Sample records for affect protein function

  1. Reduced Abundance and Subverted Functions of Proteins in Prion-Like Diseases: Gained Functions Fascinate but Lost Functions Affect Aetiology.

    PubMed

    Allison, W Ted; DuVal, Michèle G; Nguyen-Phuoc, Kim; Leighton, Patricia L A

    2017-10-24

    Prions have served as pathfinders that reveal many aspects of proteostasis in neurons. The recent realization that several prominent neurodegenerative diseases spread via a prion-like mechanism illuminates new possibilities for diagnostics and therapeutics. Thus, key proteins in Alzheimer Disease and Amyotrophic lateral sclerosis (ALS), including amyloid-β precursor protein, Tau and superoxide dismutase 1 (SOD1), spread to adjacent cells in their misfolded aggregated forms and exhibit template-directed misfolding to induce further misfolding, disruptions to proteostasis and toxicity. Here we invert this comparison to ask what these prion-like diseases can teach us about the broad prion disease class, especially regarding the loss of these key proteins' function(s) as they misfold and aggregate. We also consider whether functional amyloids might reveal a role for subverted protein function in neurodegenerative disease. Our synthesis identifies SOD1 as an exemplar of protein functions being lost during prion-like protein misfolding, because SOD1 is inherently unstable and loses function in its misfolded disease-associated form. This has under-appreciated parallels amongst the canonical prion diseases, wherein the normally folded prion protein, PrP C , is reduced in abundance in fatal familial insomnia patients and during the preclinical phase in animal models, apparently via proteostatic mechanisms. Thus while template-directed misfolding and infectious properties represent gain-of-function that fascinates proteostasis researchers and defines (is required for) the prion(-like) diseases, loss and subversion of the functions attributed to hallmark proteins in neurodegenerative disease needs to be integrated into design towards effective therapeutics. We propose experiments to uniquely test these ideas.

  2. Codon usage regulates protein structure and function by affecting translation elongation speed in Drosophila cells.

    PubMed

    Zhao, Fangzhou; Yu, Chien-Hung; Liu, Yi

    2017-08-21

    Codon usage biases are found in all eukaryotic and prokaryotic genomes and have been proposed to regulate different aspects of translation process. Codon optimality has been shown to regulate translation elongation speed in fungal systems, but its effect on translation elongation speed in animal systems is not clear. In this study, we used a Drosophila cell-free translation system to directly compare the velocity of mRNA translation elongation. Our results demonstrate that optimal synonymous codons speed up translation elongation while non-optimal codons slow down translation. In addition, codon usage regulates ribosome movement and stalling on mRNA during translation. Finally, we show that codon usage affects protein structure and function in vitro and in Drosophila cells. Together, these results suggest that the effect of codon usage on translation elongation speed is a conserved mechanism from fungi to animals that can affect protein folding in eukaryotic organisms. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Structural and functional affection of the heart in protein energy malnutrition patients on admission and after nutritional recovery.

    PubMed

    El-Sayed, H L; Nassar, M F; Habib, N M; Elmasry, O A; Gomaa, S M

    2006-04-01

    The pathogenesis of different malnutrition diseases was suggested to affect the heart. This study was designed to detect cardiac affection in protein energy malnutrition (PEM) patients, whether clinically or by electrocardiogram (ECG) and echocardiogram, and to assess the value of the cardiac marker troponin I in patients at risk of myocardial injury with special emphasis on the effect of nutritional rehabilitation. The present study was carried out on 30 PEM infants (16 nonedematous - 14 edematous) and 10 apparently healthy age and sex-matched infants acting as the control group. All studied infants were subjected to full history taking laying stress on dietetic history, thorough clinical and anthropometric measurements. Echocardiography and ECG were also performed. Laboratory investigations were performed including complete blood count, CRP, total proteins, albumin, liver and kidney functions as well as estimation of troponin-I in blood by immulite. Following initial evaluation, all malnourished infants were subjected to nutritional rehabilitation program for approximately 8 weeks, after which the patients were re-evaluated using the same preinterventional parameters. The results of the present study demonstrated that electrical properties of myocardium assessed by ECG showed significant decrease of R wave and QTc interval in patients compared to controls with significant improvement after nutritional rehabilitation. Echocardigraphic changes showed that cardiac mass index was significantly lower in both groups of malnourished cases compared to the controls with significant increase after nutritional rehabilitation. The study showed that the parameters of left ventricular (LV) systolic function which are the ejection fraction, fractional shortening and velocity of circumferential fiber shortening were not significantly reduced in patients compared to the controls. The diastolic function also showed no significant difference in the E wave/A wave (e/a) ratio between

  4. Nicotine affects protein complex rearrangement in Caenorhabditis elegans cells.

    PubMed

    Sobkowiak, Robert; Zielezinski, Andrzej; Karlowski, Wojciech M; Lesicki, Andrzej

    2017-10-01

    Nicotine may affect cell function by rearranging protein complexes. We aimed to determine nicotine-induced alterations of protein complexes in Caenorhabditis elegans (C. elegans) cells, thereby revealing links between nicotine exposure and protein complex modulation. We compared the proteomic alterations induced by low and high nicotine concentrations (0.01 mM and 1 mM) with the control (no nicotine) in vivo by using mass spectrometry (MS)-based techniques, specifically the cetyltrimethylammonium bromide (CTAB) discontinuous gel electrophoresis coupled with liquid chromatography (LC)-MS/MS and spectral counting. As a result, we identified dozens of C. elegans proteins that are present exclusively or in higher abundance in either nicotine-treated or untreated worms. Based on these results, we report a possible network that captures the key protein components of nicotine-induced protein complexes and speculate how the different protein modules relate to their distinct physiological roles. Using functional annotation of detected proteins, we hypothesize that the identified complexes can modulate the energy metabolism and level of oxidative stress. These proteins can also be involved in modulation of gene expression and may be crucial in Alzheimer's disease. The findings reported in our study reveal putative intracellular interactions of many proteins with the cytoskeleton and may contribute to the understanding of the mechanisms of nicotinic acetylcholine receptor (nAChR) signaling and trafficking in cells.

  5. Immunization against lysozyme-like proteins affect sperm function and fertility in the rat.

    PubMed

    Narmadha, Ganapathy; Yenugu, Suresh

    2016-11-01

    Proteins of the epididymal and testicular mileu contribute to sperm maturation and a vast majority of them remain uncharacterised. In this study, the role of three Lysozyme-like (LYZL) proteins, namely LYZL1, LYZL4 and LYZL6 in sperm function was assessed using in vitro neutralization and auto antibodies generation model. Rats immunized with LYZL1, LYZL4 and LYZL6 proteins had a litter size of 5.93, 8.47 and 2.10 respectively compared to 9.96 in the control rats. The litter size was further reduced to 4.53, 7.67 and 1.23 for the corresponding proteins in the second mating conducted 14 weeks after immunization. Epididymal and testicular fluids obtained from the immunized rats displayed a very high antibody titre against all the three proteins. Sperm count was significantly reduced in rats immunized with LYZL1 or LYZL6 and to a lower extent in LYZL4 group. Acrosome reaction associated calcium release was inhibited in spermatozoa obtained from LYZL1 or LYZL4 or LYZL6 immunized rats as well as in spermatozoa incubated with antiserum against the three proteins. Impairment in path velocity, progressive velocity and track speed were observed in spermatozoa obtained from LYZL6 immunized rats. Treatment of spermatozoa with LYZL6 recombinant protein did not potentiate calcium release and acrosome reaction. Results of this study indicate a role for LYZL proteins in sperm function and further studies are warranted to explore them as potential contraceptive agents. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Diverse structures, functions and uses of FK506 binding proteins.

    PubMed

    Bonner, Julia Maeve; Boulianne, Gabrielle L

    2017-10-01

    FK506 (Tacrolimus), isolated from Streptomyces tsukubaenis is a powerful immunosuppressant shown to inhibit T cell activation. FK506 mediated immunosuppression requires the formation of a complex between FK506, a FK506 binding protein (FKBP) and calcineurin. Numerous FKBPs have been identified in a wide range of species, from single celled organisms to humans. FKBPs show peptidylprolyl cis/trans isomerase (PPIase) activity and have been shown to affect a wide range of cellular processes including protein folding, receptor signaling and apoptosis. FKBPs also affect numerous biological functions in addition to immunosuppression including regulation of cardiac function, neuronal function and development and have been implicated in several diseases including cardiac disease, cancer and neurodegenerative diseases such as Alzheimer's disease. More recently, FKBPs have proven useful as molecular tools for studying protein interactions, localization and functions. This review provides an overview of the current state of knowledge of FKBPs and their numerous biological functions and uses. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Functional Interaction between Phosducin-like Protein 2 and Cytosolic Chaperonin Is Essential for Cytoskeletal Protein Function and Cell Cycle Progression

    PubMed Central

    Stirling, Peter C.; Srayko, Martin; Takhar, Karam S.; Pozniakovsky, Andrei; Hyman, Anthony A.

    2007-01-01

    The C haperonin Containing Tcp1 (CCT) maintains cellular protein folding homeostasis in the eukaryotic cytosol by assisting the biogenesis of many proteins, including actins, tubulins, and regulators of the cell cycle. Here, we demonstrate that the essential and conserved eukaryotic phosducin-like protein 2 (PhLP2/PLP2) physically interacts with CCT and modulates its folding activity. Consistent with this functional interaction, temperature-sensitive alleles of Saccharomyces cerevisiae PLP2 exhibit cytoskeletal and cell cycle defects. We uncovered several high-copy suppressors of the plp2 alleles, all of which are associated with G1/S cell cycle progression but which do not appreciably affect cytoskeletal protein function or fully rescue the growth defects. Our data support a model in which Plp2p modulates the biogenesis of several CCT substrates relating to cell cycle and cytoskeletal function, which together contribute to the essential function of PLP2. PMID:17429077

  8. Usher proteins in inner ear structure and function.

    PubMed

    Ahmed, Zubair M; Frolenkov, Gregory I; Riazuddin, Saima

    2013-11-01

    Usher syndrome (USH) is a neurosensory disorder affecting both hearing and vision in humans. Linkage studies of families of USH patients, studies in animals, and characterization of purified proteins have provided insight into the molecular mechanisms of hearing. To date, 11 USH proteins have been identified, and evidence suggests that all of them are crucial for the function of the mechanosensory cells of the inner ear, the hair cells. Most USH proteins are localized to the stereocilia of the hair cells, where mechano-electrical transduction (MET) of sound-induced vibrations occurs. Therefore, elucidation of the functions of USH proteins in the stereocilia is a prerequisite to understanding the exact mechanisms of MET.

  9. Codon usage affects the structure and function of the Drosophila circadian clock protein PERIOD.

    PubMed

    Fu, Jingjing; Murphy, Katherine A; Zhou, Mian; Li, Ying H; Lam, Vu H; Tabuloc, Christine A; Chiu, Joanna C; Liu, Yi

    2016-08-01

    Codon usage bias is a universal feature of all genomes, but its in vivo biological functions in animal systems are not clear. To investigate the in vivo role of codon usage in animals, we took advantage of the sensitivity and robustness of the Drosophila circadian system. By codon-optimizing parts of Drosophila period (dper), a core clock gene that encodes a critical component of the circadian oscillator, we showed that dper codon usage is important for circadian clock function. Codon optimization of dper resulted in conformational changes of the dPER protein, altered dPER phosphorylation profile and stability, and impaired dPER function in the circadian negative feedback loop, which manifests into changes in molecular rhythmicity and abnormal circadian behavioral output. This study provides an in vivo example that demonstrates the role of codon usage in determining protein structure and function in an animal system. These results suggest a universal mechanism in eukaryotes that uses a codon usage "code" within genetic codons to regulate cotranslational protein folding. © 2016 Fu et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Selective Destruction of Protein Function by Chromophore-Assisted Laser Inactivation

    NASA Astrophysics Data System (ADS)

    Jay, Daniel G.

    1988-08-01

    Chromophore-assisted laser inactivation of protein function has been achieved. After a protein binds a specific ligand or antibody conjugated with malachite green (C.I. 42000), it is selectively inactivated by laser irradiation at a wavelength of light absorbed by the dye but not significantly absorbed by cellular components. Ligand-bound proteins in solution and on the surfaces of cells can be denatured without other proteins in the same samples being affected. Chromophore-assisted laser inactivation can be used to study cell surface phenomena by inactivating the functions of single proteins on living cells, a molecular extension of cellular laser ablation. It has an advantage over genetics and the use of specific inhibitors in that the protein function of a single cell within the organism can be inactivated by focusing the laser beam.

  11. Functionalization of protein-based nanocages for drug delivery applications.

    PubMed

    Schoonen, Lise; van Hest, Jan C M

    2014-07-07

    Traditional drug delivery strategies involve drugs which are not targeted towards the desired tissue. This can lead to undesired side effects, as normal cells are affected by the drugs as well. Therefore, new systems are now being developed which combine targeting functionalities with encapsulation of drug cargo. Protein nanocages are highly promising drug delivery platforms due to their perfectly defined structures, biocompatibility, biodegradability and low toxicity. A variety of protein nanocages have been modified and functionalized for these types of applications. In this review, we aim to give an overview of different types of modifications of protein-based nanocontainers for drug delivery applications.

  12. Direct Capture of Functional Proteins from Mammalian Plasma Membranes into Nanodiscs.

    PubMed

    Roy, Jahnabi; Pondenis, Holly; Fan, Timothy M; Das, Aditi

    2015-10-20

    Mammalian plasma membrane proteins make up the largest class of drug targets yet are difficult to study in a cell free system because of their intransigent nature. Herein, we perform direct encapsulation of plasma membrane proteins derived from mammalian cells into a functional nanodisc library. Peptide fingerprinting was used to analyze the proteome of the incorporated proteins in nanodiscs and to further demonstrate that the lipid composition of the nanodiscs directly affects the class of protein that is incorporated. Furthermore, the functionality of the incorporated membrane proteome was evaluated by measuring the activity of membrane proteins: Na(+)/K(+)-ATPase and receptor tyrosine kinases. This work is the first report of the successful establishment and characterization of a cell free functional library of mammalian membrane proteins into nanodiscs.

  13. Protein function prediction using neighbor relativity in protein-protein interaction network.

    PubMed

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Usher protein functions in hair cells and photoreceptors

    PubMed Central

    Cosgrove, Dominic; Zallocchi, Marisa

    2014-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. PMID:24239741

  15. Usher protein functions in hair cells and photoreceptors.

    PubMed

    Cosgrove, Dominic; Zallocchi, Marisa

    2014-01-01

    The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Genome-wide protein-protein interactions and protein function exploration in cyanobacteria

    PubMed Central

    Lv, Qi; Ma, Weimin; Liu, Hui; Li, Jiang; Wang, Huan; Lu, Fang; Zhao, Chen; Shi, Tieliu

    2015-01-01

    Genome-wide network analysis is well implemented to study proteins of unknown function. Here, we effectively explored protein functions and the biological mechanism based on inferred high confident protein-protein interaction (PPI) network in cyanobacteria. We integrated data from seven different sources and predicted 1,997 PPIs, which were evaluated by experiments in molecular mechanism, text mining of literatures in proved direct/indirect evidences, and “interologs” in conservation. Combined the predicted PPIs with known PPIs, we obtained 4,715 no-redundant PPIs (involving 3,231 proteins covering over 90% of genome) to generate the PPI network. Based on the PPI network, terms in Gene ontology (GO) were assigned to function-unknown proteins. Functional modules were identified by dissecting the PPI network into sub-networks and analyzing pathway enrichment, with which we investigated novel function of underlying proteins in protein complexes and pathways. Examples of photosynthesis and DNA repair indicate that the network approach is a powerful tool in protein function analysis. Overall, this systems biology approach provides a new insight into posterior functional analysis of PPIs in cyanobacteria. PMID:26490033

  17. Dynamic New World: Refining Our View of Protein Structure, Function and Evolution

    PubMed Central

    Mannige, Ranjan V.

    2014-01-01

    Proteins are crucial to the functioning of all lifeforms. Traditional understanding posits that a single protein occupies a single structure (“fold”), which performs a single function. This view is radically challenged with the recognition that high structural dynamism—the capacity to be extra “floppy”—is more prevalent in functional proteins than previously assumed. As reviewed here, this dynamic take on proteins affects our understanding of protein “structure”, function, and evolution, and even gives us a glimpse into protein origination. Specifically, this review will discuss historical developments concerning protein structure, and important new relationships between dynamism and aspects of protein sequence, structure, binding modes, binding promiscuity, evolvability, and origination. Along the way, suggestions will be provided for how key parts of textbook definitions—that so far have excluded membership to intrinsically disordered proteins (IDPs)—could be modified to accommodate our more dynamic understanding of proteins. PMID:28250374

  18. Topology-function conservation in protein-protein interaction networks.

    PubMed

    Davis, Darren; Yaveroğlu, Ömer Nebil; Malod-Dognin, Noël; Stojmirovic, Aleksandar; Pržulj, Nataša

    2015-05-15

    Proteins underlay the functioning of a cell and the wiring of proteins in protein-protein interaction network (PIN) relates to their biological functions. Proteins with similar wiring in the PIN (topology around them) have been shown to have similar functions. This property has been successfully exploited for predicting protein functions. Topological similarity is also used to guide network alignment algorithms that find similarly wired proteins between PINs of different species; these similarities are used to transfer annotation across PINs, e.g. from model organisms to human. To refine these functional predictions and annotation transfers, we need to gain insight into the variability of the topology-function relationships. For example, a function may be significantly associated with specific topologies, while another function may be weakly associated with several different topologies. Also, the topology-function relationships may differ between different species. To improve our understanding of topology-function relationships and of their conservation among species, we develop a statistical framework that is built upon canonical correlation analysis. Using the graphlet degrees to represent the wiring around proteins in PINs and gene ontology (GO) annotations to describe their functions, our framework: (i) characterizes statistically significant topology-function relationships in a given species, and (ii) uncovers the functions that have conserved topology in PINs of different species, which we term topologically orthologous functions. We apply our framework to PINs of yeast and human, identifying seven biological process and two cellular component GO terms to be topologically orthologous for the two organisms. © The Author 2015. Published by Oxford University Press.

  19. Dietary Proteins as Determinants of Metabolic and Physiologic Functions of the Gastrointestinal Tract

    PubMed Central

    Jahan-Mihan, Alireza; Luhovyy, Bohdan L.; Khoury, Dalia El; Anderson, G. Harvey

    2011-01-01

    Dietary proteins elicit a wide range of nutritional and biological functions. Beyond their nutritional role as the source of amino acids for protein synthesis, they are instrumental in the regulation of food intake, glucose and lipid metabolism, blood pressure, bone metabolism and immune function. The interaction of dietary proteins and their products of digestion with the regulatory functions of the gastrointestinal (GI) tract plays a dominant role in determining the physiological properties of proteins. The site of interaction is widespread, from the oral cavity to the colon. The characteristics of proteins that influence their interaction with the GI tract in a source-dependent manner include their physico-chemical properties, their amino acid composition and sequence, their bioactive peptides, their digestion kinetics and also the non-protein bioactive components conjugated with them. Within the GI tract, these products affect several regulatory functions by interacting with receptors releasing hormones, affecting stomach emptying and GI transport and absorption, transmitting neural signals to the brain, and modifying the microflora. This review discusses the interaction of dietary proteins during digestion and absorption with the physiological and metabolic functions of the GI tract, and illustrates the importance of this interaction in the regulation of amino acid, glucose, lipid metabolism, and food intake. PMID:22254112

  20. Optimizing energy functions for protein-protein interface design.

    PubMed

    Sharabi, Oz; Yanover, Chen; Dekel, Ayelet; Shifman, Julia M

    2011-01-15

    Protein design methods have been originally developed for the design of monomeric proteins. When applied to the more challenging task of protein–protein complex design, these methods yield suboptimal results. In particular, they often fail to recapitulate favorable hydrogen bonds and electrostatic interactions across the interface. In this work, we aim to improve the energy function of the protein design program ORBIT to better account for binding interactions between proteins. By using the advanced machine learning framework of conditional random fields, we optimize the relative importance of all the terms in the energy function, attempting to reproduce the native side-chain conformations in protein–protein interfaces. We evaluate the performance of several optimized energy functions, each describes the van der Waals interactions using a different potential. In comparison with the original energy function, our best energy function (a) incorporates a much “softer” repulsive van der Waals potential, suitable for the discrete rotameric representation of amino acid side chains; (b) does not penalize burial of polar atoms, reflecting the frequent occurrence of polar buried residues in protein–protein interfaces; and (c) significantly up-weights the electrostatic term, attesting to the high importance of these interactions for protein–protein complex formation. Using this energy function considerably improves side chain placement accuracy for interface residues in a large test set of protein–protein complexes. Moreover, the optimized energy function recovers the native sequences of protein–protein interface at a higher rate than the default function and performs substantially better in predicting changes in free energy of binding due to mutations.

  1. Protein-protein interaction network-based detection of functionally similar proteins within species.

    PubMed

    Song, Baoxing; Wang, Fen; Guo, Yang; Sang, Qing; Liu, Min; Li, Dengyun; Fang, Wei; Zhang, Deli

    2012-07-01

    Although functionally similar proteins across species have been widely studied, functionally similar proteins within species showing low sequence similarity have not been examined in detail. Identification of these proteins is of significant importance for understanding biological functions, evolution of protein families, progression of co-evolution, and convergent evolution and others which cannot be obtained by detection of functionally similar proteins across species. Here, we explored a method of detecting functionally similar proteins within species based on graph theory. After denoting protein-protein interaction networks using graphs, we split the graphs into subgraphs using the 1-hop method. Proteins with functional similarities in a species were detected using a method of modified shortest path to compare these subgraphs and to find the eligible optimal results. Using seven protein-protein interaction networks and this method, some functionally similar proteins with low sequence similarity that cannot detected by sequence alignment were identified. By analyzing the results, we found that, sometimes, it is difficult to separate homologous from convergent evolution. Evaluation of the performance of our method by gene ontology term overlap showed that the precision of our method was excellent. Copyright © 2012 Wiley Periodicals, Inc.

  2. Rift Valley fever virus NSs protein functions and the similarity to other bunyavirus NSs proteins.

    PubMed

    Ly, Hoai J; Ikegami, Tetsuro

    2016-07-02

    Rift Valley fever is a mosquito-borne zoonotic disease that affects both ruminants and humans. The nonstructural (NS) protein, which is a major virulence factor for Rift Valley fever virus (RVFV), is encoded on the S-segment. Through the cullin 1-Skp1-Fbox E3 ligase complex, the NSs protein promotes the degradation of at least two host proteins, the TFIIH p62 and the PKR proteins. NSs protein bridges the Fbox protein with subsequent substrates, and facilitates the transfer of ubiquitin. The SAP30-YY1 complex also bridges the NSs protein with chromatin DNA, affecting cohesion and segregation of chromatin DNA as well as the activation of interferon-β promoter. The presence of NSs filaments in the nucleus induces DNA damage responses and causes cell-cycle arrest, p53 activation, and apoptosis. Despite the fact that NSs proteins have poor amino acid similarity among bunyaviruses, the strategy utilized to hijack host cells are similar. This review will provide and summarize an update of recent findings pertaining to the biological functions of the NSs protein of RVFV as well as the differences from those of other bunyaviruses.

  3. Conformational diversity analysis reveals three functional mechanisms in proteins

    PubMed Central

    Fornasari, María Silvina

    2017-01-01

    Protein motions are a key feature to understand biological function. Recently, a large-scale analysis of protein conformational diversity showed a positively skewed distribution with a peak at 0.5 Å C-alpha root-mean-square-deviation (RMSD). To understand this distribution in terms of structure-function relationships, we studied a well curated and large dataset of ~5,000 proteins with experimentally determined conformational diversity. We searched for global behaviour patterns studying how structure-based features change among the available conformer population for each protein. This procedure allowed us to describe the RMSD distribution in terms of three main protein classes sharing given properties. The largest of these protein subsets (~60%), which we call “rigid” (average RMSD = 0.83 Å), has no disordered regions, shows low conformational diversity, the largest tunnels and smaller and buried cavities. The two additional subsets contain disordered regions, but with differential sequence composition and behaviour. Partially disordered proteins have on average 67% of their conformers with disordered regions, average RMSD = 1.1 Å, the highest number of hinges and the longest disordered regions. In contrast, malleable proteins have on average only 25% of disordered conformers and average RMSD = 1.3 Å, flexible cavities affected in size by the presence of disordered regions and show the highest diversity of cognate ligands. Proteins in each set are mostly non-homologous to each other, share no given fold class, nor functional similarity but do share features derived from their conformer population. These shared features could represent conformational mechanisms related with biological functions. PMID:28192432

  4. Modeling Protein Domain Function

    ERIC Educational Resources Information Center

    Baker, William P.; Jones, Carleton "Buck"; Hull, Elizabeth

    2007-01-01

    This simple but effective laboratory exercise helps students understand the concept of protein domain function. They use foam beads, Styrofoam craft balls, and pipe cleaners to explore how domains within protein active sites interact to form a functional protein. The activity allows students to gain content mastery and an understanding of the…

  5. Protein Molecular Structures, Protein SubFractions, and Protein Availability Affected by Heat Processing: A Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu,P.

    2007-01-01

    The utilization and availability of protein depended on the types of protein and their specific susceptibility to enzymatic hydrolysis (inhibitory activities) in the gastrointestine and was highly associated with protein molecular structures. Studying internal protein structure and protein subfraction profiles leaded to an understanding of the components that make up a whole protein. An understanding of the molecular structure of the whole protein was often vital to understanding its digestive behavior and nutritive value in animals. In this review, recently obtained information on protein molecular structural effects of heat processing was reviewed, in relation to protein characteristics affecting digestive behaviormore » and nutrient utilization and availability. The emphasis of this review was on (1) using the newly advanced synchrotron technology (S-FTIR) as a novel approach to reveal protein molecular chemistry affected by heat processing within intact plant tissues; (2) revealing the effects of heat processing on the profile changes of protein subfractions associated with digestive behaviors and kinetics manipulated by heat processing; (3) prediction of the changes of protein availability and supply after heat processing, using the advanced DVE/OEB and NRC-2001 models, and (4) obtaining information on optimal processing conditions of protein as intestinal protein source to achieve target values for potential high net absorbable protein in the small intestine. The information described in this article may give better insight in the mechanisms involved and the intrinsic protein molecular structural changes occurring upon processing.« less

  6. Apolipoprotein E4 (1-272) fragment is associated with mitochondrial proteins and affects mitochondrial function in neuronal cells.

    PubMed

    Nakamura, Toshiyuki; Watanabe, Atsushi; Fujino, Takahiro; Hosono, Takashi; Michikawa, Makoto

    2009-08-20

    Apolipoprotein E allele epsilon4 (apoE4) is a strong risk factor for developing Alzheimer's disease (AD). Secreted apoE has a critical function in redistributing lipids among central nervous system cells to maintain normal lipid homeostasis. In addition, previous reports have shown that apoE4 is cleaved by a protease in neurons to generate apoE4(1-272) fragment, which is associated with neurofibrillary tanglelike structures and mitochondria, causing mitochondrial dysfunction. However, it still remains unclear how the apoE fragment associates with mitochondria and induces mitochondrial dysfunction. To clarify the molecular mechanism, we carried out experiments to identify intracellular apoE-binding molecules and their functions in modulating mitochondria function. Here, we found that apoE4 binds to ubiquinol cytochrome c reductase core protein 2 (UQCRC2) and cytochrome C1, both of which are components of mitochondrial respiratory complex III, and cytochrome c oxidase subunit 4 isoform 1 (COX IV 1), which is a component of complex IV, in Neuro-2a cells. Interestingly, these proteins associated with apoE4(1-272) more strongly than intact apoE4(1-299). Further analysis showed that in Neuro-2a cells expressing apoE4(1-272), the enzymatic activities of mitochondrial respiratory complexes III and IV were significantly lower than those in Neuro-2a cells expressing apoE4(1-299). ApoE4(1-272) fragment expressed in Neuro2a cells is associated with mitochondrial proteins, UQCRC2 and cytochrome C1, which are component of respiratory complex III, and with COX IV 1, which is a member of complex IV. Overexpression of apoE4(1-272) fragment impairs activities of complex III and IV. These results suggest that the C-terminal-truncated fragment of apoE4 binds to mitochondrial complexes and affects their activities, and thereby leading to neurodegeneration.

  7. Broadening the functionality of a J-protein/Hsp70 molecular chaperone system.

    PubMed

    Schilke, Brenda A; Ciesielski, Szymon J; Ziegelhoffer, Thomas; Kamiya, Erina; Tonelli, Marco; Lee, Woonghee; Cornilescu, Gabriel; Hines, Justin K; Markley, John L; Craig, Elizabeth A

    2017-10-01

    By binding to a multitude of polypeptide substrates, Hsp70-based molecular chaperone systems perform a range of cellular functions. All J-protein co-chaperones play the essential role, via action of their J-domains, of stimulating the ATPase activity of Hsp70, thereby stabilizing its interaction with substrate. In addition, J-proteins drive the functional diversity of Hsp70 chaperone systems through action of regions outside their J-domains. Targeting to specific locations within a cellular compartment and binding of specific substrates for delivery to Hsp70 have been identified as modes of J-protein specialization. To better understand J-protein specialization, we concentrated on Saccharomyces cerevisiae SIS1, which encodes an essential J-protein of the cytosol/nucleus. We selected suppressors that allowed cells lacking SIS1 to form colonies. Substitutions changing single residues in Ydj1, a J-protein, which, like Sis1, partners with Hsp70 Ssa1, were isolated. These gain-of-function substitutions were located at the end of the J-domain, suggesting that suppression was connected to interaction with its partner Hsp70, rather than substrate binding or subcellular localization. Reasoning that, if YDJ1 suppressors affect Ssa1 function, substitutions in Hsp70 itself might also be able to overcome the cellular requirement for Sis1, we carried out a selection for SSA1 suppressor mutations. Suppressing substitutions were isolated that altered sites in Ssa1 affecting the cycle of substrate interaction. Together, our results point to a third, additional means by which J-proteins can drive Hsp70's ability to function in a wide range of cellular processes-modulating the Hsp70-substrate interaction cycle.

  8. Bombesin and thrombin affect discrete pools of intracellular calcium through different G-proteins.

    PubMed

    Wang, J L; Kalyanaraman, S; Vivo, M D; Gautam, N

    1996-11-15

    In mouse NIH 3T3 cells, the mitogens bombesin and thrombin induced Ca2+ release from intracellular stores. Ca2+ release induced by bombesin was inhibited by the Ca(2+)-ATPase inhibitor thapsigargin, while Ca2+ release induced by thrombin was unaffected by this agent. The Ca(2+)-release response to bombesin was not affected by pertussis toxin, but the response to thrombin was abolished by the toxin. Stable transfectants overexpressing the G-protein subunit type alpha 9 showed an accentuated response to bombesin, indicating that the bombesin receptor was coupled to a Gq-like G-protein. Together, these results show that the two mitogenic receptors are coupled to distinct G-proteins that affect functionally different pools of Ca2+. Organization of signalling pathways in this manner may allow cells to differentially encode information from different signals.

  9. Bombesin and thrombin affect discrete pools of intracellular calcium through different G-proteins.

    PubMed Central

    Wang, J L; Kalyanaraman, S; Vivo, M D; Gautam, N

    1996-01-01

    In mouse NIH 3T3 cells, the mitogens bombesin and thrombin induced Ca2+ release from intracellular stores. Ca2+ release induced by bombesin was inhibited by the Ca(2+)-ATPase inhibitor thapsigargin, while Ca2+ release induced by thrombin was unaffected by this agent. The Ca(2+)-release response to bombesin was not affected by pertussis toxin, but the response to thrombin was abolished by the toxin. Stable transfectants overexpressing the G-protein subunit type alpha 9 showed an accentuated response to bombesin, indicating that the bombesin receptor was coupled to a Gq-like G-protein. Together, these results show that the two mitogenic receptors are coupled to distinct G-proteins that affect functionally different pools of Ca2+. Organization of signalling pathways in this manner may allow cells to differentially encode information from different signals. PMID:8947471

  10. EHB1 and AGD12, two calcium-dependent proteins affect gravitropism antagonistically in Arabidopsis thaliana.

    PubMed

    Dümmer, Michaela; Michalski, Christian; Essen, Lars-Oliver; Rath, Magnus; Galland, Paul; Forreiter, Christoph

    2016-11-01

    The ADP-RIBOSYLATION FACTOR GTPase-ACTIVATING PROTEIN (AGD) 12, a member of the ARF-GAP protein family, affects gravitropism in Arabidopsis thaliana. A loss-of-function mutant lacking AGD12 displayed diminished gravitropism in roots and hypocotyls indicating that both organs are affected by this regulator. AGD12 is structurally related to ENHANCED BENDING (EHB) 1, previously described as a negative effector of gravitropism. In contrast to agd12 mutants, ehb1 loss-of function seedlings displayed enhanced gravitropic bending. While EHB1 and AGD12 both possess a C-terminal C2/CaLB-domain, EHB1 lacks the N-terminal ARF-GAP domain present in AGD12. Subcellular localization analysis using Brefeldin A indicated that both proteins are elements of the trans Golgi network. Physiological analyses provided evidence that gravitropic signaling might operate via an antagonistic interaction of ARF-GAP (AGD12) and EHB1 in their Ca 2+ -activated states. Copyright © 2016 Elsevier GmbH. All rights reserved.

  11. Revealing protein functions based on relationships of interacting proteins and GO terms.

    PubMed

    Teng, Zhixia; Guo, Maozu; Liu, Xiaoyan; Tian, Zhen; Che, Kai

    2017-09-20

    In recent years, numerous computational methods predicted protein function based on the protein-protein interaction (PPI) network. These methods supposed that two proteins share the same function if they interact with each other. However, it is reported by recent studies that the functions of two interacting proteins may be just related. It will mislead the prediction of protein function. Therefore, there is a need for investigating the functional relationship between interacting proteins. In this paper, the functional relationship between interacting proteins is studied and a novel method, called as GoDIN, is advanced to annotate functions of interacting proteins in Gene Ontology (GO) context. It is assumed that the functional difference between interacting proteins can be expressed by semantic difference between GO term and its relatives. Thus, the method uses GO term and its relatives to annotate the interacting proteins separately according to their functional roles in the PPI network. The method is validated by a series of experiments and compared with the concerned method. The experimental results confirm the assumption and suggest that GoDIN is effective on predicting functions of protein. This study demonstrates that: (1) interacting proteins are not equal in the PPI network, and their function may be same or similar, or just related; (2) functional difference between interacting proteins can be measured by their degrees in the PPI network; (3) functional relationship between interacting proteins can be expressed by relationship between GO term and its relatives.

  12. Quantity and functionality of protein fractions in chicken breast fillets affected by white striping.

    PubMed

    Mudalal, S; Babini, E; Cavani, C; Petracci, M

    2014-08-01

    Recently, white striations parallel to muscle fibers direction have been observed on the surface of chicken breast, which could be ascribed to intensive growth selection. The aim of this study was to evaluate the effect of white striping on chemical composition with special emphasis on myofibrillar and sarcoplasmic protein fractions that are relevant to the processing features of chicken breast meat. During this study, a total of 12 pectoralis major muscles from both normal and white striped fillets were used to evaluate chemical composition, protein solubility (sarcoplasmic, myofibrillar, and total protein solubility), protein quantity (sarcoplasmic, myofibrillar, and stromal proteins), water holding capacity, and protein profile by SDS-PAGE analysis. White-striped fillets exhibited a higher percentage of moisture (75.4 vs. 73.8%; P < 0.01), intramuscular fat (2.15 vs. 0.98%; P < 0.01), and collagen (1.36 vs. 1.22%; P < 0.01), and lower content of protein (18.7 vs. 22.8%; P < 0.01) and ash (1.14 vs. 1.34%; P < 0.01), in comparison with normal fillets. There was a great decline in myofibrillar (14.0 vs. 8.7%; P < 0.01) and sarcoplasmic (3.2 vs. 2.6%; P < 0.01) content and solubility as well as an increase in cooking loss (33.7 vs. 27.4%; P < 0.05) due to white striping defects. Moreover, gel electrophoresis showed that the concentration of 3 myofibrillar proteins corresponding to actin (42 kDa); LC1, slow-twitch light chain myosin (27.5 kDa); and LC3, fast-twitch light chain myosin (16 kDa), and almost all sarcoplasmic proteins were lower than normal. In conclusion, the findings of this study revealed that chicken breast meat with white striping defect had different chemical composition (more fat and less protein) and protein quality and quantity (low content of myofibrillar proteins and high content of stromal proteins) with respect to normal meat. Furthermore, white striped fillets had lower protein functionality (higher cooking loss). All the former changes

  13. Plasma membrane lipid–protein interactions affect signaling processes in sterol-biosynthesis mutants in Arabidopsis thaliana

    PubMed Central

    Zauber, Henrik; Burgos, Asdrubal; Garapati, Prashanth; Schulze, Waltraud X.

    2014-01-01

    The plasma membrane is an important organelle providing structure, signaling and transport as major biological functions. Being composed of lipids and proteins with different physicochemical properties, the biological functions of membranes depend on specific protein–protein and protein–lipid interactions. Interactions of proteins with their specific sterol and lipid environment were shown to be important factors for protein recruitment into sub-compartmental structures of the plasma membrane. System-wide implications of altered endogenous sterol levels for membrane functions in living cells were not studied in higher plant cells. In particular, little is known how alterations in membrane sterol composition affect protein and lipid organization and interaction within membranes. Here, we conducted a comparative analysis of the plasma membrane protein and lipid composition in Arabidopsis sterol-biosynthesis mutants smt1 and ugt80A2;B1. smt1 shows general alterations in sterol composition while ugt80A2;B1 is significantly impaired in sterol glycosylation. By systematically analyzing different cellular fractions and combining proteomic with lipidomic data we were able to reveal contrasting alterations in lipid–protein interactions in both mutants, with resulting differential changes in plasma membrane signaling status. PMID:24672530

  14. Apolipoprotein E4 (1–272) fragment is associated with mitochondrial proteins and affects mitochondrial function in neuronal cells

    PubMed Central

    Nakamura, Toshiyuki; Watanabe, Atsushi; Fujino, Takahiro; Hosono, Takashi; Michikawa, Makoto

    2009-01-01

    Background Apolipoprotein E allele ε4 (apoE4) is a strong risk factor for developing Alzheimer's disease (AD). Secreted apoE has a critical function in redistributing lipids among central nervous system cells to maintain normal lipid homeostasis. In addition, previous reports have shown that apoE4 is cleaved by a protease in neurons to generate apoE4(1–272) fragment, which is associated with neurofibrillary tanglelike structures and mitochondria, causing mitochondrial dysfunction. However, it still remains unclear how the apoE fragment associates with mitochondria and induces mitochondrial dysfunction. Results To clarify the molecular mechanism, we carried out experiments to identify intracellular apoE-binding molecules and their functions in modulating mitochondria function. Here, we found that apoE4 binds to ubiquinol cytochrome c reductase core protein 2 (UQCRC2) and cytochrome C1, both of which are components of mitochondrial respiratory complex III, and cytochrome c oxidase subunit 4 isoform 1 (COX IV 1), which is a component of complex IV, in Neuro-2a cells. Interestingly, these proteins associated with apoE4(1–272) more strongly than intact apoE4(1–299). Further analysis showed that in Neuro-2a cells expressing apoE4(1–272), the enzymatic activities of mitochondrial respiratory complexes III and IV were significantly lower than those in Neuro-2a cells expressing apoE4(1–299). Conclusion ApoE4(1–272) fragment expressed in Neuro2a cells is associated with mitochondrial proteins, UQCRC2 and cytochrome C1, which are component of respiratory complex III, and with COX IV 1, which is a member of complex IV. Overexpression of apoE4(1–272) fragment impairs activities of complex III and IV. These results suggest that the C-terminal-truncated fragment of apoE4 binds to mitochondrial complexes and affects their activities, and thereby leading to neurodegeneration. PMID:19695092

  15. Can Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    In quiescent environments (microgravity, capillary tubes, gels) formation of a depletion zone is to be expected, due either to limited sedimentation, density driven convection or a combination of both. The formation of a depletion zone can: Modify solution supersaturation near crystal; Give rise to impurity partitioning. It is conjectured that both supersaturation and impurity partitioning affect protein crystal quality and size. Further detailed investigations on various proteins are needed to assess above hypothesis.

  16. F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana

    PubMed Central

    Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke

    2017-01-01

    F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. PMID:28340173

  17. Proteins with neomorphic moonlighting functions in disease.

    PubMed

    Jeffery, Constance J

    2011-07-01

    One gene can encode multiple protein functions because of RNA splice variants, gene fusions during evolution, promiscuous enzyme activities, and moonlighting protein functions. In addition to these types of multifunctional proteins, in which both functions are considered "normal" functions of a protein, some proteins have been described in which a mutation or conformational change imparts a second function on a protein that is not a "normal" function of the protein. We propose to call these new functions "neomorphic moonlighting functions". The most common examples of neomorphic moonlighting functions are due to conformational changes that impart novel protein-protein interactions resulting in the formation of protein aggregates in Alzheimers, Parkinsons disease, and the systemic amyloidoses. Other changes that can result in a neomorphic moonlighting function include a mutation in SMAD4 that causes the protein to bind to new promoters and thereby alter gene transcription patterns, mutations in two isocitrate dehydrogenase isoforms that impart a new catalytic activity, and mutations in dihydrolipoamide dehydrogenase that activate a hidden protease activity. These neomorphic moonlighting functions were identified because of their connection to disease. In the cases described herein, the new functions cause cancers or severe neurological impairment, although in most cases the mechanism by which the new function leads to disease is unknown. Copyright © 2011 Wiley Periodicals, Inc.

  18. Single proteins that serve linked functions in intracellular and extracellular microenvironments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radisky, Derek C.; Stallings-Mann, Melody; Hirai, Yohei

    2009-06-03

    of protein secretion (as syntaxin-2), amphoterin/high mobility group box-1 (HMGB1), which may link inflammation (as amphoterin) with regulation of gene expression (as HMGB1), and tissue transglutaminase, which affects delivery of and response to apoptotic signals by serving a related function on both sides of the plasma membrane. As it is notable that all three of these proteins have been reported to transit the plasma membrane through non-classical secretory mechanisms, we will also discuss why coordinated inside/outside functions may be found in some examples of proteins which transit the plasma membrane through non-classical mechanisms and how this relationship can be used to identify additional proteins that share these characteristics.« less

  19. Assessment of the reliability of protein-protein interactions and protein function prediction.

    PubMed

    Deng, Minghua; Sun, Fengzhu; Chen, Ting

    2003-01-01

    As more and more high-throughput protein-protein interaction data are collected, the task of estimating the reliability of different data sets becomes increasingly important. In this paper, we present our study of two groups of protein-protein interaction data, the physical interaction data and the protein complex data, and estimate the reliability of these data sets using three different measurements: (1) the distribution of gene expression correlation coefficients, (2) the reliability based on gene expression correlation coefficients, and (3) the accuracy of protein function predictions. We develop a maximum likelihood method to estimate the reliability of protein interaction data sets according to the distribution of correlation coefficients of gene expression profiles of putative interacting protein pairs. The results of the three measurements are consistent with each other. The MIPS protein complex data have the highest mean gene expression correlation coefficients (0.256) and the highest accuracy in predicting protein functions (70% sensitivity and specificity), while Ito's Yeast two-hybrid data have the lowest mean (0.041) and the lowest accuracy (15% sensitivity and specificity). Uetz's data are more reliable than Ito's data in all three measurements, and the TAP protein complex data are more reliable than the HMS-PCI data in all three measurements as well. The complex data sets generally perform better in function predictions than do the physical interaction data sets. Proteins in complexes are shown to be more highly correlated in gene expression. The results confirm that the components of a protein complex can be assigned to functions that the complex carries out within a cell. There are three interaction data sets different from the above two groups: the genetic interaction data, the in-silico data and the syn-express data. Their capability of predicting protein functions generally falls between that of the Y2H data and that of the MIPS protein complex

  20. Origins of Protein Functions in Cells

    NASA Technical Reports Server (NTRS)

    Seelig, Burchard; Pohorille, Andrzej

    2011-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis and in vitro evolution of very large libraries of random amino acid sequences. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions yet, important clues have been uncovered. In one example (Keefe and Szostak, 2001), novel ATP binding proteins were identified that appear to be unrelated in both sequence and structure to any known ATP binding proteins. One of these proteins was subsequently redesigned computationally to bind GTP through introducing several mutations that introduce targeted structural changes to the protein, improve its binding to guanine and prevent water from accessing the active center. This study facilitates further investigations of individual evolutionary steps that lead to a change of function in primordial proteins. In a second study (Seelig and Szostak, 2007), novel enzymes were generated that can join two pieces of RNA in a reaction for which no natural enzymes are known

  1. Cysteine regulation of protein function--as exemplified by NMDA-receptor modulation.

    PubMed

    Lipton, Stuart A; Choi, Yun-Beom; Takahashi, Hiroto; Zhang, Dongxian; Li, Weizhong; Godzik, Adam; Bankston, Laurie A

    2002-09-01

    Until recently cysteine residues, especially those located extracellularly, were thought to be important for metal coordination, catalysis and protein structure by forming disulfide bonds - but they were not thought to regulate protein function. However, this is not the case. Crucial cysteine residues can be involved in modulation of protein activity and signaling events via other reactions of their thiol (sulfhydryl; -SH) groups. These reactions can take several forms, such as redox events (chemical reduction or oxidation), chelation of transition metals (chiefly Zn(2+), Mn(2+) and Cu(2+)) or S-nitrosylation [the catalyzed transfer of a nitric oxide (NO) group to a thiol group]. In several cases, these disparate reactions can compete with one another for the same thiol group on a single cysteine residue, forming a molecular switch composed of a latticework of possible redox, NO or Zn(2+) modifications to control protein function. Thiol-mediated regulation of protein function can also involve reactions of cysteine residues that affect ligand binding allosterically. This article reviews the basis for these molecular cysteine switches, drawing on the NMDA receptor as an exemplary protein, and proposes a molecular model for the action of S-nitrosylation based on recently derived crystal structures.

  2. Activity of cGMP-Dependent Protein Kinase (PKG) Affects Sucrose Responsiveness and Habituation in "Drosophila melanogaster"

    ERIC Educational Resources Information Center

    Scheiner, Ricarda; Sokolowski, Marla B.; Erber, Joachim

    2004-01-01

    The cGMP-dependent protein kinase (PKG) has many cellular functions in vertebrates and insects that affect complex behaviors such as locomotion and foraging. The "foraging" ("for") gene encodes a PKG in "Drosophila melanogaster." Here, we demonstrate a function for the "for" gene in sensory responsiveness and nonassociative learning. Larvae of the…

  3. Nano-functionalization of protein microspheres

    NASA Astrophysics Data System (ADS)

    Yoon, Sungkwon; Nichols, William T.

    2014-08-01

    Protein microspheres are promising building blocks for the assembly of complex functional materials. Here we demonstrate a set of three techniques that add functionality to the surface of protein microspheres. In the first technique, a positive surface charge on the protein spheres is deposited by electrostatic adsorption. Negatively charged silica and gold nanoparticle colloids can then electrostatically bind reversibly to the microsphere surface. In the second technique, nanoparticles are covalently anchored to the protein shell using a simple one-pot process. The strong covalent bond between sulfur groups in cysteine in the protein shell irreversibly binds to the gold nanoparticles. In the third technique, surface morphology of the protein microsphere is tuned through hydrodynamic instability at the water-oil interface. This is accomplished through the degree of solubility of the oil phase in water. Taken together these three techniques form a platform to create nano-functionalized protein microspheres, which can then be used as building blocks for the assembly of more complex macroscopic materials.

  4. Protein Function Prediction: Problems and Pitfalls.

    PubMed

    Pearson, William R

    2015-09-03

    The characterization of new genomes based on their protein sets has been revolutionized by new sequencing technologies, but biologists seeking to exploit new sequence information are often frustrated by the challenges associated with accurately assigning biological functions to newly identified proteins. Here, we highlight some of the challenges in functional inference from sequence similarity. Investigators can improve the accuracy of function prediction by (1) being conservative about the evolutionary distance to a protein of known function; (2) considering the ambiguous meaning of "functional similarity," and (3) being aware of the limitations of annotations in functional databases. Protein function prediction does not offer "one-size-fits-all" solutions. Prediction strategies work better when the idiosyncrasies of function and functional annotation are better understood. Copyright © 2015 John Wiley & Sons, Inc.

  5. REEPs Are Membrane Shaping Adapter Proteins That Modulate Specific G Protein-Coupled Receptor Trafficking by Affecting ER Cargo Capacity

    PubMed Central

    Ho, Vincent K.; Angelotti, Timothy

    2013-01-01

    Receptor expression enhancing proteins (REEPs) were identified by their ability to enhance cell surface expression of a subset of G protein-coupled receptors (GPCRs), specifically GPCRs that have proven difficult to express in heterologous cell systems. Further analysis revealed that they belong to the Yip (Ypt-interacting protein) family and that some REEP subtypes affect ER structure. Yip family comparisons have established other potential roles for REEPs, including regulation of ER-Golgi transport and processing/neuronal localization of cargo proteins. However, these other potential REEP functions and the mechanism by which they selectively enhance GPCR cell surface expression have not been clarified. By utilizing several REEP family members (REEP1, REEP2, and REEP6) and model GPCRs (α2A and α2C adrenergic receptors), we examined REEP regulation of GPCR plasma membrane expression, intracellular processing, and trafficking. Using a combination of immunolocalization and biochemical methods, we demonstrated that this REEP subset is localized primarily to ER, but not plasma membranes. Single cell analysis demonstrated that these REEPs do not specifically enhance surface expression of all GPCRs, but affect ER cargo capacity of specific GPCRs and thus their surface expression. REEP co-expression with α2 adrenergic receptors (ARs) revealed that this REEP subset interacts with and alter glycosidic processing of α2C, but not α2A ARs, demonstrating selective interaction with cargo proteins. Specifically, these REEPs enhanced expression of and interacted with minimally/non-glycosylated forms of α2C ARs. Most importantly, expression of a mutant REEP1 allele (hereditary spastic paraplegia SPG31) lacking the carboxyl terminus led to loss of this interaction. Thus specific REEP isoforms have additional intracellular functions besides altering ER structure, such as enhancing ER cargo capacity, regulating ER-Golgi processing, and interacting with select cargo proteins

  6. Functional assignment to JEV proteins using SVM.

    PubMed

    Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep

    2008-01-01

    Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP).

  7. Functional assignment to JEV proteins using SVM

    PubMed Central

    Sahoo, Ganesh Chandra; Dikhit, Manas Ranjan; Das, Pradeep

    2008-01-01

    Identification of different protein functions facilitates a mechanistic understanding of Japanese encephalitis virus (JEV) infection and opens novel means for drug development. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to Japanese encephalitis virus protein. Our study from SVMProt and available JE virus sequences suggests that structural and nonstructural proteins of JEV genome possibly belong to diverse protein functions, are expected to occur in the life cycle of JE virus. Protein functions common to both structural and non-structural proteins are iron-binding, metal-binding, lipid-binding, copper-binding, transmembrane, outer membrane, channels/Pores - Pore-forming toxins (proteins and peptides) group of proteins. Non-structural proteins perform functions like actin binding, zinc-binding, calcium-binding, hydrolases, Carbon-Oxygen Lyases, P-type ATPase, proteins belonging to major facilitator family (MFS), secreting main terminal branch (MTB) family, phosphotransfer-driven group translocators and ATP-binding cassette (ABC) family group of proteins. Whereas structural proteins besides belonging to same structural group of proteins (capsid, structural, envelope), they also perform functions like nuclear receptor, antibiotic resistance, RNA-binding, DNA-binding, magnesium-binding, isomerase (intra-molecular), oxidoreductase and participate in type II (general) secretory pathway (IISP). PMID:19052658

  8. Direct protein-protein conjugation by genetically introducing bioorthogonal functional groups into proteins.

    PubMed

    Kim, Sanggil; Ko, Wooseok; Sung, Bong Hyun; Kim, Sun Chang; Lee, Hyun Soo

    2016-11-15

    Proteins often function as complex structures in conjunction with other proteins. Because these complex structures are essential for sophisticated functions, developing protein-protein conjugates has gained research interest. In this study, site-specific protein-protein conjugation was performed by genetically incorporating an azide-containing amino acid into one protein and a bicyclononyne (BCN)-containing amino acid into the other. Three to four sites in each of the proteins were tested for conjugation efficiency, and three combinations showed excellent conjugation efficiency. The genetic incorporation of unnatural amino acids (UAAs) is technically simple and produces the mutant protein in high yield. In addition, the conjugation reaction can be conducted by simple mixing, and does not require additional reagents or linker molecules. Therefore, this method may prove very useful for generating protein-protein conjugates and protein complexes of biochemical significance. Copyright © 2016. Published by Elsevier Ltd.

  9. Daily affect and female sexual function.

    PubMed

    Kalmbach, David A; Pillai, Vivek

    2014-12-01

    The specific affective experiences related to changes in various aspects of female sexual function have received little attention as most prior studies have focused instead on the role of clinical mood and anxiety disorders and their influence on sexual dysfunction. We sought to understand the transaction between daily affect and female sexual function in effort to provide a more nuanced understanding of the interplay between affective and sexual experiences. The present study used a 2-week daily diary approach to examine same-day and temporal relations between positive and negative affect states and sexual function in young women. We examined the unique relations between positive (i.e., joviality, serenity, self-assurance) and negative (i.e., fear, sadness, hostility) affects and female sexual response (i.e., desire, subjective arousal, vaginal lubrication, orgasmic function, and sexual pain) while controlling for higher order sexual distress, depression, and anxiety, as well as age effects and daily menstruation. Analyses revealed different aspects of both positive and negative affects to be independently related to sexual response indices. Specifically, results indicated that joviality was related to same-day sexual desire and predicted increased desire the following day. This latter relation was partially mediated by sexual activity. Further, greater sexual desire predicted next-day calmness, which was partially mediated by sexual activity. Notably, fear was related to same-day subjective arousal, lubrication, orgasmic function, and vaginal pain, whereas poorer orgasmic function predicted greater next-day sadness. These findings describe the manner in which changes in affect correspond to variations in female sexual function, thus highlighting the inextricability of mental and sexual health. Further, these findings may offer insight into the progression of normative levels of affect and sexual function as they develop into comorbid depression, anxiety, and

  10. F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana.

    PubMed

    Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke; Inzé, Dirk

    2017-05-01

    F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.

  11. Functional requirements of the yellow fever virus capsid protein.

    PubMed

    Patkar, Chinmay G; Jones, Christopher T; Chang, Yu-hsuan; Warrier, Ranjit; Kuhn, Richard J

    2007-06-01

    Although it is known that the flavivirus capsid protein is essential for genome packaging and formation of infectious particles, the minimal requirements of the dimeric capsid protein for virus assembly/disassembly have not been characterized. By use of a trans-packaging system that involved packaging a yellow fever virus (YFV) replicon into pseudo-infectious particles by supplying the YFV structural proteins using a Sindbis virus helper construct, the functional elements within the YFV capsid protein (YFC) were characterized. Various N- and C-terminal truncations, internal deletions, and point mutations of YFC were analyzed for their ability to package the YFV replicon. Consistent with previous reports on the tick-borne encephalitis virus capsid protein, YFC demonstrates remarkable functional flexibility. Nearly 40 residues of YFC could be removed from the N terminus while the ability to package replicon RNA was retained. Additionally, YFC containing a deletion of approximately 27 residues of the C terminus, including a complete deletion of C-terminal helix 4, was functional. Internal deletions encompassing the internal hydrophobic sequence in YFC were, in general, tolerated to a lesser extent. Site-directed mutagenesis of helix 4 residues predicted to be involved in intermonomeric interactions were also analyzed, and although single mutations did not affect packaging, a YFC with the double mutation of leucine 81 and valine 88 was nonfunctional. The effects of mutations in YFC on the viability of YFV infection were also analyzed, and these results were similar to those obtained using the replicon packaging system, thus underscoring the flexibility of YFC with respect to the requirements for its functioning.

  12. From protein structure to function via single crystal optical spectroscopy

    PubMed Central

    Ronda, Luca; Bruno, Stefano; Bettati, Stefano; Storici, Paola; Mozzarelli, Andrea

    2015-01-01

    The more than 100,000 protein structures determined by X-ray crystallography provide a wealth of information for the characterization of biological processes at the molecular level. However, several crystallographic “artifacts,” including conformational selection, crystallization conditions and radiation damages, may affect the quality and the interpretation of the electron density maps, thus limiting the relevance of structure determinations. Moreover, for most of these structures, no functional data have been obtained in the crystalline state, thus posing serious questions on their validity in infereing protein mechanisms. In order to solve these issues, spectroscopic methods have been applied for the determination of equilibrium and kinetic properties of proteins in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry, IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches have been implemented with on-line instruments at X-ray synchrotron beamlines. Here, we provide an overview of investigations predominantly carried out in our laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the most applied technique for the functional characterization of proteins in the crystalline state. Studies on hemoglobins, pyridoxal 5′-phosphate dependent enzymes and green fluorescent protein in the crystalline state have addressed key biological issues, leading to either straightforward structure-function correlations or limitations to structure-based mechanisms. PMID:25988179

  13. Telomere- and Telomerase-Associated Proteins and Their Functions in the Plant Cell

    PubMed Central

    Procházková Schrumpfová, Petra; Schořová, Šárka; Fajkus, Jiří

    2016-01-01

    Telomeres, as physical ends of linear chromosomes, are targets of a number of specific proteins, including primarily telomerase reverse transcriptase. Access of proteins to the telomere may be affected by a number of diverse factors, e.g., protein interaction partners, local DNA or chromatin structures, subcellular localization/trafficking, or simply protein modification. Knowledge of composition of the functional nucleoprotein complex of plant telomeres is only fragmentary. Moreover, the plant telomeric repeat binding proteins that were characterized recently appear to also be involved in non-telomeric processes, e.g., ribosome biogenesis. This interesting finding was not totally unexpected since non-telomeric functions of yeast or animal telomeric proteins, as well as of telomerase subunits, have been reported for almost a decade. Here we summarize known facts about the architecture of plant telomeres and compare them with the well-described composition of telomeres in other organisms. PMID:27446102

  14. Nitric oxide decreases coagulation protein function in rabbits as assessed by thromboelastography.

    PubMed

    Nielsen, V G

    2001-02-01

    Nitric oxide (NO) is administered via infusion of donors such as nitroglycerin or in inhaled form for treatment of ischemia and pulmonary hypertension, respectively. In rabbits, the NO donor, DETANONOate, decreases whole blood clotting function as assessed by thromboelastographic variables (R, reaction time; alpha, angle; and G, a measure of clot strength). I hypothesized that DETANONOate-derived NO would adversely affect coagulation protein and platelet function. Blood obtained from ear arteries of conscious rabbits (n = 8) anticoagulated with sodium citrate. The blood was then incubated with 0 or 10mM DETANONOate for 30 min. After incubation and recalcification, thromboelastography was performed for 60 min under four conditions: 1) 0mM DETANONOate, 2) 0mM DETANONOate with platelet inhibition with cytochalasin D, 3) 10mM DETANONOate, and 4) 10mM DETANONOate with platelet inhibition. DETANONOate significantly (P < 0.05) increased R and decreased alpha and G in samples with or without platelet inhibition, compared with samples not exposed to DETANONOate. Lastly, the percentage of total G (G(T)) attributable to platelet function (G(P)) was significantly more in the absence of DETANONOate (G(P) = 92.3% +/- 1.6%; mean +/- SD) than after exposure to DETANONOate (G(P) = 90.2% +/- 2.3%). DETANONOate-derived NO significantly decreased coagulation protein function and platelet function. Coagulation protein function may be similarly affected in clinical situations involving the administration of NO or NO donors.

  15. Mixed compared with single-source proteins in high-protein diets affect kidney structure and function differentially in obese fa/fa Zucker rats.

    PubMed

    Devassy, Jessay G; Wojcik, Jennifer L; Ibrahim, Naser H M; Zahradka, Peter; Taylor, Carla G; Aukema, Harold M

    2017-02-01

    Questions remain regarding the potential negative effects of dietary high protein (HP) on kidney health, particularly in the context of obesity in which the risk for renal disease is already increased. To examine whether some of the variability in HP effects on kidney health may be due to source of protein, obese fa/fa Zucker rats were given HP (35% of energy from protein) diets containing either casein, soy protein, or a mixed source of animal and plant proteins for 12 weeks. Control lean and obese rats were given diets containing casein at normal protein (15% of energy from protein) levels. Body weight and blood pressure were measured, and markers of renal structural changes, damage, and function were assessed. Obesity alone resulted in mild renal changes, as evidenced by higher kidney weights, proteinuria, and glomerular volumes. In obese rats, increasing the protein level using the single, but not mixed, protein sources resulted in higher renal fibrosis compared with the lean rats. The mixed-protein HP group also had lower levels of serum monocyte chemoattractant protein-1, even though this diet further increased kidney and glomerular size. Soy and mixed-protein HP diets also resulted in a small number of damaged glomeruli, while soy compared with mixed-protein HP diet delayed the increase in blood pressure over time. Since obesity itself confers added risk of renal disease, an HP diet from mixed-protein sources that enables weight loss but has fewer risks to renal health may be advantageous.

  16. Biases in the Experimental Annotations of Protein Function and Their Effect on Our Understanding of Protein Function Space

    PubMed Central

    Schnoes, Alexandra M.; Ream, David C.; Thorman, Alexander W.; Babbitt, Patricia C.; Friedberg, Iddo

    2013-01-01

    The ongoing functional annotation of proteins relies upon the work of curators to capture experimental findings from scientific literature and apply them to protein sequence and structure data. However, with the increasing use of high-throughput experimental assays, a small number of experimental studies dominate the functional protein annotations collected in databases. Here, we investigate just how prevalent is the “few articles - many proteins” phenomenon. We examine the experimentally validated annotation of proteins provided by several groups in the GO Consortium, and show that the distribution of proteins per published study is exponential, with 0.14% of articles providing the source of annotations for 25% of the proteins in the UniProt-GOA compilation. Since each of the dominant articles describes the use of an assay that can find only one function or a small group of functions, this leads to substantial biases in what we know about the function of many proteins. Mass-spectrometry, microscopy and RNAi experiments dominate high throughput experiments. Consequently, the functional information derived from these experiments is mostly of the subcellular location of proteins, and of the participation of proteins in embryonic developmental pathways. For some organisms, the information provided by different studies overlap by a large amount. We also show that the information provided by high throughput experiments is less specific than those provided by low throughput experiments. Given the experimental techniques available, certain biases in protein function annotation due to high-throughput experiments are unavoidable. Knowing that these biases exist and understanding their characteristics and extent is important for database curators, developers of function annotation programs, and anyone who uses protein function annotation data to plan experiments. PMID:23737737

  17. Exploring Mouse Protein Function via Multiple Approaches.

    PubMed

    Huang, Guohua; Chu, Chen; Huang, Tao; Kong, Xiangyin; Zhang, Yunhua; Zhang, Ning; Cai, Yu-Dong

    2016-01-01

    Although the number of available protein sequences is growing exponentially, functional protein annotations lag far behind. Therefore, accurate identification of protein functions remains one of the major challenges in molecular biology. In this study, we presented a novel approach to predict mouse protein functions. The approach was a sequential combination of a similarity-based approach, an interaction-based approach and a pseudo amino acid composition-based approach. The method achieved an accuracy of about 0.8450 for the 1st-order predictions in the leave-one-out and ten-fold cross-validations. For the results yielded by the leave-one-out cross-validation, although the similarity-based approach alone achieved an accuracy of 0.8756, it was unable to predict the functions of proteins with no homologues. Comparatively, the pseudo amino acid composition-based approach alone reached an accuracy of 0.6786. Although the accuracy was lower than that of the previous approach, it could predict the functions of almost all proteins, even proteins with no homologues. Therefore, the combined method balanced the advantages and disadvantages of both approaches to achieve efficient performance. Furthermore, the results yielded by the ten-fold cross-validation indicate that the combined method is still effective and stable when there are no close homologs are available. However, the accuracy of the predicted functions can only be determined according to known protein functions based on current knowledge. Many protein functions remain unknown. By exploring the functions of proteins for which the 1st-order predicted functions are wrong but the 2nd-order predicted functions are correct, the 1st-order wrongly predicted functions were shown to be closely associated with the genes encoding the proteins. The so-called wrongly predicted functions could also potentially be correct upon future experimental verification. Therefore, the accuracy of the presented method may be much higher in

  18. Exploring Mouse Protein Function via Multiple Approaches

    PubMed Central

    Huang, Tao; Kong, Xiangyin; Zhang, Yunhua; Zhang, Ning

    2016-01-01

    Although the number of available protein sequences is growing exponentially, functional protein annotations lag far behind. Therefore, accurate identification of protein functions remains one of the major challenges in molecular biology. In this study, we presented a novel approach to predict mouse protein functions. The approach was a sequential combination of a similarity-based approach, an interaction-based approach and a pseudo amino acid composition-based approach. The method achieved an accuracy of about 0.8450 for the 1st-order predictions in the leave-one-out and ten-fold cross-validations. For the results yielded by the leave-one-out cross-validation, although the similarity-based approach alone achieved an accuracy of 0.8756, it was unable to predict the functions of proteins with no homologues. Comparatively, the pseudo amino acid composition-based approach alone reached an accuracy of 0.6786. Although the accuracy was lower than that of the previous approach, it could predict the functions of almost all proteins, even proteins with no homologues. Therefore, the combined method balanced the advantages and disadvantages of both approaches to achieve efficient performance. Furthermore, the results yielded by the ten-fold cross-validation indicate that the combined method is still effective and stable when there are no close homologs are available. However, the accuracy of the predicted functions can only be determined according to known protein functions based on current knowledge. Many protein functions remain unknown. By exploring the functions of proteins for which the 1st-order predicted functions are wrong but the 2nd-order predicted functions are correct, the 1st-order wrongly predicted functions were shown to be closely associated with the genes encoding the proteins. The so-called wrongly predicted functions could also potentially be correct upon future experimental verification. Therefore, the accuracy of the presented method may be much higher in

  19. HIV-1 TAT protein enhances sensitization to methamphetamine by affecting dopaminergic function.

    PubMed

    Kesby, James P; Najera, Julia A; Romoli, Benedetto; Fang, Yiding; Basova, Liana; Birmingham, Amanda; Marcondes, Maria Cecilia G; Dulcis, Davide; Semenova, Svetlana

    2017-10-01

    Methamphetamine abuse is common among humans with immunodeficiency virus (HIV). The HIV-1 regulatory protein TAT induces dysfunction of mesolimbic dopaminergic systems which may result in impaired reward processes and contribute to methamphetamine abuse. These studies investigated the impact of TAT expression on methamphetamine-induced locomotor sensitization, underlying changes in dopamine function and adenosine receptors in mesolimbic brain areas and neuroinflammation (microgliosis). Transgenic mice with doxycycline-induced TAT protein expression in the brain were tested for locomotor activity in response to repeated methamphetamine injections and methamphetamine challenge after a 7-day abstinence period. Dopamine function in the nucleus accumbens (Acb) was determined using high performance liquid chromatography. Expression of dopamine and/or adenosine A receptors (ADORA) in the Acb and caudate putamen (CPu) was assessed using RT-PCR and immunohistochemistry analyses. Microarrays with pathway analyses assessed dopamine and adenosine signaling in the CPu. Activity-dependent neurotransmitter switching of a reserve pool of non-dopaminergic neurons to a dopaminergic phenotype in the ventral tegmental area (VTA) was determined by immunohistochemistry and quantified with stereology. TAT expression enhanced methamphetamine-induced sensitization. TAT expression alone decreased striatal dopamine (D1, D2, D4, D5) and ADORA1A receptor expression, while increasing ADORA2A receptors expression. Moreover, TAT expression combined with methamphetamine exposure was associated with increased adenosine A receptors (ADORA1A) expression and increased recruitment of dopamine neurons in the VTA. TAT expression and methamphetamine exposure induced microglia activation with the largest effect after combined exposure. Our findings suggest that dopamine-adenosine receptor interactions and reserve pool neuronal recruitment may represent potential targets to develop new treatments for

  20. Interaction of Berberine derivative with protein POT1 affect telomere function in cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Nannan; Chen, Siqi; Ma, Yan

    Highlights: Black-Right-Pointing-Pointer The protein POT1 plays an important role in telomere protection. Black-Right-Pointing-Pointer Functional POT1 was overexpressed in Escherichia coli for the first time, and purified. Black-Right-Pointing-Pointer Compound Sysu-00692 was found to be the first POT1-binding ligand. Black-Right-Pointing-Pointer Sysu-00692 could interfere with the binding activity of POT1 in vivo. Black-Right-Pointing-Pointer Sysu-00692 had inhibition on telomerase and cell proliferation. -- Abstract: The protein POT1 plays an important role in telomere protection, which is related with telomere elongation and cell immortality. The protein has been recognized as a promising drug target for cancer treatment. In the present study, we cloned, overexpressed inmore » Escherichia coli for the first time, and purified recombinant human POT1. The protein was proved to be active through filter binding assay, FRET and CD experiments. In the initial screening for protein binding ligands using SPR, compound Sysu-00692 was found to bind well with the POT1, which was confirmed with EMSA. Its in vivo activity study showed that compound Sysu-00692 could interfere with the binding between human POT1 and the telomeric DNA through chromatin immunoprecipitation. Besides, the compound showed mild inhibition on telomerase and cell proliferation. As we know, compound Sysu-00692 is the first reported POT1-binding ligand, which could serve as a lead compound for further improvement. This work offered a potentially new approach for drug design for the treatment of cancers.« less

  1. Prediction and functional analysis of the sweet orange protein-protein interaction network.

    PubMed

    Ding, Yu-Duan; Chang, Ji-Wei; Guo, Jing; Chen, Dijun; Li, Sen; Xu, Qiang; Deng, Xiu-Xin; Cheng, Yun-Jiang; Chen, Ling-Ling

    2014-08-05

    Sweet orange (Citrus sinensis) is one of the most important fruits world-wide. Because it is a woody plant with a long growth cycle, genetic studies of sweet orange are lagging behind those of other species. In this analysis, we employed ortholog identification and domain combination methods to predict the protein-protein interaction (PPI) network for sweet orange. The K-nearest neighbors (KNN) classification method was used to verify and filter the network. The final predicted PPI network, CitrusNet, contained 8,195 proteins with 124,491 interactions. The quality of CitrusNet was evaluated using gene ontology (GO) and Mapman annotations, which confirmed the reliability of the network. In addition, we calculated the expression difference of interacting genes (EDI) in CitrusNet using RNA-seq data from four sweet orange tissues, and also analyzed the EDI distribution and variation in different sub-networks. Gene expression in CitrusNet has significant modular features. Target of rapamycin (TOR) protein served as the central node of the hormone-signaling sub-network. All evidence supported the idea that TOR can integrate various hormone signals and affect plant growth. CitrusNet provides valuable resources for the study of biological functions in sweet orange.

  2. Year 2 Report: Protein Function Prediction Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, C E

    2012-04-27

    Upon completion of our second year of development in a 3-year development cycle, we have completed a prototype protein structure-function annotation and function prediction system: Protein Function Prediction (PFP) platform (v.0.5). We have met our milestones for Years 1 and 2 and are positioned to continue development in completion of our original statement of work, or a reasonable modification thereof, in service to DTRA Programs involved in diagnostics and medical countermeasures research and development. The PFP platform is a multi-scale computational modeling system for protein structure-function annotation and function prediction. As of this writing, PFP is the only existing fullymore » automated, high-throughput, multi-scale modeling, whole-proteome annotation platform, and represents a significant advance in the field of genome annotation (Fig. 1). PFP modules perform protein functional annotations at the sequence, systems biology, protein structure, and atomistic levels of biological complexity (Fig. 2). Because these approaches provide orthogonal means of characterizing proteins and suggesting protein function, PFP processing maximizes the protein functional information that can currently be gained by computational means. Comprehensive annotation of pathogen genomes is essential for bio-defense applications in pathogen characterization, threat assessment, and medical countermeasure design and development in that it can short-cut the time and effort required to select and characterize protein biomarkers.« less

  3. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion

    NASA Astrophysics Data System (ADS)

    Dong, Jinlan; Bruening, Merlin L.

    2015-07-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO2 nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  4. Functionalizing Microporous Membranes for Protein Purification and Protein Digestion.

    PubMed

    Dong, Jinlan; Bruening, Merlin L

    2015-01-01

    This review examines advances in the functionalization of microporous membranes for protein purification and the development of protease-containing membranes for controlled protein digestion prior to mass spectrometry analysis. Recent studies confirm that membranes are superior to bead-based columns for rapid protein capture, presumably because convective mass transport in membrane pores rapidly brings proteins to binding sites. Modification of porous membranes with functional polymeric films or TiO₂ nanoparticles yields materials that selectively capture species ranging from phosphopeptides to His-tagged proteins, and protein-binding capacities often exceed those of commercial beads. Thin membranes also provide a convenient framework for creating enzyme-containing reactors that afford control over residence times. With millisecond residence times, reactors with immobilized proteases limit protein digestion to increase sequence coverage in mass spectrometry analysis and facilitate elucidation of protein structures. This review emphasizes the advantages of membrane-based techniques and concludes with some challenges for their practical application.

  5. Regulation of thrombosis and vascular function by protein methionine oxidation

    PubMed Central

    Gu, Sean X.; Stevens, Jeff W.

