelder, Gilbert; Schneider, Marlon R

    2018-02-01

    Although endocrine disruptors represent a serious concern to human health, the underlying molecular mechanisms leading to diseases such as cancer remain poorly understood. Recent work has uncovered the epidermal growth factor receptor (EGFR) as a possible mediator of these adverse health effects, with important implications for the role of endocrine disruptors in human diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Non-neural androgen receptors affect sexual differentiation of brain and behaviour.

    PubMed

    Monks, D A; Swift-Gallant, A

    2018-02-01

    Although gonadal testosterone is the principal endocrine factor that promotes masculine traits in mammals, the development of a male phenotype requires local production of both androgenic and oestrogenic signals within target tissues. Much of our knowledge concerning androgenic components of testosterone signalling in sexual differentiation comes from studies of androgen receptor (Ar) loss of function mutants. Here, we review these studies of loss of Ar function and of AR overexpression either globally or selectively in the nervous system of mice. Global and neural mutations affect socio-sexual behaviour and the neuroanatomy of these mice in a sexually differentiated manner. Some masculine traits are affected by both global and neural mutation, indicative of neural mediation, whereas other masculine traits are affected only by global mutation, indicative of an obligatory non-neural androgen target. These results support a model in which multiple sites of androgen action coordinate to produce masculine phenotypes. Furthermore, AR overexpression does not always have a phenotype opposite to that of loss of Ar function mutants, indicative of a nonlinear relationship between androgen dose and masculine phenotype in some cases. Potential mechanisms of Ar gene function in non-neural targets in producing masculine phenotypes are discussed. © 2017 British Society for Neuroendocrinology.

  6. Impaired hypothalamic regulation of endocrine function and delayed counterregulatory response to hypoglycemia in Magel2-null mice.

    PubMed

    Tennese, Alysa A; Wevrick, Rachel

    2011-03-01

    Hypothalamic dysfunction may underlie endocrine abnormalities in Prader-Willi syndrome (PWS), a genetic disorder that features GH deficiency, obesity, and infertility. One of the genes typically inactivated in PWS, MAGEL2, is highly expressed in the hypothalamus. Mice deficient for Magel2 are obese with increased fat mass and decreased lean mass and have blunted circadian rhythm. Here, we demonstrate that Magel2-null mice have abnormalities of hypothalamic endocrine axes that recapitulate phenotypes in PWS. Magel2-null mice had elevated basal corticosterone levels, and although male Magel2-null mice had an intact corticosterone response to restraint and to insulin-induced hypoglycemia, female Magel2-null mice failed to respond to hypoglycemia with increased corticosterone. After insulin-induced hypoglycemia, Magel2-null mice of both sexes became more profoundly hypoglycemic, and female mice were slower to recover euglycemia, suggesting an impaired hypothalamic counterregulatory response. GH insufficiency can produce abnormal body composition, such as that seen in PWS and in Magel2-null mice. Male Magel2-null mice had Igf-I levels similar to control littermates. Female Magel2-null mice had low Igf-I levels and reduced GH release in response to stimulation with ghrelin. Female Magel2-null mice did respond to GHRH, suggesting that their GH deficiency has a hypothalamic rather than pituitary origin. Female Magel2-null mice also had higher serum adiponectin than expected, considering their increased fat mass, and thyroid (T(4)) levels were low. Together, these findings strongly suggest that loss of MAGEL2 contributes to endocrine dysfunction of hypothalamic origin in individuals with PWS.

  7. Side Effects of Neem Oil on the Midgut Endocrine Cells of the Green Lacewing Ceraeochrysa claveri (Navás) (Neuroptera: Chrysopidae).

    PubMed

    Scudeler, E L; Santos, D C

    2014-04-01

    We described the ultrastructure of Ceraeochrysa claveri (Navás) midgut endocrine cells in larva, pupa, and adult, and evaluated the side effects of ingested neem oil, a botanical insecticide obtained from the seeds of the neem tree (Azadirachta indica), on these cells. During the larval period, C. claveri were fed (ad libitum) Diatraea saccharalis (F.) eggs treated with neem oil at concentrations of 0.5%, 1%, or 2%. Transmission electron microscopy showed that two subtypes of endocrine cells, namely granular and vesicular, occurred in the midgut epithelium during the three stages of the life cycle. Both cell types did not reach the midgut lumen and were positioned basally in the epithelium. The endocrine cells did not show extensive infoldings of the basal plasma membrane, and there were numerous secretory granules in the basal region of the cytoplasm. In the granular endocrine cells, the granules were completely filled with a dense matrix. In the vesicular endocrine cells, the main secretory products consisted of haloed vesicles. Ultrastructural examination indicated that only the granular endocrine cells exhibited signs of morphologic changes of cell injury present in all life cycle stages after the larvae were chronically exposed to neem oil by ingestion. The major cellular damage consisted of dilatation and vesiculation of the rough endoplasmic reticulum and the development of smooth endoplasmic reticulum and mitochondrial swelling. Our data suggest that cytotoxic effects on midgut endocrine cells can contribute to a generalized disruption of the physiological processes in this organ due to a general alteration of endocrine function.

  8. Epithelial to mesenchymal transition in human endocrine islet cells

    PubMed Central

    Moreno-Amador, José Luis; Téllez, Noèlia; Marin, Sandra; Aloy-Reverté, Caterina; Semino, Carlos; Nacher, Montserrat

    2018-01-01

    Background β-cells undergo an epithelial to mesenchymal transition (EMT) when expanded in monolayer culture and give rise to highly proliferative mesenchymal cells that retain the potential to re-differentiate into insulin-producing cells. Objective To investigate whether EMT takes place in the endocrine non-β cells of human islets. Methodology Human islets isolated from 12 multiorgan donors were dissociated into single cells, purified by magnetic cell sorting, and cultured in monolayer. Results Co-expression of insulin and the mesenchymal marker vimentin was identified within the first passage (p1) and increased subsequently (insulin+vimentin+ 7.2±6% at p1; 43±15% at p4). The endocrine non-β-cells did also co-express vimentin (glucagon+vimentin+ 59±1.5% and 93±6%, somatostatin+vimentin+ 16±9.4% and 90±10% at p1 and p4 respectively; PP+vimentin+ 74±14% at p1; 88±12% at p2). The percentage of cells expressing only endocrine markers was progressively reduced (0.6±0.2% insulin+, 0.2±0.1% glucagon+, and 0.3±0.2% somatostatin+ cells at p4, and 0.7±0.3% PP+ cells at p2. Changes in gene expression were also indicated of EMT, with reduced expression of endocrine markers and the epithelial marker CDH-1 (p<0.01), and increased expression of mesenchymal markers (CDH-2, SNAI2, ZEB1, ZEB2, VIM, NT5E and ACTA2; p<0.05). Treatment with the EMT inhibitor A83-01 significantly reduced the percentage of co-expressing cells and preserved the expression of endocrine markers. Conclusions In adult human islets, all four endocrine islet cell types undergo EMT when islet cells are expanded in monolayer conditions. The presence of EMT in all islet endocrine cells could be relevant to design of strategies aiming to re-differentiate the expanded islet cells towards a β-cell phenotype. PMID:29360826

  9. The degree of cycle irregularity correlates with the grade of endocrine and metabolic disorders in PCOS patients.

    PubMed

    Strowitzki, Thomas; Capp, Edison; von Eye Corleta, Helena

    2010-04-01

    PCOS (polycystic ovarian syndrome) is a clinically heterogeneous endocrine disorder which affects up to 4-10% of women of reproductive age. A standardized definition is still difficult because of a huge variety of different phenotypes. The aim of this study was to evaluate possible correlations between the degree of cycle irregularity and the grade of endocrine and metabolic abnormalities. A cross-sectional study was carried out. Hyperandrogenic and/or hirsute women with regular menstrual cycles and polycystic ovaries on ultrasound (PCOS eumenorr, n=45), PCOS patients with oligomenorrhea (PCOS oligo, n=42) and PCOS patients with amenorrhea (PCOS amenorr, n=31) were recruited from the Department of Gynecological Endocrinology and Reproductive Medicine of the Women's University Hospital Heidelberg (Heidelberg, Germany). Normocyclic patients demonstrated significantly better metabolic parameters (BMI, fasting insulin, HOMA-IR) than patients with oligo/amenorrhea. Hormonal parameters (LH, FSH, FAI and testosterone) were significantly different between patients with different menstrual patterns and patients with regular cycles. Determining the degree of cycle irregularity as a simple clinical parameter might be a valuable instrument to estimate the degree of metabolic and endocrine disorders. Emphasis should be given to those parameters as a first step to characterize PCOS patients with a risk of endocrine and metabolic disorders leading to consequent detailed examination. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  10. ADULT EXPOSURE TO PHYTOESTROGEN APIGENIN RESULTS IN CHANGES IN ENDOCRINE PARAMETERS BUT FAILS TO ALTER FECUNDITY

    EPA Science Inventory

    Plant-derived estrogens offer the opportunity to investigate the potential for weakly estrogenic compounds to influence endocrine function and reproduction. The presence of these phytoestrogens in foods, and agricultural and industrial runoff has the potential to increase the tot...

  11. Circadian rhythm of the Leydig cells endocrine function is attenuated during aging.

    PubMed

    Baburski, Aleksandar Z; Sokanovic, Srdjan J; Bjelic, Maja M; Radovic, Sava M; Andric, Silvana A; Kostic, Tatjana S

    2016-01-01

    Although age-related hypofunction of Leydig cells is well illustrated across species, its circadian nature has not been analyzed. Here we describe changes in circadian behavior in Leydig cells isolated from adult (3-month) and aged (18- and 24-month) rats. The results showed reduced circadian pattern of testosterone secretion in both groups of aged rats despite unchanged LH circadian secretion. Although arrhythmic, the expression of Insl3, another secretory product of Leydig cells, was decreased in both groups. Intracellular cAMP and most important steroidogenic genes (Star, Cyp11a1 and Cyp17a1), together with positive steroidogenic regulator (Nur77), showed preserved circadian rhythm in aging although rhythm robustness and expression level were attenuated in both aged groups. Aging compromised cholesterol mobilization and uptake by Leydig cells: the oscillatory transcription pattern of genes encoding HDL-receptor (Scarb1), hormone sensitive lipase (Lipe, enzyme that converts cholesterol esters from lipid droplets into free cholesterol) and protein responsible for forming the cholesterol esters (Soat2) were flattened in 24-month group. The majority of examined clock genes displayed circadian behavior in expression but only a few of them (Bmal1, Per1, Per2, Per3 and Rev-Erba) were reduced in 24-month-old group. Furthermore, aging reduced oscillatory expression pattern of Sirt1 and Nampt, genes encoding key enzymes that connect cellular metabolism and circadian network. Altogether circadian amplitude of Leydig cell's endocrine function decreased during aging. The results suggest that clock genes are more resistant to aging than genes involved in steroidogenesis supporting the hypothesis about peripheral clock involvement in rhythm maintenance during aging. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Perioperative management of endocrine insufficiency after total pancreatectomy for neoplasia.

    PubMed

    Maker, Ajay V; Sheikh, Raashid; Bhagia, Vinita

    2017-09-01

    Indications for total pancreatectomy (TP) have increased, including for diffuse main duct intrapapillary mucinous neoplasms of the pancreas and malignancy; therefore, the need persists for surgeons to develop appropriate endocrine post-operative management strategies. The brittle diabetes after TP differs from type 1/2 diabetes in that patients have absolute deficiency of insulin and functional glucagon. This makes glucose management challenging, complicates recovery, and predisposes to hospital readmissions. This article aims to define the disease, describe the cause for its occurrence, review the anatomy of the endocrine pancreas, and explain how this condition differs from diabetes mellitus in the setting of post-operative management. The morbidity and mortality of post-TP endocrine insufficiency and practical treatment strategies are systematically reviewed from the literature. Finally, an evidence-based treatment algorithm is created for the practicing pancreatic surgeon and their care team of endocrinologists to aid in managing these complex patients. A PubMed, Science Citation Index/Social sciences Citation Index, and Cochrane Evidence-Based Medicine database search was undertaken along with extensive backward search of the references of published articles to identify studies evaluating endocrine morbidity and treatment after TP and to establish an evidence-based treatment strategy. Indications for TP and the etiology of pancreatogenic diabetes are reviewed. After TP, ~80% patients develop hypoglycemic episodes and 40% experience severe hypoglycemia, resulting in 0-8% mortality and 25-45% morbidity. Referral to a nutritionist and endocrinologist for patient education before surgery followed by surgical reevaluation to determine if the patient has the appropriate understanding, support, and resources preoperatively has significantly reduced morbidity and mortality. The use of modern recombinant long-acting insulin analogues, continuous subcutaneous insulin

  13. Endocrine cells in human Bartholin's glands. An immunohistochemical and ultrastructural analysis.

    PubMed

    Fetissof, F; Arbeille, B; Bellet, D; Barre, I; Lansac, J

    1989-01-01

    Endocrine cells were investigated in human Bartholin's glands by use of histochemical, immunohistochemical and ultrastructural methods. Endocrine cells represent normal constituents of these glands, being mainly distributed throughout the transitional epithelium of the major excretory duct; however, single elements are dispersed among the acinar lobules. Serotonin-, calcitonin-, katacalcin-, bombesin- and alpha-hCG-immunoreactive cells were recognized, with serotonin-immunoreactive cells predominating. Co-expression of calcitonin, katacalcin or alpha-hCG with serotonin was observed in single endocrine cells. At the ultrastructural level, these cells are richly granulated and show typical neuroendocrine features. Bartholin's glands display an endocrine profile quite similar to that of other cloacal-derived tissues.

  14. The Central Endocrine Glands: Intertwining Physiology and Pharmacy

    PubMed Central

    2007-01-01

    The initial courses in didactic pharmacy curriculum are designed to provide core scientific knowledge and develop learning skills that are the basis for highly competent application and practice of pharmacy. Commonly, students interpret this scientific base as ancillary to the practice of pharmacy. Physiology courses present a natural opportunity for the instructor to introduce basic pharmaceutical principles that form the foundation of pharmacological application early in the professional curriculum. Human Physiology I is the first of a 2-course physiology sequence that pharmacy students take upon matriculating into Midwestern University College of Pharmacy-Glendale. The endocrine physiology section of this course is designed to emphasize the regulatory and compensatory nature of this system in maintaining homeostasis, but also includes aspects of basic pharmaceutical principles. In this way the dependency of physiology and pharmacy upon one another is accentuated. The lecture format and content described in this manuscript focus on the central endocrine glands and illustrates their vital role in normal body function, compensatory responses to disease states, and their components as pharmacotherapy targets. The integration of these pharmaceutical principles at the introductory level supports an environment that can alleviate any perceived disparity between science foundation and practical application in the profession of pharmacy. PMID:17998993

  15. Human exposure to endocrine disrupting chemicals: effects on the male and female reproductive systems.

    PubMed

    Sifakis, Stavros; Androutsopoulos, Vasilis P; Tsatsakis, Aristeidis M; Spandidos, Demetrios A

    2017-04-01

    Endocrine disrupting chemicals (EDCs) comprise a group of chemical compounds that have been examined extensively due to the potential harmful effects in the health of human populations. During the past decades, particular focus has been given to the harmful effects of EDCs to the reproductive system. The estimation of human exposure to EDCs can be broadly categorized into occupational and environmental exposure, and has been a major challenge due to the structural diversity of the chemicals that are derived by many different sources at doses below the limit of detection used by conventional methodologies. Animal and in vitro studies have supported the conclusion that endocrine disrupting chemicals affect the hormone dependent pathways responsible for male and female gonadal development, either through direct interaction with hormone receptors or via epigenetic and cell-cycle regulatory modes of action. In human populations, the majority of the studies point towards an association between exposure to EDCs and male and/or female reproduction system disorders, such as infertility, endometriosis, breast cancer, testicular cancer, poor sperm quality and/or function. Despite promising discoveries, a causal relationship between the reproductive disorders and exposure to specific toxicants is yet to be established, due to the complexity of the clinical protocols used, the degree of occupational or environmental exposure, the determination of the variables measured and the sample size of the subjects examined. Future studies should focus on a uniform system of examining human populations with regard to the exposure to specific EDCs and the direct effect on the reproductive system. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Neurogenin 3 Expressing Cells in the Human Exocrine Pancreas Have the Capacity for Endocrine Cell Fate

    PubMed Central

    Gomez, Danielle L.; O’Driscoll, Marci; Sheets, Timothy P.; Hruban, Ralph H.; Oberholzer, Jose; McGarrigle, James J.; Shamblott, Michael J.

