Sample records for affect locomotor activity

  1. Panic disorder and locomotor activity

    PubMed Central

    Sakamoto, Noriyuki; Yoshiuchi, Kazuhiro; Kikuchi, Hiroe; Takimoto, Yoshiyuki; Kaiya, Hisanobu; Kumano, Hiroaki; Yamamoto, Yoshiharu; Akabayashi, Akira

    2008-01-01

    Background Panic disorder is one of the anxiety disorders, and anxiety is associated with some locomotor activity changes such as "restlessness". However, there have been few studies on locomotor activity in panic disorder using actigraphy, although many studies on other psychiatric disorders have been reported using actigraphy. Therefore, the aim of the present study was to investigate the relationship between panic disorder and locomotor activity pattern using a wrist-worn activity monitor. In addition, an ecological momentary assessment technique was used to record panic attacks in natural settings. Methods Sixteen patients with panic disorder were asked to wear a watch-type computer as an electronic diary for recording panic attacks for two weeks. In addition, locomotor activity was measured and recorded continuously in an accelerometer equipped in the watch-type computer. Locomotor activity data were analyzed using double cosinor analysis to calculate mesor and the amplitude and acrophase of each of the circadian rhythm and 12-hour harmonic component. Correlations between panic disorder symptoms and locomotor activity were investigated. Results There were significant positive correlations between the frequency of panic attacks and mesor calculated from double cosinor analysis of locomotor activity (r = 0.55) and between HAM-A scores and mesor calculated from double cosinor analysis of locomotor activity (r = 0.62). Conclusion Panic disorder patients with more panic attacks and more anxiety have greater objectively assessed locomotor activity, which may reflect the "restlessness" of anxiety disorders. PMID:19017383

  2. Locomotor activity: A distinctive index in morphine self-administration in rats

    PubMed Central

    Kong, Qingyao

    2017-01-01

    Self-administration of addictive drugs is a widely used tool for studying behavioral, neurobiological, and genetic factors in addiction. However, how locomotor activity is affected during self-administration of addictive drugs has not been extensively studied. In our present study, we tested the locomotor activity levels during acquisition, extinction and reinstatement of morphine self-administration in rats. We found that compared with saline self-administration (SA), rats that trained with morphine SA had higher locomotor activity. Rats that successfully acquired SA also showed higher locomotor activity than rats that failed in acquiring SA. Moreover, locomotor activity was correlated with the number of drug infusions but not with the number of inactive pokes. We also tested the locomotor activity in the extinction and the morphine-primed reinstatement session. Interestingly, we found that in the first extinction session, although the number of active pokes did not change, the locomotor activity was significantly lower than in the last acquisition session, and this decrease can be maintained for at least six days. Finally, morphine priming enhanced the locomotor activity during the reinstatement test, regardless of if the active pokes were significantly increased or not. Our results clearly suggest that locomotor activity, which may reflect the pharmacological effects of morphine, is different from drug seeking behavior and is a distinctive index in drug self-administration. PMID:28380023

  3. Locomotor activity: A distinctive index in morphine self-administration in rats.

    PubMed

    Zhang, Jian-Jun; Kong, Qingyao

    2017-01-01

    Self-administration of addictive drugs is a widely used tool for studying behavioral, neurobiological, and genetic factors in addiction. However, how locomotor activity is affected during self-administration of addictive drugs has not been extensively studied. In our present study, we tested the locomotor activity levels during acquisition, extinction and reinstatement of morphine self-administration in rats. We found that compared with saline self-administration (SA), rats that trained with morphine SA had higher locomotor activity. Rats that successfully acquired SA also showed higher locomotor activity than rats that failed in acquiring SA. Moreover, locomotor activity was correlated with the number of drug infusions but not with the number of inactive pokes. We also tested the locomotor activity in the extinction and the morphine-primed reinstatement session. Interestingly, we found that in the first extinction session, although the number of active pokes did not change, the locomotor activity was significantly lower than in the last acquisition session, and this decrease can be maintained for at least six days. Finally, morphine priming enhanced the locomotor activity during the reinstatement test, regardless of if the active pokes were significantly increased or not. Our results clearly suggest that locomotor activity, which may reflect the pharmacological effects of morphine, is different from drug seeking behavior and is a distinctive index in drug self-administration.

  4. The Effects of Sex-Ratio and Density on Locomotor Activity in the House Fly, Musca domestica

    PubMed Central

    Bahrndorff, Simon; Kjærsgaard, Anders; Pertoldi, Cino; Loeschcke, Volker; Schou, Toke M.; Skovgård, Henrik; Hald, Birthe

    2012-01-01

    Although locomotor activity is involved in almost all behavioral traits, there is a lack of knowledge on what factors affect it. This study examined the effects of sex—ratio and density on the circadian rhythm of locomotor activity of adult Musca domestica L. (Diptera: Muscidae) using an infra—red light system. Sex—ratio significantly affected locomotor activity, increasing with the percentage of males in the vials. In accordance with other studies, males were more active than females, but the circadian rhythm of the two sexes was not constant over time and changed during the light period. There was also an effect of density on locomotor activity, where males at intermediate densities showed higher activity. Further, the predictability of the locomotor activity, estimated as the degree of autocorrelation of the activity data, increased with the number of males present in the vials both with and without the presence of females. Overall, this study demonstrates that locomotor activity in M. domestica is affected by sex—ratio and density. Furthermore, the predictability of locomotor activity is affected by both sex—ratio, density, and circadian rhythm. These results add to our understanding of the behavioral interactions between houseflies and highlight the importance of these factors when designing behavioral experiments using M. domestica.

  5. Nasal oxytocin administration reduces food intake without affecting locomotor activity and glycemia with c-Fos induction in limited brain areas.

    PubMed

    Maejima, Yuko; Rita, Rauza Sukma; Santoso, Putra; Aoyama, Masato; Hiraoka, Yuichi; Nishimori, Katsuhiko; Gantulga, Darambazar; Shimomura, Kenju; Yada, Toshihiko

    2015-01-01

    Recent studies have considered oxytocin (Oxt) as a possible medicine to treat obesity and hyperphagia. To find the effective and safe route for Oxt treatment, we compared the effects of its nasal and intraperitoneal (IP) administration on food intake, locomotor activity, and glucose tolerance in mice. Nasal Oxt administration decreased food intake without altering locomotor activity and increased the number of c-Fos-immunoreactive (ir) neurons in the paraventricular nucleus (PVN) of the hypothalamus, the area postrema (AP), and the dorsal motor nucleus of vagus (DMNV) of the medulla. IP Oxt administration decreased food intake and locomotor activity and increased the number of c-Fos-ir neurons not only in the PVN, AP, and DMNV but also in the nucleus of solitary tract of the medulla and in the arcuate nucleus of the hypothalamus. In IP glucose tolerance tests, IP Oxt injection attenuated the rise of blood glucose, whereas neither nasal nor intracerebroventricular Oxt affected blood glucose. In isolated islets, Oxt administration potentiated glucose-induced insulin secretion. These results indicate that both nasal and IP Oxt injections reduce food intake to a similar extent and increase the number of c-Fos-ir neurons in common brain regions. IP Oxt administration, in addition, activates broader brain regions, reduces locomotor activity, and affects glucose tolerance possibly by promoting insulin secretion from pancreatic islets. In comparison with IP administration, the nasal route of Oxt administration could exert a similar anorexigenic effect with a lesser effect on peripheral organs. © 2015 S. Karger AG, Basel.

  6. Sensory-evoked perturbations of locomotor activity by sparse sensory input: a computational study

    PubMed Central

    Brownstone, Robert M.

    2015-01-01

    Sensory inputs from muscle, cutaneous, and joint afferents project to the spinal cord, where they are able to affect ongoing locomotor activity. Activation of sensory input can initiate or prolong bouts of locomotor activity depending on the identity of the sensory afferent activated and the timing of the activation within the locomotor cycle. However, the mechanisms by which afferent activity modifies locomotor rhythm and the distribution of sensory afferents to the spinal locomotor networks have not been determined. Considering the many sources of sensory inputs to the spinal cord, determining this distribution would provide insights into how sensory inputs are integrated to adjust ongoing locomotor activity. We asked whether a sparsely distributed set of sensory inputs could modify ongoing locomotor activity. To address this question, several computational models of locomotor central pattern generators (CPGs) that were mechanistically diverse and generated locomotor-like rhythmic activity were developed. We show that sensory inputs restricted to a small subset of the network neurons can perturb locomotor activity in the same manner as seen experimentally. Furthermore, we show that an architecture with sparse sensory input improves the capacity to gate sensory information by selectively modulating sensory channels. These data demonstrate that sensory input to rhythm-generating networks need not be extensively distributed. PMID:25673740

  7. Temperature and population density effects on locomotor activity of Musca domestica (Diptera: Muscidae).

    PubMed

    Schou, T M; Faurby, S; Kjærsgaard, A; Pertoldi, C; Loeschcke, V; Hald, B; Bahrndorff, S

    2013-12-01

    The behavior of ectotherm organisms is affected by both abiotic and biotic factors. However, a limited number of studies have investigated the synergistic effects on behavioral traits. This study examined the effect of temperature and density on locomotor activity of Musca domestica (L.). Locomotor activity was measured for both sexes and at four densities (with mixed sexes) during a full light and dark (L:D) cycle at temperatures ranging from 10 to 40°C. Locomotor activity during daytime increased with temperature at all densities until reaching 30°C and then decreased. High-density treatments significantly reduced the locomotor activity per fly, except at 15°C. For both sexes, daytime activity also increased with temperature until reaching 30 and 35°C for males and females, respectively, and thereafter decreased. Furthermore, males showed a significantly higher and more predictable locomotor activity than females. During nighttime, locomotor activity was considerably lower for all treatments. Altogether the results of the current study show that there is a significant interaction of temperature and density on daytime locomotor activity of M. domestica and that houseflies are likely to show significant changes in locomotor activity with change in temperature.

  8. Neuropharmacology of light-induced locomotor activation.

    PubMed

    Amato, Davide; Pum, Martin E; Groos, Dominik; Lauber, Andrea C; Huston, Joseph P; Carey, Robert J; de Souza Silva, Maria A; Müller, Christian P

    2015-08-01

    Presentation of non-aversive light stimuli for several seconds was found to reliably induce locomotor activation and exploratory-like activity. Light-induced locomotor activity (LIA) can be considered a convenient simple model to study sensory-motor activation. LIA was previously shown to coincide with serotonergic and dopaminergic activation in specific cortical areas in freely moving and anesthetized animals. In the present study we explore the neuropharmacology of LIA using a receptor antagonist/agonist approach in rats. The non-selective 5-HT2-receptor antagonist ritanserin (1.5-6 mg/kg, i.p.) dose-dependently reduced LIA. Selective antagonism of either the 5-HT2A-receptor by MDL 11,939 (0.1-0.4 mg/kg, i.p.), or the 5-HT2C-receptor by SDZ SER 082 (0.125-0.5 mg/kg, i.p.), alone or in combination, had no significant influence on LIA. Also the selective 5-HT1A-receptor antagonist, WAY 100635 (0.4 mg/kg, i.p.) did not affect LIA. Neither did the preferential dopamine D2-receptor antagonist, haloperidol (0.025-0.1 mg/kg, i.p.) nor the D2/D3-receptor agonist, quinpirole (0.025-0.5 mg/kg, i.p.) affect the expression of LIA. However, blocking the glutamatergic NMDA-receptor with phencyclidine (PCP, 1.5-6 mg/kg, i.p.) dose-dependently reduced LIA. This effect was also observed with ketamine (10 mg/kg, i.p.). These findings suggest that serotonin and dopamine receptors abundantly expressed in the cortex do not mediate light-stimulus triggered locomotor activity. PCP and ketamine effects, however, suggest an important role of NMDA receptors in LIA. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Male accessory gland substances from Aedes albopictus affect the locomotor activity of Aedes aegypti females

    PubMed Central

    Lima-Camara, Tamara Nunes; Codeço, Claudia Torres; Honório, Nildimar Alves; Bruno, Rafaela Vieira; Peixoto, Alexandre Afranio; Lounibos, Leon Philip

    2013-01-01

    Dengue is one of the world’s most important mosquito-borne diseases and is usually transmitted by one of two vector species: Aedes aegypti or Aedes albopictus . These two diurnal mosquitoes are frequently found coexisting in similar habitats, enabling interactions between adults, such as cross-mating. The objective of this study was to assess cross-mating between Ae. aegypti females and Ae. albopictus males under artificial conditions and evaluate the locomotor activity of Ae. aegypti virgin females injected with male accessory gland (MAG) homogenates to infer the physiological and behavioural responses to interspecific mating. After seven days of exposure, 3.3-16% of Ae. aegypti females mated with Ae. albopictus males. Virgin Ae. aegypti females injected with conspecific and heterospecific MAGs showed a general decrease in locomotor activity compared to controls and were refractory to mating with conspecific males. The reduction in diurnal locomotor activity induced by injections of conspecific or heterospecific MAGs is consistent with regulation of female reproductive activities by male substances, which are capable of sterilising female Ae. aegypti through satyrisation by Ae. albopictus . PMID:24473799

  10. Locomotor activity and gait in aged mice deficient for type IX collagen

    PubMed Central

    Costello, Kerry E.; Guilak, Farshid; Griffin, Timothy M.

    2010-01-01

    Osteoarthritis (OA) is a risk factor for physical inactivity and impaired mobility, but it is not well understood how these locomotor behaviors are affected by the age of onset of OA and disease severity. Male mice homozygous for a Col9a1 gene inactivation (Col9a1−/−) develop early onset knee OA, increased tactile pain sensitivity, and gait alterations by 9 mo of age. We hypothesized that aged Col9a1−/− mice would reduce joint pain by adopting locomotor behaviors that reduce both the magnitude and daily frequency of joint loading. We tested this hypothesis by evaluating gait and spontaneous locomotor activity in 15- to 17-mo-old male Col9a1−/− (n = 5) and Col9a1+/+(WT) (n = 5) mice using well-controlled measures of voluntary activity in overground and running wheel conditions, as well as studies of gait in a velocity-controlled treadmill. We found no difference due to genotype in freely chosen locomotor velocity, stride frequency, hindfoot duty factor, dark phase activity time, or dark-phase travel distance during overground, running wheel, or speed-matched treadmill locomotion. Interpretation of these findings is potentially confounded by the observation that WT mice have greater knee OA than Col9a1−/− mice in the lateral tibial plateau by 17 mo of age. When accounting for individual differences in knee OA, functional locomotor impairments in aged Col9a1−/− and WT mice are manifested as reductions in total locomotor activity levels (e.g., both distance traveled and time active), particularly for wheel running. These results support the concept that current disease status, rather than age of disease onset, is the primary determinant of impaired locomotor activity with aging. PMID:20360435

  11. Selenium status affects selenoprotein expression, reproduction, and F₁ generation locomotor activity in zebrafish (Danio rerio).

    PubMed

    Penglase, Sam; Hamre, Kristin; Rasinger, Josef D; Ellingsen, Staale

    2014-06-14

    Se is an essential trace element, and is incorporated into selenoproteins which play important roles in human health. Mammalian selenoprotein-coding genes are often present as paralogues in teleost fish, and it is unclear whether the expression patterns or functions of these fish paralogues reflect their mammalian orthologues. Using the model species zebrafish (Danio rerio; ZF), we aimed to assess how dietary Se affects key parameters in Se metabolism and utilisation including glutathione peroxidase (GPX) activity, the mRNA expression of key Se-dependent proteins (gpx1a, gpx1b, sepp1a and sepp1b), oxidative status, reproductive success and F1 generation locomotor activity. From 27 d until 254 d post-fertilisation, ZF were fed diets with graded levels of Se ranging from deficient ( < 0·10 mg/kg) to toxic (30 mg/kg). The mRNA expression of gpx1a and gpx1b and GPX activity responded in a similar manner to changes in Se status. GPX activity and mRNA levels were lowest when dietary Se levels (0·3 mg/kg) resulted in the maximum growth of ZF, and a proposed bimodal mechanism in response to Se status below and above this dietary Se level was identified. The expression of the sepp1 paralogues differed, with only sepp1a responding to Se status. High dietary Se supplementation (30 mg/kg) decreased reproductive success, while the offspring of ZF fed above 0·3 mg Se/kg diet had lower locomotor activity than the other groups. Overall, the novel finding of low selenoprotein expression and activity coinciding with maximum body growth suggests that even small Se-induced variations in redox status may influence cellular growth rates.

  12. Activation of Neurotensin Receptor Type 1 Attenuates Locomotor Activity

    PubMed Central

    Vadnie, Chelsea A.; Hinton, David J.; Choi, Sun; Choi, YuBin; Ruby, Christina L.; Oliveros, Alfredo; Prieto, Miguel L.; Park, Jun Hyun; Choi, Doo-Sup

    2014-01-01

    Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders. PMID:24929110

  13. Activation of neurotensin receptor type 1 attenuates locomotor activity.

    PubMed

    Vadnie, Chelsea A; Hinton, David J; Choi, Sun; Choi, YuBin; Ruby, Christina L; Oliveros, Alfredo; Prieto, Miguel L; Park, Jun Hyun; Choi, Doo-Sup

    2014-10-01

    Intracerebroventricular administration of neurotensin (NT) suppresses locomotor activity. However, the brain regions that mediate the locomotor depressant effect of NT and receptor subtype-specific mechanisms involved are unclear. Using a brain-penetrating, selective NT receptor type 1 (NTS1) agonist PD149163, we investigated the effect of systemic and brain region-specific NTS1 activation on locomotor activity. Systemic administration of PD149163 attenuated the locomotor activity of C57BL/6J mice both in a novel environment and in their homecage. However, mice developed tolerance to the hypolocomotor effect of PD149163 (0.1 mg/kg, i.p.). Since NTS1 is known to modulate dopaminergic signaling, we examined whether PD149163 blocks dopamine receptor-mediated hyperactivity. Pretreatment with PD149163 (0.1 or 0.05 mg/kg, i.p.) inhibited D2R agonist bromocriptine (8 mg/kg, i.p.)-mediated hyperactivity. D1R agonist SKF-81297 (8 mg/kg, i.p.)-induced hyperlocomotion was only inhibited by 0.1 mg/kg of PD149163. Since the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) have been implicated in the behavioral effects of NT, we examined whether microinjection of PD149163 into these regions reduces locomotion. Microinjection of PD149163 (2 pmol) into the NAc, but not the mPFC suppressed locomotor activity. In summary, our results indicate that systemic and intra-NAc activation of NTS1 is sufficient to reduce locomotion and NTS1 activation inhibits D2R-mediated hyperactivity. Our study will be helpful to identify pharmacological factors and a possible therapeutic window for NTS1-targeted therapies for movement disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Statistical Analysis of Zebrafish Locomotor Response.

    PubMed

    Liu, Yiwen; Carmer, Robert; Zhang, Gaonan; Venkatraman, Prahatha; Brown, Skye Ashton; Pang, Chi-Pui; Zhang, Mingzhi; Ma, Ping; Leung, Yuk Fai

    2015-01-01

    Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling's T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling's T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure.

  15. Statistical Analysis of Zebrafish Locomotor Response

    PubMed Central

    Zhang, Gaonan; Venkatraman, Prahatha; Brown, Skye Ashton; Pang, Chi-Pui; Zhang, Mingzhi; Ma, Ping; Leung, Yuk Fai

    2015-01-01

    Zebrafish larvae display rich locomotor behaviour upon external stimulation. The movement can be simultaneously tracked from many larvae arranged in multi-well plates. The resulting time-series locomotor data have been used to reveal new insights into neurobiology and pharmacology. However, the data are of large scale, and the corresponding locomotor behavior is affected by multiple factors. These issues pose a statistical challenge for comparing larval activities. To address this gap, this study has analyzed a visually-driven locomotor behaviour named the visual motor response (VMR) by the Hotelling’s T-squared test. This test is congruent with comparing locomotor profiles from a time period. Different wild-type (WT) strains were compared using the test, which shows that they responded differently to light change at different developmental stages. The performance of this test was evaluated by a power analysis, which shows that the test was sensitive for detecting differences between experimental groups with sample numbers that were commonly used in various studies. In addition, this study investigated the effects of various factors that might affect the VMR by multivariate analysis of variance (MANOVA). The results indicate that the larval activity was generally affected by stage, light stimulus, their interaction, and location in the plate. Nonetheless, different factors affected larval activity differently over time, as indicated by a dynamical analysis of the activity at each second. Intriguingly, this analysis also shows that biological and technical repeats had negligible effect on larval activity. This finding is consistent with that from the Hotelling’s T-squared test, and suggests that experimental repeats can be combined to enhance statistical power. Together, these investigations have established a statistical framework for analyzing VMR data, a framework that should be generally applicable to other locomotor data with similar structure. PMID

  16. Effects of cholestasis on learning and locomotor activity in bile duct ligated rats.

    PubMed

    Hosseini, Nasrin; Alaei, Hojjatallah; Nasehi, Mohammad; Radahmadi, Maryam; Mohammad Reza, Zarrindast

    2014-01-01

    Cognitive functions are impaired in patients with liver disease. Bile duct ligation causes cholestasis that impairs liver function. This study investigated the impact of cholestasis progression on the acquisition and retention times in the passive avoidance test and on the locomotor activity of rats. Cholestasis was induced in male Wistar rats by ligating the main bile duct. Locomotor activity, learning and memory were assessed by the passive avoidance learning test at day 7, day 14, and day 21 post-bile duct ligation. The serum levels of bilirubin, alanine aminotransferase, and alkaline phosphatase were measured. The results showed that acquisition time and locomotor activity were not affected at day 7 and day 14, but they were significantly (P < 0.05) impaired at day 21 post-bile duct ligation compared with the results for the control group. Additionally, memory was significantly impaired on day 7 (P < 0.01), day 14, and day 21 (P < 0.001) compared with the control groups. The levels of total bilirubin, direct bilirubin, indirect bilirubin, alanine aminotransferase, and alkaline phosphatase were significantly higher at day 7, day 14, and day 21 post-bile duct ligation compared with the levels in the sham group. Based on these findings, both liver and memory function were affected in the early stage of cholestasis (7 days after bile duct ligation), while learning and locomotor activity were impaired at 21 days after bile duct ligation following the progression of cholestasis.

  17. Dengue Infection Increases the Locomotor Activity of Aedes aegypti Females

    PubMed Central

    Luz, Paula M.; Castro, Márcia G.; Lourenço-de-Oliveira, Ricardo; Sorgine, Marcos H. F.; Peixoto, Alexandre A.

    2011-01-01

    Background Aedes aegypti is the main vector of the virus causing Dengue fever, a disease that has increased dramatically in importance in recent decades, affecting many tropical and sub-tropical areas of the globe. It is known that viruses and other parasites can potentially alter vector behavior. We investigated whether infection with Dengue virus modifies the behavior of Aedes aegypti females with respect to their activity level. Methods/Principal Findings We carried out intrathoracic Dengue 2 virus (DENV-2) infections in Aedes aegypti females and recorded their locomotor activity behavior. We observed an increase of up to ∼50% in the activity of infected mosquitoes compared to the uninfected controls. Conclusions Dengue infection alters mosquito locomotor activity behavior. We speculate that the higher levels of activity observed in infected Aedes aegypti females might involve the circadian clock. Further studies are needed to assess whether this behavioral change could have implications for the dynamics of Dengue virus transmission. PMID:21408119

  18. Oxidized trilinoleate and tridocosahexaenoate induce pica behavior and change locomotor activity.

    PubMed

    Kitamura, Fuki; Watanabe, Hiroyuki; Umeno, Aya; Yoshida, Yasukazu; Kurata, Kenji; Gotoh, Naohiro

    2013-01-01

    Pica behavior, a behavior that is characterized by eating a nonfood material such as kaolin and relates to the degree of discomfort in animals, and the variations of locomotor activity of rats after eating deteriorated fat and oil extracted from instant noodles were examined in our previous study. The result shows that oxidized fat and oil with at least 100 meq/kg in peroxide value (PV) increase pica behavior and decrease locomotor activity. In the present study, the same two behaviors were measured using autoxidized trilinoleate (tri-LA) and tridocosahexaenoate (tri-DHA) as a model of vegetable and fish oil, respectively, to compare fatty acid differences against the induction of two behaviors. The oxidized levels of tri-LA and tri-DHA were analyzed with PV and p-anisidine value (AnV), the method to analyze secondary oxidized products. The oxidation levels of respective triacylglycerol (TAG) samples were carefully adjusted to make them having almost the same PV and AnV. As the results, 600 or more meq/kg in PV of both TAGs significantly increased the consumption of kaolin pellets compared to the control group. Furthermore, 300 or more meq/kg in PV of tri-LA and 200 or more meq/kg in PV of tri-DHA demonstrated significant decrease in locomotor activity compared to control group. These results would indicate that the oxidized TAG having the same PV and/or AnV would induce the same type of pica behavior and locomotor activity. Furthermore, that the structure of oxidized products might not be important and the amount of hydroperoxide group and/or aldehyde group in deteriorated fats and oils might affect the pica behavior and locomotor activity were thought.

  19. Home tank water versus novel water differentially affect alcohol-induced locomotor activity and anxiety related behaviours in zebrafish.

    PubMed

    Tran, Steven; Facciol, Amanda; Gerlai, Robert

    2016-05-01

    The zebrafish may be uniquely well suited for studying alcohol's mechanisms of action in vivo, since alcohol can be administered via immersion in a non-invasive manner. Despite the robust behavioural effects of alcohol administration in mammals, studies reporting the locomotor stimulant and anxiolytic effects of alcohol in zebrafish have been inconsistent. In the current study, we examined whether differences in the type of water used for alcohol exposure and behavioural testing contribute to these inconsistencies. To answer this question, we exposed zebrafish to either home water from their housing tanks or novel water from an isolated reservoir (i.e. water lacking zebrafish chemosensory and olfactory cues) with 0% or 1% v/v alcohol for 30 min, a 2 × 2 between subject experimental designs. Behavioural responses were quantified throughout the 30-minute exposure session via a video tracking system. Although control zebrafish exposed to home water and novel water were virtually indistinguishable in their behavioural responses, alcohol's effect on locomotor activity and anxiety-like behavioural responses were dependent on the type of water used for testing. Alcohol exposure in home tank water produced a mild anxiolytic and locomotor stimulant effect, whereas alcohol exposure in novel water produced an anxiogenic effect without altering locomotor activity. These results represent a dissociation between alcohol's effects on locomotor and anxiety related responses, and also illustrate how environmental factors, in this case familiarity with the water, may interact with such effects. In light of these findings, we urge researchers to explicitly state the type of water used. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Novelty response and 50 kHz ultrasonic vocalizations: Differential prediction of locomotor and affective response to amphetamine in Sprague-Dawley rats.

    PubMed

    Garcia, Erik J; Cain, Mary E

    2016-02-01

    Novelty and sensation seeking (NSS) predisposes humans and rats to experiment with psychostimulants. In animal models, different tests of NSS predict different phases of drug dependence. Ultrasonic vocalizations (USVs) are evoked by psychomotor stimulants and measure the affective/motivation response to stimuli, yet the role NSS has on USVs in response to amphetamine is not determined. The aim of the present study was to determine if individual differences in NSS and USVs can predict locomotor and USV response to amphetamine (0.0, 0.3, and 1.0 mg/kg) after acute and chronic exposure. Thirty male rats were tested for their response to novelty (IEN), choice to engage in novelty (NPP), and heterospecific play (H-USV). Rats were administered non-contingent amphetamine or saline for seven exposures, and USVs and locomotor activity were measured. After a 14-day rest, rats were administered a challenge dose of amphetamine. Regression analyses indicated that amphetamine dose-dependently increased locomotor activity and the NPP test negatively predicted treatment-induced locomotor activity. The H-USV test predicted treatment-induced frequency-modulated (FM) USVs, but the strength of prediction depended on IEN response. Results provide evidence that locomotor activity and FM USVs induced by amphetamine represent different behavioral responses. The prediction of amphetamine-induced FM USVs by the H-USV screen was changed by the novelty response, indicating that the affective value of amphetamine-measured by FM USVs-depends on novelty response. This provides evidence that higher novelty responders may develop a tolerance faster and may escalate intake faster.

  1. Daily rhythms of locomotor and demand-feeding activities in Schizothorax pelzami (Kessler, 1870).

    PubMed

    Ebrahimi, Ehsan; Kamrani, Ehsan; Heydarnejad, Mohammad Saeed; Safari, Omid

    2017-01-01

    A study was carried out to investigate the daily rhythms of locomotor and feeding activity of Khajoo, Schizothorax pelzami, a candidate species for freshwater aquaculture. Using self-feeder juvenile Khajoo were exposed to a 12/12 LD cycle to determine the rhythms of locomotor and feeding activity. The effects of feeding on locomotor and feeding activity of fish were also examined. Finally, the endogenous rhythmicity under different lighting condition tested. Fish displayed a strictly diurnal feeding and locomotor activities with 98% and 84% of the total activity occurred in the photophase, respectively. In scheduled feeding, both the L-group (fed in light) and the D-group (fed in the dark) showed a diurnal locomotor activity pattern. However, the L-group had a peak of locomotor activity near the feeding time, but the D-group had a scarce locomotor activity in the scatophase with no significant change at the mealtime. Most of the individuals display free-running rhythms when exposed to different lighting condition including, constant darkness, ultradian 45:45 min LD cycle and reversed DL photo cycle. Taken together the results of this study showed that both locomotor and feeding activity have diurnal rhythms in Khajoo S. pelzami, even fish feeding had taken place at night. Additionally, the free-running locomotor activity of the fish in the absence of external light stimuli, suggests the existence of an endogenous timing mechanism in this fish species.

  2. Locomotor activity and tissue levels following acute ...

    EPA Pesticide Factsheets

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavage dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administ

  3. Effects of caffeine on locomotor activity in streptozotocin-induced diabetic rats.

    PubMed

    Bădescu, S V; Tătaru, C P; Kobylinska, L; Georgescu, E L; Zahiu, D M; Zăgrean, A M; Zăgrean, L

    2016-01-01

    Diabetes mellitus modifies the expression of adenosine receptors in the brain. Caffeine acts as an antagonist of A1 and A2A adenosine receptors and was shown to have a dose-dependent biphasic effect on locomotion in mice. The present study investigated the link between diabetes and locomotor activity in an animal model of streptozotocin-induced diabetes, and the effects of a low-medium dose of caffeine in this relation. The locomotor activity was investigated by using Open Field Test at 6 weeks after diabetes induction and after 2 more weeks of chronic caffeine administration. Diabetes decreased locomotor activity (total distance moved and mobility time). Chronic caffeine exposure impaired the locomotor activity in control rats, but not in diabetic rats. Our data suggested that the medium doses of caffeine might block the A2A receptors, shown to have an increased density in the brain of diabetic rats, and improve or at least maintain the locomotor activity, offering a neuroprotective support in diabetic rats. Abbreviations : STZ = streptozotocin, OFT = Open Field Test.

  4. Effects of caffeine on locomotor activity in streptozotocin-induced diabetic rats

    PubMed Central

    Bădescu, SV; Tătaru, CP; Kobylinska, L; Georgescu, EL; Zahiu, DM; Zăgrean, AM; Zăgrean, L

    2016-01-01

    Diabetes mellitus modifies the expression of adenosine receptors in the brain. Caffeine acts as an antagonist of A1 and A2A adenosine receptors and was shown to have a dose-dependent biphasic effect on locomotion in mice. The present study investigated the link between diabetes and locomotor activity in an animal model of streptozotocin-induced diabetes, and the effects of a low-medium dose of caffeine in this relation. The locomotor activity was investigated by using Open Field Test at 6 weeks after diabetes induction and after 2 more weeks of chronic caffeine administration. Diabetes decreased locomotor activity (total distance moved and mobility time). Chronic caffeine exposure impaired the locomotor activity in control rats, but not in diabetic rats. Our data suggested that the medium doses of caffeine might block the A2A receptors, shown to have an increased density in the brain of diabetic rats, and improve or at least maintain the locomotor activity, offering a neuroprotective support in diabetic rats. Abbreviations: STZ = streptozotocin, OFT = Open Field Test PMID:27974933

  5. Hoverfly locomotor activity is resilient to external influence and intrinsic factors.

    PubMed

    Thyselius, Malin; Nordström, Karin

    2016-01-01

    Hoverflies are found across the globe, with approximately 6000 species described worldwide. Many hoverflies are being used in agriculture and some are emerging as model species for laboratory experiments. As such it is valuable to know more about their activity. Like many other dipteran flies, Eristalis hoverflies have been suggested to be strongly diurnal, but this is based on qualitative visualization by human observers. To quantify how hoverfly activity depends on internal and external factors, we here utilize a locomotor activity monitoring system. We show that Eristalis hoverflies are active during the entire light period when exposed to a 12 h light:12 h dark cycle, with a lower activity if exposed to light during the night. We show that the hoverflies' locomotor activity is stable over their lifetime and that it does not depend on the diet provided. Surprisingly, we find no difference in activity between males and females, but the activity is significantly affected by the sex of an accompanying conspecific. Finally, we show that female hoverflies are more resilient to starvation than males. In summary, Eristalis hoverflies are resilient to a range of internal and external factors, supporting their use in long-term laboratory experiments.

  6. Locomotor activity of adult Dermacentor reticulatus ticks (Ixodida: Ixodidae) in natural conditions.

    PubMed

    Buczek, Alicja; Zając, Zbigniew; Woźniak, Aneta; Kulina, Dorota; Bartosik, Katarzyna

    2017-05-11

    [b] Abstract Introduction and objective[/b]. Expansion into new areas and the great epidemiological significance of the D. reticulatus tick in Europe prompts investigations of its ethology. Therefore, the locomotor activity of D. reticulatus adult stages in an optimal habitat during the spring and autumn activity periods was analysed. [b]Materials and method[/b]. Marked D. reticulatus adults were placed at the central point of each experimental plot. At regular time intervals, specimens attached to the cloth used in the flagging method were collected, and the distance covered by the ticks was measured. In each collection round, the temperature and humidity level in the habitat was also measured. [b]Results.[/b] Within 7 weeks, adult D. reticulatus ticks can cover an average distance of 60.71±44 cm. The locomotor activity of adult stages is greater during the spring than the autumn activity period. Questing, females cover a greater distance (66.35±100 cm) than male ticks (54.85±45 cm). Adult stages are characterised by greater aggressiveness 24 hours after being released, i.e. 30% of females and 19% of males attempt to attach to host skin. The locomotor activity in adult ticks depends on the humidity of the habitat (Z=-1.198; p=0.050). The temperature does not affect tick walking. [b]Conclusions[/b]. Given the low rates of horizontal locomotion of adult D. reticulatus ticks, the prevalence of the species in nature is determined by the presence of their hosts and humidity conditions ensuring their further development and survival. The dependence of D. reticulatus locomotor activity and aggressiveness on the humidity level implies an increased risk of host attacks in locations and periods that offer favourable humidity conditions for this species.

  7. Acetylcholine from the mesopontine tegmental nuclei differentially affects methamphetamine induced locomotor activity and neurotransmitter levels in the mesolimbic pathway

    PubMed Central

    Dobbs, Lauren K.; Mark, Gregory P.

    2012-01-01

    Methamphetamine (MA) increases dopamine (DA) levels within the mesolimbic pathway and acetylcholine (ACh), a neurotransmitter known to increase DA cell firing and release and mediate reinforcement, within the ventral tegmental area (VTA). The laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei provide cholinergic input to the VTA; however, the contribution of LDT- and PPT-derived ACh to MA-induced DA and ACh levels and locomotor activation remains unknown. The first experiment examined the role of LDT-derived ACh in MA locomotor activation by reversibly inhibiting these neurons with bilateral intra-LDT microinjections of the M2 receptor agonist oxotremorine (OXO). Male C57BL/6 J mice were given a bilateral 0.1 µl OXO (0, 1, or 10 nM/side) microinjection immediately prior to IP saline or MA (2 mg/kg). The highest OXO concentration significantly inhibited both saline-and MA-primed locomotor activity. In a second set of experiments we characterized the individual contributions of ACh originating in the LDT or pedunculopontine tegmental nucleus (PPT) to MA-induced levels of ACh and DA by administering intra-LDT or PPT OXO and performing in vivo microdialysis in the VTA and NAc. Intra-LDT OXO dose-dependently attenuated the MA-induced increase in ACh within the VTA but had no effect on DA in NAc. Intra-PPT OXO had no effect on ACh or DA levels within the VTA or NAc, respectively. We conclude that LDT, but not PPT, ACh is important in locomotor behavior and the cholinergic, but not dopaminergic, response to systemic MA. PMID:21945297

  8. MK-801 increases locomotor activity in a context-dependent manner in zebrafish.

    PubMed

    Tran, Steven; Muraleetharan, Arrujyan; Fulcher, Niveen; Chatterjee, Diptendu; Gerlai, Robert

    2016-01-01

    Zebrafish have become a popular animal model for behavioral neuroscience with an increasing number of studies examining the effects of pharmacological compounds targeting the brain. Exposure to MK-801, a non-competitive N-methyl-d-aspartate receptor antagonist has been shown to increase locomotor activity in zebrafish. However, others have failed to replicate this finding as several contradicting studies report no changes in locomotor activity following exposure to similar doses. In the current study we reconcile these behavioral reports by demonstrating that zebrafish do not exhibit changes in locomotor activity during exposure to non-sedative doses of MK-801. Interestingly, zebrafish do exhibit significant increases in locomotion if pre-treated with MK-801 followed by subsequent testing in a novel environment, which suggests the effects of MK-801 are context-dependent. In addition, we examine the potential role of the dopaminergic system in mediating MK-801's locomotor stimulant effect by quantifying the levels of dopamine and its metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) in the brains of zebrafish following a 30 min exposure to 10 μM of MK-801 (the dose found to induce the largest increase in locomotor activity). Our findings indicate that the MK-801-induced increase in locomotor activity is not accompanied by changes in whole-brain levels of dopamine or DOPAC. Overall, our results suggest that MK-801's context-dependent locomotor stimulant effect may be independent of whole-brain dopaminergic activation. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Mephedrone interactions with cocaine: prior exposure to the 'bath salt' constituent enhances cocaine-induced locomotor activation in rats.

    PubMed

    Gregg, Ryan A; Tallarida, Christopher S; Reitz, Allen B; Rawls, Scott M

    2013-12-01

    Concurrent use of mephedrone (4-methylmethcathinone; MEPH) and established drugs of abuse is now commonplace, but knowledge about interactions between these drugs is sparse. The present study was designed to test the hypothesis that prior MEPH exposure enhances the locomotor-stimulant effects of cocaine and methamphetamine (METH). For cocaine experiments, rats pretreated with saline, cocaine (15 mg/kg), or MEPH (15 mg/kg) for 5 days were injected with cocaine after 10 days of drug absence. For METH experiments, rats pretreated with saline, METH (2 mg/kg), or MEPH (15 mg/kg) were injected with METH after 10 days of drug absence. Cocaine challenge produced greater locomotor activity after pretreatment with cocaine or MEPH than after pretreatment with saline. METH challenge produced greater locomotor activity after METH pretreatment than after saline pretreatment; however, locomotor activity in rats pretreated with MEPH or saline and then challenged with METH was not significantly different. The locomotor response to MEPH (15 mg/kg) was not significantly affected by pretreatment with cocaine (15 mg/kg) or METH (0.5, 2 mg/kg). The present demonstration that cocaine-induced locomotor activation is enhanced by prior MEPH exposure suggests that MEPH cross-sensitizes to cocaine and increases cocaine efficacy. Interestingly, MEPH cross-sensitization was not bidirectional and did not extend to METH, suggesting that the phenomenon is sensitive to specific psychostimulants.

  10. Differential effects of 5-HT2C receptor activation by WAY 161503 on nicotine-induced place conditioning and locomotor activity in rats.

    PubMed

    Hayes, Dave J; Mosher, Tera M; Greenshaw, Andrew J

    2009-02-11

    Numerous studies indicate a role for both the serotonin 2C receptor (5-HT(2C)) and the nicotinic acetylcholine receptor in locomotion, reinforcement and motivated behaviours. Nicotine, a potent nicotinic acetylcholine receptor agonist, interacts with the dopaminergic and serotonergic systems and is known to positively affect reward-related behaviours. The current study examined the effects of 5-HT(2C) receptor activation on nicotine-induced (0.6 mg/kg) place conditioning and spontaneous locomotion. Using Sprague-Dawley rats, the effects of the selective 5-HT(2C) receptor agonist WAY 161503 (0-1.0 mg/kg) and the selective 5-HT(2C) receptor antagonist SB 242084 (1.0 mg/kg) alone, in combination, and on nicotine-induced (0.6 mg/kg) spontaneous locomotor activity were assessed. The effects of WAY 161503 (1.0, 3.0 mg/kg) were also investigated in nicotine-induced place conditioning using a two-compartment biased design; amphetamine (1.0 mg/kg) served as a positive control. As differential effects were observed between place conditioning and locomotor activity, the subjects used in the place conditioning experiments were also tested for effects on locomotor activity. WAY 161503 decreased baseline and nicotine-induced locomotor activity at the highest dose tested (1.0mg/kg) and these effects were attenuated by SB 242084. Amphetamine and nicotine both induced robust place preferences and WAY 161503 did not have any effects in the context of place conditioning. In contrast, WAY 161503 (1.0 mg/kg) blocked nicotine-induced locomotor activity. These results suggest that 5-HT(2C) receptors may play an inhibitory role in nicotine-induced locomotor activity, but do not appear to influence place conditioning under the current conditions.

  11. Intraspinal serotonergic signaling suppresses locomotor activity in larval zebrafish.

    PubMed

    Montgomery, Jacob E; Wahlstrom-Helgren, Sarah; Wiggin, Timothy D; Corwin, Brittany M; Lillesaar, Christina; Masino, Mark A

    2018-06-19

    Serotonin (5HT) is a modulator of many vital processes in the spinal cord (SC), such as production of locomotion. In the larval zebrafish, intraspinal serotonergic neurons (ISNs) are a source of spinal 5HT that, despite the availability of numerous genetic and optical tools, has not yet been directly shown to affect the spinal locomotor network. In order to better understand the functions of ISNs, we used a combination of strategies to investigate ISN development, morphology, and function. ISNs were optically isolated from one another by photoconverting Kaede fluorescent protein in individual cells, permitting morphometric analysis as they developed in vivo. ISN neurite lengths and projection distances exhibited the greatest amount of change between 3 and 4 days post-fertilization (dpf) and appeared to stabilize by 5 dpf. Overall ISN innervation patterns were similar between cells and between SC regions. ISNs possessed rostrally-extending neurites resembling dendrites and a caudally-extending neurite resembling an axon, which terminated with an enlarged growth cone-like structure. Interestingly, these enlargements remained even after neurite extension had ceased. Functionally, application of exogenous 5HT reduced spinally-produced motor nerve bursting. A selective 5HT reuptake inhibitor and ISN activation with channelrhodopsin each produced similar effects to 5HT, indicating that spinally-intrinsic 5HT originating from the ISNs has an inhibitory effect on the spinal locomotor network. Taken together this suggests that the ISNs are morphologically mature by 5 dpf and supports their involvement in modulating the activity of the spinal locomotor network. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  12. Oxytocin decreases cocaine taking, cocaine seeking, and locomotor activity in female rats

    PubMed Central

    Leong, Kah-Chung; Zhou, Luyi; Ghee, Shannon M.; See, Ronald E.; Reichel, Carmela M.

    2015-01-01

    Oxytocin has been shown to decrease cocaine taking and seeking in male rats, suggesting potential treatment efficacy for drug addiction. In the present study, we extended these findings to the assessment of cocaine seeking and taking in female rats. Further, we made direct comparisons of oxytocin’s impact on cocaine induced locomotor activity in both males and females. In females, systemic oxytocin (0.3, 1.0, 3.0 mg/kg) attenuated lever pressing for cocaine during self-administration and oxytocin (1.0 mg/kg) attenuated cue-induced cocaine seeking following extinction. Cocaine increased baseline locomotor activity to a greater degree in females relative to males. Oxytocin (0.1, 0.3, 1.0, and 3.0 mg/kg) reduced cocaine-induced locomotor activity in females, but not significantly in males. These data illustrate sex similarities in oxytocin’s attenuation of cocaine seeking, but sex differences in cocaine-induced locomotor effects. While reductions in cocaine seeking cannot be attributed to a reduction in locomotor activity in males, attenuation of locomotor function cannot be entirely ruled out as an explanation for a decrease in cocaine seeking in females suggesting that oxytocin’s effect on cocaine seeking may be mediated by different mechanisms in male and females. PMID:26523890

  13. Reduced locomotor activity and exploratory behavior in CC chemokine receptor 4 deficient mice.

    PubMed

    Ambrée, Oliver; Klassen, Irene; Förster, Irmgard; Arolt, Volker; Scheu, Stefanie; Alferink, Judith

    2016-11-01

    Chemokines and their receptors are key regulators of immune cell trafficking and activation. Recent findings suggest that they may also play pathophysiological roles in psychiatric diseases like depression and anxiety disorders. The CC chemokine receptor 4 (CCR4) and its two ligands, CCL17 and CCL22, are functionally involved in neuroinflammation as well as anti-infectious and autoimmune responses. However, their influence on behavior remains unknown. Here we characterized the functional role of the CCR4-CCL17 chemokine-receptor axis in the modulation of anxiety-related behavior, locomotor activity, and object exploration and recognition. Additionally, we investigated social exploration of CCR4 and CCL17 knockout mice and wild type (WT) controls. CCR4 knockout (CCR4(-/-)) mice exhibited fewer anxiety-related behaviors in the elevated plus-maze, diminished locomotor activity, exploratory behavior, and social exploration, while their recognition memory was not affected. In contrast, CCL17 deficient mice did not show an altered behavior compared to WT mice regarding locomotor activity, anxiety-related behavior, social exploration, and object recognition memory. In the dark-light and object recognition tests, CCL17(-/-) mice even covered longer distances than WT mice. These data demonstrate a mechanistic or developmental role of CCR4 in the regulation of locomotor and exploratory behaviors, whereas the ligand CCL17 appears not to be involved in the behaviors measured here. Thus, either CCL17 and the alternative ligand CCL22 may be redundant, or CCL22 is the main activator of CCR4 in these processes. Taken together, these findings contribute to the growing evidence regarding the involvement of chemokines and their receptors in the regulation of behavior. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Quantification of locomotor activity in larval zebrafish: considerations for the design of high-throughput behavioral studies.

    PubMed

    Ingebretson, Justin J; Masino, Mark A

    2013-01-01

    High-throughput behavioral studies using larval zebrafish often assess locomotor activity to determine the effects of experimental perturbations. However, the results reported by different groups are difficult to compare because there is not a standardized experimental paradigm or measure of locomotor activity. To address this, we investigated the effects that several factors, including the stage of larval development and the physical dimensions (depth and diameter) of the behavioral arena, have on the locomotor activity produced by larval zebrafish. We provide evidence for differences in locomotor activity between larvae at different stages and when recorded in wells of different depths, but not in wells of different diameters. We also show that the variability for most properties of locomotor activity is less for older than younger larvae, which is consistent with previous reports. Finally, we show that conflicting interpretations of activity level can occur when activity is assessed with a single measure of locomotor activity. Thus, we conclude that although a combination of factors should be considered when designing behavioral experiments, the use of older larvae in deep wells will reduce the variability of locomotor activity, and that multiple properties of locomotor activity should be measured to determine activity level.

  15. Agmatine blocks ethanol-induced locomotor hyperactivity in male mice.

    PubMed

    Ozden, Onder; Kayir, Hakan; Ozturk, Yusuf; Uzbay, Tayfun

    2011-05-20

    Ethanol-induced locomotor activity is associated to rewarding effects of ethanol and ethanol dependence. Agmatine is a novel endogenous ligand at α2-adrenoceptors, imidazoline and N-methyl-d-aspartate (NMDA) receptors, as well as a nitric oxide synthase (NOS) inhibitor. There is no evidence presented for the relationship between the acute locomotor stimulating effect of ethanol and agmatine. Thus, the present study investigated the effects of agmatine on acute ethanol-induced locomotor hyperactivity in mice. Adult male Swiss-Webster mice (26-36g) were used as subjects. Locomotor activity of the mice was recorded for 30min immediately following intraperitoneal administration of ethanol (0.5, 1 and 2g/kg) or saline (n=8 for each group). Agmatine (5, 10 and 20mg/kg) or saline was administered intraperitoneally to another four individual groups (n=8 for each group) of the mice 20min before the ethanol injection. In these groups, locomotor activity was also recorded immediately following ethanol (0.5g/kg) injection for 30min. Ethanol (0.5g/kg) produced some significant increases in locomotor activity of the mice. Agmatine (5-20mg/kg) significantly blocked the ethanol (0.5g/kg)-induced locomotor hyperactivity. These doses of agmatine did not affect the locomotor activity in naive mice when they were administered alone. Our results suggest that agmatine has an important role in ethanol-induced locomotor hyperactivity in mice. There may be a relationship between the addictive psychostimulant effects of the ethanol and central agmatinergic system. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Effects of Sodium Butyrate on Methamphetamine-Sensitized Locomotor Activity

    PubMed Central

    Harkness, John H.; Hitzemann, Robert J.; Edmunds, Stephanie; Phillips, Tamara J.

    2012-01-01

    Neuroadaptations associated with behavioral sensitization induced by repeated exposure to methamphetamine (MA) appear to be involved in compulsive drug pursuit and use. Increased histone acetylation, an epigenetic effect resulting in altered gene expression, may promote sensitized responses to psychostimulants. The role of histone acetylation in the expression and acquisition of MA-induced locomotor sensitization was examined by measuring the effect of histone deacetylase inhibition by sodium butyrate (NaB). For the effect on expression, vehicle or NaB (630 mg/kg, intraperitoneally) was administered 30 min prior to MA challenge in mice treated repeatedly with MA (10 days of 2 mg/kg MA) or saline (10 days), and then locomotor response to MA challenge was measured. NaB treatment increased the locomotor response to MA in both acutely MA treated and sensitized animals. For acquisition, NaB was administered 30 min prior to each MA exposure (10 days of 1 or 2 mg/kg), but not prior to the MA challenge test. Treatment with NaB during the sensitization acquisition period significantly increased locomotor activation by MA in sensitized mice only. NaB alone did not significantly alter locomotor activity. Acute NaB or MA, but not the combination, appeared to increase striatal acetylation at histone H4. Repeated treatment with MA, but not NaB or MA plus NaB, increased striatal acetylation at histone H3. Although increased histone acetylation may alter the expression of genes involved in acute locomotor response to MA and in the acquisition of MA-induced sensitization, results for acetylation at H3 and H4 showed little correspondence with behavior. PMID:23137698

  17. An automated method to assay locomotor activity in third instar Drosophila melanogaster larvae.

    PubMed

    Graham, Stephanie; Rogers, Ryan P; Alper, Richard H

    2016-01-01

    The purpose of these studies was to describe a novel application of an automated data acquisition/data reduction system, DanioVision™ by Noldus. DanioVision™ has the ability to detect changes in locomotor activity in third instar Drosophila melanogaster larvae. The noncompetitive GABAA receptor antagonist picrotoxin (PTX), was used as a pharmacologic agent to decrease locomotor activity. Two strains of Drosophila were used in these studies; wild-type flies and flies with a mutation in the Rdl gene (Rdl(MD-RR)). Rdl(MD-RR)Drosophila are naturally occurring mutants that express an aberrant form of the GABAA receptor, which has a lower affinity for PTX, but not GABA itself. Larvae, extracted from food in 20% sucrose, were randomly placed into vials containing vehicle or PTX (0.03-3mM). After incubation of 2-24h, individual larvae were put in each well of a 6-well culture plate previously coated with 2% agar, the plate was then placed in the DanioVision™ apparatus. The activity of individual larva was recorded for 5 min, digitized and analyzed using Ethovision® XT software. Incubation of third instar wild-type larvae in 1mM PTX for 4 or 24h decreased activity; whereas, a 2h incubation in PTX was without effect. PTX caused a concentration-dependent decrease in activity as demonstrated by consistently reduced locomotor activity with 1.0 and 3.0mM: 0.3mM resulted in variable decreases in locomotor activity and 0.03 mM yielded no effect. By contrast, PTX did not affect activity in Rdl(MD-RR) larvae even at the highest concentration, 3.0mM. Using an automated data acquisition system, it was found that PTX decreases activity in third instar Drosophila larvae due to a selective blockade of the GABAA receptor. The method will reduce the likelihood of human error and bias, as well as increase the speed and ease of data collection and analysis. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Quantification of locomotor activity in larval zebrafish: considerations for the design of high-throughput behavioral studies

    PubMed Central

    Ingebretson, Justin J.; Masino, Mark A.

    2013-01-01

    High-throughput behavioral studies using larval zebrafish often assess locomotor activity to determine the effects of experimental perturbations. However, the results reported by different groups are difficult to compare because there is not a standardized experimental paradigm or measure of locomotor activity. To address this, we investigated the effects that several factors, including the stage of larval development and the physical dimensions (depth and diameter) of the behavioral arena, have on the locomotor activity produced by larval zebrafish. We provide evidence for differences in locomotor activity between larvae at different stages and when recorded in wells of different depths, but not in wells of different diameters. We also show that the variability for most properties of locomotor activity is less for older than younger larvae, which is consistent with previous reports. Finally, we show that conflicting interpretations of activity level can occur when activity is assessed with a single measure of locomotor activity. Thus, we conclude that although a combination of factors should be considered when designing behavioral experiments, the use of older larvae in deep wells will reduce the variability of locomotor activity, and that multiple properties of locomotor activity should be measured to determine activity level. PMID:23772207

  19. Voluntary locomotor activity mitigates oxidative damage associated with isolation stress in the prairie vole (Microtus ochrogaster).

    PubMed

    Fletcher, Kelsey L; Whitley, Brittany N; Treidel, Lisa A; Thompson, David; Williams, Annie; Noguera, Jose C; Stevenson, Jennie R; Haussmann, Mark F

    2015-07-01

    Organismal performance directly depends on an individual's ability to cope with a wide array of physiological challenges. For social animals, social isolation is a stressor that has been shown to increase oxidative stress. Another physiological challenge, routine locomotor activity, has been found to decrease oxidative stress levels. Because we currently do not have a good understanding of how diverse physiological systems like stress and locomotion interact to affect oxidative balance, we studied this interaction in the prairie vole (Microtus ochrogaster). Voles were either pair housed or isolated and within the isolation group, voles either had access to a moving wheel or a stationary wheel. We found that chronic periodic isolation caused increased levels of oxidative stress. However, within the vole group that was able to run voluntarily, longer durations of locomotor activity were associated with less oxidative stress. Our work suggests that individuals who demonstrate increased locomotor activity may be better able to cope with the social stressor of isolation. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  20. The Role of Storage Lipids in the Relation between Fecundity, Locomotor Activity, and Lifespan of Drosophila melanogaster Longevity-Selected and Control Lines

    PubMed Central

    Nasiri Moghadam, Neda; Holmstrup, Martin; Manenti, Tommaso; Brandt Mouridsen, Marie; Pertoldi, Cino; Loeschcke, Volker

    2015-01-01

    The contribution of insect fat body to multiple processes, such as development, metamorphosis, activity, and reproduction results in trade-offs between life history traits. In the present study, age-induced modulation of storage lipid composition in Drosophila melanogaster longevity-selected (L) and non-selected control (C) lines was studied and the correlation between total body fat mass and lifespan assessed. The trade-offs between fecundity, locomotor activity, and lifespan were re-evaluated from a lipid-related metabolic perspective. Fewer storage lipids in the L lines compared to the C lines supports the impact of body fat mass on extended lifespan. The higher rate of fecundity and locomotor activity in the L lines may increase the lipid metabolism and enhance the lipolysis of storage lipids, reducing fat reserves. The correlation between neutral lipid fatty acids and fecundity, as well as locomotor activity, varied across age groups and between the L and C lines. The fatty acids that correlated with egg production were different from the fatty acids that correlated with locomotor activity. The present study suggests that fecundity and locomotor activity may positively affect the lifespan of D. melanogaster through the inhibition of fat accumulation. PMID:26115349

  1. Automated locomotor activity monitoring as a quality control assay for mass-reared tephritid flies.

    PubMed

    Dominiak, Bernard C; Fanson, Benjamin G; Collins, Samuel R; Taylor, Phillip W

    2014-02-01

    The Sterile Insect Technique (SIT) requires vast numbers of consistently high quality insects to be produced over long periods. Quality control (QC) procedures are critical to effective SIT, both providing quality assurance and warning of operational deficiencies. We here present a potential new QC assay for mass rearing of Queensland fruit flies (Bactrocera tryoni Froggatt) for SIT; locomotor activity monitoring. We investigated whether automated locomotor activity monitors (LAMs) that simply detect how often a fly passes an infrared sensor in a glass tube might provide similar insights but with much greater economy. Activity levels were generally lower for females than for males, and declined over five days in the monitor for both sexes. Female activity levels were not affected by irradiation, but males irradiated at 60 or 70 Gy had reduced activity levels compared with unirradiated controls. We also found some evidence that mild heat shock of pupae results in adults with reduced activity. LAM offers a convenient, effective and economical assay to probe such changes. © 2013 Society of Chemical Industry.

  2. Reduced synaptic density and deficient locomotor response in neuronal activity-regulated pentraxin 2a mutant zebrafish.

    PubMed

    Elbaz, Idan; Lerer-Goldshtein, Tali; Okamoto, Hitoshi; Appelbaum, Lior

    2015-04-01

    Neuronal-activity-regulated pentraxin (NARP/NPTX2/NP2) is a secreted synaptic protein that regulates the trafficking of glutamate receptors and mediates learning, memory, and drug addiction. The role of NPTX2 in regulating structural synaptic plasticity and behavior in a developing vertebrate is indefinite. We characterized the expression of nptx2a in larvae and adult zebrafish and established a transcription activator-like effector nuclease (TALEN)-mediated nptx2a mutant (nptx2a(-/-)) to study the role of Nptx2a in regulating structural synaptic plasticity and behavior. Similar to mammals, the zebrafish nptx2a was expressed in excitatory neurons in the brain and spinal cord. Its expression was induced in response to a mechanosensory stimulus but did not change during day and night. Behavioral assays showed that loss of Nptx2a results in reduced locomotor response to light-to-dark transition states and to a sound stimulus. Live imaging of synapses using the transgenic nptx2a:GAL4VP16 zebrafish and a fluorescent presynaptic synaptophysin (SYP) marker revealed reduced synaptic density in the axons of the spinal motor neurons and the anterodorsal lateral-line ganglion (gAD), which regulate locomotor activity and locomotor response to mechanosensory stimuli, respectively. These results suggest that Nptx2a affects locomotor response to external stimuli by mediating structural synaptic plasticity in excitatory neuronal circuits. © FASEB.

  3. Neonatal programming with testosterone propionate reduces dopamine transporter expression in nucleus accumbens and methylphenidate-induced locomotor activity in adult female rats.

    PubMed

    Dib, Tatiana; Martínez-Pinto, Jonathan; Reyes-Parada, Miguel; Torres, Gonzalo E; Sotomayor-Zárate, Ramón

    2018-07-02

    Research in programming is focused on the study of stimuli that alters sensitive periods in development, such as prenatal and neonatal stages, that can produce long-term deleterious effects. These effects can occur in various organs or tissues such as the brain, affecting brain circuits and related behaviors. Our laboratory has demonstrated that neonatal programming with sex hormones affects the mesocorticolimbic circuitry, increasing the synthesis and release of dopamine (DA) in striatum and nucleus accumbens (NAcc). However, the behavioral response to psychostimulant drugs such as methylphenidate and the possible mechanism(s) involved have not been studied in adult rats exposed to sex hormones during the first hours of life. Thus, the aim of this study was to examine the locomotor activity induced by methylphenidate (5mg/kg i.p.) and the expression of the DA transporter (DAT) in NAcc of adult rats exposed to a single dose of testosterone propionate (TP: 1mg/50μLs.c.) or estradiol valerate (EV: 0.1mg/50μLs.c.) at postnatal day 1. Our results demonstrated that adult female rats treated with TP have a lower methylphenidate-induced locomotor activity compared to control and EV-treated adult female rats. This reduction in locomotor activity is related with a lower NAcc DAT expression. However, neither methylphenidate-induced locomotor activity nor NAcc DAT expression was affected in EV or TP-treated adult male rats. Our results suggest that early exposure to sex hormones affects long-term dopaminergic brain areas involved in the response to psychostimulants, which could be a vulnerability factor to favor the escalating doses of drugs of abuse. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Cocaine locomotor activation, sensitization and place preference in six inbred strains of mice

    PubMed Central

    2011-01-01

    Background The expanding set of genomics tools available for inbred mouse strains has renewed interest in phenotyping larger sets of strains. The present study aims to explore phenotypic variability among six commonly-used inbred mouse strains to both the rewarding and locomotor stimulating effects of cocaine in a place conditioning task, including several strains or substrains that have not yet been characterized for some or all of these behaviors. Methods C57BL/6J (B6), BALB/cJ (BALB), C3H/HeJ (C3H), DBA/2J (D2), FVB/NJ (FVB) and 129S1/SvImJ (129) mice were tested for conditioned place preference to 20 mg/kg cocaine. Results Place preference was observed in most strains with the exception of D2 and 129. All strains showed a marked increase in locomotor activity in response to cocaine. In BALB mice, however, locomotor activation was context-dependent. Locomotor sensitization to repeated exposure to cocaine was most significant in 129 and D2 mice but was absent in FVB mice. Conclusions Genetic correlations suggest that no significant correlation between conditioned place preference, acute locomotor activation, and locomotor sensitization exists among these strains indicating that separate mechanisms underlie the psychomotor and rewarding effects of cocaine. PMID:21806802

  5. Locomotor activity, object exploration and space preference in children with autism and Down syndrome.

    PubMed

    Kawa, Rafał; Pisula, Ewa

    2010-01-01

    There have been ambiguous accounts of exploration in children with intellectual disabilities with respect to the course of that exploration, and in particular the relationship between the features of explored objects and exploratory behaviour. It is unclear whether reduced exploratory activity seen with object exploration but not with locomotor activity is autism-specific or if it is also present in children with other disabilities. The purpose of the present study was to compare preschool children with autism with their peers with Down syndrome and typical development in terms of locomotor activity and object exploration and to determine whether the complexity of explored objects affects the course of exploration activity in children with autism. In total there were 27 children in the study. The experimental room was divided into three zones equipped with experimental objects providing visual stimulation of varying levels of complexity. Our results indicate that children with autism and Down syndrome differ from children with typical development in terms of some measures of object exploration (i.e. looking at objects) and time spent in the zone with the most visually complex objects.

  6. Levamisole enhances the rewarding and locomotor-activating effects of cocaine in rats.

    PubMed

    Tallarida, Christopher S; Tallarida, Ronald J; Rawls, Scott M

    2015-04-01

    The Drug Enforcement Agency estimates that 80% of cocaine seized in the United States contains the veterinary pharmaceutical levamisole (LVM). One problem with LVM is that it is producing life-threatening neutropenia in an alarming number of cocaine abusers. The neuropharmacological profile of LVM is also suggestive of an agent with modest reinforcing and stimulant effects that could enhance cocaine's addictive effects. We tested the hypothesis that LVM (ip) enhances the rewarding and locomotor stimulant effects of cocaine (ip) using rat conditioned place preference (CPP) and locomotor assays. Effects of LVM by itself were also tested. LVM (0-10 mg/kg) produced CPP at 1mg/kg (P<0.05) and locomotor activation at 5mg/kg (P < 0.05). For CPP combination experiments, a statistically inactive dose of LVM (0.1 mg/kg) was administered with a low dose of cocaine (2.5 mg/kg). Neither agent produced CPP compared to saline (P > 0.05); however, the combination of LVM and cocaine produced enhanced CPP compared to saline or either drug by itself (P < 0.01). For locomotor experiments, the same inactive dose of LVM (0.1mg/kg, ip) was administered with low (10 mg/kg) and high doses (30 mg/kg) of cocaine. LVM (0.1 mg/kg) enhanced locomotor activation produced by 10mg/kg of cocaine (P < 0.05) but not by 30 mg/kg (P>0.05). LVM can enhance rewarding and locomotor-activating effects of low doses of cocaine in rats while possessing modest activity of its own. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Circadian Clock Protein Content and Daily Rhythm of Locomotor Activity Are Altered after Chronic Exposure to Lead in Rat

    PubMed Central

    Sabbar, Mariam; Dkhissi-Benyahya, Ouria; Benazzouz, Abdelhamid; Lakhdar-Ghazal, Nouria

    2017-01-01

    Lead exposure has been reported to produce many clinical features, including parkinsonism. However, its consequences on the circadian rhythms are still unknown. Here we aimed to examine the circadian rhythms of locomotor activity following lead intoxication and investigate the mechanisms by which lead may induce alterations of circadian rhythms in rats. Male Wistar rats were injected with lead or sodium acetate (10 mg/kg/day, i.p.) during 4 weeks. Both groups were tested in the “open field” to quantify the exploratory activity and in the rotarod to evaluate motor coordination. Then, animals were submitted to continuous 24 h recordings of locomotor activity under 14/10 Light/dark (14/10 LD) cycle and in complete darkness (DD). At the end of experiments, the clock proteins BMAL1, PER1-2, and CRY1-2 were assayed in the suprachiasmatic nucleus (SCN) using immunohistochemistry. We showed that lead significantly reduced the number of crossing in the open field, impaired motor coordination and altered the daily locomotor activity rhythm. When the LD cycle was advanced by 6 h, both groups adjusted their daily locomotor activity to the new LD cycle with high onset variability in lead-intoxicated rats compared to controls. Lead also led to a decrease in the number of immunoreactive cells (ir-) of BMAL1, PER1, and PER2 without affecting the number of ir-CRY1 and ir-CRY2 cells in the SCN. Our data provide strong evidence that lead intoxication disturbs the rhythm of locomotor activity and alters clock proteins expression in the SCN. They contribute to the understanding of the mechanism by which lead induce circadian rhythms disturbances. PMID:28970786

  8. Elimination of Left-Right Reciprocal Coupling in the Adult Lamprey Spinal Cord Abolishes the Generation of Locomotor Activity

    PubMed Central

    Messina, J. A.; St. Paul, Alison; Hargis, Sarah; Thompson, Wengora E.; McClellan, Andrew D.

    2017-01-01

    The contribution of left-right reciprocal coupling between spinal locomotor networks to the generation of locomotor activity was tested in adult lampreys. Muscle recordings were made from normal animals as well as from experimental animals with rostral midline (ML) spinal lesions (~13%→35% body length, BL), before and after spinal transections (T) at 35% BL. Importantly, in the present study actual locomotor movements and muscle burst activity, as well as other motor activity, were initiated in whole animals by descending brain-spinal pathways in response to sensory stimulation of the anterior head. For experimental animals with ML spinal lesions, sensory stimulation could elicit well-coordinated locomotor muscle burst activity, but with some significant differences in the parameters of locomotor activity compared to those for normal animals. Computer models representing normal animals or experimental animals with ML spinal lesions could mimic many of the differences in locomotor activity. For experimental animals with ML and T spinal lesions, right and left rostral hemi-spinal cords, disconnected from intact caudal cord, usually produced tonic or unpatterned muscle activity. Hemi-spinal cords sometimes generated spontaneous or sensory-evoked relatively high frequency “burstlet” activity that probably is analogous to the previously described in vitro “fast rhythm”, which is thought to represent lamprey locomotor activity. However, “burstlet” activity in the present study had parameters and features that were very different than those for lamprey locomotor activity: average frequencies were ~25 Hz, but individual frequencies could be >50 Hz; burst proportions (BPs) often varied with cycled time; “burstlet” activity usually was not accompanied by a rostrocaudal phase lag; and following ML spinal lesions alone, “burstlet” activity could occur in the presence or absence of swimming burst activity, suggesting the two were generated by different

  9. Effect of injection of antisense oligodeoxynucleotides of GAD isozymes into rat ventromedial hypothalamus on food intake and locomotor activity.

    PubMed

    Bannai, M; Ichikawa, M; Nishihara, M; Takahashi, M

    1998-02-16

    In the ventromedial hypothalamus (VMH), gamma-aminobutyric acid (GABA) plays a role in regulating feeding and running behaviors. The GABA synthetic enzyme, glutamic acid decarboxylase (GAD), consists of two isozymes, GAD65 and GAD67. In the present study, the phosphorothioated antisense oligodeoxynucleotides (ODNs) of each GAD isozyme were injected bilaterally into the VMH of male rats, and food intake, body weight and locomotor activity were monitored. ODNs were incorporated in the water-absorbent polymer (WAP, 0.2 nmol/microliter) so that ODNs were retained at the injection site. Each antisense ODN of GAD65 or GAD67 tended to reduce food intake on day 1 (day of injection=day 0) though not significantly. An injection combining both antisense ODNs significantly decreased food intake only on day 1, but body weight remained significantly lower than the control for 5 days. This suppression of body weight gain could be attributed to a significant increase in locomotor activity between days 3 and 5. Individual treatment with either ODNs did not change locomotor activity. The increase in daily locomotor activity in the group receiving the combined antisense ODNs occurred mainly during the light phase. Neither vehicle (WAP) nor control ODN affected food intake, body weight and locomotor activity. Histological studies indicated that antisense ODN distributed within 800 micron from the edge of the area where WAP was located 24 h after the injection gradually disappeared within days, but still remained within 300 micron m distance even 7 days after the injection. Antisense ODN was effectively incorporated by all the cell types examined, i.e., neurons, astrocytes and microglias. Further, HPLC analysis revealed that antisense ODNs of GAD isozymes, either alone or combined, decreased the content of GABA by 50% in VMH 24 h after the injection. These results indicate that suppression of GABA synthesis by either of the GAD isozymes is synergistically involved in suppressing food

  10. Neurochemical factors underlying individual differences in locomotor activity and anxiety-like behavioral responses in zebrafish.

    PubMed

    Tran, Steven; Nowicki, Magda; Muraleetharan, Arrujyan; Chatterjee, Diptendu; Gerlai, Robert

    2016-02-04

    Variation among individuals may arise for several reasons, and may have diverse underlying mechanisms. Individual differences have been studied in a variety of species, but recently a new model organism has emerged in this field that offers both sophistication in phenotypical characterization and powerful mechanistic analysis. Recently, zebrafish, one of the favorites of geneticists, have been shown to exhibit consistent individual differences in baseline locomotor activity. In the current study, we further explore this finding and examine whether individual differences in locomotor activity correlate with anxiety-like behavioral measures and with levels of dopamine, serotonin and the metabolites of these neurotransmitters. In addition, we examine whether individual differences in locomotor activity are also associated with reactivity to the locomotor stimulant effects of and neurochemical responses to acute ethanol exposure (30min long, 1% v/v ethanol bath application). Principal component analyses revealed a strong association among anxiety-like responses, locomotor activity, serotonin and dopamine levels. Furthermore, ethanol exposure was found to abolish the locomotion-dependent anxiety-like behavioral and serotonergic responses suggesting that this drug also engages a common underlying pathway. Overall, our results provide support for an important role of the serotonergic system in mediating individual differences in anxiety-like responses and locomotor activity in zebrafish and for a minor modulatory role of the dopaminergic system. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Anxiolytic-Like Effects and Increase in Locomotor Activity Induced by Infusions of NMDA into the Ventral Hippocampus in Rat: Interaction with GABAergic System.

    PubMed

    Bina, Payvand; Rezvanfard, Mehrnaz; Ahmadi, Shamseddin; Zarrindast, Mohammad Reza

    2014-10-01

    In this study, we investigated the role of N-Methyl-D-Aspartate (NMDA) receptors in the ventral hippocampus (VH) and their possible interactions with GABAA system on anxiety-like behaviors. We used an elevated-plus maze test (EPM) to assess anxiety-like behaviors and locomotor activity in male Wistar rats. The results showed that intra-VH infusions of different doses of NMDA (0.25 and 0.5 μg/rat) increased locomotor activity, and also induced anxiolytic-like behaviors, as revealed by a tendency to increase percentage of open arm time (%OAT), and a significant increase in percentage of open arm entries (%OAE). The results also showed that intra-VH infusions of muscimol (0.5 and 1 μg/rat) or bicuculline (0.5 and 1 μg/rat) did not significantly affect anxiety-like behaviors, but bicuculline at dose of 1 μg/rat increased locomotor activity. Intra-VH co-infusions of muscimol (0.5 μg/rat) along with low doses of NMDA (0.0625 and 0.125 μg/rat) showed a tendency to increase %OAT, %OAE and locomotor activity; however, no interaction was observed between the drugs. Interestingly, intra-VH co-infusions of bicuculline (0.5 μg/rat) along with effective doses of NMDA (0.25 and 0.5 μg/rat) decreased %OAT, %OAE and locomotor activity, and a significant interaction between two drugs was observed. It can be concluded that GABAergic system may mediate the anxiolytic-like effects and increase in locomotor activity induced by NMDA in the VH.

  12. Inhibition of GABA synthesis in the prefrontal cortex increases locomotor activity but does not affect attention in the 5-choice serial reaction time task.

    PubMed

    Asinof, Samuel K; Paine, Tracie A

    2013-02-01

    Attention deficits are a core cognitive symptom of schizophrenia; the neuropathology underlying these deficits is not known. Attention is regulated, at least in part, by the prefrontal cortex (PFC), a brain area in which pathology of γ-aminobutyric acid (GABA) neurons has been consistently observed in post-mortem analysis of the brains of people with schizophrenia. Specifically, expression of the 67-kD isoform of the GABA synthesis enzyme glutamic acid decarboxylase (GAD67) is reduced in parvalbumin-containing fast-spiking GABA interneurons. Thus it is hypothesized that reduced cortical GABA synthesis and release may contribute to the attention deficits in schizophrenia. Here the effect of reducing cortical GABA synthesis with l-allylglycine (LAG) on attention was tested using three different versions of the 5-choice serial reaction time task (5CSRTT). Because 5CSRTT performance can be affected by locomotor activity, we also measured this behavior in an open field. Finally, the expression of Fos protein was used as an indirect measure of reduced GABA synthesis. Intra-cortical LAG (10 μg/0.5 μl/side) infusions increased Fos expression and resulted in hyperactivity in the open field. Intra-cortical LAG infusions did not affect attention in any version of the 5CSRTT. These results suggest that a general decrease in GABA synthesis is not sufficient to cause attention deficits. It remains to be tested whether a selective decrease in GABA synthesis in parvalbumin-containing GABA neurons could cause attention deficits. Decreased cortical GABA synthesis did increase locomotor activity; this may reflect the positive symptoms of schizophrenia. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Manipulation of dopamine metabolism contributes to attenuating innate high locomotor activity in ICR mice.

    PubMed

    Yamaguchi, Takeshi; Nagasawa, Mao; Ikeda, Hiromi; Kodaira, Momoko; Minaminaka, Kimie; Chowdhury, Vishwajit S; Yasuo, Shinobu; Furuse, Mitsuhiro

    2017-06-15

    Attention-deficit hyperactivity disorder (ADHD) is defined as attention deficiency, restlessness and distraction. The main characteristics of ADHD are hyperactivity, impulsiveness and carelessness. There is a possibility that these abnormal behaviors, in particular hyperactivity, are derived from abnormal dopamine (DA) neurotransmission. To elucidate the mechanism of high locomotor activity, the relationship between innate activity levels and brain monoamines and amino acids was investigated in this study. Differences in locomotor activity between ICR, C57BL/6J and CBA/N mice were determined using the open field test. Among the three strains, ICR mice showed the greatest amount of locomotor activity. The level of striatal and cerebellar DA was lower in ICR mice than in C57BL/6J mice, while the level of L-tyrosine (L-Tyr), a DA precursor, was higher in ICR mice. These results suggest that the metabolic conversion of L-Tyr to DA is lower in ICR mice than it is in C57BL/6J mice. Next, the effects of intraperitoneal injection of (6R)-5, 6, 7, 8-tetrahydro-l-biopterin dihydrochloride (BH 4 ) (a co-enzyme for tyrosine hydroxylase) and L-3,4-dihydroxyphenylalanine (L-DOPA) on DA metabolism and behavior in ICR mice were investigated. The DA level in the brain was increased by BH 4 administration, but the increased DA did not influence behavior. However, L-DOPA administration drastically lowered locomotor activity and increased DA concentration in several parts of the brain. The reduced locomotor activity may have been a consequence of the overproduction of DA. In conclusion, the high level of locomotor activity in ICR mice may be explained by a strain-specific DA metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Locomotor activity modulates associative learning in mouse cerebellum.

    PubMed

    Albergaria, Catarina; Silva, N Tatiana; Pritchett, Dominique L; Carey, Megan R

    2018-05-01

    Changes in behavioral state can profoundly influence brain function. Here we show that behavioral state modulates performance in delay eyeblink conditioning, a cerebellum-dependent form of associative learning. Increased locomotor speed in head-fixed mice drove earlier onset of learning and trial-by-trial enhancement of learned responses that were dissociable from changes in arousal and independent of sensory modality. Eyelid responses evoked by optogenetic stimulation of mossy fiber inputs to the cerebellum, but not at sites downstream, were positively modulated by ongoing locomotion. Substituting prolonged, low-intensity optogenetic mossy fiber stimulation for locomotion was sufficient to enhance conditioned responses. Our results suggest that locomotor activity modulates delay eyeblink conditioning through increased activation of the mossy fiber pathway within the cerebellum. Taken together, these results provide evidence for a novel role for behavioral state modulation in associative learning and suggest a potential mechanism through which engaging in movement can improve an individual's ability to learn.

  15. Effect of thermal acclimation on locomotor energetics and locomotor performance in a lungless salamander, Desmognathus ochrophaeus.

    PubMed

    Feder, M E

    1986-03-01

    To determine the effects of thermal acclimation upon locomotor performance and the rate of oxygen consumption (MO2) during activity, small (less than 3 g), lungless salamanders, Desmognathus ochrophaeus Cope, were acclimated to three temperatures (5, 13 and 21 degrees C) and exercised at various controlled speeds within an exercise wheel while their MO2 was measured. MO2 increased with speed at low speeds (less than 14 cm min-1). Although animals could sustain greater speeds, MO2 did not increase further. These small, exclusively skin-breathing salamanders could increase their MO2 9-11 times during exercise and could sustain nearly half of the oxygen flux expected across a similar surface area of the mammalian lung. However, their maximum aerobic speed was remarkably slow (14 cm min-1) and their net cost of transport remarkably large (15-17 ml O2 g-1 km-1). Thermal acclimation affected MO2 during activity, the maximum sustainable speed and locomotor stamina in different ways. During exercise at 13 degrees C, cold-acclimated animals had a significantly greater MO2 than warm-acclimated animals, but did not differ in stamina or the maximum sustainable speed. During exercise at 21 degrees C, cold acclimation did not affect the MO2 significantly, but it decreased the stamina and increased the rate of lactate accumulation. Thus, these results suggest that thermal acclimation of the MO2 is not tightly coupled to thermal acclimation of locomotor performance in salamanders.

  16. Evaluation of a wireless activity monitoring system to quantify locomotor activity in horses in experimental settings.

    PubMed

    Fries, M; Montavon, S; Spadavecchia, C; Levionnois, O L

    2017-03-01

    Methods of evaluating locomotor activity can be useful in efforts to quantify behavioural activity in horses objectively. To evaluate whether an accelerometric device would be adequate to quantify locomotor activity and step frequency in horses, and to distinguish between different levels of activity and different gaits. Observational study in an experimental setting. Dual-mode (activity and step count) piezo-electric accelerometric devices were placed at each of 4 locations (head, withers, forelimb and hindlimb) in each of 6 horses performing different controlled activities including grazing, walking at different speeds, trotting and cantering. Both the activity count and step count were recorded and compared by the various activities. Statistical analyses included analysis of variance for repeated measures, receiver operating characteristic curves, Bland-Altman analysis and linear regression. The accelerometric device was able to quantify locomotor activity at each of the 4 locations investigated and to distinguish between gaits and speeds. The activity count recorded by the accelerometer placed on the hindlimb was the most accurate, displaying a clear discrimination between the different levels of activity and a linear correlation to speed. The accelerometer placed on the head was the only one to distinguish specifically grazing behaviour from standing. The accelerometer placed on the withers was unable to differentiate different gaits and activity levels. The step count function measured at the hindlimb was reliable but the count was doubled at the walk. The dual-mode accelerometric device was sufficiently accurate to quantify and compare locomotor activity in horses moving at different speeds and gaits. Positioning the device on the hindlimb allowed for the most accurate results. The step count function can be useful but must be manually corrected, especially at the walk. © 2016 EVJ Ltd.

  17. Differences in the locomotor-activating effects of indirect serotonin agonists in habituated and non-habituated rats.

    PubMed

    Halberstadt, Adam L; Buell, Mahálah R; Price, Diana L; Geyer, Mark A

    2012-07-01

    The indirect serotonin (5-HT) agonist 3,4-methylenedioxymethamphetamine (MDMA) produces a distinct behavioral profile in rats consisting of locomotor hyperactivity, thigmotaxis, and decreased exploration. The indirect 5-HT agonist α-ethyltryptamine (AET) produces a similar behavioral profile. Using the Behavioral Pattern Monitor (BPM), the present investigation examined whether the effects of MDMA and AET are dependent on the novelty of the testing environment. These experiments were conducted in Sprague-Dawley rats housed on a reversed light cycle and tested during the dark phase of the light/dark cycle. We found that racemic MDMA (RS-MDMA; 3 mg/kg, SC) increased locomotor activity in rats tested in novel BPM chambers, but had no effect on locomotor activity in rats habituated to the BPM chambers immediately prior to testing. Likewise, AET (5 mg/kg, SC) increased locomotor activity in non-habituated animals but not in animals habituated to the test chambers. These results were unexpected because previous reports indicate that MDMA has robust locomotor-activating effects in habituated animals. To further examine the influence of habituation on MDMA-induced locomotor activity, we conducted parametric studies with S-(+)-MDMA (the more active enantiomer) in habituated and non-habituated rats housed on a standard or reversed light cycle. Light cycle was included as a variable due to reported differences in sensitivity to serotonergic ligands during the dark and light phases. In confirmation of our initial studies, rats tested during the dark phase and habituated to the BPM did not show an S-(+)-MDMA (3 mg/kg, SC)-induced increase in locomotor activity, whereas non-habituated rats did. By contrast, in rats tested during the light phase, S-(+)-MDMA increased locomotor activity in both non-habituated and habituated rats, although the response in habituated animals was attenuated. The finding that habituation and light cycle interact to influence MDMA- and AET

  18. Interrupted breeding in a songbird migrant triggers development of nocturnal locomotor activity.

    PubMed

    Mukhin, Andrey; Kobylkov, Dmitry; Kishkinev, Dmitry; Grinkevich, Vitaly

    2018-04-03

    Long-distance avian migrants, e.g. Eurasian reed warblers (Acrocephalus scirpaceus), can precisely schedule events of their annual cycle. However, the proximate mechanisms controlling annual cycle and their interplay with environmental factors are poorly understood. We artificially interrupted breeding in reed warblers by bringing them into captivity and recording birds' locomotor activity for 5-7 days. Over this time, most of the captive birds gradually developed nocturnal locomotor activity not observed in breeding birds. When the birds were later released and radio-tracked, the individuals with highly developed caged activity performed nocturnal flights. We also found that reed warblers kept indoors without access to local cues developed a higher level of nocturnal activity compared to the birds kept outdoors with an access to the familiar environment. Also, birds translocated from a distant site (21 km) had a higher motivation to fly at night-time after release compared to the birds captured within 1 km of a study site. Our study suggests that an interrupted breeding triggers development of nocturnal locomotor activity in cages, and the level of activity is correlated with motivation to perform nocturnal flights in the wild, which can be restrained by familiar environment.

  19. Locomotor Behaviour of Blattella germanica Modified by DEET

    PubMed Central

    Sfara, Valeria; Mougabure-Cueto, Gastón A.; Zerba, Eduardo N.; Alzogaray, Raúl A.

    2013-01-01

    N,N-diethyl-3-methylbenzamide (DEET) is the active principle of most insect repellents used worldwide. However, its toxicity on insects has not been widely studied. The aim of this work is to study the effects of DEET on the locomotor activity of Blattella germanica. DEET has a dose-dependent repellent activity on B. germanica. Locomotor activity was significantly lower when insects were pre-exposed to 700 µg/cm2 of DEET for 20 or 30 minutes, but it did not change when pre-exposure was shorter. Locomotor activity of insects that were pre-exposed to 2.000 µg/cm2 of DEET for 10 minutes was significantly lower than the movement registered in controls. No differences were observed when insects were pre-exposed to lower concentrations of DEET. A 30-minute pre-exposure to 700 µg/cm2 of DEET caused a significant decrease in locomotor activity. Movement was totally recovered 24 h later. The locomotor activity measured during the exposure to different concentrations of DEET remained unchanged. Insects with decreased locomotor activity were repelled to the same extent than control insects by the same concentration of DEET. We demonstrated that the repellency and modification of locomotor activity elicited by DEET are non-associated phenomena. We also suggested that the reduction in locomotor activity indicates toxicity of DEET, probably to insect nervous system. PMID:24376701

  20. Locomotor behaviour of Blattella germanica modified by DEET.

    PubMed

    Sfara, Valeria; Mougabure-Cueto, Gastón A; Zerba, Eduardo N; Alzogaray, Raúl A

    2013-01-01

    N,N-diethyl-3-methylbenzamide (DEET) is the active principle of most insect repellents used worldwide. However, its toxicity on insects has not been widely studied. The aim of this work is to study the effects of DEET on the locomotor activity of Blattella germanica. DEET has a dose-dependent repellent activity on B. germanica. Locomotor activity was significantly lower when insects were pre-exposed to 700 µg/cm(2) of DEET for 20 or 30 minutes, but it did not change when pre-exposure was shorter. Locomotor activity of insects that were pre-exposed to 2.000 µg/cm(2) of DEET for 10 minutes was significantly lower than the movement registered in controls. No differences were observed when insects were pre-exposed to lower concentrations of DEET. A 30-minute pre-exposure to 700 µg/cm(2) of DEET caused a significant decrease in locomotor activity. Movement was totally recovered 24 h later. The locomotor activity measured during the exposure to different concentrations of DEET remained unchanged. Insects with decreased locomotor activity were repelled to the same extent than control insects by the same concentration of DEET. We demonstrated that the repellency and modification of locomotor activity elicited by DEET are non-associated phenomena. We also suggested that the reduction in locomotor activity indicates toxicity of DEET, probably to insect nervous system.

  1. Cortisol treatment affects locomotor activity and swimming behaviour of male smallmouth bass engaged in paternal care: A field study using acceleration biologgers.

    PubMed

    Algera, Dirk A; Brownscombe, Jacob W; Gilmour, Kathleen M; Lawrence, Michael J; Zolderdo, Aaron J; Cooke, Steven J

    2017-11-01

    Paternal care, where the male provides sole care for the developing brood, is a common form of reproductive investment among teleost fish and ubiquitous in the Centrarchidae family. Throughout the parental care period, nesting males expend energy in a variety of swimming behaviours, including routine and burst swimming, vigilantly monitoring the nest area and protecting the brood from predators. Parental care is an energetically demanding period, which is presumably made even more difficult if fish are exposed to additional challenges such as those arising from human disturbance, resulting in activation of the hypothalamic-pituitary-interrenal axis (i.e., elevation of cortisol). To study this situation, we examined the effects of experimental manipulation of the stress hormone cortisol on locomotor activity and behaviour of nest guarding male smallmouth bass (Micropterus dolomieu). We exogenously elevated circulating cortisol levels (via intracoelomic implants) and attached tri-axial accelerometers to wild smallmouth bass for three days. During the recovery period (i.e., ≤4h post-release), cortisol-treated fish exhibited significantly reduced locomotor activity and performed significantly less burst and routine swimming relative to control fish, indicating cortisol uptake was rapid, as were the associated behavioural responses. Post-recovery (i.e., >4h post-release), fish with high cortisol exhibited lower locomotor activity and reduced routine swimming relative to controls. Fish were less active and reduced routine and burst swimming at night compared to daylight hours, an effect independent of cortisol treatment. Collectively, our results suggest that cortisol treatment (as a proxy for anthropogenic disturbance and stress) contributed to altered behaviour, and consequently cortisol-treated males decreased parental investment in their brood, which could have potential fitness implications. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Effect of Environmental Conditions and Toxic Compounds on the Locomotor Activity of Pediculus humanus capitis (Phthiraptera: Pediculidae).

    PubMed

    Ortega-Insaurralde, I; Toloza, A C; Gonzalez-Audino, P; Mougabure-Cueto, G A; Alvarez-Costa, A; Roca-Acevedo, G; Picollo, M I

    2015-09-01

    In this work, we evaluated the effect of environmental variables such as temperature, humidity, and light on the locomotor activity of Pediculus humanus capitis. In addition, we used selected conditions of temperature, humidity, and light to study the effects of cypermethrin and N,N-diethyl-3-methylbenzamide (DEET) on the locomotor activity of head lice. Head lice increased their locomotor activity in an arena at 30°C compared with activity at 20°C. When we tested the influence of the humidity level, the locomotor activity of head lice showed no significant differences related to humidity level, both at 30°C and 20°C. Concerning light influence, we observed that the higher the intensity of light, the slower the movement of head lice. We also demonstrated that sublethal doses of toxics may alter locomotor activity in adults of head lice. Sublethal doses of cypermethrin induced hyperactivated responses in adult head lice. Sublethal doses of DEET evocated hypoactivated responses in head lice. The observation of stereotyped behavior in head lice elicited by toxic compounds proved that measuring locomotor activity in an experimental set-up where environmental conditions are controlled would be appropriate to evaluate compounds of biological importance, such as molecules involved in the host-parasite interaction and intraspecific relationships. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. DRUG EFFECTS ON THE LOCOMOTOR ACTIVITY OF LARVAL ZEBRAFISH.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae and the effects of prototype drugs. Zebrafish larvae (6-7 days post-fertilization) were indiv...

  4. Descriptive epidemiology of physical activity in university graduates with locomotor disabilities.

    PubMed

    Washburn, R; Hedrick, B N

    1997-09-01

    The descriptive epidemiology of physical activity in a sample of 577 University of Illinois graduates (1952-1991) with locomotor disabilities was assessed by mail survey. The survey requested basic demographic information, age, gender, marital status, household income. Respondents were asked to rate their current activity levels and activity levels during their college years compared to others their age on a 5 point scale: (1) much less active to (5) much more active. Completed surveys were received from 229 alumni (40%); 59 semi-ambulatory, 115 paraplegic, 55 quadriplegic. Results indicated current physical activity was associated with mobility limitation. With more severe mobility limitations the percentage reporting being less/much less active increased (42.4% semi-ambulatory, 56.5% paraplegic, 66.7% quadriplegic, P < 0.001) and the percentage reporting being more active decreased (20.3% semi-ambulatory, 16.5% paraplegic, 13.0% quadriplegic, P < 0.001). Current physical activity was significantly lower (P < 0.05) with increasing age, lower self-rated health, higher disability severity and among those who were sedentary during college. Physical activity did not differ by gender, marital status or household income. Multiple regression analysis indicated that health status was a significant predictor of current physical activity in all mobility categories (P < 0.001) after controlling for age, gender, income, disability severity and college activity. Among both paraplegics and quadriplegics physical activity during college was significantly associated (P < 0.001 paraplegic; P < 0.01 quadriplegic) with current physical activity. These results document a low level of physical activity in a well-educated sample of individuals with locomotor disabilities and suggest that exposure to physical activity in an educational setting may be an effective technique for increasing physical activity in individuals with locomotor disabilities.