    2015-01-01

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. PMID:25900980

  6. Regulation of thrombosis and vascular function by protein methionine oxidation.

    PubMed

    Gu, Sean X; Stevens, Jeff W; Lentz, Steven R

    2015-06-18

    Redox biology is fundamental to both normal cellular homeostasis and pathological states associated with excessive oxidative stress. Reactive oxygen species function not only as signaling molecules but also as redox regulators of protein function. In the vascular system, redox reactions help regulate key physiologic responses such as cell adhesion, vasoconstriction, platelet aggregation, angiogenesis, inflammatory gene expression, and apoptosis. During pathologic states, altered redox balance can cause vascular cell dysfunction and affect the equilibrium between procoagulant and anticoagulant systems, contributing to thrombotic vascular disease. This review focuses on the emerging role of a specific reversible redox reaction, protein methionine oxidation, in vascular disease and thrombosis. A growing number of cardiovascular and hemostatic proteins are recognized to undergo reversible methionine oxidation, in which methionine residues are posttranslationally oxidized to methionine sulfoxide. Protein methionine oxidation can be reversed by the action of stereospecific enzymes known as methionine sulfoxide reductases. Calcium/calmodulin-dependent protein kinase II is a prototypical methionine redox sensor that responds to changes in the intracellular redox state via reversible oxidation of tandem methionine residues in its regulatory domain. Several other proteins with oxidation-sensitive methionine residues, including apolipoprotein A-I, thrombomodulin, and von Willebrand factor, may contribute to vascular disease and thrombosis. © 2015 by The American Society of Hematology.

  7. Dissecting protein function: an efficient protocol for identifying separation-of-function mutations that encode structurally stable proteins.

    PubMed

    Lubin, Johnathan W; Rao, Timsi; Mandell, Edward K; Wuttke, Deborah S; Lundblad, Victoria

    2013-03-01

    Mutations that confer the loss of a single biochemical property (separation-of-function mutations) can often uncover a previously unknown role for a protein in a particular biological process. However, most mutations are identified based on loss-of-function phenotypes, which cannot differentiate between separation-of-function alleles vs. mutations that encode unstable/unfolded proteins. An alternative approach is to use overexpression dominant-negative (ODN) phenotypes to identify mutant proteins that disrupt function in an otherwise wild-type strain when overexpressed. This is based on the assumption that such mutant proteins retain an overall structure that is comparable to that of the wild-type protein and are able to compete with the endogenous protein (Herskowitz 1987). To test this, the in vivo phenotypes of mutations in the Est3 telomerase subunit from Saccharomyces cerevisiae were compared with the in vitro secondary structure of these mutant proteins as analyzed by circular-dichroism spectroscopy, which demonstrates that ODN is a more sensitive assessment of protein stability than the commonly used method of monitoring protein levels from extracts. Reverse mutagenesis of EST3, which targeted different categories of amino acids, also showed that mutating highly conserved charged residues to the oppositely charged amino acid had an increased likelihood of generating a severely defective est3(-) mutation, which nevertheless encoded a structurally stable protein. These results suggest that charge-swap mutagenesis directed at a limited subset of highly conserved charged residues, combined with ODN screening to eliminate partially unfolded proteins, may provide a widely applicable and efficient strategy for generating separation-of-function mutations.

  8. Function of the ING family of PHD proteins in cancer.

    PubMed

    Gong, Wei; Suzuki, Keiko; Russell, Michael; Riabowol, Karl

    2005-05-01

    The ING genes encode a family of at least seven proteins with conserved plant homeodomain (PHD)-type zinc fingers in their C-termini. The founding member, ING1, is capable of binding to and affecting the activity of histone acetyltransferase (HAT), histone deacetylase (HDAC), and factor acetyltransferase (FAT) protein complexes. Some ING proteins are involved in transcriptional regulation of genes, such as the p53-inducible genes p21 and Bax. Others have been found to affect post-translational modifications, exemplified by the ING2-induced acetylation of p53 on the same site deacetylated by the Sir2 HDAC. Upon UV irradiation, ING1 causes cell cycle arrest and interacts with proliferating cell nuclear antigen to promote DNA repair or induce apoptosis in cells to prevent tumorigenesis depending upon the severity of DNA damage. It is very likely that, by linking DNA repair, apoptosis and chromatin remodeling to the transcriptional regulation of critical genes, ING1 exerts it tumor suppressor functions by helping maintain genomic stability. Therefore, ING proteins, which are down-regulated in a broad variety of cancer types, are able to restrict cell growth and proliferation, induce apoptosis, and modulate cell cycle progression, which strongly supports the notion that ING family proteins act as class II tumor suppressors.

  9. The effect of high pressure on the functional properties of pork myofibrillar proteins.

    PubMed

    Grossi, Alberto; Olsen, Karsten; Bolumar, Tomas; Rinnan, Åsmund; Øgendal, Lars H; Orlien, Vibeke

    2016-04-01

    Complementary methodologies were used to analyse the pressure-induced modification and functionality of myofibrillar proteins from pork meat pressurised at 200, 400, 600, or 800 MPa (10 min, 5 or 20 °C). Pressure at 400 MPa was found to be the threshold for loss of solubility, and the structural proteins, myosin and actin, lost their native solubility due to aggregation. The results from the extraction of proteins with different reagents targeting the disruption of specific molecular interactions suggested that pressure-induced aggregation was caused mainly by hydrogen bonding during pressurisation and not hydrophobic interactions nor disulphide cross-links. Furthermore, the soluble proteins were exposed to remarkable structural changes already at 200 MPa and lost their native functionality. The modification of the proteins in pressurised meat affected the water binding sites of the myofibrillar proteins and, thereby, the interactions between proteins and water molecules, and distribution between myofibrillar and extra-myofibrillar compartments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Decoding Mechanisms by which Silent Codon Changes Influence Protein Biogenesis and Function

    PubMed Central

    Bali, Vedrana; Bebok, Zsuzsanna

    2015-01-01

    Scope Synonymous codon usage has been a focus of investigation since the discovery of the genetic code and its redundancy. The occurrences of synonymous codons vary between species and within genes of the same genome, known as codon usage bias. Today, bioinformatics and experimental data allow us to compose a global view of the mechanisms by which the redundancy of the genetic code contributes to the complexity of biological systems from affecting survival in prokaryotes, to fine tuning the structure and function of proteins in higher eukaryotes. Studies analyzing the consequences of synonymous codon changes in different organisms have revealed that they impact nucleic acid stability, protein levels, structure and function without altering amino acid sequence. As such, synonymous mutations inevitably contribute to the pathogenesis of complex human diseases. Yet, fundamental questions remain unresolved regarding the impact of silent mutations in human disorders. In the present review we describe developments in this area concentrating on mechanisms by which synonymous mutations may affect protein function and human health. Purpose This synopsis illustrates the significance of synonymous mutations in disease pathogenesis. We review the different steps of gene expression affected by silent mutations, and assess the benefits and possible harmful effects of codon optimization applied in the development of therapeutic biologics. Physiological and medical relevance Understanding mechanisms by which synonymous mutations contribute to complex diseases such as cancer, neurodegeneration and genetic disorders, including the limitations of codon-optimized biologics, provides insight concerning interpretation of silent variants and future molecular therapies. PMID:25817479

  11. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARγ Expression and Activation in Differentiating Mesenchymal Stem Cells

    PubMed Central

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630

  12. J domain independent functions of J proteins.

    PubMed

    Ajit Tamadaddi, Chetana; Sahi, Chandan

    2016-07-01

    Heat shock proteins of 40 kDa (Hsp40s), also called J proteins, are obligate partners of Hsp70s. Via their highly conserved and functionally critical J domain, J proteins interact and modulate the activity of their Hsp70 partners. Mutations in the critical residues in the J domain often result in the null phenotype for the J protein in question. However, as more J proteins have been characterized, it is becoming increasingly clear that a significant number of J proteins do not "completely" rely on their J domains to carry out their cellular functions, as previously thought. In some cases, regions outside the highly conserved J domain have become more important making the J domain dispensable for some, if not for all functions of a J protein. This has profound effects on the evolution of such J proteins. Here we present selected examples of J proteins that perform J domain independent functions and discuss this in the context of evolution of J proteins with dispensable J domains and J-like proteins in eukaryotes.

  13. Unique and shared functions of nuclear lamina LEM domain proteins in Drosophila.

    PubMed

    Barton, Lacy J; Wilmington, Shameika R; Martin, Melinda J; Skopec, Hannah M; Lovander, Kaylee E; Pinto, Belinda S; Geyer, Pamela K

    2014-06-01

    The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins. Copyright © 2014 by the Genetics Society of America.

  14. Unique and Shared Functions of Nuclear Lamina LEM Domain Proteins in Drosophila

    PubMed Central

    Barton, Lacy J.; Wilmington, Shameika R.; Martin, Melinda J.; Skopec, Hannah M.; Lovander, Kaylee E.; Pinto, Belinda S.; Geyer, Pamela K.

    2014-01-01

    The nuclear lamina is an extensive protein network that contributes to nuclear structure and function. LEM domain (LAP2, emerin, MAN1 domain, LEM-D) proteins are components of the nuclear lamina, identified by a shared ∼45-amino-acid motif that binds Barrier-to-autointegration factor (BAF), a chromatin-interacting protein. Drosophila melanogaster has three nuclear lamina LEM-D proteins, named Otefin (Ote), Bocksbeutel (Bocks), and dMAN1. Although these LEM-D proteins are globally expressed, loss of either Ote or dMAN1 causes tissue-specific defects in adult flies that differ from each other. The reason for such distinct tissue-restricted defects is unknown. Here, we generated null alleles of bocks, finding that loss of Bocks causes no overt adult phenotypes. Next, we defined phenotypes associated with lem-d double mutants. Although the absence of individual LEM-D proteins does not affect viability, loss of any two proteins causes lethality. Mutant phenotypes displayed by lem-d double mutants differ from baf mutants, suggesting that BAF function is retained in animals with a single nuclear lamina LEM-D protein. Interestingly, lem-d double mutants displayed distinct developmental and cellular mutant phenotypes, suggesting that Drosophila LEM-D proteins have developmental functions that are differentially shared with other LEM-D family members. This conclusion is supported by studies showing that ectopically produced LEM-D proteins have distinct capacities to rescue the tissue-specific phenotypes found in single lem-d mutants. Our findings predict that cell-specific mutant phenotypes caused by loss of LEM-D proteins reflect both the constellation of LEM-D proteins within the nuclear lamina and the capacity of functional compensation of the remaining LEM-D proteins. PMID:24700158

  15. The Protein Interactome of Mycobacteriophage Giles Predicts Functions for Unknown Proteins.

    PubMed

    Mehla, Jitender; Dedrick, Rebekah M; Caufield, J Harry; Siefring, Rachel; Mair, Megan; Johnson, Allison; Hatfull, Graham F; Uetz, Peter

    2015-08-01

    Mycobacteriophages are viruses that infect mycobacterial hosts and are prevalent in the environment. Nearly 700 mycobacteriophage genomes have been completely sequenced, revealing considerable diversity and genetic novelty. Here, we have determined the protein complement of mycobacteriophage Giles by mass spectrometry and mapped its genome-wide protein interactome to help elucidate the roles of its 77 predicted proteins, 50% of which have no known function. About 22,000 individual yeast two-hybrid (Y2H) tests with four different Y2H vectors, followed by filtering and retest screens, resulted in 324 reproducible protein-protein interactions, including 171 (136 nonredundant) high-confidence interactions. The complete set of high-confidence interactions among Giles proteins reveals new mechanistic details and predicts functions for unknown proteins. The Giles interactome is the first for any mycobacteriophage and one of just five known phage interactomes so far. Our results will help in understanding mycobacteriophage biology and aid in development of new genetic and therapeutic tools to understand Mycobacterium tuberculosis. Mycobacterium tuberculosis causes over 9 million new cases of tuberculosis each year. Mycobacteriophages, viruses of mycobacterial hosts, hold considerable potential to understand phage diversity, evolution, and mycobacterial biology, aiding in the development of therapeutic tools to control mycobacterial infections. The mycobacteriophage Giles protein-protein interaction network allows us to predict functions for unknown proteins and shed light on major biological processes in phage biology. For example, Giles gp76, a protein of unknown function, is found to associate with phage packaging and maturation. The functions of mycobacteriophage-derived proteins may suggest novel therapeutic approaches for tuberculosis. Our ORFeome clone set of Giles proteins and the interactome data will be useful resources for phage interactomics. Copyright © 2015

  16. Inferring the Functions of Proteins from the Interrelationships between Functional Categories.

    PubMed

    Taha, Kamal

    2018-01-01

    This study proposes a new method to determine the functions of an unannotated protein. The proteins and amino acid residues mentioned in biomedical texts associated with an unannotated protein can be considered as characteristics terms for , which are highly predictive of the potential functions of . Similarly, proteins and amino acid residues mentioned in biomedical texts associated with proteins annotated with a functional category can be considered as characteristics terms of . We introduce in this paper an information extraction system called IFP_IFC that predicts the functions of an unannotated protein by representing and each functional category by a vector of weights. Each weight reflects the degree of association between a characteristic term and (or a characteristic term and ). First, IFP_IFC constructs a network, whose nodes represent the different functional categories, and its edges the interrelationships between the nodes. Then, it determines the functions of by employing random walks with restarts on the mentioned network. The walker is the vector of . Finally, is assigned to the functional categories of the nodes in the network that are visited most by the walker. We evaluated the quality of IFP_IFC by comparing it experimentally with two other systems. Results showed marked improvement.

  17. [Non-ciliary functions of cilia proteins].

    PubMed

    Taulet, Nicolas; Delaval, Bénédicte

    2014-11-01

    Cilia proteins have long been characterized for their role in cilia formation and function, and their implications in ciliopathies. However, several cellular defects induced by cilia proteins deregulation suggest that they could have non-ciliary roles. Indeed, several non-ciliary functions have been recently characterized for cilia proteins including roles in intra-cellular and in vesicular transport, in spindle orientation or in the maintenance of genomic stability. These observations thus raise the crucial question of the contribution of non-ciliary functions of cilia proteins to the pathological manifestations associated with ciliopathies such as polycystic kidney disease. © 2014 médecine/sciences – Inserm.

  18. Exploring the evolution of protein function in Archaea.

    PubMed

    Goncearenco, Alexander; Berezovsky, Igor N

    2012-05-30

    Despite recent progress in studies of the evolution of protein function, the questions what were the first functional protein domains and what were their basic building blocks remain unresolved. Previously, we introduced the concept of elementary functional loops (EFLs), which are the functional units of enzymes that provide elementary reactions in biochemical transformations. They are presumably descendants of primordial catalytic peptides. We analyzed distant evolutionary connections between protein functions in Archaea based on the EFLs comprising them. We show examples of the involvement of EFLs in new functional domains, as well as reutilization of EFLs and functional domains in building multidomain structures and protein complexes. Our analysis of the archaeal superkingdom yields the dominating mechanisms in different periods of protein evolution, which resulted in several levels of the organization of biochemical function. First, functional domains emerged as combinations of prebiotic peptides with the very basic functions, such as nucleotide/phosphate and metal cofactor binding. Second, domain recombination brought to the evolutionary scene the multidomain proteins and complexes. Later, reutilization and de novo design of functional domains and elementary functional loops complemented evolution of protein function.

  19. Role of selenium-containing proteins in T cell and macrophage function

    PubMed Central

    Carlson, Bradley A.; Yoo, Min-Hyuk; Shrimali, Rajeev K.; Irons, Robert; Gladyshev, Vadim N.; Hatfield, Dolph L.; Park, Jin Mo

    2011-01-01

    Synopsis Selenium has been known for many years to have a role in boosting immune function, but the manner in which this element acts at the molecular level in host defense and inflammatory diseases is poorly understood. To elucidate the role of selenium-containing proteins in immune function, we knocked out the expression of this protein class in T cells or macrophages of mice by targeting the removal of the selenocysteine tRNA gene using loxP-Cre technology. Mice with selenoprotein-less T cells manifested reduced pools of mature and functional T cells in lymphoid tissues and an impairment in T cell-dependent antibody responses. Furthermore, selenoprotein deficiency in T cells led to an inability of these cells to suppress reactive oxygen species (ROS) production, which in turn affected their ability to proliferate in response to T cell receptor stimulation. Selenoprotein-less macrophages, on the other hand, manifested mostly normal inflammatory responses, but this deficiency resulted in an altered regulation in extracellular matrix-related gene expression and a diminished migration of macrophages in a protein gel matrix. These observations provided novel insights into the role of selenoproteins in immune function and tissue homeostasis. PMID:20576203

  20. Assigning protein functions by comparative genome analysis protein phylogenetic profiles

    DOEpatents

    Pellegrini, Matteo; Marcotte, Edward M.; Thompson, Michael J.; Eisenberg, David; Grothe, Robert; Yeates, Todd O.

    2003-05-13

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  1. Proteins related to the functions of fibroblast-like synoviocytes identified by proteomic analysis.

    PubMed

    Zhang, Hui; Fan, Lie Ying; Zong, Ming; Sun, Li Shan; Lu, Liu

    2012-01-01

    It is well known that the fibroblast-like synoviocytes (FLS) play a key role in pathogenesis of rheumatoid arthritis (RA). This study was performed to separate the differentially expressed proteins of FLS from the patients with RA or osteoarthritis (OA) by two-dimensional electrophoresis (2-DE), and found proteins associated with the functions of FLS by mass spectrometry (MS). Total proteins were extracted and quantified from the primary cultured FLS from patients of RA (n=8) or OA (n=6). Proteins were separated by high-resolution 2-DE, and identified the differentially expressed proteins by MS. Western blot analyses was used to validated the expression of candidate proteins. The mRNA of these proteins was detected by semi-quantitative fluorescent PCR. There are 1147 protein spots from RA and 1324 protein spots from OA showed on 2-DE graphs, respectively. We have selected 84 protein spots for MS analysis, and 27 protein spots were successfully identified. We have found that protein isoaspartyl methyltransferase (PIMT) and pirin (iron-binding nuclear protein, PIR) with lower expression in RA, and thioredoxin 1(Trx-1) only expressed in RA may be associated with functions of FLS. Western Blot confirmed the expression of PIMT and pirin lower in RA, and Trx-1 expressed only in RA. The results of semi-quantitative fluorescent PCR are also consistent with 2-DE graphs. PIMT, pirin and Trx-1 affect the functions of FLS in some style and can be the drug targets of RA.

  2. Does soy protein affect circulating levels of unbound IGF-1?

    PubMed

    Messina, Mark; Magee, Pamela

    2018-03-01

    Despite the enormous amount of research that has been conducted on the role of soyfoods in the prevention and treatment of chronic disease, the mechanisms by which soy exerts its physiological effects are not fully understood. The clinical data show that neither soyfoods nor soy protein nor isoflavones affect circulating levels of reproductive hormones in men or women. However, some research suggests that soy protein, but not isoflavones, affects insulin-like growth factor I (IGF-1). Since IGF-1 may have wide-ranging physiological effects, we sought to determine the effect of soy protein on IGF-1 and its major binding protein insulin-like growth factor-binding protein (IGFBP-3). Six clinical studies were identified that compared soy protein with a control protein, albeit only two studies measured IGFBP-3 in addition to IGF-1. Although the data are difficult to interpret because of the different experimental designs employed, there is some evidence that large amounts of soy protein (>25 g/day) modestly increase IGF-1 levels above levels observed with the control protein. The clinical data suggest that a decision to incorporate soy into the diet should not be based on its possible effects on IGF-1.

  3. Biochemical and Functional Analysis of Drosophila-Sciara Chimeric Sex-Lethal Proteins

    PubMed Central

    Ruiz, María Fernanda; Sarno, Francesca; Zorrilla, Silvia; Rivas, Germán; Sánchez, Lucas

    2013-01-01

    Background The Drosophila SXL protein controls sex determination and dosage compensation. It is a sex-specific factor controlling splicing of its own Sxl pre-mRNA (auto-regulation), tra pre-mRNA (sex determination) and msl-2 pre-mRNA plus translation of msl-2 mRNA (dosage compensation). Outside the drosophilids, the same SXL protein has been found in both sexes so that, in the non-drosophilids, SXL does not appear to play the key discriminating role in sex determination and dosage compensation that it plays in Drosophila. Comparison of SXL proteins revealed that its spatial organisation is conserved, with the RNA-binding domains being highly conserved, whereas the N- and C-terminal domains showing significant variation. This manuscript focuses on the evolution of the SXL protein itself and not on regulation of its expression. Methodology Drosophila-Sciara chimeric SXL proteins were produced. Sciara SXL represents the non-sex-specific function of ancient SXL in the non-drosophilids from which presumably Drosophila SXL evolved. Two questions were addressed. Did the Drosophila SXL protein have affected their functions when their N- and C-terminal domains were replaced by the corresponding ones of Sciara? Did the Sciara SXL protein acquire Drosophila sex-specific functions when the Drosophila N- and C-terminal domains replaced those of Sciara? The chimeric SXL proteins were analysed in vitro to study their binding affinity and cooperative properties, and in vivo to analyse their effect on sex determination and dosage compensation by producing Drosophila flies that were transgenic for the chimeric SXL proteins. Conclusions The sex-specific properties of extant Drosophila SXL protein depend on its global structure rather than on a specific domain. This implies that the modifications, mainly in the N- and C-terminal domains, that occurred in the SXL protein during its evolution within the drosophilid lineage represent co-evolutionary changes that determine the appropriate

  4. Composition and functionality of whey protein phospholipid concentrate and delactosed permeate.

    PubMed

    Levin, M A; Burrington, K J; Hartel, R W

    2016-09-01

    Whey protein phospholipid concentrate (WPPC) and delactosed permeate (DLP) are 2 coproducts of cheese whey processing that are currently underused. Past research has shown that WPPC and DLP can be used together as a functional dairy ingredient in foods such as ice cream, soup, and caramel. However, the scope of the research has been limited to 1 WPPC supplier. The objective of this research was to fully characterize a range of WPPC. Four WPPC samples and 1 DLP sample were analyzed for chemical composition and functionality. This analysis showed that WPPC composition was highly variable between suppliers and lots. In addition, the functionality of the WPPC varies depending on the supplier and testing pH, and cannot be correlated with fat or protein content because of differences in processing. The addition of DLP to WPPC affects functionality. In general, WPPC has a high water-holding capacity, is relatively heat stable, has low foamability, and does not aid in emulsion stability. The gel strength and texture are highly dependent on the amount of protein. To be able to use these 2 dairy products, the composition and functionality must be fully understood. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. Predicting protein functions from redundancies in large-scale protein interaction networks

    NASA Technical Reports Server (NTRS)

    Samanta, Manoj Pratim; Liang, Shoudan

    2003-01-01

    Interpreting data from large-scale protein interaction experiments has been a challenging task because of the widespread presence of random false positives. Here, we present a network-based statistical algorithm that overcomes this difficulty and allows us to derive functions of unannotated proteins from large-scale interaction data. Our algorithm uses the insight that if two proteins share significantly larger number of common interaction partners than random, they have close functional associations. Analysis of publicly available data from Saccharomyces cerevisiae reveals >2,800 reliable functional associations, 29% of which involve at least one unannotated protein. By further analyzing these associations, we derive tentative functions for 81 unannotated proteins with high certainty. Our method is not overly sensitive to the false positives present in the data. Even after adding 50% randomly generated interactions to the measured data set, we are able to recover almost all (approximately 89%) of the original associations.

  6. Sequence patterns mediating functions of disordered proteins.

    PubMed

    Exarchos, Konstantinos P; Kourou, Konstantina; Exarchos, Themis P; Papaloukas, Costas; Karamouzis, Michalis V; Fotiadis, Dimitrios I

    2015-01-01

    Disordered proteins lack specific 3D structure in their native state and have been implicated with numerous cellular functions as well as with the induction of severe diseases, e.g., cardiovascular and neurodegenerative diseases as well as diabetes. Due to their conformational flexibility they are often found to interact with a multitude of protein molecules; this one-to-many interaction which is vital for their versatile functioning involves short consensus protein sequences, which are normally detected using slow and cumbersome experimental procedures. In this work we exploit information from disorder-oriented protein interaction networks focused specifically on humans, in order to assemble, by means of overrepresentation, a set of sequence patterns that mediate the functioning of disordered proteins; hence, we are able to identify how a single protein achieves such functional promiscuity. Next, we study the sequential characteristics of the extracted patterns, which exhibit a striking preference towards a very limited subset of amino acids; specifically, residues leucine, glutamic acid, and serine are particularly frequent among the extracted patterns, and we also observe a nontrivial propensity towards alanine and glycine. Furthermore, based on the extracted patterns we set off to infer potential functional implications in order to verify our findings and potentially further extrapolate our knowledge regarding the functioning of disordered proteins. We observe that the extracted patterns are primarily involved with regulation, binding and posttranslational modifications, which constitute the most prominent functions of disordered proteins.

  7. Green fluorescent protein nanopolygons as monodisperse supramolecular assemblies of functional proteins with defined valency

    PubMed Central

    Kim, Young Eun; Kim, Yu-na; Kim, Jung A.; Kim, Ho Min; Jung, Yongwon

    2015-01-01

    Supramolecular protein assemblies offer novel nanoscale architectures with molecular precision and unparalleled functional diversity. A key challenge, however, is to create precise nano-assemblies of functional proteins with both defined structures and a controlled number of protein-building blocks. Here we report a series of supramolecular green fluorescent protein oligomers that are assembled in precise polygonal geometries and prepared in a monodisperse population. Green fluorescent protein is engineered to be self-assembled in cells into oligomeric assemblies that are natively separated in a single-protein resolution by surface charge manipulation, affording monodisperse protein (nano)polygons from dimer to decamer. Several functional proteins are multivalently displayed on the oligomers with controlled orientations. Spatial arrangements of protein oligomers and displayed functional proteins are directly visualized by a transmission electron microscope. By employing our functional protein assemblies, we provide experimental insight into multivalent protein–protein interactions and tools to manipulate receptor clustering on live cell surfaces. PMID:25972078

  8. Functions of intrinsic disorder in transmembrane proteins.

    PubMed

    Kjaergaard, Magnus; Kragelund, Birthe B

    2017-09-01

    Intrinsic disorder is common in integral membrane proteins, particularly in the intracellular domains. Despite this observation, these domains are not always recognized as being disordered. In this review, we will discuss the biological functions of intrinsically disordered regions of membrane proteins, and address why the flexibility afforded by disorder is mechanistically important. Intrinsically disordered regions are present in many common classes of membrane proteins including ion channels and transporters; G-protein coupled receptors (GPCRs), receptor tyrosine kinases and cytokine receptors. The functions of the disordered regions are many and varied. We will discuss selected examples including: (1) Organization of receptors, kinases, phosphatases and second messenger sources into signaling complexes. (2) Modulation of the membrane-embedded domain function by ball-and-chain like mechanisms. (3) Trafficking of membrane proteins. (4) Transient membrane associations. (5) Post-translational modifications most notably phosphorylation and (6) disorder-linked isoform dependent function. We finish the review by discussing the future challenges facing the membrane protein community regarding protein disorder.

  9. Regulation, Signaling, and Physiological Functions of G-Proteins.

    PubMed

    Syrovatkina, Viktoriya; Alegre, Kamela O; Dey, Raja; Huang, Xin-Yun

    2016-09-25

    Heterotrimeric guanine-nucleotide-binding regulatory proteins (G-proteins) mainly relay the information from G-protein-coupled receptors (GPCRs) on the plasma membrane to the inside of cells to regulate various biochemical functions. Depending on the targeted cell types, tissues, and organs, these signals modulate diverse physiological functions. The basic schemes of heterotrimeric G-proteins have been outlined. In this review, we briefly summarize what is known about the regulation, signaling, and physiological functions of G-proteins. We then focus on a few less explored areas such as the regulation of G-proteins by non-GPCRs and the physiological functions of G-proteins that cannot be easily explained by the known G-protein signaling pathways. There are new signaling pathways and physiological functions for G-proteins to be discovered and further interrogated. With the advancements in structural and computational biological techniques, we are closer to having a better understanding of how G-proteins are regulated and of the specificity of G-protein interactions with their regulators. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Functional proteomics of nonalcoholic steatohepatitis: Mitochondrial proteins as targets of S-adenosylmethionine

    PubMed Central

    Santamaría, Enrique; Avila, Matías A.; Latasa, M. Ujue; Rubio, Angel; Martín-Duce, Antonio; Lu, Shelly C.; Mato, José M.; Corrales, Fernando J.

    2003-01-01

    Recent work shows that S-adenosylmethionine (AdoMet) helps maintain normal liver function as chronic hepatic deficiency results in spontaneous development of steatohepatitis and hepatocellular carcinoma. The mechanisms by which these nontraditional functions of AdoMet occur are unknown. Here, we use knockout mice deficient in hepatic AdoMet synthesis (MAT1A−/−) to study the proteome of the liver during the development of steatohepatitis. One hundred and seventeen protein spots, differentially expressed during the development of steatohepatitis, were selected and identified by peptide mass fingerprinting. Among them, 12 proteins were found to be affected from birth, when MAT1A−/− expression is switched on in WT mouse liver, to the rise of histological lesions, which occurs at ≈8 months. Of the 12 proteins, 4 [prohibitin 1 (PHB1), cytochrome c oxidase I and II, and ATPase β-subunit] have known roles in mitochondrial function. We show that the alteration in expression of PHB1 correlates with a loss of mitochondrial function. Experiments in isolated rat hepatocytes indicate that AdoMet regulates PHB1 content, thus suggesting ways by which steatohepatitis may be induced. Importantly, we found the expression of these mitochondrial proteins was abnormal in ob/ob mice and obese patients who are at risk for nonalcoholic steatohepatitis. PMID:12631701

  11. A traveling salesman approach for predicting protein functions.

    PubMed

    Johnson, Olin; Liu, Jing

    2006-10-12

    Protein-protein interaction information can be used to predict unknown protein functions and to help study biological pathways. Here we present a new approach utilizing the classic Traveling Salesman Problem to study the protein-protein interactions and to predict protein functions in budding yeast Saccharomyces cerevisiae. We apply the global optimization tool from combinatorial optimization algorithms to cluster the yeast proteins based on the global protein interaction information. We then use this clustering information to help us predict protein functions. We use our algorithm together with the direct neighbor algorithm 1 on characterized proteins and compare the prediction accuracy of the two methods. We show our algorithm can produce better predictions than the direct neighbor algorithm, which only considers the immediate neighbors of the query protein. Our method is a promising one to be used as a general tool to predict functions of uncharacterized proteins and a successful sample of using computer science knowledge and algorithms to study biological problems.

  12. A traveling salesman approach for predicting protein functions

    PubMed Central

    Johnson, Olin; Liu, Jing

    2006-01-01

    Background Protein-protein interaction information can be used to predict unknown protein functions and to help study biological pathways. Results Here we present a new approach utilizing the classic Traveling Salesman Problem to study the protein-protein interactions and to predict protein functions in budding yeast Saccharomyces cerevisiae. We apply the global optimization tool from combinatorial optimization algorithms to cluster the yeast proteins based on the global protein interaction information. We then use this clustering information to help us predict protein functions. We use our algorithm together with the direct neighbor algorithm [1] on characterized proteins and compare the prediction accuracy of the two methods. We show our algorithm can produce better predictions than the direct neighbor algorithm, which only considers the immediate neighbors of the query protein. Conclusion Our method is a promising one to be used as a general tool to predict functions of uncharacterized proteins and a successful sample of using computer science knowledge and algorithms to study biological problems. PMID:17147783

  13. PIGN prevents protein aggregation in the endoplasmic reticulum independently of its function in the GPI synthesis.

    PubMed

    Ihara, Shinji; Nakayama, Sohei; Murakami, Yoshiko; Suzuki, Emiko; Asakawa, Masayo; Kinoshita, Taroh; Sawa, Hitoshi

    2017-02-01

    Quality control of proteins in the endoplasmic reticulum (ER) is essential for ensuring the integrity of secretory proteins before their release into the extracellular space. Secretory proteins that fail to pass quality control form aggregates. Here we show the PIGN-1/PIGN is required for quality control in Caenorhabditis elegans and in mammalian cells. In C. elegans pign-1 mutants, several proteins fail to be secreted and instead form abnormal aggregation. PIGN-knockout HEK293 cells also showed similar protein aggregation. Although PIGN-1/PIGN is responsible for glycosylphosphatidylinositol (GPI)-anchor biosynthesis in the ER, certain mutations in C. elegans pign-1 caused protein aggregation in the ER without affecting GPI-anchor biosynthesis. These results show that PIGN-1/PIGN has a conserved and non-canonical function to prevent deleterious protein aggregation in the ER independently of the GPI-anchor biosynthesis. PIGN is a causative gene for some human diseases including multiple congenital seizure-related syndrome (MCAHS1). Two pign-1 mutations created by CRISPR/Cas9 that correspond to MCAHS1 also cause protein aggregation in the ER, implying that the dysfunction of the PIGN non-canonical function might affect symptoms of MCAHS1 and potentially those of other diseases. © 2017. Published by The Company of Biologists Ltd.

  14. UET: a database of evolutionarily-predicted functional determinants of protein sequences that cluster as functional sites in protein structures.

    PubMed

    Lua, Rhonald C; Wilson, Stephen J; Konecki, Daniel M; Wilkins, Angela D; Venner, Eric; Morgan, Daniel H; Lichtarge, Olivier

    2016-01-04

    The structure and function of proteins underlie most aspects of biology and their mutational perturbations often cause disease. To identify the molecular determinants of function as well as targets for drugs, it is central to characterize the important residues and how they cluster to form functional sites. The Evolutionary Trace (ET) achieves this by ranking the functional and structural importance of the protein sequence positions. ET uses evolutionary distances to estimate functional distances and correlates genotype variations with those in the fitness phenotype. Thus, ET ranks are worse for sequence positions that vary among evolutionarily closer homologs but better for positions that vary mostly among distant homologs. This approach identifies functional determinants, predicts function, guides the mutational redesign of functional and allosteric specificity, and interprets the action of coding sequence variations in proteins, people and populations. Now, the UET database offers pre-computed ET analyses for the protein structure databank, and on-the-fly analysis of any protein sequence. A web interface retrieves ET rankings of sequence positions and maps results to a structure to identify functionally important regions. This UET database integrates several ways of viewing the results on the protein sequence or structure and can be found at http://mammoth.bcm.tmc.edu/uet/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Protein function in precision medicine: deep understanding with machine learning.

    PubMed

    Rost, Burkhard; Radivojac, Predrag; Bromberg, Yana

    2016-08-01

    Precision medicine and personalized health efforts propose leveraging complex molecular, medical and family history, along with other types of personal data toward better life. We argue that this ambitious objective will require advanced and specialized machine learning solutions. Simply skimming some low-hanging results off the data wealth might have limited potential. Instead, we need to better understand all parts of the system to define medically relevant causes and effects: how do particular sequence variants affect particular proteins and pathways? How do these effects, in turn, cause the health or disease-related phenotype? Toward this end, deeper understanding will not simply diffuse from deeper machine learning, but from more explicit focus on understanding protein function, context-specific protein interaction networks, and impact of variation on both. © 2016 Federation of European Biochemical Societies.

  16. Rosetta stone method for detecting protein function and protein-protein interactions from genome sequences

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Pellegrini, Matteo; Thompson, Michael J.; Yeates, Todd O.

    2002-10-15

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  17. Structural symmetry and protein function.

    PubMed

    Goodsell, D S; Olson, A J

    2000-01-01

    The majority of soluble and membrane-bound proteins in modern cells are symmetrical oligomeric complexes with two or more subunits. The evolutionary selection of symmetrical oligomeric complexes is driven by functional, genetic, and physicochemical needs. Large proteins are selected for specific morphological functions, such as formation of rings, containers, and filaments, and for cooperative functions, such as allosteric regulation and multivalent binding. Large proteins are also more stable against denaturation and have a reduced surface area exposed to solvent when compared with many individual, smaller proteins. Large proteins are constructed as oligomers for reasons of error control in synthesis, coding efficiency, and regulation of assembly. Symmetrical oligomers are favored because of stability and finite control of assembly. Several functions limit symmetry, such as interaction with DNA or membranes, and directional motion. Symmetry is broken or modified in many forms: quasisymmetry, in which identical subunits adopt similar but different conformations; pleomorphism, in which identical subunits form different complexes; pseudosymmetry, in which different molecules form approximately symmetrical complexes; and symmetry mismatch, in which oligomers of different symmetries interact along their respective symmetry axes. Asymmetry is also observed at several levels. Nearly all complexes show local asymmetry at the level of side chain conformation. Several complexes have reciprocating mechanisms in which the complex is asymmetric, but, over time, all subunits cycle through the same set of conformations. Global asymmetry is only rarely observed. Evolution of oligomeric complexes may favor the formation of dimers over complexes with higher cyclic symmetry, through a mechanism of prepositioned pairs of interacting residues. However, examples have been found for all of the crystallographic point groups, demonstrating that functional need can drive the evolution of

  18. Self-Assembled Materials Made from Functional Recombinant Proteins.

    PubMed

    Jang, Yeongseon; Champion, Julie A

    2016-10-18

    Proteins are potent molecules that can be used as therapeutics, sensors, and biocatalysts with many advantages over small-molecule counterparts due to the specificity of their activity based on their amino acid sequence and folded three-dimensional structure. However, they also have significant limitations in their stability, localization, and recovery when used in soluble form. These opportunities and challenges have motivated the creation of materials from such functional proteins in order to protect and present them in a way that enhances their function. We have designed functional recombinant fusion proteins capable of self-assembling into materials with unique structures that maintain or improve the functionality of the protein. Fusion of either a functional protein or an assembly domain to a leucine zipper domain makes the materials design strategy modular, based on the high affinity between leucine zippers. The self-assembly domains, including elastin-like polypeptides (ELPs) and defined-sequence random coil polypeptides, can be fused with a leucine zipper motif in order to promote assembly of the fusion proteins into larger structures upon specific stimuli such as temperature and ionic strength. Fusion of other functional domains with the counterpart leucine zipper motif endows the self-assembled materials with protein-specific functions such as fluorescence or catalytic activity. In this Account, we describe several examples of materials assembled from functional fusion proteins as well as the structural characterization, functionality, and understanding of the assembly mechanism. The first example is zipper fusion proteins containing ELPs that assemble into particles when introduced to a model extracellular matrix and subsequently disassemble over time to release the functional protein for drug delivery applications. Under different conditions, the same fusion proteins can self-assemble into hollow vesicles. The vesicles display a functional protein on

  19. Roles for text mining in protein function prediction.

    PubMed

    Verspoor, Karin M

    2014-01-01

    The Human Genome Project has provided science with a hugely valuable resource: the blueprints for life; the specification of all of the genes that make up a human. While the genes have all been identified and deciphered, it is proteins that are the workhorses of the human body: they are essential to virtually all cell functions and are the primary mechanism through which biological function is carried out. Hence in order to fully understand what happens at a molecular level in biological organisms, and eventually to enable development of treatments for diseases where some aspect of a biological system goes awry, we must understand the functions of proteins. However, experimental characterization of protein function cannot scale to the vast amount of DNA sequence data now available. Computational protein function prediction has therefore emerged as a problem at the forefront of modern biology (Radivojac et al., Nat Methods 10(13):221-227, 2013).Within the varied approaches to computational protein function prediction that have been explored, there are several that make use of biomedical literature mining. These methods take advantage of information in the published literature to associate specific proteins with specific protein functions. In this chapter, we introduce two main strategies for doing this: association of function terms, represented as Gene Ontology terms (Ashburner et al., Nat Genet 25(1):25-29, 2000), to proteins based on information in published articles, and a paradigm called LEAP-FS (Literature-Enhanced Automated Prediction of Functional Sites) in which literature mining is used to validate the predictions of an orthogonal computational protein function prediction method.

  20. [The effect of substance P on functional proteins in human neutrophil].

    PubMed

    Yang, Lin; Fa, Xiang-guang

    2002-02-01

    To explore the effect of substance P (SP) on the functional proteins on plasma membrane of neutrophil (Np). The response of Np to SP was examined by measuring the level of respiratory burst, the activities of ACP and ALP, the fluoroscopy intensity of CR3, CD45 and FM-LP. It was found that SP could increase respiratory burst of Np, decrease the activity of acid phosphatase (ACP), but had no effect on alkaline phosphatase (ALP). SP could also promote the amount of CD45, complement receptor type 3 (CR3) and N-Formyl-Met-Leu-Phe (FMLP) receptors. The results showed that the effects of SP on functional proteins in human Np membrane were universality and diversity. It implied that SP could affect various inflammation responses in Np.

  1. Genome-Wide Protein Interaction Screens Reveal Functional Networks Involving Sm-Like Proteins

    PubMed Central

    Fromont-Racine, Micheline; Mayes, Andrew E.; Brunet-Simon, Adeline; Rain, Jean-Christophe; Colley, Alan; Dix, Ian; Decourty, Laurence; Joly, Nicolas; Ricard, Florence; Beggs, Jean D.

    2000-01-01

    A set of seven structurally related Sm proteins forms the core of the snRNP particles containing the spliceosomal U1, U2, U4 and U5 snRNAs. A search of the genomic sequence of Saccharomyces cerevisiae has identified a number of open reading frames that potentially encode structurally similar proteins termed Lsm (Like Sm) proteins. With the aim of analysing all possible interactions between the Lsm proteins and any protein encoded in the yeast genome, we performed exhaustive and iterative genomic two-hybrid screens, starting with the Lsm proteins as baits. Indeed, extensive interactions amongst eight Lsm proteins were found that suggest the existence of a Lsm complex or complexes. These Lsm interactions apparently involve the conserved Sm domain that also mediates interactions between the Sm proteins. The screens also reveal functionally significant interactions with splicing factors, in particular with Prp4 and Prp24, compatible with genetic studies and with the reported association of Lsm proteins with spliceosomal U6 and U4/U6 particles. In addition, interactions with proteins involved in mRNA turnover, such as Mrt1, Dcp1, Dcp2 and Xrn1, point to roles for Lsm complexes in distinct RNA metabolic processes, that are confirmed in independent functional studies. These results provide compelling evidence that two-hybrid screens yield functionally meaningful information about protein–protein interactions and can suggest functions for uncharacterized proteins, especially when they are performed on a genome-wide scale. PMID:10900456

  2. Insights into Hox protein function from a large scale combinatorial analysis of protein domains.

    PubMed

    Merabet, Samir; Litim-Mecheri, Isma; Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-10-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences.

  3. Insights into Hox Protein Function from a Large Scale Combinatorial Analysis of Protein Domains

    PubMed Central

    Karlsson, Daniel; Dixit, Richa; Saadaoui, Mehdi; Monier, Bruno; Brun, Christine; Thor, Stefan; Vijayraghavan, K.; Perrin, Laurent; Pradel, Jacques; Graba, Yacine

    2011-01-01

    Protein function is encoded within protein sequence and protein domains. However, how protein domains cooperate within a protein to modulate overall activity and how this impacts functional diversification at the molecular and organism levels remains largely unaddressed. Focusing on three domains of the central class Drosophila Hox transcription factor AbdominalA (AbdA), we used combinatorial domain mutations and most known AbdA developmental functions as biological readouts to investigate how protein domains collectively shape protein activity. The results uncover redundancy, interactivity, and multifunctionality of protein domains as salient features underlying overall AbdA protein activity, providing means to apprehend functional diversity and accounting for the robustness of Hox-controlled developmental programs. Importantly, the results highlight context-dependency in protein domain usage and interaction, allowing major modifications in domains to be tolerated without general functional loss. The non-pleoitropic effect of domain mutation suggests that protein modification may contribute more broadly to molecular changes underlying morphological diversification during evolution, so far thought to rely largely on modification in gene cis-regulatory sequences. PMID:22046139

  4. Evolution-Based Functional Decomposition of Proteins

    PubMed Central

    Rivoire, Olivier; Reynolds, Kimberly A.; Ranganathan, Rama

    2016-01-01

    The essential biological properties of proteins—folding, biochemical activities, and the capacity to adapt—arise from the global pattern of interactions between amino acid residues. The statistical coupling analysis (SCA) is an approach to defining this pattern that involves the study of amino acid coevolution in an ensemble of sequences comprising a protein family. This approach indicates a functional architecture within proteins in which the basic units are coupled networks of amino acids termed sectors. This evolution-based decomposition has potential for new understandings of the structural basis for protein function. To facilitate its usage, we present here the principles and practice of the SCA and introduce new methods for sector analysis in a python-based software package (pySCA). We show that the pattern of amino acid interactions within sectors is linked to the divergence of functional lineages in a multiple sequence alignment—a model for how sector properties might be differentially tuned in members of a protein family. This work provides new tools for studying proteins and for generally testing the concept of sectors as the principal units of function and adaptive variation. PMID:27254668

  5. Quantitative protein localization signatures reveal an association between spatial and functional divergences of proteins.

    PubMed

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-03-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  6. Quantitative Protein Localization Signatures Reveal an Association between Spatial and Functional Divergences of Proteins

    PubMed Central

    Loo, Lit-Hsin; Laksameethanasan, Danai; Tung, Yi-Ling

    2014-01-01

    Protein subcellular localization is a major determinant of protein function. However, this important protein feature is often described in terms of discrete and qualitative categories of subcellular compartments, and therefore it has limited applications in quantitative protein function analyses. Here, we present Protein Localization Analysis and Search Tools (PLAST), an automated analysis framework for constructing and comparing quantitative signatures of protein subcellular localization patterns based on microscopy images. PLAST produces human-interpretable protein localization maps that quantitatively describe the similarities in the localization patterns of proteins and major subcellular compartments, without requiring manual assignment or supervised learning of these compartments. Using the budding yeast Saccharomyces cerevisiae as a model system, we show that PLAST is more accurate than existing, qualitative protein localization annotations in identifying known co-localized proteins. Furthermore, we demonstrate that PLAST can reveal protein localization-function relationships that are not obvious from these annotations. First, we identified proteins that have similar localization patterns and participate in closely-related biological processes, but do not necessarily form stable complexes with each other or localize at the same organelles. Second, we found an association between spatial and functional divergences of proteins during evolution. Surprisingly, as proteins with common ancestors evolve, they tend to develop more diverged subcellular localization patterns, but still occupy similar numbers of compartments. This suggests that divergence of protein localization might be more frequently due to the development of more specific localization patterns over ancestral compartments than the occupation of new compartments. PLAST enables systematic and quantitative analyses of protein localization-function relationships, and will be useful to elucidate protein

  7. Scoring functions for protein-protein interactions.

    PubMed

    Moal, Iain H; Moretti, Rocco; Baker, David; Fernández-Recio, Juan

    2013-12-01

    The computational evaluation of protein-protein interactions will play an important role in organising the wealth of data being generated by high-throughput initiatives. Here we discuss future applications, report recent developments and identify areas requiring further investigation. Many functions have been developed to quantify the structural and energetic properties of interacting proteins, finding use in interrelated challenges revolving around the relationship between sequence, structure and binding free energy. These include loop modelling, side-chain refinement, docking, multimer assembly, affinity prediction, affinity change upon mutation, hotspots location and interface design. Information derived from models optimised for one of these challenges can be used to benefit the others, and can be unified within the theoretical frameworks of multi-task learning and Pareto-optimal multi-objective learning. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Modular protein domains: an engineering approach toward functional biomaterials.

    PubMed

    Lin, Charng-Yu; Liu, Julie C

    2016-08-01

    Protein domains and peptide sequences are a powerful tool for conferring specific functions to engineered biomaterials. Protein sequences with a wide variety of functionalities, including structure, bioactivity, protein-protein interactions, and stimuli responsiveness, have been identified, and advances in molecular biology continue to pinpoint new sequences. Protein domains can be combined to make recombinant proteins with multiple functionalities. The high fidelity of the protein translation machinery results in exquisite control over the sequence of recombinant proteins and the resulting properties of protein-based materials. In this review, we discuss protein domains and peptide sequences in the context of functional protein-based materials, composite materials, and their biological applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. cncRNAs: Bi-functional RNAs with protein coding and non-coding functions

    PubMed Central

    Kumari, Pooja; Sampath, Karuna

    2015-01-01

    For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as ‘cncRNAs’, have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions. PMID:26498036

  10. Recognition of functional sites in protein structures.

    PubMed

    Shulman-Peleg, Alexandra; Nussinov, Ruth; Wolfson, Haim J

    2004-06-04

    Recognition of regions on the surface of one protein, that are similar to a binding site of another is crucial for the prediction of molecular interactions and for functional classifications. We first describe a novel method, SiteEngine, that assumes no sequence or fold similarities and is able to recognize proteins that have similar binding sites and may perform similar functions. We achieve high efficiency and speed by introducing a low-resolution surface representation via chemically important surface points, by hashing triangles of physico-chemical properties and by application of hierarchical scoring schemes for a thorough exploration of global and local similarities. We proceed to rigorously apply this method to functional site recognition in three possible ways: first, we search a given functional site on a large set of complete protein structures. Second, a potential functional site on a protein of interest is compared with known binding sites, to recognize similar features. Third, a complete protein structure is searched for the presence of an a priori unknown functional site, similar to known sites. Our method is robust and efficient enough to allow computationally demanding applications such as the first and the third. From the biological standpoint, the first application may identify secondary binding sites of drugs that may lead to side-effects. The third application finds new potential sites on the protein that may provide targets for drug design. Each of the three applications may aid in assigning a function and in classification of binding patterns. We highlight the advantages and disadvantages of each type of search, provide examples of large-scale searches of the entire Protein Data Base and make functional predictions.

  11. Decreased function of survival motor neuron protein impairs endocytic pathways

    PubMed Central

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S.; O’Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C. Q.; Cook, Steven J.; Poulogiannis, George; Atwood, Walter J.; Hall, David H.; Hart, Anne C.

    2016-01-01

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death. PMID:27402754

  12. Decreased function of survival motor neuron protein impairs endocytic pathways.

    PubMed

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S; O'Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C Q; Cook, Steven J; Poulogiannis, George; Atwood, Walter J; Hall, David H; Hart, Anne C

    2016-07-26

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death.

  13. Functional proteomic and interactome analysis of proteins associated with beef tenderness in angus cattle

    USDA-ARS?s Scientific Manuscript database

    Beef is a source of high quality protein for the human population, and beef tenderness has significant influence on beef palatability, consumer expectation and industry profitability. To further elucidate the factors affecting beef tenderness, functional proteomics and bioinformatics interactome ana...

  14. Identification and quantitative analysis of cellular proteins affected by treatment with withaferin a using a SILAC-based proteomics approach.

    PubMed

    Narayan, Malathi; Seeley, Kent W; Jinwal, Umesh K

    2015-12-04

    Withaferin A (WA) is a major bioactive compound isolated from the medicinal plant Withania somnifera Dunal, also known as "Ashwagandha". A number of published reports suggest various uses for WA including its function as an anti-inflammatory and anti-angiogenic drug molecule. The effects of WA at the molecular level in a cellular environment are not well understood. Knowledge of the molecular mechanism of action of WA could enhance its therapeutic value and may reveal novel pathways it may modulate. In order to identify and characterize proteins affected by treatment with WA, we used SILAC- based proteomics analysis on a mouse microglial cell line (N9), which replicates phenotypic characteristics of primary microglial cells. Using stable isotope labeling of amino acids in cell culture (SILAC) and mass spectrometry (MS), a total of 2300 unique protein groups were identified from three biological replicates, with significant expression changes in 32 non-redundant proteins. The top biological functions associated with these differentially expressed proteins include cell death and survival, free radical scavenging, and carbohydrate metabolism. Specifically, several heat shock proteins (Hsps) were found to be upregulated, which suggests that the chaperonic machinery might be regulated by WA. Furthermore, our study revealed several novel protein molecules that were not previously reported to be affected by WA. Among them, annexin A1, a key anti-inflammatory molecule in microglial cells was found to be downregulated. Hsc70, Hsp90α and Hsp105 were found to be upregulated. We also found sequestosome1/p62 (p62) to be upregulated. We performed Ingenuity Pathway Analysis (IPA) and found a number of pathways that were affected by WA treatment. SILAC-based proteomics analysis of a microglial cell model revealed several novel proteins whose expression is regulated by WA and probable pathways regulated by WA. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. Robust scoring functions for protein-ligand interactions with quantum chemical charge models.

    PubMed

    Wang, Jui-Chih; Lin, Jung-Hsin; Chen, Chung-Ming; Perryman, Alex L; Olson, Arthur J

    2011-10-24

    Ordinary least-squares (OLS) regression has been used widely for constructing the scoring functions for protein-ligand interactions. However, OLS is very sensitive to the existence of outliers, and models constructed using it are easily affected by the outliers or even the choice of the data set. On the other hand, determination of atomic charges is regarded as of central importance, because the electrostatic interaction is known to be a key contributing factor for biomolecular association. In the development of the AutoDock4 scoring function, only OLS was conducted, and the simple Gasteiger method was adopted. It is therefore of considerable interest to see whether more rigorous charge models could improve the statistical performance of the AutoDock4 scoring function. In this study, we have employed two well-established quantum chemical approaches, namely the restrained electrostatic potential (RESP) and the Austin-model 1-bond charge correction (AM1-BCC) methods, to obtain atomic partial charges, and we have compared how different charge models affect the performance of AutoDock4 scoring functions. In combination with robust regression analysis and outlier exclusion, our new protein-ligand free energy regression model with AM1-BCC charges for ligands and Amber99SB charges for proteins achieve lowest root-mean-squared error of 1.637 kcal/mol for the training set of 147 complexes and 2.176 kcal/mol for the external test set of 1427 complexes. The assessment for binding pose prediction with the 100 external decoy sets indicates very high success rate of 87% with the criteria of predicted root-mean-squared deviation of less than 2 Å. The success rates and statistical performance of our robust scoring functions are only weakly class-dependent (hydrophobic, hydrophilic, or mixed).

  16. Plant protein and animal proteins: do they differentially affect cardiovascular disease risk?

    PubMed

    Richter, Chesney K; Skulas-Ray, Ann C; Champagne, Catherine M; Kris-Etherton, Penny M

    2015-11-01

    Proteins from plant-based compared with animal-based food sources may have different effects on cardiovascular disease (CVD) risk factors. Numerous epidemiologic and intervention studies have evaluated their respective health benefits; however, it is difficult to isolate the role of plant or animal protein on CVD risk. This review evaluates the current evidence from observational and intervention studies, focusing on the specific protein-providing foods and populations studied. Dietary protein is derived from many food sources, and each provides a different composite of nonprotein compounds that can also affect CVD risk factors. Increasing the consumption of protein-rich foods also typically results in lower intakes of other nutrients, which may simultaneously influence outcomes. Given these complexities, blanket statements about plant or animal protein may be too general, and greater consideration of the specific protein food sources and the background diet is required. The potential mechanisms responsible for any specific effects of plant and animal protein are similarly multifaceted and include the amino acid content of particular foods, contributions from other nonprotein compounds provided concomitantly by the whole food, and interactions with the gut microbiome. Evidence to date is inconclusive, and additional studies are needed to further advance our understanding of the complexity of plant protein vs. animal protein comparisons. Nonetheless, current evidence supports the idea that CVD risk can be reduced by a dietary pattern that provides more plant sources of protein compared with the typical American diet and also includes animal-based protein foods that are unprocessed and low in saturated fat. © 2015 American Society for Nutrition.

  17. DND protein functions as a translation repressor during zebrafish embryogenesis.

    PubMed

    Kobayashi, Manami; Tani-Matsuhana, Saori; Ohkawa, Yasuka; Sakamoto, Hiroshi; Inoue, Kunio

    2017-03-04

    Germline and somatic cell distinction is regulated through a combination of microRNA and germ cell-specific RNA-binding proteins in zebrafish. An RNA-binding protein, DND, has been reported to relieve the miR-430-mediated repression of some germ plasm mRNAs such as nanos3 and tdrd7 in primordial germ cells (PGCs). Here, we showed that miR-430-mediated repression is not counteracted by the overexpression of DND protein in somatic cells. Using a λN-box B tethering assay in the embryo, we found that tethering of DND to reporter mRNA results in translation repression without affecting mRNA stability. Translation repression by DND was not dependent on another germline-specific translation repressor, Nanos3, in zebrafish embryos. Moreover, our data suggested that DND represses translation of nanog and dnd mRNAs, whereas an RNA-binding protein DAZ-like (DAZL) promotes dnd mRNA translation. Thus, our study showed that DND protein functions as a translation repressor of specific mRNAs to control PGC development in zebrafish. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Effects of gamma irradiation on the protein characteristics and functional properties of sesame (Sesamum indicum L.) seeds

    NASA Astrophysics Data System (ADS)

    Hassan, Amro B.; Mahmoud, Nagat S.; Elmamoun, Khalid; Adiamo, Oladipupo Q.; Mohamed Ahmed, Isam A.

    2018-03-01

    This study was aimed at investigating the effect of gamma irradiation at various doses (0.5, 1.0, 1.5 and 2.0 kGy) on protein characteristics and functional properties of sesame seeds. Gamma radiation at high doses (>1.0 kGy) significantly (P ≤ 0.05) increased globulin and albumin fractions of sesame protein. Concomitant (P ≤ 0.05) increase of in-vitro protein digestibility was noticed in irradiated sesame flour compared to non-radiated sample. Maximum protein solubility was observed in sesame flour irradiated at 1.0 kGy. SDS-PAGE electrophoretic patterns of total sesame protein were not affected by irradiation process. Significant enhancement (P ≤ 0.05) in emulsification capacity (EC) and emulsion stability (ES) was recorded after irradiation at a dose level of 1.0 and 1.5-2.0 kGy, respectively. Foaming capacity reached a significantly maximum value in sesame flour irradiated at 1.0 kGy while foaming stability was not significantly affected by gamma irradiation. It can be concluded that gamma radiation enhances the protein and functional properties of sesame flour and thus can be employed as an effective method of preserving sesame flour and its products.

  19. FK506-Binding Proteins and Their Diverse Functions.

    PubMed

    Tong, Mingming; Jiang, Yu

    2015-01-01

    FK506 binding proteins (FKBPs) are a family of highly conserved proteins in eukaryotes. The prototype of this protein family, FKBP12, is the binding partner for immunosuppressive drugs FK506 and rapamycin. FKBP12 functions as a cis/trans peptidyl prolyl isomerase (PPIase) that catalyzes interconversion between prolyl cis/trans conformations. Members of the FKBP family contain one or several PPIase domains, which do not always exhibit PPIase activity yet are all essential for their function. FKBPs are involved in diverse cellular functions including protein folding, cellular signaling, apoptosis and transcription. They elicit their function through direct binding and altering conformation of their target proteins, hence acting as molecular switches. In this review, we provide a general summary for the structures and diverse functions of FKBPs found in mammalian cells.

  20. Trimeric transmembrane domain interactions in paramyxovirus fusion proteins: roles in protein folding, stability, and function.

    PubMed

    Smith, Everett Clinton; Smith, Stacy E; Carter, James R; Webb, Stacy R; Gibson, Kathleen M; Hellman, Lance M; Fried, Michael G; Dutch, Rebecca Ellis

    2013-12-13

    Paramyxovirus fusion (F) proteins promote membrane fusion between the viral envelope and host cell membranes, a critical early step in viral infection. Although mutational analyses have indicated that transmembrane (TM) domain residues can affect folding or function of viral fusion proteins, direct analysis of TM-TM interactions has proved challenging. To directly assess TM interactions, the oligomeric state of purified chimeric proteins containing the Staphylococcal nuclease (SN) protein linked to the TM segments from three paramyxovirus F proteins was analyzed by sedimentation equilibrium analysis in detergent and buffer conditions that allowed density matching. A monomer-trimer equilibrium best fit was found for all three SN-TM constructs tested, and similar fits were obtained with peptides corresponding to just the TM region of two different paramyxovirus F proteins. These findings demonstrate for the first time that class I viral fusion protein TM domains can self-associate as trimeric complexes in the absence of the rest of the protein. Glycine residues have been implicated in TM helix interactions, so the effect of mutations at Hendra F Gly-508 was assessed in the context of the whole F protein. Mutations G508I or G508L resulted in decreased cell surface expression of the fusogenic form, consistent with decreased stability of the prefusion form of the protein. Sedimentation equilibrium analysis of TM domains containing these mutations gave higher relative association constants, suggesting altered TM-TM interactions. Overall, these results suggest that trimeric TM interactions are important driving forces for protein folding, stability and membrane fusion promotion.

  1. Ribosomal proteins: functions beyond the ribosome.

    PubMed

    Zhou, Xiang; Liao, Wen-Juan; Liao, Jun-Ming; Liao, Peng; Lu, Hua

    2015-04-01

    Although ribosomal proteins are known for playing an essential role in ribosome assembly and protein translation, their ribosome-independent functions have also been greatly appreciated. Over the past decade, more than a dozen of ribosomal proteins have been found to activate the tumor suppressor p53 pathway in response to ribosomal stress. In addition, these ribosomal proteins are involved in various physiological and pathological processes. This review is composed to overview the current understanding of how ribosomal stress provokes the accumulation of ribosome-free ribosomal proteins, as well as the ribosome-independent functions of ribosomal proteins in tumorigenesis, immune signaling, and development. We also propose the potential of applying these pieces of knowledge to the development of ribosomal stress-based cancer therapeutics. © The Author (2015). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  2. Functions of Intracellular Retinoid Binding-Proteins.

    PubMed

    Napoli, Joseph L

    Multiple binding and transport proteins facilitate many aspects of retinoid biology through effects on retinoid transport, cellular uptake, metabolism, and nuclear delivery. These include the serum retinol binding protein sRBP (aka Rbp4), the plasma membrane sRBP receptor Stra6, and the intracellular retinoid binding-proteins such as cellular retinol-binding proteins (CRBP) and cellular retinoic acid binding-proteins (CRABP). sRBP transports the highly lipophilic retinol through an aqueous medium. The major intracellular retinol-binding protein, CRBP1, likely enhances efficient retinoid use by providing a sink to facilitate retinol uptake from sRBP through the plasma membrane or via Stra6, delivering retinol or retinal to select enzymes that generate retinyl esters or retinoic acid, and protecting retinol/retinal from excess catabolism or opportunistic metabolism. Intracellular retinoic acid binding-proteins (CRABP1 and 2, and FABP5) seem to have more diverse functions distinctive to each, such as directing retinoic acid to catabolism, delivering retinoic acid to specific nuclear receptors, and generating non-canonical actions. Gene ablation of intracellular retinoid binding-proteins does not cause embryonic lethality or gross morphological defects. Metabolic and functional defects manifested in knockouts of CRBP1, CRBP2 and CRBP3, however, illustrate their essentiality to health, and in the case of CRBP2, to survival during limited dietary vitamin A. Future studies should continue to address the specific molecular interactions that occur between retinoid binding-proteins and their targets and their precise physiologic contributions to retinoid homeostasis and function.

  3. The role of protein dynamics in the evolution of new enzyme function.

    PubMed

    Campbell, Eleanor; Kaltenbach, Miriam; Correy, Galen J; Carr, Paul D; Porebski, Benjamin T; Livingstone, Emma K; Afriat-Jurnou, Livnat; Buckle, Ashley M; Weik, Martin; Hollfelder, Florian; Tokuriki, Nobuhiko; Jackson, Colin J

    2016-11-01

    Enzymes must be ordered to allow the stabilization of transition states by their active sites, yet dynamic enough to adopt alternative conformations suited to other steps in their catalytic cycles. The biophysical principles that determine how specific protein dynamics evolve and how remote mutations affect catalytic activity are poorly understood. Here we examine a 'molecular fossil record' that was recently obtained during the laboratory evolution of a phosphotriesterase from Pseudomonas diminuta to an arylesterase. Analysis of the structures and dynamics of nine protein variants along this trajectory, and three rationally designed variants, reveals cycles of structural destabilization and repair, evolutionary pressure to 'freeze out' unproductive motions and sampling of distinct conformations with specific catalytic properties in bi-functional intermediates. This work establishes that changes to the conformational landscapes of proteins are an essential aspect of molecular evolution and that change in function can be achieved through enrichment of preexisting conformational sub-states.

  4. Domain atrophy creates rare cases of functional partial protein domains.

    PubMed

    Prakash, Ananth; Bateman, Alex

    2015-04-30

    Protein domains display a range of structural diversity, with numerous additions and deletions of secondary structural elements between related domains. We have observed a small number of cases of surprising large-scale deletions of core elements of structural domains. We propose a new concept called domain atrophy, where protein domains lose a significant number of core structural elements. Here, we implement a new pipeline to systematically identify new cases of domain atrophy across all known protein sequences. The output of this pipeline was carefully checked by hand, which filtered out partial domain instances that were unlikely to represent true domain atrophy due to misannotations or un-annotated sequence fragments. We identify 75 cases of domain atrophy, of which eight cases are found in a three-dimensional protein structure and 67 cases have been inferred based on mapping to a known homologous structure. Domains with structural variations include ancient folds such as the TIM-barrel and Rossmann folds. Most of these domains are observed to show structural loss that does not affect their functional sites. Our analysis has significantly increased the known cases of domain atrophy. We discuss specific instances of domain atrophy and see that there has often been a compensatory mechanism that helps to maintain the stability of the partial domain. Our study indicates that although domain atrophy is an extremely rare phenomenon, protein domains under certain circumstances can tolerate extreme mutations giving rise to partial, but functional, domains.

  5. Can Solution Supersaturation Affect Protein Crystal Quality?

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar

    2013-01-01

    The formation of large protein crystals of "high quality" is considered a characteristic manifestation of microgravity. The physical processes that predict the formation of large, high quality protein crystals in the microgravity environment of space are considered rooted in the existence of a "depletion zone" in the vicinity of crystal. Namely, it is considered reasonable that crystal quality suffers in earth-grown crystals as a result of the incorporation of large aggregates, micro-crystals and/or large molecular weight "impurities", processes which are aided by density driven convective flow or mixing at the crystal-liquid interface. Sedimentation and density driven convection produce unfavorable solution conditions in the vicinity of the crystal surface, which promotes rapid crystal growth to the detriment of crystal size and quality. In this effort, we shall further present the hypothesis that the solution supersaturatoin at the crystal surface determines the growth mechanism, or mode, by which protein crystals grow. It is further hypothesized that protein crystal quality is affected by the mechanism or mode of crystal growth. Hence the formation of a depletion zone in microgravity environment is beneficial due to inhibition of impurity incorporatoin as well as preventing a kinetic roughening transition. It should be noted that for many proteins the magnitude of neither protein crystal growth rates nor solution supersaturation are predictors of a kinetic roughening transition. That is, the kinetic roughening transition supersaturation must be dtermined for each individual protein.

  6. Crystal Structure of the Human, FIC-Domain Containing Protein HYPE and Implications for Its Functions

    PubMed Central

    Bunney, Tom D.; Cole, Ambrose R.; Broncel, Malgorzata; Esposito, Diego; Tate, Edward W.; Katan, Matilda

    2014-01-01

    Summary Protein AMPylation, the transfer of AMP from ATP to protein targets, has been recognized as a new mechanism of host-cell disruption by some bacterial effectors that typically contain a FIC-domain. Eukaryotic genomes also encode one FIC-domain protein, HYPE, which has remained poorly characterized. Here we describe the structure of human HYPE, solved by X-ray crystallography, representing the first structure of a eukaryotic FIC-domain protein. We demonstrate that HYPE forms stable dimers with structurally and functionally integrated FIC-domains and with TPR-motifs exposed for protein-protein interactions. As HYPE also uniquely possesses a transmembrane helix, dimerization is likely to affect its positioning and function in the membrane vicinity. The low rate of autoAMPylation of the wild-type HYPE could be due to autoinhibition, consistent with the mechanism proposed for a number of putative FIC AMPylators. Our findings also provide a basis to further consider possible alternative cofactors of HYPE and distinct modes of target-recognition. PMID:25435325

  7. Crystal structure of the human, FIC-domain containing protein HYPE and implications for its functions.

    PubMed

    Bunney, Tom D; Cole, Ambrose R; Broncel, Malgorzata; Esposito, Diego; Tate, Edward W; Katan, Matilda

    2014-12-02

    Protein AMPylation, the transfer of AMP from ATP to protein targets, has been recognized as a new mechanism of host-cell disruption by some bacterial effectors that typically contain a FIC-domain. Eukaryotic genomes also encode one FIC-domain protein,HYPE, which has remained poorly characterized.Here we describe the structure of human HYPE, solved by X-ray crystallography, representing the first structure of a eukaryotic FIC-domain protein. We demonstrate that HYPE forms stable dimers with structurally and functionally integrated FIC-domains and with TPR-motifs exposed for protein-protein interactions. As HYPE also uniquely possesses a transmembrane helix, dimerization is likely to affect its positioning and function in the membrane vicinity. The low rate of auto AMPylation of the wild-type HYPE could be due to autoinhibition, consistent with the mechanism proposed for a number of putative FIC AMPylators. Our findings also provide a basis to further consider possible alternative cofactors of HYPE and distinct modes of target-recognition.

  8. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles.

    PubMed

    Martin, Katherine R; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M; Witko-Sarsat, Véronique

    2016-05-13

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Proteinase 3 Is a Phosphatidylserine-binding Protein That Affects the Production and Function of Microvesicles*

    PubMed Central

    Martin, Katherine R.; Kantari-Mimoun, Chahrazade; Yin, Min; Pederzoli-Ribeil, Magali; Angelot-Delettre, Fanny; Ceroi, Adam; Grauffel, Cédric; Benhamou, Marc; Reuter, Nathalie; Saas, Philippe; Frachet, Philippe; Boulanger, Chantal M.; Witko-Sarsat, Véronique

    2016-01-01

    Proteinase 3 (PR3), the autoantigen in granulomatosis with polyangiitis, is expressed at the plasma membrane of resting neutrophils, and this membrane expression increases during both activation and apoptosis. Using surface plasmon resonance and protein-lipid overlay assays, this study demonstrates that PR3 is a phosphatidylserine-binding protein and this interaction is dependent on the hydrophobic patch responsible for membrane anchorage. Molecular simulations suggest that PR3 interacts with phosphatidylserine via a small number of amino acids, which engage in long lasting interactions with the lipid heads. As phosphatidylserine is a major component of microvesicles (MVs), this study also examined the consequences of this interaction on MV production and function. PR3-expressing cells produced significantly fewer MVs during both activation and apoptosis, and this reduction was dependent on the ability of PR3 to associate with the membrane as mutating the hydrophobic patch restored MV production. Functionally, activation-evoked MVs from PR3-expressing cells induced a significantly larger respiratory burst in human neutrophils compared with control MVs. Conversely, MVs generated during apoptosis inhibited the basal respiratory burst in human neutrophils, and those generated from PR3-expressing cells hampered this inhibition. Given that membrane expression of PR3 is increased in patients with granulomatosis with polyangiitis, MVs generated from neutrophils expressing membrane PR3 may potentiate oxidative damage of endothelial cells and promote the systemic inflammation observed in this disease. PMID:26961880

  10. Profiling protein function with small molecule microarrays

    PubMed Central

    Winssinger, Nicolas; Ficarro, Scott; Schultz, Peter G.; Harris, Jennifer L.

    2002-01-01

    The regulation of protein function through posttranslational modification, local environment, and protein–protein interaction is critical to cellular function. The ability to analyze on a genome-wide scale protein functional activity rather than changes in protein abundance or structure would provide important new insights into complex biological processes. Herein, we report the application of a spatially addressable small molecule microarray to an activity-based profile of proteases in crude cell lysates. The potential of this small molecule-based profiling technology is demonstrated by the detection of caspase activation upon induction of apoptosis, characterization of the activated caspase, and inhibition of the caspase-executed apoptotic phenotype using the small molecule inhibitor identified in the microarray-based profile. PMID:12167675

  11. Exploring Protein Function Using the Saccharomyces Genome Database.

    PubMed

    Wong, Edith D

    2017-01-01

    Elucidating the function of individual proteins will help to create a comprehensive picture of cell biology, as well as shed light on human disease mechanisms, possible treatments, and cures. Due to its compact genome, and extensive history of experimentation and annotation, the budding yeast Saccharomyces cerevisiae is an ideal model organism in which to determine protein function. This information can then be leveraged to infer functions of human homologs. Despite the large amount of research and biological data about S. cerevisiae, many proteins' functions remain unknown. Here, we explore ways to use the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org ) to predict the function of proteins and gain insight into their roles in various cellular processes.

  12. Computer analysis of protein functional sites projection on exon structure of genes in Metazoa

    PubMed Central

    2015-01-01

    Background Study of the relationship between the structural and functional organization of proteins and their coding genes is necessary for an understanding of the evolution of molecular systems and can provide new knowledge for many applications for designing proteins with improved medical and biological properties. It is well known that the functional properties of proteins are determined by their functional sites. Functional sites are usually represented by a small number of amino acid residues that are distantly located from each other in the amino acid sequence. They are highly conserved within their functional group and vary significantly in structure between such groups. According to this facts analysis of the general properties of the structural organization of the functional sites at the protein level and, at the level of exon-intron structure of the coding gene is still an actual problem. Results One approach to this analysis is the projection of amino acid residue positions of the functional sites along with the exon boundaries to the gene structure. In this paper, we examined the discontinuity of the functional sites in the exon-intron structure of genes and the distribution of lengths and phases of the functional site encoding exons in vertebrate genes. We have shown that the DNA fragments coding the functional sites were in the same exons, or in close exons. The observed tendency to cluster the exons that code functional sites which could be considered as the unit of protein evolution. We studied the characteristics of the structure of the exon boundaries that code, and do not code, functional sites in 11 Metazoa species. This is accompanied by a reduced frequency of intercodon gaps (phase 0) in exons encoding the amino acid residue functional site, which may be evidence of the existence of evolutionary limitations to the exon shuffling. Conclusions These results characterize the features of the coding exon-intron structure that affect the

  13. Computer analysis of protein functional sites projection on exon structure of genes in Metazoa.

    PubMed

    Medvedeva, Irina V; Demenkov, Pavel S; Ivanisenko, Vladimir A

    2015-01-01

    Study of the relationship between the structural and functional organization of proteins and their coding genes is necessary for an understanding of the evolution of molecular systems and can provide new knowledge for many applications for designing proteins with improved medical and biological properties. It is well known that the functional properties of proteins are determined by their functional sites. Functional sites are usually represented by a small number of amino acid residues that are distantly located from each other in the amino acid sequence. They are highly conserved within their functional group and vary significantly in structure between such groups. According to this facts analysis of the general properties of the structural organization of the functional sites at the protein level and, at the level of exon-intron structure of the coding gene is still an actual problem. One approach to this analysis is the projection of amino acid residue positions of the functional sites along with the exon boundaries to the gene structure. In this paper, we examined the discontinuity of the functional sites in the exon-intron structure of genes and the distribution of lengths and phases of the functional site encoding exons in vertebrate genes. We have shown that the DNA fragments coding the functional sites were in the same exons, or in close exons. The observed tendency to cluster the exons that code functional sites which could be considered as the unit of protein evolution. We studied the characteristics of the structure of the exon boundaries that code, and do not code, functional sites in 11 Metazoa species. This is accompanied by a reduced frequency of intercodon gaps (phase 0) in exons encoding the amino acid residue functional site, which may be evidence of the existence of evolutionary limitations to the exon shuffling. These results characterize the features of the coding exon-intron structure that affect the functionality of the encoded protein and

  14. Newly identified protein Imi1 affects mitochondrial integrity and glutathione homeostasis in Saccharomyces cerevisiae.