    2015-01-01

    Neurogenin 3 (NGN3) is necessary and sufficient for endocrine differentiation during pancreatic development and is expressed by a population of progenitor cells that give rise exclusively to hormone-secreting cells within islets. NGN3 protein can be detected in the adult rodent pancreas only following certain types of injury, when it is transiently expressed by exocrine cells undergoing reprogramming to an endocrine cell fate. Here, NGN3 protein can be detected in 2% of acinar and duct cells in living biopsies of histologically normal adult human pancreata and 10% in cadaveric biopsies of organ donor pancreata. The percentage and total number of NGN3+ cells increase during culture without evidence of proliferation or selective cell death. Isolation of highly purified and viable NGN3+ cell populations can be achieved based on coexpression of the cell surface glycoprotein CD133. Transcriptome and targeted expression analyses of isolated CD133+ / NGN3+ cells indicate that they are distinct from surrounding exocrine tissue with respect to expression phenotype and Notch signaling activity, but retain high level mRNA expression of genes indicative of acinar and duct cell function. NGN3+ cells have an mRNA expression profile that resembles that of mouse early endocrine progenitor cells. During in vitro differentiation, NGN3+ cells express genes in a pattern characteristic of endocrine development and result in cells that resemble beta cells on the basis of coexpression of insulin C-peptide, chromogranin A and pancreatic and duodenal homeobox 1. NGN3 expression in the adult human exocrine pancreas marks a dedifferentiating cell population with the capacity to take on an endocrine cell fate. These cells represent a potential source for the treatment of diabetes either through ex vivo manipulation, or in vivo by targeting mechanisms controlling their population size and endocrine cell fate commitment. PMID:26288179

  17. Diagnosis and Treatment of Endocrine Co-Morbidities in Patients with Cystic Fibrosis

    PubMed Central

    Siwamogsatham, Oranan; Alvarez, Jessica

    2015-01-01

    Purpose of review The aim of this review is to provide an update on various relevant endocrine aspects of care in adolescents and adults with cystic fibrosis (CF). Recent findings As life expectancy in CF has continuously improved, endocrine complications have become more apparent. The common endocrine complications include cystic fibrosis related diabetes (CFRD), cystic fibrosis related bone disease, vitamin D deficiency and poor growth and pubertal development. Thyroid and adrenal disorders have also been reported, although the prevalence appears to be less common. Summary Endocrine diseases are an increasingly recognized complication that has a significant impact on the overall health of individuals with CF. This review summarizes the updated screening and management of endocrine diseases in the CF population. PMID:25105995

  18. [Polycystic ovary syndrome: an example of obesity-related cardiovascular complication affecting young women].

    PubMed

    Orio, Francesco; Cascella, Teresa; Giallauria, Francesco; Palomba, Stefano; De Lorenzo, Anna; Lucci, Rosa; Ambrosino, Elena; Lombardi, Gaetano; Colao, Annamaria; Vigorito, Carlo

    2006-03-01

    Polycystic ovary syndrome (PCOS) is a good example of obesity-related cardiovascular complication affecting young women. PCOS is not only considered a reproductive problem but rather represents a complex endocrine, multifaceted syndrome with important health implications. Several evidences suggest an increased cardiovascular risk of cardiovascular disease associated with this syndrome, characterized by an impairment of heart structure and function, endothelial dysfunction and lipid abnormalities. All these features, probably linked to insulin-resistance, are often present in obese PCOS patients. Cardiovascular abnormalities represent important long-term sequelae of PCOS that need further investigations.

  19. TFF3 is a valuable predictive biomarker of endocrine response in metastatic breast cancer

    PubMed Central

    May, Felicity E B; Westley, Bruce R

    2015-01-01

    The stratification of breast cancer patients for endocrine therapies by oestrogen or progesterone receptor expression is effective but imperfect. The present study aims were to validate microarray studies that demonstrate TFF3 regulation by oestrogen and its association with oestrogen receptors in breast cancer, to evaluate TFF3 as a biomarker of endocrine response, and to investigate TFF3 function. Microarray data were validated by quantitative RT-PCR and northern and western transfer analyses. TFF3 was induced by oestrogen, and its induction was inhibited by antioestrogens, tamoxifen, 4-hydroxytamoxifen and fulvestrant in oestrogen-responsive breast cancer cells. The expression of TFF3 mRNA was associated with oestrogen receptor mRNA in breast tumours (Pearson's coefficient=0.762, P=0.000). Monoclonal antibodies raised against the TFF3 protein detected TFF3 by immunohistochemistry in oesophageal submucosal glands, intestinal goblet and neuroendocrine cells, Barrett's metaplasia and intestinal metaplasia. TFF3 protein expression was associated with oestrogen receptor, progesterone receptor and TFF1 expression in malignant breast cells. TFF3 is a specific and sensitive predictive biomarker of response to endocrine therapy, degree of response and duration of response in unstratified metastatic breast cancer patients (P=0.000, P=0.002 and P=0.002 respectively). Multivariate binary logistic regression analysis demonstrated that TFF3 is an independent biomarker of endocrine response and degree of response, and this was confirmed in a validation cohort. TFF3 stimulated migration and invasion of breast cancer cells. In conclusion, TFF3 expression is associated with response to endocrine therapy, and outperforms oestrogen receptor, progesterone receptor and TFF1 as an independent biomarker, possibly because it mediates the malign effects of oestrogen on invasion and metastasis. PMID:25900183

  20. Endocrine disrupters--testing strategies to assess human hazard.

    PubMed

    Baker, V A

    2001-01-01

    During the last decade an hypothesis has been developed linking certain chemicals (natural and synthetic) to observed and suspected adverse effects on reproduction in both wildlife and humans. The issue of 'endocrine disruption' originally focused on chemicals that mimic the action of the natural hormone oestrogen. However, the concern is now encompassing effects on the whole endocrine system. In response to public awareness, regulatory agencies (including the US EPA) and the OECD are formulating potential testing strategies and have begun the process of validating defined tests to systematically assess chemicals for their endocrine-disrupting activities. In order to investigate chemicals that have the potential to cause endocrine disruption, a large number of in vitro and in vivo assays have been identified. In vitro test systems (particularly when used in combination) offer the possibility of providing an early screen for large numbers of chemicals and can be useful in characterising the mechanism of action and potency. In vitro assays in widespread use for the screening/characterisation of endocrine disrupting potential include hormone receptor ligand binding assays (determination of the ability of a chemical to bind to the hormone receptor), cell proliferation assays (analysis of the ability of a chemical to stimulate growth of oestrogen sensitive cells), reporter gene assays in yeast or mammalian cells (analysis of the ability of a chemical to stimulate the transcription of a reporter gene construct in cell culture), and the analysis of the regulation of endogenous oestrogen sensitive genes in cell lines. However, in vitro assays do not always reliably predict the outcome in vivo due to differences in metabolic capabilities of the test systems used and the diverse range of mechanisms by which endocrine disrupting chemicals may act. Therefore a complementary battery of short- and long-term in vitro and in vivo assays (that assess both receptor and non

  1. Pediatric Obesity-Assessment, Treatment, and Prevention: An Endocrine Society Clinical Practice Guideline.

    PubMed

    Styne, Dennis M; Arslanian, Silva A; Connor, Ellen L; Farooqi, Ismaa Sadaf; Murad, M Hassan; Silverstein, Janet H; Yanovski, Jack A

    2017-03-01

    The European Society of Endocrinology and the Pediatric Endocrine Society. This guideline was funded by the Endocrine Society. To formulate clinical practice guidelines for the assessment, treatment, and prevention of pediatric obesity. The participants include an Endocrine Society-appointed Task Force of 6 experts, a methodologist, and a medical writer. This evidence-based guideline was developed using the Grading of Recommendations, Assessment, Development, and Evaluation approach to describe the strength of recommendations and the quality of evidence. The Task Force commissioned 2 systematic reviews and used the best available evidence from other published systematic reviews and individual studies. One group meeting, several conference calls, and e-mail communications enabled consensus. Endocrine Society committees and members and co-sponsoring organizations reviewed and commented on preliminary drafts of this guideline. Pediatric obesity remains an ongoing serious international health concern affecting ∼17% of US children and adolescents, threatening their adult health and longevity. Pediatric obesity has its basis in genetic susceptibilities influenced by a permissive environment starting in utero and extending through childhood and adolescence. Endocrine etiologies for obesity are rare and usually are accompanied by attenuated growth patterns. Pediatric comorbidities are common and long-term health complications often result; screening for comorbidities of obesity should be applied in a hierarchal, logical manner for early identification before more serious complications result. Genetic screening for rare syndromes is indicated only in the presence of specific historical or physical features. The psychological toll of pediatric obesity on the individual and family necessitates screening for mental health issues and counseling as indicated. The prevention of pediatric obesity by promoting healthful diet, activity, and environment should be a primary goal, as

  2. Cytokines and neuro-immune-endocrine interactions: a role for the hypothalamic-pituitary-adrenal revolving axis.

    PubMed

    Haddad, John J; Saadé, Nayef E; Safieh-Garabedian, Bared

    2002-12-01

    Cytokines, peptide hormones and neurotransmitters, as well as their receptors/ligands, are endogenous to the brain, endocrine and immune systems. These shared ligands and receptors are used as a common chemical language for communication within and between the immune and neuroendocrine systems. Such communication suggests an immunoregulatory role for the brain and a sensory function for the immune system. Interplay between the immune, nervous and endocrine systems is most commonly associated with the pronounced effects of stress on immunity. The hypothalamic-pituitary-adrenal (HPA) axis is the key player in stress responses; it is well established that both external and internal stressors activate the HPA axis. Cytokines are chemical messengers that stimulate the HPA axis when the body is under stress or experiencing an infection. This review discusses current knowledge of cytokine signaling pathways in neuro-immune-endocrine interactions as viewed through the triplet HPA axis. In addition, we elaborate on HPA/cytokine interactions in oxidative stress within the context of nuclear factor-kappaB transcriptional regulation and the role of oxidative markers and related gaseous transmitters.

  3. Proteomic analysis of the reproductive organs of the hermaphroditic gastropod Lymnaea stagnalis exposed to different endocrine disrupting chemicals.

    PubMed

    Giusti, Arnaud; Leprince, Pierre; Mazzucchelli, Gabriel; Thomé, Jean-Pierre; Lagadic, Laurent; Ducrot, Virginie; Joaquim-Justo, Célia

    2013-01-01

    Many studies have reported perturbations of mollusc reproduction following exposure to low concentrations (ng/L range) of endocrine disrupting chemicals (EDCs). However, the mechanisms of action of these molecules on molluscs are still poorly understood. Investigation of the modifications of protein expression in organisms exposed to chemicals using proteomic methods can provide a broader and more comprehensive understanding of adverse impacts of pollution on organisms than conventional biochemical biomarkers (e.g., heat-shock proteins, metallothioneins, GST, EROD). In this study we have investigated the impacts of four chemicals, which exhibit different endocrine disrupting properties in vertebrates, on the proteome of the hermaphroditic freshwater pulmonate gastropod Lymnaea stagnalis after 21 days of exposure. Testosterone, tributyltin, chlordecone and cyproterone acetate were chosen as tested compounds as they can induce adverse effects on the reproduction of this snail. The 2D-DIGE method was used to identify proteins whose expression was affected by these compounds. In addition to modifying the expression of proteins involved in the structure and function of the cytoskeleton, chemicals had impacts on the expression of proteins involved in the reproduction of L. stagnalis. Exposure to 19.2 µg/L of chlordecone increased the abundance of ovipostatin, a peptide transmitted during mating through seminal fluid, which reduces oviposition in this species. The expression of yolk ferritin, the vitellogenin equivalent in L. stagnalis, was reduced after exposure to 94.2 ng Sn/L of tributyltin. The identification of yolk ferritin and the modification of its expression in snails exposed to chemicals were refined using western blot analysis. Our results showed that the tested compounds influenced the abundance of yolk ferritin in the reproductive organs. Alteration in proteins involved in reproductive pathways (e.g., ovipostatin and yolk ferritin) could constitute relevant

  4. Proteomic Analysis of the Reproductive Organs of the Hermaphroditic Gastropod Lymnaea stagnalis Exposed to Different Endocrine Disrupting Chemicals

    PubMed Central

    Giusti, Arnaud; Leprince, Pierre; Mazzucchelli, Gabriel; Thomé, Jean-Pierre; Lagadic, Laurent; Ducrot, Virginie; Joaquim-Justo, Célia

    2013-01-01

    Many studies have reported perturbations of mollusc reproduction following exposure to low concentrations (ng/L range) of endocrine disrupting chemicals (EDCs). However, the mechanisms of action of these molecules on molluscs are still poorly understood. Investigation of the modifications of protein expression in organisms exposed to chemicals using proteomic methods can provide a broader and more comprehensive understanding of adverse impacts of pollution on organisms than conventional biochemical biomarkers (e.g., heat-shock proteins, metallothioneins, GST, EROD). In this study we have investigated the impacts of four chemicals, which exhibit different endocrine disrupting properties in vertebrates, on the proteome of the hermaphroditic freshwater pulmonate gastropod Lymnaea stagnalis after 21 days of exposure. Testosterone, tributyltin, chlordecone and cyproterone acetate were chosen as tested compounds as they can induce adverse effects on the reproduction of this snail. The 2D-DIGE method was used to identify proteins whose expression was affected by these compounds. In addition to modifying the expression of proteins involved in the structure and function of the cytoskeleton, chemicals had impacts on the expression of proteins involved in the reproduction of L. stagnalis. Exposure to 19.2 µg/L of chlordecone increased the abundance of ovipostatin, a peptide transmitted during mating through seminal fluid, which reduces oviposition in this species. The expression of yolk ferritin, the vitellogenin equivalent in L. stagnalis, was reduced after exposure to 94.2 ng Sn/L of tributyltin. The identification of yolk ferritin and the modification of its expression in snails exposed to chemicals were refined using western blot analysis. Our results showed that the tested compounds influenced the abundance of yolk ferritin in the reproductive organs. Alteration in proteins involved in reproductive pathways (e.g., ovipostatin and yolk ferritin) could constitute relevant

  5. Visual food cues decrease postprandial glucose concentrations in lean and obese men without affecting food intake and related endocrine parameters.