  5. Effects of sex pheromones and sexual maturation on locomotor activity in female sea lamprey (Petromyzon marinus)

    USGS Publications Warehouse

    Walaszczyk, Erin J.; Johnson, Nicholas S.; Steibel, Juan Pedro; Li, Weiming

    2013-01-01

    Synchronization of male and female locomotor rhythmicity can play a vital role in ensuring reproductive success. Several physiological and environmental factors alter these locomotor rhythms. As sea lamprey, Petromyzon marinus, progress through their life cycle, their locomotor activity rhythm changes multiple times. The goal of this study was to elucidate the activity patterns of adult female sea lamprey during the sexual maturation process and discern the interactions of these patterns with exposure to male pheromones. During these stages, preovulated and ovulated adult females are exposed to sex pheromone compounds, which are released by spermiated males and attract ovulated females to the nest for spawning. The locomotor behavior of adult females was monitored in a natural stream with a passive integrated tag responder system as they matured, and they were exposed to a sex pheromone treatment (spermiated male washings) or a control (prespermiated male washings). Results showed that, dependent on the hour of day, male sex pheromone compounds reduce total activity (p < 0.05) and cause increases in activity during several daytime hours in preovulated and ovulated females. These results are one of the first examples of how sex pheromones modulate a locomotor rhythm in a vertebrate, and they suggest that the interaction between maturity stage and sex pheromone exposure contributes to the differential locomotor rhythms found in adult female sea lamprey. This phenomenon may contribute to the reproductive synchrony of mature adults, thus increasing reproductive success in this species.

  6. Effects of scallop shell extract on scopolamine-induced memory impairment and MK801-induced locomotor activity.

    PubMed

    Hasegawa, Yasushi; Inoue, Tatsuro; Kawaminami, Satoshi; Fujita, Miho

    2016-07-01

    To evaluate the neuroprotective effects of the organic components of scallop shells (scallop shell extract) on memory impairment and locomotor activity induced by scopolamine or 5-methyl-10,11-dihydro-5H-dibenzo (a,d) cyclohepten-5,10-imine (MK801). Effect of the scallop shell extract on memory impairment and locomotor activity was investigated using the Y-maze test, the Morris water maze test, and the open field test. Scallop shell extract significantly reduced scopolamine-induced short-term memory impairment and partially reduced scopolamine-induced spatial memory impairment in the Morris water maze test. Scallop shell extract suppressed scopolamine-induced elevation of acetylcholine esterase activity in the cerebral cortex. Treatment with scallop shell extract reversed the increase in locomotor activity induced by scopolamine. Scallop shell extract also suppressed the increase in locomotor activity induced by MK801. Our results provide initial evidence that scallop shell extract reduces scopolamine-induced memory impairment and suppresses MK-801-induced hyperlocomotion. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  7. Locomotor exercise in weightlessness

    NASA Technical Reports Server (NTRS)

    Thornton, W.; Whitmore, H.

    1991-01-01

    The requirements for exercise in space by means of locomotion are established and addressed with prototype treadmills for use during long-duration spaceflight. The adaptation of the human body to microgravity is described in terms of 1-G locomotor biomechanics, the effects of reduced activity, and effective activity-replacement techniques. The treadmill is introduced as a complement to other techniques of force replacement with reference given to the angle required for exercise. A motor-driven unit is proposed that can operate at a variety of controlled speeds and equivalent grades. The treadmills permit locomotor exercise as required for long-duration space travel to sustain locomotor and cardiorespiratory capacity at a level consistent with postflight needs.

  8. Vitamin B12 affects non-photic entrainment of circadian locomotor activity rhythms in mice.

    PubMed

    Ebihara, S; Mano, N; Kurono, N; Komuro, G; Yoshimura, T

    1996-07-15

    Administration of vitamin B12 (VB12) has been reported to normalize human sleep-wake rhythm disorders such as non-24-h sleep-wake syndrome (HNS), delayed sleep phase syndrome (DSPS) or insomnia. However, the mechanisms of the action of VB12 on the rhythm disorders are unknown. In the present study, therefore, effects of VB12 on circadian rhythms of locomotor activity were examined in mice. In the first experiment, CBA/J mice were maintained under continuous light condition (LL) or blinded, and after free-running rhythms became stable, the mice were intraperitoneally injected with either VB12 or saline at a fixed time every day. In all the mice with tau > 24 h, saline injections resulted in entrainment of circadian rhythms, whereas not all the mice with tau < 24 h entrained to the injection. In contrast to saline injections, VB12 injections did not always induce entrainment and about half of the mice with tau > 24 h free-ran during the injection. In the second experiment, the amount of phase advances of circadian rhythms induced by a single injection of saline at circadian time (CT) 11 under LL was compared between the mice with and without VB12 silastic tubes. The results showed that the amplitude of phase advances was smaller in the mice with VB12 than those without VB12. In the third experiment, daily injections of saline were given to the mice with VB12 silastic tubes maintained under LL. In this chronic treatment of VB12 as well, attenuating effects of VB12 on saline-induced entrainment were observed. These results suggest that VB12 affects the mechanisms implicated in non-photic entrainment of circadian rhythms in mice.

  9. Differential Effects of Sex Pheromone Compounds on Adult Female Sea Lamprey (Petromyzon marinus) Locomotor Patterns.

    PubMed

    Walaszczyk, Erin J; Goheen, Benjamin B; Steibel, Juan Pedro; Li, Weiming

    2016-06-01

    Synchronization of male and female locomotor activity plays a critical role in ensuring reproductive success, especially in semelparous species. The goal of this study was to elucidate the effects of individual chemical signals, or pheromones, on the locomotor activity in the sea lamprey (Petromyzon marinus). In their native habitat, adult preovulated females (POF) and ovulated females (OF) are exposed to sex pheromone compounds that are released from spermiated males and attract females to nests during their migration and spawning periods. In this study, locomotor activity of individual POF and OF was measured hourly in controlled laboratory conditions using an automated video-tracking system. Differences in the activity between a baseline day (no treatment exposure) and a treatment day (sex pheromone compound or control exposure) were examined for daytime and nighttime periods. Results showed that different pheromone compound treatments affected both POF and OF sea lamprey (p < 0.05) but in different ways. Spermiated male washings (SMW) and one of its main components, 7α,12α,24-trihydroxy-5α-cholan-3-one 24 sulfate (3kPZS), decreased activity of POF during the nighttime. SMW also reduced activity in POF during the daytime. In contrast, SMW increased activity of OF during the daytime, and an additional compound found in SMW, petromyzonol sulfate (PZS), decreased the activity during the nighttime. In addition, we examined factors that allowed us to infer the overall locomotor patterns. SMW increased the maximum hourly activity during the daytime, decreased the maximum hourly activity during the nighttime, and reduced the percentage of nocturnal activity in OF. Our findings suggest that adult females have evolved to respond to different male compounds in regards to their locomotor activity before and after final maturation. This is a rare example of how species-wide chemosensory stimuli can affect not only the amounts of activity but also the overall locomotor

  10. Differential neurotoxic effects of in utero and lactational exposure to hydroxylated polychlorinated biphenyl (OH-PCB 106) on spontaneous locomotor activity and motor coordination in young adult male mice.

    PubMed

    Haijima, Asahi; Lesmana, Ronny; Shimokawa, Noriaki; Amano, Izuki; Takatsuru, Yusuke; Koibuchi, Noriyuki

    2017-01-01

    We investigated whether in utero or lactational exposure to 4-hydroxy-2',3,3',4',5'-pentachlorobiphenyl (OH-PCB 106) affects spontaneous locomotor activity and motor coordination in young adult male mice. For in utero exposure, pregnant C57BL/6J mice received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from gestational day 10 to 18. For lactational exposure, the different groups of dams received 0.05 or 0.5 mg/kg body weight of OH-PCB 106 or corn oil vehicle via gavage every second day from postpartum day 3 to 13. At 6-7 weeks of age, the spontaneous locomotor activities of male offspring were evaluated for a 24-hr continuous session in a home cage and in an open field for 30-min. Motor coordination function on an accelerating rotarod was also measured. Mice exposed prenatally to OH-PCB 106 showed increased spontaneous locomotor activities during the dark phase in the home cage and during the first 10-min in the open field compared with control mice. Mice exposed lactationally to OH-PCB 106, however, did not show a time-dependent decrease in locomotor activity in the open field. Instead, their locomotor activity increased significantly during the second 10-min block. In addition, mice exposed lactationally to OH-PCB 106 displayed impairments in motor coordination in the rotarod test. These results suggest that perinatal exposure to OH-PCB 106 affects motor behaviors in young adult male mice. Depending on the period of exposure, OH-PCB 106 may have different effects on neurobehavioral development.

  11. Motoneurons regulate the central pattern generator during drug-induced locomotor-like activity in the neonatal mouse

    PubMed Central

    Falgairolle, Melanie; Puhl, Joshua G; Pujala, Avinash; Liu, Wenfang; O’Donovan, Michael J

    2017-01-01

    Motoneurons are traditionally viewed as the output of the spinal cord that do not influence locomotor rhythmogenesis. We assessed the role of motoneuron firing during ongoing locomotor-like activity in neonatal mice expressing archaerhopsin-3 (Arch), halorhodopsin (eNpHR), or channelrhodopsin-2 (ChR2) in Choline acetyltransferase neurons (ChAT+) or Arch in LIM-homeodomain transcription factor Isl1+ neurons. Illumination of the lumbar cord in mice expressing eNpHR or Arch in ChAT+ or Isl1+ neurons, depressed motoneuron discharge, transiently decreased the frequency, and perturbed the phasing of the locomotor-like rhythm. When the light was turned off motoneuron firing and locomotor frequency both transiently increased. These effects were not due to cholinergic neurotransmission, persisted during partial blockade of gap junctions and were mediated, in part, by AMPAergic transmission. In spinal cords expressing ChR2, illumination increased motoneuron discharge and transiently accelerated the rhythm. We conclude that motoneurons provide feedback to the central pattern generator (CPG) during drug-induced locomotor-like activity. DOI: http://dx.doi.org/10.7554/eLife.26622.001 PMID:28671548

  12. Acute Neuroactive Drug Exposures alter Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of the development of a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae by assessing the acute effects of prototypic drugs that act on the central nervous system. Initially,...

  13. Sleep pattern and locomotor activity are impaired by doxorubicin in non-tumor-bearing rats.

    PubMed

    Lira, Fabio Santos; Esteves, Andrea Maculano; Pimentel, Gustavo Duarte; Rosa, José Cesar; Frank, Miriam Kannebley; Mariano, Melise Oliveira; Budni, Josiane; Quevedo, João; Santos, Ronaldo Vagner Dos; de Mello, Marco Túlio

    2016-01-01

    We sought explore the effects of doxorubicin on sleep patterns and locomotor activity. To investigate these effects, two groups were formed: a control group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control or DOXO groups. The sleep patterns were examined by polysomnographic recording and locomotor activity was evaluated in an open-field test. In the light period, the total sleep time and slow wave sleep were decreased, while the wake after sleep onset and arousal were increased in the DOXO group compared with the control group (p<0.05). In the dark period, the total sleep time, arousal, and slow wave sleep were increased, while the wake after sleep onset was decreased in the DOXO group compared with the control group (p<0.05). Moreover, DOXO induced a decrease of crossing and rearing numbers when compared control group (p<0.05). Therefore, our results suggest that doxorubicin induces sleep pattern impairments and reduction of locomotor activity.

  14. S-phenylpiracetam, a selective DAT inhibitor, reduces body weight gain without influencing locomotor activity.

    PubMed

    Zvejniece, Liga; Svalbe, Baiba; Vavers, Edijs; Makrecka-Kuka, Marina; Makarova, Elina; Liepins, Vilnis; Kalvinsh, Ivars; Liepinsh, Edgars; Dambrova, Maija

    2017-09-01

    S-phenylpiracetam is an optical isomer of phenotropil, which is a clinically used nootropic drug that improves physical condition and cognition. Recently, it was shown that S-phenylpiracetam is a selective dopamine transporter (DAT) inhibitor that does not influence norepinephrine (NE) or serotonin (5-HT) receptors. The aim of the present study was to study the effects of S-phenylpiracetam treatment on body weight gain, blood glucose and leptin levels, and locomotor activity. Western diet (WD)-fed mice and obese Zucker rats were treated daily with peroral administration of S-phenylpiracetam for 8 and 12weeks, respectively. Weight gain and plasma metabolites reflecting glucose metabolism were measured. Locomotor activity was detected in an open-field test. S-phenylpiracetam treatment significantly decreased body weight gain and fat mass increase in the obese Zucker rats and in the WD-fed mice. In addition, S-phenylpiracetam reduced the plasma glucose and leptin concentration and lowered hyperglycemia in a glucose tolerance test in both the mice and the rats. S-phenylpiracetam did not influence locomotor activity in the obese Zucker rats or in the WD-fed mice. The results demonstrate that S-phenylpiracetam reduces body weight gain and improves adaptation to hyperglycemia without stimulating locomotor activity. Our findings suggest that selective DAT inhibitors, such as S-phenylpiracetam, could be potentially useful for treating obesity in patients with metabolic syndrome with fewer adverse health consequences compared to other anorectic agents. Copyright © 2017. Published by Elsevier Inc.

  15. Acute neuroactive drug exposures alter locomotor activity in larval zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA's prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after exposure to prototypic drugs that act on the central nervous system. MPTP (1-methyl-4phenyl- 1 ,2,3,6-...

  16. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae).

    PubMed

    Haupt, Meghan; Bennett, Nigel C; Oosthuizen, Maria K

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment.

  17. Locomotor Activity and Body Temperature Patterns over a Temperature Gradient in the Highveld Mole-Rat (Cryptomys hottentotus pretoriae)

    PubMed Central

    Haupt, Meghan; Bennett, Nigel C.

    2017-01-01

    African mole-rats are strictly subterranean mammals that live in extensive burrow systems. High humidity levels in the burrows prevent mole-rats from thermoregulating using evaporative cooling. However, the relatively stable environment of the burrows promotes moderate temperatures and small daily temperature fluctuations. Mole-rats therefore display a relatively wide range of thermoregulation abilities. Some species cannot maintain their body temperatures at a constant level, whereas others employ behavioural thermoregulation. Here we test the effect of ambient temperature on locomotor activity and body temperature, and the relationship between the two parameters, in the highveld mole-rat. We exposed mole-rats to a 12L:12D and a DD light cycle at ambient temperatures of 30°C, 25°C and 20°C while locomotor activity and body temperature were measured simultaneously. In addition, we investigated the endogenous rhythms of locomotor activity and body temperature at different ambient temperatures. Mole-rats displayed nocturnal activity at all three ambient temperatures and were most active at 20°C, but least active at 30°C. Body temperature was highest at 30°C and lowest at 20°C, and the daily cycle was highly correlated with locomotor activity. We show that the mole-rats have endogenous rhythms for both locomotor activity and body temperature. However, the endogenous body temperature rhythm appears to be less robust compared to the locomotor activity rhythm. Female mole-rats appear to be more sensitive to temperature changes than males, increased heterothermy is evident at lower ambient temperatures, whilst males show smaller variation in their body temperatures with changing ambient temperatures. Mole-rats may rely more heavily on behavioural thermoregulation as it is more energy efficient in an already challenging environment. PMID:28072840

  18. The role of the laterodorsal tegmental nucleus in methamphetamine conditioned place preference and locomotor activity.

    PubMed

    Dobbs, Lauren K; Cunningham, Christopher L

    2014-05-15

    Methamphetamine (METH) indirectly stimulates the laterodorsal tegmental nucleus (LDT) acetylcholine (ACh) neurons to increase ACh within the ventral tegmental area (VTA). LDT ACh inhibition attenuates METH and saline locomotor activity. The aim of these experiments was to determine whether LDT ACh contributes to METH conditioned place preference (CPP). C57BL/6J mice received a bilateral electrolytic or sham lesion of the LDT. After recovery, mice received alternating pairings of METH (0.5 mg/kg) and saline with distinct tactile floor cues over 8 days. During preference tests, mice were given access to both floor types and time spent on each was recorded. Mice were tested again after exposure to both extinction and reconditioning trials. Brains were then processed for choline acetyltransferase immunohistochemistry to label LDT ACh neurons. Lesioned mice had significantly fewer LDT ACh neurons and showed increased saline and METH locomotor activity during the first conditioning trial compared to sham mice. Locomotor activity (saline and METH) was negatively correlated with the number of LDT ACh neurons. Lesioned and sham mice showed similar METH CPP following conditioning, extinction and reconditioning trials. LDT ACh neurons are not necessary for METH reward as indexed by CPP, but may be important for basal and METH-induced locomotor activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Conditioned place preference and locomotor activity in response to methylphenidate, amphetamine and cocaine in mice lacking dopamine D4 receptors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thanos, P.K.; Thanos, P.K.; Bermeo, C.

    Methylphenidate (MP) and amphetamine (AMPH) are the most frequently prescribed medications for the treatment of attention-deficit/hyperactivity disorder (ADHD). Both drugs are believed to derive their therapeutic benefit by virtue of their dopamine (DA)-enhancing effects, yet an explanation for the observation that some patients with ADHD respond well to one medication but not to the other remains elusive. The dopaminergic effects of MP and AMPH are also thought to underlie their reinforcing properties and ultimately their abuse. Polymorphisms in the human gene that codes for the DA D4 receptor (D4R) have been repeatedly associated with ADHD and may correlate with themore » therapeutic as well as the reinforcing effects of responses to these psychostimulant medications. Conditioned place preference (CPP) for MP, AMPH and cocaine were evaluated in wild-type (WT) mice and their genetically engineered littermates, congenic on the C57Bl/6J background, that completely lack D4Rs (knockout or KO). In addition, the locomotor activity in these mice during the conditioning phase of CPP was tested in the CPP chambers. D4 receptor KO and WT mice showed CPP and increased locomotor activity in response to each of the three psychostimulants tested. D4R differentially modulates the CPP responses to MP, AMPH and cocaine. While the D4R genotype affected CPP responses to MP (high dose only) and AMPH (low dose only) it had no effects on cocaine. Inasmuch as CPP is considered an indicator of sensitivity to reinforcing responses to drugs these data suggest a significant but limited role of D4Rs in modulating conditioning responses to MP and AMPH. In the locomotor test, D4 receptor KO mice displayed attenuated increases in AMPH-induced locomotor activity whereas responses to cocaine and MP did not differ. These results suggest distinct mechanisms for D4 receptor modulation of the reinforcing (perhaps via attenuating dopaminergic signalling) and locomotor properties of these stimulant

  20. Analysis of Indonesian Spice Essential Oil Compounds That Inhibit Locomotor Activity in Mice

    PubMed Central

    Muchtaridi; Diantini, Adjeng; Subarnas, Anas

    2011-01-01

    Some fragrance components of spices used for cooking are known to have an effect on human behavior. The aim of this investigation was to examine the effect of the essential oils of basil (Ocimum formacitratum L.) leaves, lemongrass (Cymbopogon citrates L.) herbs, ki lemo (Litsea cubeba L.) bark, and laja gowah (Alpinia malaccencis Roxb.) rhizomes on locomotor activity in mice and identify the active component(s) that might be responsible for the activity. The effect of the essential oils was studied by a wheel cage method and the active compounds of the essential oils were identified by GC/MS analysis. The essential oils were administered by inhalation at doses of 0.1, 0.3, and 0.5 mL/cage. The results showed that the four essential oils had inhibitory effects on locomotor activity in mice. Inhalation of the essential oils of basil leaves, lemongrass herbs, ki lemo bark, and laja gowah rhizomes showed the highest inhibitory activity at doses of 0.5 (57.64%), 0.1 (55.72%), 0.5 (60.75%), and 0.1 mL/cage (47.09%), respectively. The major volatile compounds 1,8-cineole, α-terpineol, 4-terpineol, citronelol, citronelal, and methyl cinnamate were identified in blood plasma of mice after inhalation of the four oils. These compounds had a significant inhibitory effect on locomotion after inhalation. The volatile compounds of essential oils identified in the blood plasma may correlate with the locomotor-inhibiting properties of the oil when administered by inhalation.

  1. [INFLUENCE OF IONIZING RADIATION ON THE LOCOMOTOR ACTIVITY AND BODY WEIGHT OF RATS].

    PubMed

    Saimova, A; Chaizhunusоva, N; Kairkhanova, Y; Uzbеkоv, D; Hоshi, М

    2017-02-01

    The aim of our study was to study influence of ionizing radiation on the locomotor activity and body weight of rats, for this animals was irradiated by via inhalation. Beta- emitter 56Mn was obtained by neutron activation of powdered MnО2 by using nuclear reactor IVG.1M (experimental facility «Baikal-1», Kurchatov, Kazakhstan). Exposure of rats to radioactive powder had two way, the first experiment was contained only air filter for animal's breathing and the second with the system of forced ventilation. Also we developed the method for observation of the locomotor activity of rats, based on quantitative data. The experiment was conducted on 8 «Wistar» breed white laboratory rats. Statistical analysis was performed using descriptive statistics and non-parametric test. Based on our data, we can say that our method has the advantage over the others is that there is no need to move about the animal out of the box in the test field. So we reduce animal stress factor, as the transfer of an animal from one to second place creates additional stress for him. The initial activity of the pulverized powder in both experiments were 2,74х108Bq, but in the second experiment when we used the system of forced ventilation, internal radiation doses were 0.041±0.0075 Gy, this didn't have effect on locomotor activity of rats (Z= -0,841, р=0,4). In the first experiment where we used only air filter for animal's breathing internal radiation doses were 0.15±0.025 Gr, that showed a decrease in locomotor activity in rats (Z=-6,653, р=0,001). After exposure to ionizing radiation changes in the mammals' weight were not found. Thus, based on our data we have made conclusion, that even after a single irradiation at low dose 0.15±0.025 Gr changes occur in the nervous system.

  2. Substance-P antagonists: effect on spontaneous and drug-induced locomotor activity in the rat.

    PubMed

    Elliott, P J; Iversen, S D

    1987-05-01

    The substance P (SP) antagonists (D-Pro4, D-Trp7,9, Leu11) SP(4-11), (D-Pro4, D-Trp7,9, Phe11)SP(4-11) and (D-Pro4, D-Trp7,9,10, Leu11) SP (4-11) were infused into the lateral ventricles (i.c.v.) and their effects on spontaneous and drug-induced locomotor activity were investigated. The drug DiMeC7, the stable substance P agonist, was used to stimulate locomotor activity because of its prolonged action. Only (D-Pro4, D-Trp7,9,10) SP (4-11) was found to attenuate the drug-induced increases in motor activity, indicating that it is a substance P antagonist with activity in the CNS.

  3. Mice Lacking EGR1 Have Impaired Clock Gene (BMAL1) Oscillation, Locomotor Activity, and Body Temperature.

    PubMed

    Riedel, Casper Schwartz; Georg, Birgitte; Jørgensen, Henrik L; Hannibal, Jens; Fahrenkrug, Jan

    2018-01-01

    Early growth response transcription factor 1 (EGR1) is expressed in the suprachiasmatic nucleus (SCN) after light stimulation. We used EGR1-deficient mice to address the role of EGR1 in the clock function and light-induced resetting of the clock. The diurnal rhythms of expression of the clock genes BMAL1 and PER1 in the SCN were evaluated by semi-quantitative in situ hybridization. We found no difference in the expression of PER1 mRNA between wildtype and EGR1-deficient mice; however, the daily rhythm of BMAL1 mRNA was completely abolished in the EGR1-deficient mice. In addition, we evaluated the circadian running wheel activity, telemetric locomotor activity, and core body temperature of the mice. Loss of EGR1 neither altered light-induced phase shifts at subjective night nor affected negative masking. Overall, circadian light entrainment was found in EGR1-deficient mice but they displayed a reduced locomotor activity and an altered temperature regulation compared to wild type mice. When placed in running wheels, a subpopulation of EGR1-deficient mice displayed a more disrupted activity rhythm with no measurable endogenous period length (tau). In conclusion, the present study provides the first evidence that the circadian clock in the SCN is disturbed in mice deficient of EGR1.

  4. Differences in Monoamine Oxidase Activity in the Brain of Wistar and August Rats with High and Low Locomotor Activity: A Cytochemical Study.

    PubMed

    Sergutina, A V; Rakhmanova, V I

    2016-06-01

    Monoamine oxidase activity was quantitatively assessed by cytochemical method in brain structures (layers III and V of the sensorimotor cortex, caudate nucleus, nucleus accumbens, hippocampal CA3 field) of rats of August line and Wistar population with high and low locomotor activity in the open fi eld test. Monoamine oxidase activity (substrate tryptamine) predominated in the nucleus accumbens of Wistar rats with high motor activity in comparison with rats with low locomotor activity. In August rats, enzyme activity (substrates tryptamine and serotonin) predominated in the hippocampus of animals with high motor activity. Comparison of August rats with low locomotor activity and Wistar rats with high motor activity (i.e. animals demonstrating maximum differences in motor function) revealed significantly higher activity of the enzyme (substrates tryptamine and serotonin) in the hippocampus of Wistar rats. The study demonstrates clear-cut morphochemical specificity of monoaminergic metabolism based on the differences in the cytochemical parameter "monoamine oxidase activity", in the studied brain structures, responsible for the formation and realization of goal-directed behavior in Wistar and August rats.

  5. [Age-specific dynamics of mental working capacity in different regimens of locomotor activity].

    PubMed

    Miakotnykh, V V; Khodasevich, L S

    2012-01-01

    The present study included a total of 392 practically healthy men aged between 40 and 79 years differing in the character of routine locomotor activity and the training status (from masters of sport of international grade to the subjects who had never been engaged in sporting activities). They were divided into 4 groups each comprised of subjects ranged by age with a ten-year interval. Their mental working capacity was estimated from the results of the correction test. The study demonstrated that the subjects characterized by a high level of day-to-day locomotor activity have higher indices of attention intensity and information processing speed compared with the age-matched ones leading a relatively sedentary lifestyle. Moreover, they have better chances to retain the mental working capacity up to the age of 70 years.

  6. Conditioned Reinforcement and Locomotor Activating Effects of Caffeine and Ethanol Combinations in Mice

    PubMed Central

    Hilbert, Megan L.T.; May, Christina E.; Griffin, William C.

    2013-01-01

    A growing trend among ethanol drinkers, especially young adults, is to combine caffeinated energy drinks with ethanol during a drinking episode. The primary active ingredient of these mixers is caffeine, which may significantly interact with ethanol. We tested the two hypotheses that caffeine would enhance ethanol-conditioned place preference and also enhance ethanol-stimulated locomotor activity. The interactive pharmacology of ethanol and caffeine was examined in C57BL/6J (B6) mice in a conditioned place preference procedure with 1.75 g/kg ethanol and 3 mg/kg caffeine. Additionally, we used B6 mice to evaluate ethanol/caffeine combinations on locomotor activity using 3 doses of ethanol (1.75, 2.5 and 3.25 g/kg) and 2 two doses of caffeine (3 and 15 mg/kg). Both ethanol and caffeine administered alone increased preference for the drug paired side, though the effect of caffeine was more modest than that of ethanol. The drug combination produced significant place preference itself, but this was not greater than that for ethanol alone. Additionally, the combination of caffeine and ethanol significantly increased locomotion compared to giving either drug alone. The effect was strongest with a stimulatory dose of ethanol (1.75 g/kg) and waned with increasing doses of ethanol. Thus, combinations of caffeine and ethanol had significant conditioned reinforcing and locomotor activating effects in mice. PMID:23872371

  7. The time of day differently influences fatigue and locomotor activity: is body temperature a key factor?

    PubMed

    Machado, Frederico Sander Mansur; Rodovalho, Gisele Vieira; Coimbra, Cândido Celso

    2015-03-01

    The aim of this study was to verify the possible interactions between exercise capacity and spontaneous locomotor activity (SLA) during the oscillation of core body temperature (Tb) that occurs during the light/dark cycle. Wistar rats (n=11) were kept at an animal facility under a light/dark cycle of 14/10h at an ambient temperature of 23°C and water and food ad libitum. Initially, in order to characterize the daily oscillation in SLA and Tb of the rats, these parameters were continuously recorded for 24h using an implantable telemetric sensor (G2 E-Mitter). The animals were randomly assigned to two progressive exercise test protocols until fatigue during the beginning of light and dark-phases. Fatigue was defined as the moment rats could not keep pace with the treadmill. We assessed the time to fatigue, workload and Tb changes induced by exercise. Each test was separated by 3days. Our results showed that exercise capacity and heat storage were higher during the light-phase (p<0.05). In contrast, we observed that both SLA and Tb were higher during the dark-phase (p<0.01). Notably, the correlation analysis between the amount of SLA and the running capacity observed at each phase of the daily cycle revealed that, regardless of the time of the day, both types of locomotor physical activity have an important inherent component (r=0.864 and r=0.784, respectively, p<0.01) without a direct relationship between them. This finding provides further support for the existence of specific control mechanisms for each type of physical activity. In conclusion, our data indicate that the relationship between the body temperature and different types of physical activity might be affected by the light/dark cycle. These results mean that, although exercise performance and spontaneous locomotor activity are not directly associated, both are strongly influenced by daily cycles of light and dark. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Active noise control technique for diesel train locomotor exhaust noise abatement

    NASA Astrophysics Data System (ADS)

    Cotana, Franco; Rossi, Federico

    2002-11-01

    An original prototype for train locomotor exhaust gas pipe noise reduction (electronic muffler) is proposed: the system is based on an active noise control technique. An acoustical measurement campaign has shown that locomotor exhaust noise is characterized by very low frequency components (less than 80 Hz) and very high acoustic power (up to 110 dB). A peculiar electronic muffler characterized by high acoustical efficiency at very low frequencies has been designed and realized at Perugia University Acoustic Laboratory; it has been installed on an Italian D.245 train locomotor, equipped with a 500-kW diesel engine. The electronic muffler has been added to the traditional passive muffler. Very low transmission losses are introduced by the electronic muffler because of its particular shape; thus, engine efficiency does not further decrease. Canceling noise is generated by means of DSP-based numerical algorithm. Disturbing noise and canceling noise destructively interfere at the exhaust duct outlet section; outgoing noise is thus reduced. The control system reduces exhaust noise both in the steady and unsteady engine regime. Measurement results have shown that electronic muffler introduces up to 15 dB noise abatement in the low-frequency components.

  9. Effects of coal mine wastewater on locomotor and non-locomotor activities of empire gudgeons (Hypseleotris compressa).

    PubMed

    Lanctôt, C; Melvin, S D; Fabbro, L; Leusch, F D L; Wilson, S P

    2016-05-01

    Coal mining represents an important industry in many countries, but concerns exist about the possible adverse effects of minewater releases on aquatic animals and ecosystems. Coal mining generates large volumes of complex wastewater, which often contains high concentrations of dissolved solids, suspended solids, metals, hydrocarbons, salts and other compounds. Traditional toxicological testing has generally involved the assessment of acute toxicity or chronic toxicity with longer-term tests, and while such tests provide useful information, they are poorly suited to ongoing monitoring or rapid assessment following accidental discharge events. As such, there is considerable interest in developing rapid and sensitive approaches to environmental monitoring, and particularly involving the assessment of sub-lethal behavioural responses in locally relevant aquatic species. We therefore investigated behavioural responses of a native Australian fish to coal mine wastewater, to evaluate its potential use for evaluating sub-lethal effects associated with wastewater releases on freshwater ecosystems. Empire gudgeons (Hypseleotris compressa) were exposed to wastewater from two dams located at an open cut coal mine in Central Queensland, Australia and activity levels were monitored using the Multispecies Freshwater Biomonitor® (LimCo International GmbH). A general decrease in locomotor activity (i.e., low frequency movement) and increase in non-locomotor activity (i.e., high frequency movement including ventilation and small fin movement) was observed in exposed fish compared to those in control water. Altered activity levels were observable within the first hour of exposure and persisted throughout the 15-d experiment. Results demonstrate the potential for using behavioural endpoints as tools for monitoring wastewater discharges using native fish species, but more research is necessary to identify responsible compounds and response thresholds, and to understand the relevance

  10. Immature Spinal Locomotor Output in Children with Cerebral Palsy.

    PubMed

    Cappellini, Germana; Ivanenko, Yury P; Martino, Giovanni; MacLellan, Michael J; Sacco, Annalisa; Morelli, Daniela; Lacquaniti, Francesco

    2016-01-01

    Detailed descriptions of gait impairments have been reported in cerebral palsy (CP), but it is still unclear how maturation of the spinal motoneuron output is affected. Spatiotemporal alpha-motoneuron activation during walking can be assessed by mapping the electromyographic activity profiles from several, simultaneously recorded muscles onto the anatomical rostrocaudal location of the motoneuron pools in the spinal cord, and by means of factor analysis of the muscle activity profiles. Here, we analyzed gait kinematics and EMG activity of 11 pairs of bilateral muscles with lumbosacral innervation in 35 children with CP (19 diplegic, 16 hemiplegic, 2-12 years) and 33 typically developing (TD) children (1-12 years). TD children showed a progressive reduction of EMG burst durations and a gradual reorganization of the spatiotemporal motoneuron output with increasing age. By contrast, children with CP showed very limited age-related changes of EMG durations and motoneuron output, as well as of limb intersegmental coordination and foot trajectory control (on both sides for diplegic children and the affected side for hemiplegic children). Factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants. A similar picture emerged when considering the spatiotemporal maps of alpha-motoneuron activation. Overall, the results are consistent with the idea that early injuries to developing motor regions of the brain substantially affect the maturation of the spinal locomotor output and consequently the future locomotor behavior.

  11. Immature Spinal Locomotor Output in Children with Cerebral Palsy

    PubMed Central

    Cappellini, Germana; Ivanenko, Yury P.; Martino, Giovanni; MacLellan, Michael J.; Sacco, Annalisa; Morelli, Daniela; Lacquaniti, Francesco

    2016-01-01

    Detailed descriptions of gait impairments have been reported in cerebral palsy (CP), but it is still unclear how maturation of the spinal motoneuron output is affected. Spatiotemporal alpha-motoneuron activation during walking can be assessed by mapping the electromyographic activity profiles from several, simultaneously recorded muscles onto the anatomical rostrocaudal location of the motoneuron pools in the spinal cord, and by means of factor analysis of the muscle activity profiles. Here, we analyzed gait kinematics and EMG activity of 11 pairs of bilateral muscles with lumbosacral innervation in 35 children with CP (19 diplegic, 16 hemiplegic, 2–12 years) and 33 typically developing (TD) children (1–12 years). TD children showed a progressive reduction of EMG burst durations and a gradual reorganization of the spatiotemporal motoneuron output with increasing age. By contrast, children with CP showed very limited age-related changes of EMG durations and motoneuron output, as well as of limb intersegmental coordination and foot trajectory control (on both sides for diplegic children and the affected side for hemiplegic children). Factorization of the EMG signals revealed a comparable structure of the motor output in children with CP and TD children, but significantly wider temporal activation patterns in children with CP, resembling the patterns of much younger TD infants. A similar picture emerged when considering the spatiotemporal maps of alpha-motoneuron activation. Overall, the results are consistent with the idea that early injuries to developing motor regions of the brain substantially affect the maturation of the spinal locomotor output and consequently the future locomotor behavior. PMID:27826251

  12. Actions of incretin metabolites on locomotor activity, cognitive function and in vivo hippocampal synaptic plasticity in high fat fed mice.

    PubMed

    Porter, David; Faivre, Emilie; Flatt, Peter R; Hölscher, Christian; Gault, Victor A

    2012-05-01

    The incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) improve markers of cognitive function in obesity-diabetes, however, both are rapidly degraded to their major metabolites, GLP-1(9-36)amide and GIP(3-42), respectively. Therefore, the present study investigated effects of GLP-1(9-36)amide and GIP(3-42) on locomotor activity, cognitive function and hippocampal synaptic plasticity in mice with diet-induced obesity and insulin resistance. High-fat fed Swiss TO mice treated with GLP-1(9-36)amide, GIP(3-42) or exendin(9-39)amide (twice-daily for 60 days) did not exhibit any changes in bodyweight, non-fasting plasma glucose and plasma insulin concentrations or glucose tolerance compared with high-fat saline controls. Similarly, locomotor and feeding activity, O(2) consumption, CO(2) production, respiratory exchange ratio and energy expenditure were not altered by chronic treatment with incretin metabolites. Administration of the truncated metabolites did not alter general behavior in an open field test or learning and memory ability as recorded during an object recognition test. High-fat mice exhibited a significant impairment in hippocampal long-term potentiation (LTP) which was not affected by treatment with incretin metabolites. These data indicate that incretin metabolites do not influence locomotor activity, cognitive function and hippocampal synaptic plasticity when administered at pharmacological doses to mice fed a high-fat diet. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Pharmacological Modulation of 5-HT2C Receptor Activity Produces Bidirectional Changes in Locomotor Activity, Responding for a Conditioned Reinforcer, and Mesolimbic DA Release in C57BL/6 Mice.

    PubMed

    Browne, Caleb J; Ji, Xiaodong; Higgins, Guy A; Fletcher, Paul J; Harvey-Lewis, Colin

    2017-10-01

    Converging lines of behavioral, electrophysiological, and biochemical evidence suggest that 5-HT 2C receptor signaling may bidirectionally influence reward-related behavior through an interaction with the mesolimbic dopamine (DA) system. Here we directly test this hypothesis by examining how modulating 5-HT 2C receptor activity affects DA-dependent behaviors and relate these effects to changes in nucleus accumbens (NAc) DA release. In C57BL/6 mice, locomotor activity and responding for a conditioned reinforcer (CRf), a measure of incentive motivation, were examined following treatment with three 5-HT 2C receptor ligands: the agonist CP809101 (0.25-3 mg/kg), the antagonist SB242084 (0.25-1 mg/kg), or the antagonist/inverse agonist SB206553 (1-5 mg/kg). We further tested whether doses of these compounds that changed locomotor activity and responding for a CRf (1 mg/kg CP809101, 0.5 mg/kg SB242084, or 2.5 mg/kg SB206553) also altered NAc DA release using in vivo microdialysis in anesthetized mice. CP809101 reduced locomotor activity, responding for a CRf, and NAc DA release. In contrast, both SB242084 and SB206553 enhanced locomotor activity, responding for a CRf, and NAc DA release, although higher doses of SB206553 produced opposite behavioral effects. Pretreatment with the non-selective DA receptor antagonist α-flupenthixol prevented SB242084 from enhancing responding for a CRf. Thus blocking tonic 5-HT 2C receptor signaling can release serotonergic inhibition of mesolimbic DA activity and enhance reward-related behavior. The observed bidirectional effects of 5-HT 2C receptor ligands may have important implications when considering the 5-HT 2C receptor as a therapeutic target for psychiatric disorders, particularly those presenting with motivational dysfunctions.

  14. Mirtazapine attenuates the expression of nicotine-induced locomotor sensitization in rats.

    PubMed

    Barbosa-Méndez, Susana; Jurado, Noé; Matus-Ortega, Maura; Martiñon, Susana; Heinze, Gerardo; Salazar-Juárez, Alberto

    2017-10-05

    Nicotine is the primary psychoactive component of tobacco. Many addictive nicotinic actions are mediated by an increase in the activity of the serotonin (5-HT) system. Some studies show that the 5-HT 2A , 5-HT 2C , and 5-HT 3 receptors have a central role in the induction and expression of nicotine-induced locomotor sensitization. Mirtazapine, an antagonist of the α 2- adrenergic receptors, the 5-HT 2A/C , and the 5-HT 3 receptors, has proven effective in reducing behavioral effects induced by drugs like cocaine and methamphetamines in human and animal. In this study, we evaluated the effect of mirtazapine on the locomotor activity and on the expression of nicotine-induced locomotor sensitization. We used the nicotine locomotor sensitization paradigm to assess the effects of mirtazapine on nicotine-induced locomotor activity and locomotor sensitization. Mirtazapine (30mg/kg, i.p.) was administered during extinction. Our study found that mirtazapine attenuated the expression of locomotor sensitization induced by different nicotine doses, decreased the duration of locomotor effects and locomotor activity induced by binge administration of nicotine. In addition, our study revealed that treatment with mirtazapine for 60 days produced an enhanced attenuation of nicotine-induced locomotor activity during the expression phase of behavioral sensitization, compared to that obtained when mirtazapine was administered for 30 days. This suggests that use of mirtazapine in controlled clinical trials may be a useful therapy to maintain abstinence for long periods. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Selective changes in locomotor activity in mice due to low-intensity microwaves amplitude modulated in the EEG spectral domain.

    PubMed

    Van Eeghem, Vincent; El Arfani, Anissa; Anthoula, Arta; Walrave, Laura; Pourkazemi, Ali; Bentea, Eduard; Demuyser, Thomas; Smolders, Ilse; Stiens, Johan

    2017-09-17

    Despite the numerous benefits of microwave applications in our daily life, microwaves were associated with diverse neurological complaints such as headaches and impaired sleep patterns, and changes in the electroencephalogram (EEG). To which extent microwaves influence the brain function remains unclear. This exploratory study assessed the behavior and neurochemistry in mice immediately or 4weeks after a 6-day exposure to low-intensity 10-GHz microwaves with an amplitude modulation (AM) of 2 or 8Hz. These modulation frequencies of 2 and 8Hz are situated within the delta and theta-alpha frequency bands in the EEG spectrum and are associated with sleep and active behavior, respectively. During these experiments, the specific absorbance rate was 0.3W/kg increasing the brain temperature with 0.23°C. For the first time, exposing mice to 8-Hz AM significantly reduced locomotor activity in an open field immediately after exposure which normalized after 4weeks. This in contrast to 2-Hz AM which didn't induce significant changes in locomotor activity immediately and 4weeks after exposure. Despite this difference in motor behavior, no significant changes in striatal dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) levels and DOPAC/DA turnover nor in cortical glutamate (GLU) concentrations were detected. In all cases, no effects on motor coordination on a rotarod, spatial working memory, anxiety nor depressive-like behavior were observed. The outcome of this study indicates that exposing mice to low-intensity 8-Hz AM microwaves can alter the locomotor activity in contrast to 2-Hz AM which did not affect the tested behaviors. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Locomotor activity and tissue levels following acute administration of lambda- and gamma-cyhalothrin in rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moser, Virginia C., E-mail: Moser.ginger@epa.gov

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metrics. Products of cyhalothrin, a type II pyrethroid, include mixtures of isomers (e.g., λ-cyhalothrin) as well as enriched active isomers (e.g., γ-cyhalothrin). We measured acute changes in locomotor activity in adult male rats and directly correlated these changes to peak brain and plasma concentrations of λ- and γ-cyhalothrin using a within-subject design. One-hour locomotor activity studies were conducted 1.5 h after oral gavagemore » dosing, and immediately thereafter plasma and brains were collected for analyzing tissue levels using LC/MS/MS methods. Both isomers produced dose-related decreases in activity counts, and the effective dose range for γ-cyhalothrin was lower than for λ-cyhalothrin. Doses calculated to decrease activity by 50% were 2-fold lower for the γ-isomer (1.29 mg/kg) compared to λ-cyhalothrin (2.65 mg/kg). Salivation, typical of type II pyrethroids, was also observed at lower doses of γ-cyhalothrin. Administered dose correlated well with brain and plasma concentrations, which furthermore showed good correlations with activity changes. Brain and plasma levels were tightly correlated across doses. While γ-cyhalothrin was 2-fold more potent based on administered dose, the differences based on internal concentrations were less, with γ-cyhalothrin being 1.3- to 1.6-fold more potent than λ-cyhalothrin. These potency differences are consistent with the purity of the λ-isomer (approximately 43%) compared to the enriched isomer γ-cyhalothrin (approximately 98%). Thus, administered dose as well as differences in cyhalothrin isomers is a good predictor of behavioral effects. - Highlights: • Acute changes in locomotor activity were produced by λ- and

  17. Drugs that Target Dopamine Receptors: Changes in Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    As part of an effort at the US Environmental Protection Agency to develop a rapid in vivo screen for prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. This includes assessing the acute effects of drugs known...

  18. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation.

    PubMed

    Davis, Christopher J; Taishi, Ping; Honn, Kimberly A; Koberstein, John N; Krueger, James M

    2016-12-01

    The ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and brain cytokine release. Many endogenous rhythms covary with sleep, including locomotor activity and core body temperature. Furthermore, brain-hypothalamic cytokines and purines play a role in the regulation of these physiological parameters as well as sleep. We hypothesized that these parameters are also affected by the absence of the P2X7 receptor. Herein, we determine spontaneous expression of body temperature and locomotor activity in wild-type (WT) and P2X7R knockout (KO) mice and how they are affected by sleep deprivation (SD). We also compare hypothalamic, hippocampal, and cortical cytokine- and purine-related receptor and enzyme mRNA expressions before and after SD in WT and P2X7RKO mice. Next, in a hypothesis-generating survey of hypothalamic long noncoding (lnc) RNAs, we compare lncRNA expression levels between strains and after SD. During baseline conditions, P2X7RKO mice had attenuated temperature rhythms compared with WT mice, although locomotor activity patterns were similar in both strains. After 6 h of SD, body temperature and locomotion were enhanced to a greater extent in P2X7RKO mice than in WT mice during the initial 2-3 h after SD. Baseline mRNA levels of cortical TNF-α and P2X4R were higher in the KO mice than WT mice. In response to SD, the KO mice failed to increase hypothalamic adenosine deaminase and P2X4R mRNAs. Further, hypothalamic lncRNA expressions varied by strain, and with SD. Current data are consistent with a role for the P2X7R in thermoregulation and lncRNA involvement in purinergic signaling. Copyright © 2016 the American Physiological Society.

  19. P2X7 receptors in body temperature, locomotor activity, and brain mRNA and lncRNA responses to sleep deprivation

    PubMed Central

    Taishi, Ping; Honn, Kimberly A.; Koberstein, John N.; Krueger, James M.

    2016-01-01

    The ionotropic purine type 2X7 receptor (P2X7R) is a nonspecific cation channel implicated in sleep regulation and brain cytokine release. Many endogenous rhythms covary with sleep, including locomotor activity and core body temperature. Furthermore, brain-hypothalamic cytokines and purines play a role in the regulation of these physiological parameters as well as sleep. We hypothesized that these parameters are also affected by the absence of the P2X7 receptor. Herein, we determine spontaneous expression of body temperature and locomotor activity in wild-type (WT) and P2X7R knockout (KO) mice and how they are affected by sleep deprivation (SD). We also compare hypothalamic, hippocampal, and cortical cytokine- and purine-related receptor and enzyme mRNA expressions before and after SD in WT and P2X7RKO mice. Next, in a hypothesis-generating survey of hypothalamic long noncoding (lnc) RNAs, we compare lncRNA expression levels between strains and after SD. During baseline conditions, P2X7RKO mice had attenuated temperature rhythms compared with WT mice, although locomotor activity patterns were similar in both strains. After 6 h of SD, body temperature and locomotion were enhanced to a greater extent in P2X7RKO mice than in WT mice during the initial 2-3 h after SD. Baseline mRNA levels of cortical TNF-α and P2X4R were higher in the KO mice than WT mice. In response to SD, the KO mice failed to increase hypothalamic adenosine deaminase and P2X4R mRNAs. Further, hypothalamic lncRNA expressions varied by strain, and with SD. Current data are consistent with a role for the P2X7R in thermoregulation and lncRNA involvement in purinergic signaling. PMID:27707719

  20. THE EFFECT OF EARLY ENVIRONMENTAL MANIPULATION ON LOCOMOTOR SENSITIVITY AND METHAMPHETAMINE CONDITIONED PLACE PREFERENCE REWARD

    PubMed Central

    Hensleigh, E.; Pritchard, L. M.

    2014-01-01

    Early life stress leads to several effects on neurological development, affecting health and well-being later in life. Instances of child abuse and neglect are associated with higher rates of depression, risk taking behavior, and an increased risk of drug abuse later in life. This study used repeated neonatal separation of rat pups as a model of early life stress. Rat pups were either handled and weighed as controls or separated for 180 minutes per day during postnatal days 2-8. In adulthood, male and female rats were tested for methamphetamine conditioned place preference reward and methamphetamine induced locomotor activity. Tissue samples were collected and mRNA was quantified for the norepinephrine transporter in the prefrontal cortex and the dopamine transporter in the nucleus accumbens. Results indicated rats given methamphetamine formed a conditioned place preference, but there was no effect of early separation or sex. Separated males showed heightened methamphetamine-induced locomotor activity, but there was no effect of early separation for females. Overall females were more active than males in response to both saline and methamphetamine. No differences in mRNA levels were observed across any conditions. These results suggest early neonatal separation affects methamphetamine-induced locomotor activity in a sex-dependent manner but has no effects on methamphetamine conditioned place preference. PMID:24713150

  1. Visual and kinesthetic locomotor imagery training integrated with auditory step rhythm for walking performance of patients with chronic stroke.

    PubMed

    Kim, Jin-Seop; Oh, Duck-Won; Kim, Suhn-Yeop; Choi, Jong-Duk

    2011-02-01

    To compare the effect of visual and kinesthetic locomotor imagery training on walking performance and to determine the clinical feasibility of incorporating auditory step rhythm into the training. Randomized crossover trial. Laboratory of a Department of Physical Therapy. Fifteen subjects with post-stroke hemiparesis. Four locomotor imagery trainings on walking performance: visual locomotor imagery training, kinesthetic locomotor imagery training, visual locomotor imagery training with auditory step rhythm and kinesthetic locomotor imagery training with auditory step rhythm. The timed up-and-go test and electromyographic and kinematic analyses of the affected lower limb during one gait cycle. After the interventions, significant differences were found in the timed up-and-go test results between the visual locomotor imagery training (25.69 ± 16.16 to 23.97 ± 14.30) and the kinesthetic locomotor imagery training with auditory step rhythm (22.68 ± 12.35 to 15.77 ± 8.58) (P < 0.05). During the swing and stance phases, the kinesthetic locomotor imagery training exhibited significantly increased activation in a greater number of muscles and increased angular displacement of the knee and ankle joints compared with the visual locomotor imagery training, and these effects were more prominent when auditory step rhythm was integrated into each form of locomotor imagery training. The activation of the hamstring during the swing phase and the gastrocnemius during the stance phase, as well as kinematic data of the knee joint, were significantly different for posttest values between the visual locomotor imagery training and the kinesthetic locomotor imagery training with auditory step rhythm (P < 0.05). The therapeutic effect may be further enhanced in the kinesthetic locomotor imagery training than in the visual locomotor imagery training. The auditory step rhythm together with the locomotor imagery training produces a greater positive effect in improving the walking

  2. Effect of clozapine on locomotor activity and anxiety-related behavior in the neonatal mice administered MK-801.

    PubMed

    Pınar, Neslihan; Akillioglu, Kubra; Sefil, Fatih; Alp, Harun; Sagir, Mustafa; Acet, Ahmet

    2015-08-11

    Atypical antipsychotics have been used to treat fear and anxiety disturbance that are highly common in schizophrenic patients. It is suggested that disruptions of N-methyl-d-aspartate (NMDA)-mediated transmission of glutamate may underlie the pathophysiology of schizophrenia. The present study was conducted to analyze the effectiveness of clozapine on the anxiety-related behavior and locomotor function of the adult brain, which had previously undergone NMDA receptor blockade during a developmental period. In order to block the NMDA receptor, male mice were administered 0.25 mg/kg of MK-801 on days 7 to 10 postnatal. In adulthood, they were administered intraperitoneally 0.5 mg/kg of clozapine and tested with open-field and elevated plus maze test, to assess their emotional behavior and locomotor activity. In the group receiving MK-801 in the early developmental period the elevated plus maze test revealed a reduction in the anxiety-related behavior (p<0.05), while the open-field test indicated a decrease in locomotor activity (p<0.01). Despite these reductions, clozapine could not reverse the NMDA receptor blockade. Also, as an atypical antipsychotic agent, clozapine could not reverse impairment in the locomotor activity and anxiety-related behavior, induced by administration of the MK-801 in neonatal period.

  3. Effect of clozapine on locomotor activity and anxiety-related behavior in the neonatal mice administered MK-801

    PubMed Central

    Pinar, Neslihan; Akillioglu, Kubra; Sefil, Fatih; Alp, Harun; Sagir, Mustafa; Acet, Ahmet

    2015-01-01

    Atypical antipsychotics have been used to treat fear and anxiety disturbance that are highly common in schizophrenic patients. It is suggested that disruptions of N-methyl-d-aspartate (NMDA)-mediated transmission of glutamate may underlie the pathophysiology of schizophrenia. The present study was conducted to analyze the effectiveness of clozapine on the anxiety-related behavior and locomotor function of the adult brain, which had previously undergone NMDA receptor blockade during a developmental period. In order to block the NMDA receptor, male mice were administered 0.25 mg/kg of MK-801 on days 7 to 10 postnatal. In adulthood, they were administered intraperitoneally 0.5 mg/kg of clozapine and tested with open-field and elevated plus maze test, to assess their emotional behavior and locomotor activity. In the group receiving MK-801 in the early developmental period the elevated plus maze test revealed a reduction in the anxiety-related behavior (p<0.05), while the open-field test indicated a decrease in locomotor activity (p<0.01). Despite these reductions, clozapine could not reverse the NMDA receptor blockade. Also, as an atypical antipsychotic agent, clozapine could not reverse impairment in the locomotor activity and anxiety-related behavior, induced by administration of the MK-801 in neonatal period. PMID:26295298

  4. Behavioral and locomotor measurements using an open field activity monitoring system for skeletal muscle diseases.

    PubMed

    Tatem, Kathleen S; Quinn, James L; Phadke, Aditi; Yu, Qing; Gordish-Dressman, Heather; Nagaraju, Kanneboyina

    2014-09-29

    The open field activity monitoring system comprehensively assesses locomotor and behavioral activity levels of mice. It is a useful tool for assessing locomotive impairment in animal models of neuromuscular disease and efficacy of therapeutic drugs that may improve locomotion and/or muscle function. The open field activity measurement provides a different measure than muscle strength, which is commonly assessed by grip strength measurements. It can also show how drugs may affect other body systems as well when used with additional outcome measures. In addition, measures such as total distance traveled mirror the 6 min walk test, a clinical trial outcome measure. However, open field activity monitoring is also associated with significant challenges: Open field activity measurements vary according to animal strain, age, sex, and circadian rhythm. In addition, room temperature, humidity, lighting, noise, and even odor can affect assessment outcomes. Overall, this manuscript provides a well-tested and standardized open field activity SOP for preclinical trials in animal models of neuromuscular diseases. We provide a discussion of important considerations, typical results, data analysis, and detail the strengths and weaknesses of open field testing. In addition, we provide recommendations for optimal study design when using open field activity in a preclinical trial.

  5. The locomotor activity of soccer players based on playing positions during the 2010 World Cup.

    PubMed

    Soroka, Andrzej

    2018-06-01

    The aim of this study was to define the locomotor activity of footballer players during the 2010 World Cup and to assess what differences existed among different playing positions. Research was conducted using research material collected from the Castrol Performance Index, a kinematic game analysis system that records player movements during a game by use of semi-automatic cameras. A total of 599 players who participated in the championships were analyzed. The results were evaluated using one-way analysis of variance (ANOVA) and a post-hoc test that calculated the Honestly Significant Difference (HSD) in order to determine which mean values significantly differed among the player positions. It was found that midfielders covered on average the largest distance during a match (10,777.6 m, P<0.001) as well as performing the most locomotor activity at high and sprint intensities (2936.8 m and 108.4 m, respectively). Additionally, midfielders also spent the largest amount of time at performing at a high intensity (10.6%). Strikers also featured high levels of the above parameters; the total length of distance covered with high intensities was found to be on average 2586.7 m, the distance covered at sprint intensity was 105 m. The footballers, playing at the championship level feature excellent locomotor preparation. This fact is undoubtedly supported by the aerobic training of high intensity. Such training allows footballers to extend the distance they cover during the match, increase the intensity of locomotor activities and sprint speed distance.

  6. Changes in dopamine levels and locomotor activity in response to selection on virgin lifespan in Drosophila melanogaster.

    PubMed

    Vermeulen, C J; Cremers, T I F H; Westerink, B H C; Van De Zande, L; Bijlsma, R

    2006-07-01

    Among various other mechanisms, genetic differences in the production of reactive oxygen species are thought to underlie genetic variation for longevity. Here we report on possible changes in ROS production related processes in response to selection for divergent virgin lifespan in Drosophila. The selection lines were observed to differ significantly in dopamine levels and melanin pigmentation, which is associated with dopamine levels at eclosion. These findings confirm that variation in dopamine levels is associated with genetic variation for longevity. Dopamine has previously been implied in ROS production and in the occurrence of age-related neurodegenerative diseases. In addition, we propose a possible proximate mechanism by which dopamine levels affect longevity in Drosophila: We tested if increased dopamine levels were associated with a "rate-of-living" syndrome of increased activity and respiration levels, thus aggravating the level of oxidative stress. Findings on locomotor activity and oxygen consumption of short-lived flies were in line with expectations. However, the relation is not straightforward, as flies of the long-lived lines did not show any consistent differences in pigmentation or dopamine levels with respect to the control lines. Moreover, long-lived flies also had increased locomotor activity, but showed no consistent differences in respiration rate. This strongly suggests that the response for increased and decreased lifespan may be obtained by different mechanisms.

  7. Spontaneous locomotor activity and life span. A test of the rate of living theory in Drosophila melanogaster.

    PubMed

    Lints, F A; Le Bourg, E; Lints, C V

    1984-01-01

    The spontaneous locomotor activity and life span of approximately 600 individuals of both sexes and of three widely different genotypes of Drosophila melanogaster have been measured. Neither at the individual nor at the populational level could a significant correlation between spontaneous locomotor activity and life span be found. The results are discussed in relation with Pearl's [The rate of living, London University Press, London 1928] rate of living theory. That theory has been tested in relation with environmental temperature, oxygen consumption and activity. It is shown that the theory has received no definite confirmation until now.

  8. Divergent selection on home pen locomotor activity in a chicken model: Selection program, genetic parameters and direct response on activity and body weight

    PubMed Central

    2017-01-01

    General locomotor activity (GLA) in poultry has attracted attention, as it negatively influences production costs (energy expenditure and feed consumption) and welfare parameters (bone strength, litter quality, feather pecking and cannibalism). Laying hen lines diverging in the average level of spontaneous locomotor activity in the home pen were developed by genetic selection using the founder New Hampshire line. Activity was recorded using RFID technology at around five weeks of age during four to five days in the home pen. After initial phenotyping, the least active birds were selected for the low activity line and the most active for the high activity line, with no gene transfer between lines. In each of six generations, approximately ten sires were mated to twenty dams producing 158 to 334 offspring per line per generation. The response to selection was rapid and of a considerable magnitude. In sixth generation, the level of GLA was approximately halved in the low and doubled in the high line compared to the control (7.2, 14.9 and 28.7 recordings/h). Estimated heritability of locomotor activity in the low and high line was 0.38 and 0.33, respectively. Males, in general, were more active than females. High line birds were significantly heavier than low line birds. In fourth, fifth, and sixth generation, low as well as high line birds were lighter than control line birds. This selection experiment demonstrates variation in heritability for GLA and, as a result, genetically diverged lines have been developed. These lines can be used as models for further studies of underlying physiological, neural and molecular genetic mechanisms of spontaneous locomotor activity. PMID:28796792

  9. Divergent selection on home pen locomotor activity in a chicken model: Selection program, genetic parameters and direct response on activity and body weight.

    PubMed

    Kjaer, Joergen B

    2017-01-01

    General locomotor activity (GLA) in poultry has attracted attention, as it negatively influences production costs (energy expenditure and feed consumption) and welfare parameters (bone strength, litter quality, feather pecking and cannibalism). Laying hen lines diverging in the average level of spontaneous locomotor activity in the home pen were developed by genetic selection using the founder New Hampshire line. Activity was recorded using RFID technology at around five weeks of age during four to five days in the home pen. After initial phenotyping, the least active birds were selected for the low activity line and the most active for the high activity line, with no gene transfer between lines. In each of six generations, approximately ten sires were mated to twenty dams producing 158 to 334 offspring per line per generation. The response to selection was rapid and of a considerable magnitude. In sixth generation, the level of GLA was approximately halved in the low and doubled in the high line compared to the control (7.2, 14.9 and 28.7 recordings/h). Estimated heritability of locomotor activity in the low and high line was 0.38 and 0.33, respectively. Males, in general, were more active than females. High line birds were significantly heavier than low line birds. In fourth, fifth, and sixth generation, low as well as high line birds were lighter than control line birds. This selection experiment demonstrates variation in heritability for GLA and, as a result, genetically diverged lines have been developed. These lines can be used as models for further studies of underlying physiological, neural and molecular genetic mechanisms of spontaneous locomotor activity.

  10. Age and egg-sac loss determine maternal behaviour and locomotor activity of wolf spiders (Araneae, Lycosidae).

    PubMed

    Ruhland, Fanny; Chiara, Violette; Trabalon, Marie

    2016-11-01

    Wolf spiders' (Lycosidae) maternal behaviour includes a specific phase called "egg brooding" which consists of guarding and carrying an egg-sac throughout the incubation period. The transport of an egg-sac can restrict mothers' exploratory and locomotor activity, in particular when foraging. The present study details the ontogeny of maternal behaviour and assesses the influence of age of egg-sac (or embryos' developmental stage) on vagrant wolf spider Pardosa saltans females' exploration and locomotion. We observed these spiders' maternal behaviour in the laboratory and evaluated their locomotor activity using a digital activity recording device. Our subjects were virgin females (without egg-sac) and first time mothers (with her egg-sac) who were divided into three groups. The first group of mothers were tested on the day the egg-sac was built (day 0), and the females of the other two groups were tested 10 or 15days after they had built their egg-sac. We evaluated the effects of the presence and the loss of egg-sac on mothers' activity. Pardosa saltans females' behaviour depended on mothers' physiological state and/or age of egg-sac (developmental stage of embryos). Virgin females' behaviour was not modified by the presence of an egg-sac in their environment. Mothers' reactions to the presence, the loss and the recovery of their egg-sac varied during the maternal cycle. Maternal behaviour changed with age of egg-sac, but the levels of locomotor activity of mothers with egg-sacs was similar to those of virgin females. Loss of egg-sac modified the maternal behaviour and locomotor activity of all mothers; these modifications were greater on "day 15" when embryos had emerged from eggs. All mothers were able to retrieve their egg-sacs and to re-attach them to their spinnerets. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Locomotor activity, core body temperature, and circadian rhythms in mice selected for high or low heat loss.

    PubMed

    Mousel, M R; Stroup, W W; Nielsen, M K

    2001-04-01

    Daily locomotor activity, core body temperature, and their circadian rhythms were measured in lines of mice selected for high (MH) or low (ML) heat loss and unselected controls (MC). Lines were created by selecting for 16 generations in each of three replicates. Collection of locomotor activity and core temperature data spanned Generations 20 and 21 for a total of 352 mice. Physical activity and core body temperature data were accumulated using implanted transmitters and continuous automated collection. Measurement for each animal was for 3 d. Activity was recorded for each half hour and then averaged for the day; temperature was averaged daily; circadian rhythm was expressed in 12-h (light vs dark) or 6-h periods as well as by fitting cyclic models. Activity means were transformed to log base 2 to lessen heterogeneity of variance within lines. Heat loss for a 15-h period beginning at 1630 and feed intake for 7 d were measured on 74 additional mice in order to estimate the relationship between locomotor activity and heat loss or feed intake. Selection lines were different (P < 0.01) for both locomotor activity and core body temperature. Differences were due to selection (MH-ML, P < 0.01), and there was no evidence of asymmetry of response (P > 0.38). Retransformed from log base 2 to the scale of measurement, mean activity counts were 308, 210, and 150 for MH, MC, and ML, respectively. Mean core temperatures were 37.2, 36.9, and 36.7 degrees C for MH, MC, and ML (P < 0.01), respectively. Females had greater physical activity (P < 0.01) and body temperature (P < 0.01) than males. There was no evidence of a sex x selection criterion interaction for either activity or temperature (P > 0.20). Overall phenotypic correlation between body temperature and log base 2 activity was 0.43 (P < 0.01). Periods during the day were different for both 12- and 6-h analyses (P < 0.01), but there were no period x selection criterion interactions (P > 0.1) for physical activity or body

  12. Interactions between Dorsal and Ventral Root Stimulation on the Generation of Locomotor-Like Activity in the Neonatal Mouse Spinal Cord

    PubMed Central

    2016-01-01

    Abstract We investigated whether dorsal (DR) and ventral root (VR) stimulus trains engage common postsynaptic components to activate the central pattern generator (CPG) for locomotion in the neonatal mouse spinal cord. VR stimulation did not activate the first order interneurons mediating the activation of the locomotor CPG by sacrocaudal afferent stimulation. Simultaneous stimulation of adjacent dorsal or ventral root pairs, subthreshold for evoking locomotor-like activity, did not summate to activate the CPG. This suggests that locomotor-like activity is triggered when a critical class of efferent or afferent axons is stimulated and does not depend on the number of stimulated axons or activated postsynaptic neurons. DR- and VR-evoked episodes exhibited differences in the coupling between VR pairs. In DR-evoked episodes, the coupling between the ipsilateral and contralateral flexor/extensor roots was similar and stronger than the bilateral extensor roots. In VR-evoked episodes, ipsilateral flexor/extensor coupling was stronger than both the contralateral flexor/extensor and the bilateral extensor coupling. For both types of stimulation, the coupling was greatest between the bilateral L1/L2 flexor-dominated roots. This indicates that the recruitment and/or the firing pattern of motoneurons differed in DR and VR-evoked episodes. However, the DR and VR trains do not appear to activate distinct CPGs because trains of DR and VR stimuli at frequencies too low to evoke locomotor-like activity did so when they were interleaved. These results indicate that the excitatory actions of VR stimulation converge onto the CPG through an unknown pathway that is not captured by current models of the locomotor CPG. PMID:27419215

  13. Developmental Exposure to a Dopaminergic Toxicant Produces Altered Locomotor Activity in Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we are characterizing the locomotor activity of zebrafish (Danio rerio) larvae after developmental exposure to various classes of prototypic drugs that act on the central nervous system. ...

  14. Locomotor activity rhythms in dogs vary with age and cognitive status.

    PubMed

    Siwak, Christina T; Tapp, P Dwight; Zicker, Steven C; Murphey, Heather L; Muggenburg, Bruce A; Head, Elizabeth; Cotman, Carl W; Milgram, Norton W

    2003-08-01

    Beagle dogs exhibited diurnal patterns of locomotor activity that varied as a function of age, cognitive status, and housing environment. Aged dogs housed in an indoor facility showed a delayed onset of activity following lights on and displayed shorter bouts of activity, with more rest periods during the day, compared with young dogs. Cognitively impaired aged dogs were more active and showed a delayed peak of activity compared with unimpaired aged dogs. Housing in continuous light did not disrupt activity rhythms. The effect of age was less prominent in dogs housed in an indoor/outdoor facility. This suggests that bright sunlight and natural light-dark transitions are better able to consolidate and synchronize the activity rhythms of the dogs.

  15. Influence of Brain Stem on Axial and Hindlimb Spinal Locomotor Rhythm Generating Circuits of the Neonatal Mouse.

    PubMed

    Jean-Xavier, Céline; Perreault, Marie-Claude

    2018-01-01

    The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor.

  16. Influence of Brain Stem on Axial and Hindlimb Spinal Locomotor Rhythm Generating Circuits of the Neonatal Mouse

    PubMed Central

    Jean-Xavier, Céline; Perreault, Marie-Claude

    2018-01-01

    The trunk plays a pivotal role in limbed locomotion. Yet, little is known about how the brain stem controls trunk activity during walking. In this study, we assessed the spatiotemporal activity patterns of axial and hindlimb motoneurons (MNs) during drug-induced fictive locomotor-like activity (LLA) in an isolated brain stem-spinal cord preparation of the neonatal mouse. We also evaluated the extent to which these activity patterns are affected by removal of brain stem. Recordings were made in the segments T7, L2, and L5 using calcium imaging from individual axial MNs in the medial motor column (MMC) and hindlimb MNs in lateral motor column (LMC). The MN activities were analyzed during both the rhythmic and the tonic components of LLA, the tonic component being used as a readout of generalized increase in excitability in spinal locomotor networks. The most salient effect of brain stem removal was an increase in locomotor rhythm frequency and a concomitant reduction in burst durations in both MMC and LMC MNs. The lack of effect on the tonic component of LLA indicated specificity of action during the rhythmic component. Cooling-induced silencing of the brain stem reproduced the increase in rhythm frequency and accompanying decrease in burst durations in L2 MMC and LMC, suggesting a dependency on brain stem neuron activity. The work supports the idea that the brain stem locomotor circuits are operational already at birth and further suggests an important role in modulating trunk activity. The brain stem may influence the axial and hindlimb spinal locomotor rhythm generating circuits by extending their range of operation. This may represent a critical step of locomotor development when learning how to walk in different conditions and environments is a major endeavor. PMID:29479302

  17. Synthetic cathinone MDPV downregulates glutamate transporter subtype I (GLT-1) and produces rewarding and locomotor-activating effects that are reduced by a GLT-1 activator

    PubMed Central

    Gregg, Ryan A.; Hicks, Callum; Nayak, Sunil U.; Tallarida, Christopher S.; Nucero, Paul; Reitz, Allen B.; Smith, Garry R.; Rawls, Scott M.

    2016-01-01

    Synthetic cathinones produce dysregulation of monoamine systems, but their effects on the glutamate system and the influence of glutamate on behavioral effects related to cathinone abuse are unknown. A principal regulator of glutamate homeostasis is glutamate transporter subtype 1 (GLT-1), an astrocytic protein that clears glutamate from the extracellular space and influences behavioral effects of established psychostimulants. We hypothesized that repeated administration of the synthetic cathinone, MDPV (3,4-methylenedioxypyrovalerone), would affect GLT-1 expression in the corticolimbic circuit, and that a GLT-1 activator (ceftriaxone, CTX) would reduce rewarding and locomotor-stimulant effects of MDPV in rats. GLT-1 protein expression in the nucleus accumbens (NAcc), but not prefrontal cortex (PFC), was decreased following withdrawal (2, 5 and 10 days) from repeated MDPV treatment, but not immediately after the last MDPV injection. CTX (200 mg/kg) pretreatment did not affect acute locomotor activation produced by MDPV (0.5, 1, 3 mg/kg). However, CTX (200 mg/kg) administered during a 7-day MDPV treatment paradigm attenuated the development of MDPV-induced sensitization of repetitive movements in rats challenged with MDPV following 11 days of drug abstinence. Pretreatment with CTX (200 mg/kg) during a 4-day MDPV (2 mg/kg) conditioned place preference (CPP) paradigm reduced the development of place preference produced by MDPV. The present data demonstrate dysregulation of corticolimbic glutamate transport systems during withdrawal from chronic MDPV exposure, and show that a GLT-1 transporter activator disrupts behavioral effects of MDPV that are related to synthetic cathinone abuse. PMID:27085607

  18. Establishment of a novel experimental protocol for drug-induced seizure liability screening based on a locomotor activity assay in zebrafish.

    PubMed

    Koseki, Naoteru; Deguchi, Jiro; Yamashita, Akihito; Miyawaki, Izuru; Funabashi, Hitoshi

    2014-08-01

    As drug-induced seizures have severe impact on drug development, evaluating seizure induction potential of candidate drugs at the early stages of drug discovery is important. A novel assay system using zebrafish has attracted interest as a high throughput toxicological in vivo assay system, and we tried to establish an experimental method for drug-induced seizure liability on the basis of locomotor activity in zebrafish. We monitored locomotor activity at high-speed movement (> 20 mm/sec) for 60 min immediately after exposure, and assessed seizure liability potential in some drugs using locomotor activity. However this experimental procedure was not sufficient for predicting seizures because the potential of several drugs with demonstrated seizure potential in mammals was not detected. We, therefore, added other parameters for locomotor activity such as extending exposure time or conducting flashlight stimulation (10 Hz) which is a known seizure induction stimulus, and these additional parameters improved seizure potential detection in some drugs. The validation study using the improved methodology was used to assess 52 commercially available drugs, and the prediction rate was approximately 70%. The experimental protocol established in this present study is considered useful for seizure potential screening during early stages of drug discovery.

  19. Open field locomotor activity and anxiety-related behaviors in mucopolysaccharidosis type IIIA mice.

    PubMed

    Lau, Adeline A; Crawley, Allison C; Hopwood, John J; Hemsley, Kim M

    2008-08-05

    Mucopolysaccharidosis (MPS) IIIA, or Sanfilippo syndrome, is a lysosomal storage disorder characterized by severe and progressive neuropathology. Following an asymptomatic period, patients may present with sleep disturbances, cognitive decline, aggressive tendencies and hyperactivity. A naturally-occurring mouse model of MPS IIIA also exhibits many of these behavioral features and has been recently back-crossed onto a C57BL/6 genetic background. To more thoroughly characterize the behavioral phenotype of congenic MPS IIIA mice, we assessed exploratory activity and unconditioned anxiety-related behavior in the elevated plus maze (EPM) and open field locomotor activity. Although MPS IIIA male mice were less active in the EPM at 18 and 20 weeks of age, they were more likely to explore the open arms than their normal counter-parts suggesting reduced anxiety. Repeated EPM testing reduced exploration of the open arms in MPS IIIA mice. In the open field test, significant reductions in activity were evident in naïve-tested male MPS IIIA mice from 10 weeks of age. Female normal and MPS IIIA mice displayed similar exploratory activity in the open field test. These differences in anxiety and locomotor activity will allow us to evaluate the efficacy of therapeutic regimes for MPS IIIA as a forerunner to developing safe and effective therapies for Sanfilippo patients.

  20. The effects of the novel DA D3 receptor antagonist SR 21502 on cocaine reward, cocaine seeking and cocaine-induced locomotor activity in rats.

    PubMed

    Galaj, E; Ananthan, S; Saliba, M; Ranaldi, Robert

    2014-02-01

    There is a focus on developing D3 receptor antagonists as cocaine addiction treatments. We investigated the effects of a novel selective D3 receptor antagonist, SR 21502, on cocaine reward, cocaine-seeking, food reward, spontaneous locomotor activity and cocaine-induced locomotor activity in rats. In Experiment 1, rats were trained to self-administer cocaine under a progressive ratio (PR) schedule of reinforcement and tested with vehicle or one of three doses of SR 21502. In Experiment 2, animals were trained to self-administer cocaine under a fixed ratio schedule of reinforcement followed by extinction of the response. Then, animals were tested with vehicle or one of the SR 21502 doses on cue-induced reinstatement of responding. In Experiment 3, animals were trained to lever press for food under a PR schedule and tested with vehicle or one dose of the compound. In Experiments 4 and 5, in separate groups of animals, the vehicle and three doses of SR 21502 were tested on spontaneous or cocaine (10 mg/kg, IP)-induced locomotor activity, respectively. SR 21502 produced significant, dose-related (3.75, 7.5 and 15 mg/kg) reductions in breakpoint for cocaine self-administration, cue-induced reinstatement (3.75, 7.5 and 15 mg/kg) and cocaine-induced locomotor activity (3.75, 7.5 and 15 mg/kg) but failed to reduce food self-administration and spontaneous locomotor activity. SR 21502 decreases cocaine reward, cocaine-seeking and locomotor activity at doses that have no effect on food reward or spontaneous locomotor activity. These data suggest SR 21502 may selectively inhibit cocaine's rewarding, incentive motivational and stimulant effects.

  1. Increased locomotor and thermogenic activity in mice with targeted ablation of the GHRH gene.

    PubMed

    Leone, Sheila; Chiavaroli, Annalisa; Shohreh, Rugia; Ferrante, Claudio; Ricciuti, Adriana; Manippa, Fabio; Recinella, Lucia; Di Nisio, Chiara; Orlando, Giustino; Salvatori, Roberto; Vacca, Michele; Brunetti, Luigi

    2015-04-01

    Growth hormone (GH) deficiency (GHD) leads to growth failure and changes in body composition, including increased fat accumulation and reduced lean body mass in both humans and rodents. The aim of this study was to examine the factors that contribute to energy imbalance in the GH releasing hormone knock out (GHRHKO) mice, a well established model of GHD. We evaluated food intake (of standard laboratory chow), total body weight (TBW), locomotor activity, body temperature and interscapular brown adipose tissue (BAT) weight in 8 adult male mice homozygous for the GHRHKO allele (-/-) and 8 heterozygous (+/-) animals as controls. The gene expression of uncoupling protein-1 (UCP-1) in BAT and the levels of norepinephrine (NE), dopamine (DA), and serotonin (5-hydroxytryptamine, 5-HT) in the ventral striatum were measured by real-time reverse transcription polymerase chain reaction (RT-PCR) and high performance liquid chromatography (HPLC) analysis, respectively. Throughout 2 months of observation -/- mice consumed approximately 40% more food (normalized to TBW; P<0.001), and showed increased locomotor activity in 24h time compared to controls (P<0.05). Moreover, -/- animals showed increased body temperature (P<0.001), BAT weight (P<0.001), and UCP-1 gene expression (P<0.001), while NE levels in the striatum area were lower (P<0.05) than controls. The present study demonstrates that the increased food intake observed in GHRH ablated animals is associated with increased locomotor and thermogenic activity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Sex differences in the acute locomotor response to methamphetamine in BALB/c mice.

    PubMed

    Ohia-Nwoko, Odochi; Haile, Colin N; Kosten, Therese A

    2017-06-01

    Women use methamphetamine more frequently than men and are more vulnerable to its negative psychological effects. Rodent models have been an essential tool for evaluating the sex-dependent effects of psychostimulants; however, evidence of sex differences in the behavioral responses to methamphetamine in mice is lacking. In the present study, we investigated acute methamphetamine-induced (1mg/kg and 4mg/kg) locomotor activation in female and male BALB/c mice. We also evaluated whether basal locomotor activity was associated with the methamphetamine-induced locomotor response. The results indicated that female BALB/c mice displayed enhanced methamphetamine-induced locomotor activity compared to males, while basal locomotor activity was positively correlated with methamphetamine-induced activity in males, but not females. This study is the first to show sex-dependent locomotor effects of methamphetamine in BALB/c mice. Our observations emphasize the importance of considering sex when assessing behavioral responses to methamphetamine. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Evidence That GABA Mediates Dopaminergic and Serotonergic Pathways Associated with Locomotor Activity in Juvenile Chinook Salmon (Oncorhynchus tshawytscha)

    USGS Publications Warehouse

    Clements, S.; Schreck, C.B.

    2004-01-01

    The authors examined the control of locomotor activity in juvenile salmon (Oncorhynchus tshawytscha) by manipulating 3 neurotransmitter systems-gamma-amino-n-butyric acid (GABA), dopamine, and serotonin-as well as the neuropeptide corticotropin releasing hormone (CRH). Intracerebroventricular (ICV) injections of CRH and the GABAAagonist muscimol stimulated locomotor activity. The effect of muscimol was attenuated by administration of a dopamine receptor antagonist, haloperidol. Conversely, the administration of a dopamine uptake inhibitor (4???,4??? -difluoro-3-alpha-[diphenylmethoxy] tropane hydrochloride [DUI]) potentiated the effect of muscimol. They found no evidence that CRH-induced hyperactivity is mediated by dopaminergic systems following concurrent injections of haloperidol or DUI with CRH. Administration of muscimol either had no effect or attenuated the locomotor response to concurrent injections of CRH and fluoxetine, whereas the GABAA antagonist bicuculline methiodide potentiated the effect of CRH and fluoxetine.

  4. The effects of rod and cone loss on the photic regulation of locomotor activity and heart rate.

    PubMed

    Thompson, Stewart; Lupi, Daniela; Hankins, Mark W; Peirson, Stuart N; Foster, Russell G

    2008-08-01

    Behavioral responses to light indirectly affect cardiovascular output, but in anesthetized rodents a direct effect of light on heart rate has also been described. Both the basis for this response and the contribution of rods, cones and melanopsin-based photosensitive retinal ganglion cells (pRGCs) remains unknown. To understand how light acutely regulates heart rate we studied responses to light in mice lacking all rod and cone photoreceptors (rd/rd cl ) along with wild-type controls. Our initial experiments delivered light to anesthetized mice at Zeitgeber time (ZT)16 (4 h after lights off, mid-activity phase) and produced an increase in heart rate in wild-type mice, but not in rd/rd cl animals. By contrast, parallel experiments in freely-moving mice demonstrated that light exposure at this time suppressed heart rate and activity in both genotypes. Because of the effects of anesthesia, all subsequent studies were conducted in freely-moving animals. The effects of light were also assessed at ZT6 (mid-rest phase). At this timepoint, wild-type mice showed an irradiance-dependent increase in heart rate and activity. By contrast, rd/rd cl mice failed to show any modulation of heart rate or activity, even at very high irradiances. Increases in heart rate preceded increases in locomotor activity and remained elevated when locomotor activity ceased, suggesting that these two responses are at least partially uncoupled. Collectively, our results show an acute and phase-dependent effect of light on cardiovascular output in mice. Surprisingly, this irradiance detection response is dependent upon rod and cone photoreceptors, with no apparent contribution from melanopsin pRGCs.

  5. Effects of zacopride and BMY25801 (batanopride) on radiation-induced emesis and locomotor behavior in the ferret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, G.L.; Landauer, M.R.

    1990-01-01

    The antiemetic and locomotor effects of two substituted benzamides, zacopride and batanopride (BMY25801), were compared in ferrets after bilateral Co irradiation at 2, 4, or 6 Gy. Both zacopride and BMY25801 were effective against emesis and related signs. Zacopride, tested at several doses (0.003, 0.03 and 0.3 mg/kg), appeared to be more potent because it abolished emesis at 100-fold lower doses than did BMY25801 (3mg/kg). The ED value for the antiemetic effect of zacopride was 0.026 mg/kg (confidence levels = 0.0095, 0.072 mg/kg). However, analysis of emetic parameters recorded from vomiting animals (e.g., latency to first emesis) demonstrated that BMY25801more » provided greater antiemetic protection in this population than zacopride without and apparent side effects. Locomotor activity was significantly depressed by both radiation (all doses) and zacopride alone (0.03 mg/kg and 0.3 mg/kg). BMY25801 alone did not affect locomotor activity, and protected against the radiation-induced locomotor decrement.« less

  6. Dissociation between diurnal cycles in locomotor activity, feeding behavior and hepatic PERIOD2 expression in chronic alcohol-fed mice

    PubMed Central

    Zhou, Peng; Werner, John H.; Lee, Donghoon; Sheppard, Aaron D.; Liangpunsakul, Suthat; Duffield, Giles E.

    2015-01-01

    Chronic alcohol consumption contributes to fatty liver disease. Our studies revealed that the hepatic circadian clock is disturbed in alcohol-induced hepatic steatosis, and effects of chronic alcohol administration upon the clock itself may contribute to steatosis. We extended these findings to explore the effects of chronic alcohol treatment on daily feeding and locomotor activity patterns. Mice were chronically pair-fed ad libitum for 4 weeks using the Lieber-DeCarli liquid diet, with calorie-controlled liquid and standard chow diets as control groups. Locomotor activity, feeding activity, and real-time bioluminescence recording of PERIOD2::LUCIFERASE expression in tissue explants were measured. Mice on liquid control and chow diets exhibited normal profiles of locomotor activity, with a ratio of 22:78% day/night activity and a peak during early night. This pattern was dramatically altered in alcohol-fed mice, marked by a 49:51% ratio and the absence of a distinct peak. While chow-diet fed mice had a normal 24:76% ratio of feeding activity, with a peak in the early night, this pattern was dramatically altered in both liquid-diet groups: mice had a 43:57% ratio, and an absence of a distinct peak. Temporal differences were also observed between the two liquid-diet groups during late day. Cosinor analysis revealed a ~4-h and ~6-h shift in the alcohol-fed group feeding and locomotor activity rhythms, respectively. Analysis of hepatic PER2 expression revealed that the molecular clock in alcohol-fed and control liquid-diet mice was shifted by ~11 h and ~6 h, respectively. No differences were observed in suprachiasmatic nucleus explants, suggesting that changes in circadian phase in the liver were generated independently from the central clock. These results suggest that chronic alcohol consumption and a liquid diet can differentially modulate the daily rhythmicity of locomotor and feeding behaviors, aspects that might contribute to disturbances in the circadian timing

  7. Continuous exposure to a novel stressor based on water aversion induces abnormal circadian locomotor rhythms and sleep-wake cycles in mice.

    PubMed

    Miyazaki, Koyomi; Itoh, Nanako; Ohyama, Sumika; Kadota, Koji; Oishi, Katsutaka

    2013-01-01

    Psychological stressors prominently affect diurnal rhythms, including locomotor activity, sleep, blood pressure, and body temperature, in humans. Here, we found that a novel continuous stress imposed by the perpetual avoidance of water on a wheel (PAWW) affected several physiological diurnal rhythms in mice. One week of PAWW stress decayed robust circadian locomotor rhythmicity, while locomotor activity was evident even during the light period when the mice are normally asleep. Daytime activity was significantly upregulated, whereas nighttime activity was downregulated, resulting in a low amplitude of activity. Total daily activity gradually decreased with increasing exposure to PAWW stress. The mice could be exposed to PAWW stress for over 3 weeks without adaptation. Furthermore, continuous PAWW stress enhanced food intake, but decreased body weight and plasma leptin levels, indicating that sleep loss and PAWW stress altered the energy balance in these mice. The diurnal rhythm of corticosterone levels was not severely affected. The body temperature rhythm was diurnal in the stressed mice, but significantly dysregulated during the dark period. Plasma catecholamines were elevated in the stressed mice. Continuous PAWW stress reduced the duration of daytime sleep, especially during the first half of the light period, and increased nighttime sleepiness. Continuous PAWW stress also simultaneously obscured sleep/wake and locomotor activity rhythms compared with control mice. These sleep architecture phenotypes under stress are similar to those of patients with insomnia. The stressed mice could be entrained to the light/dark cycle, and when they were transferred to constant darkness, they exhibited a free-running circadian rhythm with a timing of activity onset predicted by the phase of their entrained rhythms. Circadian gene expression in the liver and muscle was unaltered, indicating that the peripheral clocks in these tissues remained intact.

  8. Effects of short-term fasting on stress physiology, body condition, and locomotor activity in wintering male white-crowned sparrows.

    PubMed

    Krause, Jesse S; Pérez, Jonathan H; Meddle, Simone L; Wingfield, John C

    2017-08-01

    For wild free-living animals the availability of food resources can be greatly affected by environmental perturbations such as weather events. In response to environmental perturbations, animals activate the hypothalamic-pituitary-adrenal (HPA) axis to adjust physiology and behavior. The literature asserts that during weather events food intake declines leading to changes in HPA axis activity, as measured by both baseline and stress-induced glucocorticoid concentrations. Here we investigated how body condition, locomotor activity, and stress physiology were affected by varying lengths of a fast (1, 2, 6, and 24h; similar to that experienced by free-living birds) compared to when food was provided ad libitum in captive wintering male white-crowned sparrows, Zonotrichia leucophrys gambelii, exposed to a short day photoperiod. Baseline corticosterone concentrations were increased for all fasting durations but were highest in 6 and 24h fasted birds. Stress-induced corticosterone was elevated in 1h fasted birds with a trend for the 2h of fast; no other differences were found. Baseline corticosterone concentrations were negatively related to both total fat scores and body mass. All birds lost body mass regardless of fast length but birds fasted for 24h lost the most. Fat scores declined in the 6 and 24h groups, and no measureable changes were detected in pectoralis muscle profile. Locomotor activity was increased over the entire period in which food was removed regardless of fasting duration. Together this suggests that reduced food availability is responsible, at least in part, for the rapid elevation both baseline corticosterone under any duration of fast and stress-induced concentrations during short-term fasts. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Food deprivation increases the low-dose locomotor stimulant response to ethanol in Drosophila melanogaster.

    PubMed

    Kliethermes, Christopher L

    2013-10-01

    Acute and chronic states of food deprivation result in increased sensitivity to a variety of natural reinforcers as well as to drugs of abuse. Food deprived animals show increased locomotor activity during periods of food deprivation, as well as increased locomotor stimulant responses to drugs of abuse, including cocaine, amphetamine, morphine, and ethanol, implying that drugs of abuse act in part on neural systems that underlie responses towards food. To determine whether this effect extends to an invertebrate, highly genetically tractable animal, the locomotor stimulant effects of low dose ethanol were assessed under a variety of feeding conditions in the fruit fly, Drosophila melanogaster. Food deprivation resulted in strain specific increases in ethanol-stimulated locomotor activity in most strains tested, although elevated baseline activity confounded interpretation in some strains. Experiments conducted with Canton S flies found that the effects of food deprivation on the locomotor stimulant response to ethanol increased with the duration of deprivation, and could be blocked by refeeding the flies with standard food or sucrose, but not yeast, immediately prior to the ethanol exposure. Life-span extending dietary depletion procedures or previous periods of food deprivation did not affect the response to ethanol, indicating that only animals in an acutely food deprived state are more sensitive to the stimulant effects of ethanol. These results suggest that increased sensitivity to the stimulant effects of some drugs of abuse might reflect an evolutionarily conserved neural mechanism that underlies behavioral responses to natural reinforcers and drugs of abuse. The identification of this mechanism, and the genes that underlie its development and function, will constitute a novel approach towards the study of alcohol abuse and dependence. © 2013.

  10. The anatomy and physiology of the locomotor system.

    PubMed

    Farley, Alistair; McLafferty, Ella; Hendry, Charles

    Mobilisation is one of the activities of living. The term locomotor system refers to those body tissues and organs responsible for movement. Nurses and healthcare workers should be familiar with the body structures that enable mobilisation to assist those in their care with this activity. This article outlines the structure and function of the locomotor system, including the skeleton, joints, muscles and muscle attachments. Two common bone disorders, osteoporosis and osteoarthritis, are also considered.

  11. Nanomolar Oxytocin Synergizes with Weak Electrical Afferent Stimulation to Activate the Locomotor CPG of the Rat Spinal Cord In Vitro

    PubMed Central

    Dose, Francesco; Zanon, Patrizia; Coslovich, Tamara; Taccola, Giuliano

    2014-01-01

    Synergizing the effect of afferent fibre stimulation with pharmacological interventions is a desirable goal to trigger spinal locomotor activity, especially after injury. Thus, to better understand the mechanisms to optimize this process, we studied the role of the neuropeptide oxytocin (previously shown to stimulate locomotor networks) on network and motoneuron properties using the isolated neonatal rat spinal cord. On motoneurons oxytocin (1 nM–1 μM) generated sporadic bursts with superimposed firing and dose-dependent depolarization. No desensitization was observed despite repeated applications. Tetrodotoxin completely blocked the effects of oxytocin, demonstrating the network origin of the responses. Recording motoneuron pool activity from lumbar ventral roots showed oxytocin mediated depolarization with synchronous bursts, and depression of reflex responses in a stimulus and peptide-concentration dependent fashion. Disinhibited bursting caused by strychnine and bicuculline was accelerated by oxytocin whose action was blocked by the oxytocin antagonist atosiban. Fictive locomotion appeared when subthreshold concentrations of NMDA plus 5HT were coapplied with oxytocin, an effect prevented after 24 h incubation with the inhibitor of 5HT synthesis, PCPA. When fictive locomotion was fully manifested, oxytocin did not change periodicity, although cycle amplitude became smaller. A novel protocol of electrical stimulation based on noisy waveforms and applied to one dorsal root evoked stereotypic fictive locomotion. Whenever the stimulus intensity was subthreshold, low doses of oxytocin triggered fictive locomotion although oxytocin per se did not affect primary afferent depolarization evoked by dorsal root pulses. Among the several functional targets for the action of oxytocin at lumbar spinal cord level, the present results highlight how small concentrations of this peptide could bring spinal networks to threshold for fictive locomotion in combination with other

  12. α6β2 nicotinic acetylcholine receptors influence locomotor activity and ethanol consumption.