    PubMed

    Kowalec, Piotr; Grynberg, Marcin; Pająk, Beata; Socha, Anna; Winiarska, Katarzyna; Fronk, Jan; Kurlandzka, Anna

    2015-09-01

    Glutathione homeostasis is crucial for cell functioning. We describe a novel Imi1 protein of Saccharomyces cerevisiae affecting mitochondrial integrity and involved in controlling glutathione level. Imi1 is cytoplasmic and, except for its N-terminal Flo11 domain, has a distinct solenoid structure. A lack of Imi1 leads to mitochondrial lesions comprising aberrant morphology of cristae and multifarious mtDNA rearrangements and impaired respiration. The mitochondrial malfunctioning is coupled to significantly decrease the level of intracellular reduced glutathione without affecting oxidized glutathione, which decreases the reduced/oxidized glutathione ratio. These defects are accompanied by decreased cadmium sensitivity and increased phytochelatin-2 level. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Proteomic Profiling in the Brain of CLN1 Disease Model Reveals Affected Functional Modules.

    PubMed

    Tikka, Saara; Monogioudi, Evanthia; Gotsopoulos, Athanasios; Soliymani, Rabah; Pezzini, Francesco; Scifo, Enzo; Uusi-Rauva, Kristiina; Tyynelä, Jaana; Baumann, Marc; Jalanko, Anu; Simonati, Alessandro; Lalowski, Maciej

    2016-03-01

    Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies of childhood. Pathologically, they are characterized by endolysosomal storage with different ultrastructural features and biochemical compositions. The molecular mechanisms causing progressive neurodegeneration and common molecular pathways linking expression of different NCL genes are largely unknown. We analyzed proteome alterations in the brains of a mouse model of human infantile CLN1 disease-palmitoyl-protein thioesterase 1 (Ppt1) gene knockout and its wild-type age-matched counterpart at different stages: pre-symptomatic, symptomatic and advanced. For this purpose, we utilized a combination of laser capture microdissection-based quantitative liquid chromatography tandem mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight MS imaging to quantify/visualize the changes in protein expression in disease-affected brain thalamus and cerebral cortex tissue slices, respectively. Proteomic profiling of the pre-symptomatic stage thalamus revealed alterations mostly in metabolic processes and inhibition of various neuronal functions, i.e., neuritogenesis. Down-regulation in dynamics associated with growth of plasma projections and cellular protrusions was further corroborated by findings from RNA sequencing of CLN1 patients' fibroblasts. Changes detected at the symptomatic stage included: mitochondrial functions, synaptic vesicle transport, myelin proteome and signaling cascades, such as RhoA signaling. Considerable dysregulation of processes related to mitochondrial cell death, RhoA/Huntington's disease signaling and myelin sheath breakdown were observed at the advanced stage of the disease. The identified changes in protein levels were further substantiated by bioinformatics and network approaches, immunohistochemistry on brain tissues and literature knowledge, thus identifying various functional modules affected in the CLN1 childhood

  16. Differential Editosome Protein Function between Life Cycle Stages of Trypanosoma brucei *

    PubMed Central

    McDermott, Suzanne M.; Guo, Xuemin; Carnes, Jason; Stuart, Kenneth

    2015-01-01

    Uridine insertion and deletion RNA editing generates functional mitochondrial mRNAs in Trypanosoma brucei. The mRNAs are differentially edited in bloodstream form (BF) and procyclic form (PF) life cycle stages, and this correlates with the differential utilization of glycolysis and oxidative phosphorylation between the stages. The mechanism that controls this differential editing is unknown. Editing is catalyzed by multiprotein ∼20S editosomes that contain endonuclease, 3′-terminal uridylyltransferase, exonuclease, and ligase activities. These editosomes also contain KREPB5 and KREPA3 proteins, which have no functional catalytic motifs, but they are essential for parasite viability, editing, and editosome integrity in BF cells. We show here that repression of KREPB5 or KREPA3 is also lethal in PF, but the effects on editosome structure differ from those in BF. In addition, we found that point mutations in KREPB5 or KREPA3 differentially affect cell growth, editosome integrity, and RNA editing between BF and PF stages. These results indicate that the functions of KREPB5 and KREPA3 editosome proteins are adjusted between the life cycle stages. This implies that these proteins are involved in the processes that control differential editing and that the 20S editosomes differ between the life cycle stages. PMID:26304125

  17. Investigation and identification of functional post-translational modification sites associated with drug binding and protein-protein interactions.

    PubMed

    Su, Min-Gang; Weng, Julia Tzu-Ya; Hsu, Justin Bo-Kai; Huang, Kai-Yao; Chi, Yu-Hsiang; Lee, Tzong-Yi

    2017-12-21

    Protein post-translational modification (PTM) plays an essential role in various cellular processes that modulates the physical and chemical properties, folding, conformation, stability and activity of proteins, thereby modifying the functions of proteins. The improved throughput of mass spectrometry (MS) or MS/MS technology has not only brought about a surge in proteome-scale studies, but also contributed to a fruitful list of identified PTMs. However, with the increase in the number of identified PTMs, perhaps the more crucial question is what kind of biological mechanisms these PTMs are involved in. This is particularly important in light of the fact that most protein-based pharmaceuticals deliver their therapeutic effects through some form of PTM. Yet, our understanding is still limited with respect to the local effects and frequency of PTM sites near pharmaceutical binding sites and the interfaces of protein-protein interaction (PPI). Understanding PTM's function is critical to our ability to manipulate the biological mechanisms of protein. In this study, to understand the regulation of protein functions by PTMs, we mapped 25,835 PTM sites to proteins with available three-dimensional (3D) structural information in the Protein Data Bank (PDB), including 1785 modified PTM sites on the 3D structure. Based on the acquired structural PTM sites, we proposed to use five properties for the structural characterization of PTM substrate sites: the spatial composition of amino acids, residues and side-chain orientations surrounding the PTM substrate sites, as well as the secondary structure, division of acidity and alkaline residues, and solvent-accessible surface area. We further mapped the structural PTM sites to the structures of drug binding and PPI sites, identifying a total of 1917 PTM sites that may affect PPI and 3951 PTM sites associated with drug-target binding. An integrated analytical platform (CruxPTM), with a variety of methods and online molecular docking

  18. Predicting Functions of Proteins in Mouse Based on Weighted Protein-Protein Interaction Network and Protein Hybrid Properties

    PubMed Central

    Shi, Xiaohe; Lu, Wen-Cong; Cai, Yu-Dong; Chou, Kuo-Chen

    2011-01-01

    Background With the huge amount of uncharacterized protein sequences generated in the post-genomic age, it is highly desirable to develop effective computational methods for quickly and accurately predicting their functions. The information thus obtained would be very useful for both basic research and drug development in a timely manner. Methodology/Principal Findings Although many efforts have been made in this regard, most of them were based on either sequence similarity or protein-protein interaction (PPI) information. However, the former often fails to work if a query protein has no or very little sequence similarity to any function-known proteins, while the latter had similar problem if the relevant PPI information is not available. In view of this, a new approach is proposed by hybridizing the PPI information and the biochemical/physicochemical features of protein sequences. The overall first-order success rates by the new predictor for the functions of mouse proteins on training set and test set were 69.1% and 70.2%, respectively, and the success rate covered by the results of the top-4 order from a total of 24 orders was 65.2%. Conclusions/Significance The results indicate that the new approach is quite promising that may open a new avenue or direction for addressing the difficult and complicated problem. PMID:21283518

  19. Predicting the Impact of Alternative Splicing on Plant MADS Domain Protein Function

    PubMed Central

    Severing, Edouard I.; van Dijk, Aalt D. J.; Morabito, Giuseppa; Busscher-Lange, Jacqueline; Immink, Richard G. H.; van Ham, Roeland C. H. J.

    2012-01-01

    Several genome-wide studies demonstrated that alternative splicing (AS) significantly increases the transcriptome complexity in plants. However, the impact of AS on the functional diversity of proteins is difficult to assess using genome-wide approaches. The availability of detailed sequence annotations for specific genes and gene families allows for a more detailed assessment of the potential effect of AS on their function. One example is the plant MADS-domain transcription factor family, members of which interact to form protein complexes that function in transcription regulation. Here, we perform an in silico analysis of the potential impact of AS on the protein-protein interaction capabilities of MIKC-type MADS-domain proteins. We first confirmed the expression of transcript isoforms resulting from predicted AS events. Expressed transcript isoforms were considered functional if they were likely to be translated and if their corresponding AS events either had an effect on predicted dimerisation motifs or occurred in regions known to be involved in multimeric complex formation, or otherwise, if their effect was conserved in different species. Nine out of twelve MIKC MADS-box genes predicted to produce multiple protein isoforms harbored putative functional AS events according to those criteria. AS events with conserved effects were only found at the borders of or within the K-box domain. We illustrate how AS can contribute to the evolution of interaction networks through an example of selective inclusion of a recently evolved interaction motif in the MADS AFFECTING FLOWERING1-3 (MAF1–3) subclade. Furthermore, we demonstrate the potential effect of an AS event in SHORT VEGETATIVE PHASE (SVP), resulting in the deletion of a short sequence stretch including a predicted interaction motif, by overexpression of the fully spliced and the alternatively spliced SVP transcripts. For most of the AS events we were able to formulate hypotheses about the potential impact on

  20. Positive and negative affective processing exhibit dissociable functional hubs during the viewing of affective pictures.

    PubMed

    Zhang, Wenhai; Li, Hong; Pan, Xiaohong

    2015-02-01

    Recent resting-state functional magnetic resonance imaging (fMRI) studies using graph theory metrics have revealed that the functional network of the human brain possesses small-world characteristics and comprises several functional hub regions. However, it is unclear how the affective functional network is organized in the brain during the processing of affective information. In this study, the fMRI data were collected from 25 healthy college students as they viewed a total of 81 positive, neutral, and negative pictures. The results indicated that affective functional networks exhibit weaker small-worldness properties with higher local efficiency, implying that local connections increase during viewing affective pictures. Moreover, positive and negative emotional processing exhibit dissociable functional hubs, emerging mainly in task-positive regions. These functional hubs, which are the centers of information processing, have nodal betweenness centrality values that are at least 1.5 times larger than the average betweenness centrality of the network. Positive affect scores correlated with the betweenness values of the right orbital frontal cortex (OFC) and the right putamen in the positive emotional network; negative affect scores correlated with the betweenness values of the left OFC and the left amygdala in the negative emotional network. The local efficiencies in the left superior and inferior parietal lobe correlated with subsequent arousal ratings of positive and negative pictures, respectively. These observations provide important evidence for the organizational principles of the human brain functional connectome during the processing of affective information. © 2014 Wiley Periodicals, Inc.

  1. Adaptor Protein-1 Complex Affects the Endocytic Trafficking and Function of Peptidylglycine α-Amidating Monooxygenase, a Luminal Cuproenzyme*

    PubMed Central

    Bonnemaison, Mathilde L.; Bäck, Nils; Duffy, Megan E.; Ralle, Martina; Mains, Richard E.; Eipper, Betty A.

    2015-01-01

    The adaptor protein-1 complex (AP-1), which transports cargo between the trans-Golgi network and endosomes, plays a role in the trafficking of Atp7a, a copper-transporting P-type ATPase, and peptidylglycine α-amidating monooxygenase (PAM), a copper-dependent membrane enzyme. Lack of any of the four AP-1 subunits impairs function, and patients with MEDNIK syndrome, a rare genetic disorder caused by lack of expression of the σ1A subunit, exhibit clinical and biochemical signs of impaired copper homeostasis. To explore the role of AP-1 in copper homeostasis in neuroendocrine cells, we used corticotrope tumor cells in which AP-1 function was diminished by reducing expression of its μ1A subunit. Copper levels were unchanged when AP-1 function was impaired, but cellular levels of Atp7a declined slightly. The ability of PAM to function was assessed by monitoring 18-kDa fragment-NH2 production from proopiomelanocortin. Reduced AP-1 function made 18-kDa fragment amidation more sensitive to inhibition by bathocuproine disulfonate, a cell-impermeant Cu(I) chelator. The endocytic trafficking of PAM was altered, and PAM-1 accumulated on the cell surface when AP-1 levels were reduced. Reduced AP-1 function increased the Atp7a presence in early/recycling endosomes but did not alter the ability of copper to stimulate its appearance on the plasma membrane. Co-immunoprecipitation of a small fraction of PAM and Atp7a supports the suggestion that copper can be transferred directly from Atp7a to PAM, a process that can occur only when both proteins are present in the same subcellular compartment. Altered luminal cuproenzyme function may contribute to deficits observed when the AP-1 function is compromised. PMID:26170456

  2. Increasing protein production rates can decrease the rate at which functional protein is produced

    NASA Astrophysics Data System (ADS)

    Sharma, Ajeet; O'Brien, Edward

    The rate at which soluble, functional protein is produced by the ribosome has recently been found to vary in complex and unexplained ways as various translation-associated rates are altered through synonymous codon substitutions. We combine a well-established ribosome-traffic model with a master-equation model of co-translational domain folding to explore the scenarios that are possible for the protein production rate, J, and the functional-nascent protein production rate, F, as the rates associated with translation are altered. We find that while J monotonically increases as the rates of translation-initiation, -elongation and -termination increase, F can either increase or decrease. F exhibits non-monotonic behavior because increasing these rates can cause a protein to be synthesized more rapidly but provide less time for nascent-protein domains to co-translationally fold thereby producing less functional nascent protein immediately after synthesis. We further demonstrate that these non-monotonic changes in Faffect the post-translational, steady-state levels of functional protein in a similar manner. Our results provide a possible explanation for recent experimental observations that the specific activity of enzymatic proteins can decrease with increased synthesis rates and can in principle be used to rationally-design transcripts to maximize the production of functional nascent protein.

  3. Enhancing the Functional Content of Eukaryotic Protein Interaction Networks

    PubMed Central

    Pandey, Gaurav; Arora, Sonali; Manocha, Sahil; Whalen, Sean

    2014-01-01

    Protein interaction networks are a promising type of data for studying complex biological systems. However, despite the rich information embedded in these networks, these networks face important data quality challenges of noise and incompleteness that adversely affect the results obtained from their analysis. Here, we apply a robust measure of local network structure called common neighborhood similarity (CNS) to address these challenges. Although several CNS measures have been proposed in the literature, an understanding of their relative efficacies for the analysis of interaction networks has been lacking. We follow the framework of graph transformation to convert the given interaction network into a transformed network corresponding to a variety of CNS measures evaluated. The effectiveness of each measure is then estimated by comparing the quality of protein function predictions obtained from its corresponding transformed network with those from the original network. Using a large set of human and fly protein interactions, and a set of over GO terms for both, we find that several of the transformed networks produce more accurate predictions than those obtained from the original network. In particular, the measure and other continuous CNS measures perform well this task, especially for large networks. Further investigation reveals that the two major factors contributing to this improvement are the abilities of CNS measures to prune out noisy edges and enhance functional coherence in the transformed networks. PMID:25275489

  4. A DEK Domain-Containing Protein Modulates Chromatin Structure and Function in Arabidopsis[W][OPEN

    PubMed Central

    Waidmann, Sascha; Kusenda, Branislav; Mayerhofer, Juliane; Mechtler, Karl; Jonak, Claudia

    2014-01-01

    Chromatin is a major determinant in the regulation of virtually all DNA-dependent processes. Chromatin architectural proteins interact with nucleosomes to modulate chromatin accessibility and higher-order chromatin structure. The evolutionarily conserved DEK domain-containing protein is implicated in important chromatin-related processes in animals, but little is known about its DNA targets and protein interaction partners. In plants, the role of DEK has remained elusive. In this work, we identified DEK3 as a chromatin-associated protein in Arabidopsis thaliana. DEK3 specifically binds histones H3 and H4. Purification of other proteins associated with nuclear DEK3 also established DNA topoisomerase 1α and proteins of the cohesion complex as in vivo interaction partners. Genome-wide mapping of DEK3 binding sites by chromatin immunoprecipitation followed by deep sequencing revealed enrichment of DEK3 at protein-coding genes throughout the genome. Using DEK3 knockout and overexpressor lines, we show that DEK3 affects nucleosome occupancy and chromatin accessibility and modulates the expression of DEK3 target genes. Furthermore, functional levels of DEK3 are crucial for stress tolerance. Overall, data indicate that DEK3 contributes to modulation of Arabidopsis chromatin structure and function. PMID:25387881

  5. Graph pyramids for protein function prediction.

    PubMed

    Sandhan, Tushar; Yoo, Youngjun; Choi, Jin; Kim, Sun

    2015-01-01

    Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data.

  6. Physiological functions of MTA family of proteins.

    PubMed

    Sen, Nirmalya; Gui, Bin; Kumar, Rakesh

    2014-12-01

    Although the functional significance of the metastasic tumor antigen (MTA) family of chromatin remodeling proteins in the pathobiology of cancer is fairly well recognized, the physiological role of MTA proteins continues to be an understudied research area and is just beginning to be recognized. Similar to cancer cells, MTA1 also modulates the expression of target genes in normal cells either by acting as a corepressor or coactivator. In addition, physiological functions of MTA proteins are likely to be influenced by its differential expression, subcellular localization, and regulation by upstream modulators and extracellular signals. This review summarizes our current understanding of the physiological functions of the MTA proteins in model systems. In particular, we highlight recent advances of the role MTA proteins play in the brain, eye, circadian rhythm, mammary gland biology, spermatogenesis, liver, immunomodulation and inflammation, cellular radio-sensitivity, and hematopoiesis and differentiation. Based on the growth of knowledge regarding the exciting new facets of the MTA family of proteins in biology and medicine, we speculate that the next burst of findings in this field may reveal further molecular regulatory insights of non-redundant functions of MTA coregulators in the normal physiology as well as in pathological conditions outside cancer.

  7. Effect of the sequence data deluge on the performance of methods for detecting protein functional residues.

    PubMed

    Garrido-Martín, Diego; Pazos, Florencio

    2018-02-27

    The exponential accumulation of new sequences in public databases is expected to improve the performance of all the approaches for predicting protein structural and functional features. Nevertheless, this was never assessed or quantified for some widely used methodologies, such as those aimed at detecting functional sites and functional subfamilies in protein multiple sequence alignments. Using raw protein sequences as only input, these approaches can detect fully conserved positions, as well as those with a family-dependent conservation pattern. Both types of residues are routinely used as predictors of functional sites and, consequently, understanding how the sequence content of the databases affects them is relevant and timely. In this work we evaluate how the growth and change with time in the content of sequence databases affect five sequence-based approaches for detecting functional sites and subfamilies. We do that by recreating historical versions of the multiple sequence alignments that would have been obtained in the past based on the database contents at different time points, covering a period of 20 years. Applying the methods to these historical alignments allows quantifying the temporal variation in their performance. Our results show that the number of families to which these methods can be applied sharply increases with time, while their ability to detect potentially functional residues remains almost constant. These results are informative for the methods' developers and final users, and may have implications in the design of new sequencing initiatives.

  8. Biomimetic devices functionalized by membrane channel proteins

    NASA Astrophysics Data System (ADS)

    Schmidt, Jacob

    2004-03-01

    We are developing a new family of active materials which derive their functional properties from membrane proteins. These materials have two primary components: the proteins and the membranes themselves. I will discuss our recent work directed toward development of a generic platform for a "plug-and-play" philosophy of membrane protein engineering. By creating a stable biomimetic polymer membrane a single molecular monolayer thick, we will enable the exploitation of the function of any membrane protein, from pores and pumps to sensors and energy transducers. Our initial work has centered on the creation, study, and characterization of the biomimetic membranes. We are attempting to make large areas of membrane monolayers using Langmuir-Blodgett film formation as well as through arrays of microfabricated black lipid membrane-type septa. A number of techniques allow the insertion of protein into the membranes. As a benchmark, we have been employing a model system of voltage-gated pore proteins, which have electrically controllable porosities. I will report on the progress of this work, the characterization of the membranes, protein insertion processes, and the yield and functionality of the composite.

  9. Investigating neuronal function with optically controllable proteins

    PubMed Central

    Zhou, Xin X.; Pan, Michael; Lin, Michael Z.

    2015-01-01

    In the nervous system, protein activities are highly regulated in space and time. This regulation allows for fine modulation of neuronal structure and function during development and adaptive responses. For example, neurite extension and synaptogenesis both involve localized and transient activation of cytoskeletal and signaling proteins, allowing changes in microarchitecture to occur rapidly and in a localized manner. To investigate the role of specific protein regulation events in these processes, methods to optically control the activity of specific proteins have been developed. In this review, we focus on how photosensory domains enable optical control over protein activity and have been used in neuroscience applications. These tools have demonstrated versatility in controlling various proteins and thereby cellular functions, and possess enormous potential for future applications in nervous systems. Just as optogenetic control of neuronal firing using opsins has changed how we investigate the function of cellular circuits in vivo, optical control may yet yield another revolution in how we study the circuitry of intracellular signaling in the brain. PMID:26257603

  10. Automated prediction of protein function and detection of functional sites from structure.

    PubMed

    Pazos, Florencio; Sternberg, Michael J E

    2004-10-12

    Current structural genomics projects are yielding structures for proteins whose functions are unknown. Accordingly, there is a pressing requirement for computational methods for function prediction. Here we present PHUNCTIONER, an automatic method for structure-based function prediction using automatically extracted functional sites (residues associated to functions). The method relates proteins with the same function through structural alignments and extracts 3D profiles of conserved residues. Functional features to train the method are extracted from the Gene Ontology (GO) database. The method extracts these features from the entire GO hierarchy and hence is applicable across the whole range of function specificity. 3D profiles associated with 121 GO annotations were extracted. We tested the power of the method both for the prediction of function and for the extraction of functional sites. The success of function prediction by our method was compared with the standard homology-based method. In the zone of low sequence similarity (approximately 15%), our method assigns the correct GO annotation in 90% of the protein structures considered, approximately 20% higher than inheritance of function from the closest homologue.

  11. Functions of Ribosomal Proteins in Assembly of Eukaryotic Ribosomes In Vivo

    PubMed Central

    2016-01-01

    The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79–80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type–specific disorders that often transition from hypoproliferative to hyperproliferative growth. PMID:25706898

  12. Modelling protein functional domains in signal transduction using Maude

    NASA Technical Reports Server (NTRS)

    Sriram, M. G.

    2003-01-01

    Modelling of protein-protein interactions in signal transduction is receiving increased attention in computational biology. This paper describes recent research in the application of Maude, a symbolic language founded on rewriting logic, to the modelling of functional domains within signalling proteins. Protein functional domains (PFDs) are a critical focus of modern signal transduction research. In general, Maude models can simulate biological signalling networks and produce specific testable hypotheses at various levels of abstraction. Developing symbolic models of signalling proteins containing functional domains is important because of the potential to generate analyses of complex signalling networks based on structure-function relationships.

  13. Regulator of G-protein signalling and GoLoco proteins suppress TRPC4 channel function via acting at Gαi/o.

    PubMed

    Jeon, Jae-Pyo; Thakur, Dhananjay P; Tian, Jin-Bin; So, Insuk; Zhu, Michael X

    2016-05-15

    Transient receptor potential canonical 4 (TRPC4) forms non-selective cation channels implicated in the regulation of diverse physiological functions. Previously, TRPC4 was shown to be activated by the Gi/o subgroup of heterotrimeric G-proteins involving Gαi/o, rather than Gβγ, subunits. Because the lifetime and availability of Gα-GTP are regulated by regulators of G-protein signalling (RGS) and Gαi/o-Loco (GoLoco) domain-containing proteins via their GTPase-activating protein (GAP) and guanine-nucleotide-dissociation inhibitor (GDI) functions respectively, we tested how RGS and GoLoco domain proteins affect TRPC4 currents activated via Gi/o-coupled receptors. Using whole-cell patch-clamp recordings, we show that both RGS and GoLoco proteins [RGS4, RGS6, RGS12, RGS14, LGN or activator of G-protein signalling 3 (AGS3)] suppress receptor-mediated TRPC4 activation without causing detectable basal current or altering surface expression of the channel protein. The inhibitory effects are dependent on the GAP and GoLoco domains and facilitated by enhancing membrane targeting of the GoLoco protein AGS3. In addition, RGS, but not GoLoco, proteins accelerate desensitization of receptor-activation evoked TRPC4 currents. The inhibitory effects of RGS and GoLoco domains are additive and are most prominent with RGS12 and RGS14, which contain both RGS and GoLoco domains. Our data support the notion that the Gα, but not Gβγ, arm of the Gi/o signalling is involved in TRPC4 activation and unveil new roles for RGS and GoLoco domain proteins in fine-tuning TRPC4 activities. The versatile and diverse functions of RGS and GoLoco proteins in regulating G-protein signalling may underlie the complexity of receptor-operated TRPC4 activation in various cell types under different conditions. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  14. Protein substitution affects glass transition temperature and thermal stability.

    PubMed

    Budhavaram, Naresh K; Miller, Jonathan A; Shen, Ying; Barone, Justin R

    2010-09-08

    When proteins are removed from their native state they suffer from two deficiencies: (1) glassy behavior with glass transition temperatures (Tg) well above room temperature and (2) thermal instability. The glassy behavior originates in multiple hydrogen bonds between amino acids on adjacent protein molecules. Proteins, like most biopolymers, are thermally unstable. Substituting ovalbumin with linear and cyclic substituents using a facile nucleophilic addition reaction can affect Tg and thermal stability. More hydrophobic linear substituents lowered Tg by interrupting intermolecular interactions and increasing free volume. More hydrophilic and cyclic substituents increased thermal stability by increasing intermolecular interactions. In some cases, substituents instituted cross-linking between protein chains that enhanced thermal stability. Internal plasticization using covalent substitution and external plasticization using low molecular weight polar liquids show the same protein structural changes and a signature of plasticization is identified.

  15. Protein Structure and Function Prediction Using I-TASSER

    PubMed Central

    Yang, Jianyi; Zhang, Yang

    2016-01-01

    I-TASSER is a hierarchical protocol for automated protein structure prediction and structure-based function annotation. Starting from the amino acid sequence of target proteins, I-TASSER first generates full-length atomic structural models from multiple threading alignments and iterative structural assembly simulations followed by atomic-level structure refinement. The biological functions of the protein, including ligand-binding sites, enzyme commission number, and gene ontology terms, are then inferred from known protein function databases based on sequence and structure profile comparisons. I-TASSER is freely available as both an on-line server and a stand-alone package. This unit describes how to use the I-TASSER protocol to generate structure and function prediction and how to interpret the prediction results, as well as alternative approaches for further improving the I-TASSER modeling quality for distant-homologous and multi-domain protein targets. PMID:26678386

  16. Plant Protein and Animal Proteins: Do They Differentially Affect Cardiovascular Disease Risk?12

    PubMed Central

    Richter, Chesney K; Skulas-Ray, Ann C; Champagne, Catherine M; Kris-Etherton, Penny M

    2015-01-01

    Proteins from plant-based compared with animal-based food sources may have different effects on cardiovascular disease (CVD) risk factors. Numerous epidemiologic and intervention studies have evaluated their respective health benefits; however, it is difficult to isolate the role of plant or animal protein on CVD risk. This review evaluates the current evidence from observational and intervention studies, focusing on the specific protein-providing foods and populations studied. Dietary protein is derived from many food sources, and each provides a different composite of nonprotein compounds that can also affect CVD risk factors. Increasing the consumption of protein-rich foods also typically results in lower intakes of other nutrients, which may simultaneously influence outcomes. Given these complexities, blanket statements about plant or animal protein may be too general, and greater consideration of the specific protein food sources and the background diet is required. The potential mechanisms responsible for any specific effects of plant and animal protein are similarly multifaceted and include the amino acid content of particular foods, contributions from other nonprotein compounds provided concomitantly by the whole food, and interactions with the gut microbiome. Evidence to date is inconclusive, and additional studies are needed to further advance our understanding of the complexity of plant protein vs. animal protein comparisons. Nonetheless, current evidence supports the idea that CVD risk can be reduced by a dietary pattern that provides more plant sources of protein compared with the typical American diet and also includes animal-based protein foods that are unprocessed and low in saturated fat. PMID:26567196

  17. ProtPhylo: identification of protein-phenotype and protein-protein functional associations via phylogenetic profiling.

    PubMed

    Cheng, Yiming; Perocchi, Fabiana

    2015-07-01

    ProtPhylo is a web-based tool to identify proteins that are functionally linked to either a phenotype or a protein of interest based on co-evolution. ProtPhylo infers functional associations by comparing protein phylogenetic profiles (co-occurrence patterns of orthology relationships) for more than 9.7 million non-redundant protein sequences from all three domains of life. Users can query any of 2048 fully sequenced organisms, including 1678 bacteria, 255 eukaryotes and 115 archaea. In addition, they can tailor ProtPhylo to a particular kind of biological question by choosing among four main orthology inference methods based either on pair-wise sequence comparisons (One-way Best Hits and Best Reciprocal Hits) or clustering of orthologous proteins across multiple species (OrthoMCL and eggNOG). Next, ProtPhylo ranks phylogenetic neighbors of query proteins or phenotypic properties using the Hamming distance as a measure of similarity between pairs of phylogenetic profiles. Candidate hits can be easily and flexibly prioritized by complementary clues on subcellular localization, known protein-protein interactions, membrane spanning regions and protein domains. The resulting protein list can be quickly exported into a csv text file for further analyses. ProtPhylo is freely available at http://www.protphylo.org. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. In silico identification of functional regions in proteins.

    PubMed

    Nimrod, Guy; Glaser, Fabian; Steinberg, David; Ben-Tal, Nir; Pupko, Tal

    2005-06-01

    In silico prediction of functional regions on protein surfaces, i.e. sites of interaction with DNA, ligands, substrates and other proteins, is of utmost importance in various applications in the emerging fields of proteomics and structural genomics. When a sufficient number of homologs is found, powerful prediction schemes can be based on the observation that evolutionarily conserved regions are often functionally important, typically, only the principal functionally important region of the protein is detected, while secondary functional regions with weaker conservation signals are overlooked. Moreover, it is challenging to unambiguously identify the boundaries of the functional regions. We present a new methodology, called PatchFinder, that automatically identifies patches of conserved residues that are located in close proximity to each other on the protein surface. PatchFinder is based on the following steps: (1) Assignment of conservation scores to each amino acid position on the protein surface. (2) Assignment of a score to each putative patch, based on its likelihood to be functionally important. The patch of maximum likelihood is considered to be the main functionally important region, and the search is continued for non-overlapping patches of secondary importance. We examined the accuracy of the method using the IGPS enzyme, the SH2 domain and a benchmark set of 112 proteins. These examples demonstrated that PatchFinder is capable of identifying both the main and secondary functional patches. The PatchFinder program is available at: http://ashtoret.tau.ac.il/~nimrodg/

  19. In vitro digestibility, protein composition and techno-functional properties of Saskatchewan grown yellow field peas (Pisum sativum L.) as affected by processing.

    PubMed

    Ma, Zhen; Boye, Joyce I; Hu, Xinzhong

    2017-02-01

    Saskatchewan grown yellow field pea was subjected to different processing conditions including dehulling, micronization, roasting, conventional/microwave cooking, germination, and combined germination and conventional cooking/roasting. Their nutritional and antinutritional compositions, functional properties, microstructure, thermal properties, in vitro protein and starch digestibility, and protein composition were studied. Processed field peas including conventional cooked yellow peas (CCYP), microwave cooked yellow peas (MCYP), germinated-conventional cooked yellow peas (GCCYP), and germinated-roasted yellow peas (GRYP) exhibited the significantly higher in vitro protein digestibility (IVPD), which was in accordance with their significantly lower trypsin inhibitor activity and tannin content. The SDS-PAGE and size exclusion HPLC profiles of untreated pea proteins and their hydrolysates also confirmed the IVPD result that these four treatments facilitated the hydrolysis of pea proteins to a greater extent. The CCYP, MCYP, GCCYP, and GRYP also exhibited significantly higher starch digestibility which was supported by their lower onset (T o ), peak (T p ), and conclusion (T c ) temperatures obtained from DSC thermogram, their lower pasting properties and starch damage results, as well as their distinguished amorphous flakes' configuration observed on the scanning electron microscopic image. LC/ESI-MS/MS analysis following in-gel digests of SDS-PAGE separated proteins allowed detailed compositional characterization of pea proteins. The present study would provide fundamental information to help to better understand the functionality of field peas as ingredients, and particularly in regards to agri-food industry to improve the process efficiency of field peas with enhanced nutritional and techno-functional qualities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Protein Information Resource: an integrated public resource of functional annotation of proteins

    PubMed Central

    Wu, Cathy H.; Huang, Hongzhan; Arminski, Leslie; Castro-Alvear, Jorge; Chen, Yongxing; Hu, Zhang-Zhi; Ledley, Robert S.; Lewis, Kali C.; Mewes, Hans-Werner; Orcutt, Bruce C.; Suzek, Baris E.; Tsugita, Akira; Vinayaka, C. R.; Yeh, Lai-Su L.; Zhang, Jian; Barker, Winona C.

    2002-01-01

    The Protein Information Resource (PIR) serves as an integrated public resource of functional annotation of protein data to support genomic/proteomic research and scientific discovery. The PIR, in collaboration with the Munich Information Center for Protein Sequences (MIPS) and the Japan International Protein Information Database (JIPID), produces the PIR-International Protein Sequence Database (PSD), the major annotated protein sequence database in the public domain, containing about 250 000 proteins. To improve protein annotation and the coverage of experimentally validated data, a bibliography submission system is developed for scientists to submit, categorize and retrieve literature information. Comprehensive protein information is available from iProClass, which includes family classification at the superfamily, domain and motif levels, structural and functional features of proteins, as well as cross-references to over 40 biological databases. To provide timely and comprehensive protein data with source attribution, we have introduced a non-redundant reference protein database, PIR-NREF. The database consists of about 800 000 proteins collected from PIR-PSD, SWISS-PROT, TrEMBL, GenPept, RefSeq and PDB, with composite protein names and literature data. To promote database interoperability, we provide XML data distribution and open database schema, and adopt common ontologies. The PIR web site (http://pir.georgetown.edu/) features data mining and sequence analysis tools for information retrieval and functional identification of proteins based on both sequence and annotation information. The PIR databases and other files are also available by FTP (ftp://nbrfa.georgetown.edu/pir_databases). PMID:11752247

  1. Dietary protein level affects iridescent coloration in Anna's hummingbirds, Calypte anna

    PubMed Central

    Meadows, Melissa G.; Roudybush, Thomas E.; McGraw, Kevin J.

    2012-01-01

    SUMMARY Many animal displays involve colorful ornamental traits that signal an individual's quality as a mate or rival. Brilliant iridescent ornaments are common, but little is currently known about their production cost and signaling value. One potential cost of colorful ornaments is the acquisition of limited dietary resources that may be involved, directly or indirectly, in their production. Protein, the primary component of bird feathers and of many nanostructural components of iridescent traits, is naturally restricted in hummingbird diets (comprised mostly of sugars), suggesting that iridescent coloration may be especially challenging to produce in these animals. In this study, we experimentally investigated the effect of dietary protein availability during molt on iridescent color expression in male Anna's hummingbirds (Calypte anna). We fed captive birds either a 6% (high) or a 3% (low) protein diet and stimulated molt by plucking half the gorget and crown ornaments on each bird as well as the non-ornamental iridescent green tail feathers. We found that birds receiving more protein grew significantly more colorful crown feathers (higher red chroma and redder hue) than those fed the low-protein diet. Diet did not affect gorget coloration, but regrowth of feathers in captivity affected both gorget and crown coloration. Additionally, birds on the high-protein diet grew yellower (higher hue) green tail feathers than birds on the low-protein diet. These results indicate that iridescent ornamental feathers are sensitive to diet quality and may serve as honest signals of nutrition to mates or rivals. Further, because both ornamental and non-ornamental iridescent coloration were affected by conditions during their growth, iridescent color in these birds appears to be generally condition dependent. PMID:22837446

  2. Dietary protein level affects iridescent coloration in Anna's hummingbirds, Calypte anna.

    PubMed

    Meadows, Melissa G; Roudybush, Thomas E; McGraw, Kevin J

    2012-08-15

    Many animal displays involve colorful ornamental traits that signal an individual's quality as a mate or rival. Brilliant iridescent ornaments are common, but little is currently known about their production cost and signaling value. One potential cost of colorful ornaments is the acquisition of limited dietary resources that may be involved, directly or indirectly, in their production. Protein, the primary component of bird feathers and of many nanostructural components of iridescent traits, is naturally restricted in hummingbird diets (comprised mostly of sugars), suggesting that iridescent coloration may be especially challenging to produce in these animals. In this study, we experimentally investigated the effect of dietary protein availability during molt on iridescent color expression in male Anna's hummingbirds (Calypte anna). We fed captive birds either a 6% (high) or a 3% (low) protein diet and stimulated molt by plucking half the gorget and crown ornaments on each bird as well as the non-ornamental iridescent green tail feathers. We found that birds receiving more protein grew significantly more colorful crown feathers (higher red chroma and redder hue) than those fed the low-protein diet. Diet did not affect gorget coloration, but regrowth of feathers in captivity affected both gorget and crown coloration. Additionally, birds on the high-protein diet grew yellower (higher hue) green tail feathers than birds on the low-protein diet. These results indicate that iridescent ornamental feathers are sensitive to diet quality and may serve as honest signals of nutrition to mates or rivals. Further, because both ornamental and non-ornamental iridescent coloration were affected by conditions during their growth, iridescent color in these birds appears to be generally condition dependent.

  3. On the detection of functionally coherent groups of protein domains with an extension to protein annotation

    PubMed Central

    McLaughlin, William A; Chen, Ken; Hou, Tingjun; Wang, Wei

    2007-01-01

    Background Protein domains coordinate to perform multifaceted cellular functions, and domain combinations serve as the functional building blocks of the cell. The available methods to identify functional domain combinations are limited in their scope, e.g. to the identification of combinations falling within individual proteins or within specific regions in a translated genome. Further effort is needed to identify groups of domains that span across two or more proteins and are linked by a cooperative function. Such functional domain combinations can be useful for protein annotation. Results Using a new computational method, we have identified 114 groups of domains, referred to as domain assembly units (DASSEM units), in the proteome of budding yeast Saccharomyces cerevisiae. The units participate in many important cellular processes such as transcription regulation, translation initiation, and mRNA splicing. Within the units the domains were found to function in a cooperative manner; and each domain contributed to a different aspect of the unit's overall function. The member domains of DASSEM units were found to be significantly enriched among proteins contained in transcription modules, defined as genes sharing similar expression profiles and presumably similar functions. The observation further confirmed the functional coherence of DASSEM units. The functional linkages of units were found in both functionally characterized and uncharacterized proteins, which enabled the assessment of protein function based on domain composition. Conclusion A new computational method was developed to identify groups of domains that are linked by a common function in the proteome of Saccharomyces cerevisiae. These groups can either lie within individual proteins or span across different proteins. We propose that the functional linkages among the domains within the DASSEM units can be used as a non-homology based tool to annotate uncharacterized proteins. PMID:17937820

  4. Distinguishing between biochemical and cellular function: Are there peptide signatures for cellular function of proteins?

    PubMed

    Jain, Shruti; Bhattacharyya, Kausik; Bakshi, Rachit; Narang, Ankita; Brahmachari, Vani

    2017-04-01

    The genome annotation and identification of gene function depends on conserved biochemical activity. However, in the cell, proteins with the same biochemical function can participate in different cellular pathways and cannot complement one another. Similarly, two proteins of very different biochemical functions are put in the same class of cellular function; for example, the classification of a gene as an oncogene or a tumour suppressor gene is not related to its biochemical function, but is related to its cellular function. We have taken an approach to identify peptide signatures for cellular function in proteins with known biochemical function. ATPases as a test case, we classified ATPases (2360 proteins) and kinases (517 proteins) from the human genome into different cellular function categories such as transcriptional, replicative, and chromatin remodelling proteins. Using publicly available tool, MEME, we identify peptide signatures shared among the members of a given category but not between cellular functional categories; for example, no motif sharing is seen between chromatin remodelling and transporter ATPases, similarly between receptor Serine/Threonine Kinase and Receptor Tyrosine Kinase. There are motifs shared within each category with significant E value and high occurrence. This concept of signature for cellular function was applied to developmental regulators, the polycomb and trithorax proteins which led to the prediction of the role of INO80, a chromatin remodelling protein, in development. This has been experimentally validated earlier for its role in homeotic gene regulation and its interaction with regulatory complexes like the Polycomb and Trithorax complex. Proteins 2017; 85:682-693. © 2016 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. A review on protein functionalized carbon nanotubes.

    PubMed

    Nagaraju, Kathyayini; Reddy, Roopa; Reddy, Narendra

    2015-12-18

    Carbon nanotubes (CNTs) have been widely recognized and used for controlled drug delivery and in various other fields due to their unique properties and distinct advantages. Both single-walled carbon nanotubes (SWCNTs) and multiwalled (MWCNTs) carbon nanotubes are used and/or studied for potential applications in medical, energy, textile, composite, and other areas. Since CNTs are chemically inert and are insoluble in water or other organic solvents, they are functionalized or modified to carry payloads or interact with biological molecules. CNTs have been preferably functionalized with proteins because CNTs are predominantly used for medical applications such as delivery of drugs, DNA and genes, and also for biosensing. Extensive studies have been conducted to understand the interactions, cytotoxicity, and potential applications of protein functionalized CNTs but contradicting results have been published on the cytotoxicity of the functionalized CNTs. This paper provides a brief review of CNTs functionalized with proteins, methods used to functionalize the CNTs, and their potential applications.

  6. Graph pyramids for protein function prediction

    PubMed Central

    2015-01-01

    Background Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Methods Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Results Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data. PMID:26044522

  7. Protein intake distribution pattern does not affect anabolic response, lean body mass, muscle strength or function over 8 weeks in older adults: A randomized-controlled trial.

    PubMed

    Kim, Il-Young; Schutzler, Scott; Schrader, Amy M; Spencer, Horace J; Azhar, Gohar; Wolfe, Robert R; Ferrando, Arny A

    2018-04-01

    In our recent acute metabolic study, we found no differences in the anabolic response to differing patterns of dietary protein intake. To confirm this in a chronic study, we investigated the effects of protein distribution pattern on functional outcomes and protein kinetics in older adults over 8 weeks. To determine chronic effects of protein intake pattern at 1.1 g protein/kg/day in mixed meals on lean body mass (LBM), functional outcomes, whole body protein kinetics and muscle protein fractional synthesis rate (MPS) over 8-week respective dietary intervention, fourteen older subjects were randomly divided into either EVEN or UNVEN group. The UNEVEN group (n = 7) consumed the majority of dietary protein with dinner (UNEVEN, 15/20/65%; breakfast, lunch, dinner), while the EVEN group (n = 7) consumed dietary protein evenly throughout the day (EVEN: 33/33/33%). We found no significant differences in LBM, muscle strength, and other functional outcomes between EVEN and UNEVEN before and after 8-week intervention. Consistent with these functional outcomes, we did not find significant differences in the 20-h integrated whole body protein kinetics [net protein balance (NB), protein synthesis (PS), and breakdown (PB)] above basal states and MPS between EVEN and UNEVEN intake patterns. We conclude that over an 8-week intervention period, the protein intake distribution pattern in mixed meals does not play an important role in determining anabolic response, muscle strength, or functional outcomes. This trial is registered at https://ClinicalTrials.gov as NCT02787889. Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  8. Emergence of Complexity in Protein Functions and Metabolic Networks

    NASA Technical Reports Server (NTRS)

    Pohorille, Andzej

    2009-01-01

    In modern organisms proteins perform a majority of cellular functions, such as chemical catalysis, energy transduction and transport of material across cell walls. Although great strides have been made towards understanding protein evolution, a meaningful extrapolation from contemporary proteins to their earliest ancestors is virtually impossible. In an alternative approach, the origin of water-soluble proteins was probed through the synthesis of very large libraries of random amino acid sequences and subsequently subjecting them to in vitro evolution. In combination with computer modeling and simulations, these experiments allow us to address a number of fundamental questions about the origins of proteins. Can functionality emerge from random sequences of proteins? How did the initial repertoire of functional proteins diversify to facilitate new functions? Did this diversification proceed primarily through drawing novel functionalities from random sequences or through evolution of already existing proto-enzymes? Did protein evolution start from a pool of proteins defined by a frozen accident and other collections of proteins could start a different evolutionary pathway? Although we do not have definitive answers to these questions, important clues have been uncovered. Considerable progress has been also achieved in understanding the origins of membrane proteins. We will address this issue in the example of ion channels - proteins that mediate transport of ions across cell walls. Remarkably, despite overall complexity of these proteins in contemporary cells, their structural motifs are quite simple, with -helices being most common. By combining results of experimental and computer simulation studies on synthetic models and simple, natural channels, I will show that, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during

  9. Ion-dipole interactions and their functions in proteins.

    PubMed

    Sippel, Katherine H; Quiocho, Florante A

    2015-07-01

    Ion-dipole interactions in biological macromolecules are formed between atomic or molecular ions and neutral protein dipolar groups through either hydrogen bond or coordination. Since their discovery 30 years ago, these interactions have proven to be a frequent occurrence in protein structures, appearing in everything from transporters and ion channels to enzyme active sites to protein-protein interfaces. However, their significance and roles in protein functions are largely underappreciated. We performed PDB data mining to identify a sampling of proteins that possess these interactions. In this review, we will define the ion-dipole interaction and discuss several prominent examples of their functional roles in nature. © 2015 The Protein Society.

  10. Perinatal protein malnutrition affects mitochondrial function in adult and results in a resistance to high fat diet-induced obesity.

    PubMed

    Jousse, Céline; Muranishi, Yuki; Parry, Laurent; Montaurier, Christophe; Even, Patrick; Launay, Jean-Marie; Carraro, Valérie; Maurin, Anne-Catherine; Averous, Julien; Chaveroux, Cédric; Bruhat, Alain; Mallet, Jacques; Morio, Béatrice; Fafournoux, Pierre

    2014-01-01

    Epidemiological findings indicate that transient environmental influences during perinatal life, especially nutrition, may have deleterious heritable health effects lasting for the entire life. Indeed, the fetal organism develops specific adaptations that permanently change its physiology/metabolism and that persist even in the absence of the stimulus that initiated them. This process is termed "nutritional programming". We previously demonstrated that mothers fed a Low-Protein-Diet (LPD) during gestation and lactation give birth to F1-LPD animals presenting metabolic consequences that are different from those observed when the nutritional stress is applied during gestation only. Compared to control mice, adult F1-LPD animals have a lower body weight and exhibit a higher food intake suggesting that maternal protein under-nutrition during gestation and lactation affects the energy metabolism of F1-LPD offspring. In this study, we investigated the origin of this apparent energy wasting process in F1-LPD and demonstrated that minimal energy expenditure is increased, due to both an increased mitochondrial function in skeletal muscle and an increased mitochondrial density in White Adipose Tissue. Importantly, F1-LPD mice are protected against high-fat-diet-induced obesity. Clearly, different paradigms of exposure to malnutrition may be associated with differences in energy expenditure, food intake, weight and different susceptibilities to various symptoms associated with metabolic syndrome. Taken together these results demonstrate that intra-uterine environment is a major contributor to the future of individuals and disturbance at a critical period of development may compromise their health. Consequently, understanding the molecular mechanisms may give access to useful knowledge regarding the onset of metabolic diseases.

  11. Troyer Syndrome Protein Spartin Is Mono-Ubiquitinated and Functions in EGF Receptor Trafficking

    PubMed Central

    Jupille, Henri; Fatheddin, Parvin; Puertollano, Rosa

    2007-01-01

    Troyer syndrome is an autosomal recessive hereditary spastic paraplegia caused by mutation in the spartin (SPG20) gene, which encodes a widely expressed protein of unknown function. This mutation results in premature protein truncation and thus might signify a loss-of-function disease mechanism. In this study, we have found that spartin is mono-ubiquitinated and functions in degradation of the epidermal growth factor receptor (EGFR). Upon EGF stimulation, spartin translocates from the cytoplasm to the plasma membrane and colocalizes with internalized EGF-Alexa. Knockdown of spartin by small interfering RNA decreases the rate of EGFR degradation and also affects EGFR internalization, recycling, or both. Furthermore, overexpression of spartin results in a prominent decrease in EGFR degradation. Taken together, our data suggest that spartin is involved in the intracellular trafficking of EGFR and that impaired endocytosis may underlie the pathogenesis of Troyer syndrome. PMID:17332501

  12. Text Mining Improves Prediction of Protein Functional Sites

    PubMed Central

    Cohn, Judith D.; Ravikumar, Komandur E.

    2012-01-01

    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions. PMID:22393388

  13. Visualizing and Clustering Protein Similarity Networks: Sequences, Structures, and Functions.

    PubMed

    Mai, Te-Lun; Hu, Geng-Ming; Chen, Chi-Ming

    2016-07-01

    Research in the recent decade has demonstrated the usefulness of protein network knowledge in furthering the study of molecular evolution of proteins, understanding the robustness of cells to perturbation, and annotating new protein functions. In this study, we aimed to provide a general clustering approach to visualize the sequence-structure-function relationship of protein networks, and investigate possible causes for inconsistency in the protein classifications based on sequences, structures, and functions. Such visualization of protein networks could facilitate our understanding of the overall relationship among proteins and help researchers comprehend various protein databases. As a demonstration, we clustered 1437 enzymes by their sequences and structures using the minimum span clustering (MSC) method. The general structure of this protein network was delineated at two clustering resolutions, and the second level MSC clustering was found to be highly similar to existing enzyme classifications. The clustering of these enzymes based on sequence, structure, and function information is consistent with each other. For proteases, the Jaccard's similarity coefficient is 0.86 between sequence and function classifications, 0.82 between sequence and structure classifications, and 0.78 between structure and function classifications. From our clustering results, we discussed possible examples of divergent evolution and convergent evolution of enzymes. Our clustering approach provides a panoramic view of the sequence-structure-function network of proteins, helps visualize the relation between related proteins intuitively, and is useful in predicting the structure and function of newly determined protein sequences.

  14. Discovering Conformational Sub-States Relevant to Protein Function

    PubMed Central

    Ramanathan, Arvind; Savol, Andrej J.; Langmead, Christopher J.; Agarwal, Pratul K.; Chennubhotla, Chakra S.

    2011-01-01

    Background Internal motions enable proteins to explore a range of conformations, even in the vicinity of native state. The role of conformational fluctuations in the designated function of a protein is widely debated. Emerging evidence suggests that sub-groups within the range of conformations (or sub-states) contain properties that may be functionally relevant. However, low populations in these sub-states and the transient nature of conformational transitions between these sub-states present significant challenges for their identification and characterization. Methods and Findings To overcome these challenges we have developed a new computational technique, quasi-anharmonic analysis (QAA). QAA utilizes higher-order statistics of protein motions to identify sub-states in the conformational landscape. Further, the focus on anharmonicity allows identification of conformational fluctuations that enable transitions between sub-states. QAA applied to equilibrium simulations of human ubiquitin and T4 lysozyme reveals functionally relevant sub-states and protein motions involved in molecular recognition. In combination with a reaction pathway sampling method, QAA characterizes conformational sub-states associated with cis/trans peptidyl-prolyl isomerization catalyzed by the enzyme cyclophilin A. In these three proteins, QAA allows identification of conformational sub-states, with critical structural and dynamical features relevant to protein function. Conclusions Overall, QAA provides a novel framework to intuitively understand the biophysical basis of conformational diversity and its relevance to protein function. PMID:21297978

  15. Human Milk: Bioactive Proteins/Peptides and Functional Properties.

    PubMed

    Lönnerdal, Bo

    2016-06-23

    Breastfeeding has been associated with many benefits, both in the short and in the long term. Infants being breastfed generally have less illness and have better cognitive development at 1 year of age than formula-fed infants. Later in life, they have a lower risk of obesity, diabetes and cardiovascular disease. Several components in breast milk may be responsible for these different outcomes, but bioactive proteins/peptides likely play a major role. Some proteins in breast milk are comparatively resistant towards digestion and may therefore exert their functions in the gastrointestinal tract in intact form or as larger fragments. Other milk proteins may be partially digested in the upper small intestine and the resulting peptides may exert functions in the lower small intestine. Lactoferrin, lysozyme and secretory IgA have been found intact in the stool of breastfed infants and are therefore examples of proteins that are resistant against proteolytic degradation in the gut. Together, these proteins serve protective roles against infection and support immune function in the immature infant. α-lactalbumin, β-casein, κ-casein and osteopontin are examples of proteins that are partially digested in the upper small intestine, and the resulting peptides influence functions in the gut. Such functions include stimulation of immune function, mineral and trace element absorption and defense against infection. © 2016 Nestec Ltd., Vevey/S. Karger AG, Basel.

  16. Assessment of protein set coherence using functional annotations

    PubMed Central

    Chagoyen, Monica; Carazo, Jose M; Pascual-Montano, Alberto

    2008-01-01

    Background Analysis of large-scale experimental datasets frequently produces one or more sets of proteins that are subsequently mined for functional interpretation and validation. To this end, a number of computational methods have been devised that rely on the analysis of functional annotations. Although current methods provide valuable information (e.g. significantly enriched annotations, pairwise functional similarities), they do not specifically measure the degree of homogeneity of a protein set. Results In this work we present a method that scores the degree of functional homogeneity, or coherence, of a set of proteins on the basis of the global similarity of their functional annotations. The method uses statistical hypothesis testing to assess the significance of the set in the context of the functional space of a reference set. As such, it can be used as a first step in the validation of sets expected to be homogeneous prior to further functional interpretation. Conclusion We evaluate our method by analysing known biologically relevant sets as well as random ones. The known relevant sets comprise macromolecular complexes, cellular components and pathways described for Saccharomyces cerevisiae, which are mostly significantly coherent. Finally, we illustrate the usefulness of our approach for validating 'functional modules' obtained from computational analysis of protein-protein interaction networks. Matlab code and supplementary data are available at PMID:18937846

  17. Using the underlying biological organization of the Mycobacterium tuberculosis functional network for protein function prediction.

    PubMed

    Mazandu, Gaston K; Mulder, Nicola J

    2012-07-01

    Despite ever-increasing amounts of sequence and functional genomics data, there is still a deficiency of functional annotation for many newly sequenced proteins. For Mycobacterium tuberculosis (MTB), more than half of its genome is still uncharacterized, which hampers the search for new drug targets within the bacterial pathogen and limits our understanding of its pathogenicity. As for many other genomes, the annotations of proteins in the MTB proteome were generally inferred from sequence homology, which is effective but its applicability has limitations. We have carried out large-scale biological data integration to produce an MTB protein functional interaction network. Protein functional relationships were extracted from the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and additional functional interactions from microarray, sequence and protein signature data. The confidence level of protein relationships in the additional functional interaction data was evaluated using a dynamic data-driven scoring system. This functional network has been used to predict functions of uncharacterized proteins using Gene Ontology (GO) terms, and the semantic similarity between these terms measured using a state-of-the-art GO similarity metric. To achieve better trade-off between improvement of quality, genomic coverage and scalability, this prediction is done by observing the key principles driving the biological organization of the functional network. This study yields a new functionally characterized MTB strain CDC1551 proteome, consisting of 3804 and 3698 proteins out of 4195 with annotations in terms of the biological process and molecular function ontologies, respectively. These data can contribute to research into the Development of effective anti-tubercular drugs with novel biological mechanisms of action. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Functional dissection of protein domains involved in the immunomodulatory properties of PE_PGRS33 of Mycobacterium tuberculosis.

    PubMed

    Zumbo, Antonella; Palucci, Ivana; Cascioferro, Alessandro; Sali, Michela; Ventura, Marcello; D'Alfonso, Pamela; Iantomasi, Raffaella; Di Sante, Gabriele; Ria, Francesco; Sanguinetti, Maurizio; Fadda, Giovanni; Manganelli, Riccardo; Delogu, Giovanni

    2013-12-01

    PE_PGRSs are a large family of proteins identified in Mycobacterium tuberculosis complex and in few other pathogenic mycobacteria. The PE domain of PE_PGRS33 mediates localization of the protein on the mycobacterial cell surface, where the PGRS domain is available to interact with host components. In this study, PE_PGRS33 and its functional deletion mutants were expressed in M. smegmatis, and in vitro and in vivo assays were used to dissect the protein domains involved in the immunomodulatory properties of the protein. We demonstrate that PE_PGRS33-mediated secretion of TNF-α by macrophages occurs by extracellular interaction with TLR2. Our results also show that while the PGRS domain of the protein is required for triggering TNF-α secretion, mutation in the PE domain affects the pro-inflammatory properties of the protein. These results indicate that PE_PGRS33 is a protein with immunomodulatory activity and that protein stability and localization on the mycobacterial surface can affect these properties. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  19. Random heteropolymers preserve protein function in foreign environments

    NASA Astrophysics Data System (ADS)

    Panganiban, Brian; Qiao, Baofu; Jiang, Tao; DelRe, Christopher; Obadia, Mona M.; Nguyen, Trung Dac; Smith, Anton A. A.; Hall, Aaron; Sit, Izaac; Crosby, Marquise G.; Dennis, Patrick B.; Drockenmuller, Eric; Olvera de la Cruz, Monica; Xu, Ting

    2018-03-01

    The successful incorporation of active proteins into synthetic polymers could lead to a new class of materials with functions found only in living systems. However, proteins rarely function under the conditions suitable for polymer processing. On the basis of an analysis of trends in protein sequences and characteristic chemical patterns on protein surfaces, we designed four-monomer random heteropolymers to mimic intrinsically disordered proteins for protein solubilization and stabilization in non-native environments. The heteropolymers, with optimized composition and statistical monomer distribution, enable cell-free synthesis of membrane proteins with proper protein folding for transport and enzyme-containing plastics for toxin bioremediation. Controlling the statistical monomer distribution in a heteropolymer, rather than the specific monomer sequence, affords a new strategy to interface with biological systems for protein-based biomaterials.

  20. How does temperature affect the function of tissue macrophages?

    NASA Astrophysics Data System (ADS)

    Lee, Chen-Ting; Repasky, Elizabeth A.

    2011-03-01

    Macrophages create a major danger signal following injury or infection and upon activation release pro-inflammatory cytokines, which in turn help to generate febrile conditions. Thus, like other cells of the body, tissue macrophages are often exposed to naturally occurring elevations in tissue temperature during inflammation and fever. However, whether macrophages sense and respond to temperature changes in a specific manner which modulates their function is still not clear. In this brief review, we highlight recent studies which have analyzed the effects of temperatures on macrophage function, and summarize the possible underlying molecular mechanisms which have been identified. Mild, physiological range hyperthermia has been shown to have both pro- and anti-inflammatory roles in regulating macrophage inflammatory cytokine production and at the meeting presentation, we will show new data demonstrating that hyperthermia can indeed exert both positive and negative signals to macrophages. While some thermal effects are correlated with the induction of heat shock factors/heat shock proteins, overall it is not clear how mild hyperthermia can exert both pro- and anti-inflammatory functions. We also summarize data which shows that hyperthermia can affect other macrophage effector functions, including the anti-tumor cytotoxicity. Overall, these studies may help us to better understand the immunological role of tissue temperature and may provide important information needed to maximize the application of heat in the treatment of various diseases including cancer.

  1. The AMPA receptor-associated protein Shisa7 regulates hippocampal synaptic function and contextual memory

    PubMed Central

    Zamri, Azra Elia; Stroeder, Jasper; Rao-Ruiz, Priyanka; Lodder, Johannes C; van der Loo, Rolinka J

    2017-01-01

    Glutamatergic synapses rely on AMPA receptors (AMPARs) for fast synaptic transmission and plasticity. AMPAR auxiliary proteins regulate receptor trafficking, and modulate receptor mobility and its biophysical properties. The AMPAR auxiliary protein Shisa7 (CKAMP59) has been shown to interact with AMPARs in artificial expression systems, but it is unknown whether Shisa7 has a functional role in glutamatergic synapses. We show that Shisa7 physically interacts with synaptic AMPARs in mouse hippocampus. Shisa7 gene deletion resulted in faster AMPAR currents in CA1 synapses, without affecting its synaptic expression. Shisa7 KO mice showed reduced initiation and maintenance of long-term potentiation of glutamatergic synapses. In line with this, Shisa7 KO mice showed a specific deficit in contextual fear memory, both short-term and long-term after conditioning, whereas auditory fear memory and anxiety-related behavior were normal. Thus, Shisa7 is a bona-fide AMPAR modulatory protein affecting channel kinetics of AMPARs, necessary for synaptic hippocampal plasticity, and memory recall. PMID:29199957

  2. Multiple functions of BCL-2 family proteins.

    PubMed

    Hardwick, J Marie; Soane, Lucian

    2013-02-01

    BCL-2 family proteins are the regulators of apoptosis, but also have other functions. This family of interacting partners includes inhibitors and inducers of cell death. Together they regulate and mediate the process by which mitochondria contribute to cell death known as the intrinsic apoptosis pathway. This pathway is required for normal embryonic development and for preventing cancer. However, before apoptosis is induced, BCL-2 proteins have critical roles in normal cell physiology related to neuronal activity, autophagy, calcium handling, mitochondrial dynamics and energetics, and other processes of normal healthy cells. The relative importance of these physiological functions compared to their apoptosis functions in overall organismal physiology is difficult to decipher. Apoptotic and noncanonical functions of these proteins may be intertwined to link cell growth to cell death. Disentanglement of these functions may require delineation of biochemical activities inherent to the characteristic three-dimensional shape shared by distantly related viral and cellular BCL-2 family members.

  3. Reprogramming cellular functions with engineered membrane proteins.

    PubMed

    Arber, Caroline; Young, Melvin; Barth, Patrick

    2017-10-01

    Taking inspiration from Nature, synthetic biology utilizes and modifies biological components to expand the range of biological functions for engineering new practical devices and therapeutics. While early breakthroughs mainly concerned the design of gene circuits, recent efforts have focused on engineering signaling pathways to reprogram cellular functions. Since signal transduction across cell membranes initiates and controls intracellular signaling, membrane receptors have been targeted by diverse protein engineering approaches despite limited mechanistic understanding of their function. The modular architecture of several receptor families has enabled the empirical construction of chimeric receptors combining domains from distinct native receptors which have found successful immunotherapeutic applications. Meanwhile, progress in membrane protein structure determination, computational modeling and rational design promise to foster the engineering of a broader range of membrane receptor functions. Marrying empirical and rational membrane protein engineering approaches should enable the reprogramming of cells with widely diverse fine-tuned functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. A collaborative filtering approach for protein-protein docking scoring functions.

    PubMed

    Bourquard, Thomas; Bernauer, Julie; Azé, Jérôme; Poupon, Anne

    2011-04-22

    A protein-protein docking procedure traditionally consists in two successive tasks: a search algorithm generates a large number of candidate conformations mimicking the complex existing in vivo between two proteins, and a scoring function is used to rank them in order to extract a native-like one. We have already shown that using Voronoi constructions and a well chosen set of parameters, an accurate scoring function could be designed and optimized. However to be able to perform large-scale in silico exploration of the interactome, a near-native solution has to be found in the ten best-ranked solutions. This cannot yet be guaranteed by any of the existing scoring functions. In this work, we introduce a new procedure for conformation ranking. We previously developed a set of scoring functions where learning was performed using a genetic algorithm. These functions were used to assign a rank to each possible conformation. We now have a refined rank using different classifiers (decision trees, rules and support vector machines) in a collaborative filtering scheme. The scoring function newly obtained is evaluated using 10 fold cross-validation, and compared to the functions obtained using either genetic algorithms or collaborative filtering taken separately. This new approach was successfully applied to the CAPRI scoring ensembles. We show that for 10 targets out of 12, we are able to find a near-native conformation in the 10 best ranked solutions. Moreover, for 6 of them, the near-native conformation selected is of high accuracy. Finally, we show that this function dramatically enriches the 100 best-ranking conformations in near-native structures.

  5. A Collaborative Filtering Approach for Protein-Protein Docking Scoring Functions

    PubMed Central

    Bourquard, Thomas; Bernauer, Julie; Azé, Jérôme; Poupon, Anne

    2011-01-01

    A protein-protein docking procedure traditionally consists in two successive tasks: a search algorithm generates a large number of candidate conformations mimicking the complex existing in vivo between two proteins, and a scoring function is used to rank them in order to extract a native-like one. We have already shown that using Voronoi constructions and a well chosen set of parameters, an accurate scoring function could be designed and optimized. However to be able to perform large-scale in silico exploration of the interactome, a near-native solution has to be found in the ten best-ranked solutions. This cannot yet be guaranteed by any of the existing scoring functions. In this work, we introduce a new procedure for conformation ranking. We previously developed a set of scoring functions where learning was performed using a genetic algorithm. These functions were used to assign a rank to each possible conformation. We now have a refined rank using different classifiers (decision trees, rules and support vector machines) in a collaborative filtering scheme. The scoring function newly obtained is evaluated using 10 fold cross-validation, and compared to the functions obtained using either genetic algorithms or collaborative filtering taken separately. This new approach was successfully applied to the CAPRI scoring ensembles. We show that for 10 targets out of 12, we are able to find a near-native conformation in the 10 best ranked solutions. Moreover, for 6 of them, the near-native conformation selected is of high accuracy. Finally, we show that this function dramatically enriches the 100 best-ranking conformations in near-native structures. PMID:21526112

  6. Chemical-genetic profile analysis in yeast suggests that a previously uncharacterized open reading frame, YBR261C, affects protein synthesis

    PubMed Central

    Alamgir, Md; Eroukova, Veronika; Jessulat, Matthew; Xu, Jianhua; Golshani, Ashkan

    2008-01-01

    Background Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, ~4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis. Results As expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. Conclusion We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s). PMID:19055778

  7. Chemical-genetic profile analysis in yeast suggests that a previously uncharacterized open reading frame, YBR261C, affects protein synthesis.

    PubMed

    Alamgir, Md; Eroukova, Veronika; Jessulat, Matthew; Xu, Jianhua; Golshani, Ashkan

    2008-12-03

    Functional genomics has received considerable attention in the post-genomic era, as it aims to identify function(s) for different genes. One way to study gene function is to investigate the alterations in the responses of deletion mutants to different stimuli. Here we investigate the genetic profile of yeast non-essential gene deletion array (yGDA, approximately 4700 strains) for increased sensitivity to paromomycin, which targets the process of protein synthesis. As expected, our analysis indicated that the majority of deletion strains (134) with increased sensitivity to paromomycin, are involved in protein biosynthesis. The remaining strains can be divided into smaller functional categories: metabolism (45), cellular component biogenesis and organization (28), DNA maintenance (21), transport (20), others (38) and unknown (39). These may represent minor cellular target sites (side-effects) for paromomycin. They may also represent novel links to protein synthesis. One of these strains carries a deletion for a previously uncharacterized ORF, YBR261C, that we term TAE1 for Translation Associated Element 1. Our focused follow-up experiments indicated that deletion of TAE1 alters the ribosomal profile of the mutant cells. Also, gene deletion strain for TAE1 has defects in both translation efficiency and fidelity. Miniaturized synthetic genetic array analysis further indicates that TAE1 genetically interacts with 16 ribosomal protein genes. Phenotypic suppression analysis using TAE1 overexpression also links TAE1 to protein synthesis. We show that a previously uncharacterized ORF, YBR261C, affects the process of protein synthesis and reaffirm that large-scale genetic profile analysis can be a useful tool to study novel gene function(s).

  8. Stability and the Evolvability of Function in a Model Protein

    PubMed Central

    Bloom, Jesse D.; Wilke, Claus O.; Arnold, Frances H.; Adami, Christoph

    2004-01-01

    Functional proteins must fold with some minimal stability to a structure that can perform a biochemical task. Here we use a simple model to investigate the relationship between the stability requirement and the capacity of a protein to evolve the function of binding to a ligand. Although our model contains no built-in tradeoff between stability and function, proteins evolved function more efficiently when the stability requirement was relaxed. Proteins with both high stability and high function evolved more efficiently when the stability requirement was gradually increased than when there was constant selection for high stability. These results show that in our model, the evolution of function is enhanced by allowing proteins to explore sequences corresponding to marginally stable structures, and that it is easier to improve stability while maintaining high function than to improve function while maintaining high stability. Our model also demonstrates that even in the absence of a fundamental biophysical tradeoff between stability and function, the speed with which function can evolve is limited by the stability requirement imposed on the protein. PMID:15111394

  9. A large-scale evaluation of computational protein function prediction

    PubMed Central

    Radivojac, Predrag; Clark, Wyatt T; Ronnen Oron, Tal; Schnoes, Alexandra M; Wittkop, Tobias; Sokolov, Artem; Graim, Kiley; Funk, Christopher; Verspoor, Karin; Ben-Hur, Asa; Pandey, Gaurav; Yunes, Jeffrey M; Talwalkar, Ameet S; Repo, Susanna; Souza, Michael L; Piovesan, Damiano; Casadio, Rita; Wang, Zheng; Cheng, Jianlin; Fang, Hai; Gough, Julian; Koskinen, Patrik; Törönen, Petri; Nokso-Koivisto, Jussi; Holm, Liisa; Cozzetto, Domenico; Buchan, Daniel W A; Bryson, Kevin; Jones, David T; Limaye, Bhakti; Inamdar, Harshal; Datta, Avik; Manjari, Sunitha K; Joshi, Rajendra; Chitale, Meghana; Kihara, Daisuke; Lisewski, Andreas M; Erdin, Serkan; Venner, Eric; Lichtarge, Olivier; Rentzsch, Robert; Yang, Haixuan; Romero, Alfonso E; Bhat, Prajwal; Paccanaro, Alberto; Hamp, Tobias; Kassner, Rebecca; Seemayer, Stefan; Vicedo, Esmeralda; Schaefer, Christian; Achten, Dominik; Auer, Florian; Böhm, Ariane; Braun, Tatjana; Hecht, Maximilian; Heron, Mark; Hönigschmid, Peter; Hopf, Thomas; Kaufmann, Stefanie; Kiening, Michael; Krompass, Denis; Landerer, Cedric; Mahlich, Yannick; Roos, Manfred; Björne, Jari; Salakoski, Tapio; Wong, Andrew; Shatkay, Hagit; Gatzmann, Fanny; Sommer, Ingolf; Wass, Mark N; Sternberg, Michael J E; Škunca, Nives; Supek, Fran; Bošnjak, Matko; Panov, Panče; Džeroski, Sašo; Šmuc, Tomislav; Kourmpetis, Yiannis A I; van Dijk, Aalt D J; ter Braak, Cajo J F; Zhou, Yuanpeng; Gong, Qingtian; Dong, Xinran; Tian, Weidong; Falda, Marco; Fontana, Paolo; Lavezzo, Enrico; Di Camillo, Barbara; Toppo, Stefano; Lan, Liang; Djuric, Nemanja; Guo, Yuhong; Vucetic, Slobodan; Bairoch, Amos; Linial, Michal; Babbitt, Patricia C; Brenner, Steven E; Orengo, Christine; Rost, Burkhard; Mooney, Sean D; Friedberg, Iddo

    2013-01-01

    Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be high. Here we report the results from the first large-scale community-based Critical Assessment of protein Function Annotation (CAFA) experiment. Fifty-four methods representing the state-of-the-art for protein function prediction were evaluated on a target set of 866 proteins from eleven organisms. Two findings stand out: (i) today’s best protein function prediction algorithms significantly outperformed widely-used first-generation methods, with large gains on all types of targets; and (ii) although the top methods perform well enough to guide experiments, there is significant need for improvement of currently available tools. PMID:23353650

  10. Protein Conformational Populations and Functionally Relevant Sub-states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Pratul K; Burger, Virginia; Savol, Andrej

    2013-01-01

    Functioning proteins do not remain fixed in a unique structure, but instead they sample a range of conformations facilitated by motions within the protein. Even in the native state, a protein exists as a collection of interconverting conformations driven by thermodynamic fluctuations. Motions on the fast time scale allow a protein to sample conformations in the nearby area of its conformational landscape, while motions on slower time scales give it access to conformations in distal areas of the landscape. Emerging evidence indicates that protein landscapes contain conformational substates with dynamic and structural features that support the designated function of themore » protein. Nuclear magnetic resonance (NMR) experiments provide information about conformational ensembles of proteins. X-ray crystallography allows researchers to identify the most populated states along the landscape, and computational simulations give atom-level information about the conformational substates of different proteins. This ability to characterize and obtain quantitative information about the conformational substates and the populations of proteins within them is allowing researchers to better understand the relationship between protein structure and dynamics and the mechanisms of protein function. In this Account, we discuss recent developments and challenges in the characterization of functionally relevant conformational populations and substates of proteins. In some enzymes, the sampling of functionally relevant conformational substates is connected to promoting the overall mechanism of catalysis. For example, the conformational landscape of the enzyme dihydrofolate reductase has multiple substates, which facilitate the binding and the release of the cofactor and substrate and catalyze the hydride transfer. For the enzyme cyclophilin A, computational simulations reveal that the long time scale conformational fluctuations enable the enzyme to access conformational substates that

  11. Automated quantitative assessment of proteins' biological function in protein knowledge bases.

    PubMed

    Mayr, Gabriele; Lepperdinger, Günter; Lackner, Peter

    2008-01-01

    Primary protein sequence data are archived in databases together with information regarding corresponding biological functions. In this respect, UniProt/Swiss-Prot is currently the most comprehensive collection and it is routinely cross-examined when trying to unravel the biological role of hypothetical proteins. Bioscientists frequently extract single entries and further evaluate those on a subjective basis. In lieu of a standardized procedure for scoring the existing knowledge regarding individual proteins, we here report about a computer-assisted method, which we applied to score the present knowledge about any given Swiss-Prot entry. Applying this quantitative score allows the comparison of proteins with respect to their sequence yet highlights the comprehension of functional data. pfs analysis may be also applied for quality control of individual entries or for database management in order to rank entry listings.