    PubMed

    Brede, Swantje; Sputh, Annika; Hartmann, Ann-Christin; Hallschmid, Manfred; Lehnert, Hendrik; Klement, Johanna

    2017-10-01

    The abundance of highly palatable food items in our environment represents a possible cause of overconsumption. Neuroimaging studies in humans have demonstrated that watching pictures of food increases activation in brain areas involved in homeostatic and hedonic food cue processing. Nevertheless, the impact of food cues on actual food intake and metabolic parameters has not been systematically investigated. We tested the hypothesis that watching high-calorie food cues increases food intake and modifies anticipatory blood parameters in lean and especially in obese men. In 20 normal-weight and 20 obese healthy fasted men, we assessed the effects of watching pictures of high-calorie food items versus neutral contents on food intake measured during a standardized test buffet and subsequent snacking as well as on glucose homeostasis and endocrine parameters. Compared to neutral pictures, viewing food pictures reduced postprandial blood glucose concentrations in lean (p = 0.016) and obese (p = 0.044) subjects, without any differences in insulin or C-peptide concentrations (all p > 0.4). Viewing food pictures did not affect total calorie intake during the buffet (all p > 0.5) and snack consumption (all p > 0.4). Concentrations of ghrelin, adrenocorticotropic hormone (ACTH), cortisol, and glucagon also remained unaffected (all p > 0.08). These data indicate that preprandial processing of food cues curbs postprandial blood glucose excursions, without immediately affecting eating behavior in normal-weight and obese men. Findings indicate that exposure to food cues does not acutely trigger calorie overconsumption but rather improves the glucoregulatory response to food intake. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Polish Society of Endocrinology Position statement on endocrine disrupting chemicals (EDCs).

    PubMed

    Rutkowska, Aleksandra; Rachoń, Dominik; Milewicz, Andrzej; Ruchała, Marek; Bolanowski, Marek; Jędrzejuk, Diana; Bednarczuk, Tomasz; Górska, Maria; Hubalewska-Dydejczyk, Alicja; Kos-Kudła, Beata; Lewiński, Andrzej; Zgliczyński, Wojciech

    2015-01-01

    With the reference to the position statements of the Endocrine Society, the Paediatric Endocrine Society, and the European Society of Paediatric Endocrinology, the Polish Society of Endocrinology points out the adverse health effects caused by endocrine disrupting chemicals (EDCs) commonly used in daily life as components of plastics, food containers, pharmaceuticals, and cosmetics. The statement is based on the alarming data about the increase of the prevalence of many endocrine disorders such as: cryptorchidism, precocious puberty in girls and boys, and hormone-dependent cancers (endometrium, breast, prostate). In our opinion, it is of human benefit to conduct epidemiological studies that will enable the estimation of the risk factors of exposure to EDCs and the probability of endocrine disorders. Increasing consumerism and the industrial boom has led to severe pollution of the environment with a corresponding negative impact on human health; thus, there is great necessity for the biomonitoring of EDCs in Poland.

  7. Contraceptive choices for women with endocrine complications.

    PubMed

    Loriaux, D L; Wild, R A

    1993-06-01

    Previous confusion regarding the interference by oral contraceptives in measurements of endocrine function have been largely eliminated by the advent of improved, more sensitive assays. There are few if any contraindications to oral contraceptive use in patients with thyroid disease. Patients with prolactinoma can be treated with bromocriptine to restore fertility and prevent mineral loss. However, as a less expensive alternative, oral contraceptives can be prescribed to correct mineral loss, because there is no convincing evidence of an adverse effect on prolactinomas by the steroidal content of the pill. Oral contraceptives comprise a near ideal treatment modality for women with polycystic ovary disease because, among other effects, oral contraceptives reduce synthesis of androgen by inhibiting pituitary gonadotropin secretion.

  8. Exocrine Dysfunction Correlates with Endocrinal Impairment of Pancreas in Type 2 Diabetes Mellitus

    PubMed Central

    Prasanna Kumar, H. R.; Gowdappa, H. Basavana; Hosmani, Tejashwi; Urs, Tejashri

    2018-01-01

    Background: Diabetes mellitus (DM) is a chronic abnormal metabolic condition, which manifests elevated blood sugar level over a prolonged period. The pancreatic endocrine system generally gets affected during diabetes, but often abnormal exocrine functions are also manifested due to its proximity to the endocrine system. Fecal elastase-1 (FE-1) is found to be an ideal biomarker to reflect the exocrine insufficiency of the pancreas. Aim: The aim of this study was conducted to assess exocrine dysfunction of the pancreas in patients with type-2 DM (T2DM) by measuring FE levels and to associate the level of hyperglycemia with exocrine pancreatic dysfunction. Methodology: A prospective, cross-sectional comparative study was conducted on both T2DM patients and healthy nondiabetic volunteers. FE-1 levels were measured using a commercial kit (Human Pancreatic Elastase ELISA BS 86-01 from Bioserv Diagnostics). Data analysis was performed based on the important statistical parameters such as mean, standard deviation, standard error, t-test-independent samples, and Chi-square test/cross tabulation using SPSS for Windows version 20.0. Results: Statistically nonsignificant (P = 0.5051) relationship between FE-1 deficiency and age was obtained, which implied age as a noncontributing factor toward exocrine pancreatic insufficiency among diabetic patients. Statistically significant correlation (P = 0.003) between glycated hemoglobin and FE-1 levels was also noted. The association between retinopathy (P = 0.001) and peripheral pulses (P = 0.001) with FE-1 levels were found to be statistically significant. Conclusion: This study validates the benefit of FE-1 estimation, as a surrogate marker of exocrine pancreatic insufficiency, which remains unmanifest and subclinical. PMID:29535950

  9. Development of a Multidisciplinary, Multicampus Subspecialty Practice in Endocrine Cancers

    PubMed Central

    Bible, Keith C.; Smallridge, Robert C.; Morris, John C.; Molina, Julian R.; Suman, Vera J.; Copland, John A.; Rubin, Joseph; Menefee, Michael E.; Sideras, Kostandinos; Maples, William J.; McIver, Bryan; Fatourechi, Vahab; Hay, Ian; Foote, Robert L.; Garces, Yolanda I.; Kasperbauer, Jan L.; Thompson, Geoffrey B.; Grant, Clive S.; Richards, Melanie L.; Sebo, Thomas; Lloyd, Ricardo; Eberhardt, Norman L.; Reddi, Honey V.; Casler, John D.; Karlin, Nina J.; Westphal, Sydney A.; Richardson, Ronald L.; Buckner, Jan C.; Erlichman, Charles

    2012-01-01

    Purpose: Relative to more abundant neoplasms, endocrine cancers have been historically neglected, yet their incidence is increasing. We therefore sought to build interest in endocrine cancers, improve physician experience, and develop innovative approaches to treating patients with these neoplasms. Methods: Between 2005 and 2010, we developed a multidisciplinary Endocrine Malignancies Disease Oriented Group involving all three Mayo Clinic campuses (Rochester, MN; Jacksonville, FL; and Scottsdale, AZ). In response to higher demand at the Rochester campus, we sought to develop a Subspecialty Tumor Group and an Endocrine Malignancies Tumor Clinic within the Division of Medical Oncology. Results: The intended groups were successfully formed. We experienced difficulty in integration of the Mayo Scottsdale campus resulting from local uncertainty as to whether patient volumes would be sufficient to sustain the effort at that campus and difficulty in developing enthusiasm among clinicians otherwise engaged in a busy clinical practice. But these obstacles were ultimately overcome. In addition, with respect to the newly formed medical oncology subspecialty endocrine malignancies group, appointment volumes quadrupled within the first year and increased seven times within two years. The number of active therapeutic endocrine malignancies clinical trials also increased from one in 2005 to five in 2009, with all three Mayo campuses participating. Conclusion: The development of subspecialty tumor groups for uncommon malignancies represents an effective approach to building experience, increasing patient volumes and referrals, and fostering development of increased therapeutic options and clinical trials for patients afflicted with otherwise historically neglected cancers. PMID:22942830

  10. Practice patterns and job satisfaction in fellowship-trained endocrine surgeons.

    PubMed

    Tsinberg, Michael; Duh, Quan-Yang; Cisco, Robin M; Gosnell, Jessica E; Scholten, Anouk; Clark, Orlo H; Shen, Wen T

    2012-12-01

    Debates about the difficult job market for young endocrine surgeons are ongoing. This study aimed to analyze the practice patterns and work-related satisfaction levels of recently trained endocrine surgeons. An anonymous survey was utilized. Participants were divided into 3 groups: "Young" (<3 years in practice), "middle" (3-5 years), and "older" (>5 years). Fifty-six of 78 surgeons (72%) responded to the survey. Time in practice ranged from 1 to 9 years (mean, 3.9 ± 0.28). Forty-five (80%) described their practice as academic. Participants performed 244.1 ± 17.8 operations within the last year; 75.4 ± 3.3% were endocrine cases. More surgeons in the "young" group have academic practices (92%) and joined established endocrine surgery groups (54%) versus older surgeons (67% and 42%; P = .05). Of surgeons in the "young" group, 4% started their own practice versus 33% in the "older" group (P = .04). Level of satisfaction with financial compensation (3.2 on a 4-point scale versus 2.9) and lifestyle (3.6 vs 3.1) was also higher in the younger group (P = .009). Despite widespread speculation about scarcity of academic jobs after fellowship, recently trained endocrine surgeons are more likely to practice in academic settings and join established endocrine surgery practices when compared with older surgeons. Overall satisfaction level is higher among recently trained surgeons. Copyright © 2012 Mosby, Inc. All rights reserved.

  11. Scientific Issues Relevant to Setting Regulatory Criteria to Identify Endocrine-Disrupting Substances in the European Union.

    PubMed

    Slama, Rémy; Bourguignon, Jean-Pierre; Demeneix, Barbara; Ivell, Richard; Panzica, Giancarlo; Kortenkamp, Andreas; Zoeller, R Thomas

    2016-10-01

    Endocrine disruptors (EDs) are defined by the World Health Organization (WHO) as exogenous compounds or mixtures that alter function(s) of the endocrine system and consequently cause adverse effects in an intact organism, or its progeny, or (sub)populations. European regulations on pesticides, biocides, cosmetics, and industrial chemicals require the European Commission to establish scientific criteria to define EDs. We address the scientific relevance of four options for the identification of EDs proposed by the European Commission. Option 1, which does not define EDs and leads to using interim criteria unrelated to the WHO definition of EDs, is not relevant. Options 2 and 3 rely on the WHO definition of EDs, which is widely accepted by the scientific community, with option 3 introducing additional categories based on the strength of evidence (suspected EDs and endocrine-active substances). Option 4 adds potency to the WHO definition, as a decision criterion. We argue that potency is dependent on the adverse effect considered and is scientifically ambiguous, and note that potency is not used as a criterion to define other particularly hazardous substances such as carcinogens and reproductive toxicants. The use of potency requires a context that goes beyond hazard identification and corresponds to risk characterization, in which potency (or, more relevantly, the dose-response function) is combined with exposure levels. There is scientific agreement regarding the adequacy of the WHO definition of EDs. The potency concept is not relevant to the identification of particularly serious hazards such as EDs. As is common practice for carcinogens, mutagens, and reproductive toxicants, a multi-level classification of ED based on the WHO definition, and not considering potency, would be relevant (corresponding to option 3 proposed by the European Commission). Slama R, Bourguignon JP, Demeneix B, Ivell R, Panzica G, Kortenkamp A, Zoeller RT. 2016. Scientific issues relevant

  12. Scientific Issues Relevant to Setting Regulatory Criteria to Identify Endocrine-Disrupting Substances in the European Union

    PubMed Central

    Slama, Rémy; Bourguignon, Jean-Pierre; Demeneix, Barbara; Ivell, Richard; Panzica, Giancarlo; Kortenkamp, Andreas; Zoeller, R. Thomas

    2016-01-01

    Background: Endocrine disruptors (EDs) are defined by the World Health Organization (WHO) as exogenous compounds or mixtures that alter function(s) of the endocrine system and consequently cause adverse effects in an intact organism, or its progeny, or (sub)populations. European regulations on pesticides, biocides, cosmetics, and industrial chemicals require the European Commission to establish scientific criteria to define EDs. Objectives: We address the scientific relevance of four options for the identification of EDs proposed by the European Commission. Discussion: Option 1, which does not define EDs and leads to using interim criteria unrelated to the WHO definition of EDs, is not relevant. Options 2 and 3 rely on the WHO definition of EDs, which is widely accepted by the scientific community, with option 3 introducing additional categories based on the strength of evidence (suspected EDs and endocrine-active substances). Option 4 adds potency to the WHO definition, as a decision criterion. We argue that potency is dependent on the adverse effect considered and is scientifically ambiguous, and note that potency is not used as a criterion to define other particularly hazardous substances such as carcinogens and reproductive toxicants. The use of potency requires a context that goes beyond hazard identification and corresponds to risk characterization, in which potency (or, more relevantly, the dose–response function) is combined with exposure levels. Conclusions: There is scientific agreement regarding the adequacy of the WHO definition of EDs. The potency concept is not relevant to the identification of particularly serious hazards such as EDs. As is common practice for carcinogens, mutagens, and reproductive toxicants, a multi-level classification of ED based on the WHO definition, and not considering potency, would be relevant (corresponding to option 3 proposed by the European Commission). Citation: Slama R, Bourguignon JP, Demeneix B, Ivell R, Panzica G

  13. The Use of MS-based Metabolomics to Determine Markers Associated with Endocrine Disruption in Small Fish Species

    EPA Science Inventory

    Endocrine disrupting chemicals (EDCs) are exogenous substances that disrupt the physiological function of endogenous hormones. In fish, these xenobiotics are capable of interfering with the dynamic equilibrium of the hypothalamic-pituitary-gonadal (HPG) axis resulting in adverse ...

  14. High-fat diets exaggerate endocrine and metabolic phenotypes in a rat model of DHEA-induced PCOS.

    PubMed

    Zhang, Haolin; Yi, Ming; Zhang, Yan; Jin, Hongyan; Zhang, Wenxin; Yang, Jingjing; Yan, Liying; Li, Rong; Zhao, Yue; Qiao, Jie

    2016-04-01

    Polycystic ovary syndrome (PCOS) is a complex endocrine and metabolic disorder with unclear etiology and unsatisfactory management. Effects of diets on the phenotype of PCOS were not fully understood. In the present study, we applied 45 and 60% high-fat diets (HFDs) on a rat model of PCOS induced by postnatal DHEA injection. We found that both DHEA and DHEA+HFDs rats exhibited reproductive abnormalities, including hyperandrogenism, irregular cycles and polycystic ovaries. The addition of HFDs, especially 60% HFDs, exaggerated morphological changes of ovaries and a number of metabolic changes, including increased body weight and body fat content, impaired glucose tolerance and increased serum insulin levels. Results from qPCR showed that DHEA-induced increased expression of hypothalamic androgen receptor and LH receptor were reversed by the addition of 60% HFDs. In contrast, the ovarian expression of LH receptor and insulin receptor mRNA was upregulated only with the addition of 60% HFDs. These findings indicated that DHEA and DHEA+HFDs might influence PCOS phenotypes through distinct mechanisms: DHEA affects the normal function of hypothalamus-pituitary-ovarian axis through LH, whereas the addition of HFDs exaggerated endocrine and metabolic dysfunction through ovarian responses to insulin-related mechanisms. We concluded that the addition of HFDs yielded distinct phenotypes of DHEA-induced PCOS and could be used for studies on both reproductive and metabolic features of the syndrome. © 2016 Society for Reproduction and Fertility.

  15. Structural and functional evidences for the interactions between nuclear hormone receptors and endocrine disruptors at low doses.

    PubMed

    Balaguer, Patrick; Delfosse, Vanessa; Grimaldi, Marina; Bourguet, William

    Endocrine-disrupting chemicals (EDCs) represent a broad class of exogenous substances that cause adverse effects in the endocrine system mainly by interacting with nuclear hormone receptors (NRs). Humans are generally exposed to low doses of pollutants, and current researches aim at deciphering the mechanisms accounting for the health impact of EDCs at environmental concentrations. Our correlative analysis of structural, interaction and cell-based data has revealed a variety of, sometimes unexpected, binding modes, reflecting a wide range of EDC affinities and specificities. Here, we present a few representative examples to illustrate various means by which EDCs achieve high-affinity binding to NRs. These examples include the binding of the mycoestrogen α-zearalanol to estrogen receptors, the covalent interaction of organotins with the retinoid X- and peroxisome proliferator-activated receptors, and the cooperative binding of two chemicals to the pregnane X receptor. We also discuss some hypotheses that could further explain low-concentration effects of EDCs with weaker affinity towards NRs. Copyright © 2017. Published by Elsevier Masson SAS.

