Sample records for affect infection dynamics

  1. Cofilin 1-Mediated Biphasic F-Actin Dynamics of Neuronal Cells Affect Herpes Simplex Virus 1 Infection and Replication

    PubMed Central

    Xiang, Yangfei; Zheng, Kai; Ju, Huaiqiang; Wang, Shaoxiang; Pei, Ying; Ding, Weichao; Chen, Zhenping; Wang, Qiaoli; Qiu, Xianxiu; Zhong, Meigong; Zeng, Fanli; Ren, Zhe; Qian, Chuiwen; Liu, Ge

    2012-01-01

    Herpes simplex virus 1 (HSV-1) invades the nervous system and causes pathological changes. In this study, we defined the remodeling of F-actin and its possible mechanisms during HSV-1 infection of neuronal cells. HSV-1 infection enhanced the formation of F-actin-based structures in the early stage of infection, which was followed by a continuous decrease in F-actin during the later stages of infection. The disruption of F-actin dynamics by chemical inhibitors significantly reduced the efficiency of viral infection and intracellular HSV-1 replication. The active form of the actin-depolymerizing factor cofilin 1 was found to increase at an early stage of infection and then to continuously decrease in a manner that corresponded to the remodeling pattern of F-actin, suggesting that cofilin 1 may be involved in the biphasic F-actin dynamics induced by HSV-1 infection. Knockdown of cofilin 1 impaired HSV-1-induced F-actin assembly during early infection and inhibited viral entry; however, overexpression of cofilin 1 did not affect F-actin assembly or viral entry during early infection but decreased intracellular viral reproduction efficiently. Our results, for the first time, demonstrated the biphasic F-actin dynamics in HSV-1 neuronal infection and confirmed the association of F-actin with the changes in the expression and activity of cofilin 1. These results may provide insight into the mechanism by which HSV-1 productively infects neuronal cells and causes pathogenesis. PMID:22623803

  2. Dynamic Indices of Methamphetamine Dependence and HIV Infection Predict Fluctuations in Affective Distress: A Five-year Longitudinal Analysis

    PubMed Central

    Montoya, Jessica L.; Umlauf, Anya; Abramson, Ian; Badiee, Jayraan; Woods, Steven Paul; Atkinson, J. Hampton; Grant, Igor; Moore, David J.

    2013-01-01

    Background Methamphetamine (METH) use and human immunodeficiency virus (HIV) infection are highly comorbid, and both are associated with increased prevalence of affective distress. Delineating the trajectory of affective distress in the context of METH dependence and HIV infection is important given the implications for everyday functional impairment, adverse health behaviors, and increased risk for adverse health outcomes. Methods We conducted a five-year longitudinal investigation involving 133 METH-dependent (74 HIV seropositive) and 163 non-METH-dependent (90 HIV seropositive) persons to examine both long-standing patterns and transient changes in affective distress. Mixed-effect regression models with random subject-specific slopes and intercepts evaluated the effect of METH dependence, HIV serostatus, and related variables on affective distress, as measured by the Profile of Mood States. Results Transient changes in affective distress were found to be greater among those with a diagnosis of current MDD, briefer durations of abstinence from METH, and higher quantity of METH consumed. Weak associations were observed among static (time-independent predictors) covariates and long-standing patterns in affective distress. Limitations Study lacked data pertaining to the participants’ involvement in METH treatment and relied on respondent-driven sampling. Conclusions Our longitudinal investigation of the trajectory of affective distress indicated that specific and dynamic indices of current METH use were associated with greater transient changes in mood. In the evaluation and treatment of affective distress, recency and quantity of current METH use are important to consider given their association with heightened affective distress and mood instability over time. PMID:24012068

  3. Dynamic indices of methamphetamine dependence and HIV infection predict fluctuations in affective distress: a five-year longitudinal analysis.

    PubMed

    Montoya, Jessica L; Umlauf, Anya; Abramson, Ian; Badiee, Jayraan; Woods, Steven Paul; Atkinson, J Hampton; Grant, Igor; Moore, David J

    2013-11-01

    Methamphetamine (METH) use and human immunodeficiency virus (HIV) infection are highly comorbid, and both are associated with increased prevalence of affective distress. Delineating the trajectory of affective distress in the context of METH dependence and HIV infection is important given the implications for everyday functional impairment, adverse health behaviors, and increased risk for adverse health outcomes. We conducted a five-year longitudinal investigation involving 133 METH-dependent (74 HIV seropositive) and 163 non-METH-dependent (90 HIV seropositive) persons to examine both long-standing patterns and transient changes in affective distress. Mixed-effect regression models with random subject-specific slopes and intercepts evaluated the effect of METH dependence, HIV serostatus, and related variables on affective distress, as measured by the Profile of Mood States. Transient changes in affective distress were found to be greater among those with a diagnosis of current MDD, briefer durations of abstinence from METH, and higher quantity of METH consumed. Weak associations were observed among static (time-independent predictors) covariates and long-standing patterns in affective distress. Study lacked data pertaining to the participants' involvement in METH treatment and relied on respondent-driven sampling. Our longitudinal investigation of the trajectory of affective distress indicated that specific and dynamic indices of current METH use were associated with greater transient changes in mood. In the evaluation and treatment of affective distress, recency and quantity of current METH use are important to consider given their association with heightened affective distress and mood instability over time. © 2013 Elsevier B.V. All rights reserved.

  4. Affect Dynamics, Affective Forecasting, and Aging

    PubMed Central

    Nielsen, Lisbeth; Knutson, Brian; Carstensen, Laura L.

    2008-01-01

    Affective forecasting, experienced affect, and recalled affect were compared in younger and older adults during a task in which participants worked to win and avoid losing small monetary sums. Dynamic changes in affect were measured along valence and arousal dimensions, with probes during both anticipatory and consummatory task phases. Older and younger adults displayed distinct patterns of affect dynamics. Younger adults reported increased negative arousal during loss anticipation and positive arousal during gain anticipation. In contrast, older adults reported increased positive arousal during gain anticipation but showed no increase in negative arousal on trials involving loss anticipation. Additionally, younger adults reported large increases in valence after avoiding an anticipated loss, but older adults did not. Younger, but not older, adults exhibited forecasting errors on the arousal dimension, underestimating increases in arousal during anticipation of gains and losses and overestimating increases in arousal in response to gain outcomes. Overall, the findings are consistent with a growing literature suggesting that older people experience less negative emotion than their younger counterparts and further suggest that they may better predict dynamic changes in affect. PMID:18540748

  5. Reactivating dynamics for the susceptible-infected-susceptible model: a simple method to simulate the absorbing phase

    NASA Astrophysics Data System (ADS)

    Macedo-Filho, A.; Alves, G. A.; Costa Filho, R. N.; Alves, T. F. A.

    2018-04-01

    We investigated the susceptible-infected-susceptible model on a square lattice in the presence of a conjugated field based on recently proposed reactivating dynamics. Reactivating dynamics consists of reactivating the infection by adding one infected site, chosen randomly when the infection dies out, avoiding the dynamics being trapped in the absorbing state. We show that the reactivating dynamics can be interpreted as the usual dynamics performed in the presence of an effective conjugated field, named the reactivating field. The reactivating field scales as the inverse of the lattice number of vertices n, which vanishes at the thermodynamic limit and does not affect any scaling properties including ones related to the conjugated field.

  6. Single-cell transcriptional dynamics of flavivirus infection

    PubMed Central

    Bekerman, Elena

    2018-01-01

    Dengue and Zika viral infections affect millions of people annually and can be complicated by hemorrhage and shock or neurological manifestations, respectively. However, a thorough understanding of the host response to these viruses is lacking, partly because conventional approaches ignore heterogeneity in virus abundance across cells. We present viscRNA-Seq (virus-inclusive single cell RNA-Seq), an approach to probe the host transcriptome together with intracellular viral RNA at the single cell level. We applied viscRNA-Seq to monitor dengue and Zika virus infection in cultured cells and discovered extreme heterogeneity in virus abundance. We exploited this variation to identify host factors that show complex dynamics and a high degree of specificity for either virus, including proteins involved in the endoplasmic reticulum translocon, signal peptide processing, and membrane trafficking. We validated the viscRNA-Seq hits and discovered novel proviral and antiviral factors. viscRNA-Seq is a powerful approach to assess the genome-wide virus-host dynamics at single cell level. PMID:29451494

  7. Dynamic Synchronization of Teacher-Students Affection in Affective Instruction

    ERIC Educational Resources Information Center

    Zhang, Wenhai; Lu, Jiamei

    2011-01-01

    Based on Bower's affective network theory, the article links the dynamic analysis of affective factors in affective instruction, and presents affective instruction strategic of dynamic synchronization between teacher and students to implement the best ideal mood that promotes students' cognition and affection together. In the process of teaching,…

  8. Membrane dynamics associated with viral infection.

    PubMed

    de Armas-Rillo, Laura; Valera, María-Soledad; Marrero-Hernández, Sara; Valenzuela-Fernández, Agustín

    2016-05-01

    Viral replication and spreading are fundamental events in the viral life cycle, accounting for the assembly and egression of nascent virions, events that are directly associated with viral pathogenesis in target hosts. These processes occur in cellular compartments that are modified by specialized viral proteins, causing a rearrangement of different cell membranes in infected cells and affecting the ER, mitochondria, Golgi apparatus, vesicles and endosomes, as well as processes such as autophagic membrane flux. In fact, the activation or inhibition of membrane trafficking and other related activities are fundamental to ensure the adequate replication and spreading of certain viruses. In this review, data will be presented that support the key role of membrane dynamics in the viral cycle, especially in terms of the assembly, egression and infection processes. By defining how viruses orchestrate these events it will be possible to understand how they successfully complete their route of infection, establishing viral pathogenesis and provoking disease. © 2015 The Authors Reviews in Medical Virology Published by John Wiley & Sons, Ltd.

  9. The Dynamics of HPV Infection and Cervical Cancer Cells.

    PubMed

    Asih, Tri Sri Noor; Lenhart, Suzanne; Wise, Steven; Aryati, Lina; Adi-Kusumo, F; Hardianti, Mardiah S; Forde, Jonathan

    2016-01-01

    The development of cervical cells from normal cells infected by human papillomavirus into invasive cancer cells can be modeled using population dynamics of the cells and free virus. The cell populations are separated into four compartments: susceptible cells, infected cells, precancerous cells and cancer cells. The model system of differential equations also has a free virus compartment in the system, which infect normal cells. We analyze the local stability of the equilibrium points of the model and investigate the parameters, which play an important role in the progression toward invasive cancer. By simulation, we investigate the boundary between initial conditions of solutions, which tend to stable equilibrium point, representing controlled infection, and those which tend to unbounded growth of the cancer cell population. Parameters affected by drug treatment are varied, and their effect on the risk of cancer progression is explored.

  10. HIV dynamics with multiple infections of target cells.

    PubMed

    Dixit, Narendra M; Perelson, Alan S

    2005-06-07

    The high incidence of multiple infections of cells by HIV sets the stage for rapid HIV evolution by means of recombination. Yet how HIV dynamics proceeds with multiple infections remains poorly understood. Here, we present a mathematical model that describes the dynamics of viral, target cell, and multiply infected cell subpopulations during HIV infection. Model calculations reproduce several experimental observations and provide key insights into the influence of multiple infections on HIV dynamics. We find that the experimentally observed scaling law, that the number of cells coinfected with two distinctly labeled viruses is proportional to the square of the total number of infected cells, can be generalized so that the number of triply infected cells is proportional to the cube of the number of infected cells, etc. Despite the expectation from Poisson statistics, we find that this scaling relationship only holds under certain conditions, which we predict. We also find that multiple infections do not influence viral dynamics when the rate of viral production from infected cells is independent of the number of times the cells are infected, a regime expected when viral production is limited by cellular rather than viral factors. This result may explain why extant models, which ignore multiple infections, successfully describe viral dynamics in HIV patients. Inhibiting CD4 down-modulation increases the average number of infections per cell. Consequently, altering CD4 down-modulation may allow for an experimental determination of whether viral or cellular factors limit viral production.

  11. HIV dynamics with multiple infections of target cells

    PubMed Central

    Dixit, Narendra M.; Perelson, Alan S.

    2005-01-01

    The high incidence of multiple infections of cells by HIV sets the stage for rapid HIV evolution by means of recombination. Yet how HIV dynamics proceeds with multiple infections remains poorly understood. Here, we present a mathematical model that describes the dynamics of viral, target cell, and multiply infected cell subpopulations during HIV infection. Model calculations reproduce several experimental observations and provide key insights into the influence of multiple infections on HIV dynamics. We find that the experimentally observed scaling law, that the number of cells coinfected with two distinctly labeled viruses is proportional to the square of the total number of infected cells, can be generalized so that the number of triply infected cells is proportional to the cube of the number of infected cells, etc. Despite the expectation from Poisson statistics, we find that this scaling relationship only holds under certain conditions, which we predict. We also find that multiple infections do not influence viral dynamics when the rate of viral production from infected cells is independent of the number of times the cells are infected, a regime expected when viral production is limited by cellular rather than viral factors. This result may explain why extant models, which ignore multiple infections, successfully describe viral dynamics in HIV patients. Inhibiting CD4 down-modulation increases the average number of infections per cell. Consequently, altering CD4 down-modulation may allow for an experimental determination of whether viral or cellular factors limit viral production. PMID:15928092

  12. Drosophila melanogaster Natural Variation Affects Growth Dynamics of Infecting Listeria monocytogenes

    PubMed Central

    Hotson, Alejandra Guzmán; Schneider, David S.

    2015-01-01

    We find that in a Listeria monocytogenes/Drosophila melanogaster infection model, L. monocytogenes grows according to logistic kinetics, which means we can measure both a maximal growth rate and growth plateau for the microbe. Genetic variation of the host affects both of the pathogen growth parameters, and they can vary independently. Because growth rates and ceilings both correlate with host survival, both properties could drive evolution of the host. We find that growth rates and ceilings are sensitive to the initial infectious dose in a host genotype–dependent manner, implying that experimental results differ as we change the original challenge dose within a single strain of host. PMID:26438294

  13. Using experimental human influenza infections to validate a viral dynamic model and the implications for prediction.

    PubMed

    Chen, S C; You, S H; Liu, C Y; Chio, C P; Liao, C M

    2012-09-01

    The aim of this work was to use experimental infection data of human influenza to assess a simple viral dynamics model in epithelial cells and better understand the underlying complex factors governing the infection process. The developed study model expands on previous reports of a target cell-limited model with delayed virus production. Data from 10 published experimental infection studies of human influenza was used to validate the model. Our results elucidate, mechanistically, the associations between epithelial cells, human immune responses, and viral titres and were supported by the experimental infection data. We report that the maximum total number of free virions following infection is 10(3)-fold higher than the initial introduced titre. Our results indicated that the infection rates of unprotected epithelial cells probably play an important role in affecting viral dynamics. By simulating an advanced model of viral dynamics and applying it to experimental infection data of human influenza, we obtained important estimates of the infection rate. This work provides epidemiologically meaningful results, meriting further efforts to understand the causes and consequences of influenza A infection.

  14. Correction. "Affect dynamics, affective forecasting, and aging".

    PubMed

    Nielsen, Lisbeth; Knutson, Brain; Carstensen, Laura L

    2009-10-01

    Reports an error in "Affect dynamics, affective forecasting, and aging" by Lisbeth Nielsen, Brian Knutson and Laura L. Carstensen (Emotion, 2008[Jun], Vol 8[3], 318-330). The first author of the article was listed as being affiliated with both the National Institute on Aging and the Department of Psychology, Stanford University. Dr. Nielsen would like to clarify that the research for this article was conducted while she was a postdoctoral fellow at Stanford University; her current affiliation is only with the National Institute on Aging. The copyright notice should also have been listed as "In the Public Domain." (The following abstract of the original article appeared in record 2008-06717-002.) [Correction Notice: The same erratum for this article was reported in Vol 8(5) of Emotion (see record 2008-13989-013).] Affective forecasting, experienced affect, and recalled affect were compared in younger and older adults during a task in which participants worked to win and avoid losing small monetary sums. Dynamic changes in affect were measured along valence and arousal dimensions, with probes during both anticipatory and consummatory task phases. Older and younger adults displayed distinct patterns of affect dynamics. Younger adults reported increased negative arousal during loss anticipation and positive arousal during gain anticipation. In contrast, older adults reported increased positive arousal during gain anticipation but showed no increase in negative arousal on trials involving loss anticipation. Additionally, younger adults reported large increases in valence after avoiding an anticipated loss, but older adults did not. Younger, but not older, adults exhibited forecasting errors on the arousal dimension, underestimating increases in arousal during anticipation of gains and losses and overestimating increases in arousal in response to gain outcomes. Overall, the findings are consistent with a growing literature suggesting that older people experience less

  15. Steinernema feltiae Intraspecific Variability: Infection Dynamics and Sex-Ratio.

    PubMed

    Campos-Herrera, Raquel; Gutiérrez, Carmen

    2014-03-01

    Entomopathogenic nematodes (EPNs) from the Heterorhabditidae and Steinernematidae families are well-known biocontrol agents against numerous insect pests. The infective juveniles (IJs) are naturally occurring in the soil and their success in locating and penetrating the host will be affected by extrinsic/intrinsic factors that modulate their foraging behavior. Characterizing key traits in the infection dynamics of EPNs is critical for establishing differentiating species abilities to complete their life cycles and hence, their long-term persistence, in different habitats. We hypothesized that phenotypic variation in traits related to infection dynamics might occur in populations belonging to the same species. To assess these intraspecific differences, we evaluated the infection dynamics of 14 populations of Steinernema feltiae in two experiments measuring penetration and migration in sand column. Intraspecific variability was observed in the percentage larval mortality, time to kill the insect, penetration rate, and sex-ratio in both experiments (P < 0.01). Larval mortality and nematode penetration percentage were lower in migration experiments than in penetration ones in most of the cases. The sex-ratio was significantly biased toward female-development dominance (P < 0.05). When the populations were grouped by habitat of recovery (natural areas, crop edge, and agricultural groves), nematodes isolated in natural areas exhibited less larval mortality and penetration rates than those from some types of agricultural associated soils, suggesting a possible effect of the habitat on the phenotypic plasticity. This study reinforces the importance of considering intraspecific variability when general biological and ecological questions are addressed using EPNs.

  16. Steinernema feltiae Intraspecific Variability: Infection Dynamics and Sex-Ratio

    PubMed Central

    Campos-Herrera, Raquel; Gutiérrez, Carmen

    2014-01-01

    Entomopathogenic nematodes (EPNs) from the Heterorhabditidae and Steinernematidae families are well-known biocontrol agents against numerous insect pests. The infective juveniles (IJs) are naturally occurring in the soil and their success in locating and penetrating the host will be affected by extrinsic/intrinsic factors that modulate their foraging behavior. Characterizing key traits in the infection dynamics of EPNs is critical for establishing differentiating species abilities to complete their life cycles and hence, their long-term persistence, in different habitats. We hypothesized that phenotypic variation in traits related to infection dynamics might occur in populations belonging to the same species. To assess these intraspecific differences, we evaluated the infection dynamics of 14 populations of Steinernema feltiae in two experiments measuring penetration and migration in sand column. Intraspecific variability was observed in the percentage larval mortality, time to kill the insect, penetration rate, and sex-ratio in both experiments (P < 0.01). Larval mortality and nematode penetration percentage were lower in migration experiments than in penetration ones in most of the cases. The sex-ratio was significantly biased toward female-development dominance (P < 0.05). When the populations were grouped by habitat of recovery (natural areas, crop edge, and agricultural groves), nematodes isolated in natural areas exhibited less larval mortality and penetration rates than those from some types of agricultural associated soils, suggesting a possible effect of the habitat on the phenotypic plasticity. This study reinforces the importance of considering intraspecific variability when general biological and ecological questions are addressed using EPNs. PMID:24644369

  17. Spatiotemporal modelling of viral infection dynamics

    NASA Astrophysics Data System (ADS)

    Beauchemin, Catherine

    Viral kinetics have been studied extensively in the past through the use of ordinary differential equations describing the time evolution of the diseased state in a spatially well-mixed medium. However, emerging spatial structures such as localized populations of dead cells might affect the spread of infection, similar to the manner in which a counter-fire can stop a forest fire from spreading. In the first phase of the project, a simple two-dimensional cellular automaton model of viral infections was developed. It was validated against clinical immunological data for uncomplicated influenza A infections and shown to be accurate enough to adequately model them. In the second phase of the project, the simple two-dimensional cellular automaton model was used to investigate the effects of relaxing the well-mixed assumption on viral infection dynamics. It was shown that grouping the initially infected cells into patches rather than distributing them uniformly on the grid reduced the infection rate as only cells on the perimeter of the patch have healthy neighbours to infect. Use of a local epithelial cell regeneration rule where dead cells are replaced by healthy cells when an immediate neighbour divides was found to result in more extensive damage of the epithelium and yielded a better fit to experimental influenza A infection data than a global regeneration rule based on division rate of healthy cell. Finally, the addition of immune cell at the site of infection was found to be a better strategy at low infection levels, while addition at random locations on the grid was the better strategy at high infection level. In the last project, the movement of T cells within lymph nodes in the absence of antigen, was investigated. Based on individual T cell track data captured by two-photon microscopy experiments in vivo, a simple model was proposed for the motion of T cells. This is the first step towards the implementation of a more realistic spatiotemporal model of HIV than

  18. Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs

    PubMed Central

    Richards-Zawacki, Corinne L.

    2010-01-01

    Predicting how climate change will affect disease dynamics requires an understanding of how the environment affects host–pathogen interactions. For amphibians, global declines and extinctions have been linked to a pathogenic chytrid fungus, Batrachochytrium dendrobatidis. Using a combination of body temperature measurements and disease assays conducted before and after the arrival of B. dendrobatidis, this study tested the hypothesis that body temperature affects the prevalence of infection in a wild population of Panamanian golden frogs (Atelopus zeteki). The timing of first detection of the fungus was consistent with that of a wave of epidemic infections spreading south and eastward through Central America. During the epidemic, many golden frogs modified their thermoregulatory behaviour, raising body temperatures above their normal set point. Odds of infection decreased with increasing body temperature, demonstrating that even slight environmental or behavioural changes have the potential to affect an individual's vulnerability to infection. The thermal dependency of the relationship between B. dendrobatidis and its amphibian hosts demonstrates how the progression of an epidemic can be influenced by complex interactions between host and pathogen phenotypes and the environments in which they are found. PMID:19864287

  19. HIV-1 requires Arf6-mediated membrane dynamics to efficiently enter and infect T lymphocytes

    PubMed Central

    García-Expósito, Laura; Barroso-González, Jonathan; Puigdomènech, Isabel; Machado, José-David; Blanco, Julià; Valenzuela-Fernández, Agustín

    2011-01-01

    As the initial barrier to viral entry, the plasma membrane along with the membrane trafficking machinery and cytoskeleton are of fundamental importance in the viral cycle. However, little is known about the contribution of plasma membrane dynamics during early human immunodeficiency virus type 1 (HIV-1) infection. Considering that ADP ribosylation factor 6 (Arf6) regulates cellular invasion via several microorganisms by coordinating membrane trafficking, our aim was to study the function of Arf6-mediated membrane dynamics on HIV-1 entry and infection of T lymphocytes. We observed that an alteration of the Arf6–guanosine 5′-diphosphate/guanosine 5′-triphosphate (GTP/GDP) cycle, by GDP-bound or GTP-bound inactive mutants or by specific Arf6 silencing, inhibited HIV-1 envelope–induced membrane fusion, entry, and infection of T lymphocytes and permissive cells, regardless of viral tropism. Furthermore, cell-to-cell HIV-1 transmission of primary human CD4+ T lymphocytes was inhibited by Arf6 knockdown. Total internal reflection fluorescence microscopy showed that Arf6 mutants provoked the accumulation of phosphatidylinositol-(4,5)-biphosphate–associated structures on the plasma membrane of permissive cells, without affecting CD4-viral attachment but impeding CD4-dependent HIV-1 entry. Arf6 silencing or its mutants did not affect fusion, entry, and infection of vesicular stomatitis virus G–pseudotyped viruses or ligand-induced CXCR4 or CCR5 endocytosis, both clathrin-dependent processes. Therefore we propose that efficient early HIV-1 infection of CD4+ T lymphocytes requires Arf6-coordinated plasma membrane dynamics that promote viral fusion and entry. PMID:21346189

  20. Disease in a dynamic landscape: host behavior and wildfire reduce amphibian chytrid infection

    USGS Publications Warehouse

    Hossack, Blake R.; Lowe, Winsor H.; Ware, Joy L.; Corn, Paul Stephen

    2013-01-01

    Disturbances are often expected to magnify effects of disease, but these effects may depend on the ecology, behavior, and life history of both hosts and pathogens. In many ecosystems, wildfire is the dominant natural disturbance and thus could directly or indirectly affect dynamics of many diseases. To determine how probability of infection by the aquatic fungus Batrachochytrium dendrobatidis (Bd) varies relative to habitat use by individuals, wildfire, and host characteristics, we sampled 404 boreal toads (Anaxyrus boreas boreas) across Glacier National Park, Montana (USA). Bd causes chytridiomycosis, an emerging infectious disease linked with widespread amphibian declines, including the boreal toad. Probability of infection was similar for females and the combined group of males and juveniles. However, only 9% of terrestrial toads were infected compared to >30% of aquatic toads, and toads captured in recently burned areas were half as likely to be infected as toads in unburned areas. We suspect these large differences in infection reflect habitat choices by individuals that affect pathogen exposure and persistence, especially in burned forests where warm, arid conditions could limit Bd growth. Our results show that natural disturbances such as wildfire and the resulting diverse habitats can influence infection across large landscapes, potentially maintaining local refuges and host behaviors that facilitate evolution of disease resistance.

  1. Dynamic musical communication of core affect

    PubMed Central

    Flaig, Nicole K.; Large, Edward W.

    2013-01-01

    Is there something special about the way music communicates feelings? Theorists since Meyer (1956) have attempted to explain how music could stimulate varied and subtle affective experiences by violating learned expectancies, or by mimicking other forms of social interaction. Our proposal is that music speaks to the brain in its own language; it need not imitate any other form of communication. We review recent theoretical and empirical literature, which suggests that all conscious processes consist of dynamic neural events, produced by spatially dispersed processes in the physical brain. Intentional thought and affective experience arise as dynamical aspects of neural events taking place in multiple brain areas simultaneously. At any given moment, this content comprises a unified “scene” that is integrated into a dynamic core through synchrony of neuronal oscillations. We propose that (1) neurodynamic synchrony with musical stimuli gives rise to musical qualia including tonal and temporal expectancies, and that (2) music-synchronous responses couple into core neurodynamics, enabling music to directly modulate core affect. Expressive music performance, for example, may recruit rhythm-synchronous neural responses to support affective communication. We suggest that the dynamic relationship between musical expression and the experience of affect presents a unique opportunity for the study of emotional experience. This may help elucidate the neural mechanisms underlying arousal and valence, and offer a new approach to exploring the complex dynamics of the how and why of emotional experience. PMID:24672492

  2. Dynamic musical communication of core affect.

    PubMed

    Flaig, Nicole K; Large, Edward W

    2014-01-01

    Is there something special about the way music communicates feelings? Theorists since Meyer (1956) have attempted to explain how music could stimulate varied and subtle affective experiences by violating learned expectancies, or by mimicking other forms of social interaction. Our proposal is that music speaks to the brain in its own language; it need not imitate any other form of communication. We review recent theoretical and empirical literature, which suggests that all conscious processes consist of dynamic neural events, produced by spatially dispersed processes in the physical brain. Intentional thought and affective experience arise as dynamical aspects of neural events taking place in multiple brain areas simultaneously. At any given moment, this content comprises a unified "scene" that is integrated into a dynamic core through synchrony of neuronal oscillations. We propose that (1) neurodynamic synchrony with musical stimuli gives rise to musical qualia including tonal and temporal expectancies, and that (2) music-synchronous responses couple into core neurodynamics, enabling music to directly modulate core affect. Expressive music performance, for example, may recruit rhythm-synchronous neural responses to support affective communication. We suggest that the dynamic relationship between musical expression and the experience of affect presents a unique opportunity for the study of emotional experience. This may help elucidate the neural mechanisms underlying arousal and valence, and offer a new approach to exploring the complex dynamics of the how and why of emotional experience.

  3. Effects of infection on honey bee population dynamics: a model.

    PubMed

    Betti, Matt I; Wahl, Lindi M; Zamir, Mair

    2014-01-01

    We propose a model that combines the dynamics of the spread of disease within a bee colony with the underlying demographic dynamics of the colony to determine the ultimate fate of the colony under different scenarios. The model suggests that key factors in the survival or collapse of a honey bee colony in the face of an infection are the rate of transmission of the infection and the disease-induced death rate. An increase in the disease-induced death rate, which can be thought of as an increase in the severity of the disease, may actually help the colony overcome the disease and survive through winter. By contrast, an increase in the transmission rate, which means that bees are being infected at an earlier age, has a drastic deleterious effect. Another important finding relates to the timing of infection in relation to the onset of winter, indicating that in a time interval of approximately 20 days before the onset of winter the colony is most affected by the onset of infection. The results suggest further that the age of recruitment of hive bees to foraging duties is a good early marker for the survival or collapse of a honey bee colony in the face of infection, which is consistent with experimental evidence but the model provides insight into the underlying mechanisms. The most important result of the study is a clear distinction between an exposure of the honey bee colony to an environmental hazard such as pesticides or insecticides, or an exposure to an infectious disease. The results indicate unequivocally that in the scenarios that we have examined, and perhaps more generally, an infectious disease is far more hazardous to the survival of a bee colony than an environmental hazard that causes an equal death rate in foraging bees.

  4. Effects of Infection on Honey Bee Population Dynamics: A Model

    PubMed Central

    Betti, Matt I.; Wahl, Lindi M.; Zamir, Mair

    2014-01-01

    We propose a model that combines the dynamics of the spread of disease within a bee colony with the underlying demographic dynamics of the colony to determine the ultimate fate of the colony under different scenarios. The model suggests that key factors in the survival or collapse of a honey bee colony in the face of an infection are the rate of transmission of the infection and the disease-induced death rate. An increase in the disease-induced death rate, which can be thought of as an increase in the severity of the disease, may actually help the colony overcome the disease and survive through winter. By contrast, an increase in the transmission rate, which means that bees are being infected at an earlier age, has a drastic deleterious effect. Another important finding relates to the timing of infection in relation to the onset of winter, indicating that in a time interval of approximately 20 days before the onset of winter the colony is most affected by the onset of infection. The results suggest further that the age of recruitment of hive bees to foraging duties is a good early marker for the survival or collapse of a honey bee colony in the face of infection, which is consistent with experimental evidence but the model provides insight into the underlying mechanisms. The most important result of the study is a clear distinction between an exposure of the honey bee colony to an environmental hazard such as pesticides or insecticides, or an exposure to an infectious disease. The results indicate unequivocally that in the scenarios that we have examined, and perhaps more generally, an infectious disease is far more hazardous to the survival of a bee colony than an environmental hazard that causes an equal death rate in foraging bees. PMID:25329468

  5. Dynamic distribution and tissue tropism of avian encephalomyelitis virus isolate XY/Q-1410 in experimentally infected Korean quail.

    PubMed

    Fan, Lili; Li, Zhijun; Huang, Jiali; Yang, Zengqi; Xiao, Sa; Wang, Xinglong; Dang, Ruyi; Zhang, Shuxia

    2017-11-01

    Avian encephalomyelitis (AE) is an important infectious poultry disease worldwide that is caused by avian encephalomyelitis virus (AEV). However, to date, the dynamic distribution of AEV in quails has not been well described. Quantitative real-time polymerase chain reaction (qPCR) and immunohistochemistry (IHC) assays were used to investigate the dynamic distribution and tissue tropism of AEV in experimentally infected Korean quail. AEV was detected in the cerebrum, cerebellum, proventriculus, intestine, liver, pancreas, spleen, bursa, lung and kidney as early as 3 days post-infection (dpi). The viral loads in the proventriculus, intestine, spleen and bursa were relatively higher than in other tissues. According to the qPCR results, AEV XY/Q-1410 infection lasted for at least 60 days in infected Korean quail. Immunohistochemistry-positive staining signals of AEV antigen were analysed by Image-Pro Plus software. A positive correlation between qPCR and IHC results was identified in most tissues. Our results provide an insight into the dynamic distribution of AEV in various tissues after infection. The distinct dynamic distribution of the viral genome in Korean quail in the early and late stages of infection suggests that AEV replication is affected by antibody levels and the maturity of the immune system of the host.

  6. Modeling malaria and typhoid fever co-infection dynamics.

    PubMed

    Mutua, Jones M; Wang, Feng-Bin; Vaidya, Naveen K

    2015-06-01

    Malaria and typhoid are among the most endemic diseases, and thus, of major public health concerns in tropical developing countries. In addition to true co-infection of malaria and typhoid, false diagnoses due to similar signs and symptoms and false positive results in testing methods, leading to improper controls, are the major challenges on managing these diseases. In this study, we develop novel mathematical models describing the co-infection dynamics of malaria and typhoid. Through mathematical analyses of our models, we identify distinct features of typhoid and malaria infection dynamics as well as relationships associated to their co-infection. The global dynamics of typhoid can be determined by a single threshold (the typhoid basic reproduction number, R0(T)) while two thresholds (the malaria basic reproduction number, R0(M), and the extinction index, R0(MM)) are needed to determine the global dynamics of malaria. We demonstrate that by using efficient simultaneous prevention programs, the co-infection basic reproduction number, R0, can be brought down to below one, thereby eradicating the diseases. Using our model, we present illustrative numerical results with a case study in the Eastern Province of Kenya to quantify the possible false diagnosis resulting from this co-infection. In Kenya, despite having higher prevalence of typhoid, malaria is more problematic in terms of new infections and disease deaths. We find that false diagnosis-with higher possible cases for typhoid than malaria-cause significant devastating impacts on Kenyan societies. Our results demonstrate that both diseases need to be simultaneously managed for successful control of co-epidemics. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Infection rates and comparative population dynamics of Peregrinus maidis (Hemiptera: Delphacidae) on corn plants with and without symptoms of maize mosaic virus (Rhabdoviridae: Nucleorhabdovirus) infection.

    PubMed

    Higashi, C H V; Bressan, A

    2013-10-01

    We examined the population dynamics of the corn planthopper Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae) throughout a cycle of corn (Zea mays L.) production on plants with or without symptoms of maize mosaic virus (MMV) (Rhabdoviridae: Nucleorhabdovirus) infection. Our results indicate that the timing of MMV plant infection greatly influenced the planthopper's host plant colonization patterns. Corn plants that expressed symptoms of MMV infection early in the crop cycle (28 d after planting) harbored, on average, 40 and 48% fewer planthoppers than plants that expressed symptoms of MMV infection later in the crop cycle (49 d after planting) and asymptomatic plants, respectively. We also observed a change in the number of brachypterous (short-wing type) and macropterous (long-wing type) winged forms produced; plants expressing early symptoms of MMV infection harbored, on average, 41 and 47% more of the brachypterous form than plants with late infections of MMV and plants with no symptoms of MMV, respectively. Furthermore, we determined the rates of MMV-infected planthoppers relative to their wing morphology (macropterous or brachypterous) and gender. MMV infection was 5 and 12% higher in females than in males in field and greenhouse experiments, respectively; however, these differences were not significantly different. This research provides evidence that MMV similarly infects P. maidis planthoppers regardless of the gender and wing morphotype. These results also suggest that the timing of symptom development greatly affects the population dynamics of the planthopper vector, and likely has important consequences for the dynamics of the disease in the field.

  8. Inferring Viral Dynamics in Chronically HCV Infected Patients from the Spatial Distribution of Infected Hepatocytes

    DOE PAGES

    Graw, Frederik; Balagopal, Ashwin; Kandathil, Abraham J.; ...

    2014-11-13

    Chronic liver infection by hepatitis C virus (HCV) is a major public health concern. Despite partly successful treatment options, several aspects of intrahepatic HCV infection dynamics are still poorly understood, including the preferred mode of viral propagation, as well as the proportion of infected hepatocytes. Answers to these questions have important implications for the development of therapeutic interventions. In this study, we present methods to analyze the spatial distribution of infected hepatocytes obtained by single cell laser capture microdissection from liver biopsy samples of patients chronically infected with HCV. By characterizing the internal structure of clusters of infected cells, wemore » are able to evaluate hypotheses about intrahepatic infection dynamics. We found that individual clusters on biopsy samples range in size from 4-50 infected cells. In addition, the HCV RNA content in a cluster declines from the cell that presumably founded the cluster to cells at the maximal cluster extension. These observations support the idea that HCV infection in the liver is seeded randomly (e.g. from the blood) and then spreads locally. Assuming that the amount of intracellular HCV RNA is a proxy for how long a cell has been infected, we estimate based on models of intracellular HCV RNA replication and accumulation that cells in clusters have been infected on average for less than a week. Further, we do not find a relationship between the cluster size and the estimated cluster expansion time. Lastly, our method represents a novel approach to make inferences about infection dynamics in solid tissues from static spatial data.« less

  9. Inferring Viral Dynamics in Chronically HCV Infected Patients from the Spatial Distribution of Infected Hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graw, Frederik; Balagopal, Ashwin; Kandathil, Abraham J.

    Chronic liver infection by hepatitis C virus (HCV) is a major public health concern. Despite partly successful treatment options, several aspects of intrahepatic HCV infection dynamics are still poorly understood, including the preferred mode of viral propagation, as well as the proportion of infected hepatocytes. Answers to these questions have important implications for the development of therapeutic interventions. In this study, we present methods to analyze the spatial distribution of infected hepatocytes obtained by single cell laser capture microdissection from liver biopsy samples of patients chronically infected with HCV. By characterizing the internal structure of clusters of infected cells, wemore » are able to evaluate hypotheses about intrahepatic infection dynamics. We found that individual clusters on biopsy samples range in size from 4-50 infected cells. In addition, the HCV RNA content in a cluster declines from the cell that presumably founded the cluster to cells at the maximal cluster extension. These observations support the idea that HCV infection in the liver is seeded randomly (e.g. from the blood) and then spreads locally. Assuming that the amount of intracellular HCV RNA is a proxy for how long a cell has been infected, we estimate based on models of intracellular HCV RNA replication and accumulation that cells in clusters have been infected on average for less than a week. Further, we do not find a relationship between the cluster size and the estimated cluster expansion time. Lastly, our method represents a novel approach to make inferences about infection dynamics in solid tissues from static spatial data.« less

  10. Impact of body condition on influenza A virus infection dynamics in mallards following a secondary exposure

    PubMed Central

    Webb, Colleen T.; Wilson, Kenneth R.; Bentler, Kevin T.; Mooers, Nicole L.; Ellis, Jeremy W.; Root, J. Jeffrey; Franklin, Alan B.; Shriner, Susan A.

    2017-01-01

    Migratory waterfowl are often viewed as vehicles for the global spread of influenza A viruses (IAVs), with mallards (Anas platyrhynchos) implicated as particularly important reservoir hosts. The physical demands and energetic costs of migration have been shown to influence birds’ body condition; poorer body condition may suppress immune function and affect the course of IAV infection. Our study evaluated the impact of body condition on immune function and viral shedding dynamics in mallards naturally exposed to an H9 IAV, and then secondarily exposed to an H4N6 IAV. Mallards were divided into three treatment groups of 10 birds per group, with each bird’s body condition manipulated as a function of body weight by restricting food availability to achieve either a -10%, -20%, or control body weight class. We found that mallards exhibit moderate heterosubtypic immunity against an H4N6 IAV infection after an infection from an H9 IAV, and that body condition did not have an impact on shedding dynamics in response to a secondary exposure. Furthermore, body condition did not affect aspects of the innate and adaptive immune system, including the acute phase protein haptoglobin, heterophil/lymphocyte ratios, and antibody production. Contrary to recently proposed hypotheses and some experimental evidence, our data do not support relationships between body condition, infection and immunocompetence following a second exposure to IAV in mallards. Consequently, while annual migration may be a driver in the maintenance and spread of IAVs, the energetic demands of migration may not affect susceptibility in mallards. PMID:28423047

  11. Impact of body condition on influenza A virus infection dynamics in mallards following a secondary exposure.

    PubMed

    Dannemiller, Nicholas G; Webb, Colleen T; Wilson, Kenneth R; Bentler, Kevin T; Mooers, Nicole L; Ellis, Jeremy W; Root, J Jeffrey; Franklin, Alan B; Shriner, Susan A

    2017-01-01

    Migratory waterfowl are often viewed as vehicles for the global spread of influenza A viruses (IAVs), with mallards (Anas platyrhynchos) implicated as particularly important reservoir hosts. The physical demands and energetic costs of migration have been shown to influence birds' body condition; poorer body condition may suppress immune function and affect the course of IAV infection. Our study evaluated the impact of body condition on immune function and viral shedding dynamics in mallards naturally exposed to an H9 IAV, and then secondarily exposed to an H4N6 IAV. Mallards were divided into three treatment groups of 10 birds per group, with each bird's body condition manipulated as a function of body weight by restricting food availability to achieve either a -10%, -20%, or control body weight class. We found that mallards exhibit moderate heterosubtypic immunity against an H4N6 IAV infection after an infection from an H9 IAV, and that body condition did not have an impact on shedding dynamics in response to a secondary exposure. Furthermore, body condition did not affect aspects of the innate and adaptive immune system, including the acute phase protein haptoglobin, heterophil/lymphocyte ratios, and antibody production. Contrary to recently proposed hypotheses and some experimental evidence, our data do not support relationships between body condition, infection and immunocompetence following a second exposure to IAV in mallards. Consequently, while annual migration may be a driver in the maintenance and spread of IAVs, the energetic demands of migration may not affect susceptibility in mallards.

  12. Staphylococcus aureus infection dynamics.

    PubMed

    Pollitt, Eric J G; Szkuta, Piotr T; Burns, Nicola; Foster, Simon J

    2018-06-01

    Staphylococcus aureus is a human commensal that can also cause systemic infections. This transition requires evasion of the immune response and the ability to exploit different niches within the host. However, the disease mechanisms and the dominant immune mediators against infection are poorly understood. Previously it has been shown that the infecting S. aureus population goes through a population bottleneck, from which very few bacteria escape to establish the abscesses that are characteristic of many infections. Here we examine the host factors underlying the population bottleneck and subsequent clonal expansion in S. aureus infection models, to identify underpinning principles of infection. The bottleneck is a common feature between models and is independent of S. aureus strain. Interestingly, the high doses of S. aureus required for the widely used "survival" model results in a reduced population bottleneck, suggesting that host defences have been simply overloaded. This brings into question the applicability of the survival model. Depletion of immune mediators revealed key breakpoints and the dynamics of systemic infection. Loss of macrophages, including the liver Kupffer cells, led to increased sensitivity to infection as expected but also loss of the population bottleneck and the spread to other organs still occurred. Conversely, neutrophil depletion led to greater susceptibility to disease but with a concomitant maintenance of the bottleneck and lack of systemic spread. We also used a novel microscopy approach to examine abscess architecture and distribution within organs. From these observations we developed a conceptual model for S. aureus disease from initial infection to mature abscess. This work highlights the need to understand the complexities of the infectious process to be able to assign functions for host and bacterial components, and why S. aureus disease requires a seemingly high infectious dose and how interventions such as a vaccine may be

  13. Dynamics of delayed pathogen infection models with pathogenic and cellular infections and immune impairment

    NASA Astrophysics Data System (ADS)

    Elaiw, A. M.; Raezah, A. A.; Alofi, B. S.

    2018-02-01

    We study the global dynamics of delayed pathogen infection models with immune impairment. Both pathogen-to-susceptible and infected-to-susceptible transmissions have been considered. Bilinear and saturated incidence rates are considered in the first and second model, respectively. We drive the basic reproduction parameter R0 which determines the global dynamics of models. Using Lyapunov method, we established the global stability of the models' steady states. The theoretical results are confirmed by numerical simulations.

  14. Live Imaging of Influenza Infection of the Trachea Reveals Dynamic Regulation of CD8+ T Cell Motility by Antigen.

    PubMed

    Lambert Emo, Kris; Hyun, Young-Min; Reilly, Emma; Barilla, Christopher; Gerber, Scott; Fowell, Deborah; Kim, Minsoo; Topham, David J

    2016-09-01

    During a primary influenza infection, cytotoxic CD8+ T cells need to infiltrate the infected airways and engage virus-infected epithelial cells. The factors that regulate T cell motility in the infected airway tissue are not well known. To more precisely study T cell infiltration of the airways, we developed an experimental model system using the trachea as a site where live imaging can be performed. CD8+ T cell motility was dynamic with marked changes in motility on different days of the infection. In particular, significant changes in average cell velocity and confinement were evident on days 8-10 during which the T cells abruptly but transiently increase velocity on day 9. Experiments to distinguish whether infection itself or antigen affect motility revealed that it is antigen, not active infection per se that likely affects these changes as blockade of peptide/MHC resulted in increased velocity. These observations demonstrate that influenza tracheitis provides a robust experimental foundation to study molecular regulation of T cell motility during acute virus infection.

  15. Live Imaging of Influenza Infection of the Trachea Reveals Dynamic Regulation of CD8+ T Cell Motility by Antigen

    PubMed Central

    Lambert Emo, Kris; Hyun, Young-min; Barilla, Christopher; Gerber, Scott; Fowell, Deborah; Kim, Minsoo

    2016-01-01

    During a primary influenza infection, cytotoxic CD8+ T cells need to infiltrate the infected airways and engage virus-infected epithelial cells. The factors that regulate T cell motility in the infected airway tissue are not well known. To more precisely study T cell infiltration of the airways, we developed an experimental model system using the trachea as a site where live imaging can be performed. CD8+ T cell motility was dynamic with marked changes in motility on different days of the infection. In particular, significant changes in average cell velocity and confinement were evident on days 8–10 during which the T cells abruptly but transiently increase velocity on day 9. Experiments to distinguish whether infection itself or antigen affect motility revealed that it is antigen, not active infection per se that likely affects these changes as blockade of peptide/MHC resulted in increased velocity. These observations demonstrate that influenza tracheitis provides a robust experimental foundation to study molecular regulation of T cell motility during acute virus infection. PMID:27644089

  16. Stochasticity in the Expression of LamB and its Affect on λ phage Infection

    NASA Astrophysics Data System (ADS)

    Chapman, Emily; Wu, Xiao-Lun

    2006-03-01

    λ phage binds to E. Coli's lamB protein and injects its DNA into the cell. The phage quickly replicates and after a latent period the bacteria bursts, emitting mature phages. We developed a mathematical model based on the known physical events that occur when a λ phage infects an E.Coli cell. The results of these models predict that the bacteria and phage populations become extinct unless the parameters of the model are very finely tuned, which is untrue in the nature. The lamB protein is part of the maltose regulon and can be repressed to minimal levels when grown in the absence of inducer. Therefore, a cell that is not expressing any lamB protein at that moment is resistant against phage infection. We studied the dynamic relationship between λ phage and E. Coli when the concentration of phage greatly outnumbers the concentration of bacteria. We study how the stochasticity of the expression of lamB affects the percentage of cells that the λ phage infects. We show that even in the case when the maltose regulon is fully induced a percentage of cells continue to persist against phage infection.

  17. Political Dynamics Affected by Turncoats

    NASA Astrophysics Data System (ADS)

    Di Salvo, Rosa; Gorgone, Matteo; Oliveri, Francesco

    2017-11-01

    An operatorial theoretical model based on raising and lowering fermionic operators for the description of the dynamics of a political system consisting of macro-groups affected by turncoat-like behaviors is presented. The analysis of the party system dynamics is carried on by combining the action of a suitable quadratic Hamiltonian operator with specific rules (depending on the variations of the mean values of the observables) able to adjust periodically the conservative model to the political environment.

  18. Can the route of Toxoplasma gondii infection affect the ophthalmic outcomes?

    PubMed

    Ashour, Dalia S; Saad, Abeer E; Bakary, Reda H El; Barody, Mohamed A El

    2018-06-14

    Ocular toxoplasmosis is the most common cause of retinochoroiditis worldwide in humans. Some studies highlighted the idea that ocular lesions differ according to the route of infection but none of them mimicked the natural route. The current study aimed to investigate the ophthalmic outcomes in congenital and oral routes of infection with Toxoplasma in experimental animals. Mice were divided into three groups; group I: congenital infection, group II: acquired oral infection and group III: non-infected. We used Me49 chronic low-virulence T. gondii strain. We found that retina is the most affected part in both modes of infections. However, the retinal changes are different and more pronounced in case of congenital infection. The congenitally infected mice showed retinal lesions e.g. total detachment of retinal pigment epithelium from the photoreceptor layer and irregular arrangement of retinal layers. More severe damage was observed in mice infected early in pregnancy. While the postnatal orally infected mice showed fewer changes. In conclusion, the routes of Toxoplasma infection affect the ophthalmic outcomes and this may be the case in human disease. Although both are vision threatening, it seems that the prognosis of postnatal acquired ocular toxoplasmosis is better than that of congenital disease.

  19. Comparative dynamics, seasonality in transmission, and predictability of childhood infections in Mexico

    PubMed Central

    Mahmud, A. S.; Metcalf, C. J. E.; Grenfell, B. T.

    2018-01-01

    The seasonality and periodicity of infections, and the mechanisms underlying observed dynamics, can have implications for control efforts. This is particularly true for acute childhood infections. Among these, the dynamics of measles is the best understood and has been extensively studied, most notably in the UK prior to the start of vaccination. Less is known about the dynamics of other childhood diseases, particularly outside Europe and the US. In this paper, we leverage a unique dataset to examine the epidemiology of six childhood infections - measles, mumps, rubella, varicella, scarlet fever and pertussis - across 32 states in Mexico from 1985 to 2007. This dataset provides us with a spatiotemporal probe into the dynamics of six common childhood infections, and allows us to compare them in the same setting over the same time period. We examine three key epidemiological characteristics of these infections – the age profile of infections, spatiotemporal dynamics, and seasonality in transmission - and compare with predictions from existing theory and past findings. Our analysis reveals interesting epidemiological differences between the six pathogens, and variations across space. We find signatures of term time forcing (reduced transmission during the summer) for measles, mumps, rubella, varicella, and scarlet fever; for pertussis, a lack of term time forcing could not be rejected. PMID:27873563

  20. Mathematical Modeling of the Dynamics of Salmonella Cerro Infection in a US Dairy Herd

    NASA Astrophysics Data System (ADS)

    Chapagain, Prem; van Kessel, Jo Ann; Karns, Jeffrey; Wolfgang, David; Schukken, Ynte; Grohn, Yrjo

    2006-03-01

    Salmonellosis has been one of the major causes of human foodborne illness in the US. The high prevalence of infections makes transmission dynamics of Salmonella in a farm environment of interest both from animal and human health perspectives. Mathematical modeling approaches are increasingly being applied to understand the dynamics of various infectious diseases in dairy herds. Here, we describe the transmission dynamics of Salmonella infection in a dairy herd with a set of non-linear differential equations. Although the infection dynamics of different serotypes of Salmonella in cattle are likely to be different, we find that a relatively simple SIR-type model can describe the observed dynamics of the Salmonella enterica serotype Cerro infection in the herd.

  1. In vivo and in vitro infection dynamics of honey bee viruses.

    PubMed

    Carrillo-Tripp, Jimena; Dolezal, Adam G; Goblirsch, Michael J; Miller, W Allen; Toth, Amy L; Bonning, Bryony C

    2016-02-29

    The honey bee (Apis mellifera) is commonly infected by multiple viruses. We developed an experimental system for the study of such mixed viral infections in newly emerged honey bees and in the cell line AmE-711, derived from honey bee embryos. When inoculating a mixture of iflavirids [sacbrood bee virus (SBV), deformed wing virus (DWV)] and dicistrovirids [Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV)] in both live bee and cell culture assays, IAPV replicated to higher levels than other viruses despite the fact that SBV was the major component of the inoculum mixture. When a different virus mix composed mainly of the dicistrovirid Kashmir bee virus (KBV) was tested in cell culture, the outcome was a rapid increase in KBV but not IAPV. We also sequenced the complete genome of an isolate of DWV that covertly infects the AmE-711 cell line, and found that this virus does not prevent IAPV and KBV from accumulating to high levels and causing cytopathic effects. These results indicate that different mechanisms of virus-host interaction affect virus dynamics, including complex virus-virus interactions, superinfections, specific virus saturation limits in cells and virus specialization for different cell types.

  2. MHC-I affects infection intensity but not infection status with a frequent avian malaria parasite in blue tits.

    PubMed

    Westerdahl, Helena; Stjernman, Martin; Råberg, Lars; Lannefors, Mimi; Nilsson, Jan-Åke

    2013-01-01

    Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts.

  3. MHC-I Affects Infection Intensity but Not Infection Status with a Frequent Avian Malaria Parasite in Blue Tits

    PubMed Central

    Westerdahl, Helena; Stjernman, Martin; Råberg, Lars; Lannefors, Mimi; Nilsson, Jan-Åke

    2013-01-01

    Host resistance against parasites depends on three aspects: the ability to prevent, control and clear infections. In vertebrates the immune system consists of innate and adaptive immunity. Innate immunity is particularly important for preventing infection and eradicating established infections at an early stage while adaptive immunity is slow, but powerful, and essential for controlling infection intensities and eventually clearing infections. Major Histocompatibility Complex (MHC) molecules are central in adaptive immunity, and studies on parasite resistance and MHC in wild animals have found effects on both infection intensity (parasite load) and infection status (infected or not). It seems MHC can affect both the ability to control infection intensities and the ability to clear infections. However, these two aspects have rarely been considered simultaneously, and their relative importance in natural populations is therefore unclear. Here we investigate if MHC class I genotype affects infection intensity and infection status with a frequent avian malaria infection Haemoproteus majoris in a natural population of blue tits Cyanistes caeruleus. We found a significant negative association between a single MHC allele and infection intensity but no association with infection status. Blue tits that carry a specific MHC allele seem able to suppress H. majoris infection intensity, while we have no evidence that this allele also has an effect on clearance of the H. majoris infection, a result that is in contrast with some previous studies of MHC and avian malaria. A likely explanation could be that the clearance rate of avian malaria parasites differs between avian malaria lineages and/or between avian hosts. PMID:24023631

  4. [Dynamics of complement hemolytic activity in experimental Ebola infection].

    PubMed

    Zabavichene, N M; Chepurnov, A A

    2004-01-01

    The dynamic hemolytic activity of complements (HAC) was investigated in blood of guinea pigs in lethal and non-lethal Ebola infection. The increasing HAC dynamic activity in the animal blood was found to correlate with the infection lethal course. HAC as observed in animals with lethal infection was sweepingly increasing after they, were infected with Ebola virus, and yet after 15 hours from the infection time the complement activity parameters topped 2-fold the basic values in 100% of guinea pigs. They began to be dropping by the end of day 1, their decrease reached, when the incubation time was over (days 3-4 after infection) the basic value, after which they continued to go down to the zero value in 2-3 days before the lethal outcome. The described phenomenon, like the phenomenon of accelerated death, was even more pronounced, when the animals were infected after a single immunization by activated Ebola virus. In case, guinea pigs were infected by a non-lethal Ebola virus strain, the compliment synthesis was observed to be activated only at the end of the incubation period; the process was accompanied with a gradual raise and with a plateau-type or wave-type increase of the complement during the treatment time--it was equally accompanied with normalizing activity parameters during recovery. The detected specificity could be important in prognosticating a disease outcome. A reliable correlation was demonstrated between the complement hemolytic activity and the level of circulating immune complexes in blood of experimental animals, which can be traced both in lethal and non-lethal infection.

  5. Dynamics of Infection and Spread of Diseases

    NASA Astrophysics Data System (ADS)

    Zorzenon dos Santos, Rita Maria

    2003-03-01

    This text summarizes a series of four lectures presented at the PASI on Modern Challenges in Statistical Mechanics. The idea was to give to the students a flavor of the biological aspects involved in the dynamics of infection and the spread of diseases, the complexity of the systems involved, and how we can improve our modeling of such systems by using different approaches in order to get closer to experimental results. In a huge universe of publications about the subject, we restrict the list of references to the ones that may be useful to the students and will lead them to other important work. Therefore, the text should not be taken as a review of the subject, but rather as an introductory text for physicists about the dynamics of infection and spread of diseases and the role of biological physics in this interdisciplinary field.

  6. Aberrant occipital dynamics differentiate HIV-infected patients with and without cognitive impairment.

    PubMed

    Wiesman, Alex I; O'Neill, Jennifer; Mills, Mackenzie S; Robertson, Kevin R; Fox, Howard S; Swindells, Susan; Wilson, Tony W

    2018-06-01

    Combination antiretroviral therapies have revolutionized the treatment of HIV infection, and many patients now enjoy a lifespan equal to that of the general population. However, HIV-associated neurocognitive disorders (HAND) remain a major health concern, with between 30% and 70% of all HIV-infected patients developing cognitive impairments during their life time. One important feature of HAND is visuo-perceptual deficits, but the systems-level neural dynamics underlying these impairments are poorly understood. In the current study, we use magnetoencephalography and advanced time series analyses to examine these neural dynamics during a visuospatial processing task in a group of HIV-infected patients without HAND (n = 25), patients with HAND (n = 18), and a group of demographically-matched uninfected controls (n = 24). All participants completed a thorough neuropsychological assessment, and underwent magnetoencephalography and structural MRI protocols. In agreement with previous studies, patients with HAND performed significantly worse than HIV-infected patients without HAND and controls on the cognitive task, in terms of increased reaction time and decreased accuracy. Our magnetoencephalography results demonstrated that both spontaneous and neural oscillatory activity within the occipital cortices were affected by HIV infection, and that these patterns predicted behavioural performance (i.e. accuracy) on the task. Specifically, spontaneous neural activity in the alpha (8-16 Hz) and gamma (52-70 Hz) bands during the prestimulus baseline period, as well as oscillatory theta responses (4-8 Hz) during task performance were aberrant in HIV-infected patients, with both spontaneous alpha and oscillatory theta activity significantly predicting accuracy on the task and neuropsychological performance outside of the magnetoencephalography scanner. Importantly, these rhythmic patterns of population-level neural activity also distinguished patients by HAND status, such that

  7. Environmental Persistence Influences Infection Dynamics for a Butterfly Pathogen

    PubMed Central

    Altizer, Sonia; Williams, Mary-Kate; Hall, Richard J.

    2017-01-01

    Many pathogens, including those infecting insects, are transmitted via dormant stages shed into the environment, where they must persist until encountering a susceptible host. Understanding how abiotic conditions influence environmental persistence and how these factors influence pathogen spread are crucial for predicting patterns of infection risk. Here, we explored the consequences of environmental transmission for infection dynamics of a debilitating protozoan parasite (Ophryocystis elektroscirrha) that infects monarch butterflies (Danaus plexippus). We first conducted an experiment to observe the persistence of protozoan spores exposed to natural conditions. Experimental results showed that, contrary to our expectations, pathogen doses maintained high infectivity even after 16 days in the environment, although pathogens did yield infections with lower parasite loads after environmental exposure. Because pathogen longevity exceeded the time span of our experiment, we developed a mechanistic model to better explore environmental persistence for this host-pathogen system. Model analysis showed that, in general, longer spore persistence led to higher infection prevalence and slightly smaller monarch population sizes. The model indicated that typical parasite doses shed onto milkweed plants must remain viable for a minimum of 3 weeks for prevalence to increase during the summer-breeding season, and for 11 weeks or longer to match levels of infection commonly reported from the wild, assuming moderate values for parasite shedding rate. Our findings showed that transmission stages of this butterfly pathogen are long-lived and indicated that this is a necessary condition for the protozoan to persist in local monarch populations. This study provides a modeling framework for future work examining the dynamics of an ecologically important pathogen in an iconic insect. PMID:28099501

  8. Dynamic Modularity of Host Protein Interaction Networks in Salmonella Typhi Infection

    PubMed Central

    Dhal, Paltu Kumar; Barman, Ranjan Kumar; Saha, Sudipto; Das, Santasabuj

    2014-01-01

    Background Salmonella Typhi is a human-restricted pathogen, which causes typhoid fever and remains a global health problem in the developing countries. Although previously reported host expression datasets had identified putative biomarkers and therapeutic targets of typhoid fever, the underlying molecular mechanism of pathogenesis remains incompletely understood. Methods We used five gene expression datasets of human peripheral blood from patients suffering from S. Typhi or other bacteremic infections or non-infectious disease like leukemia. The expression datasets were merged into human protein interaction network (PIN) and the expression correlation between the hubs and their interacting proteins was measured by calculating Pearson Correlation Coefficient (PCC) values. The differences in the average PCC for each hub between the disease states and their respective controls were calculated for studied datasets. The individual hubs and their interactors with expression, PCC and average PCC values were treated as dynamic subnetworks. The hubs that showed unique trends of alterations specific to S. Typhi infection were identified. Results We identified S. Typhi infection-specific dynamic subnetworks of the host, which involve 81 hubs and 1343 interactions. The major enriched GO biological process terms in the identified subnetworks were regulation of apoptosis and biological adhesions, while the enriched pathways include cytokine signalling in the immune system and downstream TCR signalling. The dynamic nature of the hubs CCR1, IRS2 and PRKCA with their interactors was studied in detail. The difference in the dynamics of the subnetworks specific to S. Typhi infection suggests a potential molecular model of typhoid fever. Conclusions Hubs and their interactors of the S. Typhi infection-specific dynamic subnetworks carrying distinct PCC values compared with the non-typhoid and other disease conditions reveal new insight into the pathogenesis of S. Typhi. PMID:25144185

  9. Simple Epidemiological Dynamics Explain Phylogenetic Clustering of HIV from Patients with Recent Infection

    PubMed Central

    Volz, Erik M.; Koopman, James S.; Ward, Melissa J.; Brown, Andrew Leigh; Frost, Simon D. W.

    2012-01-01

    Phylogenies of highly genetically variable viruses such as HIV-1 are potentially informative of epidemiological dynamics. Several studies have demonstrated the presence of clusters of highly related HIV-1 sequences, particularly among recently HIV-infected individuals, which have been used to argue for a high transmission rate during acute infection. Using a large set of HIV-1 subtype B pol sequences collected from men who have sex with men, we demonstrate that virus from recent infections tend to be phylogenetically clustered at a greater rate than virus from patients with chronic infection (‘excess clustering’) and also tend to cluster with other recent HIV infections rather than chronic, established infections (‘excess co-clustering’), consistent with previous reports. To determine the role that a higher infectivity during acute infection may play in excess clustering and co-clustering, we developed a simple model of HIV infection that incorporates an early period of intensified transmission, and explicitly considers the dynamics of phylogenetic clusters alongside the dynamics of acute and chronic infected cases. We explored the potential for clustering statistics to be used for inference of acute stage transmission rates and found that no single statistic explains very much variance in parameters controlling acute stage transmission rates. We demonstrate that high transmission rates during the acute stage is not the main cause of excess clustering of virus from patients with early/acute infection compared to chronic infection, which may simply reflect the shorter time since transmission in acute infection. Higher transmission during acute infection can result in excess co-clustering of sequences, while the extent of clustering observed is most sensitive to the fraction of infections sampled. PMID:22761556

  10. RT-SHIV subpopulation dynamics in infected macaques during anti-HIV therapy

    PubMed Central

    2009-01-01

    Background To study the dynamics of wild-type and drug-resistant HIV-1 RT variants, we developed a methodology that follows the fates of individual genomes over time within the viral quasispecies. Single genome sequences were obtained from 3 pigtail macaques infected with a recombinant simian immunodeficiency virus containing the RT coding region from HIV-1 (RT-SHIV) and treated with short-course efavirenz monotherapy 13 weeks post-infection followed by daily combination antiretroviral therapy (ART) beginning at week 17. Bioinformatics tools were constructed to trace individual genomes from the beginning of infection to the end of the treatment. Results A well characterized challenge RT-SHIV inoculum was used to infect three monkeys. The RT-SHIV inoculum had 9 variant subpopulations and the dominant subpopulation accounted for 80% of the total genomes. In two of the three monkeys, the inoculated wild-type virus was rapidly replaced by new wild type variants. By week 13, the original dominant subpopulation in the inoculum was replaced by new dominant subpopulations, followed by emergence of variants carrying known NNRTI resistance mutations. However, during ART, virus subpopulations containing resistance mutations did not outgrow the wide-type subpopulations until a minor subpopulation carrying linked drug resistance mutations (K103N/M184I) emerged. We observed that persistent viremia during ART is primarily made up of wild type subpopulations. We also found that subpopulations carrying the V75L mutation, not known to be associated with NNRTI resistance, emerged initially in week 13 in two macaques. Eventually, all subpopulations from these two macaques carried the V75L mutation. Conclusion This study quantitatively describes virus evolution and population dynamics patterns in an animal model. The fact that wild type subpopulations remained as dominant subpopulations during ART treatment suggests that the presence or absence of at least some known drug resistant

  11. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production.

    PubMed

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role.

  12. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production

    PubMed Central

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role. PMID:26217252

  13. Clonal Expansion during Staphylococcus aureus Infection Dynamics Reveals the Effect of Antibiotic Intervention

    PubMed Central

    McVicker, Gareth; Prajsnar, Tomasz K.; Williams, Alexander; Wagner, Nelly L.; Boots, Michael; Renshaw, Stephen A.; Foster, Simon J.

    2014-01-01

    To slow the inexorable rise of antibiotic resistance we must understand how drugs impact on pathogenesis and influence the selection of resistant clones. Staphylococcus aureus is an important human pathogen with populations of antibiotic-resistant bacteria in hospitals and the community. Host phagocytes play a crucial role in controlling S. aureus infection, which can lead to a population “bottleneck” whereby clonal expansion of a small fraction of the initial inoculum founds a systemic infection. Such population dynamics may have important consequences on the effect of antibiotic intervention. Low doses of antibiotics have been shown to affect in vitro growth and the generation of resistant mutants over the long term, however whether this has any in vivo relevance is unknown. In this work, the population dynamics of S. aureus pathogenesis were studied in vivo using antibiotic-resistant strains constructed in an isogenic background, coupled with systemic models of infection in both the mouse and zebrafish embryo. Murine experiments revealed unexpected and complex bacterial population kinetics arising from clonal expansion during infection in particular organs. We subsequently elucidated the effect of antibiotic intervention within the host using mixed inocula of resistant and sensitive bacteria. Sub-curative tetracycline doses support the preferential expansion of resistant microorganisms, importantly unrelated to effects on growth rate or de novo resistance acquisition. This novel phenomenon is generic, occurring with methicillin-resistant S. aureus (MRSA) in the presence of β-lactams and with the unrelated human pathogen Pseudomonas aeruginosa. The selection of resistant clones at low antibiotic levels can result in a rapid increase in their prevalence under conditions that would previously not be thought to favor them. Our results have key implications for the design of effective treatment regimes to limit the spread of antimicrobial resistance, where

  14. Modeling dynamics of HIV infected cells using stochastic cellular automaton

    NASA Astrophysics Data System (ADS)

    Precharattana, Monamorn; Triampo, Wannapong

    2014-08-01

    Ever since HIV was first diagnosed in human, a great number of scientific works have been undertaken to explore the biological mechanisms involved in the infection and progression of the disease. Several cellular automata (CA) models have been introduced to gain insights into the dynamics of the disease progression but none of them has taken into account effects of certain immune cells such as the dendritic cells (DCs) and the CD8+ T lymphocytes (CD8+ T cells). In this work, we present a CA model, which incorporates effects of the HIV specific immune response focusing on the cell-mediated immunities, and investigate the interaction between the host immune response and the HIV infected cells in the lymph nodes. The aim of our work is to propose a model more realistic than the one in Precharattana et al. (2010) [10], by incorporating roles of the DCs, the CD4+ T cells, and the CD8+ T cells into the model so that it would reproduce the HIV infection dynamics during the primary phase of HIV infection.

  15. Does thinning affect gypsy moth dynamics?

    Treesearch

    Andrew M. Liebhold; Rose-Marie Muzika; Kurt W. Gottschalk

    1998-01-01

    In northeastern U.S. forests there is considerable variation in susceptibility (defoliation potential) and vulnerability (tree mortality) to gypsy moth (Lymantria dispar [L.]). Thinning has been suggested as a way to reduce susceptibility and/or vulnerability. We evaluated how thinning affected the dynamics of gypsy moth populations by experimentally...

  16. Dynamics and establishment of Clostridium difficile infection in the murine gastrointestinal tract.

    PubMed

    Koenigsknecht, Mark J; Theriot, Casey M; Bergin, Ingrid L; Schumacher, Cassie A; Schloss, Patrick D; Young, Vincent B

    2015-03-01

    Clostridium difficile infection (CDI) following antibiotic therapy is a major public health threat. While antibiotic disruption of the indigenous microbiota underlies the majority of cases of CDI, the early dynamics of infection in the disturbed intestinal ecosystem are poorly characterized. This study defines the dynamics of infection with C. difficile strain VPI 10463 throughout the gastrointestinal (GI) tract using a murine model of infection. After inducing susceptibility to C. difficile colonization via antibiotic administration, we followed the dynamics of spore germination, colonization, sporulation, toxin activity, and disease progression throughout the GI tract. C. difficile spores were able to germinate within 6 h postchallenge, resulting in the establishment of vegetative bacteria in the distal GI tract. Spores and cytotoxin activity were detected by 24 h postchallenge, and histopathologic colitis developed by 30 h. Within 36 h, all infected mice succumbed to infection. We correlated the establishment of infection with changes in the microbiota and bile acid profile of the small and large intestines. Antibiotic administration resulted in significant changes to the microbiota in the small and large intestines, as well as a significant shift in the abundance of primary and secondary bile acids. Ex vivo analysis suggested the small intestine as the site of spore germination. This study provides an integrated understanding of the timing and location of the events surrounding C. difficile colonization and identifies potential targets for the development of new therapeutic strategies. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. HIV Infection Affects Streptococcus mutans Levels, but Not Genotypes

    PubMed Central

    Liu, G.; Saxena, D.; Chen, Z.; Norman, R.G.; Phelan, J.A.; Laverty, M.; Fisch, G.S.; Corby, P.M.; Abrams, W.; Malamud, D.; Li, Y.

    2012-01-01

    We report a clinical study that examines whether HIV infection affects Streptococcus mutans colonization in the oral cavity. Whole stimulated saliva samples were collected from 46 HIV-seropositive individuals and 69 HIV-seronegative control individuals. The level of S. mutans colonization was determined by conventional culture methods. The genotype of S. mutans was compared between 10 HIV-positive individuals before and after highly active antiretroviral therapy (HAART) and 10 non-HIV-infected control individuals. The results were analyzed against viral load, CD4+ and CD8+ T-cell counts, salivary flow rate, and caries status. We observed that S. mutans levels were higher in HIV-infected individuals than in the non-HIV-infected control individuals (p = 0.013). No significant differences in S. mutans genotypes were found between the two groups over the six-month study period, even after HAART. There was a bivariate linear relationship between S. mutans levels and CD8+ counts (r = 0.412; p = 0.007), but not between S. mutans levels and either CD4+ counts or viral load. Furthermore, compared with non-HIV-infected control individuals, HIV-infected individuals experienced lower salivary secretion (p = 0.009) and a positive trend toward more decayed tooth surfaces (p = 0.027). These findings suggest that HIV infection can have a significant effect on the level of S. mutans, but not genotypes. PMID:22821240

  18. Dynamics of an HBV/HCV infection model with intracellular delay and cell proliferation

    NASA Astrophysics Data System (ADS)

    Zhang, Fengqin; Li, Jianquan; Zheng, Chongwu; Wang, Lin

    2017-01-01

    A new mathematical model of hepatitis B/C virus (HBV/HCV) infection which incorporates the proliferation of healthy hepatocyte cells and the latent period of infected hepatocyte cells is proposed and studied. The dynamics is analyzed via Pontryagin's method and a newly proposed alternative geometric stability switch criterion. Sharp conditions ensuring stability of the infection persistent equilibrium are derived by applying Pontryagin's method. Using the intracellular delay as the bifurcation parameter and applying an alternative geometric stability switch criterion, we show that the HBV/HCV infection model undergoes stability switches. Furthermore, numerical simulations illustrate that the intracellular delay can induce complex dynamics such as persistence bubbles and chaos.

  19. We Are All Affected: Considering the Recovery of HIV/AIDS Infected and Affected Children

    ERIC Educational Resources Information Center

    Nelson, Carla

    2008-01-01

    This essay acknowledges that the HIV/AIDS pandemic has created entire communities for whom loss has become a common and a shared experience. As a result of this impact of HIV/AIDS, several questions surface. However, the one question upon which this essay focuses is, "What type of environment is required for children infected and affected by…

  20. On the intrinsic dynamics of bacteria in waterborne infections.

    PubMed

    Yang, Chayu; Wang, Jin

    2018-02-01

    The intrinsic dynamics of bacteria often play an important role in the transmission and spread of waterborne infectious diseases. In this paper, we construct mathematical models for waterborne infections and analyze two types of nontrivial bacterial dynamics: logistic growth, and growth with Allee effects. For the model with logistic growth, we find that regular threshold dynamics take place, and the basic reproduction number can be used to characterize disease extinction and persistence. In contrast, the model with Allee effects exhibits much more complex dynamics, including the existence of multiple endemic equilibria and the presence of backward bifurcation and forward hysteresis. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Dynamics of the HIV infection under antiretroviral therapy: A cellular automata approach

    NASA Astrophysics Data System (ADS)

    González, Ramón E. R.; Coutinho, Sérgio; Zorzenon dos Santos, Rita Maria; de Figueirêdo, Pedro Hugo

    2013-10-01

    The dynamics of human immunodeficiency virus infection under antiretroviral therapy is investigated using a cellular automata model where the effectiveness of each drug is self-adjusted by the concentration of CD4+ T infected cells present at each time step. The effectiveness of the drugs and the infected cell concentration at the beginning of treatment are the control parameters of the cell population’s dynamics during therapy. The model allows describing processes of mono and combined therapies. The dynamics that emerges from this model when considering combined antiretroviral therapies reproduces with fair qualitative agreement the phases and different time scales of the process. As observed in clinical data, the results reproduce the significant decrease in the population of infected cells and a concomitant increase of the population of healthy cells in a short timescale (weeks) after the initiation of treatment. Over long time scales, early treatment with potent drugs may lead to undetectable levels of infection. For late treatment or treatments starting with a low density of CD4+ T healthy cells it was observed that the treatment may lead to a steady state in which the T cell counts are above the threshold associated with the onset of AIDS. The results obtained are validated through comparison to available clinical trial data.

  2. Daily Interpersonal and Affective Dynamics in Personality Disorder

    PubMed Central

    Wright, Aidan G.C.; Hopwood, Christopher J.; Simms, Leonard J.

    2015-01-01

    In this naturalistic study we adopt the lens of interpersonal theory to examine between-and within-person differences in dynamic processes of daily affect and interpersonal behaviors among individuals (N = 101) previously diagnosed with personality disorders who completed daily diaries over the course of 100 days. Dispositional ratings of interpersonal problems and measures of daily stress were used as predictors of daily shifts in interpersonal behavior and affect in multilevel models. Results indicate that ~40%–50% of the variance in interpersonal behavior and affect is due to daily fluctuations, which are modestly related to dispositional measures of interpersonal problems but strongly related to daily stress. The findings support conceptions of personality disorders as a dynamic form of psychopathology involving the individuals interacting with and regulating in response to the contextual features of their environment. PMID:26200849

  3. Infection's Sweet Tooth: How Glycans Mediate Infection and Disease Susceptibility.

    PubMed

    Taylor, Steven L; McGuckin, Michael A; Wesselingh, Steve; Rogers, Geraint B

    2018-02-01

    Glycans form a highly variable constituent of our mucosal surfaces and profoundly affect our susceptibility to infection and disease. The diversity and importance of these surface glycans can be seen in individuals who lack a functional copy of the fucosyltransferase gene, FUT2. Representing around one-fifth of the population, these individuals have an altered susceptibility to many bacterial and viral infections and diseases. The mediation of host-pathogen interactions by mucosal glycans, such as those added by FUT2, is poorly understood. We highlight, with specific examples, important mechanisms by which host glycans influence infection dynamics, including by: acting as pathogen receptors (or receptor-decoys), promoting microbial stability, altering the physical characteristics of mucus, and acting as immunological markers. We argue that the effect glycans have on infection dynamics has profound implications for many aspects of healthcare and policy, including clinical management, outbreak control, and vaccination policy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Stochastic modeling for dynamics of HIV-1 infection using cellular automata: A review.

    PubMed

    Precharattana, Monamorn

    2016-02-01

    Recently, the description of immune response by discrete models has emerged to play an important role to study the problems in the area of human immunodeficiency virus type 1 (HIV-1) infection, leading to AIDS. As infection of target immune cells by HIV-1 mainly takes place in the lymphoid tissue, cellular automata (CA) models thus represent a significant step in understanding when the infected population is dispersed. Motivated by these, the studies of the dynamics of HIV-1 infection using CA in memory have been presented to recognize how CA have been developed for HIV-1 dynamics, which issues have been studied already and which issues still are objectives in future studies.

  5. Beech Fructification and Bank Vole Population Dynamics - Combined Analyses of Promoters of Human Puumala Virus Infections in Germany

    PubMed Central

    Reil, Daniela; Imholt, Christian; Eccard, Jana Anja; Jacob, Jens

    2015-01-01

    The transmission of wildlife zoonoses to humans depends, amongst others, on complex interactions of host population ecology and pathogen dynamics within host populations. In Europe, the Puumala virus (PUUV) causes nephropathia epidemica in humans. In this study we investigated complex interrelations within the epidemic system of PUUV and its rodent host, the bank vole (Myodes glareolus). We suggest that beech fructification and bank vole abundance are both decisive factors affecting human PUUV infections. While rodent host dynamics are expected to be directly linked to human PUUV infections, beech fructification is a rather indirect predictor by serving as food source for PUUV rodent hosts. Furthermore, we examined the dependence of bank vole abundance on beech fructification. We analysed a 12-year (2001-2012) time series of the parameters: beech fructification (as food resource for the PUUV host), bank vole abundance and human incidences from 7 Federal States of Germany. For the first time, we could show the direct interrelation between these three parameters involved in human PUUV epidemics and we were able to demonstrate on a large scale that human PUUV infections are highly correlated with bank vole abundance in the present year, as well as beech fructification in the previous year. By using beech fructification and bank vole abundance as predictors in one model we significantly improved the degree of explanation of human PUUV incidence. Federal State was included as random factor because human PUUV incidence varies considerably among states. Surprisingly, the effect of rodent abundance on human PUUV infections is less strong compared to the indirect effect of beech fructification. Our findings are useful to facilitate the development of predictive models for host population dynamics and the related PUUV infection risk for humans and can be used for plant protection and human health protection purposes. PMID:26214509

  6. Beech Fructification and Bank Vole Population Dynamics--Combined Analyses of Promoters of Human Puumala Virus Infections in Germany.

    PubMed

    Reil, Daniela; Imholt, Christian; Eccard, Jana Anja; Jacob, Jens

    2015-01-01

    The transmission of wildlife zoonoses to humans depends, amongst others, on complex interactions of host population ecology and pathogen dynamics within host populations. In Europe, the Puumala virus (PUUV) causes nephropathia epidemica in humans. In this study we investigated complex interrelations within the epidemic system of PUUV and its rodent host, the bank vole (Myodes glareolus). We suggest that beech fructification and bank vole abundance are both decisive factors affecting human PUUV infections. While rodent host dynamics are expected to be directly linked to human PUUV infections, beech fructification is a rather indirect predictor by serving as food source for PUUV rodent hosts. Furthermore, we examined the dependence of bank vole abundance on beech fructification. We analysed a 12-year (2001-2012) time series of the parameters: beech fructification (as food resource for the PUUV host), bank vole abundance and human incidences from 7 Federal States of Germany. For the first time, we could show the direct interrelation between these three parameters involved in human PUUV epidemics and we were able to demonstrate on a large scale that human PUUV infections are highly correlated with bank vole abundance in the present year, as well as beech fructification in the previous year. By using beech fructification and bank vole abundance as predictors in one model we significantly improved the degree of explanation of human PUUV incidence. Federal State was included as random factor because human PUUV incidence varies considerably among states. Surprisingly, the effect of rodent abundance on human PUUV infections is less strong compared to the indirect effect of beech fructification. Our findings are useful to facilitate the development of predictive models for host population dynamics and the related PUUV infection risk for humans and can be used for plant protection and human health protection purposes.

  7. Faecal egg counts and expulsion dynamics of the whipworm, Trichuris trichiura following self-infection.

    PubMed

    Hansen, E P; Tejedor, A M; Thamsborg, S M; Alstrup Hansen, T V; Dahlerup, J F; Nejsum, P

    2016-05-01

    More than 400 million humans are estimated to be infected with the intestinal helminth parasite, Trichuris trichiura. The infection is chronic in nature and high-intensity infection can lead to colitis, anaemia, Trichuris Dysentery Syndrome and reduced cognitive performance. Single doses of 400 mg albendazole or 500 mg mebendazole (MBZ) are used in mass drug administration programmes, but this has been shown to be insufficient. In this study, worm expulsion dynamics are described after MBZ treatment, given as a multi-dose and single-dose treatment in two separate T. trichiura self-infection studies. Worm expulsion dynamics post-treatment showed a similar pattern regardless of the dose regime, with the first worms observed on day 2 and the last worms expelled on days 9 and 13 post-treatment. Establishment of a chronic infection was observed following the inefficient single-dose treatment. The prepatent period was 13-16 weeks in both studies and worms were found to have a lifespan of at least 1 year and 10 months. These self-infection studies provide key information on the chronicity of T. trichiura infections, expulsion dynamics after anthelmintic treatment and the prepatent period, as well as the fecundity of female worms, which was around 18,000 eggs/female per day.