  12. Cucurbitaceae Seed Protein Hydrolysates as a Potential Source of Bioactive Peptides with Functional Properties

    PubMed Central

    2017-01-01

    Seeds from Cucurbitaceae plants (squashes, pumpkins, melons, etc.) have been used both as protein-rich food ingredients and nutraceutical agents by many indigenous cultures for millennia. However, relatively little is known about the bioactive components (e.g., peptides) of the Cucurbitaceae seed proteins (CSP) and their specific effects on human health. Therefore, this paper aims to provide a comprehensive review of latest research on bioactive and functional properties of CSP isolates and hydrolysates. Enzymatic hydrolysis can introduce a series of changes to the CSP structure and improve its bioactive and functional properties, including the enhanced protein solubility over a wide range of pH values. Small-sized peptides in CSP hydrolysates seem to enhance their bioactive properties but adversely affect their functional properties. Therefore, medium degrees of hydrolysis seem to benefit the overall improvement of bioactive and functional properties of CSP hydrolysates. Among the reported bioactive properties of CSP isolates and hydrolysates, their antioxidant, antihypertensive, and antihyperglycaemic activities stand out. Therefore, they could potentially substitute synthetic antioxidants and drugs which might have adverse secondary effects on human health. CSP isolates and hydrolysates could also be implemented as functional food ingredients, thanks to their favorable amino acid composition and good emulsifying and foaming properties. PMID:29181389

  13. Robustness of Reconstructed Ancestral Protein Functions to Statistical Uncertainty.

    PubMed

    Eick, Geeta N; Bridgham, Jamie T; Anderson, Douglas P; Harms, Michael J; Thornton, Joseph W

    2017-02-01

    Hypotheses about the functions of ancient proteins and the effects of historical mutations on them are often tested using ancestral protein reconstruction (APR)-phylogenetic inference of ancestral sequences followed by synthesis and experimental characterization. Usually, some sequence sites are ambiguously reconstructed, with two or more statistically plausible states. The extent to which the inferred functions and mutational effects are robust to uncertainty about the ancestral sequence has not been studied systematically. To address this issue, we reconstructed ancestral proteins in three domain families that have different functions, architectures, and degrees of uncertainty; we then experimentally characterized the functional robustness of these proteins when uncertainty was incorporated using several approaches, including sampling amino acid states from the posterior distribution at each site and incorporating the alternative amino acid state at every ambiguous site in the sequence into a single "worst plausible case" protein. In every case, qualitative conclusions about the ancestral proteins' functions and the effects of key historical mutations were robust to sequence uncertainty, with similar functions observed even when scores of alternate amino acids were incorporated. There was some variation in quantitative descriptors of function among plausible sequences, suggesting that experimentally characterizing robustness is particularly important when quantitative estimates of ancient biochemical parameters are desired. The worst plausible case method appears to provide an efficient strategy for characterizing the functional robustness of ancestral proteins to large amounts of sequence uncertainty. Sampling from the posterior distribution sometimes produced artifactually nonfunctional proteins for sequences reconstructed with substantial ambiguity. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and

  14. The physical characteristics of human proteins in different biological functions.

    PubMed

    Wang, Tengjiao; Tang, Hailin

    2017-01-01

    The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids.

  15. The physical characteristics of human proteins in different biological functions

    PubMed Central

    Tang, Hailin

    2017-01-01

    The physical properties of gene products are the foundation of their biological functions. In this study, we systematically explored relationships between physical properties and biological functions. The physical properties including origin time, evolution pressure, mRNA and protein stability, molecular weight, hydrophobicity, acidity/alkaline, amino acid compositions, and chromosome location. The biological functions are defined from 4 aspects: biological process, molecular function, cellular component and cell/tissue/organ expression. We found that the proteins associated with basic material and energy metabolism process originated earlier, while the proteins associated with immune, neurological system process etc. originated later. Tissues may have a strong influence on evolution pressure. The proteins associated with energy metabolism are double-stable. Immune and peripheral cell proteins tend to be mRNA stable/protein unstable. There are very few function items with double-unstable of mRNA and protein. The proteins involved in the cell adhesion tend to consist of large proteins with high proportion of small amino acids. The proteins of organic acid transport, neurological system process and amine transport have significantly high hydrophobicity. Interestingly, the proteins involved in olfactory receptor activity tend to have high frequency of aromatic, sulfuric and hydroxyl amino acids. PMID:28459865

  16. Function of Piwi, a nuclear Piwi/Argonaute protein, is independent of its slicer activity.

    PubMed

    Darricarrère, Nicole; Liu, Na; Watanabe, Toshiaki; Lin, Haifan

    2013-01-22

    The Piwi protein subfamily is essential for Piwi-interacting RNA (piRNA) biogenesis, transposon silencing, and germ-line development, all of which have been proposed to require Piwi endonuclease activity, as validated for two cytoplasmic Piwi proteins in mice. However, recent evidence has led to questioning of the generality of this mechanism for the Piwi members that reside in the nucleus. Drosophila offers a distinct opportunity to study the function of nuclear Piwi proteins because, among three Drosophila Piwi proteins--called Piwi, Aubergine, and Argonaute 3--Piwi is the only member of this subfamily that is localized in the nucleus and expressed in both germ-line and somatic cells in the gonad, where it is responsible for piRNA biogenesis and regulatory functions essential for fertility. In this study, we demonstrate beyond doubt that the slicer activity of Piwi is not required for any known functions in vivo. We show that, in transgenic flies with the DDX catalytic triad of PIWI mutated, neither primary nor secondary piRNA biogenesis is detectably affected, transposons remain repressed, and fertility is normal. Our observations demonstrate that the mechanism of Piwi is independent of its in vitro endonuclease activity. Instead, it is consistent with the alternative mode of Piwi function as a molecule involved in the piRNA-directed guidance of epigenetic factors to chromatin.

  17. Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems*

    PubMed Central

    Codreanu, Simona G.; Ullery, Jody C.; Zhu, Jing; Tallman, Keri A.; Beavers, William N.; Porter, Ned A.; Marnett, Lawrence J.; Zhang, Bing; Liebler, Daniel C.

    2014-01-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions. PMID:24429493

  18. Using the social amoeba Dictyostelium to study the functions of proteins linked to neuronal ceroid lipofuscinosis.

    PubMed

    Huber, Robert J

    2016-11-24

    Neuronal ceroid lipofuscinosis (NCL), also known as Batten disease, is a debilitating neurological disorder that affects both children and adults. Thirteen genetically distinct genes have been identified that when mutated, result in abnormal lysosomal function and an excessive accumulation of ceroid lipofuscin in neurons, as well as other cell types outside of the central nervous system. The NCL family of proteins is comprised of lysosomal enzymes (PPT1/CLN1, TPP1/CLN2, CTSD/CLN10, CTSF/CLN13), proteins that peripherally associate with membranes (DNAJC5/CLN4, KCTD7/CLN14), a soluble lysosomal protein (CLN5), a protein present in the secretory pathway (PGRN/CLN11), and several proteins that display different subcellular localizations (CLN3, CLN6, MFSD8/CLN7, CLN8, ATP13A2/CLN12). Unfortunately, the precise functions of many of the NCL proteins are still unclear, which has made targeted therapy development challenging. The social amoeba Dictyostelium discoideum has emerged as an excellent model system for studying the normal functions of proteins linked to human neurological disorders. Intriguingly, the genome of this eukaryotic soil microbe encodes homologs of 11 of the 13 known genes linked to NCL. The genetic tractability of the organism, combined with its unique life cycle, makes Dictyostelium an attractive model system for studying the functions of NCL proteins. Moreover, the ability of human NCL proteins to rescue gene-deficiency phenotypes in Dictyostelium suggests that the biological pathways regulating NCL protein function are likely conserved from Dictyostelium to human. In this review, I will discuss each of the NCL homologs in Dictyostelium in turn and describe how future studies can exploit the advantages of the system by testing new hypotheses that may ultimately lead to effective therapy options for this devastating and currently untreatable neurological disorder.

  19. FACTORS AFFECTING THE UPTAKE OF LISSAMINE GREEN BY SERUM PROTEINS

    PubMed Central

    Brackenridge, C. J.

    1960-01-01

    Eight physicochemical factors which affect the uptake of lissamine green on filter paper impregnated with serum proteins have been examined, and their relevance to the staining of electrophoretically separated protein fractions is discussed. It is shown that grade of paper, weight of protein applied, separate and combined denaturation and staining time, temperature and concentration of staining solution, concentration of denaturant, and type of protein all influence the weight of dye absorbed per unit weight of applied protein, and must be rigidly standardized if valid quantitative results are to be obtained. Five sets of conditions are obtained for optimal staining and it is found that separation of denaturant from dye yields the best procedure. It is concluded that lissamine green is an excellent dye for the staining and quantitative estimation of separated protein fractions in paper electrophoresis, and that conditions can usually be arranged to produce a linear relation between dye uptake and protein concentration in an experimentally efficient manner. PMID:13803681

  20. Classifying proteins into functional groups based on all-versus-all BLAST of 10 million proteins.

    PubMed

    Kolker, Natali; Higdon, Roger; Broomall, William; Stanberry, Larissa; Welch, Dean; Lu, Wei; Haynes, Winston; Barga, Roger; Kolker, Eugene

    2011-01-01

    To address the monumental challenge of assigning function to millions of sequenced proteins, we completed the first of a kind all-versus-all sequence alignments using BLAST for 9.9 million proteins in the UniRef100 database. Microsoft Windows Azure produced over 3 billion filtered records in 6 days using 475 eight-core virtual machines. Protein classification into functional groups was then performed using Hive and custom jars implemented on top of Apache Hadoop utilizing the MapReduce paradigm. First, using the Clusters of Orthologous Genes (COG) database, a length normalized bit score (LNBS) was determined to be the best similarity measure for classification of proteins. LNBS achieved sensitivity and specificity of 98% each. Second, out of 5.1 million bacterial proteins, about two-thirds were assigned to significantly extended COG groups, encompassing 30 times more assigned proteins. Third, the remaining proteins were classified into protein functional groups using an innovative implementation of a single-linkage algorithm on an in-house Hadoop compute cluster. This implementation significantly reduces the run time for nonindexed queries and optimizes efficient clustering on a large scale. The performance was also verified on Amazon Elastic MapReduce. This clustering assigned nearly 2 million proteins to approximately half a million different functional groups. A similar approach was applied to classify 2.8 million eukaryotic sequences resulting in over 1 million proteins being assign to existing KOG groups and the remainder clustered into 100,000 functional groups.

  1. Functional Analysis of Glycosylation of Zika Virus Envelope Protein.

    PubMed

    Fontes-Garfias, Camila R; Shan, Chao; Luo, Huanle; Muruato, Antonio E; Medeiros, Daniele B A; Mays, Elizabeth; Xie, Xuping; Zou, Jing; Roundy, Christopher M; Wakamiya, Maki; Rossi, Shannan L; Wang, Tian; Weaver, Scott C; Shi, Pei-Yong

    2017-10-31

    Zika virus (ZIKV) infection causes devastating congenital abnormities and Guillain-Barré syndrome. The ZIKV envelope (E) protein is responsible for viral entry and represents a major determinant for viral pathogenesis. Like other flaviviruses, the ZIKV E protein is glycosylated at amino acid N154. To study the function of E glycosylation, we generated a recombinant N154Q ZIKV that lacks the E glycosylation and analyzed the mutant virus in mammalian and mosquito hosts. In mouse models, the mutant was attenuated, as evidenced by lower viremia, decreased weight loss, and no mortality; however, knockout of E glycosylation did not significantly affect neurovirulence. Mice immunized with the mutant virus developed a robust neutralizing antibody response and were completely protected from wild-type ZIKV challenge. In mosquitoes, the mutant virus exhibited diminished oral infectivity for the Aedes aegypti vector. Collectively, the results demonstrate that E glycosylation is critical for ZIKV infection of mammalian and mosquito hosts. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Three regulators of G protein signaling differentially affect mating, morphology and virulence in the smut fungus Ustilago maydis.

    PubMed

    Moretti, Marino; Wang, Lei; Grognet, Pierre; Lanver, Daniel; Link, Hannes; Kahmann, Regine

    2017-09-01

    Regulators of G protein signaling (RGS) proteins modulate heterotrimeric G protein signaling negatively. To broaden an understanding of the roles of RGS proteins in fungal pathogens, we functionally characterized the three RGS protein-encoding genes (rgs1, rgs2 and rgs3) in the phytopathogenic fungus Ustilago maydis. It was found that RGS proteins played distinct roles in the regulation of development and virulence. rgs1 had a minor role in virulence when deleted in a solopathogenic strain. In crosses, rgs1 was dispensable for mating and filamentation, but was required for teliospore production. Haploid rgs2 mutants were affected in cell morphology, growth, mating and were unable to cause disease symptoms in crosses. However, virulence was unaffected when rgs2 was deleted in a solopathogenic strain, suggesting an exclusive involvement in pre-fusion events. These rgs2 phenotypes are likely connected to elevated intracellular cAMP levels. rgs3 mutants were severely attenuated in mating, in their response to pheromone, virulence and formation of mature teliospores. The mating defect could be traced back to reduced expression of the transcription factor rop1. It was speculated that the distinct roles of the three U. maydis RGS proteins were achieved by direct modulation of the Gα subunit-activated signaling pathways as well as through Gα-independent functions. © 2017 John Wiley & Sons Ltd.

  3. Regulation of PXR and CAR by protein-protein interaction and signaling crosstalk

    PubMed Central

    Oladimeji, Peter; Cui, Hongmei; Zhang, Chen; Chen, Taosheng

    2016-01-01

    Introduction Protein-protein interaction and signaling crosstalk contribute to the regulation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) and broaden their cellular function. Area covered This review covers key historic discoveries and recent advances in our understanding of the broad function of PXR and CAR and their regulation by protein-protein interaction and signaling crosstalk. Expert opinion PXR and CAR were first discovered as xenobiotic receptors. However, it is clear that PXR and CAR perform a much broader range of cellular functions through protein-protein interaction and signaling crosstalk, which typically mutually affect the function of all the partners involved. Future research on PXR and CAR should, therefore, look beyond their xenobiotic function. PMID:27295009

  4. Versatile multi-functionalization of protein nanofibrils for biosensor applications

    NASA Astrophysics Data System (ADS)

    Sasso, L.; Suei, S.; Domigan, L.; Healy, J.; Nock, V.; Williams, M. A. K.; Gerrard, J. A.

    2014-01-01

    Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils self-assembled from whey proteins. Biochemical characterization shows the effects of the functionalization onto the nanofibrils' surface, giving insights into the changes in surface chemistry of the nanostructures. We show how these methods can be used to decorate whey protein nanofibrils with several components such as fluorescent quantum dots, enzymes, and metal nanoparticles. A multi-functionalization approach is used, as a proof of principle, for the development of a glucose biosensor platform, where the protein nanofibrils act as nanoscaffolds for glucose oxidase. Biotinylation is used for enzyme attachment and thiolation for nanoscaffold anchoring onto a gold electrode surface. Characterization via cyclic voltammetry shows an increase in glucose-oxidase mediated current response due to thiol-metal interactions with the gold electrode. The presented approach for protein nanofibril multi-functionalization is novel and has the potential of being applied to other protein nanostructures with similar surface chemistry.Protein nanofibrils offer advantages over other nanostructures due to the ease in their self-assembly and the versatility of surface chemistry available. Yet, an efficient and general methodology for their post-assembly functionalization remains a significant challenge. We introduce a generic approach, based on biotinylation and thiolation, for the multi-functionalization of protein nanofibrils self-assembled from whey proteins. Biochemical characterization shows the effects of the functionalization onto the nanofibrils' surface, giving insights into the

  5. Determining protein function and interaction from genome analysis

    DOEpatents

    Eisenberg, David; Marcotte, Edward M.; Thompson, Michael J.; Pellegrini, Matteo; Yeates, Todd O.

    2004-08-03

    A computational method system, and computer program are provided for inferring functional links from genome sequences. One method is based on the observation that some pairs of proteins A' and B' have homologs in another organism fused into a single protein chain AB. A trans-genome comparison of sequences can reveal these AB sequences, which are Rosetta Stone sequences because they decipher an interaction between A' and B. Another method compares the genomic sequence of two or more organisms to create a phylogenetic profile for each protein indicating its presence or absence across all the genomes. The profile provides information regarding functional links between different families of proteins. In yet another method a combination of the above two methods is used to predict functional links.

  6. Analysis of soybean root proteins affected by gibberellic acid treatment under flooding stress.

    PubMed

    Oh, Myeong Won; Nanjo, Yohei; Komatsu, Setsuko

    2014-01-01

    Flooding is a serious abiotic stress for soybean because it restricts growth and reduces grain yields. To investigate the effect of gibberellic acid (GA) on soybean under flooding stress, root proteins were analyzed using a gel-free proteomic technique. Proteins were extracted from the roots of 4-days-old soybean seedlings exposed to flooding stress in the presence and absence of exogenous GA3 for 2 days. A total of 307, 324, and 250 proteins were identified from untreated, and flooding-treated soybean seedlings without or with GA3, respectively. Secondary metabolism- and cell-related proteins, and proteins involved in protein degradation/synthesis were decreased by flooding stress; however, the levels of these proteins were restored by GA3 supplementation under flooding. Fermentation- and cell wall-related proteins were not affected by GA3 supplementation. Furthermore, putative GA-responsive proteins, which were identified by the presence of a GA-responsive element in the promoter region, were less abundant by flooding stress; however, these proteins were more abundant by GA3 supplementation under flooding. Taken together, these results suggest that GA3 affects the abundance of proteins involved in secondary metabolism, cell cycle, and protein degradation/synthesis in soybeans under flooding stress.

  7. A Survey of Computational Intelligence Techniques in Protein Function Prediction

    PubMed Central

    Tiwari, Arvind Kumar; Srivastava, Rajeev

    2014-01-01

    During the past, there was a massive growth of knowledge of unknown proteins with the advancement of high throughput microarray technologies. Protein function prediction is the most challenging problem in bioinformatics. In the past, the homology based approaches were used to predict the protein function, but they failed when a new protein was different from the previous one. Therefore, to alleviate the problems associated with homology based traditional approaches, numerous computational intelligence techniques have been proposed in the recent past. This paper presents a state-of-the-art comprehensive review of various computational intelligence techniques for protein function predictions using sequence, structure, protein-protein interaction network, and gene expression data used in wide areas of applications such as prediction of DNA and RNA binding sites, subcellular localization, enzyme functions, signal peptides, catalytic residues, nuclear/G-protein coupled receptors, membrane proteins, and pathway analysis from gene expression datasets. This paper also summarizes the result obtained by many researchers to solve these problems by using computational intelligence techniques with appropriate datasets to improve the prediction performance. The summary shows that ensemble classifiers and integration of multiple heterogeneous data are useful for protein function prediction. PMID:25574395

  8. Hierarchical Ensemble Methods for Protein Function Prediction

    PubMed Central

    2014-01-01

    Protein function prediction is a complex multiclass multilabel classification problem, characterized by multiple issues such as the incompleteness of the available annotations, the integration of multiple sources of high dimensional biomolecular data, the unbalance of several functional classes, and the difficulty of univocally determining negative examples. Moreover, the hierarchical relationships between functional classes that characterize both the Gene Ontology and FunCat taxonomies motivate the development of hierarchy-aware prediction methods that showed significantly better performances than hierarchical-unaware “flat” prediction methods. In this paper, we provide a comprehensive review of hierarchical methods for protein function prediction based on ensembles of learning machines. According to this general approach, a separate learning machine is trained to learn a specific functional term and then the resulting predictions are assembled in a “consensus” ensemble decision, taking into account the hierarchical relationships between classes. The main hierarchical ensemble methods proposed in the literature are discussed in the context of existing computational methods for protein function prediction, highlighting their characteristics, advantages, and limitations. Open problems of this exciting research area of computational biology are finally considered, outlining novel perspectives for future research. PMID:25937954

  9. Amino acid substitution equivalent to human chorea-acanthocytosis I2771R in yeast Vps13 protein affects its binding to phosphatidylinositol 3-phosphate

    PubMed Central

    Rzepnikowska, Weronika; Flis, Krzysztof; Kaminska, Joanna; Grynberg, Marcin; Urbanek, Agnieszka; Ayscough, Kathryn R.

    2017-01-01

    Abstract The rare human disorder chorea-acanthocytosis (ChAc) is caused by mutations in hVPS13A gene. The hVps13A protein interacts with actin and regulates the level of phosphatidylinositol 4-phosphate (PI4P) in the membranes of neuronal cells. Yeast Vps13 is involved in vacuolar protein transport and, like hVps13A, participates in PI4P metabolism. Vps13 proteins are conserved in eukaryotes, but their molecular function remains unknown. One of the mutations found in ChAc patients causes amino acids substitution I2771R which affects the localization of hVps13A in skeletal muscles. To dissect the mechanism of pathogenesis of I2771R, we created and analyzed a yeast strain carrying the equivalent mutation. Here we show that in yeast, substitution I2749R causes dysfunction of Vps13 protein in endocytosis and vacuolar transport, although the level of the protein is not affected, suggesting loss of function. We also show that Vps13, like hVps13A, influences actin cytoskeleton organization and binds actin in immunoprecipitation experiments. Vps13-I2749R binds actin, but does not function in the actin cytoskeleton organization. Moreover, we show that Vps13 binds phospholipids, especially phosphatidylinositol 3-phosphate (PI3P), via its SHR_BD and APT1 domains. Substitution I2749R attenuates this ability. Finally, the localization of Vps13-GFP is altered when cellular levels of PI3P are decreased indicating its trafficking within the endosomal membrane system. These results suggest that PI3P regulates the functioning of Vps13, both in protein trafficking and actin cytoskeleton organization. Attenuation of PI3P-binding ability in the mutant hVps13A protein may be one of the reasons for its mislocalization and disrupted function in cells of patients suffering from ChAc. PMID:28334785

  10. Phytochemicals perturb membranes and promiscuously alter protein function.

    PubMed

    Ingólfsson, Helgi I; Thakur, Pratima; Herold, Karl F; Hobart, E Ashley; Ramsey, Nicole B; Periole, Xavier; de Jong, Djurre H; Zwama, Martijn; Yilmaz, Duygu; Hall, Katherine; Maretzky, Thorsten; Hemmings, Hugh C; Blobel, Carl; Marrink, Siewert J; Koçer, Armağan; Sack, Jon T; Andersen, Olaf S

    2014-08-15

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding.

  11. Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function

    PubMed Central

    2015-01-01

    A wide variety of phytochemicals are consumed for their perceived health benefits. Many of these phytochemicals have been found to alter numerous cell functions, but the mechanisms underlying their biological activity tend to be poorly understood. Phenolic phytochemicals are particularly promiscuous modifiers of membrane protein function, suggesting that some of their actions may be due to a common, membrane bilayer-mediated mechanism. To test whether bilayer perturbation may underlie this diversity of actions, we examined five bioactive phenols reported to have medicinal value: capsaicin from chili peppers, curcumin from turmeric, EGCG from green tea, genistein from soybeans, and resveratrol from grapes. We find that each of these widely consumed phytochemicals alters lipid bilayer properties and the function of diverse membrane proteins. Molecular dynamics simulations show that these phytochemicals modify bilayer properties by localizing to the bilayer/solution interface. Bilayer-modifying propensity was verified using a gramicidin-based assay, and indiscriminate modulation of membrane protein function was demonstrated using four proteins: membrane-anchored metalloproteases, mechanosensitive ion channels, and voltage-dependent potassium and sodium channels. Each protein exhibited similar responses to multiple phytochemicals, consistent with a common, bilayer-mediated mechanism. Our results suggest that many effects of amphiphilic phytochemicals are due to cell membrane perturbations, rather than specific protein binding. PMID:24901212

  12. A novel method for identifying disease associated protein complexes based on functional similarity protein complex networks.

    PubMed

    Le, Duc-Hau

    2015-01-01

    Protein complexes formed by non-covalent interaction among proteins play important roles in cellular functions. Computational and purification methods have been used to identify many protein complexes and their cellular functions. However, their roles in terms of causing disease have not been well discovered yet. There exist only a few studies for the identification of disease-associated protein complexes. However, they mostly utilize complicated heterogeneous networks which are constructed based on an out-of-date database of phenotype similarity network collected from literature. In addition, they only apply for diseases for which tissue-specific data exist. In this study, we propose a method to identify novel disease-protein complex associations. First, we introduce a framework to construct functional similarity protein complex networks where two protein complexes are functionally connected by either shared protein elements, shared annotating GO terms or based on protein interactions between elements in each protein complex. Second, we propose a simple but effective neighborhood-based algorithm, which yields a local similarity measure, to rank disease candidate protein complexes. Comparing the predictive performance of our proposed algorithm with that of two state-of-the-art network propagation algorithms including one we used in our previous study, we found that it performed statistically significantly better than that of these two algorithms for all the constructed functional similarity protein complex networks. In addition, it ran about 32 times faster than these two algorithms. Moreover, our proposed method always achieved high performance in terms of AUC values irrespective of the ways to construct the functional similarity protein complex networks and the used algorithms. The performance of our method was also higher than that reported in some existing methods which were based on complicated heterogeneous networks. Finally, we also tested our method with

  13. LC3/GABARAP family proteins: autophagy-(un)related functions.

    PubMed

    Schaaf, Marco B E; Keulers, Tom G; Vooijs, Marc A; Rouschop, Kasper M A

    2016-12-01

    From yeast to mammals, autophagy is an important mechanism for sustaining cellular homeostasis through facilitating the degradation and recycling of aged and cytotoxic components. During autophagy, cargo is captured in double-membraned vesicles, the autophagosomes, and degraded through lysosomal fusion. In yeast, autophagy initiation, cargo recognition, cargo engulfment, and vesicle closure is Atg8 dependent. In higher eukaryotes, Atg8 has evolved into the LC3/GABARAP protein family, consisting of 7 family proteins [LC3A (2 splice variants), LC3B, LC3C, GABARAP, GABARAPL1, and GABARAPL2]. LC3B, the most studied family protein, is associated with autophagosome development and maturation and is used to monitor autophagic activity. Given the high homology, the other LC3/GABARAP family proteins are often presumed to fulfill similar functions. Nevertheless, substantial evidence shows that the LC3/GABARAP family proteins are unique in function and important in autophagy-independent mechanisms. In this review, we discuss the current knowledge and functions of the LC3/GABARAP family proteins. We focus on processing of the individual family proteins and their role in autophagy initiation, cargo recognition, vesicle closure, and trafficking, a complex and tightly regulated process that requires selective presentation and recruitment of these family proteins. In addition, functions unrelated to autophagy of the LC3/GABARAP protein family members are discussed.-Schaaf, M. B. E., Keulers, T. G, Vooijs, M. A., Rouschop, K. M. A. LC3/GABARAP family proteins: autophagy-(un)related functions. © FASEB.

  14. Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors

    PubMed Central

    Tatarinova, Tatiana; Dien Bard, Jennifer; Cohen, Irit

    2015-01-01

    Proteins of the same functional family (for example, kinases) may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content) tend to have longer genes than species with low GC3 content. PMID:26114113

  15. Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors.

    PubMed

    Tatarinova, Tatiana; Salih, Bilal; Dien Bard, Jennifer; Cohen, Irit; Bolshoy, Alexander

    2015-01-01

    Proteins of the same functional family (for example, kinases) may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content) tend to have longer genes than species with low GC3 content.

  16. DNA mimic proteins: functions, structures, and bioinformatic analysis.

    PubMed

    Wang, Hao-Ching; Ho, Chun-Han; Hsu, Kai-Cheng; Yang, Jinn-Moon; Wang, Andrew H-J

    2014-05-13

    DNA mimic proteins have DNA-like negative surface charge distributions, and they function by occupying the DNA binding sites of DNA binding proteins to prevent these sites from being accessed by DNA. DNA mimic proteins control the activities of a variety of DNA binding proteins and are involved in a wide range of cellular mechanisms such as chromatin assembly, DNA repair, transcription regulation, and gene recombination. However, the sequences and structures of DNA mimic proteins are diverse, making them difficult to predict by bioinformatic search. To date, only a few DNA mimic proteins have been reported. These DNA mimics were not found by searching for functional motifs in their sequences but were revealed only by structural analysis of their charge distribution. This review highlights the biological roles and structures of 16 reported DNA mimic proteins. We also discuss approaches that might be used to discover new DNA mimic proteins.

  17. The E4 protein; structure, function and patterns of expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doorbar, John, E-mail: jdoorba@nimr.mrc.ac.uk

    2013-10-15

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1{sup ∧}E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein′s flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1{sup ∧}E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1{sup ∧}E4 gene products generally become detectable at the onset of vegetative viral genomemore » amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1

  18. Dietary protein affects urea transport across rat urothelia.

    PubMed

    Spector, David A; Deng, Jie; Stewart, Kerry J

    2012-10-01

    Recent evidence suggests that regulated solute transport occurs across mammalian lower urinary tract epithelia (urothelia). To study the effects of dietary protein on net urothelial transport of urea, creatinine, and water, we used an in vivo rat bladder model designed to mimic physiological conditions. We placed groups of rats on 3-wk diets differing only by protein content (40, 18, 6, and 2%) and instilled 0.3 ml of collected urine in the isolated bladder of anesthetized rats. After 1 h dwell, retrieved urine volumes were unchanged, but mean urea nitrogen (UN) and creatinine concentrations fell 17 and 4%, respectively, indicating transurothelial urea and creatinine reabsorption. The fall in UN (but not creatinine) concentration was greatest in high protein (40%) rats, 584 mg/dl, and progressively less in rats receiving lower protein content: 18% diet, 224 mg/dl; 6% diet, 135 mg/dl; and 2% diet, 87 mg/dl. The quantity of urea reabsorbed was directly related to a urine factor, likely the concentration of urea in the instilled urine. In contrast, the percentage of instilled urea reabsorbed was greater in the two dietary groups receiving the lowest protein (26 and 23%) than in those receiving higher protein (11 and 9%), suggesting the possibility that a bladder/urothelial factor, also affected by dietary protein, may have altered bladder permeability. These findings demonstrate significant regulated urea transport across the urothelium, resulting in alteration of urine excreted by the kidneys, and add to the growing evidence that the lower urinary tract may play an unappreciated role in mammalian solute homeostasis.

  19. Elastic properties of protein functionalized nanoporous polymer films

    DOE PAGES

    Charles T. Black; Wang, Haoyu; Akcora, Pinar

    2015-12-16

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that proteinmore » functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.« less

  20. SUMO1 Affects Synaptic Function, Spine Density and Memory

    PubMed Central

    Matsuzaki, Shinsuke; Lee, Linda; Knock, Erin; Srikumar, Tharan; Sakurai, Mikako; Hazrati, Lili-Naz; Katayama, Taiichi; Staniszewski, Agnieszka; Raught, Brian; Arancio, Ottavio; Fraser, Paul E.

    2015-01-01

    Small ubiquitin-like modifier-1 (SUMO1) plays a number of roles in cellular events and recent evidence has given momentum for its contributions to neuronal development and function. Here, we have generated a SUMO1 transgenic mouse model with exclusive overexpression in neurons in an effort to identify in vivo conjugation targets and the functional consequences of their SUMOylation. A high-expressing line was examined which displayed elevated levels of mono-SUMO1 and increased high molecular weight conjugates in all brain regions. Immunoprecipitation of SUMOylated proteins from total brain extract and proteomic analysis revealed ~95 candidate proteins from a variety of functional classes, including a number of synaptic and cytoskeletal proteins. SUMO1 modification of synaptotagmin-1 was found to be elevated as compared to non-transgenic mice. This observation was associated with an age-dependent reduction in basal synaptic transmission and impaired presynaptic function as shown by altered paired pulse facilitation, as well as a decrease in spine density. The changes in neuronal function and morphology were also associated with a specific impairment in learning and memory while other behavioral features remained unchanged. These findings point to a significant contribution of SUMO1 modification on neuronal function which may have implications for mechanisms involved in mental retardation and neurodegeneration. PMID:26022678

  1. Functional diversification of hsp40: distinct j-protein functional requirements for two prions allow for chaperone-dependent prion selection.

    PubMed

    Harris, Julia M; Nguyen, Phil P; Patel, Milan J; Sporn, Zachary A; Hines, Justin K

    2014-07-01

    Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or 'strains'. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [PSI+] are strongly dependent upon overall variant stability. Notably, multiple strong [PSI+] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F) region that was previously shown to be sufficient for cell viability and [RNQ+] prion propagation. In contrast, weak [PSI+] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [RNQ+] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [PSI+]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [PSI+]/[RNQ+] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [PSI+] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion functions may have

  2. Functional Diversification of Hsp40: Distinct J-Protein Functional Requirements for Two Prions Allow for Chaperone-Dependent Prion Selection

    PubMed Central

    Patel, Milan J.; Sporn, Zachary A.; Hines, Justin K.

    2014-01-01

    Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or ‘strains’. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [PSI +] are strongly dependent upon overall variant stability. Notably, multiple strong [PSI +] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F) region that was previously shown to be sufficient for cell viability and [RNQ +] prion propagation. In contrast, weak [PSI +] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [RNQ +] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [PSI +]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [PSI +]/[RNQ +] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [PSI +] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion

  3. De novo inference of protein function from coarse-grained dynamics.

    PubMed

    Bhadra, Pratiti; Pal, Debnath

    2014-10-01

    Inference of molecular function of proteins is the fundamental task in the quest for understanding cellular processes. The task is getting increasingly difficult with thousands of new proteins discovered each day. The difficulty arises primarily due to lack of high-throughput experimental technique for assessing protein molecular function, a lacunae that computational approaches are trying hard to fill. The latter too faces a major bottleneck in absence of clear evidence based on evolutionary information. Here we propose a de novo approach to annotate protein molecular function through structural dynamics match for a pair of segments from two dissimilar proteins, which may share even <10% sequence identity. To screen these matches, corresponding 1 µs coarse-grained (CG) molecular dynamics trajectories were used to compute normalized root-mean-square-fluctuation graphs and select mobile segments, which were, thereafter, matched for all pairs using unweighted three-dimensional autocorrelation vectors. Our in-house custom-built forcefield (FF), extensively validated against dynamics information obtained from experimental nuclear magnetic resonance data, was specifically used to generate the CG dynamics trajectories. The test for correspondence of dynamics-signature of protein segments and function revealed 87% true positive rate and 93.5% true negative rate, on a dataset of 60 experimentally validated proteins, including moonlighting proteins and those with novel functional motifs. A random test against 315 unique fold/function proteins for a negative test gave >99% true recall. A blind prediction on a novel protein appears consistent with additional evidences retrieved therein. This is the first proof-of-principle of generalized use of structural dynamics for inferring protein molecular function leveraging our custom-made CG FF, useful to all. © 2014 Wiley Periodicals, Inc.

  4. Discovering functional interdependence relationship in PPI networks for protein complex identification.

    PubMed

    Lam, Winnie W M; Chan, Keith C C

    2012-04-01

    Protein molecules interact with each other in protein complexes to perform many vital functions, and different computational techniques have been developed to identify protein complexes in protein-protein interaction (PPI) networks. These techniques are developed to search for subgraphs of high connectivity in PPI networks under the assumption that the proteins in a protein complex are highly interconnected. While these techniques have been shown to be quite effective, it is also possible that the matching rate between the protein complexes they discover and those that are previously determined experimentally be relatively low and the "false-alarm" rate can be relatively high. This is especially the case when the assumption of proteins in protein complexes being more highly interconnected be relatively invalid. To increase the matching rate and reduce the false-alarm rate, we have developed a technique that can work effectively without having to make this assumption. The name of the technique called protein complex identification by discovering functional interdependence (PCIFI) searches for protein complexes in PPI networks by taking into consideration both the functional interdependence relationship between protein molecules and the network topology of the network. The PCIFI works in several steps. The first step is to construct a multiple-function protein network graph by labeling each vertex with one or more of the molecular functions it performs. The second step is to filter out protein interactions between protein pairs that are not functionally interdependent of each other in the statistical sense. The third step is to make use of an information-theoretic measure to determine the strength of the functional interdependence between all remaining interacting protein pairs. Finally, the last step is to try to form protein complexes based on the measure of the strength of functional interdependence and the connectivity between proteins. For performance evaluation

  5. Functional conservation of MBD proteins: MeCP2 and Drosophila MBD proteins alter sleep.

    PubMed

    Gupta, T; Morgan, H R; Bailey, J A; Certel, S J

    2016-11-01

    Proteins containing a methyl-CpG-binding domain (MBD) bind 5mC and convert the methylation pattern information into appropriate functional cellular states. The correct readout of epigenetic marks is of particular importance in the nervous system where abnormal expression or compromised MBD protein function, can lead to disease and developmental disorders. Recent evidence indicates that the genome of Drosophila melanogaster is methylated and two MBD proteins, dMBD2/3 and dMBD-R2, are present. Are Drosophila MBD proteins required for neuronal function, and as MBD-containing proteins have diverged and evolved, does the MBD domain retain the molecular properties required for conserved cellular function across species? To address these questions, we expressed the human MBD-containing protein, hMeCP2, in distinct amine neurons and quantified functional changes in sleep circuitry output using a high throughput assay in Drosophila. hMeCP2 expression resulted in phase-specific sleep loss and sleep fragmentation with the hMeCP2-mediated sleep deficits requiring an intact MBD domain. Reducing endogenous dMBD2/3 and dMBD-R2 levels also generated sleep fragmentation, with an increase in sleep occurring upon dMBD-R2 reduction. To examine if hMeCP2 and dMBD-R2 are targeting common neuronal functions, we reduced dMBD-R2 levels in combination with hMeCP2 expression and observed a complete rescue of sleep deficits. Furthermore, chromosomal binding experiments indicate MBD-R2 and MeCP2 associate on shared genomic loci. Our results provide the first demonstration that Drosophila MBD-containing family members are required for neuronal function and suggest that the MBD domain retains considerable functional conservation at the whole organism level across species. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  6. Functional properties of protein from frozen mantle and fin of jumbo squid Dosidicus gigas in function of pH and ionic strength.

    PubMed

    Rocha-Estrada, J G; Córdova-Murueta, J H; García-Carreño, F L

    2010-10-01

    Functional properties of protein from mantle and fin of the jumbo squid Dosidicus gigas were explained based on microscopic muscle fiber and protein fractions profiles as observed in SDS-PAGE. Fin has higher content of connective tissue and complex fiber arrangement, and we observed higher hardness of fin gels as expected. Myosin heavy chain (MHC) was found in sarcoplasmic, myofibril and soluble-in-alkali fractions of mantle and only in sarcoplasmic and soluble-in-alkali fractions of fin. An additive effect of salt concentration and pH affected the solubility and foaming properties. Fin and mantle proteins yielded similar results in solubility tests, but significant differences occurred for specific pH and concentrations of salt. Foaming capacity was proportional to solubility; foam stability was also affected by pH and salt concentration. Hardness and fracture strength of fin gels were significantly higher than mantle gels; gels from proteins of both tissues reached the highest level in the folding test. Structural and molecular properties, such as MHC and paramyosin solubility, arrangement of muscle fibers and the content of connective tissue were useful to explain the differences observed in these protein properties. High-strength gels can be formed from squid mantle or fin muscle. Fin displayed similar or better properties than mantle in all tests.

  7. Functional analysis of proteins and protein species using shotgun proteomics and linear mathematics.

    PubMed

    Hoehenwarter, Wolfgang; Chen, Yanmei; Recuenco-Munoz, Luis; Wienkoop, Stefanie; Weckwerth, Wolfram

    2011-07-01

    Covalent post-translational modification of proteins is the primary modulator of protein function in the cell. It greatly expands the functional potential of the proteome compared to the genome. In the past few years shotgun proteomics-based research, where the proteome is digested into peptides prior to mass spectrometric analysis has been prolific in this area. It has determined the kinetics of tens of thousands of sites of covalent modification on an equally large number of proteins under various biological conditions and uncovered a transiently active regulatory network that extends into diverse branches of cellular physiology. In this review, we discuss this work in light of the concept of protein speciation, which emphasizes the entire post-translationally modified molecule and its interactions and not just the modification site as the functional entity. Sometimes, particularly when considering complex multisite modification, all of the modified molecular species involved in the investigated condition, the protein species must be completely resolved for full understanding. We present a mathematical technique that delivers a good approximation for shotgun proteomics data.

  8. α7nAchR/NMDAR coupling affects NMDAR function and object recognition.

    PubMed

    Li, Shupeng; Nai, Qiang; Lipina, Tatiana V; Roder, John C; Liu, Fang

    2013-12-20

    The α7 nicotinic acetylcholine receptor (nAchR) and NMDA glutamate receptor (NMDAR) are both ligand-gated ion channels permeable to Ca2+ and Na+. Previous studies have demonstrated functional modulation of NMDARs by nAchRs, although the molecular mechanism remains largely unknown. We have previously reported that α7nAchR forms a protein complex with the NMDAR through a protein-protein interaction. We also developed an interfering peptide that is able to disrupt the α7nAchR-NMDAR complex and blocks cue-induced reinstatement of nicotine-seeking in rat models of relapse. In the present study, we investigated whether the α7nAchR-NMDAR interaction is responsible for the functional modulation of NMDAR by α7nAchR using both electrophysiological and behavioral tests. We have found that activation of α7nAchR upregulates NMDAR-mediated whole cell currents and LTP of mEPSC in cultured hippocampal neurons, which can be abolished by the interfering peptide that disrupts the α7nAchR-NMDAR interaction. Moreover, administration of the interfering peptide in mice impairs novel object recognition but not Morris water maze performance. Our results suggest that α7nAchR/NMDAR coupling may selectively affect some aspects of learning and memory.

  9. Computational approaches for rational design of proteins with novel functionalities

    PubMed Central

    Tiwari, Manish Kumar; Singh, Ranjitha; Singh, Raushan Kumar; Kim, In-Won; Lee, Jung-Kul

    2012-01-01

    Proteins are the most multifaceted macromolecules in living systems and have various important functions, including structural, catalytic, sensory, and regulatory functions. Rational design of enzymes is a great challenge to our understanding of protein structure and physical chemistry and has numerous potential applications. Protein design algorithms have been applied to design or engineer proteins that fold, fold faster, catalyze, catalyze faster, signal, and adopt preferred conformational states. The field of de novo protein design, although only a few decades old, is beginning to produce exciting results. Developments in this field are already having a significant impact on biotechnology and chemical biology. The application of powerful computational methods for functional protein designing has recently succeeded at engineering target activities. Here, we review recently reported de novo functional proteins that were developed using various protein design approaches, including rational design, computational optimization, and selection from combinatorial libraries, highlighting recent advances and successes. PMID:24688643

  10. Genetically modified proteins: functional improvement and chimeragenesis

    PubMed Central

    Balabanova, Larissa; Golotin, Vasily; Podvolotskaya, Anna; Rasskazov, Valery

    2015-01-01

    This review focuses on the emerging role of site-specific mutagenesis and chimeragenesis for the functional improvement of proteins in areas where traditional protein engineering methods have been extensively used and practically exhausted. The novel path for the creation of the novel proteins has been created on the farther development of the new structure and sequence optimization algorithms for generating and designing the accurate structure models in result of x-ray crystallography studies of a lot of proteins and their mutant forms. Artificial genetic modifications aim to expand nature's repertoire of biomolecules. One of the most exciting potential results of mutagenesis or chimeragenesis finding could be design of effective diagnostics, bio-therapeutics and biocatalysts. A sampling of recent examples is listed below for the in vivo and in vitro genetically improvement of various binding protein and enzyme functions, with references for more in-depth study provided for the reader's benefit. PMID:26211369

  11. Conformational and functional analysis of the C-terminal globular head of the reovirus cell attachment protein.

    PubMed

    Duncan, R; Horne, D; Strong, J E; Leone, G; Pon, R T; Yeung, M C; Lee, P W

    1991-06-01

    We have been investigating structure-function relationships in the reovirus cell attachment protein sigma 1 using various deletion mutants and protease analysis. In the present study, a series of deletion mutants were constructed which lacked 90, 44, 30, 12, or 4 amino acids from the C-terminus of the 455-amino acid-long reovirus type 3 (T3) sigma 1 protein. The full-length and truncated sigma 1 proteins were expressed in an in vitro transcription/translation system and assayed for L cell binding activity. It was found that the removal of as few as four amino acids from the C-terminus drastically affected the cell binding function of the sigma 1 protein. The C-terminal-truncated proteins were further characterized using trypsin, chymotrypsin, and monoclonal and polyclonal antibodies. Our results indicated that the C-terminal portions of the mutant proteins were misfolded, leading to a loss in cell binding function. The N-terminal fibrous tail of the proteins was unaffected by the deletions as was sigma 1 oligomerization, further illustrating the discrete structural and functional roles of the N- and C-terminal domains of sigma 1. In an attempt to identify smaller, functional peptides, full-length sigma 1 expressed in vitro was digested with trypsin and subsequently with chymotrypsin under various conditions. The results clearly demonstrated the highly stable nature of the C-terminal globular head of sigma 1, even when separated from the N-terminal fibrous tail. We concluded that: (1) the C-terminal globular head of sigma 1 exists as a compact, protease-resistant oligomeric structure; (2) an intact C-terminus is required for proper head folding and generation of the conformationally dependent cell binding domain.

  12. Gα and regulator of G-protein signaling (RGS) protein pairs maintain functional compatibility and conserved interaction interfaces throughout evolution despite frequent loss of RGS proteins in plants.

    PubMed

    Hackenberg, Dieter; McKain, Michael R; Lee, Soon Goo; Roy Choudhury, Swarup; McCann, Tyler; Schreier, Spencer; Harkess, Alex; Pires, J Chris; Wong, Gane Ka-Shu; Jez, Joseph M; Kellogg, Elizabeth A; Pandey, Sona

    2017-10-01

    Signaling pathways regulated by heterotrimeric G-proteins exist in all eukaryotes. The regulator of G-protein signaling (RGS) proteins are key interactors and critical modulators of the Gα protein of the heterotrimer. However, while G-proteins are widespread in plants, RGS proteins have been reported to be missing from the entire monocot lineage, with two exceptions. A single amino acid substitution-based adaptive coevolution of the Gα:RGS proteins was proposed to enable the loss of RGS in monocots. We used a combination of evolutionary and biochemical analyses and homology modeling of the Gα and RGS proteins to address their expansion and its potential effects on the G-protein cycle in plants. Our results show that RGS proteins are widely distributed in the monocot lineage, despite their frequent loss. There is no support for the adaptive coevolution of the Gα:RGS protein pair based on single amino acid substitutions. RGS proteins interact with, and affect the activity of, Gα proteins from species with or without endogenous RGS. This cross-functional compatibility expands between the metazoan and plant kingdoms, illustrating striking conservation of their interaction interface. We propose that additional proteins or alternative mechanisms may exist which compensate for the loss of RGS in certain plant species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  13. Understand protein functions by comparing the similarity of local structural environments.

    PubMed

    Chen, Jiawen; Xie, Zhong-Ru; Wu, Yinghao

    2017-02-01

    The three-dimensional structures of proteins play an essential role in regulating binding between proteins and their partners, offering a direct relationship between structures and functions of proteins. It is widely accepted that the function of a protein can be determined if its structure is similar to other proteins whose functions are known. However, it is also observed that proteins with similar global structures do not necessarily correspond to the same function, while proteins with very different folds can share similar functions. This indicates that function similarity is originated from the local structural information of proteins instead of their global shapes. We assume that proteins with similar local environments prefer binding to similar types of molecular targets. In order to testify this assumption, we designed a new structural indicator to define the similarity of local environment between residues in different proteins. This indicator was further used to calculate the probability that a given residue binds to a specific type of structural neighbors, including DNA, RNA, small molecules and proteins. After applying the method to a large-scale non-redundant database of proteins, we show that the positive signal of binding probability calculated from the local structural indicator is statistically meaningful. In summary, our studies suggested that the local environment of residues in a protein is a good indicator to recognize specific binding partners of the protein. The new method could be a potential addition to a suite of existing template-based approaches for protein function prediction. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Protein function prediction--the power of multiplicity.

    PubMed

    Rentzsch, Robert; Orengo, Christine A

    2009-04-01

    Advances in experimental and computational methods have quietly ushered in a new era in protein function annotation. This 'age of multiplicity' is marked by the notion that only the use of multiple tools, multiple evidence and considering the multiple aspects of function can give us the broad picture that 21st century biology will need to link and alter micro- and macroscopic phenotypes. It might also help us to undo past mistakes by removing errors from our databases and prevent us from producing more. On the downside, multiplicity is often confusing. We therefore systematically review methods and resources for automated protein function prediction, looking at individual (biochemical) and contextual (network) functions, respectively.

  15. Protein interactions and ligand binding: from protein subfamilies to functional specificity.

    PubMed

    Rausell, Antonio; Juan, David; Pazos, Florencio; Valencia, Alfonso

    2010-02-02

    The divergence accumulated during the evolution of protein families translates into their internal organization as subfamilies, and it is directly reflected in the characteristic patterns of differentially conserved residues. These specifically conserved positions in protein subfamilies are known as "specificity determining positions" (SDPs). Previous studies have limited their analysis to the study of the relationship between these positions and ligand-binding specificity, demonstrating significant yet limited predictive capacity. We have systematically extended this observation to include the role of differential protein interactions in the segregation of protein subfamilies and explored in detail the structural distribution of SDPs at protein interfaces. Our results show the extensive influence of protein interactions in the evolution of protein families and the widespread association of SDPs with protein interfaces. The combined analysis of SDPs in interfaces and ligand-binding sites provides a more complete picture of the organization of protein families, constituting the necessary framework for a large scale analysis of the evolution of protein function.

  16. Primary cilia proteins: ciliary and extraciliary sites and functions.

    PubMed

    Hua, Kiet; Ferland, Russell J

    2018-05-01

    Primary cilia are immotile organelles known for their roles in development and cell signaling. Defects in primary cilia result in a range of disorders named ciliopathies. Because this organelle can be found singularly on almost all cell types, its importance extends to most organ systems. As such, elucidating the importance of the primary cilium has attracted researchers from all biological disciplines. As the primary cilia field expands, caution is warranted in attributing biological defects solely to the function of this organelle, since many of these "ciliary" proteins are found at other sites in cells and likely have non-ciliary functions. Indeed, many, if not all, cilia proteins have locations and functions outside the primary cilium. Extraciliary functions are known to include cell cycle regulation, cytoskeletal regulation, and trafficking. Cilia proteins have been observed in the nucleus, at the Golgi apparatus, and even in immune synapses of T cells (interestingly, a non-ciliated cell). Given the abundance of extraciliary sites and functions, it can be difficult to definitively attribute an observed phenotype solely to defective cilia rather than to some defective extraciliary function or a combination of both. Thus, extraciliary sites and functions of cilia proteins need to be considered, as well as experimentally determined. Through such consideration, we will understand the true role of the primary cilium in disease as compared to other cellular processes' influences in mediating disease (or through a combination of both). Here, we review a compilation of known extraciliary sites and functions of "cilia" proteins as a means to demonstrate the potential non-ciliary roles for these proteins.

  17. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions.

    PubMed

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M; Oldfield, Christopher J; Dunker, A Keith; Uversky, Vladimir N; Obradovic, Zoran

    2007-05-01

    Identifying relationships between function, amino acid sequence, and protein structure represents a major challenge. In this study, we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from the Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins, and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our

  18. Functional Redundancy of the B9 Proteins and Nephrocystins in Caenorhabditis elegans Ciliogenesis

    PubMed Central

    Williams, Corey L.; Winkelbauer, Marlene E.; Schafer, Jenny C.; Michaud, Edward J.

    2008-01-01

    Meckel-Gruber syndrome (MKS), nephronophthisis (NPHP), and Joubert syndrome (JBTS) are a group of heterogeneous cystic kidney disorders with partially overlapping loci. Many of the proteins associated with these diseases interact and localize to cilia and/or basal bodies. One of these proteins is MKS1, which is disrupted in some MKS patients and contains a B9 motif of unknown function that is found in two other mammalian proteins, B9D2 and B9D1. Caenorhabditis elegans also has three B9 proteins: XBX-7 (MKS1), TZA-1 (B9D2), and TZA-2 (B9D1). Herein, we report that the C. elegans B9 proteins form a complex that localizes to the base of cilia. Mutations in the B9 genes do not overtly affect cilia formation unless they are in combination with a mutation in nph-1 or nph-4, the homologues of human genes (NPHP1 and NPHP4, respectively) that are mutated in some NPHP patients. Our data indicate that the B9 proteins function redundantly with the nephrocystins to regulate the formation and/or maintenance of cilia and dendrites in the amphid and phasmid ciliated sensory neurons. Together, these data suggest that the human homologues of the novel B9 genes B9D2 and B9D1 will be strong candidate loci for pathologies in human MKS, NPHP, and JBTS. PMID:18337471

  19. Functional Advantages of Conserved Intrinsic Disorder in RNA-Binding Proteins.

    PubMed

    Varadi, Mihaly; Zsolyomi, Fruzsina; Guharoy, Mainak; Tompa, Peter

    2015-01-01

    Proteins form large macromolecular assemblies with RNA that govern essential molecular processes. RNA-binding proteins have often been associated with conformational flexibility, yet the extent and functional implications of their intrinsic disorder have never been fully assessed. Here, through large-scale analysis of comprehensive protein sequence and structure datasets we demonstrate the prevalence of intrinsic structural disorder in RNA-binding proteins and domains. We addressed their functionality through a quantitative description of the evolutionary conservation of disordered segments involved in binding, and investigated the structural implications of flexibility in terms of conformational stability and interface formation. We conclude that the functional role of intrinsically disordered protein segments in RNA-binding is two-fold: first, these regions establish extended, conserved electrostatic interfaces with RNAs via induced fit. Second, conformational flexibility enables them to target different RNA partners, providing multi-functionality, while also ensuring specificity. These findings emphasize the functional importance of intrinsically disordered regions in RNA-binding proteins.

  20. Functionality of alternative protein in gluten-free product development.

    PubMed

    Deora, Navneet Singh; Deswal, Aastha; Mishra, Hari Niwas

    2015-07-01

    Celiac disease is an immune-mediated disease triggered in genetically susceptible individuals by ingested gluten from wheat, rye, barley, and other closely related cereal grains. The current treatment for celiac disease is life-long adherence to a strict gluten-exclusion diet. The replacement of gluten presents a significant technological challenge, as it is an essential structure-building protein, which is necessary for formulating high-quality baked goods. A major limitation in the production of gluten-free products is the lack of protein functionality in non-wheat cereals. Additionally, commercial gluten-free mixes usually contain only carbohydrates, which may significantly limit the amount of protein in the diet. In the recent past, various approaches are attempted to incorporate protein-based ingredients and to modify the functional properties for gluten-free product development. This review aims to the highlight functionality of the alternative protein-based ingredients, which can be utilized for gluten-free product development both functionally as well as nutritionally. © The Author(s) 2014.

  1. Exploring Protein Dynamics Space: The Dynasome as the Missing Link between Protein Structure and Function

    PubMed Central

    Hensen, Ulf; Meyer, Tim; Haas, Jürgen; Rex, René; Vriend, Gert; Grubmüller, Helmut

    2012-01-01

    Proteins are usually described and classified according to amino acid sequence, structure or function. Here, we develop a minimally biased scheme to compare and classify proteins according to their internal mobility patterns. This approach is based on the notion that proteins not only fold into recurring structural motifs but might also be carrying out only a limited set of recurring mobility motifs. The complete set of these patterns, which we tentatively call the dynasome, spans a multi-dimensional space with axes, the dynasome descriptors, characterizing different aspects of protein dynamics. The unique dynamic fingerprint of each protein is represented as a vector in the dynasome space. The difference between any two vectors, consequently, gives a reliable measure of the difference between the corresponding protein dynamics. We characterize the properties of the dynasome by comparing the dynamics fingerprints obtained from molecular dynamics simulations of 112 proteins but our approach is, in principle, not restricted to any specific source of data of protein dynamics. We conclude that: 1. the dynasome consists of a continuum of proteins, rather than well separated classes. 2. For the majority of proteins we observe strong correlations between structure and dynamics. 3. Proteins with similar function carry out similar dynamics, which suggests a new method to improve protein function annotation based on protein dynamics. PMID:22606222

  2. Coiled-Coil Proteins Facilitated the Functional Expansion of the Centrosome

    PubMed Central

    Kuhn, Michael; Hyman, Anthony A.; Beyer, Andreas

    2014-01-01

    Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. PMID:24901223

  3. Gestational Exposure to Bisphenol A Affects the Function and Proteome Profile of F1 Spermatozoa in Adult Mice.

    PubMed

    Rahman, Md Saidur; Kwon, Woo-Sung; Karmakar, Polash Chandra; Yoon, Sung-Jae; Ryu, Buom-Yong; Pang, Myung-Geol

    2017-02-01

    Maternal exposure to the endocrine disruptor bisphenol A (BPA) has been linked to offspring reproductive abnormalities. However, exactly how BPA affects offspring fertility remains poorly understood. The aim of the present study was to evaluate the effects of gestational BPA exposure on sperm function, fertility, and proteome profile of F1 spermatozoa in adult mice. Pregnant CD-1 mice (F0) were gavaged with BPA at three different doses (50 μg/kg bw/day, 5 mg/kg bw/day, and 50 mg/kg bw/day) on embryonic days 7 to 14. We investigated the function, fertility, and related processes of F1 spermatozoa at postnatal day 120. We also evaluated protein profiles of F1 spermatozoa to monitor their functional affiliation to disease. BPA inhibited sperm count, motility parameters, and intracellular ATP levels in a dose-dependent manner. These effects appeared to be caused by reduced numbers of stage VIII seminiferous epithelial cells in testis and decreased protein kinase A (PKA) activity and tyrosine phosphorylation in spermatozoa. We also found that BPA compromised average litter size. Proteins differentially expressed in spermatozoa from BPA treatment groups are known to play a critical role in ATP generation, oxidative stress response, fertility, and in the pathogenesis of several diseases. Our study provides mechanistic support for the hypothesis that gestational exposure to BPA alters sperm function and fertility via down-regulation of tyrosine phosphorylation through a PKA-dependent mechanism. In addition, we anticipate that the BPA-induced changes in the sperm proteome might be partly responsible for the observed effects in spermatozoa. Citation: Rahman MS, Kwon WS, Karmakar PC, Yoon SJ, Ryu BY, Pang MG. 2017. Gestational exposure to bisphenol-A affects the function and proteome profile of F1 spermatozoa in adult mice. Environ Health Perspect 125:238-245; http://dx.doi.org/10.1289/EHP378.

  4. Restoring functional neurofibromin by protein transduction.

    PubMed

    Mellert, K; Lechner, S; Lüdeke, M; Lamla, M; Möller, P; Kemkemer, R; Scheffzek, K; Kaufmann, D

    2018-04-18

    In Neurofibromatosis 1 (NF1) germ line loss of function mutations result in reduction of cellular neurofibromin content (NF1+/-, NF1 haploinsufficiency). The Ras-GAP neurofibromin is a very large cytoplasmic protein (2818 AA, 319 kDa) involved in the RAS-MAPK pathway. Aside from regulation of proliferation, it is involved in mechanosensoric of cells. We investigated neurofibromin replacement in cultured human fibroblasts showing reduced amount of neurofibromin. Full length neurofibromin was produced recombinantly in insect cells and purified. Protein transduction into cultured fibroblasts was performed employing cell penetrating peptides along with photochemical internalization. This combination of transduction strategies ensures the intracellular uptake and the translocation to the cytoplasm of neurofibromin. The transduced neurofibromin is functional, indicated by functional rescue of reduced mechanosensoric blindness and reduced RasGAP activity in cultured fibroblasts of NF1 patients or normal fibroblasts treated by NF1 siRNA. Our study shows that recombinant neurofibromin is able to revert cellular effects of NF1 haploinsuffiency in vitro, indicating a use of protein transduction into cells as a potential treatment strategy for the monogenic disease NF1.

  5. The N and C Termini of ZO-1 Are Surrounded by Distinct Proteins and Functional Protein Networks*

    PubMed Central

    Van Itallie, Christina M.; Aponte, Angel; Tietgens, Amber Jean; Gucek, Marjan; Fredriksson, Karin; Anderson, James Melvin

    2013-01-01

    The proteins and functional protein networks of the tight junction remain incompletely defined. Among the currently known proteins are barrier-forming proteins like occludin and the claudin family; scaffolding proteins like ZO-1; and some cytoskeletal, signaling, and cell polarity proteins. To define a more complete list of proteins and infer their functional implications, we identified the proteins that are within molecular dimensions of ZO-1 by fusing biotin ligase to either its N or C terminus, expressing these fusion proteins in Madin-Darby canine kidney epithelial cells, and purifying and identifying the resulting biotinylated proteins by mass spectrometry. Of a predicted proteome of ∼9000, we identified more than 400 proteins tagged by biotin ligase fused to ZO-1, with both identical and distinct proteins near the N- and C-terminal ends. Those proximal to the N terminus were enriched in transmembrane tight junction proteins, and those proximal to the C terminus were enriched in cytoskeletal proteins. We also identified many unexpected but easily rationalized proteins and verified partial colocalization of three of these proteins with ZO-1 as examples. In addition, functional networks of interacting proteins were tagged, such as the basolateral but not apical polarity network. These results provide a rich inventory of proteins and potential novel insights into functions and protein networks that should catalyze further understanding of tight junction biology. Unexpectedly, the technique demonstrates high spatial resolution, which could be generally applied to defining other subcellular protein compartmentalization. PMID:23553632

  6. An Amphipathic Helix Directs Cellular Membrane Curvature Sensing and Function of the BAR Domain Protein PICK1.

    PubMed

    Herlo, Rasmus; Lund, Viktor K; Lycas, Matthew D; Jansen, Anna M; Khelashvili, George; Andersen, Rita C; Bhatia, Vikram; Pedersen, Thomas S; Albornoz, Pedro B C; Johner, Niklaus; Ammendrup-Johnsen, Ina; Christensen, Nikolaj R; Erlendsson, Simon; Stoklund, Mikkel; Larsen, Jannik B; Weinstein, Harel; Kjærulff, Ole; Stamou, Dimitrios; Gether, Ulrik; Madsen, Kenneth L

    2018-05-15

    BAR domains are dimeric protein modules that sense, induce, and stabilize lipid membrane curvature. Here, we show that membrane curvature sensing (MCS) directs cellular localization and function of the BAR domain protein PICK1. In PICK1, and the homologous proteins ICA69 and arfaptin2, we identify an amphipathic helix N-terminal to the BAR domain that mediates MCS. Mutational disruption of the helix in PICK1 impaired MCS without affecting membrane binding per se. In insulin-producing INS-1E cells, super-resolution microscopy revealed that disruption of the helix selectively compromised PICK1 density on insulin granules of high curvature during their maturation. This was accompanied by reduced hormone storage in the INS-1E cells. In Drosophila, disruption of the helix compromised growth regulation. By demonstrating size-dependent binding on insulin granules, our finding highlights the function of MCS for BAR domain proteins in a biological context distinct from their function, e.g., at the plasma membrane during endocytosis. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. Controlled release of functional proteins through designer self-assembling peptide nanofiber hydrogel scaffold

    PubMed Central

    Koutsopoulos, Sotirios; Unsworth, Larry D.; Nagai, Yusuke; Zhang, Shuguang

    2009-01-01

    The release kinetics for a variety of proteins of a wide range of molecular mass, hydrodynamic radii, and isoelectric points through a nanofiber hydrogel scaffold consisting of designer self-assembling peptides were studied by using single-molecule fluorescence correlation spectroscopy (FCS). In contrast to classical diffusion experiments, the single-molecule approach allowed for the direct determination of diffusion coefficients for lysozyme, trypsin inhibitor, BSA, and IgG both inside the hydrogel and after being released into the solution. The results of the FCS analyses and the calculated pristine in-gel diffusion coefficients were compared with the values obtained from the Stokes–Einstein equation, Fickian diffusion models, and the literature. The release kinetics suggested that protein diffusion through nanofiber hydrogels depended primarily on the size of the protein. Protein diffusivities decreased, with increasing hydrogel nanofiber density providing a means of controlling the release kinetics. Secondary and tertiary structure analyses and biological assays of the released proteins showed that encapsulation and release did not affect the protein conformation and functionality. Our results show that this biocompatible and injectable designer self-assembling peptide hydrogel system may be useful as a carrier for therapeutic proteins for sustained release applications. PMID:19273853

  8. Annotation of Alternatively Spliced Proteins and Transcripts with Protein-Folding Algorithms and Isoform-Level Functional Networks.

    PubMed

    Li, Hongdong; Zhang, Yang; Guan, Yuanfang; Menon, Rajasree; Omenn, Gilbert S

    2017-01-01

    Tens of thousands of splice isoforms of proteins have been catalogued as predicted sequences from transcripts in humans and other species. Relatively few have been characterized biochemically or structurally. With the extensive development of protein bioinformatics, the characterization and modeling of isoform features, isoform functions, and isoform-level networks have advanced notably. Here we present applications of the I-TASSER family of algorithms for folding and functional predictions and the IsoFunc, MIsoMine, and Hisonet data resources for isoform-level analyses of network and pathway-based functional predictions and protein-protein interactions. Hopefully, predictions and insights from protein bioinformatics will stimulate many experimental validation studies.

  9. Protein ingestion does not affect postprandial lipaemia or chylomicron-triglyceride clearance.

    PubMed

    Cohen, J C

    1989-07-01

    The effects of protein ingestion on postprandial lipaemia and intravenous fat tolerance were examined in 15 normolipidaemic young men and women. Mean postprandial lipaemia was similar after meals containing 100 ml dairy cream (containing 40 g fat) and after meals containing 100 ml dairy cream and 23 g protein (in the form of casein). The rate of disappearance of an intravenous bolus of Intralipid was similar before and after the ingestion of 23 g casein. These findings indicate that dietary protein does not significantly affect postprandial lipaemia or chylomicron-triglyceride clearance.

  10. The LRRK2 G2385R variant is a partial loss-of-function mutation that affects synaptic vesicle trafficking through altered protein interactions.

    PubMed

    Carrion, Maria Dolores Perez; Marsicano, Silvia; Daniele, Federica; Marte, Antonella; Pischedda, Francesca; Di Cairano, Eliana; Piovesana, Ester; von Zweydorf, Felix; Kremmer, Elisabeth; Gloeckner, Christian Johannes; Onofri, Franco; Perego, Carla; Piccoli, Giovanni

    2017-07-14

    Mutations in the Leucine-rich repeat kinase 2 gene (LRRK2) are associated with familial Parkinson's disease (PD). LRRK2 protein contains several functional domains, including protein-protein interaction domains at its N- and C-termini. In this study, we analyzed the functional features attributed to LRRK2 by its N- and C-terminal domains. We combined TIRF microscopy and synaptopHluorin assay to visualize synaptic vesicle trafficking. We found that N- and C-terminal domains have opposite impact on synaptic vesicle dynamics. Biochemical analysis demonstrated that different proteins are bound at the two extremities, namely β3-Cav2.1 at N-terminus part and β-Actin and Synapsin I at C-terminus domain. A sequence variant (G2385R) harboured within the C-terminal WD40 domain increases the risk for PD. Complementary biochemical and imaging approaches revealed that the G2385R variant alters strength and quality of LRRK2 interactions and increases fusion of synaptic vesicles. Our data suggest that the G2385R variant behaves like a loss-of-function mutation that mimics activity-driven events. Impaired scaffolding capabilities of mutant LRRK2 resulting in perturbed vesicular trafficking may arise as a common pathophysiological denominator through which different LRRK2 pathological mutations cause disease.

  11. Design of Light-Controlled Protein Conformations and Functions.

    PubMed

    Ritterson, Ryan S; Hoersch, Daniel; Barlow, Kyle A; Kortemme, Tanja

    2016-01-01

    In recent years, interest in controlling protein function with light has increased. Light offers a number of unique advantages over other methods, including spatial and temporal control and high selectivity. Here, we describe a general protocol for engineering a protein to be controllable with light via reaction with an exogenously introduced photoisomerizable small molecule and illustrate our protocol with two examples from the literature: the engineering of the calcium affinity of the cell-cell adhesion protein cadherin, which is an example of a protein that switches from a native to a disrupted state (Ritterson et al. J Am Chem Soc (2013) 135:12516-12519), and the engineering of the opening and closing of the chaperonin Mm-cpn, an example of a switch between two functional states (Hoersch et al.: Nat Nanotechn (2013) 8:928-932). This protocol guides the user from considering which proteins may be most amenable to this type of engineering, to considerations of how and where to make the desired changes, to the assays required to test for functionality.

  12. Retrograde transport from the yeast Golgi is mediated by two ARF GAP proteins with overlapping function.

    PubMed Central

    Poon, P P; Cassel, D; Spang, A; Rotman, M; Pick, E; Singer, R A; Johnston, G C

    1999-01-01

    ARF proteins, which mediate vesicular transport, have little or no intrinsic GTPase activity. They rely on the actions of GTPase-activating proteins (GAPs) for their function. The in vitro GTPase activity of the Saccharomyces cerevisiae ARF proteins Arf1 and Arf2 is stimulated by the yeast Gcs1 protein, and in vivo genetic interactions between arf and gcs1 mutations implicate Gcs1 in vesicular transport. However, the Gcs1 protein is dispensable, indicating that additional ARF GAP proteins exist. We show that the structurally related protein Glo3, which is also dispensable, also exhibits ARF GAP activity. Genetic and in vitro approaches reveal that Glo3 and Gcs1 have an overlapping essential function at the endoplasmic reticulum (ER)-Golgi stage of vesicular transport. Mutant cells deficient for both ARF GAPs cannot proliferate, undergo a dramatic accumulation of ER and are defective for protein transport between ER and Golgi. The glo3Delta and gcs1Delta single mutations each interact with a sec21 mutation that affects a component of COPI, which mediates vesicular transport within the ER-Golgi shuttle, while increased dosage of the BET1, BOS1 and SEC22 genes encoding members of a v-SNARE family that functions within the ER-Golgi alleviates the effects of a glo3Delta mutation. An in vitro assay indicates that efficient retrieval from the Golgi to the ER requires these two proteins. These findings suggest that Glo3 and Gcs1 ARF GAPs mediate retrograde vesicular transport from the Golgi to the ER. PMID:9927415

  13. Proteins of unknown function in the Protein Data Bank (PDB): an inventory of true uncharacterized proteins and computational tools for their analysis.

    PubMed

    Nadzirin, Nurul; Firdaus-Raih, Mohd

    2012-10-08

    Proteins of uncharacterized functions form a large part of many of the currently available biological databases and this situation exists even in the Protein Data Bank (PDB). Our analysis of recent PDB data revealed that only 42.53% of PDB entries (1084 coordinate files) that were categorized under "unknown function" are true examples of proteins of unknown function at this point in time. The remainder 1465 entries also annotated as such appear to be able to have their annotations re-assessed, based on the availability of direct functional characterization experiments for the protein itself, or for homologous sequences or structures thus enabling computational function inference.

  14. Phylogenetic and functional analyses of a plant protein related to human B-cell receptor-associated proteins.

    PubMed

    Atabekova, Anastasia K; Pankratenko, Anna V; Makarova, Svetlana S; Lazareva, Ekaterina A; Owens, Robert A; Solovyev, Andrey G; Morozov, Sergey Y

    2017-01-01

    Human B-cell receptor-associated protein BAP31 (HsBAP31) is the endoplasmic reticulum-resident protein involved in protein sorting and transport as well as pro-apoptotic signaling. Plant orthologs of HsBAP31 termed 'plant BAP-like proteins' (PBL proteins) have thus far remained unstudied. Recently, the PBL protein from Nicotiana tabacum (NtPBL) was identified as an interactor of Nt-4/1, a plant protein known to interact with plant virus movement proteins and affect the long-distance transport of potato spindle tuber viroid (PSTVd) via the phloem. Here, we have compared the sequences of PBL proteins and studied the biochemical properties of NtPBL. Analysis of a number of fully sequenced plant genomes revealed that PBL-encoding genes represent a small multigene family with up to six members per genome. Two conserved motifs were identified in the C-terminal region of PBL proteins. The NtPBL C-terminal hydrophilic region (NtPBL-C) was expressed in bacterial cells, purified, and used for analysis of its RNA binding properties in vitro. In gel shift experiments, NtPBL-C was found to bind several tested RNAs, showing the most efficient binding to microRNA precursors (pre-miRNA) and less efficient interaction with PSTVd. Mutational analysis suggested that NtPBL-C has a composite RNA-binding site, with two conserved lysine residues in the most C-terminal protein region being involved in binding of pre-miRNA but not PSTVd RNA. Virus-mediated transient expression of NtPBL-C in plants resulted in stunting and leaf malformation, developmental abnormalities similar to those described previously for blockage of miRNA biogenesis/function. We hypothesize that the NtPBL protein represents a previously undiscovered component of the miRNA pathway. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  15. Protein mislocalization: mechanisms, functions and clinical applications in cancer

    PubMed Central

    Wang, Xiaohong; Li, Shulin

    2014-01-01

    The changes from normal cells to cancer cells are primarily regulated by genome instability, which foster hallmark functions of cancer through multiple mechanisms including protein mislocalization. Mislocalization of these proteins, including oncoproteins, tumor suppressors, and other cancer-related proteins, can interfere with normal cellular function and cooperatively drive tumor development and metastasis. This review describes the cancer-related effects of protein subcellular mislocalization, the related mislocalization mechanisms, and the potential application of this knowledge to cancer diagnosis, prognosis, and therapy. PMID:24709009

  16. Disease-Associated Mutations Disrupt Functionally Important Regions of Intrinsic Protein Disorder

    PubMed Central

    Vacic, Vladimir; Markwick, Phineus R. L.; Oldfield, Christopher J.; Zhao, Xiaoyue; Haynes, Chad; Uversky, Vladimir N.; Iakoucheva, Lilia M.