    PubMed

    Kamens, Helen M; Peck, Colette; Garrity, Caitlin; Gechlik, Alex; Jenkins, Brenita C; Rajan, Akshat

    2017-06-01

    Nicotinic acetylcholine receptors (nAChRs) in the mesolimbic dopamine system have been implicated in ethanol behaviors. In particular, work in genetically engineered mice has demonstrated that α6-containing nAChRs are involved in ethanol consumption and sedation. A limitation of these studies is that the alteration in the receptor was present throughout development. The recently described α6β2 antagonist, N,N-decane-1,10-diyl-bis-3-picolinium diiodide (bPiDI), now makes it possible to test for the involvement of these receptors using a pharmacological approach. The aim of this study was to examine the role of α6β2 nAChRs in ethanol behaviors using a pharmacological approach. Adolescent C57BL/6J mice were treated with bPiDI 30 min prior to testing the mice for binge-like ethanol consumption in the drinking-in-the-dark (DID) test, ethanol-induced motor incoordination using the balance beam, and ethanol-induced sedation using the Loss of Righting Reflex (LORR) paradigm. Adolescent animals were chosen because they express a high amount of α6 mRNA relative to adult animals. Control studies were also performed to determine the effect of bPiDI on locomotor activity and ethanol metabolism. Female mice treated with 20 mg/kg bPiDI had reduced locomotor activity compared to saline-treated animals during the first 30 min following an acute injection. Pretreatment with the α6β2 antagonist reduced adolescent ethanol consumption but also reduced saccharin consumption. No significant effects were observed on ethanol-induced ataxia, sedation, or metabolism. This study provides evidence that α6β2 nAChRs are involved in locomotor activity as well as ethanol and saccharin consumption in adolescent animals. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Music and Methamphetamine: Conditioned Cue-induced Increases in Locomotor Activity and Dopamine Release in Rats

    PubMed Central

    Polston, J.E.; Rubbinaccio, H.Y.; Morra, J.T.; Sell, E.M.; Glick, S.D.

    2011-01-01

    Associations between drugs of abuse and cues facilitate the acquisition and maintenance of addictive behaviors. Although significant research has been done to elucidate the role that simple discriminative or discrete conditioned stimuli (e.g., a tone or a light) play in addiction, less is known about complex environmental cues. The purpose of the present study was to examine the role of a musical conditioned stimulus by assessing locomotor activity and in vivo microdialysis. Two groups of rats were given non-contingent injections of methamphetamine (1.0 mg/kg) or vehicle and placed in standard conditioning chambers. During these conditioning sessions both groups were exposed to a continuous conditioned stimulus, in the form of a musical selection (“Four” by Miles Davis) played repeatedly for ninety minutes. After seven consecutive conditioning days subjects were given one day of rest, and subsequently tested for locomotor activity or dopamine release in the absence of drug while the musical conditioned stimulus was continually present. The brain regions examined included the basolateral amygdala, nucleus accumbens, and prefrontal cortex. The results show that music is an effective contextual conditioned stimulus, significantly increasing locomotor activity after repeated association with methamphetamine. Furthermore, this musical conditioned stimulus significantly increased extracellular dopamine levels in the basolateral amygdala and nucleus accumbens. These findings support other evidence showing the importance of these brain regions in conditioned learning paradigms, and demonstrate that music is an effective conditioned stimulus warranting further investigation. PMID:21145911

  14. Locomotor activity and tissue levels following acute administration of lambda- and gamma-cyhalothrin in rats

    EPA Science Inventory

    Pyrethroids produce neurotoxicity that depends, in part, on the chemical structure. Common behavioral effects include locomotor activity changes and specific toxic syndromes (types I and II). In general these neurobehavioral effects correlate well with peak internal dose metric...

  15. Locomotor activity and discriminative stimulus effects of a novel series of synthetic cathinone analogs in mice and rats.

    PubMed

    Gatch, Michael B; Dolan, Sean B; Forster, Michael J

    2017-04-01

    Recent years have seen an increase in the recreational use of novel, synthetic psychoactive substances. There are little or no data on the abuse liability of many of the newer compounds. The current study investigated the discriminative stimulus and locomotor effects of a series of synthetic analogs of cathinone: α-pyrrolidinopropiophenone (α-PPP), α-pyrrolidinohexiophenone (α-PHP), α-pyrrolidinopentiothiophenone (α-PVT), 3,4-methylenedioxybutiophenone (MDPBP), and ethylone. Locomotor activity was assessed in an open-field assay using Swiss-Webster mice. Discriminative stimulus effects were assessed in Sprague-Dawley rats trained to discriminate either cocaine or methamphetamine from vehicle. Each of the compounds produced an inverted-U dose-effect on locomotor activity. Maximal effects were similar among the test compounds, but potencies varied with relative potencies of MDPBP > α-PPP = α-PHP > ethylone > α-PVT. Each of the test compounds substituted fully for the discriminative stimulus effects of methamphetamine. α-PPP, α-PHP, and ethylone fully substituted for cocaine. α-PVT produced a maximum of 50% cocaine-appropriate responding, and MDPBP produced an inverted-U-shaped dose-effect curve with maximum effects of 67%. These data provide initial evidence that these structurally similar, emerging novel psychoactive substances demonstrate potential for abuse and may be utilized for their stimulant-like effects, given their ability to stimulate locomotor activity and their substitution for the discriminative stimulus effects of the classical psychostimulants cocaine and/or methamphetamine.

  16. Distinct sets of locomotor modules control the speed and modes of human locomotion

    PubMed Central

    Yokoyama, Hikaru; Ogawa, Tetsuya; Kawashima, Noritaka; Shinya, Masahiro; Nakazawa, Kimitaka

    2016-01-01

    Although recent vertebrate studies have revealed that different spinal networks are recruited in locomotor mode- and speed-dependent manners, it is unknown whether humans share similar neural mechanisms. Here, we tested whether speed- and mode-dependence in the recruitment of human locomotor networks exists or not by statistically extracting locomotor networks. From electromyographic activity during walking and running over a wide speed range, locomotor modules generating basic patterns of muscle activities were extracted using non-negative matrix factorization. The results showed that the number of modules changed depending on the modes and speeds. Different combinations of modules were extracted during walking and running, and at different speeds even during the same locomotor mode. These results strongly suggest that, in humans, different spinal locomotor networks are recruited while walking and running, and even in the same locomotor mode different networks are probably recruited at different speeds. PMID:27805015

  17. Decreased Sensitivity in Adolescent versus Adult Rats to the Locomotor Activating Effects of Toluene

    PubMed Central

    Bowen, Scott E.; Charlesworth, Jonathan D.; Tokarz, Mary E.; Jerry Wright, M.; Wiley, Jenny L.

    2007-01-01

    Volatile organic solvent (inhalant) abuse continues to be a major health concern throughout the world. Of particular concern is the abuse of inhalants by adolescents because of its toxicity and link to illicit drug use. Toluene, which is found in many products such as glues and household cleaners, is among the most commonly abused organic solvents. While studies have assessed outcomes of exposure to inhalants in adult male animals, there is little research on the neurobehavioral effects of inhalants in female or younger animals. In attempt to address these shortcomings, we exposed male and female Long-Evans rats to 20 min of 0, 2,000, 4,000, or 8,000 parts per million (ppm) inhaled toluene for 10 days in rats aged postnatal (PN) day 28-39 (adolescent), PN44-PN55, or >PN70 (adult). Animals were observed individually in 29-l transparent glass cylindrical jars equipped with standard photocells that were used to measure locomotor activity. Toluene significantly increased activity as compared to air exposure in all groups of male and female rats with the magnitude of locomotor stimulation produced by 4000 ppm toluene being significantly greater for female adults than during any age of adolescence. The results demonstrate that exposure to abuse patterns of high concentrations of toluene through inhalation can alter spontaneous locomotor behavior in rats and that the expression of these effects appears to depend upon the postnatal age of testing and sex of the animal. PMID:17869480

  18. Different responses of Drosophila subobscura isofemale lines to extremely low frequency magnetic field (50 Hz, 0.5 mT): fitness components and locomotor activity.

    PubMed

    Zmejkoski, Danica; Petković, Branka; Pavković-Lučić, Sofija; Prolić, Zlatko; Anđelković, Marko; Savić, Tatjana

    2017-05-01

    Extremely low frequency (ELF) magnetic fields as essential ecological factors may induce specific responses in genetically different lines. The object of this study was to investigate the impact of the ELF magnetic field on fitness components and locomotor activity of five Drosophila subobscura isofemale (IF) lines. Each D. subobscura IF line, arbitrarily named: B16/1, B24/4, B39/1, B57/2 and B69/5, was maintained in five full-sib inbreeding generations. Their genetic structures were defined based on the mitochondrial DNA variability. Egg-first instar larvae and 1-day-old flies were exposed to an ELF magnetic field (50 Hz, 0.5 mT, 48 h) and thereafter, fitness components and locomotor activity of males and females in an open field test were observed for each selected IF line, respectively. Exposure of egg-first instar larvae to an ELF magnetic field shortened developmental time, and did not affect the viability and sex ratio of D. subobscura IF lines. Exposure of 1-day-old males and females IF lines B16/1 and B24/4 to an ELF magnetic field significantly decreased their locomotor activity and this effect lasted longer in females than males. These results indicate various responses of D. subobscura IF lines to the applied ELF magnetic field depending on their genetic background.

  19. Sodium Butyrate Improves Locomotor Impairment and Early Mortality in a Rotenone-Induced Drosophila Model of Parkinson’s Disease

    PubMed Central

    St. Laurent, Robyn; O’Brien, Liam M.; Ahmad, S. Tariq

    2013-01-01

    Parkinson’s disease (PD) is a neurodegenerative disorder primarily affecting the dopaminergic neurons in the nigrastriatal pathway resulting in debilitating motor impairment in both familial and sporadic cases. Histone deacetylase (HDAC) inhibitors have been recently implicated as a therapeutic candidate because of their ability to correct the disrupted HDAC activity in PD and other neurodegenerative diseases. Sodium butyrate (SB), an HDAC inhibitor, reduces degeneration of dopaminergic neurons in a mutant alpha-synuclein Drosophila transgenic model of familial PD. Chronic exposure to the pesticide rotenone also causes selective degeneration of dopaminergic neurons and causes locomotor impairment and early mortality in a Drosophila model of chemically-induced PD. This study investigated the effects of sodium butyrate on locomotor impairment and early mortality in a rotenone-induced PD model. We show that treatment with 10 mM SB-supplemented food rescued the rotenone-induced locomotor impairment and early mortality in flies. Additionally, flies with the genetic knockdown of HDAC activity through Sin3A loss-of-function mutation (Sin3Alof) were resistant to rotenone-induced locomotor impairment and early mortality. Furthermore, SB-supplemented Sin3Alof flies had a modest additive effect for improving locomotor impairment. We also show SB-mediated improvement of rotenone-induced locomotor impairment was associated with elevated dopamine levels in the brain. However, the possibility of SB-mediated protective role through mechanisms independent from dopamine system is also discussed. These findings demonstrate that HDAC inhibitors like SB can ameliorate locomotor impairment in a rotenone-induced PD model. PMID:23623990

  20. Nitric oxide-mediated modulation of the murine locomotor network

    PubMed Central

    Foster, Joshua D.; Dunford, Catherine; Sillar, Keith T.

    2013-01-01

    Spinal motor control networks are regulated by neuromodulatory systems to allow adaptability of movements. The present study aimed to elucidate the role of nitric oxide (NO) in the modulation of mammalian spinal locomotor networks. This was investigated with isolated spinal cord preparations from neonatal mice in which rhythmic locomotor-related activity was induced pharmacologically. Bath application of the NO donor diethylamine NONOate (DEA/NO) decreased the frequency and modulated the amplitude of locomotor-related activity recorded from ventral roots. Removal of endogenous NO with coapplication of a NO scavenger (PTIO) and a nitric oxide synthase (NOS) blocker [nitro-l-arginine methyl ester (l-NAME)] increased the frequency and decreased the amplitude of locomotor-related activity. This demonstrates that endogenously derived NO can modulate both the timing and intensity of locomotor-related activity. The effects of DEA/NO were mimicked by the cGMP analog 8-bromo-cGMP. In addition, the soluble guanylyl cyclase (sGC) inhibitor ODQ blocked the effects of DEA/NO on burst amplitude and frequency, although the frequency effect was only blocked at low concentrations of DEA/NO. This suggests that NO-mediated modulation involves cGMP-dependent pathways. Sources of NO were studied within the lumbar spinal cord during postnatal development (postnatal days 1–12) with NADPH-diaphorase staining. NOS-positive cells in the ventral horn exhibited a rostrocaudal gradient, with more cells in rostral segments. The number of NOS-positive cells was also found to increase during postnatal development. In summary, we have shown that NO, derived from sources within the mammalian spinal cord, modulates the output of spinal motor networks and is therefore likely to contribute to the fine-tuning of locomotor behavior. PMID:24259545

  1. Differential regulation of NMDA receptors by d-serine and glycine in mammalian spinal locomotor networks

    PubMed Central

    Acton, David

    2017-01-01

    Activation of N-methyl-d-aspartate receptors (NMDARs) requires the binding of a coagonist, either d-serine or glycine, in addition to glutamate. Changes in occupancy of the coagonist binding site are proposed to modulate neural networks including those controlling swimming in frog tadpoles. Here, we characterize regulation of the NMDAR coagonist binding site in mammalian spinal locomotor networks. Blockade of NMDARs by d(−)-2-amino-5-phosphonopentanoic acid (d-APV) or 5,7-dichlorokynurenic acid reduced the frequency and amplitude of pharmacologically induced locomotor-related activity recorded from the ventral roots of spinal-cord preparations from neonatal mice. Furthermore, d-APV abolished synchronous activity induced by blockade of inhibitory transmission. These results demonstrate an important role for NMDARs in murine locomotor networks. Bath-applied d-serine enhanced the frequency of locomotor-related but not disinhibited bursting, indicating that coagonist binding sites are saturated during the latter but not the former mode of activity. Depletion of endogenous d-serine by d-amino acid oxidase or the serine-racemase inhibitor erythro-β-hydroxy-l-aspartic acid (HOAsp) increased the frequency of locomotor-related activity, whereas application of l-serine to enhance endogenous d-serine synthesis reduced burst frequency, suggesting a requirement for d-serine at a subset of synapses onto inhibitory interneurons. Consistent with this, HOAsp was ineffective during disinhibited activity. Bath-applied glycine (1–100 µM) failed to alter locomotor-related activity, whereas ALX 5407, a selective inhibitor of glycine transporter-1 (GlyT1), enhanced burst frequency, supporting a role for GlyT1 in NMDAR regulation. Together these findings indicate activity-dependent and synapse-specific regulation of the coagonist binding site within spinal locomotor networks, illustrating the importance of NMDAR regulation in shaping motor output. NEW & NOTEWORTHY We provide

  2. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish

    PubMed Central

    Kung, Tiffany S.; Richardson, Jason R.; Cooper, Keith R.; White, Lori A.

    2015-01-01

    Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25–0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3–72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development. PMID:25912032

  3. Locomotor activating effects of cocaine and scopolamine combinations in rats: isobolographic analysis

    PubMed Central

    Thomsen, Morgane

    2014-01-01

    Muscarinic cholinergic receptors are receiving renewed interest as viable targets for treating various psychiatric disorders. Dopaminergic and muscarinic systems interact in complex ways. The goal of this study was to quantify the interaction of a systemically administered psychomotor stimulant and muscarinic antagonist at the behavioral level. Using isobolographic analysis of locomotor activity data, we assessed the effects of three cocaine/scopolamine mixtures in terms of deviation from simple dose addition (additivity), at four effect levels. All three mixtures produced some more-than-additive (synergistic) effects, as lower doses were needed to produce given effects relative to the calculated effect of additive doses. A mixture with comparable contributions from cocaine and scopolamine produced significantly more-than-additive effects at all but the lowest effect level examined. A mostly-cocaine mixture was more-than-additive at low effect levels only, while a mostly-scopolamine mixture produced effects more consistent with additivity, with only the highest effect level barely reaching significant synergism. Our study confirms and quantifies previous findings that suggested synergistic effects of stimulants and muscarinic antagonists. The synergism implies that cocaine and scopolamine stimulate locomotor activity through non-identical pathways, and was most pronounced for a mixture containing cocaine and scopolamine in comparable proportions. PMID:24769455

  4. [Application of locomotor activity test to evaluate functional injury after global cerebral ischemia in C57BL/6 mice].

    PubMed

    Zhang, Li-quan; Xu, Jia-ni; Wang, Zhen-zhen; Zeng, Li-jun; Ye, Yi-lu; Zhang, Wei-ping; Wei, Er-qing; Zhang, Qi

    2014-05-01

    To evaluate the application of locomotor activity test in functional injury after global cerebral ischemia (GCI) in C57BL/6 mice. GCI was induced by bilateral carotid arteries occlusion for 30 min in C57BL/6 mice. Mice were divided into sham group, GCI group and minocycline group. Saline or minocycline (45 mg/kg) was i.p. injected once daily for 6 d after ischemia. At Day 6 after ischemia, locomotor activity was recorded for 1 h in open field test. Total distance, central distance, central distance ratio, periphery distance, periphery distance ratio, central time and periphery time were used to evaluate the behavior characteristics of locomotor activity in C57BL/6 mice after ischemia. The survival neuron density was detected by Nissl staining in hippocampus, cortex and striatum. Compared with sham group, total distance, central distance and central time increased and periphery time decreased in C57BL/6 mice after GCI (Ps<0.05). However, minocycline significantly reduced the central distance and central time and increased the periphery time (Ps<0.05). Neurons were damaged in hippocampus, cortex and striatum after GCI, which manifested by decreased neurons and the most serious damage in hippocampal CA1 region. Minocycline significantly improved the neuron appearance and increased the neuron number in hippocampus and striatum (P<0.001 or P<0.05). Locomotor activity in open field test can objectively evaluate the behavior injury after GCI in mice. Central distance and central time can be used as indexes of quantitative assessment.

  5. Mouse shoulder morphology responds to locomotor activity and the kinematic differences of climbing and running.

    PubMed

    Green, David J; Richmond, Brian G; Miran, Sara L

    2012-12-01

    Mechanical loads play a significant role in determining long bone shape and strength, but less work has explored how these loads influence flat bones like the scapula, which has been shown to vary with locomotor preference among primate taxa. Here, we tested the effects of voluntary running and climbing exercise in mice to examine how the mechanical loads borne from different locomotor patterns influence shoulder morphological development. Ninety-nine female wild-type mice were distributed equally among sedentary control, activity-wheel running, and vertical climbing experimental conditions. Running mice had the lowest body masses, larger intrinsic shoulder muscles, and the most pronounced differences in scapular size and shape relative to the other groups. Climbing mouse scapular morphology also differed significantly from the control individuals, but these differences were not as marked as those between the running and control mice. This might be attributable in part to greater levels of activity in the wheel-runners relative to the climbers. Additionally, climbing mice held their bodies closer to the substrate and maintained more flexed limbs and posterior hand positions compared with the kinematics of running. As a result, climbers differed significantly from both the running and control mice in developing a relatively broader infraspinous region, which is likely related to preferential recruitment of the infraspinatus and teres minor muscles to maintain flexed shoulder postures. The results of this study demonstrate that variation in activity level and type of locomotor regime over a significant portion of the life history influences muscle and bone development in the shoulder. Copyright © 2012 Wiley Periodicals, Inc.

  6. Effects of photophase illuminance on locomotor activity, urine production and urinary 6-sulfatoxymelatonin in nocturnal and diurnal South African rodents.

    PubMed

    van der Merwe, Ingrid; Oosthuizen, Maria K; Ganswindt, Andre; Haim, Abraham; Bennett, Nigel C

    2017-05-01

    Effects of photophase illuminance (1, 10, 100 and 330 lx of white incandescent lighting) on daily rhythms of locomotor activity, urine production and 6-sulfatoxymelatonin (6-SMT; 10 versus 330 lx) were studied in nocturnal Namaqua rock mice ( Micaelamys namaquensis ) and diurnal four-striped field mice ( Rhabdomys pumilio ). Micaelamys namaquensis was consistently nocturnal (∼90-94% nocturnal activity), whereas considerable individual variation marked activity profiles in R. pumilio , but with activity mostly pronounced around twilight (∼55-66% diurnal activity). The amplitude of daily activity was distinctly affected by light intensity and this effect was greater in M. namaquensis than in R. pumilio Only M. namaquensis displayed a distinctive daily rhythm of urine production, which correlated with its activity rhythm. Mean daily urine production appeared to be attenuated under dim photophase conditions, particularly in R. pumilio The results suggest that the circadian regulation of locomotor activity and urine production possesses separate sensitivity thresholds to photophase illuminance. Micaelamys namaquensis expressed a significant daily 6-SMT rhythm that peaked during the late night, but the rhythm was attenuated by the brighter photophase cycle (330 lx). Rhabdomys pumilio appeared to express an ultradian 6-SMT rhythm under both lighting regimes with comparable mean daily 6-SMT values, but with different temporal patterns. It is widely known that a natural dark phase which is undisturbed by artificial light is essential for optimal circadian function. Here, we show that light intensity during the photophase also plays a key role in maintaining circadian rhythms in rodents, irrespective of their temporal activity rhythm. © 2017. Published by The Company of Biologists Ltd.

  7. Somatostatin-28 modulates prepulse inhibition of the acoustic startle response, reward processes and spontaneous locomotor activity in rats

    PubMed Central

    Semenova, Svetlana; Hoyer, Daniel; Geyer, Mark A.; Markou, Athina

    2011-01-01

    Somatostatins have been shown to be involved in the pathophysiology of motor and affective disorders, as well as psychiatry disorders, including schizophrenia. We hypothesized that in addition to motor function, somatostatin may be involved in somatosensory gating and reward processes that have been shown to be dysregulated in schizophrenia. Accordingly, we evaluated the effects of intracerebroventricular administration of somatostatin-28 on spontaneous locomotor and exploratory behavior measured in a behavioral pattern monitor, sensorimotor gating, prepulse inhibition (PPI) of the acoustic startle reflex, and brain reward function (measured in a discrete trial intracranial self-stimulation procedure) in rats. Somatostatin-28 decreased spontaneous locomotor activity during the first 10 min of a 60 min testing session with no apparent changes in the exploratory activity of rats. The highest somatostatin-28 dose (10 μg/5 μl/side) induced PPI deficits with no effect on the acoustic startle response or startle response habituation. The somatostatin-induced PPI deficit was partially reversed by administration of SRA-880, a selective somatostatin 1 (sst1) receptor antagonist. Somatostatin-28 also induced elevations in brain reward thresholds, reflecting an anhedonic-like state. SRA-880 had no effect on brain reward function under baseline conditions. Altogether these findings suggest that somatostatin-28 modulates PPI and brain reward function but does not have a robust effect on spontaneous exploratory activity. Thus, increases in somatostatin transmission may represent one of the neurochemical mechanisms underlying anhedonia, one of the negative symptoms of schizophrenia, and sensorimotor gating deficits associated with cognitive impairments in schizophrenia patients. PMID:20537385

  8. Sexual differences in post-hatching Saunders's gulls: size, locomotor activity, and foraging skill.

    PubMed

    Yoon, Jongmin; Lee, Seung-Hee; Joo, Eun-Jin; Na, Ki-Jeong; Park, Shi-Ryong

    2013-04-01

    Various selection pressures induce the degree and direction of sexual size dimorphism in animals. Selection favors either larger males for contests over mates or resources, or smaller males are favored for maneuverability; whereas larger females are favored for higher fecundity, or smaller females for earlier maturation for reproduction. In the genus of Larus (seagulls), adult males are generally known to be larger in size than adult females. However, the ontogeny of sexual size dimorphism is not well understood, compared to that in adults. The present study investigates the ontogeny of sexual size dimorphism in Saunders's gulls (Larus saundersi) in captivity. We artificially incubated fresh eggs collected in Incheon, South Korea, and measured body size, locomotor activity, and foraging skill in post-hatching chicks in captivity. Our results indicated that the sexual differences in size and locomotor activity occurred with the post-hatching development. Also, larger males exhibited greater foraging skills for food acquisition than smaller females at 200 days of age. Future studies should assess how the adaptive significance of the sexual size dimorphism in juveniles is linked with sexual divergence in survival rates, intrasexual contests, or parental effort in sexes.

  9. High-resolution analysis of locomotor activity rhythms in disconnected, a visual-system mutant of Drosophila melanogaster.

    PubMed

    Dowse, H B; Dushay, M S; Hall, J C; Ringo, J M

    1989-07-01

    Free-running locomotor activity and eclosion rhythms of Drosophila melanogaster, mutant at the disconnected (disco) locus, are substantially different from the wild-type phenotype. Initial periodogram analysis revealed little or no rhythmicity (Dushay et al., 1989). We have reanalyzed the locomotor activity data using high-resolution signal analysis (maximum-entropy spectral analysis, or MESA). These analyses, corroborated by autocorrelograms, uncovered significant residual circadian rhythmicity and strong ultradian rhythms in most of the animals tested. In this regard the disco mutants are much like flies expressing mutant alleles of the period gene, as well as wild-type flies reared throughout life in constant darkness. We hypothesize that light normally triggers the coupling of multiple ultradian oscillators into a functional circadian clock and that this process is disrupted in disco flies as a result of the neural lesion.

  10. The Effects of Acute Exposure to Neuroactive Drugs on the Locomotor Activity of Larval Zebrafish

    EPA Science Inventory

    In an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae using prototypic drugs that act on the central nervous system. Initially, we chose to define the beh...

  11. On-ground housing in “Mice Drawer System” (MDS) cage affects locomotor behaviour but not anxiety in male mice

    NASA Astrophysics Data System (ADS)

    Simone, Luciano; Bartolomucci, Alessandro; Palanza, Paola; Parmigiani, Stefano

    2008-03-01

    In the present study adult male mice were housed for 21 days in a housing modules of the Mice Drawer System (MDS). MDS is the facility that will support the research on board the International Space Station (ISS). Our investigation focused on: circadian rhythmicity of wide behavioural categories such as locomotor activity, food intake/drinking and resting; emotionality in the elevated plus maze (EPM); body weight. Housing in the MDS determined a strong up-regulation of activity and feeding behaviour and a concomitant decrease in inactivity. Importantly, housing in the MDS disrupted circadian rhythmicity in mice and also determined a decrease in body weight. Finally, when mice were tested in the EPM a clear hyperactivity (i.e. increased total transitions) was found, while no evidence for altered anxiety was detected. In conclusion, housing adult male mice in the MDS housing modules may affect their behaviour, circadian rhythmicity while having no effect on anxiety. It is suggested that to allow adaptation to the peculiar housing allowed by MDS a longer housing duration is needed.

  12. High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster.

    PubMed

    Filošević, Ana; Al-Samarai, Sabina; Andretić Waldowski, Rozi

    2018-01-01

    Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila . We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC) to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per) , Clock (Clk) , and cycle (cyc) . The locomotor sensitization that is present in timeless (tim) and pigment dispersing factor (pdf) mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor sensitization

  13. High Throughput Measurement of Locomotor Sensitization to Volatilized Cocaine in Drosophila melanogaster

    PubMed Central

    Filošević, Ana; Al-samarai, Sabina; Andretić Waldowski, Rozi

    2018-01-01

    Drosophila melanogaster can be used to identify genes with novel functional roles in neuronal plasticity induced by repeated consumption of addictive drugs. Behavioral sensitization is a relatively simple behavioral output of plastic changes that occur in the brain after repeated exposures to drugs of abuse. The development of screening procedures for genes that control behavioral sensitization has stalled due to a lack of high-throughput behavioral tests that can be used in genetically tractable organism, such as Drosophila. We have developed a new behavioral test, FlyBong, which combines delivery of volatilized cocaine (vCOC) to individually housed flies with objective quantification of their locomotor activity. There are two main advantages of FlyBong: it is high-throughput and it allows for comparisons of locomotor activity of individual flies before and after single or multiple exposures. At the population level, exposure to vCOC leads to transient and concentration-dependent increase in locomotor activity, representing sensitivity to an acute dose. A second exposure leads to further increase in locomotion, representing locomotor sensitization. We validate FlyBong by showing that locomotor sensitization at either the population or individual level is absent in the mutants for circadian genes period (per), Clock (Clk), and cycle (cyc). The locomotor sensitization that is present in timeless (tim) and pigment dispersing factor (pdf) mutant flies is in large part not cocaine specific, but derived from increased sensitivity to warm air. Circadian genes are not only integral part of the neural mechanism that is required for development of locomotor sensitization, but in addition, they modulate the intensity of locomotor sensitization as a function of the time of day. Motor-activating effects of cocaine are sexually dimorphic and require a functional dopaminergic transporter. FlyBong is a new and improved method for inducing and measuring locomotor sensitization to

  14. Paraquat affects mitochondrial bioenergetics, dopamine system expression, and locomotor activity in zebrafish (Danio rerio).

    PubMed

    Wang, Xiao H; Souders, Christopher L; Zhao, Yuan H; Martyniuk, Christopher J

    2018-01-01

    The dipyridyl herbicide paraquat induces oxidative stress in cells and is implicated in adult neurodegenerative diseases. However, less is known about paraquat toxicity in early stages of vertebrate development. To address this gap, zebrafish (Danio rerio) embryos were exposed to 1, 10 and 100 μM paraquat for 96 h. Paraquat did not induce significant mortality nor deformity in embryos and larvae, but it did accelerate time to hatch. To evaluate whether mitochondrial respiration was related to earlier hatch times, oxygen consumption rate was measured in whole embryos. Maximal respiration of embryos exposed to 100 μM paraquat for 24 h was reduced by more than 70%, suggesting that paraquat negatively impacts mitochondrial bioenergetics in early development. Based upon this evidence for mitochondrial dysfunction, transcriptional responses of oxidative stress- and apoptosis-related genes were measured. Fish exposed to 1 μM paraquat showed higher expression levels of superoxide dismutase 2, heat shock protein 70, Bcl-2-associated X protein, and B-cell CLL/lymphoma 2a compared to control fish. No differences among groups were detected in larvae exposed to 10 and 100 μM paraquat, suggesting a non-monotonic response. We also measured endpoints related to larval behavior and dopaminergic signaling as paraquat is associated with degeneration of dopamine neurons. Locomotor activity was stimulated with 100 μM paraquat and dopamine transporter and dopamine receptor 3 mRNA levels were increased in larvae exposed to 1 μM paraquat, interpreted to be a compensatory response at lower concentrations. This study improves mechanistic understanding into the toxic actions of paraquat on early developmental stages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Augmentation of Voluntary Locomotor Activity by Transcutaneous Spinal Cord Stimulation in Motor-Incomplete Spinal Cord-Injured Individuals.

    PubMed

    Hofstoetter, Ursula S; Krenn, Matthias; Danner, Simon M; Hofer, Christian; Kern, Helmut; McKay, William B; Mayr, Winfried; Minassian, Karen

    2015-10-01

    The level of sustainable excitability within lumbar spinal cord circuitries is one of the factors determining the functional outcome of locomotor therapy after motor-incomplete spinal cord injury. Here, we present initial data using noninvasive transcutaneous lumbar spinal cord stimulation (tSCS) to modulate this central state of excitability during voluntary treadmill stepping in three motor-incomplete spinal cord-injured individuals. Stimulation was applied at 30 Hz with an intensity that generated tingling sensations in the lower limb dermatomes, yet without producing muscle reflex activity. This stimulation changed muscle activation, gait kinematics, and the amount of manual assistance required from the therapists to maintain stepping with some interindividual differences. The effect on motor outputs during treadmill-stepping was essentially augmentative and step-phase dependent despite the invariant tonic stimulation. The most consistent modification was found in the gait kinematics, with the hip flexion during swing increased by 11.3° ± 5.6° across all subjects. This preliminary work suggests that tSCS provides for a background increase in activation of the lumbar spinal locomotor circuitry that has partially lost its descending drive. Voluntary inputs and step-related feedback build upon the stimulation-induced increased state of excitability in the generation of locomotor activity. Thus, tSCS essentially works as an electrical neuroprosthesis augmenting remaining motor control. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  16. Sub-lethal effects of the neurotoxic pyrethroid insecticide Fastac 50EC on the general motor and locomotor activities of the non-targeted beneficial carabid beetle Platynus assimilis (Coleoptera: Carabidae).

    PubMed

    Tooming, Ene; Merivee, Enno; Must, Anne; Sibul, Ivar; Williams, Ingrid

    2014-06-01

    Sub-lethal effects of pesticides on behavioural endpoints are poorly studied in carabids (Coleoptera: Carabidae) though changes in behaviour caused by chemical stress may affect populations of these non-targeted beneficial insects. General motor activity and locomotion are inherent in many behavioural patterns, and changes in these activities that result from xenobiotic influence mirror an integrated response of the insect to pesticides. Influence of pyrethroid insecticides over a wide range of sub-lethal doses on the motor activities of carabids still remains unclear. Video tracking of Platynus assimilis showed that brief exposure to alpha-cypermethrin at sub-lethal concentrations ranged from 0.01 to 100 mg L(-1) caused initial short-term (< 2 h) locomotor hyperactivity followed by a long-term (>24 h) locomotor hypo-activity. In addition, significant short- and long-term concentration and time-dependent changes occurred in general motor activity patterns and rates. Conspicuous changes in motor activity of Platynus assimilis beetles treated at alpha-cypermethrin concentrations up to 75,000-fold lower than maximum field recommended concentration (MFRC) suggest that many, basic fitness-related behaviours might be severely injured as well. These changes may negatively affect carabid populations in agro-ecosystems. Long-term hypo-activity could directly contribute to decreased trap captures of carabids frequently observed after insecticide application in the field. © 2013 Society of Chemical Industry.

  17. Developmental Deltamethrin Exposure Causes Persistent Changes in Dopaminergic Gene Expression, Neurochemistry, and Locomotor Activity in Zebrafish.

    PubMed

    Kung, Tiffany S; Richardson, Jason R; Cooper, Keith R; White, Lori A

    2015-08-01

    Pyrethroids are commonly used insecticides that are considered to pose little risk to human health. However, there is an increasing concern that children are more susceptible to the adverse effects of pesticides. We used the zebrafish model to test the hypothesis that developmental exposure to low doses of the pyrethroid deltamethrin results in persistent alterations in dopaminergic gene expression, neurochemistry, and locomotor activity. Zebrafish embryos were treated with deltamethrin (0.25-0.50 μg/l), at concentrations below the LOAEL, during the embryonic period [3-72 h postfertilization (hpf)], after which transferred to fresh water until the larval stage (2-weeks postfertilization). Deltamethrin exposure resulted in decreased transcript levels of the D1 dopamine (DA) receptor (drd1) and increased levels of tyrosine hydroxylase at 72 hpf. The reduction in drd1 transcripts persisted to the larval stage and was associated with decreased D2 dopamine receptor transcripts. Larval fish, exposed developmentally to deltamethrin, had increased levels of homovanillic acid, a DA metabolite. Since the DA system is involved in locomotor activity, we measured the swim activity of larval fish following a transition to darkness. Developmental exposure to deltamethrin significantly increased larval swim activity which was attenuated by concomitant knockdown of the DA transporter. Acute exposure to methylphenidate, a DA transporter inhibitor, increased swim activity in control larva, while reducing swim activity in larva developmentally exposed to deltamethrin. Developmental exposure to deltamethrin causes locomotor deficits in larval zebrafish, which is likely mediated by dopaminergic dysfunction. This highlights the need to understand the persistent effects of low-dose neurotoxicant exposure during development. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Effects of ketamine on the unconditioned and conditioned locomotor activity of preadolescent and adolescent rats: impact of age, sex, and drug dose.

    PubMed

    McDougall, Sanders A; Moran, Andrea E; Baum, Timothy J; Apodaca, Matthew G; Real, Vanessa

    2017-09-01

    Ketamine is used by preadolescent and adolescent humans for licit and illicit purposes. The goal of the present study was to determine the effects of acute and repeated ketamine treatment on the unconditioned behaviors and conditioned locomotor activity of preadolescent and adolescent rats. To assess unconditioned behaviors, female and male rats were injected with ketamine (5-40 mg/kg), and distance traveled was measured on postnatal day (PD) 21-25 or PD 41-45. To assess conditioned activity, male and female rats were injected with saline or ketamine in either a novel test chamber or the home cage on PD 21-24 or PD 41-44. One day later, rats were injected with saline and conditioned activity was assessed. Ketamine produced a dose-dependent increase in the locomotor activity of preadolescent and adolescent rats. Preadolescent rats did not exhibit sex differences, but ketamine-induced locomotor activity was substantially stronger in adolescent females than males. Repeated ketamine treatment neither caused a day-dependent increase in locomotor activity nor produced conditioned activity in preadolescent or adolescent rats. The activity-enhancing effects of ketamine are consistent with the actions of an indirect dopamine agonist, while the inability of ketamine to induce conditioned activity is unlike what is observed after repeated cocaine or amphetamine treatment. This dichotomy could be due to ketamine's ability to both enhance DA neurotransmission and antagonize N-methyl-D-aspartate (NMDA) receptors. Additional research will be necessary to parse out the relative contributions of DA and NMDA system functioning when assessing the behavioral effects of ketamine during early ontogeny.

  19. Locomotor Dysfunction after Spaceflight: Characterization and Countermeasure Development

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Cohen, H. S.; Peters, B. T.; Miller, C. A.; Brady, R.; Bloomberg, Jacob J.

    2007-01-01

    Astronauts returning from space flight show disturbances in locomotor control manifested by changes in various sub-systems including head-trunk coordination, dynamic visual acuity, lower limb muscle activation patterning and kinematics (Glasauer, et al., 1995; Bloomberg, et al., 1997; McDonald, et al., 1996; 1997; Layne, et al., 1997; 1998, 2001, 2004; Newman, et al., 1997; Bloomberg and Mulavara, 2003). These post flight changes in locomotor performance, due to neural adaptation to the microgravity conditions of space flight, affect the ability of crewmembers especially after a long duration mission to egress their vehicle and perform extravehicular activities soon after landing on Earth or following a landing on the surface of the Moon or Mars. At present, no operational training intervention is available pre- or in- flight to mitigate post flight locomotor disturbances. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially "learns to learn" and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to "normal". Rather the training regimen should facilitate the reorganization of available sensorimotor sub-systems to achieve safe and effective locomotion as soon as possible after space flight. We have previously confirmed that subjects participating in adaptive generalization training programs, using a variety of visuomotor distortions and different motor tasks from throwing to negotiating an obstacle course as the dependent measure, can learn to enhance their ability to adapt to a

  20. Anxiety status affects nicotine- and baclofen-induced locomotor activity, anxiety, and single-trial conditioned place preference in male adolescent rats.

    PubMed

    Falco, Adriana M; McDonald, Craig G; Smith, Robert F

    2014-09-01

    Adolescents have an increased vulnerability to nicotine and anxiety may play a role in the development of nicotine abuse. One possible treatment for anxiety disorders and substance abuse is the GABAB agonist, baclofen. The aim of the present study was to determine the effect of anxiety-like behavior on single-trial nicotine conditioned place preference in adolescent rats, and to assess the action of baclofen. Baclofen was shown to have effects on locomotor and anxiety-like behavior in rats divided into high-anxiety and low-anxiety groups. Baclofen decreased locomotor behavior in high-anxiety rats. Baclofen alone failed to produce differences in anxiety-like behavior, but nicotine and baclofen + nicotine administration were anxiolytic. High- and low-anxiety groups also showed differences in single-trial nicotine-induced place preference. Only high-anxiety rats formed place preference to nicotine, while rats in the low-anxiety group formed no conditioned place preference. These results suggest that among adolescents, high-anxiety individuals are more likely to show preference for nicotine than low-anxiety individuals. © 2014 Wiley Periodicals, Inc.

  1. The effect of night illumination, red and infrared light, on locomotor activity, behaviour and melatonin of Senegalese sole (Solea senegalensis) broodstock.

    PubMed

    Carazo, I; Norambuena, F; Oliveira, C; Sánchez-Vázquez, F J; Duncan, N J

    2013-06-13

    The present study aimed to determine a non-invasive nocturnal lighting system for the behavioural observation of a highly light sensitive species, Senegalese sole (Solea senegalensis). Locomotor activity, four types of behaviour and plasma melatonin were analysed in groups of 12 adult Senegalese sole (Solea senegalensis) reared in captivity and held under four night illumination treatments: total darkness (control), high 50lux intensity red light (group RH), low 5lux intensity red light (group RL) and infrared light (group IR). All groups experienced the same conditions during the day (lights on from 07:00 to 19:00) with white lighting of 125lux. Clarity of video images taken at night for the observation of fish behaviour were ranked as follows: group RH>RL>IR>control. All treatments presented a daily rhythm in locomotor activity with high activity from 14:00 to 18:00 and low activity from 21:00 to 12:00. The sole exposed to the high intensity red light at night appeared to be disturbed as during the low nocturnal locomotor activity period group RH presented higher activity and significantly higher nocturnal behaviour related to escape or fear than was observed in the other groups. The groups control, RL and IR exhibited similar levels of nocturnal locomotor activity and nocturnal behaviour related to escape or fear. Plasma melatonin, at mid-dark was not significantly different between the control and groups RL and IR, while melatonin was significantly lower in group RH compared to the control. The authors recommended low intensity red night illumination for the non-invasive study of nocturnal behaviour of Senegalese sole adults. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Enhanced Locomotor Activity Is Required to Exert Dietary Restriction-Dependent Increase of Stress Resistance in Drosophila.

    PubMed

    Ghimire, Saurav; Kim, Man Su

    2015-01-01

    Dietary restriction (DR) is known to be one of the most effective interventions to increase stress resistance, yet the mechanisms remain elusive. One of the most obvious DR-induced changes in phenotype is an increase in locomotor activity. Although it is conceptually perceivable that nutritional scarcity should prompt enhanced foraging behavior to garner additional dietary resources, the significance of enhanced movement activity has not been associated with the DR-dependent increase of stress resistance. In this study, we confirmed that flies raised on DR exhibited enhanced locomotive activity and increased stress resistance. Excision of fly wings minimized the DR-induced increase in locomotive activity, which resulted in attenuation of the DR-dependent increase of stress resistance. The possibility that wing clipping counteracts the DR by coercing flies to have more intake was ruled out since it did not induce any weight gain. Rather it was found that elimination of reactive oxygen species (ROS) that is enhanced by DR-induced upregulation of expression of antioxidant genes was significantly reduced by wing clipping. Collectively, our data suggests that DR increased stress resistance by increasing the locomotor activity, which upregulated expression of protective genes including, but not limited to, ROS scavenger system.

  3. Cathinone increases body temperature, enhances locomotor activity, and induces striatal c-fos expression in the Siberian hamster.

    PubMed

    Jones, S; Fileccia, E L; Murphy, M; Fowler, M J; King, M V; Shortall, S E; Wigmore, P M; Green, A R; Fone, K C F; Ebling, F J P

    2014-01-24

    Cathinone is a β-keto alkaloid that is the major active constituent of khat, the leaf of the Catha edulis plant that is chewed recreationally in East Africa and the Middle East. Related compounds, such as methcathinone and mephedrone have been increasing in popularity as recreational drugs, resulting in the recent proposal to classify khat as a Class C drug in the UK. There is still limited knowledge of the pharmacological effects of cathinone. This study examined the acute effects of cathinone on core body temperature, locomotor and other behaviors, and neuronal activity in Siberian hamsters. Adult male hamsters, previously implanted with radio telemetry devices, were treated with cathinone (2 or 5mg/kg i.p.), the behavioral profile scored and core body temperature and locomotor activity recorded by radio telemetry. At the end of the study, hamsters received vehicle or cathinone (5mg/kg) and neuronal activation in the brain was determined using immunohistochemical evaluation of c-fos expression. Cathinone dose-dependently induced significant (p<0.0001) increases in both temperature and locomotor activity lasting 60-90min. Cathinone (2mg/kg) increased rearing (p<0.02), and 5mg/kg increased both rearing (p<0.001) and lateral head twitches (p<0.02). Both cathinone doses decreased the time spent at rest (p<0.001). The number of c-fos immunopositive cells were significantly increased in the striatum (p<0.0001) and suprachiasmatic nucleus (p<0.05) following cathinone, indicating increased neuronal activity. There was no effect of cathinone on food intake or body weight. It is concluded that systemic administration of cathinone induces significant behavioral changes and CNS activation in the hamster. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Locomotor activity and non-photic influences on circadian clocks.

    PubMed

    Mrosovsky, N

    1996-08-01

    Some of the main themes in this review are as follows. 1. The notion that non-photic zeitgebers are weak needs re-examining. Phase-shifts to some non-photic manipulations can be as large as those to light pulses. 2. As well as being able to phase-shift and entrain free-running rhythms, non-photic events have a number of other effects: these include after-effects of entrainment, period changes, and promotion of splitting. 3. The critical variable for non-photic shifting is unknown. Locomotor activity is more likely to be an index of some other necessary state rather than being causal itself. This index may be better when tendencies to move are channelled into easily measured behaviours like wheel-running. 4. Given ignorance about the critical variable, quantification of activity may be the best presently available measure of zeitgeber intensity. Therefore, the behaviour during non-photic manipulations must be examined as carefully as the shifts themselves. When no phase-shifting follows manipulations such as IGL lesions or serotonin depletion, if the animals are inactive, then little can be inferred. 5. Lack of information on the critical variable(s) for non-photic shifting makes it problematic to compare data from studies using different non-photic manipulations. However, the presence of locomotor activity (or its correlate) does appear to be necessary for triazolam to produce shifts. 6. Novelty-induced wheel-running in hamsters depends on the NPY projection from the IGL to SCN. It remains to be determined how important NPY is in other species or in clock-resetting by other manipulations, but methods are now available to study this. 7. Interactions between photic and non-photic zeitgebers remain virtually unexplored, but it is evident that photic and non-photic stimuli can attenuate the phase-shifting effects of each other. Interactions are not purely additive or predictable from PRCs. 8. The circadian system does more than synchronize free-running rhythms to the

  5. Locomotor- and Reward-Enhancing Effects of Cocaine Are Differentially Regulated by Chemogenetic Stimulation of Gi-Signaling in Dopaminergic Neurons.

    PubMed

    Runegaard, Annika H; Sørensen, Andreas T; Fitzpatrick, Ciarán M; Jørgensen, Søren H; Petersen, Anders V; Hansen, Nikolaj W; Weikop, Pia; Andreasen, Jesper T; Mikkelsen, Jens D; Perrier, Jean-Francois; Woldbye, David; Rickhag, Mattias; Wortwein, Gitta; Gether, Ulrik

    2018-01-01

    Dopamine plays a key role in the cellular and behavioral responses to drugs of abuse, but the implication of metabotropic regulatory input to dopaminergic neurons on acute drug effects and subsequent drug-related behavior remains unclear. Here, we used chemogenetics [Designer Receptors Exclusively Activated by Designer Drugs (DREADDs)] to modulate dopamine signaling and activity before cocaine administration in mice. We show that chemogenetic inhibition of dopaminergic ventral tegmental area (VTA) neurons differentially affects locomotor and reward-related behavioral responses to cocaine. Stimulation of Gi-coupled DREADD (hM4Di) expressed in dopaminergic VTA neurons persistently reduced the locomotor response to repeated cocaine injections. An attenuated locomotor response was seen even when a dual-viral vector approach was used to restrict hM4Di expression to dopaminergic VTA neurons projecting to the nucleus accumbens. Surprisingly, despite the attenuated locomotor response, hM4Di-mediated inhibition of dopaminergic VTA neurons did not prevent cocaine sensitization, and the inhibitory effect of hM4Di-mediated inhibition was eliminated after withdrawal. In the conditioned place-preference paradigm, hM4Di-mediated inhibition did not affect cocaine-induced place preference; however, the extinction period was extended. Also, hM4Di-mediated inhibition had no effect on preference for a sugar-based reward over water but impaired motivation to work for the same reward in a touchscreen-based motivational assay. In addition, to support that VTA dopaminergic neurons operate as regulators of reward motivation toward both sugar and cocaine, our data suggest that repeated cocaine exposure leads to adaptations in the VTA that surmount the ability of Gi-signaling to suppress and regulate VTA dopaminergic neuronal activity.

  6. Role of the 5-HT₂A receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice.

    PubMed

    Halberstadt, Adam L; Powell, Susan B; Geyer, Mark A

    2013-07-01

    The 5-HT₂A receptor mediates the effects of serotonergic hallucinogens and may play a role in the pathophysiology of certain psychiatric disorders, including schizophrenia. Given these findings, there is a need for animal models to assess the behavioral effects of 5-HT₂A receptor activation. Our previous studies demonstrated that the phenylalkylamine hallucinogen and 5-HT₂A/₂C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) produces dose-dependent effects on locomotor activity in C57BL/6J mice, increasing activity at low to moderate doses and reducing activity at high doses. DOI did not increase locomotor activity in 5-HT₂A knockout mice, indicating the effect is a consequence of 5-HT₂A receptor activation. Here, we tested a series of phenylalkylamine hallucinogens in C57BL/6J mice using the Behavioral Pattern Monitor (BPM) to determine whether these compounds increase locomotor activity by activating the 5-HT₂A receptor. Low doses of mescaline, 2,5-dimethoxy-4-ethylamphetamine (DOET), 2,5-dimethoxy-4-propylamphetamine (DOPR), 2,4,5-trimethoxyamphetamine (TMA-2), and the conformationally restricted phenethylamine (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine (TCB-2) increased locomotor activity. By contrast, the non-hallucinogenic phenylalkylamine 2,5-dimethoxy-4-tert-butylamphetamine (DOTB) did not alter locomotor activity at any dose tested (0.1-10 mg/kg i.p.). The selective 5-HT₂A antagonist M100907 blocked the locomotor hyperactivity induced by mescaline and TCB-2. Similarly, mescaline and TCB-2 did not increase locomotor activity in 5-HT₂A knockout mice. These results confirm that phenylalkylamine hallucinogens increase locomotor activity in mice and demonstrate that this effect is mediated by 5-HT₂A receptor activation. Thus, locomotor hyperactivity in mice can be used to assess phenylalkylamines for 5-HT₂A agonist activity and hallucinogen-like behavioral effects. These studies provide additional support for the link between 5

  7. Impaired locomotor activity and exploratory behavior in mice lacking histamine H1 receptors

    PubMed Central

    Inoue, Isao; Yanai, Kazuhiko; Kitamura, Daisuke; Taniuchi, Ichiro; Kobayashi, Takashi; Niimura, Kaku; Watanabe, Takehiko; Watanabe, Takeshi

    1996-01-01

    From pharmacological studies using histamine antagonists and agonists, it has been demonstrated that histamine modulates many physiological functions of the hypothalamus, such as arousal state, locomotor activity, feeding, and drinking. Three kinds of receptors (H1, H2, and H3) mediate these actions. To define the contribution of the histamine H1 receptors (H1R) to behavior, mutant mice lacking the H1R were generated by homologous recombination. In brains of homozygous mutant mice, no specific binding of [3H]pyrilamine was seen. [3H]Doxepin has two saturable binding sites with higher and lower affinities in brains of wild-type mice, but H1R-deficient mice showed only the weak labeling of [3H]doxepin that corresponds to lower-affinity binding sites. Mutant mice develop normally, but absence of H1R significantly increased the ratio of ambulation during the light period to the total ambulation for 24 hr in an accustomed environment. In addition, mutant mice significantly reduced exploratory behavior of ambulation and rearings in a new environment. These results indicate that through H1R, histamine is involved in circadian rhythm of locomotor activity and exploratory behavior as a neurotransmitter. PMID:8917588

  8. V3 spinal neurons establish a robust and balanced locomotor rhythm during walking.

    PubMed

    Zhang, Ying; Narayan, Sujatha; Geiman, Eric; Lanuza, Guillermo M; Velasquez, Tomoko; Shanks, Bayle; Akay, Turgay; Dyck, Jason; Pearson, Keir; Gosgnach, Simon; Fan, Chen-Ming; Goulding, Martyn

    2008-10-09

    A robust and well-organized rhythm is a key feature of many neuronal networks, including those that regulate essential behaviors such as circadian rhythmogenesis, breathing, and locomotion. Here we show that excitatory V3-derived neurons are necessary for a robust and organized locomotor rhythm during walking. When V3-mediated neurotransmission is selectively blocked by the expression of the tetanus toxin light chain subunit (TeNT), the regularity and robustness of the locomotor rhythm is severely perturbed. A similar degeneration in the locomotor rhythm occurs when the excitability of V3-derived neurons is reduced acutely by ligand-induced activation of the allatostatin receptor. The V3-derived neurons additionally function to balance the locomotor output between both halves of the spinal cord, thereby ensuring a symmetrical pattern of locomotor activity during walking. We propose that the V3 neurons establish a regular and balanced motor rhythm by distributing excitatory drive between both halves of the spinal cord.

  9. Adaptation in locomotor stability, cognition, and metabolic cost during sensory discordance.

    PubMed

    Peters, Brian T; Brady, Rachel A; Batson, Crystal D; Guined, Jamie R; Ploutz-Snyder, Robert J; Mulavara, Ajitkumar P; Bloomberg, Jacob J

    2013-06-01

    Locomotor instability may affect planetary extravehicular activities during the initial adaptation to the new gravitational environment. The goal of this study was to quantify the locomotor, cognitive, and metabolic effects of exposure to a discordant sensory environment. A treadmill mounted on a 6-degree-of-freedom motion base was used to present 15 healthy subjects with a destabilizing support surface while they walked. Dependent measures of locomotor stability, cognitive load, and metabolic cost were stride frequency (SF), reaction time (RT), and the volume of oxygen consumed (Vo2), respectively. Subjects completed an 8-min baseline walk followed by 20 min of walking with a continuous, sinusoidal, laterally oscillating support-surface perturbation. Data for minutes 1, 7, 13, and 20 of the support-surface perturbation period were compared with the baseline. SF, RT, and Vo2 were significantly greater during support-surface motion than during the baseline walking condition and showed a trend toward recovery to baseline levels during the perturbation period. Results demonstrated that adaptation to walking in a discordant sensory environment has quantifiable and significant costs in SF, RT, and Vo2 as shown by mean increases of 9%, 20%, and 4%, respectively, collected during the first minute of exposure. By the fourth minute of exposure, mean Vo2 consumption had increased to 20% over its baseline. We believe that preflight sensorimotor adaptation training paradigms will impart gains in stability and the ability to multitask, and might increase productive mission time by extending work time in extravehicular activity suits where metabolic expenditure is a limiting factor.

  10. Unexpected recovery after robotic locomotor training at physiologic stepping speed: a single-case design.

    PubMed

    Spiess, Martina R; Jaramillo, Jeffrey P; Behrman, Andrea L; Teraoka, Jeffrey K; Patten, Carolynn

    2012-08-01

    To investigate the effect of walking speed on the emergence of locomotor electromyogram (EMG) patterns in an individual with chronic incomplete spinal cord injury (SCI), and to determine whether central pattern generator activity during robotic locomotor training (RLT) transfers to volitional EMG activity during overground walking. Single-case (B-A-B; experimental treatment-withdrawal-experimental treatment) design. Freestanding rehabilitation research center. A 50-year-old man who was nonambulatory for 16 months after incomplete SCI (sub-T11). The participant completed two 6-week blocks of RLT, training 4 times per week for 30 minutes per session at walking speeds up to 5km/h (1.4m/s) over continuous bouts lasting up to 17 minutes. Surface EMG was recorded weekly during RLT and overground walking. The Walking Index for Spinal Cord Injury (WISCI-II) was assessed daily during training blocks. During week 4, reciprocal, patterned EMG emerged during RLT. EMG amplitude modulation revealed a curvilinear relationship over the range of walking speeds from 1.5 to 5km/h (1.4m/s). Functionally, the participant improved from being nonambulatory (WISCI-II 1/20), to walking overground with reciprocal stepping using knee-ankle-foot orthoses and a walker (WISCI-II 9/20). EMG was also observed during overground walking. These functional gains were maintained greater than 4 years after locomotor training (LT). Here we report an unexpected course of locomotor recovery in an individual with chronic incomplete SCI. Through RLT at physiologic walking speeds, it was possible to activate the central pattern generator even 16 months postinjury. Further, to a certain degree, improvements from RLT transferred to overground walking. Our results suggest that LT-induced changes affect the central pattern generator and allow supraspinal inputs to engage residual spinal pathways. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Role of the 5-HT2A receptor in the locomotor hyperactivity produced by phenylalkylamine hallucinogens in mice

    PubMed Central

    Halberstadt, Adam L.; Powell, Susan B.; Geyer, Mark A.

    2014-01-01

    The 5-HT2A receptor mediates the effects of serotonergic hallucinogens and may play a role in the pathophysiology of certain psychiatric disorders, including schizophrenia. Given these findings, there is a need for animal models to assess the behavioral effects of 5-HT2A receptor activation. Our previous studies demonstrated that the phenylalkylamine hallucinogen and 5-HT2A/2C agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) produces dose-dependent effects on locomotor activity in C57BL/6J mice, increasing activity at low to moderate doses and reducing activity at high doses. DOI did not increase locomotor activity in 5-HT2A knockout mice, indicating the effect is a consequence of 5-HT2A receptor activation. Here, we tested a series of phenylalkylamine hallucinogens in C57BL/6J mice using the Behavioral Pattern Monitor (BPM) to determine whether these compounds increase locomotor activity by activating the 5-HT2A receptor. Low doses of mescaline, 2,5-dimethoxy-4-ethylamphetamine (DOET), 2,5-dimethoxy-4-propylamphetamine (DOPR), 2,4,5-trimethoxyamphetamine (TMA-2), and the conformationally restricted phenethylamine (4-bromo-3,6-dimethoxybenzocyclobuten-1-yl)methylamine (TCB-2) increased locomotor activity. By contrast, the non-hallucinogenic phenylalkylamine 2,5-dimethoxy-4-tert-butylamphetamine (DOTB) did not alter locomotor activity at any dose tested (0.1-10 mg/kg i.p.). The selective 5-HT2A antagonist M100907 blocked the locomotor hyperactivity induced by mescaline and TCB-2. Similarly, mescaline and TCB-2 did not increase locomotor activity in 5-HT2A knockout mice. These results confirm that phenylalkylamine hallucinogens increase locomotor activity in mice and demonstrate that this effect is mediated by 5-HT2A receptor activation. Thus, locomotor hyperactivity in mice can be used to assess phenylalkylamines for 5-HT2A agonist activity and hallucinogen-like behavioral effects. These studies provide additional support for the link between 5-HT2A activation and

  12. Differential housing and novelty response: Protection and risk from locomotor sensitization.

    PubMed

    Garcia, Erik J; Haddon, Tara N; Saucier, Donald A; Cain, Mary E

    2017-03-01

    High novelty seeking increases the risk for drug experimentation and locomotor sensitization. Locomotor sensitization to psychostimulants is thought to reflect neurological adaptations that promote the transition to compulsive drug taking. Rats reared in enrichment (EC) show less locomotor sensitization when compared to rats reared in isolation (IC) or standard conditions (SC). The current research study was designed to test if novelty response contributed locomotor sensitization and more importantly, if the different housing environments could change the novelty response to protect against the development of locomotor sensitization in both adolescence and adulthood. Experiment 1: rats were tested for their response to novelty using the inescapable novelty test (IEN) and pseudorandomly assigned to enriched (EC), isolated (IC), or standard (SC) housing conditions for 30days. After housing, they were tested with IEN. Rats were then administered amphetamine (0.5mg/kg) or saline and locomotor activity was measured followed by a sensitization test 14days later. Experiment 2: rats were tested in the IEN test early adulthood and given five administrations of amphetamine (0.3mg/kg) or saline and then either stayed in or switched housing environments for 30days. Rats were then re-tested in the IEN test in late adulthood and administered five more injections of their respective treatments and tested for locomotor sensitization. Results indicate that IC and SC increased the response to novelty. EC housing decreased locomotor response to amphetamine and saline, and SC housing increased the locomotor response to amphetamine. Mediation results indicated that the late adult novelty response fully mediates the locomotor response to amphetamine and saline, while the early adulthood novelty response did not. Differential housing changes novelty and amphetamine locomotor response. Novelty response is altered into adulthood and provides evidence that enrichment can be used to reduce

  13. Differential housing and novelty response: Protection and risk from locomotor sensitization

    PubMed Central

    Garcia, Erik J.; Haddon, Tara N.; Saucier, Donald A.; Cain, Mary E.

    2017-01-01

    High novelty seeking increases the risk for drug experimentation and locomotor sensitization. Locomotor sensitization to psychostimulants is thought to reflect neurological adaptations that promote the transition to compulsive drug taking. Rats reared in enrichment (EC) show less locomotor sensitization when compared to rats reared in isolation (IC) or standard conditions (SC). The current research study was designed to test if novelty response contributed locomotor sensitization and more importantly, if the different housing environments could change the novelty response to protect against the development of locomotor sensitization in both adolescence and adulthood. Experiment 1: rats were tested for their response to novelty using the inescapable novelty test (IEN) and pseudorandomly assigned to enriched (EC), isolated (IC), or standard (SC) housing conditions for 30 days. After housing, they were tested with IEN. Rats were then administered amphetamine (0.5 mg/kg) or saline and locomotor activity was measured followed by a sensitization test 14 days later. Experiment 2: rats were tested in the IEN test early adulthood and given five administrations of amphetamine (0.3 mg/kg) or saline and then either stayed in or switched housing environments for 30 days. Rats were then re-tested in the IEN test in late adulthood and administered five more injections of their respective treatments and tested for locomotor sensitization. Results indicate that IC and SC increased the response to novelty. EC housing decreased locomotor response to amphetamine and saline, and SC housing increased the locomotor response to amphetamine. Mediation results indicated that the late adult novelty response fully mediates the locomotor response to amphetamine and saline, while the early adulthood novelty response did not. Conclusions Differential housing changes novelty and amphetamine locomotor response. Novelty response is altered into adulthood and provides evidence that enrichment can be

  14. Spinal cord injury: overview of experimental approaches used to restore locomotor activity.

    PubMed

    Fakhoury, Marc

    2015-01-01

    Spinal cord injury affects more than 2.5 million people worldwide and can lead to paraplegia and quadriplegia. Anatomical discontinuity in the spinal cord results in disruption of the impulse conduction that causes temporary or permanent changes in the cord's normal functions. Although axonal regeneration is limited, damage to the spinal cord is often accompanied by spontaneous plasticity and axon regeneration that help improve sensory and motor skills. The recovery process depends mainly on synaptic plasticity in the preexisting circuits and on the formation of new pathways through collateral sprouting into neighboring denervated territories. However, spontaneous recovery after spinal cord injury can go on for several years, and the degree of recovery is very limited. Therefore, the development of new approaches that could accelerate the gain of motor function is of high priority to patients with damaged spinal cord. Although there are no fully restorative treatments for spinal injury, various rehabilitative approaches have been tested in animal models and have reached clinical trials. In this paper, a closer look will be given at the potential therapies that could facilitate axonal regeneration and improve locomotor recovery after injury to the spinal cord. This article highlights the application of several interventions including locomotor training, molecular and cellular treatments, and spinal cord stimulation in the field of rehabilitation research. Studies investigating therapeutic approaches in both animal models and individuals with injured spinal cords will be presented.

  15. Circadian rhythms of body temperature and locomotor activity in the antelope ground squirrel, Ammospermophilus leucurus.

    PubMed

    Refinetti, Roberto; Kenagy, G J

    2018-02-01

    We studied circadian rhythms of body temperature and locomotor activity in antelope ground squirrels (Ammospermophilus leucurus) under laboratory conditions of a 12L:12D light-dark cycle and in constant darkness. Antelope ground squirrels are diurnally active and, exceptionally among ground squirrels and other closely related members of the squirrel family in general, they do not hibernate. Daily oscillations in body temperature consisted of a rise in temperature during the daytime activity phase of the circadian cycle and a decrease in temperature during the nighttime rest phase. The body temperature rhythms were robust (71% of maximal strength) with a daily range of oscillation of 4.6°C, a daytime mean of 38.7°C, and a nighttime mean of 34.1°C (24-h overall mean 36.4°C). The body temperature rhythm persisted in continuous darkness with a free-running period of 24.2h. This pattern is similar to that of hibernating species of ground squirrels but with a wave form more similar to that of non-hibernating rodents. Daily oscillations in body temperature were correlated with individual bouts of activity, but daytime temperatures were higher than nighttime temperatures even when comparing short episodes of nocturnal activity that were as intense as diurnal activity. This suggests that although muscular thermogenesis associated with locomotor activity can modify the level of body temperature, the circadian rhythm of body temperature is not simply a consequence of the circadian rhythm of activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. [Studies upon behaviour of snails in anthropogenically changed water environment. 1. Locomotor activity of Lymnaea stagnalis (L.), with regard to subpopulations infected with developmental stages of digeneans].

    PubMed

    Pokora, Zbigniew

    2002-01-01

    The aim of the paper was to analyse the locomotor activity of snails, Lymnaea stagnalis, with regard to physico-chemical properties of water in an inhabited reservoir and parasitic infection. The material was collected in selected anthropogenic water environments situated in the Upper Silesian Industrial Region (sinkhole ponds, sand- and clay-excavations). The locomotor activity of each snail was analysed in laboratory conditions by designation of number of penetrated segments, marked in tanks filled with water originating from a given reservoir, during 15', with intervals of 1'. It was observed the significant relationship between locomotor activity of examined snails and the water carbonaceous hardness (r = -0,812, at range of the independent variable 173.0-863.5 mg CaCO3/dm3). Correlation coefficients with other physico-chemical parameters of water were close to zero. Locomotion of snails infected with developmental stages of digenetic trematodes was significantly lower comparing to non-infected individuals. Locomotor activity of these former ones was dependend more on degree of the digestive gland damage by the parasite than on the infection agent.

  17. Individual differences in circadian locomotor parameters correlate with anxiety- and depression-like behavior.

    PubMed

    Anyan, Jeffrey; Verwey, Michael; Amir, Shimon

    2017-01-01

    Disrupted circadian rhythms are a core feature of mood and anxiety disorders. Circadian rhythms are coordinated by a light-entrainable master clock located in the suprachiasmatic nucleus. Animal models of mood and anxiety disorders often exhibit blunted rhythms in locomotor activity and clock gene expression. Interestingly, the changes in circadian rhythms correlate with mood-related behaviours. Although animal models of depression and anxiety exhibit aberrant circadian rhythms in physiology and behavior, it is possible that the methodology being used to induce the behavioral phenotype (e.g., brain lesions, chronic stress, global gene deletion) affect behavior independently of circadian system. This study investigates the relationship between individual differences in circadian locomotor parameters and mood-related behaviors in healthy rats. The circadian phenotype of male Lewis rats was characterized by analyzing wheel running behavior under standard 12h:12h LD conditions, constant dark, constant light, and rate of re-entrainment to a phase advance. Rats were then tested on a battery of behavioral tests: activity box, restricted feeding, elevated plus maze, forced swim test, and fear conditioning. Under 12h:12h LD conditions, percent of daily activity in the light phase and variability in activity onset were associated with longer latency to immobility in the forced swim test. Variability in onset also correlated positively with anxiety-like behavior in the elevated plus maze. Rate of re-entrainment correlated positively with measures of anxiety in the activity box and elevated plus maze. Lastly, we found that free running period under constant dark was associated with anxiety-like behaviors in the activity box and elevated plus maze. Our results provide a previously uncharacterized relationship between circadian locomotor parameters and mood-related behaviors in healthy rats and provide a basis for future examination into circadian clock functioning and mood.

  18. Delineating the Diversity of Spinal Interneurons in Locomotor Circuits.

    PubMed

    Gosgnach, Simon; Bikoff, Jay B; Dougherty, Kimberly J; El Manira, Abdeljabbar; Lanuza, Guillermo M; Zhang, Ying

    2017-11-08

    Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion. Copyright © 2017 the authors 0270-6474/17/3710835-07$15.00/0.

  19. Neuronal activity in the isolated mouse spinal cord during spontaneous deletions in fictive locomotion: insights into locomotor central pattern generator organization

    PubMed Central

    Zhong, Guisheng; Shevtsova, Natalia A; Rybak, Ilya A; Harris-Warrick, Ronald M

    2012-01-01

    We explored the organization of the spinal central pattern generator (CPG) for locomotion by analysing the activity of spinal interneurons and motoneurons during spontaneous deletions occurring during fictive locomotion in the isolated neonatal mouse spinal cord, following earlier work on locomotor deletions in the cat. In the isolated mouse spinal cord, most spontaneous deletions were non-resetting, with rhythmic activity resuming after an integer number of cycles. Flexor and extensor deletions showed marked asymmetry: flexor deletions were accompanied by sustained ipsilateral extensor activity, whereas rhythmic flexor bursting was not perturbed during extensor deletions. Rhythmic activity on one side of the cord was not perturbed during non-resetting spontaneous deletions on the other side, and these deletions could occur with no input from the other side of the cord. These results suggest that the locomotor CPG has a two-level organization with rhythm-generating (RG) and pattern-forming (PF) networks, in which only the flexor RG network is intrinsically rhythmic. To further explore the neuronal organization of the CPG, we monitored activity of motoneurons and selected identified interneurons during spontaneous non-resetting deletions. Motoneurons lost rhythmic synaptic drive during ipsilateral deletions. Flexor-related commissural interneurons continued to fire rhythmically during non-resetting ipsilateral flexor deletions. Deletion analysis revealed two classes of rhythmic V2a interneurons. Type I V2a interneurons retained rhythmic synaptic drive and firing during ipsilateral motor deletions, while type II V2a interneurons lost rhythmic synaptic input and fell silent during deletions. This suggests that the type I neurons are components of the RG, whereas the type II neurons are components of the PF network. We propose a computational model of the spinal locomotor CPG that reproduces our experimental results. The results may provide novel insights into the

  20. The 28-day exposure to fenpropathrin decreases locomotor activity and reduces activity of antioxidant enzymes in mice brains.

    PubMed

    Nieradko-Iwanicka, Barbara; Borzęcki, Andrzej

    2016-04-01

    Fenpropathrin (Fen) is a pyrethroid (Pyr) insecticide. Pyrs are used in veterinary medicine, in agriculture and for domestic purposes. As their use increases, new questions about their side effects and mode of action in non-target organisms arise. The objective of this work was to characterize dose-response relationship for in vivo motor function and memory in mice exposed to Fen for 28 days and to assess its influence on activity of antioxidant enzymes in mice brains. The experiment was performed using 64 female mice. Fen at the dose of 11.9mg/kg of body mass, 5.95mg/kg or 2.38mg/kg was administered ip to the mice for 28 consecutive days. Motor function and spatial working memory were tested on days 7, 14 and 28. On day 29, the animals were sacrificed and brains were used to determine activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Fen significantly decreased locomotor activity in mice receiving the highest dose at every stage of the experiment. Lower doses reduced locomotion on days 7 and 14. Fen did not produce memory impairment. A decrease in activities of SOD and GPx was recorded in mice brains. The decrease of SOD activity in mice brains results from direct inhibition of the enzyme by Fen and/or increased utilization due to excessive free radical formation in conditions of Fen-induced oxidative stress. The reduction in GPx activity is probably due to limited glutathione availability. The reduced locomotor activity is a behavioral demonstration of Fen-induced damage in the dopaminergic system. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  1. Locomotor activation induced in rodent by substance P and analogues. Blockade of the effect of substance P by met-enkephalin antiserum.

    PubMed

    Naranjo, J R; Del Rio, J

    1984-10-01

    Intraventricular administration of substance P (SP), of the heptapeptide SP5-11 and of DiMe-C7, a stable analogue of SP5-11 induced locomotor activation in rats and in mice. The activating effect of substance P was longer-lasting in mice than in rats, whereas the effect of the two heptapeptides appears to be more marked in rats than in mice. The locomotor stimulation induced by substance P was blocked by naloxone and by the specific antiserum against met-enkephalin, suggesting that this effect is possibly mediated by released of this opioid peptide. Since the activating effect of substance P was also blocked by haloperidol, it is proposed that substance P produces behavioural excitation by activating dopaminergic systems, implicated in the control of locomotion, through interposed enkephalinergic neurones.

  2. Ovariectomy influences the circadian rhythm of locomotor activity and the photic phase shifts in the volcano mouse.

    PubMed

    Juárez-Tapia, Cinthia; Miranda-Anaya, Manuel

    2017-12-01

    Recently, the relationship between the circadian system and female reproduction has been of great interest; ovarian hormones can modify the amount and distribution of daily activity differently in rodent species. The volcano mouse Neotomodon alstoni is a species in which it is possible to study the circadian rhythm of locomotion, and it offers comparative information about the influence of ovaries on the circadian system. In this study, we used infrared crossings to compare free movement in intact and sham-operated or ovariectomized mice. We analyzed behavioral and endocrine changes related to the estrous cycle and locomotor circadian rhythm in free-running mice and photic phase shifting. Evidence shows that intact mice present a scalloped pattern of daily activity during the estrous cycle. In constant darkness, the ovariectomy reduces the total amount of activity, shortens the free-running circadian period of locomotion and increases photic phase shifts during the early subjective night. During entrainment, the ovariectomized mice increased the amplitude of total activity during the scotophase, and delay the time of activity onset. These results suggest that ovarian hormones in N. alstoni modulate the circadian rhythm of locomotor activity in a species-specific manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. An enriched environment reduces the stress level and locomotor activity induced by acute morphine treatment and by saline after chronic morphine treatment in mice.

    PubMed

    Xu, Jia; Sun, Jinling; Xue, Zhaoxia; Li, Xinwang

    2014-06-18

    This study investigated the relationships among an enriched environment, stress levels, and drug addiction. Mice were divided randomly into four treatment groups (n=12 each): enriched environment without restraint stress (EN), standard environment without restraint stress (SN), enriched environment with restraint stress (ES), and standard environment with restraint stress (SS). Mice were reared in the respective environment for 45 days. Then, the ES and SS groups were subjected to restraint stress daily (2 h/day) for 14 days, whereas the EN and SN groups were not subjected to restraint stress during this stage. The stress levels of all mice were tested in the elevated plus maze immediately after exposure to restraint stress. After the 2-week stress testing period, mice were administered acute or chronic morphine (5 mg/kg) treatment for 7 days. Then, after a 7-day withdrawal period, the mice were injected with saline (1 ml/kg) or morphine (5 mg/kg) daily for 2 days to observe locomotor activity. The results indicated that the enriched environment reduced the stress and locomotor activity induced by acute morphine administration or saline after chronic morphine treatment. However, the enriched environment did not significantly inhibit locomotor activity induced by morphine challenge. In addition, the stress level did not mediate the effect of the enriched environment on drug-induced locomotor activity after acute or chronic morphine treatment.

  4. LFP Oscillations in the Mesencephalic Locomotor Region during Voluntary Locomotion

    PubMed Central

    Noga, Brian R.; Sanchez, Francisco J.; Villamil, Luz M.; O’Toole, Christopher; Kasicki, Stefan; Olszewski, Maciej; Cabaj, Anna M.; Majczyński, Henryk; Sławińska, Urszula; Jordan, Larry M.

    2017-01-01

    Oscillatory rhythms in local field potentials (LFPs) are thought to coherently bind cooperating neuronal ensembles to produce behaviors, including locomotion. LFPs recorded from sites that trigger locomotion have been used as a basis for identification of appropriate targets for deep brain stimulation (DBS) to enhance locomotor recovery in patients with gait disorders. Theta band activity (6–12 Hz) is associated with locomotor activity in locomotion-inducing sites in the hypothalamus and in the hippocampus, but the LFPs that occur in the functionally defined mesencephalic locomotor region (MLR) during locomotion have not been determined. Here we record the oscillatory activity during treadmill locomotion in MLR sites effective for inducing locomotion with electrical stimulation in rats. The results show the presence of oscillatory theta rhythms in the LFPs recorded from the most effective MLR stimulus sites (at threshold ≤60 μA). Theta activity increased at the onset of locomotion, and its power was correlated with the speed of locomotion. In animals with higher thresholds (>60 μA), the correlation between locomotor speed and theta LFP oscillations was less robust. Changes in the gamma band (previously recorded in vitro in the pedunculopontine nucleus (PPN), thought to be a part of the MLR) were relatively small. Controlled locomotion was best achieved at 10–20 Hz frequencies of MLR stimulation. Our results indicate that theta and not delta or gamma band oscillation is a suitable biomarker for identifying the functional MLR sites. PMID:28579945

  5. Long-term imaging of circadian locomotor rhythms of a freely crawling C. elegans population

    PubMed Central

    Winbush, Ari; Gruner, Matthew; Hennig, Grant W.; van der Linden, Alexander M.

    2016-01-01

    Background Locomotor activity is used extensively as a behavioral output to study the underpinnings of circadian rhythms. Recent studies have required a populational approach for the study of circadian rhythmicity in Caenorhabditis elegans locomotion. New method We describe an imaging system for long-term automated recording and analysis of locomotion data of multiple free-crawling C. elegans animals on the surface of an agar plate. We devised image analysis tools for measuring specific features related to movement and shape to identify circadian patterns. Results We demonstrate the utility of our system by quantifying circadian locomotor rhythms in wild-type and mutant animals induced by temperature cycles. We show that 13 °C:18 °C (12:12 h) cycles are sufficient to entrain locomotor activity of wild-type animals, which persist but are rapidly damped during 13 °C free-running conditions. Animals with mutations in tax-2, a cyclic nucleotide-gated (CNG) ion channel, significantly reduce locomotor activity during entrainment and free-running. Comparison with existing method(s) Current methods for measuring circadian locomotor activity is generally restricted to recording individual swimming animals of C. elegans, which is a distinct form of locomotion from crawling behavior generally observed in the laboratory. Our system works well with up to 20 crawling adult animals, and allows for a detailed analysis of locomotor activity over long periods of time. Conclusions Our population-based approach provides a powerful tool for quantification of circadian rhythmicity of C. elegans locomotion, and could allow for a screening system of candidate circadian genes in this model organism. PMID:25911068

  6. Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera).

    PubMed

    Fussnecker, Brendon L; Smith, Brian H; Mustard, Julie A

    2006-10-01

    The biogenic amines octopamine and tyramine are believed to play a number of important roles in the behavior of invertebrates including the regulation of motor function. To investigate the role of octopamine and tyramine in locomotor behavior in honey bees, subjects were injected with a range of concentrations of octopamine, tyramine, mianserin or yohimbine. Continuous observation of freely moving worker bees was used to examine the effects of these treatments on the amount of time honey bees spent engaged in different locomotor behaviors such as walking, grooming, fanning and flying. All treatments produced significant shifts in behavior. Decreases in time spent walking and increases in grooming or stopped behavior were observed for every drug. However, the pattern of the shift depended on drug, time after injection and concentration. Flying behavior was differentially affected with increases in flying seen in octopamine treated bees, whereas those receiving tyramine showed a decrease in flying. Taken together, these data provide evidence that octopamine and tyramine modulate motor function in the honey bee perhaps via interaction with central pattern generators or through effects on sensory perception.

  7. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns

    PubMed Central

    Cruchet, Steeve; Gustafson, Kyle; Benton, Richard; Floreano, Dario

    2015-01-01

    The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs—locomotor bouts—matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior. PMID:26600381

  8. Circadian locomotor activity of Musca flies: Recording method and effects of 10 Hz square-wave electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engelmann, W.; Hellrung, W.; Johnsson, A.

    1996-05-01

    Musca domestica flies that were exposed to a uniform vertical 10 Hz electric square-wave field of 1 kVm{sup {minus}1} changed the period length of their circadian locomotor activity rhythm. Under constant conditions, the clock of short-period flies was slowed down by the field, whereas the clock of long-period flies either was affected only scarcely (experiments at about 19 C) or ran faster (experiments at 25 C). It the field was applied for only 12 h daily, then 30--40% of the flies were synchronized. Thus, the field could function as a weak Zeitgeber (synchronizer). If the field was increased to 10more » kVm{sup {minus}1}, then 50--70% of the flies were synchronized. Flies avoided becoming active around the onset of the 12 h period of exposure to a 10 Hz field. The results of these experiments are discussed with respect to similar experiments by Wever on the effects of exposure to a 10 Hz field on the circadian system of man.« less

  9. The effects of long-term dopaminergic treatment on locomotor behavior in rats.

    PubMed

    Oliveira de Almeida, Welinton Alessandro; Maculano Esteves, Andrea; Leite de Almeida-Júnior, Canuto; Lee, Kil Sun; Kannebley Frank, Miriam; Oliveira Mariano, Melise; Frussa-Filho, Roberto; Tufik, Sergio; Tulio de Mello, Marco

    2014-12-01

    Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder) symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL) and drug (Pramipexole-PPX) groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions.

  10. The effects of long-term dopaminergic treatment on locomotor behavior in rats

    PubMed Central

    Oliveira de Almeida, Welinton Alessandro; Maculano Esteves, Andrea; Leite de Almeida-Júnior, Canuto; Lee, Kil Sun; Kannebley Frank, Miriam; Oliveira Mariano, Melise; Frussa-Filho, Roberto; Tufik, Sergio; Tulio de Mello, Marco

    2014-01-01

    Long-term treatments with dopaminergic agents are associated with adverse effects, including augmentation. Augmentation consists of an exacerbation of restless legs syndrome (a sleep-related movement disorder) symptoms during treatment compared to those experienced during the period before therapy was initiated. The objective of this study was to examine locomotor activity in rats after long-term dopaminergic treatment and its relationship with expression of the D2 receptor, in addition to demonstrating possible evidence of augmentation. The rats were divided into control (CTRL) and drug (Pramipexole—PPX) groups that received daily saline vehicle and PPX treatments, respectively, for 71 days. The locomotor behavior of the animals was evaluated weekly in the Open Field test for 71 days. The expression of the dopamine D2 receptor was evaluated by Western Blot analysis. The animals that received the PPX demonstrated a significant reduction in locomotor activity from day 1 to day 57 and a significant increase in immobility time from day 1 to day 64 relative to baseline values, but these values had returned to baseline levels at 71 days. No changes in the expression of the D2 receptor were demonstrated after treatment with a dopaminergic agonist. This study suggests changes in locomotor activity in rats after long-term PPX treatment that include an immediate reduction of locomotion and an increase in immobilization, and after 64 days, these values returned to baseline levels without evidence of augmentation. In addition, it was not possible to demonstrate a relationship between locomotor activity and the expression of D2 receptors under these conditions. PMID:26483930

  11. Cutaneous inputs from the back abolish locomotor-like activity and reduce spastic-like activity in the adult cat following complete spinal cord injury

    PubMed Central

    Frigon, Alain; Thibaudier, Yann; Johnson, Michael D.; Heckman, C.J.; Hurteau, Marie-France

    2012-01-01

    Spasticity is a condition that can include increased muscle tone, clonus, spasms, and hyperreflexia. In this study, we report the effect of manually stimulating the dorsal lumbosacral skin on spontaneous locomotor-like activity and on a variety of reflex responses in 5 decerebrate chronic spinal cats treated with clonidine. Cats were spinalized 1 month before the terminal experiment. Stretch reflexes were evoked by stretching the left triceps surae muscles. Crossed reflexes were elicited by electrically stimulating the right tibial or superficial peroneal nerves. Windup of reflex responses was evoked by electrically stimulating the left tibial or superficial peroneal nerves. We found that pinching the skin of the back abolished spontaneous locomotor-like activity. We also found that back pinch abolished the rhythmic activity observed during reflex testing without eliminating the reflex responses. Some of the rhythmic episodes of activity observed during reflex testing were consistent with clonus with an oscillation frequency greater than 3 Hz. Pinching the skin of the back effectively abolished rhythmic activity occurring spontaneously or evoked during reflex testing, irrespective of oscillation frequency. The results are consistent with the hypothesis that locomotion and clonus are produced by common central pattern-generators. Stimulating the skin of the back could prove helpful in managing undesired rhythmic activity in spinal cord-injured humans. PMID:22487200

  12. Temporal phasing of locomotor activity, heart rate rhythmicity, and core body temperature is disrupted in VIP receptor 2-deficient mice.

    PubMed

    Hannibal, Jens; Hsiung, Hansen M; Fahrenkrug, Jan

    2011-03-01

    Neurons of the brain's biological clock located in the hypothalamic suprachiasmatic nucleus (SCN) generate circadian rhythms of physiology (core body temperature, hormone secretion, locomotor activity, sleep/wake, and heart rate) with distinct temporal phasing when entrained by the light/dark (LD) cycle. The neuropeptide vasoactive intestinal polypetide (VIP) and its receptor (VPAC2) are highly expressed in the SCN. Recent studies indicate that VIPergic signaling plays an essential role in the maintenance of ongoing circadian rhythmicity by synchronizing SCN cells and by maintaining rhythmicity within individual neurons. To further increase the understanding of the role of VPAC2 signaling in circadian regulation, we implanted telemetric devices and simultaneously measured core body temperature, spontaneous activity, and heart rate in a strain of VPAC2-deficient mice and compared these observations with observations made from mice examined by wheel-running activity. The study demonstrates that VPAC2 signaling is necessary for a functional circadian clock driving locomotor activity, core body temperature, and heart rate rhythmicity, since VPAC2-deficient mice lose the rhythms in all three parameters when placed under constant conditions (of either light or darkness). Furthermore, although 24-h rhythms for three parameters are retained in VPAC2-deficient mice during the LD cycle, the temperature rhythm displays markedly altered time course and profile, rising earlier and peaking ∼4-6 h prior to that of wild-type mice. The use of telemetric devices to measure circadian locomotor activity, temperature, and heart rate, together with the classical determination of circadian rhythms of wheel-running activity, raises questions about how representative wheel-running activity may be of other behavioral parameters, especially when animals have altered circadian phenotype.

  13. Neurochemical excitation of propriospinal neurons facilitates locomotor command signal transmission in the lesioned spinal cord.

    PubMed

    Zaporozhets, Eugene; Cowley, Kristine C; Schmidt, Brian J

    2011-06-01

    Previous studies of the in vitro neonatal rat brain stem-spinal cord showed that propriospinal relays contribute to descending transmission of a supraspinal command signal that is capable of activating locomotion. Using the same preparation, the present series examines whether enhanced excitation of thoracic propriospinal neurons facilitates propagation of the locomotor command signal in the lesioned spinal cord. First, we identified neurotransmitters contributing to normal endogenous propriospinal transmission of the locomotor command signal by testing the effect of receptor antagonists applied to cervicothoracic segments during brain stem-induced locomotor-like activity. Spinal cords were either intact or contained staggered bilateral hemisections located at right T1/T2 and left T10/T11 junctions designed to abolish direct long-projecting bulbospinal axons. Serotonergic, noradrenergic, dopaminergic, and glutamatergic, but not cholinergic, receptor antagonists blocked locomotor-like activity. Approximately 73% of preparations with staggered bilateral hemisections failed to generate locomotor-like activity in response to electrical stimulation of the brain stem alone; such preparations were used to test the effect of neuroactive substances applied to thoracic segments (bath barriers placed at T3 and T9) during brain stem stimulation. The percentage of preparations developing locomotor-like activity was as follows: 5-HT (43%), 5-HT/N-methyl-D-aspartate (NMDA; 33%), quipazine (42%), 8-hydroxy-2-(di-n-propylamino)tetralin (20%), methoxamine (45%), and elevated bath K(+) concentration (29%). Combined norepinephrine and dopamine increased the success rate (67%) compared with the use of either agent alone (4 and 7%, respectively). NMDA, Mg(2+) ion removal, clonidine, and acetylcholine were ineffective. The results provide proof of principle that artificial excitation of thoracic propriospinal neurons can improve supraspinal control over hindlimb locomotor networks in the

  14. Early-life risperidone enhances locomotor responses to amphetamine during adulthood.

    PubMed

    Lee Stubbeman, Bobbie; Brown, Clifford J; Yates, Justin R; Bardgett, Mark E

    2017-10-05

    Antipsychotic drug prescriptions for pediatric populations have increased over the past 20 years, particularly the use of atypical antipsychotic drugs such as risperidone. Most antipsychotic drugs target forebrain dopamine systems, and early-life antipsychotic drug exposure could conceivably reset forebrain neurotransmitter function in a permanent manner that persists into adulthood. This study determined whether chronic risperidone administration during development modified locomotor responses to the dopamine/norepinephrine agonist, D-amphetamine, in adult rats. Thirty-five male Long-Evans rats received an injection of one of four doses of risperidone (vehicle, .3, 1.0, 3.0mg/kg) each day from postnatal day 14 through 42. Locomotor activity was measured for 1h on postnatal days 46 and 47, and then for 24h once a week over the next two weeks. Beginning on postnatal day 75, rats received one of four doses of amphetamine (saline, .3, 1.0, 3.0mg/kg) once a week for four weeks. Locomotor activity was measured for 27h after amphetamine injection. Rats administered risperidone early in life demonstrated increased activity during the 1 and 24h test sessions conducted prior to postnatal day 75. Taking into account baseline group differences, these same rats exhibited significantly more locomotor activity in response to the moderate dose of amphetamine relative to controls. These results suggest that early-life treatment with atypical antipsychotic drugs, like risperidone, permanently alters forebrain catecholamine function and increases sensitivity to drugs that target such function. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Effect of 1 GeV/n Fe particles on cocaine-stimulated locomotor activity

    NASA Astrophysics Data System (ADS)

    Vazquez, M.; Bruneus, M.; Gatley, J.; Russell, S.; Billups, A.

    Space travel beyond the Earth's protective magnetic field (for example, to Mars) will involve exposure of astronauts to irradiation by high-energy nuclei such as 56Fe (HZE radiation), which are a component of galactic cosmic rays. These particles have high linear energy transfer (LET) and are expected to irreversibly damage cells they traverse. Our working hypothesis is that long-term behavioral alterations are induced after exposure of the brain to 1 GeV/n iron particles with fluences of 1 to 8 particles/cell targets. Previous studies support this notion but are not definitive, especially with regard to long-term effects. Using the Alternating Gradient Synchrotron (AGS) we expose C57 mice to 1 GeV/n 56Fe radiation (head only) at doses of 0, 15, 30, 60, 120 and 240 cGy. There were originally 19 mice per group. The ability of cocaine to increase locomotor activity in 16 of these animals in response to an intraperitoneal injection of cocaine has been measured so far at 1, 4, 8, 12, 16, 20, 24 and 28 weeks. Cocaine-stimulated locomotor activity was chosen in part because it is a behavioral assay with which we have considerable experience. More importantly, the ability to respond to cocaine is a complex behavior involving many neurotransmitter systems and brain circuits. Therefore, the probability of alteration of this behavior by HZE particles was considered high. However, the central circuit is the nigrostriatal dopamine system, in which dopamine is released in striatum from nerve terminals whose cell bodies are located in the substantia nigra. Cocaine activates behavior by blocking dopamine transporters on striatal nerve terminals and therefore elevating the concentration of dopamine in the synapse. Dopamine activates receptors on striatal GABAergic cells that project via other brain regions to the thalamus. Activation of the motor cortex by glutamatergic projections from the thalamus leads ultimately to increased locomotion. The experimental paradigm involves

  16. The stimulation of central kappa opioid receptors decreases male sexual behavior and locomotor activity.

    PubMed

    Leyton, M; Stewart, J

    1992-10-23

    Systemic injections of the kappa (kappa) opioid receptor agonist U-50,488H decreased male sexual behavior, locomotor activity, body temperature and bodily grooming, and induced body flattening. The U-50,488H-induced inhibitions of male sexual behavior were prevented by systemic injections of naloxone and by intra-cranial injections of the kappa opioid antagonist nor-binaltorphimine (NBNI). Injections of NBNI to either the ventral tegmental area (VTA) or the nucleus accumbens septi (NAS) increased female-directed behavior, and prevented the U-50,488H-induced decreases in female-directed behavior. Intra-VTA NBNI prevented U-50,488H-induced decreases in the mean number of ejaculations, intra-NAS NBNI prevented U-50,488H-induced increases in copulation latencies. Intra-medial preoptic area (mPOA) injections of NBNI increased female-directed behavior, and attenuated U-50,488H-induced decreases in female-directed behavior as well as U-50,488H-induced increases in both copulation and ejaculation latencies. Injections of NBNI dorsal to the mPOA were ineffective. Two of 26 days following the central injection of NBNI, systemic injections of U-50,488H remained behaviorally ineffective, leaving both sexual behavior and locomotor activity undiminished. These results suggest that the stimulation of central kappa opioid receptors inhibits sexual behavior in the male rat; perhaps endogenous kappa opioid agonists induce sexual refractory periods.