  8. Dynamics of Salmonella infection of macrophages at the single cell level.

    PubMed

    Gog, Julia R; Murcia, Alicia; Osterman, Natan; Restif, Olivier; McKinley, Trevelyan J; Sheppard, Mark; Achouri, Sarra; Wei, Bin; Mastroeni, Pietro; Wood, James L N; Maskell, Duncan J; Cicuta, Pietro; Bryant, Clare E

    2012-10-07

    Salmonella enterica causes a range of diseases. Salmonellae are intracellular parasites of macrophages, and the control of bacteria within these cells is critical to surviving an infection. The dynamics of the bacteria invading, surviving, proliferating in and killing macrophages are central to disease pathogenesis. Fundamentally important parameters, however, such as the cellular infection rate, have not previously been calculated. We used two independent approaches to calculate the macrophage infection rate: mathematical modelling of Salmonella infection experiments, and analysis of real-time video microscopy of infection events. Cells repeatedly encounter salmonellae, with the bacteria often remain associated with the macrophage for more than ten seconds. Once Salmonella encounters a macrophage, the probability of that bacterium infecting the cell is remarkably low: less than 5%. The macrophage population is heterogeneous in terms of its susceptibility to the first infection event. Once infected, a macrophage can undergo further infection events, but these reinfection events occur at a lower rate than that of the primary infection.

  9. Modeling Intraindividual Dynamics Using Stochastic Differential Equations: Age Differences in Affect Regulation.

    PubMed

    Wood, Julie; Oravecz, Zita; Vogel, Nina; Benson, Lizbeth; Chow, Sy-Miin; Cole, Pamela; Conroy, David E; Pincus, Aaron L; Ram, Nilam

    2017-12-15

    Life-span theories of aging suggest improvements and decrements in individuals' ability to regulate affect. Dynamic process models, with intensive longitudinal data, provide new opportunities to articulate specific theories about individual differences in intraindividual dynamics. This paper illustrates a method for operationalizing affect dynamics using a multilevel stochastic differential equation (SDE) model, and examines how those dynamics differ with age and trait-level tendencies to deploy emotion regulation strategies (reappraisal and suppression). Univariate multilevel SDE models, estimated in a Bayesian framework, were fit to 21 days of ecological momentary assessments of affect valence and arousal (average 6.93/day, SD = 1.89) obtained from 150 adults (age 18-89 years)-specifically capturing temporal dynamics of individuals' core affect in terms of attractor point, reactivity to biopsychosocial (BPS) inputs, and attractor strength. Older age was associated with higher arousal attractor point and less BPS-related reactivity. Greater use of reappraisal was associated with lower valence attractor point. Intraindividual variability in regulation strategy use was associated with greater BPS-related reactivity and attractor strength, but in different ways for valence and arousal. The results highlight the utility of SDE models for studying affect dynamics and informing theoretical predictions about how intraindividual dynamics change over the life course. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Multilevel dynamic systems affecting introduction of HIV/STI prevention innovations among Chinese women in sex work establishments.

    PubMed

    Weeks, Margaret R; Li, Jianghong; Liao, Susu; Zhang, Qingning; Dunn, Jennifer; Wang, Yanhong; Jiang, Jingmei

    2013-10-01

    Social and public health scientists are increasingly interested in applying system dynamics theory to improve understanding and to harness the forces of change within complex, multilevel systems that affect community intervention implementation, effects, and sustainability. Building a system dynamics model based on ethnographic case study has the advantage of using empirically documented contextual factors and processes of change in a real-world and real-time setting that can then be tested in the same and other settings. System dynamics modeling offers great promise for addressing persistent problems like HIV and other sexually transmitted epidemics, particularly in complex rapidly developing countries such as China. We generated a system dynamics model of a multilevel intervention we conducted to promote female condoms for HIV/sexually transmitted infection (STI) prevention among Chinese women in sex work establishments. The model reflects factors and forces affecting the study's intervention, implementation, and effects. To build this conceptual model, we drew on our experiences and findings from this intensive, longitudinal mixed-ethnographic and quantitative four-town comparative case study (2007-2012) of the sex work establishments, the intervention conducted in them, and factors likely to explain variation in process and outcomes in the four towns. Multiple feedback loops in the sex work establishments, women's social networks, and the health organization responsible for implementing HIV/STI interventions in each town and at the town level directly or indirectly influenced the female condom intervention. We present the conceptual system dynamics model and discuss how further testing in this and other settings can inform future community interventions to reduce HIV and STIs.

  11. A dynamical-systems approach for computing ice-affected streamflow

    USGS Publications Warehouse

    Holtschlag, David J.

    1996-01-01

    A dynamical-systems approach was developed and evaluated for computing ice-affected streamflow. The approach provides for dynamic simulation and parameter estimation of site-specific equations relating ice effects to routinely measured environmental variables. Comparison indicates that results from the dynamical-systems approach ranked higher than results from 11 analytical methods previously investigated on the basis of accuracy and feasibility criteria. Additional research will likely lead to further improvements in the approach.

  12. Focal Point Theory Models for Dissecting Dynamic Duality Problems of Microbial Infections

    PubMed Central

    Huang, S.-H.; Zhou, W.; Jong, A.

    2008-01-01

    Extending along the dynamic continuum from conflict to cooperation, microbial infections always involve symbiosis (Sym) and pathogenesis (Pat). There exists a dynamic Sym-Pat duality (DSPD) in microbial infection that is the most fundamental problem in infectomics. DSPD is encoded by the genomes of both the microbes and their hosts. Three focal point (FP) theory-based game models (pure cooperative, dilemma, and pure conflict) are proposed for resolving those problems. Our health is associated with the dynamic interactions of three microbial communities (nonpathogenic microbiota (NP) (Cooperation), conditional pathogens (CP) (Dilemma), and unconditional pathogens (UP) (Conflict)) with the hosts at different health statuses. Sym and Pat can be quantitated by measuring symbiotic index (SI), which is quantitative fitness for the symbiotic partnership, and pathogenic index (PI), which is quantitative damage to the symbiotic partnership, respectively. Symbiotic point (SP), which bears analogy to FP, is a function of SI and PI. SP-converting and specific pathogen-targeting strategies can be used for the rational control of microbial infections. PMID:18350122

  13. Seasonal dynamics of endoparasitic infections at an organic goat farm and the impact of detected infections on milk production.

    PubMed

    Kyriánová, Iveta A; Vadlejch, Jaroslav; Kopecký, Oldřich; Langrová, Iva

    2017-11-01

    This study evaluated patterns and species composition of parasitic infections detected over a 1-year period at an organic goat farm. As a result of coprological examination, the overall prevalence of observed strongylids (99%), coccidia of the genus Eimeria (98%), and Muellerius capillaris lungworms (93%) was calculated. The most prevalent strongylids recovered from incubated fecal samples were Haemonchus contortus (42%), genera Trichostrongylus (23%), Oesophagostomum columbianum (13%), and Teladorsagia circumcincta (11%). A maximum intensity of coccidia infection 5150 oocysts per gram, strongylids infection 9900 eggs per gram and lungworm infection 867.26 larvae per gram were detected. The various effects (including environment, host, and parasites) on milk yield, lactose, protein, and fat were evaluated using generalized linear mixed models. Milk yield (P < 0.0001), milk fat (P < 0.01), and lactose (P < 0.0001) were affected by month, i.e., these parameters were influenced by the month of the year, regardless of the individual goat. With the intensity of infection detected in our study, only protein content was affected (P < 0.01) by parasitic infection (exclusively caused by strongylids). Correlation between measurements from one individual revealed that the goat itself can substantially decrease protein content but has much less of an effect on fat, milk yield, and lactose. Based on our results, we can conclude that a low intensity of parasitic infections does not significantly affect milk yield and the qualitative parameters of milk.

  14. Temporal dynamics of Puumala hantavirus infection in cyclic populations of bank voles.

    PubMed

    Voutilainen, Liina; Kallio, Eva R; Niemimaa, Jukka; Vapalahti, Olli; Henttonen, Heikki

    2016-02-18

    Understanding the dynamics of zoonotic pathogens in their reservoir host populations is a prerequisite for predicting and preventing human disease epidemics. The human infection risk of Puumala hantavirus (PUUV) is highest in northern Europe, where populations of the rodent host (bank vole, Myodes glareolus) undergo cyclic fluctuations. We conducted a 7-year capture-mark-recapture study to monitor seasonal and multiannual patterns of the PUUV infection rate in bank vole populations exhibiting a 3-year density cycle. Infected bank voles were most abundant in mid-winter months during years of increasing or peak host density. Prevalence of PUUV infection in bank voles exhibited a regular, seasonal pattern reflecting the annual population turnover and accumulation of infections within each year cohort. In autumn, the PUUV transmission rate tracked increasing host abundance, suggesting a density-dependent transmission. However, prevalence of PUUV infection was similar during the increase and peak years of the density cycle despite a twofold difference in host density. This may result from the high proportion of individuals carrying maternal antibodies constraining transmission during the cycle peak years. Our exceptionally intensive and long-term dataset provides a solid basis on which to develop models to predict the dynamic public health threat posed by PUUV in northern Europe.

  15. Dynamics of Affective States during Complex Learning

    ERIC Educational Resources Information Center

    D'Mello, Sidney; Graesser, Art

    2012-01-01

    We propose a model to explain the dynamics of affective states that emerge during deep learning activities. The model predicts that learners in a state of engagement/flow will experience cognitive disequilibrium and confusion when they face contradictions, incongruities, anomalies, obstacles to goals, and other impasses. Learners revert into the…

  16. Mode of Parainfluenza Virus Transmission Determines the Dynamics of Primary Infection and Protection from Reinfection

    PubMed Central

    Burke, Crystal W.; Bridges, Olga; Brown, Sherri; Rahija, Richard; Russell, Charles J.

    2013-01-01

    Little is known about how the mode of respiratory virus transmission determines the dynamics of primary infection and protection from reinfection. Using non-invasive imaging of murine parainfluenza virus 1 (Sendai virus) in living mice, we determined the frequency, timing, dynamics, and virulence of primary infection after contact and airborne transmission, as well as the tropism and magnitude of reinfection after subsequent challenge. Contact transmission of Sendai virus was 100% efficient, phenotypically uniform, initiated and grew to robust levels in the upper respiratory tract (URT), later spread to the lungs, grew to a lower level in the lungs than the URT, and protected from reinfection completely in the URT yet only partially in the lungs. Airborne transmission through 7.6-cm and 15.2-cm separations between donor and recipient mice was 86%–100% efficient. The dynamics of primary infection after airborne transmission varied between individual mice and included the following categories: (a) non-productive transmission, (b) tracheal dominant, (c) tracheal initiated yet respiratory disseminated, and (d) nasopharyngeal initiated yet respiratory disseminated. Any previous exposure to Sendai virus infection protected from mortality and severe morbidity after lethal challenge. Furthermore, a higher level of primary infection in a given respiratory tissue (nasopharynx, trachea, or lungs) was inversely correlated with the level of reinfection in that same tissue. Overall, the mode of transmission determined the dynamics and tropism of primary infection, which in turn governed the level of seroconversion and protection from reinfection. These data are the first description of the dynamics of respiratory virus infection and protection from reinfection throughout the respiratory tracts of living animals after airborne transmission. This work provides a basis for understanding parainfluenza virus transmission and protective immunity and for developing novel vaccines and

  17. Affect dynamics in relation to depressive symptoms: variable, unstable or inert?

    PubMed

    Koval, Peter; Pe, Madeline L; Meers, Kristof; Kuppens, Peter

    2013-12-01

    Depression not only involves disturbances in prevailing affect, but also in how affect fluctuates over time. Yet, precisely which patterns of affect dynamics are associated with depressive symptoms remains unclear; depression has been linked with increased affective variability and instability, but also with greater resistance to affective change (inertia). In this paper, we argue that these paradoxical findings stem from a number of neglected methodological/analytical factors, which we address using a novel paradigm and analytic approach. Participants (N = 99), preselected to represent a wide range of depressive symptoms, watched a series of emotional film clips and rated their affect at baseline and following each film clip. We also assessed participants' affect in daily life over 1 week using experience sampling. When controlling for overlap between different measures of affect dynamics, depressive symptoms were independently associated with higher inertia of negative affect in the lab, and with greater negative affect variability both in the lab and in daily life. In contrast, depressive symptoms were not independently related to higher affective instability either in daily life or in the lab.

  18. Computational analysis of antibody dynamics identifies recent HIV-1 infection.

    PubMed

    Seaton, Kelly E; Vandergrift, Nathan A; Deal, Aaron W; Rountree, Wes; Bainbridge, John; Grebe, Eduard; Anderson, David A; Sawant, Sheetal; Shen, Xiaoying; Yates, Nicole L; Denny, Thomas N; Liao, Hua-Xin; Haynes, Barton F; Robb, Merlin L; Parkin, Neil; Santos, Breno R; Garrett, Nigel; Price, Matthew A; Naniche, Denise; Duerr, Ann C; Keating, Sheila; Hampton, Dylan; Facente, Shelley; Marson, Kara; Welte, Alex; Pilcher, Christopher D; Cohen, Myron S; Tomaras, Georgia D

    2017-12-21

    Accurate HIV-1 incidence estimation is critical to the success of HIV-1 prevention strategies. Current assays are limited by high false recent rates (FRRs) in certain populations and a short mean duration of recent infection (MDRI). Dynamic early HIV-1 antibody response kinetics were harnessed to identify biomarkers for improved incidence assays. We conducted retrospective analyses on circulating antibodies from known recent and longstanding infections and evaluated binding and avidity measurements of Env and non-Env antigens and multiple antibody forms (i.e., IgG, IgA, IgG3, IgG4, dIgA, and IgM) in a diverse panel of 164 HIV-1-infected participants (clades A, B, C). Discriminant function analysis identified an optimal set of measurements that were subsequently evaluated in a 324-specimen blinded biomarker validation panel. These biomarkers included clade C gp140 IgG3, transmitted/founder clade C gp140 IgG4 avidity, clade B gp140 IgG4 avidity, and gp41 immunodominant region IgG avidity. MDRI was estimated at 215 day or alternatively, 267 days. FRRs in untreated and treated subjects were 5.0% and 3.6%, respectively. Thus, computational analysis of dynamic HIV-1 antibody isotype and antigen interactions during infection enabled design of a promising HIV-1 recency assay for improved cross-sectional incidence estimation.

  19. Computational analysis of antibody dynamics identifies recent HIV-1 infection

    PubMed Central

    Seaton, Kelly E.; Vandergrift, Nathan A.; Deal, Aaron W.; Rountree, Wes; Anderson, David A.; Sawant, Sheetal; Shen, Xiaoying; Yates, Nicole L.; Denny, Thomas N.; Haynes, Barton F.; Robb, Merlin L.; Parkin, Neil; Santos, Breno R.; Price, Matthew A.; Naniche, Denise; Duerr, Ann C.; Hampton, Dylan; Facente, Shelley; Marson, Kara; Welte, Alex; Pilcher, Christopher D.; Cohen, Myron S.

    2017-01-01

    Accurate HIV-1 incidence estimation is critical to the success of HIV-1 prevention strategies. Current assays are limited by high false recent rates (FRRs) in certain populations and a short mean duration of recent infection (MDRI). Dynamic early HIV-1 antibody response kinetics were harnessed to identify biomarkers for improved incidence assays. We conducted retrospective analyses on circulating antibodies from known recent and longstanding infections and evaluated binding and avidity measurements of Env and non-Env antigens and multiple antibody forms (i.e., IgG, IgA, IgG3, IgG4, dIgA, and IgM) in a diverse panel of 164 HIV-1–infected participants (clades A, B, C). Discriminant function analysis identified an optimal set of measurements that were subsequently evaluated in a 324-specimen blinded biomarker validation panel. These biomarkers included clade C gp140 IgG3, transmitted/founder clade C gp140 IgG4 avidity, clade B gp140 IgG4 avidity, and gp41 immunodominant region IgG avidity. MDRI was estimated at 215 day or alternatively, 267 days. FRRs in untreated and treated subjects were 5.0% and 3.6%, respectively. Thus, computational analysis of dynamic HIV-1 antibody isotype and antigen interactions during infection enabled design of a promising HIV-1 recency assay for improved cross-sectional incidence estimation. PMID:29263306

  20. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis

    PubMed Central

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C.; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-01-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  1. Ecological Factors Affecting Infection Risk and Population Genetic Diversity of a Novel Potyvirus in Its Native Wild Ecosystem.

    PubMed

    Rodríguez-Nevado, Cristina; Montes, Nuria; Pagán, Israel

    2017-01-01

    Increasing evidence indicates that there is ample diversity of plant virus species in wild ecosystems. The vast majority of this diversity, however, remains uncharacterized. Moreover, in these ecosystems the factors affecting plant virus infection risk and population genetic diversity, two traits intrinsically linked to virus emergence, are largely unknown. Along 3 years, we have analyzed the prevalence and diversity of plant virus species from the genus Potyvirus in evergreen oak forests of the Iberian Peninsula, the main wild ecosystem in this geographic region and in the entire Mediterranean basin. During this period, we have also measured plant species diversity, host density, plant biomass, temperature, relative humidity, and rainfall. Results indicated that potyviruses were always present in evergreen oak forests, with a novel virus species explaining the largest fraction of potyvirus-infected plants. We determined the genomic sequence of this novel virus and we explored its host range in natural and greenhouse conditions. Natural host range was limited to the perennial plant mountain rue ( Ruta montana ), commonly found in evergreen oak forests of the Iberian Peninsula. In this host, the virus was highly prevalent and was therefore provisionally named mediterranean ruda virus (MeRV). Focusing in this natural host-virus interaction, we analyzed the ecological factors affecting MeRV infection risk and population genetic diversity in its native wild ecosystem. The main predictor of virus infection risk was the host density. MeRV prevalence was the major factor determining genetic diversity and selection pressures in the virus populations. This observation supports theoretical predictions assigning these two traits a key role in parasite epidemiology and evolution. Thus, our analyses contribute both to characterize viral diversity and to understand the ecological determinants of virus population dynamics in wild ecosystems.

  2. The effects of distributed life cycles on the dynamics of viral infections.

    PubMed

    Campos, Daniel; Méndez, Vicenç; Fedotov, Sergei

    2008-09-21

    We explore the role of cellular life cycles for viruses and host cells in an infection process. For this purpose, we derive a generalized version of the basic model of virus dynamics (Nowak, M.A., Bangham, C.R.M., 1996. Population dynamics of immune responses to persistent viruses. Science 272, 74-79) from a mesoscopic description. In its final form the model can be written as a set of Volterra integrodifferential equations. We consider the role of distributed lifespans and a intracellular (eclipse) phase. These processes are implemented by means of probability distribution functions. The basic reproductive ratio R(0) of the infection is properly defined in terms of such distributions by using an analysis of the equilibrium states and their stability. It is concluded that the introduction of distributed delays can strongly modify both the value of R(0) and the predictions for the virus loads, so the effects on the infection dynamics are of major importance. We also show how the model presented here can be applied to some simple situations where direct comparison with experiments is possible. Specifically, phage-bacteria interactions are analyzed. The dynamics of the eclipse phase for phages is characterized analytically, which allows us to compare the performance of three different fittings proposed before for the one-step growth curve.

  3. Dynamic measurement of fluorescent proteins spectral distribution on virus infected cells

    NASA Astrophysics Data System (ADS)

    Lee, Ja-Yun; Wu, Ming-Xiu; Kao, Chia-Yun; Wu, Tzong-Yuan; Hsu, I.-Jen

    2006-09-01

    We constructed a dynamic spectroscopy system that can simultaneously measure the intensity and spectral distributions of samples with multi-fluorophores in a single scan. The system was used to monitor the fluorescence distribution of cells infected by the virus, which is constructed by a recombinant baculoviruses, vAcD-Rhir-E, containing the red and green fluorescent protein gene that can simultaneously produce dual fluorescence in recombinant virus-infected Spodoptera frugiperda 21 cells (Sf21) under the control of a polyhedrin promoter. The system was composed of an excitation light source, a scanning system and a spectrometer. We also developed an algorithm and fitting process to analyze the pattern of fluorescence distribution of the dual fluorescence produced in the recombinant virus-infected cells. All the algorithm and calculation are automatically processed in a visualized scanning program and can monitor the specific region of sample by calculating its intensity distribution. The spectral measurement of each pixel was performed at millisecond range and the two dimensional distribution of full spectrum was recorded within several seconds. We have constructed a dynamic spectroscopy system to monitor the process of virus-infection of cells. The distributions of the dual fluorescence were simultaneously measured at micrometer resolution.

  4. Parsing affective dynamics to identify risk for mood and anxiety disorders.

    PubMed

    Heller, Aaron S; Fox, Andrew S; Davidson, Richard J

    2018-06-04

    Emotional dysregulation is thought to underlie risk for both anxiety and depressive disorders. However, despite high rates of comorbidity, anxiety and depression are phenotypically different. Apart from nosological differences (e.g., worry for anxiety, low mood for depression), it remains unclear how the emotional dysregulation inherent in individual differences in trait anxiety and depression severity present on a day-to-day basis. One approach that may facilitate addressing these questions is to utilize Ecological Momentary Assessment (EMA) using mobile phones to parse the temporal dynamics of affective experiences into specific parameters. An emerging literature in affective science suggests that risk for anxiety and depressive disorders may be associated with variation in the mean and instability/variability of emotion. Here we examine the extent to which distinct temporal dynamic parameters uniquely predict risk for anxiety versus depression. Over 10 days, 105 individuals rated their current positive and negative affective state several times each day. Using two distinct approaches to statistically assess mean and instability of positive and negative affect, we found that individual differences in trait anxiety was generally associated with increased instability of positive and negative affect whereas mean levels of positive and negative affect were generally associated with individual differences in depression. These data provide evidence that the emotional dysregulation underlying risk for mood versus anxiety disorders unfolds in distinct ways and highlights the utility in examining affective dynamics to understand psychopathology. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  5. Effects of distribution of infection rate on epidemic models

    NASA Astrophysics Data System (ADS)

    Lachiany, Menachem; Louzoun, Yoram

    2016-08-01

    A goal of many epidemic models is to compute the outcome of the epidemics from the observed infected early dynamics. However, often, the total number of infected individuals at the end of the epidemics is much lower than predicted from the early dynamics. This discrepancy is argued to result from human intervention or nonlinear dynamics not incorporated in standard models. We show that when variability in infection rates is included in standard susciptible-infected-susceptible (SIS ) and susceptible-infected-recovered (SIR ) models the total number of infected individuals in the late dynamics can be orders lower than predicted from the early dynamics. This discrepancy holds for SIS and SIR models, where the assumption that all individuals have the same sensitivity is eliminated. In contrast with network models, fixed partnerships are not assumed. We derive a moment closure scheme capturing the distribution of sensitivities. We find that the shape of the sensitivity distribution does not affect R0 or the number of infected individuals in the early phases of the epidemics. However, a wide distribution of sensitivities reduces the total number of removed individuals in the SIR model and the steady-state infected fraction in the SIS model. The difference between the early and late dynamics implies that in order to extrapolate the expected effect of the epidemics from the initial phase of the epidemics, the rate of change in the average infectivity should be computed. These results are supported by a comparison of the theoretical model to the Ebola epidemics and by numerical simulation.

  6. Plant Cell Wall Dynamics in Compatible and Incompatible Potato Response to Infection Caused by Potato Virus Y (PVYNTN)

    PubMed Central

    Lockhart, Benham E. L.

    2018-01-01

    The cell wall provides the structure of the plant, and also acts as a barier against biotic stress. The vein necrosis strain of Potato virus Y (PVYNTN) induces necrotic disease symptoms that affect both plant growth and yield. Virus infection triggers a number of inducible basal defense responses, including defense proteins, especially those involved in cell wall metabolism. This study investigates the comparison of cell wall host dynamics induced in a compatible (potato cv. Irys) and incompatible (potato cv. Sárpo Mira with hypersensitive reaction gene Ny-Smira) PVYNTN–host–plant interaction. Ultrastructural analyses revealed numerous cell wall changes induced by virus infection. Furthermore, the localization of essential defensive wall-associated proteins in susceptible and resistant potato host to PVYNTN infection were investigated. The data revealed a higher level of detection of pathogenesis-related protein 2 (PR-2) in a compatible compared to an incompatible (HR) interaction. Immunofluorescence analyses indicated that hydroxyproline-rich glycoproteins (HRGP) (extensin) synthesis was induced, whereas that of cellulose synthase catalytic subunits (CesA4) decreased as a result of PVYNTN infection. The highest level of extensin localization was found in HR potato plants. Proteins involved in cell wall metabolism play a crucial role in the interaction because they affect the spread of the virus. Analysis of CesA4, PR-2 and HRGP deposition within the apoplast and symplast confirmed the active trafficking of these proteins as a step-in potato cell wall remodeling in response to PVYNTN infection. Therefore, cell wall reorganization may be regarded as an element of “signWALLing”—involving apoplast and symplast activation as a specific response to viruses. PMID:29543714

  7. Effect of humoral immunity on HIV-1 dynamics with virus-to-target and infected-to-target infections

    NASA Astrophysics Data System (ADS)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2016-08-01

    We consider an HIV-1 dynamics model by incorporating (i) two routes of infection via, respectively, binding of a virus to a receptor on the surface of a target cell to start genetic reactions (virus-to-target infection), and the direct transmission from infected cells to uninfected cells through the concept of virological synapse in vivo (infected-to-target infection); (ii) two types of distributed-time delays to describe the time between the virus or infected cell contacts an uninfected CD4+ T cell and the emission of new active viruses; (iii) humoral immune response, where the HIV-1 particles are attacked by the antibodies that are produced from the B lymphocytes. The existence and stability of all steady states are completely established by two bifurcation parameters, R 0 (the basic reproduction number) and R 1 (the viral reproduction number at the chronic-infection steady state without humoral immune response). By constructing Lyapunov functionals and using LaSalle's invariance principle, we have proven that, if R 0 ≤ 1 , then the infection-free steady state is globally asymptotically stable, if R 1 ≤ 1 < R 0 , then the chronic-infection steady state without humoral immune response is globally asymptotically stable, and if R 1 > 1 , then the chronic-infection steady state with humoral immune response is globally asymptotically stable. We have performed numerical simulations to confirm our theoretical results.

  8. Alternative prey use affects helminth parasite infections in grey wolves.

    PubMed

    Friesen, Olwyn C; Roth, James D

    2016-09-01

    Predators affect prey populations not only through direct predation, but also by acting as definitive hosts for their parasites and completing parasite life cycles. Understanding the affects of parasitism on prey population dynamics requires knowing how their predators' parasite community is affected by diet and prey availability. Ungulates, such as moose (Alces americanus) and white-tailed deer (Odocoileus virginianus), are often important prey for wolves (Canis lupus), but wolves also consume a variety of alternative prey, including beaver (Castor canadensis) and snowshoe hare (Lepus americanus). The use of alternative prey, which may host different or fewer parasites than ungulates, could potentially reduce overall abundance of ungulate parasites within the ecosystem, benefiting both wolves and ungulate hosts. We examined parasites in wolf carcasses from eastern Manitoba and estimated wolf diet using stable isotope analysis. Taeniidae cestodes were present in most wolves (75%), reflecting a diet primarily comprised of ungulates, but nematodes were unexpectedly rare. Cestode abundance was negatively related to the wolf's δ(13) C value, indicating diet affects parasite abundance. Wolves that consumed a higher proportion of beaver and caribou (Rangifer tarandus), estimated using Bayesian mixing models, had lower cestode abundance, suggesting the use of these alternative prey can reduce parasite loads. Long-term consumption of beavers may lower the abundance of adult parasites in wolves, eventually lowering parasite density in the region and ultimately benefiting ungulates that serve as intermediate hosts. Thus, alternative prey can affect both predator-prey and host-parasite interactions and potentially affect food web dynamics. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.

  9. Seasonal migrations, body temperature fluctuations, and infection dynamics in adult amphibians.

    PubMed

    Daversa, David R; Monsalve-Carcaño, Camino; Carrascal, Luis M; Bosch, Jaime

    2018-01-01

    Risks of parasitism vary over time, with infection prevalence often fluctuating with seasonal changes in the annual cycle. Identifying the biological mechanisms underlying seasonality in infection can enable better prediction and prevention of future infection peaks. Obtaining longitudinal data on individual infections and traits across seasons throughout the annual cycle is perhaps the most effective means of achieving this aim, yet few studies have obtained such information for wildlife. Here, we tracked spiny common toads ( Bufo spinosus ) within and across annual cycles to assess seasonal variation in movement, body temperatures and infection from the fungal parasite, Batrachochytrium dendrobatidis (Bd) . Across annual cycles, toads did not consistently sustain infections but instead gained and lost infections from year to year. Radio-tracking showed that infected toads lose infections during post-breeding migrations, and no toads contracted infection following migration, which may be one explanation for the inter-annual variability in Bd infections. We also found pronounced seasonal variation in toad body temperatures. Body temperatures approached 0 °C during winter hibernation but remained largely within the thermal tolerance range of Bd . These findings provide direct documentation of migratory recovery (i.e., loss of infection during migration) and escape in a wild population. The body temperature reductions that we observed during hibernation warrant further consideration into the role that this period plays in seasonal Bd dynamics.

  10. Seasonal migrations, body temperature fluctuations, and infection dynamics in adult amphibians

    PubMed Central

    Daversa, David R.; Monsalve-Carcaño, Camino; Carrascal, Luis M.

    2018-01-01

    Risks of parasitism vary over time, with infection prevalence often fluctuating with seasonal changes in the annual cycle. Identifying the biological mechanisms underlying seasonality in infection can enable better prediction and prevention of future infection peaks. Obtaining longitudinal data on individual infections and traits across seasons throughout the annual cycle is perhaps the most effective means of achieving this aim, yet few studies have obtained such information for wildlife. Here, we tracked spiny common toads (Bufo spinosus) within and across annual cycles to assess seasonal variation in movement, body temperatures and infection from the fungal parasite, Batrachochytrium dendrobatidis (Bd). Across annual cycles, toads did not consistently sustain infections but instead gained and lost infections from year to year. Radio-tracking showed that infected toads lose infections during post-breeding migrations, and no toads contracted infection following migration, which may be one explanation for the inter-annual variability in Bd infections. We also found pronounced seasonal variation in toad body temperatures. Body temperatures approached 0 °C during winter hibernation but remained largely within the thermal tolerance range of Bd. These findings provide direct documentation of migratory recovery (i.e., loss of infection during migration) and escape in a wild population. The body temperature reductions that we observed during hibernation warrant further consideration into the role that this period plays in seasonal Bd dynamics. PMID:29761041

  11. Dietary factors affecting susceptibility to urinary tract infection.

    PubMed

    Kontiokari, Tero; Nuutinen, Matti; Uhari, Matti

    2004-04-01

    Urinary tract infection (UTI) is usually an ascending infection caused by bacteria derived from stools. Since the bacterial composition of stools is dependent on the diet, it is likely that the risk of UTI will change with changes in the diet. Most data describing diet as a risk factor for UTI come from epidemiological and interventional trials. It has been shown in a case-control setting that frequent consumption of fresh berry or fruit juices and fermented milk products containing probiotic bacteria decreases the risk for UTI recurrence in women. Several interventional trials have found Vaccinium berry products to provide protection from UTI recurrence. Probiotics have not been able to prevent UTI in interventional trials. However, the lack of an effect may be related to too low a dose or to the use of non-optimal products in these trials. Limited data are available on the effects of nutrition on UTI in children. However, there is no reason to expect that children would be different from adults in this respect. In this review, we discuss the dietary factors affecting the susceptibility to UTI.

  12. Health, schooling, needs, perspectives and aspirations of HIV infected and affected children in Botswana: a cross-sectional survey.

    PubMed

    Anabwani, Gabriel; Karugaba, Grace; Gabaitiri, Lesego

    2016-07-22

    Antiretroviral treatment means many HIV infected children are surviving with a highly stigmatised condition. There is a paucity of data to inform policies for this growing cohort. Hence we carried out a study on the health, schooling, needs, aspirations, perspectives and knowledge of HIV infected and affected children in Botswana. A cross-sectional survey using interviews and focus group discussions among HIV infected children aged 6-18 years versus HIV aged matched HIV uninfected counterparts living in the same households between August 2010 and March 2011. Supplemental clinical data was abstracted from medical records for HIV infected participants. Nine hundred eighty-four HIV infected and 258 affected children completed the survey. Females predominated in the affected group (63.6 % versus 50.3 %, P < 0.001). School attendance was high in both groups (98.9 % versus 97.3 %, P = 0.057). HIV infected children were mostly in primary school (grades 3-7) while affected children were mostly in upper primary or secondary grades. Sixty percent HIV infected children reported having missed school at least 1 day in the preceding month. Significantly more infected than affected children reported experiencing problems at school (78 % versus 62.3 %, P < 0.001). Twenty-two percent of 15-18 year old HIV infected children were in standard seven and below compared to only 8 % of HIV affected children (p = 0.335). School related problems included poor grades, poor health/school attendance, stigma and inadequate scholastic materials. The wish-list for improving the school environment was similar for both groups and included extra learning support; better meals; protection from bullying/teasing; more scholastic materials, extracurricular activities, love and care; structural improvements; improved teacher attendance and teaching approaches. Significantly more HIV infected children reported feeling hungry all the time (50.6 % versus 41 %, P = 0.007) and

  13. Age-specific haemosporidian infection dynamics and survival in Seychelles warblers

    PubMed Central

    Hammers, Martijn; Komdeur, Jan; Kingma, Sjouke A.; Hutchings, Kimberly; Fairfield, Eleanor A.; Gilroy, Danielle L.; Richardson, David S.

    2016-01-01

    Parasites may severely impact the fitness and life-history of their hosts. After infection, surviving individuals may suppress the growth of the parasite, or completely clear the infection and develop immunity. Consequently, parasite prevalence is predicted to decline with age. Among elderly individuals, immunosenescence may lead to a late-life increase in infection prevalence. We used a 21-year longitudinal dataset from one population of individually-marked Seychelles warblers (Acrocephalus sechellensis) to investigate age-dependent prevalence of the GRW1 strain of the intracellular protozoan blood parasite Haemoproteus nucleocondensus and whether infections with this parasite affect age-dependent survival. We analyzed 2454 samples from 1431 individuals and found that H. nucleocondensus infections could rarely be detected in nestlings. Prevalence increased strongly among fledglings and peaked among older first year birds. Prevalence was high among younger adults and declined steeply until ca 4 years of age, after which it was stable. Contrary to expectations, H. nucleocondensus prevalence did not increase among elderly individuals and we found no evidence that annual survival was lower in individuals suffering from an infection. Our results suggest that individuals clear or suppress infections and acquire immunity against future infections, and provide no evidence for immunosenescence nor an impact of chronic infections on survival. PMID:27431430

  14. Neospora caninum infection during early pregnancy in cattle: how the isolate influences infection dynamics, clinical outcome and peripheral and local immune responses

    PubMed Central

    2014-01-01

    This work studies the influence of Neospora caninum intra-species diversity on abortion outcome, infection dynamics in terms of parasite dissemination and peripheral-local immune responses in pregnant cattle. Animals were intravenously inoculated at day 70 of pregnancy with 107 tachyzoites of two isolates showing marked differences in virulence in vitro and in pregnant mouse models: Nc-Spain7, a high virulence isolate, and Nc-Spain8, a low-to-moderate virulence isolate. After inoculation, pregnancy was monitored, and dams were culled when foetal death was detected. Foetal mortality occurred in all infected heifers between days 24 and 49 post-infection (pi), however, it was detected sooner in Nc-Spain7-infected animals (median day = 34) than those inoculated with Nc-Spain8 (median day = 41) with a trend towards significance (P < 0.11). Similar histological lesions were observed in placentomes and in most of the foetuses from the two infected groups. However, parasites were more frequently detected in the placenta and foetuses by PCR and in the foetal brain by immunohistochemistry in Nc-Spain7-infected animals. Specific antibodies were detected starting at day 13 post-infection in all infected cattle, with higher IgG levels in Nc-Spain7-infected group. IFN-γ and IL-4 profiles also varied between infected groups in PBMC stimulation assays. Infected animals showed significant increases in their cytokine mRNA levels (IFN-γ, IL-4, IL-10, IL-12p40 and TNF-α) in the caruncle at time of foetal death. Differences between the infected groups were also observed for cytokine profiles. These results demonstrate the influence of the N. caninum isolate on foetal death outcome, infection dynamics and immune responses in cattle. PMID:24479988

  15. Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective.

    PubMed

    Gong, Zhenxing; Zhang, Na

    2017-01-01

    Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indicate that employees' perceptions of a supportive supervisor feedback environment indirectly influence their level of creative performance through positive affect (t2); the negative affect (t1) moderates the relationship between positive affect (t2) and creative performance (t2), rendering the relationship more positive if negative affect (t1) is high. The change in positive affect mediates the relationship between the supervisor feedback environment and creative performance; a decrease in negative affect moderates the relationship between increased positive affect and creative performance, rendering the relationship more positive if the decrease in negative affect is large. The implications for improving the creative performances of employees are further discussed.

  16. Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective

    PubMed Central

    Gong, Zhenxing; Zhang, Na

    2017-01-01

    Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indicate that employees’ perceptions of a supportive supervisor feedback environment indirectly influence their level of creative performance through positive affect (t2); the negative affect (t1) moderates the relationship between positive affect (t2) and creative performance (t2), rendering the relationship more positive if negative affect (t1) is high. The change in positive affect mediates the relationship between the supervisor feedback environment and creative performance; a decrease in negative affect moderates the relationship between increased positive affect and creative performance, rendering the relationship more positive if the decrease in negative affect is large. The implications for improving the creative performances of employees are further discussed. PMID:28861025

  17. Determination of Original Infection Source of H7N9 Avian Influenza by Dynamical Model

    NASA Astrophysics Data System (ADS)

    Zhang, Juan; Jin, Zhen; Sun, Gui-Quan; Sun, Xiang-Dong; Wang, You-Ming; Huang, Baoxu

    2014-05-01

    H7N9, a newly emerging virus in China, travels among poultry and human. Although H7N9 has not aroused massive outbreaks, recurrence in the second half of 2013 makes it essential to control the spread. It is believed that the most effective control measure is to locate the original infection source and cut off the source of infection from human. However, the original infection source and the internal transmission mechanism of the new virus are not totally clear. In order to determine the original infection source of H7N9, we establish a dynamical model with migratory bird, resident bird, domestic poultry and human population, and view migratory bird, resident bird, domestic poultry as original infection source respectively to fit the true dynamics during the 2013 pandemic. By comparing the date fitting results and corresponding Akaike Information Criterion (AIC) values, we conclude that migrant birds are most likely the original infection source. In addition, we obtain the basic reproduction number in poultry and carry out sensitivity analysis of some parameters.

  18. Host heterogeneity affects both parasite transmission to and fitness on subsequent hosts

    PubMed Central

    Young, Kyle A.; Fox, Jordan; Jokela, Jukka

    2017-01-01

    Infectious disease dynamics depend on the speed, number and fitness of parasites transmitting from infected hosts (‘donors’) to parasite-naive ‘recipients’. Donor heterogeneity likely affects these three parameters, and may arise from variation between donors in traits including: (i) infection load, (ii) resistance, (iii) stage of infection, and (iv) previous experience of transmission. We used the Trinidadian guppy, Poecilia reticulata, and a directly transmitted monogenean ectoparasite, Gyrodactylus turnbulli, to experimentally explore how these sources of donor heterogeneity affect the three transmission parameters. We exposed parasite-naive recipients to donors (infected with a single parasite strain) differing in their infection traits, and found that donor infection traits had diverse and sometimes interactive effects on transmission. First, although transmission speed increased with donor infection load, the relationship was nonlinear. Second, while the number of parasites transmitted generally increased with donor infection load, more resistant donors transmitted more parasites, as did those with previous transmission experience. Finally, parasites transmitting from experienced donors exhibited lower population growth rates on recipients than those from inexperienced donors. Stage of infection had little effect on transmission parameters. These results suggest that a more holistic consideration of within-host processes will improve our understanding of between-host transmission and hence disease dynamics. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289260

  19. Viral dynamics of primary HIV-1 infection in Senegal, West Africa.

    PubMed

    Sarr, Abdoulaye Dieng; Eisen, Geoffrey; Guèye-Ndiaye, Aissatou; Mullins, Christopher; Traoré, Ibrahima; Dia, Mamadou Ciré; Sankalé, Jean-Louis; Faye, Diegane; Mboup, Souleymane; Kanki, Phyllis

    2005-05-01

    Few studies have addressed primary human immunodeficiency virus (HIV) type 1 infection in sub-Saharan Africa, where the epidemic is of a predominantly heterosexual character and is caused by different subtypes. The present study examines the dynamics of viral replication in subjects infected with various HIV-1 subtypes. Seven hundred fifty-two HIV-negative Senegalese women at high risk for infection were monitored every 3 months for acute/early HIV infection; 26 infections were identified (23 HIV-1 and 3 HIV-2), with an HIV-1 incidence rate of 3.23 cases/person-years observation. Multiple viral-load measurements were taken for all seroconverters. The mean+/-standard deviation viral load for all subjects during the early stage of infection was 4.13+/-0.66 log10 copies/mL, with an overall decrease of 0.22 log10 copies/mL after the early stage; the viral set point was reached after 12 months of infection. Most subjects had relatively low viral loads during the early stage of infection. HIV-1 CRF02_AG-infected women had a significantly higher mean viral load during the early stage of infection (mean +/- SD, 4.45+/-0.60 log(10) copies/mL) than did non-HIV-1 CRF02_AG-infected women (mean+/-SD, 3.78+/-0.46 log(10) copies/mL) (P=.008). None of the subjects reported symptoms consistent with primary HIV-1 infection. Our findings in Senegalese women differ from what have been described for primary HIV-1 infection. Further investigations of primary infections with non-B subtypes are warranted, to better characterize their differences with primary infections with subtype B.

  20. The intra-day dynamics of affect, self-esteem, tiredness, and suicidality in Major Depression.

    PubMed

    Crowe, Eimear; Daly, Michael; Delaney, Liam; Carroll, Susan; Malone, Kevin M

    2018-02-21

    Despite growing interest in the temporal dynamics of Major Depressive Disorder (MDD), we know little about the intra-day fluctuations of key symptom constructs. In a study of momentary experience, the Experience Sampling Method captured the within-day dynamics of negative affect, positive affect, self-esteem, passive suicidality, and tiredness across clinical MDD (N= 31) and healthy control groups (N= 33). Ten symptom measures were taken per day over 6 days (N= 2231 observations). Daily dynamics were modeled via intra-day time-trends, variability, and instability in symptoms. MDD participants showed significantly increased variability and instability in negative affect, positive affect, self-esteem, and suicidality. Significantly different time-trends were found in positive affect (increased diurnal variation and an inverted U-shaped pattern in MDD, compared to a positive linear trend in controls) and tiredness (decreased diurnal variation in MDD). In the MDD group only, passive suicidality displayed a negative linear trend and self-esteem displayed a quadratic inverted U trend. MDD and control participants thus showed distinct dynamic profiles in all symptoms measured. As well as the overall severity of symptoms, intra-day dynamics appear to define the experience of MDD symptoms. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Lipid nanoparticles to counteract gastric infection without affecting gut microbiota.

    PubMed

    Seabra, Catarina Leal; Nunes, Cláudia; Brás, Manuela; Gomez-Lazaro, Maria; Reis, Celso A; Gonçalves, Inês C; Reis, Salette; Martins, M Cristina L

    2018-06-01

    Helicobacter pylori infection is one of the major risk factors for gastric cancer development. Available antibiotic-based treatments not only fail in around 20% of patients but also have a severe negative impact on the gut microbiota. Recently, we demonstrated that nanostructured lipid carriers (NLC), even without any drug loaded, are bactericidal against H. pylori at low concentrations. This work aims to clarify NLC mode of action and to evaluate if their bactericidal effect is specific to H. pylori without affecting bacteria from microbiota. NLC were produced by hot homogenization followed by ultrasonication method, using Precirol®ATO5 and Miglyol®812 as lipids and Tween®60 as a surfactant. NLC were able to eradicate H. pylori without affecting the other tested bacteria (Lactobacillus, E. coli, S. epidermidis and S. aureus). Bioimaging assays demonstrated that NLC rapidly bind to and cross the H. pylori bacterial membrane, destabilizing and disrupting it, which leads to leakage of the cytoplasmic contents and consequent bacterial death. In an era where efficient alternatives to antibiotics are urgent, NLC are an interesting route to be explored in the quest for new antibiotic-free therapies to fight H. pylori infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics.

    PubMed

    Xia, Yingcun; Bjørnstad, Ottar N; Grenfell, Bryan T

    2004-08-01

    Infectious diseases provide a particularly clear illustration of the spatiotemporal underpinnings of consumer-resource dynamics. The paradigm is provided by extremely contagious, acute, immunizing childhood infections. Partially synchronized, unstable oscillations are punctuated by local extinctions. This, in turn, can result in spatial differentiation in the timing of epidemics and, depending on the nature of spatial contagion, may result in traveling waves. Measles epidemics are one of a few systems documented well enough to reveal all of these properties and how they are affected by spatiotemporal variations in population structure and demography. On the basis of a gravity coupling model and a time series susceptible-infected-recovered (TSIR) model for local dynamics, we propose a metapopulation model for regional measles dynamics. The model can capture all the major spatiotemporal properties in prevaccination epidemics of measles in England and Wales.

  3. The challenges of modelling antibody repertoire dynamics in HIV infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Shishi; Perelson, Alan S.

    Antibody affinity maturation by somatic hypermutation of B-cell immunoglobulin variable region genes has been studied for decades in various model systems using well-defined antigens. While much is known about the molecular details of the process, our understanding of the selective forces that generate affinity maturation are less well developed, particularly in the case of a co-evolving pathogen such as HIV. Despite this gap in understanding, high-throughput antibody sequence data are increasingly being collected to investigate the evolutionary trajectories of antibody lineages in HIV-infected individuals. Here, we review what is known in controlled experimental systems about the mechanisms underlying antibody selectionmore » and compare this to the observed temporal patterns of antibody evolution in HIV infection. In addition, we describe how our current understanding of antibody selection mechanisms leaves questions about antibody dynamics in HIV infection unanswered. Without a mechanistic understanding of antibody selection in the context of a co-evolving viral population, modelling and analysis of antibody sequences in HIV-infected individuals will be limited in their interpretation and predictive ability.« less

  4. The challenges of modelling antibody repertoire dynamics in HIV infection

    DOE PAGES

    Luo, Shishi; Perelson, Alan S.

    2015-07-20

    Antibody affinity maturation by somatic hypermutation of B-cell immunoglobulin variable region genes has been studied for decades in various model systems using well-defined antigens. While much is known about the molecular details of the process, our understanding of the selective forces that generate affinity maturation are less well developed, particularly in the case of a co-evolving pathogen such as HIV. Despite this gap in understanding, high-throughput antibody sequence data are increasingly being collected to investigate the evolutionary trajectories of antibody lineages in HIV-infected individuals. Here, we review what is known in controlled experimental systems about the mechanisms underlying antibody selectionmore » and compare this to the observed temporal patterns of antibody evolution in HIV infection. In addition, we describe how our current understanding of antibody selection mechanisms leaves questions about antibody dynamics in HIV infection unanswered. Without a mechanistic understanding of antibody selection in the context of a co-evolving viral population, modelling and analysis of antibody sequences in HIV-infected individuals will be limited in their interpretation and predictive ability.« less

  5. Co-Infection Dynamics of a Major Food-Borne Zoonotic Pathogen in Chicken

    PubMed Central

    Skånseng, Beate; Trosvik, Pål; Zimonja, Monika; Johnsen, Gro; Bjerrum, Lotte; Pedersen, Karl; Wallin, Nina; Rudi, Knut

    2007-01-01

    A major bottleneck in understanding zoonotic pathogens has been the analysis of pathogen co-infection dynamics. We have addressed this challenge using a novel direct sequencing approach for pathogen quantification in mixed infections. The major zoonotic food-borne pathogen Campylobacter jejuni, with an important reservoir in the gastrointestinal (GI) tract of chickens, was used as a model. We investigated the co-colonisation dynamics of seven C. jejuni strains in a chicken GI infection trial. The seven strains were isolated from an epidemiological study showing multiple strain infections at the farm level. We analysed time-series data, following the Campylobacter colonisation, as well as the dominant background flora of chickens. Data were collected from the infection at day 16 until the last sampling point at day 36. Chickens with two different background floras were studied, mature (treated with Broilact, which is a product consisting of bacteria from the intestinal flora of healthy hens) and spontaneous. The two treatments resulted in completely different background floras, yet similar Campylobacter colonisation patterns were detected in both groups. This suggests that it is the chicken host and not the background flora that is important in determining the Campylobacter colonisation pattern. Our results showed that mainly two of the seven C. jejuni strains dominated the Campylobacter flora in the chickens, with a shift of the dominating strain during the infection period. We propose a model in which multiple C. jejuni strains can colonise a single host, with the dominant strains being replaced as a consequence of strain-specific immune responses. This model represents a new understanding of C. jejuni epidemiology, with future implications for the development of novel intervention strategies. PMID:18020703

  6. Seasonality and comparative dynamics of six childhood infections in pre-vaccination Copenhagen.

    PubMed

    Metcalf, C Jessica E; Bjørnstad, Ottar N; Grenfell, Bryan T; Andreasen, Viggo

    2009-12-07

    Seasonal variation in infection transmission is a key determinant of epidemic dynamics of acute infections. For measles, the best-understood strongly immunizing directly transmitted childhood infection, the perception is that term-time forcing is the main driver of seasonality in developed countries. The degree to which this holds true across other acute immunizing childhood infections is not clear. Here, we identify seasonal transmission patterns using a unique long-term dataset with weekly incidence of six infections including measles. Data on age-incidence allow us to quantify the mean age of infection. Results indicate correspondence between dips in transmission and school holidays for some infections, but there are puzzling discrepancies, despite close correspondence between average age of infection and age of schooling. Theoretical predictions of the relationship between amplitude of seasonality and basic reproductive rate of infections that should result from term-time forcing are also not upheld. We conclude that where yearly trajectories of susceptible numbers are perturbed, e.g. via waning of immunity, seasonality is unlikely to be entirely driven by term-time forcing. For the three bacterial infections, pertussis, scarlet fever and diphtheria, there is additionally a strong increase in transmission during the late summer before the end of school vacations.

  7. Seasonality and comparative dynamics of six childhood infections in pre-vaccination Copenhagen

    PubMed Central

    Metcalf, C. Jessica E.; Bjørnstad, Ottar N.; Grenfell, Bryan T.; Andreasen, Viggo

    2009-01-01

    Seasonal variation in infection transmission is a key determinant of epidemic dynamics of acute infections. For measles, the best-understood strongly immunizing directly transmitted childhood infection, the perception is that term-time forcing is the main driver of seasonality in developed countries. The degree to which this holds true across other acute immunizing childhood infections is not clear. Here, we identify seasonal transmission patterns using a unique long-term dataset with weekly incidence of six infections including measles. Data on age–incidence allow us to quantify the mean age of infection. Results indicate correspondence between dips in transmission and school holidays for some infections, but there are puzzling discrepancies, despite close correspondence between average age of infection and age of schooling. Theoretical predictions of the relationship between amplitude of seasonality and basic reproductive rate of infections that should result from term-time forcing are also not upheld. We conclude that where yearly trajectories of susceptible numbers are perturbed, e.g. via waning of immunity, seasonality is unlikely to be entirely driven by term-time forcing. For the three bacterial infections, pertussis, scarlet fever and diphtheria, there is additionally a strong increase in transmission during the late summer before the end of school vacations. PMID:19740885

  8. Network Diversity and Affect Dynamics: The Role of Personality Traits

    PubMed Central

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2016-01-01

    People divide their time unequally among their social contacts due to time constraints and varying strength of relationships. It was found that high diversity of social communication, dividing time more evenly among social contacts, is correlated with economic well-being both at macro and micro levels. Besides economic well-being, it is not clear how the diversity of social communication is also associated with the two components of individuals’ subjective well-being, positive and negative affect. Specifically, positive affect and negative affect are two independent dimensions representing the experience (feeling) of emotions. In this paper, we investigate the relationship between the daily diversity of social communication and dynamic affect states that people experience in their daily lives. We collected two high-resolution datasets that capture affect scores via daily experience sampling surveys and social interaction through wearable sensing technologies: sociometric badges for face-to-face interaction and smart phones for mobile phone calls. We found that communication diversity correlates with desirable affect states–e.g. an increase in the positive affect state or a decrease in the negative affect state–for some personality types, but correlates with undesirable affect states for others. For example, diversity in phone calls is experienced as good by introverts, but bad by extroverts; diversity in face-to-face interaction is experienced as good by people who tend to be positive by nature (trait) but bad for people who tend to be not positive by nature. More broadly, the moderating effect of personality type on the relationship between diversity and affect was detected without any knowledge of the type of social tie or the content of communication. This provides further support for the power of unobtrusive sensing in understanding social dynamics, and in measuring the effect of potential interventions designed to improve well-being. PMID:27035904

  9. Network Diversity and Affect Dynamics: The Role of Personality Traits.

    PubMed

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2016-01-01

    People divide their time unequally among their social contacts due to time constraints and varying strength of relationships. It was found that high diversity of social communication, dividing time more evenly among social contacts, is correlated with economic well-being both at macro and micro levels. Besides economic well-being, it is not clear how the diversity of social communication is also associated with the two components of individuals' subjective well-being, positive and negative affect. Specifically, positive affect and negative affect are two independent dimensions representing the experience (feeling) of emotions. In this paper, we investigate the relationship between the daily diversity of social communication and dynamic affect states that people experience in their daily lives. We collected two high-resolution datasets that capture affect scores via daily experience sampling surveys and social interaction through wearable sensing technologies: sociometric badges for face-to-face interaction and smart phones for mobile phone calls. We found that communication diversity correlates with desirable affect states--e.g. an increase in the positive affect state or a decrease in the negative affect state--for some personality types, but correlates with undesirable affect states for others. For example, diversity in phone calls is experienced as good by introverts, but bad by extroverts; diversity in face-to-face interaction is experienced as good by people who tend to be positive by nature (trait) but bad for people who tend to be not positive by nature. More broadly, the moderating effect of personality type on the relationship between diversity and affect was detected without any knowledge of the type of social tie or the content of communication. This provides further support for the power of unobtrusive sensing in understanding social dynamics, and in measuring the effect of potential interventions designed to improve well-being.

  10. How Social Media Affects the Dynamics of Protest

    DTIC Science & Technology

    2014-12-01

    AFFECTS THE DYNAMICS OF PROTEST by Ajay Seebaluck December 2014 Thesis Advisor: T. Camber Warren Second Reader: Leo Blanken THIS PAGE...December 2014 Author: Ajay Seebaluck Approved by: T. Camber Warren, Ph.D. Thesis Advisor Leo Blanken, Ph.D. Second Reader...thanks to Professor Warren Camber and Professor Blanken Leo for their continued encouragement and tutelage. This thesis would not have been possible

  11. Time-Resolved Transposon Insertion Sequencing Reveals Genome-Wide Fitness Dynamics during Infection.

    PubMed

    Yang, Guanhua; Billings, Gabriel; Hubbard, Troy P; Park, Joseph S; Yin Leung, Ka; Liu, Qin; Davis, Brigid M; Zhang, Yuanxing; Wang, Qiyao; Waldor, Matthew K

    2017-10-03

    Transposon insertion sequencing (TIS) is a powerful high-throughput genetic technique that is transforming functional genomics in prokaryotes, because it enables genome-wide mapping of the determinants of fitness. However, current approaches for analyzing TIS data assume that selective pressures are constant over time and thus do not yield information regarding changes in the genetic requirements for growth in dynamic environments (e.g., during infection). Here, we describe structured analysis of TIS data collected as a time series, termed pattern analysis of conditional essentiality (PACE). From a temporal series of TIS data, PACE derives a quantitative assessment of each mutant's fitness over the course of an experiment and identifies mutants with related fitness profiles. In so doing, PACE circumvents major limitations of existing methodologies, specifically the need for artificial effect size thresholds and enumeration of bacterial population expansion. We used PACE to analyze TIS samples of Edwardsiella piscicida (a fish pathogen) collected over a 2-week infection period from a natural host (the flatfish turbot). PACE uncovered more genes that affect E. piscicida 's fitness in vivo than were detected using a cutoff at a terminal sampling point, and it identified subpopulations of mutants with distinct fitness profiles, one of which informed the design of new live vaccine candidates. Overall, PACE enables efficient mining of time series TIS data and enhances the power and sensitivity of TIS-based analyses. IMPORTANCE Transposon insertion sequencing (TIS) enables genome-wide mapping of the genetic determinants of fitness, typically based on observations at a single sampling point. Here, we move beyond analysis of endpoint TIS data to create a framework for analysis of time series TIS data, termed pattern analysis of conditional essentiality (PACE). We applied PACE to identify genes that contribute to colonization of a natural host by the fish pathogen

  12. Social ecological factors associated with future orientation of children affected by parental HIV infection and AIDS.

    PubMed

    Lin, Xiuyun; Fang, Xiaoyi; Chi, Peilian; Heath, Melissa Allen; Li, Xiaoming; Chen, Wenrui

    2016-07-01

    From a social ecological perspective, this study examined the effects of stigma (societal level), trusting relationships with current caregivers (familial level), and self-esteem (individual level) on future orientation of children affected by HIV infection and AIDS. Comparing self-report data from 1221 children affected by parental HIV infection and AIDS and 404 unaffected children, affected children reported greater stigma and lower future orientation, trusting relationships, and self-esteem. Based on structural equation modeling, stigma experiences, trusting relationships, and self-esteem had direct effects on future orientation, with self-esteem and trusting relationships partially mediating the effect of stigma experiences on children's future orientation. Implications are discussed. © The Author(s) 2014.

  13. Dynamics of human T-cell lymphotropic virus I (HTLV-I) infection of CD4+ T-cells.

    PubMed

    Katri, Patricia; Ruan, Shigui

    2004-11-01

    Stilianakis and Seydel (Bull. Math. Biol., 1999) proposed an ODE model that describes the T-cell dynamics of human T-cell lymphotropic virus I (HTLV-I) infection and the development of adult T-cell leukemia (ATL). Their model consists of four components: uninfected healthy CD4+ T-cells, latently infected CD4+ T-cells, actively infected CD4+ T-cells, and ATL cells. Mathematical analysis that completely determines the global dynamics of this model has been done by Wang et al. (Math. Biosci., 2002). In this note, we first modify the parameters of the model to distinguish between contact and infectivity rates. Then we introduce a discrete time delay to the model to describe the time between emission of contagious particles by active CD4+ T-cells and infection of pure cells. Using the results in Culshaw and Ruan (Math. Biosci., 2000) in the analysis of time delay with respect to cell-free viral spread of HIV, we study the effect of time delay on the stability of the endemically infected equilibrium. Numerical simulations are presented to illustrate the results.

  14. Dynamic miRNA-mRNA regulations are essential for maintaining Drosophila immune homeostasis during Micrococcus luteus infection.

    PubMed

    Wei, Guanyun; Sun, Lianjie; Li, Ruimin; Li, Lei; Xu, Jiao; Ma, Fei

    2018-04-01

    Pathogen bacteria infections can lead to dynamic changes of microRNA (miRNA) and mRNA expression profiles, which may control synergistically the outcome of immune responses. To reveal the role of dynamic miRNA-mRNA regulation in Drosophila innate immune responses, we have detailedly analyzed the paired miRNA and mRNA expression profiles at three time points during Drosophila adult males with Micrococcus luteus (M. luteus) infection using RNA- and small RNA-seq data. Our results demonstrate that differentially expressed miRNAs and mRNAs represent extensively dynamic changes over three time points during Drosophila with M. luteus infection. The pathway enrichment analysis indicates that differentially expressed genes are involved in diverse signaling pathways, including Toll and Imd as well as orther signaling pathways at three time points during Drosophila with M. luteus infection. Remarkably, the dynamic change of miRNA expression is delayed by compared to mRNA expression change over three time points, implying that the "time" parameter should be considered when the function of miRNA/mRNA is further studied. In particular, the dynamic miRNA-mRNA regulatory networks have shown that miRNAs may synergistically regulate gene expressions of different signaling pathways to promote or inhibit innate immune responses and maintain homeostasis in Drosophila, and some new regulators involved in Drosophila innate immune response have been identified. Our findings strongly suggest that miRNA regulation is a key mechanism involved in fine-tuning cooperatively gene expressions of diverse signaling pathways to maintain innate immune response and homeostasis in Drosophila. Taken together, the present study reveals a novel role of dynamic miRNA-mRNA regulation in immune response to bacteria infection, and provides a new insight into the underlying molecular regulatory mechanism of Drosophila innate immune responses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Multiscale model for pedestrian and infection dynamics during air travel

    NASA Astrophysics Data System (ADS)

    Namilae, Sirish; Derjany, Pierrot; Mubayi, Anuj; Scotch, Mathew; Srinivasan, Ashok

    2017-05-01

    In this paper we develop a multiscale model combining social-force-based pedestrian movement with a population level stochastic infection transmission dynamics framework. The model is then applied to study the infection transmission within airplanes and the transmission of the Ebola virus through casual contacts. Drastic limitations on air-travel during epidemics, such as during the 2014 Ebola outbreak in West Africa, carry considerable economic and human costs. We use the computational model to evaluate the effects of passenger movement within airplanes and air-travel policies on the geospatial spread of infectious diseases. We find that boarding policy by an airline is more critical for infection propagation compared to deplaning policy. Enplaning in two sections resulted in fewer infections than the currently followed strategy with multiple zones. In addition, we found that small commercial airplanes are better than larger ones at reducing the number of new infections in a flight. Aggregated results indicate that passenger movement strategies and airplane size predicted through these network models can have significant impact on an event like the 2014 Ebola epidemic. The methodology developed here is generic and can be readily modified to incorporate the impact from the outbreak of other directly transmitted infectious diseases.

  16. Mathematical modeling of transmission co-infection tuberculosis in HIV community

    NASA Astrophysics Data System (ADS)

    Lusiana, V.; Putra, P. S.; Nuraini, N.; Soewono, E.

    2017-03-01

    TB and HIV infection have the effect of deeply on assault the immune system, since they can afford to weaken host immune respone through a mechanism that has not been fully understood. HIV co-infection is the stongest risk factor for progression of M. tuberculosis to active TB disease in HIV individuals, as well as TB has been accelerated to progression HIV infection. In this paper we create a model of transmission co-infection TB in HIV community, dynamic system with ten compartments built in here. Dynamic analysis in this paper mentioned ranging from disease free equilibrium conditions, endemic equilibrium conditions, basic reproduction ratio, stability analysis and numerical simulation. Basic reproductive ratio were obtained from spectral radius the next generation matrix of the model. Numerical simulations are built to justify the results of the analysis and to see the changes in the dynamics of the population in each compartment. The sensitivity analysis indicates that the parameters affecting the population dynamics of TB in people with HIV infection is parameters rate of progression of individuals from the exposed TB class to the active TB, treatment rate of exposed TB individuals, treatment rate of infectious (active TB) individuals and probability of transmission of TB infection from an infective to a susceptible per contact per unit time. We can conclude that growing number of infections carried by infectious TB in people with HIV infection can lead to increased spread of disease or increase in endemic conditions.

  17. Dynamic transcriptional signatures and network responses for clinical symptoms in influenza-infected human subjects using systems biology approaches.

    PubMed

    Linel, Patrice; Wu, Shuang; Deng, Nan; Wu, Hulin

    2014-10-01

    Recent studies demonstrate that human blood transcriptional signatures may be used to support diagnosis and clinical decisions for acute respiratory viral infections such as influenza. In this article, we propose to use a newly developed systems biology approach for time course gene expression data to identify significant dynamically response genes and dynamic gene network responses to viral infection. We illustrate the methodological pipeline by reanalyzing the time course gene expression data from a study with healthy human subjects challenged by live influenza virus. We observed clear differences in the number of significant dynamic response genes (DRGs) between the symptomatic and asymptomatic subjects and also identified DRG signatures for symptomatic subjects with influenza infection. The 505 common DRGs shared by the symptomatic subjects have high consistency with the signature genes for predicting viral infection identified in previous works. The temporal response patterns and network response features were carefully analyzed and investigated.

  18. Sealing properties of a self-etching primer system to normal caries-affected and caries-infected dentin.

    PubMed

    Lee, Kwang-Won; Son, H-H; Yoshiyama, Masatoshi; Tay, Franklin R; Carvalho, Ricardo M; Pashley, David H

    2003-09-01

    To compare the ability of an experimental antibacterial self-etching primer adhesive system to seal exposure sites in normal, caries-affected and caries-infected human dentin. 30 extracted human third molars were used within 1 month of extraction. 10 intact normal teeth comprised the normal group. 20 teeth with occlusal caries that radiographically extended halfway to the pulp were excavated using caries-detector solution (CDS) and a #4 round carbide bur in a slowspeed handpiece. Half of those teeth were fully excavated free of CDS-stained material without exposing the pulp, and were designated as the caries-affected dentin group. The remaining 10 teeth were excavated as close to the pulp as possible without obtaining an exposure, but whose dentin continued to stain red with CDS; this group was designated as the caries-infected dentin group. The remaining dentin thickness in all of the specimens in the other two groups was then reduced to the same extent as the caries-infected group. Direct exposures of the pulp chamber were made with a 1/4 round bur in the normal dentin or a 25 gauge needle in the other two groups. After measuring the fluid flow through the exposure, the sites were then sealed with an experimental antibacterial fluoride-containing self-etching primer adhesive systems (ABF). Fluid conductance was remeasured every week for 16 weeks. The fluid conductance through the exposure fell 99% in all groups following resin sealing. The seals of normal and caries-affected dentin remained relatively stable over the 16 weeks, while the seals of caries-infected dentin gradually deteriorated, reaching significance at 8 weeks. TEM examination revealed very thin (ca. 0.5 mm) hybrid layers in normal dentin, 3-4 microm thick hybrid layers in caries-affected dentin and 40 microm thick hybrid layers in caries-infected dentin. The tubules of caries-infected dentin were enlarged and filled with bacteria. Resin tags passed around these bacteria in the top 20-40 microm

  19. Leishmania infection inhibits macrophage motility by altering F-actin dynamics and the expression of adhesion complex proteins

    PubMed Central

    de Menezes, Juliana Perrone Bezerra; Koushik, Amrita; Das, Satarupa; Guven, Can; Siegel, Ariel; Laranjeira-Silva, Maria Fernanda; Losert, Wolfgang; Andrews, Norma W.

    2016-01-01

    Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self-healing skin lesions to fatal visceralizing disease. As the host cells of choice for all species of Leishmania, macrophages are critical for the establishment of infections. How macrophages contribute to parasite homing to specific tissues and how parasites modulate macrophage function is still poorly understood. In this study we show that L. amazonensis infection inhibits macrophage roaming motility. The reduction in macrophage speed is not dependent on particle load or on factors released by infected macrophages. L. amazonensis-infected macrophages also show reduced directional migration in response to the chemokine MCP-1. We found that infected macrophages have lower levels of total paxillin, phosphorylated paxillin and phosphorylated FAK when compared to non-infected macrophages, indicating abnormalities in the formation of signaling adhesion complexes that regulate motility. Analysis of the dynamics of actin polymerization at peripheral sites also revealed a markedly enhanced F-actin turnover frequency in L. amazonensis-infected macrophages. Thus, Leishmania infection inhibits macrophage motility by altering actin dynamics and impairing the expression of proteins that function in plasma membrane-extracellular matrix interactions. PMID:27641840

  20. Vitamin D deficiency is a risk factor for infections in patients affected by HCV-related liver cirrhosis.

    PubMed

    Buonomo, Antonio Riccardo; Zappulo, Emanuela; Scotto, Riccardo; Pinchera, Biagio; Perruolo, Giuseppe; Formisano, Pietro; Borgia, Guglielmo; Gentile, Ivan

    2017-10-01

    To evaluate the prevalence of vitamin D deficiency and its impact on infections in HCV-related liver cirrhosis. We enrolled 291 patients affected by HCV-related liver cirrhosis. Serum vitamin D levels were dosed at enrolment. The presence of infection was assessed at baseline and during follow-up based on physical examination and laboratory analyses. Vitamin D deficiency (<20ng/mL) was diagnosed in 68.3% of patients, and a total of 102 infections were detected. Urinary tract infections were the most common infections diagnosed (41.2%). Vitamin D deficiency rates were higher in patients with decompensated cirrhosis (Child-Pugh B vs A p=0.008, and Child-Pugh C vs A p=0.024). Infection was significantly associated with vitamin D deficiency (p<0.001), MELD score >15 (p=0.003), Child-Pugh class B/C vs A (p<0.001), and active hepatocellular carcinoma (HCC) (p<0.001). At multivariate analysis, vitamin D deficiency (p<0.01), HCC (p<0.05), hospitalization (p<0.001) and exposure to immunosuppressant agents (p<0.05) were independent risk factors for infection at baseline. Vitamin D may play a role in the development of infections in patients affected by liver cirrhosis, and preventive strategies with vitamin D supplementation are to be evaluated in randomized controlled trials. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  1. Positive Affect and the Complex Dynamics of Human Flourishing

    ERIC Educational Resources Information Center

    Fredrickson, Barbara L.; Losada, Marcial F.

    2005-01-01

    Extending B. L. Fredrickson's (1998) broaden-and-build theory of positive emotions and M. Losada's (1999) nonlinear dynamics model of team performance, the authors predict that a ratio of positive to negative affect at or above 2.9 will characterize individuals in flourishing mental health. Participants (N=188) completed an initial survey to…

  2. Differences between micro-hardness affected dentin after mechanical or chemo-mechanical infected dentin disposal (laboratory experiment)

    NASA Astrophysics Data System (ADS)

    Ihsani, V.; Nursasongko, B.; Djauharie, N.

    2017-08-01

    The concept of conserving healthy tooth structures during cavity preparation has gained popularity with chemo-mechanical caries removal. This study compared three methods of caries removal using: a chemo-mechanical caries removal papain gel; Papacarie® (these contain natural ingredients, mainly papain enzyme); and mechanical preparation with a bur rotary instrument. The purpose of this study was to compare affected dentin micro-hardness after removal of infected dentin with mechanical and chemo-mechanical techniques. Twenty-seven permanent molar teeth were randomly divided into three groups receiving removal of infected dentin. These were: Group 1: chemo-mechanical technique using papain gel; Group 2: chemo-mechanical technique using Papacarie® Group 3: mechanical technique using a bur rotary instrument. Each group was tested using Knoop Micro-hardness tester, and the data were submitted to one way ANOVA and Post-hoc Tukey test. There is a significant difference between Groups 1 and 3, and Groups 2 and 3, p = 0.000. However, there is no significant difference between Groups 1 and 2, p = 1.000. Affected dentin micro-hardness after removal of infected dentin with a bur rotary tool is higher than after use of the papain gel or Papacarie®. Affected dentin micro-hardness after removal of infected dentin with Papacarie® and papain gel give almost the same result.

  3. Dynamics of an HIV-1 infection model with cell mediated immunity

    NASA Astrophysics Data System (ADS)

    Yu, Pei; Huang, Jianing; Jiang, Jiao

    2014-10-01

    In this paper, we study the dynamics of an improved mathematical model on HIV-1 virus with cell mediated immunity. This new 5-dimensional model is based on the combination of a basic 3-dimensional HIV-1 model and a 4-dimensional immunity response model, which more realistically describes dynamics between the uninfected cells, infected cells, virus, the CTL response cells and CTL effector cells. Our 5-dimensional model may be reduced to the 4-dimensional model by applying a quasi-steady state assumption on the variable of virus. However, it is shown in this paper that virus is necessary to be involved in the modeling, and that a quasi-steady state assumption should be applied carefully, which may miss some important dynamical behavior of the system. Detailed bifurcation analysis is given to show that the system has three equilibrium solutions, namely the infection-free equilibrium, the infectious equilibrium without CTL, and the infectious equilibrium with CTL, and a series of bifurcations including two transcritical bifurcations and one or two possible Hopf bifurcations occur from these three equilibria as the basic reproduction number is varied. The mathematical methods applied in this paper include characteristic equations, Routh-Hurwitz condition, fluctuation lemma, Lyapunov function and computation of normal forms. Numerical simulation is also presented to demonstrate the applicability of the theoretical predictions.

  4. Dynamics of multiple infection and within-host competition by the anther-smut pathogen.

    PubMed

    Hood, M E

    2003-07-01

    Infection of one host by multiple pathogen genotypes represents an important area of pathogen ecology and evolution that lacks a broad empirical foundation. Multiple infection of Silene latifolia by Microbotryum violaceum was studied under field and greenhouse conditions using the natural polymorphism for mating-type bias as a marker. Field transmission resulted in frequent multiple infection, and each stem of the host was infected independently. Within-host diversity of infections equaled that of nearby inoculum sources by the end of the growing season. The number of diseased stems per plant was positively correlated with multiple infection and with overwintering mortality. As a result, multiply infected plants were largely purged from the population, and there was lower within-host pathogen diversity in the second season. However, among plants with a given number of diseased stems, multiply infected plants had a lower risk of overwintering mortality. Following simultaneous and sequential inoculation, strong competitive exclusion was demonstrated, and the first infection had a significant advantage. Dynamics of multiple infection initially included components of coinfection models for virulence evolution and then components of superinfection models after systemic colonization. Furthermore, there was evidence for an advantage of genotypes with mating-type bias, which may contribute to maintenance of this polymorphism in natural populations.

  5. Planning horizon affects prophylactic decision-making and epidemic dynamics

    DOE PAGES

    Nardin, Luis G.; Miller, Craig R.; Ridenhour, Benjamin J.; ...

    2016-11-08

    The spread of infectious diseases can be impacted by human behavior, and behavioral decisions often depend implicitly on a planning horizon?the time in the future over which options are weighed. We investigate the effects of planning horizons on epidemic dynamics. We developed an epidemiological agent-based model (along with an ODE analog) to explore the decision-making of self-interested individuals on adopting prophylactic behavior. The decision-making process incorporates prophylaxis efficacy and disease prevalence with the individuals? payoffs and planning horizon. Our results show that for short and long planning horizons individuals do not consider engaging in prophylactic behavior. In contrast, individuals adoptmore » prophylactic behavior when considering intermediate planning horizons. Such adoption, however, is not always monotonically associated with the prevalence of the disease, depending on the perceived protection efficacy and the disease parameters. Adoption of prophylactic behavior reduces the epidemic peak size while prolonging the epidemic and potentially generates secondary waves of infection. Lastly, these effects can be made stronger by increasing the behavioral decision frequency or distorting an individual's perceived risk of infection.« less

  6. Planning horizon affects prophylactic decision-making and epidemic dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nardin, Luis G.; Miller, Craig R.; Ridenhour, Benjamin J.

    The spread of infectious diseases can be impacted by human behavior, and behavioral decisions often depend implicitly on a planning horizon?the time in the future over which options are weighed. We investigate the effects of planning horizons on epidemic dynamics. We developed an epidemiological agent-based model (along with an ODE analog) to explore the decision-making of self-interested individuals on adopting prophylactic behavior. The decision-making process incorporates prophylaxis efficacy and disease prevalence with the individuals? payoffs and planning horizon. Our results show that for short and long planning horizons individuals do not consider engaging in prophylactic behavior. In contrast, individuals adoptmore » prophylactic behavior when considering intermediate planning horizons. Such adoption, however, is not always monotonically associated with the prevalence of the disease, depending on the perceived protection efficacy and the disease parameters. Adoption of prophylactic behavior reduces the epidemic peak size while prolonging the epidemic and potentially generates secondary waves of infection. Lastly, these effects can be made stronger by increasing the behavioral decision frequency or distorting an individual's perceived risk of infection.« less

  7. Planning horizon affects prophylactic decision-making and epidemic dynamics.

    PubMed

    Nardin, Luis G; Miller, Craig R; Ridenhour, Benjamin J; Krone, Stephen M; Joyce, Paul; Baumgaertner, Bert O

    2016-01-01

    The spread of infectious diseases can be impacted by human behavior, and behavioral decisions often depend implicitly on a planning horizon-the time in the future over which options are weighed. We investigate the effects of planning horizons on epidemic dynamics. We developed an epidemiological agent-based model (along with an ODE analog) to explore the decision-making of self-interested individuals on adopting prophylactic behavior. The decision-making process incorporates prophylaxis efficacy and disease prevalence with the individuals' payoffs and planning horizon. Our results show that for short and long planning horizons individuals do not consider engaging in prophylactic behavior. In contrast, individuals adopt prophylactic behavior when considering intermediate planning horizons. Such adoption, however, is not always monotonically associated with the prevalence of the disease, depending on the perceived protection efficacy and the disease parameters. Adoption of prophylactic behavior reduces the epidemic peak size while prolonging the epidemic and potentially generates secondary waves of infection. These effects can be made stronger by increasing the behavioral decision frequency or distorting an individual's perceived risk of infection.

  8. Planning horizon affects prophylactic decision-making and epidemic dynamics

    PubMed Central

    Ridenhour, Benjamin J.; Krone, Stephen M.

    2016-01-01

    The spread of infectious diseases can be impacted by human behavior, and behavioral decisions often depend implicitly on a planning horizon—the time in the future over which options are weighed. We investigate the effects of planning horizons on epidemic dynamics. We developed an epidemiological agent-based model (along with an ODE analog) to explore the decision-making of self-interested individuals on adopting prophylactic behavior. The decision-making process incorporates prophylaxis efficacy and disease prevalence with the individuals’ payoffs and planning horizon. Our results show that for short and long planning horizons individuals do not consider engaging in prophylactic behavior. In contrast, individuals adopt prophylactic behavior when considering intermediate planning horizons. Such adoption, however, is not always monotonically associated with the prevalence of the disease, depending on the perceived protection efficacy and the disease parameters. Adoption of prophylactic behavior reduces the epidemic peak size while prolonging the epidemic and potentially generates secondary waves of infection. These effects can be made stronger by increasing the behavioral decision frequency or distorting an individual’s perceived risk of infection. PMID:27843714

  9. DPD simulation on the dynamics of a healthy and infected red blood cell in flow through a constricted channel

    NASA Astrophysics Data System (ADS)

    Hoque, Sazid Zamal; Anand, D. Vijay; Patnaik, B. S. V.

    2017-11-01

    The state of the red blood cell (either healthy or infected RBC) will influence its deformation dynamics. Since the pathological condition related to RBC, primarily originates from a single cell infection, therefore, it is important to relate the deformation dynamics to the mechanical properties (such as, bending rigidity and membrane elasticity). In the present study, numerical simulation of a healthy and malaria infected RBC in a constricted channel is analyzed. The flow simulations are carried out using finite sized dissipative particle dynamics (FDPD) method in conjunction with a discrete model that represents the membrane of the RBC. The numerical equivalent of optical tweezers test is validated against the experimental studies. Two different types of constrictions, viz., a converging-diverging type tapered channel and a stenosed microchannel are considered for the simulation. The effect of degree of constriction and the flow rate effect on the RBC is investigated. It was observed that, as the flow rate decreases, the infected RBC completely blocks the micro vessel. The transit time for infected cell drastically increases compared to healthy RBC. Our simulations indicate that, there is a critical flow rate below which infected RBC cannot pass through the micro capillary.

  10. 9 CFR 309.7 - Livestock affected with anthrax; cleaning and disinfection of infected livestock pens and driveways.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 2 2013-01-01 2013-01-01 false Livestock affected with anthrax... INSPECTION § 309.7 Livestock affected with anthrax; cleaning and disinfection of infected livestock pens and driveways. (a) Any livestock found on ante-mortem inspection to be affected with anthrax shall be identified...

  11. 9 CFR 309.7 - Livestock affected with anthrax; cleaning and disinfection of infected livestock pens and driveways.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 2 2014-01-01 2014-01-01 false Livestock affected with anthrax... INSPECTION § 309.7 Livestock affected with anthrax; cleaning and disinfection of infected livestock pens and driveways. (a) Any livestock found on ante-mortem inspection to be affected with anthrax shall be identified...

  12. 9 CFR 309.7 - Livestock affected with anthrax; cleaning and disinfection of infected livestock pens and driveways.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 2 2012-01-01 2012-01-01 false Livestock affected with anthrax... INSPECTION § 309.7 Livestock affected with anthrax; cleaning and disinfection of infected livestock pens and driveways. (a) Any livestock found on ante-mortem inspection to be affected with anthrax shall be identified...

  13. Does Leisure Time as a Stress Coping Resource Increase Affective Complexity? Applying the Dynamic Model of Affect (DMA)

    PubMed Central

    Qian, Xinyi (Lisa); Yarnal, Careen M.; Almeida, David M.

    2013-01-01

    Affective complexity, a manifestation of psychological well-being, refers to the relative independence between positive and negative affect (PA, NA). According to the Dynamic Model of Affect (DMA), stressful situations lead to highly inverse PA-NA relationship, reducing affective complexity. Meanwhile, positive events can sustain affective complexity by restoring PA-NA independence. Leisure, a type of positive events, has been identified as a coping resource. This study used the DMA to assess whether leisure time helps restore affective complexity on stressful days. We found that on days with more leisure time than usual, an individual experienced less negative PA-NA relationship after daily stressful events. The finding demonstrates the value of leisure time as a coping resource and the DMA’s contribution to coping research. PMID:24659826

  14. Does Leisure Time as a Stress Coping Resource Increase Affective Complexity? Applying the Dynamic Model of Affect (DMA).

    PubMed

    Qian, Xinyi Lisa; Yarnal, Careen M; Almeida, David M

    2013-01-01

    Affective complexity, a manifestation of psychological well-being, refers to the relative independence between positive and negative affect (PA, NA). According to the Dynamic Model of Affect (DMA), stressful situations lead to highly inverse PA-NA relationship, reducing affective complexity. Meanwhile, positive events can sustain affective complexity by restoring PA-NA independence. Leisure, a type of positive events, has been identified as a coping resource. This study used the DMA to assess whether leisure time helps restore affective complexity on stressful days. We found that on days with more leisure time than usual, an individual experienced less negative PA-NA relationship after daily stressful events. The finding demonstrates the value of leisure time as a coping resource and the DMA's contribution to coping research.

  15. The impact of personal experiences with infection and vaccination on behaviour-incidence dynamics of seasonal influenza.