    2012-01-01

    The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs) and regions (IDRs) in the human proteome together with their lack of fixed structure and low sequence conservation raise a question about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that 21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7–2.7 fold increase compared to annotated polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order mutations also influence predicted molecular recognition features (MoRFs) more often than the control mutations. The repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (R→W, R→C, E→K, R→H, R→Q) collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63 and, in agreement with our predictions, observed an increased α-helical propensity of the region harboring the mutation. Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease mutations. The results of this study offer a new

  17. Myostatin-like proteins regulate synaptic function and neuronal morphology.

    PubMed

    Augustin, Hrvoje; McGourty, Kieran; Steinert, Joern R; Cochemé, Helena M; Adcott, Jennifer; Cabecinha, Melissa; Vincent, Alec; Halff, Els F; Kittler, Josef T; Boucrot, Emmanuel; Partridge, Linda

    2017-07-01

    Growth factors of the TGFβ superfamily play key roles in regulating neuronal and muscle function. Myostatin (or GDF8) and GDF11 are potent negative regulators of skeletal muscle mass. However, expression of myostatin and its cognate receptors in other tissues, including brain and peripheral nerves, suggests a potential wider biological role. Here, we show that Myoglianin (MYO), the Drosophila homolog of myostatin and GDF11, regulates not only body weight and muscle size, but also inhibits neuromuscular synapse strength and composition in a Smad2-dependent manner. Both myostatin and GDF11 affected synapse formation in isolated rat cortical neuron cultures, suggesting an effect on synaptogenesis beyond neuromuscular junctions. We also show that MYO acts in vivo to inhibit synaptic transmission between neurons in the escape response neural circuit of adult flies. Thus, these anti-myogenic proteins act as important inhibitors of synapse function and neuronal growth. © 2017. Published by The Company of Biologists Ltd.

  18. Canola Proteins for Human Consumption: Extraction, Profile, and Functional Properties

    PubMed Central

    Tan, Siong H; Mailer, Rodney J; Blanchard, Christopher L; Agboola, Samson O

    2011-01-01

    Canola protein isolate has been suggested as an alternative to other proteins for human food use due to a balanced amino acid profile and potential functional properties such as emulsifying, foaming, and gelling abilities. This is, therefore, a review of the studies on the utilization of canola protein in human food, comprising the extraction processes for protein isolates and fractions, the molecular character of the extracted proteins, as well as their food functional properties. A majority of studies were based on proteins extracted from the meal using alkaline solution, presumably due to its high nitrogen yield, followed by those utilizing salt extraction combined with ultrafiltration. Characteristics of canola and its predecessor rapeseed protein fractions such as nitrogen yield, molecular weight profile, isoelectric point, solubility, and thermal properties have been reported and were found to be largely related to the extraction methods. However, very little research has been carried out on the hydrophobicity and structure profiles of the protein extracts that are highly relevant to a proper understanding of food functional properties. Alkaline extracts were generally not very suitable as functional ingredients and contradictory results about many of the measured properties of canola proteins, especially their emulsification tendencies, have also been documented. Further research into improved extraction methods is recommended, as is a more systematic approach to the measurement of desired food functional properties for valid comparison between studies. PMID:21535703

  19. Functional dynamics of cell surface membrane proteins

    NASA Astrophysics Data System (ADS)

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules.

  20. Potential toxicity of graphene to cell functions via disrupting protein-protein interactions.

    PubMed

    Luan, Binquan; Huynh, Tien; Zhao, Lin; Zhou, Ruhong

    2015-01-27

    While carbon-based nanomaterials such as graphene and carbon nanotubes (CNTs) have become popular in state-of-the-art nanotechnology, their biological safety and underlying molecular mechanism is still largely unknown. Experimental studies have been focused at the cellular level and revealed good correlations between cell's death and the application of CNTs or graphene. Using large-scale all-atom molecular dynamics simulations, we theoretically investigate the potential toxicity of graphene to a biological cell at molecular level. Simulation results show that the hydrophobic protein-protein interaction (or recognition) that is essential to biological functions can be interrupted by a graphene nanosheet. Due to the hydrophobic nature of graphene, it is energetically favorable for a graphene nanosheet to enter the hydrophobic interface of two contacting proteins, such as a dimer. The forced separation of two functional proteins can disrupt the cell's metabolism and even lead to the cell's mortality.

  1. Locating overlapping dense subgraphs in gene (protein) association networks and predicting novel protein functional groups among these subgraphs

    NASA Astrophysics Data System (ADS)

    Palla, Gergely; Derenyi, Imre; Farkas, Illes J.; Vicsek, Tamas

    2006-03-01

    Most tasks in a cell are performed not by individual proteins, but by functional groups of proteins (either physically interacting with each other or associated in other ways). In gene (protein) association networks these groups show up as sets of densely connected nodes. In the yeast, Saccharomyces cerevisiae, known physically interacting groups of proteins (called protein complexes) strongly overlap: the total number of proteins contained by these complexes by far underestimates the sum of their sizes (2750 vs. 8932). Thus, most functional groups of proteins, both physically interacting and other, are likely to share many of their members with other groups. However, current algorithms searching for dense groups of nodes in networks usually exclude overlaps. With the aim to discover both novel functions of individual proteins and novel protein functional groups we combine in protein association networks (i) a search for overlapping dense subgraphs based on the Clique Percolation Method (CPM) (Palla, G., et.al. Nature 435, 814-818 (2005), http://angel.elte.hu/clustering), which explicitly allows for overlaps among the groups, and (ii) a verification and characterization of the identified groups of nodes (proteins) with the help of standard annotation databases listing known functions.

  2. Protein v. carbohydrate intake differentially affects liking- and wanting-related brain signalling.

    PubMed

    Born, Jurriaan M; Martens, Mieke J I; Lemmens, Sofie G T; Goebel, Rainer; Westerterp-Plantenga, Margriet S

    2013-01-28

    Extreme macronutrient intakes possibly lead to different brain signalling. The aim of the present study was to determine the effects of ingesting high-protein v. high-carbohydrate food on liking and wanting task-related brain signalling (TRS) and subsequent macronutrient intake. A total of thirty female subjects (21.6 (SD 2.2) years, BMI 25.0 (SD 3.7) kg/m²) completed four functional MRI scans: two fasted and two satiated on two different days. During the scans, subjects rated all food items for liking and wanting, thereby choosing the subsequent meal. The results show that high-protein (PROT) v. high-carbohydrate (CARB) conditions were generated using protein or carbohydrate drinks at the first meal. Energy intake and hunger were recorded. PROT (protein: 53.7 (SD 2.1) percentage of energy (En%); carbohydrate: 6.4 (SD 1.3) En%) and CARB conditions (protein: 11.8 (SD 0.6) En%; carbohydrate: 70.0 (SD 2.4) En%) were achieved during the first meal, while the second meals were not different between the conditions. Hunger, energy intake, and behavioural liking and wanting ratings were decreased after the first meal (P< 0.001). Comparing the first with the second meal, the macronutrient content changed: carbohydrate -26.9 En% in the CARB condition, protein -37.8 En% in the PROT condition. After the first meal in the CARB condition, wanting TRS was increased in the hypothalamus. After the first meal in the PROT condition, liking TRS was decreased in the putamen (P< 0.05). The change in energy intake from the first to the second meal was inversely related to the change in liking TRS in the striatum and hypothalamus in the CARB condition and positively related in the PROT condition (P< 0.05). In conclusion, wanting and liking TRS were affected differentially with a change in carbohydrate or protein intake, underscoring subsequent energy intake and shift in macronutrient composition.

  3. Physiological functions and pathobiology of TDP-43 and FUS/TLS proteins.

    PubMed

    Ratti, Antonia; Buratti, Emanuele

    2016-08-01

    The multiple roles played by RNA binding proteins in neurodegeneration have become apparent following the discovery of TAR DNA binding protein 43 kDa (TDP-43) and fused in sarcoma/translocated in liposarcoma (FUS/TLS) involvement in amyotrophic lateral sclerosis and frontotemporal lobar dementia. In these two diseases, the majority of patients display the presence of aggregated forms of one of these proteins in their brains. The study of their functional properties currently represents a very promising target for developing the effective therapeutic options that are still lacking. This aim, however, must be preceded by an accurate evaluation of TDP-43 and FUS/TLS biological functions, both in physiological and disease conditions. Recent findings have uncovered several aspects of RNA metabolism that can be affected by misregulation of these two proteins. Progress has also been made in starting to understand how the aggregation of these proteins occurs and spreads from cell to cell. The aim of this review will be to provide a general overview of TDP-43 and FUS/TLS proteins and to highlight their physiological functions. At present, the emerging picture is that TDP-43 and FUS/TLS control several aspects of an mRNA's life, but they can also participate in DNA repair processes and in non-coding RNA metabolism. Although their regulatory activities are similar, they regulate mainly distinct RNA targets and show different pathogenetic mechanisms in amyotrophic lateral sclerosis/frontotemporal lobar dementia diseases. The identification of key events in these processes represents today the best chance of finding targetable options for therapeutic approaches that might actually make a difference at the clinical level. The two major RNA Binding Proteins involved in Amyotrophic Lateral Sclerosisi and Frontotemporal Dementia are TDP-43 and FUST/TLS. Both proteins are involved in regulating all aspects of RNA and RNA life cycle within neurons, from transcription, processing, and

  4. The Fragile X Protein and Genome Function.

    PubMed

    Dockendorff, Thomas C; Labrador, Mariano

    2018-05-23

    The fragile X syndrome (FXS) arises from loss of expression or function of the FMR1 gene and is one of the most common monogenic forms of intellectual disability and autism. During the past two decades of FXS research, the fragile X mental retardation protein (FMRP) has been primarily characterized as a cytoplasmic RNA binding protein that facilitates transport of select RNA substrates through neural projections and regulation of translation within synaptic compartments, with the protein products of such mRNAs then modulating cognitive functions. However, the presence of a small fraction of FMRP in the nucleus has long been recognized. Accordingly, recent studies have uncovered several mechanisms or pathways by which FMRP influences nuclear gene expression and genome function. Some of these pathways appear to be independent of the classical role for FMRP as a regulator of translation and point to novel functions, including the possibility that FMRP directly participates in the DNA damage response and in the maintenance of genome stability. In this review, we highlight these advances and discuss how these new findings could contribute to our understanding of FMRP in brain development and function, the neural pathology of fragile X syndrome, and perhaps impact of future therapeutic considerations.

  5. Functional Classification of Immune Regulatory Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubinstein, Rotem; Ramagopal, Udupi A.; Nathenson, Stanley G.

    2013-05-01

    Members of the immunoglobulin superfamily (IgSF) control innate and adaptive immunity and are prime targets for the treatment of autoimmune diseases, infectious diseases, and malignancies. We describe a computational method, termed the Brotherhood algorithm, which utilizes intermediate sequence information to classify proteins into functionally related families. This approach identifies functional relationships within the IgSF and predicts additional receptor-ligand interactions. As a specific example, we examine the nectin/nectin-like family of cell adhesion and signaling proteins and propose receptor-ligand interactions within this family. We were guided by the Brotherhood approach and present the high-resolution structural characterization of a homophilic interaction involving themore » class-I MHC-restricted T-cell-associated molecule, which we now classify as a nectin-like family member. The Brotherhood algorithm is likely to have a significant impact on structural immunology by identifying those proteins and complexes for which structural characterization will be particularly informative.« less

  6. Moonlighting microtubule-associated proteins: regulatory functions by day and pathological functions at night.

    PubMed

    Oláh, J; Tőkési, N; Lehotzky, A; Orosz, F; Ovádi, J

    2013-11-01

    The sensing, integrating, and coordinating features of the eukaryotic cells are achieved by the complex ultrastructural arrays and multifarious functions of the cytoskeletal network. Cytoskeleton comprises fibrous protein networks of microtubules, actin, and intermediate filaments. These filamentous polymer structures are highly dynamic and undergo constant and rapid reorganization during cellular processes. The microtubular system plays a crucial role in the brain, as it is involved in an enormous number of cellular events including cell differentiation and pathological inclusion formation. These multifarious functions of microtubules can be achieved by their decoration with proteins/enzymes that exert specific effects on the dynamics and organization of the cytoskeleton and mediate distinct functions due to their moonlighting features. This mini-review focuses on two aspects of the microtubule cytoskeleton. On the one hand, we describe the heteroassociation of tubulin/microtubules with metabolic enzymes, which in addition to their catalytic activities stabilize microtubule structures via their cross-linking functions. On the other hand, we focus on the recently identified moonlighting tubulin polymerization promoting protein, TPPP/p25. TPPP/p25 is a microtubule-associated protein and it displays distinct physiological or pathological (aberrant) functions; thus it is a prototype of Neomorphic Moonlighting Proteins. The expression of TPPP/p25 is finely controlled in the human brain; this protein is indispensable for the development of projections of oligodendrocytes that are responsible for the ensheathment of axons. The nonphysiological, higher or lower TPPP/p25 level leads to distinct CNS diseases. Mechanisms contributing to the control of microtubule stability and dynamics by metabolic enzymes and TPPP/p25 will be discussed. Copyright © 2013 Wiley Periodicals, Inc.

  7. Functional Anthology of Intrinsic Disorder. I. Biological Processes and Functions of Proteins with Long Disordered Regions

    PubMed Central

    Xie, Hongbo; Vucetic, Slobodan; Iakoucheva, Lilia M.; Oldfield, Christopher J.; Dunker, A. Keith; Uversky, Vladimir N.; Obradovic, Zoran

    2008-01-01

    Identifying relationships between function, amino acid sequence and protein structure represents a major challenge. In this study we propose a bioinformatics approach that identifies functional keywords in the Swiss-Prot database that correlate with intrinsic disorder. A statistical evaluation is employed to rank the significance of these correlations. Protein sequence data redundancy and the relationship between protein length and protein structure were taken into consideration to ensure the quality of the statistical inferences. Over 200,000 proteins from Swiss-Prot database were analyzed using this approach. The predictions of intrinsic disorder were carried out using PONDR VL3E predictor of long disordered regions that achieves an accuracy of above 86%. Overall, out of the 710 Swiss-Prot functional keywords that were each associated with at least 20 proteins, 238 were found to be strongly positively correlated with predicted long intrinsically disordered regions, whereas 302 were strongly negatively correlated with such regions. The remaining 170 keywords were ambiguous without strong positive or negative correlation with the disorder predictions. These functions cover a large variety of biological activities and imply that disordered regions are characterized by a wide functional repertoire. Our results agree well with literature findings, as we were able to find at least one illustrative example of functional disorder or order shown experimentally for the vast majority of keywords showing the strongest positive or negative correlation with intrinsic disorder. This work opens a series of three papers, which enriches the current view of protein structure-function relationships, especially with regards to functionalities of intrinsically disordered proteins and provides researchers with a novel tool that could be used to improve the understanding of the relationships between protein structure and function. The first paper of the series describes our statistical

  8. Occurrence, Functions and Biological Significance of Arginine-Rich Proteins.

    PubMed

    Chandana, Thimmegowda; Venkatesh, Yeldur P

    2016-01-01

    Arginine, the most basic among the 20 amino acids, occurs less frequently than lysine in proteins despite being coded by six codons. Only a few important proteins of biological significance have been found to be abundant in arginine. It has been established that these arginine-rich proteins have been assigned important roles in the biological systems. Arginine-rich cationic proteins are known to stabilize macromolecular structures by establishing appropriate interactions (salt bridges, hydrogen bonds and cation-π interactions). These proteins are also known to be the key members of many regulatory pathways such as gene expression, chromatin stability, expurgation of introns from naïve mRNA, mRNA splicing, membrane-penetrating activity and pathogenesis-related defense, to name a few. Further, arginine occurs in various combinations with other amino acids (serine, lysine, proline, tryptophan, valine, glycine and glutamic acid) which diversify the potential functions of arginine-rich proteins. Arginine-rich proteins known till date from dietary sources have been described in terms of their structure and functional properties. A variety of activities such as bactericidal, membrane-penetrating, antimicrobial, anti-hypertensive, pro-angiogenic and others have been reported for arginine-rich proteins. This review attempts to collate the occurrence, functions and the biological significance of this unique class of proteins rich in arginine.

  9. Markov State Models Provide Insights into Dynamic Modulation of Protein Function

    PubMed Central

    2015-01-01

    Conspectus Protein function is inextricably linked to protein dynamics. As we move from a static structural picture to a dynamic ensemble view of protein structure and function, novel computational paradigms are required for observing and understanding conformational dynamics of proteins and its functional implications. In principle, molecular dynamics simulations can provide the time evolution of atomistic models of proteins, but the long time scales associated with functional dynamics make it difficult to observe rare dynamical transitions. The issue of extracting essential functional components of protein dynamics from noisy simulation data presents another set of challenges in obtaining an unbiased understanding of protein motions. Therefore, a methodology that provides a statistical framework for efficient sampling and a human-readable view of the key aspects of functional dynamics from data analysis is required. The Markov state model (MSM), which has recently become popular worldwide for studying protein dynamics, is an example of such a framework. In this Account, we review the use of Markov state models for efficient sampling of the hierarchy of time scales associated with protein dynamics, automatic identification of key conformational states, and the degrees of freedom associated with slow dynamical processes. Applications of MSMs for studying long time scale phenomena such as activation mechanisms of cellular signaling proteins has yielded novel insights into protein function. In particular, from MSMs built using large-scale simulations of GPCRs and kinases, we have shown that complex conformational changes in proteins can be described in terms of structural changes in key structural motifs or “molecular switches” within the protein, the transitions between functionally active and inactive states of proteins proceed via multiple pathways, and ligand or substrate binding modulates the flux through these pathways. Finally, MSMs also provide a

  10. Small-molecule control of protein function through Staudinger reduction

    NASA Astrophysics Data System (ADS)

    Luo, Ji; Liu, Qingyang; Morihiro, Kunihiko; Deiters, Alexander

    2016-11-01

    Using small molecules to control the function of proteins in live cells with complete specificity is highly desirable, but challenging. Here we report a small-molecule switch that can be used to control protein activity. The approach uses a phosphine-mediated Staudinger reduction to activate protein function. Genetic encoding of an ortho-azidobenzyloxycarbonyl amino acid using a pyrrolysyl transfer RNA synthetase/tRNACUA pair in mammalian cells enables the site-specific introduction of a small-molecule-removable protecting group into the protein of interest. Strategic placement of this group renders the protein inactive until deprotection through a bioorthogonal Staudinger reduction delivers the active wild-type protein. This developed methodology was applied to the conditional control of several cellular processes, including bioluminescence (luciferase), fluorescence (enhanced green fluorescent protein), protein translocation (nuclear localization sequence), DNA recombination (Cre) and gene editing (Cas9).

  11. C-Terminal Helical Domains of Dengue Virus Type 4 E Protein Affect the Expression/Stability of prM Protein and Conformation of prM and E Proteins

    PubMed Central

    Tsai, Wen-Yang; Hsieh, Szu-Chia; Lai, Chih-Yun; Lin, Hong-En; Nerurkar, Vivek R.; Wang, Wei-Kung

    2012-01-01

    Background The envelope (E) protein of dengue virus (DENV) is the major immunogen for dengue vaccine development. At the C-terminus are two α-helices (EH1 and EH2) and two transmembrane domains (ET1 and ET2). After synthesis, E protein forms a heterodimer with the precursor membrane (prM) protein, which has been shown as a chaperone for E protein and could prevent premature fusion of E protein during maturation. Recent reports of enhancement of DENV infectivity by anti-prM monoclonal antibodies (mAbs) suggest the presence of prM protein in dengue vaccine is potentially harmful. A better understanding of prM-E interaction and its effect on recognition of E and prM proteins by different antibodies would provide important information for future design of safe and effective subunit dengue vaccines. Methodology/Principal Findings In this study, we examined a series of C-terminal truncation constructs of DENV4 prME, E and prM. In the absence of E protein, prM protein expressed poorly. In the presence of E protein, the expression of prM protein increased in a dose-dependent manner. Radioimmunoprecipitation, sucrose gradient sedimentation and pulse-chase experiments revealed ET1 and EH2 were involved in prM-E interaction and EH2 in maintaining the stability of prM protein. Dot blot assay revealed E protein affected the recognition of prM protein by an anti-prM mAb; truncation of EH2 or EH1 affected the recognition of E protein by several anti-E mAbs, which was further verified by capture ELISA. The E protein ectodomain alone can be recognized well by all anti-E mAbs tested. Conclusions/Significance A C-terminal domain (EH2) of DENV E protein can affect the expression and stability of its chaperone prM protein. These findings not only add to our understanding of the interaction between prM and E proteins, but also suggest the ectodomain of E protein alone could be a potential subunit immunogen without inducing anti-prM response. PMID:23300717

  12. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB.

    PubMed

    López-Berges, Manuel S; Rispail, Nicolas; Prados-Rosales, Rafael C; Di Pietro, Antonio

    2010-07-01

    During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source-independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the DeltameaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi.

  13. Identifying the molecular functions of electron transport proteins using radial basis function networks and biochemical properties.

    PubMed

    Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen

    2017-05-01

    The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Development and Application of Functionalized Protein Binders in Multicellular Organisms.

    PubMed

    Bieli, D; Alborelli, I; Harmansa, S; Matsuda, S; Caussinus, E; Affolter, M

    2016-01-01

    Protein-protein interactions are crucial for almost all biological processes. Studying such interactions in their native environment is critical but not easy to perform. Recently developed genetically encoded protein binders were shown to function inside living cells. These molecules offer a new, direct way to assess protein function, distribution and dynamics in vivo. A widely used protein binder scaffold are the so-called nanobodies, which are derived from the variable domain of camelid heavy-chain antibodies. Another commonly used scaffold, the DARPins, is based on Ankyrin repeats. In this review, we highlight how these binders can be functionalized in order to study proteins in vivo during the development of multicellular organisms. It is to be anticipated that many more applications for such synthetic protein binders will be developed in the near future. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Chemical and Conformational Diversity of Modified Nucleosides Affects tRNA Structure and Function.

    PubMed

    Väre, Ville Y P; Eruysal, Emily R; Narendran, Amithi; Sarachan, Kathryn L; Agris, Paul F

    2017-03-16

    RNAs are central to all gene expression through the control of protein synthesis. Four major nucleosides, adenosine, guanosine, cytidine and uridine, compose RNAs and provide sequence variation, but are limited in contributions to structural variation as well as distinct chemical properties. The ability of RNAs to play multiple roles in cellular metabolism is made possible by extensive variation in length, conformational dynamics, and the over 100 post-transcriptional modifications. There are several reviews of the biochemical pathways leading to RNA modification, but the physicochemical nature of modified nucleosides and how they facilitate RNA function is of keen interest, particularly with regard to the contributions of modified nucleosides. Transfer RNAs (tRNAs) are the most extensively modified RNAs. The diversity of modifications provide versatility to the chemical and structural environments. The added chemistry, conformation and dynamics of modified nucleosides occurring at the termini of stems in tRNA's cloverleaf secondary structure affect the global three-dimensional conformation, produce unique recognition determinants for macromolecules to recognize tRNAs, and affect the accurate and efficient decoding ability of tRNAs. This review will discuss the impact of specific chemical moieties on the structure, stability, electrochemical properties, and function of tRNAs.

  16. Protein domains of unknown function are essential in bacteria.

    PubMed

    Goodacre, Norman F; Gerloff, Dietlind L; Uetz, Peter

    2013-12-31

    More than 20% of all protein domains are currently annotated as "domains of unknown function" (DUFs). About 2,700 DUFs are found in bacteria compared with just over 1,500 in eukaryotes. Over 800 DUFs are shared between bacteria and eukaryotes, and about 300 of these are also present in archaea. A total of 2,786 bacterial Pfam domains even occur in animals, including 320 DUFs. Evolutionary conservation suggests that many of these DUFs are important. Here we show that 355 essential proteins in 16 model bacterial species contain 238 DUFs, most of which represent single-domain proteins, clearly establishing the biological essentiality of DUFs. We suggest that experimental research should focus on conserved and essential DUFs (eDUFs) for functional analysis given their important function and wide taxonomic distribution, including bacterial pathogens. The functional units of proteins are domains. Typically, each domain has a distinct structure and function. Genomes encode thousands of domains, and many of the domains have no known function (domains of unknown function [DUFs]). They are often ignored as of little relevance, given that many of them are found in only a few genomes. Here we show that many DUFs are essential DUFs (eDUFs) based on their presence in essential proteins. We also show that eDUFs are often essential even if they are found in relatively few genomes. However, in general, more common DUFs are more often essential than rare DUFs.

  17. Benchmark data for identifying multi-functional types of membrane proteins.

    PubMed

    Wan, Shibiao; Mak, Man-Wai; Kung, Sun-Yuan

    2016-09-01

    Identifying membrane proteins and their multi-functional types is an indispensable yet challenging topic in proteomics and bioinformatics. In this article, we provide data that are used for training and testing Mem-ADSVM (Wan et al., 2016. "Mem-ADSVM: a two-layer multi-label predictor for identifying multi-functional types of membrane proteins" [1]), a two-layer multi-label predictor for predicting multi-functional types of membrane proteins.

  18. Functional dynamics of cell surface membrane proteins.

    PubMed

    Nishida, Noritaka; Osawa, Masanori; Takeuchi, Koh; Imai, Shunsuke; Stampoulis, Pavlos; Kofuku, Yutaka; Ueda, Takumi; Shimada, Ichio

    2014-04-01

    Cell surface receptors are integral membrane proteins that receive external stimuli, and transmit signals across plasma membranes. In the conventional view of receptor activation, ligand binding to the extracellular side of the receptor induces conformational changes, which convert the structure of the receptor into an active conformation. However, recent NMR studies of cell surface membrane proteins have revealed that their structures are more dynamic than previously envisioned, and they fluctuate between multiple conformations in an equilibrium on various timescales. In addition, NMR analyses, along with biochemical and cell biological experiments indicated that such dynamical properties are critical for the proper functions of the receptors. In this review, we will describe several NMR studies that revealed direct linkage between the structural dynamics and the functions of the cell surface membrane proteins, such as G-protein coupled receptors (GPCRs), ion channels, membrane transporters, and cell adhesion molecules. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. New insights into potential functions for the protein 4.1superfamily of proteins in kidney epithelium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calinisan, Venice; Gravem, Dana; Chen, Ray Ping-Hsu

    2005-06-17

    Members of the protein 4.1 family of adapter proteins are expressed in a broad panel of tissues including various epithelia where they likely play an important role in maintenance of cell architecture and polarity and in control of cell proliferation. We have recently characterized the structure and distribution of three members of the protein 4.1 family, 4.1B, 4.1R and 4.1N, in mouse kidney. We describe here binding partners for renal 4.1 proteins, identified through the screening of a rat kidney yeast two-hybrid system cDNA library. The identification of putative protein 4.1-based complexes enables us to envision potential functions for 4.1more » proteins in kidney: organization of signaling complexes, response to osmotic stress, protein trafficking, and control of cell proliferation. We discuss the relevance of these protein 4.1-based interactions in kidney physio-pathology in the context of their previously identified functions in other cells and tissues. Specifically, we will focus on renal 4.1 protein interactions with beta amyloid precursor protein (beta-APP), 14-3-3 proteins, and the cell swelling-activated chloride channel pICln. We also discuss the functional relevance of another member of the protein 4.1 superfamily, ezrin, in kidney physiopathology.« less

  20. Developing Novel Protein-based Materials using Ultrabithorax: Production, Characterization, and Functionalization

    NASA Astrophysics Data System (ADS)

    Huang, Zhao

    2011-12-01

    Compared to 'conventional' materials made from metal, glass, or ceramics, protein-based materials have unique mechanical properties. Furthermore, the morphology, mechanical properties, and functionality of protein-based materials may be optimized via sequence engineering for use in a variety of applications, including textile materials, biosensors, and tissue engineering scaffolds. The development of recombinant DNA technology has enabled the production and engineering of protein-based materials ex vivo. However, harsh production conditions can compromise the mechanical properties of protein-based materials and diminish their ability to incorporate functional proteins. Developing a new generation of protein-based materials is crucial to (i) improve materials assembly conditions, (ii) create novel mechanical properties, and (iii) expand the capacity to carry functional protein/peptide sequences. This thesis describes development of novel protein-based materials using Ultrabithorax, a member of the Hox family of proteins that regulate developmental pathways in Drosophila melanogaster. The experiments presented (i) establish the conditions required for the assembly of Ubx-based materials, (ii) generate a wide range of Ubx morphologies, (iii) examine the mechanical properties of Ubx fibers, (iv) incorporate protein functions to Ubx-based materials via gene fusion, (v) pattern protein functions within the Ubx materials, and (vi) examine the biocompatibility of Ubx materials in vitro. Ubx-based materials assemble at mild conditions compatible with protein folding and activity, which enables Ubx chimeric materials to retain the function of appended proteins in spatial patterns determined by materials assembly. Ubx-based materials also display mechanical properties comparable to existing protein-based materials and demonstrate good biocompatibility with living cells in vitro. Taken together, this research demonstrates the unique features and future potential of novel Ubx

  1. Protein complexes and functional modules in molecular networks

    NASA Astrophysics Data System (ADS)

    Spirin, Victor; Mirny, Leonid A.

    2003-10-01

    Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks.

  2. A three-way approach for protein function classification

    PubMed Central

    2017-01-01

    The knowledge of protein functions plays an essential role in understanding biological cells and has a significant impact on human life in areas such as personalized medicine, better crops and improved therapeutic interventions. Due to expense and inherent difficulty of biological experiments, intelligent methods are generally relied upon for automatic assignment of functions to proteins. The technological advancements in the field of biology are improving our understanding of biological processes and are regularly resulting in new features and characteristics that better describe the role of proteins. It is inevitable to neglect and overlook these anticipated features in designing more effective classification techniques. A key issue in this context, that is not being sufficiently addressed, is how to build effective classification models and approaches for protein function prediction by incorporating and taking advantage from the ever evolving biological information. In this article, we propose a three-way decision making approach which provides provisions for seeking and incorporating future information. We considered probabilistic rough sets based models such as Game-Theoretic Rough Sets (GTRS) and Information-Theoretic Rough Sets (ITRS) for inducing three-way decisions. An architecture of protein functions classification with probabilistic rough sets based three-way decisions is proposed and explained. Experiments are carried out on Saccharomyces cerevisiae species dataset obtained from Uniprot database with the corresponding functional classes extracted from the Gene Ontology (GO) database. The results indicate that as the level of biological information increases, the number of deferred cases are reduced while maintaining similar level of accuracy. PMID:28234929

  3. A three-way approach for protein function classification.

    PubMed

    Ur Rehman, Hafeez; Azam, Nouman; Yao, JingTao; Benso, Alfredo

    2017-01-01

    The knowledge of protein functions plays an essential role in understanding biological cells and has a significant impact on human life in areas such as personalized medicine, better crops and improved therapeutic interventions. Due to expense and inherent difficulty of biological experiments, intelligent methods are generally relied upon for automatic assignment of functions to proteins. The technological advancements in the field of biology are improving our understanding of biological processes and are regularly resulting in new features and characteristics that better describe the role of proteins. It is inevitable to neglect and overlook these anticipated features in designing more effective classification techniques. A key issue in this context, that is not being sufficiently addressed, is how to build effective classification models and approaches for protein function prediction by incorporating and taking advantage from the ever evolving biological information. In this article, we propose a three-way decision making approach which provides provisions for seeking and incorporating future information. We considered probabilistic rough sets based models such as Game-Theoretic Rough Sets (GTRS) and Information-Theoretic Rough Sets (ITRS) for inducing three-way decisions. An architecture of protein functions classification with probabilistic rough sets based three-way decisions is proposed and explained. Experiments are carried out on Saccharomyces cerevisiae species dataset obtained from Uniprot database with the corresponding functional classes extracted from the Gene Ontology (GO) database. The results indicate that as the level of biological information increases, the number of deferred cases are reduced while maintaining similar level of accuracy.

  4. Functionalized nanoparticle probes for protein detection

    NASA Astrophysics Data System (ADS)

    Park, Do Hyun; Lee, Jae-Seung

    2015-05-01

    In this Review, we discuss representative studies of recent advances in the development of nanoparticle-based protein detection methods, with a focus on the properties and functionalization of nanoparticle probes, as well as their use in detection schemes. We have focused on functionalized nanoparticle probes because they offer a number of advantages over conventional assays and because their use for detecting protein targets for diagnostic purposed has been demonstrated. In this report, we discuss nanoparticle probes classified by material type (gold, silver, silica, semiconductor, carbon, and virus) and surface functionality (antibody, aptamer, and DNA), which play a critical role in enhancing the sensitivity, selectivity, and efficiency of the detection systems. In particular, the synergistic function of each component of the nanoparticle probe is emphasized in terms of specific chemical and physical properties. This research area is in its early stages with many milestones to reach before nanoparticle probes are successfully applied in the field; however, the substantial ongoing efforts of researchers underline the great promise offered by nanoparticlebased probes for future applications. [Figure not available: see fulltext.

  5. Protein promiscuity: drug resistance and native functions--HIV-1 case.

    PubMed

    Fernández, Ariel; Tawfik, Dan S; Berkhout, Ben; Sanders, Rogier; Kloczkowski, Andrzej; Sen, Taner; Jernigan, Bob

    2005-06-01

    The association of a drug with its target protein has the effect of blocking the protein activity and is termed a promiscuous function to distinguish from the protein's native function (Tawfik and associates, Nat. Genet. 37, 73-6, 2005). Obviously, a protein has not evolved naturally for drug association or drug resistance. Promiscuous protein functions exhibit unique traits of evolutionary adaptability, or evolvability, which is dependent on the induction of novel phenotypic traits by a small number of mutations. These mutations might have small effects on native functions, but large effects on promiscuous function; for example, an evolving protein could become increasingly drug resistant while maintaining its original function. Ariel Fernandez, in his opinion piece, notes that drug-binding "promiscuity" can hardly be dissociated from native functions; a dominant approach to drug discovery is the protein-native-substrate transition-state mimetic strategy. Thus, man-made ligands (e.g. drugs) have been successfully crafted to restrain enzymatic activity by focusing on the very same structural features that determine the native function. Using the successful inhibition of HIV-1 protease as an example, Fernandez illustrates how drug designers have employed naturally evolved features of the protein to suppress its activity. Based on these arguments, he dismisses the notion that drug binding is quintessentially promiscuous, even though in principle, proteins did not evolve to associate with man made ligands. In short, Fernandez argues that there may not be separate protein domains that one could term promiscuous domains. While acknowledging that drugs may bind promiscuously or in a native-like manner a la Fernandez, Tawfik maintains the role of evolutionary adaptation, even when a drug binds native-like. In the case of HIV-1 protease, drugs bind natively, and the initial onset of mutations results in drug resistance in addition to a dramatic decline in enzymatic

  6. Automatic annotation of protein motif function with Gene Ontology terms.

    PubMed

    Lu, Xinghua; Zhai, Chengxiang; Gopalakrishnan, Vanathi; Buchanan, Bruce G

    2004-09-02

    Conserved protein sequence motifs are short stretches of amino acid sequence patterns that potentially encode the function of proteins. Several sequence pattern searching algorithms and programs exist foridentifying candidate protein motifs at the whole genome level. However, a much needed and important task is to determine the functions of the newly identified protein motifs. The Gene Ontology (GO) project is an endeavor to annotate the function of genes or protein sequences with terms from a dynamic, controlled vocabulary and these annotations serve well as a knowledge base. This paper presents methods to mine the GO knowledge base and use the association between the GO terms assigned to a sequence and the motifs matched by the same sequence as evidence for predicting the functions of novel protein motifs automatically. The task of assigning GO terms to protein motifs is viewed as both a binary classification and information retrieval problem, where PROSITE motifs are used as samples for mode training and functional prediction. The mutual information of a motif and aGO term association is found to be a very useful feature. We take advantage of the known motifs to train a logistic regression classifier, which allows us to combine mutual information with other frequency-based features and obtain a probability of correct association. The trained logistic regression model has intuitively meaningful and logically plausible parameter values, and performs very well empirically according to our evaluation criteria. In this research, different methods for automatic annotation of protein motifs have been investigated. Empirical result demonstrated that the methods have a great potential for detecting and augmenting information about the functions of newly discovered candidate protein motifs.

  7. Arginine depletion by arginine deiminase does not affect whole protein metabolism or muscle fractional protein synthesis rate in mice.

    PubMed

    Marini, Juan C; Didelija, Inka Cajo

    2015-01-01

    Due to the absolute need for arginine that certain cancer cells have, arginine depletion is a therapy in clinical trials to treat several types of cancers. Arginine is an amino acids utilized not only as a precursor for other important molecules, but also for protein synthesis. Because arginine depletion can potentially exacerbate the progressive loss of body weight, and especially lean body mass, in cancer patients we determined the effect of arginine depletion by pegylated arginine deiminase (ADI-PEG 20) on whole body protein synthesis and fractional protein synthesis rate in multiple tissues of mice. ADI-PEG 20 successfully depleted circulating arginine (<1 μmol/L), and increased citrulline concentration more than tenfold. Body weight and body composition, however, were not affected by ADI-PEG 20. Despite the depletion of arginine, whole body protein synthesis and breakdown were maintained in the ADI-PEG 20 treated mice. The fractional protein synthesis rate of muscle was also not affected by arginine depletion. Most tissues (liver, kidney, spleen, heart, lungs, stomach, small and large intestine, pancreas) were able to maintain their fractional protein synthesis rate; however, the fractional protein synthesis rate of brain, thymus and testicles was reduced due to the ADI-PEG 20 treatment. Furthermore, these results were confirmed by the incorporation of ureido [14C]citrulline, which indicate the local conversion into arginine, into protein. In conclusion, the intracellular recycling pathway of citrulline is able to provide enough arginine to maintain protein synthesis rate and prevent the loss of lean body mass and body weight.

  8. The Structure and Function of Non-Collagenous Bone Proteins

    NASA Technical Reports Server (NTRS)

    Hook, Magnus; McQuillan, David J.

    1997-01-01

    The research done under the cooperative research agreement for the project titled 'The structure and function of non-collagenous bone proteins' represented the first phase of an ongoing program to define the structural and functional relationships of the principal noncollagenous proteins in bone. An ultimate goal of this research is to enable design and execution of useful pharmacological compounds that will have a beneficial effect in treatment of osteoporosis, both land-based and induced by long-duration space travel. The goals of the now complete first phase were as follows: 1. Establish and/or develop powerful recombinant protein expression systems; 2. Develop and refine isolation and purification of recombinant proteins; 3. Express wild-type non-collagenous bone proteins; 4. Express site-specific mutant proteins and domains of wild-type proteins to enhance likelihood of crystal formation for subsequent solution of structure.

  9. Evolution, functions, and mysteries of plant ARGONAUTE proteins.

    PubMed

    Zhang, Han; Xia, Rui; Meyers, Blake C; Walbot, Virginia

    2015-10-01

    ARGONAUTE (AGO) proteins bind small RNAs (sRNAs) to form RNA-induced silencing complexes for transcriptional and post-transcriptional gene silencing. Genomes of primitive plants encode only a few AGO proteins. The Arabidopsis thaliana genome encodes ten AGO proteins, designated AGO1 to AGO10. Most early studies focused on these ten proteins and their interacting sRNAs. AGOs in other flowering plant species have duplicated and diverged from this set, presumably corresponding to new, diverged or specific functions. Among these, the grass-specific AGO18 family has been discovered and implicated as playing important roles during plant reproduction and viral defense. This review covers our current knowledge about functions and features of AGO proteins in both eudicots and monocots and compares their similarities and differences. On the basis of these features, we propose a new nomenclature for some plant AGOs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Diversity and functions of protein glycosylation in insects.

    PubMed

    Walski, Tomasz; De Schutter, Kristof; Van Damme, Els J M; Smagghe, Guy

    2017-04-01

    The majority of proteins is modified with carbohydrate structures. This modification, called glycosylation, was shown to be crucial for protein folding, stability and subcellular location, as well as protein-protein interactions, recognition and signaling. Protein glycosylation is involved in multiple physiological processes, including embryonic development, growth, circadian rhythms, cell attachment as well as maintenance of organ structure, immunity and fertility. Although the general principles of glycosylation are similar among eukaryotic organisms, insects synthesize a distinct repertoire of glycan structures compared to plants and vertebrates. Consequently, a number of unique insect glycans mediate functions specific to this class of invertebrates. For instance, the core α1,3-fucosylation of N-glycans is absent in vertebrates, while in insects this modification is crucial for the development of wings and the nervous system. At present, most of the data on insect glycobiology comes from research in Drosophila. Yet, progressively more information on the glycan structures and the importance of glycosylation in other insects like beetles, caterpillars, aphids and bees is becoming available. This review gives a summary of the current knowledge and recent progress related to glycan diversity and function(s) of protein glycosylation in insects. We focus on N- and O-glycosylation, their synthesis, physiological role(s), as well as the molecular and biochemical basis of these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Molecular simulation of the effect of cholesterol on lipid-mediated protein-protein interactions.

    PubMed

    de Meyer, Frédérick J-M; Rodgers, Jocelyn M; Willems, Thomas F; Smit, Berend

    2010-12-01

    Experiments and molecular simulations have shown that the hydrophobic mismatch between proteins and membranes contributes significantly to lipid-mediated protein-protein interactions. In this article, we discuss the effect of cholesterol on lipid-mediated protein-protein interactions as function of hydrophobic mismatch, protein diameter and protein cluster size, lipid tail length, and temperature. To do so, we study a mesoscopic model of a hydrated bilayer containing lipids and cholesterol in which proteins are embedded, with a hybrid dissipative particle dynamics-Monte Carlo method. We propose a mechanism by which cholesterol affects protein interactions: protein-induced, cholesterol-enriched, or cholesterol-depleted lipid shells surrounding the proteins affect the lipid-mediated protein-protein interactions. Our calculations of the potential of mean force between proteins and protein clusters show that the addition of cholesterol dramatically reduces repulsive lipid-mediated interactions between proteins (protein clusters) with positive mismatch, but does not affect attractive interactions between proteins with negative mismatch. Cholesterol has only a modest effect on the repulsive interactions between proteins with different mismatch. Copyright © 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  12. New frontiers: discovering cilia-independent functions of cilia proteins.

    PubMed

    Vertii, Anastassiia; Bright, Alison; Delaval, Benedicte; Hehnly, Heidi; Doxsey, Stephen

    2015-10-01

    In most vertebrates, mitotic spindles and primary cilia arise from a common origin, the centrosome. In non-cycling cells, the centrosome is the template for primary cilia assembly and, thus, is crucial for their associated sensory and signaling functions. During mitosis, the duplicated centrosomes mature into spindle poles, which orchestrate mitotic spindle assembly, chromosome segregation, and orientation of the cell division axis. Intriguingly, both cilia and spindle poles are centrosome-based, functionally distinct structures that require the action of microtubule-mediated, motor-driven transport for their assembly. Cilia proteins have been found at non-cilia sites, where they have distinct functions, illustrating a diverse and growing list of cellular processes and structures that utilize cilia proteins for crucial functions. In this review, we discuss cilia-independent functions of cilia proteins and re-evaluate their potential contributions to "cilia" disorders. © 2015 The Authors.

  13. Categorizing Biases in High-Confidence High-Throughput Protein-Protein Interaction Data Sets*

    PubMed Central

    Yu, Xueping; Ivanic, Joseph; Memišević, Vesna; Wallqvist, Anders; Reifman, Jaques

    2011-01-01

    We characterized and evaluated the functional attributes of three yeast high-confidence protein-protein interaction data sets derived from affinity purification/mass spectrometry, protein-fragment complementation assay, and yeast two-hybrid experiments. The interacting proteins retrieved from these data sets formed distinct, partially overlapping sets with different protein-protein interaction characteristics. These differences were primarily a function of the deployed experimental technologies used to recover these interactions. This affected the total coverage of interactions and was especially evident in the recovery of interactions among different functional classes of proteins. We found that the interaction data obtained by the yeast two-hybrid method was the least biased toward any particular functional characterization. In contrast, interacting proteins in the affinity purification/mass spectrometry and protein-fragment complementation assay data sets were over- and under-represented among distinct and different functional categories. We delineated how these differences affected protein complex organization in the network of interactions, in particular for strongly interacting complexes (e.g. RNA and protein synthesis) versus weak and transient interacting complexes (e.g. protein transport). We quantified methodological differences in detecting protein interactions from larger protein complexes, in the correlation of protein abundance among interacting proteins, and in their connectivity of essential proteins. In the latter case, we showed that minimizing inherent methodology biases removed many of the ambiguous conclusions about protein essentiality and protein connectivity. We used these findings to rationalize how biological insights obtained by analyzing data sets originating from different sources sometimes do not agree or may even contradict each other. An important corollary of this work was that discrepancies in biological insights did not

  14. A Protein Aggregation Based Test for Screening of the Agents Affecting Thermostability of Proteins

    PubMed Central

    Eronina, Tatyana; Borzova, Vera; Maloletkina, Olga; Kleymenov, Sergey; Asryants, Regina; Markossian, Kira; Kurganov, Boris

    2011-01-01

    To search for agents affecting thermal stability of proteins, a test based on the registration of protein aggregation in the regime of heating with a constant rate was used. The initial parts of the dependences of the light scattering intensity (I) on temperature (T) were analyzed using the following empiric equation: I = K agg(T−T 0)2, where K agg is the parameter characterizing the initial rate of aggregation and T 0 is a temperature at which the initial increase in the light scattering intensity is registered. The aggregation data are interpreted in the frame of the model assuming the formation of the start aggregates at the initial stages of the aggregation process. Parameter T 0 corresponds to the moment of the origination of the start aggregates. The applicability of the proposed approach was demonstrated on the examples of thermal aggregation of glycogen phosphorylase b from rabbit skeletal muscles and bovine liver glutamate dehydrogenase studied in the presence of agents of different chemical nature. The elaborated approach to the study of protein aggregation may be used for rapid identification of small molecules that interact with protein targets. PMID:21760963

  15. Enzyme Functionalized AuNPs and Glucometer-based Protein Detection

    NASA Astrophysics Data System (ADS)

    Dai, Tao; Fang, Jie; Yu, Wen; Xie, Guoming

    2017-12-01

    We here developed a novel method for protein detection by using protein aptamer-functionalized magnetic beads for protein recognition and invertase-functionalized AuNPs catalyze sucrose generate glucose that can be detected by a glucometer. First, the invertase and DNA probe P2 are immobilized onto the gold nanoparticles (I.P2@AuNPs). Next protein aptamer P1 are immobilized onto the streptavidin-coated Magnetic beads (P1@MB). P1 and P2 can complementary to form double-stranded DNA. When target protein presence, P1 combine with target and release I/P2@AuNPs. Then magnetic separation, take supernatant fluid and add sucrose after a period of reaction, detection of glucose concentration by glucometer, thus achieve the sensitive and selective detection of the target protein.

  16. Expression and functional roles of G-protein-coupled estrogen receptor (GPER) in human eosinophils.

    PubMed

    Tamaki, Mami; Konno, Yasunori; Kobayashi, Yoshiki; Takeda, Masahide; Itoga, Masamichi; Moritoki, Yuki; Oyamada, Hajime; Kayaba, Hiroyuki; Chihara, Junichi; Ueki, Shigeharu

    2014-07-01

    Sexual dimorphism in asthma links the estrogen and allergic immune responses. The function of estrogen was classically believed to be mediated through its nuclear receptors, i.e., estrogen receptors (ERs). However, recent studies established the important roles of G-protein-coupled estrogen receptor (GPER/GPR30) as a novel membrane receptor for estrogen. To date, the role of GPER in allergic inflammation is poorly understood. The purpose of this study was to examine whether GPER might affect the functions of eosinophils, which play an important role in the pathogenesis of asthma. Here, we demonstrated that GPER was expressed in purified human peripheral blood eosinophils both at the mRNA and protein levels. Although GPER agonist G-1 did not induce eosinophil chemotaxis or chemokinesis, preincubation with G-1 enhanced eotaxin (CCL11)-directed eosinophil chemotaxis. G-1 inhibited eosinophil spontaneous apoptosis and caspase-3 activities. The anti-apoptotic effect was not affected by the cAMP-phospodiesterase inhibitor rolipram or phosphoinositide 3-kinase inhibitors. In contrast to resting eosinophils, G-1 induced apoptosis and increased caspase-3 activities when eosinophils were co-stimulated with IL-5. No effect of G-1 was observed on eosinophil degranulation in terms of release of eosinophil-derived neurotoxin (EDN). The current study indicates the functional capacities of GPER on human eosinophils and also provides the previously unrecognized mechanisms of interaction between estrogen and allergic inflammation. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Use of expression constructs to dissect the functional domains of the CHS/beige protein: identification of multiple phenotypes.

    PubMed

    Ward, Diane McVey; Shiflett, Shelly L; Huynh, Dinh; Vaughn, Michael B; Prestwich, Glenn; Kaplan, Jerry

    2003-06-01

    The Chediak-Higashi Syndrome (CHS) and the orthologous murine disorder beige are characterized at the cellular level by the presence of giant lysosomes. The CHS1/Beige protein is a 3787 amino acid protein of unknown function. To determine functional domains of the CHS1/Beige protein, we generated truncated constructs of the gene/protein. These truncated proteins were transiently expressed in Cos-7 or HeLa cells and their effect on membrane trafficking was examined. Beige is apparently a cytosolic protein, as are most transiently expressed truncated Beige constructs. Expression of the Beige construct FM (amino acids 1-2037) in wild-type cells led to enlarged lysosomes. Similarly, expression of a 5.5-kb region (amino acids 2035-3787) of the carboxyl terminal of Beige (22B) also resulted in enlarged lysosomes. Expression of FM solely affected lysosome size, whereas expression of 22B led to alterations in lysosome size, changes in the Golgi and eventually cell death. The two constructs could be used to further dissect phenotypes resulting from loss of the Beige protein. CHS or beigej fibroblasts show an absence of nuclear staining using a monoclonal antibody directed against phosphatidylinositol 4,5 bisphosphate [PtdIns(4,5) P2]. Transformation of beige j fibroblasts with a YAC containing the full-length Beige gene resulted in the normalization of lysosome size and nuclear PtdIns(4,5)P2 staining. Expression of the carboxyl dominant negative construct 22B led to loss of nuclear PtdIns(4,5)P2 staining. Expression of the FM dominant negative clone did not alter nuclear PtdIns(4,5) P2 localization. These results suggest that the Beige protein interacts with at least two different partners and that the Beige protein affects cellular events, such as nuclear PtdIns(4,5)P2 localization, in addition to lysosome size.

  18. Heterologous mitochondrial targeting sequences can deliver functional proteins into mitochondria.

    PubMed

    Marcus, Dana; Lichtenstein, Michal; Cohen, Natali; Hadad, Rita; Erlich-Hadad, Tal; Greif, Hagar; Lorberboum-Galski, Haya

    2016-12-01

    Mitochondrial Targeting Sequences (MTSs) are responsible for trafficking nuclear-encoded proteins into mitochondria. Once entering the mitochondria, the MTS is recognized and cleaved off. Some MTSs are long and undergo two-step processing, as in the case of the human frataxin (FXN) protein (80aa), implicated in Friedreich's ataxia (FA). Therefore, we chose the FXN protein to examine whether nuclear-encoded mitochondrial proteins can efficiently be targeted via a heterologous MTS (hMTS) and deliver a functional protein into mitochondria. We examined three hMTSs; that of citrate synthase (cs), lipoamide deydrogenase (LAD) and C6ORF66 (ORF), as classically MTS sequences, known to be removed by one-step processing, to deliver FXN into mitochondria, in the form of fusion proteins. We demonstrate that using hMTSs for delivering FXN results in the production of 4-5-fold larger amounts of the fusion proteins, and at 4-5-fold higher concentrations. Moreover, hMTSs delivered a functional FXN protein into the mitochondria even more efficiently than the native MTSfxn, as evidenced by the rescue of FA patients' cells from oxidative stress; demonstrating a 18%-54% increase in cell survival; and a 13%-33% increase in ATP levels, as compared to the fusion protein carrying the native MTS. One fusion protein with MTScs increased aconitase activity within patients' cells, by 400-fold. The implications form our studies are of vast importance for both basic and translational research of mitochondrial proteins as any mitochondrial protein can be delivered efficiently by an hMTS. Moreover, effective targeting of functional proteins is important for restoration of mitochondrial function and treatment of related disorders. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Molecular Dynamics Information Improves cis-Peptide-Based Function Annotation of Proteins.

    PubMed

    Das, Sreetama; Bhadra, Pratiti; Ramakumar, Suryanarayanarao; Pal, Debnath

    2017-08-04

    cis-Peptide bonds, whose occurrence in proteins is rare but evolutionarily conserved, are implicated to play an important role in protein function. This has led to their previous use in a homology-independent, fragment-match-based protein function annotation method. However, proteins are not static molecules; dynamics is integral to their activity. This is nicely epitomized by the geometric isomerization of cis-peptide to trans form for molecular activity. Hence we have incorporated both static (cis-peptide) and dynamics information to improve the prediction of protein molecular function. Our results show that cis-peptide information alone cannot detect functional matches in cases where cis-trans isomerization exists but 3D coordinates have been obtained for only the trans isomer or when the cis-peptide bond is incorrectly assigned as trans. On the contrary, use of dynamics information alone includes false-positive matches for cases where fragments with similar secondary structure show similar dynamics, but the proteins do not share a common function. Combining the two methods reduces errors while detecting the true matches, thereby enhancing the utility of our method in function annotation. A combined approach, therefore, opens up new avenues of improving existing automated function annotation methodologies.

  20. Detection of functionally important regions in "hypothetical proteins" of known structure.

    PubMed

    Nimrod, Guy; Schushan, Maya; Steinberg, David M; Ben-Tal, Nir

    2008-12-10

    Structural genomics initiatives provide ample structures of "hypothetical proteins" (i.e., proteins of unknown function) at an ever increasing rate. However, without function annotation, this structural goldmine is of little use to biologists who are interested in particular molecular systems. To this end, we used (an improved version of) the PatchFinder algorithm for the detection of functional regions on the protein surface, which could mediate its interactions with, e.g., substrates, ligands, and other proteins. Examination, using a data set of annotated proteins, showed that PatchFinder outperforms similar methods. We collected 757 structures of hypothetical proteins and their predicted functional regions in the N-Func database. Inspection of several of these regions demonstrated that they are useful for function prediction. For example, we suggested an interprotein interface and a putative nucleotide-binding site. A web-server implementation of PatchFinder and the N-Func database are available at http://patchfinder.tau.ac.il/.

  1. Differential accumulation of proteins in oil palms affected by fatal yellowing disease

    PubMed Central

    do Nascimento, Sidney Vasconcelos; Magalhães, Marcelo Murad; Cunha, Roberto Lisboa; Costa, Paulo Henrique de Oliveira; Alves, Ronnie Cley de Oliveira; de Oliveira, Guilherme Corrêa

    2018-01-01

    There is still no consensus on the true origin of fatal yellowing, one of the most important diseases affecting oil palm (Elaeis guineensis Jacq.) plantations. This study involved two-dimensional liquid chromatography coupled with tandem mass spectrometry (2D-UPLC-MSE) analyses to identify changes in protein profiles of oil palms affected by FY disease. Oil palm roots were sampled from two growing areas. Differential accumulation of proteins was assessed by comparing plants with and without symptoms and between plants at different stages of FY development. Most of the proteins identified with differential accumulation were those related to stress response and energy metabolism. The latter proteins include the enzymes alcohol dehydrogenase and aldehyde dehydrogenase, related to alcohol fermentation, which were identified in plants with and without symptoms. The presence of these enzymes suggests an anaerobic condition before or during FY. Transketolase, isoflavone reductase, cinnamyl alcohol dehydrogenase, caffeic acid 3-O-methyltransferase, S-adenosylmethionine synthase, aldehyde dehydrogenase and ferritin, among others, were identified as potential marker proteins and could be used to guide selection of FY-tolerant oil palm genotypes or to understand the source of this anomaly. When comparing different stages of FY, we observed high accumulation of alcohol dehydrogenase and other abiotic stress related-proteins at all disease stages. On the other hand, biological stress-related proteins were more accumulated at later stages of the disease. These results suggest that changes in abiotic factors can trigger FY development, creating conditions for the establishment of opportunistic pathogens. PMID:29621343

  2. Geometrical comparison of two protein structures using Wigner-D functions.

    PubMed

    Saberi Fathi, S M; White, Diana T; Tuszynski, Jack A

    2014-10-01

    In this article, we develop a quantitative comparison method for two arbitrary protein structures. This method uses a root-mean-square deviation characterization and employs a series expansion of the protein's shape function in terms of the Wigner-D functions to define a new criterion, which is called a "similarity value." We further demonstrate that the expansion coefficients for the shape function obtained with the help of the Wigner-D functions correspond to structure factors. Our method addresses the common problem of comparing two proteins with different numbers of atoms. We illustrate it with a worked example. © 2014 Wiley Periodicals, Inc.

  3. Association of protein structure, protein and carbohydrate subfractions with bioenergy profiles and biodegradation functions in modeled forage

    NASA Astrophysics Data System (ADS)

    Ji, Cuiying; Zhang, Xuewei; Yu, Peiqiang

    2016-03-01

    The objectives of this study were to detect unique aspects and association of forage protein inherent structure, biological compounds, protein and carbohydrate subfractions, bioenergy profiles, and biodegradation features. In this study, common available alfalfa hay from two different sourced-origins (FSO vs. CSO) was used as a modeled forage for inherent structure profile, bioenergy, biodegradation and their association between their structure and bio-functions. The molecular spectral profiles were determined using non-invasive molecular spectroscopy. The parameters included: protein structure amide I group, amide II group and their ratios; protein subfractions (PA1, PA2, PB1, PB2, PC); carbohydrate fractions (CA1, CA2, CA3, CA4, CB1, CB2, CC); biodegradable and undegradable fractions of protein (RDPA2, RDPB1, RDPB2, RDP; RUPA2 RUPB1, RUPB2, RUPC, RUP); biodegradable and undegradable fractions of carbohydrate (RDCA4, RDCB1, RDCB2, RDCB3, RDCHO; RUCA4, RUCB1; RUCB2; RUCB3 RUCC, RUCHO) and bioenergy profiles (tdNDF, tdFA, tdCP, tdNFC, TDN1 ×, DE3 ×, ME3 ×, NEL3 ×; NEm, NEg). The results show differences in protein and carbohydrate (CHO) subfractions in the moderately degradable true protein fraction (PB1: 502 vs. 420 g/kg CP, P = 0.09), slowly degraded true protein fraction (PB2: 45 vs. 96 g/kg CP, P = 0.02), moderately degradable CHO fraction (CB2: 283 vs. 223 g/kg CHO, P = 0.06) and slowly degraded CHO fraction (CB3: 369 vs. 408 g/kg CHO) between the two sourced origins. As to biodegradable (RD) fractions of protein and CHO in rumen, there were differences in RD of PB1 (417 vs. 349 g/kg CP, P = 0.09), RD of PB2 (29 vs. 62 g/kg CP, P = 0.02), RD of CB2 (251 vs. 198 g/kg DM, P = 0.06), RD of CB3 (236 vs. 261 g/kg CHO, P = 0.08). As to bioenergy profile, there were differences in total digestible nutrient (TDN: 551 vs. 537 g/kg DM, P = 0.06), and metabolic bioenergy (P = 0.095). As to protein molecular structure, there were differences in protein structure 1st

  4. Effect of pH on the functional properties of Arthrospira (Spirulina) platensis protein isolate.

    PubMed

    Benelhadj, Sonda; Gharsallaoui, Adem; Degraeve, Pascal; Attia, Hamadi; Ghorbel, Dorra

    2016-03-01

    In the present study, a protein isolate extracted from Arthrospira platensis by isoelectric precipitation was evaluated for its functional properties. The maximum nitrogen solubility was 59.6±0.7% (w/w) at pH 10. The A. platensis protein isolate (API) showed relatively high oil (252.7±0.3g oil/100g API) and water (428.8±15.4g of water/100g of API at pH 10) absorption capacities. The protein zeta potential, the emulsifying capacity, the emulsion ageing stability, the emulsion microstructure and the emulsion opacity as well as the foaming capacity and the foam stability were shown to be greatly affected by pH. Especially, emulsifying and foaming capacities were positively correlated to the protein solubility. Moreover, the API was able to form films when sorbitol (30% (w/w)) was used as plasticizer and to form gels when the API concentration exceeded 12% (w/w). Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins.

    PubMed

    Nelson, David E; Randle, Suzanne J; Laman, Heike

    2013-10-09

    F-box proteins (FBPs) are substrate-recruiting subunits of Skp1-cullin1-FBP (SCF)-type E3 ubiquitin ligases. To date, 69 FBPs have been identified in humans, but ubiquitinated substrates have only been identified for a few, with the majority of FBPs remaining 'orphans'. In recent years, a growing body of work has identified non-canonical, SCF-independent roles for about 12% of the human FBPs. These atypical FBPs affect processes as diverse as transcription, cell cycle regulation, mitochondrial dynamics and intracellular trafficking. Here, we provide a general review of FBPs, with a particular emphasis on these expanded functions. We review Fbxo7 as an exemplar of this special group as it has well-defined roles in both SCF and non-SCF complexes. We review its function as a cell cycle regulator, via its ability to stabilize p27 protein and Cdk6 complexes, and as a proteasome regulator, owing to its high affinity binding to PI31. We also highlight recent advances in our understanding of Fbxo7 function in Parkinson's disease, where it functions in the regulation of mitophagy with PINK1 and Parkin. We postulate that a few extraordinary FBPs act as platforms that seamlessly segue their canonical and non-canonical functions to integrate different cellular pathways and link their regulation.

  6. Disruption of protein-tyrosine phosphatase 1B expression in the pancreas affects β-cell function.

    PubMed

    Liu, Siming; Xi, Yannan; Bettaieb, Ahmed; Matsuo, Kosuke; Matsuo, Izumi; Kulkarni, Rohit N; Haj, Fawaz G

    2014-09-01

    Protein-tyrosine phosphatase 1B (PTP1B) is a physiological regulator of glucose homeostasis and energy balance. However, the role of PTP1B in pancreatic endocrine function remains largely unknown. To investigate the metabolic role of pancreatic PTP1B, we generated mice with pancreas PTP1B deletion (panc-PTP1B KO). Mice were fed regular chow or a high-fat diet, and metabolic parameters, insulin secretion and glucose tolerance were determined. On regular chow, panc-PTP1B KO and control mice exhibited comparable glucose tolerance whereas aged panc-PTP1B KO exhibited mild glucose intolerance. Furthermore, high-fat feeding promoted earlier impairment of glucose tolerance and attenuated glucose-stimulated insulin secretion in panc-PTP1B KO mice. The secretory defect in glucose-stimulated insulin secretion was recapitulated in primary islets ex vivo, suggesting that the effects were likely cell-autonomous. At the molecular level, PTP1B deficiency in vivo enhanced basal and glucose-stimulated tyrosyl phosphorylation of EphA5 in islets. Consistently, PTP1B overexpression in the glucose-responsive MIN6 β-cell line attenuated EphA5 tyrosyl phosphorylation, and substrate trapping identified EphA5 as a PTP1B substrate. In summary, these studies identify a novel role for PTP1B in pancreatic endocrine function.

  7. Metallothionein 2A affects the cell respiration by suppressing the expression of mitochondrial protein cytochrome c oxidase subunit II.

    PubMed

    Bragina, Olga; Gurjanova, Karina; Krishtal, Jekaterina; Kulp, Maria; Karro, Niina; Tõugu, Vello; Palumaa, Peep

    2015-06-01

    Metallothioneins (MT) are involved in a broad range of cellular processes and play a major role in protection of cells towards various stressors. Two functions of MTs, namely the maintaining of the homeostasis of transition metal ions and the redox balance, are directly linked to the functioning of mitochondria. Dyshomeostasis of MTs is often related with malfunctioning of mitochondria; however, the mechanism by which MTs affect the mitochondrial respiratory chain is still unknown. We demonstrated that overexpression of MT-2A in HEK cell line decreased the oxidative phosphorylation capacity of the cells. HEK cells overexpressing MT-2A demonstrated reduced oxygen consumption and lower cellular ATP levels. MT-2A did not affect the number of mitochondria, but reduced specifically the level of cytochrome c oxidase subunit II protein, which resulted in lower activity of the complex IV.

  8. Improving membrane protein expression and function using genomic edits

    DOE PAGES

    Jensen, Heather M.; Eng, Thomas; Chubukov, Victor; ...

    2017-10-12

    Expression of membrane proteins often leads to growth inhibition and perturbs central metabolism and this burden varies with the protein being overexpressed. There are also known strain backgrounds that allow greater expression of membrane proteins but that differ in efficacy across proteins. Here, we hypothesized that for any membrane protein, it may be possible to identify a modified strain background where its expression can be accommodated with less burden. To directly test this hypothesis, we used a bar-coded transposon insertion library in tandem with cell sorting to assess genome-wide impact of gene deletions on membrane protein expression. The expression ofmore » five membrane proteins (CyoB, CydB, MdlB, YidC, and LepI) and one soluble protein (GST), each fused to GFP, was examined. We identified Escherichia coli mutants that demonstrated increased membrane protein expression relative to that in wild type. For two of the proteins (CyoB and CydB), we conducted functional assays to confirm that the increase in protein expression also led to phenotypic improvement in function. This study represents a systematic approach to broadly identify genetic loci that can be used to improve membrane protein expression, and our method can be used to improve expression of any protein that poses a cellular burden.« less

  9. Improving membrane protein expression and function using genomic edits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jensen, Heather M.; Eng, Thomas; Chubukov, Victor

    Expression of membrane proteins often leads to growth inhibition and perturbs central metabolism and this burden varies with the protein being overexpressed. There are also known strain backgrounds that allow greater expression of membrane proteins but that differ in efficacy across proteins. Here, we hypothesized that for any membrane protein, it may be possible to identify a modified strain background where its expression can be accommodated with less burden. To directly test this hypothesis, we used a bar-coded transposon insertion library in tandem with cell sorting to assess genome-wide impact of gene deletions on membrane protein expression. The expression ofmore » five membrane proteins (CyoB, CydB, MdlB, YidC, and LepI) and one soluble protein (GST), each fused to GFP, was examined. We identified Escherichia coli mutants that demonstrated increased membrane protein expression relative to that in wild type. For two of the proteins (CyoB and CydB), we conducted functional assays to confirm that the increase in protein expression also led to phenotypic improvement in function. This study represents a systematic approach to broadly identify genetic loci that can be used to improve membrane protein expression, and our method can be used to improve expression of any protein that poses a cellular burden.« less

  10. Challenges in the Development of Functional Assays of Membrane Proteins

    PubMed Central

    Tiefenauer, Louis; Demarche, Sophie

    2012-01-01

    Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.

  11. Progesterone production is affected by unfolded protein response (UPR) signaling during the luteal phase in mice.

    PubMed

    Park, Hyo-Jin; Park, Sun-Ji; Koo, Deog-Bon; Lee, Sang-Rae; Kong, Il-Keun; Ryoo, Jae-Woong; Park, Young-Il; Chang, Kyu-Tae; Lee, Dong-Seok

    2014-09-15

    We examined whether the three unfolded protein response (UPR) signaling pathways, which are activated in response to endoplasmic reticulum (ER)-stress, are involved in progesterone production in the luteal cells of the corpus luteum (CL) during the mouse estrous cycle. The luteal phase of C57BL/6 female mice (8 weeks old) was divided into two stages: the functional stage (16, 24, and 48 h) and the regression stage (72 and 96 h). Western blotting and reverse transcription (RT)-PCR were performed to analyze UPR protein/gene expression levels in each stage. We investigated whether ER stress affects the progesterone production by using Tm (0.5 μg/g BW) or TUDCA (0.5 μg/g BW) through intra-peritoneal injection. Our results indicate that expressions of Grp78/Bip, p-eIF2α/ATF4, p50ATF6, and p-IRE1/sXBP1 induced by UPR activation were predominantly maintained in functional and early regression stages of the CL. Furthermore, the expression of p-JNK, CHOP, and cleaved caspase3 as ER-stress mediated apoptotic factors increased during the regression stage. Cleaved caspase3 levels increased in the late-regression stage after p-JNK and CHOP expression in the early-regression stage. Additionally, although progesterone secretion and levels of steroidogenic enzymes decreased following intra-peritoneal injection of Tunicamycin, an ER stress inducer, the expression of Grp78/Bip, p50ATF6, and CHOP dramatically increased. These results suggest that the UPR signaling pathways activated in response to ER stress may play important roles in the regulation of the CL function. Furthermore, our findings enhance the understanding of the basic mechanisms affecting the CL life span. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Hierarchical Partitioning of Metazoan Protein Conservation Profiles Provides New Functional Insights

    PubMed Central

    Witztum, Jonathan; Persi, Erez; Horn, David; Pasmanik-Chor, Metsada; Chor, Benny

    2014-01-01

    The availability of many complete, annotated proteomes enables the systematic study of the relationships between protein conservation and functionality. We explore this question based solely on the presence or absence of protein homologues (a.k.a. conservation profiles). We study 18 metazoans, from two distinct points of view: the human's and the fly's. Using the GOrilla gene ontology (GO) analysis tool, we explore functional enrichment of the “universal proteins”, those with homologues in all 17 other species, and of the “non-universal proteins”. A large number of GO terms are strongly enriched in both human and fly universal proteins. Most of these functions are known to be essential. A smaller number of GO terms, exhibiting markedly different properties, are enriched in both human and fly non-universal proteins. We further explore the non-universal proteins, whose conservation profiles are consistent with the “tree of life” (TOL consistent), as well as the TOL inconsistent proteins. Finally, we applied Quantum Clustering to the conservation profiles of the TOL consistent proteins. Each cluster is strongly associated with one or a small number of specific monophyletic clades in the tree of life. The proteins in many of these clusters exhibit strong functional enrichment associated with the “life style” of the related clades. Most previous approaches for studying function and conservation are “bottom up”, studying protein families one by one, and separately assessing the conservation of each. By way of contrast, our approach is “top down”. We globally partition the set of all proteins hierarchically, as described above, and then identify protein families enriched within different subdivisions. While supporting previous findings, our approach also provides a tool for discovering novel relations between protein conservation profiles, functionality, and evolutionary history as represented by the tree of life. PMID:24594619

  13. Crystallization of bi-functional ligand protein complexes.

    PubMed

    Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano

    2013-06-01

    Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Vertebrate Membrane Proteins: Structure, Function, and Insights from Biophysical Approaches

    PubMed Central

    MÜLLER, DANIEL J.; WU, NAN; PALCZEWSKI, KRZYSZTOF

    2008-01-01

    Membrane proteins are key targets for pharmacological intervention because they are vital for cellular function. Here, we analyze recent progress made in the understanding of the structure and function of membrane proteins with a focus on rhodopsin and development of atomic force microscopy techniques to study biological membranes. Membrane proteins are compartmentalized to carry out extra- and intracellular processes. Biological membranes are densely populated with membrane proteins that occupy approximately 50% of their volume. In most cases membranes contain lipid rafts, protein patches, or paracrystalline formations that lack the higher-order symmetry that would allow them to be characterized by diffraction methods. Despite many technical difficulties, several crystal structures of membrane proteins that illustrate their internal structural organization have been determined. Moreover, high-resolution atomic force microscopy, near-field scanning optical microscopy, and other lower resolution techniques have been used to investigate these structures. Single-molecule force spectroscopy tracks interactions that stabilize membrane proteins and those that switch their functional state; this spectroscopy can be applied to locate a ligand-binding site. Recent development of this technique also reveals the energy landscape of a membrane protein, defining its folding, reaction pathways, and kinetics. Future development and application of novel approaches during the coming years should provide even greater insights to the understanding of biological membrane organization and function. PMID:18321962

  15. Gestational Exposure to Bisphenol A Affects the Function and Proteome Profile of F1 Spermatozoa in Adult Mice

    PubMed Central

    Rahman, Md Saidur; Kwon, Woo-Sung; Karmakar, Polash Chandra; Yoon, Sung-Jae; Ryu, Buom-Yong; Pang, Myung-Geol

    2016-01-01

    Background: Maternal exposure to the endocrine disruptor bisphenol A (BPA) has been linked to offspring reproductive abnormalities. However, exactly how BPA affects offspring fertility remains poorly understood. Objectives: The aim of the present study was to evaluate the effects of gestational BPA exposure on sperm function, fertility, and proteome profile of F1 spermatozoa in adult mice. Methods: Pregnant CD-1 mice (F0) were gavaged with BPA at three different doses (50 μg/kg bw/day, 5 mg/kg bw/day, and 50 mg/kg bw/day) on embryonic days 7 to 14. We investigated the function, fertility, and related processes of F1 spermatozoa at postnatal day 120. We also evaluated protein profiles of F1 spermatozoa to monitor their functional affiliation to disease. Results: BPA inhibited sperm count, motility parameters, and intracellular ATP levels in a dose-dependent manner. These effects appeared to be caused by reduced numbers of stage VIII seminiferous epithelial cells in testis and decreased protein kinase A (PKA) activity and tyrosine phosphorylation in spermatozoa. We also found that BPA compromised average litter size. Proteins differentially expressed in spermatozoa from BPA treatment groups are known to play a critical role in ATP generation, oxidative stress response, fertility, and in the pathogenesis of several diseases. Conclusions: Our study provides mechanistic support for the hypothesis that gestational exposure to BPA alters sperm function and fertility via down-regulation of tyrosine phosphorylation through a PKA-dependent mechanism. In addition, we anticipate that the BPA-induced changes in the sperm proteome might be partly responsible for the observed effects in spermatozoa. Citation: Rahman MS, Kwon WS, Karmakar PC, Yoon SJ, Ryu BY, Pang MG. 2017. Gestational exposure to bisphenol-A affects the function and proteome profile of F1 spermatozoa in adult mice. Environ Health Perspect 125:238–245; http://dx.doi.org/10.1289/EHP378 PMID:27384531

  16. In silico prediction of a disease-associated STIL mutant and its affect on the recruitment of centromere protein J (CENPJ).