  17. The hippocampus and appetitive Pavlovian conditioning: effects of excitotoxic hippocampal lesions on conditioned locomotor activity and autoshaping.

    PubMed

    Ito, Rutsuko; Everitt, Barry J; Robbins, Trevor W

    2005-01-01

    The hippocampus (HPC) is known to be critically involved in the formation of associations between contextual/spatial stimuli and behaviorally significant events, playing a pivotal role in learning and memory. However, increasing evidence indicates that the HPC is also essential for more basic motivational processes. The amygdala, by contrast, is important for learning about the motivational significance of discrete cues. This study investigated the effects of excitotoxic lesions of the rat HPC and the basolateral amygdala (BLA) on the acquisition of a number of appetitive behaviors known to be dependent on the formation of Pavlovian associations between a reward (food) and discrete stimuli or contexts: (1) conditioned/anticipatory locomotor activity to food delivered in a specific context and (2) autoshaping, where rats learn to show conditioned discriminated approach to a discrete visual CS+. While BLA lesions had minimal effects on conditioned locomotor activity, hippocampal lesions facilitated the development of both conditioned activity to food and autoshaping behavior, suggesting that hippocampal lesions may have increased the incentive motivational properties of food and associated conditioned stimuli, consistent with the hypothesis that the HPC is involved in inhibitory processes in appetitive conditioning. (c) 2005 Wiley-Liss, Inc.

  18. Locomotor adaptations of some gelatinous zooplankton.

    PubMed

    Bone, Q

    1985-01-01

    Swimming behaviour and locomotor adaptations are described in chaetognaths, larvacean tunicates, some cnidaria, and thaliacean tunicates. The first two groups swim by oscillating a flattened tail, the others by jet propulsion. In chaetognaths, the locomotor muscle fibres are extensively coupled and relatively sparsely innervated, they exhibit compound spike-like potentials. The motoneurons controlling the rhythmic activity of the locomotor muscle lie in a ventral ganglion whose organization is briefly described. Rhythmic swimming bursts in larvaceans are similarly driven by a caudal ganglion near the base of the tail, but each caudal muscle cell is separately innervated by two sets of motor nerves, as well as being coupled to its neighbours. The external epithelium is excitable, and linked to the caudal ganglion by the axons of central cells. Mechanical stimulation of the epithelium evokes receptor potentials followed by action potentials and by bursts of rapid swimming. The trachyline medusa Aglantha and the small siphonophore Chelophyes also show rapid escape responses; in Aglantha these are driven by a specialized giant axon system lacking in other hydromedusae, and in Chelophyes. Slow swimming in Aglantha apparently involves a second nerve supply to the same muscle sheets used in rapid swimming, whereas in Chelophyes slow swimming results from the activity of the smaller posterior nectophore. Slow swimming in siphonophores is more economical than the rapid responses. In the hydrozoan medusa Polyorchis (as in Chelophyes) action potentials in the locomotor muscle sheet change in shape during swimming bursts, and their duration is related to the size of the medusa; they are not simply triggers of muscular contraction. The two groups of thaliacean tunicates are specialized differently. Doliolum is adapted for single rapid jet pulses (during which it achieves instantaneous velocities of 50 body lengths s-l), whilst salps are adapted for slow continuous swimming. The

  19. Effects of zacopride and BMY25801 (batanopride) on radiation-induced emesis and locomotor behavior in the ferret

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, G.L.; Landauer, M.R.

    1990-06-01

    The antiemetic and locomotor effects of two substituted benzamides, zacopride and batanopride (BMY25801), were compared in ferrets after bilateral 60Co irradiation at 2, 4 or 6 Gy. Both zacopride and BMY25801 were effective against emesis and related signs. Zacopride, tested at several doses (0.003, 0.03 and 0.3 mg/kg), appeared to be more potent because it abolished emesis at 100-fold lower doses than did BMY25801 (3 mg/kg). The ED50 value for the antiemetic effect of zacopride was 0.026 mg/kg (confidence levels = 0.0095, 0.072 mg/kg). However, analysis of emetic parameters recorded from vomiting animals (e.g., latency to first emesis) demonstrated thatmore » BMY25801 provided greater antiemetic protection in this population than zacopride without any apparent side effects. Locomotor activity was significantly depressed by both radiation (all doses) and zacopride alone (0.03 mg/kg and 0.3 mg/kg). BMY25801 alone did not affect locomotor activity, and protected against the radiation-induced locomotor decrement. Although zacopride potentiated the locomotor decrement to radiation, no clear dose-response relationship was evident. Bilateral abdominal vagotomy significantly increased the latency to the first emetic episode and significantly reduced the number of retches, but did not alter the duration of the prodromal response to 4-Gy irradiation. Unilateral vagotomies had no effect. Zacopride (at 0.03 mg/kg and 0.3 mg/kg) remained an effective antiemetic in animals that received a bilateral vagotomy, abolishing emesis in four of eight and two of eight ferrets, respectively. These data suggest that the antiemetic action of zacopride does not fully depend on intact vagal innervation and also acts via other pathways.« less

  20. Sex differences in the effects of social and physical environment on novelty-induced exploratory behavior and cocaine-stimulated locomotor activity in adolescent rats.

    PubMed

    Zakharova, Elena; Starosciak, Amy; Wade, Dean; Izenwasser, Sari

    2012-04-21

    Many factors influence the rewarding effects of drugs such as cocaine. The present study was done to determine whether social and environmental factors alter behavior in adolescent male and female rats. On postnatal day (PND) 23, rats were housed in one of several same-sex conditions. Both social (number of rats per cage) and environmental (availability of toys) factors were manipulated. Socially isolated rats were housed alone (1 rat/cage) in an environment that either was impoverished (with no toys; II) or enriched (with toys; IE). Standard housing for these studies was social and impoverished, which was 2 rats/cage with no toys (SI2). Other rats were housed 2/cage with toys (SE2), or 3/cage with (SE3) or without (SI3) toys. On PND 37, novelty-induced locomotor activity was measured for 30min. On PND 44-46, locomotor activity in response to an injection of 5mg/kg cocaine was measured for 60min each day. For male rats, only social conditions altered novelty-induced activity. Males housed in groups of three had the most activity, compared to pair-housed and isolated rats. For females, social and environmental enrichment interacted to alter novelty-induced activity. In contrast to males, isolated females had increased activity, compared to group-housed females. Further, isolated females in impoverished environments had more activity than isolated females in enriched environments and group-housed females in impoverished environments. The effect of environmental enrichment on cocaine-stimulated locomotor activity was altered depending upon the number of rats living in a cage for males. For females, only social conditions altered cocaine-stimulated behavior, with activity increasing with the number of rats in the cage, regardless of environmental enrichment. These data show that social and environmental enrichment differentially alter novelty-induced and cocaine-stimulated locomotor activity in adolescent male and female rats. Copyright © 2012 Elsevier B.V. All rights

  1. Initial locomotor sensitivity to cocaine varies widely among inbred mouse strains.

    PubMed

    Wiltshire, T; Ervin, R B; Duan, H; Bogue, M A; Zamboni, W C; Cook, S; Chung, W; Zou, F; Tarantino, L M

    2015-03-01

    Initial sensitivity to psychostimulants can predict subsequent use and abuse in humans. Acute locomotor activation in response to psychostimulants is commonly used as an animal model of initial drug sensitivity and has been shown to have a substantial genetic component. Identifying the specific genetic differences that lead to phenotypic differences in initial drug sensitivity can advance our understanding of the processes that lead to addiction. Phenotyping inbred mouse strain panels are frequently used as a first step for studying the genetic architecture of complex traits. We assessed locomotor activation following a single, acute 20 mg/kg dose of cocaine (COC) in males from 45 inbred mouse strains and observed significant phenotypic variation across strains indicating a substantial genetic component. We also measured levels of COC, the active metabolite, norcocaine and the major inactive metabolite, benzoylecgonine, in plasma and brain in the same set of inbred strains. Pharmacokinetic (PK) and behavioral data were significantly correlated, but at a level that indicates that PK alone does not account for the behavioral differences observed across strains. Phenotypic data from this reference population of inbred strains can be utilized in studies aimed at examining the role of psychostimulant-induced locomotor activation on drug reward and reinforcement and to test theories about addiction processes. Moreover, these data serve as a starting point for identifying genes that alter sensitivity to the locomotor stimulatory effects of COC. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  2. Locomotor performance of cane toads differs between native-range and invasive populations.

    PubMed

    Kosmala, Georgia; Christian, Keith; Brown, Gregory; Shine, Richard

    2017-07-01

    Invasive species provide a robust opportunity to evaluate how animals deal with novel environmental challenges. Shifts in locomotor performance-and thus the ability to disperse-(and especially, the degree to which it is constrained by thermal and hydric extremes) are of special importance, because they might affect the rate that an invader can spread. We studied cane toads ( Rhinella marina ) across a broad geographical range: two populations within the species' native range in Brazil, two invasive populations on the island of Hawai'i and eight invasive populations encompassing the eastern, western and southern limits of the toad invasion in Australia. A toad's locomotor performance on a circular raceway was strongly affected by both its temperature and its hydration state, but the nature and magnitude of those constraints differed across populations. In their native range, cane toads exhibited relatively low performance (even under optimal test conditions) and a rapid decrease in performance at lower temperatures and hydration levels. At the other extreme, performance was high in toads from southern Australia, and virtually unaffected by desiccation. Hawai'ian toads broadly resembled their Brazilian conspecifics, plausibly reflecting similar climatic conditions. The invasion of Australia has been accompanied by a dramatic enhancement in the toads' locomotor abilities, and (in some populations) by an ability to maintain locomotor performance even when the animal is cold and/or dehydrated. The geographical divergences in performance among cane toad populations graphically attest to the adaptability of invasive species in the face of novel abiotic challenges.

  3. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury

    PubMed Central

    Benthall, Katelyn N.; Hough, Ryan A.

    2016-01-01

    Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3–5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. NEW & NOTEWORTHY In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the

  4. Descending propriospinal neurons mediate restoration of locomotor function following spinal cord injury.

    PubMed

    Benthall, Katelyn N; Hough, Ryan A; McClellan, Andrew D

    2017-01-01

    Following spinal cord injury (SCI) in the lamprey, there is virtually complete recovery of locomotion within a few weeks, but interestingly, axonal regeneration of reticulospinal (RS) neurons is mostly limited to short distances caudal to the injury site. To explain this situation, we hypothesize that descending propriospinal (PS) neurons relay descending drive from RS neurons to indirectly activate spinal central pattern generators (CPGs). In the present study, the contributions of PS neurons to locomotor recovery were tested in the lamprey following SCI. First, long RS neuron projections were interrupted by staggered spinal hemitransections on the right side at 10% body length (BL; normalized from the tip of the oral hood) and on the left side at 30% BL. For acute recovery conditions (≤1 wk) and before axonal regeneration, swimming muscle burst activity was relatively normal, but with some deficits in coordination. Second, lampreys received two spaced complete spinal transections, one at 10% BL and one at 30% BL, to interrupt long-axon RS neuron projections. At short recovery times (3-5 wk), RS and PS neurons will have regenerated their axons for short distances and potentially established a polysynaptic descending command pathway. At these short recovery times, swimming muscle burst activity had only minor coordination deficits. A computer model that incorporated either of the two spinal lesions could mimic many aspects of the experimental data. In conclusion, descending PS neurons are a viable mechanism for indirect activation of spinal locomotor CPGs, although there can be coordination deficits of locomotor activity. In the lamprey following spinal lesion-mediated interruption of long axonal projections of reticulospinal (RS) neurons, sensory stimulation still elicited relatively normal locomotor muscle burst activity, but with some coordination deficits. Computer models incorporating the spinal lesions could mimic many aspects of the experimental results

  5. Effects of locomotor skill program on minority preschoolers' physical activity levels.

    PubMed

    Alhassan, Sofiya; Nwaokelemeh, Ogechi; Ghazarian, Manneh; Roberts, Jasmin; Mendoza, Albert; Shitole, Sanyog

    2012-08-01

    This pilot study examined the effects of a teacher-taught, locomotor skill (LMS)-based physical activity (PA) program on the LMS and PA levels of minority preschooler-aged children. Eight low-socioeconomic status preschool classrooms were randomized into LMS-PA (LMS-oriented lesson plans) or control group (supervised free playtime). Interventions were delivered for 30 min/day, five days/week for six months. Changes in PA (accelerometer) and LMS variables were assessed with MANCOVA. LMS-PA group exhibited a significant reduction in during-preschool (F (1,16) = 6.34, p = .02, d = 0.02) and total daily (F (1,16) = 9.78, p = .01, d = 0.30) percent time spent in sedentary activity. LMS-PA group also exhibited significant improvement in leaping skills, F (1, 51) = 7.18, p = .01, d = 0.80). No other, significant changes were observed. The implementation of a teacher-taught, LMS-based PA program could potentially improve LMS and reduce sedentary time of minority preschoolers.

  6. Chronic low-level arsenic exposure causes gender-specific alterations in locomotor activity, dopaminergic systems, and thioredoxin expression in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardullas, U.; Limon-Pacheco, J.H.; Giordano, M.

    2009-09-01

    Arsenic (As) is a toxic metalloid widely present in the environment. Human exposure to As has been associated with the development of skin and internal organ cancers and cardiovascular disorders, among other diseases. A few studies report decreases in intelligence quotient (IQ), and sensory and motor alterations after chronic As exposure in humans. On the other hand, studies of rodents exposed to high doses of As have found alterations in locomotor activity, brain neurochemistry, behavioral tasks, and oxidative stress. In the present study both male and female C57Bl/6J mice were exposed to environmentally relevant doses of As such as 0.05,more » 0.5, 5.0, or 50 mg As/L of drinking water for 4 months, and locomotor activity was assessed every month. Male mice presented hyperactivity in the group exposed to 0.5 mg As/L and hypoactivity in the group exposed to 50 mg As/L after 4 months of As exposure, whereas female mice exposed to 0.05, 0.5, and 5.0 mg As/L exhibited hyperactivity in every monthly test during As exposure. Furthermore, striatal and hypothalamic dopamine content was decreased only in female mice. Also decreases in tyrosine hydroxylase (TH) and cytosolic thioredoxin (Trx-1) mRNA expression in striatum and nucleus accumbens were observed in male and female mice, respectively. These results indicate that chronic As exposure leads to gender-dependent alterations in dopaminergic markers and spontaneous locomotor activity, and down-regulation of the antioxidant capacity of the brain.« less

  7. Patterns of neural activity associated with differential acute locomotor stimulation to cocaine and methamphetamine in adolescent versus adult male C57BL/6J mice

    PubMed Central

    Zombeck, Jonathan A.; Lewicki, Aaron D.; Patel, Kevin; Gupta, Tripta; Rhodes, Justin S.

    2009-01-01

    Adolescence is a time period when major changes occur in the brain with long-term consequences for behavior. One ramification is altered responses to drugs of abuse, but the specific brain mechanisms and implications for mental health are poorly understood. Here, we used a mouse model in which adolescents display dramatically reduced sensitivity to the acute locomotor stimulating effects of cocaine and methamphetamine. The goal was to identify key brain regions or circuits involved in the differential behavior. Male adolescent (PN 30–35) and young adult (PN 69–74) C57BL/6J mice were administered an intraperitoneal injection of cocaine (0, 15, 30 mg/kg) or methamphetamine (0, 2, 4 mg/kg) and euthanized 90 minutes later. Locomotor activity was monitored continuously in the home cage by video tracking. Immunohistochemical detection of Fos protein was used to quantify neuronal activation in 16 different brain regions. As expected, adolescents were less sensitive to the locomotor stimulating effects of cocaine and methamphetamine as indicated by a rightward shift in the dose response relationship. After a saline injection, adolescents showed similar levels of Fos as adults in all regions except the dorsal and lateral caudate where levels were lower in adolescents. Cocaine and methamphetamine dose dependently increased Fos in all brain regions sampled in both adolescents and adults, but Fos levels were similar in both age groups for a majority of regions and doses. Locomotor activity was correlated with Fos in several brain areas within adolescent and adult groups, and adolescents had a significantly greater induction of Fos for a given amount of locomotor activity in key brain regions including the caudate where they showed reduced Fos under baseline conditions. Future research will identify the molecular and cellular events that are responsible for the differential psychostimulant-induced patterns of brain activation and behavior observed in adolescent versus adult

  8. Evaluation of harmonic direction-finding systems for detecting locomotor activity

    USGS Publications Warehouse

    Boyarski, V.L.; Rodda, G.H.; Savidge, J.A.

    2007-01-01

    We conducted a physical simulation experiment to test the efficacy of harmonic direction finding for remotely detecting locomotor activity in animals. The ability to remotely detect movement helps to avoid disturbing natural movement behavior. Remote detection implies that the observer can sense only a change in signal bearing. In our simulated movements, small changes in bearing (<5.7??) were routinely undetectable. Detectability improved progressively with the size of the simulated animal movement. The average (??SD) of reflector tag movements correctly detected for 5 observers was 93.9 ?? 12.8% when the tag was moved ???11.5??; most observers correctly detected tag movements ???20.1??. Given our data, one can assess whether the technique will be effective for detecting movements at an observation distance appropriate for the study organism. We recommend that both habitat and behavior of the organism be taken into consideration when contemplating use of this technique for detecting locomotion.

  9. Short-Term Genetic Selection for Adolescent Locomotor Sensitivity to Delta9-Tetrahydrocannabinol (THC).

    PubMed

    Kasten, Chelsea R; Zhang, Yanping; Mackie, Ken; Boehm, Stephen L

    2018-05-01

    Cannabis use is linked to positive and negative outcomes. Identifying genetic targets of susceptibility to the negative effects of cannabinoid use is of growing importance. The current study sought to complete short-term selective breeding for adolescent sensitivity and resistance to the locomotor effects of a single 10 mg/kg THC dose in the open field. Selection for THC-locomotor sensitivity was moderately heritable, with the greatest estimates of heritability seen in females from the F2 to S3 generations. Selection for locomotor sensitivity also resulted in increased anxiety-like activity in the open field. These results are the first to indicate that adolescent THC-locomotor sensitivity can be influenced via selective breeding. Development of lines with a genetic predisposition for THC-sensitivity or resistance to locomotor effects allow for investigation of risk factors, differences in consequences of THC use, identification of correlated behavioral responses, and detection of genetic targets that may contribute to heightened cannabinoid sensitivity.

  10. The effects of locomotor-respiratory coupling on the pattern of breathing in horses.

    PubMed Central

    Lafortuna, C L; Reinach, E; Saibene, F

    1996-01-01

    1. To investigate the effect of locomotor activity on the pattern of breathing in quadrupeds, ventilatory response was studied in four healthy horses during horizontal and inclined (7%) treadmill exercise at different velocities (1.4-6.9 m s(-1)) and during chemical stimulation with a rebreathing method. Stride frequency (f(s)) and locomotor-respiratory coupling (LRC) were also simultaneously determined by means of video recordings synchronized with respiratory events. 2. Tidal volume (V(T)) was positively correlated with pulmonary ventilation (V(E)) but significantly different linear regression equations were found between the experimental conditions (P < 0.0001), since the chemical hyperventilation was mainly due to increases in V(T), whereas the major contribution to exercise hyperpnoea came from changes in respiratory frequency (f(R)). 3. The average f(R) at each exercise level was not significantly different from f(S), although there was not always a tight 1:1 LRC. At constant speeds, f(S) was independent of the treadmill slope and hence the greater V(E) during inclined exercise was due to increased V(T). 4. At any ventilatory level, the differences in breathing patterns between locomotion and rebreathing or locomotion at different slopes derived from different set points of the inspiratory off-switch mechanism. 5. The percentage of single breaths entrained with locomotor rhythm rose progressively and significantly with treadmill speed (P < 0.0001) up to a 1:1 LRC and was significantly affected by treadmill slope (P < 0.001). 6. A LRC of 1:1 was systematically observed at canter (10 out of 10 trials) and sometimes at trot (5 out of 14) and it entailed (i) a 4- to 5-fold reduction in both V(T) and f(R) variability, and (ii) a gait-specific phase locking of inspiratory onset during the locomotor cycle. 7. It is concluded that different patterns of breathing are employed during locomotion and rebreathing due to the interference between locomotor and respiratory

  11. The relationship between hippocampal EEG theta activity and locomotor behaviour in freely moving rats: effects of vigabatrin.

    PubMed

    Bouwman, B M; van Lier, H; Nitert, H E J; Drinkenburg, W H I M; Coenen, A M L; van Rijn, C M

    2005-01-30

    The relationship between hippocampal electroencephalogram (EEG) theta activity and locomotor speed in both spontaneous and forced walking conditions was studied in rats after vigabatrin injection (500 mg/kg i.p.). Vigabatrin increased the percentage of time that rats spent being immobile. During spontaneous walking in the open field, the speed of locomotion was increased by vigabatrin, while theta peak frequency was decreased. Vigabatrin also reduced the theta peak frequency during forced (speed controlled) walking. There was only a weak positive correlation (r=0.22) between theta peak frequency and locomotor speed for the saline condition. Furthermore, vigabatrin abolishes the weak relationship between speed of locomotion and theta peak frequency. Vigabatrin and saline did not differ in the slope of the regression line, but showed different offset points at the theta peak frequency axis. Thus, other factors than speed of locomotion seem to be involved in determination of the theta peak frequency.

  12. Maternal protein-free diet during lactation programs male Wistar rat offspring for increased novelty-seeking, locomotor activity, and visuospatial performance.

    PubMed

    Lotufo, Bruna M; Tenório, Frank; Barradas, Penha C; Guedes, Paulo L; Lima, Sebastião S; Rocha, Michael L M; Duarte-Pinheiro, Vitor Hugo; Rodrigues, Vanessa S T; Lisboa, Patrícia C; Filgueiras, Cláudio C; Abreu-Villaça, Yael; Manhães, Alex C

    2018-04-01

    It is well established that chronic undernutrition has detrimental impacts on brain development and maturation. However, protein malnutrition during the period specifically encompassing the brain growth spurt has not been widely studied, particularly regarding its effects on adolescent and adult offspring behavior. Here, we assessed the effects of a protein-free diet during the 1st 10 postnatal days on the macronutrient content of the milk produced by lactating Wistar rats, on their maternal behavior, and on the offspring's behavior. Lactating dams were fed either a protein-free or a normoprotein diet from litter parturition to Postnatal Day 10 (P10). All dams received the normoprotein diet after P10. Offspring were tested in the elevated plus-maze (anxiety-like behavior), hole board arena (novelty-seeking and locomotor activity), and radial arm water maze (memory-learning) at either P40 (adolescents) or P90 (adults). The protein-free diet reduced milk protein content at P10 but not at P20. Carbohydrate and lipid contents were unaffected. Serum corticosterone levels in the offspring (at P10, P40, or P90) and dams (at P21) were not affected by the protein-free diet. Maternal behavior was also unchanged. In the offspring, no differences were observed between groups regarding anxiety-like behaviors at both ages. The protein-free diet increased adolescent locomotor activity as well as adult novelty-seeking behavior and memory performance. Our results indicate that the brain growth spurt period is particularly sensitive to protein malnutrition, showing that even a brief nutritional insult during this period can cause specific age-dependent behavioral effects on the offspring. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  13. Dual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern.

    PubMed

    Barrière, Grégory; Frigon, Alain; Leblond, Hugues; Provencher, Janyne; Rossignol, Serge

    2010-08-01

    The recovery of voluntary quadrupedal locomotion after an incomplete spinal cord injury can involve different levels of the CNS, including the spinal locomotor circuitry. The latter conclusion was reached using a dual spinal lesion paradigm in which a low thoracic partial spinal lesion is followed, several weeks later, by a complete spinal transection (i.e., spinalization). In this dual spinal lesion paradigm, cats can express hindlimb walking 1 day after spinalization, a process that normally takes several weeks, suggesting that the locomotor circuitry within the lumbosacral spinal cord had been modified after the partial lesion. Here we detail the evolution of the kinematic locomotor pattern throughout the dual spinal lesion paradigm in five cats to gain further insight into putative neurophysiological mechanisms involved in locomotor recovery after a partial spinal lesion. All cats recovered voluntary quadrupedal locomotion with treadmill training (3-5 days/wk) over several weeks. After the partial lesion, the locomotor pattern was characterized by several left/right asymmetries in various kinematic parameters, such as homolateral and homologous interlimb coupling, cycle duration, and swing/stance durations. When no further locomotor improvement was observed, cats were spinalized. After spinalization, the hindlimb locomotor pattern rapidly reappeared, but left/right asymmetries in swing/stance durations observed after the partial lesion could disappear or reverse. It is concluded that, after a partial spinal lesion, the hindlimb locomotor pattern was actively maintained by new dynamic interactions between spinal and supraspinal levels but also by intrinsic changes within the spinal cord.

  14. Individual differences in object permanence performance at 8 months: locomotor experience and brain electrical activity.

    PubMed

    Bell, M A; Fox, N A

    1997-12-01

    This work was designed to investigate individual differences in hands-and-knees crawling and frontal brain electrical activity with respect to object permanence performance in 76 eight-month-old infants. Four groups of infants (one prelocomotor and 3 with varying lengths of hands-and-knees crawling experience) were tested on an object permanence scale in a research design similar to that used by Kermoian and Campos (1988). In addition, baseline EEG was recorded and used as an indicator of brain development, as in the Bell and Fox (1992) longitudinal study. Individual differences in frontal and occipital EEG power and in locomotor experience were associated with performance on the object permanence task. Infants successful at A-not-B exhibited greater frontal EEG power and greater occipital EEG power than unsuccessful infants. In contrast to Kermoian and Campos (1988), who noted that long-term crawling experience was associated with higher performance on an object permanence scale, infants in this study with any amount of hands and knees crawling experience performed at a higher level on the object permanence scale than prelocomotor infants. There was no interaction among brain electrical activity, locomotor experience, and object permanence performance. These data highlight the value of electrophysiological research and the need for a brain-behavior model of object permanence performance that incorporates both electrophysiological and behavioral factors.

  15. Cocaine counteracts LPS-induced hypolocomotion and triggers locomotor sensitization expression.

    PubMed

    Tortorelli, Lucas Silva; Engelke, Douglas Senna; Lunardi, Paula; Mello E Souza, Tadeu; Santos-Junior, Jair Guilherme; Gonçalves, Carlos-Alberto

    2015-01-01

    Neuroimmune signalling underlies addiction and comorbid depression. Clinical observations indicate that infections and chronic lesions are more frequent in drug users and elevated inflammatory states are evident in cocaine dependents. Therefore, lipopolysaccharide (LPS) and inflammatory cytokines represent an important tool for the investigation of sickness, depressive illness and addiction behaviour. A major component of addiction is the progressive and persistent increase in locomotor activity after repeated drug administration and even prolonged periods of abstinence. The aim of this study was to investigate the response of locomotor sensitization when a non-sensitizing dose of cocaine is paired with a systemic inflammatory stimulus. LPS and cocaine were administered intraperitonealy in young-adult male C57bl/6 mice during a 5-day acquisition phase. After a 48-h withdrawal period all groups were challenged with cocaine to evaluate locomotor expression. During the acquisition phase, the LPS-treated groups displayed characteristic hypolocomotion related to sickness behaviour. The low dose of cocaine did not increase the distance travelled, characterizing a non-sensitization dose. Groups that received both LPS and cocaine did not display hypolocomotion, indicating that cocaine might counteract hypolocomotion sickness behaviour. Moreover, during challenge, only these animals expressed locomotor sensitization. Our results indicate that LPS could facilitate the expression of locomotor sensitization in mice and that the immune system may modulate cocaine-induced sensitization. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Supplementation of Spirulina (Arthrospira platensis) Improves Lifespan and Locomotor Activity in Paraquat-Sensitive DJ-1βΔ93 Flies, a Parkinson's Disease Model in Drosophila melanogaster.

    PubMed

    Kumar, Ajay; Christian, Pearl K; Panchal, Komal; Guruprasad, B R; Tiwari, Anand K

    2017-09-03

    Spirulina (Arthrospira platensis) is a cyanobacterium (blue-green alga) consumed by humans and other animals because of its nutritional values and pharmacological properties. Apart from high protein contents, it also contains high levels of antioxidant and anti-inflammatory compounds, such as carotenoids, β-carotene, phycocyanin, and phycocyanobilin, indicating its possible pharmaco-therapeutic utility. In the present study using DJ-1β Δ93 flies, a Parkinson's disease model in Drosophila, we have demonstrated the therapeutic effect of spirulina and its active component C-phycocyanin (C-PC) in the improvement of lifespan and locomotor behavior. Our findings indicate that dietary supplementation of spirulina significantly improves the lifespan and locomotor activity of paraquat-fed DJ-1β Δ93 flies. Furthermore, supplementation of spirulina and C-PC individually and independently reduced the cellular stress marked by deregulating the expression of heat shock protein 70 and Jun-N-terminal kinase signaling in DJ-1β Δ93 flies. A significant decrease in superoxide dismutase and catalase activities in spirulina-fed DJ-1β Δ93 flies tends to indicate the involvement of antioxidant properties associated with spirulina in the modulation of stress-induced signaling and improvement in lifespan and locomotor activity in Drosophila DJ-1β Δ93 flies. Our results suggest that antioxidant boosting properties of spirulina can be used as a nutritional supplement for improving the lifespan and locomotor behavior in Parkinson's disease.

  17. Effect of electrolytic lesion of the dorsomedial striatum on sexual behaviour and locomotor activity in rats.

    PubMed

    Ortiz-Pulido, R; Hernández-Briones, Z S; Tamariz-Rodríguez, A; Hernández, M E; Aranda-Abreu, G E; Coria-Avila, G A; Manzo, J; García, L I

    2017-06-01

    Cortical motor areas are influenced not only by peripheral sensory afferents and prefrontal association areas, but also by the basal ganglia, specifically the striatum. The dorsomedial striatum (DMS) and dorsolateral striatum are involved in both spatial and stimulus-response learning; however, each of these areas may mediate different components of learning. The aim of the study is to determine the effect of electrolytic lesion to the DMS on the learning and performance of sexual behaviour and locomotor activity in male rats. Once the subjects had learned to perform motor tests of balance, maze navigation, ramp ascent, and sexual behaviour, they underwent electrolytic lesion to the DMS. Five days later, the tests were repeated on 2 occasions and researchers compared performance latencies for each test. Average latency values for performance on the maze and balance tests were higher after the lesion. However, the average values for the ramp test and for sexual behaviour did not differ between groups. Electrolytic lesion of the DMS modifies the performance of locomotor activity (maze test and balance), but not of sexual behaviour. Copyright © 2015 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Acute effects of ethanol or d-amphetamine on the locomotor activity of larval zebrafish in a microtiter plate format.

    EPA Science Inventory

    As part of an effort to develop a rapid in vivo screen for EPA’s prioritization of toxic chemicals, we have begun to characterize the locomotor activity of zebrafish (Danio rerio) larvae. We are assessing the acute effects of prototypic drugs that are known to act on the central ...

  19. Dopaminergic modulation of locomotor network activity in the neonatal mouse spinal cord

    PubMed Central

    Sharples, Simon A.; Humphreys, Jennifer M.; Jensen, A. Marley; Dhoopar, Sunny; Delaloye, Nicole; Clemens, Stefan

    2015-01-01

    Dopamine is now well established as a modulator of locomotor rhythms in a variety of developing and adult vertebrates. However, in mice, while all five dopamine receptor subtypes are present in the spinal cord, it is unclear which receptor subtypes modulate the rhythm. Dopamine receptors can be grouped into two families—the D1/5 receptor group and the D2/3/4 group, which have excitatory and inhibitory effects, respectively. Our data suggest that dopamine exerts contrasting dose-dependent modulatory effects via the two receptor families. Our data show that administration of dopamine at concentrations >35 μM slowed and increased the regularity of a locomotor rhythm evoked by bath application of 5-hydroxytryptamine (5-HT) and N-methyl-d(l)-aspartic acid (NMA). This effect was independent of the baseline frequency of the rhythm that was manipulated by altering the NMA concentration. We next examined the contribution of the D1- and D2-like receptor families on the rhythm. Our data suggest that the D1-like receptor contributes to enhancement of the stability of the rhythm. Overall, the D2-like family had a pronounced slowing effect on the rhythm; however, quinpirole, the D2-like agonist, also enhanced rhythm stability. These data indicate a receptor-dependent delegation of the modulatory effects of dopamine on the spinal locomotor pattern generator. PMID:25652925

  20. Progesterone receptor antagonist CDB-4124 increases depression-like behavior in mice without affecting locomotor ability

    PubMed Central

    Beckley, Ethan H.; Scibelli, Angela C.; Finn, Deborah A.

    2010-01-01

    Progesterone withdrawal has been proposed as an underlying factor in premenstrual syndrome and postpartum depression. Progesterone withdrawal induces forced swim test (FST) immobility in mice, a depression-like behavior, but the contribution of specific receptors to this effect is unclear. The role of progesterone’s GABAA receptor-modulating metabolite allopregnanolone in depression- and anxiety-related behaviors has been extensively documented, but little attention has been paid to the role of progesterone receptors. We administered the classic progesterone receptor antagonist mifepristone (RU-38486) and the specific progesterone receptor antagonist CDB-4124 to mice that had been primed with progesterone for five days, and found that both compounds induced FST immobility reliably, robustly, and in a dose-dependent fashion. Although CDB-4124 increased FST immobility, it did not suppress initial activity in a locomotor test. These findings suggest that decreased progesterone receptor activity contributes to depression-like behavior in mice, consistent with the hypothesis that progesterone withdrawal may contribute to the symptoms of premenstrual syndrome or postpartum depression. PMID:21163582

  1. Progesterone receptor antagonist CDB-4124 increases depression-like behavior in mice without affecting locomotor ability.

    PubMed

    Beckley, Ethan H; Scibelli, Angela C; Finn, Deborah A

    2011-07-01

    Progesterone withdrawal has been proposed as an underlying factor in premenstrual syndrome and postpartum depression. Progesterone withdrawal induces forced swim test (FST) immobility in mice, a depression-like behavior, but the contribution of specific receptors to this effect is unclear. The role of progesterone's GABA(A) receptor-modulating metabolite allopregnanolone in depression- and anxiety-related behaviors has been extensively documented, but little attention has been paid to the role of progesterone receptors. We administered the classic progesterone receptor antagonist mifepristone (RU-38486) and the specific progesterone receptor antagonist CDB-4124 to mice that had been primed with progesterone for five days, and found that both compounds induced FST immobility reliably, robustly, and in a dose-dependent fashion. Although CDB-4124 increased FST immobility, it did not suppress initial activity in a locomotor test. These findings suggest that decreased progesterone receptor activity contributes to depression-like behavior in mice, consistent with the hypothesis that progesterone withdrawal may contribute to the symptoms of premenstrual syndrome or postpartum depression. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Parathyroid hormone-related protein (PTHrP) as a causative factor of cancer-associated wasting: possible involvement of PTHrP in the repression of locomotor activity in rats bearing human tumor xenografts.

    PubMed

    Onuma, Etsuro; Tsunenari, Toshiaki; Saito, Hidemi; Sato, Koh; Yamada-Okabe, Hisafumi; Ogata, Etsuro

    2005-09-01

    Nude rats bearing the LC-6-JCK human lung cancer xenograft displayed cancer-associated wasting syndrome in addition to humoral hypercalcemia of malignancy. In these rats, not only PTHrP but also several other human proinflammatory cytokines, such as IL-6, leukemia-inducing factor, IL-8, IL-5 and IL-11, were secreted to the bloodstream. Proinflammatory cytokines induce acute-phase reactions, as evidenced by a decrease of serum albumin and an increase in alpha1-acid glycoprotein. Tumor resection abolished the production of proinflammatory cytokines and improved acute-phase reactions, whereas anti-PTHrP antibody affected neither proinflammatory cytokine production nor acute-phase reactions. Nevertheless, tumor resection and administration of anti-PTHrP antibody similarly and markedly attenuated not only hypercalcemia but also loss of fat, muscle and body weight. Body weight gain by anti-PTHrP antibody was associated with increased food consumption; increased body weight from anti-PTHrP antibody was observed when animals were freely fed but not when they were given the same feeding as those that received only vehicle. Furthermore, nude rats bearing LC-6-JCK showed reduced locomotor activity, less eating and drinking and low blood phosphorus; and anti-PTHrP antibody restored them. Although alendronate, a bisphosphonate drug, decreased blood calcium, it affected neither locomotor activity nor serum phosphorus level. These results indicate that PTHrP represses physical activity and energy metabolism independently of hypercalcemia and proinflammatory cytokine actions and that deregulation of such physiologic activities and functions by PTHrP is at least in part involved in PTHrP-induced wasting syndrome.

  3. Effects of caffeine and L-phenylisopropyladenosine on locomotor activity of mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buckholtz, N.S.; Middaugh, L.D.

    1987-10-01

    C57BL/6J and DBA/2J mice were used to determine if possible differences in the behavioral response to caffeine might be related to differences in A1 adenosine receptors. Caffeine stimulated locomotor activity of both strains, but the dose-response relationship and time course of drug action differed according to strain. Although their response to caffeine differed, the strains did not differ in response to the A1 adenosine agonist L-phenylisopropyladenosine (PIA) nor in the binding of the A1 agonist (/sup 3/H)N6-cyclohexyladenosine (CHA) in various brain regions. Thus, the behavioral differences in response to caffeine could not be accounted for by differences in adenosine binding.more » Of alternative mechanisms, strain differences in A2 receptors appear to be the most promising.« less

  4. Circadian locomotor output cycles kaput affects the proliferation and migration of breast cancer cells by regulating the expression of E-cadherin via IQ motif containing GTPase activating protein 1.

    PubMed

    Li, Xiaoxue; Wang, Siyang; Yang, Shuhong; Ying, Junjie; Yu, Hang; Yang, Chunlei; Liu, Yanyou; Wang, Yuhui; Cheng, Shuting; Xiao, Jing; Guo, Huiling; Jiang, Zhou; Wang, Zhengrong

    2018-05-01

    The circadian rhythm regulates numerous physiological activities, including sleep and wakefulness, behavior, immunity and metabolism. Previous studies have demonstrated that circadian rhythm disorder is associated with the occurrence of tumors. Responsible for regulating a number of functions, the Circadian locomotor output cycles kaput ( Clock ) gene is one of the core regulatory genes of circadian rhythm. The Clock gene has also been implicated in the occurrence and development of tumors in previously studies. The present study evaluated the role of the Clock gene in the proliferation and migration of mouse breast cancer 4T1 cells, and investigated its possible regulatory pathways and mechanisms. It was reported that downregulation of Clock facilitated the proliferation and migration of breast cancer cells. Further investigation revealed the involvement of IQ motif containing GTPase activating protein 1 (IQGAP1) protein expression in the Clock regulatory pathway, further influencing the expression of E-cadherin, a known proprietor of tumor cell migration and invasion. To the best of our knowledge, the present study is the first to report that Clock , acting through the regulation of the scaffolding protein IQGAP1, regulates the downstream expression of E-cadherin, thereby affecting tumor cell structure and motility. These results confirmed the role of Clock in breast cancer tumor etiology and provide insight regarding the molecular avenues of its regulatory nature, which may translate beyond breast cancer into other known functions of the gene.

  5. Consequences of volcanic ash deposition on the locomotor performance of the Phymaturus spectabilis lizard from Patagonia, Argentina.

    PubMed

    Cabezas-Cartes, Facundo; Kubisch, Erika Leticia; Ibargüengoytía, Nora Ruth

    2014-03-01

    The locomotor performance of lizards depends on their morphological and physiological adaptations to the habitat. However, when the habitat changes dramatically, for example, by a volcanic eruption, the performance of lizards may be affected. We registered the vegetation cover, the surface covered by ash, the presence of crevices suitable for Phymaturus and the rocks slopes to analyze the effects of ash accumulation produced by the eruption of Puyehue-Cordon Caulle volcanic complex on microhabitat use and availability of the Phymaturus spectabilis lizard. In addition, we studied the effect of ashes and slope on the locomotor performance of P. spectabilis by registering the maximum speed in sprint runs and long runs under four different treatments (cork and on the level, ashes and on the level, cork and slope, and ashes and slope). P. spectabilis selected microhabitats unvegetated, with crevices and steep slopes. Regarding locomotor performance, the speed of lizards was negatively affected by the presence of ash only in sprint runs on the level and in long runs with slope. The slope had a negative impact on the speed in all the treatments. These results show that the presence of volcanic ashes in the substrate might have affected the locomotor performance of the lizards, especially in long runs, and hence, the interaction of individuals with the environment, that is, escaping from predators and social behavior. © 2013 Wiley Periodicals, Inc.

  6. Olfactory bulbectomy induces rapid and stable changes in basal and stress-induced locomotor activity, heart rate and body temperature responses in the home cage.

    PubMed

    Vinkers, C H; Breuer, M E; Westphal, K G C; Korte, S M; Oosting, R S; Olivier, B; Groenink, L

    2009-03-03

    Olfactory bulbectomy (OBX) in rats causes several behavioral and neurochemical changes. However, the extent and onset of physiological and behavioral changes induced after bulbectomy have been little examined. Male Sprague-Dawley rats received telemetric implants. Before and immediately after OBX surgery, basal and stress-induced heart rate, body temperature, and locomotor activity were measured in the home cage in sham (n=9) and OBX animals (n=11). Stress was induced using novel cage stress or witness stress. Bulbectomized animals differed physiologically and behaviorally from shams. Nocturnally, OBX animals were significantly more active compared with shams, had a higher core body temperature and displayed a decreased heart rate variability. During the light period, OBX animals had a significantly lower basal heart rate and a reduced heart rate variability. These effects became apparent 2-3 days after OBX surgery, and were stable over time. After witness stress, OBX animals showed smaller autonomic (body temperature and heart rate) responses compared with shams, but showed no difference in locomotor responses. In contrast, novel cage stress led to increased locomotor responses in OBX rats compared with sham rats, while no differences were found in autonomic responses. Removal of the olfactory bulbs results in rapid, stable and persistent changes in basal locomotor activity, body temperature, heart rate and heart rate variability. Although the sleep-wake cycle of these parameters is not altered, increases in circadian amplitude are apparent within 3 days after surgery. This indicates that physiological changes in the OBX rat are the immediate result of olfactory bulb removal. Further, stress responsivity in OBX rats depends on stressor intensity. Bulbectomized rats display smaller temperature and heart rate responses to less intense witness stress compared with sham rats. Increased locomotor responses to more intense novel cage stress are present in the home cage

  7. A stochastic locomotor control model for the nurse shark, Ginglymostoma cirratum.

    PubMed

    Gerald, K B; Matis, J H; Kleerekoper, H

    1978-06-12

    The locomotor behavior of the nurse shark (Ginglymostoma cirratum) is characterized by 17 variables (frequency and ratios of left, right, and total turns; their radians; straight paths (steps); distance travelled; and velocity) Within each of these variables there is an internal time dependency the structure of which was elaborated together with an improved statistical model predicting their behavior within 90% confidence limits. The model allows for the sensitive detection of subtle locomotor response to sensory stimulation as values of variables may exceed the established confidence limits within minutes after onset of the stimulus. The locomotor activity is well described by an autoregression time series model and can be predicted by only seven variables. Six of these form two independently operating clusters. The first one consists of: the number of right turns, the distance travelled and the mean velocity; the second one of: the mean size of right turns, of left turns, and of all turns. The same clustering is obtained independently by a cluster analysis of cross-sections of the seven time series. It is apparent that, among a total of 17 locomotor variables, seven behave as individually independent agents, presumably controlled by seven separate and independent centers. The output of each center can only be predicted by its own behavior. In spite of the individual of the seven variables, their internal structure is similar in important aspects which may result from control by a common command center. The shark locomotor model differs in important aspects from the previously constructed for the goldfish. The interdependence of the locomotor variables in both species may be related to the control mechanisms postulated by von Holst for the coordination of rhythmic fin movements in fishes. A locomotor control model for the nurse shark is proposed.

  8. The anxiolitic effects of BTG1640 and BTG1675A on ultrasonic isolation calls and locomotor activity of rat pups.

    PubMed

    Niculescu, M; Cagiano, R; Caprio, M; Damian, S; Boia, E; Vermesan, D; Tattoli, M; Haragus, H

    2016-12-01

    The aim of the present study was to evaluate the anxiolytic properties of the new isoxazoline compounds BTG1640 and BTG1675A in comparison with diazepam. We evaluated the ultrasonic distress emission in both sexes of neonatal rat pups (which seems to be a sensitive indicator of the rat emotional reactivity and represents a valuable tool to screen compounds with expected anxiolytic properties) and the locomotor activity in 30-day old rat pups. We found a significant reduction in the number of emitted ultrasonic calls only after i.p. administration of diazepam 1 mg/kg, while no significant reduction have been detected after i.p. administration of BTG 1640 and BTG 1675A. Furthermore, we found a significant reduction of locomotor activity in the first 10' of the test, only in the group treated with diazepam 0.1 mg. The tests validating the supposed anxiolytic properties of the new isoxazoline compounds BTG1640 and BTG1675A, in comparison with diazepam, gave negative results.

  9. Locomotor activity in males of Aedes aegypti can shift in response to females' presence.

    PubMed

    Araripe, Luciana Ordunha; Bezerra, Jéssica Rodrigues Assunção; Rivas, Gustavo Bueno da Silva; Bruno, Rafaela Vieira

    2018-04-18

    The study of physiological and behavioral traits of mosquito vectors has been of growing relevance for the proposition of alternative methods for controlling vector-borne diseases. Despite this, most studies focus on the female's traits, including the behavior of host seeking, the physiology of disease transmission and the site-choice for oviposition. However, understanding the factors that lead to males' reproductive success is of utmost importance, since it can help building new strategies for constraining population growth. Male behavior towards mating varies widely among species and the communication between males and females is the first aspect securing a successful encounter. Here we used an automated monitoring system to study the profile of locomotor activity of Aedes aegypti males in response to female's presence in an adapted confinement tube. We propose a new method to quantify male response to the presence of females, which can be potentially tested as an indicator of the success of one male in recognizing a female for mating. Locomotor activity varies in daily cycles regulated by an endogenous clock and synchronized by external factors, such as light and temperature. Our results show the previously described startle response to light, which is displayed as a steep morning activity peak immediately when lights are on. Activity drops during the day and begins to rise again right before evening, happening about 1.5 h earlier in males than in females. Most interestingly, males' activity shows a double peak, and the second peak is very subtle when males are alone and relatively more pronounced when females are present in the confinement tubes. The switch in the peak of activity, measured by the herein suggested Peak Matching Index (PMI), was significantly different between males with and without females. The adapted monitoring system used here allowed us to quantify the response of individual males to nearby females in terms of the extent of the activity

  10. Opioid administration following spinal cord injury: Implications for pain and locomotor recovery

    PubMed Central

    Woller, Sarah A.; Hook, Michelle A.

    2013-01-01

    Approximately one-third of people with a spinal cord injury (SCI) will experience persistent neuropathic pain following injury. This pain negatively affects quality of life and is difficult to treat. Opioids are among the most effective drug treatments, and are commonly prescribed, but experimental evidence suggests that opioid treatment in the acute phase of injury can attenuate recovery of locomotor function. In fact, spinal cord injury and opioid administration share several common features (e.g. central sensitization, excitotoxicity, aberrant glial activation) that have been linked to impaired recovery of function, as well as the development of pain. Despite these effects, the interactions between opioid use and spinal cord injury have not been fully explored. A review of the literature, described here, suggests that caution is warranted when administering opioids after SCI. Opioid administration may synergistically contribute to the pathology of SCI to increase the development of pain, decrease locomotor recovery, and leave individuals at risk for infection. Considering these negative implications, it is important that guidelines are established for the use of opioids following spinal cord and other central nervous system injuries. PMID:23501709

  11. Flexibility in the patterning and control of axial locomotor networks in lamprey.

    PubMed

    Buchanan, James T

    2011-12-01

    In lower vertebrates, locomotor burst generators for axial muscles generally produce unitary bursts that alternate between the two sides of the body. In lamprey, a lower vertebrate, locomotor activity in the axial ventral roots of the isolated spinal cord can exhibit flexibility in the timings of bursts to dorsally-located myotomal muscle fibers versus ventrally-located myotomal muscle fibers. These episodes of decreased synchrony can occur spontaneously, especially in the rostral spinal cord where the propagating body waves of swimming originate. Application of serotonin, an endogenous spinal neurotransmitter known to presynaptically inhibit excitatory synapses in lamprey, can promote decreased synchrony of dorsal-ventral bursting. These observations suggest the possible existence of dorsal and ventral locomotor networks with modifiable coupling strength between them. Intracellular recordings of motoneurons during locomotor activity provide some support for this model. Pairs of motoneurons innervating myotomal muscle fibers of similar ipsilateral dorsoventral location tend to have higher correlations of fast synaptic activity during fictive locomotion than do pairs of motoneurons innervating myotomes of different ipsilateral dorsoventral locations, suggesting their control by different populations of premotor interneurons. Further, these different motoneuron pools receive different patterns of excitatory and inhibitory inputs from individual reticulospinal neurons, conveyed in part by different sets of premotor interneurons. Perhaps, then, the locomotor network of the lamprey is not simply a unitary burst generator on each side of the spinal cord that activates all ipsilateral body muscles simultaneously. Instead, the burst generator on each side may comprise at least two coupled burst generators, one controlling motoneurons innervating dorsal body muscles and one controlling motoneurons innervating ventral body muscles. The coupling strength between these two

  12. Trace Amine-Associated Receptor 1 Modulates the Locomotor and Sensitization Effects of Nicotine

    PubMed Central

    Sukhanov, Ilya; Dorofeikova, Mariia; Dolgorukova, Antonina; Dorotenko, Artem; Gainetdinov, Raul R.

    2018-01-01

    Trace amine-associated receptor 1 (TAAR1) has emerged as a promising target for addiction treatments because it affects dopamine transmission in the mesolimbic pathway. TAAR1 is involved in the effects of addictive drugs, such as amphetamines, cocaine and ethanol, but the impact of TAAR1 on the effects of nicotine, the psychoactive drug responsible for the development and maintenance of tobacco smoking, has not yet been studied. This study was performed to investigate the possible modulatory action of TAAR1 on the effects of nicotine on locomotor behaviors in rats and mice. Pretreatment with the TAAR1 agonist RO5263397 dose-dependently decreased nicotine-induced hyperlocomotion in rats habituated to locomotor boxes, prevented the development of nicotine sensitization and blocked hypermotility in nicotine-sensitized rats at the highest tested dose (10 mg/kg). The lack of TAAR1 failed to affect the effects of nicotine on the locomotion of mutant mice. Based on the results of the present study, TAAR1 activation attenuates the locomotion-stimulating effects of nicotine on rats. These results further support the previously proposed hypothesis that TAAR1 is a promising target for the prevention and treatment of drug addiction. Further studies aimed at analyzing the effects of TAAR1 agonists on animal models of nicotine addiction are warranted. PMID:29681856

  13. Treatment with pentylenetetrazole (PTZ) and 4-aminopyridine (4-AP) differently affects survival, locomotor activity, and biochemical markers in Drosophila melanogaster.

    PubMed

    Soares, Deividi C S; Portela, José L R; Roos, Daniel H; Rodrigues, Nathane R; Gomes, Karen K; Macedo, Giulianna E; Posser, Thais; Franco, Jeferson L; Hassan, Waseem; Puntel, Robson L

    2018-05-01

    PTZ is a convulsive agent that acts via selective blockage of GABA A receptor channels, whereas 4-AP leads to a convulsive episode via blockage of K + channels. However, the mechanism(s) by which pentylenetetrazole (PTZ) and 4-aminopyridine (4-AP) cause toxicity to Drosophila melanogaster needs to be properly explored, once it will help in establishing an alternative model for development of proper therapeutic strategies and also to counteract the changes associated with exposure to both epileptic drugs. For the purpose, we investigated the effects of exposure (48 h) to PTZ (60 mM) and/or 4-AP (20 mM) on survival, locomotor performance, and biochemical markers in the body and/or head of flies. 4-AP-fed flies presented a higher incidence of mortality and a worse performance in the open field test as compared to non-treated flies. 4-AP also caused a significant increase in the reactive species (RS) and protein carbonyl (PC) content in the body and head. Also a significant increase in catalase and acetylcholinesterase (AChE) activities was observed in the body. In the same vein, PTZ exposure resulted in a significant increase in RS, thiobarbituric acid reactive substances (TBARS), PC content, and catalase activity in the body. PTZ exposure also caused a significant increase in AChE activity both in body and head. It is important to note that PTZ-treated flies also down-regulated the NRF 2 expression. Moreover, both 4AP- and PTZ-fed flies presented a significant decrease in MTT reduction, down-regulation, and inhibition of SOD in body. However, SOD was significantly more active in the head of both 4-AP and PTZ-treated flies. Our findings provide evidence regarding the toxicological potential of both PTZ and/or 4-AP to flies. This model will help in decoding the underlying toxicological mechanisms of the stated drugs. It will also help to properly investigate the therapeutic strategies and to counteract the drastic changes associated with both epileptogenic drugs.

  14. The development and expression of locomotor sensitization to nicotine in the presence of ibogaine.

    PubMed

    Zubaran, C; Shoaib, M; Stolerman, I P

    2000-08-01

    Ibogaine is a naturally occurring psychoactive alkaloid with claimed efficacy in the treatment of certain drug addictions, including nicotine. It has been reported to be a non-competitive blocker of nicotinic receptors, with a potent inhibitory action on nicotinic acetylcholine receptor-mediated catecholamine release. We have investigated the effect of different doses of ibogaine on the development and expression of sensitization to the locomotor stimulant effect of nicotine in rats, a facilitatory process in which a history of exposure to nicotine results in enhanced locomotor activity when the same dose of nicotine is administered repeatedly. The effects were determined of co-administering ibogaine (0.0, 5.0 or 10 mg/kg i.p.) with nicotine (0.0 or 0.4 mg/kg s.c.) daily for 21 days. Dose-response curves for nicotine (0.04-0.8 mg/kg s.c.) were then determined in groups of 10 rats. There was clear sensitization of the locomotor activity produced by nicotine in photocell activity cages but co-administration of ibogaine with nicotine had no effect on the degree of sensitization. Ibogaine (5-20 mg/kg) itself did not influence locomotor activity and was also without effect on the expression of the sensitized response to 0.4 mg/kg of nicotine (n = 10). Thus, there was no evidence that ibogaine may retard or suppress sensitization to nicotine.

  15. Repeated MDMA administration increases MDMA-produced locomotor activity and facilitates the acquisition of MDMA self-administration: role of dopamine D2 receptor mechanisms.

    PubMed

    van de Wetering, Ross; Schenk, Susan

    2017-04-01

    Repeated exposure to ±3, 4-methylenedioxymethamphetamine (MDMA) produces sensitization to MDMA-produced hyperactivity, but the mechanisms underlying the development of this sensitized response or the relationship to the reinforcing effects of MDMA is unknown. This study determined the effect of a sensitizing regimen of MDMA exposure on the acquisition of MDMA self-administration and investigated the role of dopamine D 2 receptor mechanisms. Rats received the selective D 2 antagonist, eticlopride (0.0 or 0.3 mg/kg, i.p.) and MDMA (0.0 or 10.0 mg/kg, i.p.) during a five-day pretreatment regimen. Two days following the final session, the locomotor activating effects of MDMA (5 mg/kg, i.p.) and the latency to acquisition of MDMA self-administration were determined. Pretreatment with MDMA enhanced the locomotor activating effects of MDMA and facilitated the acquisition of MDMA self-administration. Administration of eticlopride during MDMA pretreatment completely blocked the development of sensitization to MDMA-produced hyperactivity but failed to significantly alter the facilitated acquisition of MDMA self-administration. Pretreatment with eticlopride alone facilitated the acquisition of self-administration. These data suggest that repeated MDMA exposure sensitized both the locomotor activating and reinforcing effects of MDMA. Activation of D 2 receptors during MDMA pretreatment appears critical for the development of sensitization to MDMA-produced hyperactivity. The role of D 2 receptor mechanisms in the development of sensitization to the reinforcing effects of MDMA is equivocal.

  16. Altered locomotor and stereotyped responses to acute methamphetamine in adolescent, maternally separated rats

    PubMed Central

    Pritchard, Laurel M.; Hensleigh, Emily; Lynch, Sarah

    2012-01-01

    Rationale Neonatal maternal separation (MS) has been used to model the effects of early life stress in rodents. MS alters behavioral responses to a variety of abused drugs, but few studies have examined its effects on methamphetamine sensitivity. Objectives We sought to determine the effects of MS on locomotor and stereotyped responses to low-to-moderate doses of methamphetamine in male and female adolescent rats. Methods Male and female rat pups were subjected to three hours per day of MS on postnatal days (PN) 2–14, or a brief handling control procedure during the same period. During adolescence (approximately PN 40), all rats were tested for locomotor activity and stereotyped behavior in response to acute methamphetamine administration (0, 1.0 or 3.0 mg/kg, s.c.). Results MS rats of both sexes exhibited increased locomotor activity in a novel environment, relative to handled controls. MS increased the locomotor response to METH, and this effect occurred at different doses for male (3.0 mg/kg) and female (1.0 mg/kg) rats. MS also increased stereotyped behavior in response to METH (1.0 mg/kg) in both sexes. Conclusions MS enhances the locomotor response to METH in a dose- and sex-dependent manner. These results suggest that individuals with a history of early life stress may be particularly vulnerable to the psychostimulant effects of METH, even at relatively low doses. PMID:22414962

  17. Distributed plasticity of locomotor pattern generators in spinal cord injured patients.

    PubMed

    Grasso, Renato; Ivanenko, Yuri P; Zago, Myrka; Molinari, Marco; Scivoletto, Giorgio; Castellano, Vincenzo; Macellari, Velio; Lacquaniti, Francesco

    2004-05-01

    Recent progress with spinal cord injured (SCI) patients indicates that with training they can recover some locomotor ability. Here we addressed the question of whether locomotor responses developed with training depend on re-activation of the normal motor patterns or whether they depend on learning new motor patterns. To this end we recorded detailed kinematic and EMG data in SCI patients trained to step on a treadmill with body-weight support (BWST), and in healthy subjects. We found that all patients could be trained to step with BWST in the laboratory conditions, but they used new coordinative strategies. Patients with more severe lesions used their arms and body to assist the leg movements via the biomechanical coupling of limb and body segments. In all patients, the phase-relationship of the angular motion of the different lower limb segments was very different from the control, as was the pattern of activity of most recorded muscles. Surprisingly, however, the new motor strategies were quite effective in generating foot motion that closely matched the normal in the laboratory conditions. With training, foot motion recovered the shape, the step-by-step reproducibility, and the two-thirds power relationship between curvature and velocity that characterize normal gait. We mapped the recorded patterns of muscle activity onto the approximate rostrocaudal location of motor neuron pools in the human spinal cord. The reconstructed spatiotemporal maps of motor neuron activity in SCI patients were quite different from those of healthy subjects. At the end of training, the locomotor network reorganized at both supralesional and sublesional levels, from the cervical to the sacral cord segments. We conclude that locomotor responses in SCI patients may not be subserved by changes localized to limited regions of the spinal cord, but may depend on a plastic redistribution of activity across most of the rostrocaudal extent of the spinal cord. Distributed plasticity underlies

  18. Synchronization to light and mealtime of daily rhythms of locomotor activity, plasma glucose and digestive enzymes in the Nile tilapia (Oreochromis niloticus).

    PubMed

    Guerra-Santos, Bartira; López-Olmeda, José Fernando; de Mattos, Bruno Olivetti; Baião, Alice Borba; Pereira, Denise Soledade Peixoto; Sánchez-Vázquez, Francisco Javier; Cerqueira, Robson Bahia; Albinati, Ricardo Castelo Branco; Fortes-Silva, Rodrigo

    2017-02-01

    The light-dark cycle and feeding can be the most important factors acting as synchronizers of biological rhythms. In this research we aimed to evaluate synchronization to feeding schedule of daily rhythms of locomotor activity and digestive enzymes of tilapia. For that purpose, 120 tilapias (65.0±0.6g) were distributed in 12 tanks (10 fish per tank) and divided into two groups. One group was fed once a day at 11:00h (zeitgeber time, ZT6) (ML group) and the other group was fed at 23:00h (ZT18) (MD group). The fish were anesthetized to collect samples of blood, stomach and midgut at 4-hour intervals over a period of 24h. Fish fed at ML showed a diurnal locomotor activity (74% of the total daily activity occurring during the light phase) and synchronization to the feeding schedule, as this group showed anticipation to the feeding time. Fish fed at MD showed a disruption in the pattern of locomotor activity and became less diurnal (59%). Alkaline protease activity in the midgut showed daily rhythm with the achrophase at the beginning of the dark phase in both ML and MD groups. Acid protease and amylase did not show significant daily rhythms. Plasma glucose showed a daily rhythm with the achrophase shifted by 12h in the ML and MD groups. These results revealed that the feeding time and light cycle synchronize differently the daily rhythms of behavior, digestive physiology and plasma metabolites in the Nile tilapia, which indicate the plasticity of the circadian system and its synchronizers. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Speed-Dependent Modulation of the Locomotor Behavior in Adult Mice Reveals Attractor and Transitional Gaits.

    PubMed

    Lemieux, Maxime; Josset, Nicolas; Roussel, Marie; Couraud, Sébastien; Bretzner, Frédéric

    2016-01-01

    Locomotion results from an interplay between biomechanical constraints of the muscles attached to the skeleton and the neuronal circuits controlling and coordinating muscle activities. Quadrupeds exhibit a wide range of locomotor gaits. Given our advances in the genetic identification of spinal and supraspinal circuits important to locomotion in the mouse, it is now important to get a better understanding of the full repertoire of gaits in the freely walking mouse. To assess this range, young adult C57BL/6J mice were trained to walk and run on a treadmill at different locomotor speeds. Instead of using the classical paradigm defining gaits according to their footfall pattern, we combined the inter-limb coupling and the duty cycle of the stance phase, thus identifying several types of gaits: lateral walk, trot, out-of-phase walk, rotary gallop, transverse gallop, hop, half-bound, and full-bound. Out-of-phase walk, trot, and full-bound were robust and appeared to function as attractor gaits (i.e., a state to which the network flows and stabilizes) at low, intermediate, and high speeds respectively. In contrast, lateral walk, hop, transverse gallop, rotary gallop, and half-bound were more transient and therefore considered transitional gaits (i.e., a labile state of the network from which it flows to the attractor state). Surprisingly, lateral walk was less frequently observed. Using graph analysis, we demonstrated that transitions between gaits were predictable, not random. In summary, the wild-type mouse exhibits a wider repertoire of locomotor gaits than expected. Future locomotor studies should benefit from this paradigm in assessing transgenic mice or wild-type mice with neurotraumatic injury or neurodegenerative disease affecting gait.

  20. Serotonergic activation of locomotor behavior and posture in one-day old rats.

    PubMed

    Swann, Hillary E; Kempe, R Blaine; Van Orden, Ashley M; Brumley, Michele R

    2016-04-01

    The purpose of this study was to determine what dose of quipazine, a serotonergic agonist, facilitates air-stepping and induces postural control and patterns of locomotion in newborn rats. Subjects in both experiments were 1-day-old rat pups. In Experiment 1, pups were restrained and tested for air-stepping in a 35-min test session. Immediately following a 5-min baseline, pups were treated with quipazine (1.0, 3.0, or 10.0 mg/kg) or saline (vehicle control), administered intraperitoneally in a 50 μL injection. Bilateral alternating stepping occurred most frequently following treatment with 10.0 mg/kg quipazine, however the percentage of alternating steps, interlimb phase, and step period were very similar between the 3.0 and 10.0 mg/kg doses. For interlimb phase, the forelimbs and hindlimbs maintained a near perfect anti-phase pattern of coordination, with step period averaging about 1s. In Experiment 2, pups were treated with 3.0 or 10.0 mg/kg quipazine or saline, and then were placed on a surface (open field, unrestrained). Both doses of quipazine resulted in developmentally advanced postural control and locomotor patterns, including head elevation, postural stances, pivoting, crawling, and a few instances of quadrupedal walking. The 3.0 mg/kg dose of quipazine was the most effective at evoking sustained locomotion. Between the 2 experiments, behavior exhibited by the rat pup varied based on testing environment, emphasizing the role that environment and sensory cues exert over motor behavior. Overall, quipazine administered at a dose of 3.0 mg/kg was highly effective at promoting alternating limb coordination and inducing locomotor activity in both testing environments. Published by Elsevier B.V.

  1. Swing Boat: Inducing and Recording Locomotor Activity in a Drosophila melanogaster Model of Alzheimer’s Disease

    PubMed Central

    Berlandi, Johannes; Lin, Fang-Ju; Ambrée, Oliver; Rieger, Dirk; Paulus, Werner; Jeibmann, Astrid

    2017-01-01

    Recent studies indicate that physical activity can slow down progression of neurodegeneration in humans. To date, automated ways to induce activity have been predominantly described in rodent models. To study the impact of activity on behavior and survival in adult Drosophila melanogaster, we aimed to develop a rotating tube device “swing boat” which is capable of monitoring activity and sleep patterns as well as survival rates of flies. For the purpose of a first application, we tested our device on a transgenic fly model of Alzheimer’s disease (AD). Activity of flies was recorded in a climate chamber using the Drosophila Activity Monitoring (DAM) System connected to data acquisition software. Locomotor activity was induced by a rotating tube device “swing boat” by repetitively tilting the tubes for 30 min per day. A non-exercising group of flies was used as control and activity and sleep patterns were obtained. The GAL4-/UAS system was used to drive pan-neuronal expression of human Aβ42 in flies. Immunohistochemical stainings for Aβ42 were performed on paraffin sections of adult fly brains. Daily rotation of the fly tubes evoked a pronounced peak of activity during the 30 min exercise period. Pan-neuronal expression of human Aβ42 in flies caused abnormalities in locomotor activity, reduction of life span and elevated sleep fragmentation in comparison to wild type flies. Furthermore, the formation of amyloid accumulations was observed in the adult fly brain. Gently induced activity over 12 days did not evoke prominent effects in wild type flies but resulted in prolongation of median survival time by 7 days (32.6%) in Aβ42-expressing flies. Additionally, restoration of abnormally decreased night time sleep (10%) and reduced sleep fragmentation (28%) were observed compared to non-exercising Aβ42-expressing flies. On a structural level no prominent effects regarding prevalence of amyloid aggregations and Aβ42 RNA expression were detected following

  2. Attenuation of nicotine's discriminative stimulus effects in rats and its locomotor activity effects in mice by serotonergic 5-HT2A/2C receptor agonists.

    PubMed

    Batman, Angela M; Munzar, Patrik; Beardsley, Patrick M

    2005-05-01

    Reports have indicated that administration of nicotine inhibits, while withdrawal of chronically administered nicotine augments effects of serotonergic 5HT2A/2C agonists. It was our objective to determine whether 5HT2A/2C agonists can modulate the discriminative stimulus effects of nicotine in rats or its locomotor activity effects in mice. Adult male Sprague-Dawley rats were trained to discriminate 0.3 mg/kg nicotine base from saline in a two-lever, fixed-ratio (FR10), food-reinforced, operant-conditioning task during daily (Monday-Friday) 15-min experimental sessions. After characterizing a dose-response curve for nicotine, we tested the ability of the 5HT(2A/2C) agonists (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCL (DOI; 0.18-1.0 mg/kg) and 1-(4-bromo-2, 5-dimethoxyphenyl)-2-aminopropane (DOB; 0.1-1.0 mg/kg), the 5HT2C agonist 6-chloro-2-(1-piperazinyl)pyrazine hydrochloride (MK 212; 0.1 mg/kg-1.0 mg/kg), and the 5HT1A agonist (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT; 0.01 mg/kg-1.0 mg/kg) to modulate nicotine's discriminative stimulus effects. After finding that DOI was able to attenuate the percentage nicotine lever responding (%NLR), we tested for it to also reverse nicotine's effects on locomotor activity in mice. The 5HT2A/2C agonists-in particular DOI-dose dependently attenuated %NLR. The effects of DOI were reversed by the 5HT2A/2C antagonist ketanserin. MK 212 and 8-OH-DPAT had irregular effects among rats and only reduced %NLR to below 50% levels at doses markedly suppressing responding. DOI also dose dependently blocked nicotine's acute rate-lowering locomotor activity effects. These results indicate that activation of serotonin 5HT2A/2C receptors can blunt the discriminative stimulus and locomotor activity effects of nicotine and presents the possibility that activation of these receptors might also be able to attenuate other effects of nicotine.

  3. Suppression of Locomotor Activity in Female C57Bl/6J Mice Treated with Interleukin-1β: Investigating a Method for the Study of Fatigue in Laboratory Animals.

    PubMed

    Bonsall, David R; Kim, Hyunji; Tocci, Catherine; Ndiaye, Awa; Petronzio, Abbey; McKay-Corkum, Grace; Molyneux, Penny C; Scammell, Thomas E; Harrington, Mary E

    2015-01-01

    Fatigue is a disabling symptom in patients with multiple sclerosis and Parkinson's Disease, and is also common in patients with traumatic brain injury, cancer, and inflammatory disorders. Little is known about the neurobiology of fatigue, in part due to the lack of an approach to induce fatigue in laboratory animals. Fatigue is a common response to systemic challenge by pathogens, a response in part mediated through action of the pro-inflammatory cytokine interleukin-1 beta (IL-1β). We investigated the behavioral responses of mice to IL-1β. Female C57Bl/6J mice of 3 ages were administered IL-1β at various doses i.p. Interleukin-1β reduced locomotor activity, and sensitivity increased with age. Further experiments were conducted with middle-aged females. Centrally administered IL-1β dose-dependently reduced locomotor activity. Using doses of IL-1β that caused suppression of locomotor activity, we measured minimal signs of sickness, such as hyperthermia, pain or anhedonia (as measured with abdominal temperature probes, pre-treatment with the analgesic buprenorphine and through sucrose preference, respectively), all of which are responses commonly reported with higher doses. We found that middle-aged orexin-/- mice showed equivalent effects of IL-1β on locomotor activity as seen in wild-type controls, suggesting that orexins are not necessary for IL-1β -induced reductions in wheel-running. Given that the availability and success of therapeutic treatments for fatigue is currently limited, we examined the effectiveness of two potential clinical treatments, modafinil and methylphenidate. We found that these treatments were variably successful in restoring locomotor activity after IL-1β administration. This provides one step toward development of a satisfactory animal model of the multidimensional experience of fatigue, a model that could allow us to determine possible pathways through which inflammation induces fatigue, and could lead to novel treatments for

  4. Locomotor Expertise Predicts Infants' Perseverative Errors

    ERIC Educational Resources Information Center

    Berger, Sarah E.

    2010-01-01

    This research examined the development of inhibition in a locomotor context. In a within-subjects design, infants received high- and low-demand locomotor A-not-B tasks. In Experiment 1, walking 13-month-old infants followed an indirect path to a goal. In a control condition, infants took a direct route. In Experiment 2, crawling and walking…

  5. Dissociation of corticotropin-releasing factor receptor subtype involvement in sensitivity to locomotor effects of methamphetamine and cocaine.

    PubMed

    Giardino, William J; Mark, Gregory P; Stenzel-Poore, Mary P; Ryabinin, Andrey E

    2012-02-01

    Enhanced sensitivity to the euphoric and locomotor-activating effects of psychostimulants may influence an individual's predisposition to drug abuse and addiction. While drug-induced behaviors are mediated by the actions of several neurotransmitter systems, past research revealed that the corticotropin-releasing factor (CRF) system is important in driving the acute locomotor response to psychostimulants. We previously reported that genetic deletion of the CRF type-2 receptor (CRF-R2), but not the CRF type-1 receptor (CRF-R1) dampened the acute locomotor stimulant response to methamphetamine (1 mg/kg). These results contrasted with previous studies implicating CRF-R1 in the locomotor effects of psychostimulants. Since the majority of previous studies focused on cocaine, rather than methamphetamine, we set out to test the hypothesis that these drugs differentially engage CRF-R1 and CRF-R2. We expanded our earlier findings by first replicating our previous experiments at a higher dose of methamphetamine (2 mg/kg), and by assessing the effects of the CRF-R1-selective antagonist CP-376,395 (10 mg/kg) on methamphetamine-induced locomotor activity. Next, we used both genetic and pharmacological tools to examine the specific components of the CRF system underlying the acute locomotor response to cocaine (5-10 mg/kg). While genetic deletion of CRF-R2 dampened the locomotor response to methamphetamine (but not cocaine), genetic deletion and pharmacological blockade of CRF-R1 dampened the locomotor response to cocaine (but not methamphetamine). These findings highlight the differential involvement of CRF receptors in acute sensitivity to two different stimulant drugs of abuse, providing an intriguing basis for the development of more targeted therapeutics for psychostimulant addiction.

  6. Locomotor skills and balance strategies in adolescents idiopathic scoliosis.

    PubMed

    Mallau, Sophie; Bollini, Gérard; Jouve, Jean-Luc; Assaiante, Christine

    2007-01-01

    Locomotor balance control assessment was performed to study the effect of idiopathic scoliosis on head-trunk coordination in 17 patients with adolescent idiopathic scoliosis (AIS) and 16 control subjects. The aim of this study was to explore the functional effects of structural spinal deformations like idiopathic scoliosis on the balance strategies used during locomotion. Up to now, the repercussion of the idiopathic scoliosis on head-trunk coordination and balance strategies during locomotion is relatively unknown. Seventeen patients with AIS (mean age 14 years 3 months, 10 degrees < Cobb angle > 30 degrees) and 16 control subjects (mean age 14 years 1 month) were tested during various locomotor tasks: walking on the ground, walking on a line, and walking on a beam. Balance control was examined in terms of rotation about the vertical axis (yaw) and on a frontal plane (roll). Kinematics of foot, pelvis, trunk, shoulder, and head rotations were measured with an automatic optical TV image processor in order to calculate angular dispersions and segmental stabilizations. Decreasing the walking speed is the main adaptive strategy used in response to balance problems in control subjects as well as patients with AIS. However, patients with AIS performed walking tasks more slowly than normal subjects (around 15%). Moreover, the pelvic stabilization is preserved, despite the structural changes affecting the spine. Lastly, the biomechanical defect resulting from idiopathic scoliosis mainly affects the yaw head stabilization during locomotion. Patients with AIS show substantial similarities with control subjects in adaptive strategies relative to locomotor velocity as well as balance control based on segmental stabilization. In contrast, the loss of the yaw head stabilization strategies, mainly based on the use of vestibular information, probably reflects the presence of vestibular deficits in the patients with AIS.

  7. Motor unit recruitment patterns 1: responses to changes in locomotor velocity and incline.

    PubMed

    Hodson-Tole, Emma F; Wakeling, James M

    2008-06-01

    Mammalian skeletal muscles are composed of a mixture of motor unit types, which contribute a range of mechanical and physiological properties to the muscle. For a muscle to effectively contribute to smooth, co-ordinated movement it must activate an appropriate number and combination of motor units to generate the required force over a suitable time period. Much evidence exists indicating that motor units are activated in an orderly fashion, from the slowest through to the fastest. A growing body of evidence, however, indicates that such a recruitment strategy does not always hold true. Here we investigate how motor unit recruitment patterns were influenced by changes in locomotor velocity and incline. Kinematics data and myoelectric signals were collected from three rat ankle extensor muscles during running on a treadmill at nine velocity and incline combinations. Wavelet and principal component analysis were used to simultaneously decompose the signals into time and frequency space. The relative frequency components of the signals were quantified during 20 time windows of a stride from each locomotor condition. Differences in signal frequency components existed between muscles and locomotor conditions. Faster locomotor velocities led to a relative increase in high frequency components, whereas greater inclines led to a relative increase in the low frequency components. These data were interpreted as representing changes in motor unit recruitment patterns in response to changes in the locomotor demand. Motor units were not always recruited in an orderly manner, indicating that recruitment is a multi-factorial phenomenon that is not yet fully understood.

  8. Human spinal locomotor control is based on flexibly organized burst generators

    PubMed Central

    Danner, Simon M.; Hofstoetter, Ursula S.; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank

    2015-01-01

    Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the

  9. Voluntary and reactive recruitment of locomotor muscle synergies during perturbed walking

    PubMed Central

    Chvatal, Stacie A.; Ting, Lena H.

    2012-01-01

    The modular control of muscles in groups, often referred to as muscle synergies, has been proposed to provide a motor repertoire of actions for the robust control of movement. However it is not clear whether muscle synergies identified in one task are also recruited by different neural pathways subserving other motor behaviors. We tested the hypothesis that voluntary and reactive modifications to walking in humans result from the recruitment of locomotor muscle synergies. We recorded the activity of 16 muscles in the right leg as subjects walked a 7.5 m path at two different speeds. To elicit a second motor behavior, midway through the path we imposed ramp and hold translation perturbations of the support surface in each of four cardinal directions. Variations in the temporal recruitment of locomotor muscle synergies could account for cycle-by-cycle variations in muscle activity across strides. Locomotor muscle synergies were also recruited in atypical phases of gait, accounting for both anticipatory gait modifications prior to perturbations and reactive feedback responses to perturbations. Our findings are consistent with the idea that a common pool of spatially-fixed locomotor muscle synergies can be recruited by different neural pathways, including the central pattern generator for walking, brainstem pathways for balance control, and cortical pathways mediating voluntary gait modifications. Together with electrophysiological studies, our work suggests that muscle synergies may provide a library of motor subtasks that can be flexibly recruited by parallel descending pathways to generate a variety of complex natural movements in the upper and lower limbs. PMID:22933805

  10. Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid

    PubMed Central

    Liu, Xudong; Zhang, Yuchao; Li, Jinquan; Wang, Dong; Wu, Yang; Li, Yan; Lu, Zhisong; Yu, Samuel CT; Li, Rui; Yang, Xu

    2014-01-01

    Single-walled carbon nanotubes (SWCNTs) have shown increasing promise in the field of biomedicine, especially in applications related to the nervous system. However, there are limited studies available on the neurotoxicity of SWCNTs used in vivo. In this study, neurobehavioral changes caused by SWCNTs in mice and oxidative stress were investigated. The results of ethological analysis (Morris water maze and open-field test), brain histopathological examination, and assessments of oxidative stress (reactive oxygen species [ROS], malondialdehyde [MDA], and glutathione [GSH]), inflammation (nuclear factor κB, tumor necrosis factor α, interleukin-1β), and apoptosis (cysteine-aspartic acid protease 3) in brains showed that 6.25 and 12.50 mg/kg/day SWCNTs in mice could induce cognitive deficits and decreased locomotor activity, brain histopathological alterations, and increased levels of oxidative stress, inflammation, and apoptosis in mouse brains; however, 3.125 mg/kg/day SWCNTs had zero or minor adverse effects in mice, and these effects were blocked by concurrent administration of ascorbic acid. Down-regulation of oxidative stress, inflammation, and apoptosis were proposed to explain the neuroprotective effects of ascorbic acid. This work suggests SWCNTs could induce cognitive deficits and decreased locomotor activity, and provides a strategy to avoid the adverse effects. PMID:24596461

  11. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    PubMed

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations.

  12. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton

    PubMed Central

    Kinnaird, Catherine R.; Ferris, Daniel P.

    2013-01-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to “fight” the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations. PMID:23307949

  13. Locomotor-Like Leg Movements Evoked by Rhythmic Arm Movements in Humans

    PubMed Central

    Sylos-Labini, Francesca; Ivanenko, Yuri P.; MacLellan, Michael J.; Cappellini, Germana; Poppele, Richard E.; Lacquaniti, Francesco

    2014-01-01

    Motion of the upper limbs is often coupled to that of the lower limbs in human bipedal locomotion. It is unclear, however, whether the functional coupling between upper and lower limbs is bi-directional, i.e. whether arm movements can affect the lumbosacral locomotor circuitry. Here we tested the effects of voluntary rhythmic arm movements on the lower limbs. Participants lay horizontally on their side with each leg suspended in an unloading exoskeleton. They moved their arms on an overhead treadmill as if they walked on their hands. Hand-walking in the antero-posterior direction resulted in significant locomotor-like movements of the legs in 58% of the participants. We further investigated quantitatively the responses in a subset of the responsive subjects. We found that the electromyographic (EMG) activity of proximal leg muscles was modulated over each cycle with a timing similar to that of normal locomotion. The frequency of kinematic and EMG oscillations in the legs typically differed from that of arm oscillations. The effect of hand-walking was direction specific since medio-lateral arm movements did not evoke appreciably leg air-stepping. Using externally imposed trunk movements and biomechanical modelling, we ruled out that the leg movements associated with hand-walking were mainly due to the mechanical transmission of trunk oscillations. EMG activity in hamstring muscles associated with hand-walking often continued when the leg movements were transiently blocked by the experimenter or following the termination of arm movements. The present results reinforce the idea that there exists a functional neural coupling between arm and legs. PMID:24608249

  14. Modular control of varied locomotor tasks in children with incomplete spinal cord injuries

    PubMed Central

    Tester, Nicole J.; Kautz, Steven A.; Howland, Dena R.; Clark, David J.; Garvan, Cyndi; Behrman, Andrea L.

    2013-01-01

    A module is a functional unit of the nervous system that specifies functionally relevant patterns of muscle activation. In adults, four to five modules account for muscle activation during walking. Neurological injury alters modular control and is associated with walking impairments. The effect of neurological injury on modular control in children is unknown and may differ from adults due to their immature and developing nervous systems. We examined modular control of locomotor tasks in children with incomplete spinal cord injuries (ISCIs) and control children. Five controls (8.6 ± 2.7 yr of age) and five children with ISCIs (8.6 ± 3.7 yr of age performed treadmill walking, overground walking, pedaling, supine lower extremity flexion/extension, stair climbing, and crawling. Electromyograms (EMGs) were recorded in bilateral leg muscles. Nonnegative matrix factorization was applied, and the minimum number of modules required to achieve 90% of the “variance accounted for” (VAF) was calculated. On average, 3.5 modules explained muscle activation in the controls, whereas 2.4 modules were required in the children with ISCIs. To determine if control is similar across tasks, the module weightings identified from treadmill walking were used to reconstruct the EMGs from each of the other tasks. This resulted in VAF values exceeding 86% for each child and each locomotor task. Our results suggest that 1) modularity is constrained in children with ISCIs and 2) for each child, similar neural control mechanisms are used across locomotor tasks. These findings suggest that interventions that activate the neuromuscular system to enhance walking also may influence the control of other locomotor tasks. PMID:23761702

  15. Differential changes in the spinal segmental locomotor output in Hereditary Spastic Paraplegia.

    PubMed

    Martino, G; Ivanenko, Y; Serrao, M; Ranavolo, A; Draicchio, F; Rinaldi, M; Casali, C; Lacquaniti, F

    2018-03-01

    A comprehensive treatment of Hereditary Spastic Paraplegia (HSP) should consider the specific pathophysiological changes in the spinal cord. Here we reported a detailed characterization of the spinal motoneuronal output in HSP during locomotion. We recorded kinematics and electromyographic (EMG) activity of 12 leg muscles in 29 patients with pure forms of HSP and compared them with 30 controls while walking at matched speeds. We assessed the spinal locomotor output by evaluating EMG patterns and by mapping them onto the rostrocaudal location of the spinal motoneuron pools. The activity profiles of muscles innervated from the sacral segments were significantly wider in patients. Similarly, spinal maps revealed a tendency for spreading the main loci of activation, involving initially the sacral segments and, at more severe stages, the lumbar segments. The degeneration of the corticospinal tract in HSP is associated with a widening of spinal locomotor output spreading from caudal to rostral segments. The findings highlight pathophysiologically relevant differential changes in the spinal locomotor output in HSP related to the specific innervation of muscles in the spinal cord, and might be helpful for developing future therapeutic strategies and identifying physiological markers of the disease. Copyright © 2018 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  16. Cerebellar contribution to locomotor behavior: A neurodevelopmental perspective.

    PubMed

    Sathyanesan, Aaron; Gallo, Vittorio

    2018-04-30

    The developmental trajectory of the formation of cerebellar circuitry has significant implications for locomotor plasticity and adaptive learning at later stages. While there is a wealth of knowledge on the development of locomotor behavior in human infants, children, and adolescents, pre-clinical animal models have fallen behind on the study of the emergence of behavioral motifs in locomotor function across postnatal development. Since cerebellar development is protracted, it is subject to higher risk of genetic or environmental disruption, potentially leading to abnormal behavioral development. This highlights the need for more sophisticated and specific functional analyses of adaptive cerebellar behavior within the context of whole-body locomotion across the entire span of postnatal development. Here we review evidence on cerebellar contribution to adaptive locomotor behavior, highlighting methodologies employed to quantify and categorize behavior at different developmental stages, with the ultimate goal of following the course of early behavioral alterations in neurodevelopmental disorders. Since experimental paradigms used to study cerebellar behavior are lacking in both specificity and applicability to locomotor contexts, we highlight the use of the Erasmus Ladder - an advanced, computerized, fully automated system to quantify adaptive cerebellar learning in conjunction with locomotor function. Finally, we emphasize the need to develop objective, quantitative, behavioral tasks which can track changes in developmental trajectories rather than endpoint measurement at the adult stage of behavior. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Effects of Locomotor Exercise Intensity on Gait Performance in Individuals With Incomplete Spinal Cord Injury

    PubMed Central

    Leech, Kristan A.; Kinnaird, Catherine R.; Holleran, Carey L.; Kahn, Jennifer

    2016-01-01

    Background High-intensity stepping practice may be a critical component to improve gait following motor incomplete spinal cord injury (iSCI). However, such practice is discouraged by traditional theories of rehabilitation that suggest high-intensity locomotor exercise degrades gait performance. Accordingly, such training is thought to reinforce abnormal movement patterns, although evidence to support this notion is limited. Objective The purposes of this study were: (1) to evaluate the effects of short-term manipulations in locomotor intensity on gait performance in people with iSCI and (2) to evaluate potential detrimental effects of high-intensity locomotor training on walking performance. Design A single-day, repeated-measures, pretraining-posttraining study design was used. Methods Nineteen individuals with chronic iSCI performed a graded-intensity locomotor exercise task with simultaneous collection of lower extremity kinematic and electromyographic data. Measures of interest were compared across intensity levels of 33%, 67%, and 100% of peak gait speed. A subset of 9 individuals participated in 12 weeks of high-intensity locomotor training. Similar measurements were collected and compared between pretraining and posttraining evaluations. Results The results indicate that short-term increases in intensity led to significant improvements in muscle activity, spatiotemporal metrics, and joint excursions, with selected improvements in measures of locomotor coordination. High-intensity locomotor training led to significant increases in peak gait speed (0.64–0.80 m/s), and spatiotemporal and kinematic metrics indicate a trend for improved coordination. Limitations Measures of gait performance were assessed during treadmill ambulation and not compared with a control group. Generalizability of these results to overground ambulation is unknown. Conclusions High-intensity locomotor exercise and training does not degrade, but rather improves, locomotor function and

  18. MK-801-induced locomotor activity in long-sleep x short-sleep recombinant inbred mouse strains: correlational analysis with low-dose ethanol and provisional quantitative trait loci.

    PubMed

    Zahniser, N R; Negri, C A; Hanania, T; Gehle, V M

    1999-11-01

    Low doses of the N-methyl-D-aspartate receptor (NMDAR) antagonist MK-801 (dizocilpine) or ethanol increase locomotor activity to a lesser extent in long-sleep (LS), than in short-sleep (SS), mice. LS mice also have fewer brain [3H]MK-801 binding sites than SS mice. In this study, LSXSS recombinant inbred (RI) mice were used to investigate whether different NMDAR densities contribute to differential MK-801 activation and whether common genes are involved in initial sensitivity to MK-801-and ethanol-induced activation. Locomotor activity was measured for 90 min after saline or MK-801 injection. Quantitative autoradiographic analysis of [3H]MK-801 binding was used to measure densities of NMDARs in seven brain regions. The ethanol (1-2 g/kg) activation scores from Erwin and colleagues (1997) were used for correlational analysis, as was their method for quantitative trait loci (QTL) analysis. Both saline and MK-801 (0.3 mg/kg, given intraperitoneally) induced a continuum of locomotor responses across the LSXSS RI strains. There was a 4-fold range of MK-801 difference scores (MK-801 score-saline baseline), with the RI 9 and RI 4 strains representing low and high responders, respectively. Dose-response experiments with these two strains confirmed that 0.3 mg/kg MK-801 produced significant activation, similar to previous results with LS and SS mice. However, unlike previous LS/SS results, lower densities of NMDARs were not observed in the RI 9 than in the RI 4 mouse brains. No significant genetic correlations were observed between MK-801-induced and ethanol-induced responses in the LSXSS RI mice. Two provisional MK-801 activation QTLs were identified (p < 0.01) on chromosomes 11 and 19, neither in common with those mapped for ethanol activation. Different densities of brain NMDARs are unlikely to account for the differential activation of LSXSS RI mice by MK-801. Additionally, in the RI mice either separate sets of genes regulate low dose MK-801- and ethanol

  19. The influence of the hot water extract from shiitake medicinal mushroom, Lentinus edodes (higher Basidiomycetes) on the food intake, life span, and age-related locomotor activity of Drosophila melanogaster.

    PubMed

    Matjuskova, Natalya; Azena, Elena; Serstnova, Ksenija; Muiznieks, Indrikis

    2014-01-01

    Shiitake medicinal mushroom, Lentinus edodes, is among the most widely cultivated edible mushrooms in the world and is a well-studied source of nutrients and biologically active compounds. We have studied the influence of the dietary supplement of the polysaccharides containing a hot water extract of the mushroom L. edodes on the fruit fly Drosophila melanogaster in terms of food intake, body weight, life span, and age-related locomotor activity. L. edodes extract, when added to the D. melanogaster feeding substrate at a 0.003-0.030% concentration (calculated for the dry weight of the polysaccharide fraction) did not influence food intake or body weight of the flies. It increased the life span and locomotor activities of male flies but was associated with early mortality and decreased locomotor activity of female flies. We conclude that the observed anti-aging effects of L. edodes extracts in the male D. melanogaster are not the result of dietary restriction. We propose that D. melanogaster is a suitable model organism for researching the molecular basis of the anti-aging effect of the shiitake mushroom extracts and sex linkage of these effects.

  20. Cortisol elevation post-hatch affects behavioural performance in zebrafish larvae.

    PubMed

    Best, Carol; Vijayan, Mathilakath M

    2018-02-01

    Maternal cortisol is essential for cortisol stress axis development and de novo production of this steroid commences only after hatch in zebrafish (Danio rerio). However, very little is known about the effect of elevated cortisol levels, during the critical period of stress axis activation, on larval performance. We tested the hypothesis that elevated cortisol levels post-hatch affect behavioural performance and this is mediated by glucocorticoid receptor (GR) activation in zebrafish larvae. The behavioural response included measuring larval activity in response to alternating light and dark cycles, as well as thigmotaxis. Zebrafish larvae at 3days post-fertilization were exposed to waterborne cortisol for 24h to mimic a steroid response to an early-life stressor exposure. Also, larvae were exposed to waterborne RU-486 (a GR antagonist) either in the presence or absence of cortisol to confirm GR activation. Co-treatment with RU-486 completely abolished the upregulation of cortisol-induced 11β-hydroxysteroid dehydrogenase type 2 transcript abundance, confirming GR signalling. Cortisol-exposed larvae displayed increased locomotor activity irrespective of light condition, but showed no changes in thigmotaxis. This cortisol-mediated behavioural response was not affected by co-treatment with RU-486. Cortisol exposure also did not modify the transcript abundances of GR and mineralocorticoid receptor (MR) in zebrafish larvae. Altogether, cortisol stress axis activation post-hatch increases locomotor activity in zebrafish larvae. Our results suggest that GR signalling may not be involved in this behavioural response, leading to the proposal that cortisol action via MR signalling may influence locomotor activity in zebrafish larvae. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Locomotor-respiratory coupling during axillary crutch ambulation.