    PubMed

    Wells, C R; Bauch, C T

    2012-08-01

    Personal experiences with past infection events, or perceived vaccine failures and complications, are known to drive vaccine uptake. We coupled a model of individual vaccinating decisions, influenced by these drivers, with a contact network model of influenza transmission dynamics. The impact of non-influenzal influenza-like illness (niILI) on decision-making was also incorporated: it was possible for individuals to mistake niILI for true influenza. Our objectives were to (1) evaluate the impact of personal experiences on vaccine coverage; (2) understand the impact of niILI on behaviour-incidence dynamics; (3) determine which factors influence vaccine coverage stability; and (4) determine whether vaccination strategies can become correlated on the network in the absence of social influence. We found that certain aspects of personal experience can significantly impact behaviour-incidence dynamics. For instance, longer term memory for past events had a strong stabilising effect on vaccine coverage dynamics, although it could either increase or decrease average vaccine coverage depending on whether memory of past infections or past vaccine failures dominated. When vaccine immunity wanes slowly, vaccine coverage is low and stable, and infection incidence is also very low, unless the effects of niILI are ignored. Strategy correlations can occur in the absence of imitation, on account of the neighbour-neighbour transmission of infection and history-dependent decision making. Finally, niILI weakens the behaviour-incidence coupling and therefore tends to stabilise dynamics, as well as breaking up strategy correlations. Behavioural feedbacks, and the quality of self-diagnosis of niILI, may need to be considered in future programs adopting "universal" flu vaccines conferring long-term immunity. Public health interventions that focus on reminding individuals about their previous influenza infections, as well as communicating facts about vaccine efficacy and the difference

  16. Intracellular hepatitis C modeling predicts infection dynamics and viral protein mechanisms

    DOE PAGES

    Aunins, Thomas R.; Marsh, Katherine M.; Subramanya, Gitanjali; ...

    2018-03-21

    Hepatitis C virus infection is a global health problem, with nearly 2 million new infections occurring every year and up to 85% of these becoming chronic infections that pose serious long-term health risks. To effectively reduce the prevalence of HCV infection and associated diseases, it is important to understand the intracellular dynamics of the viral lifecycle. Here, we present a detailed mathematical model that represents the full hepatitis C lifecycle. It is the first full HCV model to be fit to acute intracellular infection data and the first to explore the functions of distinct viral proteins, probing multiple hypotheses ofmore » cis- and trans-acting mechanisms to provide insights for drug targeting. Model parameters were derived from the literature, experiments, and fitting to experimental intracellular viral RNA, extracellular viral titer, and HCV core and NS3 protein kinetic data from viral inoculation to steady-state. Our model predicts faster rates for protein translation and polyprotein cleavage than previous replicon models and demonstrates that the processes of translation and synthesis of viral RNA have the most influence on the levels of the species we tracked in experiments. Overall, our experimental data and the resulting mathematical infection model reveal information about the regulation of core protein during infection, produce specific insights into the roles of the viral core, NS5A, and NS5B proteins, and demonstrate the sensitivities of viral proteins and RNA to distinct reactions within the lifecycle.« less

  17. Intracellular hepatitis C modeling predicts infection dynamics and viral protein mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aunins, Thomas R.; Marsh, Katherine M.; Subramanya, Gitanjali

    Hepatitis C virus infection is a global health problem, with nearly 2 million new infections occurring every year and up to 85% of these becoming chronic infections that pose serious long-term health risks. To effectively reduce the prevalence of HCV infection and associated diseases, it is important to understand the intracellular dynamics of the viral lifecycle. Here, we present a detailed mathematical model that represents the full hepatitis C lifecycle. It is the first full HCV model to be fit to acute intracellular infection data and the first to explore the functions of distinct viral proteins, probing multiple hypotheses ofmore » cis- and trans-acting mechanisms to provide insights for drug targeting. Model parameters were derived from the literature, experiments, and fitting to experimental intracellular viral RNA, extracellular viral titer, and HCV core and NS3 protein kinetic data from viral inoculation to steady-state. Our model predicts faster rates for protein translation and polyprotein cleavage than previous replicon models and demonstrates that the processes of translation and synthesis of viral RNA have the most influence on the levels of the species we tracked in experiments. Overall, our experimental data and the resulting mathematical infection model reveal information about the regulation of core protein during infection, produce specific insights into the roles of the viral core, NS5A, and NS5B proteins, and demonstrate the sensitivities of viral proteins and RNA to distinct reactions within the lifecycle.« less

  18. Dynamics of Simian Immunodeficiency Virus SIVmac239 Infection in Pigtail Macaques

    PubMed Central

    Klatt, Nichole R.; Canary, Lauren A.; Vanderford, Thomas H.; Vinton, Carol L.; Engram, Jessica C.; Dunham, Richard M.; Cronise, Heather E.; Swerczek, Joanna M.; Lafont, Bernard A. P.; Picker, Louis J.; Silvestri, Guido

    2012-01-01

    Pigtail macaques (PTM) are an excellent model for HIV research; however, the dynamics of simian immunodeficiency virus (SIV) SIVmac239 infection in PTM have not been fully evaluated. We studied nine PTM prior to infection, during acute and chronic SIVmac239 infections, until progression to AIDS. We found PTM manifest clinical AIDS more rapidly than rhesus macaques (RM), as AIDS-defining events occurred at an average of 42.17 weeks after infection in PTM compared to 69.56 weeks in RM (P = 0.0018). However, increased SIV progression was not associated with increased viremia, as both peak and set-point plasma viremias were similar between PTM and RM (P = 0.7953 and P = 0.1006, respectively). Moreover, this increased disease progression was not associated with rapid CD4+ T cell depletion, as CD4+ T cell decline resembled other SIV/human immunodeficiency virus (HIV) models. Since immune activation is the best predictor of disease progression during HIV infection, we analyzed immune activation by turnover of T cells by BrdU decay and Ki67 expression. We found increased levels of turnover prior to SIV infection of PTM compared to that observed with RM, which may contribute to their increased disease progression rate. These data evaluate the kinetics of SIVmac239-induced disease progression and highlight PTM as a model for HIV infection and the importance of immune activation in SIV disease progression. PMID:22090099

  19. Dynamics of simian immunodeficiency virus SIVmac239 infection in pigtail macaques.

    PubMed

    Klatt, Nichole R; Canary, Lauren A; Vanderford, Thomas H; Vinton, Carol L; Engram, Jessica C; Dunham, Richard M; Cronise, Heather E; Swerczek, Joanna M; Lafont, Bernard A P; Picker, Louis J; Silvestri, Guido; Brenchley, Jason M

    2012-01-01

    Pigtail macaques (PTM) are an excellent model for HIV research; however, the dynamics of simian immunodeficiency virus (SIV) SIVmac239 infection in PTM have not been fully evaluated. We studied nine PTM prior to infection, during acute and chronic SIVmac239 infections, until progression to AIDS. We found PTM manifest clinical AIDS more rapidly than rhesus macaques (RM), as AIDS-defining events occurred at an average of 42.17 weeks after infection in PTM compared to 69.56 weeks in RM (P = 0.0018). However, increased SIV progression was not associated with increased viremia, as both peak and set-point plasma viremias were similar between PTM and RM (P = 0.7953 and P = 0.1006, respectively). Moreover, this increased disease progression was not associated with rapid CD4(+) T cell depletion, as CD4(+) T cell decline resembled other SIV/human immunodeficiency virus (HIV) models. Since immune activation is the best predictor of disease progression during HIV infection, we analyzed immune activation by turnover of T cells by BrdU decay and Ki67 expression. We found increased levels of turnover prior to SIV infection of PTM compared to that observed with RM, which may contribute to their increased disease progression rate. These data evaluate the kinetics of SIVmac239-induced disease progression and highlight PTM as a model for HIV infection and the importance of immune activation in SIV disease progression.

  20. Priming semantic concepts affects the dynamics of aesthetic appreciation.

    PubMed

    Faerber, Stella J; Leder, Helmut; Gerger, Gernot; Carbon, Claus-Christian

    2010-10-01

    Aesthetic appreciation (AA) plays an important role for purchase decisions, for the appreciation of art and even for the selection of potential mates. It is known that AA is highly reliable in single assessments, but over longer periods of time dynamic changes of AA may occur. We measured AA as a construct derived from the literature through attractiveness, arousal, interestingness, valence, boredom and innovativeness. By means of the semantic network theory we investigated how the priming of AA-relevant semantic concepts impacts the dynamics of AA of unfamiliar product designs (car interiors) that are known to be susceptible to triggering such effects. When participants were primed for innovativeness, strong dynamics were observed, especially when the priming involved additional AA-relevant dimensions. This underlines the relevance of priming of specific semantic networks not only for the cognitive processing of visual material in terms of selective perception or specific representation, but also for the affective-cognitive processing in terms of the dynamics of aesthetic processing. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Mycoplasma orale infection affects K+ and Cl- currents in the HSG salivary gland cell line.

    PubMed

    Izutsu, K T; Fatherazi, S; Belton, C M; Oda, D; Cartwright, F D; Kenny, G E

    1996-06-01

    The relations between K+ channel and Cl- channel currents and mycoplasma infection status were studied longitudinally in HSG cells, a human submandibular gland cell line. The K+ channel currents were disrupted by the occurrence of mycoplasma infection: muscarinic activation of K+ channels and K+ channel expression as estimated by ionomycin- or hypotonically induced K+ current responses were all decreased. Similar decreases in ionomycin- and hypotonically induced responses were observed for Cl- channels, but only the latter decrease was statistically significant. Also, Cl- currents could be elicited more frequently than K+ currents (63% of cases versus 0%) in infected cells when tested by exposure to hypotonic media, indicating that mycoplasma infection affects K+ channels relatively more than Cl- channels. These changes occurred in the originally infected cells, were ameliorated when the infection was cleared with sparfloxacin, and recurred when the cells were reinfected. Such changes would be expected to result in hyposecretion of salivary fluid if they occurred in vivo.

  2. A note on the effects of replenishment of depleted cells on HIV infection dynamics: A graph-theoretic approach

    NASA Astrophysics Data System (ADS)

    Mukwembi, Simon

    2008-02-01

    We study the effects of the rate of replacement of dead cells by either healthy cells or by infected cells on HIV infection dynamics through a graph-theoretic approach. Our framework takes into account a reasonable amount of the immune action to any pathogen and the local cell interactions that occur in the lymph nodes. Our results, in an extremal case where dead cells are highly likely to be replaced by healthy cells, show that all cells become healthy in a finite number of steps of given order and infection stops propagating. Further, for this extremal case, we give an algebraic formula for the number of infected cells at any given time in the HIV progression. We also find a sufficient condition, determined by dead cell replacement rate, which guarantees that an infected patient is continually positive, and give bounds on the number of infected, healthy and dead cells at any given time. We apply our theoretical results to a recently proposed model of the HIV infection dynamics.

  3. Chronic hepatitis B infection and HBV DNA-containing capsids: Modeling and analysis

    NASA Astrophysics Data System (ADS)

    Manna, Kalyan; Chakrabarty, Siddhartha P.

    2015-05-01

    We analyze the dynamics of chronic HBV infection taking into account both uninfected and infected hepatocytes along with the intracellular HBV DNA-containing capsids and the virions. While previous HBV models have included either the uninfected hepatocytes or the intracellular HBV DNA-containing capsids, our model accounts for both these two populations. We prove the conditions for local and global stability of both the uninfected and infected steady states in terms of the basic reproduction number. Further, we incorporate a time lag in the model to encompass the intracellular delay in the production of the infected hepatocytes and find that this delay does not affect the overall dynamics of the system. The results for the model and the delay model are finally numerically illustrated.

  4. Review: Prevalence and dynamics of Helicobacter pylori infection during childhood.

    PubMed

    Zabala Torrres, Beatriz; Lucero, Yalda; Lagomarcino, Anne J; Orellana-Manzano, Andrea; George, Sergio; Torres, Juan P; O'Ryan, Miguel

    2017-10-01

    Long-term persistent Helicobacter pylori infection has been associated with ulceropeptic disease and gastric cancer. Although H. pylori is predominantly acquired early in life, a clear understanding of infection dynamics during childhood has been obfuscated by the diversity of populations evaluated, study designs, and methods used. Update understanding of true prevalence of H. pylori infection during childhood, based on a critical analysis of the literature published in the past 5 years. Comprehensive review and meta-analysis of original studies published from 2011 to 2016. A MEDLINE ® /PubMed ® search on May 1, 2016, using the terms pylori and children, and subsequent exclusion, based on abstract review using predefined criteria, resulted in 261 citations. An Embase ® search with the same criteria added an additional 8 citations. In healthy children, meta-analysis estimated an overall seroprevalence rate of 33% (95% CI: 27%-38%). Seven healthy cohort studies using noninvasive direct detection methods showed infection prevalence estimates ranging from 20% to 50% in children ≤5 and 38% to 79% in children >5 years. The probability of infection persistence after a first positive sample ranged from 49% to 95%. Model estimates of cross-sectional direct detection studies in asymptomatic children indicated a prevalence of 37% (95% CI: 30%-44%). Seroprevalence, but not direct detection rates increased with age; both decreased with increasing income. The model estimate based on cross-sectional studies in symptomatic children was 39% (95% CI: 35%-43%). The prevalence of H. pylori infection varied widely in the studies included here; nevertheless, model estimates by detection type were similar, suggesting that overall, one-third of children worldwide are or have been infected. The few cohort and longitudinal studies available show variability, but most studies, show infection rates over 30%. Rather surprisingly, overall infection prevalence in symptomatic children

  5. A multiscale model on hospital infections coupling macro and micro dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Xia; Tang, Sanyi

    2017-09-01

    A multiscale model of hospital infections coupling the micro model of the growth of bacteria and the macro model describing the transmission of the bacteria among patients and health care workers (HCWs) was established to investigate the effects of antibiotic treatment on the transmission of the bacteria among patients and HCWs. The model was formulated by viewing the transmission rate from infected patients to HCWs and the shedding rate of bacteria from infected patients to the environment as saturated functions of the within-host bacterial load. The equilibria and the basic reproduction number of the coupled system were studied, and the global dynamics of the disease free equilibrium and the endemic equilibrium were analyzed in detail by constructing two Lyapunov functions. Furthermore, effects of drug treatment in the within-host model on the basic reproduction number and the dynamics of the coupled model were studied by coupling a pharmacokinetics model with the within-host model. Sensitive analysis indicated that the growth rate of the bacteria, the maximum drug effect and the dosing interval are the three most sensitive parameters contributing to the basic reproduction number. Thus, adopting ;wonder; drugs to decrease the growth rate of the bacteria or to increase the drug's effect is the most effective measure but changing the dosage regime is also effective. A quantitative criterion of how to choose the best dosage regimen can also be obtained from numerical results.

  6. Leishmania infection inhibits macrophage motility by altering F-actin dynamics and the expression of adhesion complex proteins.

    PubMed

    de Menezes, Juliana Perrone Bezerra; Koushik, Amrita; Das, Satarupa; Guven, Can; Siegel, Ariel; Laranjeira-Silva, Maria Fernanda; Losert, Wolfgang; Andrews, Norma W

    2017-03-01

    Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self-healing skin lesions to fatal visceralizing disease. As the host cells of choice for all species of Leishmania, macrophages are critical for the establishment of infections. How macrophages contribute to parasite homing to specific tissues and how parasites modulate macrophage function are still poorly understood. In this study, we show that Leishmania amazonensis infection inhibits macrophage roaming motility. The reduction in macrophage speed is not dependent on particle load or on factors released by infected macrophages. L. amazonensis-infected macrophages also show reduced directional migration in response to the chemokine MCP-1. We found that infected macrophages have lower levels of total paxillin, phosphorylated paxillin, and phosphorylated focal adhesion kinase when compared to noninfected macrophages, indicating abnormalities in the formation of signaling adhesion complexes that regulate motility. Analysis of the dynamics of actin polymerization at peripheral sites also revealed a markedly enhanced F-actin turnover frequency in L. amazonensis-infected macrophages. Thus, Leishmania infection inhibits macrophage motility by altering actin dynamics and impairing the expression of proteins that function in plasma membrane-extracellular matrix interactions. © 2016 John Wiley & Sons Ltd.

  7. Impact of external sources of infection on the dynamics of bovine tuberculosis in modelled badger populations.

    PubMed

    Hardstaff, Joanne L; Bulling, Mark T; Marion, Glenn; Hutchings, Michael R; White, Piran C L

    2012-06-27

    The persistence of bovine TB (bTB) in various countries throughout the world is enhanced by the existence of wildlife hosts for the infection. In Britain and Ireland, the principal wildlife host for bTB is the badger (Meles meles). The objective of our study was to examine the dynamics of bTB in badgers in relation to both badger-derived infection from within the population and externally-derived, trickle-type, infection, such as could occur from other species or environmental sources, using a spatial stochastic simulation model. The presence of external sources of infection can increase mean prevalence and reduce the threshold group size for disease persistence. Above the threshold equilibrium group size of 6-8 individuals predicted by the model for bTB persistence in badgers based on internal infection alone, external sources of infection have relatively little impact on the persistence or level of disease. However, within a critical range of group sizes just below this threshold level, external infection becomes much more important in determining disease dynamics. Within this critical range, external infection increases the ratio of intra- to inter-group infections due to the greater probability of external infections entering fully-susceptible groups. The effect is to enable bTB persistence and increase bTB prevalence in badger populations which would not be able to maintain bTB based on internal infection alone. External sources of bTB infection can contribute to the persistence of bTB in badger populations. In high-density badger populations, internal badger-derived infections occur at a sufficient rate that the additional effect of external sources in exacerbating disease is minimal. However, in lower-density populations, external sources of infection are much more important in enhancing bTB prevalence and persistence. In such circumstances, it is particularly important that control strategies to reduce bTB in badgers include efforts to minimise such

  8. Impact of external sources of infection on the dynamics of bovine tuberculosis in modelled badger populations

    PubMed Central

    2012-01-01

    Background The persistence of bovine TB (bTB) in various countries throughout the world is enhanced by the existence of wildlife hosts for the infection. In Britain and Ireland, the principal wildlife host for bTB is the badger (Meles meles). The objective of our study was to examine the dynamics of bTB in badgers in relation to both badger-derived infection from within the population and externally-derived, trickle-type, infection, such as could occur from other species or environmental sources, using a spatial stochastic simulation model. Results The presence of external sources of infection can increase mean prevalence and reduce the threshold group size for disease persistence. Above the threshold equilibrium group size of 6–8 individuals predicted by the model for bTB persistence in badgers based on internal infection alone, external sources of infection have relatively little impact on the persistence or level of disease. However, within a critical range of group sizes just below this threshold level, external infection becomes much more important in determining disease dynamics. Within this critical range, external infection increases the ratio of intra- to inter-group infections due to the greater probability of external infections entering fully-susceptible groups. The effect is to enable bTB persistence and increase bTB prevalence in badger populations which would not be able to maintain bTB based on internal infection alone. Conclusions External sources of bTB infection can contribute to the persistence of bTB in badger populations. In high-density badger populations, internal badger-derived infections occur at a sufficient rate that the additional effect of external sources in exacerbating disease is minimal. However, in lower-density populations, external sources of infection are much more important in enhancing bTB prevalence and persistence. In such circumstances, it is particularly important that control strategies to reduce bTB in badgers include

  9. Dynamic sex roles among men who have sex with men and transmissions from primary HIV infection.

    PubMed

    Alam, Shah Jamal; Romero-Severson, Ethan; Kim, Jong-Hoon; Emond, Gilbert; Koopman, James S

    2010-09-01

    Previous studies estimating the fraction of transmissions from persons with primary HIV have not focused on the effects of switching sex role in male homosexual populations. Such behavioral fluctuations can increase the contribution of primary HIV in the overall population. We modeled HIV transmission with 8 compartments defined by 4 behavioral groups, with different anal-insertive and anal-receptive combinations, and 2 stages of infection. We explored the effects of fluctuating behavioral categories on endemic prevalence and the fraction of transmissions from primary HIV. We varied transition rates to develop the theory on how behavioral fluctuation affects infection patterns, and we used the transition rates in a Netherlands cohort to assess overall effects in a real setting. The dynamics of change in behavior-group status over time observed in the Netherlands cohort amplifies the prevalence of infection and the fraction of transmissions from primary HIV, resulting in the highest proportions of transmissions being from people with primary HIV. Fluctuation between dual- or receptive-role periods and no-anal-sex periods mainly determines this amplification. In terms of the total transmissions, the dual-role risk group is dominant. Fluctuation between insertive and receptive roles decreases the fraction of transmissions from primary HIV, but such fluctuation is infrequently observed. The fraction of transmissions from primary HIV is considerably raised by fluctuations in insertive and receptive anal sex behaviors. This increase occurs even when primary HIV or later infection status does not influence risk behavior. Thus, it is not simply biology but also behavior patterns and social contexts that determine the fraction of transmissions from primary HIV. Moreover, each primary HIV transmission has a larger population effect than each later infection transmission because the men to whom one transmits from primary HIV carry on more chains of transmissions than the men

  10. Skin disorders affecting human immunodeficiency virus-infected children living in an orphanage in Ethiopia.

    PubMed

    Doni, S N; Mitchell, A L; Bogale, Y; Walker, S L

    2012-01-01

    Skin disorders are common in children in Ethiopia, and it is estimated that 92,000 Ethiopian children are infected with human immunodeficiency virus (HIV). HIV infection increases the prevalence of cutaneous disease, but the effect of antiretroviral therapy (ART) on the pattern of skin disease affecting children in sub-Saharan Africa (SSA) is unclear. To assess the prevalence and nature of skin disorders in HIV-infected children living in a dedicated orphanage in Addis Ababa, Ethiopia. Two dermatologists performed a clinical examination, including the skin, hair, nails and oral cavity of all the residents of an orphanage in Addis Ababa. The examiners knew that all the children were infected with HIV, but did not know their treatment or immune status. Diagnoses were made clinically and recorded anonymously, and treatment recommendations were made. Details of the children's treatment and CD4 lymphocyte counts were obtained after the examination had been completed. In total, 84 children [53 male (63%); 31 female (37%); median age 10 years] were examined. Of the 84 children, 57 (68%) were on ART, with 51 (61%) of these on cotrimoxazole prophylaxis. The median CD4 percentage was 27.1%. There were 66 children (79%) with at least one skin disorder; 21 of these had two disorders and 6 had three disorders. The commonest diagnosis was tinea capitis, affecting 39% of children. The other common diagnoses were: molluscum contagiosum (MC) (21%), verruca vulgaris (13%), plane warts (8%) and seborrhoeic dermatitis (7%). There was no significant difference in the prevalence of skin disease between children receiving ART and those who were not. Children with MC had significantly lower recent CD4 counts than children who did not have skin disease. Skin disorders in this population were very common, and the disorders identified were those that commonly affect children without HIV in Ethiopia. However, MC and plane warts appeared to have a higher frequency than would be expected in

  11. Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus

    PubMed Central

    Bolling, Bethany G.; Olea-Popelka, Francisco J.; Eisen, Lars; Moore, Chester G.; Blair, Carol D.

    2012-01-01

    We established a laboratory colony of Culex pipiens mosquitoes from eggs collected in Colorado and discovered that mosquitoes in the colony are naturally infected with Culex flavivirus (CxFV), an insect-specific flavivirus. In this study we examined transmission dynamics of CxFV and effects of persistent CxFV infection on vector competence for West Nile virus (WNV). We found that vertical transmission is the primary mechanism for persistence of CxFV in Cx. pipiens, with venereal transmission potentially playing a minor role. Vector competence experiments indicated possible early suppression of WNV replication by persistent CxFV infection in Cx. pipiens. This is the first description of insect-specific flavivirus transmission dynamics in a naturally infected mosquito colony and the observation of delayed dissemination of superinfecting WNV suggests that the presence of CxFV may impact the intensity of enzootic transmission of WNV and the risk of human exposure to this important pathogen. PMID:22425062

  12. Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus.

    PubMed

    Bolling, Bethany G; Olea-Popelka, Francisco J; Eisen, Lars; Moore, Chester G; Blair, Carol D

    2012-06-05

    We established a laboratory colony of Culex pipiens mosquitoes from eggs collected in Colorado and discovered that mosquitoes in the colony are naturally infected with Culex flavivirus (CxFV), an insect-specific flavivirus. In this study we examined transmission dynamics of CxFV and effects of persistent CxFV infection on vector competence for West Nile virus (WNV). We found that vertical transmission is the primary mechanism for persistence of CxFV in Cx. pipiens, with venereal transmission potentially playing a minor role. Vector competence experiments indicated possible early suppression of WNV replication by persistent CxFV infection in Cx. pipiens. This is the first description of insect-specific flavivirus transmission dynamics in a naturally infected mosquito colony and the observation of delayed dissemination of superinfecting WNV suggests that the presence of CxFV may impact the intensity of enzootic transmission of WNV and the risk of human exposure to this important pathogen. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Form of an evolutionary tradeoff affects eco-evolutionary dynamics in a predator-prey system.

    PubMed

    Kasada, Minoru; Yamamichi, Masato; Yoshida, Takehito

    2014-11-11

    Evolution on a time scale similar to ecological dynamics has been increasingly recognized for the last three decades. Selection mediated by ecological interactions can change heritable phenotypic variation (i.e., evolution), and evolution of traits, in turn, can affect ecological interactions. Hence, ecological and evolutionary dynamics can be tightly linked and important to predict future dynamics, but our understanding of eco-evolutionary dynamics is still in its infancy and there is a significant gap between theoretical predictions and empirical tests. Empirical studies have demonstrated that the presence of genetic variation can dramatically change ecological dynamics, whereas theoretical studies predict that eco-evolutionary dynamics depend on the details of the genetic variation, such as the form of a tradeoff among genotypes, which can be more important than the presence or absence of the genetic variation. Using a predator-prey (rotifer-algal) experimental system in laboratory microcosms, we studied how different forms of a tradeoff between prey defense and growth affect eco-evolutionary dynamics. Our experimental results show for the first time to our knowledge that different forms of the tradeoff produce remarkably divergent eco-evolutionary dynamics, including near fixation, near extinction, and coexistence of algal genotypes, with quantitatively different population dynamics. A mathematical model, parameterized from completely independent experiments, explains the observed dynamics. The results suggest that knowing the details of heritable trait variation and covariation within a population is essential for understanding how evolution and ecology will interact and what form of eco-evolutionary dynamics will result.

  14. Cumulative Psychosocial Risk is a Salient Predictor of Depressive Symptoms among Vertically HIV-Infected and HIV-Affected Adolescents at the Kenyan Coast.

    PubMed

    Abubakar, Amina; Van de Vijver, Fons J R; Hassan, Amin S; Fischer, Ronald; Nyongesa, Moses K; Kabunda, Beatrice; Berkley, James A; Stein, Alan; Newton, Charles R

    Little is known of mental health outcomes among vertically HIV-infected or HIV-affected adolescents in Africa. The current study set out to describe depressive symptoms and their correlates among vertically HIV-infected and HIV-affected adolescents at the Kenyan Coast. 130 adolescents (vertically HIV-infected [n = 44], HIV-affected [n = 53], and unexposed [n = 33]) and their caregivers participated in this cross-sectional study. An adapted version of the Beck Depression Inventory-11 (BDI) was administered to examine depressive symptoms in both adolescents and caregivers, together with measures of sociodemographic, medical, and anthropometric characteristics. Our analysis indicated a main effect of HIV status on mean BDI scores in HIV-infected (18.4 [SD = 8.3) and HIV-affected (16.8 [SD = 7.3]) adolescents compared to the community controls (12.0 [SD = 7.9]), F (2, 127) = 6.704, P = .002, η 2  = .095. Post hoc analysis showed that BDI scores of HIV-infected adolescents were higher than those of community controls (P < .001). Similarly, HIV-affected adolescents had BDI scores that were higher than those of community controls (P = .007). However, there was no difference in BDI scores between HIV-infected and HIV-affected adolescents (P = .304). A path analytic model indicated that cumulative psychosocial risk (orphanhood, family poverty, and caregiver depressive symptoms) were positive predictors of BDI scores among adolescents, while nutritional status had a limited role. Both HIV-infected and HIV-affected adolescents are at a high risk of experiencing depressive symptoms, largely due to the multiple psychosocial risk factors in their environment. The provision of adequate psychosocial support and counseling needs to become an integral part of the care program for adolescents from families living with HIV/AIDS at the Kenyan coast and other similar settings. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. A viral deubiquitylating enzyme targets viral RNA-dependent RNA polymerase and affects viral infectivity

    PubMed Central

    Chenon, Mélanie; Camborde, Laurent; Cheminant, Soizic; Jupin, Isabelle

    2012-01-01

    Selective protein degradation via the ubiquitin-proteasome system (UPS) plays an essential role in many major cellular processes, including host–pathogen interactions. We previously reported that the tightly regulated viral RNA-dependent RNA polymerase (RdRp) of the positive-strand RNA virus Turnip yellow mosaic virus (TYMV) is degraded by the UPS in infected cells, a process that affects viral infectivity. Here, we show that the TYMV 98K replication protein can counteract this degradation process thanks to its proteinase domain. In-vitro assays revealed that the recombinant proteinase domain is a functional ovarian tumour (OTU)-like deubiquitylating enzyme (DUB), as is the 98K produced during viral infection. We also demonstrate that 98K mediates in-vivo deubiquitylation of TYMV RdRp protein—its binding partner within replication complexes—leading to its stabilization. Finally, we show that this DUB activity contributes to viral infectivity in plant cells. The identification of viral RdRp as a specific substrate of the viral DUB enzyme thus reveals the intricate interplay between ubiquitylation, deubiquitylation and the interaction between viral proteins in controlling levels of RdRp and viral infectivity. PMID:22117220

  16. Dairy goat demography and Q fever infection dynamics

    PubMed Central

    2013-01-01

    Between 2007 and 2009, the largest human Q fever epidemic ever described occurred in the Netherlands. The source was traced back to dairy goat farms, where abortion storms had been observed since 2005. Since one putative cause of these abortion storms is the intensive husbandry systems in which the goats are kept, the objective of this study was to assess whether these could be explained by herd size, reproductive pattern and other demographic aspects of Dutch dairy goat herds alone. We adapted an existing, fully parameterized simulation model for Q fever transmission in French dairy cattle herds to represent the demographics typical for Dutch dairy goat herds. The original model represents the infection dynamics in a herd of 50 dairy cows after introduction of a single infected animal; the adapted model has 770 dairy goats. For a full comparison, herds of 770 cows and 50 goats were also modeled. The effects of herd size and goat versus cattle demographics on the probability of and time to extinction of the infection, environmental bacterial load and abortion rate were studied by simulation. The abortion storms could not be fully explained by demographics alone. Adequate data were lacking at the moment to attribute the difference to characteristics of the pathogen, host, within-herd environment, or a combination thereof. The probability of extinction was higher in goat herds than in cattle herds of the same size. The environmental contamination was highest within cattle herds, which may be taken into account when enlarging cattle farming systems. PMID:23621908

  17. Dairy goat demography and Q fever infection dynamics.

    PubMed

    Hogerwerf, Lenny; Courcoul, Aurélie; Klinkenberg, Don; Beaudeau, François; Vergu, Elisabeta; Nielen, Mirjam

    2013-04-26

    Between 2007 and 2009, the largest human Q fever epidemic ever described occurred in the Netherlands. The source was traced back to dairy goat farms, where abortion storms had been observed since 2005. Since one putative cause of these abortion storms is the intensive husbandry systems in which the goats are kept, the objective of this study was to assess whether these could be explained by herd size, reproductive pattern and other demographic aspects of Dutch dairy goat herds alone. We adapted an existing, fully parameterized simulation model for Q fever transmission in French dairy cattle herds to represent the demographics typical for Dutch dairy goat herds. The original model represents the infection dynamics in a herd of 50 dairy cows after introduction of a single infected animal; the adapted model has 770 dairy goats. For a full comparison, herds of 770 cows and 50 goats were also modeled. The effects of herd size and goat versus cattle demographics on the probability of and time to extinction of the infection, environmental bacterial load and abortion rate were studied by simulation. The abortion storms could not be fully explained by demographics alone. Adequate data were lacking at the moment to attribute the difference to characteristics of the pathogen, host, within-herd environment, or a combination thereof. The probability of extinction was higher in goat herds than in cattle herds of the same size. The environmental contamination was highest within cattle herds, which may be taken into account when enlarging cattle farming systems.

  18. Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite

    NASA Technical Reports Server (NTRS)

    Gullahorn, G. E.

    1985-01-01

    Work performed as part of an investigation of noise affecting instrumentation in a tethered subsatellite, was studied. The following specific topics were addressed during the reporting period: a method for stabilizing the subsatellite against the rotational effects of atmospheric perturbation was developed; a variety of analytic studies of tether dynamics aimed at elucidating dynamic noise processes were performed; a novel mechanism for coupling longitudinal and latitudinal oscillations of the tether was discovered, and random vibration analysis for modeling the tethered subsatellite under atmospheric perturbation were studied.

  19. Genetic and Dietary Iron Overload Differentially Affect the Course of Salmonella Typhimurium Infection

    PubMed Central

    Nairz, Manfred; Schroll, Andrea; Haschka, David; Dichtl, Stefanie; Tymoszuk, Piotr; Demetz, Egon; Moser, Patrizia; Haas, Hubertus; Fang, Ferric C.; Theurl, Igor; Weiss, Günter

    2017-01-01

    Genetic and dietary forms of iron overload have distinctive clinical and pathophysiological features. HFE-associated hereditary hemochromatosis is characterized by overwhelming intestinal iron absorption, parenchymal iron deposition, and macrophage iron depletion. In contrast, excessive dietary iron intake results in iron deposition in macrophages. However, the functional consequences of genetic and dietary iron overload for the control of microbes are incompletely understood. Using Hfe+/+ and Hfe−/− mice in combination with oral iron overload in a model of Salmonella enterica serovar Typhimurium infection, we found animals of either genotype to induce hepcidin antimicrobial peptide expression and hypoferremia following systemic infection in an Hfe-independent manner. As predicted, Hfe−/− mice, a model of hereditary hemochromatosis, displayed reduced spleen iron content, which translated into improved control of Salmonella replication. Salmonella adapted to the iron-poor microenvironment in the spleens of Hfe−/− mice by inducing the expression of its siderophore iron-uptake machinery. Dietary iron loading resulted in higher bacterial numbers in both WT and Hfe−/− mice, although Hfe deficiency still resulted in better pathogen control and improved survival. This suggests that Hfe deficiency may exert protective effects in addition to the control of iron availability for intracellular bacteria. Our data show that a dynamic adaptation of iron metabolism in both immune cells and microbes shapes the host-pathogen interaction in the setting of systemic Salmonella infection. Moreover, Hfe-associated iron overload and dietary iron excess result in different outcomes in infection, indicating that tissue and cellular iron distribution determines the susceptibility to infection with specific pathogens. PMID:28443246

  20. Analysis of stationary and dynamic factors affecting highway accident occurrence: A dynamic correlated grouped random parameters binary logit approach.

    PubMed

    Fountas, Grigorios; Sarwar, Md Tawfiq; Anastasopoulos, Panagiotis Ch; Blatt, Alan; Majka, Kevin

    2018-04-01

    Traditional accident analysis typically explores non-time-varying (stationary) factors that affect accident occurrence on roadway segments. However, the impact of time-varying (dynamic) factors is not thoroughly investigated. This paper seeks to simultaneously identify pre-crash stationary and dynamic factors of accident occurrence, while accounting for unobserved heterogeneity. Using highly disaggregate information for the potential dynamic factors, and aggregate data for the traditional stationary elements, a dynamic binary random parameters (mixed) logit framework is employed. With this approach, the dynamic nature of weather-related, and driving- and pavement-condition information is jointly investigated with traditional roadway geometric and traffic characteristics. To additionally account for the combined effect of the dynamic and stationary factors on the accident occurrence, the developed random parameters logit framework allows for possible correlations among the random parameters. The analysis is based on crash and non-crash observations between 2011 and 2013, drawn from urban and rural highway segments in the state of Washington. The findings show that the proposed methodological framework can account for both stationary and dynamic factors affecting accident occurrence probabilities, for panel effects, for unobserved heterogeneity through the use of random parameters, and for possible correlation among the latter. The comparative evaluation among the correlated grouped random parameters, the uncorrelated random parameters logit models, and their fixed parameters logit counterpart, demonstrate the potential of the random parameters modeling, in general, and the benefits of the correlated grouped random parameters approach, specifically, in terms of statistical fit and explanatory power. Published by Elsevier Ltd.

  1. Advancing understanding of affect labeling with dynamic causal modeling

    PubMed Central

    Torrisi, Salvatore J.; Lieberman, Matthew D.; Bookheimer, Susan Y.; Altshuler, Lori L.

    2013-01-01

    Mechanistic understandings of forms of incidental emotion regulation have implications for basic and translational research in the affective sciences. In this study we applied Dynamic Causal Modeling (DCM) for fMRI to a common paradigm of labeling facial affect to elucidate prefrontal to subcortical influences. Four brain regions were used to model affect labeling, including right ventrolateral prefrontal cortex (vlPFC), amygdala and Broca’s area. 64 models were compared, for each of 45 healthy subjects. Family level inference split the model space to a likely driving input and Bayesian Model Selection within the winning family of 32 models revealed a strong pattern of endogenous network connectivity. Modulatory effects of labeling were most prominently observed following Bayesian Model Averaging, with the dampening influence on amygdala originating from Broca’s area but much more strongly from right vlPFC. These results solidify and extend previous correlation and regression-based estimations of negative corticolimbic coupling. PMID:23774393

  2. Application of optimal control strategies to HIV-malaria co-infection dynamics

    NASA Astrophysics Data System (ADS)

    Fatmawati; Windarto; Hanif, Lathifah

    2018-03-01

    This paper presents a mathematical model of HIV and malaria co-infection transmission dynamics. Optimal control strategies such as malaria preventive, anti-malaria and antiretroviral (ARV) treatments are considered into the model to reduce the co-infection. First, we studied the existence and stability of equilibria of the presented model without control variables. The model has four equilibria, namely the disease-free equilibrium, the HIV endemic equilibrium, the malaria endemic equilibrium, and the co-infection equilibrium. We also obtain two basic reproduction ratios corresponding to the diseases. It was found that the disease-free equilibrium is locally asymptotically stable whenever their respective basic reproduction numbers are less than one. We also conducted a sensitivity analysis to determine the dominant factor controlling the transmission. sic reproduction numbers are less than one. We also conducted a sensitivity analysis to determine the dominant factor controlling the transmission. Then, the optimal control theory for the model was derived analytically by using Pontryagin Maximum Principle. Numerical simulations of the optimal control strategies are also performed to illustrate the results. From the numerical results, we conclude that the best strategy is to combine the malaria prevention and ARV treatments in order to reduce malaria and HIV co-infection populations.

  3. Age Deficits in Facial Affect Recognition: The Influence of Dynamic Cues.

    PubMed

    Grainger, Sarah A; Henry, Julie D; Phillips, Louise H; Vanman, Eric J; Allen, Roy

    2017-07-01

    Older adults have difficulties in identifying most facial expressions of emotion. However, most aging studies have presented static photographs of intense expressions, whereas in everyday experience people see emotions that develop and change. The present study was designed to assess whether age-related difficulties with emotion recognition are reduced when more ecologically valid (i.e., dynamic) stimuli are used. We examined the effect of stimuli format (i.e., static vs. dynamic) on facial affect recognition in two separate studies that included independent samples and distinct stimuli sets. In addition to younger and older participants, a middle-aged group was included in Study 1 and eye gaze patterns were assessed in Study 2. Across both studies, older adults performed worse than younger adults on measures of facial affect recognition. In Study 1, older and-middle aged adults benefited from dynamic stimuli, but only when the emotional displays were subtle. Younger adults gazed more at the eye region of the face relative to older adults (Study 2), but dynamic presentation increased attention towards the eye region for younger adults only. Together, these studies provide important and novel insights into the specific circumstances in which older adults may be expected to experience difficulties in perceiving facial emotions. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Cellular automata approach for the dynamics of HIV infection under antiretroviral therapies: The role of the virus diffusion

    NASA Astrophysics Data System (ADS)

    González, Ramón E. R.; de Figueirêdo, Pedro Hugo; Coutinho, Sérgio

    2013-10-01

    We study a cellular automata model to test the timing of antiretroviral therapy strategies for the dynamics of infection with human immunodeficiency virus (HIV). We focus on the role of virus diffusion when its population is included in previous cellular automata model that describes the dynamics of the lymphocytes cells population during infection. This inclusion allows us to consider the spread of infection by the virus-cell interaction, beyond that which occurs by cell-cell contagion. The results show an acceleration of the infectious process in the absence of treatment, but show better efficiency in reducing the risk of the onset of AIDS when combined antiretroviral therapies are used even with drugs of low effectiveness. Comparison of results with clinical data supports the conclusions of this study.

  5. Climate-driven spatial dynamics of plague among prairie dog colonies.

    PubMed

    Snäll, T; O'Hara, R B; Ray, C; Collinge, S K

    2008-02-01

    We present a Bayesian hierarchical model for the joint spatial dynamics of a host-parasite system. The model was fitted to long-term data on regional plague dynamics and metapopulation dynamics of the black-tailed prairie dog, a declining keystone species of North American prairies. The rate of plague transmission between colonies increases with increasing precipitation, while the rate of infection from unknown sources decreases in response to hot weather. The mean annual dispersal distance of plague is about 10 km, and topographic relief reduces the transmission rate. Larger colonies are more likely to become infected, but colony area does not affect the infectiousness of colonies. The results suggest that prairie dog movements do not drive the spread of plague through the landscape. Instead, prairie dogs are useful sentinels of plague epizootics. Simulations suggest that this model can be used for predicting long-term colony and plague dynamics as well as for identifying which colonies are most likely to become infected in a specific year.

  6. Amino acid changes within the E protein hinge region that affect dengue virus type 2 infectivity and fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butrapet, Siritorn; Childers, Thomas; Moss, Kelley J.

    Fifteen mutant dengue viruses were engineered and used to identify AAs in the molecular hinge of the envelope protein that are critical to viral infection. Substitutions at Q52, A54, or E133 reduced infectivity in mammalian cells and altered the pH threshold of fusion. Mutations at F193, G266, I270, or G281 affected viral replication in mammalian and mosquito cells, but only I270W had reduced fusion activity. T280Y affected the pH threshold for fusion and reduced replication in C6/36 cells. Three different mutations at L135 were lethal in mammalian cells. Among them, L135G abrogated fusion and reduced replication in C6/36 cells, butmore » only slightly reduced the mosquito infection rate. Conversely, L135W replicated well in C6/36 cells, but had the lowest mosquito infection rate. Possible interactions between hinge residues 52 and 277, or among 53, 135, 170, 186, 265, and 276 required for hinge function were discovered by sequence analysis to identify compensatory mutations.« less

  7. Rhythm is it: effects of dynamic body feedback on affect and attitudes

    PubMed Central

    Koch, Sabine C.

    2014-01-01

    Body feedback is the proprioceptive feedback that denominates the afferent information from position and movement of the body to the central nervous system. It is crucial in experiencing emotions, in forming attitudes and in regulating emotions and behavior. This paper investigates effects of dynamic body feedback on affect and attitudes, focusing on the impact of movement rhythms with smooth vs. sharp reversals as one basic category of movement qualities. It relates those qualities to already explored effects of approach vs. avoidance motor behavior as one basic category of movement shape. Studies 1 and 2 tested the effects of one of two basic movement qualities (smooth vs. sharp rhythms) on affect and cognition. The third study tested those movement qualities in combination with movement shape (approach vs. avoidance motor behavior) and the effects of those combinations on affect and attitudes toward initially valence-free stimuli. Results suggest that movement rhythms influence affect (studies 1 and 2), and attitudes (study 3), and moderate the impact of approach and avoidance motor behavior on attitudes (study 3). Extending static body feedback research with a dynamic account, findings indicate that movement qualities – next to movement shape – play an important role, when movement of the lived body is an independent variable. PMID:24959153

  8. ESTIMATION OF CONSTANT AND TIME-VARYING DYNAMIC PARAMETERS OF HIV INFECTION IN A NONLINEAR DIFFERENTIAL EQUATION MODEL.

    PubMed

    Liang, Hua; Miao, Hongyu; Wu, Hulin

    2010-03-01

    Modeling viral dynamics in HIV/AIDS studies has resulted in deep understanding of pathogenesis of HIV infection from which novel antiviral treatment guidance and strategies have been derived. Viral dynamics models based on nonlinear differential equations have been proposed and well developed over the past few decades. However, it is quite challenging to use experimental or clinical data to estimate the unknown parameters (both constant and time-varying parameters) in complex nonlinear differential equation models. Therefore, investigators usually fix some parameter values, from the literature or by experience, to obtain only parameter estimates of interest from clinical or experimental data. However, when such prior information is not available, it is desirable to determine all the parameter estimates from data. In this paper, we intend to combine the newly developed approaches, a multi-stage smoothing-based (MSSB) method and the spline-enhanced nonlinear least squares (SNLS) approach, to estimate all HIV viral dynamic parameters in a nonlinear differential equation model. In particular, to the best of our knowledge, this is the first attempt to propose a comparatively thorough procedure, accounting for both efficiency and accuracy, to rigorously estimate all key kinetic parameters in a nonlinear differential equation model of HIV dynamics from clinical data. These parameters include the proliferation rate and death rate of uninfected HIV-targeted cells, the average number of virions produced by an infected cell, and the infection rate which is related to the antiviral treatment effect and is time-varying. To validate the estimation methods, we verified the identifiability of the HIV viral dynamic model and performed simulation studies. We applied the proposed techniques to estimate the key HIV viral dynamic parameters for two individual AIDS patients treated with antiretroviral therapies. We demonstrate that HIV viral dynamics can be well characterized and

  9. Modeling genome-wide dynamic regulatory network in mouse lungs with influenza infection using high-dimensional ordinary differential equations.

    PubMed

    Wu, Shuang; Liu, Zhi-Ping; Qiu, Xing; Wu, Hulin

    2014-01-01

    The immune response to viral infection is regulated by an intricate network of many genes and their products. The reverse engineering of gene regulatory networks (GRNs) using mathematical models from time course gene expression data collected after influenza infection is key to our understanding of the mechanisms involved in controlling influenza infection within a host. A five-step pipeline: detection of temporally differentially expressed genes, clustering genes into co-expressed modules, identification of network structure, parameter estimate refinement, and functional enrichment analysis, is developed for reconstructing high-dimensional dynamic GRNs from genome-wide time course gene expression data. Applying the pipeline to the time course gene expression data from influenza-infected mouse lungs, we have identified 20 distinct temporal expression patterns in the differentially expressed genes and constructed a module-based dynamic network using a linear ODE model. Both intra-module and inter-module annotations and regulatory relationships of our inferred network show some interesting findings and are highly consistent with existing knowledge about the immune response in mice after influenza infection. The proposed method is a computationally efficient, data-driven pipeline bridging experimental data, mathematical modeling, and statistical analysis. The application to the influenza infection data elucidates the potentials of our pipeline in providing valuable insights into systematic modeling of complicated biological processes.

  10. Live cell imaging of phosphoinositide dynamics during Legionella infection.

    PubMed

    Weber, Stephen; Hilbi, Hubert

    2014-01-01

    The "accidental" pathogen Legionella pneumophila replicates intracellularly in a distinct compartment, the Legionella-containing vacuole (LCV). To form this specific pathogen vacuole, the bacteria translocate via the Icm/Dot type IV secretion system approximately 300 different effector proteins into the host cell. Several of these secreted effectors anchor to the cytoplasmic face of the LCV membrane by binding to phosphoinositide (PI) lipids. L. pneumophila thus largely controls the localization of secreted bacterial effectors and the recruitment of host factors to the LCV through the modulation of the vacuole membrane PI pattern. The LCV PI pattern and its dynamics can be studied in real-time using fluorescently labeled protein probes stably produced by the soil amoeba Dictyostelium discoideum. In this chapter, we describe a protocol to (1) construct and handle amoeba model systems as a tool for observing PIs in live cell imaging, (2) capture rapid changes in membrane PI patterning during uptake events, and (3) observe the dynamics of LCV PIs over the course of a Legionella infection.

  11. Dynamic Immune Cell Recruitment After Murine Pulmonary Aspergillus fumigatus Infection under Different Immunosuppressive Regimens

    PubMed Central

    Kalleda, Natarajaswamy; Amich, Jorge; Arslan, Berkan; Poreddy, Spoorthi; Mattenheimer, Katharina; Mokhtari, Zeinab; Einsele, Hermann; Brock, Matthias; Heinze, Katrin Gertrud; Beilhack, Andreas

    2016-01-01

    Humans are continuously exposed to airborne spores of the saprophytic fungus Aspergillus fumigatus. However, in healthy individuals pulmonary host defense mechanisms efficiently eliminate the fungus. In contrast, A. fumigatus causes devastating infections in immunocompromised patients. Host immune responses against A. fumigatus lung infections in immunocompromised conditions have remained largely elusive. Given the dynamic changes in immune cell subsets within tissues upon immunosuppressive therapy, we dissected the spatiotemporal pulmonary immune response after A. fumigatus infection to reveal basic immunological events that fail to effectively control invasive fungal disease. In different immunocompromised murine models, myeloid, notably neutrophils, and macrophages, but not lymphoid cells were strongly recruited to the lungs upon infection. Other myeloid cells, particularly dendritic cells and monocytes, were only recruited to lungs of corticosteroid treated mice, which developed a strong pulmonary inflammation after infection. Lymphoid cells, particularly CD4+ or CD8+ T-cells and NK cells were highly reduced upon immunosuppression and not recruited after A. fumigatus infection. Moreover, adoptive CD11b+ myeloid cell transfer rescued cyclophosphamide immunosuppressed mice from lethal A. fumigatus infection but not cortisone and cyclophosphamide immunosuppressed mice. Our findings illustrate that CD11b+ myeloid cells are critical for anti-A. fumigatus defense under cyclophosphamide immunosuppressed conditions. PMID:27468286

  12. Physical, chemical and kinetic factors affecting prion infectivity

    PubMed Central

    Properzi, Francesca; Badhan, Anjna; Klier, Steffi; Schmidt, Christian; Klöhn, Peter C.; Wadsworth, Jonathan D. F.; Clarke, Anthony R.; Jackson, Graham S.; Collinge, John

    2016-01-01

    ABSTRACT The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process. PMID:27282252

  13. Physical, chemical and kinetic factors affecting prion infectivity.

    PubMed

    Properzi, Francesca; Badhan, Anjna; Klier, Steffi; Schmidt, Christian; Klöhn, Peter C; Wadsworth, Jonathan D F; Clarke, Anthony R; Jackson, Graham S; Collinge, John

    2016-05-03

    The mouse-adapted scrapie prion strain RML is one of the most widely used in prion research. The introduction of a cell culture-based assay of RML prions, the scrapie cell assay (SCA) allows more rapid and precise prion titration. A semi-automated version of this assay (ASCA) was applied to explore a range of conditions that might influence the infectivity and properties of RML prions. These include resistance to freeze-thaw procedures; stability to endogenous proteases in brain homogenate despite prolonged exposure to varying temperatures; distribution of infective material between pellet and supernatant after centrifugation, the effect of reducing agents and the influence of detergent additives on the efficiency of infection. Apparent infectivity is increased significantly by interaction with cationic detergents. Importantly, we have also elucidated the relationship between the duration of exposure of cells to RML prions and the transmission of infection. We established that the infection process following contact of cells with RML prions is rapid and followed an exponential time course, implying a single rate-limiting process.

  14. Imbalance in mitochondrial dynamics and apoptosis in pregnancies among HIV-infected women on HAART with obstetric complications.

    PubMed

    Guitart-Mampel, Mariona; Hernandez, A Sandra; Moren, Constanza; Catalan-Garcia, Marc; Tobias, Ester; Gonzalez-Casacuberta, Ingrid; Juarez-Flores, Diana L; Gatell, Josep M; Cardellach, Francesc; Milisenda, Jose C; Grau, Josep M; Gratacos, Eduard; Figueras, Francesc; Garrabou, Gloria

    2017-09-01

    HIV infection and HAART trigger genetic and functional mitochondrial alterations leading to cell death and adverse clinical manifestations. Mitochondrial dynamics enable mitochondrial turnover and degradation of damaged mitochondria, which may lead to apoptosis. To evaluate markers of mitochondrial dynamics and apoptosis in pregnancies among HIV-infected women on HAART and determine their potential association with obstetric complications. This controlled, single-site, observational study without intervention included 26 HIV-infected pregnant women on HAART and 18 control pregnancies and their newborns. Maternal PBMCs and neonatal cord blood mononuclear cells (CBMCs) were isolated at the first trimester of gestation and at delivery. The placenta was homogenized at 5% w/v. Mitochondrial dynamics, fusion events [mitofusin 2 (Mfn2)/β-actin] and fission events [dynamin-related protein 1 (Drp1/β-actin)] and apoptosis (caspase 3/β-actin) were assessed by western blot analysis. Obstetric complications were significantly more frequent in pregnancies among HIV-infected women [OR 5.00 (95% CI 1.21-20.70)]. Mfn2/β-actin levels in PBMCs from controls significantly decreased during pregnancy (202.13 ± 57.45%), whereas cases maintained reduced levels from the first trimester of pregnancy and no differences were observed in CBMCs. Mfn2/β-actin and Drp1/β-actin contents significantly decreased in the placenta of cases. Caspase 3/β-actin levels significantly increased during pregnancy in PBMCs of cases (50.00 ± 7.89%), remaining significantly higher than in controls. No significant differences in caspase 3/β-actin content of neonatal CBMCs were observed, but there was a slight increased trend in placenta from cases. HIV- and HAART-mediated mitochondrial damage may be enhanced by decreased mitochondrial dynamics and increased apoptosis in maternal and placental compartments but not in the uninfected fetus. However, direct effects on mitochondrial dynamics and

  15. Dynamics and control of infections on social networks of population types.

    PubMed

    Williams, Brian G; Dye, Christopher

    2018-06-01

    Random mixing in host populations has been a convenient simplifying assumption in the study of epidemics, but neglects important differences in contact rates within and between population groups. For HIV/AIDS, the assumption of random mixing is inappropriate for epidemics that are concentrated in groups of people at high risk, including female sex workers (FSW) and their male clients (MCF), injecting drug users (IDU) and men who have sex with men (MSM). To find out who transmits infection to whom and how that affects the spread and containment of infection remains a major empirical challenge in the epidemiology of HIV/AIDS. Here we develop a technique, based on the routine sampling of infection in linked population groups (a social network of population types), which shows how an HIV/AIDS epidemic in Can Tho Province of Vietnam began in FSW, was propagated mainly by IDU, and ultimately generated most cases among the female partners of MCF (FPM). Calculation of the case reproduction numbers within and between groups, and for the whole network, provides insights into control that cannot be deduced simply from observations on the prevalence of infection. Specifically, the per capita rate of HIV transmission was highest from FSW to MCF, and most HIV infections occurred in FPM, but the number of infections in the whole network is best reduced by interrupting transmission to and from IDU. This analysis can be used to guide HIV/AIDS interventions using needle and syringe exchange, condom distribution and antiretroviral therapy. The method requires only routine data and could be applied to infections in other populations. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  16. With-in host dynamics of L. monocytogenes and thresholds for distinct infection scenarios.

    PubMed

    Rahman, Ashrafur; Munther, Daniel; Fazil, Aamir; Smith, Ben; Wu, Jianhong

    2018-05-26

    The case fatality and illness rates associated with L. monocytogenes continue to pose a serious public health burden despite the significant efforts and control protocol administered by private and public sectors. Due to the advance in surveillance and improvement in detection methodology, the knowledge of sources, transmission routes, growth potential in food process units and storage, effect of pH and temperature are well understood. However, the with-in host growth and transmission mechanisms of L. monocytogenes, particularly within the human host, remain unclear, largely due to the limited access to scientific experimentation on the human population. In order to provide insight towards the human immune response to the infection caused by L. monocytogenes, we develop a with-in host mathematical model. The model explains, in terms of biological parameters, the states of asymptomatic infection, mild infection and systemic infection leading to listeriosis. The activation and proliferation of T-cells are found to be critical for the susceptibility of the infection. Utilizing stability analysis and numerical simulation, the ranges of the critical parameters relative to infection states are established. Bifurcation analysis shows the impact of the differences of these parameters on the dynamics of the model. Finally, we present model applications in regards to predicting the risk potential of listeriosis relative to the susceptible human population. Copyright © 2018. Published by Elsevier Ltd.

  17. Quasispecies dynamics and the emergence of drug resistance during zidovudine therapy of HIV infection.

    PubMed

    Frost, S D; McLean, A R

    1994-03-01

    To investigate the roles of mutation, competition and population dynamics in the emergence of drug resistant mutants during zidovudine therapy. A mathematical model of the population dynamics of the viral quasispecies during zidovudine therapy was investigated. The model was used to simulate changes in the numbers of uninfected and infected cells and the composition of the viral quasispecies in the years following initiation of therapy. Resulting scenarios in asymptomatic and AIDS patients were compared. The model was also used to investigate the efficacy of a treatment regimen involving alternating zidovudine and dideoxyinosine therapy. The behaviour of the model can be divided into three stages. Before therapy, mutation maintains a small pool of resistant mutants, outcompeted to very low levels by sensitive strains. When therapy begins there is a dramatic fall in the total viral load and resistant strains suddenly have the competitive advantage. Thus, it is resistant strains that infect the rising number of uninfected CD4+ cells. During this second stage the rapid effects of population dynamics swamp any effects of mutation between strains. When the populations of infected and uninfected cells approach their treatment equilibrium levels, mutation again becomes important in the slow generation of highly resistant strains. The short-term reduction in viral replication at the initiation of therapy generates a pool of uninfected cells which cause the eventual increase in viral burden. This increase is associated with (but not caused by) a rise in frequency of resistant strains which are at a competitive advantage in the presence of the drug. When therapy is ceased, reversion of resistance is slow as resistant strains are nearly as fit as sensitive strains in the absence of drug.

  18. Emotional influence in groups: the dynamic nexus of affect, cognition, and behavior.

    PubMed

    van Kleef, Gerben A; Heerdink, Marc W; Homan, Astrid C

    2017-10-01

    Groups are a natural breeding ground for emotions. Group life affords unique opportunities but also poses critical challenges that may arouse emotional reactions in group members. Social-functional approaches hold that these emotions in turn contribute to group functioning by prompting group members to address concerns that are relevant to the group's success. Guided by Emotions as Social Information (EASI) theory, this paper reviews research on the affective, cognitive, and behavioral consequences of emotional expressions in groups. Affective processes include emotional contagion and affective convergence, and resulting states such as group affective tone and affective diversity. Cognitive processes include inferences group members draw from each other's emotional expressions. We discuss how these affective and cognitive processes shape behavior and group functioning. We conclude that the traditional (over)emphasis on affective processes must be complemented with a focus on cognitive processes to develop a more complete understanding of the social dynamics of emotions in groups. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The impact of cell regeneration on the dynamics of viral coinfection

    NASA Astrophysics Data System (ADS)

    Pinky, Lubna; Dobrovolny, Hana M.

    2017-06-01

    Many mathematical models of respiratory viral infections do not include regeneration of cells within the respiratory tract, arguing that the infection is resolved before there is significant cellular regeneration. However, recent studies have found that ˜40% of patients hospitalized with influenza-like illness are infected with at least two different viruses, which could potentially lead to longer-lasting infections. In these longer infections, cell regeneration might affect the infection dynamics, in particular, allowing for the possibility of chronic coinfections. Several mathematical models have been used to describe cell regeneration in infection models, though the effect of model choice on the predicted time course of viral coinfections is not clear. We investigate four mathematical models incorporating different mechanisms of cell regeneration during respiratory viral coinfection to determine the effect of cell regeneration on infection dynamics. We perform linear stability analysis for each of the models and find the steady states analytically. The analysis suggests that chronic illness is possible but only with one viral species; chronic coexistence of two different viral species is not possible with the regeneration models considered here.

  20. Identification of infection- and defense-related genes via a dynamic host-pathogen interaction network using a Candida albicans-zebrafish infection model.

    PubMed

    Kuo, Zong-Yu; Chuang, Yung-Jen; Chao, Chun-Cheih; Liu, Fu-Chen; Lan, Chung-Yu; Chen, Bor-Sen

    2013-01-01

    Candida albicans infections and candidiasis are difficult to treat and create very serious therapeutic challenges. In this study, based on interactive time profile microarray data of C. albicans and zebrafish during infection, the infection-related protein-protein interaction (PPI) networks of the two species and the intercellular PPI network between host and pathogen were simultaneously constructed by a dynamic interaction model, modeled as an integrated network consisting of intercellular invasion and cellular defense processes during infection. The signal transduction pathways in regulating morphogenesis and hyphal growth of C. albicans were further investigated based on significant interactions found in the intercellular PPI network. Two cellular networks were also developed corresponding to the different infection stages (adhesion and invasion), and then compared with each other to identify proteins from which we can gain more insight into the pathogenic role of hyphal development in the C. albicans infection process. Important defense-related proteins in zebrafish were predicted using the same approach. The hyphal growth PPI network, zebrafish PPI network and host-pathogen intercellular PPI network were combined to form an integrated infectious PPI network that helps us understand the systematic mechanisms underlying the pathogenicity of C. albicans and the immune response of the host, and may help improve medical therapies and facilitate the development of new antifungal drugs. Copyright © 2013 S. Karger AG, Basel.

  1. Investigating the Effects of Sweat Therapy on Group Dynamics and Affect

    ERIC Educational Resources Information Center

    Colmant, Stephen A.; Eason, Evan A.; Winterowd, Carrie L.; Jacobs, Sue C.; Cashel, Chris

    2005-01-01

    In this study, we examined the effects of sweat therapy on group dynamics and affect. Sweat therapy is the combination of intense heat exposure with psychotherapy or counseling (Colmant & Merta, 1999; 2000). Twenty-four undergraduates were separated by sex and randomly assigned to eight sessions of either a sweat or non-sweat group counseling…

  2. Microbial symbionts affect Pisum sativum proteome and metabolome under Didymella pinodes infection.

    PubMed

    Desalegn, G; Turetschek, R; Kaul, H-P; Wienkoop, S

    2016-06-30

    The long cultivation of field pea led to an enormous diversity which, however, seems to hold just little resistance against the ascochyta blight disease complex. The potential of below ground microbial symbiosis to prime the immune system of Pisum for an upcoming pathogen attack has hitherto received little attention. This study investigates the effect of beneficial microbes on the leaf proteome and metabolome as well as phenotype characteristics of plants in various symbiont interactions (mycorrhiza, rhizobia, co-inoculation, non-symbiotic) after infestation by Didymella pinodes. In healthy plants, mycorrhiza and rhizobia induced changes in RNA metabolism and protein synthesis. Furthermore, metal handling and ROS dampening was affected in all mycorrhiza treatments. The co-inoculation caused the synthesis of stress related proteins with concomitant adjustment of proteins involved in lipid biosynthesis. The plant's disease infection response included hormonal adjustment, ROS scavenging as well as synthesis of proteins related to secondary metabolism. The regulation of the TCA, amino acid and secondary metabolism including the pisatin pathway, was most pronounced in rhizobia associated plants which had the lowest infection rate and the slowest disease progression. A most comprehensive study of the Pisum sativum proteome and metabolome infection response to Didymella pinodes is provided. Several distinct patterns of microbial symbioses on the plant metabolism are presented for the first time. Upon D. pinodes infection, rhizobial symbiosis revealed induced systemic resistance e.g. by an enhanced level of proteins involved in pisatin biosynthesis. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  3. The flame-retardant BDE-99 dose-dependently affects viral replication in CVB3-infected mice.

    PubMed

    Lundgren, Magnus; Darnerud, Per Ola; Ilbäck, Nils-Gunnar

    2013-06-01

    The flame retardant component 2,2',4,4',5-penta-BDE (BDE-99) is found in the environment and in human tissues and fluids. In mice the common human coxsackievirus B3 (CVB3) infection has been shown to change the tissue distribution of BDE-99. We now investigate how CVB3 infection in mice affects liver uptake of (14)C at two doses of radiolabelled BDE-99, and whether increased tissue levels are related to changed virus replication and gene expression of the proinflammatory chemokine monocyte chemoattractant protein-1 (MCP-1). Mice were infected on day 0, orally treated either with 200μg or 20mg (14)C-BDE-99/kgbw on day 1, and euthanised on day 3. Serum and liver levels of (14)C-BDE-99, as well as virus levels and gene expressions of MCP-1 in the liver, were measured. In non-infected mice, there was a dose-dependent uptake of BDE-99 in both liver and serum, and in infected animals the liver BDE-99 levels was further increased. When comparing infected mice exposed to the two BDE-99 doses, the higher BDE dose resulted in increased virus amounts in the liver, and decreased infection-induced expression of MCP-1. Consequently, a high enough dose/tissue concentration of BDE-99 may result in a disturbed mobilisation of immune cells into infected tissues that could explain higher virus titres and a possibly altered clinical course of the disease. Moreover, the fact that CVB3 infection increased the BDE-99 levels in liver but not in serum may impair the risk assessment of polybrominated diphenyl ethers (PBDEs) in subclinical and clinically infected individuals, as serum levels is the common marker of exposure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Genetically different isolates of Trypanosoma cruzi elicit different infection dynamics in raccoons (Procyon lotor) and Virginia opossums (Didelphis virginiana)

    PubMed Central

    Roellig, Dawn M.; Ellis, Angela E.; Yabsley, Michael J.

    2009-01-01

    Trypanosoma cruzi is a genetically and biologically diverse species. In the current study we determined T. cruzi infection dynamics in two common North American reservoirs, Virginia opossums (Didelphis virginiana) and raccoons (Procyon lotor). Based on previous molecular and culture data from naturally-exposed animals, we hypothesized that raccoons would have a longer patent period than opossums, and raccoons would be competent reservoirs for both genotypes T. cruzi I (TcI) and TcIIa, while opossums would only serve as hosts for TcI. Individuals (n = 2 or 3) of each species were inoculated with 1 × 106 culture-derived T. cruzi trypomastigotes of TcIIa (North American (NA) - raccoon), TcI (NA - opossum), TcIIb (South American - human), or both TcI and TcIIa. Parasitemias in opossums gradually increased and declined rapidly, whereas parasitemias peaked sooner in raccoons and they maintained relatively high parasitemia for 5 weeks. Raccoons became infected with all three T. cruzi strains, while opossums only became infected with TcI and TcIIb. Although opossums were susceptible to TcIIb, infection dynamics were dramatically different compared with TcI. Opossums inoculated with TcIIb seroconverted, but parasitemia duration was short and only detectable by PCR. In addition, raccoons seroconverted sooner (3–7 days post inoculation) than opossums (10 days post inoculation). These data suggest that infection dynamics of various T. cruzi strains can differ considerably in different wildlife hosts. PMID:19607833

  5. Infection dynamics of pandemic 2009 H1N1 influenza virus in a two-site swine herd.

    PubMed

    Allerson, M W; Davies, P R; Gramer, M R; Torremorell, M

    2014-12-01

    Influenza A viruses are common causes of respiratory disease in pigs and can be transmitted among multiple host species, including humans. The current lack of published information on infection dynamics of influenza viruses within swine herds hinders the ability to make informed animal health, biosecurity and surveillance programme decisions. The objectives of this serial cross-sectional study were to describe the infection dynamics of influenza virus in a two-site swine system by estimating the prevalence of influenza virus in animal subpopulations at the swine breeding herd and describing the temporal pattern of infection in a selected cohort of growing pigs weaned from the breeding herd. Nasal swab and blood samples were collected at approximately 30-day intervals from the swine breeding herd (Site 1) known to be infected with pandemic 2009 H1N1 influenza virus. Sows, gilts and neonatal pigs were sampled at each sampling event, and samples were tested for influenza virus genome using matrix gene RRT-PCR. Influenza virus was detected in neonatal pigs, but was not detected in sow or gilt populations via RRT-PCR. A virus genetically similar to that detected in the neonatal pig population at Site 1 was also detected at the wean-to-finish site (Site 2), presumably following transportation of infected weaned pigs. Longitudinal sampling of nasal swabs and oral fluids revealed that influenza virus persisted in the growing pigs at Site 2 for at least 69 days. The occurrence of influenza virus in neonatal pigs, but not breeding females, at Site 1 emphasizes the potential for virus maintenance in this dynamic subpopulation, the importance of including this subpopulation in surveillance programmes and the potential transport of influenza virus between sites via the movement of weaned pigs. © 2013 Blackwell Verlag GmbH.

  6. Does the Use of Clean or Sterile Dressing Technique Affect the Incidence of Wound Infection?

    PubMed

    Kent, Dea J; Scardillo, Jody N; Dale, Barbara; Pike, Caitlin

    The purpose of this article is to examine the evidence and provide recommendations for the use of clean or sterile dressing technique with dressing application to prevent wound infection. In all persons with acute or chronic wounds, does the use of clean or sterile dressing technique affect incidence of wound infection? A search of the literature was performed by a trained university librarian, which resulted in 473 articles that examined any age group that dealt with application of a wound dressing using either sterile or nonsterile technique. A systematic approach was used to review titles, abstracts, and text, yielding 4 studies that met inclusion criteria. Strength of the evidence was rated using rating methodology from Essential Evidence Plus: Levels of Evidence and Oxford Center for Evidence-Based Medicine, adapted by Gray and colleagues. Johns Hopkins Nursing Evidence-Based Practice Nursing Research Appraisal Tool was used to rate the quality of the evidence. All 4 studies reported no significant difference in the rate of wound infection when using either clean or sterile technique with dressing application. The strength of the evidence for the identified studies was identified as level 2 (1 level A, 3 level B). The study sizes were variable, and the wounds included do not represent the continuum of wounds clinically encountered across the board. Evidence indicates that the use of clean technique for acute wound care is a clinically effective intervention that does not affect the incidence of infection. There is no recommendation that can be made regarding type of dressing technique for a chronic wound due to the lack of evidence in the literature.

  7. Dynamics of influenza A virus infections in permanently infected pig farms: evidence of recurrent infections, circulation of several swine influenza viruses and reassortment events.

    PubMed

    Rose, Nicolas; Hervé, Séverine; Eveno, Eric; Barbier, Nicolas; Eono, Florent; Dorenlor, Virginie; Andraud, Mathieu; Camsusou, Claire; Madec, François; Simon, Gaëlle

    2013-09-04

    Concomitant infections by different influenza A virus subtypes within pig farms increase the risk of new reassortant virus emergence. The aims of this study were to characterize the epidemiology of recurrent swine influenza virus infections and identify their main determinants. A follow-up study was carried out in 3 selected farms known to be affected by repeated influenza infections. Three batches of pigs were followed within each farm from birth to slaughter through a representative sample of 40 piglets per batch. Piglets were monitored individually on a monthly basis for serology and clinical parameters. When a flu outbreak occurred, daily virological and clinical investigations were carried out for two weeks. Influenza outbreaks, confirmed by influenza A virus detection, were reported at least once in each batch. These outbreaks occurred at a constant age within farms and were correlated with an increased frequency of sneezing and coughing fits. H1N1 and H1N2 viruses from European enzootic subtypes and reassortants between viruses from these lineages were consecutively and sometimes simultaneously identified depending on the batch, suggesting virus co-circulations at the farm, batch and sometimes individual levels. The estimated reproduction ratio R of influenza outbreaks ranged between 2.5 [1.9-2.9] and 6.9 [4.1-10.5] according to the age at infection-time and serological status of infected piglets. Duration of shedding was influenced by the age at infection time, the serological status of the dam and mingling practices. An impaired humoral response was identified in piglets infected at a time when they still presented maternally-derived antibodies.

  8. How Volatilities Nonlocal in Time Affect the Price Dynamics in Complex Financial Systems

    PubMed Central

    Tan, Lei; Zheng, Bo; Chen, Jun-Jie; Jiang, Xiong-Fei

    2015-01-01

    What is the dominating mechanism of the price dynamics in financial systems is of great interest to scientists. The problem whether and how volatilities affect the price movement draws much attention. Although many efforts have been made, it remains challenging. Physicists usually apply the concepts and methods in statistical physics, such as temporal correlation functions, to study financial dynamics. However, the usual volatility-return correlation function, which is local in time, typically fluctuates around zero. Here we construct dynamic observables nonlocal in time to explore the volatility-return correlation, based on the empirical data of hundreds of individual stocks and 25 stock market indices in different countries. Strikingly, the correlation is discovered to be non-zero, with an amplitude of a few percent and a duration of over two weeks. This result provides compelling evidence that past volatilities nonlocal in time affect future returns. Further, we introduce an agent-based model with a novel mechanism, that is, the asymmetric trading preference in volatile and stable markets, to understand the microscopic origin of the volatility-return correlation nonlocal in time. PMID:25723154

  9. Dynamics of transparent exopolymer particle (TEP) production and aggregation during viral infection of the coccolithophore, Emiliania huxleyi.

    PubMed

    Nissimov, Jozef I; Vandzura, Rebecca; Johns, Christopher T; Natale, Frank; Haramaty, Liti; Bidle, Kay D

    2018-06-19

    Emiliania huxleyi produces calcium carbonate (CaCO 3 ) coccoliths and transparent exopolymer particles (TEP), sticky, acidic carbohydrates that facilitate aggregation. E. huxleyi's extensive oceanic blooms are often terminated by coccolithoviruses (EhVs) with the transport of cellular debris and associated particulate organic carbon (POC) to depth being facilitated by TEP-bound "marine snow" aggregates. The dynamics of TEP production and particle aggregation in response to EhV infection are poorly understood. Using flow cytometry, spectrophotometry, and FlowCam visualization of alcian blue (AB)-stained aggregates, we assessed TEP production and the size spectrum of aggregates for E. huxleyi possessing different degrees of calcification and cellular CaCO 3 :POC mass ratios, when challenged with two EhVs (EhV207 and EhV99B1). FlowCam imaging also qualitatively assessed the relative amount of AB-stainable TEP (i.e. blue:red ratio of each particle). We show significant increases in TEP during early phase EhV207-infection (∼24 hours) of calcifying strains and a shift towards large aggregates following EhV99B1-infection. We also observed the formation of large aggregates with low blue:red ratios, suggesting that other exopolymer substances contribute towards aggregation. Our findings show the potential for virus infection and the associated response of their hosts to impact carbon flux dynamics and provide incentive to explore these dynamics in natural populations. This article is protected by copyright. All rights reserved. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.

  10. Expression of parasite genetic variation changes over the course of infection: implications of within-host dynamics for the evolution of virulence

    PubMed Central

    Clerc, Melanie; Ebert, Dieter; Hall, Matthew D.

    2015-01-01

    How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence. PMID:25761710

  11. Expression of parasite genetic variation changes over the course of infection: implications of within-host dynamics for the evolution of virulence.

    PubMed

    Clerc, Melanie; Ebert, Dieter; Hall, Matthew D

    2015-04-07

    How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. Patient affect experiencing following therapist interventions in short-term dynamic psychotherapy.

    PubMed

    Town, Joel M; Hardy, Gillian E; McCullough, Leigh; Stride, Chris

    2012-01-01

    The aim of this research was to examine the relationship between therapist interventions and patient affect responses in Short-Term Dynamic Psychotherapy (STDP). The Affect Experiencing subscale from the Achievement of Therapeutic Objectives Scale (ATOS) was adapted to measure individual immediate affect experiencing (I-AES) responses in relation to therapist interventions coded within the preceding speaking turn, using the Psychotherapy Interaction Coding (PIC) system. A hierarchical linear modelling procedure was used to assess the change in affect experiencing and the relationship between affect experiencing and therapist interventions within and across segments of therapy. Process data was taken from six STDP cases; in total 24 hours of video-taped sessions were examined. Therapist interventions were found to account for a statistically significant amount of variance in immediate affect experiencing. Higher levels of immediate affect experiencing followed the therapist's use of Confrontation, Clarification and Support compared to Questions, Self-disclosure and Information interventions. Therapist Confrontation interventions that attempted to direct pressure towards either the visceral experience of affect or a patient's defences against feelings led to the highest levels of immediate affect experiencing. The type of therapist intervention accounts for a small but significant amount of the variation observed in a patient's immediate emotional arousal. Empirical findings support clinical theory in STDP that suggests strategic verbal responses promote the achievement of this specific therapeutic objective.

  13. Bridging Knowledge Gaps to Understand How Zika Virus Exposure and Infection Affect Child Development.

    PubMed

    Kapogiannis, Bill G; Chakhtoura, Nahida; Hazra, Rohan; Spong, Catherine Y

    2017-05-01

    The Zika virus (ZIKV) epidemic has profoundly affected the lives of children and families across the Americas. As the number of children born with ZIKV-related complications continues to grow, the long-term developmental trajectory for these children and the effect on their families remains largely unknown. In September 2016, the Eunice Kennedy Shriver National Institute of Child Health and Human Development and partner National Institutes of Health institutes convened a workshop to develop a research agenda to improve the evaluation, monitoring, and management of neonates, infants, or children affected by ZIKV and its complications. The agenda also aims to optimally address the prospective effect of ZIKV exposure on the developing child. The full clinical spectrum of congenital ZIKV syndrome has yet to be elucidated. In addition to the well-described anatomic and neurologic manifestations, clinicians are now describing infants with exaggerated primitive reflexes, epilepsy, acquired hydrocephalus and microcephaly, neurodevelopmental delay, gastrointestinal motility problems, and respiratory complications, such as pneumonia. While we are still learning more about the myriad clinical presentations in these severely affected children, it is also paramount to address the larger proportion of ZIKV-exposed infants who are asymptomatic at birth but, we assume, may develop problems later in life. The available evidence for neurologic, neurodevelopmental, neurobehavioral, auditory, and vision assessments and management for infants with congenital ZIKV syndrome was critically evaluated. Lessons from other congenital infections provide valuable clues about the complexities of management and the optimal approaches for evaluating, treating, and caring for the children, which include engaging and involving parents and caregivers in their treatment. Rigorous research is key to improving the identification of ZIKV-infected mothers and babies. Research also is critical to

  14. Co-infection does not predict disease signs in Gopherus tortoises

    PubMed Central

    Gov, Ryan; Sandmeier, Franziska C.; Snyder, Sarah J.; Tracy, C. Richard

    2017-01-01

    In disease ecology, the host immune system interacts with environmental conditions and pathogen properties to affect the impact of disease on the host. Within the host, pathogens may interact to facilitate or inhibit each other's growth, and pathogens interact with different hosts differently. We investigated co-infection of two Mycoplasma and the association of infection with clinical signs of upper respiratory tract disease in four congeneric tortoise host species (Gopherus) in the United States to detect differences in infection risk and disease dynamics in these hosts. Mojave Desert tortoises had greater prevalence of Mycoplasma agassizii than Texas tortoises and gopher tortoises, while there were no differences in Mycoplasma testudineum prevalence among host species. In some host species, the presence of each pathogen influenced the infection intensity of the other; hence, these two mycoplasmas interact differently within different hosts, and our results may indicate facilitation of these bacteria. Neither infection nor co-infection was associated with clinical signs of disease, which tend to fluctuate across time. From M. agassizii DNA sequences, we detected no meaningful differentiation of haplotypes among hosts. Experimental inoculation studies and recurrent resampling of wild individuals could help to decipher the underlying mechanisms of disease dynamics in this system. PMID:29134096

  15. A systematic review of measures of HIV/AIDS stigma in paediatric HIV-infected and HIV-affected populations

    PubMed Central

    McAteer, Carole Ian; Truong, Nhan-Ai Thi; Aluoch, Josephine; Deathe, Andrew Roland; Nyandiko, Winstone M; Marete, Irene; Vreeman, Rachel Christine

    2016-01-01

    Introduction HIV-related stigma impacts the quality of life and care management of HIV-infected and HIV-affected individuals, but how we measure stigma and its impact on children and adolescents has less often been described. Methods We conducted a systematic review of studies that measured HIV-related stigma with a quantitative tool in paediatric HIV-infected and HIV-affected populations. Results and discussion Varying measures have been used to assess stigma in paediatric populations, with most studies utilizing the full or variant form of the HIV Stigma Scale that has been validated in adult populations and utilized with paediatric populations in Africa, Asia and the United States. Other common measures included the Perceived Public Stigma Against Children Affected by HIV, primarily utilized and validated in China. Few studies implored item validation techniques with the population of interest, although scales were used in a different cultural context from the origin of the scale. Conclusions Many stigma measures have been used to assess HIV stigma in paediatric populations, globally, but few have implored methods for cultural adaptation and content validity. PMID:27717409

  16. A systematic review of measures of HIV/AIDS stigma in paediatric HIV-infected and HIV-affected populations.

    PubMed

    McAteer, Carole Ian; Truong, Nhan-Ai Thi; Aluoch, Josephine; Deathe, Andrew Roland; Nyandiko, Winstone M; Marete, Irene; Vreeman, Rachel Christine

    2016-01-01

    HIV-related stigma impacts the quality of life and care management of HIV-infected and HIV-affected individuals, but how we measure stigma and its impact on children and adolescents has less often been described. We conducted a systematic review of studies that measured HIV-related stigma with a quantitative tool in paediatric HIV-infected and HIV-affected populations. Varying measures have been used to assess stigma in paediatric populations, with most studies utilizing the full or variant form of the HIV Stigma Scale that has been validated in adult populations and utilized with paediatric populations in Africa, Asia and the United States. Other common measures included the Perceived Public Stigma Against Children Affected by HIV, primarily utilized and validated in China. Few studies implored item validation techniques with the population of interest, although scales were used in a different cultural context from the origin of the scale. Many stigma measures have been used to assess HIV stigma in paediatric populations, globally, but few have implored methods for cultural adaptation and content validity.

  17. Host age modulates parasite infectivity, virulence and reproduction.

    PubMed

    Izhar, Rony; Ben-Ami, Frida

    2015-07-01

    Host age is one of the most striking differences among hosts within most populations, but there is very little data on how age-dependent effects impact ecological and evolutionary dynamics of both the host and the parasite. Here, we examined the influence of host age (juveniles, young and old adults) at parasite exposure on host susceptibility, fecundity and survival as well as parasite transmission, using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa. Younger D. magna were more susceptible to infection than older ones, regardless of host or parasite clone. Also, younger-infected D. magna became castrated faster than older hosts, but host and parasite clone effects contributed to this trait as well. Furthermore, the early-infected D. magna produced considerably more parasite transmission stages than late-infected ones, while host age at exposure did not affect virulence as it is defined in models (host mortality). When virulence is defined more broadly as the negative effects of infection on host fitness, by integrating the parasitic effects on host fecundity and mortality, then host age at exposure seems to slide along a negative relationship between host and parasite fitness. Thus, the virulence-transmission trade-off differs strongly among age classes, which in turn affects predictions of optimal virulence. Age-dependent effects on host susceptibility, virulence and parasite transmission could pose an important challenge for experimental and theoretical studies of infectious disease dynamics and disease ecology. Our results present a call for a more explicit stage-structured theory for disease, which will incorporate age-dependent epidemiological parameters. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  18. A mathematical approach to HIV infection dynamics

    NASA Astrophysics Data System (ADS)

    Ida, A.; Oharu, S.; Oharu, Y.