    PubMed

    Kumar, Ambuj; Rajendran, Vidya; Sethumadhavan, Rao; Purohit, Rituraj

    2012-01-01

    Human STIL (SCL/TAL1 interrupting locus) protein maintains centriole stability and spindle pole localisation. It helps in recruitment of CENPJ (Centromere protein J)/CPAP (centrosomal P4.1-associated protein) and other centrosomal proteins. Mutations in STIL protein are reported in several disorders, especially in deregulation of cell cycle cascades. In this work, we examined the non-synonymous single nucleotide polymorphisms (nsSNPs) reported in STIL protein for their disease association. Different SNP prediction tools were used to predict disease-associated nsSNPs. Our evaluation technique predicted rs147744459 (R242C) as a highly deleterious disease-associated nsSNP and its interaction behaviour with CENPJ protein. Molecular modelling, docking and molecular dynamics simulation were conducted to examine the structural consequences of the predicted disease-associated mutation. By molecular dynamic simulation we observed structural consequences of R242C mutation which affects interaction of STIL and CENPJ functional domains. The result obtained in this study will provide a biophysical insight into future investigations of pathological nsSNPs using a computational platform.

  17. Post-translational processing targets functionally diverse proteins in Mycoplasma hyopneumoniae

    PubMed Central

    Tacchi, Jessica L.; Raymond, Benjamin B. A.; Haynes, Paul A.; Berry, Iain J.; Widjaja, Michael; Bogema, Daniel R.; Woolley, Lauren K.; Jenkins, Cheryl; Minion, F. Chris; Padula, Matthew P.; Djordjevic, Steven P.

    2016-01-01

    Mycoplasma hyopneumoniae is a genome-reduced, cell wall-less, bacterial pathogen with a predicted coding capacity of less than 700 proteins and is one of the smallest self-replicating pathogens. The cell surface of M. hyopneumoniae is extensively modified by processing events that target the P97 and P102 adhesin families. Here, we present analyses of the proteome of M. hyopneumoniae-type strain J using protein-centric approaches (one- and two-dimensional GeLC–MS/MS) that enabled us to focus on global processing events in this species. While these approaches only identified 52% of the predicted proteome (347 proteins), our analyses identified 35 surface-associated proteins with widely divergent functions that were targets of unusual endoproteolytic processing events, including cell adhesins, lipoproteins and proteins with canonical functions in the cytosol that moonlight on the cell surface. Affinity chromatography assays that separately used heparin, fibronectin, actin and host epithelial cell surface proteins as bait recovered cleavage products derived from these processed proteins, suggesting these fragments interact directly with the bait proteins and display previously unrecognized adhesive functions. We hypothesize that protein processing is underestimated as a post-translational modification in genome-reduced bacteria and prokaryotes more broadly, and represents an important mechanism for creating cell surface protein diversity. PMID:26865024

  18. Role of AAA(+)-proteins in peroxisome biogenesis and function.

    PubMed

    Grimm, Immanuel; Erdmann, Ralf; Girzalsky, Wolfgang

    2016-05-01

    Mutations in the PEX1 gene, which encodes a protein required for peroxisome biogenesis, are the most common cause of the Zellweger spectrum diseases. The recognition that Pex1p shares a conserved ATP-binding domain with p97 and NSF led to the discovery of the extended family of AAA+-type ATPases. So far, four AAA+-type ATPases are related to peroxisome function. Pex6p functions together with Pex1p in peroxisome biogenesis, ATAD1/Msp1p plays a role in membrane protein targeting and a member of the Lon-family of proteases is associated with peroxisomal quality control. This review summarizes the current knowledge on the AAA+-proteins involved in peroxisome biogenesis and function.

  19. Biophysical analysis of the effect of chemical modification by 4-oxononenal on the structure, stability, and function of binding immunoglobulin protein (BiP)

    PubMed Central

    Shah, Dinen D.; Singh, Surinder M.; Dzieciatkowska, Monika

    2017-01-01

    Binding immunoglobulin protein (BiP) is a molecular chaperone important for the folding of numerous proteins, which include millions of immunoglobulins in human body. It also plays a key role in the unfolded protein response (UPR) in the endoplasmic reticulum. Free radical generation is a common phenomenon that occurs in cells under healthy as well as under stress conditions such as ageing, inflammation, alcohol consumption, and smoking. These free radicals attack the cell membranes and generate highly reactive lipid peroxidation products such as 4-oxononenal (4-ONE). BiP is a key protein that is modified by 4-ONE. In this study, we probed how such chemical modification affects the biophysical properties of BiP. Upon modification, BiP shows significant tertiary structural changes with no changes in its secondary structure. The protein loses its thermodynamic stability, particularly, that of the nucleotide binding domain (NBD) where ATP binds. In terms of function, the modified BiP completely loses its ATPase activity with decreased ATP binding affinity. However, modified BiP retains its immunoglobulin binding function and its chaperone activity of suppressing non-specific protein aggregation. These results indicate that 4-ONE modification can significantly affect the structure-function of key proteins such as BiP involved in cellular pathways, and provide a molecular basis for how chemical modifications can result in the failure of quality control mechanisms inside the cell. PMID:28886061

  20. Proteins with Novel Structure, Function and Dynamics

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew

    2014-01-01

    Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.

  1. Semantic integration to identify overlapping functional modules in protein interaction networks

    PubMed Central

    Cho, Young-Rae; Hwang, Woochang; Ramanathan, Murali; Zhang, Aidong

    2007-01-01

    Background The systematic analysis of protein-protein interactions can enable a better understanding of cellular organization, processes and functions. Functional modules can be identified from the protein interaction networks derived from experimental data sets. However, these analyses are challenging because of the presence of unreliable interactions and the complex connectivity of the network. The integration of protein-protein interactions with the data from other sources can be leveraged for improving the effectiveness of functional module detection algorithms. Results We have developed novel metrics, called semantic similarity and semantic interactivity, which use Gene Ontology (GO) annotations to measure the reliability of protein-protein interactions. The protein interaction networks can be converted into a weighted graph representation by assigning the reliability values to each interaction as a weight. We presented a flow-based modularization algorithm to efficiently identify overlapping modules in the weighted interaction networks. The experimental results show that the semantic similarity and semantic interactivity of interacting pairs were positively correlated with functional co-occurrence. The effectiveness of the algorithm for identifying modules was evaluated using functional categories from the MIPS database. We demonstrated that our algorithm had higher accuracy compared to other competing approaches. Conclusion The integration of protein interaction networks with GO annotation data and the capability of detecting overlapping modules substantially improve the accuracy of module identification. PMID:17650343

  2. Identification of giant Mimivirus protein functions using RNA interference

    PubMed Central

    Sobhy, Haitham; Scola, Bernard La; Pagnier, Isabelle; Raoult, Didier; Colson, Philippe

    2015-01-01

    Genomic analysis of giant viruses, such as Mimivirus, has revealed that more than half of the putative genes have no known functions (ORFans). We knocked down Mimivirus genes using short interfering RNA as a proof of concept to determine the functions of giant virus ORFans. As fibers are easy to observe, we targeted a gene encoding a protein absent in a Mimivirus mutant devoid of fibers as well as three genes encoding products identified in a protein concentrate of fibers, including one ORFan and one gene of unknown function. We found that knocking down these four genes was associated with depletion or modification of the fibers. Our strategy of silencing ORFan genes in giant viruses opens a way to identify its complete gene repertoire and may clarify the role of these genes, differentiating between junk DNA and truly used genes. Using this strategy, we were able to annotate four proteins in Mimivirus and 30 homologous proteins in other giant viruses. In addition, we were able to annotate >500 proteins from cellular organisms and 100 from metagenomic databases. PMID:25972846

  3. The GreenCut: re-evaluation of physiological role of previously studied proteins and potential novel protein functions.

    PubMed

    Heinnickel, Mark L; Grossman, Arthur R

    2013-10-01

    Based on comparative genomics, a list of proteins present in the green algal, flowering and nonflowering plant lineages, but not detected in nonphotosynthetic organisms, was assembled (Merchant et al., Science 318:245-250, 2007; Karpowicz et al., J Biol Chem 286:21427-21439, 2011). This protein grouping, previously designated the GreenCut, was established using stringent comparative genomic criteria; they are those Chlamydomonas reinhardtii proteins with orthologs in Arabidopsis thaliana, Physcomitrella patens, Oryza sativa, Populus tricocarpa and at least one of the three Ostreococcus species with fully sequenced genomes, but not in bacteria, yeast, fungi or mammals. Many GreenCut proteins are also present in red algae and diatoms and a subset of 189 have been identified as encoded on nearly all cyanobacterial genomes. Of the current GreenCut proteins (597 in total), approximately half have been studied previously. The functions or activities of a number of these proteins have been deduced from phenotypic analyses of mutants (defective for genes encoding specific GreenCut proteins) of A. thaliana, and in many cases the assigned functions do not exist in C. reinhardtii. Therefore, precise physiological functions of several previously studied GreenCut proteins are still not clear. The GreenCut also contains a number of proteins with certain conserved domains. Three of the most highly conserved domains are the FK506 binding, cyclophilin and PAP fibrillin domains; most members of these gene families are not well characterized. In general, our analysis of the GreenCut indicates that many processes critical to green lineage organisms remain unstudied or poorly characterized. We have begun to examine the functions of some GreenCut proteins in detail. For example, our work on the CPLD38 protein has demonstrated that it has an essential role in photosynthetic function and the stability of the cytochrome b 6 f complex.

  4. Novel Function of the Fanconi Anemia Group J or RECQ1 Helicase to Disrupt Protein-DNA Complexes in a Replication Protein A-stimulated Manner*

    PubMed Central

    Sommers, Joshua A.; Banerjee, Taraswi; Hinds, Twila; Wan, Bingbing; Wold, Marc S.; Lei, Ming; Brosh, Robert M.

    2014-01-01

    Understanding how cellular machinery deals with chromosomal genome complexity is an important question because protein bound to DNA may affect various cellular processes of nucleic acid metabolism. DNA helicases are at the forefront of such processes, yet there is only limited knowledge how they remodel protein-DNA complexes and how these mechanisms are regulated. We have determined that representative human RecQ and Fe-S cluster DNA helicases are potently blocked by a protein-DNA interaction. The Fanconi anemia group J (FANCJ) helicase partners with the single-stranded DNA-binding protein replication protein A (RPA) to displace BamHI-E111A bound to duplex DNA in a specific manner. Protein displacement was dependent on the ATPase-driven function of the helicase and unique properties of RPA. Further biochemical studies demonstrated that the shelterin proteins TRF1 and TRF2, which preferentially bind the telomeric repeat found at chromosome ends, effectively block FANCJ from unwinding the forked duplex telomeric substrate. RPA, but not the Escherichia coli single-stranded DNA-binding protein or shelterin factor Pot1, stimulated FANCJ ejection of TRF1 from the telomeric DNA substrate. FANCJ was also able to displace TRF2 from the telomeric substrate in an RPA-dependent manner. The stimulation of helicase-catalyzed protein displacement is also observed with the DNA helicase RECQ1, suggesting a conserved functional interaction of RPA-interacting helicases. These findings suggest that partnerships between RPA and interacting human DNA helicases may greatly enhance their ability to dislodge proteins bound to duplex DNA, an activity that is likely to be highly relevant to their biological roles in DNA metabolism. PMID:24895130

  5. De Novo Proteins with Life-Sustaining Functions Are Structurally Dynamic.

    PubMed

    Murphy, Grant S; Greisman, Jack B; Hecht, Michael H

    2016-01-29

    Designing and producing novel proteins that fold into stable structures and provide essential biological functions are key goals in synthetic biology. In initial steps toward achieving these goals, we constructed a combinatorial library of de novo proteins designed to fold into 4-helix bundles. As described previously, screening this library for sequences that function in vivo to rescue conditionally lethal mutants of Escherichia coli (auxotrophs) yielded several de novo sequences, termed SynRescue proteins, which rescued four different E. coli auxotrophs. In an effort to understand the structural requirements necessary for auxotroph rescue, we investigated the biophysical properties of the SynRescue proteins, using both computational and experimental approaches. Results from circular dichroism, size-exclusion chromatography, and NMR demonstrate that the SynRescue proteins are α-helical and relatively stable. Surprisingly, however, they do not form well-ordered structures. Instead, they form dynamic structures that fluctuate between monomeric and dimeric states. These findings show that a well-ordered structure is not a prerequisite for life-sustaining functions, and suggests that dynamic structures may have been important in the early evolution of protein function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Genomic position affects the expression of tobacco mosaic virus movement and coat protein genes.

    PubMed Central

    Culver, J N; Lehto, K; Close, S M; Hilf, M E; Dawson, W O

    1993-01-01

    Alterations in the genomic position of the tobacco mosaic virus (TMV) genes encoding the 30-kDa cell-to-cell movement protein or the coat protein greatly affected their expression. Higher production of 30-kDa protein was correlated with increased proximity of the gene to the viral 3' terminus. A mutant placing the 30-kDa open reading frame 207 nucleotides nearer the 3' terminus produced at least 4 times the wild-type TMV 30-kDa protein level, while a mutant placing the 30-kDa open reading frame 470 nucleotides closer to the 3' terminus produced at least 8 times the wild-type TMV 30-kDa protein level. Increases in 30-kDa protein production were not correlated with the subgenomic mRNA promoter (SGP) controlling the 30-kDa gene, since mutants with either the native 30-kDa SGP or the coat protein SGP in front of the 30-kDa gene produced similar levels of 30-kDa protein. Lack of coat protein did not affect 30-kDa protein expression, since a mutant with the coat protein start codon removed did not produce increased amounts of 30-kDa protein. Effects of gene positioning on coat protein expression were examined by using a mutant containing two different tandemly positioned tobamovirus (TMV and Odontoglossum ringspot virus) coat protein genes. Only coat protein expressed from the gene positioned nearest the 3' viral terminus was detected. Analysis of 30-kDa and coat protein subgenomic mRNAs revealed no proportional increase in the levels of mRNA relative to the observed levels of 30-kDa and coat proteins. This suggests that a translational mechanism is primarily responsible for the observed effect of genomic position on expression of 30-kDa movement and coat protein genes. Images Fig. 2 Fig. 3 Fig. 4 PMID:8446627

  7. Optimizing physical energy functions for protein folding.

    PubMed

    Fujitsuka, Yoshimi; Takada, Shoji; Luthey-Schulten, Zaida A; Wolynes, Peter G

    2004-01-01

    We optimize a physical energy function for proteins with the use of the available structural database and perform three benchmark tests of the performance: (1) recognition of native structures in the background of predefined decoy sets of Levitt, (2) de novo structure prediction using fragment assembly sampling, and (3) molecular dynamics simulations. The energy parameter optimization is based on the energy landscape theory and uses a Monte Carlo search to find a set of parameters that seeks the largest ratio deltaE(s)/DeltaE for all proteins in a training set simultaneously. Here, deltaE(s) is the stability gap between the native and the average in the denatured states and DeltaE is the energy fluctuation among these states. Some of the energy parameters optimized are found to show significant correlation with experimentally observed quantities: (1) In the recognition test, the optimized function assigns the lowest energy to either the native or a near-native structure among many decoy structures for all the proteins studied. (2) Structure prediction with the fragment assembly sampling gives structure models with root mean square deviation less than 6 A in one of the top five cluster centers for five of six proteins studied. (3) Structure prediction using molecular dynamics simulation gives poorer performance, implying the importance of having a more precise description of local structures. The physical energy function solely inferred from a structural database neither utilizes sequence information from the family of the target nor the outcome of the secondary structure prediction but can produce the correct native fold for many small proteins. Copyright 2003 Wiley-Liss, Inc.

  8. Atrogin-1 affects muscle protein synthesis and degradation when energy metabolism is impaired by the antidiabetes drug berberine.

    PubMed

    Wang, Huiling; Liu, Dajun; Cao, Peirang; Lecker, Stewart; Hu, Zhaoyong

    2010-08-01

    Defects in insulin/IGF-1 signaling stimulate muscle protein loss by suppressing protein synthesis and increasing protein degradation. Since an herbal compound, berberine, lowers blood levels of glucose and lipids, we proposed that it would improve insulin/IGF-1 signaling, blocking muscle protein losses. We evaluated whether berberine ameliorates muscle atrophy in db/db mice, a model of type 2 diabetes, by measuring protein synthesis and degradation in muscles of normal and db/db mice treated with or without berberine. We also examined mechanisms for berberine-induced changes in muscle protein metabolism. Berberine administration decreased protein synthesis and increased degradation in muscles of normal and db/db mice. The protein catabolic mechanism depended on berberine-stimulated expression of the E3 ubiquitin ligase, atrogin-1. Atrogin-1 not only increased proteolysis but also reduced protein synthesis by mechanisms that were independent of decreased phosphorylation of Akt or forkhead transcription factors. Impaired protein synthesis was dependent on a reduction in eIF3-f, an essential regulator of protein synthesis. Berberine impaired energy metabolism, activating AMP-activated protein kinase and providing an alternative mechanism for the stimulation of atrogin-1 expression. When we increased mitochondrial biogenesis by expressing peroxisome proliferator-activated receptor gamma coactivator-1alpha, berberine-induced changes in muscle protein metabolism were prevented. Berberine impairs muscle metabolism by two novel mechanisms. It impairs mitochonidrial function stimulating the expression of atrogin-1 without affecting phosphorylation of forkhead transcription factors. The increase in atrogin-1 not only stimulated protein degradation but also suppressed protein synthesis, causing muscle atrophy.

  9. Functional characterization of Arabidopsis thaliana transthyretin-like protein.

    PubMed

    Pessoa, João; Sárkány, Zsuzsa; Ferreira-da-Silva, Frederico; Martins, Sónia; Almeida, Maria R; Li, Jianming; Damas, Ana M

    2010-02-18

    Arabidopsis thaliana transthyretin-like (TTL) protein is a potential substrate in the brassinosteroid signalling cascade, having a role that moderates plant growth. Moreover, sequence homology revealed two sequence domains similar to 2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline (OHCU) decarboxylase (N-terminal domain) and 5-hydroxyisourate (5-HIU) hydrolase (C-terminal domain). TTL is a member of the transthyretin-related protein family (TRP), which comprises a number of proteins with sequence homology to transthyretin (TTR) and the characteristic C-terminal sequence motif Tyr-Arg-Gly-Ser. TRPs are single domain proteins that form tetrameric structures with 5-HIU hydrolase activity. Experimental evidence is fundamental for knowing if TTL is a tetrameric protein, formed by the association of the 5-HIU hydrolase domains and, in this case, if the structural arrangement allows for OHCU decarboxylase activity. This work reports about the biochemical and functional characterization of TTL. The TTL gene was cloned and the protein expressed and purified for biochemical and functional characterization. The results show that TTL is composed of four subunits, with a moderately elongated shape. We also found evidence for 5-HIU hydrolase and OHCU decarboxylase activities in vitro, in the full-length protein. The Arabidopsis thaliana transthyretin-like (TTL) protein is a tetrameric bifunctional enzyme, since it has 5-HIU hydrolase and OHCU decarboxylase activities, which were simultaneously observed in vitro.

  10. How Does Maternal Employment Affect Children's Socioemotional Functioning?

    ERIC Educational Resources Information Center

    Lam, Gigi

    2015-01-01

    The maternal employment becomes an irreversible trend across the globe. The effect of maternal employment on children's socioemotional functioning is so pervasive that it warrants special attention to investigate into the issue. A trajectory of analytical framework of how maternal employment affects children's socioemotional functioning originates…

  11. EB-Family Proteins: Functions and Microtubule Interaction Mechanisms.

    PubMed

    Mustyatsa, V V; Boyakhchyan, A V; Ataullakhanov, F I; Gudimchuk, N B

    2017-07-01

    Microtubules are polymers of tubulin protein, one of the key components of cytoskeleton. They are polar filaments whose plus-ends usually oriented toward the cell periphery are more dynamic than their minus-ends, which face the center of the cell. In cells, microtubules are organized into a network that is being constantly rebuilt and renovated due to stochastic switching of its individual filaments from growth to shrinkage and back. Because of these dynamics and their mechanical properties, microtubules take part in various essential processes, from intracellular transport to search and capture of chromosomes during mitosis. Microtubule dynamics are regulated by many proteins that are located on the plus-ends of these filaments. One of the most important and abundant groups of plus-end-interacting proteins are EB-family proteins, which autonomously recognize structures of the microtubule growing plus-ends, modulate their dynamics, and recruit multiple partner proteins with diverse functions onto the microtubule plus-ends. In this review, we summarize the published data about the properties and functions of EB-proteins, focusing on analysis of their mechanism of interaction with the microtubule growing ends.

  12. Arabidopsis BPM proteins function as substrate adaptors to a cullin3-based E3 ligase to affect fatty acid metabolism in plants.

    PubMed

    Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R; Hellmann, Hanjo

    2013-06-01

    Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that cullin3-based E3 ligases have the potential to interact with a broad range of ethylene response factor (ERF)/APETALA2 (AP2) transcription factors, mediated by Math-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the wrinkled1 ERF/AP2 protein. Furthermore, loss of Math-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members.

  13. The Microtubule-Associated Protein MAP18 Affects ROP2 GTPase Activity during Root Hair Growth1[OPEN

    PubMed Central

    Kang, Erfang; Zheng, Mingzhi; Zhang, Yan; Yuan, Ming; Fu, Ying

    2017-01-01

    Establishment and maintenance of the polar site are important for root hair tip growth. We previously reported that Arabidopsis (Arabidopsis thaliana) MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) functions in controlling the direction of pollen tube growth and root hair elongation. Additionally, the Rop GTPase ROP2 was reported as a positive regulator of both root hair initiation and tip growth in Arabidopsis. Both loss of function of ROP2 and knockdown of MAP18 lead to a decrease in root hair length, whereas overexpression of either MAP18 or ROP2 causes multiple tips or a branching hair phenotype. However, it is unclear whether MAP18 and ROP2 coordinately regulate root hair growth. In this study, we demonstrate that MAP18 and ROP2 interact genetically and functionally. MAP18 interacts physically with ROP2 in vitro and in vivo and preferentially binds to the inactive form of the ROP2 protein. MAP18 promotes ROP2 activity during root hair tip growth. Further investigation revealed that MAP18 competes with RhoGTPase GDP DISSOCIATION INHIBITOR1/SUPERCENTIPEDE1 for binding to ROP2, in turn affecting the localization of active ROP2 in the plasma membrane of the root hair tip. These results reveal a novel function of MAP18 in the regulation of ROP2 activation during root hair growth. PMID:28314794

  14. Functional classification of protein structures by local structure matching in graph representation.

    PubMed

    Mills, Caitlyn L; Garg, Rohan; Lee, Joslynn S; Tian, Liang; Suciu, Alexandru; Cooperman, Gene; Beuning, Penny J; Ondrechen, Mary Jo

    2018-03-31

    As a result of high-throughput protein structure initiatives, over 14,400 protein structures have been solved by structural genomics (SG) centers and participating research groups. While the totality of SG data represents a tremendous contribution to genomics and structural biology, reliable functional information for these proteins is generally lacking. Better functional predictions for SG proteins will add substantial value to the structural information already obtained. Our method described herein, Graph Representation of Active Sites for Prediction of Function (GRASP-Func), predicts quickly and accurately the biochemical function of proteins by representing residues at the predicted local active site as graphs rather than in Cartesian coordinates. We compare the GRASP-Func method to our previously reported method, structurally aligned local sites of activity (SALSA), using the ribulose phosphate binding barrel (RPBB), 6-hairpin glycosidase (6-HG), and Concanavalin A-like Lectins/Glucanase (CAL/G) superfamilies as test cases. In each of the superfamilies, SALSA and the much faster method GRASP-Func yield similar correct classification of previously characterized proteins, providing a validated benchmark for the new method. In addition, we analyzed SG proteins using our SALSA and GRASP-Func methods to predict function. Forty-one SG proteins in the RPBB superfamily, nine SG proteins in the 6-HG superfamily, and one SG protein in the CAL/G superfamily were successfully classified into one of the functional families in their respective superfamily by both methods. This improved, faster, validated computational method can yield more reliable predictions of function that can be used for a wide variety of applications by the community. © 2018 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  15. Formation and functional properties of protein-polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels.

    PubMed

    Le, Xuan T; Rioux, Laurie-Eve; Turgeon, Sylvie L

    2017-01-01

    Protein and polysaccharide mixed systems have been actively studied for at least 50years as they can be assembled into functional particles or gels. This article reviews the properties of electrostatic gels, a recently discovered particular case of associative protein-polysaccharide mixtures formed through associative electrostatic interaction under appropriate solution conditions (coupled gel). This review highlights the factors influencing gel formation such as protein-polysaccharide ratio, biopolymer structural characteristics, final pH, ionic strength and total solid concentration. For the first time, the functional properties of protein-polysaccharide coupled gels are presented and discussed in relationship to individual protein and polysaccharide hydrogels. One of their outstanding characteristics is their gel water retention. Up to 600g of water per g of biopolymer may be retained in the electrostatic gel network compared to a protein gel (3-9g of water per g of protein). Potential applications of the gels are proposed to enable the food and non-food industries to develop new functional products with desirable attributes or new interesting materials to incorporate bioactive molecules. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Relevance Rank Platform (RRP) for Functional Filtering of High Content Protein-Protein Interaction Data.

    PubMed

    Pokharel, Yuba Raj; Saarela, Jani; Szwajda, Agnieszka; Rupp, Christian; Rokka, Anne; Lal Kumar Karna, Shibendra; Teittinen, Kaisa; Corthals, Garry; Kallioniemi, Olli; Wennerberg, Krister; Aittokallio, Tero; Westermarck, Jukka

    2015-12-01

    High content protein interaction screens have revolutionized our understanding of protein complex assembly. However, one of the major challenges in translation of high content protein interaction data is identification of those interactions that are functionally relevant for a particular biological question. To address this challenge, we developed a relevance ranking platform (RRP), which consist of modular functional and bioinformatic filters to provide relevance rank among the interactome proteins. We demonstrate the versatility of RRP to enable a systematic prioritization of the most relevant interaction partners from high content data, highlighted by the analysis of cancer relevant protein interactions for oncoproteins Pin1 and PME-1. We validated the importance of selected interactions by demonstration of PTOV1 and CSKN2B as novel regulators of Pin1 target c-Jun phosphorylation and reveal previously unknown interacting proteins that may mediate PME-1 effects via PP2A-inhibition. The RRP framework is modular and can be modified to answer versatile research problems depending on the nature of the biological question under study. Based on comparison of RRP to other existing filtering tools, the presented data indicate that RRP offers added value especially for the analysis of interacting proteins for which there is no sufficient prior knowledge available. Finally, we encourage the use of RRP in combination with either SAINT or CRAPome computational tools for selecting the candidate interactors that fulfill the both important requirements, functional relevance, and high confidence interaction detection. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Functions of TET Proteins in Hematopoietic Transformation.

    PubMed

    Han, Jae-A; An, Jungeun; Ko, Myunggon

    2015-11-01

    DNA methylation is a well-characterized epigenetic modification that plays central roles in mammalian development, genomic imprinting, X-chromosome inactivation and silencing of retrotransposon elements. Aberrant DNA methylation pattern is a characteristic feature of cancers and associated with abnormal expression of oncogenes, tumor suppressor genes or repair genes. Ten-eleven-translocation (TET) proteins are recently characterized dioxygenases that catalyze progressive oxidation of 5-methylcytosine to produce 5-hydroxymethylcytosine and further oxidized derivatives. These oxidized methylcytosines not only potentiate DNA demethylation but also behave as independent epigenetic modifications per se. The expression or activity of TET proteins and DNA hydroxymethylation are highly dysregulated in a wide range of cancers including hematologic and non-hematologic malignancies, and accumulating evidence points TET proteins as a novel tumor suppressor in cancers. Here we review DNA demethylation-dependent and -independent functions of TET proteins. We also describe diverse TET loss-of-function mutations that are recurrently found in myeloid and lymphoid malignancies and their potential roles in hematopoietic transformation. We discuss consequences of the deficiency of individual Tet genes and potential compensation between different Tet members in mice. Possible mechanisms underlying facilitated oncogenic transformation of TET-deficient hematopoietic cells are also described. Lastly, we address non-mutational mechanisms that lead to suppression or inactivation of TET proteins in cancers. Strategies to restore normal 5mC oxidation status in cancers by targeting TET proteins may provide new avenues to expedite the development of promising anti-cancer agents.

  18. Mitochondrial Protein Interaction Mapping Identifies Regulators of Respiratory Chain Function.

    PubMed

    Floyd, Brendan J; Wilkerson, Emily M; Veling, Mike T; Minogue, Catie E; Xia, Chuanwu; Beebe, Emily T; Wrobel, Russell L; Cho, Holly; Kremer, Laura S; Alston, Charlotte L; Gromek, Katarzyna A; Dolan, Brendan K; Ulbrich, Arne; Stefely, Jonathan A; Bohl, Sarah L; Werner, Kelly M; Jochem, Adam; Westphall, Michael S; Rensvold, Jarred W; Taylor, Robert W; Prokisch, Holger; Kim, Jung-Ja P; Coon, Joshua J; Pagliarini, David J

    2016-08-18

    Mitochondria are essential for numerous cellular processes, yet hundreds of their proteins lack robust functional annotation. To reveal functions for these proteins (termed MXPs), we assessed condition-specific protein-protein interactions for 50 select MXPs using affinity enrichment mass spectrometry. Our data connect MXPs to diverse mitochondrial processes, including multiple aspects of respiratory chain function. Building upon these observations, we validated C17orf89 as a complex I (CI) assembly factor. Disruption of C17orf89 markedly reduced CI activity, and its depletion is found in an unresolved case of CI deficiency. We likewise discovered that LYRM5 interacts with and deflavinates the electron-transferring flavoprotein that shuttles electrons to coenzyme Q (CoQ). Finally, we identified a dynamic human CoQ biosynthetic complex involving multiple MXPs whose topology we map using purified components. Collectively, our data lend mechanistic insight into respiratory chain-related activities and prioritize hundreds of additional interactions for further exploration of mitochondrial protein function. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Affective disorders and sexual function: from neuroscience to clinic.

    PubMed

    Barata, Bernardo C

    2017-11-01

    Sexual dysfunction is a frequent issue in patients with affective disorders, affecting its quality of life and posing challenges to the approach of these patients. In recent years, human sexuality has attracted interest from the scientific community, and today we have a much deeper knowledge of the mechanisms involved in the sexual response. Paraphilias or sexual dysfunctions like low sexual desire, premature ejaculation, and erectile dysfunction, are frequent in affective disorders, and the frequency of each sexual problem varies according to the affective disorder. Comparing what is currently known about the sexual response with the main neurobiological findings of depressive, anxiety, obsessive-compulsive and posttraumatic stress disorders, it is possible to better understand specific sexual complaints of patients with these disorders. A better understanding of sexual function in affective disorders may help clinicians to choose treatments more suited to specific needs of these patients. Although the current state of science already allows us to have some understanding about sexual function in affective disorders, this critical area of research is still in its infancy, waiting for more investment.

  20. A Nitrogen Response Pathway Regulates Virulence Functions in Fusarium oxysporum via the Protein Kinase TOR and the bZIP Protein MeaB[C][W

    PubMed Central

    López-Berges, Manuel S.; Rispail, Nicolas; Prados-Rosales, Rafael C.; Di Pietro, Antonio

    2010-01-01

    During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source–independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the ΔmeaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi. PMID:20639450

  1. Physical models have gender-specific effects on student understanding of protein structure-function relationships.

    PubMed

    Forbes-Lorman, Robin M; Harris, Michelle A; Chang, Wesley S; Dent, Erik W; Nordheim, Erik V; Franzen, Margaret A

    2016-07-08

    Understanding how basic structural units influence function is identified as a foundational/core concept for undergraduate biological and biochemical literacy. It is essential for students to understand this concept at all size scales, but it is often more difficult for students to understand structure-function relationships at the molecular level, which they cannot as effectively visualize. Students need to develop accurate, 3-dimensional mental models of biomolecules to understand how biomolecular structure affects cellular functions at the molecular level, yet most traditional curricular tools such as textbooks include only 2-dimensional representations. We used a controlled, backward design approach to investigate how hand-held physical molecular model use affected students' ability to logically predict structure-function relationships. Brief (one class period) physical model use increased quiz score for females, whereas there was no significant increase in score for males using physical models. Females also self-reported higher learning gains in their understanding of context-specific protein function. Gender differences in spatial visualization may explain the gender-specific benefits of physical model use observed. © 2016 The Authors Biochemistry and Molecular Biology Education published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 44(4):326-335, 2016. © 2016 The International Union of Biochemistry and Molecular Biology.

  2. Prediction of Heterodimeric Protein Complexes from Weighted Protein-Protein Interaction Networks Using Novel Features and Kernel Functions

    PubMed Central

    Ruan, Peiying; Hayashida, Morihiro; Maruyama, Osamu; Akutsu, Tatsuya

    2013-01-01

    Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes. PMID:23776458

  3. MM-ISMSA: An Ultrafast and Accurate Scoring Function for Protein-Protein Docking.

    PubMed

    Klett, Javier; Núñez-Salgado, Alfonso; Dos Santos, Helena G; Cortés-Cabrera, Álvaro; Perona, Almudena; Gil-Redondo, Rubén; Abia, David; Gago, Federico; Morreale, Antonio

    2012-09-11

    An ultrafast and accurate scoring function for protein-protein docking is presented. It includes (1) a molecular mechanics (MM) part based on a 12-6 Lennard-Jones potential; (2) an electrostatic component based on an implicit solvent model (ISM) with individual desolvation penalties for each partner in the protein-protein complex plus a hydrogen bonding term; and (3) a surface area (SA) contribution to account for the loss of water contacts upon protein-protein complex formation. The accuracy and performance of the scoring function, termed MM-ISMSA, have been assessed by (1) comparing the total binding energies, the electrostatic term, and its components (charge-charge and individual desolvation energies), as well as the per residue contributions, to results obtained with well-established methods such as APBSA or MM-PB(GB)SA for a set of 1242 decoy protein-protein complexes and (2) testing its ability to recognize the docking solution closest to the experimental structure as that providing the most favorable total binding energy. For this purpose, a test set consisting of 15 protein-protein complexes with known 3D structure mixed with 10 decoys for each complex was used. The correlation between the values afforded by MM-ISMSA and those from the other methods is quite remarkable (r(2) ∼ 0.9), and only 0.2-5.0 s (depending on the number of residues) are spent on a single calculation including an all vs all pairwise energy decomposition. On the other hand, MM-ISMSA correctly identifies the best docking solution as that closest to the experimental structure in 80% of the cases. Finally, MM-ISMSA can process molecular dynamics trajectories and reports the results as averaged values with their standard deviations. MM-ISMSA has been implemented as a plugin to the widely used molecular graphics program PyMOL, although it can also be executed in command-line mode. MM-ISMSA is distributed free of charge to nonprofit organizations.

  4. M-Finder: Uncovering functionally associated proteins from interactome data integrated with GO annotations

    PubMed Central

    2013-01-01

    Background Protein-protein interactions (PPIs) play a key role in understanding the mechanisms of cellular processes. The availability of interactome data has catalyzed the development of computational approaches to elucidate functional behaviors of proteins on a system level. Gene Ontology (GO) and its annotations are a significant resource for functional characterization of proteins. Because of wide coverage, GO data have often been adopted as a benchmark for protein function prediction on the genomic scale. Results We propose a computational approach, called M-Finder, for functional association pattern mining. This method employs semantic analytics to integrate the genome-wide PPIs with GO data. We also introduce an interactive web application tool that visualizes a functional association network linked to a protein specified by a user. The proposed approach comprises two major components. First, the PPIs that have been generated by high-throughput methods are weighted in terms of their functional consistency using GO and its annotations. We assess two advanced semantic similarity metrics which quantify the functional association level of each interacting protein pair. We demonstrate that these measures outperform the other existing methods by evaluating their agreement to other biological features, such as sequence similarity, the presence of common Pfam domains, and core PPIs. Second, the information flow-based algorithm is employed to discover a set of proteins functionally associated with the protein in a query and their links efficiently. This algorithm reconstructs a functional association network of the query protein. The output network size can be flexibly determined by parameters. Conclusions M-Finder provides a useful framework to investigate functional association patterns with any protein. This software will also allow users to perform further systematic analysis of a set of proteins for any specific function. It is available online at http

  5. Phospholipid liposomes functionalized by protein

    NASA Astrophysics Data System (ADS)

    Glukhova, O. E.; Savostyanov, G. V.; Grishina, O. A.

    2015-03-01

    Finding new ways to deliver neurotrophic drugs to the brain in newborns is one of the contemporary problems of medicine and pharmaceutical industry. Modern researches in this field indicate the promising prospects of supramolecular transport systems for targeted drug delivery to the brain which can overcome the blood-brain barrier (BBB). Thus, the solution of this problem is actual not only for medicine, but also for society as a whole because it determines the health of future generations. Phospholipid liposomes due to combination of lipo- and hydrophilic properties are considered as the main future objects in medicine for drug delivery through the BBB as well as increasing their bioavailability and toxicity. Liposomes functionalized by various proteins were used as transport systems for ease of liposomes use. Designing of modification oligosaccharide of liposomes surface is promising in the last decade because it enables the delivery of liposomes to specific receptor of human cells by selecting ligand and it is widely used in pharmacology for the treatment of several diseases. The purpose of this work is creation of a coarse-grained model of bilayer of phospholipid liposomes, functionalized by specific to the structural elements of the BBB proteins, as well as prediction of the most favorable orientation and position of the molecules in the generated complex by methods of molecular docking for the formation of the structure. Investigation of activity of the ligand molecule to protein receptor of human cells by the methods of molecular dynamics was carried out.

  6. Mutations Affecting G-Protein Subunit α11 in Hypercalcemia and Hypocalcemia

    PubMed Central

    Babinsky, Valerie N.; Head, Rosie A.; Cranston, Treena; Rust, Nigel; Hobbs, Maurine R.; Heath, Hunter; Thakker, Rajesh V.

    2013-01-01

    BACKGROUND Familial hypocalciuric hypercalcemia is a genetically heterogeneous disorder with three variants: types 1, 2, and 3. Type 1 is due to loss-of-function mutations of the calcium-sensing receptor, a guanine nucleotide–binding protein (G-protein)–coupled receptor that signals through the G-protein subunit α11 (Gα11). Type 3 is associated with adaptor-related protein complex 2, sigma 1 subunit (AP2S1) mutations, which result in altered calcium-sensing receptor endocytosis. We hypothesized that type 2 is due to mutations effecting Gα11 loss of function, since Gα11 is involved in calcium-sensing receptor signaling, and its gene (GNA11) and the type 2 locus are colocalized on chromosome 19p13.3. We also postulated that mutations effecting Gα11 gain of function, like the mutations effecting calcium-sensing receptor gain of function that cause autosomal dominant hypocalcemia type 1, may lead to hypocalcemia. METHODS We performed GNA11 mutational analysis in a kindred with familial hypocalciuric hypercalcemia type 2 and in nine unrelated patients with familial hypocalciuric hypercalcemia who did not have mutations in the gene encoding the calcium-sensing receptor (CASR) or AP2S1. We also performed this analysis in eight unrelated patients with hypocalcemia who did not have CASR mutations. In addition, we studied the effects of GNA11 mutations on Gα11 protein structure and calcium-sensing receptor signaling in human embryonic kidney 293 (HEK293) cells. RESULTS The kindred with familial hypocalciuric hypercalcemia type 2 had an in-frame deletion of a conserved Gα11 isoleucine (Ile200del), and one of the nine unrelated patients with familial hypocalciuric hypercalcemia had a missense GNA11 mutation (Leu135Gln). Missense GNA11 mutations (Arg181Gln and Phe341Leu) were detected in two unrelated patients with hypocalcemia; they were therefore identified as having autosomal dominant hypocalcemia type 2. All four GNA11 mutations predicted disrupted protein

  7. Predicting functional divergence in protein evolution by site-specific rate shifts

    NASA Technical Reports Server (NTRS)

    Gaucher, Eric A.; Gu, Xun; Miyamoto, Michael M.; Benner, Steven A.

    2002-01-01

    Most modern tools that analyze protein evolution allow individual sites to mutate at constant rates over the history of the protein family. However, Walter Fitch observed in the 1970s that, if a protein changes its function, the mutability of individual sites might also change. This observation is captured in the "non-homogeneous gamma model", which extracts functional information from gene families by examining the different rates at which individual sites evolve. This model has recently been coupled with structural and molecular biology to identify sites that are likely to be involved in changing function within the gene family. Applying this to multiple gene families highlights the widespread divergence of functional behavior among proteins to generate paralogs and orthologs.

  8. Identification of a Functional Plasmodesmal Localization Signal in a Plant Viral Cell-To-Cell-Movement Protein.

    PubMed

    Yuan, Cheng; Lazarowitz, Sondra G; Citovsky, Vitaly

    2016-01-19

    Our fundamental knowledge of the protein-sorting pathways required for plant cell-to-cell trafficking and communication via the intercellular connections termed plasmodesmata has been severely limited by the paucity of plasmodesmal targeting sequences that have been identified to date. To address this limitation, we have identified the plasmodesmal localization signal (PLS) in the Tobacco mosaic virus (TMV) cell-to-cell-movement protein (MP), which has emerged as the paradigm for dissecting the molecular details of cell-to-cell transport through plasmodesmata. We report here the identification of a bona fide functional TMV MP PLS, which encompasses amino acid residues between positions 1 and 50, with residues Val-4 and Phe-14 potentially representing critical sites for PLS function that most likely affect protein conformation or protein interactions. We then demonstrated that this PLS is both necessary and sufficient for protein targeting to plasmodesmata. Importantly, as TMV MP traffics to plasmodesmata by a mechanism that is distinct from those of the three plant cell proteins in which PLSs have been reported, our findings provide important new insights to expand our understanding of protein-sorting pathways to plasmodesmata. The science of virology began with the discovery of Tobacco mosaic virus (TMV). Since then, TMV has served as an experimental and conceptual model for studies of viruses and dissection of virus-host interactions. Indeed, the TMV cell-to-cell-movement protein (MP) has emerged as the paradigm for dissecting the molecular details of cell-to-cell transport through the plant intercellular connections termed plasmodesmata. However, one of the most fundamental and key functional features of TMV MP, its putative plasmodesmal localization signal (PLS), has not been identified. Here, we fill this gap in our knowledge and identify the TMV MP PLS. Copyright © 2016 Yuan et al.

  9. Physicochemical and Functional Properties of Vegetable and Cereal Proteins as Potential Sources of Novel Food Ingredients

    PubMed Central

    Soria-Hernández, Cintya; Serna-Saldívar, Sergio

    2015-01-01

    Summary Proteins from vegetable and cereal sources are an excellent alternative to substitute animal-based counterparts because of their reduced cost, abundant supply and good nutritional value. The objective of this investigation is to study a set of vegetable and cereal proteins in terms of physicochemical and functional properties. Twenty protein sources were studied: five soya bean flour samples, one pea flour and fourteen newly developed blends of soya bean and maize germ (five concentrates and nine hydrolysates). The physicochemical characterization included pH (5.63 to 7.57), electrical conductivity (1.32 to 4.32 mS/cm), protein content (20.78 to 94.24% on dry mass basis), free amino nitrogen (0.54 to 2.87 mg/g) and urease activity (0.08 to 2.20). The functional properties showed interesting differences among proteins: water absorption index ranged from 0.41 to 18.52, the highest being of soya and maize concentrates. Nitrogen and water solubility ranged from 10.14 to 74.89% and from 20.42 to 95.65%, respectively. Fat absorption and emulsification activity indices ranged from 2.59 to 4.72 and from 3936.6 to 52 399.2 m2/g respectively, the highest being of pea flour. Foam activity (66.7 to 475.0%) of the soya and maize hydrolysates was the best. Correlation analyses showed that hydrolysis affected solubility-related parameters whereas fat-associated indices were inversely correlated with water-linked parameters. Foam properties were better of proteins treated with low heat, which also had high urease activity. Physicochemical and functional characterization of the soya and maize protein concentrates and hydrolysates allowed the identification of differences regarding other vegetable and cereal protein sources such as pea or soya bean. PMID:27904358

  10. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis.

    PubMed

    Holland, David O; Johnson, Margaret E

    2018-03-01

    Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that 'leftover' proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module

  11. Cellular Strategies for Regulating Functional and Nonfunctional Protein Aggregation

    PubMed Central

    Gsponer, Jörg; Babu, M. Madan

    2012-01-01

    Summary Growing evidence suggests that aggregation-prone proteins are both harmful and functional for a cell. How do cellular systems balance the detrimental and beneficial effect of protein aggregation? We reveal that aggregation-prone proteins are subject to differential transcriptional, translational, and degradation control compared to nonaggregation-prone proteins, which leads to their decreased synthesis, low abundance, and high turnover. Genetic modulators that enhance the aggregation phenotype are enriched in genes that influence expression homeostasis. Moreover, genes encoding aggregation-prone proteins are more likely to be harmful when overexpressed. The trends are evolutionarily conserved and suggest a strategy whereby cellular mechanisms specifically modulate the availability of aggregation-prone proteins to (1) keep concentrations below the critical ones required for aggregation and (2) shift the equilibrium between the monomeric and oligomeric/aggregate form, as explained by Le Chatelier’s principle. This strategy may prevent formation of undesirable aggregates and keep functional assemblies/aggregates under control. PMID:23168257

  12. Functional innovation from changes in protein domains and their combinations.

    PubMed

    Lees, Jonathan G; Dawson, Natalie L; Sillitoe, Ian; Orengo, Christine A

    2016-06-01

    Domains are the functional building blocks of proteins. In this work we discuss how domains can contribute to the evolution of new functions. Domains themselves can evolve through various mechanisms, altering their intrinsic function. Domains can also facilitate functional innovations by combining with other domains to make novel proteins. We discuss the mechanisms by which domain and domain combinations support functional innovations. We highlight interesting examples where changes in domain combination promote changes at the domain level. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Modulation of protein function in membrane mimetics: Characterization of P. denitrificans cNOR in nanodiscs or liposomes.

    PubMed

    Ter Beek, Josy; Kahle, Maximilian; Ädelroth, Pia

    2017-10-01

    For detailed functional characterization, membrane proteins are usually studied in detergent. However, it is becoming clear that detergent micelles are often poor mimics of the lipid environment in which these proteins function. In this work we compared the catalytic properties of the membrane-embedded cytochrome c-dependent nitric oxide reductase (cNOR) from Paracoccus (P.) denitrificans in detergent, lipid/protein nanodiscs, and proteoliposomes. We used two different lipid mixtures, an extract of soybean lipids and a defined mix of synthetic lipids mimicking the original P. denitrificans membrane. We show that the catalytic activity of detergent-solubilized cNOR increased threefold upon reconstitution from detergent into proteoliposomes with the P. denitrificans lipid mixture, and above two-fold when soybean lipids were used. In contrast, there was only a small activity increase in nanodiscs. We further show that binding of the gaseous ligands CO and O 2 are affected differently by reconstitution. In proteoliposomes the turnover rates are affected much more than in nanodiscs, but CO-binding is more significantly accelerated in liposomes with soybean lipids, while O 2 -binding is faster with the P. denitrificans lipid mix. We also investigated proton-coupled electron transfer during the reaction between fully reduced cNOR and O 2 , and found that the pK a of the internal proton donor was increased in proteoliposomes but not in nanodiscs. Taking our results together, the liposome-reconstituted enzyme shows significant differences to detergent-solubilized protein. Nanodiscs show much more subtle effects, presumably because of their much lower lipid to protein ratio. Which of these two membrane-mimetic systems best mimics the native membrane is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. '2TM proteins': an antigenically diverse superfamily with variable functions and export pathways.

    PubMed

    Kaur, Jasweer; Hora, Rachna

    2018-01-01

    Malaria is a disease that affects millions of people annually. An intracellular habitat and lack of protein synthesizing machinery in erythrocytes pose numerous difficulties for survival of the human pathogen Plasmodium falciparum . The parasite refurbishes the infected red blood cell (iRBC) by synthesis and export of several proteins in an attempt to suffice its metabolic needs and evade the host immune response. Immune evasion is largely mediated by surface display of highly polymorphic protein families known as variable surface antigens. These include the two trans-membrane (2TM) superfamily constituted by multicopy repetitive interspersed family (RIFINs), subtelomeric variable open reading frame (STEVORs) and Plasmodium falciparum Maurer's cleft two trans-membrane proteins present only in P. falciparum and some simian infecting Plasmodium species. Their hypervariable region flanked by 2TM domains exposed on the iRBC surface is believed to generate antigenic diversity. Though historically named "2TM superfamily," several A-type RIFINs and some STEVORs assume one trans-membrane topology. RIFINs and STEVORs share varied functions in different parasite life cycle stages like rosetting, alteration of iRBC rigidity and immune evasion. Additionally, a member of the STEVOR family has been implicated in merozoite invasion. Differential expression of these families in laboratory strains and clinical isolates propose them to be important for host cell survival and defense. The role of RIFINs in modulation of host immune response and presence of protective antibodies against these surface exposed molecules in patient sera highlights them as attractive targets of antimalarial therapies and vaccines. 2TM proteins are Plasmodium export elements positive, and several of these are exported to the infected erythrocyte surface after exiting through the classical secretory pathway within parasites. Cleaved and modified proteins are trafficked after packaging in vesicles to reach

  15. Classification of Phylogenetic Profiles for Protein Function Prediction: An SVM Approach

    NASA Astrophysics Data System (ADS)

    Kotaru, Appala Raju; Joshi, Ramesh C.

    Predicting the function of an uncharacterized protein is a major challenge in post-genomic era due to problems complexity and scale. Having knowledge of protein function is a crucial link in the development of new drugs, better crops, and even the development of biochemicals such as biofuels. Recently numerous high-throughput experimental procedures have been invented to investigate the mechanisms leading to the accomplishment of a protein’s function and Phylogenetic profile is one of them. Phylogenetic profile is a way of representing a protein which encodes evolutionary history of proteins. In this paper we proposed a method for classification of phylogenetic profiles using supervised machine learning method, support vector machine classification along with radial basis function as kernel for identifying functionally linked proteins. We experimentally evaluated the performance of the classifier with the linear kernel, polynomial kernel and compared the results with the existing tree kernel. In our study we have used proteins of the budding yeast saccharomyces cerevisiae genome. We generated the phylogenetic profiles of 2465 yeast genes and for our study we used the functional annotations that are available in the MIPS database. Our experiments show that the performance of the radial basis kernel is similar to polynomial kernel is some functional classes together are better than linear, tree kernel and over all radial basis kernel outperformed the polynomial kernel, linear kernel and tree kernel. In analyzing these results we show that it will be feasible to make use of SVM classifier with radial basis function as kernel to predict the gene functionality using phylogenetic profiles.

  16. Functionality of extrusion--texturized whey proteins.

    PubMed

    Onwulata, C I; Konstance, R P; Cooke, P H; Farrell, H M

    2003-11-01

    Whey, a byproduct of the cheesemaking process, is concentrated by processors to make whey protein concentrates (WPC) and isolates (WPI). Only 50% of whey proteins are used in foods. In order to increase their usage, texturizing WPC, WPI, and whey albumin is proposed to create ingredients with new functionality. Extrusion processing texturizes globular proteins by shearing and stretching them into aligned or entangled fibrous bundles. In this study, WPC, WPI, and whey albumin were extruded in a twin screw extruder at approximately 38% moisture content (15.2 ml/min, feed rate 25 g/min) and, at different extrusion cook temperatures, at the same temperature for the last four zones before the die (35, 50, 75, and 100 degrees C, respectively). Protein solubility, gelation, foaming, and digestibility were determined in extrudates. Degree of extrusion-induced insolubility (denaturation) or texturization, determined by lack of solubility at pH 7 for WPI, increased from 30 to 60, 85, and 95% for the four temperature conditions 35, 50, 75, and 100 degrees C, respectively. Gel strength of extruded isolates increased initially 115% (35 degrees C) and 145% (50 degrees C), but gel strength was lost at 75 and 100 degrees C. Denaturation at these melt temperatures had minimal effect on foaming and digestibility. Varying extrusion cook temperature allowed a new controlled rate of denaturation, indicating that a texturized ingredient with a predetermined functionality based on degree of denaturation can be created.

  17. ROLE OF TYROSINE-SULFATED PROTEINS IN RETINAL STRUCTURE AND FUNCTION

    PubMed Central

    Kanan, Y.; Al-Ubaidi, M.R.

    2014-01-01

    The extracellular matrix (ECM) plays a significant role in cellular and retinal health. The study of retinal tyrosine-sulfated proteins is an important first step toward understanding the role of ECM in retinal health and diseases. These secreted proteins are members of the retinal ECM. Tyrosine sulfation was shown to be necessary for the development of proper retinal structure and function. The importance of tyrosine sulfation is further demonstrated by the evolutionary presence of tyrosylprotein sulfotransferases, enzymes that catalyze proteins’ tyrosine sulfation, and the compensatory abilities of these enzymes. Research has identified four tyrosine-sulfated retinal proteins: fibulin 2, vitronectin, complement factor H (CFH), and opticin. Vitronectin and CFH regulate the activation of the complement system and are involved in the etiology of some cases of age-related macular degeneration. Analysis of the role of tyrosine sulfation in fibulin function showed that sulfation influences the protein's ability to regulate growth and migration. Although opticin was recently shown to exhibit anti-angiogenic properties, it is not yet determined what role sulfation plays in that function. Future studies focusing on identifying all of the tyrosine-sulfated retinal proteins would be instrumental in determining the impact of sulfation on retinal protein function in retinal homeostasis and diseases. PMID:25819460

  18. Diversity, classification and function of the plant protein kinase superfamily

    PubMed Central

    Lehti-Shiu, Melissa D.; Shiu, Shin-Han

    2012-01-01

    Eukaryotic protein kinases belong to a large superfamily with hundreds to thousands of copies and are components of essentially all cellular functions. The goals of this study are to classify protein kinases from 25 plant species and to assess their evolutionary history in conjunction with consideration of their molecular functions. The protein kinase superfamily has expanded in the flowering plant lineage, in part through recent duplications. As a result, the flowering plant protein kinase repertoire, or kinome, is in general significantly larger than other eukaryotes, ranging in size from 600 to 2500 members. This large variation in kinome size is mainly due to the expansion and contraction of a few families, particularly the receptor-like kinase/Pelle family. A number of protein kinases reside in highly conserved, low copy number families and often play broadly conserved regulatory roles in metabolism and cell division, although functions of plant homologues have often diverged from their metazoan counterparts. Members of expanded plant kinase families often have roles in plant-specific processes and some may have contributed to adaptive evolution. Nonetheless, non-adaptive explanations, such as kinase duplicate subfunctionalization and insufficient time for pseudogenization, may also contribute to the large number of seemingly functional protein kinases in plants. PMID:22889912

  19. A Presynaptic Function of Shank Protein in Drosophila.

    PubMed

    Wu, Song; Gan, Guangming; Zhang, Zhiping; Sun, Jie; Wang, Qifu; Gao, Zhongbao; Li, Meixiang; Jin, Shan; Huang, Juan; Thomas, Ulrich; Jiang, Yong-Hui; Li, Yan; Tian, Rui; Zhang, Yong Q

    2017-11-29

    Human genetic studies support that loss-of-function mutations in the SH 3 domain and ank yrin repeat containing family proteins (SHANK1-3), the large synaptic scaffolding proteins enriched at the postsynaptic density of excitatory synapses, are causative for autism spectrum disorder and other neuropsychiatric disorders in humans. To better understand the in vivo functions of Shank and facilitate dissection of neuropathology associated with SHANK mutations in human, we generated multiple mutations in the Shank gene, the only member of the SHANK family in Drosophila melanogaster Both male and female Shank null mutants were fully viable and fertile with no apparent morphological or developmental defects. Expression analysis revealed apparent enrichment of Shank in the neuropils of the CNS. Specifically, Shank coexpressed with another PSD scaffold protein, Homer, in the calyx of mushroom bodies in the brain. Consistent with high expression in mushroom body calyces, Shank mutants show an abnormal calyx structure and reduced olfactory acuity. These morphological and functional phenotypes were fully rescued by pan-neuronal reexpression of Shank, and only partially rescued by presynaptic but no rescue by postsynaptic reexpression of Shank. Our findings thus establish a previously unappreciated presynaptic function of Shank. SIGNIFICANCE STATEMENT Mutations in SHANK family genes are causative for idiopathic autism spectrum disorder. To understand the neural function of Shank, a large scaffolding protein enriched at the postsynaptic densities, we examined the role of Drosophila Shank in synapse development at the peripheral neuromuscular junctions and the central mushroom body calyx. Our results demonstrate that, in addition to its conventional postsynaptic function, Shank also acts presynaptically in synapse development in the brain. This study offers novel insights into the synaptic role of Shank. Copyright © 2017 the authors 0270-6474/17/3711592-13$15.00/0.

  20. Structure and function of homodomain-leucine zipper (HD-Zip) proteins.

    PubMed

    Elhiti, Mohamed; Stasolla, Claudio

    2009-02-01

    Homeodomain-leucine zipper (HD-Zip) proteins are transcription factors unique to plants and are encoded by more than 25 genes in Arabidopsis thaliana. Based on sequence analyses these proteins have been classified into four distinct groups: HD-Zip I-IV. HD-Zip proteins are characterized by the presence of two functional domains; a homeodomain (HD) responsible for DNA binding and a leucine zipper domain (Zip) located immediately C-terminal to the homeodomain and involved in protein-protein interaction. Despite sequence similarities HD-ZIP proteins participate in a variety of processes during plant growth and development. HD-Zip I proteins are generally involved in responses related to abiotic stress, abscisic acid (ABA), blue light, de-etiolation and embryogenesis. HD-Zip II proteins participate in light response, shade avoidance and auxin signalling. Members of the third group (HD-Zip III) control embryogenesis, leaf polarity, lateral organ initiation and meristem function. HD-Zip IV proteins play significant roles during anthocyanin accumulation, differentiation of epidermal cells, trichome formation and root development.

  1. Pipeline for inferring protein function from dynamics using coarse-grained molecular mechanics forcefield.

    PubMed

    Bhadra, Pratiti; Pal, Debnath

    2017-04-01

    Dynamics is integral to the function of proteins, yet the use of molecular dynamics (MD) simulation as a technique remains under-explored for molecular function inference. This is more important in the context of genomics projects where novel proteins are determined with limited evolutionary information. Recently we developed a method to match the query protein's flexible segments to infer function using a novel approach combining analysis of residue fluctuation-graphs and auto-correlation vectors derived from coarse-grained (CG) MD trajectory. The method was validated on a diverse dataset with sequence identity between proteins as low as 3%, with high function-recall rates. Here we share its implementation as a publicly accessible web service, named DynFunc (Dynamics Match for Function) to query protein function from ≥1 µs long CG dynamics trajectory information of protein subunits. Users are provided with the custom-developed coarse-grained molecular mechanics (CGMM) forcefield to generate the MD trajectories for their protein of interest. On upload of trajectory information, the DynFunc web server identifies specific flexible regions of the protein linked to putative molecular function. Our unique application does not use evolutionary information to infer molecular function from MD information and can, therefore, work for all proteins, including moonlighting and the novel ones, whenever structural information is available. Our pipeline is expected to be of utility to all structural biologists working with novel proteins and interested in moonlighting functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Classification of protein quaternary structure by functional domain composition

    PubMed Central

    Yu, Xiaojing; Wang, Chuan; Li, Yixue

    2006-01-01

    Background The number and the arrangement of subunits that form a protein are referred to as quaternary structure. Quaternary structure is an important protein attribute that is closely related to its function. Proteins with quaternary structure are called oligomeric proteins. Oligomeric proteins are involved in various biological processes, such as metabolism, signal transduction, and chromosome replication. Thus, it is highly desirable to develop some computational methods to automatically classify the quaternary structure of proteins from their sequences. Results To explore this problem, we adopted an approach based on the functional domain composition of proteins. Every protein was represented by a vector calculated from the domains in the PFAM database. The nearest neighbor algorithm (NNA) was used for classifying the quaternary structure of proteins from this information. The jackknife cross-validation test was performed on the non-redundant protein dataset in which the sequence identity was less than 25%. The overall success rate obtained is 75.17%. Additionally, to demonstrate the effectiveness of this method, we predicted the proteins in an independent dataset and achieved an overall success rate of 84.11% Conclusion Compared with the amino acid composition method and Blast, the results indicate that the domain composition approach may be a more effective and promising high-throughput method in dealing with this complicated problem in bioinformatics. PMID:16584572

  3. Milk protein composition and stability changes affected by iron in water sources.

    PubMed

    Wang, Aili; Duncan, Susan E; Knowlton, Katharine F; Ray, William K; Dietrich, Andrea M

    2016-06-01

    Water makes up more than 80% of the total weight of milk. However, the influence of water chemistry on the milk proteome has not been extensively studied. The objective was to evaluate interaction of water-sourced iron (low, medium, and high levels) on milk proteome and implications on milk oxidative state and mineral content. Protein composition, oxidative stability, and mineral composition of milk were investigated under conditions of iron ingestion through bovine drinking water (infused) as well as direct iron addition to commercial milk in 2 studies. Four ruminally cannulated cows each received aqueous infusions (based on water consumption of 100L) of 0, 2, 5, and 12.5mg/L Fe(2+) as ferrous lactate, resulting in doses of 0, 200, 500 or 1,250mg of Fe/d, in a 4×4Latin square design for a 14-d period. For comparison, ferrous sulfate solution was directly added into commercial retail milk at the same concentrations: control (0mg of Fe/L), low (2mg of Fe/L), medium (5mg of Fe/L), and high (12.5mg of Fe/L). Two-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) high-resolution tandem mass spectrometry analysis was applied to characterize milk protein composition. Oxidative stability of milk was evaluated by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde, and mineral content was measured by inductively coupled plasma mass spectrometry. For milk from both abomasal infusion of ferrous lactate and direct addition of ferrous sulfate, an iron concentration as low as 2mg of Fe/L was able to cause oxidative stress in dairy cattle and infused milk, respectively. Abomasal infusion affected both caseins and whey proteins in the milk, whereas direct addition mainly influenced caseins. Although abomasal iron infusion did not significantly affect oxidation state and mineral balance (except iron), it induced oxidized off-flavor and partial degradation of whey proteins. Direct

  4. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.

    PubMed

    Marchler-Bauer, Aron; Bo, Yu; Han, Lianyi; He, Jane; Lanczycki, Christopher J; Lu, Shennan; Chitsaz, Farideh; Derbyshire, Myra K; Geer, Renata C; Gonzales, Noreen R; Gwadz, Marc; Hurwitz, David I; Lu, Fu; Marchler, Gabriele H; Song, James S; Thanki, Narmada; Wang, Zhouxi; Yamashita, Roxanne A; Zhang, Dachuan; Zheng, Chanjuan; Geer, Lewis Y; Bryant, Stephen H

    2017-01-04

    NCBI's Conserved Domain Database (CDD) aims at annotating biomolecular sequences with the location of evolutionarily conserved protein domain footprints, and functional sites inferred from such footprints. An archive of pre-computed domain annotation is maintained for proteins tracked by NCBI's Entrez database, and live search services are offered as well. CDD curation staff supplements a comprehensive collection of protein domain and protein family models, which have been imported from external providers, with representations of selected domain families that are curated in-house and organized into hierarchical classifications of functionally distinct families and sub-families. CDD also supports comparative analyses of protein families via conserved domain architectures, and a recent curation effort focuses on providing functional characterizations of distinct subfamily architectures using SPARCLE: Subfamily Protein Architecture Labeling Engine. CDD can be accessed at https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Supplementing glycosylation: A review of applying nucleotide-sugar precursors to growth medium to affect therapeutic recombinant protein glycoform distributions.

    PubMed

    Blondeel, Eric J M; Aucoin, Marc G

    2018-06-15

    Glycosylation is a critical quality attribute (CQA) of many therapeutic proteins, particularly monoclonal antibodies (mAbs), and is a major consideration in the approval of biosimilar biologics due to its effects to therapeutic efficacy. Glycosylation generates a distribution of glycoforms, resulting in glycoproteins with inherent molecule-to-molecule heterogeneity, capable of activating (or failing to activate) different effector functions of the immune system. Glycoforms can be affected by the supplementation of nucleotide-sugar precursors, and related components, to culture growth medium, affecting the metabolism of glycosylation. These supplementations has been demonstrated to increase nucleotide-sugar intracellular pools, and impact glycoform distributions, but with varied results. These variations can be attributed to five key factors: Differences between cell platforms (enzyme/transporter expression levels); differences between recombinant proteins produced (glycan-site accessibility); the fermentation and sampling timeline (glucose availability and exoglycosidase accumulation); glutamine levels (affecting ammonia levels, which impact Golgi pH, as well as UDP-GlcNAc pools); and finally, a lack of standardized metrics for observing shifts in glycoform distributions (glycosylation indices) across different experiments. The purpose of this review is to provide detail and clarity on the state of the art of supplementation strategies for nucleotide-sugar precursors for affecting glycosylation in cell culture processes, and to apply glycosylation indices for standardized comparisons across the field. Copyright © 2018. Published by Elsevier Inc.

  6. Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization.

    PubMed

    Zhang, Zheng; Chen, Shengfu; Jiang, Shaoyi

    2006-12-01

    We introduce a dual-functional biocompatible material based on zwitterionic poly(carboxybetaine methacrylate) (polyCBMA), which not only highly resists protein adsorption/cell adhesion, but also has abundant functional groups convenient for the immobilization of biological ligands, such as proteins. The dual-functional properties are unique to carboxybetaine moieties and are not found in other nonfouling moieties such as ethylene glycol, phosphobetaine, and sulfobetaine. The unique properties are demonstrated in this work by grafting a polyCBMA polymer onto a surface or by preparing a polyCBMA-based hydrogel. PolyCBMA brushes with a thickness of 10-15 nm were grafted on a gold surface using the surface-initiated atom transfer radical polymerization method. Protein adsorption was analyzed using a surface plasmon resonance sensor. The surface grafted with polyCBMA very largely prevented the nonspecific adsorption of three test proteins, that is, fibrinogen, lysozyme, and human chorionic gonadotropin (hCG). The immobilization of anti-hCG on the surface resulted in the specific binding of hCG while maintaining a high resistance to nonspecific protein adsorption. Transparent polyCBMA-based hydrogel disks were decorated with immobilized fibronectin. Aortic endothelial cells did not bind to the polyCBMA controls, but appeared to adhere well and spread on the fibronectin-modified surface. With their dual functionality and biomimetic nature, polyCBMA-based materials are very promising for their applications in medical diagnostics, biomaterials/tissue engineering, and drug delivery.

  7. FunShift: a database of function shift analysis on protein subfamilies

    PubMed Central

    Abhiman, Saraswathi; Sonnhammer, Erik L. L.

    2005-01-01

    Members of a protein family normally have a general biochemical function in common, but frequently one or more subgroups have evolved a slightly different function, such as different substrate specificity. It is important to detect such function shifts for a more accurate functional annotation. The FunShift database described here is a compilation of function shift analysis performed between subfamilies in protein families. It consists of two main components: (i) subfamilies derived from protein domain families and (ii) pairwise subfamily comparisons analyzed for function shift. The present release, FunShift 12, was derived from Pfam 12 and consists of 151 934 subfamilies derived from 7300 families. We carried out function shift analysis by two complementary methods on families with up to 500 members. From a total of 179 210 subfamily pairs, 62 384 were predicted to be functionally shifted in 2881 families. Each subfamily pair is provided with a markup of probable functional specificity-determining sites. Tools for searching and exploring the data are provided to make this database a valuable resource for protein function annotation. Knowledge of these functionally important sites will be useful for experimental biologists performing functional mutation studies. FunShift is available at http://FunShift.cgb.ki.se. PMID:15608176

  8. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.

    PubMed

    Kinjo, Akira R; Nakamura, Haruki

    2013-01-01

    Protein functions are mediated by interactions between proteins and other molecules. One useful approach to analyze protein functions is to compare and classify the structures of interaction interfaces of proteins. Here, we describe the procedures for compiling a database of interface structures and efficiently comparing the interface structures. To do so requires a good understanding of the data structures of the Protein Data Bank (PDB). Therefore, we also provide a detailed account of the PDB exchange dictionary necessary for extracting data that are relevant for analyzing interaction interfaces and secondary structures. We identify recurring structural motifs by classifying similar interface structures, and we define a coarse-grained representation of supersecondary structures (SSS) which represents a sequence of two or three secondary structure elements including their relative orientations as a string of four to seven letters. By examining the correspondence between structural motifs and SSS strings, we show that no SSS string has particularly high propensity to be found interaction interfaces in general, indicating any SSS can be used as a binding interface. When individual structural motifs are examined, there are some SSS strings that have high propensity for particular groups of structural motifs. In addition, it is shown that while the SSS strings found in particular structural motifs for nonpolymer and protein interfaces are as abundant as in other structural motifs that belong to the same subunit, structural motifs for nucleic acid interfaces exhibit somewhat stronger preference for SSS strings. In regard to protein folds, many motif-specific SSS strings were found across many folds, suggesting that SSS may be a useful description to investigate the universality of ligand binding modes.

  9. The spatial architecture of protein function and adaptation

    PubMed Central

    McLaughlin, Richard N.; Poelwijk, Frank J.; Raman, Arjun; Gosal, Walraj S.; Ranganathan, Rama

    2014-01-01

    Statistical analysis of protein evolution suggests a design for natural proteins in which sparse networks of coevolving amino acids (termed sectors) comprise the essence of three-dimensional structure and function1, 2, 3, 4, 5. However, proteins are also subject to pressures deriving from the dynamics of the evolutionary process itself—the ability to tolerate mutation and to be adaptive to changing selection pressures6, 7, 8, 9, 10. To understand the relationship of the sector architecture to these properties, we developed a high-throughput quantitative method for a comprehensive single-mutation study in which every position is substituted individually to every other amino acid. Using a PDZ domain (PSD95pdz3) model system, we show that sector positions are functionally sensitive to mutation, whereas non-sector positions are more tolerant to substitution. In addition, we find that adaptation to a new binding specificity initiates exclusively through variation within sector residues. A combination of just two sector mutations located near and away from the ligand-binding site suffices to switch the binding specificity of PSD95pdz3 quantitatively towards a class-switching ligand. The localization of functional constraint and adaptive variation within the sector has important implications for understanding and engineering proteins. PMID:23041932

  10. Functional equivalency inferred from "authoritative sources" in networks of homologous proteins.

    PubMed

    Natarajan, Shreedhar; Jakobsson, Eric

    2009-06-12

    A one-on-one mapping of protein functionality across different species is a critical component of comparative analysis. This paper presents a heuristic algorithm for discovering the Most Likely Functional Counterparts (MoLFunCs) of a protein, based on simple concepts from network theory. A key feature of our algorithm is utilization of the user's knowledge to assign high confidence to selected functional identification. We show use of the algorithm to retrieve functional equivalents for 7 membrane proteins, from an exploration of almost 40 genomes form multiple online resources. We verify the functional equivalency of our dataset through a series of tests that include sequence, structure and function comparisons. Comparison is made to the OMA methodology, which also identifies one-on-one mapping between proteins from different species. Based on that comparison, we believe that incorporation of user's knowledge as a key aspect of the technique adds value to purely statistical formal methods.

  11. The flavivirus capsid protein: Structure, function and perspectives towards drug design.

    PubMed

    Oliveira, Edson R A; Mohana-Borges, Ronaldo; de Alencastro, Ricardo B; Horta, Bruno A C

    2017-01-02

    Flaviviruses, such as dengue and zika viruses, are etiologic agents transmitted to humans mainly by arthropods and are of great epidemiological interest. The flavivirus capsid protein is a structural element required for the viral nucleocapsid assembly that presents the classical function of sheltering the viral genome. After decades of research, many reports have shown its different functionalities and influence over cell normal functioning. The subcellular distribution of this protein, which involves accumulation around lipid droplets and nuclear localization, also corroborates with its multi-functional characteristic. As flavivirus diseases are still in need of global control and in view of the possible key functionalities that the capsid protein promotes over flavivirus biology, novel considerations arise towards anti-flavivirus drug research. This review covers the main aspects concerning structural and functional features of the flavivirus C protein, ultimately, highlighting prospects in drug discovery based on this viral target. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Deducing protein function by forensic integrative cell biology.

    PubMed

    Earnshaw, William C

    2013-12-01

    Our ability to sequence genomes has provided us with near-complete lists of the proteins that compose cells, tissues, and organisms, but this is only the beginning of the process to discover the functions of cellular components. In the future, it's going to be crucial to develop computational analyses that can predict the biological functions of uncharacterised proteins. At the same time, we must not forget those fundamental experimental skills needed to confirm the predictions or send the analysts back to the drawing board to devise new ones.

  13. The identification of protein domains that mediate functional interactions between Rab-GTPases and RabGAPs using 3D protein modeling.

    PubMed

    Davie, Jeremiah J; Faitar, Silviu L

    2017-01-01

    Currently, time-consuming serial in vitro experimentation involving immunocytochemistry or radiolabeled materials is required to identify which of the numerous Rab-GTPases (Rab) and Rab-GTPase activating proteins (RabGAP) are capable of functional interactions. These interactions are essential for numerous cellular functions, and in silico methods of reducing in vitro trial and error would accelerate the pace of research in cell biology. We have utilized a combination of three-dimensional protein modeling and protein bioinformatics to identify domains present in Rab proteins that are predictive of their functional interaction with a specific RabGAP. The RabF2 and RabSF1 domains appear to play functional roles in mediating the interaction between Rabs and RabGAPs. Moreover, the RabSF1 domain can be used to make in silico predictions of functional Rab/RabGAP pairs. This method is expected to be a broadly applicable tool for predicting protein-protein interactions where existing crystal structures for homologs of the proteins of interest are available.

  14. The Protein Interactome of Streptococcus pneumoniae and Bacterial Meta-interactomes Improve Function Predictions.

    PubMed

    Wuchty, S; Rajagopala, S V; Blazie, S M; Parrish, J R; Khuri, S; Finley, R L; Uetz, P

    2017-01-01

    The functions of roughly a third of all proteins in Streptococcus pneumoniae , a significant human-pathogenic bacterium, are unknown. Using a yeast two-hybrid approach, we have determined more than 2,000 novel protein interactions in this organism. We augmented this network with meta-interactome data that we defined as the pool of all interactions between evolutionarily conserved proteins in other bacteria. We found that such interactions significantly improved our ability to predict a protein's function, allowing us to provide functional predictions for 299 S. pneumoniae proteins with previously unknown functions. IMPORTANCE Identification of protein interactions in bacterial species can help define the individual roles that proteins play in cellular pathways and pathogenesis. Very few protein interactions have been identified for the important human pathogen S. pneumoniae . We used an experimental approach to identify over 2,000 new protein interactions for S. pneumoniae , the most extensive interactome data for this bacterium to date. To predict protein function, we used our interactome data augmented with interactions from other closely related bacteria. The combination of the experimental data and meta-interactome data significantly improved the prediction results, allowing us to assign possible functions to a large number of poorly characterized proteins.