    PubMed

    Hurst, C A; Kirby, R L; MacLeod, D A

    2001-11-01

    To test the hypotheses that locomotor-respiratory coupling occurs in humans using axillary crutches in a swing-through ambulation pattern and that expiration occurs during crutch-stance phase during locomotor-respiratory coupling. Eighteen able-bodied persons were trained in one-footed swing-through gait with axillary crutches. Then, as subjects walked at "somewhat hard" speeds (Borg) on a motorized treadmill for 5 min, we recorded signals from a crutch pressure switch and a mouthpiece-mounted thermocouple. Coupling was defined as being present when the onset of inspiration varied by < or = 5% with respect to the onset of the crutch gait cycle for a minimum of 10 consecutive gait cycles and when there was no drift on a raster plot of the respiratory phases relative to the onset of the gait cycle. Ten (56%) of the 18 subjects exhibited locomotor-respiratory coupling on 1-4 occasions each, with episodes lasting 11.3-148 sec. In 17 (89%) of the 19 episodes of 1:1 locomotor-respiratory coupling, expiration occurred during the crutch-stance phase of the gait cycle and inspiration occurred during crutch swing. Transient 1:1 locomotor-respiratory coupling occurs in many able-bodied subjects ambulating with axillary crutches and a swing-through gait. Expiration is most often associated with the crutch-stance phase of the gait cycle. This study may have implications for training axillary crutch users.

  2. Circadian rhythms of locomotor activity in the subterranean Mashona mole rat, Cryptomys darlingi.

    PubMed

    Vasicek, Caroline A; Oosthuizen, Maria K; Cooper, Howard M; Bennett, Nigel C

    2005-02-15

    The Mashona mole rat, Cryptomys darlingi, is a social, subterranean African rodent that is rarely, if ever, exposed to light, and that exhibits a regressed visual system. This study investigated locomotor activity patterns of Mashona mole rats (n=12) under different light cycles. Activity was measured using either infrared captors (n=8) or running wheels (n=4). The mole rats entrained their activity to a standard (LD 12:12) photoperiod. They displayed either a nocturnal or diurnal activity preference with one bout of activity and one bout of rest. Therefore, as a species, the Mashona mole rat did not show a clear nocturnal or diurnal activity preference. When the LD (12:12) light cycle was inversed, the animals switched their activity, too. Under constant dark (DD), most mole rats (73%) showed a free-running circadian activity rhythm, but under constant light (LL), only some (36%) did. The free-run period of the rhythm (tau) ranged from 23.83 to 24.10 h. The remaining animals were arrhythmic. There was large interindividual and intraindividual variations in the rate and extent of entrainment, time of activity preference, and activity patterns. Possible reasons for the observed variations are discussed. It is concluded that the Mashona mole rat has an endogenous activity rhythm which approximates 24 h, that the mole rat can distinguish between light and dark, and that the endogenous clock utilises this photic information as a zeitgeber.

  3. Brief light stimulation during the mouse nocturnal activity phase simultaneously induces a decline in core temperature and locomotor activity followed by EEG-determined sleep

    PubMed Central

    Studholme, Keith M.; Gompf, Heinrich S.

    2013-01-01

    Light exerts a variety of effects on mammals. Unexpectedly, one of these effects is the cessation of nocturnal locomotion and the induction of behavioral sleep (photosomnolence). Here, we extend the initial observations in several ways, including the fundamental demonstration that core body temperature (Tc) drops substantially (about 1.5°C) in response to the light stimulation at CT15 or CT18 in a manner suggesting that the change is a direct response to light rather than simply a result of the locomotor suppression. The results show that 1) the decline of locomotion and Tc begin soon after nocturnal light stimulation; 2) the variability in the magnitude and onset of light-induced locomotor suppression is very large, whereas the variability in Tc is very small; 3) Tc recovers from the light-induced decline in advance of the recovery of locomotion; 4) under entrained and freerunning conditions, the daily late afternoon Tc increase occurs in advance of the corresponding increase in wheel running; and 5) toward the end of the subjective night, the nocturnally elevated Tc persists longer than does locomotor activity. Finally, EEG measurements confirm light-induced sleep and, when Tc or locomotion was measured, show their temporal association with sleep onset. Both EEG- and immobility-based sleep detection methods confirm rapid induction of light-induced sleep. The similarities between light-induced loss of locomotion and drop in Tc suggest a common cause for parallel responses. The photosomnolence response may be contingent upon both the absence of locomotion and a simultaneous low Tc. PMID:23364525

  4. Human spinal locomotor control is based on flexibly organized burst generators.

    PubMed

    Danner, Simon M; Hofstoetter, Ursula S; Freundl, Brigitta; Binder, Heinrich; Mayr, Winfried; Rattay, Frank; Minassian, Karen

    2015-03-01

    Constant drive provided to the human lumbar spinal cord by epidural electrical stimulation can cause local neural circuits to generate rhythmic motor outputs to lower limb muscles in people paralysed by spinal cord injury. Epidural spinal cord stimulation thus allows the study of spinal rhythm and pattern generating circuits without their configuration by volitional motor tasks or task-specific peripheral feedback. To reveal spinal locomotor control principles, we studied the repertoire of rhythmic patterns that can be generated by the functionally isolated human lumbar spinal cord, detected as electromyographic activity from the legs, and investigated basic temporal components shared across these patterns. Ten subjects with chronic, motor-complete spinal cord injury were studied. Surface electromyographic responses to lumbar spinal cord stimulation were collected from quadriceps, hamstrings, tibialis anterior, and triceps surae in the supine position. From these data, 10-s segments of rhythmic activity present in the four muscle groups of one limb were extracted. Such samples were found in seven subjects. Physiologically adequate cycle durations and relative extension- and flexion-phase durations similar to those needed for locomotion were generated. The multi-muscle activation patterns exhibited a variety of coactivation, mixed-synergy and locomotor-like configurations. Statistical decomposition of the electromyographic data across subjects, muscles and samples of rhythmic patterns identified three common temporal components, i.e. basic or shared activation patterns. Two of these basic patterns controlled muscles to contract either synchronously or alternatingly during extension- and flexion-like phases. The third basic pattern contributed to the observed muscle activities independently from these extensor- and flexor-related basic patterns. Each bifunctional muscle group was able to express both extensor- and flexor-patterns, with variable ratios across the

  5. Circadian Disruption Alters the Effects of Lipopolysaccharide Treatment on Circadian and Ultradian Locomotor Activity and Body Temperature Rhythms of Female Siberian Hamsters

    PubMed Central

    Prendergast, Brian J.; Cable, Erin J.; Stevenson, Tyler J.; Onishi, Kenneth G.; Zucker, Irving; Kay, Leslie M.

    2016-01-01

    The effect of circadian rhythm (CR) disruption on immune function depends on the method by which CRs are disrupted. Behavioral and thermoregulatory responses induced by lipopolysaccharide (LPS) treatment were assessed in female Siberian hamsters in which circadian locomotor activity (LMA) rhythms were eliminated by exposure to a disruptive phase-shifting protocol (DPS) that sustains arrhythmicity even when hamsters are housed in a light-dark cycle. This noninvasive treatment avoids genome manipulations and neurological damage associated with other models of CR disruption. Circadian rhythmic (RHYTH) and arrhythmic (ARR) hamsters housed in a 16L:8D photocycle were injected with bacterial LPS near the onset of the light (zeitgeber time 1; ZT1) or dark (ZT16) phase. LPS injections at ZT16 and ZT1 elicited febrile responses in both RHYTH and ARR hamsters, but the effect was attenuated in the arrhythmic females. In ZT16, LPS inhibited LMA in the dark phase immediately after injection but not on subsequent nights in both chronotypes; in contrast, LPS at ZT1 elicited more enduring (~4 day) locomotor hypoactivity in ARR than in RHYTH hamsters. Power and period of dark-phase ultradian rhythms (URs) in LMA and Tb were markedly altered by LPS treatment, as was the power in the circadian waveform. Disrupted circadian rhythms in this model system attenuated responses to LPS in a trait- and ZT-specific manner; changes in UR period and power are novel components of the acute-phase response to infection that may affect energy conservation. PMID:26566981

  6. Effects of nicotine on ethanol-induced locomotor sensitization: A model of neuroadaptation.

    PubMed

    Gubner, Noah R; Phillips, Tamara J

    2015-07-15

    Co-morbid use of nicotine-containing tobacco products and alcohol (ethanol) is prevalent in young adults initiating use and in alcohol dependent adults, suggesting that these drugs in combination may increase risk to develop dependence on one or both drugs. Neuroadaptations caused by repeated drug exposure are related to the development of drug dependence and vulnerability to relapse. Locomotor sensitization has been used as a behavioral measure used to detect changes in neural drug sensitivity that are thought to contribute to drug dependence and relapse. Locomotor sensitization was measured in the current studies to examine potential differences in the effects of nicotine and ethanol given alone and in combination. Baseline activity levels of DBA/2J mice were assessed on 2 days, then mice were treated for 10 days with saline, nicotine (1 or 2mg/kg of nicotine tartrate), ethanol (1 or 2g/kg), or nicotine plus ethanol and locomotor activity was assessed every third day. On the following day, all mice were challenged with ethanol to measure the expression of sensitization. Mice treated with both nicotine and ethanol exhibited greater stimulation than predicted from the combined independent effects of these drugs, consistent with our previously published results. The combined effects of nicotine and ethanol on locomotor sensitization were dependent on the dose of ethanol and whether testing was performed after the drugs were given together, or after challenge with ethanol alone. These results suggest that nicotine and ethanol in combination can have neuroadaptive effects that differ from the independent effects of these drugs. Published by Elsevier B.V.

  7. THC inhibits the expression of ethanol-induced locomotor sensitization in mice.

    PubMed

    Filev, Renato; Engelke, Douglas S; Da Silveira, Dartiu X; Mello, Luiz E; Santos-Junior, Jair G

    2017-12-01

    The motivational circuit activated by ethanol leads to behavioral changes that recruit the endocannabinoid system (ECS). Case reports and observational studies suggest that the use of Cannabis sp. mitigates problematic ethanol consumption in humans. Here, we verified the effects of the two main phytocannabinoid compounds of Cannabis sp., cannabidiol (CBD) and delta-9-tetrahydrocannabinol (THC), in the expression of ethanol-induced locomotor sensitization in mice. Male adult DBA/2 mice were exposed to locomotor sensitization by daily intraperitoneal injections of ethanol (2.5 g/kg) for 12 days; control groups received saline. After the acquisition phase, animals were treated with cannabinoids: CBD (2.5 mg/kg); THC (2.5 mg/kg); CBD + THC (1:1 ratio), or vehicle for 4 days with no access to ethanol during this period. One day after the last cannabinoid injection, all animals were challenged with ethanol (2.0 g/kg) to evaluate the expression of the locomotor sensitization. Mice treated with THC alone or THC + CBD showed reduced expression of locomotor sensitization, compared to the vehicle control group. No effects were observed with CBD treatment alone. Our findings showing that phytocannabinoid treatment prevents the expression of behavioral sensitization in mice provide insight into the potential therapeutic use of phytocannabinoids in alcohol-related problems. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Menthol enhances nicotine-induced locomotor sensitization and in vivo functional connectivity in adolescence.

    PubMed

    Thompson, Matthew F; Poirier, Guillaume L; Dávila-García, Martha I; Huang, Wei; Tam, Kelly; Robidoux, Maxwell; Dubuke, Michelle L; Shaffer, Scott A; Colon-Perez, Luis; Febo, Marcelo; DiFranza, Joseph R; King, Jean A

    2018-03-01

    Mentholated cigarettes capture a quarter of the US market, and are disproportionately smoked by adolescents. Menthol allosterically modulates nicotinic acetylcholine receptor function, but its effects on the brain and nicotine addiction are unclear. To determine if menthol is psychoactive, we assessed locomotor sensitization and brain functional connectivity. Adolescent male Sprague Dawley rats were administered nicotine (0.4 mg/kg) daily with or without menthol (0.05 mg/kg or 5.38 mg/kg) for nine days. Following each injection, distance traveled in an open field was recorded. One day after the sensitization experiment, functional connectivity was assessed in awake animals before and after drug administration using magnetic resonance imaging. Menthol (5.38 mg/kg) augmented nicotine-induced locomotor sensitization. Functional connectivity was compared in animals that had received nicotine with or without the 5.38 mg/kg dosage of menthol. Twenty-four hours into withdrawal after the last drug administration, increased functional connectivity was observed for ventral tegmental area and retrosplenial cortex with nicotine+menthol compared to nicotine-only exposure. Upon drug re-administration, the nicotine-only, but not the menthol groups, exhibited altered functional connectivity of the dorsal striatum with the amygdala. Menthol, when administered with nicotine, showed evidence of psychoactive properties by affecting brain activity and behavior compared to nicotine administration alone.

  9. The H2O2 scavenger ebselen decreases ethanol-induced locomotor stimulation in mice.

    PubMed

    Ledesma, Juan Carlos; Font, Laura; Aragon, Carlos M G

    2012-07-01

    In the brain, the enzyme catalase by reacting with H(2)O(2) forms Compound I (catalase-H(2)O(2) system), which is the main system of central ethanol metabolism to acetaldehyde. Previous research has demonstrated that acetaldehyde derived from central-ethanol metabolism mediates some of the psychopharmacological effects produced by ethanol. Manipulations that modulate central catalase activity or sequester acetaldehyde after ethanol administration modify the stimulant effects induced by ethanol in mice. However, the role of H(2)O(2) in the behavioral effects caused by ethanol has not been clearly addressed. The present study investigated the effects of ebselen, an H(2)O(2) scavenger, on ethanol-induced locomotion. Swiss RjOrl mice were pre-treated with ebselen (0-50mg/kg) intraperitoneally (IP) prior to administration of ethanol (0-3.75g/kg; IP). In another experiment, animals were pre-treated with ebselen (0 or 25mg/kg; IP) before caffeine (15mg/kg; IP), amphetamine (2mg/kg; IP) or cocaine (10mg/kg; IP) administration. Following these treatments, animals were placed in an open field to measure their locomotor activity. Additionally, we evaluated the effect of ebselen on the H(2)O(2)-mediated inactivation of brain catalase activity by 3-amino-1,2,4-triazole (AT). Ebselen selectively prevented ethanol-induced locomotor stimulation without altering the baseline activity or the locomotor stimulating effects caused by caffeine, amphetamine and cocaine. Ebselen reduced the ability of AT to inhibit brain catalase activity. Taken together, these data suggest that a decline in H(2)O(2) levels might result in a reduction of the ethanol locomotor-stimulating effects, indicating a possible role for H(2)O(2) in some of the psychopharmacological effects produced by ethanol. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  10. Differences in the neurochemical and behavioural profiles of lisdexamfetamine methylphenidate and modafinil revealed by simultaneous dual-probe microdialysis and locomotor activity measurements in freely-moving rats.

    PubMed

    Rowley, Helen L; Kulkarni, Rajiv S; Gosden, Jane; Brammer, Richard J; Hackett, David; Heal, David J

    2014-03-01

    Lisdexamfetamine dimesylate is a novel prodrug approved in North America, Europe and Brazil for treating attention deficit hyperactivity disorder (ADHD). It undergoes rate-limited hydrolysis by red blood cells to yield d-amphetamine. Following our previous work comparing lisdexamfetamine with d-amphetamine, the neurochemical and behavioural profiles of lisdexamfetamine, methylphenidate and modafinil were compared by dual-probe microdialysis in the prefrontal cortex (PFC) and striatum of conscious rats with simultaneous locomotor activity measurement. We employed pharmacologically equivalent doses of all compounds and those that spanned the therapeutically relevant and psychostimulant range. Lisdexamfetamine (0.5, 1.5, 4.5 mg/kg d-amphetamine base, per os (po)), methylphenidate (3, 10, 30 mg/kg base, po) and modafinil (100, 300, 600 mg/kg base, po) increased efflux of dopamine and noradrenaline in PFC, and dopamine in striatum. Only lisdexamfetamine increased 5-hydroxytryptamine (5-HT) efflux in PFC and striatum. Lisdexamfetamine had larger and more sustained effects on catecholaminergic neurotransmission than methylphenidate or modafinil. Linear correlations were observed between striatal dopamine efflux and locomotor activity for lisdexamfetamine and methylphenidate, but not modafinil. Regression slopes revealed greater increases in extracellular dopamine could be elicited without producing locomotor activation by lisdexamfetamine than methylphenidate. These results are consistent with clinical findings showing that lisdexamfetamine is an effective ADHD medication with prolonged duration of action and good separation between its therapeutic actions and stimulant side-effects.

  11. The sublethal effects of endosulfan on the circadian rhythms and locomotor activity of two sympatric parasitoid species.

    PubMed

    Delpuech, Jean-Marie; Bussod, Sophie; Amar, Aurelien

    2015-08-01

    The organochlorine insecticide endosulfan is dispersed worldwide and significantly contributes to environmental pollution. It is an antagonist of the neurotransmitter gamma-aminobutyric acid (GABA), which is also indirectly involved in photoperiodic time measurement. In this study, we show that endosulfan at a dose as low as LC 0.1 modified the rhythm of locomotor activity of two sympatric parasitoid species, Leptopilina boulardi and Leptopilina heterotoma. The insecticide strongly increased the nocturnal activity of both species and synchronized their diurnal activity; these activities were not synchronized under control conditions. Parasitoids are important species in ecosystems because they control the populations of other insects. In this paper, we discuss the possible consequences of these sublethal effects and highlight the importance of such effects in evaluating the consequences of environmental pollution due to insecticides. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effect of subacute poisoning with bifenthrin on locomotor activity, memory retention, haematological, biochemical and histopathological parameters in mice.

    PubMed

    Nieradko-Iwanicka, B; Borzecki, A; Jodlowska-Jedrych, B

    2015-02-01

    Bifenthrin (BIF) is a pyrethroid (PYR) insecticide. The target point for PYR's toxic action are voltage sensitive sodium channels in the central nervous system (CNS). Intoxication with PYRs results in motor activity impairment and death in insects. Although PYRs are considered to be safe for mammals, there were numerous cases of pyrethroid poisoning in humans, animals and pets described. The general population is chronically exposed to PYRs via grain products, dust and indoor air. Therefore new questions arise: whether PYRs act in a dose-additive fashion in the course of subacute poisoning, are there other target organs (but brain) for BIF and if there is one common mechanism of its' toxic action in different organs. The objective of this work was to characterize the effect of BIF at the doses of 4 or 8 mg/kg injected intraperitoneally (i.p.) daily for 28 consecutive days on memory and motor activity, hematological, biochemical and histopathological parameters in mice. BIF at the doses of 8 mg/kg or 4 mg/kg of body mass was administered i.p. daily to the mice for 28 consecutive days. Motor function was measured on day 1, 7, 14 and 28 and memory retention was tested in a passive avoidance task on day 2, 7, 14 and 28. BIF significantly impaired memory retention on day 2. BIF decreased locomotor activity at every stage of the experiment in a single dose depending manner. No behavioral cumulative effect was observed. Subacute poisoning with the higher dose of BIF caused anaemia, elevated white blood cell count (WBC), elevated alanine transaminase (ALT), superoxide dismuthase (SOD), and decreased glutathione peroxidase (GPx) activity. Lymphocyte infiltrates were visualized in the livers. subacute poisoning with BIF decreases locomotor activity in a single dose proportionate manner. BIF damages also the liver and alters blood morphology. The possible common mechanism of these effects can be oxidative stress.

  13. Asymmetric Operation of the Locomotor Central Pattern Generator in the Neonatal Mouse Spinal Cord

    PubMed Central

    Endo, Toshiaki; Kiehn, Ole

    2008-01-01

    The rhythmic voltage oscillations in motor neurons (MNs) during locomotor movements reflect the operation of the pre-MN central pattern generator (CPG) network. Recordings from MNs can thus be used as a method to deduct the organization of CPGs. Here, we use continuous conductance measurements and decomposition methods to quantitatively assess the weighting and phase tuning of synaptic inputs to different flexor and extensor MNs during locomotor-like activity in the isolated neonatal mice lumbar spinal cord preparation. Whole cell recordings were obtained from 22 flexor and 18 extensor MNs in rostral and caudal lumbar segments. In all flexor and the large majority of extensor MNs the extracted excitatory and inhibitory synaptic conductances alternate but with a predominance of inhibitory conductances, most pronounced in extensors. These conductance changes are consistent with a “push–pull” operation of locomotor CPG. The extracted excitatory and inhibitory synaptic conductances varied between 2 and 56% of the mean total conductance. Analysis of the phase tuning of the extracted synaptic conductances in flexor and extensor MNs in the rostral lumbar cord showed that the flexor-phase–related synaptic conductance changes have sharper locomotor-phase tuning than the extensor-phase–related conductances, suggesting a modular organization of premotor CPG networks consisting of reciprocally coupled, but differently composed, flexor and extensor CPG networks. There was a clear difference between phase tuning in rostral and caudal MNs, suggesting a distinct operation of CPG networks in different lumbar segments. The highly asymmetric features were preserved throughout all ranges of locomotor frequencies investigated and with different combinations of locomotor-inducing drugs. The asymmetric nature of CPG operation and phase tuning of the conductance profiles provide important clues to the organization of the rodent locomotor CPG and are compatible with a

  14. l-5-hydroxytryptophan resets the circadian locomotor activity rhythm of the nocturnal Indian pygmy field mouse, Mus terricolor

    NASA Astrophysics Data System (ADS)

    Basu, Priyoneel; Singaravel, Muniyandi; Haldar, Chandana

    2012-03-01

    We report that l-5-hydroxytryptophan (5-HTP), a serotonin precursor, resets the overt circadian rhythm in the Indian pygmy field mouse, Mus terricolor, in a phase- and dose-dependent manner. We used wheel running to assess phase shifts in the free-running locomotor activity rhythm. Following entrainment to a 12:12 h light-dark cycle, 5-HTP (100 mg/kg in saline) was intraperitoneally administered in complete darkness at circadian time (CT)s 0, 3, 6, 9, 12, 15, 18, and 21, and the ensuing phase shifts in the locomotor activity rhythm were calculated. The results show that 5-HTP differentially shifts the phase of the rhythm, causing phase advances from CT 0 to CT 12 and phase delays from CT 12 to CT 21. Maximum advance phase shift was at CT 6 (1.18 ± 0.37 h) and maximum delay was at CT 18 (-2.36 ± 0.56 h). No extended dead zone is apparent. Vehicle (saline) at any CT did not evoke a significant phase shift. Investigations with different doses (10, 50, 100, and 200 mg/kg) of 5-HTP revealed that the phase resetting effect is dose-dependent. The shape of the phase-response curve (PRC) has a strong similarity to PRCs obtained using some serotonergic agents. There was no significant increase in wheel-running activity after 5-HTP injection, ruling out behavioral arousal-dependent shifts. This suggests that this phase resetting does not completely depend on feedback of the overt rhythmic behavior on the circadian clock. A mechanistic explanation of these shifts is currently lacking.

  15. Modular diversification of the locomotor system in damselfishes (Pomacentridae).

    PubMed

    Aguilar-Medrano, Rosalía; Frédérich, Bruno; Barber, Paul H

    2016-05-01

    As fish move and interact with their aquatic environment by swimming, small morphological variations of the locomotor system can have profound implications on fitness. Damselfishes (Pomacentridae) have inhabited coral reef ecosystems for more than 50 million years. As such, habitat preferences and behavior could significantly constrain the morphology and evolvability of the locomotor system. To test this hypothesis, we used phylogenetic comparative methods on morphometric, ecological and behavioral data. While body elongation represented the primary source of variation in the locomotor system of damselfishes, results also showed a diverse suite of morphological combinations between extreme morphologies. Results show clear associations between behavior, habitat preferences, and morphology, suggesting ecological constraints on shape diversification of the locomotor system. In addition, results indicate that the three modules of the locomotor system are weakly correlated, resulting in versatile and independent characters. These results suggest that Pomacentridae is shape may result from the interaction between (1) integrated parts of morphological variation that maintain overall swimming ability and (2) relatively independent parts of the morphology that facilitate adaptation and diversification. © 2016 Wiley Periodicals, Inc.

  16. Volumetric changes in the aging rat brain and its impact on cognitive and locomotor functions.

    PubMed

    Hamezah, Hamizah Shahirah; Durani, Lina Wati; Ibrahim, Nor Faeizah; Yanagisawa, Daijiro; Kato, Tomoko; Shiino, Akihiko; Tanaka, Sachiko; Damanhuri, Hanafi Ahmad; Ngah, Wan Zurinah Wan; Tooyama, Ikuo

    2017-12-01

    Impairments in cognitive and locomotor functions usually occur with advanced age, as do changes in brain volume. This study was conducted to assess changes in brain volume, cognitive and locomotor functions, and oxidative stress levels in middle- to late-aged rats. Forty-four male Sprague-Dawley rats were divided into four groups: 14, 18, 23, and 27months of age. 1 H magnetic resonance imaging (MRI) was performed using a 7.0-Tesla MR scanner system. The volumes of the lateral ventricles, medial prefrontal cortex (mPFC), hippocampus, striatum, cerebellum, and whole brain were measured. Open field, object recognition, and Morris water maze tests were conducted to assess cognitive and locomotor functions. Blood was taken for measurements of malondialdehyde (MDA), protein carbonyl content, and antioxidant enzyme activity. The lateral ventricle volumes were larger, whereas the mPFC, hippocampus, and striatum volumes were smaller in 27-month-old rats than in 14-month-old rats. In behavioral tasks, the 27-month-old rats showed less exploratory activity and poorer spatial learning and memory than did the 14-month-old rats. Biochemical measurements likewise showed increased MDA and lower glutathione peroxidase (GPx) activity in the 27-month-old rats. In conclusion, age-related increases in oxidative stress, impairment in cognitive and locomotor functions, and changes in brain volume were observed, with the most marked impairments observed in later age. Copyright © 2017. Published by Elsevier Inc.

  17. Effects of chronic prenatal MK-801 treatment on object recognition, cognitive flexibility, and drug-induced locomotor activity in juvenile and adult rat offspring.

    PubMed

    Gallant, S; Welch, L; Martone, P; Shalev, U

    2017-06-15

    Patients with schizophrenia display impaired cognitive functioning and increased sensitivity to psychomimetic drugs. The neurodevelopmental hypothesis of schizophrenia posits that disruption of the developing brain predisposes neural networks to lasting structural and functional abnormalities resulting in the emergence of such symptoms in adulthood. Given the critical role of the glutamatergic system in early brain development, we investigated whether chronic prenatal exposure to the glutamate NMDA receptor antagonist, MK-801, induces schizophrenia-like behavioural and neurochemical changes in juvenile and adult rats. Pregnant Long-Evans rats were administered saline or MK-801 (0.1mg/kg; s.c.) at gestation day 7-19. Object recognition memory and cognitive flexibility were assessed in the male offspring using a novel object preference task and a maze-based set-shifting procedure, respectively. Locomotor-activating effects of acute amphetamine and MK-801 were also assessed. Adult, but not juvenile, prenatally MK-801-treated rats failed to show novel object preference after a 90min delay, suggesting that object recognition memory may have been impaired. In addition, the set-shifting task revealed impaired acquisition of a new rule in adult prenatally MK-801-treated rats compared to controls. This deficit appeared to be driven by regression to the previously learned behaviour. There were no significant differences in drug-induced locomotor activity in juvenile offspring or in adult offspring following acute amphetamine challenges. Unexpectedly, MK-801-induced locomotor activity in adult prenatally MK-801-treated rats was lower compared to controls. Glutamate transmission dysfunction during early development may modify behavioural parameters in adulthood, though these parameters do not appear to model deficits observed in schizophrenia. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. I(A) channels encoded by Kv1.4 and Kv4.2 regulate neuronal firing in the suprachiasmatic nucleus and circadian rhythms in locomotor activity.

    PubMed

    Granados-Fuentes, Daniel; Norris, Aaron J; Carrasquillo, Yarimar; Nerbonne, Jeanne M; Herzog, Erik D

    2012-07-18

    Neurons in the suprachiasmatic nucleus (SCN) display coordinated circadian changes in electrical activity that are critical for daily rhythms in physiology, metabolism, and behavior. SCN neurons depolarize spontaneously and fire repetitively during the day and hyperpolarize, drastically reducing firing rates, at night. To explore the hypothesis that rapidly activating and inactivating A-type (I(A)) voltage-gated K(+) (Kv) channels, which are also active at subthreshold membrane potentials, are critical regulators of the excitability of SCN neurons, we examined locomotor activity and SCN firing in mice lacking Kv1.4 (Kv1.4(-/-)), Kv4.2 (Kv4.2(-/-)), or Kv4.3 (Kv4.3(-/-)), the pore-forming (α) subunits of I(A) channels. Mice lacking either Kv1.4 or Kv4.2 α subunits have markedly shorter (0.5 h) periods of locomotor activity than wild-type (WT) mice. In vitro extracellular multi-electrode recordings revealed that Kv1.4(-/-) and Kv4.2(-/-) SCN neurons display circadian rhythms in repetitive firing, but with shorter periods (0.5 h) than WT cells. In contrast, the periods of wheel-running activity in Kv4.3(-/-) mice and firing in Kv4.3(-/-) SCN neurons were indistinguishable from WT animals and neurons. Quantitative real-time PCR revealed that the transcripts encoding all three Kv channel α subunits, Kv1.4, Kv4.2, and Kv4.3, are expressed constitutively throughout the day and night in the SCN. Together, these results demonstrate that Kv1.4- and Kv4.2-encoded I(A) channels regulate the intrinsic excitability of SCN neurons during the day and night and determine the period and amplitude of circadian rhythms in SCN neuron firing and locomotor behavior.

  19. Development of Testing Methodologies to Evaluate Postflight Locomotor Performance

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Bloomberg, J. J.

    2006-01-01

    Crewmembers experience locomotor and postural instabilities during ambulation on Earth following their return from space flight. Gait training programs designed to facilitate recovery of locomotor function following a transition to a gravitational environment need to be accompanied by relevant assessment methodologies to evaluate their efficacy. The goal of this paper is to demonstrate the operational validity of two tests of locomotor function that were used to evaluate performance after long duration space flight missions on the International Space Station (ISS).

  20. Effects of Paraxanthine and Caffeine on Sleep, Locomotor Activity, and Body Temperature in Orexin/Ataxin-3 Transgenic Narcoleptic Mice

    PubMed Central

    Okuro, Masashi; Fujiki, Nobuhiro; Kotorii, Nozomu; Ishimaru, Yuji; Sokoloff, Pierre; Nishino, Seiji

    2010-01-01

    Study Objective: Caffeine, an adenosine A1 and A2a receptor antagonist, is a widely consumed stimulant and also used for the treatment of hypersomnia; however, the wake-promoting potency of caffeine is often not strong enough, and high doses may induce side effects. Caffeine is metabolized to paraxanthine, theobromine, and theophylline. Paraxanthine is a central nervous stimulant and exhibits higher potency at A1 and A2 receptors, but has lower toxicity and lesser anxiogenic effects than caffeine. Design: We evaluated the wake-promoting efficacy of paraxanthine, caffeine, and a reference wake-promoting compound, modafinil, in a mice model of narcolepsy, a prototypical disease model of hypersomnia. Orexin/ataxin-3 transgenic (TG) and wild-type (WT) mice were subjected to oral administration (at ZT 2 and ZT14) of 3 doses of paraxanthine, caffeine, modafinil, or vehicle. Results: Paraxanthine, caffeine, and modafinil significantly promoted wakefulness in both WT and narcoleptic TG mice and proportionally reduced NREM and REM sleep in both genotypes. The wake-promoting potency of 100 mg/kg p.o. of paraxanthine during the light period administration roughly corresponds to that of 200 mg/kg p.o. of modafinil. The wake-promoting potency of paraxanthine is greater and longer lasting than that of the equimolar concentration of caffeine, when the drugs were administered during the light period. The wake-promotion by paraxanthine, caffeine, and modafinil are associated with an increase in locomotor activity and body temperature. However, the higher doses of caffeine and modafinil, but not paraxanthine, induced hypothermia and reduced locomotor activity, thereby confirming the lower toxicity of paraxanthine. Behavioral evaluations of anxiety levels in WT mice revealed that paraxanthine induced less anxiety than caffeine did. Conclusions: Because it is also reported to provide neuroprotection, paraxanthine may be a better wake-promoting agent for hypersomnia associated with

  1. Locomotor adaptability in persons with unilateral transtibial amputation.

    PubMed

    Darter, Benjamin J; Bastian, Amy J; Wolf, Erik J; Husson, Elizabeth M; Labrecque, Bethany A; Hendershot, Brad D

    2017-01-01

    Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb.

  2. [CHANGES IN THE NUMBER OF NEURONS IN THE MOTOR CORTEX OF RATS AND THEIR LOCOMOTOR ACTIVITY IN THE AGE ASPECT].

    PubMed

    Piavchenko, G A; Shmarkova, L I; Nozdrin, V I

    2015-01-01

    Using Laboras hardware-software complex, which is a system of automatic registration of behavioral reactions, the locomotor activity 1-, 8- and 16-month-old male rats (12 animals in each group) was recorded followed by counting the number of neuron cell bodies of in the layer V of the motor cortex in Nissl stained slides. It was found that the number of neurons in the motor cortex varied in different age groups. Maximal number of neurons was observed in 8-month-old animals. Motor activity was found to correlate with the number of neurons.

  3. Effect of Error Augmentation on Brain Activation and Motor Learning of a Complex Locomotor Task

    PubMed Central

    Marchal-Crespo, Laura; Michels, Lars; Jaeger, Lukas; López-Olóriz, Jorge; Riener, Robert

    2017-01-01

    Up to date, the functional gains obtained after robot-aided gait rehabilitation training are limited. Error augmenting strategies have a great potential to enhance motor learning of simple motor tasks. However, little is known about the effect of these error modulating strategies on complex tasks, such as relearning to walk after a neurologic accident. Additionally, neuroimaging evaluation of brain regions involved in learning processes could provide valuable information on behavioral outcomes. We investigated the effect of robotic training strategies that augment errors—error amplification and random force disturbance—and training without perturbations on brain activation and motor learning of a complex locomotor task. Thirty-four healthy subjects performed the experiment with a robotic stepper (MARCOS) in a 1.5 T MR scanner. The task consisted in tracking a Lissajous figure presented on a display by coordinating the legs in a gait-like movement pattern. Behavioral results showed that training without perturbations enhanced motor learning in initially less skilled subjects, while error amplification benefited better-skilled subjects. Training with error amplification, however, hampered transfer of learning. Randomly disturbing forces induced learning and promoted transfer in all subjects, probably because the unexpected forces increased subjects' attention. Functional MRI revealed main effects of training strategy and skill level during training. A main effect of training strategy was seen in brain regions typically associated with motor control and learning, such as, the basal ganglia, cerebellum, intraparietal sulcus, and angular gyrus. Especially, random disturbance and no perturbation lead to stronger brain activation in similar brain regions than error amplification. Skill-level related effects were observed in the IPS, in parts of the superior parietal lobe (SPL), i.e., precuneus, and temporal cortex. These neuroimaging findings indicate that gait

  4. The within-match patterns of locomotor efficiency during professional soccer match play: Implications for injury risk?

    PubMed

    Barrett, Steve; Midgley, Adrian; Reeves, Matt; Joel, Tom; Franklin, Ed; Heyworth, Rob; Garrett, Andrew; Lovell, Ric

    2016-10-01

    The principle aim of the current study was to examine within-match patterns of locomotor efficiency in professional soccer, determined as the ratio between tri-axial accelerometer data (PlayerLoad™) and locomotor activities. Between match variability and determinants of PlayerLoad™ during match play were also assessed. A single cohort, observational study. Tri-axial accelerometer data (PlayerLoad™) was recorded during 86 competitive soccer matches in 63 English championship players (574 match observations). Accelerometer data accumulated (PlayerLoad Vector Magnitude [PLVM]) from the individual-component planes of PlayerLoad™ (anterior-posterior PlayerLoad™ [PLAP], medial-lateral PlayerLoad™ [PLML] and vertical PlayerLoad™ [PLV]), together with locomotor activity (Total Distance Covered [TDC]) were determined in 15-min segments. Locomotor efficiency was calculated using the ratio of PLVM and TDC (PlayerLoad™ per metre). The proportion of variance explaining the within-match trends in PLVM, PLAP, APML, APv, and TDC was determined owing to matches, individual players, and positional role. PLVM, PLAP, APML, APv and TDC reduced after the initial 15-min match period (p=0.001; η(2)=0.22-0.43, large effects). PL:TDC increased in the last 15min of each half (p=0.001; η(2)=0.25, large effect). The variance in PLVM during soccer match-play was explained by individual players (63.9%; p=0.001) and between-match variation (21.6%; p=0.001), but not positional role (14.1%; p=0.364). Locomotor efficiency is lower during the latter stages of each half of competitive soccer match-play, a trend synonymous with observations of increased injury incidence and fatigue in these periods. Locomotor efficiency may be a valuable metric to identify fatigue and heightened injury risk during soccer training and match-play. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  5. Optic Flow Dominates Visual Scene Polarity in Causing Adaptive Modification of Locomotor Trajectory

    NASA Technical Reports Server (NTRS)

    Nomura, Y.; Mulavara, A. P.; Richards, J. T.; Brady, R.; Bloomberg, Jacob J.

    2005-01-01

    Locomotion and posture are influenced and controlled by vestibular, visual and somatosensory information. Optic flow and scene polarity are two characteristics of a visual scene that have been identified as being critical in how they affect perceived body orientation and self-motion. The goal of this study was to determine the role of optic flow and visual scene polarity on adaptive modification in locomotor trajectory. Two computer-generated virtual reality scenes were shown to subjects during 20 minutes of treadmill walking. One scene was a highly polarized scene while the other was composed of objects displayed in a non-polarized fashion. Both virtual scenes depicted constant rate self-motion equivalent to walking counterclockwise around the perimeter of a room. Subjects performed Stepping Tests blindfolded before and after scene exposure to assess adaptive changes in locomotor trajectory. Subjects showed a significant difference in heading direction, between pre and post adaptation stepping tests, when exposed to either scene during treadmill walking. However, there was no significant difference in the subjects heading direction between the two visual scene polarity conditions. Therefore, it was inferred from these data that optic flow has a greater role than visual polarity in influencing adaptive locomotor function.

  6. Locomotor and Heart Rate Responses of Floaters During Small-Sided Games in Elite Soccer Players: Effect of Pitch Size and Inclusion of Goalkeepers.

    PubMed

    Lacome, Mathieu; Simpson, Ben M; Cholley, Yannick; Buchheit, Martin

    2018-05-01

    To (1) compare the locomotor and heart rate responses between floaters and regular players during both small and large small-sided games (SSGs) and (2) examine whether the type of game (ie, game simulation [GS] vs possession game [PO]) affects the magnitude of the difference between floaters and regular players. Data were collected in 41 players belonging to an elite French football team during 3 consecutive seasons (2014-2017). A 5-Hz global positionning system was used to collect all training data, with the Athletic Data Innovation analyzer (v5.4.1.514) used to derive total distance (m), high-speed distance (>14.4 km·h -1 , m), and external mechanical load (MechL, a.u.). All SSGs included exclusively 1 floater and were divided into 2 main categories, according to the participation of goalkeepers (GS) or not (PO) and then further divided into small and large (>100 m 2 per player) SSGs based on the area per player ratio. Locomotor activity and MechL performed were likely-to-most likely lower (moderate to large magnitude) in floaters compared with regular players, whereas differences in heart rate responses were unclear to possibly higher (small) in floaters. The magnitude of the difference in locomotor activity and MechL between floaters and regular players was substantially greater during GS compared with PO. Compared with regular players, floaters present decreased external load (both locomotor and MechL) despite unclear to possibly slightly higher heart rate responses during SSGs. Moreover, the responses of floaters compared with regular players are not consistent across different sizes of SSGs, with greater differences during GS than PO.

  7. Neonatal olfactory bulbectomy enhances locomotor activity, exploratory behavior and binding of NMDA receptors in pre-pubertal rats.

    PubMed

    Flores, G; Ibañez-Sandoval, O; Silva-Gómez, A B; Camacho-Abrego, I; Rodríguez-Moreno, A; Morales-Medina, J C

    2014-02-14

    In this study, we investigated the effect of neonatal olfactory bulbectomy (nOBX) on behavioral paradigms related to olfaction such as exploratory behavior, locomotor activity in a novel environment and social interaction. We also studied the effect of nOBX on the activity of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors during development. The behavioral effects of nOBX (postnatal day 7, PD7) were investigated in pre- (PD30) and post-pubertal (PD60) Wistar rats. NMDA receptor activity was measured with [(125)I]MK-801 in the brain regions associated with the olfactory circuitry. A significant increase in the novelty-induced locomotion was seen in the pre-pubertal nOBX rats. Although the locomotor effect was less marked than in pre-pubertal rats, the nOBX rats tested post-pubertally failed to habituate to the novel situation as quickly as the sham- and normal- controls. Pre-pubertally, the head-dipping behavior was enhanced in nOBX rats compared with sham-operated and normal controls, while normal exploratory behavior was observed between groups in adulthood. In contrast, social interaction was increased in post-pubertal animals that underwent nOBX. Both pre- and post-pubertal nOBX rats recovered olfaction. Interestingly, pre-pubertal rats showed a significant increase in the [(125)I]MK-801 binding in the piriform cortex, dorsal hippocampus, inner and outer layers of the frontal cortex and outer layer of the cingulate cortex. At post-pubertal age, no significant differences in [(125)I]MK-801 binding were observed between groups at any of the brain regions analyzed. These results suggest that nOBX produces pre-pubertal behavioral disturbances and NMDA receptor changes that are transitory with recovery of olfaction early in adulthood. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Home cage locomotor changes in non-human primates after prolonged welding-fume exposure.

    PubMed

    Kim, Choong Yong; Sung, Jae Hyuck; Chung, Yong Hyun; Park, Jung Duck; Han, Jeong Hee; Lee, Jong Seong; Heo, Jeong Doo; Yu, Il Je

    2013-12-01

    To define the relationship between the brain concentration of manganese and neurological signs, such as locomotion, after prolonged welding-fume exposure, cynomolgus monkeys were acclimated for 1 month and then divided into three concentration groups: unexposed, low concentration (31 mg/m(3) total suspended particulate (TSP), 0.9 mg/m(3) of Mn), and high concentration (62 mg/m(3) TSP, 1.95 mg/m(3) of Mn) of TSP. The monkeys were exposed to manual metal-arc stainless steel (MMA-SS) welding fumes for 2 h per day over 8 months in an inhalation chamber system equipped with an automatic fume generator. The home cage locomotor activity and patterns were determined using a camera system over 2-4 consecutive days. After 25 and 32 weeks of exposure, the home cage locomotor activity of the high-concentration primates was found to be 5-6 times higher than that of the unexposed primates, and this increased locomotor activity was maintained for 7 weeks after ceasing the welding-fume exposure, eventually subsiding to three times higher after 13 weeks of recovery. Therefore, the present results, along with our previous observations of a high magnetic resonance imaging (MRI) T1 signal in the globus pallidus and increased blood Mn concentration, indicate that prolonged welding-fume exposure can cause neurobehavioral changes in cynomolgus monkeys.

  9. Determining the Heritability of Ethanol-induced Locomotor Sensitization in Mice Using Short-term Behavioral Selection

    PubMed Central

    Linsenbardt, David N.; Boehm, Stephen L.

    2013-01-01

    Rationale Sensitization to the locomotor stimulant effects of alcohol (ethanol) is thought to be a heritable risk factor for the development of alcoholism that reflects progressive increases in the positive motivational effects of this substance. However, very little is known about the degree to which genes influence this complex behavioral phenomenon. Objectives The primary goal of this work was to determine the heritability of ethanol-induced locomotor sensitization in mice using short-term behavioral selection. Methods Genetically heterogeneous C57BL/6J (B6) × DBA/2J (D2) F2 mice were generated from B6D2F1 progenitors, phenotyped for the expression of locomotor sensitization, and bred for high (HLS) and low (LLS) expression of this behavior. Selective breeding was conducted in two independently generated replicate sets to increase the confidence of our heritability estimates and for future correlated trait analyses. Results Large and significant differences in locomotor sensitization between HLS and LLS lines were evident by the fourth generation. Twenty-two percent of the observed line difference(s) were attributable to genes (h2=.22). Interestingly, locomotor activity in the absence of ethanol was genetically correlated with ethanol sensitization; high activity was associated with high sensitization. Conclusions That changes in ethanol sensitivity following repeated exposures are genetically regulated highlights the relevance of studies aimed at determining how genes regulate susceptibility to ethanol-induced behavioral and neural adaptations. As alcohol use and abuse disorders develop following many repeated alcohol exposures, these data emphasize the need for future studies determining the genetic basis by which changes in response to alcohol occur. PMID:23732838

  10. Timing of Locomotor Recovery from Anoxia Modulated by the white Gene in Drosophila

    PubMed Central

    Xiao, Chengfeng; Robertson, R. Meldrum

    2016-01-01

    Locomotor recovery from anoxia follows the restoration of disordered ion distributions and neuronal excitability. The time taken for locomotor recovery after 30 sec anoxia (around 10 min) is longer than the time for the propagation of action potentials to be restored (<1 min) in Drosophila wild type. We report here that the white (w) gene modulates the timing of locomotor recovery. Wild-type flies displayed fast and consistent recovery of locomotion from anoxia, whereas mutants of w showed significantly delayed and more variable recovery. Genetic analysis including serial backcrossing revealed a strong association between the w locus and the timing of locomotor recovery, and haplo-insufficient function of w+ in promoting fast recovery. The locomotor recovery phenotype was independent of classic eye pigmentation, although both are associated with the w gene. Introducing up to four copies of mini-white (mw+) into w1118 was insufficient to promote fast and consistent locomotor recovery. However, flies carrying w+ duplicated to the Y chromosome showed wild-type-like fast locomotor recovery. Furthermore, Knockdown of w by RNA interference (RNAi) in neurons but not glia delayed locomotor recovery, and specifically, knockdown of w in subsets of serotonin neurons was sufficient to delay the locomotor recovery. These data reveal an additional role for w in modulating the timing of locomotor recovery from anoxia. PMID:27029736

  11. Effects of voluntary wheel running on heart rate, body temperature, and locomotor activity in response to acute and repeated stressor exposures in rats.

    PubMed

    Masini, Cher V; Nyhuis, Tara J; Sasse, Sarah K; Day, Heidi E W; Campeau, Serge

    2011-05-01

    Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress.

  12. Effects of voluntary wheel running on heart rate, body temperature, and locomotor activity in response to acute and repeated stressor exposures in rats

    PubMed Central

    MASINI, CHER V.; NYHUIS, TARA J.; SASSE, SARAH K.; DAY, HEIDI E. W.; CAMPEAU, SERGE

    2015-01-01

    Stress often negatively impacts physical and mental health but it has been suggested that voluntary physical activity may benefit health by reducing some of the effects of stress. The present experiments tested whether voluntary exercise can reduce heart rate, core body temperature and locomotor activity responses to acute (novelty or loud noise) or repeated stress (loud noise). After 6 weeks of running-wheel access, rats exposed to a novel environment had reduced heart rate, core body temperature, and locomotor activity responses compared to rats housed under sedentary conditions. In contrast, none of these measures were different between exercised and sedentary rats following acute 30-min noise exposures, at either 85 or 98 dB. Following 10 weeks of running-wheel access, both groups displayed significant habituation of all these responses to 10 consecutive daily 30-min presentations of 98 dB noise stress. However, the extent of habituation of all three responses was significantly enhanced in exercised compared to sedentary animals on the last exposure to noise. These results suggest that in physically active animals, under some conditions, acute responses to stress exposure may be reduced, and response habituation to repeated stress may be enhanced, which ultimately may reduce the negative and cumulative impact of stress. PMID:21438772

  13. Application of the Copenhagen Soccer Test in high-level women players - locomotor activities, physiological response and sprint performance.

    PubMed

    Bendiksen, Mads; Pettersen, Svein Arne; Ingebrigtsen, Jørgen; Randers, Morten B; Brito, João; Mohr, Magni; Bangsbo, Jens; Krustrup, Peter

    2013-12-01

    We evaluated the physiological response, sprint performance and technical ability in various phases of the Copenhagen Soccer Test for Women (CSTw) and investigated whether the locomotor activities of the CSTw were comparable to competitive match-play (CM). Physiological measurements and physical/technical assessments were performed during CSTw for eleven Norwegian high-level women soccer players. The activity pattern during CSTw and CM was monitored using the ZXY tracking system. No differences were observed between CSTw and CM with regards to total distance covered (10093±94 and 9674±191m), high intensity running (1278±67 and 1193±115m) or sprinting (422±55 and 372±46m) (p>.05). During CSTw, average HR was 85±2%HRmax with 35±2% playing time >90%HRmax. Blood lactate increased (p<.05) from 1.4±0.3mM at rest to an average of 4.7±0.5mM during CSTw, with no changes during the test. Blood glucose was 5.4±0.3mM at rest and remained unaltered during CSTw. Sprint performance (2×20m) decreased (p<.05) by 3% during CSTw (8.19±0.06-8.47±0.10s). In conclusion, the locomotor activities during CSTw were comparable to that of high-level competitive match-play. The physiological demands of the CSTw were high, with no changes in heart rate, blood lactate or technical performance during the test, but a lowered sprint performance towards the end of the test. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Effects of Varenicline on Ethanol-Induced Conditioned Place Preference, Locomotor Stimulation, and Sensitization

    PubMed Central

    Gubner, Noah R.; McKinnon, Carrie S.; Phillips, Tamara J.

    2014-01-01

    Background Varenicline, a partial nicotinic acetylcholine receptor (nAChR) agonist, is a promising new drug for the treatment of alcohol (ethanol) dependence. Varenicline has been approved by the Food and Drug Administration as a smoking cessation therapeutic and has also been found to reduce ethanol consumption in humans and animal models of alcohol use. The current studies examined the hypotheses that varenicline attenuates the stimulant and sensitizing effects of ethanol, and reduces the motivational effects of ethanol-associated cues. The goal was to determine if these effects of varenicline contribute to its pharmacotherapeutic effects for alcohol dependence. In addition, effects of varenicline on acute stimulation and/or on the acquisition of sensitization would suggest a role for nAChR involvement in these effects of ethanol. Methods Dose-dependent effects of varenicline on the expression of ethanol-induced conditioned place preference (CPP), locomotor activation, and behavioral sensitization were examined. These measures model motivational effects of ethanol-associated cues, euphoric or stimulatory effects of ethanol, and ethanol-induced neuroadaptation. All studies used DBA/2J mice, an inbred strain with high sensitivity to these ethanol-related effects. Results Varenicline did not significantly attenuate the expression of ethanol-induced CPP. Varenicline reduced locomotor activity and had the most pronounced effect in the presence of ethanol, with the largest effect on acute ethanol-induced locomotor stimulation and a trend for varenicline to attenuate the expression of ethanol-induced sensitization. Conclusions Because varenicline did not attenuate the expression of ethanol-induced CPP, it may not be effective at reducing the motivational effects of ethanol-associated cues. This outcome suggests that reductions in the motivational effects of ethanol-associated cues may not be involved in how varenicline reduces ethanol consumption. However, varenicline

  15. Development of a Countermeasure to Mitigate Postflight Locomotor Dysfunction

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Richards, J. T.; Miller, C. A.; Brady, R.; Warren, L. E.; Ruttley, T. M.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. Evidence for the potential efficacy of an adaptive generalization gait training program can be obtained from numerous studies in the motor learning literature which have demonstrated that systematically varying the conditions of training enhances the ability of the performer to learn and retain a novel motor task. These variable practice training approaches have been used in applied contexts to improve motor skills required in a number of different sports. The central nervous system (CNS) can produce voluntary movement in an almost infinite number of ways. For example, locomotion can be achieved with many different combinations of joint angles, muscle activation patterns and forces. The CNS can exploit these degrees of freedom to enhance motor response adaptability during periods of adaptive flux like that encountered during a change in gravitational environment. Ultimately, the functional goal of an adaptive generalization countermeasure is not necessarily to immediately return movement patterns back to normal. Rather the training regimen should facilitate the reorganization of available sensory and motor subsystems to achieve safe and effective locomotion as soon as possible after long duration space flight. Indeed, this approach has been proposed as a basic feature underlying effective neurological rehabilitation. We have previously confirmed that subjects participating in an adaptive

  16. Monoamine Release in the Cat Lumbar Spinal Cord during Fictive Locomotion Evoked by the Mesencephalic Locomotor Region

    PubMed Central

    Noga, Brian R.; Turkson, Riza P.; Xie, Songtao; Taberner, Annette; Pinzon, Alberto; Hentall, Ian D.

    2017-01-01

    Spinal cord neurons active during locomotion are innervated by descending axons that release the monoamines serotonin (5-HT) and norepinephrine (NE) and these neurons express monoaminergic receptor subtypes implicated in the control of locomotion. The timing, level and spinal locations of release of these two substances during centrally-generated locomotor activity should therefore be critical to this control. These variables were measured in real time by fast-cyclic voltammetry in the decerebrate cat’s lumbar spinal cord during fictive locomotion, which was evoked by electrical stimulation of the mesencephalic locomotor region (MLR) and registered as integrated activity in bilateral peripheral nerves to hindlimb muscles. Monoamine release was observed in dorsal horn (DH), intermediate zone/ventral horn (IZ/VH) and adjacent white matter (WM) during evoked locomotion. Extracellular peak levels (all sites) increased above baseline by 138 ± 232.5 nM and 35.6 ± 94.4 nM (mean ± SD) for NE and 5-HT, respectively. For both substances, release usually began prior to the onset of locomotion typically earliest in the IZ/VH and peaks were positively correlated with net activity in peripheral nerves. Monoamine levels gradually returned to baseline levels or below at the end of stimulation in most trials. Monoamine oxidase and uptake inhibitors increased the release magnitude, time-to-peak (TTP) and decline-to-baseline. These results demonstrate that spinal monoamine release is modulated on a timescale of seconds, in tandem with centrally-generated locomotion and indicate that MLR-evoked locomotor activity involves concurrent activation of descending monoaminergic and reticulospinal pathways. These gradual changes in space and time of monoamine concentrations high enough to strongly activate various receptors subtypes on locomotor activated neurons further suggest that during MLR-evoked locomotion, monoamine action is, in part, mediated by extrasynaptic neurotransmission

  17. The roles of 5-HT1A and 5-HT2 receptors in the effects of 5-MeO-DMT on locomotor activity and prepulse inhibition in rats.

    PubMed

    Krebs-Thomson, Kirsten; Ruiz, Erbert M; Masten, Virginia; Buell, Mahalah; Geyer, Mark A

    2006-12-01

    The hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is structurally similar to other indoleamine hallucinogens such as LSD. The present study examined the effects of 5-MeO-DMT in rats using the Behavioral Pattern Monitor (BPM), which enables analyses of patterns of locomotor activity and exploration, and the prepulse inhibition of startle (PPI) paradigm. A series of interaction studies using the serotonin (5-HT)(1A) antagonist WAY-100635 (1.0 mg/kg), the 5-HT(2A) antagonist M100907 (1.0 mg/kg), and the 5-HT(2C) antagonist SER-082 (0.5 mg/kg) were performed to assess the respective contributions of these receptors to the behavioral effects of 5-MeO-DMT (0.01, 0.1, and 1.0 mg/kg) in the BPM and PPI paradigms. 5-MeO-DMT decreased locomotor activity, investigatory behavior, the time spent in the center of the BPM chamber, and disrupted PPI. All of these effects were antagonized by WAY-100635 pretreatment. M100907 pretreatment failed to attenuate any of these effects, while SER-082 pretreatment only antagonized the PPI disruption produced by 5-MeO-DMT. While the prevailing view was that the activation of 5-HT(2) receptors is solely responsible for hallucinogenic drug effects, these results support a role for 5-HT(1A) receptors in the effects of the indoleamine hallucinogen 5-MeO-DMT on locomotor activity and PPI in rats.

  18. Lipopolysaccharide affects exploratory behaviors toward novel objects by impairing cognition and/or motivation in mice: Possible role of activation of the central amygdala.

    PubMed

    Haba, Ryota; Shintani, Norihito; Onaka, Yusuke; Wang, Hyper; Takenaga, Risa; Hayata, Atsuko; Baba, Akemichi; Hashimoto, Hitoshi

    2012-03-17

    Lipopolysaccharide (LPS) produces a series of systemic and psychiatric changes called sickness behavior. In the present study, we characterized the LPS-induced decrease in novel object exploratory behaviors in BALB/c mice. As already reported, LPS (0.3-5 μg/mouse) induced dose- and time-dependent decreases in locomotor activity, food intake, social interaction, and exploration for novel objects, and an increase in immobility in the forced-swim test. Although the decrease in locomotor activity was ameliorated by 10h postinjection, novel object exploratory behaviors remained decreased at 24h and were observed even with the lowest dose of LPS. In an object exploration test, LPS shortened object exploration time but did not affect moving time or the frequency of object exploration. Although pre-exposure to the same object markedly decreased the duration of exploration and LPS did not change this reduction, LPS significantly impaired the exploration of a novel object that replaced the familiar one. LPS did not affect anxiety-like behaviors in open-field and elevated plus-maze tests. An LPS-induced increase in the number of c-Fos-immunoreactive cells was observed in several brain regions within 6h of LPS administration, but the number of cells quickly returned to control levels, except in the central amygdala where the increase continued for 24h. These results suggest that LPS most prominently affects object exploratory behaviors by impairing cognition and/or motivation including continuous attention and curiosity toward objects, and that this may be associated with activation of brain nuclei such as the central amygdala. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Effects of cadmium, manganese, and lead on locomotor activity and neurexin 2a expression in zebrafish.

    PubMed

    Tu, Hongwei; Fan, Chengji; Chen, Xiaohui; Liu, Jiaxian; Wang, Bin; Huang, Zhibin; Zhang, Yiyue; Meng, Xiaojing; Zou, Fei

    2017-08-01

    The synaptic adhesion protein Neurexin 2a (Nrxn2a) plays a key role in neuronal development and is associated with cognitive functioning and locomotor behavior. Although low-level metal exposure poses a potential risk to the human nervous system, especially during the developmental stages, little is known about the effects of metal exposures on nrxn2a expression during embryonic development. We therefore exposed wild-type zebrafish embryos/larvae to cadmium (CdCl 2 ), manganese (MnCl 2 ), and lead ([CH 3 COO] 2 Pb), to determine their effect on mortality, malformation, and hatching rate. Concentrations of these metals in zebrafish were detected by inductively coupled plasma mass spectrometry analysis. Locomotor activity of zebrafish larvae was analyzed using a video-track tracking system. Expression of nrxn2a was assessed by in situ hybridization and quantitative polymerase chain reaction. The results showed that mortality, malformation, and bioaccumulation increased as the exposure dosages and duration increased. Developmental exposure to these metals significantly reduced larval swim distance and velocity. The nrxn2aa and nrxn2ab genes were expressed in the central nervous system and downregulated by almost all of the 3 metals, especially Pb. These data demonstrate that exposure to metals downregulates nrxn2a in the zebrafish model system, and this is likely linked to concurrent developmental processes. Environ Toxicol Chem 2017;36:2147-2154. © 2017 SETAC. © 2017 SETAC.

  20. Mechanisms of Left-Right Coordination in Mammalian Locomotor Pattern Generation Circuits: A Mathematical Modeling View

    PubMed Central

    Talpalar, Adolfo E.; Rybak, Ilya A.

    2015-01-01

    The locomotor gait in limbed animals is defined by the left-right leg coordination and locomotor speed. Coordination between left and right neural activities in the spinal cord controlling left and right legs is provided by commissural interneurons (CINs). Several CIN types have been genetically identified, including the excitatory V3 and excitatory and inhibitory V0 types. Recent studies demonstrated that genetic elimination of all V0 CINs caused switching from a normal left-right alternating activity to a left-right synchronized “hopping” pattern. Furthermore, ablation of only the inhibitory V0 CINs (V0D subtype) resulted in a lack of left-right alternation at low locomotor frequencies and retaining this alternation at high frequencies, whereas selective ablation of the excitatory V0 neurons (V0V subtype) maintained the left–right alternation at low frequencies and switched to a hopping pattern at high frequencies. To analyze these findings, we developed a simplified mathematical model of neural circuits consisting of four pacemaker neurons representing left and right, flexor and extensor rhythm-generating centers interacting via commissural pathways representing V3, V0D, and V0V CINs. The locomotor frequency was controlled by a parameter defining the excitation of neurons and commissural pathways mimicking the effects of N-methyl-D-aspartate on locomotor frequency in isolated rodent spinal cord preparations. The model demonstrated a typical left-right alternating pattern under control conditions, switching to a hopping activity at any frequency after removing both V0 connections, a synchronized pattern at low frequencies with alternation at high frequencies after removing only V0D connections, and an alternating pattern at low frequencies with hopping at high frequencies after removing only V0V connections. We used bifurcation theory and fast-slow decomposition methods to analyze network behavior in the above regimes and transitions between them. The model

  1. Neuronal control of locomotor handedness in Drosophila.

    PubMed

    Buchanan, Sean M; Kain, Jamey S; de Bivort, Benjamin L

    2015-05-26

    Genetically identical individuals display variability in their physiology, morphology, and behaviors, even when reared in essentially identical environments, but there is little mechanistic understanding of the basis of such variation. Here, we investigated whether Drosophila melanogaster displays individual-to-individual variation in locomotor behaviors. We developed a new high-throughout platform capable of measuring the exploratory behavior of hundreds of individual flies simultaneously. With this approach, we find that, during exploratory walking, individual flies exhibit significant bias in their left vs. right locomotor choices, with some flies being strongly left biased or right biased. This idiosyncrasy was present in all genotypes examined, including wild-derived populations and inbred isogenic laboratory strains. The biases of individual flies persist for their lifetime and are nonheritable: i.e., mating two left-biased individuals does not yield left-biased progeny. This locomotor handedness is uncorrelated with other asymmetries, such as the handedness of gut twisting, leg-length asymmetry, and wing-folding preference. Using transgenics and mutants, we find that the magnitude of locomotor handedness is under the control of columnar neurons within the central complex, a brain region implicated in motor planning and execution. When these neurons are silenced, exploratory laterality increases, with more extreme leftiness and rightiness. This observation intriguingly implies that the brain may be able to dynamically regulate behavioral individuality.

  2. Locomotor training improves premotoneuronal control after chronic spinal cord injury.

    PubMed

    Knikou, Maria; Mummidisetty, Chaithanya K

    2014-06-01

    Spinal inhibition is significantly reduced after spinal cord injury (SCI) in humans. In this work, we examined if locomotor training can improve spinal inhibition exerted at a presynaptic level. Sixteen people with chronic SCI received an average of 45 training sessions, 5 days/wk, 1 h/day. The soleus H-reflex depression in response to low-frequency stimulation, presynaptic inhibition of soleus Ia afferent terminals following stimulation of the common peroneal nerve, and bilateral EMG recovery patterns were assessed before and after locomotor training. The soleus H reflexes evoked at 1.0, 0.33, 0.20, 0.14, and 0.11 Hz were normalized to the H reflex evoked at 0.09 Hz. Conditioned H reflexes were normalized to the associated unconditioned H reflex evoked with subjects seated, while during stepping both H reflexes were normalized to the maximal M wave evoked after the test H reflex at each bin of the step cycle. Locomotor training potentiated homosynaptic depression in all participants regardless the type of the SCI. Presynaptic facilitation of soleus Ia afferents remained unaltered in motor complete SCI patients. In motor incomplete SCIs, locomotor training either reduced presynaptic facilitation or replaced presynaptic facilitation with presynaptic inhibition at rest. During stepping, presynaptic inhibition was modulated in a phase-dependent manner. Locomotor training changed the amplitude of locomotor EMG excitability, promoted intralimb and interlimb coordination, and altered cocontraction between knee and ankle antagonistic muscles differently in the more impaired leg compared with the less impaired leg. The results provide strong evidence that locomotor training improves premotoneuronal control after SCI in humans at rest and during walking. Copyright © 2014 the American Physiological Society.

  3. Relating ranging ecology, limb length, and locomotor economy in terrestrial animals.

    PubMed

    Pontzer, Herman

    2012-03-07

    Ecomorphological analyses have identified a number of important evolutionary trends in vertebrate limb design, but the relationships between daily travel distance, locomotor ecology, and limb length in terrestrial animals remain poorly understood. In this paper I model the net rate of energy intake as a function of foraging efficiency, and thus of locomotor economy; improved economy leads to greater net energy intake. However, the relationship between locomotor economy and net intake is highly dependent on foraging efficiency; only species with low foraging efficiencies experience strong selection pressure for improved locomotor economy and increased limb length. Examining 237 terrestrial species, I find that nearly all taxa obtain sufficiently high foraging efficiencies that selection for further increases in economy is weak. Thus selection pressures for increased economy and limb length among living terrestrial animals may be relatively weak and similar in magnitude across ecologically diverse species. The Economy Selection Pressure model for locomotor economy may be useful in investigating the evolution of limb design in early terrestrial taxa and the coevolution of foraging ecology and locomotor anatomy in lineages with low foraging efficiencies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Intradiencephalon injection of histamine inhibited the recovery of locomotor function of spinal cord injured zebrafish.

    PubMed

    Huang, Shu-Bing; Zhao, Hou-De; Wang, Lin-Fang; Sun, Meng-Fei; Zhu, Ying-Li; Wu, Yi-Bo; Xu, Yi-Da; Peng, Shi-Xiao; Cui, Chun; Shen, Yan-Qin

    2017-07-29

    Human spinal cord injury (SCI) usually causes irreversible disability beneath the injured site due to poor neural regeneration. On the contrary, zebrafish show significant regenerative ability after SCI, thus is usually worked as an animal model for studying neuroregeneration. Most of the previous SCI studies focused on the local site of SCI, the supraspinal-derived signals were rarely mentioned. Here we showed that intradiencephalon injection of histamine (HA) inhibited the locomotor recovery in adult zebrafish post-SCI. Immunofluorescence results showed that intradiencephalon HA administration increased the activated microglia 3 days post injury (dpi), promoted the proliferation of radial glial cells at 7 dpi and affected the morphology of radial glial cells at 11 dpi. Furthermore, quantitative real-time polymerase chain reaction (qRT-PCR) results showed that intradiencephalon HA administration also reduced the expression of neurotrophic factors including brain-derived neurotrophic factor (BDNF) and insulin-like growth factor1 (IGF-1) at the lesion site, however, had no effect on the expression of pro-inflammatory factors such as TNF-alpha and IL-1 beta. Hence, our data suggested that exogenous intradiencephalon HA retarded locomotor recovery in spinal cord injured zebrafish via modulating the repair microenvironment. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Locomotor Status and the Development of Spatial Search Skills.

    ERIC Educational Resources Information Center

    Bai, Dina L.; Bertenthal, Bennett I.

    1992-01-01

    Investigated the possibility that previous reports of a relation between locomotor status and stage-4 object permanence performance could be generalized to performance on an object localization task. Findings suggest that the effects of locomotor experience on infants' search performance are quite specific and mediated by a variety of factors that…

  6. [Comparative analysis of metabotropic and ionotropic glutamate striatal receptors blockade influence on rats locomotor behaviour].

    PubMed

    Iakimovskiĭ, A F; Kerko, T V

    2013-02-01

    The influence of NMDA and metabotropic neostriatal glutamate receptors blockade to avoidance conditioning (in shuttle box) and free locomotor behavior (in open field) in chronic experiments in rats were investigated. The glutamate receptor antagonists were injected bilateral into striatum separately and with the GABA-A receptor antagonist picrotoxin (2 microg), that produced in rats the impairment of avoidance conditioning and choreo-myoklonic hyperkinesis. The most effective in preventing of negative picrotoxin influence on behavior was 5-type metabotropic glutamate receptors antagonist MTEP (3 microg). Separately injected MTEP did not influence on avoidance conditioning and free locomotor behavior. Unlike that, 1-type metabotropic glutamate receptors antagonist EMQMCM (3 microg) impaired normal locomotor behavior and did not prevent the picrotoxin effects. The NMDA glutamate receptors MK 801 (disocilpin--1 and 5 microg) impaired the picrotoxin-induced hyperkinesis, but did not to prevent the negative effects on avoidance conditioning; separately injected MK 801 reduced free locomotor activity. Based on location of investigated receptor types in neostriatal neurons membranes, we proposed that the most effective influence on 5-type metabotropic glutamate receptors is associated with their involvement in "indirect" efferent pathway, suffered in hyperkinetic extrapyramidal motor dysfunction--Huntington's chorea in human.

  7. Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.

    PubMed

    DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire

    2016-10-05

    Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship

  8. Involvement of delta and mu opioid receptors in the acute and sensitized locomotor action of cocaine in mice.

    PubMed

    Kotlinska, J H; Gibula-Bruzda, E; Witkowska, E; Izdebski, J

    2013-10-01

    Analogs of deltorphins, such as cyclo(Nδ, Nδ-carbonyl-d-Orn2, Orn4)deltorphin (DEL-6) and deltorphin II N-(ureidoethyl)amide (DK-4) are functional agonists predominantly for the delta opioid receptors (DOR) in the guinea-pig ileum and mouse vas deferens bioassays. The purpose of this study was to examine an influence of these peptides (5, 10 or 20 nmol, i.c.v.) on the acute cocaine-induced (10mg/kg, i.p.) locomotor activity and the expression of sensitization to cocaine locomotor effect. Sensitization to locomotor effect of cocaine was developed by five injections of cocaine at the dose of 10mg/kg, i.p. every 3 days. Our results indicated that DK-4 and DEL-6 differently affected the acute and sensitized cocaine locomotion. Co-administration of DEL-6 with cocaine enhanced acute cocaine locomotion only at the dose of 10 nmol, with minimal effects at the doses 5 and 20 nmol, whereas co-administration of DK-4 with cocaine enhanced acute cocaine-induced locomotion in a dose-dependent manner. Similarly to the acute effects, DEL-6 only at the dose of 10 nmol but DK-4 dose-dependently enhanced the expression of cocaine sensitization. Pre-treatment with DOR antagonist - naltrindole (5 nmol, i.c.v.) and mu opioid receptor (MOR) antagonist, β-funaltrexamine abolished the ability of both peptides to potentiate the effects of cocaine. Our study suggests that MOR and DOR are involved in the interactions between cocaine and both deltorphins analogs. A distinct dose-response effects of these peptides on cocaine locomotion probably arise from differential functional activation (targeting) of the DOR and MOR by both deltorphins analogs. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. White - cGMP Interaction Promotes Fast Locomotor Recovery from Anoxia in Adult Drosophila

    PubMed Central

    2017-01-01

    Increasing evidence indicates that the white (w) gene in Drosophila possesses extra-retinal functions in addition to its classical role in eye pigmentation. We have previously shown that w+ promotes fast and consistent locomotor recovery from anoxia, but how w+ modulates locomotor recovery is largely unknown. Here we show that in the absence of w+, several PDE mutants, especially cyclic guanosine monophosphate (cGMP)-specific PDE mutants, display wildtype-like fast locomotor recovery from anoxia, and that during the night time, locomotor recovery was light-sensitive in white-eyed mutant w1118, and light-insensitive in PDE mutants under w1118 background. Data indicate the involvement of cGMP in the modulation of recovery timing and presumably, light-evoked cGMP fluctuation is associated with light sensitivity of locomotor recovery. This was further supported by the observations that w-RNAi-induced delay of locomotor recovery was completely eliminated by upregulation of cGMP through multiple approaches, including PDE mutation, simultaneous overexpression of an atypical soluble guanylyl cyclase Gyc88E, or sildenafil feeding. Lastly, prolonged sildenafil feeding promoted fast locomotor recovery from anoxia in w1118. Taken together, these data suggest that a White-cGMP interaction modulates the timing of locomotor recovery from anoxia. PMID:28060942

  10. Effects of serotonergic medications on locomotor performance in humans with incomplete spinal cord injury.

    PubMed

    Leech, Kristan A; Kinnaird, Catherine R; Hornby, T George

    2014-08-01

    Incomplete spinal cord injury (iSCI) often results in significant motor impairments that lead to decreased functional mobility. Loss of descending serotonergic (5HT) input to spinal circuits is thought to contribute to motor impairments, with enhanced motor function demonstrated through augmentation of 5HT signaling. However, the presence of spastic motor behaviors in SCI is attributed, in part, to changes in spinal 5HT receptors that augment their activity in the absence of 5HT, although data demonstrating motor effects of 5HT agents that deactivate these receptors are conflicting. The effects of enhancement or depression of 5HT signaling on locomotor function have not been thoroughly evaluated in human iSCI. Therefore, the aim of the current study was to investigate acute effects of 5HT medications on locomotion in 10 subjects with chronic (>1 year) iSCI. Peak overground and treadmill locomotor performance, including measures of gait kinematics, electromyographic (EMG) activity, and oxygen consumption, were assessed before and after single-dose administration of either a selective serotonin reuptake inhibitor (SSRI) or a 5HT antagonist using a double-blinded, randomized, cross-over design. Results indicate that neither medication led to improvements in locomotion, with a significant decrease in peak overground gait speed observed after 5HT antagonists (from 0.8±0.1 to 0.7±0.1 m/s; p=0.01). Additionally, 5-HT medications had differential effects on EMG activity, with 5HT antagonists decreasing extensor activity and SSRIs increasing flexor activity. Our data therefore suggest that acute manipulation of 5HT signaling, despite changes in muscle activity, does not improve locomotor performance after iSCI.

  11. Wings versus legs in the avian bauplan: development and evolution of alternative locomotor strategies.

    PubMed

    Heers, Ashley M; Dial, Kenneth P

    2015-02-01

    Wings have long been regarded as a hallmark of evolutionary innovation, allowing insects, birds, and bats to radiate into aerial environments. For many groups, our intuitive and colloquial perspective is that wings function for aerial activities, and legs for terrestrial, in a relatively independent manner. However, insects and birds often engage their wings and legs cooperatively. In addition, the degree of autonomy between wings and legs may be constrained by tradeoffs, between allocating resources to wings versus legs during development, or between wing versus leg investment and performance (because legs must be carried as baggage by wings during flight and vice versa). Such tradeoffs would profoundly affect the development and evolution of locomotor strategies, and many related aspects of animal ecology. Here, we provide the first evaluation of wing versus leg investment, performance and relative use, in birds-both across species, and during ontogeny in three precocial species with different ecologies. Our results suggest that tradeoffs between wing and leg modules help shape ontogenetic and evolutionary trajectories, but can be offset by recruiting modules cooperatively. These findings offer a new paradigm for exploring locomotor strategies of flying organisms and their extinct precursors, and thereby elucidating some of the most spectacular diversity in animal history. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  12. Effects of Overground Locomotor Training on Walking Performance in Chronic Cervical Motor Incomplete Spinal Cord Injury: A Pilot Study.

    PubMed

    Gollie, Jared M; Guccione, Andrew A; Panza, Gino S; Jo, Peter Y; Herrick, Jeffrey E

    2017-06-01

    To determine the effects of a novel overground locomotor training program on walking performance in people with chronic cervical motor incomplete spinal cord injury (iSCI). Before-after pilot study. Human performance research laboratory. Adults (N=6, age >18y) with chronic cervical iSCI with American Spinal Injury Association Impairment Scale grades C and D. Overground locomotor training included two 90-minute sessions per week for 12 to 15 weeks. Training sessions alternated between uniplanar and multiplanar stepping patterns. Each session was comprised of 5 segments: joint mobility, volitional muscle activation, task isolation, task integration, and activity rehearsal. Overground walking speed, oxygen consumption (V˙o 2 ), and carbon dioxide production (V˙co 2 ). Overground locomotor training increased overground walking speed (.36±.20 vs .51±.24 m/s, P<.001, d=.68). Significant decreases in V˙o 2 (6.6±1.3 vs 5.7±1.4mL·kg·min, P=.038, d=.67) and V˙co 2 (753.1±125.5 vs 670.7±120.3mL/min, P=.036, d=.67) during self-selected constant work rate treadmill walking were also noted after training. The overground locomotor training program used in this pilot study is feasible and improved both overground walking speed and walking economy in a small sample of people with chronic cervical iSCI. Future studies are necessary to establish the efficacy of this overground locomotor training program and to differentiate among potential mechanisms contributing to enhanced walking performance in people with iSCI after overground locomotor training. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Regulator of G protein signaling-12 modulates the dopamine transporter in ventral striatum and locomotor responses to psychostimulants.

    PubMed

    Gross, Joshua D; Kaski, Shane W; Schroer, Adam B; Wix, Kimberley A; Siderovski, David P; Setola, Vincent

    2018-02-01

    Regulators of G protein signaling are proteins that accelerate the termination of effector stimulation after G protein-coupled receptor activation. Many regulators of G protein signaling proteins are highly expressed in the brain and therefore considered potential drug discovery targets for central nervous system pathologies; for example, here we show that RGS12 is highly expressed in microdissected mouse ventral striatum. Given a role for the ventral striatum in psychostimulant-induced locomotor activity, we tested whether Rgs12 genetic ablation affected behavioral responses to amphetamine and cocaine. RGS12 loss significantly decreased hyperlocomotion to lower doses of both amphetamine and cocaine; however, other outcomes of administration (sensitization and conditioned place preference) were unaffected, suggesting that RGS12 does not function in support of the rewarding properties of these psychostimulants. To test whether observed response changes upon RGS12 loss were caused by changes to dopamine transporter expression and/or function, we prepared crude membranes from the brains of wild-type and RGS12-null mice and measured dopamine transporter-selective [ 3 H]WIN 35428 binding, revealing an increase in dopamine transporter levels in the ventral-but not dorsal-striatum of RGS12-null mice. To address dopamine transporter function, we prepared striatal synaptosomes and measured [ 3 H]dopamine uptake. Consistent with increased [ 3 H]WIN 35428 binding, dopamine transporter-specific [ 3 H]dopamine uptake in RGS12-null ventral striatal synaptosomes was found to be increased. Decreased amphetamine-induced locomotor activity and increased [ 3 H]WIN 35428 binding were recapitulated with an independent RGS12-null mouse strain. Thus, we propose that RGS12 regulates dopamine transporter expression and function in the ventral striatum, affecting amphetamine- and cocaine-induced increases in dopamine levels that specifically elicit acute hyperlocomotor responses.

  14. Previous Exposure to Δ9-Tetrahydrocannibinol Enhances Locomotor Responding to but Not Self-Administration of AmphetamineS⃞

    PubMed Central

    Cortright, James J.; Lorrain, Daniel S.; Beeler, Jeff A.; Tang, Wei-Jen

    2011-01-01

    Previous exposure to amphetamine leads to enhanced locomotor and nucleus accumbens (NAcc) dopamine (DA) responding to the drug as well as enhanced amphetamine self-administration. Here, we investigated the effects of exposure to Δ9-tetrahydrocannibinol (Δ9-THC) on behavioral and biochemical responding to amphetamine. Rats in different groups received five exposure injections of vehicle or one of five doses of Δ9-THC (0.4, 0.75, 1.5, 3.0, and 6.0 mg/kg i.p.) and were tested 2 days and 2 weeks later. Exposure to all but the lowest and highest doses of Δ9-THC enhanced the locomotor response to amphetamine (0.75 mg/kg i.p.), but all failed to enhance NAcc DA overflow in response to the drug. Moreover, exposure to 3.0 mg/kg i.p. Δ9-THC increased forskolin-evoked adenylyl cyclase activity in the NAcc and rats' locomotor response to the direct DA receptor agonist apomorphine (1.0 mg/kg s.c.), suggesting that Δ9-THC sensitized locomotor responding to amphetamine by up-regulating postsynaptic DA receptor signaling in the NAcc. Finally, amphetamine self-administration (200 μg/kg/infusion i.v.) was enhanced in amphetamine (5 × 1.5 mg/kg i.p.)-exposed rats, but not in rats exposed to Δ9-THC (5 × 3.0 mg/kg i.p.). Previous exposure to this dose of Δ9-THC modestly increased apomorphine SA (0.5 mg/kg/infusion i.v.). Thus, unlike amphetamine exposure, exposure to Δ9-THC does not enhance the subsequent NAcc DA response to amphetamine or promote amphetamine self-administration. Although Δ9-THC leads to alterations in postsynaptic DA receptor signaling in the NAcc and these can affect the generation of locomotion, these neuroadaptations do not seem to be linked to the expression of enhanced amphetamine self-administration. PMID:21389094

  15. Tributyltin induces premature hatching and reduces locomotor activity in zebrafish (Danio rerio) embryos/larvae at environmentally relevant levels.

    PubMed

    Liang, Xuefang; Souders, Christopher L; Zhang, Jiliang; Martyniuk, Christopher J

    2017-12-01

    Tributyltin (TBT) is an organotin compound that is the active ingredient of many biocides and antifouling agents. In addition to its well established role as an endocrine disruptor, TBT is also associated with adverse effects on the nervous system and behavior. In this study, zebrafish (Danio rerio) embryos were exposed to environmentally relevant concentrations of TBT (0.01, 0.1, 1 nM) to determine how low levels affected development and behavior. Fish exposed to 1 nM TBT hatched earlier when compared to controls. Following a 96-h exposure, total swimming distance, velocity, and activity of zebrafish larvae were reduced compared to controls. To identify putative mechanisms for these altered endpoints, we assessed embryo bioenergetics and gene expression. We reasoned that the accelerated hatch time could be related to ATP production and energy, thus embryos were exposed to TBT for 24 and 48-h exposure prior to hatch. There were no differences among groups for endpoints related to bioenergetics (i.e. basal, ATP-dependent, and maximal respiration). To address mechanisms related to changes in behavioral activity, we measured transcripts associated with muscle function (myf6, myoD, and myoG) and dopamine signaling (th, dat, dopamine receptors) as dopamine regulates behavior. No transcript was altered in expression by TBT in larvae, suggesting that other mechanisms exist that may explain changes in higher level endpoints. These results suggest that endpoints related to the whole animal (i.e. timing of hatch and locomotor behavior) are more sensitive to environmentally-relevant concentrations of TBT compared to the molecular and metabolic endpoints examined here. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [Age-related dynamics of the maximum oxygen consumption associated with different regimens of locomotor activity].

    PubMed

    Miakotnykh, V V; Khodasevich, L S; Ermakov, B A

    2011-01-01

    This study included a total of 234 practically healthy men at the age from 40 to 69 years differing in the regimen of daily locomotor activity. They were divided into 4 groups, each comprised of subjects ranged by age with a ten-year interval. Group 1 included former high-level athletes continuing active physical training, group 2 was comprised of former high-level athletes living a sedentary life style, group 3 consisted of subjects regularly engaged in health-giving physical exercises, and group 4 included subjects who were never engaged in physical exercises. The energy consumption by the members of all four groups was estimated when they were undergoing a stepwise increasing workload on the veloergometer measured with the help of a computerized diagnostic system. The results of the study indicate that the high oxygen consumption at a limiting load in the former high-level athletes is associated with the significant economization of basal metabolism and the reduction of oxygen consumption at rest. This mechanism accounts for the possibility to retain adequate physical activity of the organism up to the age of 70 years.

  17. Sodium Pumps Mediate Activity-Dependent Changes in Mammalian Motor Networks

    PubMed Central

    Picton, Laurence D.; Nascimento, Filipe; Broadhead, Matthew J.; Sillar, Keith T.

    2017-01-01

    Ubiquitously expressed sodium pumps are best known for maintaining the ionic gradients and resting membrane potential required for generating action potentials. However, activity- and state-dependent changes in pump activity can also influence neuronal firing and regulate rhythmic network output. Here we demonstrate that changes in sodium pump activity regulate locomotor networks in the spinal cord of neonatal mice. The sodium pump inhibitor, ouabain, increased the frequency and decreased the amplitude of drug-induced locomotor bursting, effects that were dependent on the presence of the neuromodulator dopamine. Conversely, activating the pump with the sodium ionophore monensin decreased burst frequency. When more “natural” locomotor output was evoked using dorsal-root stimulation, ouabain increased burst frequency and extended locomotor episode duration, whereas monensin slowed and shortened episodes. Decreasing the time between dorsal-root stimulation, and therefore interepisode interval, also shortened and slowed activity, suggesting that pump activity encodes information about past network output and contributes to feedforward control of subsequent locomotor bouts. Using whole-cell patch-clamp recordings from spinal motoneurons and interneurons, we describe a long-duration (∼60 s), activity-dependent, TTX- and ouabain-sensitive, hyperpolarization (∼5 mV), which is mediated by spike-dependent increases in pump activity. The duration of this dynamic pump potential is enhanced by dopamine. Our results therefore reveal sodium pumps as dynamic regulators of mammalian spinal motor networks that can also be affected by neuromodulatory systems. Given the involvement of sodium pumps in movement disorders, such as amyotrophic lateral sclerosis and rapid-onset dystonia parkinsonism, knowledge of their contribution to motor network regulation also has considerable clinical importance. SIGNIFICANCE STATEMENT The sodium pump is ubiquitously expressed and responsible

  18. Locomotor activity of rats with SCI is improved by dexmedetomidine by targeting the expression of inflammatory factors.

    PubMed

    Wang, Wei-Guo; Wang, Lin; Jiao, Zhen-Hua; Xue, Bin; Xu, Zhan-Wang

    2018-04-26

    Dexmedetomidine, a well‑known selective α‑2 adrenoceptor agonist, inhibits the apoptosis of neurons and protects other organs from oxidative damage. In the present study, the effect of dexmedetomidine on spinal cord injury (SCI) in a rat model was investigated. The SCI rat model was prepared using the weight‑drop method, and the effect of dexmedetomidine on locomotor activity was analyzed using the Basso, Beattie and Bresnahan (BBB) rating scale. Western blot analysis was used to observe changes in the expression of apoptosis‑related proteins, including B‑cell lymphoma 2 (Bcl‑2) and Bcl‑2‑associated X protein (Bax). The results revealed that treatment of the SCI rats with dexmedetomidine at a dose of 50 mg/kg significantly prevented the formation of edema in the tissues of the spinal cord. Dexmedetomidine also inhibited the SCI‑induced accumulation of neutrophils in the spinal cord. The BBB scores were significantly increased (P<0.05) in the rats with SCI treated with dexmedetomidine after 10 days. The results of grid walking test revealed a marked decrease in the number of missteps following 10 days of dexmedetomidine treatment. The expression levels of tumor necrosis factor (TNF)‑α and interleukin (IL)‑1β were significantly reduced (P<0.05) in the spinal cord tissues of the dexmedetomidine group, compared with those in the control group of rats. Dexmedetomidine treatment following SCI exerted an inhibitory effect on the SCI‑induced increase in the expression of Bax. The expression of Bcl‑2 was increased in the dexmedetomidine treated rats, compared with that in the control group. Taken together, dexmedetomidine improved the locomotor activity of the rats through the inhibition of edema, reduction in the expression levels of TNF‑α and IL‑1β, and inhibition of the induction of apoptosis. Therefore, dexmedetomidine may be of therapeutic importance for patients with SCI.

  19. Cerebellum Transcriptome of Mice Bred for High Voluntary Activity Offers Insights into Locomotor Control and Reward-Dependent Behaviors.

    PubMed

    Caetano-Anollés, Kelsey; Rhodes, Justin S; Garland, Theodore; Perez, Sam D; Hernandez, Alvaro G; Southey, Bruce R; Rodriguez-Zas, Sandra L

    2016-01-01

    The role of the cerebellum in motivation and addictive behaviors is less understood than that in control and coordination of movements. High running can be a self-rewarding behavior exhibiting addictive properties. Changes in the cerebellum transcriptional networks of mice from a line selectively bred for High voluntary running (H) were profiled relative to an unselected Control (C) line. The environmental modulation of these changes was assessed both in activity environments corresponding to 7 days of Free (F) access to running wheel and to Blocked (B) access on day 7. Overall, 457 genes exhibited a significant (FDR-adjusted P-value < 0.05) genotype-by-environment interaction effect, indicating that activity genotype differences in gene expression depend on environmental access to running. Among these genes, network analysis highlighted 6 genes (Nrgn, Drd2, Rxrg, Gda, Adora2a, and Rab40b) connected by their products that displayed opposite expression patterns in the activity genotype contrast within the B and F environments. The comparison of network expression topologies suggests that selection for high voluntary running is linked to a predominant dysregulation of hub genes in the F environment that enables running whereas a dysregulation of ancillary genes is favored in the B environment that blocks running. Genes associated with locomotor regulation, signaling pathways, reward-processing, goal-focused, and reward-dependent behaviors exhibited significant genotype-by-environment interaction (e.g. Pak6, Adora2a, Drd2, and Arhgap8). Neuropeptide genes including Adcyap1, Cck, Sst, Vgf, Npy, Nts, Penk, and Tac2 and related receptor genes also exhibited significant genotype-by-environment interaction. The majority of the 183 differentially expressed genes between activity genotypes (e.g. Drd1) were under-expressed in C relative to H genotypes and were also under-expressed in B relative to F environments. Our findings indicate that the high voluntary running mouse

  20. Cerebellum Transcriptome of Mice Bred for High Voluntary Activity Offers Insights into Locomotor Control and Reward-Dependent Behaviors

    PubMed Central

    Caetano-Anollés, Kelsey; Rhodes, Justin S.; Garland, Theodore; Perez, Sam D.; Hernandez, Alvaro G.; Southey, Bruce R.; Rodriguez-Zas, Sandra L.

    2016-01-01

    The role of the cerebellum in motivation and addictive behaviors is less understood than that in control and coordination of movements. High running can be a self-rewarding behavior exhibiting addictive properties. Changes in the cerebellum transcriptional networks of mice from a line selectively bred for High voluntary running (H) were profiled relative to an unselected Control (C) line. The environmental modulation of these changes was assessed both in activity environments corresponding to 7 days of Free (F) access to running wheel and to Blocked (B) access on day 7. Overall, 457 genes exhibited a significant (FDR-adjusted P-value < 0.05) genotype-by-environment interaction effect, indicating that activity genotype differences in gene expression depend on environmental access to running. Among these genes, network analysis highlighted 6 genes (Nrgn, Drd2, Rxrg, Gda, Adora2a, and Rab40b) connected by their products that displayed opposite expression patterns in the activity genotype contrast within the B and F environments. The comparison of network expression topologies suggests that selection for high voluntary running is linked to a predominant dysregulation of hub genes in the F environment that enables running whereas a dysregulation of ancillary genes is favored in the B environment that blocks running. Genes associated with locomotor regulation, signaling pathways, reward-processing, goal-focused, and reward-dependent behaviors exhibited significant genotype-by-environment interaction (e.g. Pak6, Adora2a, Drd2, and Arhgap8). Neuropeptide genes including Adcyap1, Cck, Sst, Vgf, Npy, Nts, Penk, and Tac2 and related receptor genes also exhibited significant genotype-by-environment interaction. The majority of the 183 differentially expressed genes between activity genotypes (e.g. Drd1) were under-expressed in C relative to H genotypes and were also under-expressed in B relative to F environments. Our findings indicate that the high voluntary running mouse

  1. Dentate gyrus neurogenesis ablation via cranial irradiation enhances morphine self-administration and locomotor sensitization.