    2007-07-01

    In order to obtain a comprehensive form of mathematical models describing nonlinear phenomena such as HIV infection process and AIDS disease progression, it is efficient to introduce a general class of time-dependent evolution equations in such a way that the associated nonlinear operator is decomposed into the sum of a differential operator and a perturbation which is nonlinear in general and also satisfies no global continuity condition. An attempt is then made to combine the implicit approach (usually adapted for convective diffusion operators) and explicit approach (more suited to treat continuous-type operators representing various physiological interactions), resulting in a semi-implicit product formula. Decomposing the operators in this way and considering their individual properties, it is seen that approximation-solvability of the original model is verified under suitable conditions. Once appropriate terms are formulated to describe treatment by antiretroviral therapy, the time-dependence of the reaction terms appears, and such product formula is useful for generating approximate numerical solutions to the governing equations. With this knowledge, a continuous model for HIV disease progression is formulated and physiological interpretations are provided. The abstract theory is then applied to show existence of unique solutions to the continuous model describing the behavior of the HIV virus in the human body and its reaction to treatment by antiretroviral therapy. The product formula suggests appropriate discrete models describing the dynamics of host pathogen interactions with HIV1 and is applied to perform numerical simulations based on the model of the HIV infection process and disease progression. Finally, the results of our numerical simulations are visualized and it is observed that our results agree with medical and physiological aspects.

  19. Population dynamics of Vibrio fischeri during infection of Euprymna scolopes.

    PubMed

    McCann, Jessica; Stabb, Eric V; Millikan, Deborah S; Ruby, Edward G

    2003-10-01

    The luminous bacterium Vibrio fischeri colonizes a specialized light-emitting organ within its squid host, Euprymna scolopes. Newly hatched juvenile squid must acquire their symbiont from ambient seawater, where the bacteria are present at low concentrations. To understand the population dynamics of V. fischeri during colonization more fully, we used mini-Tn7 transposons to mark bacteria with antibiotic resistance so that the growth of their progeny could be monitored. When grown in culture, there was no detectable metabolic burden on V. fischeri cells carrying the transposon, which inserts in single copy in a specific intergenic region of the V. fischeri genome. Strains marked with mini-Tn7 also appeared to be equivalent to the wild type in their ability to infect and multiply within the host during coinoculation experiments. Studies of the early stages of colonization suggested that only a few bacteria became associated with symbiotic tissue when animals were exposed for a discrete period (3 h) to an inoculum of V. fischeri cells equivalent to natural population levels; nevertheless, all these hosts became infected. When three differentially marked strains of V. fischeri were coincubated with juvenile squid, the number of strains recovered from an individual symbiotic organ was directly dependent on the size of the inoculum. Further, these results indicated that, when exposed to low numbers of V. fischeri, the host may become colonized by only one or a few bacterial cells, suggesting that symbiotic infection is highly efficient.

  20. Dynamic two-photon imaging of the immune response to Toxoplasma gondii infection.

    PubMed

    Luu, L; Coombes, J L

    2015-03-01

    Toxoplasma gondii is a highly successful parasite that can manipulate host immune responses to optimize its persistence and spread. As a result, a highly complex relationship exists between T. gondii and the immune system of the host. Advances in imaging techniques, and in particular, the application of two-photon microscopy to mouse infection models, have made it possible to directly visualize interactions between parasites and the host immune system as they occur in living tissues. Here, we will discuss how dynamic imaging techniques have provided unexpected new insight into (i) how immune responses are dynamically regulated by cells and structures in the local tissue environment, (ii) how protective responses to T. gondii are generated and (iii) how the parasite exploits the immune system for its own benefit. © 2014 John Wiley & Sons Ltd.

  1. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    NASA Astrophysics Data System (ADS)

    Valenza, G.; Greco, A.; Citi, L.; Bianchi, M.; Barbieri, R.; Scilingo, E. P.

    2016-06-01

    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3-25 seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension.

  2. Inhomogeneous Point-Processes to Instantaneously Assess Affective Haptic Perception through Heartbeat Dynamics Information

    PubMed Central

    Valenza, G.; Greco, A.; Citi, L.; Bianchi, M.; Barbieri, R.; Scilingo, E. P.

    2016-01-01

    This study proposes the application of a comprehensive signal processing framework, based on inhomogeneous point-process models of heartbeat dynamics, to instantaneously assess affective haptic perception using electrocardiogram-derived information exclusively. The framework relies on inverse-Gaussian point-processes with Laguerre expansion of the nonlinear Wiener-Volterra kernels, accounting for the long-term information given by the past heartbeat events. Up to cubic-order nonlinearities allow for an instantaneous estimation of the dynamic spectrum and bispectrum of the considered cardiovascular dynamics, as well as for instantaneous measures of complexity, through Lyapunov exponents and entropy. Short-term caress-like stimuli were administered for 4.3–25 seconds on the forearms of 32 healthy volunteers (16 females) through a wearable haptic device, by selectively superimposing two levels of force, 2 N and 6 N, and two levels of velocity, 9.4 mm/s and 65 mm/s. Results demonstrated that our instantaneous linear and nonlinear features were able to finely characterize the affective haptic perception, with a recognition accuracy of 69.79% along the force dimension, and 81.25% along the velocity dimension. PMID:27357966

  3. Stability of a general delayed virus dynamics model with humoral immunity and cellular infection

    NASA Astrophysics Data System (ADS)

    Elaiw, A. M.; Raezah, A. A.; Alofi, A. S.

    2017-06-01

    In this paper, we investigate the dynamical behavior of a general nonlinear model for virus dynamics with virus-target and infected-target incidences. The model incorporates humoral immune response and distributed time delays. The model is a four dimensional system of delay differential equations where the production and removal rates of the virus and cells are given by general nonlinear functions. We derive the basic reproduction parameter R˜0 G and the humoral immune response activation number R˜1 G and establish a set of conditions on the general functions which are sufficient to determine the global dynamics of the models. We use suitable Lyapunov functionals and apply LaSalle's invariance principle to prove the global asymptotic stability of the all equilibria of the model. We confirm the theoretical results by numerical simulations.

  4. Comparison of transmission dynamics between Streptococcus uberis and Streptococcus agalactiae intramammary infections.

    PubMed

    Leelahapongsathon, Kansuda; Schukken, Ynte Hein; Pinyopummintr, Tanu; Suriyasathaporn, Witaya

    2016-02-01

    parameter and R0 values were not different between both pathogens; however, the duration of infection for Strep. agalactiae was longer than Strep. uberis. These suggest that Strep. uberis may have a different transmission dynamic compared with Strep. agalactiae. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques.

    PubMed

    Ahsan, Muhammad H; Gill, Amy F; Alvarez, Xavier; Lackner, Andrew A; Veazey, Ronald S

    2013-11-01

    Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animals examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication. © 2013 Elsevier Inc. All rights reserved.

  6. Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques

    PubMed Central

    Ahsan, Muhammad H.; Gill, Amy F.; Alvarez, Xavier; Lackner, Andrew A.; Veazey, Ronald S.

    2013-01-01

    Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animals examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication. PMID:24074569

  7. On cell resistance and immune response time lag in a model for the HIV infection

    NASA Astrophysics Data System (ADS)

    Solovey, Guillermo; Peruani, Fernando; Ponce Dawson, Silvina; Maria Zorzenon dos Santos, Rita

    2004-11-01

    Recently, a cellular automata model has been introduced (Phys. Rev. Lett. 87 (2001) 168102) to describe the spread of the HIV infection among target cells in lymphoid tissues. The model reproduces qualitatively the entire course of the infection displaying, in particular, the two time scales that characterize its dynamics. In this work, we investigate the robustness of the model against changes in three of its parameters. Two of them are related to the resistance of the cells to get infected. The other one describes the time interval necessary to mount specific immune responses. We have observed that an increase of the cell resistance, at any stage of the infection, leads to a reduction of the latency period, i.e., of the time interval between the primary infection and the onset of AIDS. However, during the early stages of the infection, when the cell resistance increase is combined with an increase in the initial concentration of infected cells, the original behavior is recovered. Therefore we find a long and a short latency regime (eight and one year long, respectively) depending on the value of the cell resistance. We have obtained, on the other hand, that changes on the parameter that describes the immune system time lag affects the time interval during which the primary infection occurs. Using different extended versions of the model, we also discuss how the two-time scale dynamics is affected when we include inhomogeneities on the cells properties, as for instance, on the cell resistance or on the time interval to mount specific immune responses.

  8. Skin infections and infestations in prison inmates.

    PubMed

    Oninla, Olumayowa A; Onayemi, Olaniyi

    2012-02-01

    Skin infections and infestations are common in a prison environment. The prison is in dynamic equilibrium with the larger society. Hence, it serves as a reservoir of infections which can spread to the larger society. The study sets out to find out how rampant these infections might be in the prison and the factors responsible. Inmates at a Nigerian prison in Ilesha, Osun State, were examined for skin infections. Personal hygiene and living conditions were critically examined. The overall prevalent rate of infectious dermatoses was 49.2% (150/305). There were 178 infections. Dermatophytes accounted for 64%, pityriasis versicolor 27%, bacterial infections 3.4%, and others 5.6%. Only frequency of soap use and accommodation arrangement significantly contributed to the overall prevalence. However, infectious dermatoses were significantly affected by prison status (PP = 0.04), frequency of bath (PP = 0.025), changing of clothing (PP = 0.05), accommodation arrangement (P = 0.0001), frequency of soap usage (P = 0.005), and toilet facility (P = 0.001). The HIV status of the inmates was unknown. Hence, effect of HIV infection cannot be ascertained. Skin infections and infestations are common in prison. A change in living conditions and personal hygiene will definitely help in reducing these infections. © 2012 The International Society of Dermatology.

  9. Viral infection affects sucrose responsiveness and homing ability of forager honey bees, Apis mellifera L.

    PubMed

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 10⁷ copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive.

  10. Viral Infection Affects Sucrose Responsiveness and Homing Ability of Forager Honey Bees, Apis mellifera L.

    PubMed Central

    Li, Zhiguo; Chen, Yanping; Zhang, Shaowu; Chen, Shenglu; Li, Wenfeng; Yan, Limin; Shi, Liangen; Wu, Lyman; Sohr, Alex; Su, Songkun

    2013-01-01

    Honey bee health is mainly affected by Varroa destructor, viruses, Nosema spp., pesticide residues and poor nutrition. Interactions between these proposed factors may be responsible for the colony losses reported worldwide in recent years. In the present study, the effects of a honey bee virus, Israeli acute paralysis virus (IAPV), on the foraging behaviors and homing ability of European honey bees (Apis mellifera L.) were investigated based on proboscis extension response (PER) assays and radio frequency identification (RFID) systems. The pollen forager honey bees originated from colonies that had no detectable level of honey bee viruses and were manually inoculated with IAPV to induce the viral infection. The results showed that IAPV-inoculated honey bees were more responsive to low sucrose solutions compared to that of non-infected foragers. After two days of infection, around 107 copies of IAPV were detected in the heads of these honey bees. The homing ability of IAPV-infected foragers was depressed significantly in comparison to the homing ability of uninfected foragers. The data provided evidence that IAPV infection in the heads may enable the virus to disorder foraging roles of honey bees and to interfere with brain functions that are responsible for learning, navigation, and orientation in the honey bees, thus, making honey bees have a lower response threshold to sucrose and lose their way back to the hive. PMID:24130876

  11. Influenza vaccine response profiles are affected by vaccine preparation and preexisting immunity, but not HIV infection.

    PubMed

    Berger, Christoph T; Greiff, Victor; Mehling, Matthias; Fritz, Stefanie; Meier, Marc A; Hoenger, Gideon; Conen, Anna; Recher, Mike; Battegay, Manuel; Reddy, Sai T; Hess, Christoph

    2015-01-01

    Vaccines dramatically reduce infection-related morbidity and mortality. Determining factors that modulate the host response is key to rational vaccine design and demands unsupervised analysis. To longitudinally resolve influenza-specific humoral immune response dynamics we constructed vaccine response profiles of influenza A- and B-specific IgM and IgG levels from 42 healthy and 31 HIV infected influenza-vaccinated individuals. Pre-vaccination antibody levels and levels at 3 predefined time points after vaccination were included in each profile. We performed hierarchical clustering on these profiles to study the extent to which HIV infection associated immune dysfunction, adaptive immune factors (pre-existing influenza-specific antibodies, T cell responses), an innate immune factor (Mannose Binding Lectin, MBL), demographic characteristics (gender, age), or the vaccine preparation (split vs. virosomal) impacted the immune response to influenza vaccination. Hierarchical clustering associated vaccine preparation and pre-existing IgG levels with the profiles of healthy individuals. In contrast to previous in vitro and animal data, MBL levels had no impact on the adaptive vaccine response. Importantly, while HIV infected subjects with low CD4 T cell counts showed a reduced magnitude of their vaccine response, their response profiles were indistinguishable from those of healthy controls, suggesting quantitative but not qualitative deficits. Unsupervised profile-based analysis ranks factors impacting the vaccine-response by relative importance, with substantial implications for comparing, designing and improving vaccine preparations and strategies. Profile similarity between HIV infected and HIV negative individuals suggests merely quantitative differences in the vaccine response in these individuals, offering a rationale for boosting strategies in the HIV infected population.

  12. Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection

    PubMed Central

    Lokmer, Ana; Mathias Wegner, Karl

    2015-01-01

    Microbiota provide their hosts with a range of beneficial services, including defense from external pathogens. However, host-associated microbial communities themselves can act as a source of opportunistic pathogens depending on the environment. Marine poikilotherms and their microbiota are strongly influenced by temperature, but experimental studies exploring how temperature affects the interactions between both parties are rare. To assess the effects of temperature, temperature stress and infection on diversity, composition and dynamics of the hemolymph microbiota of Pacific oysters (Crassostrea gigas), we conducted an experiment in a fully-crossed, three-factorial design, in which the temperature acclimated oysters (8 or 22 °C) were exposed to temperature stress and to experimental challenge with a virulent Vibrio sp. strain. We monitored oyster survival and repeatedly collected hemolymph of dead and alive animals to determine the microbiome composition by 16s rRNA gene amplicon pyrosequencing. We found that the microbial dynamics and composition of communities in healthy animals (including infection survivors) were significantly affected by temperature and temperature stress, but not by infection. The response was mediated by changes in the incidence and abundance of operational taxonomic units (OTUs) and accompanied by little change at higher taxonomic levels, indicating dynamic stability of the hemolymph microbiome. Dead and moribund oysters, on the contrary, displayed signs of community structure disruption, characterized by very low diversity and proliferation of few OTUs. We can therefore link short-term responses of host-associated microbial communities to abiotic and biotic factors and assess the potential feedback between microbiota dynamics and host survival during disease. PMID:25180968

  13. Ecological and Dynamical Study of the Creative Process and Affects of Scientific Students Working in Groups

    ERIC Educational Resources Information Center

    Peilloux, Aurélien; Botella, Marion

    2016-01-01

    Although creativity has drawn the attention of researchers during the past century, collaborative processes have barely been investigated. In this article, the collective dimension of a creative process is investigated, based on a dynamic and ecological approach that includes an affective component. "Dynamic" means that the creative…

  14. Development of a model to simulate infection dynamics of Mycobacterium bovis in cattle herds in the United States

    PubMed Central

    Smith, Rebecca L.; Schukken, Ynte H.; Lu, Zhao; Mitchell, Rebecca M.; Grohn, Yrjo T.

    2013-01-01

    Objective To develop a mathematical model to simulate infection dynamics of Mycobacterium bovis in cattle herds in the United States and predict efficacy of the current national control strategy for tuberculosis in cattle. Design Stochastic simulation model. Sample Theoretical cattle herds in the United States. Procedures A model of within-herd M bovis transmission dynamics following introduction of 1 latently infected cow was developed. Frequency- and density-dependent transmission modes and 3 tuberculin-test based culling strategies (no test-based culling, constant (annual) testing with test-based culling, and the current strategy of slaughterhouse detection-based testing and culling) were investigated. Results were evaluated for 3 herd sizes over a 10-year period and validated via simulation of known outbreaks of M bovis infection. Results On the basis of 1,000 simulations (1000 herds each) at replacement rates typical for dairy cattle (0.33/y), median time to detection of M bovis infection in medium-sized herds (276 adult cattle) via slaughterhouse surveillance was 27 months after introduction, and 58% of these herds would spontaneously clear the infection prior to that time. Sixty-two percent of medium-sized herds without intervention and 99% of those managed with constant test-based culling were predicted to clear infection < 10 years after introduction. The model predicted observed outbreaks best for frequency-dependent transmission, and probability of clearance was most sensitive to replacement rate. Conclusions and Clinical Relevance Although modeling indicated the current national control strategy was sufficient for elimination of M bovis infection from dairy herds after detection, slaughterhouse surveillance was not sufficient to detect M bovis infection in all herds and resulted in subjectively delayed detection, compared with the constant testing method. Further research is required to economically optimize this strategy. PMID:23865885

  15. Modeling the infection dynamics of bacteriophages in enteric Escherichia coli: estimating the contribution of transduction to antimicrobial gene spread.

    PubMed

    Volkova, Victoriya V; Lu, Zhao; Besser, Thomas; Gröhn, Yrjö T

    2014-07-01

    Animal-associated bacterial communities are infected by bacteriophages, although the dynamics of these infections are poorly understood. Transduction by bacteriophages may contribute to transfer of antimicrobial resistance genes, but the relative importance of transduction among other gene transfer mechanisms is unknown. We therefore developed a candidate deterministic mathematical model of the infection dynamics of enteric coliphages in commensal Escherichia coli in the large intestine of cattle. We assumed the phages were associated with the intestine and were predominantly temperate. Model simulations demonstrated how, given the bacterial ecology and infection dynamics, most (>90%) commensal enteric E. coli bacteria may become lysogens of enteric coliphages during intestinal transit. Using the model and the most liberal assumptions about transduction efficiency and resistance gene frequency, we approximated the upper numerical limits ("worst-case scenario") of gene transfer through specialized and generalized transduction in E. coli by enteric coliphages when the transduced genetic segment is picked at random. The estimates were consistent with a relatively small contribution of transduction to lateral gene spread; for example, generalized transduction delivered the chromosomal resistance gene to up to 8 E. coli bacteria/hour within the population of 1.47 × 10(8) E. coli bacteria/liter luminal contents. In comparison, the plasmidic blaCMY-2 gene carried by ~2% of enteric E. coli was transferred by conjugation at a rate at least 1.4 × 10(3) times greater than our generalized transduction estimate. The estimated numbers of transductants varied nonlinearly depending on the ecology of bacteria available for phages to infect, that is, on the assumed rates of turnover and replication of enteric E. coli. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  16. Modeling the Infection Dynamics of Bacteriophages in Enteric Escherichia coli: Estimating the Contribution of Transduction to Antimicrobial Gene Spread

    PubMed Central

    Lu, Zhao; Besser, Thomas; Gröhn, Yrjö T.

    2014-01-01

    Animal-associated bacterial communities are infected by bacteriophages, although the dynamics of these infections are poorly understood. Transduction by bacteriophages may contribute to transfer of antimicrobial resistance genes, but the relative importance of transduction among other gene transfer mechanisms is unknown. We therefore developed a candidate deterministic mathematical model of the infection dynamics of enteric coliphages in commensal Escherichia coli in the large intestine of cattle. We assumed the phages were associated with the intestine and were predominantly temperate. Model simulations demonstrated how, given the bacterial ecology and infection dynamics, most (>90%) commensal enteric E. coli bacteria may become lysogens of enteric coliphages during intestinal transit. Using the model and the most liberal assumptions about transduction efficiency and resistance gene frequency, we approximated the upper numerical limits (“worst-case scenario”) of gene transfer through specialized and generalized transduction in E. coli by enteric coliphages when the transduced genetic segment is picked at random. The estimates were consistent with a relatively small contribution of transduction to lateral gene spread; for example, generalized transduction delivered the chromosomal resistance gene to up to 8 E. coli bacteria/hour within the population of 1.47 × 108 E. coli bacteria/liter luminal contents. In comparison, the plasmidic blaCMY-2 gene carried by ∼2% of enteric E. coli was transferred by conjugation at a rate at least 1.4 × 103 times greater than our generalized transduction estimate. The estimated numbers of transductants varied nonlinearly depending on the ecology of bacteria available for phages to infect, that is, on the assumed rates of turnover and replication of enteric E. coli. PMID:24814786

  17. Temporal Dynamics of Host Molecular Responses Differentiate Symptomatic and Asymptomatic Influenza A Infection

    PubMed Central

    Huang, Yongsheng; Zaas, Aimee K.; Rao, Arvind; Dobigeon, Nicolas; Woolf, Peter J.; Veldman, Timothy; Øien, N. Christine; McClain, Micah T.; Varkey, Jay B.; Nicholson, Bradley; Carin, Lawrence; Kingsmore, Stephen; Woods, Christopher W.; Ginsburg, Geoffrey S.; Hero, Alfred O.

    2011-01-01

    Exposure to influenza viruses is necessary, but not sufficient, for healthy human hosts to develop symptomatic illness. The host response is an important determinant of disease progression. In order to delineate host molecular responses that differentiate symptomatic and asymptomatic Influenza A infection, we inoculated 17 healthy adults with live influenza (H3N2/Wisconsin) and examined changes in host peripheral blood gene expression at 16 timepoints over 132 hours. Here we present distinct transcriptional dynamics of host responses unique to asymptomatic and symptomatic infections. We show that symptomatic hosts invoke, simultaneously, multiple pattern recognition receptors-mediated antiviral and inflammatory responses that may relate to virus-induced oxidative stress. In contrast, asymptomatic subjects tightly regulate these responses and exhibit elevated expression of genes that function in antioxidant responses and cell-mediated responses. We reveal an ab initio molecular signature that strongly correlates to symptomatic clinical disease and biomarkers whose expression patterns best discriminate early from late phases of infection. Our results establish a temporal pattern of host molecular responses that differentiates symptomatic from asymptomatic infections and reveals an asymptomatic host-unique non-passive response signature, suggesting novel putative molecular targets for both prognostic assessment and ameliorative therapeutic intervention in seasonal and pandemic influenza. PMID:21901105

  18. Starvation reveals the cause of infection-induced castration and gigantism

    PubMed Central

    Cressler, Clayton E.; Nelson, William A.; Day, Troy; McCauley, Edward

    2014-01-01

    Parasites often induce life-history changes in their hosts. In many cases, these infection-induced life-history changes are driven by changes in the pattern of energy allocation and utilization within the host. Because these processes will affect both host and parasite fitness, it can be challenging to determine who benefits from them. Determining the causes and consequences of infection-induced life-history changes requires the ability to experimentally manipulate life history and a framework for connecting life history to host and parasite fitness. Here, we combine a novel starvation manipulation with energy budget models to provide new insights into castration and gigantism in the Daphnia magna–Pasteuria ramosa host–parasite system. Our results show that starvation primarily affects investment in reproduction, and increasing starvation stress reduces gigantism and parasite fitness without affecting castration. These results are consistent with an energetic structure where the parasite uses growth energy as a resource. This finding gives us new understanding of the role of castration and gigantism in this system, and how life-history variation will affect infection outcome and epidemiological dynamics. The approach of combining targeted life-history manipulations with energy budget models can be adapted to understand life-history changes in other disease systems. PMID:25143034

  19. Starvation reveals the cause of infection-induced castration and gigantism.

    PubMed

    Cressler, Clayton E; Nelson, William A; Day, Troy; McCauley, Edward

    2014-10-07

    Parasites often induce life-history changes in their hosts. In many cases, these infection-induced life-history changes are driven by changes in the pattern of energy allocation and utilization within the host. Because these processes will affect both host and parasite fitness, it can be challenging to determine who benefits from them. Determining the causes and consequences of infection-induced life-history changes requires the ability to experimentally manipulate life history and a framework for connecting life history to host and parasite fitness. Here, we combine a novel starvation manipulation with energy budget models to provide new insights into castration and gigantism in the Daphnia magna-Pasteuria ramosa host-parasite system. Our results show that starvation primarily affects investment in reproduction, and increasing starvation stress reduces gigantism and parasite fitness without affecting castration. These results are consistent with an energetic structure where the parasite uses growth energy as a resource. This finding gives us new understanding of the role of castration and gigantism in this system, and how life-history variation will affect infection outcome and epidemiological dynamics. The approach of combining targeted life-history manipulations with energy budget models can be adapted to understand life-history changes in other disease systems.

  20. Epidemic spreading in metapopulation networks with heterogeneous infection rates

    NASA Astrophysics Data System (ADS)

    Gong, Yong-Wang; Song, Yu-Rong; Jiang, Guo-Ping

    2014-12-01

    In this paper, we study epidemic spreading in metapopulation networks wherein each node represents a subpopulation symbolizing a city or an urban area and links connecting nodes correspond to the human traveling routes among cities. Differently from previous studies, we introduce a heterogeneous infection rate to characterize the effect of nodes' local properties, such as population density, individual health habits, and social conditions, on epidemic infectivity. By means of a mean-field approach and Monte Carlo simulations, we explore how the heterogeneity of the infection rate affects the epidemic dynamics, and find that large fluctuations of the infection rate have a profound impact on the epidemic threshold as well as the temporal behavior of the prevalence above the epidemic threshold. This work can refine our understanding of epidemic spreading in metapopulation networks with the effect of nodes' local properties.

  1. [Study of protein metabolism of herring gulls (Larus argentatus Pontop.) infected by trematode Himasthla larina (Trematoda: Echinostomatidae)].

    PubMed

    Kuklina, M M; Kuklin, V V

    2007-01-01

    The values and dynamics of some indices of protein metabolism were studied in herring gulls Larus argentatus infected with trematode Himasthla larina in natural populations and in experiment. These indices were compared in infected and uninfected birds. Trematode infection considerably affected host protein metabolism irrespective of the age; however, the changes were more pronounced in nestlings. Increased concentration of gamma-globulins, modified albumin, and circulating immune complexes was observed in plasma of infected herring gulls. The experiments demonstrated the most significant changes in protein metabolism of herring gulls 8-11 days after infection with trematode H. larina.

  2. Dynamics of public opinion under the influence of epidemic spreading

    NASA Astrophysics Data System (ADS)

    Wu, Junhui; Ni, Shunjiang; Shen, Shifei

    2016-02-01

    In this paper, we propose a novel model with dynamically adjusted confidence level of others to investigate the propagation of public opinion on whether to buy chicken in the case of avian influenza infection in humans. We study how people adjust their confidence level in other people’s opinions according to their perceived infection risk and how the opinion evolution and epidemic spreading affect each other on different complex networks by taking into account the spreading feature of avian influenza, that is, only people who buy chicken are possible to be infected. The simulation results show that in a closed system, people who support buying chicken and people who are infected can achieve a dynamic balance after a few time-steps, and the final stable state is mainly dependent on the level of people’s risk perception, rather than the initial distribution of the different opinions. Our results imply that in the course of the epidemic spread, transparent and timely announcement of the number of infections and the risk of infection can help people take the right self-protection actions, and thus help control the spread of avian influenza.

  3. Phase transition of the susceptible-infected-susceptible dynamics on time-varying configuration model networks

    NASA Astrophysics Data System (ADS)

    St-Onge, Guillaume; Young, Jean-Gabriel; Laurence, Edward; Murphy, Charles; Dubé, Louis J.

    2018-02-01

    We present a degree-based theoretical framework to study the susceptible-infected-susceptible (SIS) dynamics on time-varying (rewired) configuration model networks. Using this framework on a given degree distribution, we provide a detailed analysis of the stationary state using the rewiring rate to explore the whole range of the time variation of the structure relative to that of the SIS process. This analysis is suitable for the characterization of the phase transition and leads to three main contributions: (1) We obtain a self-consistent expression for the absorbing-state threshold, able to capture both collective and hub activation. (2) We recover the predictions of a number of existing approaches as limiting cases of our analysis, providing thereby a unifying point of view for the SIS dynamics on random networks. (3) We obtain bounds for the critical exponents of a number of quantities in the stationary state. This allows us to reinterpret the concept of hub-dominated phase transition. Within our framework, it appears as a heterogeneous critical phenomenon: observables for different degree classes have a different scaling with the infection rate. This phenomenon is followed by the successive activation of the degree classes beyond the epidemic threshold.

  4. Compatible GLRaV-3 viral infections affect berry ripening decreasing sugar accumulation and anthocyanin biosynthesis in Vitis vinifera.

    PubMed

    Vega, Andrea; Gutiérrez, Rodrigo A; Peña-Neira, Alvaro; Cramer, Grant R; Arce-Johnson, Patricio

    2011-10-01

    Virus infections in grapevine cause important economic losses and affect fruit quality worldwide. Although the phenotypic symptoms associated to viral infections have been described, the molecular plant response triggered by virus infection is still poorly understood in Vitis vinifera. As a first step to understand the fruit changes and mechanisms involved in the compatible grapevine-virus interaction, we analyzed the berry transcriptome in two stages of development in the red wine cultivar Cabernet Sauvignon infected with Grapevine leaf-roll-associated virus-3 (GLRaV-3). Analysis of global gene expression patterns indicate incomplete berry maturation in infected berries as compared to uninfected fruit suggesting viral infection interrupts the normal berry maturation process. Genes with altered expression in berries harvested from GLRaV-3-infected vines as compared to uninfected tissue include anthocyanin biosynthesis and sugar metabolism genes. The reduction in transcript accumulation for sugar and anthocyanin metabolism during fruit development is consistent with a dramatic reduction in anthocyanin biosynthesis as well as reduced sugar levels in berries, a hallmark phenotypic change observed in virus infected grapevines. Analysis of key regulatory factors provides a mechanism for the observed gene expression changes. Our results provide insight into commonly observed phenotypic alterations in virus infected vines and the molecular mechanisms associated with the plant response to the virus during berry ripening.

  5. Gastrointestinal nematode infection does not affect selection of tropical foliage by goats in a cafeteria trial.

    PubMed

    Ventura-Cordero, J; González-Pech, P G; Jaimez-Rodriguez, P R; Ortíz-Ocampo, G I; Sandoval-Castro, C A; Torres-Acosta, J F J

    2017-01-01

    It is important to determine whether gastrointestinal nematodes (GINs) affect foliage choice of goats leading to confirm the expression of a self-medication behavior. This study investigated the effect of GIN infection on tropical foliage selection by goats. During experimental stage 1 (10 days), goats had a natural mixed GIN infection, and at stage 2 (10 days), goats were treated with effective anthelmintics to maintain them free of GIN infection. During stage 1 the twelve adult goats (32 ± 2.3 kg live weight [LW]) were assigned to three groups (n = 4) according to their initial GIN infection status: HI group, with fecal egg count (FEC) between 1450 and 2150 eggs per g/feces (EPG); MI group, medium FEC (592-1167 EPG); and the NI group, free from GIN infection. Fresh foliage of four tropical plants were offered to goats ad libitum for 1 h daily: Gymnopodium floribundum (high condensed tannin [CT] content, 37-40 %), Mimosa bahamensis (medium CT content, 16-17 %), Leucaena leucocephala (low CT content, 3-5 %), and Viguiera dentata (negligible CT content, 0.6-0.9 %). Jacobs' selection indexes (JSIs) were estimated for the experimental foliage based on dry matter (DM), CT, or crude protein (CP) intake. During both study stages, individual fecal egg counts were estimated. The JSI patterns of different plant species, based on DM, CT, or CP, were similar irrespective of infection level during stage 1 (HI, MI, and NI) or no GIN infection (stage 2). Thus, irrespective of GIN infection, goats actively selected M. bahamensis (high CT, low CP content) and V. dentata (negligible CT, high CP content) but avoided G. floribundum (high CT, low CP content) and L. leucocephala (medium CT and high CP content). Thus, natural GIN infection did not influence goats' foliage selection.

  6. Hepatitis C virus (HCV) antibody dynamics following acute HCV infection and reinfection among HIV-infected men who have sex with men.

    PubMed

    Vanhommerig, Joost W; Thomas, Xiomara V; van der Meer, Jan T M; Geskus, Ronald B; Bruisten, Sylvia M; Molenkamp, Richard; Prins, Maria; Schinkel, Janke

    2014-12-15

    A decline of hepatitis C virus (HCV) antibody titers (anti-HCV), ultimately resulting in seroreversion, has been reported following clearance of viremia in both acute and chronic HCV infection. However, frequency of seroreversion remains unknown in human immunodeficiency virus (HIV)/HCV-coinfected patients. We describe anti-HCV dynamics among HIV-infected men who have sex with men (MSM) following acute HCV infection and reinfection. Primary acute HCV infection was assumed when a subject was anti-HCV negative prior to the first positive HCV RNA test. Anti-HCV was measured at least annually in 63 HIV-infected MSM, with a median follow-up of 4.0 years (interquartile range [IQR], 2.5-5.7 years). Time from HCV infection to seroconversion, and from seroconversion to seroreversion, was estimated using the Kaplan-Meier method. Longitudinal anti-HCV patterns were studied using a random-effects model to adjust for repeated measures. Median time from HCV infection to seroconversion was 74 days (IQR, 47-125 days). Subjects who cleared HCV RNA (n = 36) showed a significant decrease in anti-HCV levels (P < .001). Among 31 subjects with sustained virologic response (SVR), anti-HCV became undetectable during follow-up in 8; cumulative incidence of seroreversion within 3 years after seroconversion was 37% (95% confidence interval, 18%-66%). Eighteen subjects became reinfected during follow-up; this coincided with a subsequent increase in anti-HCV reactivity. A decline of anti-HCV reactivity was associated with HCV RNA clearance. Seroreversion was very common following SVR. Upon reinfection, anti-HCV levels increased again. Monitoring anti-HCV levels might therefore be an effective alternative for diagnosis of HCV reinfection. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Short-term heat shock affects the course of immune response in Galleria mellonella naturally infected with the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Vertyporokh, Lidiia; Taszłow, Paulina; Samorek-Pieróg, Małgorzata; Wojda, Iwona

    2015-09-01

    We aimed to investigate how exposition of infected insects to short-term heat shock affects the biochemical and molecular aspects of their immune response. Galleria mellonella larvae were exposed to 43°C for 15min, at the seventy second hour after natural infection with entomopathogenic fungus Beauveria bassiana. As a result, both qualitative and quantitative changes in hemolymph protein profiles, and among them infection-induced changes in the amount of apolipophorin III (apoLp-III), were observed. Heat shock differently affects the expression of the tested immune-related genes. It transiently inhibits expression of antifungal peptides gallerimycin and galiomicin in both the fat body and hemocytes of infected larvae. The same, although to a lesser extent, concerned apoLp-III gene expression and was observed directly after heat shock. Nevertheless, in larvae that had recovered from heat shock, apoLp-III expression was higher in comparison to unshocked larvae in the fat body but not in hemocytes, which was consistent with the higher amount of this protein detected in the hemolymph of the infected, shocked larvae. Furthermore, lysozyme-type activity was higher directly after heat shock, while antifungal activity was significantly higher also in larvae that had recovered from heat shock, in comparison to the respective values in their non-shocked, infected counterparts. These results show how changes in the external temperature modulate the immune response of G. mellonella suffering from infection with its natural pathogen B. bassiana. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Impact of Simian Immunodeficiency Virus Infection on Chimpanzee Population Dynamics

    PubMed Central

    Rudicell, Rebecca S.; Holland Jones, James; Wroblewski, Emily E.; Learn, Gerald H.; Li, Yingying; Robertson, Joel D.; Greengrass, Elizabeth; Grossmann, Falk; Kamenya, Shadrack; Pintea, Lilian; Mjungu, Deus C.; Lonsdorf, Elizabeth V.; Mosser, Anna; Lehman, Clarence; Collins, D. Anthony; Keele, Brandon F.; Goodall, Jane; Hahn, Beatrice H.; Pusey, Anne E.; Wilson, Michael L.

    2010-01-01

    Like human immunodeficiency virus type 1 (HIV-1), simian immunodeficiency virus of chimpanzees (SIVcpz) can cause CD4+ T cell loss and premature death. Here, we used molecular surveillance tools and mathematical modeling to estimate the impact of SIVcpz infection on chimpanzee population dynamics. Habituated (Mitumba and Kasekela) and non-habituated (Kalande) chimpanzees were studied in Gombe National Park, Tanzania. Ape population sizes were determined from demographic records (Mitumba and Kasekela) or individual sightings and genotyping (Kalande), while SIVcpz prevalence rates were monitored using non-invasive methods. Between 2002–2009, the Mitumba and Kasekela communities experienced mean annual growth rates of 1.9% and 2.4%, respectively, while Kalande chimpanzees suffered a significant decline, with a mean growth rate of −6.5% to −7.4%, depending on population estimates. A rapid decline in Kalande was first noted in the 1990s and originally attributed to poaching and reduced food sources. However, between 2002–2009, we found a mean SIVcpz prevalence in Kalande of 46.1%, which was almost four times higher than the prevalence in Mitumba (12.7%) and Kasekela (12.1%). To explore whether SIVcpz contributed to the Kalande decline, we used empirically determined SIVcpz transmission probabilities as well as chimpanzee mortality, mating and migration data to model the effect of viral pathogenicity on chimpanzee population growth. Deterministic calculations indicated that a prevalence of greater than 3.4% would result in negative growth and eventual population extinction, even using conservative mortality estimates. However, stochastic models revealed that in representative populations, SIVcpz, and not its host species, frequently went extinct. High SIVcpz transmission probability and excess mortality reduced population persistence, while intercommunity migration often rescued infected communities, even when immigrating females had a chance of being SIVcpz

  9. The Parameters Affecting the Success of Irrigation and Debridement with Component Retention in the Treatment of Acutely Infected Total Knee Arthroplasty

    PubMed Central

    Kim, Jae Gyoon; Bae, Ji Hoon; Lee, Seung Yup; Cho, Won Tae

    2015-01-01

    Background The aims of our study were to evaluate the success rate of irrigation and debridement with component retention (IDCR) for acutely infected total knee arthroplasty (TKA) (< 4 weeks of symptom duration) and to analyze the factors affecting prognosis of IDCR. Methods We retrospectively reviewed 28 knees treated by IDCR for acutely infected TKA from 2003 to 2012. We evaluated the success rate of IDCR. All variables were compared between the success and failure groups. Multivariable logistic regression analysis was also used to examine the relative contribution of these parameters to the success of IDCR. Results Seventeen knees (60.7%) were successfully treated. Between the success and failure groups, there were significant differences in the time from primary TKA to IDCR (p = 0.021), the preoperative erythrocyte sedimentation rate (ESR; p = 0.021), microorganism (p = 0.006), and polyethylene liner exchange (p = 0.017). Multivariable logistic regression analysis of parameters affecting the success of IDCR demonstrated that preoperative ESR (odds ratio [OR], 1.02; p = 0.041), microorganism (OR, 12.4; p = 0.006), and polyethylene liner exchange (OR, 0.07; p = 0.021) were significant parameters. Conclusions The results show that 60.7% of the cases were successfully treated by IDCR for acutely infected TKA. The preoperative ESR, microorganism, and polyethylene liner exchange were factors that affected the success of IDCR in acutely infected TKA. PMID:25729521

  10. Analysis of IAV Replication and Co-infection Dynamics by a Versatile RNA Viral Genome Labeling Method.

    PubMed

    Dou, Dan; Hernández-Neuta, Iván; Wang, Hao; Östbye, Henrik; Qian, Xiaoyan; Thiele, Swantje; Resa-Infante, Patricia; Kouassi, Nancy Mounogou; Sender, Vicky; Hentrich, Karina; Mellroth, Peter; Henriques-Normark, Birgitta; Gabriel, Gülsah; Nilsson, Mats; Daniels, Robert

    2017-07-05

    Genome delivery to the proper cellular compartment for transcription and replication is a primary goal of viruses. However, methods for analyzing viral genome localization and differentiating genomes with high identity are lacking, making it difficult to investigate entry-related processes and co-examine heterogeneous RNA viral populations. Here, we present an RNA labeling approach for single-cell analysis of RNA viral replication and co-infection dynamics in situ, which uses the versatility of padlock probes. We applied this method to identify influenza A virus (IAV) infections in cells and lung tissue with single-nucleotide specificity and to classify entry and replication stages by gene segment localization. Extending the classification strategy to co-infections of IAVs with single-nucleotide variations, we found that the dependence on intracellular trafficking places a time restriction on secondary co-infections necessary for genome reassortment. Altogether, these data demonstrate how RNA viral genome labeling can help dissect entry and co-infections. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. The Bacterial Pathogen Xylella fastidiosa Affects the Leaf Ionome of Plant Hosts during Infection

    PubMed Central

    De La Fuente, Leonardo; Parker, Jennifer K.; Oliver, Jonathan E.; Granger, Shea; Brannen, Phillip M.; van Santen, Edzard; Cobine, Paul A.

    2013-01-01

    Xylella fastidiosa is a plant pathogenic bacterium that lives inside the host xylem vessels, where it forms biofilm believed to be responsible for disrupting the passage of water and nutrients. Here, Nicotiana tabacum was infected with X. fastidiosa, and the spatial and temporal changes in the whole-leaf ionome (i.e. the mineral and trace element composition) were measured as the host plant transitioned from healthy to diseased physiological status. The elemental composition of leaves was used as an indicator of the physiological changes in the host at a specific time and relative position during plant development. Bacterial infection was found to cause significant increases in concentrations of calcium prior to the appearance of symptoms and decreases in concentrations of phosphorous after symptoms appeared. Field-collected leaves from multiple varieties of grape, blueberry, and pecan plants grown in different locations over a four-year period in the Southeastern US showed the same alterations in Ca and P. This descriptive ionomics approach characterizes the existence of a mineral element-based response to X. fastidiosa using a model system suitable for further manipulation to uncover additional details of the role of mineral elements during plant-pathogen interactions. This is the first report on the dynamics of changes in the ionome of the host plant throughout the process of infection by a pathogen. PMID:23667547

  12. Kinetics of uropathogenic Escherichia coli metapopulation movement during urinary tract infection.

    PubMed

    Walters, Matthew S; Lane, M Chelsea; Vigil, Patrick D; Smith, Sara N; Walk, Seth T; Mobley, Harry L T

    2012-01-01

    The urinary tract is one of the most frequent sites of bacterial infection in humans. Uropathogenic Escherichia coli (UPEC) strains are the leading cause of urinary tract infections (UTIs) and are responsible for greater than 80% of uncomplicated cases in adults. Infection of the urinary tract occurs in an ascending manner, with colonization of the bladder leading to possible kidney infection and bacteremia. The goal of this study was to examine the population dynamics of UPEC in vivo using a murine model of ascending UTI. To track individual UPEC lineages within a host, we constructed 10 isogenic clones of UPEC strain CFT073 by inserting unique signature tag sequences between the pstS and glmS genes at the attTn7 chromosomal site. Mice were transurethrally inoculated with a mixture containing equal numbers of unique clones. After 4 and 48 h, the tags present in the bladders, kidneys, and spleens of infected mice were enumerated using tag-specific primers and quantitative real-time PCR. The results indicated that kidney infection and bacteremia associated with UTI are most likely the result of multiple rounds of ascension and dissemination from motile UPEC subpopulations, with a distinct bottleneck existing between the kidney and bloodstream. The abundance of tagged lineages became more variable as infection progressed, especially after bacterial ascension to the upper urinary tract. Analysis of the population kinetics of UPEC during UTI revealed metapopulation dynamics, with lineages that constantly increased and decreased in abundance as they migrated from one organ to another. Urinary tract infections are some of the most common infections affecting humans, and Escherichia coli is the primary cause in most uncomplicated cases. These infections occur in an ascending manner, with bacteria traveling from the bladder to the kidneys and potentially the bloodstream. Little is known about the spatiotemporal population dynamics of uropathogenic E. coli within a host

  13. The dynamics of transmission and the dynamics of networks.

    PubMed

    Farine, Damien

    2017-05-01

    A toy example depicted here highlighting the results of a study in this issue of the Journal of Animal Ecology that investigates the impact of network dynamics on potential disease outbreaks. Infections (stars) that spread by contact only (left) reduce the predicted outbreak size compared to situations where individuals can become infected by moving through areas that previously contained infected individuals (right). This is potentially important in species where individuals, or in this case groups, have overlapping ranges (as depicted on the top right). Incorporating network dynamics that maintain information about the ordering of contacts (central blocks; including the ordering of spatial overlap as noted by the arrows that highlight the blue group arriving after the red group in top-right of the figure) is important for capturing how a disease might not have the opportunity to spread to all individuals. By contrast, a static or 'average' network (lower blocks) does not capture any of these dynamics. Interestingly, although static networks generally predict larger outbreak sizes, the authors find that in cases when transmission probability is low, this prediction can switch as a result of changes in the estimated intensity of contacts among individuals. [Colour figure can be viewed at wileyonlinelibrary.com]. Springer, A., Kappeler, P.M. & Nunn, C.L. (2017) Dynamic vs. static social networks in models of parasite transmission: Predicting Cryptosporidium spread in wild lemurs. Journal of Animal Ecology, 86, 419-433. The spread of disease or information through networks can be affected by several factors. Whether and how these factors are accounted for can fundamentally change the predicted impact of a spreading epidemic. Springer, Kappeler & Nunn () investigate the role of different modes of transmission and network dynamics on the predicted size of a disease outbreak across several groups of Verreaux's sifakas, a group-living species of lemur. While some factors

  14. Modeling the Effects of Morphine on Simian Immunodeficiency Virus Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaidya, Naveen K.; Ribeiro, Ruy M.; Perelson, Alan S.

    Complications of HIV-1 infection in individuals who utilize drugs of abuse is a significant problem, because these drugs have been associated with higher virus replication and accelerated disease progression as well as severe neuropathogenesis. To gain further insight it is important to quantify the effects of drugs of abuse on HIV-1 infection dynamics. Here, we develop a mathematical model that incorporates experimentally observed effects of morphine on inducing HIV-1 co-receptor expression. For comparison we also considered viral dynamic models with cytolytic or noncytolytic effector cell responses. Based on the small sample size Akaike information criterion, these models were inferior tomore » the new model based on changes in co-receptor expression. The model with morphine affecting co-receptor expression agrees well with the experimental data from simian immunodeficiency virus infections in morphine-addicted macaques. Our results show that morphine promotes a target cell subpopulation switch from a lower level of susceptibility to a state that is about 2-orders of magnitude higher in susceptibility to SIV infection. As a result, the proportion of target cells with higher susceptibility remains extremely high in morphine conditioning. Such a morphine-induced population switch not only has adverse effects on the replication rate, but also results in a higher steady state viral load and larger CD4 count drops. Moreover, morphine conditioning may pose extra obstacles to controlling viral load during antiretroviral therapy, such as pre-exposure prophylaxis and post infection treatments. In conclusion, this study provides, for the first time, a viral dynamics model, viral dynamics parameters, and related analytical and simulation results for SIV dynamics under drugs of abuse.« less

  15. Modeling the Effects of Morphine on Simian Immunodeficiency Virus Dynamics

    DOE PAGES

    Vaidya, Naveen K.; Ribeiro, Ruy M.; Perelson, Alan S.; ...

    2016-09-26

    Complications of HIV-1 infection in individuals who utilize drugs of abuse is a significant problem, because these drugs have been associated with higher virus replication and accelerated disease progression as well as severe neuropathogenesis. To gain further insight it is important to quantify the effects of drugs of abuse on HIV-1 infection dynamics. Here, we develop a mathematical model that incorporates experimentally observed effects of morphine on inducing HIV-1 co-receptor expression. For comparison we also considered viral dynamic models with cytolytic or noncytolytic effector cell responses. Based on the small sample size Akaike information criterion, these models were inferior tomore » the new model based on changes in co-receptor expression. The model with morphine affecting co-receptor expression agrees well with the experimental data from simian immunodeficiency virus infections in morphine-addicted macaques. Our results show that morphine promotes a target cell subpopulation switch from a lower level of susceptibility to a state that is about 2-orders of magnitude higher in susceptibility to SIV infection. As a result, the proportion of target cells with higher susceptibility remains extremely high in morphine conditioning. Such a morphine-induced population switch not only has adverse effects on the replication rate, but also results in a higher steady state viral load and larger CD4 count drops. Moreover, morphine conditioning may pose extra obstacles to controlling viral load during antiretroviral therapy, such as pre-exposure prophylaxis and post infection treatments. In conclusion, this study provides, for the first time, a viral dynamics model, viral dynamics parameters, and related analytical and simulation results for SIV dynamics under drugs of abuse.« less

  16. Co-infections and transmission dynamics in a tick-borne bacterium community exposed to songbirds.

    PubMed

    Heylen, Dieter; Fonville, Manoj; van Leeuwen, Arieke Docters; Sprong, Hein

    2016-03-01

    We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naïve birds were infested with three successive batches (spaced 5 days apart) of field-collected Ixodes ricinus nymphs, carrying the following tick-borne bacteria: Rickettsia helvetica (16.9%), Borrelia garinii (1.9%), Borrelia miyamotoi (1.6%), Anaplasma phagocytophilum (1.2%) and Candidatus Neoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R. helvetica and B. garinii, and to a lesser extent of A. phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R. helvetica remained constant over the three infestations. In contrast, the infection rate of B. garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co-infections in ticks. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. Measuring the transmission dynamics of a sexually transmitted disease

    PubMed Central

    Ryder, Jonathan J.; Webberley, K. Mary; Boots, Michael; Knell, Robert J.

    2005-01-01

    Sexually transmitted diseases (STDs) occur throughout the animal kingdom and are generally thought to affect host population dynamics and evolution very differently from other directly transmitted infectious diseases. In particular, STDs are not thought to have threshold densities for persistence or to be able to regulate host population density independently; they may also have the potential to cause host extinction. However, these expectations follow from a theory that assumes that the rate of STD spread depends on the proportion (rather than the density) of individuals infected in a population. We show here that this key assumption (“frequency dependence”), which has not previously been tested in an animal STD system, is invalid in a simple and general experimental model. Transmission of an STD in the two-spot ladybird depended more on the density of infected individuals in the study population than on their frequency. We argue that, in this system, and in many other animal STDs in which population density affects sexual contact rate, population dynamics may exhibit some characteristics that are normally reserved for diseases with density-dependent transmission. PMID:16204382

  18. Exploring bacterial infections: theoretical and experimental studies of the bacterial population dynamics and antibiotic treatment

    NASA Astrophysics Data System (ADS)

    Shao, Xinxian

    Bacterial infections are very common in human society. Thus extensive research has been conducted to reveal the molecular mechanisms of the pathogenesis and to evaluate the antibiotics' efficacy against bacteria. Little is known, however, about the population dynamics of bacterial populations and their interactions with the host's immune system. In this dissertation, a stochatic model is developed featuring stochastic phenotypic switching of bacterial individuals to explain the single-variant bottleneck discovered in multi strain bacterial infections. I explored early events in a bacterial infection establishment using classical experiments of Moxon and Murphy on neonatal rats. I showed that the minimal model and its simple variants do not work. I proposed modifications to the model that could explain the data quantitatively. The bacterial infections are also commonly established in physical structures, as biofilms or 3-d colonies. In contrast, most research on antibiotic treatment of bacterial infections has been conducted in well-mixed liquid cultures. I explored the efficacy of antibiotics to treat such bacterial colonies, a broadly applicable method is designed and evaluated where discrete bacterial colonies on 2-d surfaces were exposed to antibiotics. I discuss possible explanations and hypotheses for the experimental results. To verify these hypotheses, we investigated the dynamics of bacterial population as 3-d colonies. We showed that a minimal mathematical model of bacterial colony growth in 3-d was able to account for the experimentally observed presence of a diffusion-limited regime. The model further revealed highly loose packing of the cells in 3-d colonies and smaller cell sizes in colonies than plancktonic cells in corresponding liquid culture. Further experimental tests of the model predictions have revealed that the ratio of the cell size in liquid culture to that in colony cultures was consistent with the model prediction, that the dead cells

  19. Chlamydial infections in free-living birds

    USGS Publications Warehouse

    Brand, C.J.

    1989-01-01

    Most studies of chlamydial infections in free-living wild birds have been limited to surveys for the presence of Chlamydia psittaci or antibody to C psittaci and have largely been done in association with the identification of chlamydiosis in human beings, commercial fowl, or pet birds. The emphasis of these studies has been to determine the prevalence of infection and the potential role of wild birds in the spread of chlamydiae to domestic birds and human beings. Little is known about the epizootiology of chlamydiosis in free-living birds or its affect on their population dynamics. The following article is a summary of reported studies of chlamydiosis in free-living wild birds in relation to host range, ecologic aspects of transmission and maintenance, and the prevalence of disease.

  20. Parasite population dynamics in pigs infected with Trichuris suis and Oesophagostomum dentatum.

    PubMed

    Petersen, Heidi Huus; Andreasen, Annette; Kringel, Helene; Roepstorff, Allan; Thamsborg, Stig M

    2014-01-17

    The aim of the present study was to investigate the population dynamics and potential interactions between Trichuris suis and Oesophagostomum dentatum in experimentally co-infected pigs, by quantification of parasite parameters such as egg excretion, worm recovery and worm location. Forty-eight helminth naïve pigs were allocated into four groups. Group O was inoculated with 20 O. dentatum L3/kg/day and Group T with 10 T. suis eggs/kg/day. Group OT was inoculated with both 20 O. dentatum L3/kg/day and 10 T. suis eggs/kg/day, while Group C was kept as an uninfected control group. All inoculations were trickle infections administered twice weekly and were continued until slaughter. Faecal samples were collected from the rectum of all pigs at day 0, and twice weekly from 2 to 9 weeks post first infection (wpi). Six pigs from each group were necropsied 5 wpi and the remaining 6 pigs from each group were necropsied 10 wpi. The faecal egg counts (FEC) and total worm burdens of O. dentatum were dramatically influenced by the presence of T. suis, with significantly lower mean FECs and worm burdens at 5 and 10 wpi compared to single infected pigs. Furthermore, in the presence of T. suis we found that O. dentatum was located more posteriorly in the gut. The changes in the Trichuris population were less prominent, but faecal egg counts, worm counts 5 wpi (57% recovered vs. 39%) and the proportion of infected animals at 10 wpi were higher in Group OT compared to Group T. The location of T. suis was unaffected by the presence of O. dentatum. These results indicate an antagonistic interaction between T. suis and O. dentatum which is dominated by T. suis. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Multilevel Dynamic Systems Affecting Introduction of HIV/STI Prevention Innovations among Chinese Women in Sex Work Establishments

    ERIC Educational Resources Information Center

    Weeks, Margaret R.; Li, Jianghong; Liao, Susu; Zhang, Qingning; Dunn, Jennifer; Wang, Yanhong; Jiang, Jingmei

    2013-01-01

    Social and public health scientists are increasingly interested in applying system dynamics theory to improve understanding and to harness the forces of change within complex, multilevel systems that affect community intervention implementation, effects, and sustainability. Building a system dynamics model based on ethnographic case study has the…

  2. Analysis of Endothelial Adherence of Bartonella henselae and Acinetobacter baumannii Using a Dynamic Human Ex Vivo Infection Model

    PubMed Central

    Weidensdorfer, Marko; Chae, Ju Ik; Makobe, Celestine; Stahl, Julia; Averhoff, Beate; Müller, Volker; Schürmann, Christoph; Brandes, Ralf P.; Wilharm, Gottfried; Ballhorn, Wibke; Christ, Sara; Linke, Dirk; Fischer, Doris; Göttig, Stephan

    2015-01-01

    Bacterial adherence determines the virulence of many human-pathogenic bacteria. Experimental approaches elucidating this early infection event in greater detail have been performed using mainly methods of cellular microbiology. However, in vitro infections of cell monolayers reflect the in vivo situation only partially, and animal infection models are not available for many human-pathogenic bacteria. Therefore, ex vivo infection of human organs might represent an attractive method to overcome these limitations. We infected whole human umbilical cords ex vivo with Bartonella henselae or Acinetobacter baumannii under dynamic flow conditions mimicking the in vivo infection situation of human endothelium. For this purpose, methods for quantifying endothelium-adherent wild-type and trimeric autotransporter adhesin (TAA)-deficient bacteria were set up. Data revealed that (i) A. baumannii binds in a TAA-dependent manner to endothelial cells, (ii) this organ infection model led to highly reproducible adherence rates, and furthermore, (iii) this model allowed to dissect the biological function of TAAs in the natural course of human infections. These findings indicate that infection models using ex vivo human tissue samples (“organ microbiology”) might be a valuable tool in analyzing bacterial pathogenicity with the capacity to replace animal infection models at least partially. PMID:26712205

  3. Does vaginal douching affect the type of candidal vulvovaginal infection?

    PubMed

    Shaaban, Omar M; Abbas, Ahmed M; Moharram, Ahmad M; Farhan, Mohammed M; Hassanen, Ibrahim H

    2015-11-01

    The normal vaginal microbiota is a dynamic system that continually fluctuates under the environmental changes and different physiological conditions. Yeast infections of the vagina are caused by one of the species of fungus called Candida (C.). The study aimed to evaluate the types of mycobiota in women with vulvovaginal candidiasis (VVC) who were performing vaginal douching (VD) or not. Furthermore, it studied the antifungal sensitivity toward different fungi isolated from the vagina. In a cross-sectional study conducted in Assiut University Hospital, Egypt, women with VVC were interviewed regarding relevant history including the habit of VD. Vaginal swabs were obtained and processed by direct microscope and by culture on CHROMagar Candida and other differential media. The types of Candida in women with the habit of VD were compared with those not having this habit. We found that VD habit was practiced by 67.4% of women with VVC, and Candida albicans was the commonest (78.3%) type observed. There was no significant difference in the percentage of non-albicans types between women performing VD (23.6%) and those not reporting this habit (18.9%). Harboring non-albicans types were significantly increased in regular performers of VD compared with those who had this procedure only after sexual intercourse or after the end of menstruation (36.8%,12.5%, and 16.7%, respectively) (P = .048). Thus, vaginal douching does not influence the type of Candida infection involved in VVC. Frequent performance of VD increases the likelihood of having non-albicans types and the resistance to the common antifungal agents. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Dengue Infection Increases the Locomotor Activity of Aedes aegypti Females

    PubMed Central

    Luz, Paula M.; Castro, Márcia G.; Lourenço-de-Oliveira, Ricardo; Sorgine, Marcos H. F.; Peixoto, Alexandre A.

    2011-01-01

    Background Aedes aegypti is the main vector of the virus causing Dengue fever, a disease that has increased dramatically in importance in recent decades, affecting many tropical and sub-tropical areas of the globe. It is known that viruses and other parasites can potentially alter vector behavior. We investigated whether infection with Dengue virus modifies the behavior of Aedes aegypti females with respect to their activity level. Methods/Principal Findings We carried out intrathoracic Dengue 2 virus (DENV-2) infections in Aedes aegypti females and recorded their locomotor activity behavior. We observed an increase of up to ∼50% in the activity of infected mosquitoes compared to the uninfected controls. Conclusions Dengue infection alters mosquito locomotor activity behavior. We speculate that the higher levels of activity observed in infected Aedes aegypti females might involve the circadian clock. Further studies are needed to assess whether this behavioral change could have implications for the dynamics of Dengue virus transmission. PMID:21408119

  5. Interplay of network dynamics and heterogeneity of ties on spreading dynamics.

    PubMed

    Ferreri, Luca; Bajardi, Paolo; Giacobini, Mario; Perazzo, Silvia; Venturino, Ezio

    2014-07-01

    The structure of a network dramatically affects the spreading phenomena unfolding upon it. The contact distribution of the nodes has long been recognized as the key ingredient in influencing the outbreak events. However, limited knowledge is currently available on the role of the weight of the edges on the persistence of a pathogen. At the same time, recent works showed a strong influence of temporal network dynamics on disease spreading. In this work we provide an analytical understanding, corroborated by numerical simulations, about the conditions for infected stable state in weighted networks. In particular, we reveal the role of heterogeneity of edge weights and of the dynamic assignment of weights on the ties in the network in driving the spread of the epidemic. In this context we show that when weights are dynamically assigned to ties in the network, a heterogeneous distribution is able to hamper the diffusion of the disease, contrary to what happens when weights are fixed in time.

  6. Stochastic dynamics of dengue epidemics.

    PubMed

    de Souza, David R; Tomé, Tânia; Pinho, Suani T R; Barreto, Florisneide R; de Oliveira, Mário J

    2013-01-01

    We use a stochastic Markovian dynamics approach to describe the spreading of vector-transmitted diseases, such as dengue, and the threshold of the disease. The coexistence space is composed of two structures representing the human and mosquito populations. The human population follows a susceptible-infected-recovered (SIR) type dynamics and the mosquito population follows a susceptible-infected-susceptible (SIS) type dynamics. The human infection is caused by infected mosquitoes and vice versa, so that the SIS and SIR dynamics are interconnected. We develop a truncation scheme to solve the evolution equations from which we get the threshold of the disease and the reproductive ratio. The threshold of the disease is also obtained by performing numerical simulations. We found that for certain values of the infection rates the spreading of the disease is impossible, for any death rate of infected mosquitoes.

  7. Human cytomegalovirus infant infection adversely affects growth and development in maternally HIV-exposed and unexposed infants in Zambia.

    PubMed

    Gompels, U A; Larke, N; Sanz-Ramos, M; Bates, M; Musonda, K; Manno, D; Siame, J; Monze, M; Filteau, S

    2012-02-01

    Human immunodeficiency virus (HIV) and human cytomegalovirus (HCMV) coinfections have been shown to increase infant morbidity, mortality, and AIDS progression. In HIV-endemic regions, maternal HIV-exposed but HIV-uninfected infants, which is the majority of children affected by HIV, also show poor growth and increased morbidity. Although nutrition has been examined, the effects of HCMV infection have not been evaluated. We studied the effects of HCMV infection on the growth, development, and health of maternally HIV-exposed and unexposed infants in Zambia. Infants were examined in a cohort recruited to a trial of micronutrient-fortified complementary foods. HIV-infected mothers and infants had received perinatal antiretroviral therapy to prevent mother-to-child HIV transmission. Growth, development, and morbidity were analyzed by linear regression analyses in relation to maternal HIV exposure and HCMV infection, as screened by sera DNA for viremia at 6 months of age and by antibody for infection at 18 months. All HCMV-seropositive infants had decreased length-for-age by 18 months compared with seronegative infants (standard deviation [z]-score difference: -0.44 [95% confidence interval {CI}, -.72 to -.17]; P = .002). In HIV-exposed infants, those who were HCMV positive compared with those who were negative, also had reduced head size (mean z-score difference: -0.72 [95% CI, -1.23 to -.22]; P = .01) and lower psychomotor development (Bayley test score difference: -4.1 [95% CI, -7.8 to -.5]; P = .03). HIV-exposed, HCMV-viremic infants were more commonly referred for hospital treatment than HCMV-negative infants. The effects of HCMV were unaffected by micronutrient fortification. HCMV affects child growth, development, and morbidity of African infants, particularly in those maternally exposed to HIV. HCMV is therefore a risk factor for child health in this region.

  8. Batrachochytrium dendrobatidis infection dynamics in the Columbia spotted frog Rana luteiventris in north Idaho, USA.

    PubMed

    Russell, Danelle M; Goldberg, Caren S; Waits, Lisette P; Rosenblum, Erica Bree

    2010-11-01

    The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) is contributing to amphibian declines worldwide. Temperature plays an important role in both pathogen growth and host immune function, but little is known about seasonal dynamics of Bd infection in north temperate regions. Our objective was to increase understanding of Bd disease ecology by investigating patterns of Bd infection of Columbia spotted frogs Rana luteiventris across seasons, age classes, and sexes in north Idaho, USA. We collected skin swabs from 223 R. luteiventris in spring, summer, and fall 2009 at 7 ponds in the Palouse region and quantified Bd zoospores for each sample using quantitative PCR. Across seasons, Bd prevalence of adults was higher in summer than in spring or fall, suggesting that individuals may be clearing low-level infections over the summer. Among age classes, all but one late stage tadpole (Gosner stage 43-45) tested negative for Bd. Conversely, 100% of metamorphs tested positive for Bd and had the highest Bd loads of all age classes, suggesting they may be the most vulnerable age class. Adult R. luteiventris had high infection prevalence (> 60%) in all seasons, indicating that Bd infection is maintained within populations and that adults likely serve as disease reservoirs across seasons. Among adults, we also found weak evidence for females having higher infection prevalence than males. Further laboratory and field studies are needed to determine whether there are individual and population impacts from Bd on R. luteiventris and other amphibians in north Idaho.

  9. Virus and Host Factors Affecting the Clinical Outcome of Bluetongue Virus Infection

    PubMed Central

    Caporale, Marco; Di Gialleonorado, Luigina; Janowicz, Anna; Wilkie, Gavin; Shaw, Andrew; Savini, Giovanni; Van Rijn, Piet A.; Mertens, Peter; Di Ventura, Mauro

    2014-01-01

    ABSTRACT Bluetongue is a major infectious disease of ruminants caused by bluetongue virus (BTV), an arbovirus transmitted by Culicoides. Here, we assessed virus and host factors influencing the clinical outcome of BTV infection using a single experimental framework. We investigated how mammalian host species, breed, age, BTV serotypes, and strains within a serotype affect the clinical course of bluetongue. Results obtained indicate that in small ruminants, there is a marked difference in the susceptibility to clinical disease induced by BTV at the host species level but less so at the breed level. No major differences in virulence were found between divergent serotypes (BTV-8 and BTV-2). However, we observed striking differences in virulence between closely related strains of the same serotype collected toward the beginning and the end of the European BTV-8 outbreak. As observed previously, differences in disease severity were also observed when animals were infected with either blood from a BTV-infected animal or from the same virus isolated in cell culture. Interestingly, with the exception of two silent mutations, full viral genome sequencing showed identical consensus sequences of the virus before and after cell culture isolation. However, deep sequencing analysis revealed a marked decrease in the genetic diversity of the viral population after passaging in mammalian cells. In contrast, passaging in Culicoides cells increased the overall number of low-frequency variants compared to virus never passaged in cell culture. Thus, Culicoides might be a source of new viral variants, and viral population diversity can be another factor influencing BTV virulence. IMPORTANCE Bluetongue is one of the major infectious diseases of ruminants. It is caused by an arbovirus known as bluetongue virus (BTV). The clinical outcome of BTV infection is extremely variable. We show that there are clear links between the severity of bluetongue and the mammalian host species infected

  10. Plasmacytoid Dendritic Cell Dynamics Tune Interferon-Alfa Production in SIV-Infected Cynomolgus Macaques

    PubMed Central

    Bruel, Timothée; Dupuy, Stéphanie; Démoulins, Thomas; Rogez-Kreuz, Christine; Dutrieux, Jacques; Corneau, Aurélien; Cosma, Antonio; Cheynier, Rémi; Dereuddre-Bosquet, Nathalie; Le Grand, Roger; Vaslin, Bruno

    2014-01-01

    IFN-I production is a characteristic of HIV/SIV primary infections. However, acute IFN-I plasma concentrations rapidly decline thereafter. Plasmacytoid dendritic cells (pDC) are key players in this production but primary infection is associated with decreased responsiveness of pDC to TLR 7 and 9 triggering. IFNα production during primary SIV infection contrasts with increased pDC death, renewal and dysfunction. We investigated the contribution of pDC dynamics to both acute IFNα production and the rapid return of IFNα concentrations to pre-infection levels during acute-to-chronic transition. Nine cynomolgus macaques were infected with SIVmac251 and IFNα-producing cells were quantified and characterized. The plasma IFN-I peak was temporally associated with the presence of IFNα+ pDC in tissues but IFN-I production was not detectable during the acute-to-chronic transition despite persistent immune activation. No IFNα+ cells other than pDC were detected by intracellular staining. Blood-pDC and peripheral lymph node-pDC both lost IFNα− production ability in parallel. In blood, this phenomenon correlated with an increase in the counts of Ki67+-pDC precursors with no IFNα production ability. In tissues, it was associated with increase of both activated pDC and KI67+-pDC precursors, none of these being IFNα+ in vivo. Our findings also indicate that activation/death-driven pDC renewal rapidly blunts acute IFNα production in vivo: pDC sub-populations with no IFNα-production ability rapidly increase and shrinkage of IFNα production thus involves both early pDC exhaustion, and increase of pDC precursors. PMID:24497833

  11. Does Zika virus infection affect mosquito response to repellents?

    PubMed Central

    Leal, Walter S.; Barbosa, Rosângela M. R.; Zeng, Fangfang; Faierstein, Gabriel B.; Tan, Kaiming; Paiva, Marcelo H. S.; Guedes, Duschinka R. D.; Crespo, Mônica M.; Ayres, Constância F. J.

    2017-01-01

    The World Health Organization (WHO) recommends that people travelling to or living in areas with Zika virus (ZIKV) outbreaks or epidemics adopt prophylactic measures to reduce or eliminate mosquito bites, including the use of insect repellents. It is, however, unknown whether repellents are effective against ZIKV-infected mosquitoes, in part because of the ethical concerns related to exposing a human subject’s arm to infected mosquitoes in the standard arm-in-cage assay. We used a previously developed, human subject-free behavioural assay, which mimics a human subject to evaluate the top two recommended insect repellents. Our measurements showed that DEET provided significantly higher protection than picaridin provided against noninfected, host-seeking females of the southern house mosquito, Culex quinquefasciatus, and the yellow fever mosquito, Aedes aegypti. When tested at lower doses, we observed a significant reduction in DEET-elicited protection against ZIKV-infected yellow fever mosquitoes from old and recent laboratory colonies. The reduction in protection is more likely associated with aging than the virus infection and could be compensated by applying a 5x higher dose of DEET. A substantial protection against ZIKV-infected and old noninfected mosquitoes was achieved with 5% DEET, which corresponds approximately to a 30% dose in the conventional arm-in-cage assays. PMID:28205633

  12. Do metric fluctuations affect the Higgs dynamics during inflation?

    NASA Astrophysics Data System (ADS)

    Markkanen, Tommi; Nurmi, Sami; Rajantie, Arttu

    2017-12-01

    We show that the dynamics of the Higgs field during inflation is not affected by metric fluctuations if the Higgs is an energetically subdominant light spectator. For Standard Model parameters we find that couplings between Higgs and metric fluctuations are suppressed by Script O(10‑7). They are negligible compared to both pure Higgs terms in the effective potential and the unavoidable non-minimal Higgs coupling to background scalar curvature. The question of the electroweak vacuum instability during high energy scale inflation can therefore be studied consistently using the Jordan frame action in a Friedmann-Lemaître-Robertson-Walker metric, where the Higgs-curvature coupling enters as an effective mass contribution. Similar results apply for other light spectator scalar fields during inflation.

  13. Localization and dynamics of Wolbachia infection in Asian citrus psyllid Diaphorina citri, the insect vector of the causal pathogens of Huanglongbing.

    PubMed

    Ren, Su-Li; Li, Yi-Han; Ou, Da; Guo, Yan-Jun; Qureshi, Jawwad A; Stansly, Philip A; Qiu, Bao-Li

    2018-03-23

    Wolbachia is a group of intracellular bacteria that infect a wide range of arthropods including the Asian citrus psyllid (ACP), Diaphorina citri Kuwayama. This insect is the vector of Candidatus Liberibacter asiaticus (CLas), the causal pathogen of Huanglongbing or citrus greening disease. Here, we investigated the localization pattern and infection dynamics of Wolbachia in different developmental stages of ACP. Results revealed that all developmental stages of ACP including egg, 1st-5th instar nymphs, and adults of both gender were infected with Wolbachia. FISH visualization of an ACP egg showed that Wolbachia moved from the egg stalk of newly laid eggs to a randomly distributed pattern throughout the egg prior to hatching. The infection rate varied between nymphal instars. The titers of Wolbachia in fourth and fifth instar nymphs were significantly higher than those in the first and second instar nymphs. Wolbachia were scattered in all nymphal stages, but with highest intensity in the U-shaped bacteriome located in the abdomen of the nymph. Wolbachia was confined to two symmetrical organizations in the abdomen of newly emerged female and male adults. The potential mechanisms of Wolbachia infection dynamics are discussed. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  14. Dynamics of the cytotoxic T cell response to a model of acute viral infection.

    PubMed

    DeWitt, William S; Emerson, Ryan O; Lindau, Paul; Vignali, Marissa; Snyder, Thomas M; Desmarais, Cindy; Sanders, Catherine; Utsugi, Heidi; Warren, Edus H; McElrath, Juliana; Makar, Karen W; Wald, Anna; Robins, Harlan S

    2015-04-01

    A detailed characterization of the dynamics and breadth of the immune response to an acute viral infection, as well as the determinants of recruitment to immunological memory, can greatly contribute to our basic understanding of the mechanics of the human immune system and can ultimately guide the design of effective vaccines. In addition to neutralizing antibodies, T cells have been shown to be critical for the effective resolution of acute viral infections. We report the first in-depth analysis of the dynamics of the CD8(+) T cell repertoire at the level of individual T cell clonal lineages upon vaccination of human volunteers with a single dose of YF-17D. This live attenuated yellow fever virus vaccine yields sterile, long-term immunity and has been previously used as a model to understand the immune response to a controlled acute viral infection. We identified and enumerated unique CD8(+) T cell clones specifically induced by this vaccine through a combined experimental and statistical approach that included high-throughput sequencing of the CDR3 variable region of the T cell receptor β-chain and an algorithm that detected significantly expanded T cell clones. This allowed us to establish that (i) on average, ∼ 2,000 CD8(+) T cell clones were induced by YF-17D, (ii) 5 to 6% of the responding clones were recruited to long-term memory 3 months postvaccination, (iii) the most highly expanded effector clones were preferentially recruited to the memory compartment, and (iv) a fraction of the YF-17D-induced clones could be identified from peripheral blood lymphocytes solely by measuring clonal expansion. The exhaustive investigation of pathogen-induced effector T cells is essential to accurately quantify the dynamics of the human immune response. The yellow fever vaccine (YFV) has been broadly used as a model to understand how a controlled, self-resolving acute viral infection induces an effective and long-term protective immune response. Here, we extend this

  15. Dynamics of the Cytotoxic T Cell Response to a Model of Acute Viral Infection

    PubMed Central

    DeWitt, William S.; Emerson, Ryan O.; Lindau, Paul; Vignali, Marissa; Snyder, Thomas M.; Desmarais, Cindy; Sanders, Catherine; Utsugi, Heidi; Warren, Edus H.; McElrath, Juliana; Makar, Karen W.; Wald, Anna

    2015-01-01

    ABSTRACT A detailed characterization of the dynamics and breadth of the immune response to an acute viral infection, as well as the determinants of recruitment to immunological memory, can greatly contribute to our basic understanding of the mechanics of the human immune system and can ultimately guide the design of effective vaccines. In addition to neutralizing antibodies, T cells have been shown to be critical for the effective resolution of acute viral infections. We report the first in-depth analysis of the dynamics of the CD8+ T cell repertoire at the level of individual T cell clonal lineages upon vaccination of human volunteers with a single dose of YF-17D. This live attenuated yellow fever virus vaccine yields sterile, long-term immunity and has been previously used as a model to understand the immune response to a controlled acute viral infection. We identified and enumerated unique CD8+ T cell clones specifically induced by this vaccine through a combined experimental and statistical approach that included high-throughput sequencing of the CDR3 variable region of the T cell receptor β-chain and an algorithm that detected significantly expanded T cell clones. This allowed us to establish that (i) on average, ∼2,000 CD8+ T cell clones were induced by YF-17D, (ii) 5 to 6% of the responding clones were recruited to long-term memory 3 months postvaccination, (iii) the most highly expanded effector clones were preferentially recruited to the memory compartment, and (iv) a fraction of the YF-17D-induced clones could be identified from peripheral blood lymphocytes solely by measuring clonal expansion. IMPORTANCE The exhaustive investigation of pathogen-induced effector T cells is essential to accurately quantify the dynamics of the human immune response. The yellow fever vaccine (YFV) has been broadly used as a model to understand how a controlled, self-resolving acute viral infection induces an effective and long-term protective immune response. Here, we

  16. Influence of Multiple Infection and Relatedness on Virulence: Disease Dynamics in an Experimental Plant Population and Its Castrating Parasite

    PubMed Central

    Buono, Lorenza; López-Villavicencio, Manuela; Shykoff, Jacqui A.; Snirc, Alodie; Giraud, Tatiana

    2014-01-01

    The level of parasite virulence, i.e., the decrease in host's fitness due to a pathogen, is expected to depend on several parameters, such as the type of the disease (e.g., castrating or host-killing) and the prevalence of multiple infections. Although these parameters have been extensively studied theoretically, few empirical data are available to validate theoretical predictions. Using the anther smut castrating disease on Silene latifolia caused by Microbotryum lychnidis-dioicae, we studied the dynamics of multiple infections and of different components of virulence (host death, non-recovery and percentage of castrated stems) during the entire lifespan of the host in an experimental population. We monitored the number of fungal genotypes within plants and their relatedness across five years, using microsatellite markers, as well as the rates of recovery and host death in the population. The mean relatedness among genotypes within plants remained at a high level throughout the entire host lifespan despite the dynamics of the disease, with recurrent new infections. Recovery was lower for plants with multiple infections compared to plants infected by a single genotype. As expected for castrating parasites, M. lychnidis-dioicae did not increase host mortality. Mortality varied across years but was generally lower for plants that had been diseased the preceding year. This is one of the few studies to have empirically verified theoretical expectations for castrating parasites, and to show particularly i) that castrated hosts live longer, suggesting that parasites can redirect resources normally used in reproduction to increase host lifespan, lengthening their transmission phase, and ii) that multiple infections increase virulence, here in terms of non-recovery and host castration. PMID:24892951

  17. The effects of exposure to dynamic expressions of affect on 5-month-olds' memory.

    PubMed

    Flom, Ross; Janis, Rebecca B; Garcia, Darren J; Kirwan, C Brock

    2014-11-01

    The purpose of this study was to examine the behavioral effects of adults' communicated affect on 5-month-olds' visual recognition memory. Five-month-olds were exposed to a dynamic and bimodal happy, angry, or neutral affective (face-voice) expression while familiarized to a novel geometric image. After familiarization to the geometric image and exposure to the affective expression, 5-month-olds received either a 5-min or 1-day retention interval. Following the 5-min retention interval, infants exposed to the happy affective expressions showed a reliable preference for a novel geometric image compared to the recently familiarized image. Infants exposed to the neutral or angry affective expression failed to show a reliable preference following a 5-min delay. Following the 1-day retention interval, however, infants exposed to the neutral expression showed a reliable preference for the novel geometric image. These results are the first to demonstrate that 5-month-olds' visual recognition memory is affected by the presentation of affective information at the time of encoding. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Factors affecting prevalence and abundance of A.perfoliata infections in horses from south-eastern Poland.

    PubMed

    Tomczuk, Krzysztof; Grzybek, Maciej; Szczepaniak, Klaudiusz; Studzińska, Maria; Demkowska-Kutrzepa, Marta; Roczeń-Karczmarz, Monika; Abbass, Zahrai Abdulhammza; Kostro, Krzysztof; Junkuszew, Andrzej

    2017-11-15

    Equine Anoplocephalosis constitute a significant problem in horses worldwide. The aim of this study was to analyse intrinsic (host age and sex) and extrinsic (management type, pasture type and moisture) factors that influence the prevalence and FEC of A. perfoliata infections. Faecal samples were collected from 994 horses managed in studs or individually between 2012 and 2014. The Sedimentation-flotation method was applied for coproscopic analysis, and faecal egg counts were calculated. The overall prevalence was 25.1% (21.4-29.0) with the highest prevalence (36.1% [28.1-44.8]) found in horses 10-20 years old. The individuals kept in studs showed three times higher A. perfoliata prevalence compared to the ones managed individually. The prevalence significantly differed between pasture types, with individuals kept in studs (37.6% [34.3-40.9]) showing four times higher prevalence than horses kept individually (9.2% [4.8-16.5]). More horses kept on watery (42.0% [36.6-47.6]) and semi-watery (35.9% [31.3-40.7]) pastures were infected than those on dry (6.6% [4.6-9.2]) pastures. The overall A. perfoliata FEC in all examined individual was 2.67 and differed within sex, with mares showing 4.3 - times higher FEC of infection than stallions. Horses bred in studs (3.65±0.289) showed higher FEC than these bred individually (1.28±0.198). There was the effect of pasture type on A. perfoliata FEC, with horses kept on joint pastures (4.06±0.29) showing higher FEC than individuals kept individually (0.88±0.23). Pasture moisture significantly affected A. perfoliata FEC with the highest FECs in horses from watery pastures. Horses bred on dry pastures showed 16 times lower FEC than horses bred on watery pastures. Host age also significantly affected A. perfoliata FEC, with the oldest individuals showing the highest mean FEC. The presented analysis of intrinsic and extrinsic factors may help to overcome A. perfoliata infections in horses in different breeding systems

  19. Do Valenced Odors and Trait Body Odor Disgust Affect Evaluation of Emotion in Dynamic Faces?

    PubMed

    Syrjänen, Elmeri; Liuzza, Marco Tullio; Fischer, Håkan; Olofsson, Jonas K

    2017-12-01

    Disgust is a core emotion evolved to detect and avoid the ingestion of poisonous food as well as the contact with pathogens and other harmful agents. Previous research has shown that multisensory presentation of olfactory and visual information may strengthen the processing of disgust-relevant information. However, it is not known whether these findings extend to dynamic facial stimuli that changes from neutral to emotionally expressive, or if individual differences in trait body odor disgust may influence the processing of disgust-related information. In this preregistered study, we tested whether a classification of dynamic facial expressions as happy or disgusted, and an emotional evaluation of these facial expressions, would be affected by individual differences in body odor disgust sensitivity, and by exposure to a sweat-like, negatively valenced odor (valeric acid), as compared with a soap-like, positively valenced odor (lilac essence) or a no-odor control. Using Bayesian hypothesis testing, we found evidence that odors do not affect recognition of emotion in dynamic faces even when body odor disgust sensitivity was used as moderator. However, an exploratory analysis suggested that an unpleasant odor context may cause faster RTs for faces, independent of their emotional expression. Our results further our understanding of the scope and limits of odor effects on facial perception affect and suggest further studies should focus on reproducibility, specifying experimental circumstances where odor effects on facial expressions may be present versus absent.