  15. Evolution and function of CAG/polyglutamine repeats in protein–protein interaction networks

    PubMed Central

    Schaefer, Martin H.; Wanker, Erich E.; Andrade-Navarro, Miguel A.

    2012-01-01

    Expanded runs of consecutive trinucleotide CAG repeats encoding polyglutamine (polyQ) stretches are observed in the genes of a large number of patients with different genetic diseases such as Huntington's and several Ataxias. Protein aggregation, which is a key feature of most of these diseases, is thought to be triggered by these expanded polyQ sequences in disease-related proteins. However, polyQ tracts are a normal feature of many human proteins, suggesting that they have an important cellular function. To clarify the potential function of polyQ repeats in biological systems, we systematically analyzed available information stored in sequence and protein interaction databases. By integrating genomic, phylogenetic, protein interaction network and functional information, we obtained evidence that polyQ tracts in proteins stabilize protein interactions. This happens most likely through structural changes whereby the polyQ sequence extends a neighboring coiled-coil region to facilitate its interaction with a coiled-coil region in another protein. Alteration of this important biological function due to polyQ expansion results in gain of abnormal interactions, leading to pathological effects like protein aggregation. Our analyses suggest that research on polyQ proteins should shift focus from expanded polyQ proteins into the characterization of the influence of the wild-type polyQ on protein interactions. PMID:22287626

  16. Density functional study of molecular interactions in secondary structures of proteins.

    PubMed

    Takano, Yu; Kusaka, Ayumi; Nakamura, Haruki

    2016-01-01

    Proteins play diverse and vital roles in biology, which are dominated by their three-dimensional structures. The three-dimensional structure of a protein determines its functions and chemical properties. Protein secondary structures, including α-helices and β-sheets, are key components of the protein architecture. Molecular interactions, in particular hydrogen bonds, play significant roles in the formation of protein secondary structures. Precise and quantitative estimations of these interactions are required to understand the principles underlying the formation of three-dimensional protein structures. In the present study, we have investigated the molecular interactions in α-helices and β-sheets, using ab initio wave function-based methods, the Hartree-Fock method (HF) and the second-order Møller-Plesset perturbation theory (MP2), density functional theory, and molecular mechanics. The characteristic interactions essential for forming the secondary structures are discussed quantitatively.

  17. Zebrafish Meis functions to stabilize Pbx proteins and regulate hindbrain patterning.

    PubMed

    Waskiewicz, A J; Rikhof, H A; Hernandez, R E; Moens, C B

    2001-11-01

    Homeodomain-containing Hox proteins regulate segmental identity in Drosophila in concert with two partners known as Extradenticle (Exd) and Homothorax (Hth). These partners are themselves DNA-binding, homeodomain proteins, and probably function by revealing the intrinsic specificity of Hox proteins. Vertebrate orthologs of Exd and Hth, known as Pbx and Meis (named for a myeloid ecotropic leukemia virus integration site), respectively, are encoded by multigene families and are present in multimeric complexes together with vertebrate Hox proteins. Previous results have demonstrated that the zygotically encoded Pbx4/Lazarus (Lzr) protein is required for segmentation of the zebrafish hindbrain and proper expression and function of Hox genes. We demonstrate that Meis functions in the same pathway as Pbx in zebrafish hindbrain development, as expression of a dominant-negative mutant Meis results in phenotypes that are remarkably similar to that of lzr mutants. Surprisingly, expression of Meis protein partially rescues the lzr(-) phenotype. Lzr protein levels are increased in embryos overexpressing Meis and are reduced for lzr mutants that cannot bind to Meis. This implies a mechanism whereby Meis rescues lzr mutants by stabilizing maternally encoded Lzr. Our results define two functions of Meis during zebrafish hindbrain segmentation: that of a DNA-binding partner of Pbx proteins, and that of a post-transcriptional regulator of Pbx protein levels.

  18. Applications of functional polymer brushes for nanoparticle uptake and prevention of protein adsorption

    NASA Astrophysics Data System (ADS)

    Arifuzzaman, Shafi M.

    The central theme of this Ph.D. dissertation is to develop novel multifunctional polymer coatings for understanding partition of proteins and nanoparticles on polymers grafted to flat surfaces (so-called brushes). Systematic investigation of the adsorption phenomena is accomplished by utilizing surface-anchored assemblies comprising grafted polymers with variation in physical properties (i.e., length or/and grafting density) and chemical functionality. The chemical composition of the brush is tailored by either "chemical coloring" of a parent homopolymer brush with selective chemical moieties or by sequential growth of two chemically dissimilar polymer blocks. We present preparation of two types of tailor-made, surface-grafted copolymers: (1) those composed of hydrophilic and hydrophobic blocks (so-called amphiphilic polymer brushes), and (2) those comprising of anionic and cationic polymer segments (so-called polyampholyte brushes). We describe the organization of functionality in the grafted polymer brushes and the partitioning of proteins and nanoparticles using a battery of complementary analytical probes. Specifically, we address how varying the molecular weight, grafting density, and chemical composition of the brush affects adsorbtion and desorbtion of model proteins and gold nanoparticles. Our observations indicate densely-populated responsive amphiphilic polymers are very efficient in suppressing protein adsorption. In addition, we have established that the length of poly(ethylene glycol) spacers attached to a parent homopolymer brush is a key factor governing uptake of gold nanoparticles. Both grafting density and molecular weight of the coating are important in controlling the kinetics and thermodynamics of protein adsorption on surfaces. Our findings and methodologies can lead to the development of next generation environmentally friendly antifouling surfaces and will find application in medical devices, antifouling coatings and anti reflection finishes.

  19. Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures

    PubMed Central

    Koussa, Mounir A.; Sotomayor, Marcos; Wong, Wesley P.

    2014-01-01

    Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes. PMID:24568941

  20. The Rules and Functions of Nucleocytoplasmic Shuttling Proteins.

    PubMed

    Fu, Xuekun; Liang, Chao; Li, Fangfei; Wang, Luyao; Wu, Xiaoqiu; Lu, Aiping; Xiao, Guozhi; Zhang, Ge

    2018-05-12

    Biological macromolecules are the basis of life activities. There is a separation of spatial dimension between DNA replication and RNA biogenesis, and protein synthesis, which is an interesting phenomenon. The former occurs in the cell nucleus, while the latter in the cytoplasm. The separation requires protein to transport across the nuclear envelope to realize a variety of biological functions. Nucleocytoplasmic transport of protein including import to the nucleus and export to the cytoplasm is a complicated process that requires involvement and interaction of many proteins. In recent years, many studies have found that proteins constantly shuttle between the cytoplasm and the nucleus. These shuttling proteins play a crucial role as transport carriers and signal transduction regulators within cells. In this review, we describe the mechanism of nucleocytoplasmic transport of shuttling proteins and summarize some important diseases related shuttling proteins.

  1. An unexpected way forward: towards a more accurate and rigorous protein-protein binding affinity scoring function by eliminating terms from an already simple scoring function.

    PubMed

    Swanson, Jon; Audie, Joseph

    2018-01-01

    A fundamental and unsolved problem in biophysical chemistry is the development of a computationally simple, physically intuitive, and generally applicable method for accurately predicting and physically explaining protein-protein binding affinities from protein-protein interaction (PPI) complex coordinates. Here, we propose that the simplification of a previously described six-term PPI scoring function to a four term function results in a simple expression of all physically and statistically meaningful terms that can be used to accurately predict and explain binding affinities for a well-defined subset of PPIs that are characterized by (1) crystallographic coordinates, (2) rigid-body association, (3) normal interface size, and hydrophobicity and hydrophilicity, and (4) high quality experimental binding affinity measurements. We further propose that the four-term scoring function could be regarded as a core expression for future development into a more general PPI scoring function. Our work has clear implications for PPI modeling and structure-based drug design.

  2. Chemical Modifications that Affect Nutritional and Functional Properties of Proteins.

    ERIC Educational Resources Information Center

    Richardson, T.; Kester, J. J.

    1984-01-01

    Discusses chemical alterations of selected amino acids resulting from environmental effects (photooxidations, pH extremes, thermally induced effects). Also dicusses use of intentional chemical derivatizations of various functional groups in amino acid residue side chains and how recombinant DNA techniques might be useful in structure/function…

  3. Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions.

    PubMed

    Liu, Zhihai; Su, Minyi; Han, Li; Liu, Jie; Yang, Qifan; Li, Yan; Wang, Renxiao

    2017-02-21

    In structure-based drug design, scoring functions are widely used for fast evaluation of protein-ligand interactions. They are often applied in combination with molecular docking and de novo design methods. Since the early 1990s, a whole spectrum of protein-ligand interaction scoring functions have been developed. Regardless of their technical difference, scoring functions all need data sets combining protein-ligand complex structures and binding affinity data for parametrization and validation. However, data sets of this kind used to be rather limited in terms of size and quality. On the other hand, standard metrics for evaluating scoring function used to be ambiguous. Scoring functions are often tested in molecular docking or even virtual screening trials, which do not directly reflect the genuine quality of scoring functions. Collectively, these underlying obstacles have impeded the invention of more advanced scoring functions. In this Account, we describe our long-lasting efforts to overcome these obstacles, which involve two related projects. On the first project, we have created the PDBbind database. It is the first database that systematically annotates the protein-ligand complexes in the Protein Data Bank (PDB) with experimental binding data. This database has been updated annually since its first public release in 2004. The latest release (version 2016) provides binding data for 16 179 biomolecular complexes in PDB. Data sets provided by PDBbind have been applied to many computational and statistical studies on protein-ligand interaction and various subjects. In particular, it has become a major data resource for scoring function development. On the second project, we have established the Comparative Assessment of Scoring Functions (CASF) benchmark for scoring function evaluation. Our key idea is to decouple the "scoring" process from the "sampling" process, so scoring functions can be tested in a relatively pure context to reflect their quality. In our

  4. Printing Proteins as Microarrays for High-Throughput Function Determination

    NASA Astrophysics Data System (ADS)

    MacBeath, Gavin; Schreiber, Stuart L.

    2000-09-01

    Systematic efforts are currently under way to construct defined sets of cloned genes for high-throughput expression and purification of recombinant proteins. To facilitate subsequent studies of protein function, we have developed miniaturized assays that accommodate extremely low sample volumes and enable the rapid, simultaneous processing of thousands of proteins. A high-precision robot designed to manufacture complementary DNA microarrays was used to spot proteins onto chemically derivatized glass slides at extremely high spatial densities. The proteins attached covalently to the slide surface yet retained their ability to interact specifically with other proteins, or with small molecules, in solution. Three applications for protein microarrays were demonstrated: screening for protein-protein interactions, identifying the substrates of protein kinases, and identifying the protein targets of small molecules.

  5. Structure and function of seed storage proteins in faba bean (Vicia faba L.).

    PubMed

    Liu, Yujiao; Wu, Xuexia; Hou, Wanwei; Li, Ping; Sha, Weichao; Tian, Yingying

    2017-05-01

    The protein subunit is the most important basic unit of protein, and its study can unravel the structure and function of seed storage proteins in faba bean. In this study, we identified six specific protein subunits in Faba bean (cv. Qinghai 13) combining liquid chromatography (LC), liquid chromatography-electronic spray ionization mass (LC-ESI-MS/MS) and bio-information technology. The results suggested a diversity of seed storage proteins in faba bean, and a total of 16 proteins (four GroEL molecular chaperones and 12 plant-specific proteins) were identified from 97-, 96-, 64-, 47-, 42-, and 38-kD-specific protein subunits in faba bean based on the peptide sequence. We also analyzed the composition and abundance of the amino acids, the physicochemical characteristics, secondary structure, three-dimensional structure, transmembrane domain, and possible subcellular localization of these identified proteins in faba bean seed, and finally predicted function and structure. The three-dimensional structures were generated based on homologous modeling, and the protein function was analyzed based on the annotation from the non-redundant protein database (NR database, NCBI) and function analysis of optimal modeling. The objective of this study was to identify the seed storage proteins in faba bean and confirm the structure and function of these proteins. Our results can be useful for the study of protein nutrition and achieve breeding goals for optimal protein quality in faba bean.

  6. Spatio-temporal coordination among functional residues in protein

    NASA Astrophysics Data System (ADS)

    Dutta, Sutapa; Ghosh, Mahua; Chakrabarti, J.

    2017-01-01

    The microscopic basis of communication among the functional sites in bio-macromolecules is a fundamental challenge in uncovering their functions. We study the communication through temporal cross-correlation among the binding sites. We illustrate via Molecular Dynamics simulations the properties of the temporal cross-correlation between the dihedrals of a small protein, ubiquitin which participates in protein degradation in eukaryotes. We show that the dihedral angles of the residues possess non-trivial temporal cross-correlations with asymmetry with respect to exchange of the dihedrals, having peaks at low frequencies with time scales in nano-seconds and an algebraic tail with a universal exponent for large frequencies. We show the existence of path for temporally correlated degrees of freedom among the functional residues. We explain the qualitative features of the cross-correlations through a general mathematical model. The generality of our analysis suggests that temporal cross-correlation functions may provide convenient theoretical framework to understand bio-molecular functions on microscopic basis.

  7. Multifunctional Thioredoxin-Like Protein from the Gastrointestinal Parasitic Nematodes Strongyloides ratti and Trichuris suis Affects Mucosal Homeostasis

    PubMed Central

    Hansmann, Jan; Winter, Dominic; Schramm, Guido; Erttmann, Klaus D.; Liebau, Eva

    2016-01-01

    The cellular redox state is important for the regulation of multiple functions and is essential for the maintenance of cellular homeostasis and antioxidant defense. In the excretory/secretory (E/S) products of Strongyloides ratti and Trichuris suis sequences for thioredoxin (Trx) and Trx-like protein (Trx-lp) were identified. To characterize the antioxidant Trx-lp and its interaction with the parasite's mucosal habitat, S. ratti and T. suis Trx-lps were cloned and recombinantly expressed. The primary antioxidative activity was assured by reduction of insulin and IgM. Further analysis applying an in vitro mucosal 3D-cell culture model revealed that the secreted Trx-lps were able to bind to monocytic and intestinal epithelial cells and induce the time-dependent release of cytokines such as TNF-α, IL-22, and TSLP. In addition, the redox proteins also possessed chemotactic activity for monocytic THP-1 cells and fostered epithelial wound healing activity. These results confirm that the parasite-secreted Trx-lps are multifunctional proteins that can affect the host intestinal mucosa. PMID:27872753

  8. Distinct Functional Networks Associated with Improvement of Affective Symptoms and Cognitive Function During Citalopram Treatment in Geriatric Depression

    PubMed Central

    Diaconescu, Andreea Oliviana; Kramer, Elisse; Hermann, Carol; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Eidelberg, David; McIntosh, Anthony Randal; Smith, Gwenn S.

    2010-01-01

    Variability in the affective and cognitive symptom response to antidepressant treatment has been observed in geriatric depression. The underlying neural circuitry is poorly understood. The current study evaluated the cerebral glucose metabolic effects of citalopram treatment and applied multivariate, functional connectivity analyses to identify brain networks associated with improvements in affective symptoms and cognitive function. Sixteen geriatric depressed patients underwent resting Positron Emission Tomography (PET) studies of cerebral glucose metabolism and assessment of affective symptoms and cognitive function before and after eight weeks of selective serotonin reuptake inhibitor treatment (citalopram). Voxel-wise analyses of the normalized glucose metabolic data showed decreased cerebral metabolism during citalopram treatment in the anterior cingulate gyrus, middle temporal gyrus, precuneus, amygdala, and parahippocampal gyrus. Increased metabolism was observed in the putamen, occipital cortex and cerebellum. Functional connectivity analyses revealed two networks which were uniquely associated with improvement of affective symptoms and cognitive function during treatment. A subcortical-limbic-frontal network was associated with improvement in affect (depression and anxiety), while a medial temporal-parietal-frontal network was associated with improvement in cognition (immediate verbal learning/memory and verbal fluency). The regions that comprise the cognitive network overlap with the regions that are affected in Alzheimer’s dementia. Thus, alterations in specific brain networks associated with improvement of affective symptoms and cognitive function are observed during citalopram treatment in geriatric depression. PMID:20886575

  9. PROFESS: a PROtein Function, Evolution, Structure and Sequence database

    PubMed Central

    Triplet, Thomas; Shortridge, Matthew D.; Griep, Mark A.; Stark, Jaime L.; Powers, Robert; Revesz, Peter

    2010-01-01

    The proliferation of biological databases and the easy access enabled by the Internet is having a beneficial impact on biological sciences and transforming the way research is conducted. There are ∼1100 molecular biology databases dispersed throughout the Internet. To assist in the functional, structural and evolutionary analysis of the abundant number of novel proteins continually identified from whole-genome sequencing, we introduce the PROFESS (PROtein Function, Evolution, Structure and Sequence) database. Our database is designed to be versatile and expandable and will not confine analysis to a pre-existing set of data relationships. A fundamental component of this approach is the development of an intuitive query system that incorporates a variety of similarity functions capable of generating data relationships not conceived during the creation of the database. The utility of PROFESS is demonstrated by the analysis of the structural drift of homologous proteins and the identification of potential pancreatic cancer therapeutic targets based on the observation of protein–protein interaction networks. Database URL: http://cse.unl.edu/∼profess/ PMID:20624718

  10. The Protein Interactome of Streptococcus pneumoniae and Bacterial Meta-interactomes Improve Function Predictions

    PubMed Central

    Rajagopala, S. V.; Blazie, S. M.; Parrish, J. R.; Khuri, S.; Finley, R. L.

    2017-01-01

    ABSTRACT The functions of roughly a third of all proteins in Streptococcus pneumoniae, a significant human-pathogenic bacterium, are unknown. Using a yeast two-hybrid approach, we have determined more than 2,000 novel protein interactions in this organism. We augmented this network with meta-interactome data that we defined as the pool of all interactions between evolutionarily conserved proteins in other bacteria. We found that such interactions significantly improved our ability to predict a protein’s function, allowing us to provide functional predictions for 299 S. pneumoniae proteins with previously unknown functions. IMPORTANCE Identification of protein interactions in bacterial species can help define the individual roles that proteins play in cellular pathways and pathogenesis. Very few protein interactions have been identified for the important human pathogen S. pneumoniae. We used an experimental approach to identify over 2,000 new protein interactions for S. pneumoniae, the most extensive interactome data for this bacterium to date. To predict protein function, we used our interactome data augmented with interactions from other closely related bacteria. The combination of the experimental data and meta-interactome data significantly improved the prediction results, allowing us to assign possible functions to a large number of poorly characterized proteins. PMID:28744484

  11. The Biological Function of the Prion Protein: A Cell Surface Scaffold of Signaling Modules.

    PubMed

    Linden, Rafael

    2017-01-01

    The prion glycoprotein (PrP C ) is mostly located at the cell surface, tethered to the plasma membrane through a glycosyl-phosphatydil inositol (GPI) anchor. Misfolding of PrP C is associated with the transmissible spongiform encephalopathies (TSEs), whereas its normal conformer serves as a receptor for oligomers of the β-amyloid peptide, which play a major role in the pathogenesis of Alzheimer's Disease (AD). PrP C is highly expressed in both the nervous and immune systems, as well as in other organs, but its functions are controversial. Extensive experimental work disclosed multiple physiological roles of PrP C at the molecular, cellular and systemic levels, affecting the homeostasis of copper, neuroprotection, stem cell renewal and memory mechanisms, among others. Often each such process has been heralded as the bona fide function of PrP C , despite restricted attention paid to a selected phenotypic trait, associated with either modulation of gene expression or to the engagement of PrP C with a single ligand. In contrast, the GPI-anchored prion protein was shown to bind several extracellular and transmembrane ligands, which are required to endow that protein with the ability to play various roles in transmembrane signal transduction. In addition, differing sets of those ligands are available in cell type- and context-dependent scenarios. To account for such properties, we proposed that PrP C serves as a dynamic platform for the assembly of signaling modules at the cell surface, with widespread consequences for both physiology and behavior. The current review advances the hypothesis that the biological function of the prion protein is that of a cell surface scaffold protein, based on the striking similarities of its functional properties with those of scaffold proteins involved in the organization of intracellular signal transduction pathways. Those properties are: the ability to recruit spatially restricted sets of binding molecules involved in specific

  12. Comparable contributions of structural-functional constraints and expression level to the rate of protein sequence evolution

    PubMed Central

    Wolf, Maxim Y; Wolf, Yuri I; Koonin, Eugene V

    2008-01-01

    Background Proteins show a broad range of evolutionary rates. Understanding the factors that are responsible for the characteristic rate of evolution of a given protein arguably is one of the major goals of evolutionary biology. A long-standing general assumption used to be that the evolution rate is, primarily, determined by the specific functional constraints that affect the given protein. These constrains were traditionally thought to depend both on the specific features of the protein's structure and its biological role. The advent of systems biology brought about new types of data, such as expression level and protein-protein interactions, and unexpectedly, a variety of correlations between protein evolution rate and these variables have been observed. The strongest connections by far were repeatedly seen between protein sequence evolution rate and the expression level of the respective gene. It has been hypothesized that this link is due to the selection for the robustness of the protein structure to mistranslation-induced misfolding that is particularly important for highly expressed proteins and is the dominant determinant of the sequence evolution rate. Results This work is an attempt to assess the relative contributions of protein domain structure and function, on the one hand, and expression level on the other hand, to the rate of sequence evolution. To this end, we performed a genome-wide analysis of the effect of the fusion of a pair of domains in multidomain proteins on the difference in the domain-specific evolutionary rates. The mistranslation-induced misfolding hypothesis would predict that, within multidomain proteins, fused domains, on average, should evolve at substantially closer rates than the same domains in different proteins because, within a mutlidomain protein, all domains are translated at the same rate. We performed a comprehensive comparison of the evolutionary rates of mammalian and plant protein domains that are either joined in

  13. UBXD Proteins: A Family of Proteins with Diverse Functions in Cancer.

    PubMed

    Rezvani, Khosrow

    2016-10-14

    The UBXD family is a diverse group of UBX (ubiquitin-regulatory X) domain-containing proteins in mammalian cells. Members of this family contain a UBX domain typically located at the carboxyl-terminal of the protein. In contrast to the UBX domain shared by all members of UBXD family, the amino-terminal domains are diverse and appear to carry out different roles in a subcellular localization-dependent manner. UBXD proteins are principally associated with the endoplasmic reticulum (ER), where they positively or negatively regulate the ER-associated degradation machinery (ERAD). The distinct protein interaction networks of UBXD proteins allow them to have specific functions independent of the ERAD pathway in a cell type- and tissue context-dependent manner. Recent reports have illustrated that a number of mammalian members of the UBXD family play critical roles in several proliferation and apoptosis pathways dysregulated in selected types of cancer. This review covers recent advances that elucidate the therapeutic potential of selected members of the UBXD family that can contribute to tumor growth.

  14. The cerebellum: its role in language and related cognitive and affective functions.

    PubMed

    De Smet, Hyo Jung; Paquier, Philippe; Verhoeven, Jo; Mariën, Peter

    2013-12-01

    The traditional view on the cerebellum as the sole coordinator of motor function has been substantially redefined during the past decades. Neuroanatomical, neuroimaging and clinical studies have extended the role of the cerebellum to the modulation of cognitive and affective processing. Neuroanatomical studies have demonstrated cerebellar connectivity with the supratentorial association areas involved in higher cognitive and affective functioning, while functional neuroimaging and clinical studies have provided evidence of cerebellar involvement in a variety of cognitive and affective tasks. This paper reviews the recently acknowledged role of the cerebellum in linguistic and related cognitive and behavioral-affective functions. In addition, typical cerebellar syndromes such as the cerebellar cognitive affective syndrome (CCAS) and the posterior fossa syndrome (PFS) will be briefly discussed and the current hypotheses dealing with the presumed neurobiological mechanisms underlying the linguistic, cognitive and affective modulatory role of the cerebellum will be reviewed. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Intestinal epithelial barrier function and tight junction proteins with heat and exercise

    PubMed Central

    Zuhl, Micah N.; Moseley, Pope L.

    2015-01-01

    A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or “leaky” intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise. PMID:26359485

  16. Protocol for sortase-mediated construction of DNA-protein hybrids and functional nanostructures.

    PubMed

    Koussa, Mounir A; Sotomayor, Marcos; Wong, Wesley P

    2014-05-15

    Recent methods in DNA nanotechnology are enabling the creation of intricate nanostructures through the use of programmable, bottom-up self-assembly. However, structures consisting only of DNA are limited in their ability to act on other biomolecules. Proteins, on the other hand, perform a variety of functions on biological materials, but directed control of the self-assembly process remains a challenge. While DNA-protein hybrids have the potential to provide the best-of-both-worlds, they can be difficult to create as many of the conventional techniques for linking proteins to DNA render proteins dysfunctional. We present here a sortase-based protocol for covalently coupling proteins to DNA with minimal disturbance to protein function. To accomplish this we have developed a two-step process. First, a small synthetic peptide is bioorthogonally and covalently coupled to a DNA oligo using click chemistry. Next, the DNA-peptide chimera is covalently linked to a protein of interest under protein-compatible conditions using the enzyme sortase. Our protocol allows for the simple coupling and purification of a functional DNA-protein hybrid. We use this technique to form oligos bearing cadherin-23 and protocadherin-15 protein fragments. Upon incorporation into a linear M13 scaffold, these protein-DNA hybrids serve as the gate to a binary nanoswitch. The outlined protocol is reliable and modular, facilitating the construction of libraries of oligos and proteins that can be combined to form functional DNA-protein nanostructures. These structures will enable a new class of functional nanostructures, which could be used for therapeutic and industrial processes. Copyright © 2014. Published by Elsevier Inc.

  17. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis

    PubMed Central

    2018-01-01

    Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that ‘leftover’ proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module

  18. A protein functional leap: how a single mutation reverses the function of the transcription regulator TetR.

    PubMed

    Resch, Marcus; Striegl, Harald; Henssler, Eva Maria; Sevvana, Madhumati; Egerer-Sieber, Claudia; Schiltz, Emile; Hillen, Wolfgang; Muller, Yves A

    2008-08-01

    Today's proteome is the result of innumerous gene duplication, mutagenesis, drift and selection processes. Whereas random mutagenesis introduces predominantly only gradual changes in protein function, a case can be made that an abrupt switch in function caused by single amino acid substitutions will not only considerably further evolution but might constitute a prerequisite for the appearance of novel functionalities for which no promiscuous protein intermediates can be envisaged. Recently, tetracycline repressor (TetR) variants were identified in which binding of tetracycline triggers the repressor to associate with and not to dissociate from the operator DNA as in wild-type TetR. We investigated the origin of this activity reversal by limited proteolysis, CD spectroscopy and X-ray crystallography. We show that the TetR mutant Leu17Gly switches its function via a disorder-order mechanism that differs completely from the allosteric mechanism of wild-type TetR. Our study emphasizes how single point mutations can engender unexpected leaps in protein function thus enabling the appearance of new functionalities in proteins without the need for promiscuous intermediates.

  19. Affect integration and reflective function: clarification of central conceptual issues.

    PubMed

    Solbakken, Ole André; Hansen, Roger Sandvik; Monsen, Jon Trygve

    2011-07-01

    The importance of affect regulation, modulation or integration for higher-order reflection and adequate functioning is increasingly emphasized across different therapeutic approaches and theories of change. These processes are probably central to any psychotherapeutic endeavor, whether explicitly conceptualized or not, and in recent years a number of therapeutic approaches have been developed that explicitly target them as a primary area of change. However, there still is important lack of clarity in the field regarding the understanding and operationalization of affect integration, particularly when it comes to specifying underlying mechanisms, the significance of different affect states, and the establishment of operational criteria for measurement. The conceptual relationship between affect integration and reflective function thus remains ambiguous. The present article addresses these topics, indicating ways in which a more complex and exhaustive understanding of integration of affect, cognition and behavior can be attained.

  20. Baculovirus IE2 Stimulates the Expression of Heat Shock Proteins in Insect and Mammalian Cells to Facilitate Its Proper Functioning.

    PubMed

    Tung, Hsuan; Wei, Sung-Chan; Lo, Huei-Ru; Chao, Yu-Chan

    2016-01-01

    Baculoviruses have gained popularity as pest control agents and for protein production in insect systems. These viruses are also becoming popular for gene expression, tissue engineering and gene therapy in mammalian systems. Baculovirus infection triggers a heat shock response, and this response is crucial for its successful infection of host insect cells. However, the viral protein(s) or factor(s) that trigger this response are not yet clear. Previously, we revealed that IE2-an early gene product of the baculovirus-could form unique nuclear bodies for the strong trans-activation of various promoters in mammalian cells. Here, we purified IE2 nuclear bodies from Vero E6 cells and investigated the associated proteins by using mass spectrometry. Heat shock proteins (HSPs) were found to be one of the major IE2-associated proteins. Our experiments show that HSPs are greatly induced by IE2 and are crucial for the trans-activation function of IE2. Interestingly, blocking both heat shock protein expression and the proteasome pathway preserved the IE2 protein and its nuclear body structure, and revived its function. These observations reveal that HSPs do not function directly to assist the formation of the nuclear body structure, but may rather protect IE2 from proteasome degradation. Aside from functional studies in mammalian cells, we also show that HSPs were stimulated and required to determine IE2 protein levels, in insect cells infected with baculovirus. Upon inhibiting the expression of heat shock proteins, baculovirus IE2 was substantially suppressed, resulting in a significantly suppressed viral titer. Thus, we demonstrate a unique feature in that IE2 can function in both insect and non-host mammalian cells to stimulate HSPs, which may be associated with IE2 stabilization and lead to the protection of the its strong gene activation function in mammalian cells. On the other hand, during viral infection in insect cells, IE2 could also strongly stimulate HSPs and

  1. Interactions Between Flavonoid-Rich Extracts and Sodium Caseinate Modulate Protein Functionality and Flavonoid Bioaccessibility in Model Food Systems.

    PubMed

    Elegbede, Jennifer L; Li, Min; Jones, Owen G; Campanella, Osvaldo H; Ferruzzi, Mario G

    2018-05-01

    With growing interest in formulating new food products with added protein and flavonoid-rich ingredients for health benefits, direct interactions between these ingredient classes becomes critical in so much as they may impact protein functionality, product quality, and flavonoids bioavailability. In this study, sodium caseinate (SCN)-based model products (foams and emulsions) were formulated with grape seed extract (GSE, rich in galloylated flavonoids) and green tea extract (GTE, rich in nongalloylated flavonoids), respectively, to assess changes in functional properties of SCN and impacts on flavonoid bioaccessibility. Experiments with pure flavonoids suggested that galloylated flavonoids reduced air-water interfacial tension of 0.01% SCN dispersions more significantly than nongalloylated flavonoids at high concentrations (>50 μg/mL). This observation was supported by changes in stability of 5% SCN foam, which showed that foam stability was increased at high levels of GSE (≥50 μg/mL, P < 0.05) but was not affected by GTE. However, flavonoid extracts had modest effects on SCN emulsion. In addition, galloylated flavonoids had higher bioaccessibility in both SCN foam and emulsion. These results suggest that SCN-flavonoid binding interactions can modulate protein functionality leading to difference in performance and flavonoid bioaccessibility of protein-based products. As information on the beneficial health effects of flavonoids expands, it is likely that usage of these ingredients in consumer foods will increase. However, the necessary levels to provide such benefits may exceed those that begin to impact functionality of the macronutrients such as proteins. Flavonoid inclusion within protein matrices may modulate protein functionality in a food system and modify critical consumer traits or delivery of these beneficial plant-derived components. The product matrices utilized in this study offer relevant model systems to evaluate how fortification with flavonoid

  2. Arabidopsis BPM Proteins Function as Substrate Adaptors to a CULLIN3-Based E3 Ligase to Affect Fatty Acid Metabolism in Plants[W

    PubMed Central

    Chen, Liyuan; Lee, Joo Hyun; Weber, Henriette; Tohge, Takayuki; Witt, Sandra; Roje, Sanja; Fernie, Alisdair R.; Hellmann, Hanjo

    2013-01-01

    Regulation of transcriptional processes is a critical mechanism that enables efficient coordination of the synthesis of required proteins in response to environmental and cellular changes. Transcription factors require accurate activity regulation because they play a critical role as key mediators assuring specific expression of target genes. In this work, we show that CULLIN3-based E3 ligases have the potential to interact with a broad range of ETHYLENE RESPONSE FACTOR (ERF)/APETALA2 (AP2) transcription factors, mediated by MATH-BTB/POZ (for Meprin and TRAF [tumor necrosis factor receptor associated factor] homolog)-Broad complex, Tramtrack, Bric-a-brac/Pox virus and Zinc finger) proteins. The assembly with an E3 ligase causes degradation of their substrates via the 26S proteasome, as demonstrated for the WRINKLED1 ERF/AP2 protein. Furthermore, loss of MATH-BTB/POZ proteins widely affects plant development and causes altered fatty acid contents in mutant seeds. Overall, this work demonstrates a link between fatty acid metabolism and E3 ligase activities in plants and establishes CUL3-based E3 ligases as key regulators in transcriptional processes that involve ERF/AP2 family members. PMID:23792371

  3. COMBREX-DB: an experiment centered database of protein function: knowledge, predictions and knowledge gaps.

    PubMed

    Chang, Yi-Chien; Hu, Zhenjun; Rachlin, John; Anton, Brian P; Kasif, Simon; Roberts, Richard J; Steffen, Martin

    2016-01-04

    The COMBREX database (COMBREX-DB; combrex.bu.edu) is an online repository of information related to (i) experimentally determined protein function, (ii) predicted protein function, (iii) relationships among proteins of unknown function and various types of experimental data, including molecular function, protein structure, and associated phenotypes. The database was created as part of the novel COMBREX (COMputational BRidges to EXperiments) effort aimed at accelerating the rate of gene function validation. It currently holds information on ∼ 3.3 million known and predicted proteins from over 1000 completely sequenced bacterial and archaeal genomes. The database also contains a prototype recommendation system for helping users identify those proteins whose experimental determination of function would be most informative for predicting function for other proteins within protein families. The emphasis on documenting experimental evidence for function predictions, and the prioritization of uncharacterized proteins for experimental testing distinguish COMBREX from other publicly available microbial genomics resources. This article describes updates to COMBREX-DB since an initial description in the 2011 NAR Database Issue. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Identification of Functional Candidates amongst Hypothetical Proteins of Treponema pallidum ssp. pallidum

    PubMed Central

    Naqvi, Ahmad Abu Turab; Shahbaaz, Mohd; Ahmad, Faizan; Hassan, Md. Imtaiyaz

    2015-01-01

    Syphilis is a globally occurring venereal disease, and its infection is propagated through sexual contact. The causative agent of syphilis, Treponema pallidum ssp. pallidum, a Gram-negative sphirochaete, is an obligate human parasite. Genome of T. pallidum ssp. pallidum SS14 strain (RefSeq NC_010741.1) encodes 1,027 proteins, of which 444 proteins are known as hypothetical proteins (HPs), i.e., proteins of unknown functions. Here, we performed functional annotation of HPs of T. pallidum ssp. pallidum using various database, domain architecture predictors, protein function annotators and clustering tools. We have analyzed the sequences of 444 HPs of T. pallidum ssp. pallidum and subsequently predicted the function of 207 HPs with a high level of confidence. However, functions of 237 HPs are predicted with less accuracy. We found various enzymes, transporters, binding proteins in the annotated group of HPs that may be possible molecular targets, facilitating for the survival of pathogen. Our comprehensive analysis helps to understand the mechanism of pathogenesis to provide many novel potential therapeutic interventions. PMID:25894582

  5. Identification of functional candidates amongst hypothetical proteins of Treponema pallidum ssp. pallidum.

    PubMed

    Naqvi, Ahmad Abu Turab; Shahbaaz, Mohd; Ahmad, Faizan; Hassan, Md Imtaiyaz

    2015-01-01

    Syphilis is a globally occurring venereal disease, and its infection is propagated through sexual contact. The causative agent of syphilis, Treponema pallidum ssp. pallidum, a Gram-negative sphirochaete, is an obligate human parasite. Genome of T. pallidum ssp. pallidum SS14 strain (RefSeq NC_010741.1) encodes 1,027 proteins, of which 444 proteins are known as hypothetical proteins (HPs), i.e., proteins of unknown functions. Here, we performed functional annotation of HPs of T. pallidum ssp. pallidum using various database, domain architecture predictors, protein function annotators and clustering tools. We have analyzed the sequences of 444 HPs of T. pallidum ssp. pallidum and subsequently predicted the function of 207 HPs with a high level of confidence. However, functions of 237 HPs are predicted with less accuracy. We found various enzymes, transporters, binding proteins in the annotated group of HPs that may be possible molecular targets, facilitating for the survival of pathogen. Our comprehensive analysis helps to understand the mechanism of pathogenesis to provide many novel potential therapeutic interventions.

  6. Protein recovery from rainbow trout (Oncorhynchus mykiss) processing byproducts via isoelectric solubilization/precipitation and its gelation properties as affected by functional additives.

    PubMed

    Chen, Yi-Chen; Jaczynski, Jacek

    2007-10-31

    Solubility of rainbow trout proteins was determined between pH 1.5 and 13.0 and various ionic strengths (IS). Minimum solubility occurred at pH 5.5; however, when IS = 0.2, the minimum solubility shifted toward more acidic pH. Isoelectric solubilization/precipitation was applied to trout processing byproducts (fish meat left over on bones, head, skin, etc.), resulting in protein recovery yields (Kjeldahl, dry basis) between 77.7% and 89.0%, depending of the pH used for solubilization and precipitation. The recovered protein contained 1.4-2.1% ash (dry basis), while the trout processing byproducts (i.e., starting material) 13.9%. Typical boneless and skinless trout fillets contain 5.5% ash, and therefore, the isoelectric solubilization/precipitation effectively removed impurities such as bones, scales, skin, etc., from the trout processing byproducts. The recovered proteins retained gel-forming ability as assessed with dynamic rheology, torsion test, and texture profile analysis (TPA). However, the recovered proteins failed to gel unless beef plasma protein (BPP) was added. Even with BPP, the recovered protein showed some proteolysis between 40 and 55 degrees C. Addition of potato starch, transglutaminase, and phosphate to the recovered proteins resulted in good texture of trout gels as confirmed by torsion test and TPA. Higher ( P < 0.05) shear stress and strain were measured for gels developed from basic pH treatments than the acidic counterparts. However, proteins recovered from acidic treatments had higher ( P < 0.05) lipid content than the basic treatments. This is probably why the gels from acidic treatments were whiter ( L* - 3 b*) ( P < 0.05) than those from the basic ones. Our study demonstrates that functional proteins can be efficiently recovered from low-value fish processing byproducts using isoelectric solubilization/precipitation and subsequently be used in value-added human foods.

  7. New Tethered Phospholipid Bilayers Integrating Functional G-Protein-Coupled Receptor Membrane Proteins.

    PubMed

    Chadli, Meriem; Rebaud, Samuel; Maniti, Ofelia; Tillier, Bruno; Cortès, Sandra; Girard-Egrot, Agnès

    2017-10-03

    Membrane proteins exhibiting extra- and intracellular domains require an adequate near-native lipid platform for their functional reconstitution. With this aim, we developed a new technology enabling the formation of a peptide-tethered bilayer lipid membrane (pep-tBLM), a lipid bilayer grafted onto peptide spacers, by way of a metal-chelate interaction. To this end, we designed an original peptide spacer derived from the natural α-laminin thiopeptide (P19) possessing a cysteine residue in the N-terminal extremity for grafting onto gold and a C-terminal extremity modified by four histidine residues (P19-4H). In the presence of nickel, the use of this anchor allowed us to bind liposomes of variable compositions containing a 2% molar ratio of a chelating lipid, 1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-carboxypentyl)iminodiacetic acid)succinyl] so-called DOGS-NTA, and to form the planar bilayer by triggering liposome fusion by an α-helical (AH) peptide derived from the N-terminus of the hepatitis C virus NS5A protein. The formation of pep-tBLMs was characterized by surface plasmon resonance imaging (SPRi), and their continuity, fluidity, and homogeneity were demonstrated by fluorescence recovery after photobleaching (FRAP), with a diffusion coefficient of 2.5 × 10 -7 cm 2 /s, and atomic force microscopy (AFM). By using variable lipid compositions including phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE), phosphatidylinositol 4,5-bisphosphate (PIP 2 ), sphingomyelin (SM), phosphatidic acid (PA), and cholesterol (Chol) in various ratios, we show that the membrane can be formed independently from the lipid composition. We made the most of this advantage to reincorporate a transmembrane protein in an adapted complex lipid composition to ensure its functional reinsertion. For this purpose, a cell-free expression system was used to produce proteoliposomes expressing the functional C-X-C motif chemokine receptor 4 (CXCR4), a seven

  8. Smart polyhydroxyalkanoate nanobeads by protein based functionalization.

    PubMed

    Dinjaski, Nina; Prieto, M Auxiliadora

    2015-05-01

    The development of innovative medicines and personalized biomedical approaches calls for new generation easily tunable biomaterials that can be manufactured applying straightforward and low-priced technologies. Production of functionalized bacterial polyhydroxyalkanoate (PHA) nanobeads by harnessing their natural carbon-storage granule production system is a thrilling recent development. This branch of nanobiotechnology employs proteins intrinsically binding the PHA granules as tags to immobilize recombinant proteins of interest and design functional nanocarriers for wide range of applications. Additionally, the implementation of new methodological platforms regarding production of endotoxin free PHA nanobeads using Gram-positive bacteria opened new avenues for biomedical applications. This prompts serious considerations of possible exploitation of bacterial cell factories as alternatives to traditional chemical synthesis and sources of novel bioproducts that could dramatically expand possible applications of biopolymers. In the 21st century, we are coming into the age of personalized medicine. There is a growing use of biomaterials in the clinical setting. In this review article, the authors describe the use of natural polyhydroxyalkanoate (PHA) nanoparticulates, which are formed within bacterial cells and can be easily functionalized. The potential uses would include high-affinity bioseparation, enzyme immobilization, protein delivery, diagnostics etc. The challenges of this approach remain the possible toxicity from endotoxin and the high cost of production. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Endothelial mechanotransduction proteins and vascular function are altered by dietary sucrose supplementation in healthy young male subjects.

    PubMed

    Gliemann, Lasse; Rytter, Nicolai; Lindskrog, Mads; Slingsby, Martina H Lundberg; Åkerström, Thorbjörn; Sylow, Lykke; Richter, Erik A; Hellsten, Ylva

    2017-08-15

    Mechanotransduction in endothelial cells is a central mechanism in the regulation of vascular tone and vascular remodelling Mechanotransduction and vascular function may be affected by high sugar levels in plasma because of a resulting increase in oxidative stress and increased levels of advanced glycation end-products (AGE). In healthy young subjects, 2 weeks of daily supplementation with 3 × 75 g of sucrose was found to reduce blood flow in response to passive lower leg movement and in response to 12 W of knee extensor exercise. This vascular impairment was paralleled by up-regulation of platelet endothelial cell adhesion molecule (PECAM)-1, endothelial nitric oxide synthase, NADPH oxidase and Rho family GTPase Rac1 protein expression, an increased basal phosphorylation status of vascular endothelial growth factor receptor 2 and a reduced phosphorylation status of PECAM-1. There were no measurable changes in AGE levels. The findings of the present study demonstrate that daily high sucrose intake markedly affects mechanotransduction proteins and has a detrimental effect on vascular function. Endothelial mechanotransduction is important for vascular function but alterations and activation of vascular mechanosensory proteins have not been investigated in humans. In endothelial cell culture, simple sugars effectively impair mechanosensor proteins. To study mechanosensor- and vascular function in humans, 12 young healthy male subjects supplemented their diet with 3 × 75 g sucrose day -1 for 14 days in a randomized cross-over design. Before and after the intervention period, the hyperaemic response to passive lower leg movement and active knee extensor exercise was determined by ultrasound doppler. A muscle biopsy was obtained from the thigh muscle before and after acute passive leg movement to allow assessment of protein amounts and the phosphorylation status of mechanosensory proteins and NADPH oxidase. The sucrose intervention led to a reduced flow

  10. deepNF: Deep network fusion for protein function prediction.

    PubMed

    Gligorijevic, Vladimir; Barot, Meet; Bonneau, Richard

    2018-06-01

    The prevalence of high-throughput experimental methods has resulted in an abundance of large-scale molecular and functional interaction networks. The connectivity of these networks provides a rich source of information for inferring functional annotations for genes and proteins. An important challenge has been to develop methods for combining these heterogeneous networks to extract useful protein feature representations for function prediction. Most of the existing approaches for network integration use shallow models that encounter difficulty in capturing complex and highly-nonlinear network structures. Thus, we propose deepNF, a network fusion method based on Multimodal Deep Autoencoders to extract high-level features of proteins from multiple heterogeneous interaction networks. We apply this method to combine STRING networks to construct a common low-dimensional representation containing high-level protein features. We use separate layers for different network types in the early stages of the multimodal autoencoder, later connecting all the layers into a single bottleneck layer from which we extract features to predict protein function. We compare the cross-validation and temporal holdout predictive performance of our method with state-of-the-art methods, including the recently proposed method Mashup. Our results show that our method outperforms previous methods for both human and yeast STRING networks. We also show substantial improvement in the performance of our method in predicting GO terms of varying type and specificity. deepNF is freely available at: https://github.com/VGligorijevic/deepNF. vgligorijevic@flatironinstitute.org, rb133@nyu.edu. Supplementary data are available at Bioinformatics online.

  11. Role of the MAGUK protein family in synapse formation and function.

    PubMed

    Oliva, Carlos; Escobedo, Pía; Astorga, César; Molina, Claudia; Sierralta, Jimena

    2012-01-01

    Synaptic function is crucially dependent on the spatial organization of the presynaptic and postsynaptic apparatuses and the juxtaposition of both membrane compartments. This precise arrangement is achieved by a protein network at the submembrane region of each cell that is built around scaffold proteins. The membrane-associated guanylate kinase (MAGUK) family of proteins is a widely expressed and well-conserved group of proteins that plays an essential role in the formation and regulation of this scaffolding. Here, we review general features of this protein family, focusing on the discs large and calcium/calmodulin-dependent serine protein kinase subfamilies of MAGUKs in the formation, function, and plasticity of synapses. Copyright © 2011 Wiley Periodicals, Inc.

  12. Effect of Protein Intake on Lean Body Mass in Functionally Limited Older Men: A Randomized Clinical Trial.

    PubMed

    Bhasin, Shalender; Apovian, Caroline M; Travison, Thomas G; Pencina, Karol; Moore, Lynn L; Huang, Grace; Campbell, Wayne W; Li, Zhuoying; Howland, Andrew S; Chen, Ruo; Knapp, Philip E; Singer, Martha R; Shah, Mitali; Secinaro, Kristina; Eder, Richard V; Hally, Kathleen; Schram, Haley; Bearup, Richelle; Beleva, Yusnie M; McCarthy, Ashley C; Woodbury, Erin; McKinnon, Jennifer; Fleck, Geeta; Storer, Thomas W; Basaria, Shehzad

    2018-04-01

    The Institute of Medicine set the recommended dietary allowance (RDA) for protein at 0.8 g/kg/d for the entire adult population. It remains controversial whether protein intake greater than the RDA is needed to maintain protein anabolism in older adults. To investigate whether increasing protein intake to 1.3 g/kg/d in older adults with physical function limitations and usual protein intake within the RDA improves lean body mass (LBM), muscle performance, physical function, fatigue, and well-being and augments LBM response to a muscle anabolic drug. This randomized clinical trial with a 2 × 2 factorial design was conducted in a research center. A modified intent-to-treat analytic strategy was used. Participants were 92 functionally limited men 65 years or older with usual protein intake less thanor equal to 0.83 g/kg/d within the RDA. The first participant was randomized on September 21, 2011, and the last participant completed the study on January 19, 2017. Participants were randomized for 6 months to controlled diets with 0.8 g/kg/d of protein plus placebo, 1.3 g/kg/d of protein plus placebo, 0.8 g/kg/d of protein plus testosterone enanthate (100 mg weekly), or 1.3 g/kg/d of protein plus testosterone. Prespecified energy and protein contents were provided through custom-prepared meals and supplements. The primary outcome was change in LBM. Secondary outcomes were muscle strength, power, physical function, health-related quality of life, fatigue, affect balance, and well-being. Among 92 men (mean [SD] age, 73.0 [5.8] years), the 4 study groups did not differ in baseline characteristics. Changes from baseline in LBM (0.31 kg; 95% CI, -0.46 to 1.08 kg; P = .43) and appendicular (0.04 kg; 95% CI, -0.48 to 0.55 kg; P = .89) and trunk (0.24 kg; 95% CI, -0.17 to 0.66 kg; P = .24) lean mass, as well as muscle strength and power, walking speed and stair-climbing power, health-related quality of life, fatigue, and well-being, did not differ between men

  13. STN1 OB Fold Mutation Alters DNA Binding and Affects Selective Aspects of CST Function

    PubMed Central

    Bhattacharjee, Anukana; Stewart, Jason; Chaiken, Mary; Price, Carolyn M.

    2016-01-01

    Mammalian CST (CTC1-STN1-TEN1) participates in multiple aspects of telomere replication and genome-wide recovery from replication stress. CST resembles Replication Protein A (RPA) in that it binds ssDNA and STN1 and TEN1 are structurally similar to RPA2 and RPA3. Conservation between CTC1 and RPA1 is less apparent. Currently the mechanism underlying CST action is largely unknown. Here we address CST mechanism by using a DNA-binding mutant, (STN1 OB-fold mutant, STN1-OBM) to examine the relationship between DNA binding and CST function. In vivo, STN1-OBM affects resolution of endogenous replication stress and telomere duplex replication but telomeric C-strand fill-in and new origin firing after exogenous replication stress are unaffected. These selective effects indicate mechanistic differences in CST action during resolution of different replication problems. In vitro binding studies show that STN1 directly engages both short and long ssDNA oligonucleotides, however STN1-OBM preferentially destabilizes binding to short substrates. The finding that STN1-OBM affects binding to only certain substrates starts to explain the in vivo separation of function observed in STN1-OBM expressing cells. CST is expected to engage DNA substrates of varied length and structure as it acts to resolve different replication problems. Since STN1-OBM will alter CST binding to only some of these substrates, the mutant should affect resolution of only a subset of replication problems, as was observed in the STN1-OBM cells. The in vitro studies also provide insight into CST binding mechanism. Like RPA, CST likely contacts DNA via multiple OB folds. However, the importance of STN1 for binding short substrates indicates differences in the architecture of CST and RPA DNA-protein complexes. Based on our results, we propose a dynamic DNA binding model that provides a general mechanism for CST action at diverse forms of replication stress. PMID:27690379

  14. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis.

    PubMed

    Du, Yushen; Wu, Nicholas C; Jiang, Lin; Zhang, Tianhao; Gong, Danyang; Shu, Sara; Wu, Ting-Ting; Sun, Ren

    2016-11-01

    Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. To fully comprehend the diverse functions of a protein, it is essential to understand the functionality of individual residues. Current methods are highly dependent on evolutionary sequence conservation, which is

  15. Fast digestive, leucine-rich, soluble milk proteins improve muscle protein anabolism, and mitochondrial function in undernourished old rats.

    PubMed

    Salles, Jérôme; Chanet, Audrey; Berry, Alexandre; Giraudet, Christophe; Patrac, Véronique; Domingues-Faria, Carla; Rocher, Christophe; Guillet, Christelle; Denis, Philippe; Pouyet, Corinne; Bonhomme, Cécile; Le Ruyet, Pascale; Rolland, Yves; Boirie, Yves; Walrand, Stéphane

    2017-11-01

    One strategy to manage malnutrition in older patients is to increase protein and energy intake. Here, we evaluate the influence of protein quality during refeeding on improvement in muscle protein and energy metabolism. Twenty-month-old male rats (n = 40) were fed 50% of their spontaneous intake for 12 weeks to induce malnutrition, then refed ad libitum with a standard diet enriched with casein or soluble milk proteins (22%) for 4 weeks. A 13C-valine was infused to measure muscle protein synthesis and expression of MuRF1, and MAFbx was measured to evaluate muscle proteolysis. mTOR pathway activation and mitochondrial function were assessed in muscle. Malnutrition was associated with a decrease in body weight, fat mass, and lean mass, particularly muscle mass. Malnutrition decreased muscle mTOR pathway activation and protein FSR associated with increased MuRF1 mRNA levels, and decreased mitochondrial function. The refeeding period partially restored fat mass and lean mass. Unlike the casein diet, the soluble milk protein diet improved muscle protein metabolism and mitochondrial function in old malnourished rats. These results suggest that providing better-quality proteins during refeeding may improve efficacy of renutrition in malnourished older patients. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. PDZ-containing proteins: alternative splicing as a source of functional diversity.

    PubMed

    Sierralta, Jimena; Mendoza, Carolina

    2004-12-01

    Scaffold proteins allow specific protein complexes to be assembled in particular regions of the cell at which they organize subcellular structures and signal transduction complexes. This characteristic is especially important for neurons, which are highly polarized cells. Among the domains contained by scaffold proteins, the PSD-95, Discs-large, ZO-1 (PDZ) domains are of particular relevance in signal transduction processes and maintenance of neuronal and epithelial polarity. These domains are specialized in the binding of the carboxyl termini of proteins allowing membrane proteins to be localized by the anchoring to the cytoskeleton mediated by PDZ-containing scaffold proteins. In vivo studies carried out in Drosophila have taught that the role of many scaffold proteins is not limited to a single process; thus, in many cases the same genes are expressed in different tissues and participate in apparently very diverse processes. In addition to the differential expression of interactors of scaffold proteins, the expression of variants of these molecular scaffolds as the result of the alternative processing of the genes that encode them is proving to be a very important source of variability and complexity on a main theme. Alternative splicing in the nervous system is well documented, where specific isoforms play roles in neurotransmission, ion channel function, neuronal cell recognition, and are developmentally regulated making it a major mechanism of functional diversity. Here we review the current state of knowledge about the diversity and the known function of PDZ-containing proteins in Drosophila with emphasis in the role played by alternatively processed forms in the diversity of functions attributed to this family of proteins.

  17. Feeding modality affects muscle protein deposition by influencing protein synthesis, but not degradation in muscle of neonatal pigs

    USDA-ARS?s Scientific Manuscript database

    Neonatal pigs can serve as dual-use models for nutrition research in animal agriculture and biomedical fields. To determine how feeding modality by either intermittent bolus or continuous schedule affects protein anabolism and catabolism, neonatal pigs (n = 6/group, 9-d-old) were overnight fasted (F...

  18. Protein Supplementation Does Not Affect Myogenic Adaptations to Resistance Training.

    PubMed

    Reidy, Paul T; Fry, Christopher S; Igbinigie, Sherry; Deer, Rachel R; Jennings, Kristofer; Cope, Mark B; Mukherjea, Ratna; Volpi, Elena; Rasmussen, Blake B

    2017-06-01

    It has been proposed that protein supplementation during resistance exercise training enhances muscle hypertrophy. The degree of hypertrophy during training is controlled in part through the activation of satellite cells and myonuclear accretion. This study aimed to determine the efficacy of protein supplementation (and the type of protein) during traditional resistance training on myofiber cross-sectional area, satellite cell content, and myonuclear addition. Healthy young men participated in supervised whole-body progressive resistance training 3 d·wk for 12 wk. Participants were randomized to one of three groups ingesting a daily 22-g macronutrient dose of soy-dairy protein blend (PB, n = 22), whey protein isolate (WP, n = 15), or an isocaloric maltodextrin placebo (MDP, n = 17). Lean mass, vastus lateralis myofiber-type-specific cross-sectional area, satellite cell content, and myonuclear addition were assessed before and after resistance training. PB and the pooled protein treatments (PB + WP = PRO) exhibited a greater whole-body lean mass %change compared with MDP (P = 0.057 for PB) and (P = 0.050 for PRO), respectively. All treatments demonstrated similar leg muscle hypertrophy and vastus lateralis myofiber-type-specific cross-sectional area (P < 0.05). Increases in myosin heavy chain I and II myofiber satellite cell content and myonuclei content were also detected after exercise training (P < 0.05). Protein supplementation during resistance training has a modest effect on whole-body lean mass as compared with exercise training without protein supplementation, and there was no effect on any outcome between protein supplement types (blend vs whey). However, protein supplementation did not enhance resistance exercise-induced increases in myofiber hypertrophy, satellite cell content, or myonuclear addition in young healthy men. We propose that as long as protein intake is adequate during muscle overload, the adaptations in muscle growth and function will not

  19. Expanded explorations into the optimization of an energy function for protein design

    PubMed Central

    Huang, Yao-ming; Bystroff, Christopher

    2014-01-01

    Nature possesses a secret formula for the energy as a function of the structure of a protein. In protein design, approximations are made to both the structural representation of the molecule and to the form of the energy equation, such that the existence of a general energy function for proteins is by no means guaranteed. Here we present new insights towards the application of machine learning to the problem of finding a general energy function for protein design. Machine learning requires the definition of an objective function, which carries with it the implied definition of success in protein design. We explored four functions, consisting of two functional forms, each with two criteria for success. Optimization was carried out by a Monte Carlo search through the space of all variable parameters. Cross-validation of the optimized energy function against a test set gave significantly different results depending on the choice of objective function, pointing to relative correctness of the built-in assumptions. Novel energy cross-terms correct for the observed non-additivity of energy terms and an imbalance in the distribution of predicted amino acids. This paper expands on the work presented at ACM-BCB, Orlando FL , October 2012. PMID:24384706

  20. Evolutionary conservation of Ebola virus proteins predicts important functions at residue level.

    PubMed

    Arslan, Ahmed; van Noort, Vera

    2017-01-15

    The recent outbreak of Ebola virus disease (EVD) resulted in a large number of human deaths. Due to this devastation, the Ebola virus has attracted renewed interest as model for virus evolution. Recent literature on Ebola virus (EBOV) has contributed substantially to our understanding of the underlying genetics and its scope with reference to the 2014 outbreak. But no study yet, has focused on the conservation patterns of EBOV proteins. We analyzed the evolution of functional regions of EBOV and highlight the function of conserved residues in protein activities. We apply an array of computational tools to dissect the functions of EBOV proteins in detail: (i) protein sequence conservation, (ii) protein-protein interactome analysis, (iii) structural modeling and (iv) kinase prediction. Our results suggest the presence of novel post-translational modifications in EBOV proteins and their role in the modulation of protein functions and protein interactions. Moreover, on the basis of the presence of ATM recognition motifs in all EBOV proteins we postulate a role of DNA damage response pathways and ATM kinase in EVD. The ATM kinase is put forward, for further evaluation, as novel potential therapeutic target. http://www.biw.kuleuven.be/CSB/EBOV-PTMs CONTACT: vera.vannoort@biw.kuleuven.beSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  1. A scoring function based on solvation thermodynamics for protein structure prediction

    PubMed Central

    Du, Shiqiao; Harano, Yuichi; Kinoshita, Masahiro; Sakurai, Minoru

    2012-01-01

    We predict protein structure using our recently developed free energy function for describing protein stability, which is focused on solvation thermodynamics. The function is combined with the current most reliable sampling methods, i.e., fragment assembly (FA) and comparative modeling (CM). The prediction is tested using 11 small proteins for which high-resolution crystal structures are available. For 8 of these proteins, sequence similarities are found in the database, and the prediction is performed with CM. Fairly accurate models with average Cα root mean square deviation (RMSD) ∼ 2.0 Å are successfully obtained for all cases. For the rest of the target proteins, we perform the prediction following FA protocols. For 2 cases, we obtain predicted models with an RMSD ∼ 3.0 Å as the best-scored structures. For the other case, the RMSD remains larger than 7 Å. For all the 11 target proteins, our scoring function identifies the experimentally determined native structure as the best structure. Starting from the predicted structure, replica exchange molecular dynamics is performed to further refine the structures. However, we are unable to improve its RMSD toward the experimental structure. The exhaustive sampling by coarse-grained normal mode analysis around the native structures reveals that our function has a linear correlation with RMSDs < 3.0 Å. These results suggest that the function is quite reliable for the protein structure prediction while the sampling method remains one of the major limiting factors in it. The aspects through which the methodology could further be improved are discussed. PMID:27493529

  2. Interrogation of Mammalian Protein Complex Structure, Function, and Membership Using Genome-Scale Fitness Screens.

    PubMed

    Pan, Joshua; Meyers, Robin M; Michel, Brittany C; Mashtalir, Nazar; Sizemore, Ann E; Wells, Jonathan N; Cassel, Seth H; Vazquez, Francisca; Weir, Barbara A; Hahn, William C; Marsh, Joseph A; Tsherniak, Aviad; Kadoch, Cigall

    2018-05-23

    Protein complexes are assemblies of subunits that have co-evolved to execute one or many coordinated functions in the cellular environment. Functional annotation of mammalian protein complexes is critical to understanding biological processes, as well as disease mechanisms. Here, we used genetic co-essentiality derived from genome-scale RNAi- and CRISPR-Cas9-based fitness screens performed across hundreds of human cancer cell lines to assign measures of functional similarity. From these measures, we systematically built and characterized functional similarity networks that recapitulate known structural and functional features of well-studied protein complexes and resolve novel functional modules within complexes lacking structural resolution, such as the mammalian SWI/SNF complex. Finally, by integrating functional networks with large protein-protein interaction networks, we discovered novel protein complexes involving recently evolved genes of unknown function. Taken together, these findings demonstrate the utility of genetic perturbation screens alone, and in combination with large-scale biophysical data, to enhance our understanding of mammalian protein complexes in normal and disease states. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Acetyllysine-binding and function of bromodomain-containing proteins in chromatin.

    PubMed

    Dyson, M H; Rose, S; Mahadevan, L C

    2001-08-01

    Acetylated histones are generally associated with active chromatin. The bromodomain has recently been identified as a protein module capable of binding to acetylated lysine residues, and hence is able to mediate the recruitment of factors to acetylated chromatin. Functional studies of bromodomain-containing proteins indicate how this domain contributes to the activity of a number of nuclear factors including histone acetyltransferases and chromatin remodelling complexes. Here, we review the characteristics of acetyllysine-binding by bromodomains, discuss associated domains found in these proteins, and address the function of the bromodomain in the context of chromatin. Finally, the modulation of bromodomain binding by neighbouring post-translational modifications within histone tails might provide a mechanism through which combinations of covalent marks could exert control on chromatin function.

  4. Dynamic factors affecting gaseous ligand binding in an artificial oxygen transport protein.

    PubMed

    Zhang, Lei; Andersen, Eskil M E; Khajo, Abdelahad; Magliozzo, Richard S; Koder, Ronald L

    2013-01-22

    We report the functional analysis of an artificial hexacoordinate oxygen transport protein, HP7, which operates via a mechanism similar to that of human neuroglobin and cytoglobin: the destabilization of one of two heme-ligating histidine residues. In the case of HP7, this is the result of the coupling of histidine side chain ligation with the burial of three charged glutamate residues on the same helix. Here we compare gaseous ligand binding, including rates, affinities, and oxyferrous state lifetimes, of both heme binding sites in HP7. We find that despite the identical sequence of helices in both binding sites, there are differences in oxygen affinity and oxyferrous state lifetime that may be the result of differences in the freedom of motion imposed by the candelabra fold on the two sites of the protein. We further examine the effect of mutational removal of the buried glutamates on function. Heme iron in the ferrous state of this mutant is rapidly oxidized when exposed to oxygen. Compared to that of HP7, the distal histidine affinity is increased by a 22-fold decrease in the histidine ligand off rate. Electron paramagnetic resonance comparison of these ferric hemoproteins demonstrates that the mutation increases the level of disorder at the heme binding site. Nuclear magnetic resonance-detected deuterium exchange demonstrates that the mutation greatly increases the degree of penetration of water into the protein core. The inability of the mutant protein to bind oxygen may be due to an increased level of water penetration, the large decrease in binding rate caused by the increase in distal histidine affinity, or a combination of the two factors. Together, these data underline the importance of the control of protein dynamics in the design of functional artificial proteins.

  5. Ice-Binding Proteins and Their Function.

    PubMed

    Bar Dolev, Maya; Braslavsky, Ido; Davies, Peter L

    2016-06-02

    Ice-binding proteins (IBPs) are a diverse class of proteins that assist organism survival in the presence of ice in cold climates. They have different origins in many organisms, including bacteria, fungi, algae, diatoms, plants, insects, and fish. This review covers the gamut of IBP structures and functions and the common features they use to bind ice. We discuss mechanisms by which IBPs adsorb to ice and interfere with its growth, evidence for their irreversible association with ice, and methods for enhancing the activity of IBPs. The applications of IBPs in the food industry, in cryopreservation, and in other technologies are vast, and we chart out some possibilities.

  6. Human NK Cell Subset Functions Are Differentially Affected by Adipokines

    PubMed Central

    Huebner, Lena; Engeli, Stefan; Wrann, Christiane D.; Goudeva, Lilia; Laue, Tobias; Kielstein, Heike

    2013-01-01

    Background Obesity is a risk factor for various types of infectious diseases and cancer. The increase in adipose tissue causes alterations in both adipogenesis and the production of adipocyte-secreted proteins (adipokines). Since natural killer (NK) cells are the host’s primary defense against virus-infected and tumor cells, we investigated how adipocyte-conditioned medium (ACM) affects functions of two distinct human NK cell subsets. Methods Isolated human peripheral blood mononuclear cells (PBMCs) were cultured with various concentrations of human and murine ACM harvested on two different days during adipogenesis and analyzed by fluorescent-activated cell sorting (FACS). Results FACS analyses showed that the expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), granzyme A (GzmA) and interferon (IFN)-γ in NK cells was regulated in a subset-specific manner. ACM treatment altered IFN-γ expression in CD56dim NK cells. The production of GzmA in CD56bright NK cells was differentially affected by the distinct adipokine compositions harvested at different states of adipogenesis. Comparison of the treatment with either human or murine ACM revealed that adipokine-induced effects on NK cell expression of the leptin receptor (Ob-R), TRAIL and IFN-γ were species-specific. Conclusion Considering the growing prevalence of obesity and the various disorders related to it, the present study provides further insights into the roles human NK cell subsets play in the obesity-associated state of chronic low-grade inflammation. PMID:24098717

  7. Does Subacromial Osteolysis Affect Shoulder Function after Clavicle Hook Plating?

    PubMed Central

    Sun, Siwei; Gan, Minfeng; Sun, Han; Wu, Guizhong; Yang, Huilin; Zhou, Feng

    2016-01-01

    Purpose. To evaluate whether subacromial osteolysis, one of the major complications of the clavicle hook plate procedure, affects shoulder function. Methods. We had performed a retrospective study of 72 patients diagnosed with a Neer II lateral clavicle fracture or Degree-III acromioclavicular joint dislocation in our hospital from July 2012 to December 2013. All these patients had undergone surgery with clavicle hook plate and were divided into two groups based on the occurrence of subacromial osteolysis. By using the Constant-Murley at the first follow-up visit after plates removal, we evaluated patients' shoulder function to judge if it has been affected by subacromial osteolysis. Results. We have analyzed clinical data for these 72 patients, which shows that there is no significant difference between group A (39 patients) and group B (33 patients) in age, gender, injury types or side, and shoulder function (the Constant-Murley scores are 93.38 ± 3.56 versus 94.24 ± 3.60, P > 0.05). Conclusion. The occurrence of subacromial osteolysis is not rare, and also it does not significantly affect shoulder function. PMID:27034937

  8. Intracellular Transport and Kinesin Superfamily Proteins: Structure, Function and Dynamics

    NASA Astrophysics Data System (ADS)

    Hirokawa, N.; Takemura, R.

    Using various molecular cell biological and molecular genetic approaches, we identified kinesin superfamily proteins (KIFs) and characterized their significant functions in intracellular transport, which is fundamental for cellular morphogenesis, functioning, and survival. We showed that KIFs not only transport various membranous organelles, proteins complexes and mRNAs fundamental for cellular functions but also play significant roles in higher brain functions such as memory and learning, determination of important developmental processes such as left-right asymmetry formation and brain wiring. We also elucidated that KIFs recognize and bind to their specific cargoes using scaffolding or adaptor protein complexes. Concerning the mechanism of motility, we discovered the simplest unique monomeric motor KIF1A and determined by molecular biophysics, cryoelectron microscopy and X-ray crystallography that KIF1A can move on a microtubule processively as a monomer by biased Brownian motion and by hydolyzing ATP.

  9. Hypothesis: NDL proteins function in stress responses by regulating microtubule organization

    PubMed Central

    Khatri, Nisha; Mudgil, Yashwanti

    2015-01-01

    N-MYC DOWNREGULATED-LIKE proteins (NDL), members of the alpha/beta hydrolase superfamily were recently rediscovered as interactors of G-protein signaling in Arabidopsis thaliana. Although the precise molecular function of NDL proteins is still elusive, in animals these proteins play protective role in hypoxia and expression is induced by hypoxia and nickel, indicating role in stress. Homology of NDL1 with animal counterpart N-MYC DOWNREGULATED GENE (NDRG) suggests similar functions in animals and plants. It is well established that stress responses leads to the microtubule depolymerization and reorganization which is crucial for stress tolerance. NDRG is a microtubule-associated protein which mediates the microtubule organization in animals by causing acetylation and increases the stability of α-tubulin. As NDL1 is highly homologous to NDRG, involvement of NDL1 in the microtubule organization during plant stress can also be expected. Discovery of interaction of NDL with protein kinesin light chain- related 1, enodomembrane family protein 70, syntaxin-23, tubulin alpha-2 chain, as a part of G protein interactome initiative encourages us to postulate microtubule stabilizing functions for NDL family in plants. Our search for NDL interactors in G protein interactome also predicts the role of NDL proteins in abiotic stress tolerance management. Based on published report in animals and predicted interacting partners for NDL in G protein interactome lead us to hypothesize involvement of NDL in the microtubule organization during abiotic stress management in plants. PMID:26583023

  10. Hypothesis: NDL proteins function in stress responses by regulating microtubule organization.

    PubMed

    Khatri, Nisha; Mudgil, Yashwanti

    2015-01-01

    N-MYC DOWNREGULATED-LIKE proteins (NDL), members of the alpha/beta hydrolase superfamily were recently rediscovered as interactors of G-protein signaling in Arabidopsis thaliana. Although the precise molecular function of NDL proteins is still elusive, in animals these proteins play protective role in hypoxia and expression is induced by hypoxia and nickel, indicating role in stress. Homology of NDL1 with animal counterpart N-MYC DOWNREGULATED GENE (NDRG) suggests similar functions in animals and plants. It is well established that stress responses leads to the microtubule depolymerization and reorganization which is crucial for stress tolerance. NDRG is a microtubule-associated protein which mediates the microtubule organization in animals by causing acetylation and increases the stability of α-tubulin. As NDL1 is highly homologous to NDRG, involvement of NDL1 in the microtubule organization during plant stress can also be expected. Discovery of interaction of NDL with protein kinesin light chain- related 1, enodomembrane family protein 70, syntaxin-23, tubulin alpha-2 chain, as a part of G protein interactome initiative encourages us to postulate microtubule stabilizing functions for NDL family in plants. Our search for NDL interactors in G protein interactome also predicts the role of NDL proteins in abiotic stress tolerance management. Based on published report in animals and predicted interacting partners for NDL in G protein interactome lead us to hypothesize involvement of NDL in the microtubule organization during abiotic stress management in plants.

  11. Intestinal epithelial barrier function and tight junction proteins with heat and exercise.

    PubMed

    Dokladny, Karol; Zuhl, Micah N; Moseley, Pope L

    2016-03-15

    A single layer of enterocytes and tight junctions (intercellular multiprotein complexes) form the intestinal epithelial barrier that controls transport of molecules through transcellular and paracellular pathways. A dysfunctional or "leaky" intestinal tight junction barrier allows augmented permeation of luminal antigens, endotoxins, and bacteria into the blood stream. Various substances and conditions have been shown to affect the maintenance of the intestinal epithelial tight junction barrier. The primary focus of the present review is to analyze the effects of exertional or nonexertional (passive hyperthermia) heat stress on tight junction barrier function in in vitro and in vivo (animals and humans) models. Our secondary focus is to review changes in tight junction proteins in response to exercise or hyperthermic conditions. Finally, we discuss some pharmacological or nutritional interventions that may affect the cellular mechanisms involved in maintaining homeostasis of the intestinal epithelial tight junction barrier during heat stress or exercise. Copyright © 2016 the American Physiological Society.

  12. TMEM16 proteins: unknown structure and confusing functions.

    PubMed

    Picollo, Alessandra; Malvezzi, Mattia; Accardi, Alessio

    2015-01-16

    The TMEM16 family of membrane proteins, also known as anoctamins, plays key roles in a variety of physiological functions that range from ion transport to phospholipid scrambling and to regulating other ion channels. The first two family members to be functionally characterized, TMEM16A (ANO1) and TMEM16B (ANO2), form Ca(2+)-activated Cl(-) channels and are important for transepithelial ion transport, olfaction, phototransduction, smooth muscle contraction, nociception, cell proliferation and control of neuronal excitability. The roles of other family members, such as TMEM16C (ANO3), TMEM16D (ANO4), TMEM16F (ANO6), TMEM16G (ANO7) and TMEM16J (ANO9), remain poorly understood and controversial. These homologues were reported to be phospholipid scramblases, ion channels, to have both functions or to be regulatory subunits of other channels. Mutations in TMEM16F cause Scott syndrome, a bleeding disorder caused by impaired Ca(2+)-dependent externalization of phosphatidylserine in activated platelets, suggesting that this homologue might be a scramblase. However, overexpression of TMEM16F has also been associated with a remarkable number of different ion channel types, raising the possibility that this protein might be involved in both ion and lipid transports. The recent identification of an ancestral TMEM16 homologue with intrinsic channel and scramblase activities supports this hypothesis. Thus, the TMEM16 family might have diverged in two or three different subclasses, channels, scramblases and dual-function channel/scramblases. The structural bases and functional implication of such a functional diversity within a single protein family remain to be elucidated and the links between TMEM16 functions and human physiology and pathologies need to be investigated. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Induced lung inflammation and dietary protein supply affect nitrogen retention and amino acid metabolism in growing pigs.