    PubMed

    Bulin, Sarah E; Mendoza, Matthew L; Richardson, Devon R; Song, Kwang H; Solberg, Timothy D; Yun, Sanghee; Eisch, Amelia J

    2018-03-01

    Adult dentate gyrus (DG) neurogenesis is important for hippocampal-dependent learning and memory, but the role of new neurons in addiction-relevant learning and memory is unclear. To test the hypothesis that neurogenesis is involved in the vulnerability to morphine addiction, we ablated adult DG neurogenesis and examined morphine self-administration (MSA) and locomotor sensitization. Male Sprague-Dawley rats underwent hippocampal-focused, image-guided X-ray irradiation (IRR) to eliminate new DG neurons or sham treatment (Sham). Six weeks later, rats underwent either MSA (Sham = 16, IRR = 15) or locomotor sensitization (Sham = 12, IRR = 12). Over 21 days of MSA, IRR rats self-administered ~70 percent more morphine than Sham rats. After 28 days of withdrawal, IRR rats pressed the active lever 40 percent more than Sham during extinction. This was not a general enhancement of learning or locomotion, as IRR and Sham groups had similar operant learning and inactive lever presses. For locomotor sensitization, both IRR and Sham rats sensitized, but IRR rats sensitized faster and to a greater extent. Furthermore, dose-response revealed that IRR rats were more sensitive at a lower dose. Importantly, these increases in locomotor activity were not apparent after acute morphine administration and were not a byproduct of irradiation or post-irradiation recovery time. Therefore, these data, along with other previously published data, indicate that reduced hippocampal neurogenesis confers vulnerability for multiple classes of drugs. Thus, therapeutics to specifically increase or stabilize hippocampal neurogenesis could aid in preventing initial addiction as well as future relapse. © 2017 Society for the Study of Addiction.

  2. The effects of exercise on cocaine self-administration, food-maintained responding, and locomotor activity in female rats: importance of the temporal relationship between physical activity and initial drug exposure.

    PubMed

    Smith, Mark A; Witte, Maryam A

    2012-12-01

    Previous studies have reported that exercise decreases cocaine self-administration in rats with long-term access (8+ weeks) to activity wheels in the home cage. The purpose of this study was to (a) examine the importance of the temporal relationship between physical activity and initial drug exposure, (b) determine the effects of exercise on responding maintained by a nondrug reinforcer (i.e., food), and (c) investigate the effects of exercise on cocaine-induced increases in locomotor activity. To this end, female rats were obtained at weaning and divided into 4 groups: (a) EXE-SED rats were housed in exercise cages for 6 weeks and then transferred to sedentary cages after the first day of behavioral testing; (b) SED-EXE rats were housed in sedentary cages for 6 weeks and then transferred to exercise cages after the first day of behavioral testing; (c) SED-SED rats remained in sedentary cages for the duration of the study; and (d) EXE-EXE rats remained in exercise cages for the duration of the study. Relative to the sedentary group (SED-SED), exercise reduced cocaine self-administration in both groups with access to activity wheels after initial drug exposure (EXE-EXE, SED-EXE) but did not reduce cocaine self-administration in the group with access to activity wheels only before drug exposure (EXE-SED). Exercise also decreased the effects of cocaine on locomotor activity but did not reduce responding maintained by food. These data suggest that exercise may reduce cocaine use in drug-experienced individuals with no prior history of aerobic activity without decreasing other types of positively reinforced behaviors.

  3. [Thermal tolerance, diel variation of body temperature, and thermal dependence of locomotor performance of hatchling soft-shelled turtles, Trionyx sinensis].

    PubMed

    Sun, Pingyue; Xu, Xiaoyin; Chen, Huili; Ji, Xiang

    2002-09-01

    The thermal tolerance, body temperature, and influence of temperature on locomotor performance of hatchling soft-shelled turtles (Trionyx sinensis) were studied under dry and wet conditions, and the selected body temperature of hatchlings was 28.0 and 30.3 degrees C, respectively. Under wet condition, the critical thermal maximum and minimum averaged 40.9 and 7.8 degrees C, respectively. In the environments without thermal gradients, the diel variation of body temperature was highly consistent with the variation of both air and water temperatures, and the body temperature was more directly affected by water temperature than by air temperature, which implied that the physiological thermoregulation of hatchling T. sinensis was very weak. In the environments with thermal gradients, hatchling turtles could maintain relatively high and constant body temperatures, primarily through behavioral thermoregulation. The locomotor performance of hatchling turtles was highly dependent on their body temperature. Within a certain range, the locomotor performance increased with increasing body temperature. In our study, the optimal body temperature for locomotor performance was 31.5 degrees C, under which, the maximum continuous running distance, running distance per minute, and number of stops per minute averaged 1.87 m, 4.92 m.min-1, and 6.2 times.min-1, respectively. The correspondent values at 33.0 degrees C averaged 1.30 m, 4.28 m.min-1, and 7.7 times.min-1, respectively, which indicated that the locomotor performance of hatchling turtles was impaired at 33.0 degrees C. Therefore, extremely high body temperatures might have an adverse effect on locomotor performance of hatchling turtles.

  4. The delta-opioid receptor agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N,N-diethylbenzamide] synergistically enhances the locomotor-activating effects of some psychomotor stimulants, but not direct dopamine agonists, in rats.

    PubMed

    Jutkiewicz, Emily M; Baladi, Michelle G; Folk, John E; Rice, Kenner C; Woods, James H

    2008-02-01

    The nonpeptidic delta-opioid agonist SNC80 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-(3-methoxybenzyl)-N,N-diethylbenzamide] produces many stimulant-like behavioral effects in rodents and monkeys, such as locomotor stimulation, generalization to cocaine in discrimination procedures, and antiparkinsonian effects. Tolerance to the locomotor-stimulating effects of SNC80 develops after a single administration of SNC80 in rats; it is not known whether cross-tolerance develops to the effects of other stimulant compounds. In the initial studies to determine whether SNC80 produced cross-tolerance to other stimulant compounds, it was discovered that amphetamine-stimulated locomotor activity was greatly enhanced in SNC80-pretreated rats. This study evaluated acute cross-tolerance between delta-opioid agonists and other locomotor-stimulating drugs. Locomotor activity was measured in male Sprague-Dawley rats implanted with radiotransmitters, and activity levels were recorded in the home cage environment. Three-hour SNC80 pretreatment produced tolerance to further delta-opioid receptor stimulation but also augmented greatly amphetamine-stimulated locomotor activity in a dose-dependent manner. Pretreatments with other delta-opioid agonists, (+)BW373U86 [(+)-4-[alpha(R)-alpha-[(2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl]-3-hydroxybenzyl]-N,N-diethylbenzamide] and oxymorphindole (17-methyl-6,7-dehydro-4,5-epoxy-3,14-dihydroxy-6,7,2',3'-indolomorphinan), also modified amphetamine-induced activity levels. SNC80 pretreatment enhanced the stimulatory effects of the dopamine/norepinephrine transporter ligands cocaine and nomifensine (1,2,3,4-tetrahydro-2-methyl-4-phenyl-8-isoquinolinanmine maleate salt), but not the direct dopamine receptor agonists SKF81297 [R-(+)-6-chloro-7,8-dihydroxy-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrobromide] and quinpirole [trans-(-)-(4alphaR)-4,4a, 5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo[3,4-g] quinoline

  5. GABAA overactivation potentiates the effects of NMDA blockade during the brain growth spurt in eliciting locomotor hyperactivity in juvenile mice.

    PubMed

    Oliveira-Pinto, Juliana; Paes-Branco, Danielle; Cristina-Rodrigues, Fabiana; Krahe, Thomas E; Manhães, Alex C; Abreu-Villaça, Yael; Filgueiras, Cláudio C

    2015-01-01

    Both NMDA receptor blockade and GABAA receptor overactivation during the brain growth spurt may contribute to the hyperactivity phenotype reminiscent of attention-deficit/hyperactivity disorder. Here, we evaluated the effects of exposure to MK801 (a NMDA antagonist) and/or to muscimol (a GABAA agonist) during the brain growth spurt on locomotor activity of juvenile Swiss mice. This study was carried out in two separate experiments. In the first experiment, pups received a single i.p. injection of either saline solution (SAL), MK801 (MK, 0.1, 0.3 or 0.5 mg/kg) or muscimol (MU, 0.02, 0.1 or 0.5 mg/kg) at the second postnatal day (PND2), and PNDs 4, 6 and 8. In the second experiment, we investigated the effects of a combined injection of MK (0.1 mg/kg) and MU (doses: 0.02, 0.1 or 0.5 mg/kg) following the same injection schedule of the first experiment. In both experiments, locomotor activity was assessed for 15 min at PND25. While MK promoted a dose-dependent increase in locomotor activity, exposure to MU failed to elicit significant effects. The combined exposure to the highest dose of MU and the lowest dose of MK induced marked hyperactivity. Moreover, the combination of the low dose of MK and the high dose of MU resulted in a reduced activity in the center of the open field, suggesting an increased anxiety-like behavior. These findings suggest that, during the brain growth spurt, the blockade of NMDA receptors induces juvenile locomotor hyperactivity whereas hyperactivation of GABAA receptors does not. However, GABAA overactivation during this period potentiates the effects of NMDA blockade in inducing locomotor hyperactivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. 7α-Hydroxypregnenolone regulating locomotor behavior identified in the brain and pineal gland across vertebrates.

    PubMed

    Tsutsui, Kazuyoshi; Haraguchi, Shogo; Vaudry, Hubert

    2017-09-14

    The brain synthesizes steroids de novo from cholesterol, which are called neurosteroids. Based on extensive studies on neurosteroids over the past thirty years, it is now accepted that neurosteroidogenesis in the brain is a conserved property across vertebrates. However, the formation of bioactive neurosteroids in the brain is still incompletely elucidated in vertebrates. In fact, we recently identified 7α-hydroxypregnenolone (7α-OH PREG) as a novel bioactive neurosteroid stimulating locomotor behavior in the brain of several vertebrates. The follow-up studies have demonstrated that the stimulatory action of brain 7α-OH PREG on locomotor behavior is mediated by the dopaminergic system across vertebrates. More recently, we have further demonstrated that the pineal gland, an endocrine organ located close to the brain, is a major site of the formation of bioactive neurosteroids. In addition to the brain, the pineal gland actively produces 7α-OH PREG de novo from cholesterol as a major pineal neurosteroid that acts on the brain to control locomotor rhythms. This review summarizes the identification, biosynthesis and mode of action of brain and pineal 7α-OH PREG, a new bioactive neurosteroid regulating locomotor behavior, across vertebrates. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Locomotor problems among rural elderly population in a District of Aligarh, North India.

    PubMed

    Maroof, Mohd; Ahmad, Anees; Khalique, Najam; Ansari, M Athar

    2017-01-01

    Locomotor functions decline with the age along with other physiological changes. This results in deterioration of the quality of life with decreased social and economic role in the society, as well as increased dependency, for the health care and other basic services. The demographic transition resulting in increased proportion of elderly may pose a burden to the health system. To find the prevalence of locomotor problems among the elderly population, and related sociodemographic factors. The study was a community-based cross-sectional study done at field practice area of Rural Health Training Centre, JN Medical College, AMU, Aligarh, Uttar Pradesh, India. A sample of 225 was drawn from 1018 elderly population aged 60 years and above using systematic random sampling with probability proportionate to size. Sociodemographic characteristics were obtained using pretested and predesigned questionnaire. Locomotor problems were assessed using the criteria used by National Sample Survey Organization. Data were analyzed using SPSS version 20. Chi-square test was used to test relationship of locomotor problems with sociodemographic factors. P <0.05 was considered statistically significant. The prevalence of locomotor problems among the elderly population was 25.8%. Locomotor problems were significantly associated with age, gender, and working status whereas no significant association with literacy status and marital status was observed. The study concluded that approximately one-fourth of the elderly population suffered from locomotor problems. The sociodemographic factors related to locomotor problems needs to be addressed properly to help them lead an independent and economically productive life.

  8. The Effects of the Mars Exploration Rovers (MER) Work Schedule Regime on Locomotor Activity Circadian Rhythms, Sleep and Fatigue

    NASA Technical Reports Server (NTRS)

    DeRoshia, Charles W.; Colletti, Laura C.; Mallis, Melissa M.

    2008-01-01

    This study assessed human adaptation to a Mars sol by evaluating sleep metrics obtained by actigraphy and subjective responses in 22 participants, and circadian rhythmicity in locomotor activity in 9 participants assigned to Mars Exploration Rover (MER) operational work schedules (24.65 hour days) at the Jet Propulsion Laboratory in 2004. During MER operations, increased work shift durations and reduced sleep durations and time in bed were associated with the appearance of pronounced 12-hr (circasemidian) rhythms with reduced activity levels. Sleep duration, workload, and circadian rhythm stability have important implications for adaptability and maintenance of operational performance not only of MER operations personnel but also in space crews exposed to a Mars sol of 24.65 hours during future Mars missions.

  9. Cilnidipine, an L/N-type calcium channel blocker prevents acquisition and expression of ethanol-induced locomotor sensitization in mice.

    PubMed

    Bhutada, Pravinkumar; Mundhada, Yogita; Patil, Jayshree; Rahigude, Anand; Zambare, Krushna; Deshmukh, Prashant; Tanwar, Dhanshree; Jain, Kishor

    2012-04-11

    Several evidences indicated the involvement of L- and N-type calcium channels in behavioral effects of drugs of abuse, including ethanol. Calcium channels are implicated in ethanol-induced behaviors and neurochemical responses. Calcium channel antagonists block the psychostimulants induced behavioral sensitization. Recently, it is demonstrated that L-, N- and T-type calcium channel blockers attenuate the acute locomotor stimulant effects of ethanol. However, no evidence indicated the role of calcium channels in ethanol-induced psychomotor sensitization. Therefore, present study evaluated the influence of cilnidipine, an L/N-type calcium channel blocker on acquisition and expression of ethanol-induced locomotor sensitization. The results revealed that cilnidipine (0.1 and 1.0μg/mouse, i.c.v.) attenuates the expression of sensitization to locomotor stimulant effect of ethanol (2.0g/kg, i.p.), whereas pre- treatment of cilnidipine (0.1 and 1.0μg/mouse, i.c.v.) during development of sensitization blocks acquisition and attenuates expression of sensitization to locomotor stimulant effect of ethanol. Cilnidipine per se did not influence locomotor activity in tested doses. Further, cilnidipine had no influence on effect of ethanol on rotarod performance. These results support the hypothesis that neuroadaptive changes in calcium channels participate in the acquisition and the expression of ethanol-induced locomotor sensitization. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. The novel recreational drug 3,4-methylenedioxypyrovalerone (MDPV) is a potent psychomotor stimulant: self-administration and locomotor activity in rats.

    PubMed

    Aarde, S M; Huang, P K; Creehan, K M; Dickerson, T J; Taffe, M A

    2013-08-01

    Recreational use of the cathinone derivative 3,4-methylenedioxypyrovalerone (MDPV; "bath salts") has increased worldwide in past years, accompanied by accounts of health and legal problems in the popular media and efforts to criminalize possession in numerous jurisdictions. Minimal information exists on the effects of MDPV in laboratory models. This study determined the effects of MDPV, alongside those of the better studied stimulant d-methamphetamine (METH), using rodent models of intravenous self-administration (IVSA), thermoregulation and locomotor activity. Male Wistar rats were trained to self-administer MDPV or METH (0.05 mg/kg/infusion, i.v.) or were prepared with radiotelemetry implants for the assessment of body temperature and activity responses to MDPV or METH (0-5.6 mg/kg s.c.). METH and MDPV were consistently self-administered within 10 training sessions (mg/kg/h; METH Mean = 0.4 and Max = 1.15; MDPV Mean = 0.9 and Max = 5.8). Dose-substitution studies demonstrated that behavior was sensitive to dose for both drugs, but MDPV (0.01-0.50 mg/kg/inf) showed greater potency and efficacy than METH (0.1-0.25 mg/kg/inf). In addition, both MDPV and METH increased locomotor activity at lower doses (0.5-1.0 mg/kg, s.c.) and transiently decreased activity at the highest dose (5.6 mg/kg, s.c.). Body temperature increased monotonically with increasing doses of METH but MDPV had a negligible effect on temperature. Stereotypy was associated with relatively high self-administered cumulative doses of MDPV (∼1.5 mg/kg/h) as well as with non-contingent MDPV administration wherein the intensity and duration of stereotypy increased as MDPV dose increased. Thus, MDPV poses a substantial threat for compulsive use that is potentially greater than that for METH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21.

    PubMed

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N

    2014-08-12

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level.

  12. Hepatic mTORC1 controls locomotor activity, body temperature, and lipid metabolism through FGF21

    PubMed Central

    Cornu, Marion; Oppliger, Wolfgang; Albert, Verena; Robitaille, Aaron M.; Trapani, Francesca; Quagliata, Luca; Fuhrer, Tobias; Sauer, Uwe; Terracciano, Luigi; Hall, Michael N.

    2014-01-01

    The liver is a key metabolic organ that controls whole-body physiology in response to nutrient availability. Mammalian target of rapamycin (mTOR) is a nutrient-activated kinase and central controller of growth and metabolism that is negatively regulated by the tumor suppressor tuberous sclerosis complex 1 (TSC1). To investigate the role of hepatic mTOR complex 1 (mTORC1) in whole-body physiology, we generated liver-specific Tsc1 (L-Tsc1 KO) knockout mice. L-Tsc1 KO mice displayed reduced locomotor activity, body temperature, and hepatic triglyceride content in a rapamycin-sensitive manner. Ectopic activation of mTORC1 also caused depletion of hepatic and plasma glutamine, leading to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α)–dependent fibroblast growth factor 21 (FGF21) expression in the liver. Injection of glutamine or knockdown of PGC-1α or FGF21 in the liver suppressed the behavioral and metabolic defects due to mTORC1 activation. Thus, mTORC1 in the liver controls whole-body physiology through PGC-1α and FGF21. Finally, mTORC1 signaling correlated with FGF21 expression in human liver tumors, suggesting that treatment of glutamine-addicted cancers with mTOR inhibitors might have beneficial effects at both the tumor and whole-body level. PMID:25082895

  13. Down-regulation of Decapping Protein 2 mediates chronic nicotine exposure-induced locomotor hyperactivity in Drosophila.

    PubMed

    Ren, Jing; Sun, Jinghan; Zhang, Yunpeng; Liu, Tong; Ren, Qingzhong; Li, Yan; Guo, Aike

    2012-01-01

    Long-term tobacco use causes nicotine dependence via the regulation of a wide range of genes and is accompanied by various health problems. Studies in mammalian systems have revealed some key factors involved in the effects of nicotine, including nicotinic acetylcholine receptors (nAChRs), dopamine and other neurotransmitters. Nevertheless, the signaling pathways that link nicotine-induced molecular and behavioral modifications remain elusive. Utilizing a chronic nicotine administration paradigm, we found that adult male fruit flies exhibited locomotor hyperactivity after three consecutive days of nicotine exposure, while nicotine-naive flies did not. Strikingly, this chronic nicotine-induced locomotor hyperactivity (cNILH) was abolished in Decapping Protein 2 or 1 (Dcp2 or Dcp1) -deficient flies, while only Dcp2-deficient flies exhibited higher basal levels of locomotor activity than controls. These results indicate that Dcp2 plays a critical role in the response to chronic nicotine exposure. Moreover, the messenger RNA (mRNA) level of Dcp2 in the fly head was suppressed by chronic nicotine treatment, and up-regulation of Dcp2 expression in the nervous system blocked cNILH. These results indicate that down-regulation of Dcp2 mediates chronic nicotine-exposure-induced locomotor hyperactivity in Drosophila. The decapping proteins play a major role in mRNA degradation; however, their function in the nervous system has rarely been investigated. Our findings reveal a significant role for the mRNA decapping pathway in developing locomotor hyperactivity in response to chronic nicotine exposure and identify Dcp2 as a potential candidate for future research on nicotine dependence.

  14. Down-Regulation of Decapping Protein 2 Mediates Chronic Nicotine Exposure-Induced Locomotor Hyperactivity in Drosophila

    PubMed Central

    Ren, Jing; Sun, Jinghan; Zhang, Yunpeng; Liu, Tong; Ren, Qingzhong; Li, Yan; Guo, Aike

    2012-01-01

    Long-term tobacco use causes nicotine dependence via the regulation of a wide range of genes and is accompanied by various health problems. Studies in mammalian systems have revealed some key factors involved in the effects of nicotine, including nicotinic acetylcholine receptors (nAChRs), dopamine and other neurotransmitters. Nevertheless, the signaling pathways that link nicotine-induced molecular and behavioral modifications remain elusive. Utilizing a chronic nicotine administration paradigm, we found that adult male fruit flies exhibited locomotor hyperactivity after three consecutive days of nicotine exposure, while nicotine-naive flies did not. Strikingly, this chronic nicotine-induced locomotor hyperactivity (cNILH) was abolished in Decapping Protein 2 or 1 (Dcp2 or Dcp1) -deficient flies, while only Dcp2-deficient flies exhibited higher basal levels of locomotor activity than controls. These results indicate that Dcp2 plays a critical role in the response to chronic nicotine exposure. Moreover, the messenger RNA (mRNA) level of Dcp2 in the fly head was suppressed by chronic nicotine treatment, and up-regulation of Dcp2 expression in the nervous system blocked cNILH. These results indicate that down-regulation of Dcp2 mediates chronic nicotine-exposure-induced locomotor hyperactivity in Drosophila. The decapping proteins play a major role in mRNA degradation; however, their function in the nervous system has rarely been investigated. Our findings reveal a significant role for the mRNA decapping pathway in developing locomotor hyperactivity in response to chronic nicotine exposure and identify Dcp2 as a potential candidate for future research on nicotine dependence. PMID:23300696

  15. ROCK1 in AgRP neurons regulates energy expenditure and locomotor activity in male mice.

    PubMed

    Huang, Hu; Lee, Seung Hwan; Ye, Chianping; Lima, Ines S; Oh, Byung-Chul; Lowell, Bradford B; Zabolotny, Janice M; Kim, Young-Bum

    2013-10-01

    Normal leptin signaling is essential for the maintenance of body weight homeostasis. Proopiomelanocortin- and agouti-related peptide (AgRP)-producing neurons play critical roles in regulating energy metabolism. Our recent work demonstrates that deletion of Rho-kinase 1 (ROCK1) in the AgRP neurons of mice increased body weight and adiposity. Here, we report that selective loss of ROCK1 in AgRP neurons caused a significant decrease in energy expenditure and locomotor activity of mice. These effects were independent of any change in food intake. Furthermore, AgRP neuron-specific ROCK1-deficient mice displayed central leptin resistance, as evidenced by impaired Signal Transducer and Activator of Transcription 3 activation in response to leptin administration. Leptin's ability to hyperpolarize and decrease firing rate of AgRP neurons was also abolished in the absence of ROCK1. Moreover, diet-induced and genetic forms of obesity resulted in reduced ROCK1 activity in murine arcuate nucleus. Of note, high-fat diet also impaired leptin-stimulated ROCK1 activity in arcuate nucleus, suggesting that a defect in hypothalamic ROCK1 activity may contribute to the pathogenesis of central leptin resistance in obesity. Together, these data demonstrate that ROCK1 activation in hypothalamic AgRP neurons is required for the homeostatic regulation of energy expenditure and adiposity. These results further support previous work identifying ROCK1 as a key regulator of energy balance and suggest that targeting ROCK1 in the hypothalamus may lead to development of antiobesity therapeutics.

  16. Functional redundancy of ventral spinal locomotor pathways.

    PubMed

    Loy, David N; Magnuson, David S K; Zhang, Y Ping; Onifer, Stephen M; Mills, Michael D; Cao, Qi-lin; Darnall, Jessica B; Fajardo, Lily C; Burke, Darlene A; Whittemore, Scott R

    2002-01-01

    Identification of long tracts responsible for the initiation of spontaneous locomotion is critical for spinal cord injury (SCI) repair strategies. Pathways derived from the mesencephalic locomotor region and pontomedullary medial reticular formation responsible for fictive locomotion in decerebrate preparations project to the thoracolumbar levels of the spinal cord via reticulospinal axons in the ventrolateral funiculus (VLF). However, white matter regions critical for spontaneous over-ground locomotion remain unclear because cats, monkeys, and humans display varying degrees of locomotor recovery after ventral SCIs. We studied the contributions of myelinated tracts in the VLF and ventral columns (VC) to spontaneous over-ground locomotion in the adult rat using demyelinating lesions. Animals received ethidium bromide plus photon irradiation producing discrete demyelinating lesions sufficient to stop axonal conduction in the VLF, VC, VLF-VC, or complete ventral white matter (CV). Behavior [open-field Basso, Beattie, and Bresnahan (BBB) scores and grid walking] and transcranial magnetic motor-evoked potentials (tcMMEP) were studied at 1, 2, and 4 weeks after lesion. VLF lesions resulted in complete loss or severe attenuation of tcMMEPs, with mean BBB scores of 18.0, and no grid walking deficits. VC lesions produced behavior similar to VLF-lesioned animals but did not significantly affect tcMMEPs. VC-VLF and CV lesions resulted in complete loss of tcMMEP signals with mean BBB scores of 12.7 and 6.5, respectively. Our data support a diffuse arrangement of axons within the ventral white matter that may comprise a system of multiple descending pathways subserving spontaneous over-ground locomotion in the intact animal.

  17. EEG during pedaling: Evidence for cortical control of locomotor tasks

    PubMed Central

    Jain, Sanket; Gourab, Krishnaj; Schindler-Ivens, Sheila; Schmit, Brian D.

    2014-01-01

    Objective This study characterized the brain electrical activity during pedaling, a locomotor-like task, in humans. We postulated that phasic brain activity would be associated with active pedaling, consistent with a cortical role in locomotor tasks. Methods Sixty four channels of electroencephalogram (EEG) and 10 channels of electromyogram (EMG) data were recorded from 10 neurologically-intact volunteers while they performed active and passive (no effort) pedaling on a custom-designed stationary bicycle. Ensemble averaged waveforms, 2 dimensional topographic maps and amplitude of the β (13–35 Hz) frequency band were analyzed and compared between active and passive trials. Results The peak-to-peak amplitude (peak positive–peak negative) of the EEG waveform recorded at the Cz electrode was higher in the passive than the active trials (p < 0.01). β-band oscillations in electrodes overlying the leg representation area of the cortex were significantly desynchronized during active compared to the passive pedaling (p < 0.01). A significant negative correlation was observed between the average EEG waveform for active trials and the composite EMG (summated EMG from both limbs for each muscle) of the rectus femoris (r = −0.77, p < 0.01) the medial hamstrings (r = −0.85, p < 0.01) and the tibialis anterior (r = −0.70, p < 0.01) muscles. Conclusions These results demonstrated that substantial sensorimotor processing occurs in the brain during pedaling in humans. Further, cortical activity seemed to be greatest during recruitment of the muscles critical for transitioning the legs from flexion to extension and vice versa. Significance This is the first study demonstrating the feasibility of EEG recording during pedaling, and owing to similarities between pedaling and bipedal walking, may provide valuable insight into brain activity during locomotion in humans. PMID:23036179

  18. The effects of congenital hypothyroidism using the hyt/hyt mouse on locomotor activity and learned behavior.

    PubMed

    Anthony, A; Adams, P M; Stein, S A

    1993-09-01

    The offspring of matings between hyt/hyt male mice and hyt/+ females were examined for somatic and behavioral differences. The hyt/hyt offspring displayed delayed somatic development for eye opening and ear extension relative to their euthyroid littermates. Behavioral measurement of locomotor activity indicated hyperactivity at 14 days of age and hypoactivity at 21 and 40 days relative to the euthyroid mice. Impaired swimming escape behavior and Morris maze spatial learning were observed in the hyt/hyt animals. Comparative evaluation of +/+ progenitor strain offspring having no hypothyroidism in their genetic background indicated significant differences in somatic and behavioral endpoints between the hyt/hyt and euthyroid (hyt/+, +/+) animals. These results confirm the utility of the hyt/hyt mouse for studies of the impact of congenital hypothyroidism on the functional development of the offspring.

  19. A single exercise bout and locomotor learning after stroke: physiological, behavioural, and computational outcomes.

    PubMed

    Charalambous, Charalambos C; Alcantara, Carolina C; French, Margaret A; Li, Xin; Matt, Kathleen S; Kim, Hyosub E; Morton, Susanne M; Reisman, Darcy S

    2018-05-15

    Previous work demonstrated an effect of a single high-intensity exercise bout coupled with motor practice on the retention of a newly acquired skilled arm movement, in both neurologically intact and impaired adults. In the present study, using behavioural and computational analyses we demonstrated that a single exercise bout, regardless of its intensity and timing, did not increase the retention of a novel locomotor task after stroke. Considering both present and previous work, we postulate that the benefits of exercise effect may depend on the type of motor learning (e.g. skill learning, sensorimotor adaptation) and/or task (e.g. arm accuracy-tracking task, walking). Acute high-intensity exercise coupled with motor practice improves the retention of motor learning in neurologically intact adults. However, whether exercise could improve the retention of locomotor learning after stroke is still unknown. Here, we investigated the effect of exercise intensity and timing on the retention of a novel locomotor learning task (i.e. split-belt treadmill walking) after stroke. Thirty-seven people post stroke participated in two sessions, 24 h apart, and were allocated to active control (CON), treadmill walking (TMW), or total body exercise on a cycle ergometer (TBE). In session 1, all groups exercised for a short bout (∼5 min) at low (CON) or high (TMW and TBE) intensity and before (CON and TMW) or after (TBE) the locomotor learning task. In both sessions, the locomotor learning task was to walk on a split-belt treadmill in a 2:1 speed ratio (100% and 50% fast-comfortable walking speed) for 15 min. To test the effect of exercise on 24 h retention, we applied behavioural and computational analyses. Behavioural data showed that neither high-intensity group showed greater 24 h retention compared to CON, and computational data showed that 24 h retention was attributable to a slow learning process for sensorimotor adaptation. Our findings demonstrated that acute exercise

  20. Effects of pinealectomy on the neuroendocrine reproductive system and locomotor activity in male European sea bass, Dicentrarchus labrax.

    PubMed

    Cowan, Mairi; Paullada-Salmerón, José A; López-Olmeda, José Fernando; Sánchez-Vázquez, Francisco Javier; Muñoz-Cueto, José A

    2017-05-01

    The seasonally changing photoperiod controls the timing of reproduction in most fish species, however, the transduction of this photoperiodic information to the reproductive axis is still unclear. This study explored the potential role of two candidate neuropeptide systems, gonadotropin-inhibitory hormone (Gnih) and kisspeptin, as mediators between the pineal organ (a principle transducer of photoperiodic information) and reproductive axis in male European sea bass, Dicentrarchus labrax. Two seven-day experiments of pinealectomy (Px) were performed, in March (end of reproductive season) and August (resting season). Effects of Px and season on the brain expression of gnih (sbgnih) and its receptor (sbgnihr), kisspeptins (kiss1, kiss2) and their receptors (kissr2, kissr3) and gonadotropin-releasing hormone (gnrh1, gnrh2, gnrh3) and the main brain receptor (gnrhr-II-2b) genes, plasma melatonin levels and locomotor activity rhythms were examined. Results showed that Px reduced night-time plasma melatonin levels. Gene expression analyses demonstrated a sensitivity of the Gnih system to Px in March, with a reduction in sbgnih in the mid-hindbrain, a region with bilateral connections to the pineal organ. In August, kiss2 levels increased in Px animals but not in controls. Significant differences in expression were observed for diencephalic sbgnih, sbgnihr, kissr3 and tegmental gnrh2 between seasons. Recordings of locomotor activity following surgery revealed a change from light-synchronised to free-running rhythmic behavior. Altogether, the Gnih and Kiss2 sensitivity to Px and seasonal differences observed for Gnih and its receptor, Gnrh2, and the receptor for Kiss2 (Kissr3), suggested they could be mediators involved in the relay between environment and seasonal reproduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Modelling affective pain in mice: Effects of inflammatory hypersensitivity on place escape/avoidance behaviour, anxiety and hedonic state.

    PubMed

    Refsgaard, L K; Hoffmann-Petersen, J; Sahlholt, M; Pickering, D S; Andreasen, J T

    2016-03-15

    The place escape/avoidance paradigm (PEAP) has been used to assess the affective component of pain in rats. Using the Complete Freund's Adjuvant (CFA) model of inflammatory pain, the current study aimed at developing a mouse version of PEAP and investigating the relation between PEAP and other behavioural responses, namely anxiety-like behaviour, locomotor activity, and hedonic state. A novel paradigm assessing the affective component of pain in mice was developed by modifying the setup known from rat studies: Animals were forced to stay 2 × 5 min in the light and the dark area of a box while being stimulated with a suprathreshold filament on the untreated or treated paw, respectively. This was followed by a 30-min test with unrestricted movement. Anxiety-like behaviour, locomotor activity, and hedonic state were assessed with the elevated zero maze (EZM), an open field setup, and a saccharin preference test, respectively, and correlated with the PEAP behaviour to examine potentially confounding parameters of the novel paradigm. In the PEAP, CFA-treated animals spent more time in the light area. CFA also increased anxiety-like behaviour significantly, whereas locomotor activity was unaffected. A significant, albeit modest, reduction in saccharin preference was observed. PEAP responses showed no significant correlations with any other behavioural measure. The PEAP results suggest that this paradigm might be successfully applied in mice to study affective pain. CFA treatment was associated with increased anxiety-like behaviour and anhedonia; however, this appeared unrelated to the PEAP responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Locomotor Sub-functions for Control of Assistive Wearable Robots.

    PubMed

    Sharbafi, Maziar A; Seyfarth, Andre; Zhao, Guoping

    2017-01-01

    A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance : redirecting the center of mass by exerting forces on the ground. Swing : cycling the legs between ground contacts. Balance : maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies.

  3. Locomotor Sub-functions for Control of Assistive Wearable Robots

    PubMed Central

    Sharbafi, Maziar A.; Seyfarth, Andre; Zhao, Guoping

    2017-01-01

    A primary goal of comparative biomechanics is to understand the fundamental physics of locomotion within an evolutionary context. Such an understanding of legged locomotion results in a transition from copying nature to borrowing strategies for interacting with the physical world regarding design and control of bio-inspired legged robots or robotic assistive devices. Inspired from nature, legged locomotion can be composed of three locomotor sub-functions, which are intrinsically interrelated: Stance: redirecting the center of mass by exerting forces on the ground. Swing: cycling the legs between ground contacts. Balance: maintaining body posture. With these three sub-functions, one can understand, design and control legged locomotory systems with formulating them in simpler separated tasks. Coordination between locomotor sub-functions in a harmonized manner appears then as an additional problem when considering legged locomotion. However, biological locomotion shows that appropriate design and control of each sub-function simplifies coordination. It means that only limited exchange of sensory information between the different locomotor sub-function controllers is required enabling the envisioned modular architecture of the locomotion control system. In this paper, we present different studies on implementing different locomotor sub-function controllers on models, robots, and an exoskeleton in addition to demonstrating their abilities in explaining humans' control strategies. PMID:28928650

  4. Effects of an aqueous extract of Orbignya phalerata Mart on locomotor activity and motor coordination in mice and as antioxidant in vitro.

    PubMed

    Silva, A P dos S; Cerqueira, G S; Nunes, L C C; de Freitas, R M

    2012-03-01

    The antioxidant activities of aqueous extract (AE) of Orbignya phalerata were assessed in vitro as well as its effect on locomotor activity and motor coordination in mice. AE does not possesses a strong antioxidant potential according to the scavenging assays; it also did not present scavenger activity in vitro. Following oral administration, AE (1, 2 and 3 g/kg) did not significantly change the motor activity of animals when compared with the control group, up to 24 h after administration and did not alter the remaining time of the animals on the Rota-rod apparatus. Further studies currently in progress will enable us to understand the mechanisms of action of the aqueous extract of Orbignya phalerata widely used in Brazilian flok medicine.

  5. Chronic Exposure to Arsenic in Drinking Water Causes Alterations in Locomotor Activity and Decreases Striatal mRNA for the D2 Dopamine Receptor in CD1 Male Mice.

    PubMed

    Moreno Ávila, Claudia Leticia; Limón-Pacheco, Jorge H; Giordano, Magda; Rodríguez, Verónica M

    2016-01-01

    Arsenic exposure has been associated with sensory, motor, memory, and learning alterations in humans and alterations in locomotor activity, behavioral tasks, and neurotransmitters systems in rodents. In this study, CD1 mice were exposed to 0.5 or 5.0 mg As/L of drinking water for 6 months. Locomotor activity, aggression, interspecific behavior and physical appearance, monoamines levels, and expression of the messenger for dopamine receptors D1 and D2 were assessed. Arsenic exposure produced hypoactivity at six months and other behaviors such as rearing and on-wall rearing and barbering showed both increases and decreases. No alterations on aggressive behavior or monoamines levels in striatum or frontal cortex were observed. A significant decrease in the expression of mRNA for D2 receptors was found in striatum of mice exposed to 5.0 mg As/L. This study provides evidence for the use of dopamine receptor D2 as potential target of arsenic toxicity in the dopaminergic system.

  6. Effects of repeated walking in a perturbing environment: a 4-day locomotor learning study.

    PubMed

    Blanchette, Andreanne; Moffet, Helene; Roy, Jean-Sébastien; Bouyer, Laurent J

    2012-07-01

    Previous studies have shown that when subjects repeatedly walk in a perturbing environment, initial movement error becomes smaller, suggesting that retention of the adapted locomotor program occurred (learning). It has been proposed that the newly learned locomotor program may be stored separately from the baseline program. However, how locomotor performance evolves with repeated sessions of walking with the perturbation is not yet known. To address this question, 10 healthy subjects walked on a treadmill on 4 consecutive days. Each day, locomotor performance was measured using kinematics and surface electromyography (EMGs), before, during, and after exposure to a perturbation, produced by an elastic tubing that pulled the foot forward and up during swing, inducing a foot velocity error in the first strides. Initial movement error decreased significantly between days 1 and 2 and then remained stable. Associated changes in medial hamstring EMG activity stabilized only on day 3, however. Aftereffects were present after perturbation removal, suggesting that daily adaptation involved central command recalibration of the baseline program. Aftereffects gradually decreased across days but were still visible on day 4. Separation between the newly learned and baseline programs may take longer than suggested by the daily improvement in initial performance in the perturbing environment or may never be complete. These results therefore suggest that reaching optimal performance in a perturbing environment should not be used as the main indicator of a completed learning process, as central reorganization of the motor commands continues days after initial performance has stabilized.

  7. Locomotor adaptation is modulated by observing the actions of others

    PubMed Central

    Patel, Mitesh; Roberts, R. Edward; Riyaz, Mohammed U.; Ahmed, Maroof; Buckwell, David; Bunday, Karen; Ahmad, Hena; Kaski, Diego; Arshad, Qadeer

    2015-01-01

    Observing the motor actions of another person could facilitate compensatory motor behavior in the passive observer. Here we explored whether action observation alone can induce automatic locomotor adaptation in humans. To explore this possibility, we used the “broken escalator” paradigm. Conventionally this involves stepping upon a stationary sled after having previously experienced it actually moving (Moving trials). This history of motion produces a locomotor aftereffect when subsequently stepping onto a stationary sled. We found that viewing an actor perform the Moving trials was sufficient to generate a locomotor aftereffect in the observer, the size of which was significantly correlated with the size of the movement (postural sway) observed. Crucially, the effect is specific to watching the task being performed, as no motor adaptation occurs after simply viewing the sled move in isolation. These findings demonstrate that locomotor adaptation in humans can be driven purely by action observation, with the brain adapting motor plans in response to the size of the observed individual's motion. This mechanism may be mediated by a mirror neuron system that automatically adapts behavior to minimize movement errors and improve motor skills through social cues, although further neurophysiological studies are required to support this theory. These data suggest that merely observing the gait of another person in a challenging environment is sufficient to generate appropriate postural countermeasures, implying the existence of an automatic mechanism for adapting locomotor behavior. PMID:26156386

  8. Comparative limb proportions reveal differential locomotor morphofunctions of alligatoroids and crocodyloids

    NASA Astrophysics Data System (ADS)

    Iijima, Masaya; Kubo, Tai; Kobayashi, Yoshitsugu

    2018-03-01

    Although two major clades of crocodylians (Alligatoroidea and Crocodyloidea) were split during the Cretaceous period, relatively few morphological and functional differences between them have been known. In addition, interaction of multiple morphofunctional systems that differentiated their ecology has barely been assessed. In this study, we examined the limb proportions of crocodylians to infer the differences of locomotor functions between alligatoroids and crocodyloids, and tested the correlation of locomotor and feeding morphofunctions. Our analyses revealed crocodyloids including Gavialis have longer stylopodia (humerus and femur) than alligatoroids, indicating that two groups may differ in locomotor functions. Fossil evidence suggested that alligatoroids have retained short stylopodia since the early stage of their evolution. Furthermore, rostral shape, an indicator of trophic function, is correlated with limb proportions, where slender-snouted piscivorous taxa have relatively long stylopodia and short overall limbs. In combination, trophic and locomotor functions might differently delimit the ecological opportunity of alligatoroids and crocodyloids in the evolution of crocodylians.

  9. Gradual training reduces practice difficulty while preserving motor learning of a novel locomotor task.

    PubMed

    Sawers, Andrew; Hahn, Michael E

    2013-08-01

    Motor learning strategies that increase practice difficulty and the size of movement errors are thought to facilitate motor learning. In contrast to this, gradual training minimizes movement errors and reduces practice difficulty by incrementally introducing task requirements, yet remains as effective as sudden training and its large movement errors for learning novel reaching tasks. While attractive as a locomotor rehabilitation strategy, it remains unknown whether the efficacy of gradual training extends to learning locomotor tasks and their unique requirements. The influence of gradual vs. sudden training on learning a locomotor task, asymmetric split belt treadmill walking, was examined by assessing whole body sagittal plane kinematics during 24 hour retention and transfer performance following either gradual or sudden training. Despite less difficult and less specific practice for the gradual cohort on day 1, gradual training resulted in equivalent motor learning of the novel locomotor task as sudden training when assessed by retention and transfer a day later. This suggests that large movement errors and increased practice difficulty may not be necessary for learning novel locomotor tasks. Further, gradual training may present a viable locomotor rehabilitation strategy avoiding large movement errors that could limit or impair improvements in locomotor performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Neuronal Nitric Oxide Synthase and NADPH Oxidase Interact to Affect Cognitive, Affective, and Social Behaviors in Mice

    PubMed Central

    Walton, James C.; Selvakumar, Balakrishnan; Weil, Zachary M.; Snyder, Solomon H.; Nelson, Randy J.

    2013-01-01

    Both nitric oxide (NO) and reactive oxygen species (ROS) generated by nNOS and NADPH oxidase (NOX), respectively, in the brain have been implicated in an array of behaviors ranging from learning and memory to social interactions. Although recent work has elucidated how these separate redox pathways regulate neural function and behavior, the interaction of these two pathways in the regulation of neural function and behavior remains unspecified. Toward this end, the p47phox subunit of NOX, and nNOS were deleted to generate double knockout mice that were used to characterize the behavioral outcomes of concurrent impairment of the NO and ROS pathways in the brain. Mice were tested in a battery of behavioral tasks to evaluate learning and memory, as well as social, affective, and cognitive behaviors. p47phox deletion did not affect depressive-like behavior, whereas nNOS deletion abolished it. Both p47phox and nNOS deletion singly reduced anxiety-like behavior, increased general locomotor activity, impaired spatial learning and memory, and impaired preference for social novelty. Deletion of both genes concurrently had synergistic effects to elevate locomotor activity, impair spatial learning and memory, and disrupt prepulse inhibition of acoustic startle. Although preference for social novelty was impaired in single knockouts, double knockout mice displayed elevated levels of preference for social novelty above that of wild type littermates. These data demonstrate that, depending upon modality, deletion of p47phox and nNOS genes have dissimilar, similar, or additive effects. The current findings provide evidence that the NOX and nNOS redox signaling cascades interact in the brain to affect both cognitive function and social behavior. PMID:23948215

  11. Neuromodulation of the lumbar spinal locomotor circuit.

    PubMed

    AuYong, Nicholas; Lu, Daniel C

    2014-01-01

    The lumbar spinal cord contains the necessary circuitry to independently drive locomotor behaviors. This function is retained following spinal cord injury (SCI) and is amenable to rehabilitation. Although the effectiveness of task-specific training and pharmacologic modulation has been repeatedly demonstrated in animal studies, results from human studies are less striking. Recently, lumbar epidural stimulation (EDS) along with locomotor training was shown to restore weight-bearing function and lower-extremity voluntary control in a chronic, motor-complete human SCI subject. Related animal studies incorporating EDS as part of the therapeutic regiment are also encouraging. EDS is emerging as a promising neuromodulatory tool for SCI. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A new model of the spinal locomotor networks of a salamander and its properties.

    PubMed

    Liu, Qiang; Yang, Huizhen; Zhang, Jinxue; Wang, Jingzhuo

    2018-05-22

    A salamander is an ideal animal for studying the spinal locomotor network mechanism of vertebrates from an evolutionary perspective since it represents the transition from an aquatic to a terrestrial animal. However, little is known about the spinal locomotor network of a salamander. A spinal locomotor network model is a useful tool for exploring the working mechanism of the spinal networks of salamanders. A new spinal locomotor network model for a salamander is built for a three-dimensional (3D) biomechanical model of the salamander using a novel locomotion-controlled neural network model. Based on recent experimental data on the spinal circuitry and observational results of gaits of vertebrates, we assume that different interneuron sets recruited for mediating the frequency of spinal circuits are also related to the generation of different gaits. The spinal locomotor networks of salamanders are divided into low-frequency networks for walking and high-frequency networks for swimming. Additionally, a new topological structure between the body networks and limb networks is built, which only uses the body networks to coordinate the motion of limbs. There are no direct synaptic connections among limb networks. These techniques differ from existing salamander spinal locomotor network models. A simulation is performed and analyzed to validate the properties of the new spinal locomotor networks of salamanders. The simulation results show that the new spinal locomotor networks can generate a forward walking gait, a backward walking gait, a swimming gait, and a turning gait during swimming and walking. These gaits can be switched smoothly by changing external inputs from the brainstem. These properties are consistent with those of a real salamander. However, it is still difficult for the new spinal locomotor networks to generate highly efficient turning during walking, 3D swimming, nonrhythmic movements, and so on. New experimental data are required for further validation.

  13. Interpreting locomotor biomechanics from the morphology of human footprints.

    PubMed

    Hatala, Kevin G; Wunderlich, Roshna E; Dingwall, Heather L; Richmond, Brian G

    2016-01-01

    Fossil hominin footprints offer unique direct windows to the locomotor behaviors of our ancestors. These data could allow a clearer understanding of the evolution of human locomotion by circumventing issues associated with indirect interpretations of habitual locomotor patterns from fossil skeletal material. However, before we can use fossil hominin footprints to understand better the evolution of human locomotion, we must first develop an understanding of how locomotor biomechanics are preserved in, and can be inferred from, footprint morphologies. In this experimental study, 41 habitually barefoot modern humans created footprints under controlled conditions in which variables related to locomotor biomechanics could be quantified. Measurements of regional topography (depth) were taken from 3D models of those footprints, and principal components analysis was used to identify orthogonal axes that described the largest proportions of topographic variance within the human experimental sample. Linear mixed effects models were used to quantify the influences of biomechanical variables on the first five principal axes of footprint topographic variation, thus providing new information on the biomechanical variables most evidently expressed in the morphology of human footprints. The footprint's overall depth was considered as a confounding variable, since biomechanics may be linked to the extent to which a substrate deforms. Three of five axes showed statistically significant relationships with variables related to both locomotor biomechanics and substrate displacement; one axis was influenced only by biomechanics and another only by the overall depth of the footprint. Principal axes of footprint morphological variation were significantly related to gait type (walking or running), kinematics of the hip and ankle joints and the distribution of pressure beneath the foot. These results provide the first quantitative framework for developing hypotheses regarding the

  14. Locomotor and discriminative stimulus effects of four novel hallucinogens in rodents.

    PubMed

    Gatch, Michael B; Dolan, Sean B; Forster, Michael J

    2017-08-01

    There has been increasing use of novel synthetic hallucinogenic compounds, 2-(4-bromo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine hydrochloride (25B-NBOMe), 2-(4-chloro-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine hydrochloride (25C-NBOMe), 2-(4-iodo-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine hydrochloride (25I-NBOMe), and N,N-diallyl-5-methoxy tryptamine (5-MeO-DALT), which have been associated with severe toxicities. These four compounds were tested for discriminative stimulus effects similar to a prototypical hallucinogen (-)-2,5-dimethoxy-4-methylamphetamine (DOM) and the entactogen (±)-3,4-methylenedioxymethamphetamine (MDMA). Locomotor activity in mice was tested to obtain dose range and time-course information. 25B-NBOMe, 25C-NBOMe, and 25I-NBOMe decreased locomotor activity. 5-MeO-DALT dose dependently increased locomotor activity, with a peak at 10 mg/kg. A higher dose (25 mg/kg) suppressed activity. 25B-NBOMe fully substituted (≥80%) in both DOM-trained and MDMA-trained rats at 0.5 mg/kg. However, higher doses produced much lower levels of drug-appropriate responding in both DOM-trained and MDMA-trained rats. 25C-NBOMe fully substituted in DOM-trained rats, but produced only 67% drug-appropriate responding in MDMA-trained rats at doses that suppressed responding. 25I-NBOMe produced 74-78% drug-appropriate responding in DOM-trained and MDMA-trained rats at doses that suppressed responding. 5-MeO-DALT fully substituted for DOM, but produced few or no MDMA-like effects. All of the compounds, except 25I-NBOMe, fully substituted for DOM, whereas only 25B-NBOMe fully substituted for MDMA. However, the failure of 25I-NBOMe to fully substitute for either MDMA or DOM was more likely because of its substantial rate-depressant effects than weak discriminative stimulus effects. All of the compounds are likely to attract recreational users for their hallucinogenic properties, but probably of much less interest as substitutes for MDMA

  15. Protocol for the Locomotor Experience Applied Post-stroke (LEAPS) trial: a randomized controlled trial

    PubMed Central

    Duncan, Pamela W; Sullivan, Katherine J; Behrman, Andrea L; Azen, Stanley P; Wu, Samuel S; Nadeau, Stephen E; Dobkin, Bruce H; Rose, Dorian K; Tilson, Julie K

    2007-01-01

    Background Locomotor training using body weight support and a treadmill as a therapeutic modality for rehabilitation of walking post-stroke is being rapidly adopted into clinical practice. There is an urgent need for a well-designed trial to determine the effectiveness of this intervention. The objective of the Locomotor Experience Applied Post-Stroke (LEAPS) trial is to determine if there is a difference in the proportion of participants who recover walking ability at one year post-stroke when randomized to a specialized locomotor training program (LTP), conducted at 2- or 6-months post-stroke, or those randomized to a home based non-specific, low intensity exercise intervention (HEP) provided 2 months post-stroke. We will determine if the timing of LTP delivery affects gait speed at 1 year and whether initial impairment severity interacts with the timing of LTP. The effect of number of treatment sessions will be determined by changes in gait speed taken pre-treatment and post-12, -24, and -36 sessions. Methods/Design We will recruit 400 adults with moderate or severe walking limitations within 30 days of stroke onset. At two months post stroke, participants are stratified by locomotor impairment severity as determined by overground walking speed and randomly assigned to one of three groups: (a) LTP-Early; (b) LTP-Late or (c) Home Exercise Program -Early. The LTP program includes body weight support on a treadmill and overground training. The LTP and HEP interventions are delivered for 36 sessions over 12 weeks. Primary outcome measure include successful walking recovery defined as the achievement of a 0.4 m/s gait speed or greater by persons with initial severe gait impairment or the achievement of a 0.8 m/s gait speed or greater by persons with initial moderate gait impairment. LEAPS is powered to detect a 20% difference in the proportion of participants achieving successful locomotor recovery between the LTP groups and the HEP group, and a 0.1 m/s mean

  16. Discriminative and locomotor effects of five synthetic cathinones in rats and mice.

    PubMed

    Gatch, Michael B; Rutledge, Margaret A; Forster, Michael J

    2015-04-01

    Synthetic cathinones continue to be sold as "legal" alternatives to methamphetamine or cocaine. As these marginally legal compounds become controlled, suppliers move to other, unregulated compounds. The purpose of these experiments was to determine whether several temporarily controlled cathinone compounds, which are currently abused on the street, stimulate motor activity and have discriminative stimulus effects similar to cocaine and/or methamphetamine. Methcathinone, pentedrone, pentylone, 3-fluoromethcathinone (3-FMC), and 4-methylethcathinone (4-MEC) were tested for locomotor stimulant effects in mice and subsequently for substitution in rats trained to discriminate cocaine (10 mg/kg, i.p.) or methamphetamine (1 mg/kg, i.p.) from saline. Methcathinone, pentedrone, and pentylone produced locomotor stimulant effects which lasted up to 6 h. In addition, pentylone produced convulsions and lethality at 100 mg/kg. 4-MEC produced locomotor stimulant effects which lasted up to 2 h. Methcathinone, pentedrone, pentylone, 3-FMC, and 4-MEC each produced discriminative stimulus effects similar to those of cocaine and methamphetamine. All of the tested compounds produce discriminative stimulus effects similar to either those of cocaine, methamphetamine, or both, which suggests that these compounds are likely to have similar abuse liability to cocaine and/or methamphetamine. Pentylone may be more dangerous on the street, as it produced adverse effects at doses that produced maximal stimulant-like effects.

  17. Integrated Locomotor Function Tests for Countermeasure Evaluation

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Mulavara, A. P.; Peters, B. T.; Cohen, H. S.; Landsness, E. C.; Black, F. O.

    2005-01-01

    Following spaceflight crewmembers experience locomotor dysfunction due to inflight adaptive alterations in sensorimotor function. Countermeasures designed to mitigate these postflight gait alterations need to be assessed with a new generation of tests that evaluate the interaction of various sensorimotor sub-systems central to locomotor control. The goal of the present study was to develop new functional tests of locomotor control that could be used to test the efficacy of countermeasures. These tests were designed to simultaneously examine the function of multiple sensorimotor systems underlying the control of locomotion and be operationally relevant to the astronaut population. Traditionally, gaze stabilization has been studied almost exclusively in seated subjects performing target acquisition tasks requiring only the involvement of coordinated eye-head movements. However, activities like walking involve full-body movement and require coordination between lower limbs and the eye-head-trunk complex to achieve stabilized gaze during locomotion. Therefore the first goal of this study was to determine how the multiple, interdependent, full-body sensorimotor gaze stabilization subsystems are functionally coordinated during locomotion. In an earlier study we investigated how alteration in gaze tasking changes full-body locomotor control strategies. Subjects walked on a treadmill and either focused on a central point target or read numeral characters. We measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. In comparison to the point target fixation condition, the results of the number reading task showed that compensatory head pitch movements increased, peak head acceleration was reduced and knee flexion at heel-strike was increased. In a more recent study we investigated the

  18. Effect of locomotor training in completely spinalized cats previously submitted to a spinal hemisection.

    PubMed

    Martinez, Marina; Delivet-Mongrain, Hugo; Leblond, Hugues; Rossignol, Serge

    2012-08-08

    After a spinal hemisection in cats, locomotor plasticity occurring at the spinal level can be revealed by performing, several weeks later, a complete spinalization below the first hemisection. Using this paradigm, we recently demonstrated that the hemisection induces durable changes in the symmetry of locomotor kinematics that persist after spinalization. Can this asymmetry be changed again in the spinal state by interventions such as treadmill locomotor training started within a few days after the spinalization? We performed, in 9 adult cats, a spinal hemisection at thoracic level 10 and then a complete spinalization at T13, 3 weeks later. Cats were not treadmill trained during the hemispinal period. After spinalization, 5 of 9 cats were not trained and served as control while 4 of 9 cats were trained on the treadmill for 20 min, 5 d a week for 3 weeks. Using detailed kinematic analyses, we showed that, without training, the asymmetrical state of locomotion induced by the hemisection was retained durably after the subsequent spinalization. By contrast, training cats after spinalization induced a reversal of the left/right asymmetries, suggesting that new plastic changes occurred within the spinal cord through locomotor training. Moreover, training was shown to improve the kinematic parameters and the performance of the hindlimb on the previously hemisected side. These results indicate that spinal locomotor circuits, previously modified by past experience such as required for adaptation to the hemisection, can remarkably respond to subsequent locomotor training and improve bilateral locomotor kinematics, clearly showing the benefits of locomotor training in the spinal state.

  19. Behavioral Effects of a Locomotor-Based Physical Activity Intervention in Preschoolers.

    PubMed

    Burkart, Sarah; Roberts, Jasmin; Davidson, Matthew C; Alhassan, Sofiya

    2018-01-01

    Poor adaptive learning behaviors (ie, distractibility, inattention, and disruption) are associated with behavior problems and underachievement in school, as well as indicating potential attention-deficit hyperactivity disorder. Strategies are needed to limit these behaviors. Physical activity (PA) has been suggested to improve behavior in school-aged children, but little is known about this relationship in preschoolers. This study examined the effects of a PA intervention on classroom behaviors in preschool-aged children. Eight preschool classrooms (n = 71 children; age = 3.8 ± 0.7 y) with children from low socioeconomic environments were randomized to a locomotor-based PA (LB-PA) or unstructured free playtime (UF-PA) group. Both interventions were implemented by classroom teachers and delivered for 30 minutes per day, 5 days per week for 6 months. Classroom behavior was measured in both groups at 3 time points, whereas PA was assessed at 2 time points over a 6-month period and analyzed with hierarchical linear modeling. Linear growth models showed significant decreases in hyperactivity (LB-PA: -2.58 points, P = .001; UF-PA: 2.33 points, P = .03), aggression (LB-PA: -2.87 points, P = .01; UF-PA: 0.97 points, P = .38) and inattention (LB-PA: 1.59 points, P < .001; UF-PA: 3.91 points, P < .001). This research provides promising evidence for the efficacy of LB-PA as a strategy to improve classroom behavior in preschoolers.

  20. Effects of Symphytum ointment on muscular symptoms and functional locomotor disturbances.

    PubMed

    Kucera, M; Kálal, J; Polesná, Z

    2000-01-01

    In an open, uncontrolled study, 105 patients with locomotor system symptoms were treated twice daily with an ointment containing a Symphytum active substance complex. A clear therapeutic effect was noted on chronic and subacute symptoms that were accompanied mainly by functional disturbances and pain in the musculature. The preparation was most effective against muscle pain, swelling and overstrain, arthralgia/distortions, enthesopathy, and vertebral syndrome. Activity was weaker against degenerative conditions, for which the ointment may have an adjuvant role with the aim of improving muscular dysfunction and alleviating pain.

  1. Lumbar muscle inflammation alters spinally mediated locomotor recovery induced by training in a mouse model of complete spinal cord injury.

    PubMed

    Jeffrey-Gauthier, Renaud; Piché, Mathieu; Leblond, Hugues

    2017-09-17

    Locomotor networks after spinal cord injury (SCI) are shaped by training-activated proprioceptive and cutaneous inputs. Nociception from injured tissues may alter these changes but has largely been overlooked. The objective of the present study was to ascertain whether lumbar muscle inflammation hinders locomotion recovery in a mouse model of complete SCI. Lower limb kinematics during treadmill training was assessed before and after complete SCI at T8 (2, 7, 14, 21 and 28days post-injury). Locomotor recovery was compared in 4 groups of CD1 mice: control spinal mice; spinal mice with daily locomotor training; spinal mice with lumbar muscle inflammation (Complete Freund's Adjuvant (CFA) injection); and spinal mice with locomotor training and CFA. On day 28, H-reflex excitability and its inhibition at high-frequency stimulation (frequency-dependent depression: FDD) were compared between groups, all of which showed locomotor recovery. Recovery was enhanced by training, whereas lumbar muscle inflammation hindered these effects (knee angular excursion and paw drag: p's<0.05). In addition, lumbar muscle inflammation impaired hind limb coupling during locomotion (p<0.05) throughout recovery. Also, H-reflex disinhibition was prevented by training, with or without CFA injection (p's<0.05). Altogether, these results indicate that back muscle inflammation modulates spinally mediated locomotor recovery in mice with complete SCI, in part, by reducing adaptive changes induced by training. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Transgenic APP expression during postnatal development causes persistent locomotor hyperactivity in the adult.

    PubMed

    Rodgers, Shaefali P; Born, Heather A; Das, Pritam; Jankowsky, Joanna L

    2012-06-18

    Transgenic mice expressing disease-associated proteins have become standard tools for studying human neurological disorders. Transgenes are often expressed using promoters chosen to drive continuous high-level expression throughout life rather than temporal and spatial fidelity to the endogenous gene. This approach has allowed us to recapitulate diseases of aging within the two-year lifespan of the laboratory mouse, but has the potential for creating aberrant phenotypes by mechanisms unrelated to the human disorder. We show that overexpression of the Alzheimer's-related amyloid precursor protein (APP) during early postnatal development leads to severe locomotor hyperactivity that can be significantly attenuated by delaying transgene onset until adulthood. Our data suggest that exposure to transgenic APP during maturation influences the development of neuronal circuits controlling motor activity. Both when matched for total duration of APP overexpression and when matched for cortical amyloid burden, animals exposed to transgenic APP as juveniles are more active in locomotor assays than animals in which APP overexpression was delayed until adulthood. In contrast to motor activity, the age of APP onset had no effect on thigmotaxis in the open field as a rough measure of anxiety, suggesting that the interaction between APP overexpression and brain development is not unilateral. Our findings indicate that locomotor hyperactivity displayed by the tet-off APP transgenic mice and several other transgenic models of Alzheimer's disease may result from overexpression of mutant APP during postnatal brain development. Our results serve as a reminder of the potential for unexpected interactions between foreign transgenes and brain development to cause long-lasting effects on neuronal function in the adult. The tet-off APP model provides an easy means of avoiding developmental confounds by allowing transgene expression to be delayed until the mice reach adulthood.

  3. Tea component, epigallocatechin gallate, potentiates anticataleptic and locomotor-sensitizing effects of caffeine in mice.

    PubMed

    Kasture, Sanjay B; Gaikar, Mayur; Kasture, Veena; Arote, Sanjay; Salve, Balu; Rosas, Michela; Cotti, Elisabetta; Acquas, Elio

    2015-02-01

    Tea is the most popular beverage worldwide. Caffeine, the psychoactive principle of tea, pharmacologically interacts with several drugs and bioactive molecules. Epigallocatechin gallate (EGCG) is a major component of tea and its known interactions with caffeine make it worthwhile to further study them by investigating the influence of EGCG on the anticataleptic and locomotor-sensitizing effects of caffeine. In the present investigation, we observed that (a) administration of caffeine or EGCG alone inhibited haloperidol-induced catalepsy, a widely used animal model to study parkinsonism, and (b) a combination of caffeine and EGCG produced greater inhibition of haloperidol-induced catalepsy. Furthermore, after repeated administration of caffeine and EGCG, either alone or in combination, we observed that (c) caffeine and EGCG contrasted the sensitization of catalepsy observed after repeated haloperidol administration by significantly reducing the duration of catalepsy. Furthermore, as haloperidol-induced catalepsy was also associated with increased lipid peroxidation, we observed that (d) EGCG administration reduced striatal lipid peroxide levels in a dose-dependent manner and that (e) the combination of caffeine with EGCG was most effective in reducing haloperidol-increased striatal lipid peroxide. Finally, we observed that (f) chronic caffeine and EGCG significantly elicited locomotor sensitization and that (g) their combination resulted in significantly greater effects. In conclusion, EGCG potentiated the effects of caffeine on haloperidol-induced catalepsy and of caffeine-elicited locomotor sensitization. Overall, these observations indicate critical interactions between caffeine and EGCG in an animal model of parkinsonism and locomotor activity and suggest that tea consumption might reduce antipsychotic-induced side effects.

  4. Dissociating anxiolytic and sedative effects of GABAAergic drugs using temperature and locomotor responses to acute stress

    PubMed Central

    Klanker, Marianne; Groenink, Lucianne; Korte, S. Mechiel; Cook, James M.; Van Linn, Michael L.; Hopkins, Seth C.; Olivier, Berend

    2009-01-01

    Rationale The stress-induced hyperthermia (SIH) model is an anxiety model that uses the transient rise in body temperature in response to acute stress. Benzodiazepines produce anxiolytic as well as sedative side effects through nonselective binding to GABAA receptor subunits. The GABAA receptor α1 subunit is associated with sedation, whereas the GABAA receptor α2 and α3 subunits are involved in anxiolytic effects. Objectives We therefore examined the effects of (non) subunit-selective GABAA receptor agonists on temperature and locomotor responses to novel cage stress. Results Using telemetric monitoring of temperature and locomotor activity, we found that nonsubunit-selective GABAA receptor agonist diazepam as well as the α3 subunit-selective receptor agonist TP003 dose-dependently attenuated SIH and locomotor responses. Administration of GABAA receptor α1-selective agonist zolpidem resulted in profound hypothermia and locomotor sedation. The GABAA receptor α1-selective antagonist βCCt antagonized the hypothermia, but did not reverse the SIH response attenuation caused by diazepam and zolpidem. These results suggest an important regulating role for the α1 subunit in thermoregulation and sedation. Ligands of extrasynaptic GABAA receptors such as alcohol and nonbenzodiazepine THIP attenuated the SIH response only at high doses. Conclusions The present study confirms a putative role for the GABAA receptor α1 subunit in hypothermia and sedation and supports a role for α2/3 subunit GABAA receptor agonists in anxiety processes. In conclusion, we show that home cage temperature and locomotor responses to novel home cage stress provide an excellent tool to assess both anxiolytic and sedative effects of various (subunit-selective) GABAAergic compounds. PMID:19169673

  5. Effects of paraxanthine and caffeine on sleep, locomotor activity, and body temperature in orexin/ataxin-3 transgenic narcoleptic mice.

    PubMed

    Okuro, Masashi; Fujiki, Nobuhiro; Kotorii, Nozomu; Ishimaru, Yuji; Sokoloff, Pierre; Nishino, Seiji

    2010-07-01

    Caffeine, an adenosine A1 and A2a receptor antagonist, is a widely consumed stimulant and also used for the treatment of hypersomnia; however, the wake-promoting potency of caffeine is often not strong enough, and high doses may induce side effects. Caffeine is metabolized to paraxanthine, theobromine, and theophylline. Paraxanthine is a central nervous stimulant and exhibits higher potency at A1 and A2 receptors, but has lower toxicity and lesser anxiogenic effects than caffeine. We evaluated the wake-promoting efficacy of paraxanthine, caffeine, and a reference wake-promoting compound, modafinil, in a mice model of narcolepsy, a prototypical disease model of hypersomnia. Orexin/ataxin-3 transgenic (TG) and wild-type (WT) mice were subjected to oral administration (at ZT 2 and ZT14) of 3 doses of paraxanthine, caffeine, modafinil, or vehicle. Paraxanthine, caffeine, and modafinil significantly promoted wakefulness in both WT and narcoleptic TG mice and proportionally reduced NREM and REM sleep in both genotypes. The wake-promoting potency of 100 mg/kg p.o. of paraxanthine during the light period administration roughly corresponds to that of 200 mg/kg p.o. of modafinil. The wake-promoting potency of paraxanthine is greater and longer lasting than that of the equimolar concentration of caffeine, when the drugs were administered during the light period. The wake-promotion by paraxanthine, caffeine, and modafinil are associated with an increase in locomotor activity and body temperature. However, the higher doses of caffeine and modafinil, but not paraxanthine, induced hypothermia and reduced locomotor activity, thereby confirming the lower toxicity of paraxanthine. Behavioral evaluations of anxiety levels in WT mice revealed that paraxanthine induced less anxiety than caffeine did. Because it is also reported to provide neuroprotection, paraxanthine may be a better wake-promoting agent for hypersomnia associated with neurodegenerative diseases.

  6. Flies in the north: locomotor behavior and clock neuron organization of Drosophila montana.

    PubMed

    Kauranen, Hannele; Menegazzi, Pamela; Costa, Rodolfo; Helfrich-Förster, Charlotte; Kankainen, Annaliisa; Hoikkala, Anneli

    2012-10-01

    The circadian clock plays an important role in adaptation in time and space by synchronizing changes in physiological, developmental, and behavioral traits of organisms with daily and seasonal changes in their environment. We have studied some features of the circadian activity and clock organization in a northern Drosophila species, Drosophila montana, at both the phenotypic and the neuronal levels. In the first part of the study, we monitored the entrained and free-running locomotor activity rhythms of females in different light-dark and temperature regimes. These studies showed that D. montana flies completely lack the morning activity component typical to more southern Drosophila species in an entrained environment and that they are able to maintain their free-running locomotor activity rhythm better in constant light than in constant darkness. In the second part of the study, we traced the expression of the PDF neuropeptide and the CRY protein in the neurons of the brain in D. montana adults and found differences in the number and location of PDF- and CRY-expressing neurons compared with those described in Drosophila melanogaster. These differences could account, at least in part, for the lack of morning activity and the reduced circadian rhythmicity of D. montana flies in constant darkness, both of which are likely to be adaptive features during the long and dark winters occurring in nature.

  7. Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera)

    PubMed Central

    Fussnecker, Brendon L.; Smith, Brian H.; Mustard, Julie A.

    2006-01-01

    The biogenic amines octopamine and tyramine are believed to play a number of important roles in the behavior of invertebrates including the regulation of motor function. To investigate the role of octopamine and tyramine in locomotor behavior in honey bees, subjects were injected with a range of concentrations of octopamine, tyramine, mianserin or yohimbine. Continuous observation of freely moving worker bees was used to examine the effects of these treatments on the amount of time honey bees spent engaged in different locomotor behaviors such as walking, grooming, fanning and flying. All treatments produced significant shifts in behavior. Decreases in time spent walking and increases in grooming or stopped behavior were observed for every drug. However, the pattern of the shift depended on drug, time after injection and concentration. Flying behavior was differentially effected with increases in flying seen in octopamine treated bees, whereas those receiving tyramine showed a decrease in flying. Taken together, these data provide evidence that octopamine and tyramine modulate motor function in the honey bee perhaps via interaction with central pattern generators or through effects on sensory perception. PMID:17028016

  8. Effect of environmental temperature on sleep, locomotor activity, core body temperature and immune responses of C57BL/6J mice

    PubMed Central

    Jhaveri, KA; Trammell, RA; Toth, LA

    2007-01-01

    Ambient temperature exerts a prominent influence on sleep. In rats and humans, low ambient temperatures generally impair sleep, whereas higher temperatures tend to promote sleep. The purpose of the current study was to evaluate sleep patterns and core body temperatures of C57BL/6J mice at ambient temperatures of 22°C, 26°C and 30°C under baseline conditions, after sleep deprivation (SD), and after infection with influenza virus. C57BL/6J mice were surgically implanted with electrodes for recording electroencephalogram (EEG) and electromyogram (EMG) and with intraperitoneal transmitters for recording core body temperature (Tc) and locomotor activity. The data indicate that higher ambient temperatures (26°C and 30°C) promote spontaneous slow wave sleep (SWS) in association with reduced delta wave amplitude during SWS in C57BL/6J mice. Furthermore, higher ambient temperatures also promote recuperative sleep after SD. Thus, in mice, higher ambient temperatures reduced sleep depth under normal conditions, but augmented the recuperative response to sleep loss. Mice infected with influenza virus while maintained at 22 or 26°C developed more SWS, less rapid eye movement sleep, lower locomotor activity and greater hypothermia than did mice maintained at 30°C during infection. In addition, despite equivalent viral titers, mice infected with influenza virus at 30°C showed less leucopenia and lower cytokine induction as compared with 22 and 26°C, respectively, suggesting that less inflammation develops at the higher ambient temperature. PMID:17467232

  9. Regulation of Akt-mTOR, ubiquitin-proteasome and autophagy-lysosome pathways in locomotor and respiratory muscles during experimental sepsis in mice.

    PubMed

    Morel, Jérome; Palao, Jean-Charles; Castells, Josiane; Desgeorges, Marine; Busso, Thierry; Molliex, Serge; Jahnke, Vanessa; Del Carmine, Peggy; Gondin, Julien; Arnould, David; Durieux, Anne Cécile; Freyssenet, Damien

    2017-09-07

    Sepsis induced loss of muscle mass and function contributes to promote physical inactivity and disability in patients. In this experimental study, mice were sacrificed 1, 4, or 7 days after cecal ligation and puncture (CLP) or sham surgery. When compared with diaphragm, locomotor muscles were more prone to sepsis-induced muscle mass loss. This could be attributed to a greater activation of ubiquitin-proteasome system and an increased myostatin expression. Thus, this study strongly suggests that the contractile activity pattern of diaphragm muscle confers resistance to atrophy compared to the locomotor gastrocnemius muscle. These data also suggest that a strategy aimed at preventing the activation of catabolic pathways and preserving spontaneous activity would be of interest for the treatment of patients with sepsis-induced neuromyopathy.

  10. Development of a Countermeasure to Enhance Postflight Locomotor Adaptability

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.

    2006-01-01

    Astronauts returning from space flight experience locomotor dysfunction following their return to Earth. Our laboratory is currently developing a gait adaptability training program that is designed to facilitate recovery of locomotor function following a return to a gravitational environment. The training program exploits the ability of the sensorimotor system to generalize from exposure to multiple adaptive challenges during training so that the gait control system essentially learns to learn and therefore can reorganize more rapidly when faced with a novel adaptive challenge. We have previously confirmed that subjects participating in adaptive generalization training programs using a variety of visuomotor distortions can enhance their ability to adapt to a novel sensorimotor environment. Importantly, this increased adaptability was retained even one month after completion of the training period. Adaptive generalization has been observed in a variety of other tasks requiring sensorimotor transformations including manual control tasks and reaching (Bock et al., 2001, Seidler, 2003) and obstacle avoidance during walking (Lam and Dietz, 2004). Taken together, the evidence suggests that a training regimen exposing crewmembers to variation in locomotor conditions, with repeated transitions among states, may enhance their ability to learn how to reassemble appropriate locomotor patterns upon return from microgravity. We believe exposure to this type of training will extend crewmembers locomotor behavioral repertoires, facilitating the return of functional mobility after long duration space flight. Our proposed training protocol will compel subjects to develop new behavioral solutions under varying sensorimotor demands. Over time subjects will learn to create appropriate locomotor solution more rapidly enabling acquisition of mobility sooner after long-duration space flight. Our laboratory is currently developing adaptive generalization training procedures and the

  11. Big dynorphin, a prodynorphin-derived peptide produces NMDA receptor-mediated effects on memory, anxiolytic-like and locomotor behavior in mice.

    PubMed

    Kuzmin, Alexander; Madjid, Nather; Terenius, Lars; Ogren, Sven Ove; Bakalkin, Georgy

    2006-09-01

    Effects of big dynorphin (Big Dyn), a prodynorphin-derived peptide consisting of dynorphin A (Dyn A) and dynorphin B (Dyn B) on memory function, anxiety, and locomotor activity were studied in mice and compared to those of Dyn A and Dyn B. All peptides administered i.c.v. increased step-through latency in the passive avoidance test with the maximum effective doses of 2.5, 0.005, and 0.7 nmol/animal, respectively. Effects of Big Dyn were inhibited by MK 801 (0.1 mg/kg), an NMDA ion-channel blocker whereas those of dynorphins A and B were blocked by the kappa-opioid antagonist nor-binaltorphimine (6 mg/kg). Big Dyn (2.5 nmol) enhanced locomotor activity in the open field test and induced anxiolytic-like behavior both effects blocked by MK 801. No changes in locomotor activity and no signs of anxiolytic-like behavior were produced by dynorphins A and B. Big Dyn (2.5 nmol) increased time spent in the open branches of the elevated plus maze apparatus with no changes in general locomotion. Whereas dynorphins A and B (i.c.v., 0.05 and 7 nmol/animal, respectively) produced analgesia in the hot-plate test Big Dyn did not. Thus, Big Dyn differs from its fragments dynorphins A and B in its unique pattern of memory enhancing, locomotor- and anxiolytic-like effects that are sensitive to the NMDA receptor blockade. The findings suggest that Big Dyn has its own function in the brain different from those of the prodynorphin-derived peptides acting through kappa-opioid receptors.

  12. Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by D-amphetamine.

    PubMed

    Parkinson, J A; Olmstead, M C; Burns, L H; Robbins, T W; Everitt, B J

    1999-03-15

    Dopamine release within the nucleus accumbens (NAcc) has been associated with both the rewarding and locomotor-stimulant effects of abused drugs. The functions of the NAcc core and shell were investigated in mediating amphetamine-potentiated conditioned reinforcement and locomotion. Rats were initially trained to associate a neutral stimulus (Pavlovian CS) with food reinforcement (US). After excitotoxic lesions that selectively destroyed either the NAcc core or shell, animals underwent additional CS-US training sessions and then were tested for the acquisition of a new instrumental response that produced the CS acting as a conditioned reinforcer (CR). Animals were infused intra-NAcc with D-amphetamine (0, 1, 3, 10, or 20 microg) before each session. Shell lesions affected neither Pavlovian nor instrumental conditioning but completely abolished the potentiative effect of intra-NAcc amphetamine on responding with CR. Core-lesioned animals were impaired during the Pavlovian retraining sessions but showed no deficit in the acquisition of responding with CR. However, the selectivity in stimulant-induced potentiation of the CR lever was reduced, as intra-NAcc amphetamine infusions dose-dependently increased responding on both the CR lever and a nonreinforced (control) lever. Shell lesions produced hypoactivity and attenuated amphetamine-induced activity. In contrast, core lesions resulted in hyperactivity and enhanced the locomotor-stimulating effect of amphetamine. These results indicate a functional dissociation of subregions of the NAcc; the shell is a critical site for stimulant effects underlying the enhancement of responding with CR and locomotion after intra-NAcc injections of amphetamine, whereas the core is implicated in mechanisms underlying the expression of CS-US associations.

  13. The Effects of 4-Methylethcathinone on Conditioned Place Preference, Locomotor Sensitization, and Anxiety-Like Behavior: A Comparison with Methamphetamine.

    PubMed

    Xu, Peng; Qiu, Yi; Zhang, Yizhi; Βai, Yanping; Xu, Pengfei; Liu, Yuan; Kim, Jee Hyun; Shen, Hao-wei

    2016-04-01

    4-Methylethcathinone is a drug that belongs to the second generation of synthetic cathinones, and recently it has been ranked among the most popular "legal highs". Although it has similar in vitro neurochemical actions to other drugs such as cocaine, the behavioral effects of 4-methylethcathinone remain to be determined. The addictive potential and locomotor potentiation by 4-methylethcathinone were investigated in rats using the conditioned place preference and sensitization paradigm. Methamphetamine was used as a positive control. Because synthetic cathinones can have psychological effects, we also examined anxiety-like behavior using the elevated plus maze. A conditioning dose of 10 mg/kg 4-methylethcathinone was able to induce conditioned place preference and reinstatement (following 2 weeks of withdrawal). Acute or repeated injections of 4-methylethcathinone at 3 or 10mg/kg failed to alter locomotor activity. At 30 mg/kg, however, acute 4-methylethcathinone increased locomotor activity compared with saline, while chronic 4-methylethcathinone induced a delayed and attenuated sensitization compared with methamphetamine. Additionally, repeated daily injections of 4-methylethcathinone (30 mg/kg) reduced, whereas methamphetamine increased time spent by rats in the open arm of an elevated plus maze compared with saline injections. Interestingly, a 2-week withdrawal period following chronic injections of 4-methylethcathinone or methamphetamine increased time spent in the open arm in all rats. The rewarding properties of 4-methylethcathinone were found to be dissociated from its effects on locomotor activity. Additionally, chronic 4-methylethcathinone use may trigger abnormal anxious behaviors. These behavioral effects caused by 4-methylethcathinone appear to last even after a withdrawal period. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  14. A Review on Locomotor Training after Spinal Cord Injury: Reorganization of Spinal Neuronal Circuits and Recovery of Motor Function

    PubMed Central

    2016-01-01

    Locomotor training is a classic rehabilitation approach utilized with the aim of improving sensorimotor function and walking ability in people with spinal cord injury (SCI). Recent studies have provided strong evidence that locomotor training of persons with clinically complete, motor complete, or motor incomplete SCI induces functional reorganization of spinal neuronal networks at multisegmental levels at rest and during assisted stepping. This neuronal reorganization coincides with improvements in motor function and decreased muscle cocontractions. In this review, we will discuss the manner in which spinal neuronal circuits are impaired and the evidence surrounding plasticity of neuronal activity after locomotor training in people with SCI. We conclude that we need to better understand the physiological changes underlying locomotor training, use physiological signals to probe recovery over the course of training, and utilize established and contemporary interventions simultaneously in larger scale research studies. Furthermore, the focus of our research questions needs to change from feasibility and efficacy to the following: what are the physiological mechanisms that make it work and for whom? The aforementioned will enable the scientific and clinical community to develop more effective rehabilitation protocols maximizing sensorimotor function recovery in people with SCI. PMID:27293901

  15. Arrestin-2 and arrestin-3 differentially modulate locomotor responses and sensitization to amphetamine.

    PubMed

    Zurkovsky, Lilia; Sedaghat, Katayoun; Ahmed, M Rafiuddin; Gurevich, Vsevolod V; Gurevich, Eugenia V

    2017-07-15

    Arrestins play a prominent role in shutting down signaling via G protein-coupled receptors. In recent years, a signaling role for arrestins independent of their function in receptor desensitization has been discovered. Two ubiquitously expressed arrestin isoforms, arrestin-2 and arrestin-3, perform similarly in the desensitization process and share many signaling functions, enabling them to substitute for one another. However, signaling roles specific to each isoform have also been described. Mice lacking arrestin-3 (ARR3KO) were reported to show blunted acute responsiveness to the locomotor stimulatory effect of amphetamine (AMPH). It has been suggested that mice with deletion of arrestin-2 display a similar phenotype. Here we demonstrate that the AMPH-induced locomotion of male ARR3KO mice is reduced over the 7-day treatment period and during AMPH challenge after a 7-day withdrawal. The data are consistent with impaired locomotor sensitization to AMPH and suggest a role for arrestin-3-mediated signaling in the sensitization process. In contrast, male ARR2KO mice showed enhanced early responsiveness to AMPH and the lack of further sensitization, suggesting a role for impaired receptor desensitization. The comparison of mice possessing one allele of arrestin-3 and no arrestin-2 with ARR2KO littermates revealed reduced activity of the former line, consistent with a contribution of arrestin-3-mediated signaling to AMPH responses. Surprisingly, ARR3KO mice with one arrestin-2 allele showed significantly reduced locomotor responses to AMPH combined with lower novelty-induced locomotion, as compared to the ARR3KO line. These data suggest that one allele of arrestin-2 is unable to support normal locomotor behavior due to signaling and/or developmental defects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. A rapid enhancement of locomotor sensitization to amphetamine by estradiol in female rats.

    PubMed

    Zovkic, Iva B; McCormick, Cheryl M

    2017-11-14

    Estradiol moderates the effects of drugs of abuse in both humans and rodents. Estradiol's enhancement of behavioral effects resulting from high (>2.5mg/kg) doses of amphetamine is established in rats; there is less evidence for the role of estradiol in locomotor effects elicited by lower doses, which are less aversive, increase incentive motivation, involve different neural mechanisms than higher doses, and often more readily reveal group differences than do higher doses. Further, the extent to which estradiol is required for the induction versus the expression of sensitization is unknown. To establish a protocol, we replicated the effects of estradiol on locomotor sensitization to amphetamine reported in a previous study that involved a high locomotor-activating dose (1.5mg/kg) of amphetamine, but with a lower dose. Ovariectomized female rats received 5μg of estradiol benzoate (EB) or OIL 30min before each of 5 treatments of 1.0mg/kg amphetamine or saline; all received a 0.5mg/kg challenge dose three days later. Compared with results for OIL, EB enhanced the locomotor-activating effects of repeated 1.0mg/kg amphetamine across treatment days. In contrast, on challenge day, there was no difference between EB-saline and EB-amphetamine to the lower dose (i.e., no sensitization). Experiments 2 and 3 involved a shorter induction (2days) and a lengthier withdrawal (9days) before the challenge test for the expression of sensitization to better differentiate the induction phase from the expression phase. In Expt2, EB-, and not OIL-, treated rats showed sensitization to 0.5mg/kg amphetamine; neither group showed sensitization to 1.5mg/kg amphetamine (ceiling effect?). In Expt3, rats were treated with EB either in both the induction and expression phases, in one of the phases only, or in neither phase. There was an effect of hormone treatment on challenge day and not on induction day; rats given EB on Challenge day showed sensitization to 0.5mg/kg amphetamine; OIL rats did

  17. Selective enhancement of NMDA receptor-mediated locomotor hyperactivity by male sex hormones in mice.

    PubMed

    van den Buuse, Maarten; Low, Jac Kee; Kwek, Perrin; Martin, Sally; Gogos, Andrea

    2017-09-01

    Altered glutamate NMDA receptor function is implicated in schizophrenia, and gender differences have been demonstrated in this illness. This study aimed to investigate the interaction of gonadal hormones with NMDA receptor-mediated locomotor hyperactivity and PPI disruption in mice. The effect of 0.25 mg/kg of MK-801 on locomotor activity was greater in male mice than in female mice. Gonadectomy (by surgical castration) significantly reduced MK-801-induced hyperlocomotion in male mice, but no effect of gonadectomy was seen in female mice or on amphetamine-induced locomotor hyperactivity. The effect of MK-801 on prepulse inhibition of startle (PPI) was similar in intact and castrated male mice and in ovariectomized (OVX) female mice. In contrast, there was no effect of MK-801 on PPI in intact female mice. Forebrain NMDA receptor density, as measured with [ 3 H]MK-801 autoradiography, was significantly higher in male than in female mice but was not significantly altered by either castration or OVX. These results suggest that male sex hormones enhance the effect of NMDA receptor blockade on psychosis-like behaviour. This interaction was not seen in female mice and was independent of NMDA receptor density in the forebrain. Male sex hormones may be involved in psychosis by an interaction with NMDA receptor hypofunction.

  18. Role of spared pathways in locomotor recovery after body-weight-supported treadmill training in contused rats.

    PubMed

    Singh, Anita; Balasubramanian, Sriram; Murray, Marion; Lemay, Michel; Houle, John

    2011-12-01

    Body-weight-supported treadmill training (BWSTT)-related locomotor recovery has been shown in spinalized animals. Only a few animal studies have demonstrated locomotor recovery after BWSTT in an incomplete spinal cord injury (SCI) model, such as contusion injury. The contribution of spared descending pathways after BWSTT to behavioral recovery is unclear. Our goal was to evaluate locomotor recovery in contused rats after BWSTT, and to study the role of spared pathways in spinal plasticity after BWSTT. Forty-eight rats received a contusion, a transection, or a contusion followed at 9 weeks by a second transection injury. Half of the animals in the three injury groups were given BWSTT for up to 8 weeks. Kinematics and the Basso-Beattie-Bresnahan (BBB) test assessed behavioral improvements. Changes in Hoffmann-reflex (H-reflex) rate depression property, soleus muscle mass, and sprouting of primary afferent fibers were also evaluated. BWSTT-contused animals showed accelerated locomotor recovery, improved H-reflex properties, reduced muscle atrophy, and decreased sprouting of small caliber afferent fibers. BBB scores were not improved by BWSTT. Untrained contused rats that received a transection exhibited a decrease in kinematic parameters immediately after the transection; in contrast, trained contused rats did not show an immediate decrease in kinematic parameters after transection. This suggests that BWSTT with spared descending pathways leads to neuroplasticity at the lumbar spinal level that is capable of maintaining locomotor activity. Discontinuing training after the transection in the trained contused rats abolished the improved kinematics within 2 weeks and led to a reversal of the improved H-reflex response, increased muscle atrophy, and an increase in primary afferent fiber sprouting. Thus continued training may be required for maintenance of the recovery. Transected animals had no effect of BWSTT, indicating that in the absence of spared pathways this

  19. The Rewarding and Locomotor-Sensitizing Effects of Repeated Cocaine Administration are Distinct and Separable in Mice

    PubMed Central

    Riday, Thorfinn T.; Kosofsky, Barry E.; Malanga, C.J.

    2011-01-01

    Repeated psychostimulant exposure progressively increases their potency to stimulate motor activity in rodents. This behavioral or locomotor sensitization is considered a model for some aspects of drug addiction in humans, particularly drug craving during abstinence. However, the role of increased motor behavior in drug reward remains incompletely understood. Intracranial self-stimulation (ICSS) was measured concurrently with locomotor activity to determine if acute intermittent cocaine administration had distinguishable effects on motor behavior and perception of brain stimulation-reward (BSR) in the same mice. Sensitization is associated with changes in neuronal activity and glutamatergic neurotransmission in brain reward circuitry. Expression of AMPA receptor subunits (GluR1 and GluR2) and CRE binding protein (CREB) was measured in the ventral tegmental area (VTA), dorsolateral striatum (STR) and nucleus accumbens (NAc) before and after a sensitizing regimen of cocaine, with and without ICSS. Repeated cocaine administration sensitized mice to its locomotor stimulating effects but not its ability to potentiate BSR. ICSS increased GluR1 in the VTA but not NAc or STR, demonstrating selective changes in protein expression with electrical stimulation of discrete brain structures. Repeated cocaine reduced GluR1, GluR2 and CREB expression in the NAc, and reductions of GluR1 and GluR2 but not CREB were further enhanced by ICSS. These data suggest that the effects of repeated cocaine exposure on reward and motor processes are dissociable in mice, and that reduction of excitatory neurotransmission in the NAc may predict altered motor function independently from changes in reward perception. PMID:22197517

  20. Tonic and Rhythmic Spinal Activity Underlying Locomotion.

    PubMed

    Ivanenko, Yury P; Gurfinkel, Victor S; Selionov, Victor A; Solopova, Irina A; Sylos-Labini, Francesca; Guertin, Pierre A; Lacquaniti, Francesco

    2017-05-12

    In recent years, many researches put significant efforts into understanding and assessing the functional state of the spinal locomotor circuits in humans. Various techniques have been developed to stimulate the spinal cord circuitries, which may include both diffuse and quite specific tuning effects. Overall, the findings indicate that tonic and rhythmic spinal activity control are not separate phenomena but are closely integrated to properly initiate and sustain stepping. The spinal cord does not simply transmit information to and from the brain. Its physiologic state determines reflex, postural and locomotor control and, therefore, may affect the recovery of the locomotor function in individuals with spinal cord and brain injuries. This review summarizes studies that examine the rhythmogenesis capacity of cervical and lumbosacral neuronal circuitries in humans and its importance in developing central pattern generator-modulating therapies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Using a Split-belt Treadmill to Evaluate Generalization of Human Locomotor Adaptation.

    PubMed

    Vasudevan, Erin V L; Hamzey, Rami J; Kirk, Eileen M

    2017-08-23

    Understanding the mechanisms underlying locomotor learning helps researchers and clinicians optimize gait retraining as part of motor rehabilitation. However, studying human locomotor learning can be challenging. During infancy and childhood, the neuromuscular system is quite immature, and it is unlikely that locomotor learning during early stages of development is governed by the same mechanisms as in adulthood. By the time humans reach maturity, they are so proficient at walking that it is difficult to come up with a sufficiently novel task to study de novo locomotor learning. The split-belt treadmill, which has two belts that can drive each leg at a different speed, enables the study of both short- (i.e., immediate) and long-term (i.e., over minutes-days; a form of motor learning) gait modifications in response to a novel change in the walking environment. Individuals can easily be screened for previous exposure to the split-belt treadmill, thus ensuring that all experimental participants have no (or equivalent) prior experience. This paper describes a typical split-belt treadmill adaptation protocol that incorporates testing methods to quantify locomotor learning and generalization of this learning to other walking contexts. A discussion of important considerations for designing split-belt treadmill experiments follows, including factors like treadmill belt speeds, rest breaks, and distractors. Additionally, potential but understudied confounding variables (e.g., arm movements, prior experience) are considered in the discussion.

  2. Contribution of serotonin and dopamine to changes in core body temperature and locomotor activity in rats following repeated administration of mephedrone.