  20. Temporal dynamics of physical activity and affect in depressed and nondepressed individuals.

    PubMed

    Stavrakakis, Nikolaos; Booij, Sanne H; Roest, Annelieke M; de Jonge, Peter; Oldehinkel, Albertine J; Bos, Elisabeth H

    2015-12-01

    The association between physical activity and affect found in longitudinal observational studies is generally small to moderate. It is unknown how this association generalizes to individuals. The aim of the present study was to investigate interindividual differences in the bidirectional dynamic relationship between physical activity and affect, in depressed and nondepressed individuals, using time-series analysis. A pair-matched sample of 10 depressed and 10 nondepressed participants (mean age = 36.6, SD = 8.9, 30% males) wore accelerometers and completed electronic questionnaires 3 times a day for 30 days. Physical activity was operationalized as the total energy expenditure (EE) per day segment (i.e., 6 hr). The multivariate time series (T = 90) of every individual were analyzed using vector autoregressive modeling (VAR), with the aim to assess direct as well as lagged (i.e., over 1 day) effects of EE on positive and negative affect, and vice versa. Large interindividual differences in the strength, direction and temporal aspects of the relationship between physical activity and positive and negative affect were observed. An exception was the direct (but not the lagged) effect of physical activity on positive affect, which was positive in nearly all individuals. This study showed that the association between physical activity and affect varied considerably across individuals. Thus, while at the group level the effect of physical activity on affect may be small, in some individuals the effect may be clinically relevant. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  1. A big data pipeline: Identifying dynamic gene regulatory networks from time-course Gene Expression Omnibus data with applications to influenza infection.

    PubMed

    Carey, Michelle; Ramírez, Juan Camilo; Wu, Shuang; Wu, Hulin

    2018-07-01

    A biological host response to an external stimulus or intervention such as a disease or infection is a dynamic process, which is regulated by an intricate network of many genes and their products. Understanding the dynamics of this gene regulatory network allows us to infer the mechanisms involved in a host response to an external stimulus, and hence aids the discovery of biomarkers of phenotype and biological function. In this article, we propose a modeling/analysis pipeline for dynamic gene expression data, called Pipeline4DGEData, which consists of a series of statistical modeling techniques to construct dynamic gene regulatory networks from the large volumes of high-dimensional time-course gene expression data that are freely available in the Gene Expression Omnibus repository. This pipeline has a consistent and scalable structure that allows it to simultaneously analyze a large number of time-course gene expression data sets, and then integrate the results across different studies. We apply the proposed pipeline to influenza infection data from nine studies and demonstrate that interesting biological findings can be discovered with its implementation.

  2. Nora virus persistent infections are not affected by the RNAi machinery.

    PubMed

    Habayeb, Mazen S; Ekström, Jens-Ola; Hultmark, Dan

    2009-05-29

    Drosophila melanogaster is widely used to decipher the innate immune system in response to various pathogens. The innate immune response towards persistent virus infections is among the least studied in this model system. We recently discovered a picorna-like virus, the Nora virus which gives rise to persistent and essentially symptom-free infections in Drosophila melanogaster. Here, we have used this virus to study the interaction with its host and with some of the known Drosophila antiviral immune pathways. First, we find a striking variability in the course of the infection, even between flies of the same inbred stock. Some flies are able to clear the Nora virus but not others. This phenomenon seems to be threshold-dependent; flies with a high-titer infection establish stable persistent infections, whereas flies with a lower level of infection are able to clear the virus. Surprisingly, we find that both the clearance of low-level Nora virus infections and the stability of persistent infections are unaffected by mutations in the RNAi pathways. Nora virus infections are also unaffected by mutations in the Toll and Jak-Stat pathways. In these respects, the Nora virus differs from other studied Drosophila RNA viruses.

  3. Environmental Factors Affecting Computer Assisted Language Learning Success: A Complex Dynamic Systems Conceptual Model

    ERIC Educational Resources Information Center

    Marek, Michael W.; Wu, Wen-Chi Vivian

    2014-01-01

    This conceptual, interdisciplinary inquiry explores Complex Dynamic Systems as the concept relates to the internal and external environmental factors affecting computer assisted language learning (CALL). Based on the results obtained by de Rosnay ["World Futures: The Journal of General Evolution", 67(4/5), 304-315 (2011)], who observed…

  4. Resist Globally, Infect Locally: A Transcontinental Test of Adaptation by Stickleback and Their Tapeworm Parasite.

    PubMed

    Weber, Jesse N; Kalbe, Martin; Shim, Kum Chuan; Erin, Noémie I; Steinel, Natalie C; Ma, Lei; Bolnick, Daniel I

    2017-01-01

    Parasite infections are a product of both ecological processes affecting host-parasite encounter rates and evolutionary dynamics affecting host susceptibility. However, few studies examine natural infection variation from both ecological and evolutionary perspectives. Here, we describe the ecological and evolutionary factors generating variation in infection rates by a tapeworm (Schistocephalus solidus) in a vertebrate host, the threespine stickleback (Gasterosteus aculeatus). To explore ecological aspects of infection, we measured tapeworm prevalence in Canadian stickleback inhabiting two distinct environments: marine and freshwater. Consistent with ecological control of infection, the tapeworm is very rare in marine environments, even though marine fish are highly susceptible. Conversely, commonly infected freshwater stickleback exhibit substantial resistance in controlled laboratory trials, suggesting that high exposure risk overwhelms their recently evolved resistance. We also tested for parasite adaptation to its host by performing transcontinental reciprocal infections, using stickleback and tapeworm populations from Europe and western Canada. More infections occurred in same-continent host-parasite combinations, indicating parasite "local" adaptation, at least on the scale of continents. However, the recently evolved immunity of freshwater hosts applies to both local and foreign parasites. The pattern of adaptation described here is not wholly compatible with either of the common models of host-parasite coevolution (i.e., matching infection or targeted recognition). Instead, we propose a hybrid, eco-evolutionary model to explain the remarkable pattern of global host resistance and local parasite infectivity.

  5. Effect of antibodies on pathogen dynamics with delays and two routes of infection

    NASA Astrophysics Data System (ADS)

    Elaiw, A. M.; Almatrafi, A. A.; Hobiny, A. D.

    2018-06-01

    We study the global stability of pathogen dynamics models with saturated pathogen-susceptible and infected-susceptible incidence. The models incorporate antibody immune response and three types of discrete or distributed time delays. We first show that the solutions of the model are nonnegative and ultimately bounded. We determine two threshold parameters, the basic reproduction number and antibody response activation number. We establish the existence and stability of the steady states. We study the global stability analysis of models using Lyapunov method. The numerical simulations have shown that antibodies can reduce the pathogen progression.

  6. A Modified Dynamic Evolving Neural-Fuzzy Approach to Modeling Customer Satisfaction for Affective Design

    PubMed Central

    Kwong, C. K.; Fung, K. Y.; Jiang, Huimin; Chan, K. Y.

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort. PMID:24385884

  7. A modified dynamic evolving neural-fuzzy approach to modeling customer satisfaction for affective design.

    PubMed

    Kwong, C K; Fung, K Y; Jiang, Huimin; Chan, K Y; Siu, Kin Wai Michael

    2013-01-01

    Affective design is an important aspect of product development to achieve a competitive edge in the marketplace. A neural-fuzzy network approach has been attempted recently to model customer satisfaction for affective design and it has been proved to be an effective one to deal with the fuzziness and non-linearity of the modeling as well as generate explicit customer satisfaction models. However, such an approach to modeling customer satisfaction has two limitations. First, it is not suitable for the modeling problems which involve a large number of inputs. Second, it cannot adapt to new data sets, given that its structure is fixed once it has been developed. In this paper, a modified dynamic evolving neural-fuzzy approach is proposed to address the above mentioned limitations. A case study on the affective design of mobile phones was conducted to illustrate the effectiveness of the proposed methodology. Validation tests were conducted and the test results indicated that: (1) the conventional Adaptive Neuro-Fuzzy Inference System (ANFIS) failed to run due to a large number of inputs; (2) the proposed dynamic neural-fuzzy model outperforms the subtractive clustering-based ANFIS model and fuzzy c-means clustering-based ANFIS model in terms of their modeling accuracy and computational effort.

  8. Kinetics of liver macrophages (Kupffer cells) in SIV-infected macaques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahsan, Muhammad H.; Gill, Amy F.; Alvarez, Xavier

    Since the liver drains antigens from the intestinal tract, and since the intestinal tract is a major site of viral replication, we examined the dynamics of liver macrophages (Kupffer cells) throughout SIV infection. Absolute numbers of Kupffer cells increased in the livers in acute infection, and in animals with AIDS. Significantly higher percentages of proliferating (BrdU+) Kupffer cells were detected in acute infection and in AIDS with similar trends in blood monocytes. Significantly higher percentages of apoptotic (AC3+) Kupffer cells were also found in acute and AIDS stages. However, productively infected cells were not detected in liver of 41/42 animalsmore » examined, despite abundant infected cells in gut and lymph nodes of all animals. Increased rates of Kupffer cell proliferation resulting in an increase in Kupffer cells without productive infection indicate SIV infection affects Kupffer cells, but the liver does not appear to be a major site of productive viral replication. - Highlights: • Kupffer cells increase in the liver of SIV-infected macaques. • Increased proliferation and apoptosis of Kupffer cells occurs in SIV infection. • Productively infected cells are rarely detected in the liver. • The liver is not a major site for SIV replication.« less

  9. Natural Killer Cell Function and Dysfunction in Hepatitis C Virus Infection

    PubMed Central

    Holder, Kayla A.; Russell, Rodney S.; Grant, Michael D.

    2014-01-01

    Viruses must continually adapt against dynamic innate and adaptive responses of the host immune system to establish chronic infection. Only a small minority (~20%) of those exposed to hepatitis C virus (HCV) spontaneously clear infection, leaving approximately 200 million people worldwide chronically infected with HCV. A number of recent research studies suggest that establishment and maintenance of chronic HCV infection involve natural killer (NK) cell dysfunction. This relationship is illustrated in vitro by disruption of typical NK cell responses including both cell-mediated cytotoxicity and cytokine production. Expression of a number of activating NK cell receptors in vivo is also affected in chronic HCV infection. Thus, direct in vivo and in vitro evidence of compromised NK function in chronic HCV infection in conjunction with significant epidemiological associations between the outcome of HCV infection and certain combinations of NK cell regulatory receptor and class I human histocompatibility linked antigen (HLA) genotypes indicate that NK cells are important in the immune response against HCV infection. In this review, we highlight evidence suggesting that selective impairment of NK cell activity is related to establishment of chronic HCV infection. PMID:25057504

  10. Factors Associated with Acquisition of Human Infective and Animal Infective Trypanosome Infections in Domestic Livestock in Western Kenya

    PubMed Central

    von Wissmann, Beatrix; Machila, Noreen; Picozzi, Kim; Fèvre, Eric M.; deC. Bronsvoort, Barend M.; Handel, Ian G.; Welburn, Susan C.

    2011-01-01

    Background Trypanosomiasis is regarded as a constraint on livestock production in Western Kenya where the responsibility for tsetse and trypanosomiasis control has increasingly shifted from the state to the individual livestock owner. To assess the sustainability of these localised control efforts, this study investigates biological and management risk factors associated with trypanosome infections detected by polymerase chain reaction (PCR), in a range of domestic livestock at the local scale in Busia, Kenya. Busia District also remains endemic for human sleeping sickness with sporadic cases of sleeping sickness reported. Results In total, trypanosome infections were detected in 11.9% (329) out of the 2773 livestock sampled in Busia District. Multivariable logistic regression revealed that host species and cattle age affected overall trypanosome infection, with significantly increased odds of infection for cattle older than 18 months, and significantly lower odds of infection in pigs and small ruminants. Different grazing and watering management practices did not affect the odds of trypanosome infection, adjusted by host species. Neither anaemia nor condition score significantly affected the odds of trypanosome infection in cattle. Human infective Trypanosoma brucei rhodesiense were detected in 21.5% of animals infected with T. brucei s.l. (29/135) amounting to 1% (29/2773) of all sampled livestock, with significantly higher odds of T. brucei rhodesiense infections in T. brucei s.l. infected pigs (OR = 4.3, 95%CI 1.5-12.0) than in T. brucei s.l. infected cattle or small ruminants. Conclusions Although cattle are the dominant reservoir of trypanosome infection it is unlikely that targeted treatment of only visibly diseased cattle will achieve sustainable interruption of transmission for either animal infective or zoonotic human infective trypanosomiasis, since most infections were detected in cattle that did not exhibit classical clinical signs of

  11. Fish farms, parasites, and predators: implications for salmon population dynamics.

    PubMed

    Krkosek, Martin; Connors, Brendan M; Ford, Helen; Peacock, Stephanie; Mages, Paul; Ford, Jennifer S; Morton, Alexandra; Volpe, John P; Hilborn, Ray; Dill, Lawrence M; Lewis, Mark A

    2011-04-01

    For some salmon populations, the individual and population effects of sea lice (Lepeophtheirus salmonis) transmission from sea cage salmon farms is probably mediated by predation, which is a primary natural source of mortality of juvenile salmon. We examined how sea lice infestation affects predation risk and mortality of juvenile pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon, and developed a mathematical model to assess the implications for population dynamics and conservation. A risk-taking experiment indicated that infected juvenile pink salmon accept a higher predation risk in order to obtain foraging opportunities. In a schooling experiment with juvenile chum salmon, infected individuals had increased nearest-neighbor distances and occupied peripheral positions in the school. Prey selection experiments with cutthroat trout (O. clarkii) predators indicated that infection reduces the ability of juvenile pink salmon to evade a predatory strike. Group predation experiments with coho salmon (O. kisutch) feeding on juvenile pink or chum salmon indicated that predators selectively consume infected prey. The experimental results indicate that lice may increase the rate of prey capture but not the handling time of a predator. Based on this result, we developed a mathematical model of sea lice and salmon population dynamics in which parasitism affects the attack rate in a type II functional response. Analysis of the model indicates that: (1) the estimated mortality of wild juvenile salmon due to sea lice infestation is probably higher than previously thought; (2) predation can cause a simultaneous decline in sea louse abundance on wild fish and salmon productivity that could mislead managers and regulators; and (3) compensatory mortality occurs in the saturation region of the type II functional response where prey are abundant because predators increase mortality of parasites but not overall predation rates. These findings indicate that predation is an

  12. Paediatric HIV infection.

    PubMed

    Scarlatti, G

    1996-09-28

    By the year 2000 there will be six million pregnant women and five to ten million children infected with HIV-1. Intervention strategies have been planned and in some instances already started. A timely and cost-effective strategy needs to take into account that most HIV-1 infected individuals reside in developing countries. Further studies are needed on immunological and virological factors affecting HIV-1 transmission from mother to child, on differential disease progression in affected children, and on transient infection.

  13. Infections and exposure to anti-infective agents and the risk of severe mental disorders: a nationwide study.

    PubMed

    Köhler, O; Petersen, L; Mors, O; Mortensen, P B; Yolken, R H; Gasse, C; Benros, M E

    2017-02-01

    Severe infections are associated with increased risks of mental disorders; however, this is the first large-scale study investigating whether infections treated with anti-infective agents in the primary care setting increase the risks of schizophrenia and affective disorders. We identified all individuals born in Denmark 1985-2002 (N = 1 015 447) and studied the association between infections treated with anti-infective agents and the subsequent risk of schizophrenia and affective disorders during 1995-2013. Cox regression analyses were adjusted for important confounders. Infections treated with anti-infective agents were associated with increased risks of schizophrenia by a hazard rate ratio (HRR) of 1.37 (95%-CI = 1.20-1.57) and affective disorders by a HRR of 1.64 (95%-CI = 1.48-1.82), fitting a dose-response and temporal relationship (P < 0.001). The excess risk was primarily driven by infections treated with antibiotics, whereas infections treated with antivirals, antimycotics, and antiparasitic agents were not significant after mutual adjustment. Individuals with infections requiring hospitalization had the highest risks for schizophrenia (HRR = 2.05; 95%-CI = 1.77-2.38) and affective disorders (HRR = 2.59; 95%-CI = 2.31-2.89). Infections treated with anti-infective agents and particularly infections requiring hospitalizations were associated with increased risks of schizophrenia and affective disorders, which may be mediated by effects of infections/inflammation on the brain, alterations of the microbiome, genetics, or other environmental factors. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. [Natural history of HSV1 and HSV2 transmission modes and epidemiology consequences of HSV infection on HIV infection. Prevention].

    PubMed

    Malkin, J E

    2002-04-01

    Both Herpes simplex viruses HSV1 and HSV2 are transmitted by direct mucosal or cutaneo-mucosal contact between individuals. HSV1 is the leading cause of orofacial herpes and HSV2 the most frequently encountered cause of genital herpes. There are however a number of environmental and behavioral factors that modify the epidemiological pattern in both infections. These factors also affect virus dynamics and spread. In developing countries, HSV1 infections continues to be acquired in early childhood. In developed countries, displacement of this acquisition towards adolescence and adulthood explains, in part, the increase in genital herpes caused by HSV1. HVS2 infection progresses in the sexually active population worldwide. Although the rate of seroprevalance varies greatly from one continent to another, women are still more often infected than men. HSV2 genital infection is a cofactor for transmission and acquisition of HIV, which, in certain African regions where the two infections are highly prevalent, explains in part the progression of the HIV epidemic. Until a vaccine becomes available, the prevention depends on abstention from all oral and genital contact during periods of active disease. For genital herpes, use of a preservative has only a relative protective effect and the contribution of suppressive treatment in potentially contaminated subjects is under evaluation.

  15. HIV dynamics linked to memory CD4+ T cell homeostasis.

    PubMed

    Murray, John M; Zaunders, John; Emery, Sean; Cooper, David A; Hey-Nguyen, William J; Koelsch, Kersten K; Kelleher, Anthony D

    2017-01-01

    The dynamics of latent HIV is linked to infection and clearance of resting memory CD4+ T cells. Infection also resides within activated, non-dividing memory cells and can be impacted by antigen-driven and homeostatic proliferation despite suppressive antiretroviral therapy (ART). We investigated whether plasma viral level (pVL) and HIV DNA dynamics could be explained by HIV's impact on memory CD4+ T cell homeostasis. Median total, 2-LTR and integrated HIV DNA levels per μL of peripheral blood, for 8 primary (PHI) and 8 chronic HIV infected (CHI) individuals enrolled on a raltegravir (RAL) based regimen, exhibited greatest changes over the 1st year of ART. Dynamics slowed over the following 2 years so that total HIV DNA levels were equivalent to reported values for individuals after 10 years of ART. The mathematical model reproduced the multiphasic dynamics of pVL, and levels of total, 2-LTR and integrated HIV DNA in both PHI and CHI over 3 years of ART. Under these simulations, residual viremia originated from reactivated latently infected cells where most of these cells arose from clonal expansion within the resting phenotype. Since virion production from clonally expanded cells will not be affected by antiretroviral drugs, simulations of ART intensification had little impact on pVL. HIV DNA decay over the first year of ART followed the loss of activated memory cells (120 day half-life) while the 5.9 year half-life of total HIV DNA after this point mirrored the slower decay of resting memory cells. Simulations had difficulty reproducing the fast early HIV DNA dynamics, including 2-LTR levels peaking at week 12, and the later slow loss of total and 2-LTR HIV DNA, suggesting some ongoing infection. In summary, our modelling indicates that much of the dynamical behavior of HIV can be explained by its impact on memory CD4+ T cell homeostasis.

  16. Very Young Children Affected and Infected by HIV/AIDS: How are they Living?: A Case Study from Namibia

    ERIC Educational Resources Information Center

    Hayden, Jacqueline; Otaala, Barnabas

    2005-01-01

    This paper describes a recent study conducted jointly by the authors in the Khomas Region of Namibia. The study developed and trialled research and documentation methods regarding very young children who had been infected or affected by the HIV/AIDS pandemic. Because of the stigma attached to the disease, effective methods for assessing…

  17. GENETIC MUTATIONS AFFECTING THE FIRST LINE ERADICATION THERAPY OF Helicobacter pylori-INFECTED EGYPTIAN PATIENTS.

    PubMed

    Ramzy, Iman; Elgarem, Hassan; Hamza, Iman; Ghaith, Doaa; Elbaz, Tamer; Elhosary, Waleed; Mostafa, Gehan; Elzahry, Mohammad A Mohey Eldin

    2016-12-08

    Several genetic mutations affect the first-line triple therapy for Helicobacter pylori. We aimed to study the most common genetic mutations affecting the metronidazole and clarithromycin therapy for H. pylori-infected Egyptian patients. In our study, we included 100 successive dyspeptic patients scheduled for diagnosis through upper gastroscopy at Cairo's University Hospital, Egypt. Gastric biopsies were tested for the presence of H. pylori by detection of the 16S rRNA gene. Positive biopsies were further studied for the presence of the rdxA gene deletion by Polymerase Chain Reaction (PCR), while clarithromycin resistance was investigated by the presence of nucleotide substitutions within H. pylori 23S rRNA V domain using MboII and BsaI to carry out a Restricted Fragment Length Polymorphism (RFLP) assay. Among 70 H. pylori positive biopsies, the rdxA gene deletion was detected in 44/70 (62.9%) samples, while predominance of the A2142G mutations within the H. pylori 23S rRNA V domain was evidenced in 39/70 (55.7%) of the positive H. pylori cases. No statistically significant difference was found between the presence of gene mutations and different factors such as patients 'age, gender, geographic distribution, symptoms and endoscopic findings. Infection with mutated H. pylori strains is considerably high, a finding that imposes care in the use of the triple therapy to treat H. pylori in Egypt, since the guidelines recommend to abandon the standard triple therapy when the primary clarithromycin resistance rate is over 20%1.

  18. Bursty communication patterns facilitate spreading in a threshold-based epidemic dynamics.

    PubMed

    Takaguchi, Taro; Masuda, Naoki; Holme, Petter

    2013-01-01

    Records of social interactions provide us with new sources of data for understanding how interaction patterns affect collective dynamics. Such human activity patterns are often bursty, i.e., they consist of short periods of intense activity followed by long periods of silence. This burstiness has been shown to affect spreading phenomena; it accelerates epidemic spreading in some cases and slows it down in other cases. We investigate a model of history-dependent contagion. In our model, repeated interactions between susceptible and infected individuals in a short period of time is needed for a susceptible individual to contract infection. We carry out numerical simulations on real temporal network data to find that bursty activity patterns facilitate epidemic spreading in our model.

  19. Environmental temperature affects the dynamics of ingestion in the nectivorous ant Camponotus mus.

    PubMed

    Falibene, Agustina; Josens, Roxana

    2014-12-01

    Environmental temperature influences physiology and behavior in animals in general and is particularly determinant in ectotherms. Not least because temperature defines metabolism and body temperature, muscle activity in insects also strongly depends on this factor. Here, we analyzed how environmental temperature influences the dynamics of ingestion due to its effect on the sucking pump muscles in the nectivorous ants Camponotus mus. Feeding behavior and sucking pump activity during sucrose solution ingestion were first recorded in a natural environment in an urban setting throughout the day and in different seasons. Then, controlled temperature experiments were performed in the laboratory. In both situations, feeding time decreased and pumping frequency increased with temperature. However, different pumping frequencies under a same temperature were also observed in different seasons. Besides, in the laboratory, the volume of solution ingested increased with temperature. Consequently, intake rate increased when temperature rose. This change was exclusively promoted by a variation in the pumping frequency while volume taken in per pump contraction was not affected by temperature. In summary, environmental temperature modified the dynamics of ingestion and feeding behavior by directly affecting pumping frequency. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Dynamical behavior of susceptible-infected-recovered-susceptible epidemic model on weighted networks

    NASA Astrophysics Data System (ADS)

    Wu, Qingchu; Zhang, Fei

    2018-02-01

    We study susceptible-infected-recovered-susceptible epidemic model in weighted, regular, and random complex networks. We institute a pairwise-type mathematical model with a general transmission rate to evaluate the influence of the link-weight distribution on the spreading process. Furthermore, we develop a dimensionality reduction approach to derive the condition for the contagion outbreak. Finally, we analyze the influence of the heterogeneity of weight distribution on the outbreak condition for the scenario with a linear transmission rate. Our theoretical analysis is in agreement with stochastic simulations, showing that the heterogeneity of link-weight distribution can have a significant effect on the epidemic dynamics.

  1. Affect dynamics across the lifespan: with age, heart rate reacts less strongly, but recovers more slowly from unpleasant emotional situations.

    PubMed

    Wrzus, Cornelia; Müller, Viktor; Wagner, Gert G; Lindenberger, Ulman; Riediger, Michaela

    2014-09-01

    We propose that a comprehensive understanding of age differences in affective responses to emotional situations requires the distinction of 2 components of affect dynamics: reactivity, the deviation from a person's baseline, and recovery, the return to this baseline. The present study demonstrates the utility of this approach with a focus on age differences in responses of negative affect and heart rate to an unpleasant emotional situation in 92 participants aged 14 to 83. The emotional situation was elicited with a social-cognitive stress task. Participants' negative affect and heart rate were measured throughout the task. Results showed that heart rate reactivity decreased, but heart rate recovery time increased, with age. In contrast, no significant age differences were observed in either reactivity or recovery for negative affect. These findings confirm that reactivity to, and recovery from, unpleasant emotional situations are distinct components of affect dynamics. They underscore the multidirectional nature of age differences in affective processes. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  2. Multistate modeling of habitat dynamics: Factors affecting Florida scrub transition probabilities

    USGS Publications Warehouse

    Breininger, D.R.; Nichols, J.D.; Duncan, B.W.; Stolen, Eric D.; Carter, G.M.; Hunt, D.K.; Drese, J.H.

    2010-01-01

    Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess

  3. Conjugated bilirubin affects cytokine profiles in hepatitis A virus infection by modulating function of signal transducer and activator of transcription factors

    PubMed Central

    Castro-García, Flor P; Corral-Jara, Karla F; Escobedo-Melendez, Griselda; Sandoval-Hernandez, Monserrat A; Rosenstein, Yvonne; Roman, Sonia; Panduro, Arturo; Fierro, Nora A

    2014-01-01

    Hepatitis A virus (HAV) infection is the major cause of acute liver failure in paediatric patients. The clinical spectrum of infection is variable, and liver injury is determined by altered hepatic enzyme function and bilirubin concentration. We recently reported differences in cytokine profiles between distinct HAV-induced clinical courses, and bilirubin has been recognized as a potential immune-modulator. However, how bilirubin may affect cytokine profiles underlying the variability in the course of infection has not been determined. Herein, we used a transcription factor (TF) binding site identification approach to retrospectively analyse cytokine expression in HAV-infected children and to predict the entire set of TFs associated with the expression of specific cytokine profiles. The results suggested that modulation of the activity of signal transducers and activators of transcription proteins (STATs) may play a central role during HAV infection. This led us to compare the degree of STAT phosphorylation in peripheral blood lymphoid cells (PBLCs) from paediatric patients with distinct levels of conjugated bilirubin (CB). Low CB levels in sera were associated with increased STAT-1 and STAT-5 phosphorylation. A positive correlation was observed between the serum interleukin-6 (IL-6) content and CB values, whereas higher levels of CB correlated with reduced serum IL-8 values and with a reduction in the proportion of PBLCs positive for STAT-5 phosphorylation. When CB was used to stimulate patients’ PBLCs in vitro, the levels of IL-6 and tumour necrosis factor-α were increased. The data showed that bilirubin plays a role in STAT function and affects cytokine profile expression during HAV infection. PMID:24943111

  4. Conjugated bilirubin affects cytokine profiles in hepatitis A virus infection by modulating function of signal transducer and activator of transcription factors.

    PubMed

    Castro-García, Flor P; Corral-Jara, Karla F; Escobedo-Melendez, Griselda; Sandoval-Hernandez, Monserrat A; Rosenstein, Yvonne; Roman, Sonia; Panduro, Arturo; Fierro, Nora A

    2014-12-01

    Hepatitis A virus (HAV) infection is the major cause of acute liver failure in paediatric patients. The clinical spectrum of infection is variable, and liver injury is determined by altered hepatic enzyme function and bilirubin concentration. We recently reported differences in cytokine profiles between distinct HAV-induced clinical courses, and bilirubin has been recognized as a potential immune-modulator. However, how bilirubin may affect cytokine profiles underlying the variability in the course of infection has not been determined. Herein, we used a transcription factor (TF) binding site identification approach to retrospectively analyse cytokine expression in HAV-infected children and to predict the entire set of TFs associated with the expression of specific cytokine profiles. The results suggested that modulation of the activity of signal transducers and activators of transcription proteins (STATs) may play a central role during HAV infection. This led us to compare the degree of STAT phosphorylation in peripheral blood lymphoid cells (PBLCs) from paediatric patients with distinct levels of conjugated bilirubin (CB). Low CB levels in sera were associated with increased STAT-1 and STAT-5 phosphorylation. A positive correlation was observed between the serum interleukin-6 (IL-6) content and CB values, whereas higher levels of CB correlated with reduced serum IL-8 values and with a reduction in the proportion of PBLCs positive for STAT-5 phosphorylation. When CB was used to stimulate patients' PBLCs in vitro, the levels of IL-6 and tumour necrosis factor-α were increased. The data showed that bilirubin plays a role in STAT function and affects cytokine profile expression during HAV infection. © 2014 John Wiley & Sons Ltd.

  5. Infection dynamics on spatial small-world network models

    NASA Astrophysics Data System (ADS)

    Iotti, Bryan; Antonioni, Alberto; Bullock, Seth; Darabos, Christian; Tomassini, Marco; Giacobini, Mario

    2017-11-01

    The study of complex networks, and in particular of social networks, has mostly concentrated on relational networks, abstracting the distance between nodes. Spatial networks are, however, extremely relevant in our daily lives, and a large body of research exists to show that the distances between nodes greatly influence the cost and probability of establishing and maintaining a link. A random geometric graph (RGG) is the main type of synthetic network model used to mimic the statistical properties and behavior of many social networks. We propose a model, called REDS, that extends energy-constrained RGGs to account for the synergic effect of sharing the cost of a link with our neighbors, as is observed in real relational networks. We apply both the standard Watts-Strogatz rewiring procedure and another method that conserves the degree distribution of the network. The second technique was developed to eliminate unwanted forms of spatial correlation between the degree of nodes that are affected by rewiring, limiting the effect on other properties such as clustering and assortativity. We analyze both the statistical properties of these two network types and their epidemiological behavior when used as a substrate for a standard susceptible-infected-susceptible compartmental model. We consider and discuss the differences in properties and behavior between RGGs and REDS as rewiring increases and as infection parameters are changed. We report considerable differences both between the network types and, in the case of REDS, between the two rewiring schemes. We conclude that REDS represent, with the application of these rewiring mechanisms, extremely useful and interesting tools in the study of social and epidemiological phenomena in synthetic complex networks.

  6. Optimal control analysis of malaria-schistosomiasis co-infection dynamics.

    PubMed

    Okosun, Kazeem Oare; Smith, Robert

    2017-04-01

    This paper presents a mathematical model for malaria--schistosomiasis co-infection in order to investigate their synergistic relationship in the presence of treatment. We first analyse the single infection steady states, then investigate the existence and stability of equilibria and then calculate the basic reproduction numbers. Both the single-infection models and the co-infection model exhibit backward bifurcations. We carrying out a sensitivity analysis of the co-infection model and show that schistosomiasis infection may not be associated with an increased risk of malaria. Conversely, malaria infection may be associated with an increased risk of schistosomiasis. Furthermore, we found that effective treatment and prevention of schistosomiasis infection would also assist in the effective control and eradication of malaria. Finally, we apply Pontryagin's Maximum Principle to the model in order to determine optimal strategies for control of both diseases.

  7. Velocity-strengthening friction significantly affects interfacial dynamics, strength and dissipation

    PubMed Central

    Bar-Sinai, Yohai; Spatschek, Robert; Brener, Efim A.; Bouchbinder, Eran

    2015-01-01

    Frictional interfaces abound in natural and man-made systems, yet their dynamics are not well-understood. Recent extensive experimental data have revealed that velocity-strengthening friction, where the steady-state frictional resistance increases with sliding velocity over some range, is a generic feature of such interfaces. This physical behavior has very recently been linked to slow stick-slip motion. Here we elucidate the importance of velocity-strengthening friction by theoretically studying three variants of a realistic friction model, all featuring identical logarithmic velocity-weakening friction at small sliding velocities, but differ in their higher velocity behaviors. By quantifying energy partition (e.g. radiation and dissipation), the selection of interfacial rupture fronts and rupture arrest, we show that the presence or absence of strengthening significantly affects the global interfacial resistance and the energy release during frictional instabilities. Furthermore, we show that different forms of strengthening may result in events of similar magnitude, yet with dramatically different dissipation and radiation rates. This happens because the events are mediated by rupture fronts with vastly different propagation velocities, where stronger velocity-strengthening friction promotes slower rupture. These theoretical results may have significant implications on our understanding of frictional dynamics. PMID:25598161

  8. Dynamics of virus shedding and antibody responses in influenza A virus-infected feral swine.

    PubMed

    Sun, Hailiang; Cunningham, Fred L; Harris, Jillian; Xu, Yifei; Long, Li-Ping; Hanson-Dorr, Katie; Baroch, John A; Fioranelli, Paul; Lutman, Mark W; Li, Tao; Pedersen, Kerri; Schmit, Brandon S; Cooley, Jim; Lin, Xiaoxu; Jarman, Richard G; DeLiberto, Thomas J; Wan, Xiu-Feng

    2015-09-01

    Given their free-ranging habits, feral swine could serve as reservoirs or spatially dynamic 'mixing vessels' for influenza A virus (IAV). To better understand virus shedding patterns and antibody response dynamics in the context of IAV surveillance amongst feral swine, we used IAV of feral swine origin to perform infection experiments. The virus was highly infectious and transmissible in feral swine, and virus shedding patterns and antibody response dynamics were similar to those in domestic swine. In the virus-inoculated and sentinel groups, virus shedding lasted ≤ 6 and ≤ 9 days, respectively. Antibody titres in inoculated swine peaked at 1 : 840 on day 11 post-inoculation (p.i.), remained there until 21 days p.i. and dropped to < 1 : 220 at 42 days p.i. Genomic sequencing identified changes in wildtype (WT) viruses and isolates from sentinel swine, most notably an amino acid divergence in nucleoprotein position 473. Using data from cell culture as a benchmark, sensitivity and specificity of a matrix gene-based quantitative reverse transcription-PCR method using nasal swab samples for detection of IAV in feral swine were 78.9 and 78.1 %, respectively. Using data from haemagglutination inhibition assays as a benchmark, sensitivity and specificity of an ELISA for detection of IAV-specific antibody were 95.4 and 95.0 %, respectively. Serological surveillance from 2009 to 2014 showed that ∼7.58 % of feral swine in the USA were positive for IAV. Our findings confirm the susceptibility of IAV infection and the high transmission ability of IAV amongst feral swine, and also suggest the need for continued surveillance of IAVs in feral swine populations.

  9. Dynamics of virus shedding and antibody responses in influenza A virus-infected feral swine

    PubMed Central

    Sun, Hailiang; Cunningham, Fred L.; Harris, Jillian; Xu, Yifei; Long, Li-Ping; Hanson-Dorr, Katie; Baroch, John A.; Fioranelli, Paul; Lutman, Mark W.; Li, Tao; Pedersen, Kerri; Schmit, Brandon S.; Cooley, Jim; Lin, Xiaoxu; Jarman, Richard G.; DeLiberto, Thomas J.

    2015-01-01

    Given their free-ranging habits, feral swine could serve as reservoirs or spatially dynamic ‘mixing vessels’ for influenza A virus (IAV). To better understand virus shedding patterns and antibody response dynamics in the context of IAV surveillance amongst feral swine, we used IAV of feral swine origin to perform infection experiments. The virus was highly infectious and transmissible in feral swine, and virus shedding patterns and antibody response dynamics were similar to those in domestic swine. In the virus-inoculated and sentinel groups, virus shedding lasted ≤ 6 and ≤ 9 days, respectively. Antibody titres in inoculated swine peaked at 1 : 840 on day 11 post-inoculation (p.i.), remained there until 21 days p.i. and dropped to < 1 : 220 at 42 days p.i. Genomic sequencing identified changes in wildtype (WT) viruses and isolates from sentinel swine, most notably an amino acid divergence in nucleoprotein position 473. Using data from cell culture as a benchmark, sensitivity and specificity of a matrix gene-based quantitative reverse transcription-PCR method using nasal swab samples for detection of IAV in feral swine were 78.9 and 78.1 %, respectively. Using data from haemagglutination inhibition assays as a benchmark, sensitivity and specificity of an ELISA for detection of IAV-specific antibody were 95.4 and 95.0 %, respectively. Serological surveillance from 2009 to 2014 showed that ∼7.58 % of feral swine in the USA were positive for IAV. Our findings confirm the susceptibility of IAV infection and the high transmission ability of IAV amongst feral swine, and also suggest the need for continued surveillance of IAVs in feral swine populations. PMID:26297148

  10. The model of fungal population dynamics affected by nystatin

    NASA Astrophysics Data System (ADS)

    Voychuk, Sergei I.; Gromozova, Elena N.; Sadovskiy, Mikhail G.

    Fungal diseases are acute problems of the up-to-day medicine. Significant increase of resistance of microorganisms to the medically used antibiotics and a lack of new effective drugs follows in a growth of dosage of existing chemicals to solve the problem. Quite often such approach results in side effects on humans. Detailed study of fungi-antibiotic dynamics can identify new mechanisms and bring new ideas to overcome the microbial resistance with a lower dosage of antibiotics. In this study, the dynamics of the microbial population under antibiotic treatment was investigated. The effects of nystatin on the population of Saccharomyces cerevisiae yeasts were used as a model system. Nystatin effects were investigated both in liquid and solid media by viability tests. Dependence of nystatin action on osmotic gradient was evaluated in NaCl solutions. Influences of glucose and yeast extract were additionally analyzed. A "stepwise" pattern of the cell death caused by nystatin was the most intriguing. This pattern manifested in periodical changes of the stages of cell death against stages of resistance to the antibiotic. The mathematical model was proposed to describe cell-antibiotic interactions and nystatin viability effects in the liquid medium. The model implies that antibiotic ability to cause a cells death is significantly affected by the intracellular compounds, which came out of cells after their osmotic barriers were damaged

  11. White spot syndrome virus (WSSV) infects specific hemocytes of the shrimp Penaeus merguiensis.

    PubMed

    Wang, Y T; Liu, W; Seah, J N; Lam, C S; Xiang, J H; Korzh, V; Kwang, J

    2002-12-10

    White spot syndrome virus (WSSV) was specifically detected by PCR in Penaeus merguiensis hemocytes, hemolymph and plasma. This suggested a close association between the shrimp hemolymph and the virus. Three types of hemocyte from shrimp were isolated using flow cytometry. Dynamic changes of the hemocyte subpopulations in P. merguiensis at different times after infection were observed, indicating that the WSSV infection selectively affected specific subpopulations. Immunofluorescence assay (IFA) and a Wright-Giemsa double staining study of hemocyte types further confirmed the cellular localization of the virus in the infected hemocytes. Electron microscopy revealed virus particles in both vacuoles and the nucleus of the semigranular cells (SGC), as well as in the vacuoles of the granular cells (GC). However, no virus could be detected in the hyaline cells (HC). Our results suggest that the virus infects 2 types of shrimp hemocytes--GCs and SGCs. The SGC type contains higher virus loads and exhibits faster infection rates, and is apparently more susceptible to WSSV infection.

  12. Wolbachia infection in Aedes aegypti mosquitoes alters blood meal excretion and delays oviposition without affecting trypsin activity.

    PubMed

    Pimenta de Oliveira, Sofia; Dantas de Oliveira, Caroline; Viana Sant'Anna, Mauricio Roberto; Carneiro Dutra, Heverton Leandro; Caragata, Eric Pearce; Moreira, Luciano Andrade

    2017-08-01

    Blood feeding in Aedes aegypti is essential for reproduction, but also permits the mosquito to act as a vector for key human pathogens such as the Zika and dengue viruses. Wolbachia pipientis is an endosymbiotic bacterium that can manipulate the biology of Aedes aegypti mosquitoes, making them less competent hosts for many pathogens. Yet while Wolbachia affects other aspects of host physiology, it is unclear whether it influences physiological processes associated with blood meal digestion. To that end, we examined the effects of wMel Wolbachia infection in Ae. aegypti, on survival post-blood feeding, blood meal excretion, rate of oviposition, expression levels of key genes involved in oogenesis, and activity levels of trypsin blood digestion enzymes. We observed that wMel infection altered the rate and duration of blood meal excretion, delayed the onset of oviposition and was associated with a greater number of eggs being laid later. wMel-infected Ae. aegypti also had lower levels of key yolk protein precursor genes necessary for oogenesis. However, all of these effects occurred without a change in trypsin activity. These results suggest that Wolbachia infection may disrupt normal metabolic processes associated with blood feeding and reproduction in Ae. aegypti. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Adaptive contact networks change effective disease infectiousness and dynamics.

    PubMed

    Van Segbroeck, Sven; Santos, Francisco C; Pacheco, Jorge M

    2010-08-19

    Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to avoid contact with those infected and to remain in touch with the healthy. Here we study disease dynamics in finite populations in which infection occurs along the links of a dynamical contact network whose reshaping may be biased based on each individual's health status. We adopt some of the most widely used epidemiological models, investigating the impact of the reshaping of the contact network on the disease dynamics. We derive analytical results in the limit where network reshaping occurs much faster than disease spreading and demonstrate numerically that this limit extends to a much wider range of time scales than one might anticipate. Specifically, we show that from a population-level description, disease propagation in a quickly adapting network can be formulated equivalently as disease spreading on a well-mixed population but with a rescaled infectiousness. We find that for all models studied here--SI, SIS and SIR--the effective infectiousness of a disease depends on the population size, the number of infected in the population, and the capacity of healthy individuals to sever contacts with the infected. Importantly, we indicate how the use of available information hinders disease progression, either by reducing the average time required to eradicate a disease (in case recovery is possible), or by increasing the average time needed for a disease to spread to the entire population (in case recovery or immunity is impossible).

  14. At the Frontiers of Modeling Intensive Longitudinal Data: Dynamic Structural Equation Models for the Affective Measurements from the COGITO Study.

    PubMed

    Hamaker, E L; Asparouhov, T; Brose, A; Schmiedek, F; Muthén, B

    2018-04-06

    With the growing popularity of intensive longitudinal research, the modeling techniques and software options for such data are also expanding rapidly. Here we use dynamic multilevel modeling, as it is incorporated in the new dynamic structural equation modeling (DSEM) toolbox in Mplus, to analyze the affective data from the COGITO study. These data consist of two samples of over 100 individuals each who were measured for about 100 days. We use composite scores of positive and negative affect and apply a multilevel vector autoregressive model to allow for individual differences in means, autoregressions, and cross-lagged effects. Then we extend the model to include random residual variances and covariance, and finally we investigate whether prior depression affects later depression scores through the random effects of the daily diary measures. We end with discussing several urgent-but mostly unresolved-issues in the area of dynamic multilevel modeling.

  15. Dynamics of faecal egg count in natural infection of Haemonchus spp. in Indian goats

    PubMed Central

    Agrawal, Nimisha; Sharma, Dinesh Kumar; Mandal, Ajoy; Rout, Pramod Kumar; Kushwah, Yogendra Kumar

    2015-01-01

    Aim: Dynamics of faecal egg count (FEC) in Haemonchus spp. infected goats of two Indian goat breeds, Jamunapari and Sirohi, in natural conditions was studied and effects of genetic and non-genetic factors were determined. Materials and Methods: A total of 1399 faecal samples of goats of Jamunapari and Sirohi breeds, maintained at CIRG, Makhdoom, Mathura, India and naturally infected with Haemonchus spp., were processed and FEC was performed. Raw data generated on FEC were transformed by loge (FEC+100) and transformed data (least squares mean of FEC [LFEC]) were analyzed using a mixed model least squares analysis for fitting constant. Fixed effects such as breed, physiological status, season and year of sampling and breed × physiological states interaction were used. Result: The incidence of Haemomchus spp. infection in Jamunapari and Sirohi does was 63.01 and 47.06%, respectively. The mean LFEC of both Jamunapari and Sirohi (does) at different physiological stages, namely dry, early pregnant, late pregnant early lactating and late lactating stages were compared. Breed, season and year of sampling had a significant effect on FEC in Haemomchus spp. infection. Effect of breed × physiological interaction was also significant. The late pregnant does of both breeds had higher FEC when compared to does in other stages. Conclusion: Breed difference in FEC was more pronounced at the time of post kidding (early lactation) when sharp change in FEC was observed. PMID:27046993

  16. Glycosylation of Residue 141 of Subtype H7 Influenza A Hemagglutinin (HA) Affects HA-Pseudovirus Infectivity and Sensitivity to Site A Neutralizing Antibodies.

    PubMed

    Alvarado-Facundo, Esmeralda; Vassell, Russell; Schmeisser, Falko; Weir, Jerry P; Weiss, Carol D; Wang, Wei

    2016-01-01

    Human infections with H7 subtype influenza virus have been reported, including an H7N7 outbreak in Netherlands in 2003 and H7N9 infections in China in 2013. Previously, we reported murine monoclonal antibodies (mAbs) that recognize the antigenic site A of H7 hemagglutinin (HA). To better understand protective immunity of H7 vaccines and vaccine candidate selection, we used these mAbs to assess the antigenic relatedness among two H7 HA isolated from past human infections and determine residues that affect susceptibility to neutralization. We found that these mAbs neutralize pseudoviruses bearing HA of A/Shanghai/02/2013(H7N9), but not A/Netherlands/219/2003(H7N7). Glycosylation of the asparagine residue at position 141 (N141) (N133, H3 HA numbering) in the HA of A/Netherlands/219/2003 HA is responsible for this resistance, and it affects the infectivity of HA-pseudoviruses. The presence of threonine at position 143 (T135, H3 HA numbering) in the HA of A/Netherlands/219/2003, rather than an alanine found in the HA of A/Shanghai/02/2013(H7N9), accounts for these differences. These results demonstrate a key role for glycosylation of residue N141 in affecting H7 influenza HA-mediated entry and sensitivity to neutralizing antibodies, which have implications for candidate vaccine design.

  17. Impact of time delay on the dynamics of SEIR epidemic model using cellular automata

    NASA Astrophysics Data System (ADS)

    Sharma, Natasha; Gupta, Arvind Kumar

    2017-04-01

    The delay of an infectious disease is significant when aiming to predict its strength and spreading patterns. In this paper the SEIR ​(susceptible-exposed-infected-recovered) epidemic spread with time delay is analyzed through a two-dimensional cellular automata model. The time delay corresponding to the infectious span, predominantly, includes death during the latency period in due course of infection. The advancement of whole system is described by SEIR transition function complemented with crucial factors like inhomogeneous population distribution, birth and disease independent mortality. Moreover, to reflect more realistic population dynamics some stochastic parameters like population movement and connections at local level are also considered. The existence and stability of disease free equilibrium is investigated. Two prime behavioral patterns of disease dynamics is found depending on delay. The critical value of delay, beyond which there are notable variations in spread patterns, is computed. The influence of important parameters affecting the disease dynamics on basic reproduction number is also examined. The results obtained show that delay plays an affirmative role to control disease progression in an infected host.

  18. The Effects of Vaccination and Immunity on Bacterial Infection Dynamics In Vivo

    PubMed Central

    Coward, Chris; Restif, Olivier; Dybowski, Richard; Grant, Andrew J.; Maskell, Duncan J.; Mastroeni, Pietro

    2014-01-01

    Salmonella enterica infections are a significant global health issue, and development of vaccines against these bacteria requires an improved understanding of how vaccination affects the growth and spread of the bacteria within the host. We have combined in vivo tracking of molecularly tagged bacterial subpopulations with mathematical modelling to gain a novel insight into how different classes of vaccines and branches of the immune response protect against secondary Salmonella enterica infections of the mouse. We have found that a live Salmonella vaccine significantly reduced bacteraemia during a secondary challenge and restrained inter-organ spread of the bacteria in the systemic organs. Further, fitting mechanistic models to the data indicated that live vaccine immunisation enhanced both the bacterial killing in the very early stages of the infection and bacteriostatic control over the first day post-challenge. T-cell immunity induced by this vaccine is not necessary for the enhanced bacteriostasis but is required for subsequent bactericidal clearance of Salmonella in the blood and tissues. Conversely, a non-living vaccine while able to enhance initial blood clearance and killing of virulent secondary challenge bacteria, was unable to alter the subsequent bacterial growth rate in the systemic organs, did not prevent the resurgence of extensive bacteraemia and failed to control the spread of the bacteria in the body. PMID:25233077

  19. Consumption of endophyte-infected fescue seed during the dry period and lactation affects mammary gland gene expression in dairy cows

    USDA-ARS?s Scientific Manuscript database

    Ergot alkaloids in endophyte-infected grasses inhibit prolactin (PRL) secretion and reduce milk production when fed to lactating cows. However, we have shown this affect is temporal in that pre-partum consumption of inflected seed throughout the dry period does not inhibit subsequent milk productio...

  20. Facultative symbiont infections affect aphid reproduction.

    PubMed

    Simon, Jean-Christophe; Boutin, Sébastien; Tsuchida, Tsutomu; Koga, Ryuichi; Le Gallic, Jean-François; Frantz, Adrien; Outreman, Yannick; Fukatsu, Takema

    2011-01-01

    Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction.

  1. Think globally, act locally: the role of local demographics and vaccination coverage in the dynamic response of measles infection to control.

    PubMed

    Ferrari, M J; Grenfell, B T; Strebel, P M

    2013-08-05

    The global reduction of the burden of morbidity and mortality owing to measles has been a major triumph of public health. However, the continued persistence of measles infection probably not only reflects local variation in progress towards vaccination target goals, but may also reflect local variation in dynamic processes of transmission, susceptible replenishment through births and stochastic local extinction. Dynamic models predict that vaccination should increase the mean age of infection and increase inter-annual variability in incidence. Through a comparative approach, we assess national-level patterns in the mean age of infection and measles persistence. We find that while the classic predictions do hold in general, the impact of vaccination on the age distribution of cases and stochastic fadeout are mediated by local birth rate. Thus, broad-scale vaccine coverage goals are unlikely to have the same impact on the interruption of measles transmission in all demographic settings. Indeed, these results suggest that the achievement of further measles reduction or elimination goals is likely to require programmatic and vaccine coverage goals that are tailored to local demographic conditions.

  2. Dynamics in the tomato root transcriptome on infection with the potato cyst nematode Globodera rostochiensis.

    PubMed

    Swiecicka, Magdalena; Filipecki, Marcin; Lont, Dieuwertje; Van Vliet, Joke; Qin, Ling; Goverse, Aska; Bakker, Jaap; Helder, Johannes

    2009-07-01

    Plant parasitic nematodes infect roots and trigger the formation of specialized feeding sites by substantial reprogramming of the developmental process of root cells. In this article, we describe the dynamic changes in the tomato root transcriptome during early interactions with the potato cyst nematode Globodera rostochiensis. Using amplified fragment length polymorphism-based mRNA fingerprinting (cDNA-AFLP), we monitored 17 600 transcript-derived fragments (TDFs) in infected and uninfected tomato roots, 1-14 days after inoculation with nematode larvae. Six hundred and twenty-four TDFs (3.5%) showed significant differential expression on nematode infection. We employed GenEST, a computer program which links gene expression profiles generated by cDNA-AFLP and databases of cDNA sequences, to identify 135 tomato sequences. These sequences were grouped into eight functional categories based on the presence of genes involved in hormone regulation, plant pathogen defence response, cell cycle and cytoskeleton regulation, cell wall modification, cellular signalling, transcriptional regulation, primary metabolism and allocation. The presence of unclassified genes was also taken into consideration. This article describes the responsiveness of numerous tomato genes hitherto uncharacterized during infection with endoparasitic cyst nematodes. The analysis of transcriptome profiles allowed the sequential order of expression to be dissected for many groups of genes and the genes to be connected with the biological processes involved in compatible interactions between the plant and nematode.

  3. Young Children’s Affective Responses to Another’s Distress: Dynamic and Physiological Features

    PubMed Central

    Fink, Elian; Heathers, James A. J.; de Rosnay, Marc

    2015-01-01

    Two descriptive studies set out a new approach for exploring the dynamic features of children’s affective responses (sadness and interest-worry) to another’s distress. In two samples (N study1 = 75; N study2 = 114), Kindergarten children were shown a video-vignette depicting another child in distress and the temporal pattern of spontaneous expressions were examined across the unfolding vignette. Results showed, in both study 1 and 2, that sadness and interest-worry had distinct patterns of elicitation across the events of the vignette narrative and there was little co-occurrence of these affects within a given child. Temporal heart rate changes (study 2) were closely aligned to the events of the vignette and, furthermore, affective responses corresponded to distinctive physiological response profiles. The implications of distinct temporal patterns of elicitation for the meaning of sadness and interest-worry are discussed within the framework of emotion regulation and empathy. PMID:25874952

  4. Zika plasma viral dynamics in nonhuman primates provides insights into early infection and antiviral strategies

    PubMed Central

    Best, Katharine; Guedj, Jeremie; Madelain, Vincent; de Lamballerie, Xavier; Lim, So-Yon; Osuna, Christa E.; Whitney, James B.; Perelson, Alan S.

    2017-01-01

    The recent outbreak of Zika virus (ZIKV) has been associated with fetal abnormalities and neurological complications, prompting global concern. Here we present a mathematical analysis of the within-host dynamics of plasma ZIKV burden in a nonhuman primate model, allowing for characterization of the growth and clearance of ZIKV within individual macaques. We estimate that the eclipse phase for ZIKV, the time between cell infection and viral production, is most likely short (∼4 h), the median within-host basic reproductive number R0 is 10.7, the rate of viral production is rapid (>25,000 virions d−1), and the lifetime of an infected cell while producing virus is ∼5 h. We also estimate that the minimum number of virions produced by an infected cell over its lifetime is ∼5,500. We assess the potential effect of an antiviral treatment that blocks viral replication, showing that the median time to undetectable plasma viral load (VL) can be reduced from ∼5 d to ∼3 d with a drug concentration ∼15 times the drug’s EC50 when treatment is given prophylactically starting at the time of infection. In the case of favipiravir, a polymerase inhibitor with activity against ZIKV, we predict a dose of 150 mg/kg given twice a day initiated at the time of infection can reduce the peak median VL by ∼3 logs and shorten the time to undetectable median VL by ∼2 d, whereas treatment given 2 d postinfection is mostly ineffective in accelerating plasma VL loss in macaques. PMID:28765371

  5. Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2018-06-01

    Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  6. Modeling the effects of the variability of temperature-related dynamic viscosity on the thermal-affected zone of groundwater heat-pump systems

    NASA Astrophysics Data System (ADS)

    Lo Russo, Stefano; Taddia, Glenda; Cerino Abdin, Elena

    2018-01-01

    Thermal perturbation in the subsurface produced in an open-loop groundwater heat pump (GWHP) plant is a complex transport phenomenon affected by several factors, including the exploited aquifer's hydrogeological and thermal characteristics, well construction features, and the temporal dynamics of the plant's groundwater abstraction and reinjection system. Hydraulic conductivity has a major influence on heat transport because plume propagation, which occurs primarily through advection, tends to degrade following conductive heat transport and convection within moving water. Hydraulic conductivity is, in turn, influenced by water reinjection because the dynamic viscosity of groundwater varies with temperature. This paper reports on a computational analysis conducted using FEFLOW software to quantify how the thermal-affected zone (TAZ) is influenced by the variation in dynamic viscosity due to reinjected groundwater in a well-doublet scheme. The modeling results demonstrate non-negligible groundwater dynamic-viscosity variation that affects thermal plume propagation in the aquifer. This influence on TAZ calculation was enhanced for aquifers with high intrinsic permeability and/or substantial temperature differences between abstracted and post-heat-pump-reinjected groundwater.

  7. Ear Infections

    MedlinePlus

    ... but they are less common. The infection usually affects the middle ear and is called otitis media. ... become clogged with fluid and mucus. This can affect hearing, because sound cannot get through all that ...

  8. Epidemiological Risk Factors Associated with High Global Frequency of Inapparent Dengue Virus Infections

    PubMed Central

    Grange, Laura; Simon-Loriere, Etienne; Sakuntabhai, Anavaj; Gresh, Lionel; Paul, Richard; Harris, Eva

    2014-01-01

    Dengue is a major international public health concern, and the number of outbreaks has escalated greatly. Human migration and international trade and travel are constantly introducing new vectors and pathogens into novel geographic areas. Of particular interest is the extent to which dengue virus (DENV) infections are subclinical or inapparent. Not only may such infections contribute to the global spread of DENV by human migration, but also seroprevalence rates in naïve populations may be initially high despite minimal numbers of detectable clinical cases. As the probability of severe disease is increased in secondary infections, populations may thus be primed, with serious public health consequences following introduction of a new serotype. In addition, pre-existing immunity from inapparent infections may affect vaccine uptake, and the ratio of clinically apparent to inapparent infection could affect the interpretation of vaccine trials. We performed a literature search for inapparent DENV infections and provide an analytical review of their frequency and associated risk factors. Inapparent rates were highly variable, but “inapparent” was the major outcome of infection in all prospective studies. Differences in the epidemiological context and type of surveillance account for much of the variability in inapparent infection rates. However, one particular epidemiological pattern was shared by four longitudinal cohort studies: the rate of inapparent DENV infections was positively correlated with the incidence of disease the previous year, strongly supporting an important role for short-term heterotypic immunity in determining the outcome of infection. Primary and secondary infections were equally likely to be inapparent. Knowledge of the extent to which viruses from inapparent infections are transmissible to mosquitoes is urgently needed. Inapparent infections need to be considered for their impact on disease severity, transmission dynamics, and vaccine efficacy

  9. Beyond mice and men: Environmental change, immunity and infections in wild ungulates

    PubMed Central

    Jolles, Anna E.; Beechler, Brianna R.; Dolan, Brian P.

    2014-01-01

    In the face of rapid environmental change, anticipating shifts in microparasite and macroparasite dynamics, including emergence events, is an enormous challenge. We argue that immunological studies in natural populations are pivotal to meeting this challenge: Many components of environmental change – shifts in biotic assemblages, altered climate patterns, and reduced environmental predictability – may affect host immunity. We suggest that wild ungulates can serve as model systems aiding the discovery of immunological mechanisms that link environmental change with parasite transmission dynamics. Our review of eco-immunological studies in wild ungulates reveals progress in understanding how co-infections affect immunity and parasite transmission; and how environmental and genetic factors interact to shape immunity. Changes in bioavailability of micronutrients have been linked to immunity and health in wild ungulates. Although physiological stress in response to environmental change has been assessed, downstream effects on immunity have not been studied. Moreover, the taxonomic range of ungulates studied is limited to bovids (bighorn sheep, Soay sheep, chamois, musk oxen, bison, African buffalo) and a few cervids (red deer, black-tailed deer). We discuss areas where future studies in ungulates could lead to significant contributions in understanding patterns of immunity and infection in natural populations and across species. PMID:25354672

  10. Dynamics of parasitemia of malaria parasites in a naturally and experimentally infected migratory songbird, the great reed warbler Acrocephalus arundinaceus.

    PubMed

    Zehtindjiev, Pavel; Ilieva, Mihaela; Westerdahl, Helena; Hansson, Bengt; Valkiūnas, Gediminas; Bensch, Staffan

    2008-05-01

    Little is known about the development of infection of malaria parasites of the genus Plasmodium in wild birds. We used qPCR, targeting specific mitochondrial lineages of Plasmodium ashfordi (GRW2) and Plasmodium relictum (GRW4), to monitor changes in intensities of parasitemia in captive great reed warblers Acrocephalus arundinaceus from summer to spring. The study involved both naturally infected adults and experimentally infected juveniles. The experiment demonstrated that P. ashfordi and P. relictum lineages differ substantially in several life-history traits (e.g. prepatent period and dynamics of parasitemia) and that individual hosts show substantial differences in responses to these infections. The intensity of parasitemia of lineages in mixed infections co-varied positively, suggesting a control mechanism by the host that is general across the parasite lineages. The intensity of parasitemia for individual hosts was highly repeatable suggesting variation between the host individuals in their genetic or acquired control of the infections. In future studies, care must be taken to avoid mixed infections in wild caught donors, and when possible use mosquitoes for the experiments as inoculation of infectious blood ignores important initial stages of the contact between the bird and the parasite.

  11. The impact of chief executive officer personality on top management team dynamics:one mechanism by which leadership affects organizational performance.

    PubMed

    Peterson, Randall S; Smith, D Brent; Martorana, Paul V; Owens, Pamela D

    2003-10-01

    This article explores 1 mechanism by which leader personality affects organizational performance. The authors hypothesized and tested the effects of leader personality on the group dynamics of the top management team (TMT) and of TMT dynamics on organizational performance. To test their hypotheses, the authors used the group dynamics q-sort method, which is designed to permit rigorous, quantitative comparisons of data derived from qualitative sources. Results from independent observations of chief executive officer (CEO) personality and TMT dynamics for 17 CEOs supported the authors' hypothesized relationships both between CEO personality and TMT group dynamics and between TMT dynamics and organizational performance.

  12. Imaging host cell-Leishmania interaction dynamics implicates parasite motility, lysosome recruitment, and host cell wounding in the infection process.

    PubMed

    Forestier, Claire-Lise; Machu, Christophe; Loussert, Celine; Pescher, Pascale; Späth, Gerald F

    2011-04-21

    Leishmania donovani causes human visceral leishmaniasis. The parasite infectious cycle comprises extracellular flagellated promastigotes that proliferate inside the insect vector, and intracellular nonmotile amastigotes that multiply within infected host cells. Using primary macrophages infected with virulent metacyclic promastigotes and high spatiotemporal resolution microscopy, we dissect the dynamics of the early infection process. We find that motile promastigotes enter macrophages in a polarized manner through their flagellar tip and are engulfed into host lysosomal compartments. Persistent intracellular flagellar activity leads to reorientation of the parasite flagellum toward the host cell periphery and results in oscillatory parasite movement. The latter is associated with local lysosomal exocytosis and host cell plasma membrane wounding. These findings implicate lysosome recruitment followed by lysosome exocytosis, consistent with parasite-driven host cell injury, as key cellular events in Leishmania host cell infection. This work highlights the role of promastigote polarity and motility during parasite entry. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Mastoid vibration affects dynamic postural control during gait in healthy older adults

    NASA Astrophysics Data System (ADS)

    Chien, Jung Hung; Mukherjee, Mukul; Kent, Jenny; Stergiou, Nicholas

    2017-01-01

    Vestibular disorders are difficult to diagnose early due to the lack of a systematic assessment. Our previous work has developed a reliable experimental design and the result shows promising results that vestibular sensory input while walking could be affected through mastoid vibration (MV) and changes are in the direction of motion. In the present paper, we wanted to extend this work to older adults and investigate how manipulating sensory input through mastoid vibration (MV) could affect dynamic postural control during walking. Three levels of MV (none, unilateral, and bilateral) applied via vibrating elements placed on the mastoid processes were combined with the Locomotor Sensory Organization Test (LSOT) paradigm to challenge the visual and somatosensory systems. We hypothesized that the MV would affect sway variability during walking in older adults. Our results revealed that MV significantly not only increased the amount of sway variability but also decreased the temporal structure of sway variability only in anterior-posterior direction. Importantly, the bilateral MV stimulation generally produced larger effects than the unilateral. This is an important finding that confirmed our experimental design and the results produced could guide a more reliable screening of vestibular system deterioration.

  14. Hepatitis virus infection affects DNA methylation in mice with humanized livers.

    PubMed

    Okamoto, Yasuyuki; Shinjo, Keiko; Shimizu, Yasuhiro; Sano, Tsuyoshi; Yamao, Kenji; Gao, Wentao; Fujii, Makiko; Osada, Hirotaka; Sekido, Yoshitaka; Murakami, Shuko; Tanaka, Yasuhito; Joh, Takashi; Sato, Shinya; Takahashi, Satoru; Wakita, Takaji; Zhu, Jingde; Issa, Jean-Pierre J; Kondo, Yutaka

    2014-02-01

    Cells of tumors associated with chronic inflammation frequently have altered patterns of DNA methylation, including hepatocellular carcinomas. Chronic hepatitis has also been associated with aberrant DNA methylation, but little is known about their relationship. Pyrosequencing was used to determine the methylation status of cultured Huh7.5.1 hepatoma cells after hepatitis C virus (HCV) infection. We also studied mice with severe combined immunodeficiency carrying the urokinase-type plasminogen activator transgene controlled by an albumin promoter (urokinase-type plasminogen activator/severe combined immunodeficient mice), in which up to 85% of hepatocytes were replaced by human hepatocytes (chimeric mice). Mice were given intravenous injections of hepatitis B virus (HBV) or HCV, liver tissues were collected, and DNA methylation profiles were determined at different time points after infection. We also compared methylation patterns between paired samples of hepatocellular carcinomas and adjacent nontumor liver tissues from patients. No reproducible changes in DNA methylation were observed after infection of Huh7.5.1 cells with HCV. Livers from HBV- and HCV-infected mice had genome-wide, time-dependent changes in DNA methylation, compared with uninfected urokinase-type plasminogen activator/severe combined immunodeficient mice. There were changes in 160 ± 63 genes in HBV-infected and 237 ± 110 genes in HCV-infected mice. Methylation of 149 common genes increased in HBV- and HCV-infected mice; methylation of some of these genes also increased in hepatocellular carcinoma samples from patients compared with nontumor tissues. Expression of Ifng, which is expressed by natural killer cells, increased significantly in chimeric livers, in concordance with induction of DNA methylation, after infection with HBV or HCV. Induction of Ifng was reduced after administration of an inhibitor of natural killer cell function (anti-asialo GM1). In chimeric mice with humanized livers

  15. Dynamic Modulation of Expression of Lentiviral Restriction Factors in Primary CD4+ T Cells following Simian Immunodeficiency Virus Infection.

    PubMed

    Rahmberg, Andrew R; Rajakumar, Premeela A; Billingsley, James M; Johnson, R Paul

    2017-04-01

    Although multiple restriction factors have been shown to inhibit HIV/SIV replication, little is known about their expression in vivo Expression of 45 confirmed and putative HIV/SIV restriction factors was analyzed in CD4 + T cells from peripheral blood and the jejunum in rhesus macaques, revealing distinct expression patterns in naive and memory subsets. In both peripheral blood and the jejunum, memory CD4 + T cells expressed higher levels of multiple restriction factors compared to naive cells. However, relative to their expression in peripheral blood CD4 + T cells, jejunal CCR5 + CD4 + T cells exhibited significantly lower expression of multiple restriction factors, including APOBEC3G , MX2 , and TRIM25 , which may contribute to the exquisite susceptibility of these cells to SIV infection. In vitro stimulation with anti-CD3/CD28 antibodies or type I interferon resulted in upregulation of distinct subsets of multiple restriction factors. After infection of rhesus macaques with SIVmac239, the expression of most confirmed and putative restriction factors substantially increased in all CD4 + T cell memory subsets at the peak of acute infection. Jejunal CCR5 + CD4 + T cells exhibited the highest levels of SIV RNA, corresponding to the lower restriction factor expression in this subset relative to peripheral blood prior to infection. These results illustrate the dynamic modulation of confirmed and putative restriction factor expression by memory differentiation, stimulation, tissue microenvironment and SIV infection and suggest that differential expression of restriction factors may play a key role in modulating the susceptibility of different populations of CD4 + T cells to lentiviral infection. IMPORTANCE Restriction factors are genes that have evolved to provide intrinsic defense against viruses. HIV and simian immunodeficiency virus (SIV) target CD4 + T cells. The baseline level of expression in vivo and degree to which expression of restriction factors is

  16. Urinary tract infection during pregnancy affects the level of leptin, ghrelin and insulin in maternal and placental blood.

    PubMed

    Piatek, Jacek; Gibas-Dorna, Magdalena; Budzynski, Wlodzimierz; Krauss, Hanna; Marzec, Ewa; Olszewski, Jan; Zukiewicz-Sobczak, Wioletta

    2014-03-01

    We examined ghrelin, leptin and insulin in maternal blood during normal pregnancy and pregnancy complicated by urinary tract infection (UTI), as well as in cord blood at labor. A total of 36 delivering women with history of UTI during the third trimester of pregnancy were enrolled in the study; 12 healthy pregnant women served as a control. Infection markers (CRP and procalcitonin) were determined in maternal blood during the course of UTI and at labor. Ghrelin, leptin and insulin were determined during labor in venous maternal and in umbilical cord blood. We found negative correlation between infection markers in maternal blood during UTI, and level of tested hormones in cord blood, indicating potential risk of placental impairment due to energetic imbalance. We noted lower level of leptin in mothers with UTI and no change in leptin from umbilical blood comparing subjects with and without UTI. Low level of ghrelin was observed in maternal and cord blood when pregnancy was complicated by UTI. Insulin concentrations were high in mothers with UTI and low in their newborn's cord blood. Increased maternal insulin level could indicate peripheral insulin resistance caused by the infection. UTI during pregnancy affects the concentration of hormones responsible for regulating energetic homeostasis within the placenta.

  17. How Resource Phenology Affects Consumer Population Dynamics.

    PubMed

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.

  18. Temperature variation, bacterial diversity and fungal infection dynamics in the amphibian skin.

    PubMed

    Longo, Ana V; Zamudio, Kelly R

    2017-09-01

    Host-associated bacterial communities on the skin act as the first line of defence against invading pathogens. Yet, for most natural systems, we lack a clear understanding of how temperature variability affects structure and composition of skin bacterial communities and, in turn, promotes or limits the colonization of opportunistic pathogens. Here, we examine how natural temperature fluctuations might be related to changes in skin bacterial diversity over time in three amphibian populations infected by the pathogenic fungus Batrachochytrium dendrobatidis (Bd). Our focal host species (Eleutherodactylus coqui) is a direct-developing frog that has suffered declines at some populations in the last 20 years, while others have not experienced any changes. We quantified skin bacterial alpha- and beta-diversity at four sampling time points, a period encompassing two seasons and ample variation in natural infections and environmental conditions. Despite the different patterns of infection across populations, we detected an overall increase in bacterial diversity through time, characterized by the replacement of bacterial operational taxonomic units (OTUs). Increased frog body temperatures possibly allowed the colonization of bacteria as well as the recruitment of a subset of indicator OTUs, which could have promoted the observed changes in diversity patterns. Our results suggest that natural environmental fluctuations might be involved in creating opportunities for bacterial replacement, potentially attenuating pathogen transmission and thus contributing to host persistence in E. coqui populations. © 2017 John Wiley & Sons Ltd.

  19. Dynamic Interaction of Stress Granules, DDX3X, and IKK-α Mediates Multiple Functions in Hepatitis C Virus Infection

    PubMed Central

    Pène, Véronique; Sodroski, Catherine; Hsu, Ching-Sheng

    2015-01-01

    ABSTRACT The ubiquitous ATP-dependent RNA helicase DDX3X is involved in many cellular functions, including innate immunity, and is a pivotal host factor for hepatitis C virus (HCV) infection. Recently, we showed that DDX3X specifically recognizes the HCV 3′ untranslated region (UTR), leading to the activation of IKK-α and a cascade of lipogenic signaling to facilitate lipid droplet biogenesis and viral assembly (Q. Li, V. Pene, S. Krishnamurthy, H. Cha, and T. J. Liang, Nat Med 19:722–729, 2013, http://dx.doi.org/10.1038/nm.3190). The interaction of DDX3X with HCV core protein seems to be dispensable for its proviral role. In this study, through systematic imaging and biochemical and virologic approaches, we identified a dynamic association between DDX3X and various cellular compartments and viral elements mediating multiple functions of DDX3X in productive HCV infection. Upon HCV infection, the HCV 3′UTR interacts with DDX3X and IKK-α, which redistribute to speckle-like cytoplasmic structures shown to be stress granules (SGs). As viral proteins accumulate in infected cells, DDX3X granules together with SG-associated proteins redistribute and colocalize with HCV core protein around lipid droplets (LDs). IKK-α, however, does not relocate to the LD but translocates to the nucleus. In HCV-infected cells, various HCV nonstructural proteins also interact or colocalize with DDX3X in close proximity to SGs and LDs, consistent with the tight juxtaposition of the replication complex and the assembly site at the surface of LDs. Short interfering RNA (siRNA)-mediated silencing of DDX3X and multiple SG components markedly inhibits HCV infection. Our data suggest that DDX3X initiates a multifaceted cellular program involving dynamic associations with HCV RNA and proteins, IKK-α, SG, and LD surfaces for its crucial role in the HCV life cycle. IMPORTANCE DDX3X is a proviral host factor for HCV infection. Recently, we showed that DDX3X binds to the HCV 3

  20. Dynamic Interaction of Stress Granules, DDX3X, and IKK-α Mediates Multiple Functions in Hepatitis C Virus Infection.

    PubMed

    Pène, Véronique; Li, Qisheng; Sodroski, Catherine; Hsu, Ching-Sheng; Liang, T Jake

    2015-05-01

    The ubiquitous ATP-dependent RNA helicase DDX3X is involved in many cellular functions, including innate immunity, and is a pivotal host factor for hepatitis C virus (HCV) infection. Recently, we showed that DDX3X specifically recognizes the HCV 3' untranslated region (UTR), leading to the activation of IKK-α and a cascade of lipogenic signaling to facilitate lipid droplet biogenesis and viral assembly (Q. Li, V. Pene, S. Krishnamurthy, H. Cha, and T. J. Liang, Nat Med 19:722-729, 2013, http://dx.doi.org/10.1038/nm.3190). The interaction of DDX3X with HCV core protein seems to be dispensable for its proviral role. In this study, through systematic imaging and biochemical and virologic approaches, we identified a dynamic association between DDX3X and various cellular compartments and viral elements mediating multiple functions of DDX3X in productive HCV infection. Upon HCV infection, the HCV 3'UTR interacts with DDX3X and IKK-α, which redistribute to speckle-like cytoplasmic structures shown to be stress granules (SGs). As viral proteins accumulate in infected cells, DDX3X granules together with SG-associated proteins redistribute and colocalize with HCV core protein around lipid droplets (LDs). IKK-α, however, does not relocate to the LD but translocates to the nucleus. In HCV-infected cells, various HCV nonstructural proteins also interact or colocalize with DDX3X in close proximity to SGs and LDs, consistent with the tight juxtaposition of the replication complex and the assembly site at the surface of LDs. Short interfering RNA (siRNA)-mediated silencing of DDX3X and multiple SG components markedly inhibits HCV infection. Our data suggest that DDX3X initiates a multifaceted cellular program involving dynamic associations with HCV RNA and proteins, IKK-α, SG, and LD surfaces for its crucial role in the HCV life cycle. IMPORTANCE DDX3X is a proviral host factor for HCV infection. Recently, we showed that DDX3X binds to the HCV 3'UTR, activating IKK-α and

  1. Molecular dynamics exploration of poration and leaking caused by Kalata B1 in HIV-infected cell membrane compared to host and HIV membranes.

    PubMed

    Nawae, Wanapinun; Hannongbua, Supa; Ruengjitchatchawalya, Marasri

    2017-06-15

    The membrane disruption activities of kalata B1 (kB1) were investigated using molecular dynamics simulations with membrane models. The models were constructed to mimic the lipid microdomain formation in membranes of HIV particle, HIV-infected cell, and host cell. The differences in the lipid ratios of these membranes caused the formation of liquid ordered (lo) domains of different sizes, which affected the binding and activity of kB1. Stronger kB1 disruptive activity was observed for the membrane with small sized lo domain. Our results show that kB1 causes membrane leaking without bilayer penetration. The membrane poration mechanism involved in the disorganization of the lo domain and in cholesterol inter-leaflet translocation is described. This study enhances our understanding of the membrane activity of kB1, which may be useful for designing novel and potentially therapeutic peptides based on the kB1 framework.

  2. Environmental Conditions Affect Botrytis cinerea Infection of Mature Grape Berries More Than the Strain or Transposon Genotype.

    PubMed

    Ciliberti, Nicola; Fermaud, Marc; Roudet, Jean; Rossi, Vittorio

    2015-08-01

    Effects of environment, Botrytis cinerea strain, and their interaction on the infection of mature grape berries were investigated. The combined effect of temperature (T) of 15, 20, 25, and 30°C and relative humidity (RH) of 65, 80, 90, and 100% was studied by inoculating berries with mycelium plugs. Regardless of the T, no disease occurred at 65% RH, and both disease incidence and severity increased with increasing RH. The combined effect of T (5 to 30°C) and wetness duration (WD) of 3, 6, 12, 24, and 36 h was studied by inoculating berries with conidia. At WD of 36 h, disease incidence was approximately 75% of affected berries at 20 or 25°C, 50% at 15°C, and 30 to 20% at 30 and 10°C; no infection occurred at 5°C. Under favorable conditions (100% RH or 36 h of WD) and unfavorable conditions (65% RH or 3 h of WD), berry wounding did not significantly affect disease incidence; under moderately favorable conditions (80% RH or 6 to 12 h of WD), disease incidence was approximately 1.5 to 5 times higher in wounded than in intact berries. Our data collectively showed that (i) T and RH or WD were more important than strain for mature berry infection by either mycelium or conidia and (ii) the effect of the environment on the different strains was similar. Two equations were developed describing the combined effect of T and RH, or T and WD, on disease incidence following inoculation by mycelium (R2=0.99) or conidia (R2=0.96), respectively. These equations may be useful in the development of models used to predict and control Botrytis bunch rot during berry ripening.

  3. A Unified Framework for the Infection Dynamics of Zoonotic Spillover and Spread.

    PubMed

    Lo Iacono, Giovanni; Cunningham, Andrew A; Fichet-Calvet, Elisabeth; Garry, Robert F; Grant, Donald S; Leach, Melissa; Moses, Lina M; Nichols, Gordon; Schieffelin, John S; Shaffer, Jeffrey G; Webb, Colleen T; Wood, James L N

    2016-09-01

    A considerable amount of disease is transmitted from animals to humans and many of these zoonoses are neglected tropical diseases. As outbreaks of SARS, avian influenza and Ebola have demonstrated, however, zoonotic diseases are serious threats to global public health and are not just problems confined to remote regions. There are two fundamental, and poorly studied, stages of zoonotic disease emergence: 'spillover', i.e. transmission of pathogens from animals to humans, and 'stuttering transmission', i.e. when limited human-to-human infections occur, leading to self-limiting chains of transmission. We developed a transparent, theoretical framework, based on a generalization of Poisson processes with memory of past human infections, that unifies these stages. Once we have quantified pathogen dynamics in the reservoir, with some knowledge of the mechanism of contact, the approach provides a tool to estimate the likelihood of spillover events. Comparisons with independent agent-based models demonstrates the ability of the framework to correctly estimate the relative contributions of human-to-human vs animal transmission. As an illustrative example, we applied our model to Lassa fever, a rodent-borne, viral haemorrhagic disease common in West Africa, for which data on human outbreaks were available. The approach developed here is general and applicable to a range of zoonoses. This kind of methodology is of crucial importance for the scientific, medical and public health communities working at the interface between animal and human diseases to assess the risk associated with the disease and to plan intervention and appropriate control measures. The Lassa case study revealed important knowledge gaps, and opportunities, arising from limited knowledge of the temporal patterns in reporting, abundance of and infection prevalence in, the host reservoir.

  4. Decreased summer drought affects plant productivity and soil carbon dynamics in Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-06-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. The throughfall manipulation experiment started in 2004 and we report data up to the 2009 growing season. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 50 % and 220 %, respectively, as compared to control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction of precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodland. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long term soil C stocks.

  5. Communication: Microsecond dynamics of the protein and water affect electron transfer in a bacterial bc1 complex

    NASA Astrophysics Data System (ADS)

    Martin, Daniel R.; Matyushov, Dmitry V.

    2015-04-01

    Cross-membrane electron transport between cofactors localized in proteins of mitochondrial respiration and bacterial photosynthesis is the source of all biological energy. The statistics and dynamics of nuclear fluctuations in these protein/membrane/water heterogeneous systems are critical for their energetic efficiency. The results of 13 μs of atomistic molecular dynamics simulations of the membrane-bound bc1 bacterial complex are analyzed here. The reaction is affected by a broad spectrum of nuclear modes, with the slowest dynamics in the range of time-scales ˜0.1-1.6 μs contributing half of the reaction reorganization energy. Two reorganization energies are required to describe protein electron transfer due to dynamical arrest of protein conformations on the observation window. This mechanistic distinction allows significant lowering of activation barriers for reactions in proteins.

  6. Discrete virus infection model of hepatitis B virus.

    PubMed

    Zhang, Pengfei; Min, Lequan; Pian, Jianwei

    2015-01-01

    In 1996 Nowak and his colleagues proposed a differential equation virus infection model, which has been widely applied in the study for the dynamics of hepatitis B virus (HBV) infection. Biological dynamics may be described more practically by discrete events rather than continuous ones. Using discrete systems to describe biological dynamics should be reasonable. Based on one revised Nowak et al's virus infection model, this study introduces a discrete virus infection model (DVIM). Two equilibriums of this model, E1 and E2, represents infection free and infection persistent, respectively. Similar to the case of the basic virus infection model, this study deduces a basic virus reproductive number R0 independing on the number of total cells of an infected target organ. A proposed theorem proves that if the basic virus reproductive number R0<1 then the virus free equilibrium E1 is locally stable. The DVIM is more reasonable than an abstract discrete susceptible-infected-recovered model (SIRS) whose basic virus reproductive number R0 is relevant to the number of total cells of the infected target organ. As an application, this study models the clinic HBV DNA data of a patient who was accepted via anti-HBV infection therapy with drug lamivudine. The results show that the numerical simulation is good in agreement with the clinic data.