  16. Endocrine tumours in the guinea pig.

    PubMed

    Künzel, Frank; Mayer, Jörg

    2015-12-01

    Functional endocrine tumours have long been thought to be rare in guinea pigs, although conditions such as hyperthyroidism and hyperadrenocorticism have been documented with increasing frequency so the prevalence of hormonal disorders may have been underestimated. Both the clinical signs and diagnosis of hyperthyroidism in guinea pigs appear to be very similar to those described in feline hyperthyroidism, and methimazole has been proven to be a practical therapy option. Hyperadrenocorticism has been confirmed in several guinea pigs with an adrenocorticotropic hormone stimulation test using saliva as a non-invasive sample matrix; trilostane has been successfully used to treat a guinea pig with hyperadrenocorticism. Insulinomas have only rarely been documented in guinea pigs and one animal was effectively treated with diazoxide. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. A RESEARCH AGENDA FOR RISK MANAGEMENT OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    To date, research on suspected endocrine disrupting chemicals (EDCs) has focused on determining health effects in humans and wildlife and on occurrence of these chemicals in the environment. There is strong evidence that certain chemicals are causing endocrine-related effects in...

  18. Prevalence of endocrine complications and short stature in patients with thalassaemia major: a multicenter study by the Thalassaemia International Federation (TIF).

    PubMed

    De Sanctis, Vincenzo; Eleftheriou, Androulla; Malaventura, Cristina

    2004-12-01

    Although numerous studies are available in the literature on endocrine complications in thalassaemia, little is known about this subject in developing countries. Therefore, an international multicenter study was conducted in a large series of children and adolescents with beta thalassaemia major in order to obtain more information on the prevalence of short stature and endocrine complications in different areas of the world and to elucidate the problems that must be dealt with in the future. A questionnaire was sent to 29 Centres treating a total of 3817 beta thalassaemia major patients. Thirty-six per cent of patients were over the age of 16 years. Short stature was present in 31.1% of males and 30.5% of females, and the prevalence of growth hormone deficiency was 7.9% in males and 8.8% in females. Lack of pubertal changes was the most common endocrine complication (40.5%) followed by hypoparathyroidism (6.9%), impaired glucose tolerance (6.5%), insulin-dependent diabetes mellitus (3.2%) and primary hypothyroidism (3.2%). The prevalence of endocrine complications differed among centres, particularly for growth hormone deficiency, hypoparathyroidism and hypothyroidism. Compliance to chelation therapy was poor in 51% of patients and serum liver enzymes were high in 65% of patients. Since several endocrine glands may be affected in patients with thalassaemia major, and their life expectancy is now much longer, it is important that physicians be aware of the endocrine abnormalities that may develop. Therefore, periodic evaluation of these problems should be carried out in thalassaemic patients with iron overload, particularly after the age of 11 years. In conclusion, since iron overload and liver damage seem to be the most important factors responsible for endocrine complications, adequate compliance to chelation therapy and rigid precautions against liver infections are imperative.

  19. Prevalence of endocrine and genetic abnormalities in boys evaluated systematically for a disorder of sex development.

    PubMed

    Nixon, R; Cerqueira, V; Kyriakou, A; Lucas-Herald, A; McNeilly, J; McMillan, M; Purvis, A I; Tobias, E S; McGowan, R; Ahmed, S F

    2017-10-01

    What is the likelihood of identifying genetic or endocrine abnormalities in a group of boys with 46, XY who present to a specialist clinic with a suspected disorder of sex development (DSD)? An endocrine abnormality of the gonadal axis may be present in a quarter of cases and copy number variants (CNVs) or single gene variants may be present in about half of the cases. Evaluation of 46, XY DSD requires a combination of endocrine and genetic tests but the prevalence of these abnormalities in a sufficiently large group of boys presenting to one specialist multidisciplinary service is unclear. This study was a retrospective review of investigations performed on 122 boys. All boys who attended the Glasgow DSD clinic, between 2010 and 2015 were included in the study. The median external masculinization score (EMS) of this group was 9 (range 1-11). Details of phenotype, endocrine and genetic investigations were obtained from case records. An endocrine abnormality of gonadal function was present in 28 (23%) with a median EMS of 8.3 (1-10.5) whilst the median EMS of boys with normal endocrine investigations was 9 (1.5-11) (P = 0.03). Endocrine abnormalities included a disorder of gonadal development in 19 (16%), LH deficiency in 5 (4%) and a disorder of androgen synthesis in 4 (3%) boys. Of 43 cases who had array-comparative genomic hybridization (array-CGH), CNVs were reported in 13 (30%) with a median EMS of 8.5 (1.5-11). Candidate gene analysis using a limited seven-gene panel in 64 boys identified variants in 9 (14%) with a median EMS of 8 (1-9). Of the 21 boys with a genetic abnormality, 11 (52%) had normal endocrine investigations. A selection bias for performing array-CGH in cases with multiple congenital malformations may have led to a high yield of CNVs. It is also possible that the yield of single gene variants may have been higher than reported if the investigators had used a more extended gene panel. The lack of a clear association between the extent of under

  20. ECETOC Florence workshop on risk assessment of endocrine substances, including the potency concept.

    PubMed

    Fegert, Ivana

    2013-12-16

    The European regulation on plant protection products (1107/2009) and the Biocidal Products Regulation (EC Regulation 528/2012) only support the marketing and use of chemicals if they do not cause endocrine disruption in humans or wildlife species. Also, substances with endocrine properties are subject to authorization under the European regulation on the registration, evaluation, authorization and restriction of chemicals (REACH; 1907/2006). Therefore, the regulatory consequences of identifying a substance as an endocrine disrupting chemical are severe. In contrast to that, basic scientific criteria, necessary to define endocrine disrupting properties, are not described in any of these legislative documents. Thus, the European Center for Ecotoxicology and Toxicology of Chemicals (ECETOC) established a task force to provide scientific criteria for the identification and assessment of chemicals with endocrine disrupting properties that may be used within the context of these three legislative texts (ECETOC, 2009a). In 2009, ECETOC introduced a scientific framework as a possible concept for identifying endocrine disrupting properties within a regulatory context (ECETOC, 2009b; Bars et al., 2011a,b). The proposed scientific criteria integrated, in a weight of evidence approach, information from regulatory (eco)toxicity studies and mechanistic/screening studies by combining evidence for adverse effects detected in apical whole-organism studies with an understanding of the mode of action (MoA) of endocrine toxicity. However, since not all chemicals with endocrine disrupting properties are of equal hazard, an adequate concept should also be able to differentiate between chemicals with endocrine properties of low concern from those of higher concern (for regulatory purposes). For this purpose, the task force refined this part of their concept. Following an investigation of the key factors at a second workshop of invited regulatory, academic and industry scientists, the

  1. ENDOCRINE ACTIVE SUBSTANCES AND DOSE-RESPONSE FOR INDIVIDUALS AND POPULATIONS

    EPA Science Inventory

    Endocrine Active Substances and Dose-Response for Individuals and Populations
    Hugh A. Barton

    Abstract for IUPAC-SCOPE article

    Dose-response characteristics for endocrine disruption have been major focuses in efforts to understand potential impacts on human and ec...

  2. EADB: An Estrogenic Activity Database for Assessing Potential Endocrine Activity

    EPA Science Inventory

    Endocrine-active chemicals can potentially have adverse effects on both humans and wildlife. They can interfere with the body’s endocrine system through direct or indirect interactions with many protein targets. Estrogen receptors (ERs) are one of the major targets, and many ...

  3. How Does Maternal Employment Affect Children's Socioemotional Functioning?

    ERIC Educational Resources Information Center

    Lam, Gigi

    2015-01-01

    The maternal employment becomes an irreversible trend across the globe. The effect of maternal employment on children's socioemotional functioning is so pervasive that it warrants special attention to investigate into the issue. A trajectory of analytical framework of how maternal employment affects children's socioemotional functioning originates…

  4. Glucose Homeostasis, Pancreatic Endocrine Function, and Outcomes in Advanced Heart Failure.

    PubMed

    Melenovsky, Vojtech; Benes, Jan; Franekova, Janka; Kovar, Jan; Borlaug, Barry A; Segetova, Marketa; Tura, Andrea; Pelikanova, Tereza

    2017-08-07

    The mechanisms and relevance of impaired glucose homeostasis in advanced heart failure (HF) are poorly understood. The study goals were to examine glucose regulation, pancreatic endocrine function, and metabolic factors related to prognosis in patients with nondiabetic advanced HF. In total, 140 advanced HF patients without known diabetes mellitus and 21 sex-, age-, and body mass index-matched controls underwent body composition assessment, oral glucose tolerance testing, and measurement of glucose-regulating hormones to model pancreatic β-cell secretory response. Compared with controls, HF patients had similar fasting glucose and insulin levels but higher levels after oral glucose tolerance testing. Insulin secretion was not impaired, but with increasing HF severity, there was a reduction in glucose, insulin, and insulin/glucagon ratio-a signature of starvation. The insulin/C-peptide ratio was decreased in HF, indicating enhanced insulin clearance, and this was correlated with lower cardiac output, hepatic insufficiency, right ventricular dysfunction, and body wasting. After a median of 449 days, 41% of patients experienced an adverse event (death, urgent transplant, or assist device). Increased glucagon and, paradoxically, low fasting plasma glucose displayed the strongest relations to outcome ( P =0.01). Patients in the lowest quartile of fasting plasma glucose (3.8-5.1 mmol·L -1 , 68-101 mg·dL -1 ) had 3-times higher event risk than in the top quartile (6.0-7.9 mmol·L -1 , 108-142 mg·dL -1 ; relative risk: 3.05 [95% confidence interval, 1.46-6.77]; P =0.002). Low fasting plasma glucose and increased glucagon are robust metabolic predictors of adverse events in advanced HF. Pancreatic insulin secretion is preserved in advanced HF, but levels decrease with increasing HF severity due to enhanced insulin clearance that is coupled with right heart failure and cardiac cachexia. © 2017 The Authors. Published on behalf of the American Heart Association, Inc

  5. Affective disorders and sexual function: from neuroscience to clinic.

    PubMed

    Barata, Bernardo C

    2017-11-01

    Sexual dysfunction is a frequent issue in patients with affective disorders, affecting its quality of life and posing challenges to the approach of these patients. In recent years, human sexuality has attracted interest from the scientific community, and today we have a much deeper knowledge of the mechanisms involved in the sexual response. Paraphilias or sexual dysfunctions like low sexual desire, premature ejaculation, and erectile dysfunction, are frequent in affective disorders, and the frequency of each sexual problem varies according to the affective disorder. Comparing what is currently known about the sexual response with the main neurobiological findings of depressive, anxiety, obsessive-compulsive and posttraumatic stress disorders, it is possible to better understand specific sexual complaints of patients with these disorders. A better understanding of sexual function in affective disorders may help clinicians to choose treatments more suited to specific needs of these patients. Although the current state of science already allows us to have some understanding about sexual function in affective disorders, this critical area of research is still in its infancy, waiting for more investment.

  6. Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System

    PubMed Central

    Rachdaoui, Nadia; Sarkar, Dipak K.

    2017-01-01

    Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body’s most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic–pituitary–adrenal axis, the hypothalamic–pituitary–gonadal axis, the hypothalamic–pituitary–thyroid axis, the hypothalamic–pituitary–growth hormone/insulin-like growth factor-1 axis, and the hypothalamic–posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol’s effects on various components of the endocrine system and their consequences. PMID:28988577

  7. Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System.

    PubMed

    Rachdaoui, Nadia; Sarkar, Dipak K

    2017-01-01

    Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body's most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-growth hormone/insulin-like growth factor-1 axis, and the hypothalamic-posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol's effects on various components of the endocrine system and their consequences.

  8. The Japanese Quail as an avian model for testing endocrine disrupting chemicals: endocrine and behavioral end points

    USGS Publications Warehouse

    Ottinger, M.A.; Abdelnabi, M.A.; Thompson, N.; Wu, J.; Henry, K.; Humphries, E.; Henry, P.F.P.

    2000-01-01

    Birds have extremely varied reproductive strategies. As such, the impact of endocrine disrupting chemicals (EDCs) can greatly differ across avian species. Precocial species, such as Japanese quail appear to be most sensitive to EDC effects during embryonic development, particularly sexual differentiation. A great deal is known about the ontogeny of Japanese quail (Coturnix japonica) relative to endocrine, neuro-endocrine, and behavioral components of reproduction. Therefore, this species provides an excellent model for understanding effects of EDCs on reproductive biology with exposure at specific stages of the life cycle. The purpose of these experiments was to conduct a 1- or 2- generation experiment with positive or negative control chemicals and to determine changes in selected end points. Japanese quail embryos were exposed to estradiol benzoate (EB; positive control) in a 2-generation design or to fadrozole (FAD; negative control) in a 1-generation design. Embryonic EB treatment resulted in significant reductions (p< 0.5) in hen day production (90.2 vs 54.1; control vs EB, resp.) and fertility (85.3 vs 33.4%, control vs EB, resp.). Males showed sharply reduced courtship and mating behaviors as well as increased lag time (26 vs 148 sec; control vs EB) in behavioral tests. Fadrozole exposure resulted in reduced hatchability of fertile eggs, particularly at higher doses. There were no significant effects on courtship and mating behavior of males although males showed an increased lag time in their responses, nally, a behavioral test for studying motor and fear responses in young chicks was used; chicks exposed to an estrogenic pesticide (methoxychlor) showed some deficits. In summary, the use of appropriate and reliable end points that are responsive to endocrine disruption are critical for assessment of EDCs. Supported in part by EPA grant R826134.

  9. Endocrine Dysfunction in Female FMR1 Premutation Carriers: Characteristics and Association with Ill Health

    PubMed Central

    Campbell, Sonya; Eley, Sarah E. A.; McKechanie, Andrew G.; Stanfield, Andrew C.