    PubMed

    Shortall, Sinead E; Spicer, Clare H; Ebling, Francis J P; Green, A Richard; Fone, Kevin C F; King, Madeleine V

    2016-11-01

    The psychoactive effects of mephedrone are commonly compared with those of 3,4-methylenedioxymethamphetamine, but because of a shorter duration of action, users often employ repeated administration to maintain its psychoactive effects. This study examined the effects of repeated mephedrone administration on locomotor activity, body temperature and striatal dopamine and 5-hydroxytryptamine (5-HT) levels and the role of dopaminergic and serotonergic neurons in these responses. Adult male Lister hooded rats received three injections of vehicle (1 ml/kg, i.p.) or mephedrone HCl (10 mg/kg) at 2 h intervals for radiotelemetry (temperature and activity) or microdialysis (dopamine and 5-HT) measurements. Intracerebroventricular pre-treatment (21 to 28 days earlier) with 5,7-dihydroxytryptamine (150 µg) or 6-hydroxydopamine (300 µg) was used to examine the impact of 5-HT or dopamine depletion on mephedrone-induced changes in temperature and activity. A final study examined the influence of i.p. pre-treatment (-30 min) with the 5-HT 1A receptor antagonist WAY-100635 (0.5 mg/kg), 5-HT 1B receptor antagonist GR 127935 (3 mg/kg) or the 5-HT 7 receptor antagonist SB-258719 (10 mg/kg) on mephedrone-induced changes in locomotor activity and rectal temperature. Mephedrone caused rapid-onset hyperactivity, hypothermia (attenuated on repeat dosing) and increased striatal dopamine and 5-HT release following each injection. Mephedrone-induced hyperactivity was attenuated by 5-HT depletion and 5-HT 1B receptor antagonism, whereas the hypothermia was completely abolished by 5-HT depletion and lessened by 5-HT 1A receptor antagonism. These findings suggest that stimulation of central 5-HT release and/or inhibition of 5-HT reuptake play a pivotal role in both the hyperlocomotor and hypothermic effects of mephedrone, which are mediated in part via 5-HT 1B and 5-HT 1A receptors. © 2015 Society for the Study of Addiction.

  3. Sexual behavior induction of c-Fos in the nucleus accumbens and amphetamine-stimulated locomotor activity are sensitized by previous sexual experience in female Syrian hamsters.

    PubMed

    Bradley, K C; Meisel, R L

    2001-03-15

    Dopamine transmission in the nucleus accumbens can be activated by drugs, stress, or motivated behaviors, and repeated exposure to these stimuli can sensitize this dopamine response. The objectives of this study were to determine whether female sexual behavior activates nucleus accumbens neurons and whether past sexual experience cross-sensitizes neuronal responses in the nucleus accumbens to amphetamine. Using immunocytochemical labeling, c-Fos expression in different subregions (shell vs core at the rostral, middle, and caudal levels) of the nucleus accumbens was examined in female hamsters that had varying amounts of sexual experience. Female hamsters, given either 6 weeks of sexual experience or remaining sexually naive, were tested for sexual behavior by exposure to adult male hamsters. Previous sexual experience increased c-Fos labeling in the rostral and caudal levels but not in the middle levels of the nucleus accumbens. Testing for sexual behavior increased labeling in the core, but not the shell, of the nucleus accumbens. To validate that female sexual behavior can sensitize neurons in the mesolimbic dopamine pathway, the locomotor responses of sexually experienced and sexually naive females to an amphetamine injection were then compared. Amphetamine increased general locomotor activity in all females. However, sexually experienced animals responded sooner to amphetamine than did sexually naive animals. These data indicate that female sexual behavior can activate neurons in the nucleus accumbens and that sexual experience can cross-sensitize neuronal responses to amphetamine. In addition, these results provide additional evidence for functional differences between the shell and core of the nucleus accumbens and across its anteroposterior axis.

  4. Double invisible displacement understanding in orangutans: testing in non-locomotor and locomotor space.

    PubMed

    Mallavarapu, Suma; Stoinski, Tara S; Perdue, Bonnie M; Maple, Terry L

    2014-10-01

    The nonadjacent double invisible displacement task has been used to test for the ability of different species to mentally represent the unperceived trajectory of an object. The task typically requires three occluders/boxes in a linear array and involves hiding an object in one of two nonadjacent boxes visited in succession. Previous research indicates that 19-, 26-, and 30-month-old children and various nonhuman species cannot solve these displacements. It has been hypothesized that this is because individuals are unable to inhibit searching in the unbaited center box that was never visited by the experimenter. It has been suggested that presenting the task in a large-scale locomotor space might allow individuals to overcome this inhibition problem. In the present study, we tested orangutans on adjacent and nonadjacent double invisible displacements with the traditional setup (experiment 1) and in locomotor space with boxes placed 1.22 m apart (experiment 2). In both experiments, subjects were able to solve adjacent, but not nonadjacent, trials. The failure on nonadjacent trials appeared to be because of an inability to inhibit sequential search on the second choice as well as because of a large number of first-choice errors (directly choosing an incorrect box). The current results support previous findings that orangutans exhibit some constraints when representing the invisible trajectory of objects.

  5. Repeated exposure to corticosterone increases depression-like behavior in two different versions of the forced swim test without altering nonspecific locomotor activity or muscle strength.

    PubMed

    Marks, Wendie; Fournier, Neil M; Kalynchuk, Lisa E

    2009-08-04

    We have recently shown that repeated high dose injections of corticosterone (CORT) reliably increase depression-like behavior on a modified one-day version of the forced swim test. The main purpose of this experiment was to compare the effect of these CORT injections on our one-day version of the forced swim test and the more traditional two-day version of the test. A second purpose was to determine whether altered behavior in the forced swim test could be due to nonspecific changes in locomotor activity or muscle strength. Separate groups of rats received a high dose CORT injection (40 mg/kg) or a vehicle injection once per day for 21 consecutive days. Then, half the rats from each group were exposed to the traditional two-day forced swim test and the other half were exposed to our one-day forced swim test. After the forced swim testing, all the rats were tested in an open field and in a wire suspension grip strength test. The CORT injections significantly increased the time spent immobile and decreased the time spent swimming in both versions of the forced swim test. However, they had no significant effect on activity in the open field or grip strength in the wire suspension test. These results show that repeated CORT injections increase depression-like behavior regardless of the specific parameters of forced swim testing, and that these effects are independent of changes in locomotor activity or muscle strength.

  6. Sherlock Holmes and the Curious Case of the Human Locomotor Central Pattern Generator.

    PubMed

    Klarner, Taryn; Zehr, E Paul

    2018-03-14

    Evidence first described in reduced animal models over 100 years ago led to deductions about the control of locomotion through spinal locomotor central pattern generating (CPG) networks. These discoveries in nature were contemporaneous with another form of deductive reasoning found in popular culture-that of Arthur Conan Doyle's detective "Sherlock Holmes". Since the invasive methods used in reduced non-human animal preparations are not amenable to study in humans, we are left instead with deducing from other measures and observations. Using the deductive reasoning approach of Sherlock Holmes as a metaphor for framing research into human CPGs, we speculate and weigh the evidence that should be observable in humans based on knowledge from other species. This review summarizes indirect inference to assess "observable evidence" of pattern generating activity which leads to the logical deduction of CPG contributions to arm and leg activity during locomotion in humans. The question of where a CPG may be housed in the human nervous system remains incompletely resolved at this time. Ongoing understanding, elaboration and application of functioning locomotor CPGs in humans is important for gait rehabilitation strategies in those with neurological injuries.

  7. Drosophila male sex peptide inhibits siesta sleep and promotes locomotor activity in the post-mated female.

    PubMed

    Isaac, R Elwyn; Li, Chenxi; Leedale, Amy E; Shirras, Alan D

    2010-01-07

    Quiescence, or a sleep-like state, is a common and important feature of the daily lives of animals from both invertebrate and vertebrate taxa, suggesting that sleep appeared early in animal evolution. Recently, Drosophila melanogaster has been shown to be a relevant and powerful model for the genetic analysis of sleep behaviour. The sleep architecture of D. melanogaster is sexually dimorphic, with females sleeping much less than males during day-time, presumably because reproductive success requires greater foraging activity by the female as well as the search for egg-laying sites. However, this loss of sleep and increase in locomotor activity will heighten the risk for the female from environmental and predator hazards. In this study, we show that virgin females can minimize this risk by behaving like males, with an extended afternoon 'siesta'. Copulation results in the female losing 70 per cent of day-time sleep and becoming more active. This behaviour lasts for at least 8 days after copulation and is abolished if the mating males lack sex peptide (SP), normally present in the seminal fluid. Our results suggest that SP is the molecular switch that promotes wakefulness in the post-mated female, a change of behaviour compatible with increased foraging and egg-laying activity. The stress resulting from SP-dependent sleep deprivation might be an important contribution to the toxic side-effects of male accessory gland products that are known to reduce lifespan in post-mated females.

  8. Locomotor Tests Predict Community Mobility in Children and Youth with Cerebral Palsy

    ERIC Educational Resources Information Center

    Ferland, Chantale; Moffet, Helene; Maltais, Desiree

    2012-01-01

    Ambulatory children and youth with cerebral palsy have limitations in locomotor capacities and in community mobility. The ability of three locomotor tests to predict community mobility in this population (N = 49, 27 boys, 6-16 years old) was examined. The tests were a level ground walking test, the 6-min-Walk-Test (6MWT), and two tests of advanced…

  9. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury

    PubMed Central

    2014-01-01

    Background In incomplete spinal cord injury (iSCI), sensorimotor impairments result in severe limitations to ambulation. To improve walking capacity, physical therapies using robotic-assisted locomotor devices, such as the Lokomat, have been developed. Following locomotor training, an improvement in gait capabilities—characterized by increases in the over-ground walking speed and endurance—is generally observed in patients. To better understand the mechanisms underlying these improvements, we studied the effects of Lokomat training on impaired ankle voluntary movement, known to be an important limiting factor in gait for iSCI patients. Methods Fifteen chronic iSCI subjects performed twelve 1-hour sessions of Lokomat training over the course of a month. The voluntary movement was qualified by measuring active range of motion, maximal velocity peak and trajectory smoothness for the spastic ankle during a movement from full plantar-flexion (PF) to full dorsi-flexion (DF) at the patient’s maximum speed. Dorsi- and plantar-flexor muscle strength was quantified by isometric maximal voluntary contraction (MVC). Clinical assessments were also performed using the Timed Up and Go (TUG), the 10-meter walk (10MWT) and the 6-minute walk (6MWT) tests. All evaluations were performed both before and after the training and were compared to a control group of fifteen iSCI patients. Results After the Lokomat training, the active range of motion, the maximal velocity, and the movement smoothness were significantly improved in the voluntary movement. Patients also exhibited an improvement in the MVC for their ankle dorsi- and plantar-flexor muscles. In terms of functional activity, we observed an enhancement in the mobility (TUG) and the over-ground gait velocity (10MWT) with training. Correlation tests indicated a significant relationship between ankle voluntary movement performance and the walking clinical assessments. Conclusions The improvements of the kinematic and kinetic

  10. Ankle voluntary movement enhancement following robotic-assisted locomotor training in spinal cord injury.

    PubMed

    Varoqui, Deborah; Niu, Xun; Mirbagheri, Mehdi M

    2014-03-31

    In incomplete spinal cord injury (iSCI), sensorimotor impairments result in severe limitations to ambulation. To improve walking capacity, physical therapies using robotic-assisted locomotor devices, such as the Lokomat, have been developed. Following locomotor training, an improvement in gait capabilities-characterized by increases in the over-ground walking speed and endurance-is generally observed in patients. To better understand the mechanisms underlying these improvements, we studied the effects of Lokomat training on impaired ankle voluntary movement, known to be an important limiting factor in gait for iSCI patients. Fifteen chronic iSCI subjects performed twelve 1-hour sessions of Lokomat training over the course of a month. The voluntary movement was qualified by measuring active range of motion, maximal velocity peak and trajectory smoothness for the spastic ankle during a movement from full plantar-flexion (PF) to full dorsi-flexion (DF) at the patient's maximum speed. Dorsi- and plantar-flexor muscle strength was quantified by isometric maximal voluntary contraction (MVC). Clinical assessments were also performed using the Timed Up and Go (TUG), the 10-meter walk (10MWT) and the 6-minute walk (6MWT) tests. All evaluations were performed both before and after the training and were compared to a control group of fifteen iSCI patients. After the Lokomat training, the active range of motion, the maximal velocity, and the movement smoothness were significantly improved in the voluntary movement. Patients also exhibited an improvement in the MVC for their ankle dorsi- and plantar-flexor muscles. In terms of functional activity, we observed an enhancement in the mobility (TUG) and the over-ground gait velocity (10MWT) with training. Correlation tests indicated a significant relationship between ankle voluntary movement performance and the walking clinical assessments. The improvements of the kinematic and kinetic parameters of the ankle voluntary movement

  11. Acetylcholinesterase inhibition and locomotor function after motor-sensory cortex impact injury.

    PubMed

    Holschneider, Daniel P; Guo, Yumei; Roch, Margareth; Norman, Keith M; Scremin, Oscar U

    2011-09-01

    Traumatic brain injury (TBI) induces transient or persistent dysfunction of gait and balance. Enhancement of cholinergic transmission has been reported to accelerate recovery of cognitive function after TBI, but the effects of this intervention on locomotor activity remain largely unexplored. The hypothesis that enhancement of cholinergic function by inhibition of acetylcholinesterase (AChE) improves locomotion following TBI was tested in Sprague-Dawley male rats after a unilateral controlled cortical impact (CCI) injury of the motor-sensory cortex. Locomotion was tested by time to fall on the constant speed and accelerating Rotarod, placement errors and time to cross while walking through a horizontal ladder, activity monitoring in the home cages, and rearing behavior. Assessments were performed the 1st and 2nd day and the 1st, 2nd, and 3rd week after TBI. The AChE inhibitor physostigmine hemisulfate (PHY) was administered continuously via osmotic minipumps implanted subcutaneously at the rates of 1.6-12.8 μmol/kg/day. All measures of locomotion were impaired by TBI and recovered to initial levels between 1 and 3 weeks post-TBI, with the exception of the maximum speed achievable on the accelerating Rotarod, as well as rearing in the open field. PHY improved performance in the accelerating Rotarod at 1.6 and 3.2 μmol/kg/day (AChE activity 95 and 78% of control, respectively), however, higher doses induced progressive deterioration. No effect or worsening of outcomes was observed at all PHY doses for home cage activity, rearing, and horizontal ladder walking. Potential benefits of cholinesterase inhibition on locomotor function have to be weighed against the evidence of the narrow range of useful doses.

  12. A dose-response study of separate and combined effects of the serotonin agonist 8-OH-DPAT and the dopamine agonist quinpirole on locomotor sensitization, cross-sensitization, and conditioned activity.

    PubMed

    Johnson, Eric F; Szechtman, Henry

    2016-08-01

    Chronic treatment with the dopamine D2/D3 agonist, quinpirole, or the serotonin 1A agonist, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OH-DPAT), induces behavioral sensitization. It is not known whether both drugs produce sensitization through a shared mechanism. Here, we examine whether quinpirole and 8-OH-DPAT show cross-sensitization and impact sensitization, as would be expected from shared mechanisms. Male rats (N=208) were assigned randomly to 16 groups formed by crossing four doses of quinpirole (0, 0.03125, 0.0625, or 0.125 mg/kg) with four doses of 8-OH-DPAT (0, 0.03125, 0.625, or 0.125 mg/kg). After a course of 10 drug treatments administered twice per week in locomotor activity chambers, all groups were challenged on separate tests with quinpirole (0.1 mg/kg), 8-OH-DPAT (0.1 mg/kg), or saline, and locomotor activity was evaluated. Challenge tests with quinpirole and 8-OHDPAT showed no cross-sensitization between the drugs. Chronic quinpirole (0.125 mg/kg) administration induced a sensitized quinpirole response that was attenuated dose-dependently by chronic 8-OH-DPAT cotreatment. Cotreatment with quinpirole (0.0625 mg/kg) and 8-OH-DPAT (all doses) induced quinpirole sensitization. Chronic 8-OH-DPAT (0.125 mg/kg) induced a sensitized 8-OHDPAT response that was prevented by chronic cotreatment with the lowest but not the highest dose of quinpirole. Cotreatment with 8-OHDPAT (0.0625) and quinpirole (0.125 mg/kg) induced sensitization to 8-OH-DPAT. The saline challenge test showed elevated locomotor activity in chronic quinpirole (0.125 mg/kg) and 8-OHDPAT (0.0625, 0.125 mg/kg) alone groups, and in seven of nine cotreated groups. The absence of cross-sensitization suggests separate mechanisms of sensitization to quinpirole and 8-OH-DPAT. Cotreatment effects suggest that induction of sensitization can be modulated by serotonin 1A and D2/D3 activity.

  13. Frontal Brain Activity and Behavioral Indicators of Affective States are Weakly Affected by Thermal Stimuli in Sheep Living in Different Housing Conditions

    PubMed Central

    Vögeli, Sabine; Wolf, Martin; Wechsler, Beat; Gygax, Lorenz

    2015-01-01

    Many stimuli evoke short-term emotional reactions. These reactions may play an important role in assessing how a subject perceives a stimulus. Additionally, long-term mood may modulate the emotional reactions but it is still unclear in what way. The question seems to be important in terms of animal welfare, as a negative mood may taint emotional reactions. In the present study with sheep, we investigated the effects of thermal stimuli on emotional reactions and the potential modulating effect of mood induced by manipulations of the housing conditions. We assume that unpredictable, stimulus-poor conditions lead to a negative and predictable, stimulus-rich conditions to a positive mood state. The thermal stimuli were applied to the upper breast during warm ambient temperatures: hot (as presumably negative), intermediate, and cold (as presumably positive). We recorded cortical activity by functional near-infrared spectroscopy, restlessness behavior (e.g., locomotor activity, aversive behaviors), and ear postures as indicators of emotional reactions. The strongest hemodynamic reaction was found during a stimulus of intermediate valence independent of the animal’s housing conditions, whereas locomotor activity, ear movements, and aversive behaviors were seen most in sheep from the unpredictable, stimulus-poor housing conditions, independent of stimulus valence. We conclude that, sheep perceived the thermal stimuli and differentiated between some of them. An adequate interpretation of the neuronal activity pattern remains difficult, though. The effects of housing conditions were small indicating that the induction of mood was only modestly efficacious. Therefore, a modulating effect of mood on the emotional reaction was not found. PMID:26664938

  14. HPLC-Based Activity Profiling for GABAA Receptor Modulators in Searsia pyroides Using a Larval Zebrafish Locomotor Assay.

    PubMed

    Moradi-Afrapoli, Fahimeh; van der Merwe, Hannes; De Mieri, Maria; Wilhelm, Anke; Stadler, Marco; Zietsman, Pieter C; Hering, Steffen; Swart, Kenneth; Hamburger, Matthias

    2017-10-01

    A dichloromethane extract from leaves of Searsia pyroides potentiated gamma aminobutyric acid-induced chloride currents by 171.8 ± 54% when tested at 100 µg/mL in Xenopus oocytes transiently expressing gamma aminobutyric acid type A receptors composed of α 1 β 2 γ 2 s subunits. In zebrafish larvae, the extract significantly lowered pentylenetetrazol-provoked locomotion when tested at 4 µg/mL. Active compounds of the extract were tracked with the aid of HPLC-based activity profiling utilizing a previously validated zebrafish larval locomotor activity assay. From two active HPLC fractions, compounds 1  -  3 were isolated. Structurally related compounds 4  -  6 were purified from a later eluting inactive HPLC fraction. With the aid of 1 H and 13 C NMR and high-resolution mass spectrometry, compounds 1  -  6 were identified as analogues of anacardic acid. Compounds 1  -  3 led to a concentration-dependent decrease of pentylenetetrazol-provoked locomotion in the zebrafish larvae model, while 4  -  6 were inactive. Compounds 1  -  3 enhanced gamma aminobutyric acid-induced chloride currents in Xenopus oocytes in a concentration-dependent manner, while 4  -  6 only showed marginal enhancements of gamma aminobutyric acid-induced chloride currents. Compounds 2, 3 , and 5 have not been reported previously. Georg Thieme Verlag KG Stuttgart · New York.

  15. Force wave transmission through the human locomotor system.

    PubMed

    Voloshin, A; Wosk, J; Brull, M

    1981-02-01

    A method to measure the capability of the human shock absorber system to attenuate input dynamic loading during the gait is presented. The experiments were carried out with two groups: healthy subjects and subjects with various pathological conditions. The results of the experiments show a considerable difference in the capability of each group's shock absorbers to attenuate force transmitted through the locomotor system. Comparison shows that healthy subjects definitely possess a more efficient shock-absorbing capacity than do those subjects with joint disorders. Presented results show that degenerative changes in joints reduce their shock absorbing capacity, which leads to overloading of the next shock absorber in the locomotor system. So, the development of osteoarthritis may be expected to result from overloading of a shock absorber's functional capacity.

  16. Muscle spindle feedback directs locomotor recovery and circuit reorganization after spinal cord injury.

    PubMed

    Takeoka, Aya; Vollenweider, Isabel; Courtine, Grégoire; Arber, Silvia

    2014-12-18

    Spinal cord injuries alter motor function by disconnecting neural circuits above and below the lesion, rendering sensory inputs a primary source of direct external drive to neuronal networks caudal to the injury. Here, we studied mice lacking functional muscle spindle feedback to determine the role of this sensory channel in gait control and locomotor recovery after spinal cord injury. High-resolution kinematic analysis of intact mutant mice revealed proficient execution in basic locomotor tasks but poor performance in a precision task. After injury, wild-type mice spontaneously recovered basic locomotor function, whereas mice with deficient muscle spindle feedback failed to regain control over the hindlimb on the lesioned side. Virus-mediated tracing demonstrated that mutant mice exhibit defective rearrangements of descending circuits projecting to deprived spinal segments during recovery. Our findings reveal an essential role for muscle spindle feedback in directing basic locomotor recovery and facilitating circuit reorganization after spinal cord injury. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Motor hypertonia and lack of locomotor coordination in mutant mice lacking DSCAM.

    PubMed

    Lemieux, Maxime; Laflamme, Olivier D; Thiry, Louise; Boulanger-Piette, Antoine; Frenette, Jérôme; Bretzner, Frédéric

    2016-03-01

    Down syndrome cell adherence molecule (DSCAM) contributes to the normal establishment and maintenance of neural circuits. Whereas there is abundant literature regarding the role of DSCAM in the neural patterning of the mammalian retina, less is known about motor circuits. Recently, DSCAM mutation has been shown to impair bilateral motor coordination during respiration, thus causing death at birth. DSCAM mutants that survive through adulthood display a lack of locomotor endurance and coordination in the rotarod test, thus suggesting that the DSCAM mutation impairs motor control. We investigated the motor and locomotor functions of DSCAM(2J) mutant mice through a combination of anatomical, kinematic, force, and electromyographic recordings. With respect to wild-type mice, DSCAM(2J) mice displayed a longer swing phase with a limb hyperflexion at the expense of a shorter stance phase during locomotion. Furthermore, electromyographic activity in the flexor and extensor muscles was increased and coactivated over 20% of the step cycle over a wide range of walking speeds. In contrast to wild-type mice, which used lateral walk and trot at walking speed, DSCAM(2J) mice used preferentially less coordinated gaits, such as out-of-phase walk and pace. The neuromuscular junction and the contractile properties of muscles, as well as their muscle spindles, were normal, and no signs of motor rigidity or spasticity were observed during passive limb movements. Our study demonstrates that the DSCAM mutation induces dystonic hypertonia and a disruption of locomotor gaits. Copyright © 2016 the American Physiological Society.

  18. Locomotor conditioning by amphetamine requires cyclin-dependent kinase 5 signaling in the nucleus accumbens

    PubMed Central

    Singer, Bryan F; Neugebauer, Nichole M; Forneris, Justin; Rodvelt, Kelli R; Li, Dongdong; Bubula, Nancy; Vezina, Paul

    2014-01-01

    Intermittent systemic exposure to psychostimulants such as amphetamine leads to several forms of long-lasting behavioral plasticity including nonassociative sensitization and associative conditioning. In the nucleus accumbens (NAcc), the protein serine/threonine kinase cyclin-dependent kinase 5 (Cdk5) and its phosphorylation target, the guanine-nucleotide exchange factor kalirin-7 (Kal7), may contribute to the neuroadaptations underlying each of these forms of plasticity. Pharmacological inhibition of Cdk5 in the NAcc prevents the increases in dendritic spine density in this site and enhances the locomotor sensitization normally observed following repeated cocaine. Mice lacking the Kal7 gene display similar phenotypes suggesting that locomotor sensitization and increased NAcc spine density need not be positively correlated. As increases in spine density may relate to the formation of associative memories and both Cdk5 and Kal7 regulate the generation of spines following repeated drug exposure, we hypothesized that either inhibiting Cdk5 or preventing its phosphorylation of Kal7 in the NAcc may prevent the induction of drug conditioning. In the present experiments, blockade in rats of NAcc Cdk5 activity with roscovitine (40 nmol/0.5μl/side) prior to each of 4 injections of amphetamine (1.5 mg/kg; i.p.) prevented the accrual of contextual locomotor conditioning but spared the induction of locomotor sensitization as revealed on tests conducted one week later. Similarly, transient viral expression in the NAcc exclusively during amphetamine exposure of a threoninealanine mutant form of Kal7 [mKal7(T1590A)] that is not phosphorylated by Cdk5 also prevented the accrual of contextual conditioning and spared the induction of sensitization. These results indicate that signaling via Cdk5 and Kal7 in the NAcc is necessary for the formation of context-drug associations, potentially through the modulation of dendritic spine dynamics in this site. PMID:24939858

  19. Cannabidiol-Δ9-tetrahydrocannabinol interactions on acute pain and locomotor activity.

    PubMed

    Britch, Stevie C; Wiley, Jenny L; Yu, Zhihao; Clowers, Brian H; Craft, Rebecca M

    2017-06-01

    Previous studies suggest that cannabidiol (CBD) may potentiate or antagonize Δ 9 -tetrahydrocannabinol's (THC) effects. The current study examined sex differences in CBD modulation of THC-induced antinociception, hypolocomotion, and metabolism. In Experiment 1, CBD (0, 10 or 30mg/kg) was administered 15min before THC (0, 1.8, 3.2, 5.6 or 10mg/kg), and rats were tested for antinociception and locomotion 15-360min post-THC injection. In Experiments 2 and 3, CBD (30mg/kg) was administered 13h or 15min before THC (1.8mg/kg); rats were tested for antinociception and locomotion 30-480min post-THC injection (Experiment 2), or serum samples were taken 30-360min post-THC injection to examine CBD modulation of THC metabolism (Experiment 3). In Experiment 1, CBD alone produced no antinociceptive effects, while enhancing THC-induced paw pressure but not tail withdrawal antinociception 4-6h post-THC injection. CBD alone increased locomotor activity at 6h post-injection, but enhanced THC-induced hypolocomotion 4-6h post-THC injection, at lower THC doses. There were no sex differences in CBD-THC interactions. In Experiments 2 and 3, CBD did not significantly enhance THC's effects when CBD was administered 13h or 15min before THC; however, CBD inhibited THC metabolism, and this effect was greater in females than males. These results suggest that CBD may enhance THC's antinociceptive and hypolocomotive effects, primarily prolonging THC's duration of action; however, these effects were small and inconsistent across experiments. CBD inhibition of THC metabolism as well other mechanisms likely contribute to CBD-THC interactions on behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. (−)-Epicatechin Prevents Blood Pressure Increase and Reduces Locomotor Hyperactivity in Young Spontaneously Hypertensive Rats

    PubMed Central

    Berenyiova, A.; Drobna, M.; Lukac, S.

    2016-01-01

    This study investigated the effects of subchronic (−)-epicatechin (Epi) treatment on locomotor activity and hypertension development in young spontaneously hypertensive rats (SHR). Epi was administered in drinking water (100 mg/kg/day) for 2 weeks. Epi significantly prevented the development of hypertension (138 ± 2 versus 169 ± 5 mmHg, p < 0.001) and reduced total distance traveled in the open-field test (22 ± 2 versus 35 ± 4 m, p < 0.01). In blood, Epi significantly enhanced erythrocyte deformability, increased total antioxidant capacity, and decreased nitrotyrosine concentration. In the aorta, Epi significantly increased nitric oxide (NO) synthase (NOS) activity and elevated the NO-dependent vasorelaxation. In the left heart ventricle, Epi increased NOS activity without altering gene expressions of nNOS, iNOS, and eNOS. Moreover, Epi reduced superoxide production in the left heart ventricle and the aorta. In the brain, Epi increased nNOS gene expression (in the brainstem and cerebellum) and eNOS expression (in the cerebellum) but had no effect on overall NOS activity. In conclusion, Epi prevented the development of hypertension and reduced locomotor hyperactivity in young SHR. These effects resulted from improved cardiovascular NO bioavailability concurrently with increased erythrocyte deformability, without changes in NO production in the brain. PMID:27885334

  1. The Effect of Inspiratory Muscle Training on Respiratory and Limb Locomotor Muscle Deoxygenation During Exercise with Resistive Inspiratory Loading.

    PubMed

    Turner, L A; Tecklenburg-Lund, S L; Chapman, R; Shei, R-J; Wilhite, D P; Mickleborough, T

    2016-07-01

    We investigated how inspiratory muscle training impacted respiratory and locomotor muscle deoxygenation during submaximal exercise with resistive inspiratory loading. 16 male cyclists completed 6 weeks of either true (n=8) or sham (n=8) inspiratory muscle training. Pre- and post-training, subjects completed 3, 6-min experimental trials performed at ~80%  ˙VO2peak with interventions of either moderate inspiratory loading, heavy inspiratory loading, or maximal exercise imposed in the final 3 min. Locomotor and respiratory muscle oxy-, deoxy-, and total-haemoglobin and myoglobin concentration was continuously monitored using near-infrared spectroscopy. Locomotor muscle deoxygenation changes from 80%  ˙VO2peak to heavy inspiratory loading were significantly reduced pre- to post-training from 4.3±5.6 µM to 2.7±4.7 µM. Respiratory muscle deoxygenation was also significantly reduced during the heavy inspiratory loading trial (4.6±3.5 µM to 1.9±1.5 µM) post-training. There was no significant difference in oxy-, deoxy-, or total-haemoglobin and myoglobin during any of the other loading trials, from pre- to post-training, in either group. After inspiratory muscle training, highly-trained cyclists exhibited decreased locomotor and respiratory muscle deoxygenation during exercise with heavy inspiratory loading. These data suggest that inspiratory muscle training reduces oxygen extraction by the active respiratory and limb muscles, which may reflect changes in respiratory and locomotor muscle oxygen delivery. © Georg Thieme Verlag KG Stuttgart · New York.

  2. Stereoselective Effects of Abused "Bath Salt" Constituent 3,4-Methylenedioxypyrovalerone in Mice: Drug Discrimination, Locomotor Activity, and Thermoregulation.

    PubMed

    Gannon, Brenda M; Williamson, Adrian; Suzuki, Masaki; Rice, Kenner C; Fantegrossi, William E

    2016-03-01

    3,4-Methylenedioxypyrovalerone (MDPV) is a common constituent of illicit "bath salts" products. MDPV is a chiral molecule, but the contribution of each enantiomer to in vivo effects in mice has not been determined. To address this, mice were trained to discriminate 10 mg/kg cocaine from saline, and substitutions with racemic MDPV, S(+)-MDPV, and R(-)-MDPV were performed. Other mice were implanted with telemetry probes to monitor core temperature and locomotor responses elicited by racemic MDPV, S(+)-MDPV, and R(-)-MDPV under a warm (28°C) or cool (20°C) ambient temperature. Mice reliably discriminated the cocaine training dose from saline, and each form of MDPV fully substituted for cocaine, although marked potency differences were observed such that S(+)-MDPV was most potent, racemic MDPV was less potent than the S(+) enantiomer, and R(-)-MDPV was least potent. At both ambient temperatures, locomotor stimulant effects were observed after doses of S(+)-MDPV and racemic MDPV, but R(-)-MDPV did not elicit locomotor stimulant effects at any tested dose. Interestingly, significant increases in maximum core body temperature were only observed after administration of racemic MDPV in the warm ambient environment; neither MDPV enantiomer altered core temperature at any dose tested, at either ambient temperature. These studies suggest that all three forms of MDPV induce biologic effects, but R(-)-MDPV is less potent than S(+)-MDPV and racemic MDPV. Taken together, these data suggest that the S(+)-MDPV enantiomer is likely responsible for the majority of the biologic effects of the racemate and should be targeted in therapeutic efforts against MDPV overdose and abuse. U.S. Government work not protected by U.S. copyright.

  3. Reactive oxygen species scavenger N-acetyl cysteine reduces methamphetamine-induced hyperthermia without affecting motor activity in mice

    PubMed Central

    Sanchez-Alavez, Manuel; Bortell, Nikki; Galmozzi, Andrea; Conti, Bruno; Marcondes, Maria Cecilia G.

    2014-01-01

    Hyperthermia is a potentially lethal side effect of Methamphetamine (Meth) abuse, which involves the participation of peripheral thermogenic sites such as the Brown Adipose Tissue (BAT). In a previous study we found that the anti-oxidant N-acetyl cysteine (NAC) can prevent the high increase in temperature in a mouse model of Meth-hyperthermia. Here, we have further explored the ability of NAC to modulate Meth-induced hyperthermia in correlation with changes in BAT. We found that NAC treatment in controls causes hypothermia, and, when administered prior or upon the onset of Meth-induced hyperthermia, can ameliorate the temperature increase and preserve mitochondrial numbers and integrity, without affecting locomotor activity. This was different from Dantrolene, which decreased motor activity without affecting temperature. The effects of NAC were seen in spite of its inability to recover the decrease of mitochondrial superoxide induced in BAT by Meth. In addition, NAC did not prevent the Meth-induced decrease of BAT glutathione. Treatment with S-adenosyl-L-methionine, which improves glutathione activity, had an effect in ameliorating Meth-induced hyperthermia, but also modulated motor activity. This suggests a role for the remaining glutathione for controlling temperature. However, the mechanism by which NAC operates is independent of glutathione levels in BAT and specific to temperature. Our results show that, in spite of the absence of a clear mechanism of action, NAC is a pharmacological tool to examine the dissociation between Meth-induced hyperthermia and motor activity, and a drug of potential utility in treating the hyperthermia associated with Meth-abuse. PMID:26346736

  4. Voluntary exercise contributed to an amelioration of abnormal feeding behavior, locomotor activity and ghrelin production concomitantly with a weight reduction in high fat diet-induced obese rats.

    PubMed

    Mifune, Hiroharu; Tajiri, Yuji; Nishi, Yoshihiro; Hara, Kento; Iwata, Shimpei; Tokubuchi, Ichiro; Mitsuzono, Ryouichi; Yamada, Kentaro; Kojima, Masayasu

    2015-09-01

    In the present study, effects of voluntary exercise in an obese animal model were investigated in relation to the rhythm of daily activity and ghrelin production. Male Sprague-Dawley rats were fed either a high fat diet (HFD) or a chow diet (CD) from four to 16 weeks old. They were further subdivided into either an exercise group (HFD-Ex, CD-Ex) with a running wheel for three days of every other week or sedentary group (HFD-Se, CD-Se). At 16 weeks old, marked increases in body weight and visceral fat were observed in the HFD-Se group, together with disrupted rhythms of feeding and locomotor activity. The induction of voluntary exercise brought about an effective reduction of weight and fat, and ameliorated abnormal rhythms of activity and feeding in the HFD-Ex rats. Wheel counts as voluntary exercise was greater in HFD-Ex rats than those in CD-Ex rats. The HFD-obese had exhibited a deterioration of ghrelin production, which was restored by the induction of voluntary exercise. These findings demonstrated that abnormal rhythms of feeding and locomotor activity in HFD-obese rats were restored by infrequent voluntary exercise with a concomitant amelioration of the ghrelin production and weight reduction. Because ghrelin is related to food anticipatory activity, it is plausible that ghrelin participates in the circadian rhythm of daily activity including eating behavior. A beneficial effect of voluntary exercise has now been confirmed in terms of the amelioration of the daily rhythms in eating behavior and physical activity in an animal model of obesity. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Low doses of ivermectin cause sensory and locomotor disorders in dung beetles

    NASA Astrophysics Data System (ADS)

    Verdú, José R.; Cortez, Vieyle; Ortiz, Antonio J.; González-Rodríguez, Estela; Martinez-Pinna, Juan; Lumaret, Jean-Pierre; Lobo, Jorge M.; Numa, Catherine; Sánchez-Piñero, Francisco

    2015-09-01

    Ivermectin is a veterinary pharmaceutical generally used to control the ecto- and endoparasites of livestock, but its use has resulted in adverse effects on coprophilous insects, causing population decline and biodiversity loss. There is currently no information regarding the direct effects of ivermectin on dung beetle physiology and behaviour. Here, based on electroantennography and spontaneous muscle force tests, we show sub-lethal disorders caused by ivermectin in sensory and locomotor systems of Scarabaeus cicatricosus, a key dung beetle species in Mediterranean ecosystems. Our findings show that ivermectin decreases the olfactory and locomotor capacity of dung beetles, preventing them from performing basic biological activities. These effects are observed at concentrations lower than those usually measured in the dung of treated livestock. Taking into account that ivermectin acts on both glutamate-gated and GABA-gated chloride ion channels of nerve and muscle cells, we predict that ivermectin’s effects at the physiological level could influence many members of the dung pat community. The results indicate that the decline of dung beetle populations could be related to the harmful effects of chemical contamination in the dung.

  6. Neuroprotection of locomotor networks after experimental injury to the neonatal rat spinal cord in vitro.

    PubMed

    Margaryan, G; Mattioli, C; Mladinic, M; Nistri, A

    2010-02-03

    Treatment to block the pathophysiological processes triggered by acute spinal injury remains unsatisfactory as the underlying mechanisms are incompletely understood. Using as a model the in vitro spinal cord of the neonatal rat, we investigated the feasibility of neuroprotection of lumbar locomotor networks by the glutamate antagonists 6-cyano-7-nitroquinoxaline-2, 3-dione (CNQX) and aminophosphonovalerate (APV) against acute lesions induced by either a toxic solution (pathological medium (PM) to mimic the spinal injury hypoxic-dysmetabolic perturbation) or excitotoxicity with kainate. The study outcome was presence of fictive locomotion 24 h after the insult and its correlation with network histology. Inhibition of fictive locomotion by PM was contrasted by simultaneous and even delayed (1 h later) co-application of CNQX and APV with increased survival of ventral horn premotoneurons and lateral column white matter. Neither CNQX nor APV alone provided neuroprotection. Kainate-mediated excitotoxicity always led to loss of fictive locomotion and extensive neuronal damage. CNQX and APV co-applied with kainate protected one-third of preparations with improved motoneuron and dorsal horn neuronal counts, although they failed with delayed application. Our data suggest that locomotor network neuroprotection was possible when introduced very early during the pathological process of spinal injury, but also showed how the borderline between presence or loss of locomotor activity was a very narrow one that depended on the survival of a certain number of neurons or white matter elements. The present report provides a model not only for preclinical testing of novel neuroprotective agents, but also for estimating the minimal network membership compatible with functional locomotor output. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Potential contributions of training intensity on locomotor performance in individuals with chronic stroke.

    PubMed

    Holleran, Carey L; Rodriguez, Kelly S; Echauz, Anthony; Leech, Kristan A; Hornby, T George

    2015-04-01

    Many interventions can improve walking ability of individuals with stroke, although the training parameters that maximize recovery are not clear. For example, the contribution of training intensity has not been well established and may contribute to the efficacy of many locomotor interventions. The purpose of this preliminary study was to evaluate the effects of locomotor training intensity on walking outcomes in individuals with gait deficits poststroke. Using a randomized cross-over design, 12 participants with chronic stroke (>6-month duration) performed either high-intensity (70%-80% of heart rate reserve; n = 6) or low-intensity (30%-40% heart rate reserve; n = 6) locomotor training for 12 or fewer sessions over 4 to 5 weeks. Four weeks following completion, the alternate training intervention was performed. Training intensity was manipulated by adding loads or applying resistance during walking, with similar speeds, durations, and amount of stepping practice between conditions. Greater increases in 6-Minute Walk Test performance were observed following high-intensity training compared with low-intensity training. A significant interaction of intensity and order was also observed for 6-Minute Walk Test and peak treadmill speed, with the largest changes in those who performed high-intensity training first. Moderate correlations were observed between locomotor outcomes and measures of training intensity. This study provides the first evidence that the intensity of locomotor practice may be an important independent determinant of walking outcomes poststroke. In the clinical setting, the intensity of locomotor training can be manipulated in many ways, although this represents only 1 parameter to consider.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A90).

  8. Locomotor Muscle Fatigue Does Not Alter Oxygen Uptake Kinetics during High-Intensity Exercise.

    PubMed

    Hopker, James G; Caporaso, Giuseppe; Azzalin, Andrea; Carpenter, Roger; Marcora, Samuele M

    2016-01-01

    The [Formula: see text] slow component ([Formula: see text]) that develops during high-intensity aerobic exercise is thought to be strongly associated with locomotor muscle fatigue. We sought to experimentally test this hypothesis by pre-fatiguing the locomotor muscles used during subsequent high-intensity cycling exercise. Over two separate visits, eight healthy male participants were asked to either perform a non-metabolically stressful 100 intermittent drop-jumps protocol (pre-fatigue condition) or rest for 33 min (control condition) according to a random and counterbalanced order. Locomotor muscle fatigue was quantified with 6-s maximal sprints at a fixed pedaling cadence of 90 rev·min -1 . Oxygen kinetics and other responses (heart rate, capillary blood lactate concentration and rating of perceived exertion, RPE) were measured during two subsequent bouts of 6 min cycling exercise at 50% of the delta between the lactate threshold and [Formula: see text] determined during a preliminary incremental exercise test. All tests were performed on the same cycle ergometer. Despite significant locomotor muscle fatigue ( P = 0.03), the [Formula: see text] was not significantly different between the pre-fatigue (464 ± 301 mL·min -1 ) and the control (556 ± 223 mL·min -1 ) condition ( P = 0.50). Blood lactate response was not significantly different between conditions ( P = 0.48) but RPE was significantly higher following the pre-fatiguing exercise protocol compared with the control condition ( P < 0.01) suggesting higher muscle recruitment. These results demonstrate experimentally that locomotor muscle fatigue does not significantly alter the [Formula: see text] kinetic response to high intensity aerobic exercise, and challenge the hypothesis that the [Formula: see text] is strongly associated with locomotor muscle fatigue.

  9. Using Tests Designed to Measure Individual Sensorimotor Subsystem Perfomance to Predict Locomotor Adaptability

    NASA Technical Reports Server (NTRS)

    Peters, B. T.; Caldwell, E. E.; Batson, C. D.; Guined, J. R.; DeDios, Y. E.; Stepanyan, V.; Gadd, N. E.; Szecsy, D. L.; Mulavara, A. P.; Seidler, R. D.; hide

    2014-01-01

    Astronauts experience sensorimotor disturbances during the initial exposure to microgravity and during the readapation phase following a return to a gravitational environment. These alterations may lead to disruption in the ability to perform mission critical functions during and after these gravitational transitions. Astronauts show significant inter-subject variation in adaptive capability following gravitational transitions. The way each individual's brain synthesizes the available visual, vestibular and somatosensory information is likely the basis for much of the variation. Identifying the presence of biases in each person's use of information available from these sensorimotor subsystems and relating it to their ability to adapt to a novel locomotor task will allow us to customize a training program designed to enhance sensorimotor adaptability. Eight tests are being used to measure sensorimotor subsystem performance. Three of these use measures of body sway to characterize balance during varying sensorimotor challenges. The effect of vision is assessed by repeating conditions with eyes open and eyes closed. Standing on foam, or on a support surface that pitches to maintain a constant ankle angle provide somatosensory challenges. Information from the vestibular system is isolated when vision is removed and the support surface is compromised, and it is challenged when the tasks are done while the head is in motion. The integration and dominance of visual information is assessed in three additional tests. The Rod & Frame Test measures the degree to which a subject's perception of the visual vertical is affected by the orientation of a tilted frame in the periphery. Locomotor visual dependence is determined by assessing how much an oscillating virtual visual world affects a treadmill-walking subject. In the third of the visual manipulation tests, subjects walk an obstacle course while wearing up-down reversing prisms. The two remaining tests include direct

  10. Balance and ambulation improvements in individuals with chronic incomplete spinal cord injury using locomotor training-based rehabilitation.

    PubMed

    Harkema, Susan J; Schmidt-Read, Mary; Lorenz, Douglas J; Edgerton, V Reggie; Behrman, Andrea L

    2012-09-01

    To evaluate the effects of intensive locomotor training on balance and ambulatory function at enrollment and discharge during outpatient rehabilitation after incomplete SCI. Prospective observational cohort. Seven outpatient rehabilitation centers from the Christopher and Dana Reeve Foundation NeuroRecovery Network (NRN). Patients (N=196) with American Spinal Injury Association Impairment Scale (AIS) grade C or D SCI who received at least 20 locomotor training treatment sessions in the NRN. Intensive locomotor training, including step training using body-weight support and manual facilitation on a treadmill followed by overground assessment and community integration. Berg Balance Scale; Six-Minute Walk Test; 10-Meter Walk Test. Outcome measures at enrollment showed high variability between patients with AIS grades C and D. Significant improvement from enrollment to final evaluation was observed in balance and walking measures for patients with AIS grades C and D. The magnitude of improvement significantly differed between AIS groups for all measures. Time since SCI was not associated significantly with outcome measures at enrollment, but was related inversely to levels of improvement. Significant variability in baseline values of functional outcome measures is evident after SCI in individuals with AIS grades C and D and significant functional recovery can continue to occur even years after injury when provided with locomotor training. These results indicate that rehabilitation, which provides intensive activity-based therapy, can result in functional improvements in individuals with chronic incomplete SCI. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Agomelatine's effect on circadian locomotor rhythm alteration and depressive-like behavior in 6-OHDA lesioned rats.

    PubMed

    Souza, Leonardo C; Martynhak, Bruno J; Bassani, Taysa B; Turnes, Joelle de M; Machado, Meira M; Moura, Eric; Andreatini, Roberto; Vital, Maria A B F

    2018-05-01

    Parkinson's disease (PD) patients often suffer from circadian locomotor rhythms impairment and depression, important non-motor symptoms. It is known that toxin-based animal models of PD can reproduce these features. In a 6-hydroxydopamine (6-OHDA) intranigral model, we first investigated the possible disturbances on circadian rhythms of locomotor activity. The rats were divided into 6-OHDA and Sham groups. After a partial dopaminergic lesion, the 6-OHDA group showed slight alterations in different circadian locomotor rhythms parameters. In a second experiment, we hypothesized agomelatine, an melatoninergic antidepressant with potential to resynchronize disturbed rhythms, could prevent neuronal damage and rhythm alterations in the same 6-OHDA model. The animals were divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. However, the treated animals (agomelatine 50 mg/kg for 22 days) showed an impaired rhythm robustness, and agomelatine did not induce significant changes in the other circadian parameters nor neuroprotection. Finally, in a third experiment, we examined the effects of agomelatine in the 6-OHDA model regarding depressive-like behavior, evaluated by sucrose preference test. The animals were also divided into four groups: 6-OHDA+vehicle, 6-OHDA+ago, Sham+vehicle and 6-OHDA+ago. The toxin infused animals showed a decrease in sucrose preference in comparison with the vehicle infused animals, however, agomelatine did not prevent this decrease. Our findings indicate that agomelatine worsened circadian locomotor rhythm and was not able to reverse the depressive-like behavior of rats in the 6-OHDA PD model. Copyright © 2018. Published by Elsevier Inc.

  12. Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio).

    PubMed

    Chen, Te-Hao; Lin, Chia-Chi; Meng, Pei-Jie

    2014-07-30

    Zinc oxide nanoparticles (ZnO NP) are extensively used in various consumer products such as sunscreens and cosmetics, with high potential of being released into aquatic environments. In this study, fertilized zebrafish (Danio rerio) eggs were exposed to various concentrations of ZnO NP suspensions (control, 0.1, 0.5, 1, 5, and 10mg/L) or their respective centrifuged supernatants (0.03, 0.01, 0.08, 0.17, 0.75, and 1.21mg/L dissolved Zn ions measured) until reaching free swimming stage. Exposure to ZnO NP suspensions and their respective centrifuged supernatants caused similar hatching delay, but did not cause larval mortality or malformation. Larval activity level, mean velocity, and maximum velocity were altered in the groups exposed to high concentrations of ZnO NP (5-10mg/L) but not in the larvae exposed to the supernatants. To evaluate possible mechanism of observed effects caused by ZnO NP, we also manipulated the antioxidant environment by co-exposure to an antioxidant compound (N-acetylcysteine, NAC) or an antioxidant molecule suppressor (buthionine sulfoximine, BSO) with 5mg/L ZnO NP. Co-exposure to NAC did not alter the effects of ZnO NP on hatchability, but co-exposure to BSO caused further hatching delay. For larval locomotor activity, co-exposure to NAC rescued the behavioral effect caused by ZnO NP, but co-exposure to BSO did not exacerbate the effect. Our data indicated that toxicity of ZnO NP cannot be solely explained by dissolved Zn ions, and oxidative stress may involve in ZnO NP toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. A neurorobotic platform for locomotor prosthetic development in rats and mice

    NASA Astrophysics Data System (ADS)

    von Zitzewitz, Joachim; Asboth, Leonie; Fumeaux, Nicolas; Hasse, Alexander; Baud, Laetitia; Vallery, Heike; Courtine, Grégoire

    2016-04-01

    Objectives. We aimed to develop a robotic interface capable of providing finely-tuned, multidirectional trunk assistance adjusted in real-time during unconstrained locomotion in rats and mice. Approach. We interfaced a large-scale robotic structure actuated in four degrees of freedom to exchangeable attachment modules exhibiting selective compliance along distinct directions. This combination allowed high-precision force and torque control in multiple directions over a large workspace. We next designed a neurorobotic platform wherein real-time kinematics and physiological signals directly adjust robotic actuation and prosthetic actions. We tested the performance of this platform in both rats and mice with spinal cord injury. Main Results. Kinematic analyses showed that the robotic interface did not impede locomotor movements of lightweight mice that walked freely along paths with changing directions and height profiles. Personalized trunk assistance instantly enabled coordinated locomotion in mice and rats with severe hindlimb motor deficits. Closed-loop control of robotic actuation based on ongoing movement features enabled real-time control of electromyographic activity in anti-gravity muscles during locomotion. Significance. This neurorobotic platform will support the study of the mechanisms underlying the therapeutic effects of locomotor prosthetics and rehabilitation using high-resolution genetic tools in rodent models.

  14. A neurorobotic platform for locomotor prosthetic development in rats and mice.

    PubMed

    von Zitzewitz, Joachim; Asboth, Leonie; Fumeaux, Nicolas; Hasse, Alexander; Baud, Laetitia; Vallery, Heike; Courtine, Grégoire

    2016-04-01

    We aimed to develop a robotic interface capable of providing finely-tuned, multidirectional trunk assistance adjusted in real-time during unconstrained locomotion in rats and mice. We interfaced a large-scale robotic structure actuated in four degrees of freedom to exchangeable attachment modules exhibiting selective compliance along distinct directions. This combination allowed high-precision force and torque control in multiple directions over a large workspace. We next designed a neurorobotic platform wherein real-time kinematics and physiological signals directly adjust robotic actuation and prosthetic actions. We tested the performance of this platform in both rats and mice with spinal cord injury. Kinematic analyses showed that the robotic interface did not impede locomotor movements of lightweight mice that walked freely along paths with changing directions and height profiles. Personalized trunk assistance instantly enabled coordinated locomotion in mice and rats with severe hindlimb motor deficits. Closed-loop control of robotic actuation based on ongoing movement features enabled real-time control of electromyographic activity in anti-gravity muscles during locomotion. This neurorobotic platform will support the study of the mechanisms underlying the therapeutic effects of locomotor prosthetics and rehabilitation using high-resolution genetic tools in rodent models.

  15. A Wider Pelvis Does Not Increase Locomotor Cost in Humans, with Implications for the Evolution of Childbirth

    PubMed Central

    Warrener, Anna G.; Lewton, Kristi L.; Pontzer, Herman; Lieberman, Daniel E.

    2015-01-01

    The shape of the human female pelvis is thought to reflect an evolutionary trade-off between two competing demands: a pelvis wide enough to permit the birth of large-brained infants, and narrow enough for efficient bipedal locomotion. This trade-off, known as the obstetrical dilemma, is invoked to explain the relative difficulty of human childbirth and differences in locomotor performance between men and women. The basis for the obstetrical dilemma is a standard static biomechanical model that predicts wider pelves in females increase the metabolic cost of locomotion by decreasing the effective mechanical advantage of the hip abductor muscles for pelvic stabilization during the single-leg support phase of walking and running, requiring these muscles to produce more force. Here we experimentally test this model against a more accurate dynamic model of hip abductor mechanics in men and women. The results show that pelvic width does not predict hip abductor mechanics or locomotor cost in either women or men, and that women and men are equally efficient at both walking and running. Since a wider birth canal does not increase a woman’s locomotor cost, and because selection for successful birthing must be strong, other factors affecting maternal pelvic and fetal size should be investigated in order to help explain the prevalence of birth complications caused by a neonate too large to fit through the birth canal. PMID:25760381

  16. Alternate pathways of body shape evolution translate into common patterns of locomotor evolution in two clades of lizards.

    PubMed

    Bergmann, Philip J; Irschick, Duncan J

    2010-06-01

    Body shape has a fundamental impact on organismal function, but it is unknown how functional morphology and locomotor performance and kinematics relate across a diverse array of body shapes. We showed that although patterns of body shape evolution differed considerably between lizards of the Phrynosomatinae and Lerista, patterns of locomotor evolution coincided between clades. Specifically, we found that the phrynosomatines evolved a stocky phenotype through body widening and limb shortening, whereas Lerista evolved elongation through body lengthening and limb shortening. In both clades, relative limb length played a key role in locomotor evolution and kinematic strategies, with long-limbed species moving faster and taking longer strides. In Lerista, the body axis also influenced locomotor evolution. Similar patterns of locomotor evolution were likely due to constraints on how the body can move. However, these common patterns of locomotor evolution between the two clades resulted in different kinematic strategies and levels of performance among species because of their morphological differences. Furthermore, we found no evidence that distinct body shapes are adaptations to different substrates, as locomotor kinematics did not change on loose or solid substrates. Our findings illustrate the importance of studying kinematics to understand the mechanisms of locomotor evolution and phenotype-function relationships.

  17. Conditioned Place Preference to Acetone Inhalation and the Effects on Locomotor Behavior and 18FDG Uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pai, J.C.; Dewey, S.L.; Schiffer, W.

    Acetone is a component in many inhalants that have been widely abused. While other solvents have addictive potential, such as toluene, it is unclear whether acetone alone contains addictive properties. The locomotor, relative glucose metabolism and abusive effects of acetone inhalation were studied in animals using the conditioned place preference (CPP) paradigm and [18F]2-fluorodeoxy-D-glucose (18FDG) imaging. The CPP apparatus contains two distinct conditioning chambers and a middle adaptation chamber, each lined with photocells to monitor locomotor activity. Adolescent Sprague-Dawley rats (n=16; 90-110 g) were paired with acetone in least preferred conditioning chamber, determined on the pretest day. The animals weremore » exposed to a 10,000 ppm dose for an hour, alternating days with air. A CPP test was conducted after the 3rd, 6th and 12th pairing. In these same animals, the relative glucose metabolism effects were determined using positron emission tomography (PET) imaging with 18FDG. Following the 3rd pairing, there was a significant aversion to the acetone paired chamber (190.9 ± 13.7 sec and 241.7 ± 16.9 sec, acetone and air, respectively). After the 6th pairing, there was no significant preference observed with equal time spent in each chamber (222 ± 21 sec and 207 ± 20 sec, acetone and air-paired, respectively). A similar trend was observed after the 12th pairing (213 ± 21 sec and 221 ± 22 sec, acetone and air-paired, respectively). Locomotor analysis indicated a significant decrease (p<0.05) from air pairings to acetone pairings on the first and sixth pairings. The observed locomotor activity was characteristic of central nervous system (CNS) depressants, without showing clear abusive effects in this CPP model. In these studies, acetone vapors were not as reinforcing as other solvents, shown by overall lack of preference for the acetone paired side of the chamber. PET imaging indicated a regionally specific distribution of 18FDG uptake

  18. Feedback and feedforward locomotor adaptations to ankle-foot load in people with incomplete spinal cord injury.

    PubMed

    Gordon, Keith E; Wu, Ming; Kahn, Jennifer H; Schmit, Brian D

    2010-09-01

    Humans with spinal cord injury (SCI) modulate locomotor output in response to limb load. Understanding the neural control mechanisms responsible for locomotor adaptation could provide a framework for selecting effective interventions. We quantified feedback and feedforward locomotor adaptations to limb load modulations in people with incomplete SCI. While subjects airstepped (stepping performed with kinematic assistance and 100% bodyweight support), a powered-orthosis created a dorisflexor torque during the "stance phase" of select steps producing highly controlled ankle-load perturbations. When given repetitive, stance phase ankle-load, the increase in hip extension work, 0.27 J/kg above baseline (no ankle-load airstepping), was greater than the response to ankle-load applied during a single step, 0.14 J/kg (P = 0.029). This finding suggests that, at the hip, subjects produced both feedforward and feedback locomotor modulations. We estimate that, at the hip, the locomotor response to repetitive ankle-load was modulated almost equally by ongoing feedback and feedforward adaptations. The majority of subjects also showed after-effects in hip kinetic patterns that lasted 3 min in response to repetitive loading, providing additional evidence of feedforward locomotor adaptations. The magnitude of the after-effect was proportional to the response to repetitive ankle-foot load (R(2) = 0.92). In contrast, increases in soleus EMG amplitude were not different during repetitive and single-step ankle-load exposure, suggesting that ankle locomotor modulations were predominately feedback-based. Although subjects made both feedback and feedforward locomotor adaptations to changes in ankle-load, between-subject variations suggest that walking function may be related to the ability to make feedforward adaptations.

  19. Subchronic MK-801 treatment and post-weaning social isolation in rats: differential effects on locomotor activity and hippocampal long-term potentiation.

    PubMed

    Ashby, Donovan M; Habib, Diala; Dringenberg, Hans C; Reynolds, James N; Beninger, Richard J

    2010-09-01

    Subchronic NMDA receptor antagonist treatment and post-weaning social isolation are two animal models of schizophrenia symptoms. However, behavioral and physiological changes following a combination of these two procedures have not been investigated. Thus, we examined effects of a novel, "double hit" model combining these two treatments, comparing them to standard models involving only NMDA antagonist treatment or social isolation. Male, Sprague-Dawley rats were either group-housed or maintained in social isolation (starting at postnatal day [PD] 21 and continuing throughout the study). Each housing condition was further subdivided into two groups, receiving either subchronic treatment with either saline or MK-801 (0.5mg/kg, i.p., 2xday for seven days starting at PD 56). Post-weaning social isolation increased locomotor activity (assessed at PD 70) in response to a novel environment and an acute amphetamine injection, while subchronic MK-801 increased only amphetamine induced locomotor activity. Subsequent electrophysiological experiments (under urethane anesthesia) assessing changes in plasticity of hippocampal synapses showed that subchronic MK-801 treatment resulted in an increase in long-term potentiation in area CA1 in response to high frequency stimulation of the contralateral CA3 area, while housing condition had no effect. No other changes in hippocampal electrophysiology (input-output curves, paired-pulse facilitation) were observed. These data are the first to demonstrate an enhancement in hippocampal long-term plasticity in vivo following subchronic MK-801 administration, an effect that may be related to the well-characterized changes in glutamatergic and GABAergic systems seen after subchronic NMDA receptor blockade. That lack of additive or synergistic effects in the "double hit model" suggests that combining isolation and subchronic MK-801 treatment does not necessarily produce greater behavioral or physiological dysfunction than that seen with either

  20. Buoyancy under Control: Underwater Locomotor Performance in a Deep Diving Seabird Suggests Respiratory Strategies for Reducing Foraging Effort

    PubMed Central

    Cook, Timothée R.; Kato, Akiko; Tanaka, Hideji; Ropert-Coudert, Yan; Bost, Charles-André

    2010-01-01

    Background Because they have air stored in many body compartments, diving seabirds are expected to exhibit efficient behavioural strategies for reducing costs related to buoyancy control. We study the underwater locomotor activity of a deep-diving species from the Cormorant family (Kerguelen shag) and report locomotor adjustments to the change of buoyancy with depth. Methodology/Principal Findings Using accelerometers, we show that during both the descent and ascent phases of dives, shags modelled their acceleration and stroking activity on the natural variation of buoyancy with depth. For example, during the descent phase, birds increased swim speed with depth. But in parallel, and with a decay constant similar to the one in the equation explaining the decrease of buoyancy with depth, they decreased foot-stroke frequency exponentially, a behaviour that enables birds to reduce oxygen consumption. During ascent, birds also reduced locomotor cost by ascending passively. We considered the depth at which they started gliding as a proxy to their depth of neutral buoyancy. This depth increased with maximum dive depth. As an explanation for this, we propose that shags adjust their buoyancy to depth by varying the amount of respiratory air they dive with. Conclusions/Significance Calculations based on known values of stored body oxygen volumes and on deep-diving metabolic rates in avian divers suggest that the variations of volume of respiratory oxygen associated with a respiration mediated buoyancy control only influence aerobic dive duration moderately. Therefore, we propose that an advantage in cormorants - as in other families of diving seabirds - of respiratory air volume adjustment upon diving could be related less to increasing time of submergence, through an increased volume of body oxygen stores, than to reducing the locomotor costs of buoyancy control. PMID:20352122

  1. Zebrafish Locomotor Responses Reveal Irritant Effects of Fine Particulate Matter Extracts and a Role for TRPA1.

    PubMed

    Stevens, Joey S; Padilla, Stephanie; DeMarini, David M; Hunter, Deborah L; Martin, W Kyle; Thompson, Leslie C; Gilmour, M Ian; Hazari, Mehdi S; Farraj, Aimen K

    2018-02-01

    Exposure to fine particulate matter (PM) air pollution causes adverse cardiopulmonary outcomes. Yet, the limited capacity to readily identify contributing PM sources and associated PM constituents in any given ambient air shed impedes risk assessment efforts. The health effects of PM have been attributed in part to its capacity to elicit irritant responses. A variety of chemicals trigger irritant behavior responses in zebrafish that can be easily measured. The purposes of this study were to examine the utility of zebrafish locomotor responses in the toxicity assessment of fine PM and its chemical fractions and uncover mechanisms of action. Locomotor responses were recorded in 6-day-old zebrafish exposed for 60 min in the dark at 26 °C to the extractable organic matter of a compressor-generated diesel exhaust PM (C-DEP) and 4 of its fractions (F1-F4) containing varying chemical classes of increasing polarity. The role of the transient receptor potential (TRP) cation channel TRPA1, a chemical sensor in mammals and zebrafish, in locomotor responses to C-DEP, was also examined. Acrolein, an environmental irritant and known activator of TRPA1, and all extracts induced concentration-dependent locomotor responses whose potencies ranked as follows: polar F3 > weakly polar F2 > C-DEP > highly polar F4 > nonpolar F1, indicating that polar and weakly polar fractions that included nitro- and oxy-polyaromatic hydrocarbons (PAHs), drove C-DEP responses. Irritant potencies in fish positively correlated with mutagenic potencies of the same extracts in strains of Salmonella sensitive to nitro- and oxy-PAHs, further implicating these chemical classes in the zebrafish responses to C-DEP. Pharmacologic inhibition of TRPA1 blocked locomotor responses to acrolein and the extracts. Taken together, these data indicate that the zebrafish locomotor assay may help expedite toxicity screening of fine PM sources, identify causal chemical classes, and uncover plausible

  2. Changes in infants' affect related to the onset of independent locomotion.

    PubMed

    Whitney, Pamela G; Green, James A

    2011-06-01

    Previous research suggests that after gaining several weeks of independent locomotor experience, infants may show both more negative and more positive affect toward parents. However, this prior work has been based largely on parent report, and no studies have used longitudinal or naturalistic methods to chart changes in infants' affective expressions as they gain locomotor ability. Fifteen infants were observed at home before, during, and after learning to crawl in two naturalistic contexts, free play and dyadic play. Expressions of negative affect during free play decreased after the onset of crawling, but there was no change in expressions of positive affect. At the same time, however, mothers reported an increase in both negative and positive reactivity. These results are discussed in terms of the contexts typically assessed during observations and the different sensitivities of mothers to infants' expressions of affect. Several lines of evidence point to a potential role for independent locomotion in the reorganization of affective expressions. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Modulating NMDA Receptor Function with D-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model

    PubMed Central

    Sershen, Henry; Hashim, Audrey; Dunlop, David S.; Suckow, Raymond F.; Cooper, Tom B.; Javitt, Daniel C.

    2016-01-01

    Deficits in N-methyl-D-aspartate receptor (NMDAR) function are increasingly linked to persistent negative symptoms and cognitive deficits in schizophrenia. Accordingly, clinical studies have been targeting the modulatory site of the NMDA receptor, based on the decreased function of NMDA receptor, to see whether increasing NMDA function can potentially help treat the negative and cognitive deficits seen in the disease. Glycine and D-serine are endogenous ligands to the NMDA modulatory site, but since high doses are needed to affect brain levels, related compounds are being developed, for example glycine transport (GlyT) inhibitors to potentially elevate brain glycine or targeting enzymes, such as D-amino acid oxidase (DAAO) to slow the breakdown and increase the brain level of D-serine. In the present study we further evaluated the effect of DAAO inhibitors 5-chloro-benzo[d]isoxazol-3-ol (CBIO) and sodium benzoate (NaB) in a phencyclidine (PCP) rodent mouse model to see if the inhibitors affect PCP-induced locomotor activity, alter brain D-serine level, and thereby potentially enhance D-serine responses. D-Serine dose-dependently reduced the PCP-induced locomotor activity at doses above 1000 mg/kg. Acute CBIO (30 mg/kg) did not affect PCP-induced locomotor activity, but appeared to reduce locomotor activity when given with D-serine (600 mg/kg); a dose that by itself did not have an effect. However, the effect was also present when the vehicle (Trappsol®) was tested with D-serine, suggesting that the reduction in locomotor activity was not related to DAAO inhibition, but possibly reflected enhanced bioavailability of D-serine across the blood brain barrier related to the vehicle. With this acute dose of CBIO, D-serine level in brain and plasma were not increased. Another weaker DAAO inhibitor sodium benzoate (NaB) (400 mg/kg), and NaB plus D-serine also significantly reduced PCP-induced locomotor activity, but without affecting plasma or brain D-serine level

  4. Social interactions between live and artificial weakly electric fish: Electrocommunication and locomotor behavior of Mormyrus rume proboscirostris towards a mobile dummy fish

    PubMed Central

    Kirschbaum, Frank; von der Emde, Gerhard

    2017-01-01

    Mormyrid weakly electric fish produce short, pulse-type electric organ discharges for actively probing their environment and to communicate with conspecifics. Animals emit sequences of pulse-trains that vary in overall frequency and temporal patterning and can lead to time-locked interactions with the discharge activity of other individuals. Both active electrolocation and electrocommunication are additionally accompanied by stereotypical locomotor patterns. However, the concrete roles of electrical and locomotor patterns during social interactions in mormyrids are not well understood. Here we used a mobile fish dummy that was emitting different types of electrical playback sequences to study following behavior and interaction patterns (electrical and locomotor) between individuals of weakly electric fish. We confronted single individuals of Mormyrus rume proboscirostris with a mobile dummy fish designed to attract fish from a shelter and recruit them into an open area by emitting electrical playbacks of natural discharge sequences. We found that fish were reliably recruited by the mobile dummy if it emitted electrical signals and followed it largely independently of the presented playback patterns. While following the dummy, fish interacted with it spatially by displaying stereotypical motor patterns, as well as electrically, e.g. through discharge regularizations and by synchronizing their own discharge activity to the playback. However, the overall emission frequencies of the dummy were not adopted by the following fish. Instead, social signals based on different temporal patterns were emitted depending on the type of playback. In particular, double pulses were displayed in response to electrical signaling of the dummy and their expression was positively correlated with an animals' rank in the dominance hierarchy. Based on additional analysis of swimming trajectories and stereotypical locomotor behavior patterns, we conclude that the reception and emission of

  5. Objective and quantitative equilibriometric evaluation of individual locomotor behaviour in schizophrenia: Translational and clinical implications.

    PubMed

    Haralanov, Svetlozar; Haralanova, Evelina; Milushev, Emil; Shkodrova, Diana; Claussen, Claus-Frenz

    2018-04-17

    Psychiatry is the only medical specialty that lacks clinically applicable biomarkers for objective evaluation of the existing pathology at a single-patient level. On the basis of an original translational equilibriometric method for evaluation of movement patterns, we have introduced in the everyday clinical practice of psychiatry an easy-to-perform computerized objective quantification of the individual locomotor behaviour during execution of the Unterberger stepping test. For the last 20 years, we have gradually collected a large database of more than 1000 schizophrenic patients, their relatives, and matched psychiatric, neurological, and healthy controls via cross-sectional and longitudinal investigations. Comparative analyses revealed transdiagnostic locomotor similarities among schizophrenic patients, high-risk schizotaxic individuals, and neurological patients with multiple sclerosis and cerebellar ataxia, thus suggesting common underlying brain mechanisms. In parallel, intradiagnostic dissimilarities were revealed, which allow to separate out subclinical locomotor subgroups within the diagnostic categories. Prototypical qualitative (dysmetric and ataxic) locomotor abnormalities in schizophrenic patients were differentiated from 2 atypical quantitative ones, manifested as either hypolocomotion or hyperlocomotion. Theoretical analyses suggested that these 3 subtypes of locomotor abnormalities could be conceived as objectively measurable biomarkers of 3 schizophrenic subgroups with dissimilar brain mechanisms, which require different treatment strategies. Analogies with the prominent role of locomotor measures in some well-known animal models of mental disorders advocate for a promising objective translational research in the so far over-subjective field of psychiatry. Distinctions among prototypical, atypical, and diagnostic biomarkers, as well as between neuromotor and psychomotor locomotor abnormalities, are discussed. Conclusions are drawn about the

  6. Locomotor Training and Factors Associated with Blood Glucose Regulation After Spinal Cord Injury.

    PubMed

    Chilibeck, Philip D; Guertin, Pierre A

    2017-01-01

    Individuals with spinal cord injury (SCI) have increased rates of glucose intolerance, insulin insensitivity, and type II diabetes caused mainly by the deconditioning of paralyzed muscle. The purpose of this systematic review was to determine the effectiveness of locomotor training in individuals with SCI on blood glucose control. We searched studies on locomotor training for individuals with SCI with outcomes of glucose, insulin, or outcomes that could change glucose handling (i.e. increases in muscle mass, shifts in muscle fiber type composition, changes in transport proteins, or enzymes involved in glucose metabolism) in PubMed and EMBASE. Eleven studies (10 with incomplete SCI; 1 with complete SCI) were included in our review. Locomotor training included body weight supported treadmill training (BWSTT) with manual or robotic assistance, with and without functional electrical stimulation (FES), or involved FES-assisted over ground training. Six months of locomotor training in individuals with SCI resulted in significant decreases in glucose (15%) and insulin (33%) areas under the curve during oral glucose tolerance tests. Two to twelve months of locomotor training reversed some of the muscle atrophy - with muscle being the site of most glucose consumption, this is important for glucose control. Training also increased capacity for glucose storage, enzymes involved in glucose phosphorylation (hexokinase) and oxidation (citrate synthase), and glucose transport proteins (GLUT-4). Fiber type composition shifted to a slower fiber type, which favors glucose handling. There were no effects on fat mass. Locomotor training in individuals with SCI (generally an incomplete injury) increases capacity to handle glucose and results in muscular changes that should reduce the risk of type II diabetes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Locomotor Muscle Fatigue Does Not Alter Oxygen Uptake Kinetics during High-Intensity Exercise

    PubMed Central

    Hopker, James G.; Caporaso, Giuseppe; Azzalin, Andrea; Carpenter, Roger; Marcora, Samuele M.

    2016-01-01

    The V˙O2 slow component (V˙O2sc) that develops during high-intensity aerobic exercise is thought to be strongly associated with locomotor muscle fatigue. We sought to experimentally test this hypothesis by pre-fatiguing the locomotor muscles used during subsequent high-intensity cycling exercise. Over two separate visits, eight healthy male participants were asked to either perform a non-metabolically stressful 100 intermittent drop-jumps protocol (pre-fatigue condition) or rest for 33 min (control condition) according to a random and counterbalanced order. Locomotor muscle fatigue was quantified with 6-s maximal sprints at a fixed pedaling cadence of 90 rev·min−1. Oxygen kinetics and other responses (heart rate, capillary blood lactate concentration and rating of perceived exertion, RPE) were measured during two subsequent bouts of 6 min cycling exercise at 50% of the delta between the lactate threshold and V˙O2max determined during a preliminary incremental exercise test. All tests were performed on the same cycle ergometer. Despite significant locomotor muscle fatigue (P = 0.03), the V˙O2sc was not significantly different between the pre-fatigue (464 ± 301 mL·min−1) and the control (556 ± 223 mL·min−1) condition (P = 0.50). Blood lactate response was not significantly different between conditions (P = 0.48) but RPE was significantly higher following the pre-fatiguing exercise protocol compared with the control condition (P < 0.01) suggesting higher muscle recruitment. These results demonstrate experimentally that locomotor muscle fatigue does not significantly alter the V˙O2 kinetic response to high intensity aerobic exercise, and challenge the hypothesis that the V˙O2sc is strongly associated with locomotor muscle fatigue. PMID:27790156

  8. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation

    PubMed Central

    Mukherjee, Mukul; Eikema, Diderik Jan A.; Chien, Jung Hung; Myers, Sara A.; Scott-Pandorf, Melissa; Bloomberg, Jacob J.; Stergiou, Nicholas

    2015-01-01

    Patterns of human locomotion are highly adaptive and flexible, and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 minutes of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant groups differences were observed overground. Step and swing time asymmetries learned on the split belt treadmill, were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after-effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern. PMID:26169104

  9. Plantar tactile perturbations enhance transfer of split-belt locomotor adaptation.

    PubMed

    Mukherjee, Mukul; Eikema, Diderik Jan A; Chien, Jung Hung; Myers, Sara A; Scott-Pandorf, Melissa; Bloomberg, Jacob J; Stergiou, Nicholas

    2015-10-01

    Patterns of human locomotion are highly adaptive and flexible and depend on the environmental context. Locomotor adaptation requires the use of multisensory information to perceive altered environmental dynamics and generate an appropriate movement pattern. In this study, we investigated the use of multisensory information during locomotor learning. Proprioceptive perturbations were induced by vibrating tactors, placed bilaterally over the plantar surfaces. Under these altered sensory conditions, participants were asked to perform a split-belt locomotor task representative of motor learning. Twenty healthy young participants were separated into two groups: no-tactors (NT) and tactors (TC). All participants performed an overground walking trial, followed by treadmill walking including 18 min of split-belt adaptation and an overground trial to determine transfer effects. Interlimb coordination was quantified by symmetry indices and analyzed using mixed repeated-measures ANOVAs. Both groups adapted to the locomotor task, indicated by significant reductions in gait symmetry during the split-belt task. No significant group differences in spatiotemporal and kinetic parameters were observed on the treadmill. However, significant group differences were observed overground. Step and swing time asymmetries learned on the split-belt treadmill were retained and decayed more slowly overground in the TC group whereas in NT, asymmetries were rapidly lost. These results suggest that tactile stimulation contributed to increased lower limb proprioceptive gain. High proprioceptive gain allows for more persistent overground after effects, at the cost of reduced adaptability. Such persistence may be utilized in populations displaying pathologic asymmetric gait by retraining a more symmetric pattern.

  10. A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation

    NASA Astrophysics Data System (ADS)

    Wang, Mingfeng; Ceccarelli, Marco; Carbone, Giuseppe

    2016-06-01

    A feasibility study on the mechanical design and walking operation of a Cassino biped locomotor is presented in this paper. The biped locomotor consists of two identical 3 degrees-of-freedom tripod leg mechanisms with a parallel manipulator architecture. Planning of the biped walking gait is performed by coordinating the motions of the two leg mechanisms and waist. A threedimensional model is elaborated in SolidWorks® environment in order to characterize a feasible mechanical design. Dynamic simulation is carried out in MSC.ADAMS® environment with the aims of characterizing and evaluating the dynamic walking performance of the proposed design. Simulation results show that the proposed biped locomotor with proper input motions of linear actuators performs practical and feasible walking on flat surfaces with limited actuation and reaction forces between its feet and the ground. A preliminary prototype of the biped locomotor is built for the purpose of evaluating the operation performance of the biped walking gait of the proposed locomotor.

  11. Locomotor behavior of fish hatched from embryos exposed to flight conditions

    NASA Technical Reports Server (NTRS)

    Kleerekoper, H.

    1978-01-01

    Embryos of Fundulus heteroclitus in various stages of development were exposed to space flight conditions aboard Apollo spacecraft and Cosmos satellites. The objective of the study was to ascertain whether fish hatched from these embryos displayed locomotor behavior different from that of control fish of the same age. An electronic monitoring technique was used to record behavior. Results indicate no change in locomotor behavior in fish on Apollo Spacecraft, but inexplicable significant changes were noted in fish aboard Cosmos Satellites.

  12. Locomotor function of forelimb protractor and retractor muscles of dogs: evidence of strut-like behavior at the shoulder.

    PubMed

    Carrier, David R; Deban, Stephen M; Fischbein, Timna

    2008-01-01

    The limbs of running mammals are thought to function as inverted struts. When mammals run at constant speed, the ground reaction force vector appears to be directed near the point of rotation of the limb on the body such that there is little or no moment at the joint. If this is true, little or no external work is done at the proximal joints during constant-speed running. This possibility has important implications to the energetics of running and to the coupling of lung ventilation to the locomotor cycle. To test if the forelimb functions as an inverted strut at the shoulder during constant-speed running and to characterize the locomotor function of extrinsic muscles of the forelimb, we monitored changes in the recruitment of six muscles that span the shoulder (the m. pectoralis superficialis descendens, m. pectoralis profundus, m. latissimus dorsi, m. omotransversarius, m. cleidobrachialis and m. trapezius) to controlled manipulations of locomotor forces and moments in trotting dogs (Canis lupus familiaris Linnaeus 1753). Muscle activity was monitored while the dogs trotted at moderate speed (approximately 2 m s(-1)) on a motorized treadmill. Locomotor forces were modified by (1) adding mass to the trunk, (2) inclining the treadmill so that the dogs ran up- and downhill (3) adding mass to the wrists or (4) applying horizontally directed force to the trunk through a leash. When the dogs trotted at constant speed on a level treadmill, the primary protractor muscles of the forelimb exhibited activity during the last part of the ipsilateral support phase and the beginning of swing phase, a pattern that is consistent with the initiation of swing phase but not with active protraction of the limb during the beginning of support phase. Results of the force manipulations were also consistent with the protractor muscles initiating swing phase and contributing to active braking via production of a protractor moment on the forelimb when the dogs decelerate. A similar

  13. Cannabidiol-Δ9-tetrahydrocannabinol interactions on acute pain and locomotor activity

    PubMed Central

    Britch, Stevie C.; Wiley, Jenny L.; Yu, Zhihao; Clowers, Brian H.; Craft, Rebecca M.

    2017-01-01

    Background Previous studies suggest that cannabidiol (CBD) may potentiate or antagonize Δ9-tetrahydrocannabinol’s (THC) effects. The current study examined sex differences in CBD-THC interactions on antinociception, locomotion, and THC metabolism. Methods In Experiment 1, CBD (0, 10 or 30 mg/kg) was administered 15 min before THC (0, 1.8, 3.2, 5.6 or10 mg/kg), and rats were tested for antinociception and locomotion 15–360 min post-THC injection. In Experiments 2 and 3, CBD (30 mg/kg) was administered 13 hr or 15 min before THC (1.8 mg/kg); rats were tested for antinociception and locomotion 30–480 min post-THC injection (Experiment 2), or serum samples were taken 30–360 min post-THC injection to examine CBD modulation of THC metabolism (Experiment 3). Results In Experiment 1, CBD alone produced no antinociceptive effects, while enhancing THC-induced paw pressure but not tail withdrawal antinociception 4–6 hr post-THC injection. CBD alone increased locomotor activity at 6 hr post-injection, but enhanced THC-induced hypolocomotion 4–6 hr post-THC injection, at lower THC doses. There were no sex differences in CBD-THC interactions. In Experiments 2 and 3, CBD did not significantly enhance THC’s effects when CBD was administered 13 hr or 15 min before THC; however, CBD inhibited THC metabolism, and this effect was greater in females than males. Conclusions These results suggest that CBD may enhance THC’s antinociceptive and hypolocomotive effects, primarily prolonging THC’s duration of action; however, these effects were small and inconsistent across experiments. CBD inhibition of THC metabolism as well other mechanisms likely contribute to CBD-THC interactions on behavior. PMID:28445853

  14. VARIATIONS AT A QUANTITATIVE TRAIT LOCUS (QTL) AFFECT DEVELOPMENT OF BEHAVIOR IN LEAD-EXPOSED DROSOPHILA MELANOGASTER

    PubMed Central

    Hirsch, Helmut V. B.; Possidente, Debra; Averill, Sarah; Despain, Tamira Palmetto; Buytkins, Joel; Thomas, Valerie; Goebel, W. Paul; Shipp-Hilts, Asante; Wilson, Diane; Hollocher, Kurt; Possidente, Bernard; Lnenicka, Greg; Ruden, Douglas M.

    2009-01-01

    We developed Drosophila melanogaster as a model to study correlated behavioral, neuronal and genetic effects of the neurotoxin lead, known to affect cognitive and behavioral development in children. We showed that, as in vertebrates, lead affects both synaptic development and complex behaviors (courtship, fecundity, locomotor activity) in Drosophila. By assessing differential behavioral responses to developmental lead exposure among recombinant inbred Drosophila lines (RI), derived from parental lines Oregon R and Russian 2b, we have now identified a genotype by environment interaction (GEI) for a behavioral trait affected by lead. Drosophila Activity Monitors (TriKinetics, Waltham, MA), which measure activity by counting the number of times a single fly in a small glass tube walks through an infrared beam aimed at the middle of the tube, were used to measure activity of flies, reared from eggs to 4 days of adult age on either control or lead-contaminated medium, from each of 75 RI lines. We observed a significant statistical association between the effect of lead on average daytime activity across lines and one marker locus, 30AB, on chromosome 2; we define this as a Quantitative Trait Locus (QTL) associated with behavioral effects of developmental lead exposure. When 30AB was from Russian 2b, lead significantly increased locomotor activity, whereas, when 30AB was from Oregon R, lead decreased it. 30AB contains about 125 genes among which are likely “candidate genes” for the observed lead-dependent behavioral changes. Drosophila are thus a useful, underutilized model for studying behavioral, synaptic and genetic changes following chronic exposure to lead or other neurotoxins during development. PMID:19428504

  15. Cell phone-generated radio frequency electromagnetic field effects on the locomotor behaviors of the fishes Poecilia reticulata and Danio rerio.

    PubMed

    Lee, David; Lee, Joshua; Lee, Imshik

    2015-01-01

    The locomotor behavior of small fish was characterized under a cell phone-generated radio frequency electromagnetic field (RF EMF). The trajectory of movement of 10 pairs of guppy (Poecilia reticulate) and 15 pairs of Zebrafish (Danio rerio) in a fish tank was recorded and tracked under the presence of a cell phone-generated RF EMF. The measures were based on spatial and temporal distributions. A time-series trajectory was utilized to emphasize the dynamic nature of locomotor behavior. Fish movement was recorded in real-time. Their spatial, velocity, turning angle and sinuosity distribution were analyzed in terms of F(v,x), P[n(x,t)], P(v), F (θ) and F(s), respectively. In addition, potential temperature elevation caused by a cellular phone was also examined. We demonstrated that a cellular phone-induced temperature elevation was not relevant, and that our measurements reflected RF EMF-induced effects on the locomotor behavior of Poecilia reticulata and Danio rerio. Fish locomotion was observed under normal conditions, in the visual presence of a cell phone, after feeding, and under starvation. Fish locomotor behavior was random both in normal conditions and in the presence of an off-signaled cell phone. However, there were significant changes in the locomotion of the fish after feeding under the RF EMF. The locomotion of the fed fish was affected in terms of changes in population and velocity distributions under the presence of the RF EMF emitted by the cell phone. There was, however, no significant difference in angular distribution.

  16. Stereoselective Effects of Abused “Bath Salt” Constituent 3,4-Methylenedioxypyrovalerone in Mice: Drug Discrimination, Locomotor Activity, and Thermoregulation

    PubMed Central

    Gannon, Brenda M.; Williamson, Adrian; Suzuki, Masaki; Rice, Kenner C.

    2016-01-01

    3,4-Methylenedioxypyrovalerone (MDPV) is a common constituent of illicit “bath salts” products. MDPV is a chiral molecule, but the contribution of each enantiomer to in vivo effects in mice has not been determined. To address this, mice were trained to discriminate 10 mg/kg cocaine from saline, and substitutions with racemic MDPV, S(+)-MDPV, and R(−)-MDPV were performed. Other mice were implanted with telemetry probes to monitor core temperature and locomotor responses elicited by racemic MDPV, S(+)-MDPV, and R(−)-MDPV under a warm (28°C) or cool (20°C) ambient temperature. Mice reliably discriminated the cocaine training dose from saline, and each form of MDPV fully substituted for cocaine, although marked potency differences were observed such that S(+)-MDPV was most potent, racemic MDPV was less potent than the S(+) enantiomer, and R(−)-MDPV was least potent. At both ambient temperatures, locomotor stimulant effects were observed after doses of S(+)-MDPV and racemic MDPV, but R(−)-MDPV did not elicit locomotor stimulant effects at any tested dose. Interestingly, significant increases in maximum core body temperature were only observed after administration of racemic MDPV in the warm ambient environment; neither MDPV enantiomer altered core temperature at any dose tested, at either ambient temperature. These studies suggest that all three forms of MDPV induce biologic effects, but R(−)-MDPV is less potent than S(+)-MDPV and racemic MDPV. Taken together, these data suggest that the S(+)-MDPV enantiomer is likely responsible for the majority of the biologic effects of the racemate and should be targeted in therapeutic efforts against MDPV overdose and abuse. PMID:26769917

  17. Effects of pregnancy on body temperature and locomotor performance of velvet geckos.

    PubMed

    Dayananda, Buddhi; Ibargüengoytía, Nora; Whiting, Martin J; Webb, Jonathan K

    2017-04-01

    Pregnancy is a challenging period for egg laying squamates. Carrying eggs can encumber females and decrease their locomotor performance, potentially increasing their risk of predation. Pregnant females can potentially reduce this handicap by selecting higher temperatures to increase their sprint speed and ability to escape from predators, or to speed up embryonic development and reduce the period during which they are burdened with eggs ('selfish mother' hypothesis). Alternatively, females might select more stable body temperatures during pregnancy to enhance offspring fitness ('maternal manipulation hypothesis'), even if the maintenance of such temperatures compromises a female's locomotor performance. We investigated whether pregnancy affects the preferred body temperatures and locomotor performance of female velvet geckos Amalosia lesueurii. We measured running speed of females during late pregnancy, and one week after they laid eggs at four temperatures (20°, 25°, 30° and 35°C). Preferred body temperatures of females were measured in a cost-free thermal gradient during late pregnancy and one week after egg-laying. Females selected higher and more stable set-point temperatures when they were pregnant (mean =29.0°C, T set =27.8-30.5°C) than when they were non-pregnant (mean =26.2°C, T set =23.7-28.7°C). Pregnancy was also associated with impaired performance; females sprinted more slowly at all four test temperatures when burdened with eggs. Although females selected higher body temperatures during late pregnancy, this increase in temperature did not compensate for their impaired running performance. Hence, our results suggest that females select higher temperatures during pregnancy to speed up embryogenesis and reduce the period during which they have reduced performance. This strategy may decrease a female's probability of encountering predatory snakes that use the same microhabitats for thermoregulation. Selection of stable temperatures by pregnant

  18. Brain and spinal cord interaction: a dietary curcumin derivative counteracts locomotor and cognitive deficits after brain trauma.

    PubMed

    Wu, Aiguo; Ying, Zhe; Schubert, David; Gomez-Pinilla, Fernando

    2011-05-01

    In addition to cognitive dysfunction, locomotor deficits are prevalent in traumatic brain injured (TBI) patients; however, it is unclear how a concussive injury can affect spinal cord centers. Moreover, there are no current efficient treatments that can counteract the broad pathology associated with TBI. The authors have investigated potential molecular basis for the disruptive effects of TBI on spinal cord and hippocampus and the neuroprotection of a curcumin derivative to reduce the effects of experimental TBI. The authors performed fluid percussion injury (FPI) and then rats were exposed to dietary supplementation of the curcumin derivative (CNB-001; 500 ppm). The curry spice curcumin has protective capacity in animal models of neurodegenerative diseases, and the curcumin derivative has enhanced brain absorption and biological activity. The results show that FPI in rats, in addition to reducing learning ability, reduced locomotor performance. Behavioral deficits were accompanied by reductions in molecular systems important for synaptic plasticity underlying behavioral plasticity in the brain and spinal cord. The post-TBI dietary supplementation of the curcumin derivative normalized levels of BDNF, and its downstream effectors on synaptic plasticity (CREB, synapsin I) and neuronal signaling (CaMKII), as well as levels of oxidative stress-related molecules (SOD, Sir2). These studies define a mechanism by which TBI can compromise centers related to cognitive processing and locomotion. The findings also show the influence of the curcumin derivative on synaptic plasticity events in the brain and spinal cord and emphasize the therapeutic potential of this noninvasive dietary intervention for TBI.

  19. Is the size of the useful field of view affected by postural demands associated with standing and stepping?

    PubMed

    Reed-Jones, James G; Reed-Jones, Rebecca J; Hollands, Mark A

    2014-04-30

    The useful field of view (UFOV) is the visual area from which information is obtained at a brief glance. While studies have examined the effects of increased cognitive load on the visual field, no one has specifically looked at the effects of postural control or locomotor activity on the UFOV. The current study aimed to examine the effects of postural demand and locomotor activity on UFOV performance in healthy young adults. Eleven participants were tested on three modified UFOV tasks (central processing, peripheral processing, and divided-attention) while seated, standing, and stepping in place. Across all postural conditions, participants showed no difference in their central or peripheral processing. However, in the divided-attention task (reporting the letter in central vision and target location in peripheral vision amongst distracter items) a main effect of posture condition on peripheral target accuracy was found for targets at 57° of eccentricity (p=.037). The mean accuracy reduced from 80.5% (standing) to 74% (seated) to 56.3% (stepping). These findings show that postural demands do affect UFOV divided-attention performance. In particular, the size of the useful field of view significantly decreases when stepping. This finding has important implications for how the results of a UFOV test are used to evaluate the general size of the UFOV during varying activities, as the traditional seated test procedure may overestimate the size of the UFOV during locomotor activities. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Osteological postcranial traits in hylid anurans indicate a morphological continuum between swimming and jumping locomotor modes.

    PubMed

    Soliz, Mónica; Tulli, Maria J; Abdala, Virginia

    2017-03-01

    Anurans exhibit a particularly wide range of locomotor modes that result in wide variations in their skeletal structure. This article investigates the possible correlation between morphological aspects of the hylid postcranial skeleton and their different locomotor modes and habitat use. To do so, we analyzed 18 morphometric postcranial variables in 19 different anuran species representative of a variety of locomotor modes (jumper, hopper, walker, and swimmer) and habitat uses (arboreal, bush, terrestrial, and aquatic). Our results show that the evolution of the postcranial hylid skeleton cannot be explained by one single model, as for example, the girdles suggest modular evolution while the vertebral column suggests other evolutionary modules. In conjunction with data from several other studies, we were able to show a relationship between hylid morphology and habitat use; offering further evidence that the jumper/swimmer and walker/hopper locomotor modes exhibit quite similar morphological architecture. This allowed us to infer that new locomotor modalities are, in fact, generated along a morphological continuum. J. Morphol. 278:403-417, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Locomotor activity, emotionality, sensori-motor gating, learning and memory in the APPswe/PS1dE9 mouse model of Alzheimer's disease.