  7. Experimental Infection of Ornithodoros erraticus sensu stricto with Two Portuguese African Swine Fever Virus Strains. Study of Factors Involved in the Dynamics of Infection in Ticks

    PubMed Central

    Madeira, Sara; Hutchings, Geoff H.; Boinas, Fernando

    2015-01-01

    African swine fever (ASF) is a frequently devastating hemorrhagic disease of domestic pigs and wild boar and Ornithodoros erraticus sensu stricto argasid ticks are the only biological vectors of African swine fever virus (ASFV) known to occur in Europe. Recently this disease emerged in Eastern Europe and Russian Federation, showing a huge potential for a rapid spread between countries. There is some risk of re-emergence of ASF in the countries where these ticks exist, that can contribute for the persistence of infection and compromise control measures. In this study we aimed to identify factors that determine the probability of infection and its dynamics in the tick vector Ornithodoros erraticus sensu stricto, with two Portuguese strains of ASFV. Our results suggest that these ticks have a high likelihood of excreting the two haemadsorbing ASF viruses of different host origins and that, in field surveys, the analysis of adults and 5th nymphal stage can provide the best chance of detecting virus infection. The results also indicate that infection of pigs with highly virulent ASF viruses will promote higher rates of infection and a higher likelihood for virus excretion by ticks. Nevertheless, there is also a risk, although lower, that ticks can become infected on pigs that have overcome the acute phase of infection, which was simulated in our study by membrane feeding ticks with low titres of virus. We believe these results can be valuable in designing and interpreting the results of ASF control programmes, and future work can also be undertaken as our dataset is released under open access, to perform studies in risk assessment for ASFV persistence in a region where O. erraticus sensu stricto ticks are present. PMID:26366570

  8. Experimental Infection of Ornithodoros erraticus sensu stricto with Two Portuguese African Swine Fever Virus Strains. Study of Factors Involved in the Dynamics of Infection in Ticks.

    PubMed

    Ribeiro, Rita; Otte, Joachim; Madeira, Sara; Hutchings, Geoff H; Boinas, Fernando

    2015-01-01

    African swine fever (ASF) is a frequently devastating hemorrhagic disease of domestic pigs and wild boar and Ornithodoros erraticus sensu stricto argasid ticks are the only biological vectors of African swine fever virus (ASFV) known to occur in Europe. Recently this disease emerged in Eastern Europe and Russian Federation, showing a huge potential for a rapid spread between countries. There is some risk of re-emergence of ASF in the countries where these ticks exist, that can contribute for the persistence of infection and compromise control measures. In this study we aimed to identify factors that determine the probability of infection and its dynamics in the tick vector Ornithodoros erraticus sensu stricto, with two Portuguese strains of ASFV. Our results suggest that these ticks have a high likelihood of excreting the two haemadsorbing ASF viruses of different host origins and that, in field surveys, the analysis of adults and 5th nymphal stage can provide the best chance of detecting virus infection. The results also indicate that infection of pigs with highly virulent ASF viruses will promote higher rates of infection and a higher likelihood for virus excretion by ticks. Nevertheless, there is also a risk, although lower, that ticks can become infected on pigs that have overcome the acute phase of infection, which was simulated in our study by membrane feeding ticks with low titres of virus. We believe these results can be valuable in designing and interpreting the results of ASF control programmes, and future work can also be undertaken as our dataset is released under open access, to perform studies in risk assessment for ASFV persistence in a region where O. erraticus sensu stricto ticks are present.

  9. Multilevel Dynamic Systems Affecting Introduction of HIV/STI Prevention Innovations among Chinese Women in Sex-work Establishments

    PubMed Central

    Weeks, Margaret R.; Li, Jianghong; Liao, Susu; Zhang, Qingning; Dunn, Jennifer; Wang, Yanhong; Jiang, Jingmei

    2015-01-01

    Social and public health scientists are increasingly interested in applying system dynamics theory to improve understanding and to harness the forces of change within complex, multilevel systems that affect community intervention implementation, effects, and sustainability. Building a system dynamics model based on ethnographic case study has the advantage of using empirically documented contextual factors and processes of change in a real world and real time setting that can then be tested in the same and other settings. System dynamics modeling offers great promise for addressing persistent problems like HIV and other sexually transmitted epidemics, particularly in complex rapidly developing countries like China. We generated a system dynamics model of a multilevel intervention we conducted to promote female condoms (FC) for HIV/STI prevention among Chinese women in sex-work establishments. The model reflects factors and forces affecting the study’s intervention implementation and effects. To build this conceptual model, we drew on our experiences and findings from this intensive, longitudinal mixed ethnographic and quantitative four-town comparative case study (2007–2012) of the sex-work establishments, the intervention conducted in them, and factors likely to explain variation in process and outcomes in the four towns. Multiple feedback loops in the sex-work establishments, women’s social networks, and the health organization responsible for implementing HIV/STI interventions in each town and at the town level directly or indirectly influenced the FC intervention. We present the conceptual system dynamics model and discuss how further testing in this and other settings can inform future community interventions to reduce HIV and STIs. PMID:24084394

  10. Cancer treatment - preventing infection

    MedlinePlus

    ... preventing infection; Bone marrow transplant - preventing infection; Cancer treatment - immunosuppression ... types of cancer, such as leukemia, and some treatments including bone marrow transplant and chemotherapy affect your ...

  11. Food web dynamics affect Northeast Arctic cod recruitment.

    PubMed

    Hjermann, Dag Ø; Bogstad, Bjarte; Eikeset, Anne Maria; Ottersen, Geir; Gjøsaeter, Harald; Stenseth, Nils Chr

    2007-03-07

    Proper management of ecosystems requires an understanding of both the species interactions as well as the effect of climate variation. However, a common problem is that the available time-series are of different lengths. Here, we present a general approach for studying the dynamic structure of such interactions. Specifically, we analyse the recruitment of the world's largest cod stock, the Northeast Arctic cod. Studies based on data starting in the 1970-1980s indicate that this stock is affected by temperature through a variety of pathways. However, the value of such studies is somewhat limited by the fact that they are based on a quite specific ecological and climatic situation. Recently, this stock has consisted of fairly young fish and the spawning stock has consisted of relatively few age groups. In this study, we develop a model for the effect of capelin (the cod's main prey) and herring on cod recruitment since 1973. Based on this model, we analyse data on cod, herring and temperature going back to 1921 and find that food-web effects explain a significant part of the cod recruitment variation back to around 1950.

  12. Listeriosis downregulates hepatic cytochrome P450 enzymes in sublethal murine infection.

    PubMed

    Kummer, Anne; Nishanth, Gopala; Koschel, Josephin; Klawonn, Frank; Schlüter, Dirk; Jänsch, Lothar

    2016-10-01

    Listeria monocytogenes (Lm) can cross the intestinal barrier in humans and then disseminates into different organs. Invasion of the liver occurs even in sublethal infections, however, knowledge of affected physiological processes is scarce. This study employed a sublethal murine infection model to investigate liver responses systematically by proteomics. Liver samples from three stages of the sublethal infection covering the initial invasion, the peak of infection, and the clearance phase (1, 3, 9 days postinoculation) were analyzed in comparison to samples from noninfected mice. Apart from flow cytometry and RT-PCRs for immune status control, liver responses were analyzed by quantitative peptide sequencing (HPLC-Orbitrap Fusion) using 4-plex iTRAQ-labeling. Accurate MS characterized about 3600 proteins and statistics revealed 15% of the hepatic proteome as regulated. Immunological data as well as protein regulation dynamics strongly indicate stage-specific hepatic responses in sublethal infections. Most notably, this study detected a comprehensive deregulation of drug metabolizing enzymes at all stages, including 25 components of the cytochrome P450 system. Sublethal Lm infection deregulates hepatic drug metabolizing pathways. This finding indicates the need to monitor drug administration along Lm infections, especially in all patients needing constant medication. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. The infective cycle of Cabbage leaf curl virus (CaLCuV) is affected by CRUMPLED LEAF (CRL) gene in Arabidopsis thaliana

    PubMed Central

    Trejo-Saavedra, Diana L; Vielle-Calzada, Jean P; Rivera-Bustamante, Rafael F

    2009-01-01

    Background Geminiviruses are single-stranded DNA viruses that cause serious crop losses worldwide. Successful infection by these pathogens depends extensively on virus-host intermolecular interactions that allow them to express their gene products, to replicate their genomes and to move to adjacent cells and throughout the plant. Results To identify host genes that show an altered regulation in response to Cabbage leaf curl virus (CaLCuV) infection, a screening of transposant Arabidopsis thaliana lines was carried out. Several genes were identified to be virus responsive and one, Crumpled leaf (CRL) gene, was selected for further characterization. CRL was previously reported by Asano et al., (2004) to affect the morphogenesis of all plant organs and the division of plastids. We report here that CRL expression, during CaLCuV infection, shows a short but strong induction at an early stage (3-5 days post inoculation, dpi). To study the role of CRL in CaLCuV infection, CRL over-expressing and silenced transgenic plants were generated. We compared the replication, movement and infectivity of CaLCuV in transgenic and wild type plants. Conclusion Our results showed that CRL over-expressing plants showed an increased susceptibility to CaLCuV infection (as compared to wt plants) whereas CRL-silenced plants, on the contrary, presented a reduced susceptibility to viral infection. The possible role of CRL in the CaLCuV infection cycle is discussed. PMID:19840398

  14. System Dynamics based Dengue modeling environment to simulate evolution of Dengue infection under different climate scenarios

    NASA Astrophysics Data System (ADS)

    Anwar, R.; Khan, R.; Usmani, M.; Colwell, R. R.; Jutla, A.

    2017-12-01

    Vector borne infectious diseases such as Dengue, Zika and Chikungunya remain a public health threat. An estimate of the World Health Organization (WHO) suggests that about 2.5 billion people, representing ca. 40% of human population,are at increased risk of dengue; with more than 100 million infection cases every year. Vector-borne infections cannot be eradicated since disease causing pathogens survive in the environment. Over the last few decades dengue infection has been reported in more than 100 countries and is expanding geographically. Female Ae. Aegypti mosquito, the daytime active and a major vector for dengue virus, is associated with urban population density and regional climatic processes. However, mathematical quantification of relationships on abundance of vectors and climatic processes remain a challenge, particularly in regions where such data are not routinely collected. Here, using system dynamics based feedback mechanism, an algorithm integrating knowledge from entomological, meteorological and epidemiological processes is developed that has potential to provide ensemble simulations on risk of occurrence of dengue infection in human population. Using dataset from satellite remote sensing, the algorithm was calibrated and validated using actual dengue case data of Iquitos, Peru. We will show results on model capabilities in capturing initiation and peak in the observed time series. In addition, results from several simulation scenarios under different climatic conditions will be discussed.

  15. Tracking the dynamics of the social brain: ERP approaches for social cognitive and affective neuroscience

    PubMed Central

    Amodio, David M.; Ito, Tiffany A.

    2014-01-01

    Event-related potential (ERP) approaches to social cognitive and affective neuroscience (SCAN) are not as widely used as other neuroimaging techniques, yet they offer several unique advantages. In particular, the high temporal resolution of ERP measures of neural activity make them ideally suited for studying the dynamic interplay of rapidly unfolding cognitive and affective processes. In this article, we highlight the utility of ERP methods for scientists investigating questions of SCAN. We begin with a brief description of the physiological basis of ERPs and discussion of methodological practices. We then discuss how ERPs may be used to address a range of questions concerning social perception, social cognition, attitudes, affect and self-regulation, with examples of research that has used the ERP approach to contribute important theoretical advances in these areas. Whether used alone or in combination with other techniques, the ERP is an indispensable part of the social and affective neuroscientist’s methodological toolkit. PMID:24319116

  16. Tracking the dynamics of the social brain: ERP approaches for social cognitive and affective neuroscience.

    PubMed

    Amodio, David M; Bartholow, Bruce D; Ito, Tiffany A

    2014-03-01

    Event-related potential (ERP) approaches to social cognitive and affective neuroscience (SCAN) are not as widely used as other neuroimaging techniques, yet they offer several unique advantages. In particular, the high temporal resolution of ERP measures of neural activity make them ideally suited for studying the dynamic interplay of rapidly unfolding cognitive and affective processes. In this article, we highlight the utility of ERP methods for scientists investigating questions of SCAN. We begin with a brief description of the physiological basis of ERPs and discussion of methodological practices. We then discuss how ERPs may be used to address a range of questions concerning social perception, social cognition, attitudes, affect and self-regulation, with examples of research that has used the ERP approach to contribute important theoretical advances in these areas. Whether used alone or in combination with other techniques, the ERP is an indispensable part of the social and affective neuroscientist's methodological toolkit.

  17. Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics.

    PubMed

    Steinhäuser, K; Klöble, P; Kreis, N-N; Ritter, A; Friemel, A; Roth, S; Reichel, J M; Michaelis, J; Rieger, M A; Louwen, F; Oswald, F; Yuan, J

    2017-04-01

    Deregulation of mitotic microtubule (MT) dynamics results in defective spindle assembly and chromosome missegregation, leading further to chromosome instability, a hallmark of tumor cells. RBP-J interacting and tubulin-associated protein (RITA) has been identified as a negative regulator of the Notch signaling pathway. Intriguingly, deregulated RITA is involved in primary hepatocellular carcinoma and other malignant entities. We were interested in the potential molecular mechanisms behind its involvement. We show here that RITA binds to tubulin and localizes to various mitotic MT structures. RITA coats MTs and affects their structures in vitro as well as in vivo. Tumor cell lines deficient of RITA display increased acetylated α-tubulin, enhanced MT stability and reduced MT dynamics, accompanied by multiple mitotic defects, including chromosome misalignment and segregation errors. Re-expression of wild-type RITA, but not RITA Δtub ineffectively binding to tubulin, restores the phenotypes, suggesting that the role of RITA in MT modulation is mediated via its interaction with tubulin. Mechanistically, RITA interacts with tubulin/histone deacetylase 6 (HDAC6) and its suppression decreases the binding of the deacetylase HDAC6 to tubulin/MTs. Furthermore, the mitotic defects and increased MT stability are also observed in RITA -/- mouse embryonic fibroblasts. RITA has thus a novel role in modulating MT dynamics and its deregulation results in erroneous chromosome segregation, one of the major reasons for chromosome instability in tumor cells.

  18. Campylobacter Infections

    MedlinePlus

    ... Life Family Life Family Life Medical Home Family Dynamics Media Work & Play Getting Involved in Your Community ... and Urinary Tract Glands & Growth Head Neck & Nervous System Heart Infections Learning Disabilities Obesity Orthopedic Prevention Sexually ...

  19. The temporal dynamics of ambivalence: changes in positive and negative affect in relation to consumption of an "emotionally charged" food.

    PubMed

    Hormes, Julia M; Rozin, Paul

    2011-08-01

    Ambivalence is thought to impact consumption of food, alcohol and drugs, possibly via influences on craving, with cravers often being simultaneously drawn toward and repelled from ingestion. So far, little is known about the temporal dynamics of ambivalence, especially as it varies in relationship to consumption. Participants (n=482, 56.8% female) completed the Positive and Negative Affect Schedule prior to, immediately and 30 min after the opportunity to eat a bar of chocolate. Affective ambivalence was calculated based on the relative strengths of and discrepancy between ratings of positive and negative affect. Ambivalence peaked prior to a decision about consumption and subsequently decreased, whether or not the decision was in favor of or against consuming. Decreasing ambivalence was driven by a drop in positive affect over time; positivity decreased more rapidly in those who consumed chocolate. Findings represent a first step in characterizing the dynamics of ambivalence in interactions with a target stimulus. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Transcriptional profiling defines dynamics of parasite tissue sequestration during malaria infection.

    PubMed

    Pelle, Karell G; Oh, Keunyoung; Buchholz, Kathrin; Narasimhan, Vagheesh; Joice, Regina; Milner, Danny A; Brancucci, Nicolas Mb; Ma, Siyuan; Voss, Till S; Ketman, Ken; Seydel, Karl B; Taylor, Terrie E; Barteneva, Natasha S; Huttenhower, Curtis; Marti, Matthias

    2015-01-01

    During intra-erythrocytic development, late asexually replicating Plasmodium falciparum parasites sequester from peripheral circulation. This facilitates chronic infection and is linked to severe disease and organ-specific pathology including cerebral and placental malaria. Immature gametocytes - sexual stage precursor cells - likewise disappear from circulation. Recent work has demonstrated that these sexual stage parasites are located in the hematopoietic system of the bone marrow before mature gametocytes are released into the bloodstream to facilitate mosquito transmission. However, as sequestration occurs only in vivo and not during in vitro culture, the mechanisms by which it is regulated and enacted (particularly by the gametocyte stage) remain poorly understood. We generated the most comprehensive P. falciparum functional gene network to date by integrating global transcriptional data from a large set of asexual and sexual in vitro samples, patient-derived in vivo samples, and a new set of in vitro samples profiling sexual commitment. We defined more than 250 functional modules (clusters) of genes that are co-expressed primarily during the intra-erythrocytic parasite cycle, including 35 during sexual commitment and gametocyte development. Comparing the in vivo and in vitro datasets allowed us, for the first time, to map the time point of asexual parasite sequestration in patients to 22 hours post-invasion, confirming previous in vitro observations on the dynamics of host cell modification and cytoadherence. Moreover, we were able to define the properties of gametocyte sequestration, demonstrating the presence of two circulating gametocyte populations: gametocyte rings between 0 and approximately 30 hours post-invasion and mature gametocytes after around 7 days post-invasion. This study provides a bioinformatics resource for the functional elucidation of parasite life cycle dynamics and specifically demonstrates the presence of the gametocyte ring stages

  1. Group Size and Nest Spacing Affect Buggy Creek Virus (Togaviridae: Alphavirus) Infection in Nestling House Sparrows

    PubMed Central

    O'Brien, Valerie A.; Brown, Charles R.

    2011-01-01

    The transmission of parasites and pathogens among vertebrates often depends on host population size, host species diversity, and the extent of crowding among potential hosts, but little is known about how these variables apply to most vector-borne pathogens such as the arboviruses (arthropod-borne viruses). Buggy Creek virus (BCRV; Togaviridae: Alphavirus) is an RNA arbovirus transmitted by the swallow bug (Oeciacus vicarius) to the cliff swallow (Petrochelidon pyrrhonota) and the introduced house sparrow (Passer domesticus) that has recently invaded swallow nesting colonies. The virus has little impact on cliff swallows, but house sparrows are seriously affected by BCRV. For house sparrows occupying swallow nesting colonies in western Nebraska, USA, the prevalence of BCRV in nestling sparrows increased with sparrow colony size at a site but decreased with the number of cliff swallows present. If one nestling in a nest was infected with the virus, there was a greater likelihood that one or more of its nest-mates would also be infected than nestlings chosen at random. The closer a nest was to another nest containing infected nestlings, the greater the likelihood that some of the nestlings in the focal nest would be BCRV-positive. These results illustrate that BCRV represents a cost of coloniality for a vertebrate host (the house sparrow), perhaps the first such demonstration for an arbovirus, and that virus infection is spatially clustered within nests and within colonies. The decreased incidence of BCRV in sparrows as cliff swallows at a site increased reflects the “dilution effect,” in which virus transmission is reduced when a vector switches to feeding on a less competent vertebrate host. PMID:21966539

  2. Helicobacter pylori and non-steroidal anti-inflammatory drugs: does infection affect the outcome of NSAID therapy?

    PubMed Central

    McCarthy, D. M.

    1998-01-01

    1. H. pylori gastritis appears to increase the likelihood of developing dyspeptic symptoms on NSAID therapy. 2. There is preliminary evidence that the histologic severity of H. pylori gastritis may be adversely affected by NSAID therapy, with a consequent increase in the risk of developing a peptic ulcer, possibly with complications. Whether this results from an effect on the inflammatory process or results from a quantitative increase in H. pylori colonization is unknown. In these respects, ASA may differ from other NSAIDs. 3. Ulcers are more likely to develop during the course of NSAID therapy in those infected with H. pylori; eradication of the infection reduces ulcer recurrence in the face of continued NSAID therapy, and it seems likely that this must reduce but not abolish the risk of GI bleeding in those using NSAIDs. Eradication also reduces the damage (and possibly risks) of low-dose aspirin therapy. 4. While H. pylori and NSAID use are independent risk factors for GI bleeding, whether or not they are interactive remains unresolved. 5. The effect of H. pylori infection on the risk of perforation during NSAID therapy, or conversely, the contribution of NSAID therapy to the risk of perforation in H. pylori-infected subjects, is also unclear at the present time. 6. Only large outcome studies of accurately diagnosed patients (with regard to H. pylori gastritis), and with much more specific detail as to the type of NSAID, dose and duration of therapy, employing only well-defined end-points, such as significant hemorrhage, perforation or death, and avoiding all surrogate markers short of these end points can hope to unravel this tangled web. PMID:10378355

  3. Oyster parasites Bonamia ostreae and B. exitiosa co-occur in Galicia (NW Spain): spatial distribution and infection dynamics.

    PubMed

    Ramilo, Andrea; González, Mar; Carballal, María J; Darriba, Susana; Abollo, Elvira; Villalba, Antonio

    2014-07-24

    Bonamiosis constrains the flat oyster industry worldwide. The protistan species Bonamia ostreae had been considered solely responsible for this disease in Europe, but the report of B. exitiosa infecting Ostrea edulis 5 yr ago in Galicia (NW Spain), and subsequently in other European countries, raised the question of the relevance of each species in bonamiosis. The spatial distribution of B. exitiosa and B. ostreae in Galicia was addressed by sampling 7 natural O. edulis beds and 3 culture raft areas, up to 3 times in the period 2009 to 2010. B. ostreae infected flat oysters in every natural bed and every raft culture area. True B. exitiosa infections (histological diagnosis) were detected in every raft culture area but only in 2 natural beds, i.e. in 4 rías. PCR-positive results for B. exitiosa were recorded in 4 out of 5 beds where true infections were not found, thus the occurrence of B. exitiosa in those 4 beds cannot be ruled out. Additionally, 4 cohorts of hatchery-produced oyster spat were transferred to a raft to analyse Bonamia spp. infection dynamics through oyster on-growing. The highest percentages of oysters PCR-positive for both Bonamia spp. were recorded in the first months of on-growing; other peaks of PCR-positive diagnosis were successively lower. Differences in the percentage of PCR-positive cases and in the prevalence of true infection between B. exitiosa and B. ostreae through on-growing were not significant. Our results support that B. exitiosa is adapted to infect O. edulis in the Galician marine ecosystem.

  4. The Mechanisms for Within-Host Influenza Virus Control Affect Model-Based Assessment and Prediction of Antiviral Treatment

    PubMed Central

    Cao, Pengxing

    2017-01-01

    Models of within-host influenza viral dynamics have contributed to an improved understanding of viral dynamics and antiviral effects over the past decade. Existing models can be classified into two broad types based on the mechanism of viral control: models utilising target cell depletion to limit the progress of infection and models which rely on timely activation of innate and adaptive immune responses to control the infection. In this paper, we compare how two exemplar models based on these different mechanisms behave and investigate how the mechanistic difference affects the assessment and prediction of antiviral treatment. We find that the assumed mechanism for viral control strongly influences the predicted outcomes of treatment. Furthermore, we observe that for the target cell-limited model the assumed drug efficacy strongly influences the predicted treatment outcomes. The area under the viral load curve is identified as the most reliable predictor of drug efficacy, and is robust to model selection. Moreover, with support from previous clinical studies, we suggest that the target cell-limited model is more suitable for modelling in vitro assays or infection in some immunocompromised/immunosuppressed patients while the immune response model is preferred for predicting the infection/antiviral effect in immunocompetent animals/patients. PMID:28933757

  5. Heterogeneous Nuclear Ribonucleoprotein M Facilitates Enterovirus Infection

    PubMed Central

    Jagdeo, Julienne M.; Dufour, Antoine; Fung, Gabriel; Luo, Honglin; Kleifeld, Oded; Overall, Christopher M.

    2015-01-01

    ABSTRACT Picornavirus infection involves a dynamic interplay of host and viral protein interactions that modulates cellular processes to facilitate virus infection and evade host antiviral defenses. Here, using a proteomics-based approach known as TAILS to identify protease-generated neo-N-terminal peptides, we identify a novel target of the poliovirus 3C proteinase, the heterogeneous nuclear ribonucleoprotein M (hnRNP M), a nucleocytoplasmic shuttling RNA-binding protein that is primarily known for its role in pre-mRNA splicing. hnRNP M is cleaved in vitro by poliovirus and coxsackievirus B3 (CVB3) 3C proteinases and is targeted in poliovirus- and CVB3-infected HeLa cells and in the hearts of CVB3-infected mice. hnRNP M relocalizes from the nucleus to the cytoplasm during poliovirus infection. Finally, depletion of hnRNP M using small interfering RNA knockdown approaches decreases poliovirus and CVB3 infections in HeLa cells and does not affect poliovirus internal ribosome entry site translation and viral RNA stability. We propose that cleavage of and subverting the function of hnRNP M is a general strategy utilized by picornaviruses to facilitate viral infection. IMPORTANCE Enteroviruses, a member of the picornavirus family, are RNA viruses that cause a range of diseases, including respiratory ailments, dilated cardiomyopathy, and paralysis. Although enteroviruses have been studied for several decades, the molecular basis of infection and the pathogenic mechanisms leading to disease are still poorly understood. Here, we identify hnRNP M as a novel target of a viral proteinase. We demonstrate that the virus subverts the function of hnRNP M and redirects it to a step in the viral life cycle. We propose that cleavage of hnRNP M is a general strategy that picornaviruses use to facilitate infection. PMID:25926642

  6. Inferring biomarkers for Mycobacterium avium subsp. paratuberculosis infection and disease progression in cattle using experimental data

    NASA Astrophysics Data System (ADS)

    Magombedze, Gesham; Shiri, Tinevimbo; Eda, Shigetoshi; Stabel, Judy R.

    2017-03-01

    Available diagnostic assays for Mycobacterium avium subsp. paratuberculosis (MAP) have poor sensitivities and cannot detect early stages of infection, therefore, there is need to find new diagnostic markers for early infection detection and disease stages. We analyzed longitudinal IFN-γ, ELISA-antibody and fecal shedding experimental sensitivity scores for MAP infection detection and disease progression. We used both statistical methods and dynamic mathematical models to (i) evaluate the empirical assays (ii) infer and explain biological mechanisms that affect the time evolution of the biomarkers, and (iii) predict disease stages of 57 animals that were naturally infected with MAP. This analysis confirms that the fecal test is the best marker for disease progression and illustrates that Th1/Th2 (IFN-γ/ELISA antibodies) assays are important for infection detection, but cannot reliably predict persistent infections. Our results show that the theoretical simulated macrophage-based assay is a potential good diagnostic marker for MAP persistent infections and predictor of disease specific stages. We therefore recommend specifically designed experiments to test the use of a based assay in the diagnosis of MAP infections.

  7. Fluvastatin delays propagation of viral infection in isolated rat FDB myofibers but does not affect exocytic membrane trafficking.

    PubMed

    Nevalainen, Mika; Metsikkö, Kalervo

    2015-11-01

    We have utilized the enveloped viral model to study the effect of fluvastatin on membrane trafficking in isolated rat myofibers. Our immunofluorescence studies constantly showed that infections in myofibers, which were treated with fluvastatin prior and during the infection with either vesicular stomatitis virus (VSV) or influenza A virus, propagated more slowly than in control myofibers without drug treatment. Experiments with a virus expressing Dad1 tagged with green fluorescent protein (GFP-Dad1) showed that fluvastatin did not affect its distribution within the ER/SR network and immunofluorescence staining for GM130 did not show any marked effect on the structure of the Golgi components. Furthermore, fluvastatin did not inhibit trafficking of the chimeric transport marker VSV temperature sensitive G protein (tsG-GFP) from the ER to the Golgi. We next subjected VSV infected myofibers for pulse-chase labeling experiments and found that fluvastatin did not slow down the ER-to-Golgi trafficking or Golgi to plasma membrane trafficking of the viral glycoprotein. These studies show that fluvastatin inhibited the propagation of viral infection in skeletal myofibers but no adverse effect on the exocytic trafficking could be demonstrated. These results suggest that other effects of statins rather than inhibition of ER-to-Golgi trafficking might be behind the myotoxic effects of the statins. © 2015 International Federation for Cell Biology.

  8. Historical and Projected Trends in Landscape Drivers Affecting Carbon Dynamics in Alaska

    DOE PAGES

    Pastick, Neal J.; Duffy, Paul; Genet, Hélène; ...

    2017-04-08

    Modern climate change in Alaska has resulted in widespread thawing of permafrost, increased fire activity, and extensive changes in vegetation characteristics that have significant consequences for socio-ecological systems. Despite observations of the heightened sensitivity of these systems to change, there has not been a comprehensive assessment of factors that drive ecosystem changes throughout Alaska. In this paper, we present research that improves our understanding of the main drivers of the spatiotemporal patterns of carbon dynamics using in situ observations, remote sensing data, and an array of modeling techniques. In the last 60 years, Alaska has seen a large increase inmore » mean annual air temperature (1.7 °C), with the greatest warming occurring over winter and spring. Warming trends are projected to continue throughout the 21st century and will likely result in landscape-level changes to ecosystem structure and function. Wetlands, mainly bogs and fens, which are currently estimated to cover 12.5% of the landscape, strongly influence exchange of methane between Alaska's ecosystems and the atmosphere and are expected to be affected by thawing permafrost and shifts in hydrology. Simulations suggest the current proportion of near-surface (within 1 m) and deep (within 5 m) permafrost extent will be reduced by 9–74% and 33–55% by the end of the 21st century, respectively. Since 2000, an average of 678,595 ha/yr was burned, more than twice the annual average during 1950–1999. The largest increase in fire activity is projected for the boreal forest, which could result in a reduction in late-successional spruce forest (8–44%) and an increase in early-succession deciduous forest (25–113%) that would mediate future fire activity and weaken permafrost stability in the region. Climate warming will also affect vegetation communities across arctic regions, where the coverage of deciduous forest could increase (223–620%), shrub tundra may increase (4

  9. Historical and projected trends in landscape drivers affecting carbon dynamics in Alaska

    USGS Publications Warehouse

    Pastick, Neal J.; Duffy, Paul A.; Genet, Hélène; Rupp, T. Scott; Wylie, Bruce K.; Johnson, Kristofer; Jorgenson, M. Torre; Bliss, Norman B.; McGuire, Anthony David; Jafarov, Elchin; Knight, Joseph F.

    2017-01-01

    Modern climate change in Alaska has resulted in widespread thawing of permafrost, increased fire activity, and extensive changes in vegetation characteristics that have significant consequences for socioecological systems. Despite observations of the heightened sensitivity of these systems to change, there has not been a comprehensive assessment of factors that drive ecosystem changes throughout Alaska. Here we present research that improves our understanding of the main drivers of the spatiotemporal patterns of carbon dynamics using in situ observations, remote sensing data, and an array of modeling techniques. In the last 60 yr, Alaska has seen a large increase in mean annual air temperature (1.7°C), with the greatest warming occurring over winter and spring. Warming trends are projected to continue throughout the 21st century and will likely result in landscape-level changes to ecosystem structure and function. Wetlands, mainly bogs and fens, which are currently estimated to cover 12.5% of the landscape, strongly influence exchange of methane between Alaska's ecosystems and the atmosphere and are expected to be affected by thawing permafrost and shifts in hydrology. Simulations suggest the current proportion of near-surface (within 1 m) and deep (within 5 m) permafrost extent will be reduced by 9–74% and 33–55% by the end of the 21st century, respectively. Since 2000, an average of 678 595 ha/yr was burned, more than twice the annual average during 1950–1999. The largest increase in fire activity is projected for the boreal forest, which could result in a reduction in late-successional spruce forest (8–44%) and an increase in early-successional deciduous forest (25–113%) that would mediate future fire activity and weaken permafrost stability in the region. Climate warming will also affect vegetation communities across arctic regions, where the coverage of deciduous forest could increase (223–620%), shrub tundra may increase (4–21%), and

  10. Decreased summer drought affects plant productivity and soil carbon dynamics in a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Cotrufo, M. F.; Alberti, G.; Inglima, I.; Marjanović, H.; Lecain, D.; Zaldei, A.; Peressotti, A.; Miglietta, F.

    2011-09-01

    Precipitation patterns are expected to change in the Mediterranean region within the next decades, with projected decreases in total rainfall and increases in extreme events. We manipulated precipitation patterns in a Mediterranean woodland, dominated by Arbutus unedo L., to study the effects of changing precipitation regimes on above-ground net primary production (ANPP) and soil C dynamics, specifically plant-derived C input to soil and soil respiration (SR). Experimental plots were exposed to either a 20 % reduction of throughfall or to water addition targeted at maintaining soil water content above a minimum of 10 % v/v. Treatments were compared to control plots which received ambient precipitation. Enhanced soil moisture during summer months highly stimulated annual stem primary production, litter fall, SR and net annual plant-derived C input to soil which on average increased by 130 %, 26 %, 58 % and 220 %, respectively, as compared to the control. In contrast, the 20 % reduction in throughfall (equivalent to 10 % reduction in precipitation) did not significantly change soil moisture at the site, and therefore did not significantly affect ANPP or SR. We conclude that minor changes (around 10 % reduction) in precipitation amount are not likely to significantly affect ANPP or soil C dynamics in Mediterranean woodlands. However, if summer rain increases, C cycling will significantly accelerate but soil C stocks are not likely to be changed in the short-term. More studies involving modelling of long-term C dynamics are needed to predict if the estimated increases in soil C input under wet conditions is going to be sustained and if labile C is being substituted to stable C, with a negative effect on long-term soil C stocks.

  11. Dynamic range of Nef-mediated evasion of HLA class II-restricted immune responses in early HIV-1 infection.

    PubMed

    Mahiti, Macdonald; Brumme, Zabrina L; Jessen, Heiko; Brockman, Mark A; Ueno, Takamasa

    2015-07-31

    HLA class II-restricted CD4(+) T lymphocytes play an important role in controlling HIV-1 replication, especially in the acute/early infection stage. But, HIV-1 Nef counteracts this immune response by down-regulating HLA-DR and up-regulating the invariant chain associated with immature HLA-II (Ii). Although functional heterogeneity of various Nef activities, including down-regulation of HLA class I (HLA-I), is well documented, our understanding of Nef-mediated evasion of HLA-II-restricted immune responses during acute/early infection remains limited. Here, we examined the ability of Nef clones from 47 subjects with acute/early progressive infection and 46 subjects with chronic progressive infection to up-regulate Ii and down-regulate HLA-DR and HLA-I from the surface of HIV-infected cells. HLA-I down-regulation function was preserved among acute/early Nef clones, whereas both HLA-DR down-regulation and Ii up-regulation functions displayed relatively broad dynamic ranges. Nef's ability to down-regulate HLA-DR and up-regulate Ii correlated positively at this stage, suggesting they are functionally linked in vivo. Acute/early Nef clones also exhibited higher HLA-DR down-regulation and lower Ii up-regulation functions compared to chronic Nef clones. Taken together, our results support enhanced Nef-mediated HLA class II immune evasion activities in acute/early compared to chronic infection, highlighting the potential importance of these functions following transmission. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Temporal interactions facilitate endemicity in the susceptible-infected-susceptible epidemic model

    NASA Astrophysics Data System (ADS)

    Speidel, Leo; Klemm, Konstantin; Eguíluz, Víctor M.; Masuda, Naoki

    2016-07-01

    Data of physical contacts and face-to-face communications suggest temporally varying networks as the media on which infections take place among humans and animals. Epidemic processes on temporal networks are complicated by complexity of both network structure and temporal dimensions. Theoretical approaches are much needed for identifying key factors that affect dynamics of epidemics. In particular, what factors make some temporal networks stronger media of infection than other temporal networks is under debate. We develop a theory to understand the susceptible-infected-susceptible epidemic model on arbitrary temporal networks, where each contact is used for a finite duration. We show that temporality of networks lessens the epidemic threshold such that infections persist more easily in temporal networks than in their static counterparts. We further show that the Lie commutator bracket of the adjacency matrices at different times is a key determinant of the epidemic threshold in temporal networks. The effect of temporality on the epidemic threshold, which depends on a data set, is approximately predicted by the magnitude of a commutator norm.

  13. A Unified Framework for the Infection Dynamics of Zoonotic Spillover and Spread

    PubMed Central

    Cunningham, Andrew A.; Fichet-Calvet, Elisabeth; Garry, Robert F.; Grant, Donald S.; Leach, Melissa; Moses, Lina M.; Nichols, Gordon; Schieffelin, John S.; Shaffer, Jeffrey G.; Webb, Colleen T.; Wood, James L. N.

    2016-01-01

    A considerable amount of disease is transmitted from animals to humans and many of these zoonoses are neglected tropical diseases. As outbreaks of SARS, avian influenza and Ebola have demonstrated, however, zoonotic diseases are serious threats to global public health and are not just problems confined to remote regions. There are two fundamental, and poorly studied, stages of zoonotic disease emergence: ‘spillover’, i.e. transmission of pathogens from animals to humans, and ‘stuttering transmission’, i.e. when limited human-to-human infections occur, leading to self-limiting chains of transmission. We developed a transparent, theoretical framework, based on a generalization of Poisson processes with memory of past human infections, that unifies these stages. Once we have quantified pathogen dynamics in the reservoir, with some knowledge of the mechanism of contact, the approach provides a tool to estimate the likelihood of spillover events. Comparisons with independent agent-based models demonstrates the ability of the framework to correctly estimate the relative contributions of human-to-human vs animal transmission. As an illustrative example, we applied our model to Lassa fever, a rodent-borne, viral haemorrhagic disease common in West Africa, for which data on human outbreaks were available. The approach developed here is general and applicable to a range of zoonoses. This kind of methodology is of crucial importance for the scientific, medical and public health communities working at the interface between animal and human diseases to assess the risk associated with the disease and to plan intervention and appropriate control measures. The Lassa case study revealed important knowledge gaps, and opportunities, arising from limited knowledge of the temporal patterns in reporting, abundance of and infection prevalence in, the host reservoir. PMID:27588425

  14. Factors affecting health care workers' adoption of a website with infection control guidelines.

    PubMed

    Verhoeven, Fenne; Steehouder, Michaël F; Hendrix, Ron M G; van Gemert-Pijnen, Julia E W C

    2009-10-01

    To identify factors that could affect health care workers' (HCWs) adoption of a website for communicating infection control guidelines. In total, 20 semi-structured interviews were conducted with HCWs in 5 different occupational groups and 4 different hospitals in the Netherlands and Germany. A website communicating guidelines for the prevention and control of Methicillin Resistant Staphylococcus aureus served as a casus. The HCWs, the majority of whom had prior experience with the website, were asked to give their opinions about factors that hinder or facilitate adoption of the website in practice. The interviews were based on the PRECEDE (Predisposing, Reinforcing, and Enabling Causes in Educational Diagnosis and Evaluation) model complemented by quality criteria for health-related websites. This model encompasses different categories of factors relevant to technology adoption in health care. A total of 361 interview statements were relevant to the four main categories of the PRECEDE model, yielding the following observations: (1) Technological factors (72 statements): The usability, design, and relevance of the website were positively valued. The website enabled HCWs to access contextually relevant information quickly. The website's credibility was evaluated rather negatively, as respondents perceived that the website's guidelines were not in concurrence with the best available evidence and it was not clear to HCWs who created the website. (2) Individual factors (85 statements): Respondents, particular infection control professionals, showed individual resistance to the website because they preferred to use their personal knowledge and experience (and communication with colleagues) over online sources. (3) Work-related factors (53 statements): Respondents perceived high work pressure during working hours as an impediment to consulting the website. In contrast, respondents thought the website might lower work pressure for infection control professionals, as they

  15. Factors affecting annual compensation and professional development support for infection preventionists: Implications for recruitment and retention.

    PubMed

    Knighton, Shanina C; Gilmartin, Heather M; Reese, Sara M

    2018-06-04

    Factors affecting annual compensation and professional development support have been studied for various healthcare professions. However, there is little understanding of these factors for infection preventionists (IPs). Using secondary data from the Association for Professionals in Infection Control and Epidemiology 2015 MegaSurvey, we designed a descriptive, correlational study to describe IP annual compensation and professional development support. We tested for associations between demographic variables and annual compensation and investigated for predictors of higher annual compensation. Median salary for IPs was $75,000. IPs who indicated that their compensation was based on industry benchmarks reported a median salary of $85,000 (P < .001). IPs with advanced degrees reported a median salary of $90,000. IPs with bachelor's degrees or lower reported a median salary of $50,000 (P < .001). IPs with CIC® reported a median salary of $85,000. IPs without CIC® reported a median salary of $65,000 (P < .001). This study can be used to develop recruitment and retention guidelines that lead to a well-educated, well-compensated, and competent IP workforce. Published by Elsevier Inc.

  16. Ureteral Stents and Foley Catheters-Associated Urinary Tract Infections: The Role of Coatings and Materials in Infection Prevention

    PubMed Central

    Lo, Joey; Lange, Dirk; Chew, Ben H.

    2014-01-01

    Urinary tract infections affect many patients, especially those who are admitted to hospital and receive a bladder catheter for drainage. Catheter associated urinary tract infections are some of the most common hospital infections and cost the health care system billions of dollars. Early removal is one of the mainstays of prevention as 100% of catheters become colonized. Patients with ureteral stents are also affected by infection and antibiotic therapy alone may not be the answer. We will review the current evidence on how to prevent infections of urinary biomaterials by using different coatings, new materials, and drug eluting technologies to decrease infection rates of ureteral stents and catheters. PMID:27025736

  17. Ureteral Stents and Foley Catheters-Associated Urinary Tract Infections: The Role of Coatings and Materials in Infection Prevention.

    PubMed

    Lo, Joey; Lange, Dirk; Chew, Ben H

    2014-03-10

    Urinary tract infections affect many patients, especially those who are admitted to hospital and receive a bladder catheter for drainage. Catheter associated urinary tract infections are some of the most common hospital infections and cost the health care system billions of dollars. Early removal is one of the mainstays of prevention as 100% of catheters become colonized. Patients with ureteral stents are also affected by infection and antibiotic therapy alone may not be the answer. We will review the current evidence on how to prevent infections of urinary biomaterials by using different coatings, new materials, and drug eluting technologies to decrease infection rates of ureteral stents and catheters.

  18. Predicted Bacterial Interactions Affect in Vivo Microbial Colonization Dynamics in Nematostella

    PubMed Central

    Domin, Hanna; Zurita-Gutiérrez, Yazmín H.; Scotti, Marco; Buttlar, Jann; Hentschel Humeida, Ute; Fraune, Sebastian

    2018-01-01

    The maintenance and resilience of host-associated microbiota during development is a fundamental process influencing the fitness of many organisms. Several host properties were identified as influencing factors on bacterial colonization, including the innate immune system, mucus composition, and diet. In contrast, the importance of bacteria–bacteria interactions on host colonization is less understood. Here, we use bacterial abundance data of the marine model organism Nematostella vectensis to reconstruct potential bacteria–bacteria interactions through co-occurrence networks. The analysis indicates that bacteria–bacteria interactions are dynamic during host colonization and change according to the host’s developmental stage. To assess the predictive power of inferred interactions, we tested bacterial isolates with predicted cooperative or competitive behavior for their ability to influence bacterial recolonization dynamics. Within 3 days of recolonization, all tested bacterial isolates affected bacterial community structure, while only competitive bacteria increased bacterial diversity. Only 1 week after recolonization, almost no differences in bacterial community structure could be observed between control and treatments. These results show that predicted competitive bacteria can influence community structure for a short period of time, verifying the in silico predictions. However, within 1 week, the effects of the bacterial isolates are neutralized, indicating a high degree of resilience of the bacterial community. PMID:29740401

  19. A mechanism of transmission and factors affecting coral susceptibility to Halofolliculina sp. infection

    NASA Astrophysics Data System (ADS)

    Rodríguez, S.; Cróquer, A.; Guzmán, H. M.; Bastidas, C.

    2009-03-01

    Anecdotal evidence collected since 2004 suggests that infections caused by ciliates in the genus Halofolliculina may be related to coral mortality in more than 25 scleractinian species in the Caribbean. However, the relationship between the presence of ciliates and coral mortality has not yet been firmly established. Field and laboratory manipulations were used to test if ciliate infections harm corals, if ciliates are able to infect healthy colonies, and if coral susceptibility to ciliate infection depends on temperature, depth, distance to an infected colony, and the presence of injuries. Ciliate infections were always characterized by a visually detectable front of ciliates located on recently exposed coral skeletons. These infections altered the normal structure of the colony by causing tissue mortality (0.8 ± 0.95 cm month-1, mean ± SD) and by delaying or preventing recovery from injuries. Under laboratory conditions, ciliates transmitted directly and horizontally from infected to healthy hosts, and coral susceptibility to ciliate infections increased with the presence of injuries. After invasion, the ciliate population grew, rapidly and after 8 d, produced tissue mortality on 32% of newly infected hosts. Thus, our results support the existence of a new Caribbean coral syndrome that is associated with tissue mortality, is infectious, and transmits directly and horizontally. Even though the role of ciliates in the development of lesions on coral tissues remains unclear, their presence is by far the most conspicuous sign of this syndrome; thus, we propose to name this condition Caribbean ciliate infection (CCI).

  20. Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection*

    PubMed Central

    Kulej, Katarzyna; Avgousti, Daphne C.; Sidoli, Simone; Herrmann, Christin; Della Fera, Ashley N.; Kim, Eui Tae; Garcia, Benjamin A.; Weitzman, Matthew D.

    2017-01-01

    Herpes simplex virus (HSV-1) lytic infection results in global changes to the host cell proteome and the proteins associated with host chromatin. We present a system level characterization of proteome dynamics during infection by performing a multi-dimensional analysis during HSV-1 lytic infection of human foreskin fibroblast (HFF) cells. Our study includes identification and quantification of the host and viral proteomes, phosphoproteomes, chromatin bound proteomes and post-translational modifications (PTMs) on cellular histones during infection. We analyzed proteomes across six time points of virus infection (0, 3, 6, 9, 12 and 15 h post-infection) and clustered trends in abundance using fuzzy c-means. Globally, we accurately quantified more than 4000 proteins, 200 differently modified histone peptides and 9000 phosphorylation sites on cellular proteins. In addition, we identified 67 viral proteins and quantified 571 phosphorylation events (465 with high confidence site localization) on viral proteins, which is currently the most comprehensive map of HSV-1 phosphoproteome. We investigated chromatin bound proteins by proteomic analysis of the high-salt chromatin fraction and identified 510 proteins that were significantly different in abundance during infection. We found 53 histone marks significantly regulated during virus infection, including a steady increase of histone H3 acetylation (H3K9ac and H3K14ac). Our data provide a resource of unprecedented depth for human and viral proteome dynamics during infection. Collectively, our results indicate that the proteome composition of the chromatin of HFF cells is highly affected during HSV-1 infection, and that phosphorylation events are abundant on viral proteins. We propose that our epi-proteomics approach will prove to be important in the characterization of other model infectious systems that involve changes to chromatin composition. PMID:28179408

  1. Time-resolved Global and Chromatin Proteomics during Herpes Simplex Virus Type 1 (HSV-1) Infection.

    PubMed

    Kulej, Katarzyna; Avgousti, Daphne C; Sidoli, Simone; Herrmann, Christin; Della Fera, Ashley N; Kim, Eui Tae; Garcia, Benjamin A; Weitzman, Matthew D

    2017-04-01

    Herpes simplex virus (HSV-1) lytic infection results in global changes to the host cell proteome and the proteins associated with host chromatin. We present a system level characterization of proteome dynamics during infection by performing a multi-dimensional analysis during HSV-1 lytic infection of human foreskin fibroblast (HFF) cells. Our study includes identification and quantification of the host and viral proteomes, phosphoproteomes, chromatin bound proteomes and post-translational modifications (PTMs) on cellular histones during infection. We analyzed proteomes across six time points of virus infection (0, 3, 6, 9, 12 and 15 h post-infection) and clustered trends in abundance using fuzzy c-means. Globally, we accurately quantified more than 4000 proteins, 200 differently modified histone peptides and 9000 phosphorylation sites on cellular proteins. In addition, we identified 67 viral proteins and quantified 571 phosphorylation events (465 with high confidence site localization) on viral proteins, which is currently the most comprehensive map of HSV-1 phosphoproteome. We investigated chromatin bound proteins by proteomic analysis of the high-salt chromatin fraction and identified 510 proteins that were significantly different in abundance during infection. We found 53 histone marks significantly regulated during virus infection, including a steady increase of histone H3 acetylation (H3K9ac and H3K14ac). Our data provide a resource of unprecedented depth for human and viral proteome dynamics during infection. Collectively, our results indicate that the proteome composition of the chromatin of HFF cells is highly affected during HSV-1 infection, and that phosphorylation events are abundant on viral proteins. We propose that our epi-proteomics approach will prove to be important in the characterization of other model infectious systems that involve changes to chromatin composition. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Infection Density Dynamics and Phylogeny of Wolbachia Associated with Coconut Hispine Beetle, Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), by Multilocus Sequence Type (MLST) Genotyping.

    PubMed

    Ali, Habib; Muhammad, Abrar; Hou, Youming

    2018-05-28

    The intracellular bacterium Wolbachia pipientis is widespread in arthropods. Recently, possibilities of novel Wolbachia -mediated hosts, their distribution, and natural rate have been anticipated, and the coconut leaf beetle Brontispa longissima (Gestro) (Coleoptera: Chrysomelidae), which has garnered attention as a serious pest of palms, was subjected to this interrogation. By adopting Wolbachia surface protein ( wsp ) and multilocus sequence type (MLST) genotypic systems, we determined the Wolbachia infection density within host developmental stages, body parts, and tissues, and the results revealed that all the tested samples of B. longissima were infected with the same Wolbachia strain (wLog), suggesting complete vertical transmission. The MLST profile elucidated two new alleles ( ftsZ -234 and coxA-266) that define a new sequence type (ST-483), which indicates the particular genotypic association of B. longissima and Wolbachia . The quantitative real-time PCR analysis revealed a higher infection density in the eggs and adult stage, followed by the abdomen and reproductive tissues, respectively. However, no significant differences were observed in the infection density between sexes. Moreover, the wsp and concatenated MLST alignment analysis of this study with other known Wolbachia-mediated arthropods revealed similar clustering with distinct monophyletic supergroup B. This is the first comprehensive report on the prevalence, infection dynamics, and phylogeny of the Wolbachia endosymbiont in B. longissima , which demonstrated that Wolbachia is ubiquitous across all developmental stages and distributed in the entire body of B. longissima . Understanding the Wolbachia infection dynamics would provide useful insight to build a framework for future investigations, understand its impacts on host physiology, and exploit it as a potential biocontrol agent.

  3. How the distance between regional and human mobility behavior affect the epidemic spreading

    NASA Astrophysics Data System (ADS)

    Wu, Minna; Han, She; Sun, Mei; Han, Dun

    2018-02-01

    The distance between different regions has a lot of impact on the individuals' mobility behavior. Meanwhile, the individuals' mobility could greatly affect the epidemic propagation way. By researching the individuals' mobility behavior, we establish the coupled dynamic model for individual mobility and transmission of infectious disease. The basic reproduction number is theoretically obtained according to the next-generation matrix method. Through this study, we may get that the stability state of the epidemic system will be prolonged under a higher commuting level. The infection density is almost the same in different regions over a sufficiently long time. The results show that, due to the individual movement, the origin of virus can only speed up or delay the outbreak of infectious diseases, however, it have little impact on the final infection size.

  4. Geographic and temporal variations in population dynamics of Ixodes ricinus and associated Borrelia infections in The Netherlands.

    PubMed

    Gassner, Fedor; van Vliet, Arnold J H; Burgers, Saskia L G E; Jacobs, Frans; Verbaarschot, Patrick; Hovius, Emiel K E; Mulder, Sara; Verhulst, Niels O; van Overbeek, Leo S; Takken, Willem

    2011-05-01

    In a countrywide investigation of the ecological factors that contribute to Lyme borreliosis risk, a longitudinal study on population dynamics of the sheep tick Ixodes ricinus and their infections with Borrelia burgdorferi sensu lato (s.l.) was undertaken at 24 sites in The Netherlands from July 2006 to December 2007. Study sites were mature forests, dune vegetations, or new forests on land reclaimed from the sea. Ticks were sampled monthly and nymphal ticks were investigated for the presence of Borrelia spp. I. ricinus was the only tick species found. Ticks were found in all sites, but with significant spatial and temporal variations in density between sites. Peak densities were found in July and August, with lowest tick numbers collected in December and January. In some sites, questing activities of I. ricinus nymphs and adults were observed in the winter months. Mean monthly Borrelia infections in nymphs varied from 0% to 29.0% (range: 0%-60%), and several sites had significantly higher mean nymphal Borrelia infections than others. Four genospecies of Borrelia burgdorferi s.l. were found, with B. afzelii being dominant at most sites. Borrelia infection rates in nymphal ticks collected in July, September, and November 2006 were significantly higher (23.7%, p<0.01) than those in the corresponding months of 2007 (9.9%). The diversity in Borrelia genospecies between sites was significantly different (p<0.001). Habitat structure (tree cover) was an effective discriminant parameter in the determination of Borrelia infection risk, as measured by the proportion of nymphal ticks infected with B. burgdorferi s.l. Thickness of the litter layer and moss cover were positively related to nymphal and adult tick densities. The study shows that Borrelia-infected ticks are present in many forest and dune areas in The Netherlands and suggests that in such biotopes, which are used for a wide variety of recreational activities, the infection risk is high.

  5. Hepatitis C virus infection in HIV-infected patients.

    PubMed

    Sulkowski, Mark S

    2007-10-01

    The hepatitis C virus (HCV) is a spherical enveloped RNA virus of the Flaviviridae family, classified within the Hepacivirus genus. Since its discovery in 1989, HCV has been recognized as a major cause of chronic hepatitis and hepatic fibrosis that progresses in some patients to cirrhosis and hepatocellular carcinoma. In the United States, approximately 4 million people have been infected with HCV, and 10,000 HCVrelated deaths occur each year. Due to shared routes of transmission, HCV and HIV co-infection are common, affecting approximately one third of all HIV-infected persons in the United States. In addition, HIV co-infection is associated with higher HCV RNA viral load and a more rapid progression of HCV-related liver disease, leading to an increased risk of cirrhosis. HCV infection may also impact the course and management of HIV disease, particularly by increasing the risk of antiretroviral drug-induced hepatotoxicity. Thus, chronic HCV infection acts as an opportunistic disease in HIV-infected persons because the incidence of infection is increased and the natural history of HCV infection is accelerated in co-infected persons. Strategies to prevent primary HCV infection and to modify the progression of HCV-related liver disease are urgently needed among HIV/HCV co-infected individuals.

  6. Cue competition affects temporal dynamics of edge-assignment in human visual cortex.

    PubMed

    Brooks, Joseph L; Palmer, Stephen E

    2011-03-01

    Edge-assignment determines the perception of relative depth across an edge and the shape of the closer side. Many cues determine edge-assignment, but relatively little is known about the neural mechanisms involved in combining these cues. Here, we manipulated extremal edge and attention cues to bias edge-assignment such that these two cues either cooperated or competed. To index their neural representations, we flickered figure and ground regions at different frequencies and measured the corresponding steady-state visual-evoked potentials (SSVEPs). Figural regions had stronger SSVEP responses than ground regions, independent of whether they were attended or unattended. In addition, competition and cooperation between the two edge-assignment cues significantly affected the temporal dynamics of edge-assignment processes. The figural SSVEP response peaked earlier when the cues causing it cooperated than when they competed, but sustained edge-assignment effects were equivalent for cooperating and competing cues, consistent with a winner-take-all outcome. These results provide physiological evidence that figure-ground organization involves competitive processes that can affect the latency of figural assignment.

  7. Ecological dynamics of emerging bat virus spillover

    PubMed Central

    Plowright, Raina K.; Eby, Peggy; Hudson, Peter J.; Smith, Ina L.; Westcott, David; Bryden, Wayne L.; Middleton, Deborah; Reid, Peter A.; McFarlane, Rosemary A.; Martin, Gerardo; Tabor, Gary M.; Skerratt, Lee F.; Anderson, Dale L.; Crameri, Gary; Quammen, David; Jordan, David; Freeman, Paul; Wang, Lin-Fa; Epstein, Jonathan H.; Marsh, Glenn A.; Kung, Nina Y.; McCallum, Hamish

    2015-01-01

    Viruses that originate in bats may be the most notorious emerging zoonoses that spill over from wildlife into domestic animals and humans. Understanding how these infections filter through ecological systems to cause disease in humans is of profound importance to public health. Transmission of viruses from bats to humans requires a hierarchy of enabling conditions that connect the distribution of reservoir hosts, viral infection within these hosts, and exposure and susceptibility of recipient hosts. For many emerging bat viruses, spillover also requires viral shedding from bats, and survival of the virus in the environment. Focusing on Hendra virus, but also addressing Nipah virus, Ebola virus, Marburg virus and coronaviruses, we delineate this cross-species spillover dynamic from the within-host processes that drive virus excretion to land-use changes that increase interaction among species. We describe how land-use changes may affect co-occurrence and contact between bats and recipient hosts. Two hypotheses may explain temporal and spatial pulses of virus shedding in bat populations: episodic shedding from persistently infected bats or transient epidemics that occur as virus is transmitted among bat populations. Management of livestock also may affect the probability of exposure and disease. Interventions to decrease the probability of virus spillover can be implemented at multiple levels from targeting the reservoir host to managing recipient host exposure and susceptibility. PMID:25392474

  8. Infections on the move: how transient phases of host movement influence disease spread

    PubMed Central

    Fenton, A.; Dell, A. I.

    2017-01-01

    Animal movement impacts the spread of human and wildlife diseases, and there is significant interest in understanding the role of migrations, biological invasions and other wildlife movements in spatial infection dynamics. However, the influence of processes acting on infections during transient phases of host movement is poorly understood. We propose a conceptual framework that explicitly considers infection dynamics during transient phases of host movement to better predict infection spread through spatial host networks. Accounting for host transient movement captures key processes that occur while hosts move between locations, which together determine the rate at which hosts spread infections through networks. We review theoretical and empirical studies of host movement and infection spread, highlighting the multiple factors that impact the infection status of hosts. We then outline characteristics of hosts, parasites and the environment that influence these dynamics. Recent technological advances provide disease ecologists unprecedented ability to track the fine-scale movement of organisms. These, in conjunction with experimental testing of the factors driving infection dynamics during host movement, can inform models of infection spread based on constituent biological processes. PMID:29263283

  9. Fitness-Balanced Escape Determines Resolution of Dynamic Founder Virus Escape Processes in HIV-1 Infection

    PubMed Central

    Sunshine, Justine E.; Larsen, Brendan B.; Maust, Brandon; Casey, Ellie; Deng, Wenje; Chen, Lennie; Westfall, Dylan H.; Kim, Moon; Zhao, Hong; Ghorai, Suvankar; Lanxon-Cookson, Erinn; Rolland, Morgane; Collier, Ann C.; Maenza, Janine; Mullins, James I.

    2015-01-01

    ABSTRACT To understand the interplay between host cytotoxic T-lymphocyte (CTL) responses and the mechanisms by which HIV-1 evades them, we studied viral evolutionary patterns associated with host CTL responses in six linked transmission pairs. HIV-1 sequences corresponding to full-length p17 and p24 gag were generated by 454 pyrosequencing for all pairs near the time of transmission, and seroconverting partners were followed for a median of 847 days postinfection. T-cell responses were screened by gamma interferon/interleukin-2 (IFN-γ/IL-2) FluoroSpot using autologous peptide sets reflecting any Gag variant present in at least 5% of sequence reads in the individual's viral population. While we found little evidence for the occurrence of CTL reversions, CTL escape processes were found to be highly dynamic, with multiple epitope variants emerging simultaneously. We found a correlation between epitope entropy and the number of epitope variants per response (r = 0.43; P = 0.05). In cases in which multiple escape mutations developed within a targeted epitope, a variant with no fitness cost became fixed in the viral population. When multiple mutations within an epitope achieved fitness-balanced escape, these escape mutants were each maintained in the viral population. Additional mutations found to confer escape but undetected in viral populations incurred high fitness costs, suggesting that functional constraints limit the available sites tolerable to escape mutations. These results further our understanding of the impact of CTL escape and reversion from the founder virus in HIV infection and contribute to the identification of immunogenic Gag regions most vulnerable to a targeted T-cell attack. IMPORTANCE Rapid diversification of the viral population is a hallmark of HIV-1 infection, and understanding the selective forces driving the emergence of viral variants can provide critical insight into the interplay between host immune responses and viral evolution. We used

  10. Arabidopsis FH1 Formin Affects Cotyledon Pavement Cell Shape by Modulating Cytoskeleton Dynamics.

    PubMed

    Rosero, Amparo; Oulehlová, Denisa; Stillerová, Lenka; Schiebertová, Petra; Grunt, Michal; Žárský, Viktor; Cvrčková, Fatima

    2016-03-01

    Plant cell morphogenesis involves concerted rearrangements of microtubules and actin microfilaments. We previously reported that FH1, the main Arabidopsis thaliana housekeeping Class I membrane-anchored formin, contributes to actin dynamics and microtubule stability in rhizodermis cells. Here we examine the effects of mutations affecting FH1 (At3g25500) on cell morphogenesis and above-ground organ development in seedlings, as well as on cytoskeletal organization and dynamics, using a combination of confocal and variable angle epifluorescence microscopy with a pharmacological approach. Homozygous fh1 mutants exhibited cotyledon epinasty and had larger cotyledon pavement cells with more pronounced lobes than the wild type. The pavement cell shape alterations were enhanced by expression of the fluorescent microtubule marker GFP-microtubule-associated protein 4 (MAP4). Mutant cotyledon pavement cells exhibited reduced density and increased stability of microfilament bundles, as well as enhanced dynamics of microtubules. Analogous results were also obtained upon treatments with the formin inhibitor SMIFH2 (small molecule inhibitor of formin homology 2 domains). Pavement cell shape in wild-type (wt) and fh1 plants in some situations exhibited a differential response towards anti-cytoskeletal drugs, especially the microtubule disruptor oryzalin. Our observations indicate that FH1 participates in the control of microtubule dynamics, possibly via its effects on actin, subsequently influencing cell morphogenesis and macroscopic organ development. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Real-Time Light Scattering Tracking of Gold Nanoparticles- bioconjugated Respiratory Syncytial Virus Infecting HEp-2 Cells

    NASA Astrophysics Data System (ADS)

    Wan, Xiao-Yan; Zheng, Lin-Ling; Gao, Peng-Fei; Yang, Xiao-Xi; Li, Chun-Mei; Li, Yuan Fang; Huang, Cheng Zhi

    2014-03-01

    Real-time tracking of virus invasion is crucial for understanding viral infection mechanism, which, however, needs simple and efficient labeling chemistry with improved signal-to-noise ratio. For that purpose, herein we investigated the invasion dynamics of respiratory syncytial virus (RSV) through dark-field microscopic imaging (iDFM) technique by using Au nanoparticles (AuNPs) as light scattering labels. RSV, a ubiquitous, non-segmented, pleiomorphic and negative-sense RNA virus, is an important human pathogen in infants, the elderly, and the immunocompromised. In order to label the enveloped virus of paramyxoviridae family, an efficient streptavidin (SA)-biotin binding chemistry was employed, wherein AuNPs and RSV particles modified with SA and biotin, respectively, allowing the AuNP-modified RSVs to maintain their virulence without affecting the native activities of RSV, making the long dynamic visualization successful for the RSV infections into human epidermis larynx carcinoma cells.

  12. Statistical behavior of time dynamics evolution of HIV infection

    NASA Astrophysics Data System (ADS)

    González, Ramón E. R.; Santos, Iury A. X.; Nunes, Marcos G. P.; de Oliveira, Viviane M.; Barbosa, Anderson L. R.

    2017-09-01

    We use the tools of the random matrix theory (RMT) to investigate the statistical behavior of the evolution of human immunodeficiency virus (HIV) infection. By means of the nearest-neighbor spacing distribution we have identified four distinct regimes of the evolution of HIV infection. We verified that at the beginning of the so-called clinical latency phase the concentration of infected cells grows slowly and evolves in a correlated way. This regime is followed by another one in which the correlation is lost and that in turn leads the system to a regime in which the increase of infected cells is faster and correlated. In the final phase, the one in which acquired immunodeficiency syndrome (AIDS) is stablished, the system presents maximum correlation as demonstrated by GOE distribution.

  13. Dynamics of HIV infection on 2D cellular automata

    NASA Astrophysics Data System (ADS)

    Benyoussef, A.; HafidAllah, N. El; ElKenz, A.; Ez-Zahraouy, H.; Loulidi, M.

    2003-05-01

    We use a cellular automata approach to describe the interactions of the immune system with the human immunodeficiency virus (HIV). We study the evolution of HIV infection, particularly in the clinical latency period. The results we have obtained show the existence of four different behaviours in the plane of death rate of virus-death rate of infected T cell. These regions meet at a critical point, where the virus density and the infected T cell density remain invariant during the evolution of disease. We have introduced two kinds of treatments, the protease inhibitors and the RT inhibitors, in order to study their effects on the evolution of HIV infection. These treatments are powerful in decreasing the density of the virus in the blood and the delay of the AIDS onset.

  14. The Dynamics of Treg/Th17 and the Imbalance of Treg/Th17 in Clonorchis sinensis-Infected Mice

    PubMed Central

    Hua, Hui; Li, Bo; Zhang, Bo; Yu, Qian; Li, Xiang-Yang; Liu, Ying; Pan, Wei; Liu, Xiang-Ye; Tang, Ren-Xian; Zheng, Kui-Yang

    2015-01-01

    Clonorchiasis, caused by the liver fluke Clonorchis sinensis, is a chronic parasitic infection regulated by T cell subsets. An imbalance of CD4+CD25+ Foxp3+regulatory T (Treg) and interleukin (IL)-17-secreting T cells (Th17) may control inflammation and play an important role in the pathogenesis of immune evasion. In the present study, we assessed the dynamics of Treg/Th17 and determined whether the Treg/Th17 ratio is altered in C. sinensis-infected mice. The results showed that the percentages of splenic Treg cells in CD4+ T cells were suppressed on day 14 post-infection (PI) but increased on day 56 PI, while Th17 cells were increased on day 56 PI compared with normal control (NC) mice. The Treg/Th17 ratio steadily increased from day 28 to day 56 PI. The hepatic levels of their specific transcription factors (Foxp3 for Treg and RORγt for Th17) were increased in C. sinensis-infected mice from day 14 to 56 PI, and significantly higher than those in NC mice. Meanwhile, serum levels of IL-2 and IL-17 were profoundly increased in C. sinensis-infected mice throughout the experiment; while the concentrations of IL-6 and transforming growth factor β1 (TGF-β1) peaked on day 14 PI, but then decreased on day 28 and 56 PI. Our results provide the first evidence of an increased Treg/Th17 ratio in C. sinensis-infected mice, suggesting that a Treg/Th17 imbalance may play a role in disease outcomes of clonorchiasis. PMID:26599407

  15. Liver fungal infections: an overview of the etiology and epidemiology in patients affected or not affected by oncohematologic malignancies

    PubMed Central

    Bimonte, Sabrina; Maraolo, Alberto Enrico; Gentile, Ivan; Schiavone, Vincenzo; Pace, Maria Caterina

    2018-01-01

    Fungal infections of the liver, most commonly caused by Candida spp., often occur in patients with hematologic malignancies treated with chemotherapy. Colonization of the gastrointestinal tract is thought to be the main origin of dissemination of Candida; mucositis and neutropenia facilitate the spread of Candida from the gastrointestinal tract to the liver. Hepatic involvement due to other fungi is a less common infectious complication in this setting. Fungal infections represent a less common cause of hepatic abscesses in non-oncohematologic population and the trend appears to be decreasing in recent years. Understanding of the etiology and epidemiology of fungal infections of the liver is indicated for an appropriate antimicrobial therapy and an overall optimal management of fungal liver infections. PMID:29416363

  16. Burstiness in Viral Bursts: How Stochasticity Affects Spatial Patterns in Virus-Microbe Dynamics

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Hui; Taylor, Bradford P.; Weitz, Joshua S.

    Spatial patterns emerge in living systems at the scale of microbes to metazoans. These patterns can be driven, in part, by the stochasticity inherent to the birth and death of individuals. For microbe-virus systems, infection and lysis of hosts by viruses results in both mortality of hosts and production of viral progeny. Here, we study how variation in the number of viral progeny per lysis event affects the spatial clustering of both viruses and microbes. Each viral ''burst'' is initially localized at a near-cellular scale. The number of progeny in a single lysis event can vary in magnitude between tens and thousands. These perturbations are not accounted for in mean-field models. Here we developed individual-based models to investigate how stochasticity affects spatial patterns in virus-microbe systems. We measured the spatial clustering of individuals using pair correlation functions. We found that increasing the burst size of viruses while maintaining the same production rate led to enhanced clustering. In this poster we also report on preliminary analysis on the evolution of the burstiness of viral bursts given a spatially distributed host community.

  17. Ranking landscape development scenarios affecting natterjack toad (Bufo calamita) population dynamics in Central Poland.

    PubMed

    Franz, Kamila W; Romanowski, Jerzy; Johst, Karin; Grimm, Volker

    2013-01-01

    When data are limited it is difficult for conservation managers to assess alternative management scenarios and make decisions. The natterjack toad (Bufo calamita) is declining at the edges of its distribution range in Europe and little is known about its current distribution and abundance in Poland. Although different landscape management plans for central Poland exist, it is unclear to what extent they impact this species. Based on these plans, we investigated how four alternative landscape development scenarios would affect the total carrying capacity and population dynamics of the natterjack toad. To facilitate decision-making, we first ranked the scenarios according to their total carrying capacity. We used the software RAMAS GIS to determine the size and location of habitat patches in the landscape. The estimated carrying capacities were very similar for each scenario, and clear ranking was not possible. Only the reforestation scenario showed a marked loss in carrying capacity. We therefore simulated metapopulation dynamics with RAMAS taking into account dynamical processes such as reproduction and dispersal and ranked the scenarios according to the resulting species abundance. In this case, we could clearly rank the development scenarios. We identified road mortality of adults as a key process governing the dynamics and separating the different scenarios. The renaturalisation scenario clearly ranked highest due to its decreased road mortality. Taken together our results suggest that road infrastructure development might be much more important for natterjack toad conservation than changes in the amount of habitat in the semi-natural river valley. We gained these insights by considering both the resulting metapopulation structure and dynamics in the form of a PVA. We conclude that the consideration of dynamic processes in amphibian conservation management may be indispensable for ranking management scenarios.

  18. Diagnostic usefulness of dynamic changes of CMV-specific T-cell responses in predicting CMV infections in HCT recipients.

    PubMed

    Jung, Jiwon; Lee, Hyun-Jung; Kim, Sun-Mi; Kang, Young-Ah; Lee, Young-Shin; Chong, Yong Pil; Sung, Heungsup; Lee, Sang-Oh; Choi, Sang-Ho; Kim, Yang Soo; Woo, Jun Hee; Lee, Jung-Hee; Lee, Je-Hwan; Lee, Kyoo-Hyung; Kim, Sung-Han

    2017-02-01

    CMV-specific cell mediated immune responses before and after hematopoietic stem cell transplantation (HCT) can categorize patients as at high or low risk of CMV development. We evaluated the usefulness of the CMV-specific T-cell ELISPOT assay for predicting the development of CMV infections after HCT in recipients with donor-positive and recipient-positive CMV serology (D+/R+ ). CMV pp65 and IE1-specific ELISPOT assays were performed before HCT (D0), and at 30 (D30) and 90 (D90) days after HCT. Of the 84 HCT recipients with D+/R+, 42 (50%) developed≥1 episode of CMV infection. Thirty-nine (64%) of 61 patients with Δ(D30-D0) pp65<42 developed CMV infections compared with 3 (14%) of 21 patients with Δ(D30-D0) pp65≥42 (P<0.001). Twenty-three (74%) of 31 patients with Δ(D30-D0) IE1<-4 developed CMV infections compared with 19 (37%) of 51 patients with Δ(D30-D0) IE1≥-4 (P=0.001). pp65 Δ(D30-D0) ≥42 had 93% sensitivity for ruling out subsequent CMV infection, and pp65 Δ(D30-D0)<42 followed by Δ(D30-D0) IE1<-4 had 100% specificity for ruling in the subsequent CMV infection. In addition, 10 (53%) of 19 patients with Δ(D90-D30) pp65<23 had relapsing CMV infections, compared with 3 (15%) of 20 patients with Δ(D90-D30) pp65≥23 (P=0.02). The sensitivity and specificity of Δ(D90-D30) pp65 were 77% (95% CI 50-92) and 65% (95% CI, 46-81). Dynamic change in the CMV-specific ELISPOT assay before versus after HCT appears to predict the subsequent development of CMV infection and relapsing CMV infection. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Osteoarticular infection in intravenous drug abusers: influence of HIV infection and differences with non drug abusers.

    PubMed Central

    Muñoz-Fernández, S; Maciá, M A; Pantoja, L; Cardenal, A; Peña, J M; Martín Mola, E; Balsa, A; Barbado, F J; Vázquez, J J; Gijón Baños, J

    1993-01-01

    OBJECTIVES--To determine (a) the influence of HIV in developing osteoarticular infections in intravenous drug abusers (IVDAs) and (b) the differences between the clinical features of osteoarticular infections in IVDAs and a control group of non-IVDAs. METHODS--A comparative study of the clinical features of osteoarticular infections in all HIV positive and HIV negative IVDAs admitted to the departments of rheumatology and internal medicine during a 10 year period was carried out. The joint infections of all IVDAs, irrespective of HIV status, were compared with those of a control group of non-IVDAs lacking risk factors for HIV infection. RESULTS--A total of 482 HIV positive and 85 HIV negative IVDAs was studied, in whom 25 (5%) and six (7%) osteoarticular infections were found respectively. There were no differences in age, sex, joints affected, and causative agents between these two groups. A comparison of the 31 (5.5%) osteoarticular infections in all IVDAs with 21 infections in 616 (3.4%) non-IVDAs showed significant differences in the mean age (27.5 v 54), the frequency of affection of the axial joints (hip, sacroiliac, and sternocostal joints) (64.5% v 16.6%), and in the incidence of Candida albicans (19% v 0%). CONCLUSIONS--(1) HIV may not predispose to osteoarticular infections in IVDAs. (2) The hip, sacroiliac, and sternocostal joints (axial joints) were most commonly affected in IVDAs. (3) In Spain, unlike other countries, Gram positive bacteria and C albicans seem to be predominant agents in osteoarticular infections in IVDAs, with a low incidence of Gram negative bacteria. PMID:8215617

  20. Dynamics of Leishmania chagasi infection in small mammals of the undisturbed and degraded tropical dry forests of northern Colombia.

    PubMed

    Travi, B L; Osorio, Y; Becerra, M T; Adler, G H

    1998-01-01

    The infection rate with Leishmania chagasi and the population dynamics of small mammals were studied in an undisturbed forest reserve (Colosó) and an area of highly degraded forest (San Andrés de Sotavento [SAS]) in northern Colombia, both endemic for visceral leishmaniasis. Live trapping of mammals was done every month, and species, age, sex and reproductive status determined. L. chagasi was detected in samples of skin or spleen by the polymerase chain reaction, after extraction of deoxyribonucleic acid using specific primers (DB8/AJS3), and dot blood hybridization. Didelphis marsupialis was found to be infected in Colosó (3/21, 14.3%) and SAS (13/137, 9.5%); its relative abundance was higher in SAS (93/113, 82% of the captures). Although Proechimys canicollis was also found to be infected in Colosó (3/34, 8.8%) and SAS (2/4), its relative abundance was much lower (4%) in SAS than in Colosó (56% of 77 animals captured). Sciurus granatensis, Marmosa robinsoni, Heteromys anomalus, Zygodontomys brevicauda and Metachirus nudicaudatus were less common, and no L. chagasi infection was detected in them.

  1. Considerations in HIV Prevention for Women Affected by the Criminal Justice System

    PubMed Central

    Comfort, Megan

    2011-01-01

    Within the national dialogue of HIV prevention strategies, relatively little consideration is given to the millions of women and girls affected by the criminal justice system either through their own incarceration or that of their partners. Yet statistics indicate that these women and girls are disproportionately infected or at risk for HIV and other sexually transmitted infections and much of this risk is directly related to the dynamics and circumstances that led to their incarceration or relationships with incarcerated men. As we look for the link between public health and correctional health within our National HIV/AIDS Strategy, it is imperative that the risks, obstacles, and opportunities facing women and girls affected by incarceration are brought into the discussion. Gender responsive HIV prevention policies and practices must be developed to address the unique risks and opportunities for these women and girls. This paper presents data on HIV risk and other health issues specific to this community of women and girls, discusses key factors for consideration when developing gender-responsive HIV strategies for these communities, and makes recommendations for inclusion in the National HIV/AIDS Strategy and other state and local HIV prevention efforts. PMID:21782463

  2. Considerations in HIV prevention for women affected by the criminal justice system.

    PubMed

    Kramer, Katie; Comfort, Megan

    2011-11-01

    Within the national dialogue of HIV prevention strategies, relatively little consideration is given to the millions of women and girls affected by the criminal justice system, either through their own incarceration or that of their partners. Statistics indicate that these women and girls are disproportionately infected or at risk for HIV and other sexually transmitted infections and much of this risk is directly related to the dynamics and circumstances that led to their incarceration or relationships with incarcerated men. As we look for the link between public health and correctional health within our National HIV/AIDS Strategy, it is imperative that the risks, obstacles, and opportunities facing women and girls affected by incarceration are brought into the discussion. Gender-responsive HIV prevention policies and practices must be developed to address the unique risks and opportunities for these women and girls. This paper presents data on HIV risk and other health issues specific to this community of women and girls, discusses key factors for consideration when developing gender-responsive HIV strategies for these communities, and makes recommendations for inclusion in the National HIV/AIDS Strategy and other state and local HIV prevention efforts. Published by Elsevier Inc.

  3. Environmental Change and Disease Dynamics: Effects of Intensive Forest Management on Puumala Hantavirus Infection in Boreal Bank Vole Populations

    PubMed Central

    Voutilainen, Liina; Savola, Sakeri; Kallio, Eva Riikka; Laakkonen, Juha; Vaheri, Antti; Vapalahti, Olli; Henttonen, Heikki

    2012-01-01

    Intensive management of Fennoscandian forests has led to a mosaic of woodlands in different stages of maturity. The main rodent host of the zoonotic Puumala hantavirus (PUUV) is the bank vole (Myodes glareolus), a species that can be found in all woodlands and especially mature forests. We investigated the influence of forest age structure on PUUV infection dynamics in bank voles. Over four years, we trapped small mammals twice a year in a forest network of different succession stages in Northern Finland. Our study sites represented four forest age classes from young (4 to 30 years) to mature (over 100 years) forests. We show that PUUV-infected bank voles occurred commonly in all forest age classes, but peaked in mature forests. The probability of an individual bank vole to be PUUV infected was positively related to concurrent host population density. However, when population density was controlled for, a relatively higher infection rate was observed in voles trapped in younger forests. Furthermore, we found evidence of a “dilution effect” in that the infection probability was negatively associated with the simultaneous density of other small mammals during the breeding season. Our results suggest that younger forests created by intensive management can reduce hantaviral load in the environment, but PUUV is common in woodlands of all ages. As such, the Fennoscandian forest landscape represents a significant reservoir and source of hantaviral infection in humans. PMID:22745755

  4. Telomere Dynamics in Immune Senescence and Exhaustion Triggered by Chronic Viral Infection.

    PubMed

    Bellon, Marcia; Nicot, Christophe

    2017-10-05

    The progressive loss of immunological memory during aging correlates with a reduced proliferative capacity and shortened telomeres of T cells. Growing evidence suggests that this phenotype is recapitulated during chronic viral infection. The antigenic volume imposed by persistent and latent viruses exposes the immune system to unique challenges that lead to host T-cell exhaustion, characterized by impaired T-cell functions. These dysfunctional memory T cells lack telomerase, the protein capable of extending and stabilizing chromosome ends, imposing constraints on telomere dynamics. A deleterious consequence of this excessive telomere shortening is the premature induction of replicative senescence of viral-specific CD8+ memory T cells. While senescent cells are unable to expand, they can survive for extended periods of time and are more resistant to apoptotic signals. This review takes a closer look at T-cell exhaustion in chronic viruses known to cause human disease: Epstein-Barr virus (EBV), Hepatitis B/C/D virus (HBV/HCV/HDV), human herpesvirus 8 (HHV-8), human immunodeficiency virus (HIV), human T-cell leukemia virus type I (HTLV-I), human papillomavirus (HPV), herpes simplex virus-1/2(HSV-1/2), and Varicella-Zoster virus (VZV). Current literature linking T-cell exhaustion with critical telomere lengths and immune senescence are discussed. The concept that enduring antigen stimulation leads to T-cell exhaustion that favors telomere attrition and a cell fate marked by enhanced T-cell senescence appears to be a common endpoint to chronic viral infections.

  5. Evaluation of the parameters affecting bone temperature during drilling using a three-dimensional dynamic elastoplastic finite element model.

    PubMed

    Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun

    2017-11-01

    A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.

  6. The TLR4 Agonist Monophosphoryl Lipid A Drives Broad Resistance to Infection via Dynamic Reprogramming of Macrophage Metabolism.

    PubMed

    Fensterheim, Benjamin A; Young, Jamey D; Luan, Liming; Kleinbard, Ruby R; Stothers, Cody L; Patil, Naeem K; McAtee-Pereira, Allison G; Guo, Yin; Trenary, Irina; Hernandez, Antonio; Fults, Jessica B; Williams, David L; Sherwood, Edward R; Bohannon, Julia K

    2018-06-01

    Monophosphoryl lipid A (MPLA) is a clinically used TLR4 agonist that has been found to drive nonspecific resistance to infection for up to 2 wk. However, the molecular mechanisms conferring protection are not well understood. In this study, we found that MPLA prompts resistance to infection, in part, by inducing a sustained and dynamic metabolic program in macrophages that supports improved pathogen clearance. Mice treated with MPLA had enhanced resistance to infection with Staphylococcus aureus and Candida albicans that was associated with augmented microbial clearance and organ protection. Tissue macrophages, which exhibited augmented phagocytosis and respiratory burst after MPLA treatment, were required for the beneficial effects of MPLA. Further analysis of the macrophage phenotype revealed that early TLR4-driven aerobic glycolysis was later coupled with mitochondrial biogenesis, enhanced malate shuttling, and increased mitochondrial ATP production. This metabolic program was initiated by overlapping and redundant contributions of MyD88- and TRIF-dependent signaling pathways as well as downstream mTOR activation. Blockade of mTOR signaling inhibited the development of the metabolic and functional macrophage phenotype and ablated MPLA-induced resistance to infection in vivo. Our findings reveal that MPLA drives macrophage metabolic reprogramming that evolves over a period of days to support a macrophage phenotype highly effective at mediating microbe clearance and that this results in nonspecific resistance to infection. Copyright © 2018 by The American Association of Immunologists, Inc.