    2016-01-01

    Female FMR1 premutation carriers (PMC) have been suggested to be at greater risk of ill health, in particular endocrine dysfunction, compared to the general population. We set out to review the literature relating to endocrine dysfunction, including premature ovarian insufficiency (POI), in female PMCs, and then to consider whether endocrine dysfunction in itself may be predictive of other illnesses in female PMCs. A systematic review and pilot data from a semi-structured health questionnaire were used. Medline, Embase, and PsycInfo were searched for papers concerning PMCs and endocrine dysfunction. For the pilot study, self-reported diagnoses in females were compared between PMCs with endocrine dysfunction (n = 18), PMCs without endocrine dysfunction (n = 14), and individuals without the premutation (n = 15). Twenty-nine papers were identified in the review; the majority concerned POI and reduced fertility, which are consistently found to be more common in PMCs than controls. There was some evidence that thyroid dysfunction may occur more frequently in subgroups of PMCs and that those with endocrine difficulties have poorer health than those without. In the pilot study, PMCs with endocrine problems reported higher levels of fibromyalgia (p = 0.03), tremor (p = 0.03), headache (p = 0.01) and obsessive–compulsive disorder (p = 0.009) than either comparison group. Further larger scale research is warranted to determine whether female PMCs are at risk of endocrine disorders other than those associated with reproduction and whether endocrine dysfunction identifies a high-risk group for the presence of other health conditions. PMID:27869718

  10. Dietary exposure to the endocrine disruptor tolylfluanid promotes global metabolic dysfunction in male mice.

    PubMed

    Regnier, Shane M; Kirkley, Andrew G; Ye, Honggang; El-Hashani, Essam; Zhang, Xiaojie; Neel, Brian A; Kamau, Wakanene; Thomas, Celeste C; Williams, Ayanna K; Hayes, Emily T; Massad, Nicole L; Johnson, Daniel N; Huang, Lei; Zhang, Chunling; Sargis, Robert M

    2015-03-01

    Environmental endocrine disruptors are implicated as putative contributors to the burgeoning metabolic disease epidemic. Tolylfluanid (TF) is a commonly detected fungicide in Europe, and previous in vitro and ex vivo work has identified it as a potent endocrine disruptor with the capacity to promote adipocyte differentiation and induce adipocytic insulin resistance, effects likely resulting from activation of glucocorticoid receptor signaling. The present study extends these findings to an in vivo mouse model of dietary TF exposure. After 12 weeks of consumption of a normal chow diet supplemented with 100 parts per million TF, mice exhibited increased body weight gain and an increase in total fat mass, with a specific augmentation in visceral adipose depots. This increased adipose accumulation is proposed to occur through a reduction in lipolytic and fatty acid oxidation gene expression. Dietary TF exposure induced glucose intolerance, insulin resistance, and metabolic inflexibility, while also disrupting diurnal rhythms of energy expenditure and food consumption. Adipose tissue endocrine function was also impaired with a reduction in serum adiponectin levels. Moreover, adipocytes from TF-exposed mice exhibited reduced insulin sensitivity, an effect likely mediated through a specific down-regulation of insulin receptor substrate-1 expression, mirroring effects of ex vivo TF exposure. Finally, gene set enrichment analysis revealed an increase in adipose glucocorticoid receptor signaling with TF treatment. Taken together, these findings identify TF as a novel in vivo endocrine disruptor and obesogen in mice, with dietary exposure leading to alterations in energy homeostasis that recapitulate many features of the metabolic syndrome.

  11. t4 workshop report--lessons learned, challenges, and opportunities: the U.S. Endocrine Disruptor Screening Program.

    PubMed

    Juberg, Daland R; Borghoff, Susan J; Becker, Richard A; Casey, Warren; Hartung, Thomas; Holsapple, Michael P; Marty, M Sue; Mihaich, Ellen M; Van Der Kraak, Glen; Wade, Michael G; Willett, Catherine E; Andersen, Melvin E; Borgert, Christopher J; Coady, Katherine K; Dourson, Michael L; Fowle, John R; Gray, L Earl; Lamb, James C; Ortego, Lisa S; Schug, Thaddeus T; Toole, Colleen M; Zorrilla, Leah M; Kroner, Oliver L; Patterson, Jacqueline; Rinckel, Lori A; Jones, Brett R

    2014-01-01

    In 1996, the U.S. Congress passed the Food Quality Protection Act and amended the Safe Drinking Water Act (SDWA) requiring the U.S. Environmental Protection Agency (EPA) to implement a screening program to investigate the potential of pesticide chemicals and drinking water contaminants to adversely affect endocrine pathways. Consequently, the EPA launched the Endocrine Disruptor Screening Program (EDSP) to develop and validate estrogen, androgen, and thyroid (EAT) pathway screening assays and to produce standardized and harmonized test guidelines for regulatory application. In 2009, the EPA issued the first set of test orders for EDSP screening and a total of 50 pesticide actives and 2 inert ingredients have been evaluated using the battery of EDSP Tier 1 screening assays (i.e., five in vitro assays and six in vivo assays). To provide a framework for retrospective analysis of the data generated and to collect the insight of multiple stakeholders involved in the testing, more than 240 scientists from government, industry, academia, and non-profit organizations recently participated in a workshop titled "Lessons Learned, Challenges, and Opportunities: The U.S. Endocrine Disruptor Screening Program." The workshop focused on the science and experience to date and was organized into three focal sessions: (a) Performance of the EDSP Tier 1 Screening Assays for Estrogen, Androgen, and Thyroid Pathways; (b) Practical Applications of Tier 1 Data; and (c) Indications and Opportunities for Future Endocrine Testing. A number of key learnings and recommendations related to future EDSP evaluations emanated from the collective sessions.

  12. A patient with a metastatic gastroenteropancreatic endocrine carcinoma causing hyperinsulinaemic hypoglycaemia and the carcinoid syndrome.

    PubMed

    Hinchliffe, E; Allcock, R L; Mansoor, W; Myers, M A

    2011-11-01

    We present the case of a 57-year-old patient who initially presented with a constellation of symptoms including intense pruritis, flushing and diarrhoea. Following several months clinical deterioration, the patient was investigated radiologically, where multiple hepatic tumours were identified. Liver biopsy confirmed the presence of a well-differentiated metastatic gastroenteropancreatic endocrine carcinoma with biochemical evidence of serotonin secretion. Over a period of six months, the clinical course of the patient's disease progressed whereby severe hypoglycaemia became the major manifestation. Subsequent biochemical investigations confirmed the diagnosis of an insulinoma. Extensive radiological investigation revealed a solitary primary pancreatic tumour, indicating the presence of a metastatic pancreatic endocrine tumour (PET) secreting both insulin and serotonin. The patient was treated with a chemotherapy regimen consisting of 12 cycles of 5-fluorouracil/oxaliplatin, responding clinically - improved World Health Organization performance score from 3 to 1, biochemically - significantly reduced plasma chromogranin A and cancer antigen 19-9 concentrations and improved liver function tests, and radiologically - reduced pancreatic and hepatic tumour size. This is the first report of a primary PET secreting insulin and serotonin. Due to the association of serotonin-secreting gastroenteropancreatic endocrine tumours (GEP-ETs) with multiple endocrine neoplasia type-1 (MEN1) and biochemical evidence of an insulinoma, MEN1 should also be considered in such cases. The case provides further evidence for the biological heterogeneity of GEP-ETs and the myriad secretory humoral products and resultant clinical syndromes arising from such tumours.

  13. Adjuvant psychological therapy in long-term endocrine conditions.

    PubMed

    Daniels, J; Turner-Cobb, J M

    2017-06-01

    Consideration of psychological distress in long-term endocrine conditions is of vital importance given the prevalence of anxiety and depression in such disorders. Poor mental health can lead to compromised self-care, higher utilization of health services, lower rates of adherence, reduced quality of life and ultimately poorer outcomes. Adjuvant psychological therapy offers an effective resource to reduce distress in endocrine conditions. While the vast majority of work in this area has focused on psychological screening and intervention in diabetes, identification and recognition of psychological distress are equally important in other endocrinological conditions, with supportive evidence in polycystic ovary syndrome and Addison's disease. Referral pathways and recommendations set out by UK guidelines and the Department of Health mandate requires greater attention across a wider range of long-term endocrine conditions to facilitate improved quality of life and health outcome. © 2017 John Wiley & Sons Ltd.

  14. Investigation of endocrine and immunological response in fat tissue to hyperbaric oxygen administration in rats.

    PubMed

    Şen, H; Erbağ, G; Ovali, M A; Öztopuz, R Ö; Uzun, M

    2016-04-30

    Though HBO treatment is becoming more common, the mechanism of action is not fully known. The positive effects of HBO administration on the inflammatory response is thought to be a possible basic mechanism. As a result, we aimed to research whether endocrine and immunological response of fat tissue changes in rats given HBO treatment model. This research was carried out on Wistar albino rats, they were treated with hyperbaric oxygen therapy. Their fatty tissue were taken from the abdomen, gene expression of the cytokines and adipokines were analyzed with Real time PCR method. When the gene expression of hormones and cytokines by fat tissue was examined, the leptin, visfatin, TNF-α, IL-1β and IL-10 levels in the HBO treatment group were statistically significantly increased compared to the control group (p=0.0313, p=0.0156, p=0.0156, p=0.0156, p=0.0313). In conclusion, in our study we identified that HBO administration affected the endochrinological functions of fat tissue.

  15. European endocrine surgery in the 150-year history of Langenbeck's Archives of Surgery.

    PubMed

    Dralle, Henning; Machens, A

    2010-04-01

    Founded in 1861 as a German language scientific forum of exchange for European surgeons, Langenbeck's Archives of Surgery quickly advanced to become the premier journal of thyroid surgery before World War I, serving as a point of crystallization for the emerging discipline of endocrine surgery. During the interwar period and, in particular, in the first decades after World War II, Langenbeck's Archives of Surgery lost its dominant position as an international and European medium of publication of top quality articles in the area of endocrine surgery. Nevertheless, the journal remained the chief publication organ of German language articles in the field of endocrine surgery. After a series of key events, Langenbeck's Archives of Surgery managed to reclaim its former position as the leading European journal of endocrine surgery: (1) the formation of endocrine surgery in the early 1980s as a subdiscipline of general and visceral surgery; (2) the change of the language of publication from German to English in 1998; and (3) the journal's appointment in 2004 as the official organ of publication of the European Society of Endocrine Surgeons. All in all, the 150-year publication record of Langenbeck's Archives of Surgery closely reflects the history of European Endocrine Surgery. Following the path of seminal articles from Billroth, Kocher, and many other surgical luminaries published in the journal more than 100 years ago, Langenbeck's Archives of Surgery today stands out as the principal European journal in the field of endocrine surgery.

  16. The Vitamin D Endocrine System.

    ERIC Educational Resources Information Center

    Norman, Anthony W.

    1985-01-01

    Discusses the physiology and biochemistry of the vitamin D endocrine system, including role of biological calcium and phosphorus, vitamin D metabolism, and related diseases. A 10-item, multiple-choice test which can be used to obtain continuing medical education credit is included. (JN)

  17. CURRENT CHALLENGES ON ENDOCRINE DISRUPTORS

    EPA Science Inventory

    For over ten years, major international efforts have been aimed at understanding the mechanism and extent of endocrine disruption in experimental models, wildlife, and people; the occurrence of this in the real world and in developing tools for screening and prediction of risk. ...

  18. The endocrine manifestations of anorexia nervosa: mechanisms and management.

    PubMed

    Schorr, Melanie; Miller, Karen K

    2017-03-01

    Anorexia nervosa is a psychiatric disorder characterized by altered body image, persistent food restriction and low body weight, and is associated with global endocrine dysregulation in both adolescent girls and women. Dysfunction of the hypothalamic-pituitary axis includes hypogonadotropic hypogonadism with relative oestrogen and androgen deficiency, growth hormone resistance, hypercortisolaemia, non-thyroidal illness syndrome, hyponatraemia and hypooxytocinaemia. Serum levels of leptin, an anorexigenic adipokine, are suppressed and levels of ghrelin, an orexigenic gut peptide, are elevated in women with anorexia nervosa; however, levels of peptide YY, an anorexigenic gut peptide, are paradoxically elevated. Although most, but not all, of these endocrine disturbances are adaptive to the low energy state of chronic starvation and reverse with treatment of the eating disorder, many contribute to impaired skeletal integrity, as well as neuropsychiatric comorbidities, in individuals with anorexia nervosa. Although 5-15% of patients with anorexia nervosa are men, only limited data exist regarding the endocrine impact of the disease in adolescent boys and men. Further research is needed to understand the endocrine determinants of bone loss and neuropsychiatric comorbidities in anorexia nervosa in both women and men, as well as to formulate optimal treatment strategies.

  19. Expression of VGF mRNA in developing neuroendocrine and endocrine tissues.

    PubMed

    Snyder, S E; Peng, B; Pintar, J E; Salton, S R J

    2003-11-01

    Analysis of knockout mice suggests that the neurotropin-inducible secreted polypeptide VGF (non-acronymic) plays an important role in the regulation of energy balance. VGF is synthesized by neurons in the central and peripheral nervous systems (CNS, PNS), as well as in the adult pituitary, adrenal medulla, endocrine cells of the stomach and pancreatic beta cells. Thus VGF, like cholecystokinin, leptin, ghrelin and other peptide hormones that have been shown to regulate feeding and energy expenditure, is synthesized in both the gut and the brain. Although detailed developmental studies of VGF localization in the CNS and PNS have been completed, little is known about the ontogeny of VGF expression in endocrine and neuroendocrine tIssues. Here, we report that VGF mRNA is detectable as early as embryonic day 15.5 in the developing rat gastrointestinal and esophageal lumen, pancreas, adrenal, and pituitary, and we further demonstrate that VGF mRNA is synthesized in the gravid rat uterus, together supporting possible functional roles for this polypeptide outside the nervous system and in the enteric plexus.

  20. Endocrine and metabolic characteristics in polycystic ovary syndrome.

    PubMed

    Glintborg, Dorte

    2016-04-01

    Hirsutism affects 5-25% women, and the condition is most often caused by polycystic ovary syndrome (PCOS). The initial evaluation of hirsute patients should include a thorough medical history, clinical evaluation, and standardized blood samples to diagnose the 5% hirsute patients with rare endocrine disorders. The majority of these examinations can be performed by the patient's general practitioner. PCOS is a diagnosis of exclusion and is a multiorgan disease affecting most endocrine organs including ovaries, adrenals, pituitary, fat cells, and endocrine pancreas. The manifestations of PCOS are diverse, and up to 50% patients are normal weight. In most cases, however, the severity of symptoms can be related to abdominal obesity. Increased inflammation in PCOS can be measured as decreased adiponectin levels and increased levels of adipokines, chemokines, and interleukins. In the present thesis the use of these inflammatory markers is reviewed, but more data including hard end points are needed to determine which of these markers that should be introduced to the daily clinic. Abdominal obesity and insulin resistance stimulates ovarian and adrenal androgen production, whereas SHBG levels are decreased. Increased testosterone levels may further increase abdominal obesity and inflammation, therefore describing PCOS as a vicious cycle. Abdominal obesity and increased activation of the inflammatory system is seen in both normal weight and obese PCOS patients leading to an increased risk of dyslipidemia, diabetes, and possibly cardiovascular disease. Patients diagnosed with PCOS therefore should be screened for elements in the metabolic syndrome including weight, waist, blood pressure, HbA1c, and lipid status. Our data supported that prolactin and HbA1c levels could be markers of cardiovascular risk and should be confirmed by prospective studies. PCOS is a life-long condition and treatment modalities involve lifestyle modification, insulin sensitizers such as metformin, or

  1. EPIGENETIC TRANSGENERATIONAL ACTIONS OF ENDOCRINE DISRUPTORS

    PubMed Central

    Skinner, Michael K.; Manikkam, Mohan; Guerrero-Bosagna, Carlos

    2010-01-01

    Environmental factors have a significant impact on biology. Therefore, environmental toxicants through similar mechanisms can modulate biological systems to influence physiology and promote disease states. The majority of environmental toxicants do not have the capacity to modulate DNA sequence, but can alter the epigenome. In the event an environmental toxicant such as an endocrine disruptor modifies the epigenome of a somatic cell, this may promote disease in the individual exposed, but not be transmitted to the next generation. In the event a toxicant modifies the epigenome of the germ line permanently, then the disease promoted can become transgenerationaly transmitted to subsequent progeny. The current review focuses on the ability of environmental factors such as endocrine disruptors to promote transgenerational phenotypes. PMID:21055462

  2. Systemic Effects of Non-Endocrine Tumours

    PubMed Central

    Sullivan, James D.; Rona, George

    1964-01-01

    Tumours of non-endocrine origin may exert deleterious effects by elaborating active principles which disturb body regulation. Systemic manifestations are fairly common with neoplasms of the lung, kidney, gastro-intestinal tract and thymus. The secretion of these tumours may have a known chemical structure (serotonin), may present hormone-like action (parathormone, antidiuretic hormone, insulinoid), or have well-defined biological properties (erythropoietin, gastrin-like principle). Tumours may stimulate endocrine glands by an unknown mechanism, producing disorders such as Cushing's syndrome, hypercalcemia, gynecomastia and hypoglycemia. Thymomas may be associated with autoimmune diseases. Tumours may extensively utilize or excrete some metabolite (glucose) or electrolyte (Na or K). Awareness of the systemic effects of various neoplasms may lead to an early diagnosis and proper treatment of these manifestations. PMID:14204555

  3. Bioengineering the Endocrine Pancreas: Intraomental Islet Transplantation Within a Biologic Resorbable Scaffold.

    PubMed

    Berman, Dora M; Molano, R Damaris; Fotino, Carmen; Ulissi, Ulisse; Gimeno, Jennifer; Mendez, Armando J; Kenyon, Norman M; Kenyon, Norma S; Andrews, David M; Ricordi, Camillo; Pileggi, Antonello

    2016-05-01

    Transplantation of pancreatic islets is a therapeutic option to preserve or restore β-cell function. Our study was aimed at developing a clinically applicable protocol for extrahepatic transplantation of pancreatic islets. The potency of islets implanted onto the omentum, using an in situ-generated adherent, resorbable plasma-thrombin biologic scaffold, was evaluated in diabetic rat and nonhuman primate (NHP) models. Intraomental islet engraftment in the biologic scaffold was confirmed by achievement of improved metabolic function and preservation of islet cytoarchitecture, with reconstitution of rich intrainsular vascular networks in both species. Long-term nonfasting normoglycemia and adequate glucose clearance (tolerance tests) were achieved in both intrahepatic and intraomental sites in rats. Intraomental graft recipients displayed lower levels of serum biomarkers of islet distress (e.g., acute serum insulin) and inflammation (e.g., leptin and α2-macroglobulin). Importantly, low-purity (30:70% endocrine:exocrine) syngeneic rat islet preparations displayed function equivalent to that of pure (>95% endocrine) preparations after intraomental biologic scaffold implantation. Moreover, the biologic scaffold sustained allogeneic islet engraftment in immunosuppressed recipients. Collectively, our feasibility/efficacy data, along with the simplicity of the procedure and the safety of the biologic scaffold components, represented sufficient preclinical testing to proceed to a pilot phase I/II clinical trial. © 2016 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  4. Prevalence of endocrine and genetic abnormalities in boys evaluated systematically for a disorder of sex development

    PubMed Central

    Nixon, R.; Cerqueira, V.; Kyriakou, A.; Lucas-Herald, A.; McNeilly, J.; McMillan, M.; Purvis, A.I.; Tobias, E.S.; McGowan, R.