    PubMed

    O'Leary, Timothy P; Hussin, Ahmed T; Gunn, Rhian K; Brown, Richard E

    2018-06-02

    The APPswe/PS1dE9 mouse (line 85) is a double transgenic model of Alzheimer's disease (AD) with familial amyloid precursor protein and presenilin-1 mutations. These mice develop age-related behavioral changes reflective of the neuropsychiatric symptoms (altered anxiety-like behaviour, hyperactivity) and cognitive dysfunction (impaired learning and memory) observed in AD. The APPswe/PS1dE9 mouse has been used to examine the efficacy of therapeutic interventions on behaviour, despite previous difficulties in replicating behavioural phenotypes. Therefore, the purpose of this study was to establish the reliability of these phenotypes by further characterizing the behaviour of male APPswe/PS1dE9 and wild-type mice between 7 and 14 months of age. Mice were tested on the open-field over 5-days to examine emotionality, locomotor activity and inter-session habituation. Mice were also tested on the repeated-reversal water maze task and spontaneous alternation on the Y-maze to assess working memory. Sensori-motor gating was examined with acoustic startle and pre-pulse inhibition. Lastly contextual and cued (trace) memory was assessed with fear conditioning. The results show that among non-cognitive behaviours, APPswe/PS1dE9 mice have normal locomotor activity, anxiety-like behavior, habituation and sensori-motor gating. However, APPswe/PS1dE9 mice show impaired working memory on the repeated-reversal water-maze and impaired memory in contextual but not trace-cued fear conditioning. These results indicate that the APPswe/PS1dE9 (line 85) mice have deficits in some types of hippocampal-dependent learning and memory and, at the ages tested, APPswe/PS1dE9 mice model cognitive dysfunction but not neuropsychiatric symptoms. Copyright © 2018. Published by Elsevier Inc.

  2. Locomotor impact of beneficial or nonbeneficial H-reflex conditioning after spinal cord injury

    PubMed Central

    Chen, Yi; Chen, Lu; Liu, Rongliang; Wang, Yu; Wolpaw, Jonathan R.

    2013-01-01

    When new motor learning changes neurons and synapses in the spinal cord, it may affect previously learned behaviors that depend on the same spinal neurons and synapses. To explore these effects, we used operant conditioning to strengthen or weaken the right soleus H-reflex pathway in rats in which a right spinal cord contusion had impaired locomotion. When up-conditioning increased the H-reflex, locomotion improved. Steps became longer, and step-cycle asymmetry (i.e., limping) disappeared. In contrast, when down-conditioning decreased the H-reflex, locomotion did not worsen. Steps did not become shorter, and asymmetry did not increase. Electromyographic and kinematic analyses explained how H-reflex increase improved locomotion and why H-reflex decrease did not further impair it. Although the impact of up-conditioning or down-conditioning on the H-reflex pathway was still present during locomotion, only up-conditioning affected the soleus locomotor burst. Additionally, compensatory plasticity apparently prevented the weaker H-reflex pathway caused by down-conditioning from weakening the locomotor burst and further impairing locomotion. The results support the hypothesis that the state of the spinal cord is a “negotiated equilibrium” that serves all the behaviors that depend on it. When new learning changes the spinal cord, old behaviors undergo concurrent relearning that preserves or improves their key features. Thus, if an old behavior has been impaired by trauma or disease, spinal reflex conditioning, by changing a specific pathway and triggering a new negotiation, may enable recovery beyond that achieved simply by practicing the old behavior. Spinal reflex conditioning protocols might complement other neurorehabilitation methods and enhance recovery. PMID:24371288

  3. Locomotor play drives motor skill acquisition at the expense of growth: A life history trade-off

    PubMed Central

    Berghänel, Andreas; Schülke, Oliver; Ostner, Julia

    2015-01-01

    The developmental costs and benefits of early locomotor play are a puzzling topic in biology, psychology, and health sciences. Evolutionary theory predicts that energy-intensive behavior such as play can only evolve if there are considerable benefits. Prominent theories propose that locomotor play is (i) low cost, using surplus energy remaining after growth and maintenance, and (ii) beneficial because it trains motor skills. However, both theories are largely untested. Studying wild Assamese macaques, we combined behavioral observations of locomotor play and motor skill acquisition with quantitative measures of natural food availability and individual growth rates measured noninvasively via photogrammetry. Our results show that investments in locomotor play were indeed beneficial by accelerating motor skill acquisition but carried sizable costs in terms of reduced growth. Even under moderate natural energy restriction, investment in locomotor play accounted for up to 50% of variance in growth, which strongly contradicts the current theory that locomotor play only uses surplus energy remaining after growth and maintenance. Male immatures played more, acquired motor skills faster, and grew less than female immatures, leading to persisting size differences until the age of female maturity. Hence, depending on skill requirements, investment in play can take ontogenetic priority over physical development unconstrained by costs of play with consequences for life history, which strongly highlights the ontogenetic and evolutionary importance of play. PMID:26601237

  4. Locomotor play drives motor skill acquisition at the expense of growth: A life history trade-off.

    PubMed

    Berghänel, Andreas; Schülke, Oliver; Ostner, Julia

    2015-08-01

    The developmental costs and benefits of early locomotor play are a puzzling topic in biology, psychology, and health sciences. Evolutionary theory predicts that energy-intensive behavior such as play can only evolve if there are considerable benefits. Prominent theories propose that locomotor play is (i) low cost, using surplus energy remaining after growth and maintenance, and (ii) beneficial because it trains motor skills. However, both theories are largely untested. Studying wild Assamese macaques, we combined behavioral observations of locomotor play and motor skill acquisition with quantitative measures of natural food availability and individual growth rates measured noninvasively via photogrammetry. Our results show that investments in locomotor play were indeed beneficial by accelerating motor skill acquisition but carried sizable costs in terms of reduced growth. Even under moderate natural energy restriction, investment in locomotor play accounted for up to 50% of variance in growth, which strongly contradicts the current theory that locomotor play only uses surplus energy remaining after growth and maintenance. Male immatures played more, acquired motor skills faster, and grew less than female immatures, leading to persisting size differences until the age of female maturity. Hence, depending on skill requirements, investment in play can take ontogenetic priority over physical development unconstrained by costs of play with consequences for life history, which strongly highlights the ontogenetic and evolutionary importance of play.

  5. Circadian locomotor rhythms in the cricket, Gryllodes sigillatus. I. Localization of the pacemaker and the photoreceptor.

    PubMed

    Abe, Y; Ushirogawa, H; Tomioka, K

    1997-10-01

    Circadian locomotor rhythm and its underlying mechanism were investigated in the cricket, Gryllodes sigillatus. Adult male crickets showed a nocturnal locomotor rhythm peaking early in the dark phase of a light to dark cycle. This rhythm persisted under constant darkness (DD) with a free-running period averaging 23.1 +/- 0.3 hr. Although constant bright light made most animals arrhythmic, about 40% of the animals showed free-running rhythms with a period longer than 24 hr under constant dim light condition. On transfer to DD, all arrhythmic animals restored the locomotor rhythm. Bilateral optic nerve severance resulted in free-running of the rhythm even under light-dark cycles. The free-running period of the optic nerve severed animals was significantly longer than sham operated crickets in DD, suggesting that the compound eye plays some role in determining the free-running period. Removal of bilateral lamina-medulla portion of the optic lobe abolished the rhythm under DD. These results demonstrate that the photoreceptor for entrainment is the compound eye and the optic lobe is indispensable for persistence of the rhythm. However, 75% and 54% of the optic lobeless animals showed aberrant rhythms with a period very close to 24 hr under light and temperature cycles, respectively, suggesting that there are neural and/or humoral mechanisms for the aberrant rhythms outside of the optic lobe. Since ocelli removal did not affect the photoperiodically induced rhythm, it is likely that the photoreception for the rhythm is performed through an extraretinal photoreceptor.

  6. Poststroke Hemiparesis Impairs the Rate but not Magnitude of Adaptation of Spatial and Temporal Locomotor Features

    PubMed Central

    Savin, Douglas N.; Tseng, Shih-Chiao; Whitall, Jill; Morton, Susanne M.

    2015-01-01

    Background Persons with stroke and hemiparesis walk with a characteristic pattern of spatial and temporal asymmetry that is resistant to most traditional interventions. It was recently shown in nondisabled persons that the degree of walking symmetry can be readily altered via locomotor adaptation. However, it is unclear whether stroke-related brain damage affects the ability to adapt spatial or temporal gait symmetry. Objective Determine whether locomotor adaptation to a novel swing phase perturbation is impaired in persons with chronic stroke and hemiparesis. Methods Participants with ischemic stroke (14) and nondisabled controls (12) walked on a treadmill before, during, and after adaptation to a unilateral perturbing weight that resisted forward leg movement. Leg kinematics were measured bilaterally, including step length and single-limb support (SLS) time symmetry, limb angle center of oscillation, and interlimb phasing, and magnitude of “initial” and “late” locomotor adaptation rates were determined. Results All participants had similar magnitudes of adaptation and similar initial adaptation rates both spatially and temporally. All 14 participants with stroke and baseline asymmetry temporarily walked with improved SLS time symmetry after adaptation. However, late adaptation rates poststroke were decreased (took more strides to achieve adaptation) compared with controls. Conclusions Mild to moderate hemiparesis does not interfere with the initial acquisition of novel symmetrical gait patterns in both the spatial and temporal domains, though it does disrupt the rate at which “late” adaptive changes are produced. Impairment of the late, slow phase of learning may be an important rehabilitation consideration in this patient population. PMID:22367915

  7. Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord

    PubMed Central

    Gozal, Elizabeth A.; O'Neill, Brannan E.; Sawchuk, Michael A.; Zhu, Hong; Halder, Mallika; Chou, Ching-Chieh; Hochman, Shawn

    2014-01-01

    The trace amines (TAs), tryptamine, tyramine, and β-phenylethylamine, are synthesized from precursor amino acids via aromatic-L-amino acid decarboxylase (AADC). We explored their role in the neuromodulation of neonatal rat spinal cord motor circuits. We first showed that the spinal cord contains the substrates for TA biosynthesis (AADC) and for receptor-mediated actions via trace amine-associated receptors (TAARs) 1 and 4. We next examined the actions of the TAs on motor activity using the in vitro isolated neonatal rat spinal cord. Tyramine and tryptamine most consistently increased motor activity with prominent direct actions on motoneurons. In the presence of N-methyl-D-aspartate, all applied TAs supported expression of a locomotor-like activity (LLA) that was indistinguishable from that ordinarily observed with serotonin, suggesting that the TAs act on common central pattern generating neurons. The TAs also generated distinctive complex rhythms characterized by episodic bouts of LLA. TA actions on locomotor circuits did not require interaction with descending monoaminergic projections since evoked LLA was maintained following block of all Na+-dependent monoamine transporters or the vesicular monoamine transporter. Instead, TA (tryptamine and tyramine) actions depended on intracellular uptake via pentamidine-sensitive Na+-independent membrane transporters. Requirement for intracellular transport is consistent with the TAs having much slower LLA onset than serotonin and for activation of intracellular TAARs. To test for endogenous actions following biosynthesis, we increased intracellular amino acid levels with cycloheximide. LLA emerged and included distinctive TA-like episodic bouts. In summary, we provided anatomical and functional evidence of the TAs as an intrinsic spinal monoaminergic modulatory system capable of promoting recruitment of locomotor circuits independent of the descending monoamines. These actions support their known sympathomimetic function

  8. Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord.

    PubMed

    Gozal, Elizabeth A; O'Neill, Brannan E; Sawchuk, Michael A; Zhu, Hong; Halder, Mallika; Chou, Ching-Chieh; Hochman, Shawn

    2014-01-01

    The trace amines (TAs), tryptamine, tyramine, and β-phenylethylamine, are synthesized from precursor amino acids via aromatic-L-amino acid decarboxylase (AADC). We explored their role in the neuromodulation of neonatal rat spinal cord motor circuits. We first showed that the spinal cord contains the substrates for TA biosynthesis (AADC) and for receptor-mediated actions via trace amine-associated receptors (TAARs) 1 and 4. We next examined the actions of the TAs on motor activity using the in vitro isolated neonatal rat spinal cord. Tyramine and tryptamine most consistently increased motor activity with prominent direct actions on motoneurons. In the presence of N-methyl-D-aspartate, all applied TAs supported expression of a locomotor-like activity (LLA) that was indistinguishable from that ordinarily observed with serotonin, suggesting that the TAs act on common central pattern generating neurons. The TAs also generated distinctive complex rhythms characterized by episodic bouts of LLA. TA actions on locomotor circuits did not require interaction with descending monoaminergic projections since evoked LLA was maintained following block of all Na(+)-dependent monoamine transporters or the vesicular monoamine transporter. Instead, TA (tryptamine and tyramine) actions depended on intracellular uptake via pentamidine-sensitive Na(+)-independent membrane transporters. Requirement for intracellular transport is consistent with the TAs having much slower LLA onset than serotonin and for activation of intracellular TAARs. To test for endogenous actions following biosynthesis, we increased intracellular amino acid levels with cycloheximide. LLA emerged and included distinctive TA-like episodic bouts. In summary, we provided anatomical and functional evidence of the TAs as an intrinsic spinal monoaminergic modulatory system capable of promoting recruitment of locomotor circuits independent of the descending monoamines. These actions support their known sympathomimetic

  9. The evolution of locomotor rhythmicity in tetrapods.

    PubMed

    Ross, Callum F; Blob, Richard W; Carrier, David R; Daley, Monica A; Deban, Stephen M; Demes, Brigitte; Gripper, Janaya L; Iriarte-Diaz, Jose; Kilbourne, Brandon M; Landberg, Tobias; Polk, John D; Schilling, Nadja; Vanhooydonck, Bieke

    2013-04-01

    Differences in rhythmicity (relative variance in cycle period) among mammal, fish, and lizard feeding systems have been hypothesized to be associated with differences in their sensorimotor control systems. We tested this hypothesis by examining whether the locomotion of tachymetabolic tetrapods (birds and mammals) is more rhythmic than that of bradymetabolic tetrapods (lizards, alligators, turtles, salamanders). Species averages of intraindividual coefficients of variation in cycle period were compared while controlling for gait and substrate. Variance in locomotor cycle periods is significantly lower in tachymetabolic than in bradymetabolic animals for datasets that include treadmill locomotion, non-treadmill locomotion, or both. When phylogenetic relationships are taken into account the pooled analyses remain significant, whereas the non-treadmill and the treadmill analyses become nonsignificant. The co-occurrence of relatively high rhythmicity in both feeding and locomotor systems of tachymetabolic tetrapods suggests that the anatomical substrate of rhythmicity is in the motor control system, not in the musculoskeletal components. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  10. Cocaine-induced locomotor activity is increased by prior handling in adolescent but not adult female rats

    PubMed Central

    Maldonado, Antoniette M.; Kirstein, Cheryl L.

    2017-01-01

    Adolescence is a period of transition that is associated with increased levels of stress and a heightened propensity to initiate drug use. Neuronal development is still occurring during this transitional period, which includes the continued development of the dopamine system during the adolescent period. In the present study, the effects of pre-test handling on cocaine-induced locomotor activity were investigated among female adolescent and young adult rats upon presentation to a novel environment. On postnatal days (PND) 41–44 and 56–59 animals were handled (b.i.d.) in the colony room for 3 min. On PND 45 or PND 60, animals were removed from the colony room, weighed, and administered an acute injection of either cocaine or saline and presented to a novel environment where behavior was recorded for 30 min. Adolescent females (PND 45) that were handled prior to cocaine administration demonstrated elevated levels of cocaine-induced activity relative to their age-matched non-handled counterparts and also to their handled-adult counterparts. In contrast, among non-handled animals, young adults (PND 60) exhibited elevated drug-induced locomotion at several time points during the trial. Non-handled adolescent animals demonstrated the previously described “hyporesponsive” behavioral profile relative to their non-handled adult counterparts. The results from the present experiment indicate that adolescent animals may be more sensitive to basic laboratory manipulations such as pre-test handling, and care must be taken when utilizing adolescent animals in behavioral testing. Handling appears to be a sensitive manipulation in elucidating differences in cocaine-induced behavioral activation between ages. PMID:16176824

  11. Treatment of GABA from Fermented Rice Germ Ameliorates Caffeine-Induced Sleep Disturbance in Mice

    PubMed Central

    Mabunga, Darine Froy N.; Gonzales, Edson Luck T.; Kim, Hee Jin; Choung, Se Young

    2015-01-01

    γ-Aminobutyric acid (GABA), a major inhibitory neurotransmitter in the mammalian central nervous system, is involved in sleep physiology. Caffeine is widely used psychoactive substance known to induce wakefulness and insomnia to its consumers. This study was performed to examine whether GABA extracts from fermented rice germ ameliorates caffeine-induced sleep disturbance in mice, without affecting spontaneous locomotor activity and motor coordination. Indeed, caffeine (10 mg/kg, i.p.) delayed sleep onset and reduced sleep duration of mice. Conversely, rice germ ferment extracts-GABA treatment (10, 30, or 100 mg/kg, p.o.), especially at 100 mg/kg, normalized the sleep disturbance induced by caffeine. In locomotor tests, rice germ ferment extracts-GABA slightly but not significantly reduced the caffeine-induced increase in locomotor activity without affecting motor coordination. Additionally, rice germ ferment extracts-GABA per se did not affect the spontaneous locomotor activity and motor coordination of mice. In conclusion, rice germ ferment extracts-GABA supplementation can counter the sleep disturbance induced by caffeine, without affecting the general locomotor activities of mice. PMID:25995826

  12. Electrolytic lesions of the nucleus accumbens enhance locomotor sensitization to nicotine in rats.

    PubMed

    Kelsey, John E; Willmore, Ellen J

    2006-06-01

    Electrolytic lesions of the medial core of the nucleus accumbens (NAc) in male Long-Evans rats increased spontaneous locomotion, enhanced the locomotor stimulating effect of acute 5.0 mg/kg cocaine, enhanced the development and subsequent expression of locomotor sensitization produced by repeated injections of 0.4 mg/kg nicotine but not 7.5 mg/kg cocaine, and enhanced the expression of conditioned locomotion. Given that 6-hydroxydopamine lesions of the NAc typically have effects on locomotor-related processes that are opposite of those produced by electrolytic and excitotoxic lesions, these data are consistent with a hypothesis that the NAc output, especially from the core, inhibits a variety of such processes and that the DA input to the NAc enhances these processes by inhibiting this inhibitory output. Copyright 2006 APA, all rights reserved.

  13. The comparative effects of chronic consumption of kola nut (Cola nitida) and caffeine diets on locomotor behaviour and body weights in mice.

    PubMed

    Umoren, E B; Osim, E E; Udoh, P B

    2009-06-01

    The comparative effects of chronic [28 days] consumption of kola nut and its active constituent, caffeine diets on locomotor behaviour and body weights in mice were investigated. Thirty adult Swiss white mice [15-30 g body weight], were used for the study. The open field-maze was employed for the evaluation of locomotor behaviour. Mice in the control group [n=10] were fed normal rodent chow, mice in the kola nut-fed group [n=10] were fed kola diet [25 % wt/wt of rodent chow] while those in the caffeine-fed group [n=10] were fed caffeine diet [0.66% wt/wt of rodent chow] for 4 weeks. All animals were allowed free access to clean drinking water. Daily food intake, water intake and body weight change were also measured. Daily food intake in the kola nut and caffeine-fed group of mice was significantly [P<0.001 respectively] lower than the control. There was also a significant [P<0.001] decrease in daily water intake in the caffeine-fed group compared to the control whereas, the apparent decrease of water intake in the kola nut-fed group was not significantly different from the control. Body weight change was also significantly [P<0.001 and P<0.05 respectively] lower in the kola nut and caffeine-fed groups of mice when compared to the control. The frequency of rearing in the open field was significantly [P<0.01] lower in the caffeine-fed group of mice when compared to the control. The frequency of grooming was also significantly [P<0.05] lower in the caffeine-fed group of mice when compared to the control. There was also a significant [P<0.05] decrease in the frequency of light-dark transitions in the light/dark transition box for the caffeine-fed group when compared to the control. The results showed that chronic consumption of kola nut and caffeine diets caused decrease in food intake and body weight. Consumption of caffeine-diet also significantly decreased water intake and locomotor activity. The effect of kola nut-diets on water intake and locomotor activity was

  14. Locomotor Experience: A Facilitator of Spatial Cognitive Development.

    ERIC Educational Resources Information Center

    Kermoian, Rosanne; Campos, Joseph J.

    1988-01-01

    Studies were designed to test the prediction that spatial search strategies in infants may be influenced by locomotor experience. The pattern of findings suggests that infants with efficient modes of locomotion are more likely than others to profit from the experiences generated by locomotion. (RJC)

  15. Locomotor Adaptation Improves Balance Control, Multitasking Ability and Reduces the Metabolic Cost of Postural Instability

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Peters, B. T.; Mulavara, A. P.; Brady, R. A.; Batson, C. D.; Miller, C. A.; Ploutz-Snyder, R. J.; Guined, J. R.; Buxton, R. E.; Cohen, H. S.

    2011-01-01

    During exploration-class missions, sensorimotor disturbances may lead to disruption in the ability to ambulate and perform functional tasks during the initial introduction to a novel gravitational environment following a landing on a planetary surface. The overall goal of our current project is to develop a sensorimotor adaptability training program to facilitate rapid adaptation to these environments. We have developed a unique training system comprised of a treadmill placed on a motion-base facing a virtual visual scene. It provides an unstable walking surface combined with incongruent visual flow designed to enhance sensorimotor adaptability. Greater metabolic cost incurred during balance instability means more physical work is required during adaptation to new environments possibly affecting crewmembers? ability to perform mission critical tasks during early surface operations on planetary expeditions. The goal of this study was to characterize adaptation to a discordant sensory challenge across a number of performance modalities including locomotor stability, multi-tasking ability and metabolic cost. METHODS: Subjects (n=15) walked (4.0 km/h) on a treadmill for an 8 -minute baseline walking period followed by 20-minutes of walking (4.0 km/h) with support surface motion (0.3 Hz, sinusoidal lateral motion, peak amplitude 25.4 cm) provided by the treadmill/motion-base system. Stride frequency and auditory reaction time were collected as measures of locomotor stability and multi-tasking ability, respectively. Metabolic data (VO2) were collected via a portable metabolic gas analysis system. RESULTS: At the onset of lateral support surface motion, subj ects walking on our treadmill showed an increase in stride frequency and auditory reaction time indicating initial balance and multi-tasking disturbances. During the 20-minute adaptation period, balance control and multi-tasking performance improved. Similarly, throughout the 20-minute adaptation period, VO2 gradually

  16. Female choice reveals terminal investment in male mealworm beetles, Tenebrio molitor, after a repeated activation of the immune system.

    PubMed

    Krams, I; Daukšte, J; Kivleniece, I; Krama, T; Rantala, M J; Ramey, G; Šauša, L

    2011-01-01

    Increasing evidence suggests that secondary sexual traits reflect immunocompetence of males in many animal species. This study experimentally investigated whether a parasite-like immunological challenge via a nylon implant affects sexual attractiveness of males in Tenebrio molitor L. (Coleoptera: Tenebrionidae) Although a single immunological challenge significantly reduced sexual attractiveness and locomotor activity of males, it had no adverse effect on their survival. A second immune challenge of the same males increased their attractiveness. However, it was found that the repeated challenge significantly reduced locomotor activity of males and caused higher mortality. This result indicates terminal investment on sexual signaling, which is supposedly based on a trade-off between pheromone production and energy expenditures needed for such activities as recovery of immune system and locomotor activity. When the third implantation was carried out in the same group of males, melanization of nylon implants was found to be lower in more attractive than in less attractive males. This suggests that males that became sexually attractive after the second immune challenge did not invest in recovery of their immune system.

  17. Female Choice Reveals Terminal Investment in Male Mealworm Beetles, Tenebrio molitor, after a Repeated Activation of the Immune System

    PubMed Central

    Krams, I; Daukšte, J; Kivleniece, I; Krama, T; Rantala, MJ; Ramey, G; Šauša, L

    2011-01-01

    Increasing evidence suggests that secondary sexual traits reflect immunocompetence of males in many animal species. This study experimentally investigated whether a parasite-like immunological challenge via a nylon implant affects sexual attractiveness of males in Tenebrio molitor L. (Coleoptera: Tenebrionidae) Although a single immunological challenge significantly reduced sexual attractiveness and locomotor activity of males, it had no adverse effect on their survival. A second immune challenge of the same males increased their attractiveness. However, it was found that the repeated challenge significantly reduced locomotor activity of males and caused higher mortality. This result indicates terminal investment on sexual signaling, which is supposedly based on a trade-off between pheromone production and energy expenditures needed for such activities as recovery of immune system and locomotor activity. When the third implantation was carried out in the same group of males, melanization of nylon implants was found to be lower in more attractive than in less attractive males. This suggests that males that became sexually attractive after the second immune challenge did not invest in recovery of their immune system. PMID:21864151

  18. Effects of BDNF receptor antagonist on the severity of physical and psychological dependence, morphine-induced locomotor sensitization and the ventral tegmental area-nucleus accumbens BDNF levels in morphine- dependent and withdrawn rats.

    PubMed

    Khalil-Khalili, Masoumeh; Rashidy-Pour, Ali; Bandegi, Ahmad Reza; Yousefi, Behpoor; Jorjani, Hassan; Miladi-Gorji, Hossein

    2018-03-06

    This study examined the effects of systemic administration of the TrkB receptor antagonist (ANA-12) on the severity of physical and psychological dependence and morphine-induced locomotor sensitization, the ventral tegmental area (VTA)-nucleus accumbens (NAc) BDNF levels in morphine-dependent and withdrawn rats. Rats were injected with bi-daily doses (10 mg/kg, at 12 h intervals) of morphine for 10 days. Then, rats were tested for naloxone-precipitated morphine withdrawal signs, the anxiety (the elevated plus maze-EPM) after the last morphine injection and injection of ANA12 (ip). Also, morphine-induced locomotor sensitization was evaluated after morphine challenge followed by an injection of ANA-12 in morphine-withdrawn rats. The VTA-NAc BDNF levels were assessed in morphine-dependent and withdrawn rats. The overall Gellert-Holtzman score was significantly higher in morphine-dependent rats receiving ANA-12 than in those receiving saline. Also, the percentage of time spent in the open arms in control and morphine-dependent rats receiving ANA-12 were higher compared to the Cont/Sal and D/Sal rats, respectively. There was no significant difference in the locomotor activity and the VTA-NAc BDNF levels between D/Sal/morphine and D/ANA-12/morphine groups after morphine withdrawal. We conclude that the systemic administration of ANA-12 exacerbates the severity of physical dependence on morphine and partially attenuates the anxiety-like behavior in morphine-dependent rats. However, ANA-12 did not affect morphine-induced locomotor sensitization and the VTA-NAc BDNF levels in morphine-dependent and withdrawn rats. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Effect of ambient temperature on the thermoregulatory and locomotor stimulant effects of 4-methylmethcathinone in Wistar and Sprague-Dawley rats.

    PubMed

    Wright, M Jerry; Angrish, Deepshikha; Aarde, Shawn M; Barlow, Deborah J; Buczynski, Matthew W; Creehan, Kevin M; Vandewater, Sophia A; Parsons, Loren H; Houseknecht, Karen L; Dickerson, Tobin J; Taffe, Michael A

    2012-01-01

    The drug 4-methylmethcathinone (4-MMC; aka, mephedrone, MMCAT, "plant food", "bath salts") is a recent addition to the list of popular recreational psychomotor-stimulant compounds. Relatively little information about this drug is available in the scientific literature, but popular media reports have driven recent drug control actions in the UK and several US States. Online user reports of subjective similarity to 3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") prompted the current investigation of the thermoregulatory and locomotor effects of 4-MMC. Male Wistar and Sprague-Dawley rats were monitored after subcutaneous administration of 4-MMC (1-10 mg/kg ) using an implantable radiotelemetry system under conditions of low (23°C) and high (27°C) ambient temperature. A reliable reduction of body temperature was produced by 4-MMC in Wistar rats at 23°C or 27°C with only minimal effect in Sprague-Dawley rats. Increased locomotor activity was observed after 4-MMC administration in both strains with significantly more activity produced in the Sprague-Dawley strain. The 10 mg/kg s.c. dose evoked greater increase in extracellular serotonin, compared with dopamine, in the nucleus accumbens. Follow-up studies confirmed that the degree of locomotor stimulation produced by 10 mg/kg 4-MMC was nearly identical to that produced by 1 mg/kg d-methamphetamine in each strain. Furthermore, hypothermia produced by the serotonin 1(A/7) receptor agonist 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) was similar in each strain. These results show that the cathinone analog 4-MMC exhibits thermoregulatory and locomotor properties that are distinct from those established for methamphetamine or MDMA in prior work, despite recent evidence of neuropharmacological similarity with MDMA.

  20. Effect of Ambient Temperature on the Thermoregulatory and Locomotor Stimulant Effects of 4-Methylmethcathinone in Wistar and Sprague-Dawley Rats

    PubMed Central

    Wright, M. Jerry; Angrish, Deepshikha; Aarde, Shawn M.; Barlow, Deborah J.; Buczynski, Matthew W.; Creehan, Kevin M.; Vandewater, Sophia A.; Parsons, Loren H.; Houseknecht, Karen L.; Dickerson, Tobin J.; Taffe, Michael A.

    2012-01-01

    The drug 4-methylmethcathinone (4-MMC; aka, mephedrone, MMCAT, “plant food”, “bath salts”) is a recent addition to the list of popular recreational psychomotor-stimulant compounds. Relatively little information about this drug is available in the scientific literature, but popular media reports have driven recent drug control actions in the UK and several US States. Online user reports of subjective similarity to 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) prompted the current investigation of the thermoregulatory and locomotor effects of 4-MMC. Male Wistar and Sprague-Dawley rats were monitored after subcutaneous administration of 4-MMC (1–10 mg/kg ) using an implantable radiotelemetry system under conditions of low (23°C) and high (27°C) ambient temperature. A reliable reduction of body temperature was produced by 4-MMC in Wistar rats at 23°C or 27°C with only minimal effect in Sprague-Dawley rats. Increased locomotor activity was observed after 4-MMC administration in both strains with significantly more activity produced in the Sprague-Dawley strain. The 10 mg/kg s.c. dose evoked greater increase in extracellular serotonin, compared with dopamine, in the nucleus accumbens. Follow-up studies confirmed that the degree of locomotor stimulation produced by 10 mg/kg 4-MMC was nearly identical to that produced by 1 mg/kg d-methamphetamine in each strain. Furthermore, hypothermia produced by the serotonin 1A/7 receptor agonist 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) was similar in each strain. These results show that the cathinone analog 4-MMC exhibits thermoregulatory and locomotor properties that are distinct from those established for methamphetamine or MDMA in prior work, despite recent evidence of neuropharmacological similarity with MDMA. PMID:22952999

  1. A Model of Locomotor-Respiratory Coupling in Quadrupeds

    ERIC Educational Resources Information Center

    Giuliodori,, Mauricio J.; Lujan, Heidi L.; Briggs, Whitney S.; DiCarlo, Stephen E.

    2009-01-01

    Locomotion and respiration are not independent phenomena in running mammals because locomotion and respiration both rely on cyclic movements of the ribs, sternum, and associated musculature. Thus, constraints are imposed on locomotor and respiratory function by virtue of their linkage. Specifically, locomotion imposes mechanical constraints on…

  2. Evaluation of the clinical efficacy of meloxicam in cats with painful locomotor disorders.

    PubMed

    Lascelles, B D; Henderson, A J; Hackett, I J

    2001-12-01

    The ability of two non-steroidal anti-inflammatory drugs to modify the clinical manifestations of pain associated with locomotor disease was assessed. Sixty-nine cats with acute or chronic locomotor disorders were recruited from 14 first opinion UK veterinary practices and randomly allocated to one of two treatment groups. Group A received meloxicam drops (0.3 mg/kg orally on day 1 followed by 0.1 mg/kg daily for four more consecutive days) and group B received ketoprofen tablets (1.0 mg/kg orally once daily for five days). Each cat underwent a full clinical examination before treatment, 24 hours after initiation of treatment and 24 hours after completion of treatment. General clinical parameters (demeanour and feed intake) and specific locomotor parameters (weightbearing, lameness, local inflammation and pain on palpation) were scored using a discontinuous scale scoring system. The two groups did not differ in terms of age, weight, gender distribution or duration of clinical signs; nor did they differ in terms of general clinical or specific locomotor scores pretreatment. Both treatment regimens resulted in a significant improvement in demeanour, feed intake and weightbearing, and a significant reduction in lameness, pain on palpation and inflammation. No significant difference was observed between the two treatment groups with respect to any of the parameters measured and both treatments were associated with minimal observed side effects. Meloxicam and ketoprofen were found to be effective analgesics and well tolerated in cats with acute or chronic locomotor disorders when administered for short-term treatment (five days) in such cases. However, meloxicam was assessed to be significantly more palatable than ketoprofen.

  3. Antidepressant and anxiolytic-like activity of sodium selenite after acute treatment in mice.

    PubMed

    Kędzierska, Ewa; Dudka, Jarosław; Poleszak, Ewa; Kotlińska, Jolanta H

    2017-04-01

    Selenium (Se) is an essential trace element for humans and animals, that is needed for a broad variety of physiological functions including thyroid hormone metabolism, protection against oxidative stress, and immunity associated functions. Human nutritional Se deficiencies are associated with neuropsychiatric diseases, like Alzheimer's disease, Parkinson's disease, obsessive - compulsive disorder, stroke, epilepsy as well as depressive behaviours. In this study we examined antidepressant- and anxiolytic-like activity of Se in the inorganic form of sodium selenite and investigated whether Se influence on the locomotor activity in mice. The antidepressant-like and anxiolytic-like activity of Se was assessed using forced swim test (FST) and elevated plus-maze test (EPM), respectively. Spontaneous locomotor activity was measured using photoresistor actimeters. Sodium selenite administered at the doses of 0.5, 1, and 2mg/kg, ip reduced immobility time in the FST exerting antidepressant-like activity. In the EPM test, sodium selenite at the same doses, produced anxiolytic-like effect; the doses active in both tests did not affect locomotor activity, indicating that these effects of Se are specific. These potential antidepressant- and anxiolytic-like effects of Se require more detailed experimental study using animal models to approach a clear conclusion regarding the potential mechanism of the observed effect. Copyright © 2016. Published by Elsevier Urban & Partner Sp. z o.o.

  4. Circadian locomotor rhythms in the cricket, Gryllodes sigillatus. II. Interactions between bilaterally paired circadian pacemakers.

    PubMed

    Ushirogawa, H; Abe, Y; Tomioka, K

    1997-10-01

    The optic lobe is essential for circadian locomotor rhythms in the cricket, Gryllodes sigillatus. We examined potential interactions between the bilaterally paired optic lobes in circadian rhythm generation. When one optic lobe was removed, the free-running period of the locomotor rhythm slightly but significantly lengthened. When exposed to light-dark cycles (LD) with 26 hr period, intact and sham operated animals were clearly entrained to the light cycle, but a large number of animals receiving unilateral optic nerve severance showed rhythm dissociation. In the dissociation, two rhythmic components appeared; one was readily entrained to the given LD and the other free-ran with a period shorter than 24 hr, and activity was expressed only when they were inphase. The period of the free-running component was significantly longer than that of the animals with a single blinded pacemaker kept in LD13:13, suggesting that the pacemaker on the intact side had some influence on the blinded pacemaker even in the dissociated state. The ratio of animals with rhythm dissociation was greater with the lower light intensity of the LD. The results suggest that the bilaterally distributed pacemakers are only weakly coupled to one another but strongly suppress the activity driven by the partner pacemaker during their subjective day. The strong suppression of activity would be advantageous to keep a stable nocturnality for this cricket living indoors.

  5. Cocaine- and amphetamine-regulated transcript peptide in the nucleus accumbens shell inhibits cocaine-induced locomotor sensitization to transient over-expression of α-Ca2+ /calmodulin-dependent protein kinase II.

    PubMed

    Xiong, Lixia; Meng, Qing; Sun, Xi; Lu, Xiangtong; Fu, Qiang; Peng, Qinghua; Yang, Jianhua; Oh, Ki-Wan; Hu, Zhenzhen

    2018-01-04

    Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter that attenuates cocaine-induced locomotor activity when injected into the nucleus accumbens (NAc). Our previous work first confirmed that the inhibitory mechanism of the CART peptide on cocaine-induced locomotor activity is related to a reduction in cocaine-enhanced phosphorylated Ca 2+ /calmodulin-dependent protein kinaseIIα (pCaMKIIα) and the enhancement of cocaine-induced D3R function. This study investigated whether CART peptide inhibited cocaine-induced locomotor activity via inhibition of interactions between pCaMKIIα and the D3 dopamine receptor (D3R). We demonstrated that lentivirus-mediated gene transfer transiently increased pCaMKIIα expression, which peaked at 10 days after microinjection into the rat NAc shell, and induced a significant increase in Ca 2+ influx along with greater behavioral sensitivity in the open field test after intraperitoneal injections of cocaine (15 mg/kg). However, western blot analysis and coimmunoprecipitation demonstrated that CART peptide treatment in lentivirus-transfected CaMKIIα-over-expressing NAc rat tissues or cells prior to cocaine administration inhibited the cocaine-induced Ca 2+ influx and attenuated the cocaine-increased pCaMKIIα expression in lentivirus-transfected CaMKIIα-over-expressing cells. CART peptide decreased the cocaine-enhanced phosphorylated cAMP response element binding protein (pCREB) expression via inhibition of the pCaMKIIα-D3R interaction, which may account for the prolonged locomotor sensitization induced by repeated cocaine treatment in lentivirus-transfected CaMKIIα-over-expressing cells. These results provide strong evidence for the inhibitory modulation of CART peptide in cocaine-induced locomotor sensitization. © 2018 International Society for Neurochemistry.

  6. FES-assisted Cycling Improves Aerobic Capacity and Locomotor Function Postcerebrovascular Accident.

    PubMed

    Aaron, Stacey E; Vanderwerker, Catherine J; Embry, Aaron E; Newton, Jennifer H; Lee, Samuel C K; Gregory, Chris M

    2018-03-01

    After a cerebrovascular accident (CVA) aerobic deconditioning contributes to diminished physical function. Functional electrical stimulation (FES)-assisted cycling is a promising exercise paradigm designed to target both aerobic capacity and locomotor function. This pilot study aimed to evaluate the effects of an FES-assisted cycling intervention on aerobic capacity and locomotor function in individuals post-CVA. Eleven individuals with chronic (>6 months) post-CVA hemiparesis completed an 8-wk (three times per week; 24 sessions) progressive FES-assisted cycling intervention. V˙O2peak, self-selected, and fastest comfortable walking speeds, gait, and pedaling symmetry, 6-min walk test (6MWT), balance, dynamic gait movements, and health status were measured at baseline and posttraining. Functional electrical stimulation-assisted cycling significantly improved V˙O2peak (12%, P = 0.006), self-selected walking speed (SSWS, 0.05 ± 0.1 m·s, P = 0.04), Activities-specific Balance Confidence scale score (12.75 ± 17.4, P = 0.04), Berg Balance Scale score (3.91 ± 4.2, P = 0.016), Dynamic Gait Index score (1.64 ± 1.4, P = 0.016), and Stroke Impact Scale participation/role domain score (12.74 ± 16.7, P = 0.027). Additionally, pedal symmetry, represented by the paretic limb contribution to pedaling (paretic pedaling ratio [PPR]) significantly improved (10.09% ± 9.0%, P = 0.016). Although step length symmetry (paretic step ratio [PSR]) did improve, these changes were not statistically significant (-0.05% ± 0.1%, P = 0.09). Exploratory correlations showed moderate association between change in SSWS and 6-min walk test (r = 0.74), and moderate/strong negative association between change in PPR and PSR. These results support FES-assisted cycling as a means to improve both aerobic capacity and locomotor function. Improvements in SSWS, balance, dynamic walking movements, and participation in familial and societal roles are important targets for rehabilitation of individuals

  7. Enhanced effects of amphetamine but reduced effects of the hallucinogen, 5-MeO-DMT, on locomotor activity in 5-HT(1A) receptor knockout mice: implications for schizophrenia.

    PubMed

    van den Buuse, Maarten; Ruimschotel, Emma; Martin, Sally; Risbrough, Victoria B; Halberstadt, Adam L

    2011-01-01

    Serotonin-1A (5-HT(1A)) receptors may play a role in schizophrenia and the effects of certain antipsychotic drugs. However, the mechanism of interaction of 5-HT(1A) receptors with brain systems involved in schizophrenia, remains unclear. Here we show that 5-HT(1A) receptor knockout mice display enhanced locomotor hyperactivity to acute treatment with amphetamine, a widely used animal model of hyperdopaminergic mechanisms in psychosis. In contrast, the effect of MK-801 on locomotor activity, modeling NMDA receptor hypoactivity, was unchanged in the knockouts. The effect of the hallucinogen 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) was markedly reduced in 5-HT(1A) receptor knockout mice. There were no changes in apomorphine-induced disruption of PPI, a model of sensory gating deficits seen in schizophrenia. Similarly, there were no major changes in density of dopamine transporters (DAT) or dopamine D(1) or D(2) receptors which could explain the behavioural changes observed in 5-HT(1A) receptor knockout mice. These results extend our insight into the possible role of these receptors in aspects of schizophrenia. As also suggested by previous studies using agonist and antagonist drugs, 5-HT(1A) receptors may play an important role in hallucinations and to modulate dopaminergic activity in the brain. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Prism adaptation and generalization during visually guided locomotor tasks.

    PubMed

    Alexander, M Scott; Flodin, Brent W G; Marigold, Daniel S

    2011-08-01

    The ability of individuals to adapt locomotion to constraints associated with the complex environments normally encountered in everyday life is paramount for survival. Here, we tested the ability of 24 healthy young adults to adapt to a rightward prism shift (∼11.3°) while either walking and stepping to targets (i.e., precision stepping task) or stepping over an obstacle (i.e., obstacle avoidance task). We subsequently tested for generalization to the other locomotor task. In the precision stepping task, we determined the lateral end-point error of foot placement from the targets. In the obstacle avoidance task, we determined toe clearance and lateral foot placement distance from the obstacle before and after stepping over the obstacle. We found large, rightward deviations in foot placement on initial exposure to prisms in both tasks. The majority of measures demonstrated adaptation over repeated trials, and adaptation rates were dependent mainly on the task. On removal of the prisms, we observed negative aftereffects for measures of both tasks. Additionally, we found a unilateral symmetric generalization pattern in that the left, but not the right, lower limb indicated generalization across the 2 locomotor tasks. These results indicate that the nervous system is capable of rapidly adapting to a visuomotor mismatch during visually demanding locomotor tasks and that the prism-induced adaptation can, at least partially, generalize across these tasks. The results also support the notion that the nervous system utilizes an internal model for the control of visually guided locomotion.

  9. The peacock train does not handicap cursorial locomotor performance

    PubMed Central

    Thavarajah, Nathan K.; Tickle, Peter G.; Nudds, Robert L.; Codd, Jonathan R.

    2016-01-01

    Exaggerated traits, like the peacock train, are recognized as classic examples of sexual selection. The evolution of sexual traits is often considered paradoxical as, although they enhance reproductive success, they are widely presumed to hinder movement and survival. Many exaggerated traits represent an additional mechanical load that must be carried by the animal and therefore may influence the metabolic cost of locomotion and constrain locomotor performance. Here we conducted respirometry experiments on peacocks and demonstrate that the exaggerated sexually selected train does not compromise locomotor performance in terms of the metabolic cost of locomotion and its kinematics. Indeed, peacocks with trains had a lower absolute and mass specific metabolic cost of locomotion. Our findings suggest that adaptations that mitigate any costs associated with exaggerated morphology are central in the evolution of sexually selected traits. PMID:27805067

  10. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise.

    PubMed

    Dominelli, Paolo B; Archiza, Bruno; Ramsook, Andrew H; Mitchell, Reid A; Peters, Carli M; Molgat-Seon, Yannick; Henderson, William R; Koehle, Michael S; Boushel, Robert; Sheel, A William

    2017-11-01

    What is the central question of this study? Does manipulation of the work of breathing during high-intensity exercise alter respiratory and locomotor muscle blood flow? What is the main finding and its importance? We found that when the work of breathing was reduced during exercise, respiratory muscle blood flow decreased, while locomotor muscle blood flow increased. Conversely, when the work of breathing was increased, respiratory muscle blood flow increased, while locomotor muscle blood flow decreased. Our findings support the theory of a competitive relationship between locomotor and respiratory muscles during intense exercise. Manipulation of the work of breathing (WOB) during near-maximal exercise influences leg blood flow, but the effects on respiratory muscle blood flow are equivocal. We sought to assess leg and respiratory muscle blood flow simultaneously during intense exercise while manipulating WOB. Our hypotheses were as follows: (i) increasing the WOB would increase respiratory muscle blood flow and decrease leg blood flow; and (ii) decreasing the WOB would decrease respiratory muscle blood flow and increase leg blood flow. Eight healthy subjects (n = 5 men, n = 3 women) performed a maximal cycle test (day 1) and a series of constant-load exercise trials at 90% of peak work rate (day 2). On day 2, WOB was assessed with oesophageal balloon catheters and was increased (via resistors), decreased (via proportional assist ventilation) or unchanged (control) during the trials. Blood flow was assessed using near-infrared spectroscopy optodes placed over quadriceps and the sternocleidomastoid muscles, coupled with a venous Indocyanine Green dye injection. Changes in WOB were significantly and positively related to changes in respiratory muscle blood flow (r = 0.73), whereby increasing the WOB increased blood flow. Conversely, changes in WOB were significantly and inversely related to changes in locomotor blood flow (r = 0.57), whereby decreasing the

  11. Enhanced tethered-flight duration and locomotor activity by overexpression of the human gene SOD1 in Drosophila motorneurons.

    PubMed

    Petrosyan, Agavni; Hsieh, I-Hui; Phillips, John P; Saberi, Kourosh

    2015-03-01

    Mutation of the human gene superoxide dismutase (hSOD1) is associated with the fatal neurodegenerative disease familial amyotrophic lateral sclerosis (Lou Gehrig's disease). Selective overexpression of hSOD1 in Drosophila motorneurons increases lifespan to 140% of normal. The current study was designed to determine resistance to lifespan decline and failure of sensorimotor functions by overexpressing hSOD1 in Drosophila's motorneurons. First, we measured the ability to maintain continuous flight and wingbeat frequency (WBF) as a function of age (5 to 50 days). Flies overexpressing hSOD1 under the D42-GAL4 activator were able to sustain flight significantly longer than controls, with the largest effect observed in the middle stages of life. The hSOD1-expressed line also had, on average, slower wingbeat frequencies in late, but not early life relative to age-matched controls. Second, we examined locomotor (exploratory walking) behavior in late life when flies had lost the ability to fly (age ≥ 60 d). hSOD1-expressed flies showed significantly more robust walking activity relative to controls. Findings show patterns of functional decline dissimilar to those reported for other life-extended lines, and suggest that the hSOD1 gene not only delays death but enhances sensorimotor abilities critical to survival even in late life.

  12. Nature and Causes of Locomotor Disabilities in India

    ERIC Educational Resources Information Center

    Halder, Santoshi; Talukdar, Arindam

    2013-01-01

    A large proportion of disability around the world is preventable. Levels of disability in many poor countries can be reduced by achieving the international development targets for economic, social and human development. In this paper, the author studied the different contributory and causative factors of locomotor disability, disease states and…

  13. Melatonin treatment during the incubation of sensitization attenuates methamphetamine-induced locomotor sensitization and MeCP2 expression.

    PubMed

    Wu, Jintao; Zhu, Dexiao; Zhang, Jing; Li, Guibao; Liu, Zengxun; Sun, Jinhao

    2016-02-04

    Behavior sensitization is a long-lasting enhancement of locomotor activity after exposure to psychostimulants. Incubation of sensitization is a phenomenon of remarkable augmentation of locomotor response after withdrawal and reflects certain aspects of compulsive drug craving. However, the mechanisms underlying these phenomena remain elusive. Here we pay special attention to the incubation of sensitization and suppose that the intervention of this procedure will finally decrease the expression of sensitization. Melatonin is an endogenous hormone secreted mainly by the pineal gland. It is effective in treating sleep disorder, which turns out to be one of the major withdrawal symptoms of methamphetamine (MA) addiction. Furthermore, melatonin can also protect neuronal cells against MA-induced neurotoxicity. In the present experiment, we treated mice with low dose (10mg/kg) of melatonin for 14 consecutive days during the incubation of sensitization. We found that melatonin significantly attenuated the expression of sensitization. In contrast, the vehicle treated mice showed prominent enhancement of locomotor activity after incubation. MeCP2 expression was also elevated in the vehicle treated mice and melatonin attenuated its expression. Surprisingly, correlation analysis suggested significant correlation between MeCP2 expression in the nucleus accumbens (NAc) and locomotion in both saline control and vehicle treated mice, but not in melatonin treated ones. MA also induced MeCP2 over-expression in PC12 cells. However, melatonin failed to reduce MeCP2 expression in vitro. Our results suggest that melatonin treatment during the incubation of sensitization attenuates MA-induced expression of sensitization and decreases MeCP2 expression in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Locomotor Stimulant and Rewarding Effects of Inhaling Methamphetamine, MDPV, and Mephedrone via Electronic Cigarette-Type Technology

    PubMed Central

    Nguyen, Jacques D; Aarde, Shawn M; Cole, Maury; Vandewater, Sophia A; Grant, Yanabel; Taffe, Michael A

    2016-01-01

    Although inhaled exposure to drugs is a prevalent route of administration for human substance abusers, preclinical models that incorporate inhaled exposure to psychomotor stimulants are not commonly available. Using a novel method that incorporates electronic cigarette-type technology to facilitate inhalation, male Wistar rats were exposed to vaporized methamphetamine (MA), 3,4-methylenedioxypyrovalerone (MDPV), and mephedrone (4-methylmethcathinone) in propylene glycol vehicle using concentrations ranging from 12.5 to 200 mg/ml. Rats exhibited increases in spontaneous locomotor activity, measured by implanted radiotelemetry, following exposure to methamphetamine (12.5 and 100 mg/ml), MDPV (25, 50, and 100 mg/ml), and mephedrone (200 mg/ml). Locomotor effects were blocked by pretreatment with the dopamine D1-like receptor antagonist SCH23390 (10 μg/kg, intraperitoneal (i.p.)). MA and MDPV vapor inhalation also altered activity on a running wheel in a biphasic manner. An additional group of rats was trained on a discrete trial intracranial self-stimulation (ICSS) procedure interpreted to assess brain reward status. ICSS-trained rats that received vaporized MA, MDPV, or mephedrone exhibited a significant reduction in threshold of ICSS reward compared with vehicle. The effect of vapor inhalation of the stimulants was found comparable to the locomotor and ICSS threshold-reducing effects of i.p. injection of mephedrone (5.0 mg/kg), MA (0.5–1.0 mg/kg), or MDPV (0.5–1.0 mg/kg). These data provide robust validation of e-cigarette-type technology as a model for inhaled delivery of vaporized psychostimulants. Finally, these studies demonstrate the potential for human use of e-cigarettes to facilitate covert use of a range of psychoactive stimulants. Thus, these devices pose health risks beyond their intended application for the delivery of nicotine. PMID:27277119

  15. Differential alteration of the effects of MDMA (ecstasy) on locomotor activity and cocaine conditioned place preference in male adolescent rats by social and environmental enrichment

    PubMed Central

    Starosciak, Amy K.; Zakharova, Elena; Stagg, Monica; Matos, Jannifer

    2013-01-01

    Rationale Ecstasy (MDMA) is used predominately by adolescents and young adults. Young MDMA users are more likely than non-users to use other drugs, including cocaine. The response to stimulant drugs can be affected by environmental factors; however, little information exists about the role that housing plays in mediating effects of MDMA in adolescence. Objectives The present experiment examined whether social and environmental factors alter effects of MDMA on activity and cocaine reward. Methods Male adolescent rats were housed on PND 23. Isolated rats were housed alone (1 rat/cage) in an impoverished environment with no toys (II) or enriched with toys (IE). Social rats were housed three/cage with (SE3) or without (SI3) toys. Starting on PND 29, 5 mg/kg MDMA or saline was injected and activity was measured for 60 min once daily for five consecutive days. On PND 36–40, cocaine CPP was conducted. Results Saline vehicle-induced activity of II rats was higher than other groups, and all groups became sensitized to the locomotor-stimulant effects of MDMA. In II rats, maximal CPP was increased after MDMA pre-exposure compared to vehicle. Environmental enrichment blocked this; however, dose–effect curves for cocaine CPP shifted to the left in both IE and SE3 rats. In rats with just social enrichment, there were no effects of MDMA on cocaine CPP. Conclusion Drug prevention and treatment strategies should take into account different environments in which adolescents live. These findings show that MDMA increases cocaine reward in male adolescents, and social enrichment diminishes, while environmental enrichment enhances this. PMID:22752351

  16. Local tidal regime dictates plasticity of expression of locomotor activity rhythms of American horseshoe crabs, Limulus polyphemus

    PubMed Central

    Anderson, Rebecca L.; Watson, Winsor H.; Chabot, Christopher C.

    2017-01-01

    While horseshoe crabs Limulus polyphemus from regions with two daily tides express endogenous circatidal (~ 12.4 h) activity rhythms, much less is known about locomotor rhythm expression in horseshoe crabs from other tidal regimes. This study investigated whether horseshoe crabs (1) always express activity rhythms consistent with their natural tides, and (2) can alter activity rhythm expression in response to novel tide cycles. Activity rhythms of animals from environments with two daily tides (Gulf of Maine, 43°6′ N/70°52′ W, and Massachusetts, 41°32′ N/70°40′W), one dominant daily tide (Apalachee Bay, Florida, 29°58′ N/84°20′ W), and microtides (Indian River Lagoon, Florida, 28°5′ N/80°35′ W) were recorded in 2011–2013 during three artificial tide conditions: no tides, a 12.4 h tidal cycle, and a 24.8 h tidal cycle. Interestingly, L. polyphemus from the microtidal site (n = 7) appeared “plastic” in their responses; they were able to express both bimodal and unimodal rhythms in response to different tide cycles. In contrast, the other two populations exhibited more fixed responses: regardless of the tides they were exposed to, animals from areas with one dominant daily tide (n = 18) consistently expressed unimodal rhythms, while those from areas with two daily tides (n = 28) generally expressed bimodal rhythms. Rhythms expressed by L. polyphemus thus appear to be a function of endogenous clocks, the tidal cues to which animals are exposed, and tidal cues that animals experience throughout ontogeny. PMID:29051673

  17. Increased cell proliferation and neural activity by physostigmine in the telencephalon of adult zebrafish.

    PubMed

    Lee, Yunkyoung; Lee, Bongkyu; Jeong, Sumin; Park, Ji-Won; Han, Inn-Oc; Lee, Chang-Joong

    2016-08-26

    Physostigmine, an acetylcholinesterase inhibitor, is known to affect the brain function in various aspects. This study was conducted to test whether physostigmine affects cell proliferation in the telencephalon of zebrafish. BrdU-labeled cells was prominently observed in the ventral zone of the ventral telencephalon of zebrafish. The increased number of BrdU- and proliferating cell nuclear antigen-labeled cells were shown in zebrafish treated with 200μM physostigmine, which was inhibited by pretreatment with 200μM scopolamine. iNOS mRNA expression was increased in the brain of zebrafish treated with 200μM physostigmine. Consistently, aminoguanidine, an iNOS inhibitor, attenuated the increase in the number of BrdU-labeled cells by physostigmine treatment. Zebrafish also showed seizure-like locomotor activity characterized by a rapid and abrupt movement during a 30min treatment with 200μM physostigmine. Neural activity in response to an electrical stimulus was increased in the isolated telencephalon of zebrafish continuously perfused with 200μM physostigmine. None of the number of BrdU-labeled cells, neural activity, or locomotor activity was affected by treatment with 20μM physostigmine. These results suggest that 200μM physostigmine increased neural activity and induced cell proliferation via nitric oxide production in zebrafish. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Gender-related differences in recovery of locomotor function after spinal cord injury in mice.

    PubMed

    Farooque, M; Suo, Z; Arnold, P M; Wulser, M J; Chou, C-T; Vancura, R W; Fowler, S; Festoff, B W

    2006-03-01

    In order to study the role of gender in recovery, we induced a thoracic compression spinal cord injury (SCI) separately in 2-month-old male and female C57Bl/6 mice. We intended to assess effects of gender on recovery of hindlimb motor function and to correlate these with histomorphologic profiles of injured spinal cord tissue. Locomotor function was evaluated by three means: a modified locomotor scoring system for rodents, beam walking and computerized activity meter. Histology was analyzed by comparison of hematoxylin and eosin-stained perfused specimens. Locomotor scores were 2.2+/-0.9 on day 1 in male mice, while, in contrast, they were significantly higher, 7.3+/-1.7, in females (P<0.02). On day 14 Basso, Beattie and Bresnahan scores were 9.5+/-2.2 in male mice and 16.0+/-2.2 in females (P<0.03). Terminal histology showed that the spinal cord architecture was relatively better preserved in female mice and that the extent of necrosis and infiltration of inflammatory cells was less compared to males. Neurobiology Research Laboratory of University of Kansas Medical School in US Department of Veterans Affairs Medical Center, Kansas City, Missouri. We found that the severity of the initial injury as well as the ultimate recovery of motor function after SCI is significantly influenced by gender, being remarkably better in females. The mechanism(s) of neuroprotection in females, although not yet elucidated, may be associated with the effects of estrogen on pathophysiological processes (blood flow, leukocyte migration inhibition, antioxidant properties, and inhibition of apoptosis). Medical Research, US Department of Veterans Affairs, the Christopher Reeve Paralysis Foundation and NIH.

  19. Locomotor training improves reciprocal and nonreciprocal inhibitory control of soleus motoneurons in human spinal cord injury

    PubMed Central

    Smith, Andrew C.; Mummidisetty, Chaithanya K.

    2015-01-01

    Pathologic reorganization of spinal networks and activity-dependent plasticity are common neuronal adaptations after spinal cord injury (SCI) in humans. In this work, we examined changes of reciprocal Ia and nonreciprocal Ib inhibition after locomotor training in 16 people with chronic SCI. The soleus H-reflex depression following common peroneal nerve (CPN) and medial gastrocnemius (MG) nerve stimulation at short conditioning-test (C-T) intervals was assessed before and after training in the seated position and during stepping. The conditioned H reflexes were normalized to the unconditioned H reflex recorded during seated. During stepping, both H reflexes were normalized to the maximal M wave evoked at each bin of the step cycle. In the seated position, locomotor training replaced reciprocal facilitation with reciprocal inhibition in all subjects, and Ib facilitation was replaced by Ib inhibition in 13 out of 14 subjects. During stepping, reciprocal inhibition was decreased at early stance and increased at midswing in American Spinal Injury Association Impairment Scale C (AIS C) and was decreased at midstance and midswing phases in AIS D after training. Ib inhibition was decreased at early swing and increased at late swing in AIS C and was decreased at early stance phase in AIS D after training. The results of this study support that locomotor training alters postsynaptic actions of Ia and Ib inhibitory interneurons on soleus motoneurons at rest and during stepping and that such changes occur in cases with limited or absent supraspinal inputs. PMID:25609110

  20. Differential effects of antipsychotic and propsychotic drugs on prepulse inhibition and locomotor activity in Roman high- (RHA) and low-avoidance (RLA) rats

    PubMed Central

    Oliveras, Ignasi; Sánchez-González, Ana; Sampedro-Viana, Daniel; Piludu, Maria Antonietta; Río-Alamos, Cristóbal; Giorgi, Osvaldo; Corda, Maria G.; Aznar, Susana; González-Maeso, Javier; Gerbolés, Cristina; Blázquez, Gloria; Cañete, Toni; Tobeña, Adolf

    2017-01-01

    Rationale Animal models with predictive and construct validity are necessary for developing novel and efficient therapeutics for psychiatric disorders. Objectives We have carried out a pharmacological characterization of the Roman high-(RHA-I) and low-avoidance (RLA-I) rat strains with different acutely administered propsychotic (DOI, MK-801) and antipsychotic drugs (haloperidol, clozapine), as well as apomorphine, on prepulse inhibition (PPI) of startle and locomotor activity (activity cages). Results RHA-I rats display a consistent deficit of PPI compared with RLA-I rats. The typical antipsychotic haloperidol (dopamine D2 receptor antagonist) reversed the PPI deficit characteristic of RHA-I rats (in particular at 65 and 70 dB prepulse intensities) and reduced locomotion in both strains. The atypical antipsychotic clozapine (serotonin/dopamine receptor antagonist) did not affect PPI in either strain, but decreased locomotion in a dose-dependent manner in both rat strains. The mixed dopamine D1/D2 agonist, apomorphine, at the dose of 0.05 mg/kg, decreased PPI in RHA-I, but not RLA-I rats. The hallucinogen drug DOI (5-HT2A agonist; 0.1–1.0 mg/kg) disrupted PPI in RLA-I rats in a dose-dependent manner at the 70 dB prepulse intensity, while in RHA-Irats, only the 0.5 mg/kg dose impaired PPI at the 80 dB prepulse intensity. DOI slightly decreased locomotion in both strains. Finally, clozapine attenuated the PPI impairment induced by the NMDA receptor antagonist MK-801 only in RLA-I rats. Conclusions These results add experimental evidence to the view that RHA-I rats represent a model with predictive and construct validity of some dopamine and 5-HT2A receptor-related features of schizophrenia. PMID:28154892

  1. Eating High Fat Chow Decreases Dopamine Clearance in Adolescent and Adult Male Rats but Selectively Enhances the Locomotor Stimulating Effects of Cocaine in Adolescents

    PubMed Central

    Baladi, Michelle G.; Horton, Rebecca E.; Owens, William A.; Daws, Lynette C.

    2015-01-01

    Background: Feeding conditions can influence dopamine neurotransmission and impact behavioral and neurochemical effects of drugs acting on dopamine systems. This study examined whether eating high fat chow alters the locomotor effects of cocaine and dopamine transporter activity in adolescent (postnatal day 25) and adult (postnatal day 75) male Sprague-Dawley rats. Methods: Dose-response curves for cocaine-induced locomotor activity were generated in rats with free access to either standard or high fat chow or restricted access to high fat chow (body weight matched to rats eating standard chow). Results: Compared with eating standard chow, eating high fat chow increased the sensitivity of adolescent, but not adult, rats to the acute effects of cocaine. When tested once per week, sensitization to the locomotor effects of cocaine was enhanced in adolescent rats eating high fat chow compared with adolescent rats eating standard chow. Sensitization to cocaine was not different among feeding conditions in adults. When adolescent rats that previously ate high fat chow ate standard chow, sensitivity to cocaine returned to normal. As measured by chronoamperometry, dopamine clearance rate in striatum was decreased in both adolescent and adult rats eating high fat chow compared with age-matched rats eating standard chow. Conclusions: These results suggest that high fat diet-induced reductions in dopamine clearance rate do not always correspond to increased sensitivity to the locomotor effects of cocaine, suggesting that mechanisms other than dopamine transporter might play a role. Moreover, in adolescent but not adult rats, eating high fat chow increases sensitivity to cocaine and enhances the sensitization that develops to cocaine. PMID:25805560

  2. Novel locomotor muscle design in extreme deep-diving whales.

    PubMed

    Velten, B P; Dillaman, R M; Kinsey, S T; McLellan, W A; Pabst, D A

    2013-05-15

    Most marine mammals are hypothesized to routinely dive within their aerobic dive limit (ADL). Mammals that regularly perform deep, long-duration dives have locomotor muscles with elevated myoglobin concentrations that are composed of predominantly large, slow-twitch (Type I) fibers with low mitochondrial volume densities (V(mt)). These features contribute to extending ADL by increasing oxygen stores and decreasing metabolic rate. Recent tagging studies, however, have challenged the view that two groups of extreme deep-diving cetaceans dive within their ADLs. Beaked whales (including Ziphius cavirostris and Mesoplodon densirostris) routinely perform the deepest and longest average dives of any air-breathing vertebrate, and short-finned pilot whales (Globicephala macrorhynchus) perform high-speed sprints at depth. We investigated the locomotor muscle morphology and estimated total body oxygen stores of several species within these two groups of cetaceans to determine whether they (1) shared muscle design features with other deep divers and (2) performed dives within their calculated ADLs. Muscle of both cetaceans displayed high myoglobin concentrations and large fibers, as predicted, but novel fiber profiles for diving mammals. Beaked whales possessed a sprinter's fiber-type profile, composed of ~80% fast-twitch (Type II) fibers with low V(mt). Approximately one-third of the muscle fibers of short-finned pilot whales were slow-twitch, oxidative, glycolytic fibers, a rare fiber type for any mammal. The muscle morphology of beaked whales likely decreases the energetic cost of diving, while that of short-finned pilot whales supports high activity events. Calculated ADLs indicate that, at low metabolic rates, both beaked and short-finned pilot whales carry sufficient onboard oxygen to aerobically support their dives.

  3. See and be seen: Infant-caregiver social looking during locomotor free play.

    PubMed

    Franchak, John M; Kretch, Kari S; Adolph, Karen E

    2017-10-26

    Face-to-face interaction between infants and their caregivers is a mainstay of developmental research. However, common laboratory paradigms for studying dyadic interaction oversimplify the act of looking at the partner's face by seating infants and caregivers face to face in stationary positions. In less constrained conditions when both partners are freely mobile, infants and caregivers must move their heads and bodies to look at each other. We hypothesized that face looking and mutual gaze for each member of the dyad would decrease with increased motor costs of looking. To test this hypothesis, 12-month-old crawling and walking infants and their parents wore head-mounted eye trackers to record eye movements of each member of the dyad during locomotor free play in a large toy-filled playroom. Findings revealed that increased motor costs decreased face looking and mutual gaze: Each partner looked less at the other's face when their own posture or the other's posture required more motor effort to gain visual access to the other's face. Caregivers mirrored infants' posture by spending more time down on the ground when infants were prone, perhaps to facilitate face looking. Infants looked more at toys than at their caregiver's face, but caregivers looked at their infant's face and at toys in equal amounts. Furthermore, infants looked less at toys and faces compared to studies that used stationary tasks, suggesting that the attentional demands differ in an unconstrained locomotor task. Taken together, findings indicate that ever-changing motor constraints affect real-life social looking. © 2017 John Wiley & Sons Ltd.

  4. Improved gait after repetitive locomotor training in children with cerebral palsy.

    PubMed

    Smania, Nicola; Bonetti, Paola; Gandolfi, Marialuisa; Cosentino, Alessandro; Waldner, Andreas; Hesse, Stefan; Werner, Cordula; Bisoffi, Giulia; Geroin, Christian; Munari, Daniele

    2011-02-01

    The aim of this study was to evaluate the effectiveness of repetitive locomotor training with an electromechanical gait trainer in children with cerebral palsy. In this randomized controlled trial, 18 ambulatory children with diplegic or tetraplegic cerebral palsy were randomly assigned to an experimental group or a control group. The experimental group received 30 mins of repetitive locomotor training with an applied technology (Gait Trainer GT I) plus 10 mins of passive joint mobilization and stretching exercises. The control group received 40 mins of conventional physiotherapy. Each subject underwent a total of 10 treatment sessions over a 2-wk period. Performance on the 10-m walk test, 6-min walk test, WeeFIM scale, and gait analysis was evaluated by a blinded rater before and after treatment and at 1-mo follow-up. The experimental group showed significant posttreatment improvement on the 10-m walk test, 6-min walk test, hip kinematics, gait speed, and step length, all of which were maintained at the 1-mo follow-up assessment. No significant changes in performance parameters were observed in the control group. Repetitive locomotor training with an electromechanical gait trainer may improve gait velocity, endurance, spatiotemporal, and kinematic gait parameters in patients with cerebral palsy.

  5. [Disorders of locomotor system and effectiveness of physiotherapy in coal miners].

    PubMed

    Bilski, Bartosz; Bednarek, Agata

    2003-01-01

    The aim of the survey was to analyze the efficacy of physiotherapy applied in coal miners as well as to assess their locomotor system load and the effects of working conditions in mines. The questionnaire survey covered a group of 51 miners, aged 28-76 years (mean, 54 years), undergoing physiotherapeutic procedures in the mine out-patient clinic during the first quarter of 2003. The survey revealed that lumbosacral disorders were the most frequent locomotor system complaints reported by miners, especially those who work in a bending down position. According to the clinical data, spondylosis and allied disorders were the main reasons for pain in this part of the body. Having analyzed the relationship between age and occurrence of back pains, the majority of complaints were found in the 46-55 age group (two complaints per one respondent). The analysis of the association between back pains and duration of employment revealed that the complaints for the locomotor system occurred already after a five-year employment. The survey showed that the application of physiotherapeutic procedures diminished the back pain in the study group by 2.83 on average on the 0-10 scale. It was also found that magnetotherapy proved to be the most effective method in treating the spinal degenerative changes.

  6. Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate.

    PubMed

    Luarte, T; Bonta, C C; Silva-Rodriguez, E A; Quijón, P A; Miranda, C; Farias, A A; Duarte, C

    2016-11-01

    The continued growth of human activity and infrastructure has translated into a widespread increase in light pollution. Natural daylight and moonlight cycles play a fundamental role for many organisms and ecological processes, so an increase in light pollution may have profound effects on communities and ecosystem services. Studies assessing ecological light pollution (ELP) effects on sandy beach organisms have lagged behind the study of other sources of disturbance. Hence, we assessed the influence of this stressor on locomotor activity, foraging behavior, absorption efficiency and growth rate of adults of the talitrid amphipod Orchestoidea tuberculata. In the field, an artificial light system was assembled to assess the local influence of artificial light conditions on the amphipod's locomotor activity and use of food patches in comparison to natural (ambient) conditions. Meanwhile in the laboratory, two experimental chambers were set to assess amphipod locomotor activity, consumption rates, absorption efficiency and growth under artificial light in comparison to natural light-dark cycles. Our results indicate that artificial light have significantly adverse effects on the activity patterns and foraging behavior of the amphipods, resulting on reduced consumption and growth rates. Given the steady increase in artificial light pollution here and elsewhere, sandy beach communities could be negatively affected, with unexpected consequences for the whole ecosystem. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Bioaccumulation and locomotor effects of manganese phosphate/sulfate mixture in Sprague-Dawley rats following subchronic (90 days) inhalation exposure.

    PubMed

    Salehi, Fariba; Krewski, Daniel; Mergler, Donna; Normandin, Louise; Kennedy, Greg; Philippe, Suzanne; Zayed, Joseph

    2003-09-15

    Methylcyclopentadienyl manganese tricarbonyl (MMT) is an organic manganese (Mn) compound added to unleaded gasoline in Canada. The primary combustion products of MMT are Mn phosphate, Mn sulfate, and a Mn phosphate/Mn sulfate mixture. Concerns have been raised that the combustion products of MMT containing Mn could be neurotoxic, even at low levels of exposure. The objective of this study is to investigate exposure-response relationships for bioaccumulation and locomotor effects following subchronic inhalation exposure to a mixture of manganese phosphates/sulfate mixture. A control group and three groups of 30 male Sprague-Dawley rats were exposed in inhalation chambers for a period of 13 weeks, 5 days per week, 6 h a day. Exposure concentrations were 3000, 300, and 30 microg/m(3). At the end of the exposure period, locomotor activity and resting time tests were conducted for 36 h using a computerized autotrack system. Rats were then euthanized by exsanguination and Mn concentrations in different tissues (liver, lung, testis, and kidney) and blood and brain (caudate putamen, globus pallidus, olfactory bulb, frontal cortex, and cerebellum) were determined by neutron activation analysis. Increased manganese concentrations were observed in blood, kidney, lung, testis, and in all brain sections in the highest exposure group. Mn in the lung and in the olfactory bulb were dose dependent. Our data indicate that the olfactory bulb accumulated more Mn than other brain regions following inhalation exposure. Locomotor activity was increased at 3000 microg/m(3), but no difference was observed in resting time among the exposed groups. At the end of the experiment, rats exposed to 300 and 3000 microg/m(3) exhibited significantly decreased body weight in comparison with the control group. Biochemical profiles also revealed some significant differences in certain parameters, specifically alkaline phospatase, urea, and chlorate.

  8. Effects of Robot-assisted Gait Training Combined with Functional Electrical Stimulation on Recovery of Locomotor Mobility in Chronic Stroke Patients: A Randomized Controlled Trial.

    PubMed

    Bae, Young-Hyeon; Ko, Young Jun; Chang, Won Hyuk; Lee, Ju Hyeok; Lee, Kyeong Bong; Park, Yoo Jung; Ha, Hyun Geun; Kim, Yun-Hee

    2014-12-01

    [Purpose] The purpose of the present study was to investigate the effects of robot-assisted gait training combined with functional electrical stimulation on locomotor recovery in patients with chronic stroke. [Subjects] The 20 subjects were randomly assigned into either an experimental group (n = 10) that received a combination of robot-assisted gait training and functional electrical stimulation on the ankle dorsiflexor of the affected side or a control group (n = 10) that received robot-assisted gait training only. [Methods] Both groups received the respective therapies for 30 min/day, 3 days/week for 5 weeks. The outcome was measured using the Modified Motor Assessment Scale (MMAS), Timed Up-and-Go Test (TUG), Berg Balance Scale (BBS), and gait parameters through gait analysis (Vicon 370 motion analysis system, Oxford Metrics Ltd., Oxford, UK). All the variables were measured before and after training. [Results] Step length and maximal knee extension were significantly greater than those before training in the experimental group only. Maximal Knee flexion showed a significant difference between the experimental and control groups. The MMAS, BBS, and TUG scores improved significantly after training compared with before training in both groups. [Conclusion] We suggest that the combination of robot-assisted gait training and functional electrical stimulation encourages patients to actively participate in training because it facilitates locomotor recovery without the risk of adverse effects.

  9. Methamphetamine-Induced Locomotor Changes are Dependent on Age, Dose and Genotype

    PubMed Central

    Good, Renee L.; Radcliffe, Richard A.

    2012-01-01

    Adolescence is a critical age for addiction formation as a large percentage of pathological drug-seeking behaviors manifest during this time. The extent to which neurotoxic effects of drugs of abuse influence subsequent drug seeking behaviors and impulsivity is an understudied area of research. Methamphetamine (METH) is a widely abused drug that produces locomotor responses ranging from behavioral sensitization to tolerance, both of which are behaviors that may relate to risk of abuse. Here we investigated the effects of age, genotype, METH dose, including a neurotoxic dose, and METH metabolism on open-field activity (OFA) to gain insight into the complex disease of drug abuse. C57Bl/6 (B6), DBA/2 (D2), and 129S6SvEv/Tac (129) mouse strains were administered saline or either a high dose (4 × 5 mg/kg in 2h intervals for 2 days) or low dose (2 × 1 mg/kg in 24h intervals) METH pretreatment during adolescence (post natal day (PND) 40) or early adulthood (PND 80) followed by behavioral testing with a METH (1 mg/kg) or saline challenge 40 days later. Striatal concentrations of METH and AMPH were also determined. Significant findings include: 1) METH pretreated adolescent B6 mice displayed significant sensitization for horizontal locomotion due to high dose METH pretreatment; 2) METH pretreated B6 adults showed significant tolerance for the vertical activity measure caused by low dose METH pretreatment; 3) METH pretreated adult D2 mice exhibited significant sensitization for vertical activity induced by low dose METH pretreatment, and 4) 129 mice metabolized METH significantly faster than the B6 and D2 mice, but METH pretreatment did not alter metabolism. No significant behavioral responses to either METH pretreatment dose were observed for the D2 adolescent studies or either 129 age group. Our results highlight the importance of the interactions of age, strain and METH dose on locomotor behavioral outcomes. PMID:21163294

  10. Effects of Light and Temperature on Daily Activity and Clock Gene Expression in Two Mosquito Disease Vectors.

    PubMed

    Rivas, Gustavo B S; Teles-de-Freitas, Rayane; Pavan, Márcio G; Lima, José B P; Peixoto, Alexandre A; Bruno, Rafaela Vieira

    2018-06-01

    Most organisms feature an endogenous circadian clock capable of synchronization with their environment. The most well-known synchronizing agents are light and temperature. The circadian clock of mosquitoes, vectors of many pathogens, drives important behaviors related to vectoral capacity, including oviposition, host seeking, and hematophagy. Main clock gene expression, as well as locomotor activity patterns, has been identified in Aedes aegypti and Culex quinquefasciatus under artificial light-dark cycles. Given that these mosquito species thrive in tropical areas, it is reasonable to speculate that temperature plays an important role in the circadian clock. Here, we provide data supporting a different hierarchy of light and temperature as zeitgebers of two mosquito species. We recorded their locomotor activity and quantified mRNA expression of the main clock genes in several combinations of light and temperature cycles. We observed that A. aegypti is more sensitive to temperature, while C. quinquefasciatus is more responsive to light. These variations in clock gene expression and locomotor activity may have affected the mosquito species' metabolism, energy expenditure, fitness cost, and pathogen transmission efficiency. Our findings are relevant to chronobiology studies and also have epidemiological implications.

  11. Cool running: locomotor performance at low body temperature in mammals.

    PubMed

    Rojas, A Daniella; Körtner, Gerhard; Geiser, Fritz

    2012-10-23

    Mammalian torpor saves enormous amounts of energy, but a widely assumed cost of torpor is immobility and therefore vulnerability to predators. Contrary to this assumption, some small marsupial mammals in the wild move while torpid at low body temperatures to basking sites, thereby minimizing energy expenditure during arousal. Hence, we quantified how mammalian locomotor performance is affected by body temperature. The three small marsupial species tested, known to use torpor and basking in the wild, could move while torpid at body temperatures as low as 14.8-17.9°C. Speed was a sigmoid function of body temperature, but body temperature effects on running speed were greater than those in an ectothermic lizard used for comparison. We provide the first quantitative data of movement at low body temperature in mammals, which have survival implications for wild heterothermic mammals, as directional movement at low body temperature permits both basking and predator avoidance.

  12. Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats.

    PubMed

    Ishiwari, Keita; Madson, Lisa J; Farrar, Andrew M; Mingote, Susana M; Valenta, John P; DiGianvittorio, Michael D; Frank, Lauren E; Correa, Merce; Hockemeyer, Jörg; Müller, Christa; Salamone, John D

    2007-03-28

    There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5-10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 microg or 5.0 microg in 0.5 microl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core.

  13. Injections of the selective adenosine A2A antagonist MSX-3 into the nucleus accumbens core attenuate the locomotor suppression induced by haloperidol in rats

    PubMed Central

    Ishiwari, Keita; Madson, Lisa J.; Farrar, Andrew M.; Mingote, Susana M.; Valenta, John P.; DiGianvittorio, Michael D.; Frank, Lauren E.; Correa, Merce; Hockemeyer, Jörg; Müller, Christa; Salamone, John D.

    2009-01-01

    There is considerable evidence of interactions between adenosine A2A receptors and dopamine D2 receptors in striatal areas, and antagonists of the A2A receptor have been shown to reverse the motor effects of DA antagonists in animal models. The D2 antagonist haloperidol produces parkinsonism in humans, and also induces motor effects in rats, such as suppression of locomotion. The present experiments were conducted to study the ability of the adenosine A2A antagonist MSX-3 to reverse the locomotor effects of acute or subchronic administration of haloperidol in rats. Systemic (i.p.) injections of MSX-3 (2.5–10.0 mg/kg) were capable of attenuating the suppression of locomotion induced by either acute or repeated (i.e., 14 day) administration of 0.5 mg/kg haloperidol. Bilateral infusions of MSX-3 directly into the nucleus accumbens core (2.5 µg or 5.0 µg in 0.5 µl per side) produced a dose-related increase in locomotor activity in rats treated with 0.5 mg/kg haloperidol either acutely or repeatedly. There were no overall significant effects of MSX-3 infused directly into the dorsomedial nucleus accumbens shell or the ventrolateral neostriatum. These results indicate that antagonism of adenosine A2A receptors can attenuate the locomotor suppression produced by DA antagonism, and that this effect may be at least partially mediated by A2A receptors in the nucleus accumbens core. These studies suggest that adenosine and dopamine systems interact to modulate the locomotor and behavioral activation functions of nucleus accumbens core. PMID:17223207

  14. Large perceptual distortions of locomotor action space occur in ground-based coordinates: Angular expansion and the large-scale horizontal-vertical illusion

    PubMed Central

    Klein, Brennan J.; Li, Zhi; Durgin, Frank H.

    2015-01-01

    What is the natural reference frame for seeing large-scale spatial scenes in locomotor action space? Prior studies indicate an asymmetric angular expansion in perceived direction in large-scale environments: Angular elevation relative to the horizon is perceptually exaggerated by a factor of 1.5, whereas azimuthal direction is exaggerated by a factor of about 1.25. Here participants made angular and spatial judgments when upright or on their sides in order to dissociate egocentric from allocentric reference frames. In Experiment 1 it was found that body orientation did not affect the magnitude of the up-down exaggeration of direction, suggesting that the relevant orientation reference frame for this directional bias is allocentric rather than egocentric. In Experiment 2, the comparison of large-scale horizontal and vertical extents was somewhat affected by viewer orientation, but only to the extent necessitated by the classic (5%) horizontal-vertical illusion (HVI) that is known to be retinotopic. Large-scale vertical extents continued to appear much larger than horizontal ground extents when observers lay sideways. When the visual world was reoriented in Experiment 3, the bias remained tied to the ground-based allocentric reference frame. The allocentric HVI is quantitatively consistent with differential angular exaggerations previously measured for elevation and azimuth in locomotor space. PMID:26594884

  15. Drosophila Clock Is Required in Brain Pacemaker Neurons to Prevent Premature Locomotor Aging Independently of Its Circadian Function

    PubMed Central

    Issa, Abdul-Raouf; Seugnet, Laurent; Klarsfeld, André

    2017-01-01

    Circadian clocks control many self-sustained rhythms in physiology and behavior with approximately 24-hour periodicity. In many organisms, oxidative stress and aging negatively impact the circadian system and sleep. Conversely, loss of the clock decreases resistance to oxidative stress, and may reduce lifespan and speed up brain aging and neurodegeneration. Here we examined the effects of clock disruptions on locomotor aging and longevity in Drosophila. We found that lifespan was similarly reduced in three arrhythmic mutants (ClkAR, cyc0 and tim0) and in wild-type flies under constant light, which stops the clock. In contrast, ClkAR mutants showed significantly faster age-related locomotor deficits (as monitored by startle-induced climbing) than cyc0 and tim0, or than control flies under constant light. Reactive oxygen species accumulated more with age in ClkAR mutant brains, but this did not appear to contribute to the accelerated locomotor decline of the mutant. Clk, but not Cyc, inactivation by RNA interference in the pigment-dispersing factor (PDF)-expressing central pacemaker neurons led to similar loss of climbing performance as ClkAR. Conversely, restoring Clk function in these cells was sufficient to rescue the ClkAR locomotor phenotype, independently of behavioral rhythmicity. Accelerated locomotor decline of the ClkAR mutant required expression of the PDF receptor and correlated to an apparent loss of dopaminergic neurons in the posterior protocerebral lateral 1 (PPL1) clusters. This neuronal loss was rescued when the ClkAR mutation was placed in an apoptosis-deficient background. Impairing dopamine synthesis in a single pair of PPL1 neurons that innervate the mushroom bodies accelerated locomotor decline in otherwise wild-type flies. Our results therefore reveal a novel circadian-independent requirement for Clk in brain circadian neurons to maintain a subset of dopaminergic cells and avoid premature locomotor aging in Drosophila. PMID:28072817

  16. Clinical Application Of Advanced Infrared Thermography (IRT) In Locomotor Diseases

    NASA Astrophysics Data System (ADS)

    Engel, Joachim-Michael

    1983-11-01

    Locomotor diseases is a wide range of about 450 different illnesses with all different pathologies, clinical and prognostic features and response to treatment. No single method will be able to cover the whole spectrum of local and systemic signs and symptoms. Nevertheless there is a need for objective measurements at the site of disease: clinical examination is often enough depending from subjective estimations and personal experiance of the clinician. Laboratory tests only show the systemic effect of the disease, like inflammation. X-rays are restricted to the detection of structural changes appearing late during the pathological process, even when using different techniques. Here IRT offers several advantages to the clinician as well as to the patient. As a non invasive method it monitors the course of disease at the anatomic site of pathology. Quantitative figures calculated from the thermogram,either taken at steady-state or during dynamic tests, are essential for differential diagnosis and follow-up. Advanced IRT camera systems fulfill all requirements set up for medical thermography recently by the National Bureau of Standards. Although, the user should check his system daily with regard to precision of absolute temperature measurements. Standardisation of recording technique is essential as well,to get reliable results. Ambient conditions must be adapted to the locomotor disease pathology under study. Advanced IRT systems , e.g. ZEISS-IKOTHERM, together with image processing capability and special software, e.g. THERMOTOM package, are valuable tools to the rheumatologist for diagnosing and monitoring locomotor diseases.

  17. Don't worry, be active: positive affect and habitual physical activity.

    PubMed

    Pasco, Julie A; Jacka, Felice N; Williams, Lana J; Brennan, Sharon L; Leslie, Eva; Berk, Michael

    2011-12-01

    The aim of ths study was to examine the association between habitual physical activity and positive and negative affect. This cross-sectional study included 276 women aged 20 +, from the Geelong Osteoporosis Study. Habitual physical activity and other lifestyle exposures were assessed by questionnaire, concurrent with anthropometric assessments. Physical activity was categorized as very active, moderately active or sedentary. Positive and negative affect scores were derived from the validated 20 item Positive and Negative Affect Schedule (PANAS) self-report and were categorized into tertiles. There was a pattern of lower positive affect scores for lower levels of physical activity. With very active as the reference category, the odds for having a positive affect score in the highest tertile were sequentially lower for those who were moderately active (OR = 0.53, 95%CI 0.28-1.01) and sedentary (OR = 0.28, 95%CI 0.10-0.75). Associations were sustained after adjusting for body mass index and polypharmacy (OR = 0.50, 95%CI 0.26-0.96 and OR = 0.25, 95%CI 0.09-0.72, respectively). These associations were not explained by age, negative affect score or other exposures. No association was detected between physical activity and negative affect scores. This study reports that higher positive affect scores, encompassing emotions such as interest, excitement, enthusiasm and alertness, are associated with higher levels of habitual physical activity. These observations warrant further investigations into possible mechanistic interplay between neurobiological and psychosocial factors that underpin this association.

  18. Functional Reorganization of the Locomotor Network in Parkinson Patients with Freezing of Gait

    PubMed Central

    Fling, Brett W.; Cohen, Rajal G.; Mancini, Martina; Carpenter, Samuel D.; Fair, Damien A.; Nutt, John G.; Horak, Fay B.

    2014-01-01

    Freezing of gait (FoG) is a transient inability to initiate or maintain stepping that often accompanies advanced Parkinson’s disease (PD) and significantly impairs mobility. The current study uses a multimodal neuroimaging approach to assess differences in the functional and structural locomotor neural network in PD patients with and without FoG and relates these findings to measures of FoG severity. Twenty-six PD patients and fifteen age-matched controls underwent resting-state functional magnetic resonance imaging and diffusion tensor imaging along with self-reported and clinical assessments of FoG. After stringent movement correction, fifteen PD patients and fourteen control participants were available for analysis. We assessed functional connectivity strength between the supplementary motor area (SMA) and the following locomotor hubs: 1) subthalamic nucleus (STN), 2) mesencephalic and 3) cerebellar locomotor region (MLR and CLR, respectively) within each hemisphere. Additionally, we quantified structural connectivity strength between locomotor hubs and assessed relationships with metrics of FoG. FoG+ patients showed greater functional connectivity between the SMA and bilateral MLR and between the SMA and left CLR compared to both FoG− and controls. Importantly, greater functional connectivity between the SMA and MLR was positively correlated with i) clinical, ii) self-reported and iii) objective ratings of freezing severity in FoG+, potentially reflecting a maladaptive neural compensation. The current findings demonstrate a re-organization of functional communication within the locomotor network in FoG+ patients whereby the higher-order motor cortex (SMA) responsible for gait initiation communicates with the MLR and CLR to a greater extent than in FoG− patients and controls. The observed pattern of altered connectivity in FoG+ may indicate a failed attempt by the CNS to compensate for the loss of connectivity between the STN and SMA and may reflect a loss

  19. Ethanol-induced locomotor activity in adolescent rats and the relationship with ethanol-induced conditioned place preference and conditioned taste aversion.

    PubMed

    Acevedo, María Belén; Nizhnikov, Michael E; Spear, Norman E; Molina, Juan C; Pautassi, Ricardo M

    2013-05-01

    Adolescent rats exhibit ethanol-induced locomotor activity (LMA), which is considered an index of ethanol's motivational properties likely to predict ethanol self-administration, but few studies have reported or correlated ethanol-induced LMA with conditioned place preference (CPP) by ethanol at this age. The present study assessed age-related differences in ethanol's motor stimulating effects and analyzed the association between ethanol-induced LMA and conventional measures of ethanol-induced reinforcement. Experiment 1 compared ethanol-induced LMA in adolescent and adult rats. Subsequent experiments analyzed ethanol-induced CPP and conditioned taste aversion (CTA) in adolescent rats evaluated for ethanol-induced LMA. Adolescent rats exhibit a robust LMA after high-dose ethanol. Ethanol-induced LMA was fairly similar across adolescents and adults. As expected, adolescents were sensitive to ethanol's aversive reinforcement, but they also exhibited CPP. These measures of ethanol reinforcement, however, were not related to ethanol-induced LMA. Spontaneous LMA in an open field was, however, negatively associated with ethanol-induced CTA. Copyright © 2012 Wiley Periodicals, Inc.

  20. Affect and Subsequent Physical Activity: An Ambulatory Assessment Study Examining the Affect-Activity Association in a Real-Life Context.

    PubMed

    Niermann, Christina Y N; Herrmann, Christian; von Haaren, Birte; van Kann, Dave; Woll, Alexander

    2016-01-01

    Traditionally, cognitive, motivational, and volitional determinants have been used to explain and predict health behaviors such as physical activity. Recently, the role of affect in influencing and regulating health behaviors received more attention. Affects as internal cues may automatically activate unconscious processes of behavior regulation. The aim of our study was to examine the association between affect and physical activity in daily life. In addition, we studied the influence of the habit of being physically active on this relationship. An ambulatory assessment study in 89 persons (33.7% male, 25 to 65 years, M = 45.2, SD = 8.1) was conducted. Affect was assessed in the afternoon on 5 weekdays using smartphones. Physical activity was measured continuously objectively using accelerometers and subjectively using smartphones in the evening. Habit strength was assessed at the beginning of the diary period. The outcomes were objectively and subjectively measured moderate-to-vigorous physical activity (MVPA) performed after work. Multilevel regression models were used to analyze the association between affect and after work MVPA. In addition, the cross-level interaction of habit strength and affect on after work MVPA was tested. Positive affect was positively related to objectively measured and self-reported after work MVPA: the greater the positive affect the more time persons subsequently spent on MVPA. An inverse relationship was found for negative affect: the greater the negative affect the less time persons spent on MVPA. The cross-level interaction effect was significant only for objectively measured MVPA. A strong habit seems to strengthen both the positive influence of positive affect and the negative influence of negative affect. The results of this study confirm previous results and indicate that affect plays an important role for the regulation of physical activity behavior in daily life. The results for positive affect were consistent. However, in