  7. The temporal dynamics of cortisol and affective states in depressed and non-depressed individuals.

    PubMed

    Booij, Sanne H; Bos, Elisabeth H; de Jonge, Peter; Oldehinkel, Albertine J

    2016-07-01

    Cortisol levels have been related to mood disorders at the group level, but not much is known about how cortisol relates to affective states within individuals over time. We examined the temporal dynamics of cortisol and affective states in depressed and non-depressed individuals in daily life. Specifically, we addressed the direction and timing of the effects, as well as individual differences. Thirty depressed and non-depressed participants (aged 20-50 years) filled out questionnaires regarding their affect and sampled saliva three times a day for 30 days in their natural environment. They were pair-matched on age, gender, smoking behavior and body mass index. The multivariate time series (T=90) of every participant were analyzed using vector autoregressive (VAR) modeling to assess lagged effects of cortisol on affect, and vice versa. Contemporaneous effects were assessed using the residuals of the VAR models. Impulse response function analysis was used to examine the timing of effects. For 29 out of 30 participants, a VAR model could be constructed. A significant relationship between cortisol and positive or negative affect was found for the majority of the participants, but the direction, sign, and timing of the relationship varied among individuals. This approach proves to be a valuable addition to traditional group designs, because our results showed that daily life fluctuations in cortisol can influence affective states, and vice versa, but not in all individuals and in varying ways. Future studies may examine whether these individual differences relate to susceptibility for or progression of mood disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Dynamics of African swine fever virus shedding and excretion in domestic pigs infected by intramuscular inoculation and contact transmission.

    PubMed

    Guinat, Claire; Reis, Ana Luisa; Netherton, Christopher L; Goatley, Lynnette; Pfeiffer, Dirk U; Dixon, Linda

    2014-09-26

    African swine fever virus (ASFV) is a highly virulent swine pathogen that has spread across Eastern Europe since 2007 and for which there is no effective vaccine or treatment available. The dynamics of shedding and excretion is not well known for this currently circulating ASFV strain. Therefore, susceptible pigs were exposed to pigs intramuscularly infected with the Georgia 2007/1 ASFV strain to measure those dynamics through within- and between-pen transmission scenarios. Blood, oral, nasal and rectal fluid samples were tested for the presence of ASFV by virus titration (VT) and quantitative real-time polymerase chain reaction (qPCR). Serum was tested for the presence of ASFV-specific antibodies. Both intramuscular inoculation and contact transmission resulted in development of acute disease in all pigs although the experiments indicated that the pathogenesis of the disease might be different, depending on the route of infection. Infectious ASFV was first isolated in blood among the inoculated pigs by day 3, and then chronologically among the direct and indirect contact pigs, by day 10 and 13, respectively. Close to the onset of clinical signs, higher ASFV titres were found in blood compared with nasal and rectal fluid samples among all pigs. No infectious ASFV was isolated in oral fluid samples although ASFV genome copies were detected. Only one animal developed antibodies starting after 12 days post-inoculation. The results provide quantitative data on shedding and excretion of the Georgia 2007/1 ASFV strain among domestic pigs and suggest a limited potential of this isolate to cause persistent infection.

  9. Epidemic dynamics on a risk-based evolving social network

    NASA Astrophysics Data System (ADS)

    Antwi, Shadrack; Shaw, Leah

    2013-03-01

    Social network models have been used to study how behavior affects the dynamics of an infection in a population. Motivated by HIV, we consider how a trade-off between benefits and risks of sexual connections determine network structure and disease prevalence. We define a stochastic network model with formation and breaking of links as changes in sexual contacts. Each node has an intrinsic benefit its neighbors derive from connecting to it. Nodes' infection status is not apparent to others, but nodes with more connections (higher degree) are assumed more likely to be infected. The probability to form and break links is determined by a payoff computed from the benefit and degree-dependent risk. The disease is represented by a SI (susceptible-infected) model. We study network and epidemic evolution via Monte Carlo simulation and analytically predict the behavior with a heterogeneous mean field approach. The dependence of network connectivity and infection threshold on parameters is determined, and steady state degree distribution and epidemic levels are obtained. We also study a situation where system-wide infection levels alter perception of risk and cause nodes to adjust their behavior. This is a case of an adaptive network, where node status feeds back to change network geometry.

  10. Middle Ear Infections

    MedlinePlus

    ... Life Family Life Family Life Medical Home Family Dynamics Media Work & Play Getting Involved in Your Community ... and Urinary Tract Glands & Growth Head Neck & Nervous System Heart Infections Learning Disabilities Obesity Orthopedic Prevention Sexually ...

  11. Macroparasite dynamics of migratory host populations.

    PubMed

    Peacock, Stephanie J; Bouhours, Juliette; Lewis, Mark A; Molnár, Péter K

    2018-03-01

    Spatial variability in host density is a key factor affecting disease dynamics of wildlife, and yet there are few spatially explicit models of host-macroparasite dynamics. This limits our understanding of parasitism in migratory hosts, whose densities change considerably in both space and time. In this paper, we develop a model for host-macroparasite dynamics that considers the directional movement of host populations and their associated parasites. We include spatiotemporal changes in the mean and variance in parasite burden per host, as well as parasite-mediated host mortality and parasite-mediated migratory ability. Reduced migratory ability with increasing parasitism results in heavily infested hosts halting their migration, and higher parasite burdens in stationary hosts than in moving hosts. Simulations reveal the potential for positive feedbacks between parasite-reduced migratory ability and increasing parasite burdens at infection hotspots, such as stopover sites, that may lead to parasite-induced migratory stalling. This framework could help understand how global change might influence wildlife disease via changes to migratory patterns and parasite demographic rates. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats

    PubMed Central

    Damschen, Ellen I.; Baker, Dirk V.; Bohrer, Gil; Nathan, Ran; Orrock, John L.; Turner, Jay R.; Brudvig, Lars A.; Haddad, Nick M.; Levey, Douglas J.; Tewksbury, Joshua J.

    2014-01-01

    Determining how widespread human-induced changes such as habitat loss, landscape fragmentation, and climate instability affect populations, communities, and ecosystems is one of the most pressing environmental challenges. Critical to this challenge is understanding how these changes are affecting the movement abilities and dispersal trajectories of organisms and what role conservation planning can play in promoting movement among remaining fragments of suitable habitat. Whereas evidence is mounting for how conservation strategies such as corridors impact animal movement, virtually nothing is known for species dispersed by wind, which are often mistakenly assumed to not be limited by dispersal. Here, we combine mechanistic dispersal models, wind measurements, and seed releases in a large-scale experimental landscape to show that habitat corridors affect wind dynamics and seed dispersal by redirecting and bellowing airflow and by increasing the likelihood of seed uplift. Wind direction interacts with landscape orientation to determine when corridors provide connectivity. Our results predict positive impacts of connectivity and patch shape on species richness of wind-dispersed plants, which we empirically illustrate using 12 y of data from our experimental landscapes. We conclude that habitat fragmentation and corridors strongly impact the movement of wind-dispersed species, which has community-level consequences. PMID:24567398

  13. How fragmentation and corridors affect wind dynamics and seed dispersal in open habitats.

    PubMed

    Damschen, Ellen I; Baker, Dirk V; Bohrer, Gil; Nathan, Ran; Orrock, John L; Turner, Jay R; Brudvig, Lars A; Haddad, Nick M; Levey, Douglas J; Tewksbury, Joshua J

    2014-03-04

    Determining how widespread human-induced changes such as habitat loss, landscape fragmentation, and climate instability affect populations, communities, and ecosystems is one of the most pressing environmental challenges. Critical to this challenge is understanding how these changes are affecting the movement abilities and dispersal trajectories of organisms and what role conservation planning can play in promoting movement among remaining fragments of suitable habitat. Whereas evidence is mounting for how conservation strategies such as corridors impact animal movement, virtually nothing is known for species dispersed by wind, which are often mistakenly assumed to not be limited by dispersal. Here, we combine mechanistic dispersal models, wind measurements, and seed releases in a large-scale experimental landscape to show that habitat corridors affect wind dynamics and seed dispersal by redirecting and bellowing airflow and by increasing the likelihood of seed uplift. Wind direction interacts with landscape orientation to determine when corridors provide connectivity. Our results predict positive impacts of connectivity and patch shape on species richness of wind-dispersed plants, which we empirically illustrate using 12 y of data from our experimental landscapes. We conclude that habitat fragmentation and corridors strongly impact the movement of wind-dispersed species, which has community-level consequences.

  14. An Estimation of a Nonlinear Dynamic Process Using Latent Class Extended Mixed Models: Affect Profiles After Terrorist Attacks.

    PubMed

    Burro, Roberto; Raccanello, Daniela; Pasini, Margherita; Brondino, Margherita

    2018-01-01

    Conceptualizing affect as a complex nonlinear dynamic process, we used latent class extended mixed models (LCMM) to understand whether there were unobserved groupings in a dataset including longitudinal measures. Our aim was to identify affect profiles over time in people vicariously exposed to terrorism, studying their relations with personality traits. The participants were 193 university students who completed online measures of affect during the seven days following two terrorist attacks (Paris, November 13, 2015; Brussels, March 22, 2016); Big Five personality traits; and antecedents of affect. After selecting students whose negative affect was influenced by the two attacks (33%), we analysed the data with the LCMM package of R. We identified two affect profiles, characterized by different trends over time: The first profile comprised students with lower positive affect and higher negative affect compared to the second profile. Concerning personality traits, conscientious-ness was lower for the first profile compared to the second profile, and vice versa for neuroticism. Findings are discussed for both their theoretical and applied relevance.

  15. Mycoplasma hyopneumoniae does not affect the interferon-related anti-viral response but predisposes the pig to a higher level of inflammation following swine influenza virus infection.

    PubMed

    Deblanc, Céline; Delgado-Ortega, Mario; Gorin, Stéphane; Berri, Mustapha; Paboeuf, Frédéric; Berthon, Patricia; Herrler, Georg; Meurens, François; Simon, Gaëlle

    2016-10-01

    In pigs, influenza A viruses and Mycoplasma hyopneumoniae (Mhp) are major contributors to the porcine respiratory disease complex. Pre-infection with Mhp was previously shown experimentally to exacerbate the clinical outcomes of H1N1 infection during the first week after virus inoculation. In order to better understand the interactions between these pathogens, we aimed to assess very early responses (at 5, 24 and 48 h) after H1N1 infection in pigs pre-infected or not with Mhp. Clinical signs and macroscopic lung lesions were similar in both infected groups at early times post-H1N1 infection; and Mhp pre-infection affected neither the influenza virus replication nor the IFN-induced antiviral responses in the lung. However, it predisposed the animals to a higher inflammatory response to H1N1 infection, as revealed by the massive infiltration of neutrophils and macrophages into the lungs and the increased production of pro-inflammatory cytokines (IL-6, IL-1β and TNF-α). Thus, it seems it is this marked inflammatory state that would play a role in exacerbating the clinical signs subsequent to H1N1 infection.

  16. Modeling Heterogeneity in Momentary Interpersonal and Affective Dynamic Processes in Borderline Personality Disorder

    PubMed Central

    Wright, Aidan G. C.; Hallquist, Michael N.; Stepp, Stephanie D.; Scott, Lori N.; Beeney, Joseph E.; Lazarus, Sophie A.; Pilkonis, Paul A.

    2016-01-01

    Borderline personality disorder (BPD) is a diagnosis defined by impairments in several dynamic processes (e.g., interpersonal relating, affect regulation, behavioral control). Theories of BPD emphasize that these impairments appear in specific contexts, and emerging results confirm this view. At the same time, BPD is a complex construct that encompasses individuals with heterogeneous pathology. These features—dynamic processes, situational specificity, and individual heterogeneity—pose significant assessment challenges. In the current study, we demonstrate assessment and analytic methods that capture both between-person differences and within-person changes over time. Twenty-five participants diagnosed with BPD completed event-contingent, ambulatory assessment protocols over 21 days. We used p-technique factor analyses to identify person-specific psychological structures consistent with clinical theories of personality. Five exemplar cases are selected and presented in detail to showcase the potential utility of these methods. The presented cases' factor structures reflect not only heterogeneity but also suggest points of convergence. The factors also demonstrated significant associations with important clinical targets (self-harm, interpersonal violence). PMID:27317561

  17. [HIV infection in the Stavropol' region].

    PubMed

    Filonenko, N G; Isaev, V P; Pelikh, N L

    2001-01-01

    The data on the dynamics of HIV infection in the Stavropol Territory beginning with 1987 are given. The situation became aggravated after 1996, and its sharp deterioration occurred in 2000 when 138 cases of HIV infection were detected and the area of this infection increased. In most cases patients became infected beyond the borders of the territory. About a half of the new cases of HIV infection registered in 2000 were detected in Ingushetia and Chechnya. The leading factor in the spread of HIV infection was the use of drugs by injection. The main trends of the prophylactic work are presented.

  18. Dynamic Testing of a Pre-stretched Flexible Tube for Identifying the Factors Affecting Modal Parameter Estimation

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Madhusudanan; Rajan, Akash; Basanthvihar Raghunathan, Binulal; Kochupillai, Jayaraj

    2017-08-01

    Experimental modal analysis is the primary tool for obtaining the fundamental dynamic characteristics like natural frequency, mode shape and modal damping ratio that determine the behaviour of any structure under dynamic loading conditions. This paper discusses about a carefully designed experimental method for calculating the dynamic characteristics of a pre-stretched horizontal flexible tube made of polyurethane material. The factors that affect the modal parameter estimation like the application time of shaker excitation, pause time between successive excitation cycles, averaging and windowing of measured signal, as well as the precautions to be taken during the experiment are explained in detail. The modal parameter estimation is done using MEscopeVESTM software. A finite element based pre-stressed modal analysis of the flexible tube is also done using ANSYS ver.14.0 software. The experimental and analytical results agreed well. The proposed experimental methodology may be extended for carrying out the modal analysis of many flexible structures like inflatables, tires and membranes.

  19. Population Dynamics and Niche Distribution of Uropathogenic Escherichia coli during Acute and Chronic Urinary Tract Infection ▿ †

    PubMed Central

    Schwartz, Drew J.; Chen, Swaine L.; Hultgren, Scott J.; Seed, Patrick C.

    2011-01-01

    Urinary tract infections (UTIs) have complex dynamics, with uropathogenic Escherichia coli (UPEC), the major causative agent, capable of colonization from the urethra to the kidneys in both extracellular and intracellular niches while also producing chronic persistent infections and frequent recurrent disease. In mouse and human bladders, UPEC invades the superficial epithelium, and some bacteria enter the cytoplasm to rapidly replicate into intracellular bacterial communities (IBCs) comprised of ∼104 bacteria each. Through IBC formation, UPEC expands in numbers while subverting aspects of the innate immune response. Within 12 h of murine bladder infection, half of the bacteria are intracellular, with 3 to 700 IBCs formed. Using mixed infections with green fluorescent protein (GFP) and wild-type (WT) UPEC, we discovered that each IBC is clonally derived from a single bacterium. Genetically tagged UPEC and a multiplex PCR assay were employed to investigate the distribution of UPEC throughout urinary tract niches over time. In the first 24 h postinfection (hpi), the fraction of tags dramatically decreased in the bladder and kidney, while the number of CFU increased. The percentage of tags detected at 6 hpi correlated to the number of IBCs produced, which closely matched a calculated multinomial distribution based on IBC clonality. The fraction of tags remaining thereafter depended on UTI outcome, which ranged from resolution of infection with or without quiescent intracellular reservoirs (QIRs) to the development of chronic cystitis as defined by persistent bacteriuria. Significantly more tags remained in mice that developed chronic cystitis, arguing that during the acute stages of infection, a higher number of IBCs precedes chronic cystitis than precedes QIR formation. PMID:21807904

  20. How internal drainage affects evaporation dynamics from soil surfaces ?

    NASA Astrophysics Data System (ADS)

    Or, D.; Lehmann, P.; Sommer, M.

    2017-12-01

    Following rainfall, infiltrated water may be redistributed internally to larger depths or lost to the atmosphere by evaporation (and by plant uptake from depths at longer time scales). A large fraction of evaporative losses from terrestrial surfaces occurs during stage1 evaporation during which phase change occurs at the wet surface supplied by capillary flow from the soil. Recent studies have shown existence of a soil-dependent characteristic length below which capillary continuity is disrupted and a drastic shift to slower stage 2 evaporation ensues. Internal drainage hastens this transition and affect evaporative losses. To predict the transition to stage 2 and associated evaporative losses, we developed an analytical solution for evaporation dynamics with concurrent internal drainage. Expectedly, evaporative losses are suppressed when drainage is considered to different degrees depending on soil type and wetness. We observe that high initial water content supports rapid drainage and thus promotes the sheltering of soil water below the evaporation depth. The solution and laboratory experiments confirm nonlinear relationship between initial water content and total evaporative losses. The concept contributes to establishing bounds on regional surface evaporation considering rainfall characteristics and soil types.

  1. Pre-operative stroke and neurological disability do not independently affect short- and long-term mortality in infective endocarditis patients.

    PubMed

    Diab, Mahmoud; Guenther, Albrecht; Sponholz, Christoph; Lehmann, Thomas; Faerber, Gloria; Matz, Anna; Franz, Marcus; Witte, Otto W; Pletz, Mathias W; Doenst, Torsten

    2016-10-01

    Infective endocarditis (IE) is still associated with high morbidity and mortality. The impact of pre-operative stroke on mortality and long-term survival is controversial. In addition, data on the severity of neurological disability due to pre-operative stroke are scarce. We analysed the impact of pre-operative stroke and the severity of its related neurological disability on short- and long-term outcome. We retrospectively reviewed our data from patients operated for left-sided IE between 01/2007 and 04/2013. We performed univariate (Chi-Square and independent samples t test) and multivariate analyses. Among 308 consecutive patients who underwent cardiac surgery for left-sided IE, pre-operative stroke was present in 87 (28.2 %) patients. Patients with pre-operative stroke had a higher pre-operative risk profile than patient without it: higher Charlson comorbidity index (8.1 ± 2.6 vs. 6.6 ± 3.3) and higher incidence of Staphylococcus aureus infection (43 vs. 17 %) and septic shock (37 vs. 19 %). In-hospital mortality was equal but 5-year survival was significantly worse with pre-operative stroke (33.1 % vs. 45 %, p = 0.006). 5-year survival was worst in patients with severe neurological disability compared to mild disability (19.0 vs. 0.58 %, p = 0.002). However, neither pre-operative stroke nor the degree of neurological disability appeared as an independent risk factor for short or long-term mortality by multivariate analysis. Pre-operative stroke and the severity of neurological disability do not independently affect short- and long-term mortality in patients with infective endocarditis. It appears that patients with pre-operative stroke present with a generally higher risk profile. This information may substantially affect decision-making.

  2. Infection dynamics of western equine encephalomyelitis virus (Togaviridae: Alphavirus) in four strains of Culex tarsalis (Diptera: Culicidae): an immunocytochemical study.

    PubMed

    Oviedo, Marco V Neira; Romoser, William S; James, Calvin Bl; Mahmood, Farida; Reisen, William K

    2011-04-18

    BACKGROUND: Vector competence describes the efficiency with which vector arthropods become infected with and transmit pathogens and depends on interactions between pathogen and arthropod genetics as well as environmental factors. For arbovirus transmission, the female mosquito ingests viremic blood, the virus infects and replicates in midgut cells, escapes from the midgut, and disseminates to other tissues, including the salivary glands. Virus-laden saliva is then injected into a new host. For transmission to occur, the virus must overcome several "barriers", including barriers to midgut infection and/or escape and salivary infection and/or escape. By examining the spatial/temporal infection dynamics of Culex tarsalis strains infected with western equine encephalomyelitis virus (WEEV), we identified tissue tropisms and potential tissue barriers, and evaluated the effects of viral dose and time postingestion. METHODS: Using immunostained paraffin sections, WEEV antigens were tracked in four Cx. tarsalis strains: two recently colonized California field strains - Coachella Valley, Riverside County (COAV) and Kern National Wildlife Refuge (KNWR); and two laboratory strains selected for WEEV susceptibility (high viremia producer, HVP), and WEEV resistance (WR). RESULTS AND CONCLUSIONS: Tissues susceptible to WEEV infection included midgut epithelium, neural ganglia, trachea, chorionated eggs, and salivary glands. Neuroendocrine cells in the retrocerebral complex were occasionally infected, indicating the potential for behavioral effects. The HVP and COAV strains vigorously supported viral growth, whereas the WR and KNWR strains were less competent. Consistent with earlier studies, WEEV resistance appeared to be related to a dose-dependent midgut infection barrier, and a midgut escape barrier. The midgut escape barrier was not dependent upon the ingested viral dose. Consistent with midgut infection modulation, disseminated infections were less common in the WR and KNWR

  3. Infection dynamics of western equine encephalomyelitis virus (Togaviridae: Alphavirus) in four strains of Culex tarsalis (Diptera: Culicidae): an immunocytochemical study

    PubMed Central

    Oviedo, Marco V Neira; Romoser, William S; James, Calvin BL; Mahmood, Farida; Reisen, William K

    2012-01-01

    Background Vector competence describes the efficiency with which vector arthropods become infected with and transmit pathogens and depends on interactions between pathogen and arthropod genetics as well as environmental factors. For arbovirus transmission, the female mosquito ingests viremic blood, the virus infects and replicates in midgut cells, escapes from the midgut, and disseminates to other tissues, including the salivary glands. Virus-laden saliva is then injected into a new host. For transmission to occur, the virus must overcome several “barriers”, including barriers to midgut infection and/or escape and salivary infection and/or escape. By examining the spatial/temporal infection dynamics of Culex tarsalis strains infected with western equine encephalomyelitis virus (WEEV), we identified tissue tropisms and potential tissue barriers, and evaluated the effects of viral dose and time postingestion. Methods Using immunostained paraffin sections, WEEV antigens were tracked in four Cx. tarsalis strains: two recently colonized California field strains – Coachella Valley, Riverside County (COAV) and Kern National Wildlife Refuge (KNWR); and two laboratory strains selected for WEEV susceptibility (high viremia producer, HVP), and WEEV resistance (WR). Results and conclusions Tissues susceptible to WEEV infection included midgut epithelium, neural ganglia, trachea, chorionated eggs, and salivary glands. Neuroendocrine cells in the retrocerebral complex were occasionally infected, indicating the potential for behavioral effects. The HVP and COAV strains vigorously supported viral growth, whereas the WR and KNWR strains were less competent. Consistent with earlier studies, WEEV resistance appeared to be related to a dose-dependent midgut infection barrier, and a midgut escape barrier. The midgut escape barrier was not dependent upon the ingested viral dose. Consistent with midgut infection modulation, disseminated infections were less common in the WR and

  4. Infectivity of Plasmodium falciparum sporozoites determines emerging parasitemia in infected volunteers.

    PubMed

    McCall, Matthew B B; Wammes, Linda J; Langenberg, Marijke C C; van Gemert, Geert-Jan; Walk, Jona; Hermsen, Cornelus C; Graumans, Wouter; Koelewijn, Rob; Franetich, Jean-François; Chishimba, Sandra; Gerdsen, Max; Lorthiois, Audrey; van de Vegte, Marga; Mazier, Dominique; Bijker, Else M; van Hellemond, Jaap J; van Genderen, Perry J J; Sauerwein, Robert W

    2017-06-21

    Malaria sporozoites must first undergo intrahepatic development before a pathogenic blood-stage infection is established. The success of infection depends on host and parasite factors. In healthy human volunteers undergoing controlled human malaria infection (CHMI), we directly compared three clinical Plasmodium falciparum isolates for their ability to infect primary human hepatocytes in vitro and to drive the production of blood-stage parasites in vivo. Our data show a correlation between the efficiency of strain-specific sporozoite invasion of human hepatocytes and the dynamics of patent parasitemia in study subjects, highlighting intrinsic differences in infectivity among P. falciparum isolates from distinct geographical locales. The observed heterogeneity in infectivity among strains underscores the value of assessing the protective efficacy of candidate malaria vaccines against heterologous strains in the CHMI model. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. HDAC6 regulates the dynamics of lytic granules in cytotoxic T lymphocytes

    PubMed Central

    Núñez-Andrade, Norman; Iborra, Salvador; Trullo, Antonio; Moreno-Gonzalo, Olga; Calvo, Enrique; Catalán, Elena; Menasche, Gaël; Sancho, David; Vázquez, Jesús; Yao, Tso-Pang

    2016-01-01

    HDAC6 is a tubulin deacetylase involved in many cellular functions related to cytoskeleton dynamics including cell migration and autophagy. In addition, HDAC6 affects antigen-dependent CD4+ T cell activation. In this study, we show that HDAC6 contributes to the cytotoxic function of CD8+ T cells. Immunization studies revealed defective cytotoxic activity in vivo in the absence of HDAC6. Adoptive transfer of wild-type or Hdac6-/- CD8+ T cells to Rag1-/- mice demonstrated specific impairment in CD8+ T cell responses against vaccinia infection. Mechanistically, HDAC6-deficient cytotoxic T lymphocytes (CTLs) showed defective in vitro cytolytic activity related to altered dynamics of lytic granules, inhibited kinesin 1 – dynactin mediated terminal transport of lytic granules to the immune synapse and deficient exocytosis, but not to target cell recognition, T cell receptor (TCR) activation or interferon (IFNγ) production. Our results establish HDAC6 as an effector of the immune cytotoxic response that acts by affecting the dynamics, transport and secretion of lytic granules by CTLs. PMID:26869226

  6. Dysfunction of mitochondrial dynamics in the brains of scrapie-infected mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hong-Seok; Ilsong Institute of Life Science, Hallym University, 1605-4 Gwanyang-dong, Dongan-gu, Anyang, Gyeonggi-do 431-060; Choi, Yeong-Gon

    Highlights: • Mfn1 and Fis1 are significantly increased in the hippocampal region of the ME7 prion-infected brain, whereas Dlp1 is significantly decreased in the infected brain. • Dlp1 is significantly decreased in the cytosolic fraction of the hippocampus in the infected brain. • Neuronal mitochondria in the prion-infected brains are enlarged and swollen compared to those of control brains. • There are significantly fewer mitochondria in the ME7-infected brain compared to the number in control brain. - Abstract: Mitochondrial dysfunction is a common and prominent feature of many neurodegenerative diseases, including prion diseases; it is induced by oxidative stress inmore » scrapie-infected animal models. In previous studies, we found swelling and dysfunction of mitochondria in the brains of scrapie-infected mice compared to brains of controls, but the mechanisms underlying mitochondrial dysfunction remain unclear. To examine whether the dysregulation of mitochondrial proteins is related to the mitochondrial dysfunction associated with prion disease, we investigated the expression patterns of mitochondrial fusion and fission proteins in the brains of ME7 prion-infected mice. Immunoblot analysis revealed that Mfn1 was up-regulated in both whole brain and specific brain regions, including the cerebral cortex and hippocampus, of ME7-infected mice compared to controls. Additionally, expression levels of Fis1 and Mfn2 were elevated in the hippocampus and the striatum, respectively, of the ME7-infected brain. In contrast, Dlp1 expression was significantly reduced in the hippocampus in the ME7-infected brain, particularly in the cytosolic fraction. Finally, we observed abnormal mitochondrial enlargement and histopathological change in the hippocampus of the ME7-infected brain. These observations suggest that the mitochondrial dysfunction, which is presumably caused by the dysregulation of mitochondrial fusion and fission proteins, may contribute to the

  7. Genetic stability of foot-and-mouth disease virus during long-term infections in natural hosts

    PubMed Central

    Ramirez-Carvajal, Lisbeth; Pauszek, Steven J.; Ahmed, Zaheer; Farooq, Umer; Naeem, Khalid; Shabman, Reed S.; Stockwell, Timothy B.; Rodriguez, Luis L.

    2018-01-01

    Foot-and-mouth disease (FMD) is a severe infection caused by a picornavirus that affects livestock and wildlife. Persistence in ruminants is a well-documented feature of Foot-and-mouth disease virus (FMDV) pathogenesis and a major concern for disease control. Persistently infected animals harbor virus for extended periods, providing a unique opportunity to study within-host virus evolution. This study investigated the genetic dynamics of FMDV during persistent infections of naturally infected Asian buffalo. Using next-generation sequencing (NGS) we obtained 21 near complete FMDV genome sequences from 12 sub-clinically infected buffalo over a period of one year. Four animals yielded only one virus isolate and one yielded two isolates of different serotype suggesting a serial infection. Seven persistently infected animals yielded more than one virus of the same serotype showing a long-term intra-host viral genetic divergence at the consensus level of less than 2.5%. Quasi-species analysis showed few nucleotide variants and non-synonymous substitutions of progeny virus despite intra-host persistence of up to 152 days. Phylogenetic analyses of serotype Asia-1 VP1 sequences clustered all viruses from persistent animals with Group VII viruses circulating in Pakistan in 2011, but distinct from those circulating on 2008–2009. Furthermore, signature amino acid (aa) substitutions were found in the antigenically relevant VP1 of persistent viruses compared with viruses from 2008–2009. Intra-host purifying selective pressure was observed, with few codons in structural proteins undergoing positive selection. However, FMD persistent viruses did not show a clear pattern of antigenic selection. Our findings provide insight into the evolutionary dynamics of FMDV populations within naturally occurring subclinical and persistent infections that may have implications to vaccination strategies in the region. PMID:29390015

  8. Genetic stability of foot-and-mouth disease virus during long-term infections in natural hosts.

    PubMed

    Ramirez-Carvajal, Lisbeth; Pauszek, Steven J; Ahmed, Zaheer; Farooq, Umer; Naeem, Khalid; Shabman, Reed S; Stockwell, Timothy B; Rodriguez, Luis L

    2018-01-01

    Foot-and-mouth disease (FMD) is a severe infection caused by a picornavirus that affects livestock and wildlife. Persistence in ruminants is a well-documented feature of Foot-and-mouth disease virus (FMDV) pathogenesis and a major concern for disease control. Persistently infected animals harbor virus for extended periods, providing a unique opportunity to study within-host virus evolution. This study investigated the genetic dynamics of FMDV during persistent infections of naturally infected Asian buffalo. Using next-generation sequencing (NGS) we obtained 21 near complete FMDV genome sequences from 12 sub-clinically infected buffalo over a period of one year. Four animals yielded only one virus isolate and one yielded two isolates of different serotype suggesting a serial infection. Seven persistently infected animals yielded more than one virus of the same serotype showing a long-term intra-host viral genetic divergence at the consensus level of less than 2.5%. Quasi-species analysis showed few nucleotide variants and non-synonymous substitutions of progeny virus despite intra-host persistence of up to 152 days. Phylogenetic analyses of serotype Asia-1 VP1 sequences clustered all viruses from persistent animals with Group VII viruses circulating in Pakistan in 2011, but distinct from those circulating on 2008-2009. Furthermore, signature amino acid (aa) substitutions were found in the antigenically relevant VP1 of persistent viruses compared with viruses from 2008-2009. Intra-host purifying selective pressure was observed, with few codons in structural proteins undergoing positive selection. However, FMD persistent viruses did not show a clear pattern of antigenic selection. Our findings provide insight into the evolutionary dynamics of FMDV populations within naturally occurring subclinical and persistent infections that may have implications to vaccination strategies in the region.

  9. Late regulation of immune genes and microRNAs in circulating leukocytes in a pig model of influenza A (H1N2) infection

    PubMed Central

    Brogaard, Louise; Heegaard, Peter M. H.; Larsen, Lars E.; Mortensen, Shila; Schlegel, Michael; Dürrwald, Ralf; Skovgaard, Kerstin

    2016-01-01

    MicroRNAs (miRNAs) are a class of short regulatory RNA molecules which are implicated in modulating gene expression. Levels of circulating, cell-associated miRNAs in response to influenza A virus (IAV) infection has received limited attention so far. To further understand the temporal dynamics and biological implications of miRNA regulation in circulating leukocytes, we collected blood samples before and after (1, 3, and 14 days) IAV challenge of pigs. Differential expression of miRNAs and innate immune factor mRNA transcripts was analysed using RT-qPCR. A total of 20 miRNAs were regulated after IAV challenge, with the highest number of regulated miRNAs seen on day 14 after infection at which time the infection was cleared. Targets of the regulated miRNAs included genes involved in apoptosis and cell cycle regulation. Significant regulation of both miRNAs and mRNA transcripts at 14 days after challenge points to a protracted effect of IAV infection, potentially affecting the host’s ability to respond to secondary infections. In conclusion, experimental IAV infection of pigs demonstrated the dynamic nature of miRNA and mRNA regulation in circulating leukocytes during and after infection, and revealed the need for further investigation of the potential immunosuppressing effect of miRNA and innate immune signaling after IAV infection. PMID:26893019

  10. Late regulation of immune genes and microRNAs in circulating leukocytes in a pig model of influenza A (H1N2) infection.

    PubMed

    Brogaard, Louise; Heegaard, Peter M H; Larsen, Lars E; Mortensen, Shila; Schlegel, Michael; Dürrwald, Ralf; Skovgaard, Kerstin

    2016-02-19

    MicroRNAs (miRNAs) are a class of short regulatory RNA molecules which are implicated in modulating gene expression. Levels of circulating, cell-associated miRNAs in response to influenza A virus (IAV) infection has received limited attention so far. To further understand the temporal dynamics and biological implications of miRNA regulation in circulating leukocytes, we collected blood samples before and after (1, 3, and 14 days) IAV challenge of pigs. Differential expression of miRNAs and innate immune factor mRNA transcripts was analysed using RT-qPCR. A total of 20 miRNAs were regulated after IAV challenge, with the highest number of regulated miRNAs seen on day 14 after infection at which time the infection was cleared. Targets of the regulated miRNAs included genes involved in apoptosis and cell cycle regulation. Significant regulation of both miRNAs and mRNA transcripts at 14 days after challenge points to a protracted effect of IAV infection, potentially affecting the host's ability to respond to secondary infections. In conclusion, experimental IAV infection of pigs demonstrated the dynamic nature of miRNA and mRNA regulation in circulating leukocytes during and after infection, and revealed the need for further investigation of the potential immunosuppressing effect of miRNA and innate immune signaling after IAV infection.

  11. DIESEL EXHAUST ENHANCES INFLUENZA VIRUS INFECTIONS IN RESPIRATORY EPITHELIAL CELLS

    EPA Science Inventory

    Several factors, such as age and nutritional status can affect the susceptibility to influenza infections. Moreover, exposure to air pollutants, such as diesel exhaust (DE), has been shown to affect respiratory virus infections in rodent models. Influenza virus primarily infects ...

  12. The hitchhiker's guide to Europe: the infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi.

    PubMed

    Schuler, Hannes; Köppler, Kirsten; Daxböck-Horvath, Sabine; Rasool, Bilal; Krumböck, Susanne; Schwarz, Dietmar; Hoffmeister, Thomas S; Schlick-Steiner, Birgit C; Steiner, Florian M; Telschow, Arndt; Stauffer, Christian; Arthofer, Wolfgang; Riegler, Markus

    2016-04-01

    Wolbachia is a maternally inherited and ubiquitous endosymbiont of insects. It can hijack host reproduction by manipulations such as cytoplasmic incompatibility (CI) to enhance vertical transmission. Horizontal transmission of Wolbachia can also result in the colonization of new mitochondrial lineages. In this study, we present a 15-year-long survey of Wolbachia in the cherry fruit fly Rhagoletis cerasi across Europe and the spatiotemporal distribution of two prevalent strains, wCer1 and wCer2, and associated mitochondrial haplotypes in Germany. Across most of Europe, populations consisted of either 100% singly (wCer1) infected individuals with haplotype HT1, or 100% doubly (wCer1&2) infected individuals with haplotype HT2, differentiated only by a single nucleotide polymorphism. In central Germany, singly infected populations were surrounded by transitional populations, consisting of both singly and doubly infected individuals, sandwiched between populations fixed for wCer1&2. Populations with fixed infection status showed perfect association of infection and mitochondria, suggesting a recent CI-driven selective sweep of wCer2 linked with HT2. Spatial analysis revealed a range expansion for wCer2 and a large transition zone in which wCer2 splashes appeared to coalesce into doubly infected populations. Unexpectedly, the transition zone contained a large proportion (22%) of wCer1&2 individuals with HT1, suggesting frequent intraspecific horizontal transmission. However, this horizontal transmission did not break the strict association between infection types and haplotypes in populations outside the transition zone, suggesting that this horizontally acquired Wolbachia infection may be transient. Our study provides new insights into the rarely studied Wolbachia invasion dynamics in field populations. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  13. Inhomogeneity of epidemic spreading with entropy-based infected clusters.

    PubMed

    Wen-Jie, Zhou; Xing-Yuan, Wang

    2013-12-01

    Considering the difference in the sizes of the infected clusters in the dynamic complex networks, the normalized entropy based on infected clusters (δ*) is proposed to characterize the inhomogeneity of epidemic spreading. δ* gives information on the variability of the infected clusters in the system. We investigate the variation in the inhomogeneity of the distribution of the epidemic with the absolute velocity v of moving agent, the infection density ρ, and the interaction radius r. By comparing δ* in the dynamic networks with δH* in homogeneous mode, the simulation experiments show that the inhomogeneity of epidemic spreading becomes smaller with the increase of v, ρ, r.

  14. Dynamics of a stochastic HIV-1 infection model with logistic growth

    NASA Astrophysics Data System (ADS)

    Jiang, Daqing; Liu, Qun; Shi, Ningzhong; Hayat, Tasawar; Alsaedi, Ahmed; Xia, Peiyan

    2017-03-01

    This paper is concerned with a stochastic HIV-1 infection model with logistic growth. Firstly, by constructing suitable stochastic Lyapunov functions, we establish sufficient conditions for the existence of ergodic stationary distribution of the solution to the HIV-1 infection model. Then we obtain sufficient conditions for extinction of the infection. The stationary distribution shows that the infection can become persistent in vivo.

  15. Long-Term Irrigation Affects the Dynamics and Activity of the Wheat Rhizosphere Microbiome

    PubMed Central

    Mavrodi, Dmitri V.; Mavrodi, Olga V.; Elbourne, Liam D. H.; Tetu, Sasha; Bonsall, Robert F.; Parejko, James; Yang, Mingming; Paulsen, Ian T.; Weller, David M.; Thomashow, Linda S.

    2018-01-01

    The Inland Pacific Northwest (IPNW) encompasses 1. 6 million cropland hectares and is a major wheat-producing area in the western United States. The climate throughout the region is semi-arid, making the availability of water a significant challenge for IPNW agriculture. Much attention has been given to uncovering the effects of water stress on the physiology of wheat and the dynamics of its soilborne diseases. In contrast, the impact of soil moisture on the establishment and activity of microbial communities in the rhizosphere of dryland wheat remains poorly understood. We addressed this gap by conducting a three-year field study involving wheat grown in adjacent irrigated and dryland (rainfed) plots established in Lind, Washington State. We used deep amplicon sequencing of the V4 region of the 16S rRNA to characterize the responses of the wheat rhizosphere microbiome to overhead irrigation. We also characterized the population dynamics and activity of indigenous Phz+ rhizobacteria that produce the antibiotic phenazine-1-carboxylic acid (PCA) and contribute to the natural suppression of soilborne pathogens of wheat. Results of the study revealed that irrigation affected the Phz+ rhizobacteria adversely, which was evident from the significantly reduced plant colonization frequency, population size and levels of PCA in the field. The observed differences between irrigated and dryland plots were reproducible and amplified over the course of the study, thus identifying soil moisture as a critical abiotic factor that influences the dynamics, and activity of indigenous Phz+ communities. The three seasons of irrigation had a slight effect on the overall diversity within the rhizosphere microbiome but led to significant differences in the relative abundances of specific OTUs. In particular, irrigation differentially affected multiple groups of Bacteroidetes and Proteobacteria, including taxa with known plant growth-promoting activity. Analysis of environmental variables

  16. Chronic bystander infections and immunity to unrelated antigens

    PubMed Central

    Stelekati, Erietta; Wherry, E. John

    2012-01-01

    Chronic infections with persistent pathogens such as helminths, mycobacteria, Plasmodium and hepatitis viruses affect more than a third of the human population and are associated with increased susceptibility to other pathogens as well as reduced vaccine efficacy. Although these observations suggest an impact of chronic infections in modulating immunity to unrelated antigens, little is known regarding the underlying mechanisms. Here, we summarize evidence of the most prevalent infections affecting immunity to unrelated pathogens and vaccines, and discuss potential mechanisms of how different bystander chronic infections might impact immune responses. We suggest that bystander chronic infections affect different stages of host responses and may impact transmission of other pathogens, recognition and innate immune responses, priming and differentiation of adaptive effector responses, as well as the development and maintenance of immunological memory. Further understanding of the immunological effects of co-infection should provide opportunities to enhance vaccine efficacy and control infectious diseases. PMID:23084915

  17. Introduced brown trout alter native acanthocephalan infections in native fish.

    PubMed

    Paterson, Rachel A; Townsend, Colin R; Poulin, Robert; Tompkins, Daniel M

    2011-09-01

    1. Native parasite acquisition provides introduced species with the potential to modify native host-parasite dynamics by acting as parasite reservoirs (with the 'spillback' of infection increasing the parasite burdens of native hosts) or sinks (with the 'dilution' of infection decreasing the parasite burdens of native hosts) of infection. 2. In New Zealand, negative correlations between the presence of introduced brown trout (Salmo trutta) and native parasite burdens of the native roundhead galaxias (Galaxias anomalus) have been observed, suggesting that parasite dilution is occurring. 3. We used a multiple-scale approach combining field observations, experimental infections and dynamic population modelling to investigate whether native Acanthocephalus galaxii acquisition by brown trout alters host-parasite dynamics in native roundhead galaxias. 4. Field observations demonstrated higher infection intensity in introduced trout than in native galaxias, but only small, immature A. galaxii were present in trout. Experimental infections also demonstrated that A. galaxii does not mature in trout, although parasite establishment and initial growth were similar in the two hosts. Taken together, these results support the hypothesis that trout may serve as an infection sink for the native parasite. 5. However, dynamic population modelling predicts that A. galaxii infections in native galaxias should at most only be slightly reduced by dilution in the presence of trout. Rather, model exploration indicates parasite densities in galaxias are highly sensitive to galaxias predation on infected amphipods, and to relative abundances of galaxias and trout. Hence, trout presence may instead reduce parasite burdens in galaxias by either reducing galaxias density or by altering galaxias foraging behaviour. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  18. 18F-FDG PET imaging for identifying the dynamics of intestinal disease caused by SFTSV infection in a mouse model.

    PubMed

    Hayasaka, Daisuke; Nishi, Kodai; Fuchigami, Takeshi; Shiogama, Kazuya; Onouchi, Takanori; Shimada, Satoshi; Tsutsumi, Yutaka; Morita, Kouichi

    2016-01-05

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging disease that causes fever, enteritis, thrombocytopenia, and leucopenia and can be fatal in up to 30% of cases. However, the mechanism of severe disease is not fully understood. Molecular imaging approaches, such as positron-emission tomography (PET), are functional in vivo imaging techniques that provide real-time dynamics of disease progression, assessments of pharmacokinetics, and diagnoses for disease progression. Molecular imaging also potentially provides useful approaches to explore the pathogenesis of viral infections. Thus, the purpose of this study was to image the pathological features of SFTSV infection in vivo by PET imaging. In a mouse model, we showed that 18F-FDG accumulations clearly identified the intestinal tract site as a pathological site. We also demonstrated that 18F-FDG PET imaging can assess disease progression and response to antiserum therapy within the same individual. This is the first report demonstrating a molecular imaging strategy for SFTSV infection. Our results provide potentially useful information for preclinical studies such as the elucidation of the mechanism of SFTSV infection in vivo and the assessment of drugs for SFTS treatment.

  19. Immunology of Pediatric HIV Infection

    PubMed Central

    Tobin, Nicole H.; Aldrovandi, Grace M.

    2013-01-01

    Summary Most infants born to human immunodeficiency virus (HIV)-infected women escape HIV infection. Infants evade infection despite an immature immune system and, in the case of breastfeeding, prolonged repetitive, exposure. If infants become infected, the course of their infection and response to treatment differs dramatically depending upon the timing (in utero, intrapartum, or during breastfeeding) and potentially the route of their infection. Perinatally acquired HIV infection occurs during a critical window of immune development. HIV’s perturbation of this dynamic process may account for the striking age-dependent differences in HIV disease progression. HIV infection also profoundly disrupts the maternal immune system upon which infants rely for protection and immune instruction. Therefore, it is not surprising that infants who escape HIV infection still suffer adverse effects. In this review, we highlight the unique aspects of pediatric HIV transmission and pathogenesis with a focus on mechanisms by which HIV infection during immune ontogeny may allow discovery of key elements for protection and control from HIV. PMID:23772619

  20. A Re-entrant Phase Transition in the Survival of Secondary Infections on Networks

    NASA Astrophysics Data System (ADS)

    Moore, Sam; Mörters, Peter; Rogers, Tim

    2018-06-01

    We study the dynamics of secondary infections on networks, in which only the individuals currently carrying a certain primary infection are susceptible to the secondary infection. In the limit of large sparse networks, the model is mapped to a branching process spreading in a random time-sensitive environment, determined by the dynamics of the underlying primary infection. When both epidemics follow the Susceptible-Infective-Recovered model, we show that in order to survive, it is necessary for the secondary infection to evolve on a timescale that is closely matched to that of the primary infection on which it depends.

  1. Lipophosphoglycans from Leishmania amazonensis Strains Display Immunomodulatory Properties via TLR4 and Do Not Affect Sand Fly Infection

    PubMed Central

    Nogueira, Paula M.; Assis, Rafael R.; Torrecilhas, Ana C.; Saraiva, Elvira M.; Pessoa, Natália L.; Campos, Marco A.; Marialva, Eric F.; Ríos-Velasquez, Cláudia M.; Pessoa, Felipe A.; Secundino, Nágila F.; Rugani, Jerônimo N.; Nieves, Elsa; Turco, Salvatore J.; Melo, Maria N.

    2016-01-01

    The immunomodulatory properties of lipophosphoglycans (LPG) from New World species of Leishmania have been assessed in Leishmania infantum and Leishmania braziliensis, the causative agents of visceral and cutaneous leishmaniasis, respectively. This glycoconjugate is highly polymorphic among species with variation in sugars that branch off the conserved Gal(β1,4)Man(α1)-PO4 backbone of repeat units. Here, the immunomodulatory activity of LPGs from Leishmania amazonensis, the causative agent of diffuse cutaneous leishmaniasis, was evaluated in two strains from Brazil. One strain (PH8) was originally isolated from the sand fly and the other (Josefa) was isolated from a human case. The ability of purified LPGs from both strains was investigated during in vitro interaction with peritoneal murine macrophages and CHO cells and in vivo infection with Lutzomyia migonei. In peritoneal murine macrophages, the LPGs from both strains activated TLR4. Both LPGs equally activate MAPKs and the NF-κB inhibitor p-IκBα, but were not able to translocate NF-κB. In vivo experiments with sand flies showed that both stains were able to sustain infection in L. migonei. A preliminary biochemical analysis indicates intraspecies variation in the LPG sugar moieties. However, they did not result in different activation profiles of the innate immune system. Also those polymorphisms did not affect infectivity to the sand fly. PMID:27508930

  2. Lipophosphoglycans from Leishmania amazonensis Strains Display Immunomodulatory Properties via TLR4 and Do Not Affect Sand Fly Infection.

    PubMed

    Nogueira, Paula M; Assis, Rafael R; Torrecilhas, Ana C; Saraiva, Elvira M; Pessoa, Natália L; Campos, Marco A; Marialva, Eric F; Ríos-Velasquez, Cláudia M; Pessoa, Felipe A; Secundino, Nágila F; Rugani, Jerônimo N; Nieves, Elsa; Turco, Salvatore J; Melo, Maria N; Soares, Rodrigo P

    2016-08-01

    The immunomodulatory properties of lipophosphoglycans (LPG) from New World species of Leishmania have been assessed in Leishmania infantum and Leishmania braziliensis, the causative agents of visceral and cutaneous leishmaniasis, respectively. This glycoconjugate is highly polymorphic among species with variation in sugars that branch off the conserved Gal(β1,4)Man(α1)-PO4 backbone of repeat units. Here, the immunomodulatory activity of LPGs from Leishmania amazonensis, the causative agent of diffuse cutaneous leishmaniasis, was evaluated in two strains from Brazil. One strain (PH8) was originally isolated from the sand fly and the other (Josefa) was isolated from a human case. The ability of purified LPGs from both strains was investigated during in vitro interaction with peritoneal murine macrophages and CHO cells and in vivo infection with Lutzomyia migonei. In peritoneal murine macrophages, the LPGs from both strains activated TLR4. Both LPGs equally activate MAPKs and the NF-κB inhibitor p-IκBα, but were not able to translocate NF-κB. In vivo experiments with sand flies showed that both stains were able to sustain infection in L. migonei. A preliminary biochemical analysis indicates intraspecies variation in the LPG sugar moieties. However, they did not result in different activation profiles of the innate immune system. Also those polymorphisms did not affect infectivity to the sand fly.

  3. Factors affecting infection of corals and larval oysters by Vibrio coralliilyticus.

    PubMed

    Ushijima, Blake; Richards, Gary P; Watson, Michael A; Schubiger, Carla B; Häse, Claudia C

    2018-01-01

    The bacterium Vibrio coralliilyticus can threaten vital reef ecosystems by causing disease in a variety of coral genera, and, for some strains, increases in virulence at elevated water temperatures. In addition, strains of V. coralliilyticus (formally identified as V. tubiashii) have been implicated in mass mortalities of shellfish larvae causing significant economic losses to the shellfish industry. Recently, strain BAA-450, a coral pathogen, was demonstrated to be virulent towards larval Pacific oysters (Crassostrea gigas). However, it is unclear whether other coral-associated V. coralliilyticus strains can cause shellfish mortalities and if infections are influenced by temperature. This study compared dose dependence, temperature impact, and gross pathology of four V. coralliilyticus strains (BAA-450, OCN008, OCN014 and RE98) on larval C. gigas raised at 23°C and 27°C, and evaluated whether select virulence factors are required for shellfish infections as they are for corals. All strains were infectious to larval oysters in a dose-dependent manner with OCN014 being the most pathogenic and BAA-450 being the least. At 27°C, higher larval mortalities (p < 0.05) were observed for all V. coralliilyticus strains, ranging from 38.8-93.7%. Gross pathological changes to the velum and cilia occurred in diseased larvae, but there were no distinguishable differences between oysters exposed to different V. coralliilyticus strains or temperatures. Additionally, in OCN008, the predicted transcriptional regulator ToxR and the outer membrane protein OmpU were important for coral and oyster disease, while mannose sensitive hemagglutinin type IV pili were required only for coral infection. This study demonstrated that multiple coral pathogens can infect oyster larvae in a temperature-dependent manner and identified virulence factors required for infection of both hosts.

  4. Epidemic transmission on random mobile network with diverse infection periods

    NASA Astrophysics Data System (ADS)

    Li, Kezan; Yu, Hong; Zeng, Zhaorong; Ding, Yong; Ma, Zhongjun

    2015-05-01

    The heterogeneity of individual susceptibility and infectivity and time-varying topological structure are two realistic factors when we study epidemics on complex networks. Current research results have shown that the heterogeneity of individual susceptibility and infectivity can increase the epidemic threshold in a random mobile dynamical network with the same infection period. In this paper, we will focus on random mobile dynamical networks with diverse infection periods due to people's different constitutions and external circumstances. Theoretical results indicate that the epidemic threshold of the random mobile network with diverse infection periods is larger than the counterpart with the same infection period. Moreover, the heterogeneity of individual susceptibility and infectivity can play a significant impact on disease transmission. In particular, the homogeneity of individuals will avail to the spreading of epidemics. Numerical examples verify further our theoretical results very well.

  5. Processing of facial affect in social drinkers: a dose-response study of alcohol using dynamic emotion expressions.

    PubMed

    Kamboj, Sunjeev K; Joye, Alyssa; Bisby, James A; Das, Ravi K; Platt, Bradley; Curran, H Valerie

    2013-05-01

    Studies of affect recognition can inform our understanding of the interpersonal effects of alcohol and help develop a more complete neuropsychological profile of this drug. The objective of the study was to examine affect recognition in social drinkers using a novel dynamic affect-recognition task, sampling performance across a range of evolutionarily significant target emotions and neutral expressions. Participants received 0, 0.4 or 0.8 g/kg alcohol in a double-blind, independent groups design. Relatively naturalistic changes in facial expression-from neutral (mouth open) to increasing intensities of target emotions, as well as neutral (mouth closed)-were simulated using computer-generated dynamic morphs. Accuracy and reaction time were measured and a two-high-threshold model applied to hits and false-alarm data to determine sensitivity and response bias. While there was no effect on the principal emotion expressions (happiness, sadness, fear, anger and disgust), compared to those receiving 0.8 g/kg of alcohol and placebo, participants administered with 0.4 g/kg alcohol tended to show an enhanced response bias to neutral expressions. Exploration of this effect suggested an accompanying tendency to misattribute neutrality to sad expressions following the 0.4-g/kg dose. The 0.4-g/kg alcohol-but not 0.8 g/kg-produced a limited and specific modification in affect recognition evidenced by a neutral response bias and possibly an accompanying tendency to misclassify sad expressions as neutral. In light of previous findings on involuntary negative memory following the 0.4-g/kg dose, we suggest that moderate-but not high-doses of alcohol have a special relevance to emotional processing in social drinkers.

  6. Advances in Discrete Dislocation Dynamics Modeling of Size-Affected Plasticity

    NASA Astrophysics Data System (ADS)

    El-Awady, Jaafar A.; Fan, Haidong; Hussein, Ahmed M.

    In dislocation-mediated plasticity of crystalline materials, discrete dislocation dynamics (DDD) methods have been widely used to predict the plastic deformation in a number of technologically important problems. These simulations have led to significant improvement in the understanding of the different mechanism that controls the mechanical properties of crystalline materials, which can greatly accelerate the future development of materials with superior properties. This chapter provides an overview of different practical applications of both two-dimensional and three-dimensional DDD simulations in the field of size-affected dislocation-mediated plasticity. The chapter is divided into two major tracks. First, DDD simulations focusing on aspects of modeling size-dependent plasticity in single crystals in uniaxial micro-compression/tension, microtorsion, microbending, and nanoindentation are discussed. Special attention is directed towards the role of cross-slip and dislocation nucleation on the overall response. Second, DDD simulations focusing on the role of interfaces, including grain and twin boundaries, on dislocation-mediated plasticity are discussed. Finally, a number of challenges that are withholding DDD simulations from reaching their full potential are discussed.

  7. Dynamic Communicability Predicts Infectiousness

    NASA Astrophysics Data System (ADS)

    Mantzaris, Alexander V.; Higham, Desmond J.

    Using real, time-dependent social interaction data, we look at correlations between some recently proposed dynamic centrality measures and summaries from large-scale epidemic simulations. The evolving network arises from email exchanges. The centrality measures, which are relatively inexpensive to compute, assign rankings to individual nodes based on their ability to broadcast information over the dynamic topology. We compare these with node rankings based on infectiousness that arise when a full stochastic SI simulation is performed over the dynamic network. More precisely, we look at the proportion of the network that a node is able to infect over a fixed time period, and the length of time that it takes for a node to infect half the network. We find that the dynamic centrality measures are an excellent, and inexpensive, proxy for the full simulation-based measures.

  8. Decision tree for accurate infection timing in individuals newly diagnosed with HIV-1 infection.

    PubMed

    Verhofstede, Chris; Fransen, Katrien; Van Den Heuvel, Annelies; Van Laethem, Kristel; Ruelle, Jean; Vancutsem, Ellen; Stoffels, Karolien; Van den Wijngaert, Sigi; Delforge, Marie-Luce; Vaira, Dolores; Hebberecht, Laura; Schauvliege, Marlies; Mortier, Virginie; Dauwe, Kenny; Callens, Steven

    2017-11-29

    There is today no gold standard method to accurately define the time passed since infection at HIV diagnosis. Infection timing and incidence measurement is however essential to better monitor the dynamics of local epidemics and the effect of prevention initiatives. Three methods for infection timing were evaluated using 237 serial samples from documented seroconversions and 566 cross sectional samples from newly diagnosed patients: identification of antibodies against the HIV p31 protein in INNO-LIA, SediaTM BED CEIA and SediaTM LAg-Avidity EIA. A multi-assay decision tree for infection timing was developed. Clear differences in recency window between BED CEIA, LAg-Avidity EIA and p31 antibody presence were observed with a switch from recent to long term infection a median of 169.5, 108.0 and 64.5 days after collection of the pre-seroconversion sample respectively. BED showed high reliability for identification of long term infections while LAg-Avidity is highly accurate for identification of recent infections. Using BED as initial assay to identify the long term infections and LAg-Avidity as a confirmatory assay for those classified as recent infection by BED, explores the strengths of both while reduces the workload. The short recency window of p31 antibodies allows to discriminate very early from early infections based on this marker. BED recent infection results not confirmed by LAg-Avidity are considered to reflect a period more distant from the infection time. False recency predictions in this group can be minimized by elimination of patients with a CD4 count of less than 100 cells/mm3 or without no p31 antibodies. For 566 cross sectional sample the outcome of the decision tree confirmed the infection timing based on the results of all 3 markers but reduced the overall cost from 13.2 USD to 5.2 USD per sample. A step-wise multi assay decision tree allows accurate timing of the HIV infection at diagnosis at affordable effort and cost and can be an important

  9. The Neutralizing Linear Epitope of Human Herpesvirus 6A Glycoprotein B Does Not Affect Virus Infectivity.

    PubMed

    Wakata, Aika; Kanemoto, Satoshi; Tang, Huamin; Kawabata, Akiko; Nishimura, Mitsuhiro; Jasirwan, Chyntia; Mahmoud, Nora Fahmy; Mori, Yasuko

    2018-03-01

    Human herpesvirus 6A (HHV-6A) glycoprotein B (gB) is a glycoprotein consisting of 830 amino acids and is essential for the growth of the virus. Previously, we reported that a neutralizing monoclonal antibody (MAb) called 87-y-13 specifically reacts with HHV-6A gB, and we identified its epitope residue at asparagine (Asn) 347 on gB. In this study, we examined whether the epitope recognized by the neutralizing MAb is essential for HHV-6A infection. We constructed HHV-6A bacterial artificial chromosome (BAC) genomes harboring substitutions at Asn347, namely, HHV-6A BACgB(N347K) and HHV-6A BACgB(N347A). These mutant viruses could be reconstituted and propagated in the same manner as the wild type and their revertants, and MAb 87-y-13 could not inhibit infection by either mutant. In a cell-cell fusion assay, Asn at position 347 on gB was found to be nonessential for cell-cell fusion. In addition, in building an HHV-6A gB homology model, we found that the epitope of the neutralizing MAb is located on domain II of gB and is accessible to solvents. These results indicate that Asn at position 347, the linear epitope of the neutralizing MAb, does not affect HHV-6A infectivity. IMPORTANCE Glycoprotein B (gB) is one of the most conserved glycoproteins among all herpesviruses and is a key factor for virus entry. Therefore, antibodies targeted to gB may neutralize virus entry. Human herpesvirus 6A (HHV-6A) encodes gB, which is translated to a protein of about 830 amino acids (aa). Using a monoclonal antibody (MAb) for HHV-6A gB, which has a neutralizing linear epitope, we analyzed the role of its epitope residue, N347, in HHV-6A infectivity. Interestingly, this gB linear epitope residue, N347, was not essential for HHV-6A growth. By constructing a homology model of HHV-6A gB, we found that N347 was located in the region corresponding to domain II. Therefore, with regard to its neutralizing activity against HHV-6A infection, the epitope on gB might be exposed to solvents

  10. Analysis of intrinsic and extrinsic factors influencing the dynamics of bovine Eimeria spp. from central-eastern Poland.

    PubMed

    Tomczuk, Krzysztof; Grzybek, Maciej; Szczepaniak, Klaudiusz; Studzińska, Maria; Demkowska-Kutrzepa, Marta; Roczeń-Karczmarz, Monika; Klockiewicz, Maciej

    2015-11-30

    Eimeria infections are common in cattle worldwide, however, little is known about the invasion dynamics of this unicellular parasite. Therefore, the aim of this study was to analyze intrinsic (host age) and extrinsic (herd size and management system) factors influencing the dynamics of Eimeria spp. found in calves from CE Poland. Fecal samples were collected from 356 calves from different types of management systems and from different herd sizes. Flotation and McMaster method were used for parasitological investigation. Oocysts were differentiated on the basis of morphological criteria. Eight Eimeria species were identified and mean species richness (MSR) was significantly affected by host age. The highest MSR was noted for middle age animals. There was an association between species, with a highly significant co-occurrence of Eimeria bovis with Eimeria zuernii. The presence of E. bovis significantly increased the percentage of individuals carrying E. zuernii. The presence of E. bovis significantly increased the percentage of individuals carrying Eimeria canadensis. The overall prevalence of Eimeria spp. reached 52.8% and was significantly affected by the age of cows, with the highest prevalence in animals between 5-10 months old. The most prevalent species were E. bovis (37.4%), E. zuernii (19.9%) and E. canadensis (12.1%). The prevalence of E. bovis was affected by host age (the highest prevalence in age class 2 animals) and management type (the highest prevalence in individuals raised in groups). The prevalence of E. zuernii was affected by age (the lowest prevalence was noted in the oldest individuals) and herd size (individuals infected were present only in the middle and large size herds), whereas the prevalence of E. canadensis was affected by all three factors. Overall, mean OPG of the combined Eimeria spp. was 458.84 (37.93) and differed significantly between age classes. Mean OPGs were generally low for young and mature animals but high for middle age

  11. Intracranial complications of Serratia marcescens infection in neonates.

    PubMed

    Madide, Ayanda; Smith, Johan

    2016-03-15

    Even though Serratia marcescens is not one of the most common causes of infection in neonates, it is associated with grave morbidity and mortality. We describe the evolution of brain parenchymal affectation observed in association with S. marcescens infection in neonates. This retrospective case series details brain ultrasound findings of five neonates with hospital-acquired S. marcescens infection. Neonatal S. marcescens infection with or without associated meningitis can be complicated by brain parenchymal affectation, leading to cerebral abscess formation. It is recommended that all neonates with this infection should undergo neuro-imaging more than once before discharge from hospital; this can be achieved using bedside ultrasonography.

  12. On Patterns in Affective Media

    NASA Astrophysics Data System (ADS)

    ADAMATZKY, ANDREW

    In computational experiments with cellular automaton models of affective solutions, where chemical species represent happiness, anger, fear, confusion and sadness, we study phenomena of space time dynamic of emotions. We demonstrate feasibility of the affective solution paradigm in example of emotional abuse therapy. Results outlined in the present paper offer unconventional but promising technique to design, analyze and interpret spatio-temporal dynamic of mass moods in crowds.

  13. [Genotyping and evaluation of infection dynamics in a Colombian isolate of Leptospira santarosai in hamster as an experimental model].

    PubMed

    Agudelo-Flórez, Piedad; Durango, Harold; Aranzazu, Diego; Rodas, Juan David; Travi, Bruno

    2014-01-01

    Is necessary to develop models for the study of leptospirosis. To genotype a Colombian strain of Leptospira isolated from a human with Weil´s syndrome and to evaluate its infection dynamics in the hamster experimental model. Genotyping was performed by amplification and sequence analysis of the rrs 16S and lipL32 genes. The median lethal dose was determined in intraperitoneally inoculated hamsters. The patterns of clinical chemistry, the duration of leptospiremia, leptospiruria and pathological findings were studied and compared in the same animal model infected with L. interrogans (Fiocruz L1-130). Molecular typing revealed that the isolate corresponded to the pathogenic species L. santarosai, which was recovered from hamsters´ kidneys and lungs and detected by lipL32 PCR from day 3 post-infection in these organs. There was a marked increase of C-reactive protein in animals at day 5 post-infection (3.25 mg/dl; normal value: 0.3 mg/dl) with decreases by day 18 (2.60 mg/dl: normal value: 0.8 mg/dl). Biomarkers of urea showed changes consistent with possible renal acute failure (day 5 post-infection: 49.01 mg/dl and day 18 post-infection: 53.71 mg/dl). Histopathological changes included interstitial pneumonia with varying degrees of hemorrhage and interstitial nephritis. The pathogenic species L. santarosai was identified in Colombia. Its pathogenicity as determined by tropism to lung and kidney was comparable to that of L. interrogans Fiocruz L1-130, well known for its virulence and pulmonar tropism. The biological aspects studied here had never before been evaluated in an autochthonous isolate.

  14. 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics

    PubMed Central

    Rodríguez-Serrano, M.; Pazmiño, D. M.; Sparkes, I.; Rochetti, A.; Hawes, C.; Romero-Puertas, M. C.; Sandalio, L. M.

    2014-01-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is a synthetic auxin used as a herbicide to control weeds in agriculture. A high concentration of 2,4-D promotes leaf epinasty and cell death. In this work, the molecular mechanisms involved in the toxicity of this herbicide are studied by analysing in Arabidopsis plants the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), and their effect on cytoskeleton structure and peroxisome dynamics. 2,4-D (23mM) promotes leaf epinasty, whereas this process was prevented by EDTA, which can reduce ·OH accumulation. The analysis of ROS accumulation by confocal microscopy showed a 2,4-D-dependent increase in both H2O2 and O2·–, whereas total NO was not affected by the treatment. The herbicide promotes disturbances on the actin cytoskeleton structure as a result of post-translational modification of actin by oxidation and S-nitrosylation, which could disturb actin polymerization, as suggested by the reduction of the F-actin/G-actin ratio. These effects were reduced by EDTA, and the reduction of ROS production in Arabidopsis mutants deficient in xanthine dehydrogenase (Atxdh) gave rise to a reduction in actin oxidation. Also, 2,4-D alters the dynamics of the peroxisome, slowing the speed and shortening the distances by which these organelles are displaced. It is concluded that 2,4-D promotes oxidative and nitrosative stress, causing disturbances in the actin cytoskeleton, thereby affecting the dynamics of peroxisomes and some other organelles such as the mitochondria, with xanthine dehydrogenase being involved in ROS production under these conditions. These structural changes in turn appear to be responsible for the leaf epinasty. PMID:24913628

  15. A cognitive-affective system theory of personality: reconceptualizing situations, dispositions, dynamics, and invariance in personality structure.

    PubMed

    Mischel, W; Shoda, Y

    1995-04-01

    A theory was proposed to reconcile paradoxical findings on the invariance of personality and the variability of behavior across situations. For this purpose, individuals were assumed to differ in (a) the accessibility of cognitive-affective mediating units (such as encodings, expectancies and beliefs, affects, and goals) and (b) the organization of relationships through which these units interact with each other and with psychological features of situations. The theory accounts for individual differences in predictable patterns of variability across situations (e.g., if A then she X, but if B then she Y), as well as for overall average levels of behavior, as essential expressions or behavioral signatures of the same underlying personality system. Situations, personality dispositions, dynamics, and structure were reconceptualized from this perspective.

  16. Toward Affective Development: A Program to Stimulate Psychological and Affective Development.

    ERIC Educational Resources Information Center

    Pearl, Linda F.

    1987-01-01

    Toward Affective Development (TAD), a 191-lesson program designed to stimulate psychological and affective development for third- through sixth-graders, can be used in special education, resource rooms, and remedial settings. TAD's five sections encompass: openness to experience, effects of emotions, group dynamics, individuality, and conflict…

  17. Peripartum dynamics of Coxiella burnetii infections in intensively managed dairy goats associated with a Q fever outbreak in Australia.

    PubMed

    Muleme, Michael; Stenos, John; Vincent, Gemma; Wilks, Colin R; Devlin, Joanne M; Campbell, Angus; Cameron, Alexander; Stevenson, Mark A; Graves, Stephen; Firestone, Simon M

    2017-04-01

    Coxiella burnetii may cause reproduction disorders in pregnant animals but subclinical infection in other animals. Unrecognised disease may delay implementation of control interventions, resulting in transmission of infection to other livestock and to humans. Seroreactivity to C. burnetii phase-specific antigens, is routinely used to interpret the course of human Q fever. This approach could be similarly useful in identifying new and existing infections in livestock herds to help describe risk factors or production losses associated with the infections and the implementation of disease-control interventions. This study aimed to elucidate the dynamics of C. burnetii infections using seroreactivity to phase-specific antigens and to examine the impact of infection on milk yield in goats in an endemically-infected farm that was associated with a Q fever outbreak in Australia. Seroreactivity pre- and post-partum and milk yield were studied in 164 goats (86 nulliparous and 78 parous). Post-partum, the seroprevalence of antibodies to C. burnetti increased from 4.7% to 31.4% throughout goats' first kiddings and from 47.4% to 55.1% in goats kidding for the second or greater time. Of 123 goats that were seronegative pre-partum, 26.8% seroconverted over the three-month peri-partum period, highlighting the importance of controlling infection throughout this time. The risk of seroconversion was comparable in first or later kidders, suggesting constant risk irrespective of parity. No loss in milk production associated with seroconversion to phase 2 was observed within the first nine weeks of lactation. However, seroconversion to only phase 1 was associated with extra 0.276L of milk per day (95% Confidence Interval: 0.010, 0.543; P=0.042), which warrants further investigation to ascertain whether or not the association is causal. Further studies on seroreactivity and milk production over longer periods are required, as milk production loss caused by C. burnetti may be an

  18. Block effect on HCV infection by HMGB1 released from virus-infected cells: An insight from mathematical modeling

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Ma, Wanbiao

    2018-06-01

    The nuclear protein high-mobility group box 1 (HMGB1) can have an active role in deoxyribonucleic acid (DNA) organization and the regulation of transcription. Based on the new findings from a recent experimental study, the blocking effect on HCV infection by HMGB1 released from virus-infected cells is investigated using a diffusive model for viral infection dynamics. In the model, the diffusion of the virus depends not only on its concentration gradient, but also on the concentration of HMGB1. The basic reproduction number, threshold dynamics, stability properties of the steady states, travelling wave solutions, and spreading speed for the proposed model are studied. We show that the HMGB1-induced blocking of HCV infection slows the spread of virus compared with random diffusion only. Numerically, it is shown that a high concentration of HMGB1 can block the spread of virus and this confirms, not only qualitatively but also quantitatively, the experimental result.

  19. Viral antibody dynamics in a chiropteran host

    PubMed Central

    Baker, Kate S; Suu-Ire, Richard; Barr, Jennifer; Hayman, David T S; Broder, Christopher C; Horton, Daniel L; Durrant, Christopher; Murcia, Pablo R; Cunningham, Andrew A; Wood, James L N

    2014-01-01

    Bats host many viruses that are significant for human and domestic animal health, but the dynamics of these infections in their natural reservoir hosts remain poorly elucidated. In these, and other, systems, there is evidence that seasonal life-cycle events drive infection dynamics, directly impacting the risk of exposure to spillover hosts. Understanding these dynamics improves our ability to predict zoonotic spillover from the reservoir hosts. To this end, we followed henipavirus antibody levels of >100 individual E. helvum in a closed, captive, breeding population over a 30-month period, using a powerful novel antibody quantitation method. We demonstrate the presence of maternal antibodies in this system and accurately determine their longevity. We also present evidence of population-level persistence of viral infection and demonstrate periods of increased horizontal virus transmission associated with the pregnancy/lactation period. The novel findings of infection persistence and the effect of pregnancy on viral transmission, as well as an accurate quantitation of chiropteran maternal antiviral antibody half-life, provide fundamental baseline data for the continued study of viral infections in these important reservoir hosts. PMID:24111634

  20. Sexually transmitted infections and the marriage problem

    NASA Astrophysics Data System (ADS)

    Bouzat, Sebastián; Zanette, Damián H.

    2009-08-01

    We study an SIS epidemiological model for a sexually transmitted infection in a monogamous population where the formation and breaking of couples is governed by individual preferences. The mechanism of couple recombination is based on the so-called bar dynamics for the marriage problem. We compare the results with those of random recombination - where no individual preferences exist - for which we calculate analytically the infection incidence and the endemic threshold. We find that individual preferences give rise to a large dispersion in the average duration of different couples, causing substantial changes in the incidence of the infection and in the endemic threshold. Our analysis yields also new results on the bar dynamics, that may be of interest beyond the field of epidemiological models.

  1. Infection dynamics and molecular identification of metacercariae in cyprinoids from Chiang Mai and Sakon Nakhon Provinces.

    PubMed

    Wongsawad, Pheravut; Wongsawad, Chalobol

    2011-01-01

    The infection dynamics of metacercariae were assessed in cyprinoid fish (cyprinoids) from Chiang Mai and Sakon Nakhon Provinces, Thailand, during October 2008 to September 2009. The samples were collected during 3 seasons from rivers and local markets. Metacercarial infection was determined by acid-pepsin digestion and confirmed using HAT-RAPD PCR method. Thirteen and 16 species of cyprinoids were collected from Chiang Mai and Sakon Nakhon with overall prevalences of metacercarial infection of 84.5 and 47.6%, respectively. Haplorchis taichui, Haplorchoides sp, and Centrocestus caninus were found in Chiang Mai and 4 species of metacercariae: H. taichui, Haplorchoides sp, O. viverrini and an unknown trematode species in Sakon Nakhon. H. taichui and Haplorchoides sp metacercariae in 3 species of cyprinoids (Henicorhynchus siamensis, Cyclocheilichthys armatus, Amblyrhynchichthy truncatus) had the highest prevalence (100%) in Chiang Mai, while the highest prevalence (100%) of metacercaria in Sakon Nakhon was Haplorchoides sp in 1 species of cyprinoids (Cyclocheilichthys armatus). The overall prevalence from Chiang Mai Province was highest in the rainy season (95.6%), lower in the hot-dry season (88.1%) and lowest in the cool season (72.5%). In Sakon Nakhon Province the highest prevalence was in the hot-dry season (52.7%), and lower in the rainy and cool season, 44.4% and 43.5%, respectively. The HAT-RAPD profiles confirmed the identity of metacercariae and adult stage of H. taichui, Haplorchoides sp, C. caninus and O. viverrini.

  2. Worm Burden-Dependent Disruption of the Porcine Colon Microbiota by Trichuris suis Infection

    PubMed Central

    Wu, Sitao; Li, Robert W.; Li, Weizhong; Beshah, Ethiopia; Dawson, Harry D.; Urban, Joseph F.

    2012-01-01

    Helminth infection in pigs serves as an excellent model for the study of the interaction between human malnutrition and parasitic infection and could have important implications in human health. We had observed that pigs infected with Trichuris suis for 21 days showed significant changes in the proximal colon microbiota. In this study, interactions between worm burden and severity of disruptions to the microbial composition and metabolic potentials in the porcine proximal colon microbiota were investigated using metagenomic tools. Pigs were infected by a single dose of T. suis eggs for 53 days. Among infected pigs, two cohorts were differentiated that either had adult worms or were worm-free. Infection resulted in a significant change in the abundance of approximately 13% of genera detected in the proximal colon microbiota regardless of worm status, suggesting a relatively persistent change over time in the microbiota due to the initial infection. A significant reduction in the abundance of Fibrobacter and Ruminococcus indicated a change in the fibrolytic capacity of the colon microbiota in T. suis infected pigs. In addition, ∼10% of identified KEGG pathways were affected by infection, including ABC transporters, peptidoglycan biosynthesis, and lipopolysaccharide biosynthesis as well as α-linolenic acid metabolism. Trichuris suis infection modulated host immunity to Campylobacter because there was a 3-fold increase in the relative abundance in the colon microbiota of infected pigs with worms compared to naïve controls, but a 3-fold reduction in worm-free infected pigs compared to controls. The level of pathology observed in infected pigs with worms compared to worm-free infected pigs may relate to the local host response because expression of several Th2-related genes were enhanced in infected pigs with worms versus those worm-free. Our findings provided insight into the dynamics of the proximal colon microbiota in pigs in response to T. suis infection. PMID

  3. Genome‐wide gene expression dynamics of the fungal pathogen Dothistroma septosporum throughout its infection cycle of the gymnosperm host Pinus radiata

    PubMed Central

    Guo, Yanan; Sim, Andre D.; Kabir, M. Shahjahan; Chettri, Pranav; Ozturk, Ibrahim K.; Hunziker, Lukas; Ganley, Rebecca J.; Cox, Murray P.

    2015-01-01

    Summary We present genome‐wide gene expression patterns as a time series through the infection cycle of the fungal pine needle blight pathogen, Dothistroma septosporum, as it invades its gymnosperm host, Pinus radiata. We determined the molecular changes at three stages of the disease cycle: epiphytic/biotrophic (early), initial necrosis (mid) and mature sporulating lesion (late). Over 1.7 billion combined plant and fungal reads were sequenced to obtain 3.2 million fungal‐specific reads, which comprised as little as 0.1% of the sample reads early in infection. This enriched dataset shows that the initial biotrophic stage is characterized by the up‐regulation of genes encoding fungal cell wall‐modifying enzymes and signalling proteins. Later necrotrophic stages show the up‐regulation of genes for secondary metabolism, putative effectors, oxidoreductases, transporters and starch degradation. This in‐depth through‐time transcriptomic study provides our first snapshot of the gene expression dynamics that characterize infection by this fungal pathogen in its gymnosperm host. PMID:25919703

  4. Evolutionary dynamics of Hepatitis C virus in a chronic HIV co-infected patient and its correlation with the immune status.

    PubMed

    Culasso, Andrés Carlos Alberto; Monzani, María Cecilia; Baré, Patricia; Campos, Rodolfo Hector

    2018-05-04

    The HCV evolutionary dynamics play a key role in the infection onset, maintenance of chronicity, pathogenicity, and drug resistance variants fixation, and are thought to be one of the main caveats in the development of an effective vaccine. Previous studies in HCV/HIV co-infected patients suggest that a decline in the immune status is related with increases in the HCV intra-host genetic diversity. However, these findings are based on single point sequence diversity measures or coalescence analyses in several virus-host interactions. In this work, we describe the molecular evolution of HCV-E2 region in a single HIV-co-infected patient with two clearly defined immune conditions. The phylogenetic analysis of the HCV-1a sequences from the studied patient showed that he was co-infected with three different viral lineages. These lineages were not evenly detected throughout time. The sequence diversity and coalescence analyses of these lineages suggested the action of different evolutionary patterns in different immune conditions: a slow rate, drift-like process in an immunocompromised condition (low levels of CD4+ T lymphocytes); and a fast rate, variant-switch process in an immunocompetent condition (high levels of CD4+ T lymphocytes). Copyright © 2017. Published by Elsevier B.V.

  5. Seasonal and interseasonal dynamics of bluetongue virus infection of dairy cattle and Culicoides sonorensis midges in northern California--implications for virus overwintering in temperate zones.

    PubMed

    Mayo, Christie E; Mullens, Bradley A; Reisen, William K; Osborne, Cameron J; Gibbs, E Paul J; Gardner, Ian A; MacLachlan, N James

    2014-01-01

    Bluetongue virus (BTV) is the cause of an economically important arboviral disease of domestic and wild ruminants. The occurrence of BTV infection of livestock is distinctly seasonal in temperate regions of the world, thus we determined the dynamics of BTV infection (using BTV-specific real time reverse transcriptase polymerase chain reaction) among sentinel cattle and vector Culicoides sonorensis (C. sonorensis) midges on a dairy farm in northern California throughout both the seasonal and interseasonal (overwintering) periods of BTV activity from August 2012 until March 2014. The data confirmed widespread infection of both sentinel cattle and vector midges during the August-November period of seasonal BTV transmission, however BTV infection of parous female midges captured in traps set during daylight hours also was detected in February of both 2013 and 2014, during the interseasonal period. The finding of BTV-infected vector midges during mid-winter suggests that BTV may overwinter in northern California by infection of long-lived female C. sonorensis midges that were infected during the prior seasonal period of virus transmission, and reemerged sporadically during the overwintering period; however the data do not definitively preclude other potential mechanisms of BTV overwintering that are also discussed.

  6. The effects of Toxoplasma infection on rodent behavior are dependent on dose of the stimulus

    PubMed Central

    Vyas, Ajai; Kim, Seon-Kyeong; Sapolsky, Robert M

    2007-01-01

    Parasite Toxoplasma gondii blocks the innate aversion of rats for cat urine, putatively increasing the likelihood of a cat predating a rat. This is thought to reflect an adaptive behavioral manipulation, because Toxoplasma can reproduce only in cat intestines. While it will be adaptive for the parasite to cause an absolute behavioral change, fitness costs associated with the manipulation itself suggest that the change be optimized and not maximized. We investigate these conflicting suggestions in the present report. Furthermore, exposure to cat odor causes long-lasting acquisition of learnt fear in the rodents. If Toxoplasma manipulates emotional valence of cat odor rather than just sensory response, infection should affect learning driven by the aversive properties of the odor. As a second aim of the present study, we investigate this assertion. We demonstrate that behavioral changes in rodents induced by Toxoplasma infection do not represent absolute all-or-none effects. Rather, these effects follow a non-monotonous function dependent on strength of stimulus, roughly resembling an inverted-U curve. Furthermore, infection affects conditioning to cat odor in a manner dependent upon strength of unconditioned stimulus employed. Non-monotonous relationship between behavioral manipulation and strength of cat odor agrees with the suggestion that a dynamic balance exists between benefit obtained and costs incurred by the parasite during the manipulation. This report also demonstrates that Toxoplasma affects emotional valence of the cat odor as indicated by altered learned fear induced by cat odor. PMID:17683872

  7. Dynamic Patterns of Modern Epidemics

    NASA Astrophysics Data System (ADS)

    Brockmann, Dirk; Hufnagel, Lars; Geisel, Theo

    2004-03-01

    We investigate the effects of scale-free travelling of humans and their inhomogeneous geographic distribution on the dynamic patterns of spreading epidemics. Our approach combines the susceptible/infected/recovered paradigm for the infection dynamics with superdiffusive dispersion of individuals and their inhomogeneous spatial distribution. We show that scale-free motion of individuals and their variable spatial distribution leads to the absence of wavefronts in dynamic epidemic patterns which are typical for the limiting cases of ordinary diffusion and spatially homogeneous populations. Instead, patterns emerge with isolated hotspots on highly populated areas from which regional epidemic outbursts are triggered. Hotspot sizes are independent of the correlation length in the spatial distribution of individuals and occur on all scales. Our theory predicts that highly populated areas are reached by an epidemic in advance and must receive special attention in control measure strategies. Furthermore, our analysis predicts strong fluctuations in the time course of the total infection which cannot be accounted for by ordinary reaction-diffusion models for epidemics.