    2017-01-01

    Abstract STUDY QUESTION What is the likelihood of identifying genetic or endocrine abnormalities in a group of boys with 46, XY who present to a specialist clinic with a suspected disorder of sex development (DSD)? SUMMARY ANSWER An endocrine abnormality of the gonadal axis may be present in a quarter of cases and copy number variants (CNVs) or single gene variants may be present in about half of the cases. WHAT IS KNOWN ALREADY Evaluation of 46, XY DSD requires a combination of endocrine and genetic tests but the prevalence of these abnormalities in a sufficiently large group of boys presenting to one specialist multidisciplinary service is unclear. STUDY, DESIGN, SIZE, DURATION This study was a retrospective review of investigations performed on 122 boys. PARTICIPANTS/MATERIALS, SETTING, METHODS All boys who attended the Glasgow DSD clinic, between 2010 and 2015 were included in the study. The median external masculinization score (EMS) of this group was 9 (range 1–11). Details of phenotype, endocrine and genetic investigations were obtained from case records. MAIN RESULTS AND THE ROLE OF CHANCE An endocrine abnormality of gonadal function was present in 28 (23%) with a median EMS of 8.3 (1–10.5) whilst the median EMS of boys with normal endocrine investigations was 9 (1.5–11) (P = 0.03). Endocrine abnormalities included a disorder of gonadal development in 19 (16%), LH deficiency in 5 (4%) and a disorder of androgen synthesis in 4 (3%) boys. Of 43 cases who had array-comparative genomic hybridization (array-CGH), CNVs were reported in 13 (30%) with a median EMS of 8.5 (1.5–11). Candidate gene analysis using a limited seven-gene panel in 64 boys identified variants in 9 (14%) with a median EMS of 8 (1–9). Of the 21 boys with a genetic abnormality, 11 (52%) had normal endocrine investigations. LIMITATIONS, REASONS FOR CAUTION A selection bias for performing array-CGH in cases with multiple congenital malformations may have led to a high yield of CNVs. It

  5. Hippocampus Contributions to Food Intake Control: Mnemonic, Neuroanatomical, and Endocrine Mechanisms.

    PubMed

    Kanoski, Scott E; Grill, Harvey J

    2017-05-01

    Food intake is a complex behavior that can occur or cease to occur for a multitude of reasons. Decisions about where, when, what, and how much to eat are not merely reflexive responses to food-relevant stimuli or to changes in energy status. Rather, feeding behavior is modulated by various contextual factors and by previous experiences. The data reviewed here support the perspective that neurons in multiple hippocampal subregions constitute an important neural substrate linking the external context, the internal context, and mnemonic and cognitive information to control both appetitive and ingestive behavior. Feeding behavior is heavily influenced by hippocampal-dependent mnemonic functions, including episodic meal-related memories and conditional learned associations between food-related stimuli and postingestive consequences. These mnemonic processes are undoubtedly influenced by both external and internal factors relating to food availability, location, and physiological energy status. The afferent and efferent neuroanatomical connectivity of the subregions of the hippocampus is reviewed with regard to the integration of visuospatial and olfactory sensory information (the external context) with endocrine and gastrointestinal interoceptive stimuli (the internal context). Also discussed are recent findings demonstrating that peripherally derived endocrine signals act on receptors in hippocampal neurons to reduce (leptin, glucagon-like peptide-1) or increase (ghrelin) food intake and learned food reward-driven responding, thereby highlighting endocrine and neuropeptidergic signaling in hippocampal neurons as a novel substrate of importance in the higher-order regulation of feeding behavior. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  6. Expert consensus of general surgery residents' proficiency with common endocrine operations.

    PubMed

    Phitayakorn, Roy; Kelz, Rachel R; Petrusa, Emil; Sippel, Rebecca S; Sturgeon, Cord; Patel, Kepal N; Perrier, Nancy D

    2017-01-01

    Proficiency with common endocrine operations is expected of graduating, general surgery residents. However, no expert consensus guidelines exist about these expectations. Members of the American Association of Endocrine Surgeons were surveyed about their opinions on resident proficiency with common endocrine operations. Overall response rate was 38%. A total of 92% of the respondents operate with residents. On average, they believed that the steps of a total thyroidectomy for benign disease and a well-localized parathyroidectomy could be performed by a postgraduate year 4 surgery resident. Specific steps that they thought might require more training included decisions to divide the strap muscles or leaving a drain. Approximately 66% of respondents thought that a postgraduate year 5 surgery resident could independently perform a total thyroidectomy for benign disease, but only 45% felt similarly for malignant thyroid disease; 79% thought that a postgraduate year 5 surgery resident could independently perform a parathyroidectomy. Respondents' years of experience correlated with their opinions about resident autonomy for total thyroidectomy (benign r = 0.38, P < .001; malignant r = 0.29, P = .001) but not parathyroidectomy. On multivariate analysis, sex and years of experience of the respondents were independently associated with opinions on autonomy but only for total thyroidectomy for benign disease (P = .001). Annual endocrine volume of the respondents did not correlate with beliefs in autonomy. There was general agreement among responding members of the AAES about resident proficiency and autonomy with common endocrine operations. As postgraduate year 5 residents may not be proficient in advanced endocrine operations, opportunities exist to improve training prior to the transition to independent practice for graduates that anticipate performing endocrine operations routinely. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Hormones in the city: endocrine ecology of urban birds.

    PubMed

    Bonier, Frances

    2012-05-01

    Urbanization dramatically changes the landscape, presenting organisms with novel challenges and often leading to reduced species diversity. Urban ecologists have documented numerous biotic and abiotic consequences of urbanization, such as altered climate, species interactions, and community composition, but we lack an understanding of the mechanisms underlying organisms' responses to urbanization. Here, I review findings from the nascent field of study of the endocrine ecology of urban birds. Thus far, no clear or consistent patterns have been revealed, but we do have evidence that urban habitat can shape endocrine traits, and that those traits might contribute to adaptation to the urban environment. I suggest strong approaches for future work addressing exciting questions about the role of endocrine traits in mediating responses to urbanization within species across the globe. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Endocrine disrupting effects of butylated hydroxyanisole (BHA - E320)

    PubMed Central

    POP, ANCA; KISS, BELA; LOGHIN, FELICIA

    2013-01-01

    Butylated hydroxyanisole (BHA) is extensively used as antioxidant in foods, food packaging, cosmetics and pharmaceuticals. In the past years, it raised concerns regarding its possible endocrine disrupting effect. The existing in vitro studies indicate that BHA presents a weak estrogenic effect and also anti-androgenic properties while an in vivo study found it to have antiestrogenic properties. There is no sufficient data available at the moment to draw a conclusion regarding the safety of BHA when referring to its endocrine disrupting effect. Since a fraction of the population might be exposed to doses superior to the acceptable daily intake (ADI), it is important to gather more in vitro and in vivo data concerning the potential effects that BHA might have alone, but also in mixtures with natural hormones or other endocrine disrupting compounds. PMID:26527908

  9. Recent Advances on Endocrine Disrupting Effects of UV Filters.

    PubMed

    Wang, Jiaying; Pan, Liumeng; Wu, Shenggan; Lu, Liping; Xu, Yiwen; Zhu, Yanye; Guo, Ming; Zhuang, Shulin

    2016-08-03

    Ultraviolet (UV) filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives.

  10. Distinct Functional Networks Associated with Improvement of Affective Symptoms and Cognitive Function During Citalopram Treatment in Geriatric Depression

    PubMed Central

    Diaconescu, Andreea Oliviana; Kramer, Elisse; Hermann, Carol; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; McIntosh, Anthony Randal; Smith, Gwenn S.

    2010-01-01

    Variability in the affective and cognitive symptom response to antidepressant treatment has been observed in geriatric depression. The underlying neural circuitry is poorly understood. The current study evaluated the cerebral glucose metabolic effects of citalopram treatment and applied multivariate, functional connectivity analyses to identify brain networks associated with improvements in affective symptoms and cognitive function. Sixteen geriatric depressed patients underwent resting Positron Emission Tomography (PET) studies of cerebral glucose metabolism and assessment of affective symptoms and cognitive function before and after eight weeks of selective serotonin reuptake inhibitor treatment (citalopram). Voxel-wise analyses of the normalized glucose metabolic data showed decreased cerebral metabolism during citalopram treatment in the anterior cingulate gyrus, middle temporal gyrus, precuneus, amygdala, and parahippocampal gyrus. Increased metabolism was observed in the putamen, occipital cortex and cerebellum. Functional connectivity analyses revealed two networks which were uniquely associated with improvement of affective symptoms and cognitive function during treatment. A subcortical-limbic-frontal network was associated with improvement in affect (depression and anxiety), while a medial temporal-parietal-frontal network was associated with improvement in cognition (immediate verbal learning/memory and verbal fluency). The regions that comprise the cognitive network overlap with the regions that are affected in Alzheimer’s dementia. Thus, alterations in specific brain networks associated with improvement of affective symptoms and cognitive function are observed during citalopram treatment in geriatric depression. PMID:20886575

  11. Neuro-Endocrine Control of Reproduction in Hermaphroditic Freshwater Snails: Mechanisms and Evolution

    PubMed Central

    Koene, Joris M.

    2010-01-01

    Invertebrates are used extensively as model species to investigate neuro-endocrine processes regulating behaviors, and many of these processes may be extrapolated to vertebrates. However, when it comes to reproductive processes, many of these model species differ notably in their mode of reproduction. A point in case are simultaneously hermaphroditic molluscs. In this review I aim to achieve two things. On the one hand, I provide a comprehensive overview of the neuro-endocrine control of male and female reproductive processes in freshwater snails. Even though the focus will necessarily be on Lymnaea stagnalis, since this is the best-studied species in this respect, extensions to other species are made wherever possible. On the other hand, I will place these findings in the actual context of the whole animal, after all these are simultaneous hermaphrodites. By considering the hermaphroditic situation, I uncover a numbers of possible links between the regulation of the two reproductive systems that are present within this animal, and suggest a few possible mechanisms via which this animal can effectively switch between the two sexual roles in the flexible way that it does. Evidently, this opens up a number of new research questions and areas that explicitly integrate knowledge about behavioral decisions (e.g., mating, insemination, egg laying) and sexual selection processes (e.g., mate choice, sperm allocation) with the actual underlying neuronal and endocrine mechanisms required for these processes to act and function effectively. PMID:21088700

  12. Familial endocrine myxolentiginosis.

    PubMed

    Panossian, D H; Marais, G E; Marais, H J

    1995-11-01

    We present an unusual case of a left atrial myxoma as a feature of a familial mesoectodermal disorder and review the literature. The new term "familial endocrine myxolentiginosis" is proposed, which is descriptive of the major clinical components of the syndrome. Myriad features of this disorder include (1) cardiac myxomas; (2) cutaneous myxomas; (3) multiple lentigines or blue nevi, particularly of the head and neck; (4) bilateral primary pigmented nodular adrenocortical hyperplasia; (5) unusual testicular tumors; (6) pituitary tumors; (7) myxoid fibroadenomas of the breast; (8) myxomatous disorder of the stroma of the breast; (9) ductal adenoma of the breast; and (10) psammomatous melanotic schwannoma. A tentative diagnosis is suggested by identifying two features and a definitive diagnosis is made by three or more features. The clinical and pathologic features of cardiac myxoma in familial endocrine myxolentiginosis are identical to those of familial cardiac myxoma: age < 40 years, atypical locations, multicentric origins, and recurrent presentations. A Venn diagram classification for cardiac myxomas is proposed. We include photographic, echocardiographic, biopsy, and adrenal computerized tomography documentation in our patient. Recognition of this disorder is important because of its clinical, surgical, and genetic implications. The availability of transesophageal echocardiographic technology should allow early diagnosis of this underdiagnosed entity. Clinicians should consider this entity in the differential diagnosis of their patients with any one of these manifestations.

  13. Toxicogenomics to Evaluate Endocrine Disrupting Effects of Environmental Chemicals Using the Zebrafish Model

    PubMed Central

    Caballero-Gallardo, Karina; Olivero-Verbel, Jesus; Freeman, Jennifer L.

    2016-01-01

    The extent of our knowledge on the number of chemical compounds related to anthropogenic activities that can cause damage to the environment and to organisms is increasing. Endocrine disrupting chemicals (EDCs) are one group of potentially hazardous substances that include natural and synthetic chemicals and have the ability to mimic endogenous hormones, interfering with their biosynthesis, metabolism, and normal functions. Adverse effects associated with EDC exposure have been documented in aquatic biota and there is widespread interest in the characterization and understanding of their modes of action. Fish are considered one of the primary risk organisms for EDCs. Zebrafish (Danio rerio) are increasingly used as an animal model to study the effects of endocrine disruptors, due to their advantages compared to other model organisms. One approach to assess the toxicity of a compound is to identify those patterns of gene expression found in a tissue or organ exposed to particular classes of chemicals, through new technologies in genomics (toxicogenomics), such as microarrays or whole-genome sequencing. Application of these technologies permit the quantitative analysis of thousands of gene expression changes simultaneously in a single experiment and offer the opportunity to use transcript profiling as a tool to predict toxic outcomes of exposure to particular compounds. The application of toxicogenomic tools for identification of chemicals with endocrine disrupting capacity using the zebrafish model system is reviewed. PMID:28217008

  14. Genetics of Endocrine and Neuroendocrine Neoplasias (PDQ®)—Health Professional Version

    Cancer.gov

    Genetics of Endocrine and Neuroendocrine Neoplasias discusses inherited syndromes multiple endocrine neoplasia types 1, 2, and 4 (MEN1, MEN2, MEN4), familial pheochromocytoma and paraganglioma, Carney-Stratakis syndrome, and familial nonmedullary thyroid cancer. Learn more in this clinician summary.