  8. P. falciparum Infection Durations and Infectiousness Are Shaped by Antigenic Variation and Innate and Adaptive Host Immunity in a Mathematical Model

    PubMed Central

    Eckhoff, Philip

    2012-01-01

    Many questions remain about P. falciparum within-host dynamics, immunity, and transmission–issues that may affect public health campaign planning. These gaps in knowledge concern the distribution of durations of malaria infections, determination of peak parasitemia during acute infection, the relationships among gametocytes and immune responses and infectiousness to mosquitoes, and the effect of antigenic structure on reinfection outcomes. The present model of intra-host dynamics of P. falciparum implements detailed representations of parasite and immune dynamics, with structures based on minimal extrapolations from first-principles biology in its foundations. The model is designed to quickly and readily accommodate gains in mechanistic understanding and to evaluate effects of alternative biological hypothesis through in silico experiments. Simulations follow the parasite from the liver-stage through the detailed asexual cycle to clearance while tracking gametocyte populations. The modeled immune system includes innate inflammatory and specific antibody responses to a repertoire of antigens. The mechanistic focus provides clear explanations for the structure of the distribution of infection durations through the interaction of antigenic variation and innate and adaptive immunity. Infectiousness to mosquitoes appears to be determined not only by the density of gametocytes but also by the level of inflammatory cytokines, which harmonizes an extensive series of study results. Finally, pre-existing immunity can either decrease or increase the duration of infections upon reinfection, depending on the degree of overlap in antigenic repertoires and the strength of the pre-existing immunity. PMID:23028698

  9. Infection of phytoplankton by aerosolized marine viruses

    PubMed Central

    Sharoni, Shlomit; Trainic, Miri; Schatz, Daniella; Lehahn, Yoav; Flores, Michel J.; Bidle, Kay D.; Ben-Dor, Shifra; Rudich, Yinon; Vardi, Assaf

    2015-01-01

    Marine viruses constitute a major ecological and evolutionary driving force in the marine ecosystems. However, their dispersal mechanisms remain underexplored. Here we follow the dynamics of Emiliania huxleyi viruses (EhV) that infect the ubiquitous, bloom-forming phytoplankton E. huxleyi and show that EhV are emitted to the atmosphere as primary marine aerosols. Using a laboratory-based setup, we showed that the dynamic of EhV aerial emission is strongly coupled to the host–virus dynamic in the culture media. In addition, we recovered EhV DNA from atmospheric samples collected over an E. huxleyi bloom in the North Atlantic, providing evidence for aerosolization of marine viruses in their natural environment. Decay rate analysis in the laboratory revealed that aerosolized viruses can remain infective under meteorological conditions prevailing during E. huxleyi blooms in the ocean, allowing potential dispersal and infectivity over hundreds of kilometers. Based on the combined laboratory and in situ findings, we propose that atmospheric transport of EhV is an effective transmission mechanism for spreading viral infection over large areas in the ocean. This transmission mechanism may also have an important ecological impact on the large-scale host–virus “arms race” during bloom succession and consequently the turnover of carbon in the ocean. PMID:25964340

  10. Zika Virus Infection.

    PubMed

    Shirley, Debbie-Ann T; Nataro, James P

    2017-08-01

    In less than 2 years since entry into the Americas, we have witnessed the emergent spread of Zika virus into large subsets of immunologically naïve human populations and then encountered the devastating effects of microcephaly and brain anomalies that can arise from in utero infection with the virus. Diagnostic evaluation and management of affected infants continues to evolve as our understanding of Zika virus rapidly advances. The development of a safe and effective vaccine holds the potential to attenuate the spread of infection and limit the impact of congenital infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Helicobacter pylori infection and drugs malabsorption.

    PubMed

    Lahner, Edith; Virili, Camilla; Santaguida, Maria Giulia; Annibale, Bruno; Centanni, Marco

    2014-08-14

    Drug absorption represents an important factor affecting the efficacy of oral drug treatment. Gastric secretion and motility seem to be critical for drug absorption. A causal relationship between impaired absorption of orally administered drugs and Helicobacter pylori (H. pylori) infection has been proposed. Associations have been reported between poor bioavailability of l-thyroxine and l-dopa and H. pylori infection. According to the Maastricht Florence Consensus Report on the management of H. pylori infection, H. pylori treatment improves the bioavailability of both these drugs, whereas the direct clinical benefits to patients still await to be established. Less strong seems the association between H. pylori infection and other drugs malabsorption, such as delavirdine and ketoconazole. The exact mechanisms forming the basis of the relationship between H. pylori infection and impaired drugs absorption and/or bioavailability are not fully elucidated. H. pylori infection may trigger a chronic inflammation of the gastric mucosa, and impaired gastric acid secretion often follows. The reduction of acid secretion closely relates with the wideness and the severity of the damage and may affect drug absorption. This minireview focuses on the evidence of H. pylori infection associated with impaired drug absorption.

  12. Identification of Climatic Factors Affecting the Epidemiology of Human West Nile Virus Infections in Northern Greece

    PubMed Central

    Stilianakis, Nikolaos I.; Syrris, Vasileios; Petroliagkis, Thomas; Pärt, Peeter; Gewehr, Sandra; Kalaitzopoulou, Stella; Mourelatos, Spiros; Baka, Agoritsa; Pervanidou, Danai; Vontas, John; Hadjichristodoulou, Christos

    2016-01-01

    Climate can affect the geographic and seasonal patterns of vector-borne disease incidence such as West Nile Virus (WNV) infections. We explore the association between climatic factors and the occurrence of West Nile fever (WNF) or West Nile neuro-invasive disease (WNND) in humans in Northern Greece over the years 2010–2014. Time series over a period of 30 years (1979–2008) of climatic data of air temperature, relative humidity, soil temperature, volumetric soil water content, wind speed, and precipitation representing average climate were obtained utilising the ECMWF’s (European Centre for Medium-Range Weather Forecasts) Re-Analysis (ERA-Interim) system allowing for a homogeneous set of data in time and space. We analysed data of reported human cases of WNF/WNND and Culex mosquitoes in Northern Greece. Quantitative assessment resulted in identifying associations between the above climatic variables and reported human cases of WNF/WNND. A substantial fraction of the cases was linked to the upper percentiles of the distribution of air and soil temperature for the period 1979–2008 and the lower percentiles of relative humidity and soil water content. A statistically relevant relationship between the mean weekly value climatic anomalies of wind speed (negative association), relative humidity (negative association) and air temperature (positive association) over 30 years, and reported human cases of WNF/WNND during the period 2010–2014 could be shown. A negative association between the presence of WNV infected Culex mosquitoes and wind speed could be identified. The statistically significant associations could also be confirmed for the week the WNF/WNND human cases appear and when a time lag of up to three weeks was considered. Similar statistically significant associations were identified with the weekly anomalies of the maximum and minimum values of the above climatic factors. Utilising the ERA-Interim re-analysis methodology it could be shown that besides

  13. Identification of Climatic Factors Affecting the Epidemiology of Human West Nile Virus Infections in Northern Greece.

    PubMed

    Stilianakis, Nikolaos I; Syrris, Vasileios; Petroliagkis, Thomas; Pärt, Peeter; Gewehr, Sandra; Kalaitzopoulou, Stella; Mourelatos, Spiros; Baka, Agoritsa; Pervanidou, Danai; Vontas, John; Hadjichristodoulou, Christos

    2016-01-01

    Climate can affect the geographic and seasonal patterns of vector-borne disease incidence such as West Nile Virus (WNV) infections. We explore the association between climatic factors and the occurrence of West Nile fever (WNF) or West Nile neuro-invasive disease (WNND) in humans in Northern Greece over the years 2010-2014. Time series over a period of 30 years (1979-2008) of climatic data of air temperature, relative humidity, soil temperature, volumetric soil water content, wind speed, and precipitation representing average climate were obtained utilising the ECMWF's (European Centre for Medium-Range Weather Forecasts) Re-Analysis (ERA-Interim) system allowing for a homogeneous set of data in time and space. We analysed data of reported human cases of WNF/WNND and Culex mosquitoes in Northern Greece. Quantitative assessment resulted in identifying associations between the above climatic variables and reported human cases of WNF/WNND. A substantial fraction of the cases was linked to the upper percentiles of the distribution of air and soil temperature for the period 1979-2008 and the lower percentiles of relative humidity and soil water content. A statistically relevant relationship between the mean weekly value climatic anomalies of wind speed (negative association), relative humidity (negative association) and air temperature (positive association) over 30 years, and reported human cases of WNF/WNND during the period 2010-2014 could be shown. A negative association between the presence of WNV infected Culex mosquitoes and wind speed could be identified. The statistically significant associations could also be confirmed for the week the WNF/WNND human cases appear and when a time lag of up to three weeks was considered. Similar statistically significant associations were identified with the weekly anomalies of the maximum and minimum values of the above climatic factors. Utilising the ERA-Interim re-analysis methodology it could be shown that besides air

  14. 2,4-Dichlorophenoxyacetic acid promotes S-nitrosylation and oxidation of actin affecting cytoskeleton and peroxisomal dynamics.

    PubMed

    Rodríguez-Serrano, M; Pazmiño, D M; Sparkes, I; Rochetti, A; Hawes, C; Romero-Puertas, M C; Sandalio, L M

    2014-09-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is a synthetic auxin used as a herbicide to control weeds in agriculture. A high concentration of 2,4-D promotes leaf epinasty and cell death. In this work, the molecular mechanisms involved in the toxicity of this herbicide are studied by analysing in Arabidopsis plants the accumulation of reactive oxygen species (ROS) and nitric oxide (NO), and their effect on cytoskeleton structure and peroxisome dynamics. 2,4-D (23 mM) promotes leaf epinasty, whereas this process was prevented by EDTA, which can reduce ·OH accumulation. The analysis of ROS accumulation by confocal microscopy showed a 2,4-D-dependent increase in both H2O2 and O2·(-), whereas total NO was not affected by the treatment. The herbicide promotes disturbances on the actin cytoskeleton structure as a result of post-translational modification of actin by oxidation and S-nitrosylation, which could disturb actin polymerization, as suggested by the reduction of the F-actin/G-actin ratio. These effects were reduced by EDTA, and the reduction of ROS production in Arabidopsis mutants deficient in xanthine dehydrogenase (Atxdh) gave rise to a reduction in actin oxidation. Also, 2,4-D alters the dynamics of the peroxisome, slowing the speed and shortening the distances by which these organelles are displaced. It is concluded that 2,4-D promotes oxidative and nitrosative stress, causing disturbances in the actin cytoskeleton, thereby affecting the dynamics of peroxisomes and some other organelles such as the mitochondria, with xanthine dehydrogenase being involved in ROS production under these conditions. These structural changes in turn appear to be responsible for the leaf epinasty. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Expression Dynamics of Innate Immunity in Influenza Virus-Infected Swine

    PubMed Central

    Montoya, María; Foni, Emanuela; Solórzano, Alicia; Razzuoli, Elisabetta; Baratelli, Massimiliano; Bilato, Dania; Córdoba, Lorena; del Burgo, Maria Angeles Martín; Martinez, Jorge; Martinez-Orellana, Pamela; Chiapponi, Chiara; Perlin, David S.; del Real, Gustavo; Amadori, Massimo

    2017-01-01

    The current circulating swine influenza virus (IV) subtypes in Europe (H1N1, H1N2, and H3N2) are associated with clinical outbreaks of disease. However, we showed that pigs could be susceptible to other IV strains that are able to cross the species barrier. In this work, we extended our investigations into whether different IV strains able to cross the species barrier might give rise to different innate immune responses that could be associated with pathological lesions. For this purpose, we used the same samples collected in a previous study of ours, in which healthy pigs had been infected with a H3N2 Swine IV and four different H3N8 IV strains circulating in different animal species. Pigs had been clinically inspected and four subjects/group were sacrificed at 3, 6, and 21 days post infection. In the present study, all groups but mock exhibited antibody responses to IV nucleoprotein protein. Pulmonary lesions and high-titered viral replication were observed in pigs infected with the swine-adapted virus. Interestingly, pigs infected with avian and seal H3N8 strains also showed moderate lesions and viral replication, whereas equine and canine IVs did not cause overt pathological signs, and replication was barely detectable. Swine IV infection induced interferon (IFN)-alpha and interleukin-6 responses in bronchoalveolar fluids (BALF) at day 3 post infection, as opposed to the other non-swine-adapted virus strains. However, IFN-alpha responses to the swine-adapted virus were not associated with an increase of the local, constitutive expression of IFN-alpha genes. Remarkably, the Equine strain gave rise to a Serum Amyloid A response in BALF despite little if any replication. Each virus strain could be associated with expression of cytokine genes and/or proteins after infection. These responses were observed well beyond the period of virus replication, suggesting a prolonged homeostatic imbalance of the innate immune system. PMID:28484702

  16. Clonorchis sinensis Co-infection Could Affect the Disease State and Treatment Response of HBV Patients.

    PubMed

    Li, Wenfang; Dong, Huimin; Huang, Yan; Chen, Tingjin; Kong, Xiangzhan; Sun, Hengchang; Yu, Xinbing; Xu, Jin

    2016-06-01

    Clonorchis sinensis (C. sinensis) is considered to be an important parasitic zoonosis because it infects approximately 35 million people, while approximately 15 million were distributed in China. Hepatitis B virus (HBV) infection is a major public health issue. Two types of pathogens have the potential to cause human liver disease and eventually hepatocellular carcinoma. Concurrent infection with HBV and C. sinensis is often observed in some areas where C. sinensis is endemic. However, whether C. sinensis could impact HBV infection or vice versa remains unknown. Co-infection with C. sinensis and HBV develops predominantly in males. Co-infected C. sinensis and HBV patients presented weaker liver function and higher HBV DNA titers. Combination treatment with antiviral and anti-C. sinensis drugs in co-infected patients could contribute to a reduction in viral load and help with liver function recovery. Excretory-secretory products (ESPs) may, in some ways, increase HBV viral replication in vitro. A mixture of ESP and HBV positive sera could induce peripheral blood mononuclear cells (PBMCs) to produce higher level of Th2 cytokines including IL-4, IL-6 and IL-10 compared to HBV alone, it seems that due to presence of ESP, the cytokine production shift towards Th2. C. sinensis/HBV co-infected patients showed higher serum IL-6 and IL-10 levels and lower serum IFN-γ levels. Patients with concomitant C. sinensis and HBV infection presented weaker liver function and higher HBV DNA copies. In co-infected patients, the efficacy of anti-viral treatment was better in patients who were prescribed with entecavir and praziquantel than entecavir alone. One possible reason for the weaker response to antiviral therapies in co-infected patients was the shift in cytokine production from Th1 to Th2 that may inhibit viral clearance. C. sinensis/HBV co-infection could exacerbate the imbalance of Th1/Th2 cytokine.

  17. Dynamics of a Delayed HIV-1 Infection Model with Saturation Incidence Rate and CTL Immune Response

    NASA Astrophysics Data System (ADS)

    Guo, Ting; Liu, Haihong; Xu, Chenglin; Yan, Fang

    2016-12-01

    In this paper, we investigate the dynamics of a five-dimensional virus model incorporating saturation incidence rate, CTL immune response and three time delays which represent the latent period, virus production period and immune response delay, respectively. We begin this model by proving the positivity and boundedness of the solutions. Our model admits three possible equilibrium solutions, namely the infection-free equilibrium E0, the infectious equilibrium without immune response E1 and the infectious equilibrium with immune response E2. Moreover, by analyzing corresponding characteristic equations, the local stability of each of the feasible equilibria and the existence of Hopf bifurcation at the equilibrium point E2 are established, respectively. Further, by using fluctuation lemma and suitable Lyapunov functionals, it is shown that E0 is globally asymptotically stable when the basic reproductive numbers for viral infection R0 is less than unity. When the basic reproductive numbers for immune response R1 is less than unity and R0 is greater than unity, the equilibrium point E1 is globally asymptotically stable. Finally, some numerical simulations are carried out for illustrating the theoretical results.

  18. Modeling Influenza Virus Infection: A Roadmap for Influenza Research

    PubMed Central

    Boianelli, Alessandro; Nguyen, Van Kinh; Ebensen, Thomas; Schulze, Kai; Wilk, Esther; Sharma, Niharika; Stegemann-Koniszewski, Sabine; Bruder, Dunja; Toapanta, Franklin R.; Guzmán, Carlos A.; Meyer-Hermann, Michael; Hernandez-Vargas, Esteban A.

    2015-01-01

    Influenza A virus (IAV) infection represents a global threat causing seasonal outbreaks and pandemics. Additionally, secondary bacterial infections, caused mainly by Streptococcus pneumoniae, are one of the main complications and responsible for the enhanced morbidity and mortality associated with IAV infections. In spite of the significant advances in our knowledge of IAV infections, holistic comprehension of the interplay between IAV and the host immune response (IR) remains largely fragmented. During the last decade, mathematical modeling has been instrumental to explain and quantify IAV dynamics. In this paper, we review not only the state of the art of mathematical models of IAV infection but also the methodologies exploited for parameter estimation. We focus on the adaptive IR control of IAV infection and the possible mechanisms that could promote a secondary bacterial coinfection. To exemplify IAV dynamics and identifiability issues, a mathematical model to explain the interactions between adaptive IR and IAV infection is considered. Furthermore, in this paper we propose a roadmap for future influenza research. The development of a mathematical modeling framework with a secondary bacterial coinfection, immunosenescence, host genetic factors and responsiveness to vaccination will be pivotal to advance IAV infection understanding and treatment optimization. PMID:26473911

  19. Modeling Influenza Virus Infection: A Roadmap for Influenza Research.

    PubMed

    Boianelli, Alessandro; Nguyen, Van Kinh; Ebensen, Thomas; Schulze, Kai; Wilk, Esther; Sharma, Niharika; Stegemann-Koniszewski, Sabine; Bruder, Dunja; Toapanta, Franklin R; Guzmán, Carlos A; Meyer-Hermann, Michael; Hernandez-Vargas, Esteban A

    2015-10-12

    Influenza A virus (IAV) infection represents a global threat causing seasonal outbreaks and pandemics. Additionally, secondary bacterial infections, caused mainly by Streptococcus pneumoniae, are one of the main complications and responsible for the enhanced morbidity and mortality associated with IAV infections. In spite of the significant advances in our knowledge of IAV infections, holistic comprehension of the interplay between IAV and the host immune response (IR) remains largely fragmented. During the last decade, mathematical modeling has been instrumental to explain and quantify IAV dynamics. In this paper, we review not only the state of the art of mathematical models of IAV infection but also the methodologies exploited for parameter estimation. We focus on the adaptive IR control of IAV infection and the possible mechanisms that could promote a secondary bacterial coinfection. To exemplify IAV dynamics and identifiability issues, a mathematical model to explain the interactions between adaptive IR and IAV infection is considered. Furthermore, in this paper we propose a roadmap for future influenza research. The development of a mathematical modeling framework with a secondary bacterial coinfection, immunosenescence, host genetic factors and responsiveness to vaccination will be pivotal to advance IAV infection understanding and treatment optimization.

  20. Infection Dynamics of Coexisting Beta- and Gammaproteobacteria in the Nested Endosymbiotic System of Mealybugs▿

    PubMed Central

    Kono, Marie; Koga, Ryuichi; Shimada, Masakazu; Fukatsu, Takema

    2008-01-01

    We investigated the infection dynamics of endosymbiotic bacteria in the developmental course of the mealybugs Planococcus kraunhiae and Pseudococcus comstocki. Molecular phylogenetic analyses identified a betaproteobacterium and a gammaproteobacterium from each of the mealybug species. The former bacterium was related to the β-endosymbionts of other mealybugs, i.e., “Candidatus Tremblaya princeps,” and formed a compact clade in the Betaproteobacteria. Meanwhile, the latter bacterium was related to the γ-endosymbionts of other mealybugs but belonged to distinct clades in the Gammaproteobacteria. Whole-mount in situ hybridization confirmed the peculiar nested formation in the endosymbiotic system of the mealybugs: the β-endosymbiont cells were present in the cytoplasm of the bacteriocytes, and the γ-endosymbiont cells were located in the β-endosymbiont cells. In nymphal and female development, a large oval bacteriome consisting of a number of bacteriocytes was present in the abdomen, wherein the endosymbionts were harbored. In male development, strikingly, the bacteriome progressively degenerated in prepupae and pupae and became almost unrecognizable in adult males. In the degeneration process, the γ-endosymbionts disappeared more rapidly than the β-endosymbionts did. Quantitative PCR analyses revealed that (i) the population dynamics of the endosymbionts in female development reflected the reproductive activity of the insects, (ii) the population dynamics of the endosymbionts were strikingly different between female development and male development, (iii) the endosymbiont populations drastically decreased in male development, and (iv) the γ-endosymbiont populations decreased more rapidly than the β-endosymbiont populations in male development. Possible mechanisms underlying the uncoupled regulation of the β- and γ-endosymbiont populations are discussed in relation to the establishment and evolution of this unique prokaryote-prokaryote endosymbiotic

  1. Infection before pregnancy affects immunity and response to social challenge in the next generation.

    PubMed

    Curno, Olivia; Reader, Tom; McElligott, Alan G; Behnke, Jerzy M; Barnard, Chris J

    2011-12-12

    Natural selection should favour parents that are able to adjust their offspring's life-history strategy and resource allocation in response to changing environmental and social conditions. Pathogens impose particularly strong and variable selective pressure on host life histories, and parental genes will benefit if offspring are appropriately primed to meet the immunological challenges ahead. Here, we investigated transgenerational immune priming by examining reproductive resource allocation by female mice in response to direct infection with Babesia microti prior to pregnancy. Female mice previously infected with B. microti gained more weight over pregnancy, and spent more time nursing their offspring. These offspring generated an accelerated response to B. microti as adults, clearing the infection sooner and losing less weight as a result of infection. They also showed an altered hormonal response to novel social environments, decreasing instead of increasing testosterone production upon social housing. These results suggest that a dominance-resistance trade-off can be mediated by cues from the previous generation. We suggest that strategic maternal investment in response to an infection leads to increased disease resistance in the following generation. Offspring from previously infected mothers downregulate investment in acquisition of social dominance, which in natural systems would reduce access to mating opportunities. In doing so, however, they avoid the reduced disease resistance associated with increased testosterone and dominance. The benefits of accelerated clearance of infection and reduced weight loss during infection may outweigh costs associated with reduced social dominance in an environment where the risk of disease is high.

  2. Rabies Virus Infection Induces the Formation of Stress Granules Closely Connected to the Viral Factories

    PubMed Central

    Nikolic, Jovan; Civas, Ahmet; Lagaudrière-Gesbert, Cécile; Blondel, Danielle

    2016-01-01

    Stress granules (SGs) are membrane-less dynamic structures consisting of mRNA and protein aggregates that form rapidly in response to a wide range of environmental cellular stresses and viral infections. They act as storage sites for translationally silenced mRNAs under stress conditions. During viral infection, SG formation results in the modulation of innate antiviral immune responses, and several viruses have the ability to either promote or prevent SG assembly. Here, we show that rabies virus (RABV) induces SG formation in infected cells, as revealed by the detection of SG-marker proteins Ras GTPase-activating protein-binding protein 1 (G3BP1), T-cell intracellular antigen 1 (TIA-1) and poly(A)-binding protein (PABP) in the RNA granules formed during viral infection. As shown by live cell imaging, RABV-induced SGs are highly dynamic structures that increase in number, grow in size by fusion events, and undergo assembly/disassembly cycles. Some SGs localize in close proximity to cytoplasmic viral factories, known as Negri bodies (NBs). Three dimensional reconstructions reveal that both structures remain distinct even when they are in close contact. In addition, viral mRNAs synthesized in NBs accumulate in the SGs during viral infection, revealing material exchange between both compartments. Although RABV-induced SG formation is not affected in MEFs lacking TIA-1, TIA-1 depletion promotes viral translation which results in an increase of viral replication indicating that TIA-1 has an antiviral effect. Inhibition of PKR expression significantly prevents RABV-SG formation and favors viral replication by increasing viral translation. This is correlated with a drastic inhibition of IFN-B gene expression indicating that SGs likely mediate an antiviral response which is however not sufficient to fully counteract RABV infection. PMID:27749929

  3. Spatial variation in population growth rate and community structure affects local and regional dynamics.

    PubMed

    Trzcinski, M Kurtis; Walde, Sandra J; Taylor, Philip D

    2008-11-01

    1. Theory predicting that populations with high maximum rates of increase (r(max)) will be less stable, and that metapopulations with high average r(max) will be less synchronous, was tested using a small protist, Bodo, that inhabits pitcher plant leaves (Sarracenia purpurea L.). The effects of predators and resources on these relationships were also determined. 2. Abundance data collected for a total of 60 populations of Bodo, over a period of 3 months, at six sites in three bogs in eastern Canada, were used to test these predictions. Mosquitoes were manipulated in half the leaves partway through the season to increase the range of predation rates. 3. Dynamics differed greatly among leaves and sites, but most populations exhibited one or more episodes of rapid increase followed by a population crash. Estimates of r(max) obtained using a linear mixed-effects model, ranged from 1 x 5 to 2 x 7 per day. Resource levels (captured insect) and midge abundances affected r(max). 4. Higher r(max) was associated with greater temporal variability and lower synchrony as predicted. However, in contrast to expectations, populations with higher r(max) also had lower mean abundance and were more suppressed by predators. 5. This study demonstrates that the link between r(max) and temporal variability is key to understanding the dynamics of populations that spend little time near equilibrium, and to predicting and interpreting the effects of community structure on the dynamics of such populations.

  4. Dynamic Variation and Reversion in the Signature Amino Acids of H7N9 Virus During Human Infection.

    PubMed

    Zou, Xiaohui; Guo, Qiang; Zhang, Wei; Chen, Hui; Bai, Wei; Lu, Binghuai; Zhang, Wang; Fan, Yanyan; Liu, Chao; Wang, Yeming; Zhou, Fei; Cao, Bin

    2018-04-24

    Signature amino acids of H7N9 influenza virus play critical roles in human adaption and pathogenesis, but their dynamic variation is unknown during disease development. We sequentially collected respiratory samples from H7N9 patients at different timepoints and applied next-generation sequencing (NGS) to the whole genome of the H7N9 virus to investigate the variation at signature sites. A total of 11 patients were involved and from whom 29 samples were successfully sequenced, including samples from multiple timepoints in 9 patients. NA R292K, PB2 E627K, and D701N were the three most dynamic mutations. The oseltamivir resistance-related NA R292K mutation was present in 9 samples from 5 patients, including one sample obtained before antiviral therapy. In all patients with the NA 292K mutation, the oseltamivir-sensitive 292R genotype persisted and was not eliminated by antiviral treatment. The PB2 E627K substitution was present in 18 samples from 8 patients, among which 12 samples demonstrated a mixture of E/K and the 627K frequency exhibited dynamic variation. Dual D701N and E627K mutations emerged but failed to achieve predominance in any of the samples. Signature amino acids in PB2 and NA demonstrated high polymorphism and dynamic variation within individual patients during H7N9 virus infection.

  5. Dynamics of floret initiation/death determining spike fertility in wheat as affected by Ppd genes under field conditions.

    PubMed

    Prieto, Paula; Ochagavía, Helga; Savin, Roxana; Griffiths, Simon; Slafer, Gustavo A

    2018-04-27

    As wheat yield is linearly related to grain number, understanding the physiological determinants of the number of fertile florets based on floret development dynamics due to the role of the particular genes is relevant. The effects of photoperiod genes on dynamics of floret development are largely ignored. Field experiments were carried out to (i) characterize the dynamics of floret primordia initiation and degeneration and (ii) to determine which are the most critical traits of such dynamics in establishing genotypic differences in the number of fertile florets at anthesis in near isogenic lines (NILs) carrying photoperiod-insensitive alleles. Results varied in magnitude between the two growing seasons, but in general introgression of Ppd-1a alleles reduced the number of fertile florets. The actual effect was affected not only by the genome and the doses but also by the source of the alleles. Differences in the number of fertile florets were mainly explained by differences in the floret generation/degeneration dynamics, and in most cases associated with floret survival. Manipulating photoperiod insensitivity, unquestionably useful for changing flowering time, may reduce spike fertility but much less than proportionally to the change in duration of development, as the insensitivity alleles did increase the rate of floret development.

  6. Spatiotemporal dynamics of black-tailed prairie dog colonies affected by plague

    USGS Publications Warehouse

    Augustine, D.J.; Matchett, M.R.; Toombs, T.P.; Cully, J.F.; Johnson, T.L.; Sidle, John G.

    2008-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) are a key component of the disturbance regime in semi-arid grasslands of central North America. Many studies have compared community and ecosystem characteristics on prairie dog colonies to grasslands without prairie dogs, but little is known about landscape-scale patterns of disturbance that prairie dog colony complexes may impose on grasslands over long time periods. We examined spatiotemporal dynamics in two prairie dog colony complexes in southeastern Colorado (Comanche) and northcentral Montana (Phillips County) that have been strongly influenced by plague, and compared them to a complex unaffected by plague in northwestern Nebraska (Oglala). Both plague-affected complexes exhibited substantial spatiotemporal variability in the area occupied during a decade, in contrast to the stability of colonies in the Oglala complex. However, the plague-affected complexes differed in spatial patterns of colony movement. Colonies in the Comanche complex in shortgrass steppe shifted locations over a decade. Only 10% of the area occupied in 1995 was still occupied by prairie dogs in 2006. In 2005 and 2006 respectively, 74 and 83% of the total area of the Comanche complex occurred in locations that were not occupied in 1995, and only 1% of the complex was occupied continuously over a decade. In contrast, prairie dogs in the Phillips County complex in mixed-grass prairie and sagebrush steppe primarily recolonized previously occupied areas after plague-induced colony declines. In Phillips County, 62% of the area occupied in 1993 was also occupied by prairie dogs in 2004, and 12% of the complex was occupied continuously over a decade. Our results indicate that plague accelerates spatiotemporal movement of prairie dog colonies, and have significant implications for landscape-scale effects of prairie dog disturbance on grassland composition and productivity. These findings highlight the need to combine landscape-scale measures of

  7. Understanding African Swine Fever infection dynamics in Sardinia using a spatially explicit transmission model in domestic pig farms.

    PubMed

    Mur, L; Sánchez-Vizcaíno, J M; Fernández-Carrión, E; Jurado, C; Rolesu, S; Feliziani, F; Laddomada, A; Martínez-López, B

    2018-02-01

    African swine fever virus (ASFV) has been endemic in Sardinia since 1978, resulting in severe losses for local pig producers and creating important problems for the island's veterinary authorities. This study used a spatially explicit stochastic transmission model followed by two regression models to investigate the dynamics of ASFV spread amongst domestic pig farms, to identify geographic areas at highest risk and determine the role of different susceptible pig populations (registered domestic pigs, non-registered domestic pigs [brado] and wild boar) in ASF occurrence. We simulated transmission within and between farms using an adapted version of the previously described model known as Be-FAST. Results from the model revealed a generally low diffusion of ASF in Sardinia, with only 24% of the simulations resulting in disease spread, and for each simulated outbreak on average only four farms and 66 pigs were affected. Overall, local spread (indirect transmission between farms within a 2 km radius through fomites) was the most common route of transmission, being responsible for 98.6% of secondary cases. The risk of ASF occurrence for each domestic pig farm was estimated from the spread model results and integrated in two regression models together with available data for brado and wild boar populations. There was a significant association between the density of all three populations (domestic pigs, brado, and wild boar) and ASF occurrence in Sardinia. The most significant risk factors were the high densities of brado (OR = 2.2) and wild boar (OR = 2.1). The results of both analyses demonstrated that ASF epidemiology and infection dynamics in Sardinia create a complex and multifactorial disease situation, where all susceptible populations play an important role. To stop ASF transmission in Sardinia, three main factors (improving biosecurity on domestic pig farms, eliminating brado practices and better management of wild boars) need to be addressed. © 2017

  8. Ecological Dynamics of Two Distinct Viruses Infecting Marine Eukaryotic Decomposer Thraustochytrids (Labyrinthulomycetes, Stramenopiles)

    PubMed Central

    Takao, Yoshitake; Tomaru, Yuji; Nagasaki, Keizo; Honda, Daiske

    2015-01-01

    Thraustochytrids are cosmopolitan osmotrophic or heterotrophic microorganisms that are considered as important decomposers in coastal ecosystems. However, because of a lack of estimation method for each genus or systematic group of them, relatively little is known about their ecology in situ. Previously, we reported two distinct types of virus infecting thraustochytrids (AuRNAV: reported as SssRNAV, and SmDNAV) suggesting they have wide distributions in the host-virus systems of coastal environments. Here we conducted a field survey from 2004 through 2005 to show the fluctuation pattern of thraustochytrids and their viruses in Hiroshima Bay, Japan. During the field survey, we monitored the dynamics of the two types of thraustochytrid-infecting virus: small viruses causing lysis of Aurantiochytrium sp. NIBH N1-27 (identified as AuRNAV) and the large viruses of Sicyoidochytrium minutum NBRC 102975 (similar to SmDNAV in physiology and morphology). Fluctuation patterns of the two distinct types of virus were different from each other. This may reflect the difference in the preference of organic substrates; i.e., it may be likely the host of AuRNAV (Aurantiochytrium sp.) increases utilizing algal dead bodies or feeble cells as the virus shows a large increase in abundance following raphidophyte blooms; whereas, the trophic nutrient supply for S. minutum may primarily depend on other constantly-supplied organic compounds because it did not show any significant change in abundance throughout the survey. Further study concerning the population composition of thraustochytrids and their viruses may demonstrate the microbial ecology (especially concerning the detrital food web) of marine environments. PMID:26203654

  9. Ecological Dynamics of Two Distinct Viruses Infecting Marine Eukaryotic Decomposer Thraustochytrids (Labyrinthulomycetes, Stramenopiles).

    PubMed

    Takao, Yoshitake; Tomaru, Yuji; Nagasaki, Keizo; Honda, Daiske

    2015-01-01

    Thraustochytrids are cosmopolitan osmotrophic or heterotrophic microorganisms that are considered as important decomposers in coastal ecosystems. However, because of a lack of estimation method for each genus or systematic group of them, relatively little is known about their ecology in situ. Previously, we reported two distinct types of virus infecting thraustochytrids (AuRNAV: reported as SssRNAV, and SmDNAV) suggesting they have wide distributions in the host-virus systems of coastal environments. Here we conducted a field survey from 2004 through 2005 to show the fluctuation pattern of thraustochytrids and their viruses in Hiroshima Bay, Japan. During the field survey, we monitored the dynamics of the two types of thraustochytrid-infecting virus: small viruses causing lysis of Aurantiochytrium sp. NIBH N1-27 (identified as AuRNAV) and the large viruses of Sicyoidochytrium minutum NBRC 102975 (similar to SmDNAV in physiology and morphology). Fluctuation patterns of the two distinct types of virus were different from each other. This may reflect the difference in the preference of organic substrates; i.e., it may be likely the host of AuRNAV (Aurantiochytrium sp.) increases utilizing algal dead bodies or feeble cells as the virus shows a large increase in abundance following raphidophyte blooms; whereas, the trophic nutrient supply for S. minutum may primarily depend on other constantly-supplied organic compounds because it did not show any significant change in abundance throughout the survey. Further study concerning the population composition of thraustochytrids and their viruses may demonstrate the microbial ecology (especially concerning the detrital food web) of marine environments.

  10. Viral dynamics and CD4+ T cell counts in subtype C human immunodeficiency virus type 1-infected individuals from southern Africa.

    PubMed

    Gray, Clive M; Williamson, Carolyn; Bredell, Helba; Puren, Adrian; Xia, Xiaohua; Filter, Ruben; Zijenah, Lynn; Cao, Huyen; Morris, Lynn; Vardas, Efthyia; Colvin, Mark; Gray, Glenda; McIntyre, James; Musonda, Rosemary; Allen, Susan; Katzenstein, David; Mbizo, Mike; Kumwenda, Newton; Taha, Taha; Karim, Salim Abdool; Flores, Jorge; Sheppard, Haynes W

    2005-04-01

    Defining viral dynamics in natural infection is prognostic of disease progression and could prove to be important for vaccine trial design as viremia may be a likely secondary end point in phase III HIV efficacy trials. There are limited data available on the early course of plasma viral load in subtype C HIV-1 infection in Africa. Plasma viral load and CD4+ T cell counts were monitored in 51 recently infected subjects for 9 months. Individuals were recruited from four southern African countries: Zambia, Malawi, Zimbabwe, and South Africa and the median estimated time from seroconversion was 8.9 months (interquartile range, 5.7-14 months). All were infected with subtype C HIV-1 and median viral loads, measured using branched DNA, ranged from 3.82-4.02 log10 RNA copies/ml from 2-24 months after seroconversion. Viral loads significantly correlated with CD4+ cell counts (r=-0.5, p<0.0001; range, 376-364 cells/mm3) and mathematical modeling defined a median set point of 4.08 log10 (12 143 RNA copies/ml), which was attained approximately 17 months after seroconversion. Comparative measurements using three different viral load platforms (bDNA, Amplicor, and NucliSens) confirmed that viremia in subtype C HIV-1-infected individuals within the first 2 years of infection did not significantly differ from that found in early subtype B infection. In conclusion, the course of plasma viremia, as described in this study, will allow a useful baseline comparator for understanding disease progression in an African setting and may be useful in the design of HIV-1 vaccine trials in southern Africa.

  11. Intracerebral Inoculation of Mouse-Passaged Saffold Virus Type 3 Affects Cerebellar Development in Neonatal Mice

    PubMed Central

    Kotani, Osamu; Suzuki, Tadaki; Yokoyama, Masaru; Iwata-Yoshikawa, Naoko; Nakajima, Noriko; Sato, Hironori; Hasegawa, Hideki; Taguchi, Fumihiro; Shimizu, Hiroyuki

    2016-01-01

    ABSTRACT Saffold virus (SAFV), a human cardiovirus, is occasionally detected in infants with neurological disorders, including meningitis and cerebellitis. We recently reported that SAFV type 3 isolates infect cerebellar glial cells, but not large neurons, in mice. However, the impact of this infection remained unclear. Here, we determined the neuropathogenesis of SAFV type 3 in the cerebella of neonatal ddY mice by using SAFV passaged in the cerebella of neonatal BALB/c mice. The virus titer in the cerebellum increased following the inoculation of each of five passaged strains. The fifth passaged strain harbored amino acid substitutions in the VP2 (H160R and Q239R) and VP3 (K62M) capsid proteins. Molecular modeling of the capsid proteins suggested that the VP2-H160R and VP3-K62M mutations alter the structural dynamics of the receptor binding surface via the formation of a novel hydrophobic interaction between the VP2 puff B and VP3 knob regions. Compared with the original strain, the passaged strain showed altered growth characteristics in human-derived astroglial cell lines and greater replication in the brains of neonatal mice. In addition, the passaged strain was more neurovirulent than the original strain, while both strains infected astroglial and neural progenitor cells in the mouse brain. Intracerebral inoculation of either the original or the passaged strain affected brain Purkinje cell dendrites, and a high titer of the passaged strain induced cerebellar hypoplasia in neonatal mice. Thus, infection by mouse-passaged SAFV affected cerebellar development in neonatal mice. This animal model contributes to the understanding of the neuropathogenicity of SAFV infections in infants. IMPORTANCE Saffold virus (SAFV) is a candidate neuropathogenic agent in infants and children, but the neuropathogenicity of the virus has not been fully elucidated. Recently, we evaluated the pathogenicity of two clinical SAFV isolates in mice. Similar to other neurotropic

  12. TB/HIV Co-Infection Care in Conflict-Affected Settings: A Mapping of Health Facilities in the Goma Area, Democratic Republic of Congo.

    PubMed

    Kaboru, Berthollet Bwira; Ogwang, Brenda A; Namegabe, Edmond Ntabe; Mbasa, Ndemo; Kabunga, Deka Kambale; Karafuli, Kambale

    2013-09-01

    HIV/AIDS and Tuberculosis (TB) are major contributors to the burden of disease in sub-Saharan Africa. The two diseases have been described as a harmful synergy as they are biologically and epidemiologically linked. Control of TB/HIV co-infection is an integral and most challenging part of both national TB and national HIV control programmes, especially in contexts of instability where health systems are suffering from political and social strife. This study aimed at assessing the provision of HIV/TB co-infection services in health facilities in the conflict-ridden region of Goma in Democratic Republic of Congo. A cross-sectional survey of health facilities that provide either HIV or TB services or both was carried out. A semi-structured questionnaire was used to collect the data which was analysed using descriptive statistics. Eighty facilities were identified, of which 64 facilities were publicly owned. TB care was more available than HIV care (in 61% vs. 9% of facilities). Twenty-three facilities (29%) offered services to co-infected patients. TB/HIV co-infection rates among patients were unknown in 82% of the facilities. Only 19 facilities (24%) reported some coordination with and support from concerned diseases' control programmes. HIV and TB services are largely fragmented, indicating imbalances and poor coordination by disease control programmes. HIV and TB control appear not to be the focus of health interventions in this crisis affected region, despite the high risks of TB and HIV infection in the setting. Comprehensive public health response to this setting calls for reforms that promote joint TB/HIV co-infection control, including improved leadership by the HIV programmes that accuse weaknesses in this conflict-ridden region.

  13. Increasing P-stress and viral infection impact lipid remodeling of the picophytoplankter Micromonas pusilla

    NASA Astrophysics Data System (ADS)

    Maat, D. S.; Bale, N. J.; Hopmans, E. C.; Sinninghe Damsté, J. S.; Schouten, S.; Brussaard, C. P. D.

    2015-09-01

    The intact polar lipid (IPL) composition of phytoplankton is plastic and dependent on environmental factors. Previous studies have shown that phytoplankton under phosphorus (P)-stress substitute phosphatidylglycerols (PGs) with sulphoquinovosyldiacylglycerols (SQDGs) and digalactosyldiacylglycerols (DGDGs). However, these studies focused merely on P-depletion, while phytoplankton in the natural environment often experience P-limitation whereby the degree of limitation depends on the supply rate of the limiting nutrient. Here we demonstrate a linear increase in SQDG : PG and DGDG : PG ratios with increasing cellular P-stress in the picophotoeukaryote Micromonas pusilla, obtained by P-replete, P-limited (chemostat) and P-starved (no supply of P) culturing conditions. These ratios were not affected by the degree of the P-limiting conditions itself (i.e. 0.97 and 0.32 μmax chemostats), suggesting there is a minimum requirement of PGs for the maintenance of cell growth. Viral infection reduced the increase in SQDG : PG and DGDG : PG ratios in P-starved cells, but the extent did depend on the growth rate of the cultures before infection. The membrane of M. pusilla virus MpV itself was lacking some IPLs compared to the host as, e.g. no monogalactosyldiacylglycerols could be detected. Growth of the phytoplankton cultures under enhanced CO2 concentration did not affect the lipid remodeling results. The present study provides new insights into how the P-related trophic state of an ecosystem as well as viral infection can affect phytoplankton IPL composition, and therefore influence food web dynamics and biogeochemical cycling.

  14. Depletion of CD8+ cells does not affect the lifespan of productively infected cells during pathogenic sivmac239 infection of rhesus macaques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shudo, Emi; Ribeiro, Ruy M; Perelson, Alan S

    2008-01-01

    While CD8+ T cell responses are clearly important in anti-viral immunity during HIV/SIV infection, the mechanisms by which CD8+ T cells induce this effect remain poorly understood, as emphasized by the failure of the Merck adenovirus-based, cytotoxic T lymphocyte (CTL)-inducing AIDS vaccine in a large phase IIb clinical trial. In this study, we measured the in vivo effect of CD8+ lymphocytes on the lifespan of productively infected cells during chronic SIVmac239 infection of rhesus macaques by treating two groups of animals (i.e., CD8+ lymphocyte-depleted or controls) with antiretroviral therapy (PMPA and FTC). The lifespan of productively infected cells was calculatedmore » based on the slope of the decline of SIV plasma viremia using a well-accepted mathematical model. We found that, in both early (i.e., day 57 post-inoculation) and late (i.e., day 177 post-inoculation) chronic SIV infection, depletion of CD8+ lymphocytes did not result in an increased lifespan of productively infected cells in vivo. This result indicates that direct killing of cells producing virus is unlikely to be a major mechanism underlying the anti-viral effect of CD8+ T cells during SIV infection. These results have profound implications for the development of AIDS vaccines.« less

  15. [Dynamic investigation on the co-infection status of two pathogens in ticks from tourist point in Heilongjiang province].

    PubMed

    Tang, Kun; Zuo, Shuang-yan; Li, Ying; Zheng, Yuan-chun; Huo, Qiu-bo; Yu, Ji-hong; Zhang, Yuan; Ni, Xue-bing; Yao, Nan-nan; Tan, Hong-zhuan

    2012-05-01

    To monitor the co-infection status of Borrelia burgdorferi sensu lato (B.b.s.l) and spotted fever group Rickettsia (SFGR) in tourist areas of Heilongjiang province. Polymerase chain reaction (PCR) was used to detect the 5S-23S rRNA intergenic spacer of B.b.s.l and ompA of SFGR in ticks, dynamically collected from tourist areas of Heilongjiang province in 2010. Amplification products from positive ticks were sequenced, and phylogenetic analysis was conducted by Mega 5.0 software package. 849 ticks were collected from two tourist points, with the dominant ticks in Tiger Mountain and Jingpo Lake were Ixodes persulcatus and Haemaphysalis concinna. Regarding the Ixodes persulcatus from Tiger Mountain, the infection rates of B.b.s.l and SFGR were 26.15% and 10.05%. The infection rate of SFGR was 13.33% in Haemaphysalis concinna and the B.b.s.l was undiscovered in the same ticks from Jingpo Lake. However, the co-infection could only be detected in Ixodes persulcatus of both tourist areas. Surveillance data showed that the major ticks were more likely to be appeared in July at Tiger Mountain and in June at Jingpo Lake. Data from the sequence analysis on B.b.s.l showed that the B.b.s.l in tourist areas could be classified into three different genotypes, other than B. garinii and B. afzelii. We first detected B. valaisiana-like group genotype in northeast of China. Results from the sequence analysis of SFGR positive products showed that the two DNA sequences of newly detected agents were completely the same as Rickettsia sp. HL-93 which was detected in Hulin and Rickettsia sp. H820 found in northeast, China. The co-infection of B.b.s.l and SFGR was detected in ticks from the tourist areas of Heilongjiang province, and data from the sequencing of specific fragment showed that various kinds of genotypes existed in this area. However; the rates of co-infections-different according to environment, time and population that contributed to the kinds of and the index of ticks

  16. Water-deficit and fungal infection can differentially affect the production of different classes of defense compounds in two host pines of mountain pine beetle.

    PubMed

    Erbilgin, Nadir; Cale, Jonathan A; Lusebrink, Inka; Najar, Ahmed; Klutsch, Jennifer G; Sherwood, Patrick; Enrico Bonello, Pierluigi; Evenden, Maya L

    2017-03-01

    Bark beetles are important agents of tree mortality in conifer forests and their interaction with trees is influenced by host defense chemicals, such as monoterpenes and phenolics. Since mountain pine beetle (Dendroctonus ponderosae Hopkins) has expanded its host range from lodgepole pine (Pinus contorta Doug. ex Loud. (var. latifolia Engelm.))-dominated forests to the novel jack pine (Pinus banksiana Lamb.) forests in western Canada, studies investigating the jack pine suitability as a host for this beetle have exclusively focused on monoterpenes, and whether phenolics affect jack pine suitability to mountain pine beetle and its symbiotic fungus Grosmannia clavigera is unknown. We investigated the phenolic and monoterpene composition in phloem and foliage of jack and lodgepole pines, and their subsequent change in response to water deficit and G. clavigera inoculation treatments. In lodgepole pine phloem, water deficit treatment inhibited the accumulation of both the total and richness of phenolics, but had no effect on total monoterpene production or richness. Fungal infection also inhibited the total phenolic production and had no effect on phenolic or monoterpene richness, but increased total monoterpene synthesis by 71%. In jack pine phloem, water deficit treatment reduced phenolic production, but had no effect on phenolic or monoterpene richness or total monoterpenes. Fungal infection did not affect phenolic or monoterpene production. Lesions of both species contained lower phenolics but higher monoterpenes than non-infected phloem in the same tree. In both species, richness of monoterpenes and phenolics was greater in non-infected phloem than in lesions. We conclude that monoterpenes seem to be a critical component of induced defenses against G. clavigera in both jack and lodgepole pines; however, a lack of increased monoterpene response to fungal infection is an important evolutionary factor defining jack pine suitability to the mountain pine beetle

  17. HIV Transmission Dynamics Among Foreign-Born Persons in the United States.

    PubMed

    Valverde, Eduardo E; Oster, Alexandra M; Xu, Songli; Wertheim, Joel O; Hernandez, Angela L

    2017-12-15

    In the United States (US), foreign-born persons are disproportionately affected by HIV and differ epidemiologically from US-born persons with diagnosed HIV infection. Understanding HIV transmission dynamics among foreign-born persons is important to guide HIV prevention efforts for these populations. We conducted molecular transmission network analysis to describe HIV transmission dynamics among foreign-born persons with diagnosed HIV. Using HIV-1 polymerase nucleotide sequences reported to the US National HIV Surveillance System for persons with diagnosed HIV infection during 2001-2013, we constructed a genetic distance-based transmission network using HIV-TRACE and examined the birth region of potential transmission partners in this network. Of 77,686 people, 12,064 (16%) were foreign born. Overall, 28% of foreign-born persons linked to at least one other person in the transmission network. Of potential transmission partners, 62% were born in the United States, 31% were born in the same region as the foreign-born person, and 7% were born in another region of the world. Most transmission partners of male foreign-born persons (63%) were born in the United States, whereas most transmission partners of female foreign-borns (57%) were born in their same world region. These finding suggests that a majority of HIV infections among foreign-born persons in our network occurred after immigrating to the United States. Efforts to prevent HIV infection among foreign-born persons in the United States should include information of the transmission networks in which these individuals acquire or transmit HIV to develop more targeted HIV prevention interventions.

  18. Modeling and analyzing malware propagation in social networks with heterogeneous infection rates

    NASA Astrophysics Data System (ADS)

    Jia, Peng; Liu, Jiayong; Fang, Yong; Liu, Liang; Liu, Luping

    2018-10-01

    With the rapid development of social networks, hackers begin to try to spread malware more widely by utilizing various kinds of social networks. Thus, studying malware epidemic dynamics in these networks is becoming a popular subject in the literature. Most of the previous works focus on the effects of factors, such as network topology and user behavior, on malware propagation. Some researchers try to analyze the heterogeneity of infection rates, but the common problem of their works is the factors they mentioned that could affect the heterogeneity are not comprehensive enough. In this paper, focusing on the effects of heterogeneous infection rates, we propose a novel model called HSID (heterogeneous-susceptible-infectious-dormant model) to characterize virus propagation in social networks, in which a connection factor is presented to evaluate the heterogeneous relationships between nodes, and a resistance factor is introduced to represent node's mutable resistant ability. We analyzed how key parameters in the two factors affect the heterogeneity and then performed simulations to explore the effects in three real-world social networks. The results indicate: heterogeneous relationship could lead to wider diffusion in directed network, and heterogeneous security awareness could lead to wider diffusion in both directed and undirected networks; heterogeneous relationship could restrain the outbreak of malware but heterogeneous initial security awareness would increase the probability; furthermore, the increasing resistibility along with infected times would lead to malware's disappearance in social networks.

  19. Differential influence of urbanisation on Coccidian infection in two passerine birds.

    PubMed

    Delgado-V, Carlos A; French, Kris

    2015-06-01

    Urbanisation has the potential to increase the risk of parasitism on wildlife. Although some ectoparasite groups appear unaffected, different responses are hypothesised for parasites with simpler life histories such as gastrointestinal parasites. Red-browed finches (RBF) and the superb fairywrens (SFW), two native passerine birds affected by urbanisation, were examined for Coccidian parasites along an urbanisation gradient in New South Wales, Australia, in order to detect if prevalence might be directly related to the degree of urbanisation. Influence of urbanisation on Coccidian infection was differential. In RBF, the prevalence of Isospora increased significantly in more urbanised areas but prevalence did not change between breeding and non-breeding seasons. In contrast, in SFW, the degree of urbanisation did not significantly change with the degree of urbanisation, and season exhibited no significant effects on the prevalence of coccidians. Diet, behaviour and habits are suspected to be the most influential factors on the variation seen between both species where granivorous and gregarious species are significantly infected. Since the dynamics of urban wildlife-pathogen interactions is largely unexplored, more studies are needed to corroborate if this pattern of Isospora infections can be extended to other passerine birds in cities from Australia and overseas.

  20. Demographic processes affect HIV-1 evolution in primary infection before the onset of selective processes.

    PubMed

    Herbeck, Joshua T; Rolland, Morgane; Liu, Yi; McLaughlin, Sherry; McNevin, John; Zhao, Hong; Wong, Kim; Stoddard, Julia N; Raugi, Dana; Sorensen, Stephanie; Genowati, Indira; Birditt, Brian; McKay, Angela; Diem, Kurt; Maust, Brandon S; Deng, Wenjie; Collier, Ann C; Stekler, Joanne D; McElrath, M Juliana; Mullins, James I

    2011-08-01

    HIV-1 transmission and viral evolution in the first year of infection were studied in 11 individuals representing four transmitter-recipient pairs and three independent seroconverters. Nine of these individuals were enrolled during acute infection; all were men who have sex with men (MSM) infected with HIV-1 subtype B. A total of 475 nearly full-length HIV-1 genome sequences were generated, representing on average 10 genomes per specimen at 2 to 12 visits over the first year of infection. Single founding variants with nearly homogeneous viral populations were detected in eight of the nine individuals who were enrolled during acute HIV-1 infection. Restriction to a single founder variant was not due to a lack of diversity in the transmitter as homogeneous populations were found in recipients from transmitters with chronic infection. Mutational patterns indicative of rapid viral population growth dominated during the first 5 weeks of infection and included a slight contraction of viral genetic diversity over the first 20 to 40 days. Subsequently, selection dominated, most markedly in env and nef. Mutants were detected in the first week and became consensus as early as day 21 after the onset of symptoms of primary HIV infection. We found multiple indications of cytotoxic T lymphocyte (CTL) escape mutations while reversions appeared limited. Putative escape mutations were often rapidly replaced with mutually exclusive mutations nearby, indicating the existence of a maturational escape process, possibly in adaptation to viral fitness constraints or to immune responses against new variants. We showed that establishment of HIV-1 infection is likely due to a biological mechanism that restricts transmission rather than to early adaptive evolution during acute infection. Furthermore, the diversity of HIV strains coupled with complex and individual-specific patterns of CTL escape did not reveal shared sequence characteristics of acute infection that could be harnessed for

  1. Clonorchis sinensis Co-infection Could Affect the Disease State and Treatment Response of HBV Patients

    PubMed Central

    Huang, Yan; Chen, Tingjin; Kong, Xiangzhan; Sun, Hengchang; Yu, Xinbing; Xu, Jin

    2016-01-01

    Background Clonorchis sinensis (C. sinensis) is considered to be an important parasitic zoonosis because it infects approximately 35 million people, while approximately 15 million were distributed in China. Hepatitis B virus (HBV) infection is a major public health issue. Two types of pathogens have the potential to cause human liver disease and eventually hepatocellular carcinoma. Concurrent infection with HBV and C. sinensis is often observed in some areas where C. sinensis is endemic. However, whether C. sinensis could impact HBV infection or vice versa remains unknown. Principal Findings Co-infection with C. sinensis and HBV develops predominantly in males. Co-infected C. sinensis and HBV patients presented weaker liver function and higher HBV DNA titers. Combination treatment with antiviral and anti-C. sinensis drugs in co-infected patients could contribute to a reduction in viral load and help with liver function recovery. Excretory-secretory products (ESPs) may, in some ways, increase HBV viral replication in vitro. A mixture of ESP and HBV positive sera could induce peripheral blood mononuclear cells (PBMCs) to produce higher level of Th2 cytokines including IL-4, IL-6 and IL-10 compared to HBV alone, it seems that due to presence of ESP, the cytokine production shift towards Th2. C. sinensis/HBV co-infected patients showed higher serum IL-6 and IL-10 levels and lower serum IFN-γ levels. Conclusions/Significance Patients with concomitant C. sinensis and HBV infection presented weaker liver function and higher HBV DNA copies. In co-infected patients, the efficacy of anti-viral treatment was better in patients who were prescribed with entecavir and praziquantel than entecavir alone. One possible reason for the weaker response to antiviral therapies in co-infected patients was the shift in cytokine production from Th1 to Th2 that may inhibit viral clearance. C. sinensis/HBV co-infection could exacerbate the imbalance of Th1/Th2 cytokine. PMID:27348302

  2. Seasonal and Interseasonal Dynamics of Bluetongue Virus Infection of Dairy Cattle and Culicoides sonorensis Midges in Northern California – Implications for Virus Overwintering in Temperate Zones

    PubMed Central

    Mayo, Christie E.; Mullens, Bradley A.; Reisen, William K.; Osborne, Cameron J.; Gibbs, E. Paul J.; Gardner, Ian A.; MacLachlan, N. James

    2014-01-01

    Bluetongue virus (BTV) is the cause of an economically important arboviral disease of domestic and wild ruminants. The occurrence of BTV infection of livestock is distinctly seasonal in temperate regions of the world, thus we determined the dynamics of BTV infection (using BTV-specific real time reverse transcriptase polymerase chain reaction) among sentinel cattle and vector Culicoides sonorensis (C. sonorensis) midges on a dairy farm in northern California throughout both the seasonal and interseasonal (overwintering) periods of BTV activity from August 2012 until March 2014. The data confirmed widespread infection of both sentinel cattle and vector midges during the August – November period of seasonal BTV transmission, however BTV infection of parous female midges captured in traps set during daylight hours also was detected in February of both 2013 and 2014, during the interseasonal period. The finding of BTV-infected vector midges during mid-winter suggests that BTV may overwinter in northern California by infection of long-lived female C. sonorensis midges that were infected during the prior seasonal period of virus transmission, and reemerged sporadically during the overwintering period; however the data do not definitively preclude other potential mechanisms of BTV overwintering that are also discussed. PMID:25215598

  3. Dynamics of Sylvatic Chagas Disease Vectors in Coastal Ecuador Is Driven by Changes in Land Cover

    PubMed Central

    Grijalva, Mario J.; Terán, David; Dangles, Olivier

    2014-01-01

    Background Chagas disease is a serious public health problem in Latin America where about ten million individuals show Trypanosoma cruzi infection. Despite significant success in controlling domiciliated triatomines, sylvatic populations frequently infest houses after insecticide treatment which hampers long term control prospects in vast geographical areas where vectorial transmission is endemic. As a key issue, the spatio-temporal dynamics of sylvatic populations is likely influenced by landscape yet evidence showing this effect is rare. The aim of this work is to examine the role of land cover changes in sylvatic triatomine ecology, based on an exhaustive field survey of pathogens, vectors, hosts, and microhabitat characteristics' dynamics. Methodology and Principal Findings The study was performed in agricultural landscapes of coastal Ecuador as a study model. Over one year, a spatially-randomized sampling design (490 collection points) allowed quantifying triatomine densities in natural, cultivated and domestic habitats. We also assessed infection of the bugs with trypanosomes, documented their microhabitats and potential hosts, and recorded changes in landscape characteristics. In total we collected 886 individuals, mainly represented by nymphal stages of one triatomine species Rhodnius ecuadoriensis. As main results, we found that 1) sylvatic triatomines had very high T. cruzi infection rates (71%) and 2) densities of T. cruzi-infected sylvatic triatomines varied predictably over time due to changes in land cover and occurrence of associated rodent hosts. Conclusion We propose a framework for identifying the factors affecting the yearly distribution of sylvatic T. cruzi vectors. Beyond providing key basic information for the control of human habitat colonization by sylvatic vector populations, our framework highlights the importance of both environmental and sociological factors in shaping the spatio-temporal population dynamics of triatomines. A better

  4. HIV Infection: The Cellular Picture.

    ERIC Educational Resources Information Center

    Weber, Jonathan N.; Weiss, Robin A.

    1988-01-01

    Explains a key finding of the research which revealed that initial infection resulted from the binding of the human immunodeficiency virus to a molecule known as the CD4 antigen. Describes various assays used to determine the affect of antibodies on the ability of the virus to infect the cells. (RT)

  5. Immediate versus delayed intramedullary nailing for open fractures of the tibial shaft: a multivariate analysis of factors affecting deep infection and fracture healing.

    PubMed

    Yokoyama, Kazuhiko; Itoman, Moritoshi; Uchino, Masataka; Fukushima, Kensuke; Nitta, Hiroshi; Kojima, Yoshiaki

    2008-10-01

    The purpose of this study was to evaluate contributing factors affecting deep infection and fracture healing of open tibia fractures treated with locked intramedullary nailing (IMN) by multivariate analysis. We examined 99 open tibial fractures (98 patients) treated with immediate or delayed locked IMN in static fashion from 1991 to 2002. Multivariate analyses following univariate analyses were derived to determine predictors of deep infection, nonunion, and healing time to union. The following predictive variables of deep infection were selected for analysis: age, sex, Gustilo type, fracture grade by AO type, fracture location, timing or method of IMN, reamed or unreamed nailing, debridement time (< or =6 h or >6 h), method of soft-tissue management, skin closure time (< or =1 week or >1 week), existence of polytrauma (ISS< 18 or ISS> or =18), existence of floating knee injury, and existence of superficial/pin site infection. The predictive variables of nonunion selected for analysis was the same as those for deep infection, with the addition of deep infection for exchange of pin site infection. The predictive variables of union time selected for analysis was the same as those for nonunion, excluding of location, debridement time, and existence of floating knee and superficial infection. Six (6.1%; type II Gustilo n=1, type IIIB Gustilo n=5) of the 99 open tibial fractures developed deep infections. Multivariate analysis revealed that timing or method of IMN, debridement time, method of soft-tissue management, and existence of superficial or pin site infection significantly correlated with the occurrence of deep infection (P< 0.0001). In the immediate nailing group alone, the deep infection rate in type IIIB + IIIC was significantly higher than those in type I + II and IIIA (P = 0.016). Nonunion occurred in 17 fractures (20.3%, 17/84). Multivariate analysis revealed that Gustilo type, skin closure time, and existence of deep infection significantly correlated with

  6. Invasive infection caused by Klebsiella pneumoniae is a disease affecting patients with high comorbidity and associated with high long-term mortality

    PubMed Central

    Nauclér, P.; Kalin, M.; Giske, C. G.

    2018-01-01

    Klebsiella pneumoniae (KP) is after Escherichia coli (EC) the most common gram-negative species causing invasive infections. Herein, we analyzed risk factors and prognosis in invasive infections caused by KP versus EC, in an area with low antimicrobial resistance. Moreover, we compared antimicrobial resistance and relative prevalence of KP and EC (KP/EC-ratio) in different European countries, using EARS-Net data. Adult patients admitted to Karolinska University Hospital 2006–2012 with invasive infection caused by KP (n = 599) were matched regarding sex and age with patients infected by EC. The medical records were retrospectively reviewed. Comorbidity was adjusted for with multivariable analysis. European data were retrieved from the EARS-Net database. No differences were observed in 7- and 30-day mortality between the groups. The 90-day mortality was significantly higher in the KP cohort (26% versus 17%, p<0.001), but not after adjusting for comorbidity. Malignancy was seen in 53% of the patients with KP versus 38% with EC, OR 1.86 (1.34–2.58). A significant increase in the rate of ESBL-production was observed in EC, but not in KP. The KP/EC-ratio remained stable. In contrast, European data showed increasing percentages of isolates non-susceptible to third-generation cephalosporins in EC and KP, and increasing KP/EC-ratio. Invasive infection caused by KP is a disease affecting patients with high comorbidity and associated with high 90-d mortality. The stable KP/EC-ratio and low occurrence of antimicrobial resistance in data from Karolinska University Hospital compared to aggregate data from 20 EARS-Net countries could be related to absence of clonal spread of multidrug-resistant KP. PMID:29624618

  7. Interchain hydrophobic clustering promotes rigidity in HIV-1 protease flap dynamics: new insights from molecular dynamics.

    PubMed

    Meher, Biswa Ranjan; Kumar, Mattaparthi Venkata Satish; Bandyopadhyay, Pradipta

    2014-01-01

    The dynamics of HIV-1 protease (HIV-pr), a drug target for HIV infection, has been studied extensively by both computational and experimental methods. The flap dynamics of HIV-pr is considered to be more important for better ligand binding and enzymatic actions. Moreover, it has been demonstrated that the drug-induced mutations can change the flap dynamics of HIV-pr affecting the binding affinity of the ligands. Therefore, detailed understanding of flap dynamics is essential for designing better inhibitors. Previous computational investigations observed significant variation in the flap opening in nanosecond time scale indicating that the dynamics is highly sensitive to the simulation protocols. To understand the sensitivity of the flap dynamics on the force field and simulation protocol, molecular dynamics simulations of HIV-pr have been performed with two different AMBER force fields, ff99 and ff02. Two different trajectories (20 ns each) were obtained using the ff99 and ff02 force field. The results showed polarizable force field (ff02) make the flap tighter than the nonpolarizable force field (ff99). Some polar interactions and hydrogen bonds involving flap residues were found to be stronger with ff02 force field. The formation of interchain hydrophobic cluster (between flap tip of one chain and active site wall of another chain) was found to be dominant in the semi-open structures obtained from the simulations irrespective of the force field. It is proposed that an inhibitor, which will promote this interchain hydrophobic clustering, may make the flaps more rigid, and presumably the effect of mutation would be small on ligand binding.

  8. How Do Growth and Sibling Competition Affect Telomere Dynamics in the First Month of Life of Long-Lived Seabird?

    PubMed Central

    Mizutani, Yuichi; Niizuma, Yasuaki; Yoda, Ken

    2016-01-01

    Telomeres are nucleotide sequences located at the ends of chromosomes that promote genome stability. Changes in telomere length (dynamics) are related to fitness or life expectancy, and telomere dynamics during the development phase are likely to be affected by growth and stress factors. Here, we examined telomere dynamics of black-tailed gull chicks (Larus crassirostris) in nests with and without siblings. We found that the initial telomere lengths of singletons at hatching were longer than those of siblings, indicating that singletons are higher-quality chicks than siblings in terms of telomere length. Other factors likely affecting individual quality (i.e., sex, laying date, laying order of eggs, and clutch size) were not related to telomere lengths. Within broods, initial telomere lengths were longer in older chicks than in younger chicks, suggesting that maternal effects, which vary with laying sequence, influence the initial lengths. Additionally, telomeres of chicks with a sibling showed more attrition between hatching and fledging than those of singleton chicks, suggesting that being raised with siblings can cause a sustained competitive environment that leads to telomere loss. High growth rates were associated with a low degree of telomere shortening observed in older siblings, perhaps because slower growth reflects higher food stress and/or higher aerobic metabolism from increased begging effort. Our results show that developmental telomere attrition was an inevitable consequence in two-chick nests in the pre- and post-hatching microenvironments due to the combination of social stress within the nest and maternal effects. The results of our study shed light on telomere dynamics in early life, which may represent an important physiological undercurrent of life-history traits. PMID:27902754

  9. Gender dynamics affecting maternal health and health care access and use in Uganda.

    PubMed

    Morgan, Rosemary; Tetui, Moses; Muhumuza Kananura, Rornald; Ekirapa-Kiracho, Elizabeth; George, A S

    2017-12-01

    Despite its reduction over the last decade, the maternal mortality rate in Uganda remains high, due to in part a lack of access to maternal health care. In an effort to increase access to care, a quasi-experimental trial using vouchers was implemented in Eastern Uganda between 2009 and 2011. Findings from the trial reported a dramatic increase in pregnant women's access to institutional delivery. Sustainability of such interventions, however, is an important challenge. While such interventions are able to successfully address immediate access barriers, such as lack of financial resources and transportation, they are reliant on external resources to sustain them and are not designed to address the underlying causes contributing to women's lack of access, including those related to gender. In an effort to examine ways to sustain the intervention beyond external financial resources, project implementers conducted a follow-up qualitative study to explore the root causes of women's lack of maternal health care access and utilization. Based on emergent findings, a gender analysis of the data was conducted to identify key gender dynamics affecting maternal health and maternal health care. This paper reports the key gender dynamics identified during the analysis, by detailing how gender power relations affect maternal health care access and utilization in relation to: access to resources; division of labour, including women's workload during and after pregnancy and lack of male involvement at health facilities; social norms, including perceptions of women's attitudes and behaviour during pregnancy, men's attitudes towards fatherhood, attitudes towards domestic violence, and health worker attitudes and behaviour; and decision-making. It concludes by discussing the need for integrating gender into maternal health care interventions if they are to address the root causes of barriers to maternal health access and utilization and improve access to and use of maternal health

  10. Anthropogenic habitat disturbance and the dynamics of hantavirus using remote sensing, GIS, and a spatially explicit agent-based model

    NASA Astrophysics Data System (ADS)

    Cao, Lina

    Sin Nombre virus (SNV), a strain of hantavirus, causes hantavirus pulmonary syndrome (HPS) in humans, a deadly disease with high mortality rate (>50%). The primary virus host is deer mice, and greater deer mice abundance has been shown to increase the human risk of HPS. There is a great need in understanding the nature of the virus host, its temporal and spatial dynamics, and its relation to the human population with the purpose of predicting human risk of the disease. This research studies SNV dynamics in deer mice in the Great Basin Desert of central Utah, USA using multiyear field data and integrated geospatial approaches including remote sensing, Geographic Information System (GIS), and a spatially explicit agent-based model. The goal is to advance our understanding of the important ecological and demographic factors that affect the dynamics of deer mouse population and SNV prevalence. The primary research question is how climate, habitat disturbance, and deer mouse demographics affect deer mouse population density, its movement, and SNV prevalence in the sagebrush habitat. The results show that the normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI) can be good predictors of deer mouse density and the number of infected deer mice with a time lag of 1.0 to 1.3 years. This information can be very useful in predicting mouse abundance and SNV risk. The results also showed that climate, mouse density, sex, mass, and SNV infection had significant effects on deer mouse movement. The effect of habitat disturbance on mouse movement varies according to climate conditions with positive relationship in predrought condition and negative association in postdrought condition. The heavier infected deer mice moved the most. Season and disturbance alone had no significant effects. The spatial agent-based model (SABM) simulation results show that prevalence was negatively related to the disturbance levels and the sensitivity analysis showed that

  11. Systems Thinking and Leadership: How Nephrologists Can Transform Dialysis Safety to Prevent Infections.

    PubMed

    Wong, Leslie P

    2018-04-06

    Infections are the second leading cause of death for patients with ESKD. Despite multiple efforts, nephrologists have been unable to prevent infections in dialysis facilities. The American Society of Nephrology and the Centers for Disease Control and Prevention have partnered to create Nephrologists Transforming Dialysis Safety to promote nephrologist leadership and engagement in efforts to "Target Zero" preventable dialysis infections. Because traditional approaches to infection control and prevention in dialysis facilities have had limited success, Nephrologists Transforming Dialysis Safety is reconceptualizing the problem in the context of the complexity of health care systems and organizational behavior. By identifying different parts of a problem and attempting to understand how these parts interact and produce a result, systems thinking has effectively tackled difficult problems in dynamic settings. The dialysis facility is composed of different physical and human elements that are interconnected and affect not only behavior but also, the existence of a culture of safety that promotes infection prevention. Because dialysis infections result from a complex system of interactions between caregivers, patients, dialysis organizations, and the environment, attempts to address infections by focusing on one element in isolation often fail. Creating a sense of urgency and commitment to eradicating dialysis infections requires leadership and motivational skills. These skills are not taught in the standard nephrology or medical director curriculum. Effective leadership by medical directors and engagement in infection prevention by nephrologists are required to create a culture of safety. It is imperative that nephrologists commit to leadership training and embrace their potential as change agents to prevent infections in dialysis facilities. This paper explores the systemic factors contributing to the ongoing dialysis infection crisis in the United States and the role

  12. A dynamic evolution model of human opinion as affected by advertising

    NASA Astrophysics Data System (ADS)

    Luo, Gui-Xun; Liu, Yun; Zeng, Qing-An; Diao, Su-Meng; Xiong, Fei

    2014-11-01

    We propose a new model to investigate the dynamics of human opinion as affected by advertising, based on the main idea of the CODA model and taking into account two practical factors: one is that the marginal influence of an additional friend will decrease with an increasing number of friends; the other is the decline of memory over time. Simulations show several significant conclusions for both advertising agencies and the general public. A small difference of advertising’s influence on individuals or advertising coverage will result in significantly different advertising effectiveness within a certain interval of value. Compared to the value of advertising’s influence on individuals, the advertising coverage plays a more important role due to the exponential decay of memory. Meanwhile, some of the obtained results are in accordance with people’s daily cognition about advertising. The real key factor in determining the success of advertising is the intensity of exchanging opinions, and people’s external actions always follow their internal opinions. Negative opinions also play an important role.

  13. Differential Dynamics of CD4+ and CD8+ T-Lymphocyte Proliferation and Activation in Acute Simian Immunodeficiency Virus Infection

    PubMed Central

    Kaur, Amitinder; Hale, Corrina L.; Ramanujan, Saroja; Jain, Rakesh K.; Johnson, R. Paul

    2000-01-01

    Although lymphocyte turnover in chronic human immunodeficiency virus and simian immunodeficiency virus (SIV) infection has been extensively studied, there is little information on turnover in acute infection. We carried out a prospective kinetic analysis of lymphocyte proliferation in 13 rhesus macaques inoculated with pathogenic SIV. A short-lived dramatic increase in circulating Ki-67+ lymphocytes observed at 1 to 4 weeks was temporally related to the onset of SIV replication. A 5- to 10-fold increase in Ki-67+ CD8+ T lymphocytes and a 2- to 3-fold increase in Ki-67+ CD3− CD8+ natural killer cells accounted for >85% of proliferating lymphocytes at peak proliferation. In contrast, there was little change in the percentage of Ki-67+ CD4+ T lymphocytes during acute infection, although transient increases in Ki-67− and Ki-67+ CD4+ T lymphocytes expressing CD69, Fas, and HLA-DR were observed. A two- to fourfold decline in CD4+ T lymphocytes expressing CD25 and CD69 was seen later in SIV infection. The majority of Ki-67+ CD8+ T lymphocytes were phenotypically CD45RA− CD49dhi Fashi CD25− CD69− CD28− HLA-DR− and persisted at levels twofold above baseline 6 months after SIV infection. Increased CD8+ T-lymphocyte proliferation was associated with cell expansion, paralleled the onset of SIV-specific cytotoxic T-lymphocyte activity, and had an oligoclonal component. Thus, divergent patterns of proliferation and activation are exhibited by CD4+ and CD8+ T lymphocytes in early SIV infection and may determine how these cells are differentially affected in AIDS. PMID:10954541

  14. Individual-based approach to epidemic processes on arbitrary dynamic contact networks

    NASA Astrophysics Data System (ADS)

    Rocha, Luis E. C.; Masuda, Naoki

    2016-08-01

    The dynamics of contact networks and epidemics of infectious diseases often occur on comparable time scales. Ignoring one of these time scales may provide an incomplete understanding of the population dynamics of the infection process. We develop an individual-based approximation for the susceptible-infected-recovered epidemic model applicable to arbitrary dynamic networks. Our framework provides, at the individual-level, the probability flow over time associated with the infection dynamics. This computationally efficient framework discards the correlation between the states of different nodes, yet provides accurate results in approximating direct numerical simulations. It naturally captures the temporal heterogeneities and correlations of contact sequences, fundamental ingredients regulating the timing and size of an epidemic outbreak, and the number of secondary infections. The high accuracy of our approximation further allows us to detect the index individual of an epidemic outbreak in real-life network data.

  15. Dynamics of a feline virus with two transmission modes within exponentially growing host populations.

    PubMed Central

    Berthier, K; Langlais, M; Auger, P; Pontier, D

    2000-01-01

    Feline panleucopenia virus (FPLV) was introduced in 1977 on Marion Island (in the southern Indian Ocean) with the aim of eradicating the cat population and provoked a huge decrease in the host population within six years. The virus can be transmitted either directly through contacts between infected and healthy cats or indirectly between a healthy cat and the contaminated environment: a specific feature of the virus is its high rate of survival outside the host. In this paper, a model was designed in order to take these two modes of transmission into account. The results showed that a mass-action incidence assumption was more appropriate than a proportionate mixing one in describing the dynamics of direct transmission. Under certain conditions the virus was able to control the host population at a low density. The indirect transmission acted as a reservoir supplying the host population with a low but sufficient density of infected individuals which allowed the virus to persist. The dynamics of the infection were more affected by the demographic parameters of the healthy hosts than by the epidemiological ones. Thus, demographic parameters should be precisely measured in field studies in order to obtain accurate predictions. The predicted results of our model were in good agreement with observations. PMID:11416908

  16. Severity of Bovine Tuberculosis Is Associated with Co-Infection with Common Pathogens in Wild Boar

    PubMed Central

    Risco, David; Serrano, Emmanuel; Fernández-Llario, Pedro; Cuesta, Jesús M.; Gonçalves, Pilar; García-Jiménez, Waldo L.; Martínez, Remigio; Cerrato, Rosario; Velarde, Roser; Gómez, Luis; Segalés, Joaquím; Hermoso de Mendoza, Javier

    2014-01-01

    Co-infections with parasites or viruses drive tuberculosis dynamics in humans, but little is known about their effects in other non-human hosts. This work aims to investigate the relationship between Mycobacterium bovis infection and other pathogens in wild boar (Sus scrofa), a recognized reservoir of bovine tuberculosis (bTB) in Mediterranean ecosystems. For this purpose, it has been assessed whether contacts with common concomitant pathogens are associated with the development of severe bTB lesions in 165 wild boar from mid-western Spain. The presence of bTB lesions affecting only one anatomic location (cervical lymph nodes), or more severe patterns affecting more than one location (mainly cervical lymph nodes and lungs), was assessed in infected animals. In addition, the existence of contacts with other pathogens such as porcine circovirus type 2 (PCV2), Aujeszky's disease virus (ADV), swine influenza virus, porcine reproductive and respiratory syndrome virus, Mycoplasma hyopneumoniae, Actinobacillus pleuropneumoniae, Haemophilus parasuis and Metastrongylus spp, was evaluated by means of serological, microbiological and parasitological techniques. The existence of contacts with a structured community of pathogens in wild boar infected by M. bovis was statistically investigated by null models. Association between this community of pathogens and bTB severity was examined using a Partial Least Squares regression approach. Results showed that adult wild boar infected by M. bovis had contacted with some specific, non-random pathogen combinations. Contact with PCV2, ADV and infection by Metastrongylus spp, was positively correlated to tuberculosis severity. Therefore, measures against these concomitant pathogens such as vaccination or deworming, might be useful in tuberculosis control programmes in the wild boar. However, given the unexpected consequences of altering any community of organisms, further research should evaluate the impact of such measures under

  17. Ear Infections and Language Development.

    ERIC Educational Resources Information Center

    Roberts, Joanne E.; Zeisel, Susan A.

    Ear infections in infants and preschoolers can cause mild or moderate temporary hearing loss, which may in turn affect a child's ability to understand and learn language. Noting that providing children with proper medical treatment for ear infections or middle ear fluid is important in preventing possible problems with language development, this…

  18. Serious fungal infections in Ecuador.

    PubMed

    Zurita, J; Denning, D W; Paz-Y-Miño, A; Solís, M B; Arias, L M

    2017-06-01

    There is a dearth of data from Ecuador on the burden of life-threatening fungal disease entities; therefore, we estimated the burden of serious fungal infections in Ecuador based on the populations at risk and available epidemiological databases and publications. A full literature search was done to identify all epidemiology papers reporting fungal infection rates. WHO, ONU-AIDS, Index Mundi, Global Asthma Report, Globocan, and national data [Instituto Nacional de Estadística y Censos (INEC), Ministerio de Salud Pública (MSP), Sociedad de Lucha Contra el Cáncer (SOLCA), Instituto Nacional de Donación y Trasplante de Órganos, Tejidos y Células (INDOT)] were reviewed. When no data existed, risk populations were used to estimate frequencies of fungal infections, using previously described methodology by LIFE. Ecuador has a variety of climates from the cold of the Andes through temperate to humid hot weather at the coast and in the Amazon basin. Ecuador has a population of 15,223,680 people and an average life expectancy of 76 years. The median estimate of the human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS) population at risk for fungal disease (<200 CD4 cell counts) is ∼10,000, with a rate of 11.1% (1100) of histoplasma, 7% (700) of cryptococcal meningitis, and 11% (1070) of Pneumocystis pneumonia. The burden of candidemia is 1037. Recurrent Candida vaginitis (≥4 episodes per year) affects 307,593 women aged 15-50 years. Chronic pulmonary aspergillosis probably affects ∼476 patients following tuberculosis (TB). Invasive aspergillosis is estimated to affect 748 patients (∼5.5/100,000). In addition, allergic bronchopulmonary aspergillosis (ABPA) in asthma and severe asthma with fungal sensitization (SAFS) were estimated to affect 26,642 and 45,013 people, respectively. Our estimates indicate that 433,856 (3%) of the population in Ecuador is affected by serious fungal infection.

  19. Thrush and Other Candida Infections

    MedlinePlus

    ... Life Family Life Family Life Medical Home Family Dynamics Media Work & Play Getting Involved in Your Community ... and Urinary Tract Glands & Growth Head Neck & Nervous System Heart Infections Learning Disabilities Obesity Orthopedic Prevention Sexually ...

  20. Tuberculosis and infection control.

    PubMed

    Karim, Kelvin

    Against a background of rising tuberculosis (TB) rates, increasing incidence of TB and human immunodeficiency virus (HIV) co-infection, coupled with the emergence of multidrug-resistant TB (MDR-TB) and extensively drug-resistant TB (XDR-TB), the need for effective TB infection control has never been more vital (World Health Organization (WHO), 2009). TB infection control has been defined as 'a combination of measures aimed at minimizing the risk of TB transmission within populations' (WHO, 2009: p.ix). Health professionals are frequently confused about appropriate infection control measures when caring for patients affected by infectious respiratory tuberculosis (Mohandas and Cunniffe, 2009). This article aims to address the key infection control measures required to optimize patient care and reduce the risk of TB transmission within hospital and community settings.