  15. Biological Profiling of Endocrine Related Effects of Chemicals in ToxCast

    EPA Science Inventory

    The Food Quality Protection Act of 1996 mandates that EPA implement a validated screening program for detecting estrogenic chemicals, as well as other endocrine targets deemed appropriate by the Administrator. EPA’s Endocrine Disruptor Screening Program (EDSP) has been developing...

  16. Biological Profiling of Endocrine Related Effects of Chemicals Using ToxCast

    EPA Science Inventory

    The Food Quality Protection Act of 1996 mandates that EPA implement a validated screening program for detecting estrogenic chemicals, as well as other endocrine targets deemed appropriate by the Administrator. EPA’s Endocrine Disruptor Screening Program (EDSP) has been developing...

  17. The cerebellum: its role in language and related cognitive and affective functions.

    PubMed

    De Smet, Hyo Jung; Paquier, Philippe; Verhoeven, Jo; Mariën, Peter

    2013-12-01

    The traditional view on the cerebellum as the sole coordinator of motor function has been substantially redefined during the past decades. Neuroanatomical, neuroimaging and clinical studies have extended the role of the cerebellum to the modulation of cognitive and affective processing. Neuroanatomical studies have demonstrated cerebellar connectivity with the supratentorial association areas involved in higher cognitive and affective functioning, while functional neuroimaging and clinical studies have provided evidence of cerebellar involvement in a variety of cognitive and affective tasks. This paper reviews the recently acknowledged role of the cerebellum in linguistic and related cognitive and behavioral-affective functions. In addition, typical cerebellar syndromes such as the cerebellar cognitive affective syndrome (CCAS) and the posterior fossa syndrome (PFS) will be briefly discussed and the current hypotheses dealing with the presumed neurobiological mechanisms underlying the linguistic, cognitive and affective modulatory role of the cerebellum will be reviewed. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Pernicious anaemia and mucosal endocrine cell proliferation of the non-antral stomach.

    PubMed Central

    Rode, J; Dhillon, A P; Papadaki, L; Stockbrügger, R; Thompson, R J; Moss, E; Cotton, P B

    1986-01-01

    There is a recognised association between pernicious anaemia and the development of gastric carcinoma, endocrine cell hyperplasia, and carcinoid tumour. Multiple endoscopic biopsies from the body mucosa of seven patients with pernicious anaemia showed small intestinal metaplasia with varying degrees of inflammation, fibrosis, and expansion of the lamina propria. Using conventional silver and lead stains, endocrine cells were inconspicuous. Staining for the general neural and neuroendocrine markers NSE and PGP 9.5 revealed a proliferation of endocrine cells in the epithelium and isolated clumps of endocrine cells in the lamina propria. The clumps were composed of two cell types, either small or large. Some of these endocrine cells showed gastrin, 5HT, VIP and substance P immunoreactivity of varying intensity. Ultrastructurally nine morphologically distinct types of granules were found some of which correlated with the immunohistochemistry. Some separate islands were composed solely of endocrine cells while others had a definite neural component, suggesting that the former arise from 'budding off' of enteroendocrine cells and the latter originate from the neuroendocrine cells of the lamina propria plexus. Thus there may be a dual origin of carcinoid tumours. Carcinoid tumours associated with pernicious anaemia tend to be multifocal and are infrequent. Less than 50 such cases have hitherto been reported. Our findings of endocrine cells proliferations in seven cases of pernicious anaemia indicate that this may be an adaptive change that occurs frequently and provides the basis on which carcinoids, less frequently, develop. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:3525338

  19. An energetic orphan in an endocrine tissue: a revised perspective of the function of estrogen receptor-related receptor alpha in bone and cartilage.

    PubMed

    Bonnelye, Edith; Aubin, Jane E

    2013-02-01

    Estrogen receptor-related receptor alpha (ERRα) is an orphan nuclear receptor with sequence homology to the estrogen receptors, ERα/β, but it does not bind estrogen. ERRα not only plays a functional role in osteoblasts but also in osteoclasts and chondrocytes. In addition, the ERRs, including ERRα, can be activated by coactivators such as peroxisome proliferator-activated receptor-gamma coactivator-1 (PGC1α and β) and are implicated in adipogenesis, fatty acid oxidation, and oxidative stress defense, suggesting that ERRα-through its activity in bone resorption and adipogenesis--may regulate the insulin and leptin pathways and contribute to aging-related changes in bone and cartilage. In this review, we discuss data on ERRα and its cellular and molecular modes of action, which have broad implications for considering the potential role of this orphan receptor in cartilage and bone endocrine function, on whole-organism physiology, and in the bone aging process. Copyright © 2013 American Society for Bone and Mineral Research.

  20. Currently used pesticides and their mixtures affect the function of sex hormone receptors and aromatase enzyme activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kjeldsen, Lisbeth Stigaard; Ghisari, Mandana; Bonefeld-Jørgensen, Eva Cecilie, E-mail: ebj@mil.au.dk

    The endocrine-disrupting potential of pesticides is of health concern, since they are found ubiquitously in the environment and in food items. We investigated in vitro effects on estrogen receptor (ER) and androgen receptor (AR) transactivity, and aromatase enzyme activity, of the following pesticides: 2-methyl-4-chlorophenoxyacetic acid (MCPA), terbuthylazine, iodosulfuron-methyl-sodium, mesosulfuron-methyl, metsulfuron-methyl, chlormequat chloride, bitertanol, propiconazole, prothioconazole, mancozeb, cypermethrin, tau fluvalinate, malathion and the metabolite ethylene thiourea (ETU). The pesticides were analyzed alone and in selected mixtures. Effects of the pesticides on ER and AR function were assessed in human breast carcinoma MVLN cells and hamster ovary CHO-K1 cells, respectively, using luciferasemore » reporter gene assays. Effects on aromatase enzyme activity were analyzed in human choriocarcinoma JEG-3 cells, employing the classical [{sup 3}H]{sub 2}O method. Five pesticides (terbuthylazine, propiconazole, prothioconazole, cypermethrin and malathion) weakly induced the ER transactivity, and three pesticides (bitertanol, propiconazole and mancozeb) antagonized the AR activity in a concentration-dependent manner. Three pesticides (terbuthylazine, propiconazole and prothioconazole) weakly induced the aromatase activity. In addition, two mixtures, consisting of three pesticides (bitertanol, propiconazole, cypermethrin) and five pesticides (terbuthylazine, bitertanol, propiconazole, cypermethrin, malathion), respectively, induced the ER transactivity and aromatase activity, and additively antagonized the AR transactivity. In conclusion, our data suggest that currently used pesticides possess endocrine-disrupting potential in vitro which can be mediated via ER, AR and aromatase activities. The observed mixture effects emphasize the importance of considering the combined action of pesticides in order to assure proper estimations of related health effect risks

  1. Endocannabinoids and the Endocrine System in Health and Disease.

    PubMed

    Hillard, Cecilia J

    2015-01-01

    Some of the earliest reports of the effects of cannabis consumption on humans were related to endocrine system changes. In this review, the effects of cannabinoids and the role of the CB1 cannabinoid receptor in the regulation of the following endocrine systems are discussed: the hypothalamic-pituitary-gonadal axis, prolactin and oxytocin, thyroid hormone and growth hormone, and the hypothalamic-pituitary-adrenal axis. Preclinical and human study results are presented.

  2. Introduction to the Endocrine System

    MedlinePlus

    ... by downloading the Hormone Health Network's 3D Patient Education mobile app ! The endocrine system is a series of glands that produce and ... Network partners with other organizations to further patient education on hormone related issues. Network Sponsors The Hormone Health ... Disrupting Chemicals (EDCs) Steroid and Hormone ...

  3. Affect integration and reflective function: clarification of central conceptual issues.

    PubMed

    Solbakken, Ole André; Hansen, Roger Sandvik; Monsen, Jon Trygve

    2011-07-01

    The importance of affect regulation, modulation or integration for higher-order reflection and adequate functioning is increasingly emphasized across different therapeutic approaches and theories of change. These processes are probably central to any psychotherapeutic endeavor, whether explicitly conceptualized or not, and in recent years a number of therapeutic approaches have been developed that explicitly target them as a primary area of change. However, there still is important lack of clarity in the field regarding the understanding and operationalization of affect integration, particularly when it comes to specifying underlying mechanisms, the significance of different affect states, and the establishment of operational criteria for measurement. The conceptual relationship between affect integration and reflective function thus remains ambiguous. The present article addresses these topics, indicating ways in which a more complex and exhaustive understanding of integration of affect, cognition and behavior can be attained.

  4. Oligomerization of GPCRs involved in endocrine regulation.

    PubMed

    Kleinau, Gunnar; Müller, Anne; Biebermann, Heike

    2016-07-01

    More than 800 different human membrane-spanning G-protein-coupled receptors (GPCRs) serve as signal transducers at biological barriers. These receptors are activated by a wide variety of ligands such as peptides, ions and hormones, and are able to activate a diverse set of intracellular signaling pathways. GPCRs are of central importance in endocrine regulation, which underpins the significance of comprehensively studying these receptors and interrelated systems. During the last decade, the capacity for multimerization of GPCRs was found to be a common and functionally relevant property. The interaction between GPCR monomers results in higher order complexes such as homomers (identical receptor subtype) or heteromers (different receptor subtypes), which may be present in a specific and dynamic monomer/oligomer equilibrium. It is widely accepted that the oligomerization of GPCRs is a mechanism for determining the fine-tuning and expansion of cellular processes by modification of ligand action, expression levels, and related signaling outcome. Accordingly, oligomerization provides exciting opportunities to optimize pharmacological treatment with respect to receptor target and tissue selectivity or for the development of diagnostic tools. On the other hand, GPCR heteromerization may be a potential reason for the undesired side effects of pharmacological interventions, faced with numerous and common mutual signaling modifications in heteromeric constellations. Finally, detailed deciphering of the physiological occurrence and relevance of specific GPCR/GPCR-ligand interactions poses a future challenge. This review will tackle the aspects of GPCR oligomerization with specific emphasis on family A GPCRs involved in endocrine regulation, whereby only a subset of these receptors will be discussed in detail. © 2016 Society for Endocrinology.

  5. Embryonic transcription factor SOX9 drives breast cancer endocrine resistance.

    PubMed

    Jeselsohn, Rinath; Cornwell, MacIntosh; Pun, Matthew; Buchwalter, Gilles; Nguyen, Mai; Bango, Clyde; Huang, Ying; Kuang, Yanan; Paweletz, Cloud; Fu, Xiaoyong; Nardone, Agostina; De Angelis, Carmine; Detre, Simone; Dodson, Andrew; Mohammed, Hisham; Carroll, Jason S; Bowden, Michaela; Rao, Prakash; Long, Henry W; Li, Fugen; Dowsett, Mitchell; Schiff, Rachel; Brown, Myles

    2017-05-30

    The estrogen receptor (ER) drives the growth of most luminal breast cancers and is the primary target of endocrine therapy. Although ER blockade with drugs such as tamoxifen is very effective, a major clinical limitation is the development of endocrine resistance especially in the setting of metastatic disease. Preclinical and clinical observations suggest that even following the development of endocrine resistance, ER signaling continues to exert a pivotal role in tumor progression in the majority of cases. Through the analysis of the ER cistrome in tamoxifen-resistant breast cancer cells, we have uncovered a role for an RUNX2-ER complex that stimulates the transcription of a set of genes, including most notably the stem cell factor SOX9, that promote proliferation and a metastatic phenotype. We show that up-regulation of SOX9 is sufficient to cause relative endocrine resistance. The gain of SOX9 as an ER-regulated gene associated with tamoxifen resistance was validated in a unique set of clinical samples supporting the need for the development of improved ER antagonists.

  6. Embryonic transcription factor SOX9 drives breast cancer endocrine resistance

    PubMed Central

    Jeselsohn, Rinath; Cornwell, MacIntosh; Pun, Matthew; Buchwalter, Gilles; Nguyen, Mai; Bango, Clyde; Huang, Ying; Kuang, Yanan; Paweletz, Cloud; Fu, Xiaoyong; Nardone, Agostina; De Angelis, Carmine; Detre, Simone; Dodson, Andrew; Mohammed, Hisham; Carroll, Jason S.; Bowden, Michaela; Rao, Prakash; Long, Henry W.; Li, Fugen; Dowsett, Mitchell; Schiff, Rachel; Brown, Myles

    2017-01-01

    The estrogen receptor (ER) drives the growth of most luminal breast cancers and is the primary target of endocrine therapy. Although ER blockade with drugs such as tamoxifen is very effective, a major clinical limitation is the development of endocrine resistance especially in the setting of metastatic disease. Preclinical and clinical observations suggest that even following the development of endocrine resistance, ER signaling continues to exert a pivotal role in tumor progression in the majority of cases. Through the analysis of the ER cistrome in tamoxifen-resistant breast cancer cells, we have uncovered a role for an RUNX2–ER complex that stimulates the transcription of a set of genes, including most notably the stem cell factor SOX9, that promote proliferation and a metastatic phenotype. We show that up-regulation of SOX9 is sufficient to cause relative endocrine resistance. The gain of SOX9 as an ER-regulated gene associated with tamoxifen resistance was validated in a unique set of clinical samples supporting the need for the development of improved ER antagonists. PMID:28507152

  7. Attitude of medical students towards Early Clinical Exposure in learning endocrine physiology

    PubMed Central

    Sathishkumar, Solomon; Thomas, Nihal; Tharion, Elizabeth; Neelakantan, Nithya; Vyas, Rashmi

    2007-01-01

    Background Different teaching-learning methods have been used in teaching endocrine physiology for the medical students, so as to increase their interest and enhance their learning. This paper describes the pros and cons of the various approaches used to reinforce didactic instruction in endocrine physiology and goes on to describe the value of adding an Early Clinical Exposure program (ECE) to didactic instruction in endocrine physiology, as well as student reactions to it as an alternative approach. Discussion Various methods have been used to reinforce didactic instruction in endocrine physiology such as case-stimulated learning, problem-based learning, patient-centred learning and multiple-format sessions. We devised a teaching-learning intervention in endocrine physiology, which comprised of traditional didactic lectures, supplemented with an ECE program consisting of case based lectures and a hospital visit to see patients. A focus group discussion was conducted with the medical students and, based on the themes that emerged from it, a questionnaire was developed and administered to further enquire into the attitude of all the students towards ECE in learning endocrine physiology. The students in their feedback commented that ECE increased their interest for the subject and motivated them to read more. They also felt that ECE enhanced their understanding of endocrine physiology, enabled them to remember the subject better, contributed to their knowledge of the subject and also helped them to integrate their knowledge. Many students said that ECE increased their sensitivity toward patient problems and needs. They expressed a desire and a need for ECE to be continued in teaching endocrine physiology for future groups of students and also be extended for teaching other systems as well. The majority of the students (96.4%) in their feedback gave an overall rating of the program as good to excellent on a 5 point Likert scale. Summary The ECE program was introduced

  8. Gamma Knife radiosurgery for hypothalamic hamartoma preserves endocrine functions.

    PubMed

    Castinetti, Frederic; Brue, Thierry; Morange, Isabelle; Carron, Romain; Régis, Jean

    2017-06-01

    Gamma Knife radiosurgery (GK) is an effective treatment for hypothalamic hamartoma. No precise data are available on the risk of endocrine side effects of this treatment. In this study, 34 patients with hypothalamic hamartoma (HH) were followed prospectively at the Department of Endocrinology, La Timone Hospital, Marseille, France, for a mean follow-up of >2 years (mean ± standard deviation [SD] 3.6 ± 2 years). Initial pre- and post-GK radiosurgery evaluations were performed, including weight, body mass index (BMI), and a complete endocrinological workup. At diagnosis, eight patients presented with central precocious puberty at a mean age of 5.4 ± 2.4 years. At the time of GK (mean age 18.2 ± 11.1 years), two patients previously treated with surgery presented with luteinizing hormone/follicle-stimulating hormone (LH/FSH) deficiency. After GK, only one patient presented with a new thyrotropin-stimulating hormone (TSH) deficiency, 2 years after the procedure. The other pituitary axes remained normal in all but two patients (who had LH/FSH deficiency prior to GK). There was no significant difference between pre- and post-GK mean BMI (26.9 vs. 25.1 kg/m 2 , p = 0.59). To conclude, in this group of 34 patients, GK did not induce major endocrinologic side effects reported with all the other surgical techniques in the literature. It is, thus, a safe and effective procedure in the treatment of hypothalamic hamartoma. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.

  9. The impact of opioids on the endocrine system.

    PubMed

    Katz, Nathaniel; Mazer, Norman A

    2009-02-01

    Opioids have been used for medicinal and analgesic purposes for centuries. However, their negative effects on the endocrine system, which have been known for some times, are barely discussed in modern medicine. Therefore, we conducted a systematic review of the impact of opioids on the endocrine system. A review of the English language literature on preclinical and clinical studies of any type on the influence of opioids on the endocrine system was conducted. Preliminary recommendations for monitoring and managing these problems were provided. Long-term opioid therapy for either addiction or chronic pain often induces hypogonadism owing to central suppression of hypothalamic secretion of gonadotropin-releasing hormone. Symptoms of opioid-induced hypogonadism include loss of libido, infertility, fatigue, depression, anxiety, loss of muscle strength and mass, osteoporosis, and compression fractures in both men and women; impotence in men; and menstrual irregularities and galactorrhea in women. In view of the increased use of opioids for chronic pain, it has become increasingly important to monitor patients taking opioids and manage endocrine complications. Therefore, patients on opioid therapy should be routinely screened for such symptoms and for laboratory abnormalities in sex hormones. Opioid-induced hypogonadism seems to be a common complication of therapeutic or illicit opioid use. Patients on long-term opioid therapy should be prospectively monitored, and in cases of opioid-induced hypogonadism, we recommend nonopioid pain management, opioid rotation, or sex hormone supplementation after careful consideration of the risks and benefits.

  10. Bisphenol A and its analogs: Do their metabolites have endocrine activity?

    PubMed

    Gramec Skledar, Darja; Peterlin Mašič, Lucija

    2016-10-01

    Structural analogs of bisphenol A are commonly used as its alternatives in industrial and commercial applications. Nevertheless, the question arises whether the use of other bisphenols is justified as replacements for bisphenol A in mass production of plastic materials. To evaluate the influence of metabolic reactions on endocrine activities of bisphenols, we conducted a systematic review of the literature. Knowledge about the metabolic pathways and enzymes involved in metabolic biotransformations is essential for understanding and predicting mechanisms of toxicity. Bisphenols are metabolized predominantly by the glucuronidation reaction, which is considered their most important detoxification pathway, as based on current knowledge, glucuronides do not have activity on endocrine receptors. In contrast, several oxidative metabolites of bisphenols with enhanced endocrine activities are presented, and these findings indicate that oxidative metabolites of bisphenols can still have endocrine activities in humans. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. [Structural CNS abnormalities responsible for coincidental occurrence of endocrine disorders, epilepsy and psychoneurologic disorders in children and adolescents].

    PubMed

    Starzyk, Jerzy; Kwiatkowski, Stanisław; Kaciński, Marek; Kroczka, Sławomir; Wójcik, Małgorzata

    2010-01-01

    In the population of children and adolescents, epilepsy affects 0.5-1% of individuals; approximately 3% of general population suffer from non-epileptic seizures, while endocrine disorders are several times more frequent. All of the above factors result in a relatively common non-accidental occurrence of endocrine disorders, epilepsy and neuropsychiatric disorders. However, structural central nervous system (CNS) abnormalities that cause both endocrine and neurologic disorders seem to be markedly less common. No reports addressing this problem are available in the literature. 1) Assessment of the frequency of non-coincidental occurrence of epilepsy and endocrine disorders in inpatients and outpatients with structural CSN abnormalities managed in Department Endocrinology. 2) Presentation of diagnostic and therapeutic difficulties in these patients, and 3) An attempt at defining a common etiology of both disorders. A retrospective analysis of the medical records of the patients with coincidence of endocrine disorders and epilepsy and psycho-neurologic disorders (treated in Chair and Department of Children's and Adolescents Neurology, University Children's Hospital of Krakow or in another pediatric neurology center) and with organic CNS abnormalities (treated or followed up as inpatients and outpatient of Department of Pediatric Surgery, Children's University Hospital of Krakow, was performed. The patients were selected from among several thousands of children treated as inpatients and outpatients of the Department. Various forms of symptomatic and idiopathic epilepsy and other psychoneurological disorders (disorders of behavior and emotions, obsession-compulsion syndromes, stereotypias, aggression, compulsive ideas and movements, anorexia or hypothalamic obesity) coincident with one or more endocrine disorders such as precocious or delayed puberty, multihormonal pituitary deficiency, panhypopituitarism and secondary hypothyroidism were detected in 42 patients with

  12. Muscular Dystrophies at Different Ages: Metabolic and Endocrine Alterations

    PubMed Central

    Cruz Guzmán, Oriana del Rocío; Chávez García, Ana Laura; Rodríguez-Cruz, Maricela

    2012-01-01

    Common metabolic and endocrine alterations exist across a wide range of muscular dystrophies. Skeletal muscle plays an important role in glucose metabolism and is a major participant in different signaling pathways. Therefore, its damage may lead to different metabolic disruptions. Two of the most important metabolic alterations in muscular dystrophies may be insulin resistance and obesity. However, only insulin resistance has been demonstrated in myotonic dystrophy. In addition, endocrine disturbances such as hypogonadism, low levels of testosterone, and growth hormone have been reported. This eventually will result in consequences such as growth failure and delayed puberty in the case of childhood dystrophies. Other consequences may be reduced male fertility, reduced spermatogenesis, and oligospermia, both in childhood as well as in adult muscular dystrophies. These facts all suggest that there is a need for better comprehension of metabolic and endocrine implications for muscular dystrophies with the purpose of developing improved clinical treatments and/or improvements in the quality of life of patients with dystrophy. Therefore, the aim of this paper is to describe the current knowledge about of metabolic and endocrine alterations in diverse types of dystrophinopathies, which will be divided into two groups: childhood and adult dystrophies which have different age of onset. PMID:22701119

  13. Ngn3+ endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium

    PubMed Central

    Magenheim, Judith; Klein, Allon M.; Stanger, Ben Z.; Ashery-Padan, Ruth; Sosa-Pineda, Beatriz; Gu, Guoqiang; Dor, Yuval

    2013-01-01

    Summary During pancreas development, endocrine and exocrine cells arise from a common multipotent progenitor pool. How these cell fate decisions are coordinated with tissue morphogenesis is poorly understood. Here we have examined ductal morphology, endocrine progenitor cell fate and Notch signaling in Ngn3−/− mice, which do not produce islet cells. Ngn3 deficiency results in reduced branching and enlarged pancreatic duct-like structures, concomitant with Ngn3 promoter activation throughout the ductal epithelium and reduced Notch signaling. Conversely, forced generation of surplus endocrine progenitor cells causes reduced duct caliber and an excessive number of tip cells. Thus, endocrine progenitor cells normally provide a feedback signal to adjacent multipotent ductal progenitor cells that activates Notch signaling, inhibits further endocrine differentiation and promotes proper morphogenesis. These results uncover a novel layer of regulation coordinating pancreas morphogenesis and endocrine/exocrine differentiation, and suggest ways to enhance the yield of beta-cells from stem cells. PMID:21888903

  14. Prediction of Endocrine System Affectation in Fisher 344 Rats by Food Intake Exposed with Malathion, Applying Naïve Bayes Classifier and Genetic Algorithms

    PubMed Central

    Mora, Juan David Sandino; Hurtado, Darío Amaya; Sandoval, Olga Lucía Ramos

    2016-01-01

    Background: Reported cases of uncontrolled use of pesticides and its produced effects by direct or indirect exposition, represent a high risk for human health. Therefore, in this paper, it is shown the results of the development and execution of an algorithm that predicts the possible effects in endocrine system in Fisher 344 (F344) rats, occasioned by ingestion of malathion. Methods: It was referred to ToxRefDB database in which different case studies in F344 rats exposed to malathion were collected. The experimental data were processed using Naïve Bayes (NB) machine learning classifier, which was subsequently optimized using genetic algorithms (GAs). The model was executed in an application with a graphical user interface programmed in C#. Results: There was a tendency to suffer bigger alterations, increasing levels in the parathyroid gland in dosages between 4 and 5 mg/kg/day, in contrast to the thyroid gland for doses between 739 and 868 mg/kg/day. It was showed a greater resistance for females to contract effects on the endocrine system by the ingestion of malathion. Females were more susceptible to suffer alterations in the pituitary gland with exposure times between 3 and 6 months. Conclusions: The prediction model based on NB classifiers allowed to analyze all the possible combinations of the studied variables and improving its accuracy using GAs. Excepting the pituitary gland, females demonstrated better resistance to contract effects by increasing levels on the rest of endocrine system glands. PMID:27833725

  15. Prediction of Endocrine System Affectation in Fisher 344 Rats by Food Intake Exposed with Malathion, Applying Naïve Bayes Classifier and Genetic Algorithms.

    PubMed

    Mora, Juan David Sandino; Hurtado, Darío Amaya; Sandoval, Olga Lucía Ramos

    2016-01-01

    Reported cases of uncontrolled use of pesticides and its produced effects by direct or indirect exposition, represent a high risk for human health. Therefore, in this paper, it is shown the results of the development and execution of an algorithm that predicts the possible effects in endocrine system in Fisher 344 (F344) rats, occasioned by ingestion of malathion. It was referred to ToxRefDB database in which different case studies in F344 rats exposed to malathion were collected. The experimental data were processed using Naïve Bayes (NB) machine learning classifier, which was subsequently optimized using genetic algorithms (GAs). The model was executed in an application with a graphical user interface programmed in C#. There was a tendency to suffer bigger alterations, increasing levels in the parathyroid gland in dosages between 4 and 5 mg/kg/day, in contrast to the thyroid gland for doses between 739 and 868 mg/kg/day. It was showed a greater resistance for females to contract effects on the endocrine system by the ingestion of malathion. Females were more susceptible to suffer alterations in the pituitary gland with exposure times between 3 and 6 months. The prediction model based on NB classifiers allowed to analyze all the possible combinations of the studied variables and improving its accuracy using GAs. Excepting the pituitary gland, females demonstrated better resistance to contract effects by increasing levels on the rest of endocrine system glands.

  16. Recent Advances on Endocrine Disrupting Effects of UV Filters

    PubMed Central

    Wang, Jiaying; Pan, Liumeng; Wu, Shenggan; Lu, Liping; Xu, Yiwen; Zhu, Yanye; Guo, Ming; Zhuang, Shulin

    2016-01-01

    Ultraviolet (UV) filters are used widely in cosmetics, plastics, adhesives and other industrial products to protect human skin or products against direct exposure to deleterious UV radiation. With growing usage and mis-disposition of UV filters, they currently represent a new class of contaminants of emerging concern with increasingly reported adverse effects to humans and other organisms. Exposure to UV filters induce various endocrine disrupting effects, as revealed by increasing number of toxicological studies performed in recent years. It is necessary to compile a systematic review on the current research status on endocrine disrupting effects of UV filters toward different organisms. We therefore summarized the recent advances on the evaluation of the potential endocrine disruptors and the mechanism of toxicity for many kinds of UV filters such as benzophenones, camphor derivatives and cinnamate derivatives. PMID:27527194

  17. PHEOCHROMOCYTOMA: AN ENDOCRINE STRESS MIMICKING DISORDER

    PubMed Central

    Kantorovich, Vitaly; Eisenhofer, Graeme; Pacak, Karel

    2008-01-01

    Pheochromocytoma is an endocrine tumor that can uniquely mimic numerous stress-associated disorders, with variations in clinical manifestations resulting from different patterns of catecholamine secretion and actions of released catecholamines on physiological systems. PMID:19120142

  18. The endocrine system and sarcopenia: potential therapeutic benefits.

    PubMed

    McIntire, Kevin L; Hoffman, Andrew R

    2011-12-01

    Age related muscle loss, known as sarcopenia, is a major factor in disability, loss of mobility and quality of life in the elderly. There are many proposed mechanisms of age-related muscle loss that include the endocrine system. A variety of hormones regulate growth, development and metabolism throughout the lifespan. Hormone activity may change with age as a result of reduced hormone secretion or decreased tissue responsiveness. This review will focus on the complex interplay between the endocrine system, aging and skeletal muscle and will present possible benefits of therapeutic interventions for sarcopenia.

  19. Phytosteroids Beyond Estrogens: Regulators of Reproductive and Endocrine Function in Natural Products

    PubMed Central

    Dean, Matthew; Murphy, Brian T.; Burdette, Joanna E.

    2016-01-01

    Foods and botanical supplements can interfere with the endocrine system through the presence of phytosteroids – chemicals that interact with steroids receptors. Phytoestrogens are well studied, but compounds such as kaempferol, apigenin, genistein, ginsenoside Rf, and glycyrrhetinic acid have been shown to interact with non-estrogen nuclear receptors. These compounds can have agonist, antagonist, or mixed agonist/antagonist activity depending on compound, receptor, cell line or tissue, and concentration. Some phytosteroids have also been shown to inhibit steroid metabolizing enzymes, resulting in biological effects through altered endogenous steroid concentrations. An interesting example, compound A (4-[1-chloro-2-(methylamino)ethyl]phenyl acetate hydrochloride (1:1)) is a promising selective glucocorticoid receptor modulator (SGRM) based on a phytosteroid isolated from Salsola tuberculatiformis Botschantzev. Given that $6.9 billion of herbal supplements are sold each year, is clear that further identification and characterization of phytosteroids is needed to ensure the safe and effective use of botanical supplements. PMID:27986590

  20. Feedback control of growth, differentiation, and morphogenesis of pancreatic endocrine progenitors in an epithelial plexus niche

    PubMed Central

    Bankaitis, Eric D.; Bechard, Matthew E.; Wright, Christopher V.E.

    2015-01-01

    In the mammalian pancreas, endocrine cells undergo lineage allocation upon emergence from a bipotent duct/endocrine progenitor pool, which resides in the “trunk epithelium.” Major questions remain regarding how niche environments are organized within this epithelium to coordinate endocrine differentiation with programs of epithelial growth, maturation, and morphogenesis. We used EdU pulse-chase and tissue-reconstruction approaches to analyze how endocrine progenitors and their differentiating progeny are assembled within the trunk as it undergoes remodeling from an irregular plexus of tubules to form the eventual mature, branched ductal arbor. The bulk of endocrine progenitors is maintained in an epithelial “plexus state,” which is a transient intermediate during epithelial maturation within which endocrine cell differentiation is continually robust and surprisingly long-lived. Within the plexus, local feedback effects derived from the differentiating and delaminating endocrine cells nonautonomously regulate the flux of endocrine cell birth as well as proliferative growth of the bipotent cell population using Notch-dependent and Notch-independent influences, respectively. These feedback effects in turn maintain the plexus state to ensure prolonged allocation of endocrine cells late into gestation. These findings begin to define a niche-like environment guiding the genesis of the endocrine pancreas and advance current models for how differentiation is coordinated with the growth and morphogenesis of the developing pancreatic epithelium. PMID:26494792