    PubMed

    Kampman-van de Hoek, Esther; Sakkas, Panagiotis; Gerrits, Walter J J; van den Borne, Joost J G C; van der Peet-Schwering, Carola M C; Jansman, Alfons J M

    2015-02-14

    It is hypothesised that during immune system activation, there is a competition for amino acids (AA) between body protein deposition and immune system functioning. The aim of the present study was to quantify the effect of immune system activation on N retention and AA metabolism in growing pigs, depending on dietary protein supply. A total of sixteen barrows received an adequate (Ad) or restricted (Res) amount of dietary protein, and were challenged at day 0 with intravenous complete Freund's adjuvant (CFA). At days - 5, 3 and 8, an irreversible loss rate (ILR) of eight AA was determined. CFA successfully activated the immune system, as indicated by a 2- to 4-fold increase in serum concentrations of acute-phase proteins (APP). Pre-challenge C-reactive protein concentrations were lower (P< 0·05) and pre- and post-challenge albumin tended to be lower in Res-pigs. These findings indicate that a restricted protein supply can limit the acute-phase response. CFA increased urinary N losses (P= 0·04) and tended to reduce N retention in Ad-pigs, but not in Res-pigs (P= 0·07). The ILR for Val was lower (P= 0·05) at day 8 than at day 3 in the post-challenge period. The ILR of most AA, except for Trp, were strongly affected by dietary protein supply and positively correlated with N retention. The correlations between the ILR and APP indices were absent or negative, indicating that changes in AA utilisation for APP synthesis were either not substantial or more likely outweighed by a decrease in muscle protein synthesis during immune system activation in growing pigs.

  14. Evolved Escherichia coli strains for amplified, functional expression of membrane proteins.

    PubMed

    Gul, Nadia; Linares, Daniel M; Ho, Franz Y; Poolman, Bert

    2014-01-09

    The major barrier to the physical characterization and structure determination of membrane proteins is low protein yield and/or low functionality in recombinant expression. The enteric bacterium Escherichia coli is the most widely employed organism for producing recombinant proteins. Beside several advantages of this expression host, one major drawback is that the protein of interest does not always adopt its native conformation and may end up in large insoluble aggregates. We describe a robust strategy to increase the likelihood of overexpressing membrane proteins in a functional state. The method involves fusion in tandem of green fluorescent protein and the erythromycin resistance protein (23S ribosomal RNA adenine N-6 methyltransferase, ErmC) to the C-terminus of a target membrane protein. The fluorescence of green fluorescent protein is used to report the folding state of the target protein, whereas ErmC is used to select for increased expression. By gradually increasing the erythromycin concentration of the medium and testing different membrane protein targets, we obtained a number of evolved strains of which four (NG2, NG3, NG5 and NG6) were characterized and their genome was fully sequenced. Strikingly, each of the strains carried a mutation in the hns gene, whose product is involved in genome organization and transcriptional silencing. The degree of expression of (membrane) proteins correlates with the severity of the hns mutation, but cells in which hns was deleted showed an intermediate expression performance. We propose that (partial) removal of the transcriptional silencing mechanism changes the levels of proteins essential for the functional overexpression of membrane proteins. © 2013.

  15. Cysteine-rich secretory protein 3 plays a role in prostate cancer cell invasion and affects expression of PSA and ANXA1.

    PubMed

    Pathak, Bhakti R; Breed, Ananya A; Apte, Snehal; Acharya, Kshitish; Mahale, Smita D

    2016-01-01

    Cysteine-rich secretory protein 3 (CRISP-3) is upregulated in prostate cancer as compared to the normal prostate tissue. Higher expression of CRISP-3 has been linked to poor prognosis and hence it has been thought to act as a prognostic marker for prostate cancer. It is proposed to have a role in innate immunity but its role in prostate cancer is still unknown. In order to understand its function, its expression was stably knocked down in LNCaP cells. CRISP-3 knockdown did not affect cell viability but resulted in reduced invasiveness. Global gene expression changes upon CRISP-3 knockdown were identified by microarray analysis. Microarray data were quantitatively validated by evaluating the expression of seven candidate genes in three independent stable clones. Functional annotation of the differentially expressed genes identified cell adhesion, cell motility, and ion transport to be affected among other biological processes. Prostate-specific antigen (PSA, also known as Kallikrein 3) was the top most downregulated gene whose expression was also validated at protein level. Interestingly, expression of Annexin A1 (ANXA1), a known anti-inflammatory protein, was upregulated upon CRISP-3 knockdown. Re-introduction of CRISP-3 into the knockdown clone reversed the effect on invasiveness and also led to increased PSA expression. These results suggest that overexpression of CRISP-3 in prostate tumor may maintain higher PSA expression and lower ANXA1 expression. Our data also indicate that poor prognosis associated with higher CRISP-3 expression could be due to its role in cell invasion.

  16. Comparative Proteomics Identifies Host Immune System Proteins Affected by Infection with Mycobacterium bovis

    PubMed Central

    López, Vladimir; Villar, Margarita; Queirós, João; Vicente, Joaquín; Mateos-Hernández, Lourdes; Díez-Delgado, Iratxe; Contreras, Marinela; Alves, Paulo C.; Alberdi, Pilar; Gortázar, Christian; de la Fuente, José

    2016-01-01

    Mycobacteria of the Mycobacterium tuberculosis complex (MTBC) greatly impact human and animal health worldwide. The mycobacterial life cycle is complex, and the mechanisms resulting in pathogen infection and survival in host cells are not fully understood. Eurasian wild boar (Sus scrofa) are natural reservoir hosts for MTBC and a model for mycobacterial infection and tuberculosis (TB). In the wild boar TB model, mycobacterial infection affects the expression of innate and adaptive immune response genes in mandibular lymph nodes and oropharyngeal tonsils, and biomarkers have been proposed as correlates with resistance to natural infection. However, the mechanisms used by mycobacteria to manipulate host immune response are not fully characterized. Our hypothesis is that the immune system proteins under-represented in infected animals, when compared to uninfected controls, are used by mycobacteria to guarantee pathogen infection and transmission. To address this hypothesis, a comparative proteomics approach was used to compare host response between uninfected (TB-) and M. bovis-infected young (TB+) and adult animals with different infection status [TB lesions localized in the head (TB+) or affecting multiple organs (TB++)]. The results identified host immune system proteins that play an important role in host response to mycobacteria. Calcium binding protein A9, Heme peroxidase, Lactotransferrin, Cathelicidin and Peptidoglycan-recognition protein were under-represented in TB+ animals when compared to uninfected TB- controls, but protein levels were higher as infection progressed in TB++ animals when compared to TB- and/or TB+ adult wild boar. MHCI was the only protein over-represented in TB+ adult wild boar when compared to uninfected TB- controls. The results reported here suggest that M. bovis manipulates host immune response by reducing the production of immune system proteins. However, as infection progresses, wild boar immune response recovers to limit pathogen

  17. Soy proteins and isoflavones affect bone mineral density in older women: a randomized controlled trial.

    PubMed

    Kenny, Anne M; Mangano, Kelsey M; Abourizk, Robin H; Bruno, Richard S; Anamani, Denise E; Kleppinger, Alison; Walsh, Stephen J; Prestwood, Karen M; Kerstetter, Jane E

    2009-07-01

    Soy foods contain several components (isoflavones and amino acids) that potentially affect bone. Few long-term, large clinical trials of soy as a means of improving bone mineral density (BMD) in late postmenopausal women have been conducted. Our goal was to evaluate the long-term effect of dietary soy protein and/or soy isoflavone consumption on skeletal health in late postmenopausal women. We conducted a randomized, double-blind, placebo-controlled clinical trial in 131 healthy ambulatory women aged >60 y. Ninety-seven women completed the trial. After a 1-mo baseline period, subjects were randomly assigned into 1 of 4 intervention groups: soy protein (18 g) + isoflavone tablets (105 mg isoflavone aglycone equivalents), soy protein + placebo tablets, control protein + isoflavone tablets, and control protein + placebo tablets. Consumption of protein powder and isoflavone pills did not differ between groups, and compliance with the study powder and pills was 80-90%. No significant differences in BMD were observed between groups from baseline to 1 y after the intervention or in BMD change between equol and non-equol producers. However, there were significant negative correlations between total dietary protein (per kg) and markers of bone turnover (P < 0.05). Because soy protein and isoflavones (either alone or together) did not affect BMD, they should not be considered as effective interventions for preserving skeletal health in older women. The negative correlation between dietary protein and bone turnover suggests that increasing protein intakes may suppress skeletal turnover. This trial was registered at ClinicalTrials.gov as NCT00668447.

  18. Membrane proteins bind lipids selectively to modulate their structure and function.

    PubMed

    Laganowsky, Arthur; Reading, Eamonn; Allison, Timothy M; Ulmschneider, Martin B; Degiacomi, Matteo T; Baldwin, Andrew J; Robinson, Carol V

    2014-06-05

    Previous studies have established that the folding, structure and function of membrane proteins are influenced by their lipid environments and that lipids can bind to specific sites, for example, in potassium channels. Fundamental questions remain however regarding the extent of membrane protein selectivity towards lipids. Here we report a mass spectrometry approach designed to determine the selectivity of lipid binding to membrane protein complexes. We investigate the mechanosensitive channel of large conductance (MscL) from Mycobacterium tuberculosis and aquaporin Z (AqpZ) and the ammonia channel (AmtB) from Escherichia coli, using ion mobility mass spectrometry (IM-MS), which reports gas-phase collision cross-sections. We demonstrate that folded conformations of membrane protein complexes can exist in the gas phase. By resolving lipid-bound states, we then rank bound lipids on the basis of their ability to resist gas phase unfolding and thereby stabilize membrane protein structure. Lipids bind non-selectively and with high avidity to MscL, all imparting comparable stability; however, the highest-ranking lipid is phosphatidylinositol phosphate, in line with its proposed functional role in mechanosensation. AqpZ is also stabilized by many lipids, with cardiolipin imparting the most significant resistance to unfolding. Subsequently, through functional assays we show that cardiolipin modulates AqpZ function. Similar experiments identify AmtB as being highly selective for phosphatidylglycerol, prompting us to obtain an X-ray structure in this lipid membrane-like environment. The 2.3 Å resolution structure, when compared with others obtained without lipid bound, reveals distinct conformational changes that re-position AmtB residues to interact with the lipid bilayer. Our results demonstrate that resistance to unfolding correlates with specific lipid-binding events, enabling a distinction to be made between lipids that merely bind from those that modulate membrane

  19. Functional Equivalency Inferred from “Authoritative Sources” in Networks of Homologous Proteins

    PubMed Central

    Natarajan, Shreedhar; Jakobsson, Eric

    2009-01-01

    A one-on-one mapping of protein functionality across different species is a critical component of comparative analysis. This paper presents a heuristic algorithm for discovering the Most Likely Functional Counterparts (MoLFunCs) of a protein, based on simple concepts from network theory. A key feature of our algorithm is utilization of the user's knowledge to assign high confidence to selected functional identification. We show use of the algorithm to retrieve functional equivalents for 7 membrane proteins, from an exploration of almost 40 genomes form multiple online resources. We verify the functional equivalency of our dataset through a series of tests that include sequence, structure and function comparisons. Comparison is made to the OMA methodology, which also identifies one-on-one mapping between proteins from different species. Based on that comparison, we believe that incorporation of user's knowledge as a key aspect of the technique adds value to purely statistical formal methods. PMID:19521530

  20. Regulator of G protein signaling 5 (RGS5) inhibits sonic hedgehog function in mouse cortical neurons.

    PubMed

    Liu, Chuanliang; Hu, Qiongqiong; Jing, Jia; Zhang, Yun; Jin, Jing; Zhang, Liulei; Mu, Lili; Liu, Yumei; Sun, Bo; Zhang, Tongshuai; Kong, Qingfei; Wang, Guangyou; Wang, Dandan; Zhang, Yao; Liu, Xijun; Zhao, Wei; Wang, Jinghua; Feng, Tao; Li, Hulun

    2017-09-01

    Regulator of G protein signaling 5 (RGS5) acts as a GTPase-activating protein (GAP) for the Gαi subunit and negatively regulates G protein-coupled receptor signaling. However, its presence and function in postmitotic differentiated primary neurons remains largely uncharacterized. During neural development, sonic hedgehog (Shh) signaling is involved in cell signaling pathways via Gαi activity. In particular, Shh signaling is essential for embryonic neural tube patterning, which has been implicated in neuronal polarization involving neurite outgrowth. Here, we examined whether RGS5 regulates Shh signaling in neurons. RGS5 transcripts were found to be expressed in cortical neurons and their expression gradually declined in a time-dependent manner in culture system. When an adenovirus expressing RGS5 was introduced into an in vitro cell culture model of cortical neurons, RGS5 overexpression significantly reduced neurite outgrowth and FM4-64 uptake, while cAMP-PKA signaling was also affected. These findings suggest that RGS5 inhibits Shh function during neurite outgrowth and the presynaptic terminals of primary cortical neurons mature via modulation of cAMP. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Grain setting defect1, Encoding a Remorin Protein, Affects the Grain Setting in Rice through Regulating Plasmodesmatal Conductance1[W

    PubMed Central

    Gui, Jinshan; Liu, Chang; Shen, Junhui; Li, Laigeng

    2014-01-01

    Effective grain filling is one of the key determinants of grain setting in rice (Oryza sativa). Grain setting defect1 (GSD1), which encodes a putative remorin protein, was found to affect grain setting in rice. Investigation of the phenotype of a transfer DNA insertion mutant (gsd1-Dominant) with enhanced GSD1 expression revealed abnormalities including a reduced grain setting rate, accumulation of carbohydrates in leaves, and lower soluble sugar content in the phloem exudates. GSD1 was found to be specifically expressed in the plasma membrane and plasmodesmata (PD) of phloem companion cells. Experimental evidence suggests that the phenotype of the gsd1-Dominant mutant is caused by defects in the grain-filling process as a result of the impaired transport of carbohydrates from the photosynthetic site to the phloem. GSD1 functioned in affecting PD conductance by interacting with rice ACTIN1 in association with the PD callose binding protein1. Together, our results suggest that GSD1 may play a role in regulating photoassimilate translocation through the symplastic pathway to impact grain setting in rice. PMID:25253885

  2. Adaptability of Protein Structures to Enable Functional Interactions and Evolutionary Implications

    PubMed Central

    Haliloglu, Turkan; Bahar, Ivet

    2015-01-01

    Several studies in recent years have drawn attention to the ability of proteins to adapt to intermolecular interactions by conformational changes along structure-encoded collective modes of motions. These so-called soft modes, primarily driven by entropic effects, facilitate, if not enable, functional interactions. They represent excursions on the conformational space along principal low-ascent directions/paths away from the original free energy minimum, and they are accessible to the protein even prior to protein-protein/ligand interactions. An emerging concept from these studies is the evolution of structures or modular domains to favor such modes of motion that will be recruited or integrated for enabling functional interactions. Structural dynamics, including the allosteric switches in conformation that are often stabilized upon formation of complexes and multimeric assemblies, emerge as key properties that are evolutionarily maintained to accomplish biological activities, consistent with the paradigm sequence → structure → dynamics → function where ‘dynamics’ bridges structure and function. PMID:26254902

  3. Nutritional Factors Affecting Adult Neurogenesis and Cognitive Function.

    PubMed

    Poulose, Shibu M; Miller, Marshall G; Scott, Tammy; Shukitt-Hale, Barbara

    2017-11-01

    Adult neurogenesis, a complex process by which stem cells in the hippocampal brain region differentiate and proliferate into new neurons and other resident brain cells, is known to be affected by many intrinsic and extrinsic factors, including diet. Neurogenesis plays a critical role in neural plasticity, brain homeostasis, and maintenance in the central nervous system and is a crucial factor in preserving the cognitive function and repair of damaged brain cells affected by aging and brain disorders. Intrinsic factors such as aging, neuroinflammation, oxidative stress, and brain injury, as well as lifestyle factors such as high-fat and high-sugar diets and alcohol and opioid addiction, negatively affect adult neurogenesis. Conversely, many dietary components such as curcumin, resveratrol, blueberry polyphenols, sulforaphane, salvionic acid, polyunsaturated fatty acids (PUFAs), and diets enriched with polyphenols and PUFAs, as well as caloric restriction, physical exercise, and learning, have been shown to induce neurogenesis in adult brains. Although many of the underlying mechanisms by which nutrients and dietary factors affect adult neurogenesis have yet to be determined, nutritional approaches provide promising prospects to stimulate adult neurogenesis and combat neurodegenerative diseases and cognitive decline. In this review, we summarize the evidence supporting the role of nutritional factors in modifying adult neurogenesis and their potential to preserve cognitive function during aging. © 2017 American Society for Nutrition.

  4. Structures and functions of proteins and nucleic acids in protein biosynthesis

    NASA Astrophysics Data System (ADS)

    Miyazawa, Tatsuo; Yokoyama, Shigeyuki

    Infrared and Raman spectroscopy is useful for studying helical conformations of polypeptides, which are determined by molecular structure parameters. Nuclear magnetic resonance spectroscopy, as well as X-ray analysis, is now established to be important for conformation studies of proteins and nucleic acids in solution. This article is mainly concerned with the conformational aspect and function regulation in protein biosynthesis. The strict recognition of transfer ribonucleic acid (tRNA) by aminoacyl-tRNA synthetase (ARS) is achieved by multi-step mutual adaptation. The conformations of ARS-bound amino acids have been elucidated by transferred nuclear Overhauser effect analysis. Aminoacyl-tRNA takes the 3‧-isomeric form in the polypeptide chain elongation cycle. The regulation of codon recognition by post-transcriptional modification is achieved by conversion of the conformational characteristic of the anticodon of tRNA. The cytidine → lysidine modification of the anticodon of minor isoleucine tRNA concurrently converts the amino acid specificity and the codon specificity. As novel protein engineering, a basic strategy has been established for in vivo biosynthesis of proteins that are substituted with unnatural amino acids (alloproteins).

  5. Lipo-Protein Emulsion Structure in the Diet Affects Protein Digestion Kinetics, Intestinal Mucosa Parameters and Microbiota Composition.

    PubMed

    Oberli, Marion; Douard, Véronique; Beaumont, Martin; Jaoui, Daphné; Devime, Fabienne; Laurent, Sandy; Chaumontet, Catherine; Mat, Damien; Le Feunteun, Steven; Michon, Camille; Davila, Anne-Marie; Fromentin, Gilles; Tomé, Daniel; Souchon, Isabelle; Leclerc, Marion; Gaudichon, Claire; Blachier, François

    2018-01-01

    Food structure is a key factor controlling digestion and nutrient absorption. We test the hypothesis that protein emulsion structure in the diet may affect digestive and absorptive processes. Rats (n = 40) are fed for 3 weeks with two diets chemically identical but based on lipid-protein liquid-fine (LFE) or gelled-coarse (GCE) emulsions that differ at the macro- and microstructure levels. After an overnight fasting, they ingest a 15 N-labeled LFE or GCE test meal and are euthanized 0, 15 min, 1 h, and 5 h later. 15 N enrichment in intestinal contents and blood are measured. Gastric emptying, protein digestion kinetics, 15 N absorption, and incorporation in blood protein and urea are faster with LFE than GCE. At 15 min time point, LFE group shows higher increase in GIP portal levels than GCE. Three weeks of dietary adaptation leads to higher expression of cationic amino acid transporters in ileum of LFE compared to GCE. LFE diet raises cecal butyrate and isovalerate proportion relative to GCE, suggesting increased protein fermentation. LFE diet increases fecal Parabacteroides relative abundance but decreases Bifidobacterium, Sutterella, Parasutterella genera, and Clostridium cluster XIV abundance. Protein emulsion structure regulates digestion kinetics and gastrointestinal physiology, and could be targeted to improve food health value. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Systematic identification of anti-interferon function on hepatitis C virus genome reveals p7 as an immune evasion protein.

    PubMed

    Qi, Hangfei; Chu, Virginia; Wu, Nicholas C; Chen, Zugen; Truong, Shawna; Brar, Gurpreet; Su, Sheng-Yao; Du, Yushen; Arumugaswami, Vaithilingaraja; Olson, C Anders; Chen, Shu-Hua; Lin, Chung-Yen; Wu, Ting-Ting; Sun, Ren

    2017-02-21

    Hepatitis C virus (HCV) encodes mechanisms to evade the multilayered antiviral actions of the host immune system. Great progress has been made in elucidating the strategies HCV employs to down-regulate interferon (IFN) production, impede IFN signaling transduction, and impair IFN-stimulated gene (ISG) expression. However, there is a limited understanding of the mechanisms governing how viral proteins counteract the antiviral functions of downstream IFN effectors due to the lack of an efficient approach to identify such interactions systematically. To study the mechanisms by which HCV antagonizes the IFN responses, we have developed a high-throughput profiling platform that enables mapping of HCV sequences critical for anti-IFN function at high resolution. Genome-wide profiling performed with a 15-nt insertion mutant library of HCV showed that mutations in the p7 region conferred high levels of IFN sensitivity, which could be alleviated by the expression of WT p7 protein. This finding suggests that p7 protein of HCV has an immune evasion function. By screening a liver-specific ISG library, we identified that IFI6-16 significantly inhibits the replication of p7 mutant viruses without affecting WT virus replication. In contrast, knockout of IFI6-16 reversed the IFN hypersensitivity of p7 mutant virus. In addition, p7 was found to be coimmunoprecipitated with IFI6-16 and to counteract the function of IFI6-16 by depolarizing the mitochondria potential. Our data suggest that p7 is a critical immune evasion protein that suppresses the antiviral IFN function by counteracting the function of IFI6-16.

  7. Analysis of Nuclear Lamina Proteins in Myoblast Differentiation by Functional Complementation.

    PubMed

    Tapia, Olga; Gerace, Larry

    2016-01-01

    We describe straightforward methodology for structure-function mapping of nuclear lamina proteins in myoblast differentiation, using populations of C2C12 myoblasts in which the endogenous lamina components are replaced with ectopically expressed mutant versions of the proteins. The procedure involves bulk isolation of C2C12 cell populations expressing the ectopic proteins by lentiviral transduction, followed by depletion of the endogenous proteins using siRNA, and incubation of cells under myoblast differentiation conditions. Similar methodology may be applied to mouse embryo fibroblasts or to other cell types as well, for the identification and characterization of sequences of lamina proteins involved in functions that can be measured biochemically or cytologically.

  8. c-Myc Alters Substrate Utilization and O-GlcNAc Protein Posttranslational Modifications without Altering Cardiac Function during Early Aortic Constriction

    PubMed Central

    Ledee, Dolena; Smith, Lincoln; Bruce, Margaret; Kajimoto, Masaki; Isern, Nancy; Portman, Michael A.; Olson, Aaron K.

    2015-01-01

    Hypertrophic stimuli cause transcription of the proto-oncogene c-Myc (Myc). Prior work showed that myocardial knockout of c-Myc (Myc) attenuated hypertrophy and decreased expression of metabolic genes after aortic constriction. Accordingly, we assessed the interplay between Myc, substrate oxidation and cardiac function during early pressure overload hypertrophy. Mice with cardiac specific, inducible Myc knockout (MycKO-TAC) and non-transgenic littermates (Cont-TAC) were subjected to transverse aortic constriction (TAC; n = 7/group). Additional groups underwent sham surgery (Cont-Sham and MycKO-Sham, n = 5 per group). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketone bodies and unlabeled glucose and insulin. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. In sham hearts, Myc knockout did not affect cardiac function or substrate preferences for the citric acid cycle. However, Myc knockout altered fractional contributions during TAC. The unlabeled fractional contribution increased in MycKO-TAC versus Cont-TAC, whereas ketone and free fatty acid fractional contributions decreased. Additionally, protein posttranslational modifications by O-GlcNAc were significantly greater in Cont-TAC versus both Cont-Sham and MycKO-TAC. In conclusion, Myc alters substrate preferences for the citric acid cycle during early pressure overload hypertrophy without negatively affecting cardiac function. Myc also affects protein posttranslational modifications by O-GlcNAc during hypertrophy, which may regulate Myc-induced metabolic changes. PMID:26266538

  9. Inhibition of muscle-specific gene expression by Id3: requirement of the C-terminal region of the protein for stable expression and function.

    PubMed

    Chen, B; Han, B H; Sun, X H; Lim, R W

    1997-01-15

    We have examined the role of an Id-like protein, Id3 (also known as HLH462), in the regulation of muscle-specific gene expression. Id proteins are believed to block expression of muscle-specific genes by preventing the dimerization between ubiquitous bHLH proteins (E proteins) and myogenic bHLH proteins such as MyoD. Consistent with its putative role as an inhibitor of differentiation, Id3 mRNA was detected in proliferating skeletal muscle cells, was further induced by basic fibroblast growth factor (bFGF) and was down-regulated in differentiated muscle cultures. Overexpression of Id3 efficiently inhibited the MyoD-mediated activation of the muscle-specific creatine kinase (MCK) reporter gene. Deletion analysis indicated that the C-terminal 15 amino acids of Id3 are critical for the full inhibitory activity while deleting up to 42 residues from the C-terminus of the related protein, Id2, did not affect its ability to inhibit the MCK reporter gene. Chimeric protein containing the N-terminal region of Id3 and the C-terminus of Id2 was also non-functional in transfected cells. In contrast, wild-type Id3, the C-terminal mutants, and the Id3/Id2 chimera could all interact with the E-protein E47in vitro. Additional studies indicated that truncation of the Id3 C-terminus might have adversely affected the expression level of the mutant proteins but the Id3/Id2 chimera was stably expressed. Taken together, our results revealed a more complex requirement for the expression and proper function of the Id family proteins than was hitherto expected.

  10. Inhibition of muscle-specific gene expression by Id3: requirement of the C-terminal region of the protein for stable expression and function.

    PubMed Central

    Chen, B; Han, B H; Sun, X H; Lim, R W

    1997-01-01

    We have examined the role of an Id-like protein, Id3 (also known as HLH462), in the regulation of muscle-specific gene expression. Id proteins are believed to block expression of muscle-specific genes by preventing the dimerization between ubiquitous bHLH proteins (E proteins) and myogenic bHLH proteins such as MyoD. Consistent with its putative role as an inhibitor of differentiation, Id3 mRNA was detected in proliferating skeletal muscle cells, was further induced by basic fibroblast growth factor (bFGF) and was down-regulated in differentiated muscle cultures. Overexpression of Id3 efficiently inhibited the MyoD-mediated activation of the muscle-specific creatine kinase (MCK) reporter gene. Deletion analysis indicated that the C-terminal 15 amino acids of Id3 are critical for the full inhibitory activity while deleting up to 42 residues from the C-terminus of the related protein, Id2, did not affect its ability to inhibit the MCK reporter gene. Chimeric protein containing the N-terminal region of Id3 and the C-terminus of Id2 was also non-functional in transfected cells. In contrast, wild-type Id3, the C-terminal mutants, and the Id3/Id2 chimera could all interact with the E-protein E47in vitro. Additional studies indicated that truncation of the Id3 C-terminus might have adversely affected the expression level of the mutant proteins but the Id3/Id2 chimera was stably expressed. Taken together, our results revealed a more complex requirement for the expression and proper function of the Id family proteins than was hitherto expected. PMID:9016574

  11. Intracellular Localization, Interactions and Functions of Capsicum Chlorosis Virus Proteins.

    PubMed

    Widana Gamage, Shirani M K; Dietzgen, Ralf G

    2017-01-01

    Tospoviruses are among the most devastating viruses of horticultural and field crops. Capsicum chlorosis virus (CaCV) has emerged as an important pathogen of capsicum and tomato in Australia and South-east Asia. Present knowledge about CaCV protein functions in host cells is lacking. We determined intracellular localization and interactions of CaCV proteins by live plant cell imaging to gain insight into the associations of viral proteins during infection. Proteins were transiently expressed as fusions to autofluorescent proteins in leaf epidermal cells of Nicotiana benthamiana and capsicum. All viral proteins localized at least partially in the cell periphery suggestive of cytoplasmic replication and assembly of CaCV. Nucleocapsid (N) and non-structural movement (NSm) proteins localized exclusively in the cell periphery, while non-structural suppressor of silencing (NSs) protein and Gc and Gn glycoproteins accumulated in both the cell periphery and the nucleus. Nuclear localization of CaCV Gn and NSs is unique among tospoviruses. We validated nuclear localization of NSs by immunofluorescence in protoplasts. Bimolecular fluorescence complementation showed self-interactions of CaCV N, NSs and NSm, and heterotypic interactions of N with NSs and Gn. All interactions occurred in the cytoplasm, except NSs self-interaction was exclusively nuclear. Interactions of a tospoviral NSs protein with itself and with N had not been reported previously. Functionally, CaCV NSs showed strong local and systemic RNA silencing suppressor activity and appears to delay short-distance spread of silencing signal. Cell-to-cell movement activity of NSm was demonstrated by trans -complementation of a movement-defective tobamovirus replicon. CaCV NSm localized at plasmodesmata and its transient expression led to the formation of tubular structures that protruded from protoplasts. The D 155 residue in the 30K-like movement protein-specific LxD/N 50-70 G motif of NSm was critical for

  12. Biophysics of protein evolution and evolutionary protein biophysics

    PubMed Central

    Sikosek, Tobias; Chan, Hue Sun

    2014-01-01

    The study of molecular evolution at the level of protein-coding genes often entails comparing large datasets of sequences to infer their evolutionary relationships. Despite the importance of a protein's structure and conformational dynamics to its function and thus its fitness, common phylogenetic methods embody minimal biophysical knowledge of proteins. To underscore the biophysical constraints on natural selection, we survey effects of protein mutations, highlighting the physical basis for marginal stability of natural globular proteins and how requirement for kinetic stability and avoidance of misfolding and misinteractions might have affected protein evolution. The biophysical underpinnings of these effects have been addressed by models with an explicit coarse-grained spatial representation of the polypeptide chain. Sequence–structure mappings based on such models are powerful conceptual tools that rationalize mutational robustness, evolvability, epistasis, promiscuous function performed by ‘hidden’ conformational states, resolution of adaptive conflicts and conformational switches in the evolution from one protein fold to another. Recently, protein biophysics has been applied to derive more accurate evolutionary accounts of sequence data. Methods have also been developed to exploit sequence-based evolutionary information to predict biophysical behaviours of proteins. The success of these approaches demonstrates a deep synergy between the fields of protein biophysics and protein evolution. PMID:25165599

  13. α-Crystallins Are Small Heat Shock Proteins: Functional and Structural Properties.

    PubMed

    Tikhomirova, T S; Selivanova, O M; Galzitskaya, O V

    2017-02-01

    During its life cycle, a cell can be subjected to various external negative effects. Many proteins provide cell protection, including small heat shock proteins (sHsp) that have chaperone-like activity. These proteins have several important functions involving prevention of apoptosis and retention of cytoskeletal integrity; also, sHsp take part in the recovery of enzyme activity. The action mechanism of sHsp is based on the binding of hydrophobic regions exposed to the surface of a molten globule. α-Crystallins presented in chordate cells as two αA- and αB-isoforms are the most studied small heat shock proteins. In this review, we describe the main functions of α-crystallins, features of their secondary and tertiary structures, and examples of their partners in protein-protein interactions.

  14. Decomposition of Proteins into Dynamic Units from Atomic Cross-Correlation Functions.

    PubMed

    Calligari, Paolo; Gerolin, Marco; Abergel, Daniel; Polimeno, Antonino

    2017-01-10

    In this article, we present a clustering method of atoms in proteins based on the analysis of the correlation times of interatomic distance correlation functions computed from MD simulations. The goal is to provide a coarse-grained description of the protein in terms of fewer elements that can be treated as dynamically independent subunits. Importantly, this domain decomposition method does not take into account structural properties of the protein. Instead, the clustering of protein residues in terms of networks of dynamically correlated domains is defined on the basis of the effective correlation times of the pair distance correlation functions. For these properties, our method stands as a complementary analysis to the customary protein decomposition in terms of quasi-rigid, structure-based domains. Results obtained for a prototypal protein structure illustrate the approach proposed.

  15. Congenital hypothyroidism mutations affect common folding and trafficking in the α/β-hydrolase fold proteins

    PubMed Central

    De Jaco, Antonella; Dubi, Noga; Camp, Shelley; Taylor, Palmer

    2017-01-01

    The α/β-hydrolase fold superfamily of proteins is composed of structurally related members that, despite great diversity in their catalytic, recognition, adhesion and chaperone functions, share a common fold governed by homologous residues and conserved disulfide bridges. Non-synonymous single nucleotide polymorphisms within the α/β-hydrolase fold domain in various family members have been found for congenital endocrine, metabolic and nervous system disorders. By examining the amino acid sequence from the various proteins, mutations were found to be prevalent in conserved residues within the α/β-hydrolase fold of the homologous proteins. This is the case for the thyroglobulin mutations linked to congenital hypothyroidism. To address whether correct folding of the common domain is required for protein export, we inserted the thyroglobulin mutations at homologous positions in two correlated but simpler α/β-hydrolase fold proteins known to be exported to the cell surface: neuroligin3 and acetylcholinesterase. Here we show that these mutations in the cholinesterase homologous region alter the folding properties of the α/β-hydrolase fold domain, which are reflected in defects in protein trafficking, folding and function, and ultimately result in retention of the partially processed proteins in the endoplasmic reticulum. Accordingly, mutations at conserved residues may be transferred amongst homologous proteins to produce common processing defects despite disparate functions, protein complexity and tissue-specific expression of the homologous proteins. More importantly, a similar assembly of the α/β-hydrolase fold domain tertiary structure among homologous members of the superfamily is required for correct trafficking of the proteins to their final destination. PMID:23035660

  16. Insulator function and topological domain border strength scale with architectural protein occupancy

    PubMed Central

    2014-01-01

    Background Chromosome conformation capture studies suggest that eukaryotic genomes are organized into structures called topologically associating domains. The borders of these domains are highly enriched for architectural proteins with characterized roles in insulator function. However, a majority of architectural protein binding sites localize within topological domains, suggesting sites associated with domain borders represent a functionally different subclass of these regulatory elements. How topologically associating domains are established and what differentiates border-associated from non-border architectural protein binding sites remain unanswered questions. Results By mapping the genome-wide target sites for several Drosophila architectural proteins, including previously uncharacterized profiles for TFIIIC and SMC-containing condensin complexes, we uncover an extensive pattern of colocalization in which architectural proteins establish dense clusters at the borders of topological domains. Reporter-based enhancer-blocking insulator activity as well as endogenous domain border strength scale with the occupancy level of architectural protein binding sites, suggesting co-binding by architectural proteins underlies the functional potential of these loci. Analyses in mouse and human stem cells suggest that clustering of architectural proteins is a general feature of genome organization, and conserved architectural protein binding sites may underlie the tissue-invariant nature of topologically associating domains observed in mammals. Conclusions We identify a spectrum of architectural protein occupancy that scales with the topological structure of chromosomes and the regulatory potential of these elements. Whereas high occupancy architectural protein binding sites associate with robust partitioning of topologically associating domains and robust insulator function, low occupancy sites appear reserved for gene-specific regulation within topological domains. PMID

  17. Mutation-induced protein interaction kinetics changes affect apoptotic network dynamic properties and facilitate oncogenesis

    PubMed Central

    Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi

    2015-01-01

    It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant–wild-type and 16 matched SNP—wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation. PMID:26170328

  18. Functional advantages of dynamic protein disorder.

    PubMed

    Berlow, Rebecca B; Dyson, H Jane; Wright, Peter E

    2015-09-14

    Intrinsically disordered proteins participate in many important cellular regulatory processes. The absence of a well-defined structure in the free state of a disordered domain, and even on occasion when it is bound to physiological partners, is fundamental to its function. Disordered domains are frequently the location of multiple sites for post-translational modification, the key element of metabolic control in the cell. When a disordered domain folds upon binding to a partner, the resulting complex buries a far greater surface area than in an interaction of comparably-sized folded proteins, thus maximizing specificity at modest protein size. Disorder also maintains accessibility of sites for post-translational modification. Because of their inherent plasticity, disordered domains frequently adopt entirely different structures when bound to different partners, increasing the repertoire of available interactions without the necessity for expression of many different proteins. This feature also adds to the faithfulness of cellular regulation, as the availability of a given disordered domain depends on competition between various partners relevant to different cellular processes. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  19. Nanodisc-Tm: Rapid functional assessment of nanodisc reconstituted membrane proteins by CPM assay.

    PubMed

    Ashok, Yashwanth; Jaakola, Veli-Pekka

    2016-01-01

    Membrane proteins are generally unstable in detergents. Therefore, biochemical and biophysical studies of membrane proteins in lipidic environments provides a near native-like environment suitable for membrane proteins. However, manipulation of proteins embedded in lipid bilayer has remained difficult. Methods such as nanodiscs and lipid cubic phase have been developed for easy manipulation of membrane proteins and have yielded significant insights into membrane proteins. Traditionally functional reconstitution of receptors in nanodiscs has been studied with radioligands. We present a simple and faster method for studying the functionality of reconstituted membrane proteins for routine characterization of protein batches after initial optimization of suitable conditions using radioligands. The benefits of the method are •Faster and generic method to assess functional reconstitution of membrane proteins.•Adaptable in high throughput format (≥96 well format).•Stability measurement in near-native lipid environment and lipid dependent melting temperatures.

  20. Ratio of dietary rumen degradable protein to rumen undegradable protein affects nitrogen partitioning but does not affect the bovine milk proteome produced by mid-lactation Holstein dairy cows.

    PubMed

    Tacoma, R; Fields, J; Ebenstein, D B; Lam, Y-W; Greenwood, S L

    2017-09-01

    Little is known about the bovine milk proteome or whether it can be affected by diet. The objective of this study was to determine if the dietary rumen degradable protein (RDP):rumen undegradable protein (RUP) ratio could alter the bovine milk proteome. Six Holstein cows (parity: 2.5 ± 0.8) in mid lactation were blocked by days in milk (80 ± 43 d in milk) and milk yield (57.5 ± 6.0 kg) and randomly assigned to treatment groups. The experiment was conducted as a double-crossover design consisting of three 21-d periods. Within each period, treatment groups received diets with either (1) a high RDP:RUP ratio (RDP treatment: 62.4:37.6% of crude protein) or (2) a low RDP:RUP ratio (RUP treatment: 51.3:48.7% of crude protein). Both diets were isonitrogenous and isoenergetic (crude protein: 18.5%, net energy for lactation: 1.8 Mcal/kg of dry matter). To confirm N and energy status of cows, dry matter intake was determined daily, rumen fluid samples were collected for volatile fatty acid analysis, blood samples were collected for plasma glucose, β-hydroxybutyrate, urea nitrogen, and fatty acid analysis, and total 24-h urine and fecal samples were collected for N analysis. Milk samples were collected to determine the general milk composition and the protein profile. Milk samples collected for high-abundance protein analysis were subjected to HPLC analysis to determine the content of α-casein, β-casein, and κ-casein, as well as α-lactalbumin and β-lactoglobulin. Samples collected for low-abundance protein analysis were fractionated, enriched using ProteoMiner treatment, and separated using sodium dodecyl sulfate-PAGE. After excision and digestion, the peptides were analyzed using liquid chromatography (LC) tandem mass spectrometry (MS/MS). The LC-MS/MS data were analyzed using PROC GLIMMIX of SAS (version 9.4, SAS Institute Inc., Cary, NC) and adjusted using the MULTTEST procedure. All other parameters were analyzed using PROC MIXED of SAS. No treatment differences

  1. Cost Function Network-based Design of Protein-Protein Interactions: predicting changes in binding affinity.

    PubMed

    Viricel, Clément; de Givry, Simon; Schiex, Thomas; Barbe, Sophie

    2018-02-20

    Accurate and economic methods to predict change in protein binding free energy upon mutation are imperative to accelerate the design of proteins for a wide range of applications. Free energy is defined by enthalpic and entropic contributions. Following the recent progresses of Artificial Intelligence-based algorithms for guaranteed NP-hard energy optimization and partition function computation, it becomes possible to quickly compute minimum energy conformations and to reliably estimate the entropic contribution of side-chains in the change of free energy of large protein interfaces. Using guaranteed Cost Function Network algorithms, Rosetta energy functions and Dunbrack's rotamer library, we developed and assessed EasyE and JayZ, two methods for binding affinity estimation that ignore or include conformational entropic contributions on a large benchmark of binding affinity experimental measures. If both approaches outperform most established tools, we observe that side-chain conformational entropy brings little or no improvement on most systems but becomes crucial in some rare cases. as open-source Python/C ++ code at sourcesup.renater.fr/projects/easy-jayz. thomas.schiex@inra.fr and sophie.barbe@insa-toulouse.fr. Supplementary data are available at Bioinformatics online.

  2. Rheological and Functional Properties of Catfish Skin Protein Hydrolysates

    USDA-ARS?s Scientific Manuscript database

    Catfish skin is an abundant and underutilized resource that can be used as a unique protein source to make fish skin hydrolysates. The objectives of this study were to: isolating soluble and insoluble proteins from hydrolyzed catfish skin and study the chemical and functional properties of the prote...

  3. A rho-binding protein kinase C-like activity is required for the function of protein kinase N in Drosophila development.

    PubMed

    Betson, Martha; Settleman, Jeffrey

    2007-08-01

    The Rho GTPases interact with multiple downstream effectors to exert their biological functions, which include important roles in tissue morphogenesis during the development of multicellular organisms. Among the Rho effectors are the protein kinase N (PKN) proteins, which are protein kinase C (PKC)-like kinases that bind activated Rho GTPases. The PKN proteins are well conserved evolutionarily, but their biological role in any organism is poorly understood. We previously determined that the single Drosophila ortholog of mammalian PKN proteins, Pkn, is a Rho/Rac-binding kinase essential for Drosophila development. By performing "rescue" studies with various Pkn mutant constructs, we have defined the domains of Pkn required for its role during Drosophila development. These studies suggested that Rho, but not Rac binding is important for Pkn function in development. In addition, we determined that the kinase domain of PKC53E, a PKC family kinase, can functionally substitute for the kinase domain of Pkn during development, thereby exemplifying the evolutionary strategy of "combining" functional domains to produce proteins with distinct biological activities. Interestingly, we also identified a requirement for Pkn in wing morphogenesis, thereby revealing the first postembryonic function for Pkn.

  4. Network Analysis of Protein Adaptation: Modeling the Functional Impact of Multiple Mutations

    PubMed Central

    Beleva Guthrie, Violeta; Masica, David L; Fraser, Andrew; Federico, Joseph; Fan, Yunfan; Camps, Manel; Karchin, Rachel

    2018-01-01

    Abstract The evolution of new biochemical activities frequently involves complex dependencies between mutations and rapid evolutionary radiation. Mutation co-occurrence and covariation have previously been used to identify compensating mutations that are the result of physical contacts and preserve protein function and fold. Here, we model pairwise functional dependencies and higher order interactions that enable evolution of new protein functions. We use a network model to find complex dependencies between mutations resulting from evolutionary trade-offs and pleiotropic effects. We present a method to construct these networks and to identify functionally interacting mutations in both extant and reconstructed ancestral sequences (Network Analysis of Protein Adaptation). The time ordering of mutations can be incorporated into the networks through phylogenetic reconstruction. We apply NAPA to three distantly homologous β-lactamase protein clusters (TEM, CTX-M-3, and OXA-51), each of which has experienced recent evolutionary radiation under substantially different selective pressures. By analyzing the network properties of each protein cluster, we identify key adaptive mutations, positive pairwise interactions, different adaptive solutions to the same selective pressure, and complex evolutionary trajectories likely to increase protein fitness. We also present evidence that incorporating information from phylogenetic reconstruction and ancestral sequence inference can reduce the number of spurious links in the network, whereas preserving overall network community structure. The analysis does not require structural or biochemical data. In contrast to function-preserving mutation dependencies, which are frequently from structural contacts, gain-of-function mutation dependencies are most commonly between residues distal in protein structure. PMID:29522102

  5. Rapid production of functionalized recombinant proteins: marrying ligation independent cloning and in vitro protein ligation.

    PubMed

    Kushnir, Susanna; Marsac, Yoann; Breitling, Reinhard; Granovsky, Igor; Brok-Volchanskaya, Vera; Goody, Roger S; Becker, Christian F W; Alexandrov, Kirill

    2006-01-01

    Functional genomics and proteomics have been very active fields since the sequencing of several genomes was completed. To assign a physiological role to the newly discovered coding genes with unknown function, new generic methods for protein production, purification, and targeted functionalization are needed. This work presents a new vector, pCYSLIC, that allows rapid generation of Escherichia coli expression constructs via ligation-independent cloning (LIC). The vector is designed to facilitate protein purification by either Ni-NTA or GSH affinity chromatography. Subsequent proteolytic removal of affinity tags liberates an N-terminal cysteine residue that is then used for covalent modification of the target protein with different biophysical probes via protein ligation. The described system has been tested on 36 mammalian Rab GTPases, and it was demonstrated that recombinant GTPases produced with pCYSLIC could be efficiently modified with fluorescein or biotin in vitro. Finally, LIC was compared with the recently developed In-Fusion cloning method, and it was demonstrated that In-Fusion provides superior flexibility in choice of expression vector. By the application of In-Fusion cloning Cys-Rab6A GTPase with an N-terminal cysteine residue was generated employing unmodified pET30a vector and TVMV protease.

  6. Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications.

    PubMed

    Wang, Wei; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree; Zhou, Jianwei; Zhang, Ruiwen

    2015-11-01

    Polycomb group (PcG) proteins are transcriptional repressors that regulate several crucial developmental and physiological processes in the cell. More recently, they have been found to play important roles in human carcinogenesis and cancer development and progression. The deregulation and dysfunction of PcG proteins often lead to blocking or inappropriate activation of developmental pathways, enhancing cellular proliferation, inhibiting apoptosis, and increasing the cancer stem cell population. Genetic and molecular investigations of PcG proteins have long been focused on their PcG functions. However, PcG proteins have recently been shown to exert non-classical-Pc-functions, contributing to the regulation of diverse cellular functions. We and others have demonstrated that PcG proteins regulate the expression and function of several oncogenes and tumor suppressor genes in a PcG-independent manner, and PcG proteins are associated with the survival of patients with cancer. In this review, we summarize the recent advances in the research on PcG proteins, including both the Pc-repressive and non-classical-Pc-functions. We specifically focus on the mechanisms by which PcG proteins play roles in cancer initiation, development, and progression. Finally, we discuss the potential value of PcG proteins as molecular biomarkers for the diagnosis and prognosis of cancer, and as molecular targets for cancer therapy. © 2015 Wiley Periodicals, Inc.

  7. Polycomb Group (PcG) Proteins and Human Cancers: Multifaceted Functions and Therapeutic Implications

    PubMed Central

    Wang, Wei; Qin, Jiang-Jiang; Voruganti, Sukesh; Nag, Subhasree; Zhou, Jianwei; Zhang, Ruiwen

    2016-01-01

    Polycomb group (PcG) proteins are transcriptional repressors that regulate several crucial developmental and physiological processes in the cell. More recently, they have been found to play important roles in human carcinogenesis and cancer development and progression. The deregulation and dysfunction of PcG proteins often lead to blocking or inappropriate activation of developmental pathways, enhancing cellular proliferation, inhibiting apoptosis, and increasing the cancer stem cell population. Genetic and molecular investigations of PcG proteins have long been focused on their PcG functions. However, PcG proteins have recently been shown to exert non-polycomb functions, contributing to the regulation of diverse cellular functions. We and others have demonstrated that PcG proteins regulate the expression and function of several oncogenes and tumor suppressor genes in a PcG-independent manner, and PcG proteins are associated with the survival of patients with cancer. In this review, we summarize the recent advances in the research on PcG proteins, including both the polycomb-repressive and non-polycomb functions. We specifically focus on the mechanisms by which PcG proteins play roles in cancer initiation, development, and progression. Finally, we discuss the potential value of PcG proteins as molecular biomarkers for the diagnosis and prognosis of cancer, and as molecular targets for cancer therapy. PMID:26227500

  8. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships

    PubMed Central

    Zeke, András; Misheva, Mariya

    2016-01-01

    SUMMARY The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. PMID:27466283

  9. JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships.

    PubMed

    Zeke, András; Misheva, Mariya; Reményi, Attila; Bogoyevitch, Marie A

    2016-09-01

    The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. From protein interaction profile to functional assignment: the human protein Ki-1/57 is associated with pre-mRNA splicing events.

    PubMed

    Bressan, Gustavo Costa; Kobarg, Jörg

    2010-01-01

    The mapping of protein-protein interactions of a determined organism is considered fundamental to assign protein function in the post-genomic era. As part of this effort, screenings for pairwise interactions by yeast two-hybrid system have been used popularly to reveal protein interaction networks in different biological systems. Through the identification of protein interaction partners we have successfully obtained interesting functional clues for Ki-1/57, a human protein with no previous functional annotation, in the context of RNA metabolism. We briefly discuss the way we approached protein-protein interaction data to conduct and interpret further molecular biological and cellular studies as well as structural analyses on this protein. Our data suggest that Ki-1/57 belongs to the family of intrinsically unstructured proteins and that the structural flexibility may be crucial for its capacity to interact with many different proteins. A large fraction of these proteins are involved in pre-mRNA splicing control. Finally, Ki-1/57 is localized to several subnuclear domains, all of which have been described to splicing and other RNA processing events.

  11. The U24 Protein from Human Herpesvirus 6 and 7 Affects Endocytic Recycling▿

    PubMed Central

    Sullivan, Brian M.; Coscoy, Laurent

    2010-01-01

    Modulation of T-cell receptor expression and signaling is essential to the survival of many viruses. The U24 protein expressed by human herpesvirus 6A, a ubiquitous human pathogen, has been previously shown to downregulate the T-cell receptor. Here, we show that U24 also mediates cell surface downregulation of a canonical early endosomal recycling receptor, the transferrin receptor, indicating that this viral protein acts by blocking early endosomal recycling. We present evidence that U24 is a C-tail-anchored protein that is dependent for its function on TRC40/Asna-1, a component of a posttranslational membrane insertion pathway. Finally, we find that U24 proteins from other roseoloviruses have a similar genetic organization and a conserved function that is dependent on a proline-rich motif. Inhibition of a basic cellular process by U24 has interesting implications not only for the pathogenicity of roseoloviruses but also for our understanding of the biology of endosomal transport. PMID:19923186

  12. Photoreactive synthetic regulator of protein function and methods of use thereof

    DOEpatents

    Trauner, Dirk; Isacoff, Ehud Y; Kramer, Richard H; Banghart, Matthew R; Fortin, Doris L; Mourot, Alexandre

    2015-03-31

    The present disclosure provides a photoreactive synthetic regulator of protein function. The present disclosure further provides a light-regulated polypeptide that includes a subject synthetic regulator. Also provided are cells and membranes comprising a subject light-regulated polypeptide. The present disclosure further provides methods of modulating protein function, involving use of light.

  13. Developmental expression and function analysis of protein tyrosine phosphatase receptor type D in oligodendrocyte myelination

    PubMed Central

    Zhu, Qiang; Tan, Zhou; Zhao, Shufang; Huang, Hao; Zhao, Xiaofeng; Hu, Xuemei; Zhang, Yiping; Shields, Christopher B; Uetani, Noriko; Qiu, Mengsheng

    2015-01-01

    Receptor protein tyrosine phosphatases (RPTPs) are extensively expressed in the central nervous system (CNS), and have distinct spatial and temporal patterns in different cell types during development. Previous studies have demonstrated possible roles for RPTPs in axon outgrowth, guidance, and synaptogenesis. In the present study, our results revealed that protein tyrosine phosphatase, receptor type D (PTPRD) was initially expressed in mature neurons in embryonic CNS, and later in oligodendroglial cells at postnatal stages when oligodendrocyte undergo active axonal myelination process. In PTPRD mutants, oligodendrocyte differentiation was normal and a transient myelination delay occurred at early postnatal stages, indicating the contribution of PTPRD to the initiation of axonal myelination. Our results also showed that the remyelination process was not affected in the absence of PTPRD function after a cuprizone-induced demyelination in adult animals. PMID:26341907

  14. Improved protein model quality assessments by changing the target function.

    PubMed

    Uziela, Karolis; Menéndez Hurtado, David; Shu, Nanjiang; Wallner, Björn; Elofsson, Arne

    2018-06-01

    Protein modeling quality is an important part of protein structure prediction. We have for more than a decade developed a set of methods for this problem. We have used various types of description of the protein and different machine learning methodologies. However, common to all these methods has been the target function used for training. The target function in ProQ describes the local quality of a residue in a protein model. In all versions of ProQ the target function has been the S-score. However, other quality estimation functions also exist, which can be divided into superposition- and contact-based methods. The superposition-based methods, such as S-score, are based on a rigid body superposition of a protein model and the native structure, while the contact-based methods compare the local environment of each residue. Here, we examine the effects of retraining our latest predictor, ProQ3D, using identical inputs but different target functions. We find that the contact-based methods are easier to predict and that predictors trained on these measures provide some advantages when it comes to identifying the best model. One possible reason for this is that contact based methods are better at estimating the quality of multi-domain targets. However, training on the S-score gives the best correlation with the GDT_TS score, which is commonly used in CASP to score the global model quality. To take the advantage of both of these features we provide an updated version of ProQ3D that predicts local and global model quality estimates based on different quality estimates. © 2018 Wiley Periodicals, Inc.

  15. Protein corona composition of gold nanoparticles/nanorods affects amyloid beta fibrillation process

    NASA Astrophysics Data System (ADS)

    Mirsadeghi, Somayeh; Dinarvand, Rassoul; Ghahremani, Mohammad Hossein; Hormozi-Nezhad, Mohammad Reza; Mahmoudi, Zohreh; Hajipour, Mohammad Javad; Atyabi, Fatemeh; Ghavami, Mahdi; Mahmoudi, Morteza

    2015-03-01

    Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades, nanoparticles (NPs) were recognized as one of the most promising tools for inhibiting the progress of the disease by controlling the fibrillation kinetic process; for instance, gold NPs have a strong capability to inhibit Aβ fibrillations. It is now well understood that a layer of biomolecules would cover the surface of NPs (so called ``protein corona'') upon the interaction of NPs with protein sources. Due to the fact that the biological species (e.g., cells and amyloidal proteins) ``see'' the protein corona coated NPs rather than the pristine coated particles, one should monitor the fibrillation process of amyloidal proteins in the presence of corona coated NPs (and not pristine coated ones). Therefore, the previously obtained data on NPs effects on the fibrillation process should be modified to achieve a more reliable and predictable in vivo results. Herein, we probed the effects of various gold NPs (with different sizes and shapes) on the fibrillation process of Aβ in the presence and absence of protein sources (i.e., serum and plasma). We found that the protein corona formed a shell at the surface of gold NPs, regardless of their size and shape, reducing the access of Aβ to the gold inhibitory surface and, therefore, affecting the rate of Aβ fibril formation. More specifically, the anti-fibrillation potencies of various corona coated gold NPs were strongly dependent on the protein source and their concentrations (10% serum/plasma (simulation of an in vitro milieu) and 100% serum/plasma (simulation of an in vivo milieu)).Protein fibrillation process (e.g., from amyloid beta (Aβ) and α-synuclein) is the main cause of several catastrophic neurodegenerative diseases such as Alzheimer's and Parkinson diseases. During the past few decades

  16. Probing Functional Heteromeric Chemokine Protein-Protein Interactions through Conformation-Assisted Oxime Ligation.

    PubMed

    Agten, Stijn M; Koenen, Rory R; Ippel, Hans; Eckardt, Veit; von Hundelshausen, Philipp; Mayo, Kevin H; Weber, Christian; Hackeng, Tilman M

    2016-11-21

    Protein-protein interactions (PPIs) govern most processes in living cells. Current drug development strategies are aimed at disrupting or stabilizing PPIs, which require a thorough understanding of PPI mechanisms. Examples of such PPIs are heteromeric chemokine interactions that are potentially involved in pathological disorders such as cancer, atherosclerosis, and HIV. It remains unclear whether this functional modulation is mediated by heterodimer formation or by the additive effects of mixed chemokines on their respective receptors. To address this issue, we report the synthesis of a covalent RANTES-PF4 heterodimer (termed OPRAH) by total chemical synthesis and oxime ligation, with an acceleration of the final ligation step driven by PPIs between RANTES and PF4. Compared to mixed separate chemokines, OPRAH exhibited increased biological activity, thus providing evidence that physical formation of the heterodimer indeed mediates enhanced function. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  17. Annotating Protein Functional Residues by Coupling High-Throughput Fitness Profile and Homologous-Structure Analysis

    PubMed Central

    Du, Yushen; Wu, Nicholas C.; Jiang, Lin; Zhang, Tianhao; Gong, Danyang; Shu, Sara; Wu, Ting-Ting

    2016-01-01

    ABSTRACT Identification and annotation of functional residues are fundamental questions in protein sequence analysis. Sequence and structure conservation provides valuable information to tackle these questions. It is, however, limited by the incomplete sampling of sequence space in natural evolution. Moreover, proteins often have multiple functions, with overlapping sequences that present challenges to accurate annotation of the exact functions of individual residues by conservation-based methods. Using the influenza A virus PB1 protein as an example, we developed a method to systematically identify and annotate functional residues. We used saturation mutagenesis and high-throughput sequencing to measure the replication capacity of single nucleotide mutations across the entire PB1 protein. After predicting protein stability upon mutations, we identified functional PB1 residues that are essential for viral replication. To further annotate the functional residues important to the canonical or noncanonical functions of viral RNA-dependent RNA polymerase (vRdRp), we performed a homologous-structure analysis with 16 different vRdRp structures. We achieved high sensitivity in annotating the known canonical polymerase functional residues. Moreover, we identified a cluster of noncanonical functional residues located in the loop region of the PB1 β-ribbon. We further demonstrated that these residues were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. In summary, we developed a systematic and sensitive method to identify and annotate functional residues that are not restrained by sequence conservation. Importantly, this method is generally applicable to other proteins about which homologous-structure information is available. PMID:27803181

  18. Resolving protein structure-function-binding site relationships from a binding site similarity network perspective.

    PubMed

    Mudgal, Richa; Srinivasan, Narayanaswamy; Chandra, Nagasuma

    2017-07-01

    Functional annotation is seldom straightforward with complexities arising due to functional divergence in protein families or functional convergence between non-homologous protein families, leading to mis-annotations. An enzyme may contain multiple domains and not all domains may be involved in a given function, adding to the complexity in function annotation. To address this, we use binding site information from bound cognate ligands and catalytic residues, since it can help in resolving fold-function relationships at a finer level and with higher confidence. A comprehensive database of 2,020 fold-function-binding site relationships has been systematically generated. A network-based approach is employed to capture the complexity in these relationships, from which different types of associations are deciphered, that identify versatile protein folds performing diverse functions, same function associated with multiple folds and one-to-one relationships. Binding site similarity networks integrated with fold, function, and ligand similarity information are generated to understand the depth of these relationships. Apart from the observed continuity in the functional site space, network properties of these revealed versatile families with topologically different or dissimilar binding sites and structural families that perform very similar functions. As a case study, subtle changes in the active site of a set of evolutionarily related superfamilies are studied using these networks. Tracing of such similarities in evolutionarily related proteins provide clues into the transition and evolution of protein functions. Insights from this study will be helpful in accurate and reliable functional annotations of uncharacterized proteins, poly-pharmacology, and designing enzymes with new functional capabilities. Proteins 2017; 85:1319-1335. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  19. Ion Binding Energies Determining Functional Transport of ClC Proteins

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Guo, Xu; Zou, Xian-Wu; Sang, Jian-Ping

    2014-06-01

    The ClC-type proteins, a large family of chloride transport proteins ubiquitously expressed in biological organisms, have been extensively studied for decades. Biological function of ClC proteins can be reflected by analyzing the binding situation of Cl- ions. We investigate ion binding properties of ClC-ec1 protein with the atomic molecular dynamics simulation approach. The calculated electrostatic binding energy results indicate that Cl- at the central binding site Scen has more binding stability than the internal binding site Sint. Quantitative comparison between the latest experimental heat release data isothermal titration calorimetry (ITC) and our calculated results demonstrates that chloride ions prefer to bind at Scen than Sint in the wild-type ClC-ec1 structure and prefer to bind at Sext and Scen than Sint in mutant E148A/E148Q structures. Even though the chloride ions make less contribution to heat release when binding to Sint and are relatively unstable in the Cl- pathway, they are still part contributors for the Cl- functional transport. This work provides a guide rule to estimate the importance of Cl- at the binding sites and how chloride ions have influences on the function of ClC proteins.

  20. Multivesicular Bodies in Neurons: Distribution, Protein Content, and Trafficking Functions

    PubMed Central

    VON BARTHELD, CHRISTOPHER S.; ALTICK, AMY L.

    2011-01-01

    Summary Multivesicular bodies (MVBs) are intracellular endosomal organelles characterized by multiple internal vesicles that are enclosed within a single outer membrane. MVBs were initially regarded as purely prelysosomal structures along the degradative endosomal pathway of internalized proteins. MVBs are now known to be involved in numerous endocytic and trafficking functions, including protein sorting, recycling, transport, storage, and release. This review of neuronal MVBs summarizes their research history, morphology, distribution, accumulation of cargo and constitutive proteins, transport, and theories of functions of MVBs in neurons and glia. Due to their complex morphologies, neurons have expanded trafficking and signaling needs, beyond those of “geometrically simpler” cells, but it is not known whether neuronal MVBs perform additional transport and signaling functions. This review examines the concept of compartment-specific MVB functions in endosomal protein trafficking and signaling within synapses, axons, dendrites and cell bodies. We critically evaluate reports of the accumulation of neuronal MVBs based on evidence of stress-induced MVB formation. Furthermore, we discuss potential functions of neuronal and glial MVBs in development, in dystrophic neuritic syndromes, injury, disease, and aging. MVBs may play a role in Alzheimer’s, Huntington’s, and Niemann-Pick diseases, some types of frontotemporal dementia, prion and virus trafficking, as well as in adaptive responses of neurons to trauma and toxin or drug exposure. Functions of MVBs in neurons have been much neglected, and major gaps in knowledge currently exist. Developing truly MVB-specific markers would help to elucidate the roles of neuronal MVBs in intra- and intercellular signaling of normal and diseased neurons. PMID:21216273

  1. A complementation assay for in vivo protein structure/function analysis in Physcomitrella patens (Funariaceae)

    DOE PAGES

    Scavuzzo-Duggan, Tess R.; Chaves, Arielle M.; Roberts, Alison W.

    2015-07-14

    Here, a method for rapid in vivo functional analysis of engineered proteins was developed using Physcomitrella patens. A complementation assay was designed for testing structure/function relationships in cellulose synthase (CESA) proteins. The components of the assay include (1) construction of test vectors that drive expression of epitope-tagged PpCESA5 carrying engineered mutations, (2) transformation of a ppcesa5 knockout line that fails to produce gametophores with test and control vectors, (3) scoring the stable transformants for gametophore production, (4) statistical analysis comparing complementation rates for test vectors to positive and negative control vectors, and (5) analysis of transgenic protein expression by Westernmore » blotting. The assay distinguished mutations that generate fully functional, nonfunctional, and partially functional proteins. In conclusion, compared with existing methods for in vivo testing of protein function, this complementation assay provides a rapid method for investigating protein structure/function relationships in plants.« less

  2. ORF phage display to identify cellular proteins with different functions.

    PubMed

    Li, Wei

    2012-09-01

    Open reading frame (ORF) phage display is a new branch of phage display aimed at improving its efficiency to identify cellular proteins with specific binding or functional activities. Despite the success of phage display with antibody libraries and random peptide libraries, phage display with cDNA libraries of cellular proteins identifies a high percentage of non-ORF clones encoding unnatural short peptides with minimal biological implications. This is mainly because of the uncontrollable reading frames of cellular proteins in conventional cDNA libraries. ORF phage display solves this problem by eliminating non-ORF clones to generate ORF cDNA libraries. Here I summarize the procedures of ORF phage display, discuss the factors influencing its efficiency, present examples of its versatile applications, and highlight evidence of its capability of identifying biologically relevant cellular proteins. ORF phage display coupled with different selection strategies is capable of delineating diverse functions of cellular proteins with unique advantages. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles

    NASA Astrophysics Data System (ADS)

    Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi

    2014-01-01

    Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.

  4. Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles.

    PubMed

    Hsu, Justin Bo-Kai; Huang, Kai-Yao; Weng, Tzu-Ya; Huang, Chien-Hsun; Lee, Tzong-Yi

    2014-01-01

    Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.

  5. Composite Structural Motifs of Binding Sites for Delineating Biological Functions of Proteins

    PubMed Central

    Kinjo, Akira R.; Nakamura, Haruki

    2012-01-01

    Most biological processes are described as a series of interactions between proteins and other molecules, and interactions are in turn described in terms of atomic structures. To annotate protein functions as sets of interaction states at atomic resolution, and thereby to better understand the relation between protein interactions and biological functions, we conducted exhaustive all-against-all atomic structure comparisons of all known binding sites for ligands including small molecules, proteins and nucleic acids, and identified recurring elementary motifs. By integrating the elementary motifs associated with each subunit, we defined composite motifs that represent context-dependent combinations of elementary motifs. It is demonstrated that function similarity can be better inferred from composite motif similarity compared to the similarity of protein sequences or of individual binding sites. By integrating the composite motifs associated with each protein function, we define meta-composite motifs each of which is regarded as a time-independent diagrammatic representation of a biological process. It is shown that meta-composite motifs provide richer annotations of biological processes than sequence clusters. The present results serve as a basis for bridging atomic structures to higher-order biological phenomena by classification and integration of binding site structures. PMID:22347478

  6. Monitoring the function of membrane transport proteins in detergent-solubilized form

    PubMed Central

    Quick, Matthias; Javitch, Jonathan A.

    2007-01-01

    Transport proteins constitute ≈10% of most proteomes and play vital roles in the translocation of solutes across membranes of all organisms. Their (dys)function is implicated in many disorders, making them frequent targets for pharmacotherapy. The identification of substrates for members of this large protein family, still replete with many orphans of unknown function, has proven difficult, in part because high-throughput screening is greatly complicated by endogenous transporters present in many expression systems. In addition, direct structural studies require that transporters be extracted from the membrane with detergent, thereby precluding transport measurements because of the lack of a vectorial environment and necessitating reconstitution into proteoliposomes for activity measurements. Here, we describe a direct scintillation proximity-based radioligand-binding assay for determining transport protein function in crude cell extracts and in purified form. This rapid and universally applicable assay with advantages over cell-based platforms will greatly facilitate the identification of substrates for many orphan transporters and allows monitoring the function of transport proteins in a nonmembranous environment. PMID:17360689

  7. Inhibition of Oncogenic functionality of STAT3 Protein by Membrane Anchoring

    NASA Astrophysics Data System (ADS)

    Liu, Baoxu; Fletcher, Steven; Gunning, Patrick; Gradinaru, Claudiu

    2009-03-01

    Signal Transducer and Activator of Transcription 3 (STAT3) protein plays an important role in oncogenic processes. A novel molecular therapeutic approach to inhibit the oncogenic functionality of STAT3 is to design a prenylated small peptide sequence which could sequester STAT3 to the plasma membrane. We have also developed a novel fluorescein derivative label (F-NAc), which is much more photostable compared to the popular fluorescein label FITC. Remarkably, the new dye shows fluorescent properties that are invariant over a wide pH range, which is advantageous for our application. We have shown that F-NAc is suitable for single-molecule measurements and its properties are not affected by ligation to biomolecules. The membrane localization via high-affinity prenylated small-molecule binding agents is studied by encapsulating FNAc-labeled STAT3 and inhibitors within a liposome model cell system. The dynamics of the interaction between the protein and the prenylated ligands is investigated at single molecule level. The efficiency and stability of the STAT3 anchoring in lipid membranes are addressed via quantitative confocal imaging and single-molecule spectroscopy using a custom-built multiparameter fluorescence microscope.

  8. Structure modification and functionality of whey proteins: quantitative structure-activity relationship approach.

    PubMed

    Nakai, S; Li-Chan, E

    1985-10-01

    According to the original idea of quantitative structure-activity relationship, electric, hydrophobic, and structural parameters should be taken into consideration for elucidating functionality. Changes in these parameters are reflected in the property of protein solubility upon modification of whey proteins by heating. Although solubility is itself a functional property, it has been utilized to explain other functionalities of proteins. However, better correlations were obtained when hydrophobic parameters of the proteins were used in conjunction with solubility. Various treatments reported in the literature were applied to whey protein concentrate in an attempt to obtain whipping and gelling properties similar to those of egg white. Mapping simplex optimization was used to search for the best results. Improvement in whipping properties by pepsin hydrolysis may have been due to higher protein solubility, and good gelling properties resulting from polyphosphate treatment may have been due to an increase in exposable hydrophobicity. However, the results of angel food cake making were still unsatisfactory.

  9. Watching proteins function with picosecond X-ray crystallography and molecular dynamics simulations.

    NASA Astrophysics Data System (ADS)

    Anfinrud, Philip

    2006-03-01

    Time-resolved electron density maps of myoglobin, a ligand-binding heme protein, have been stitched together into movies that unveil with < 2-å spatial resolution and 150-ps time-resolution the correlated protein motions that accompany and/or mediate ligand migration within the hydrophobic interior of a protein. A joint analysis of all-atom molecular dynamics (MD) calculations and picosecond time-resolved X-ray structures provides single-molecule insights into mechanisms of protein function. Ensemble-averaged MD simulations of the L29F mutant of myoglobin following ligand dissociation reproduce the direction, amplitude, and timescales of crystallographically-determined structural changes. This close agreement with experiments at comparable resolution in space and time validates the individual MD trajectories, which identify and structurally characterize a conformational switch that directs dissociated ligands to one of two nearby protein cavities. This unique combination of simulation and experiment unveils functional protein motions and illustrates at an atomic level relationships among protein structure, dynamics, and function. In collaboration with Friedrich Schotte and Gerhard Hummer, NIH.

  10. Abiotic regulation: a common way for proteins to modulate their functions.

    PubMed

    Zou, Zhi; Fu, Xinmiao

    2015-01-01

    Modulation of protein intrinsic activity in cells is generally carried out via a combination of four common ways, i.e., allosteric regulation, covalent modification, proteolytic cleavage and association of other regulatory proteins. Accumulated evidence indicate that changes of certain abiotic factors (e.g., temperature, pH, light and mechanical force) within or outside the cells directly influence protein structure and thus profoundly modulate the functions of a wide range of proteins, termed as abiotic regulatory proteins (e.g., heat shock factor, small heat shock protein, hemoglobin, zymogen, integrin, rhodopsin). Such abiotic regulation apparently differs from the four classic ways in perceiving and response to the signals. Importantly, it enables cells to directly and also immediately response to extracellular stimuli, thus facilitating the ability of organisms to resist against and adapt to the abiotic stress and thereby playing crucial roles in life evolution. Altogether, abiotic regulation may be considered as a common way for proteins to modulate their functions.

  11. Outfielders playing in the infield: functions of aging-associated "nuclear" proteins in the mitochondria.

    PubMed

    Czypiorski, P; Altschmied, J; Rabanter, L L; Goy, C; Jakob, S; Haendeler, J

    2014-01-01

    Over the past few years it has become clear that mitochondria are not merely the powerhouses of cells. Proteome-analyses of mitochondria from different organisms and organs revealed that more than 1000 proteins are localized in and/or on mitochondria. This by far exceeds the number of proteins required for classical mitochondrial functions, e.g. the respiratory chain, the tricarboxylic acid cycle, fatty acid oxidation and apoptosis. This suggests that many of these proteins have other, as yet unknown functions. Several proteins with well-described nuclear functions, like the transcription factor FoxO3A or the Telomerase Reverse Transcriptase, have recently been shown to be localized also within the mitochondria. This mini-review will focus on the description of the functions of these two proteins in the nucleus and in the mitochondria - as two examples of many more proteins, which are yet to be uncovered. It will give insights into the role of these proteins within different organelles of the cell and will reveal that the functions of the proteins are probably not the same in the nucleus and the mitochondria. Therefore, these differences have to be considered when targeting proteins for therapeutic approaches.

  12. Protein-driven RNA nanostructured devices that function in vitro and control mammalian cell fate.

    PubMed

    Shibata, Tomonori; Fujita, Yoshihiko; Ohno, Hirohisa; Suzuki, Yuki; Hayashi, Karin; Komatsu, Kaoru R; Kawasaki, Shunsuke; Hidaka, Kumi; Yonehara, Shin; Sugiyama, Hiroshi; Endo, Masayuki; Saito, Hirohide

    2017-09-14

    Nucleic acid nanotechnology has great potential for future therapeutic applications. However, the construction of nanostructured devices that control cell fate by detecting and amplifying protein signals has remained a challenge. Here we design and build protein-driven RNA-nanostructured devices that actuate in vitro by RNA-binding-protein-inducible conformational change and regulate mammalian cell fate by RNA-protein interaction-mediated protein assembly. The conformation and function of the RNA nanostructures are dynamically controlled by RNA-binding protein signals. The protein-responsive RNA nanodevices are constructed inside cells using RNA-only delivery, which may provide a safe tool for building functional RNA-protein nanostructures. Moreover, the designed RNA scaffolds that control the assembly and oligomerization of apoptosis-regulatory proteins on a nanometre scale selectively kill target cells via specific RNA-protein interactions. These findings suggest that synthetic RNA nanodevices could function as molecular robots that detect signals and localize target proteins, induce RNA conformational changes, and programme mammalian cellular behaviour.Nucleic acid nanotechnology has great potential for future therapeutic applications. Here the authors build protein-driven RNA nanostructures that can function within mammalian cells and regulate the cell fate.

  13. Integrative Identification of Arabidopsis Mitochondrial Proteome and Its Function Exploitation through Protein Interaction Network

    PubMed Central

    Cui, Jian; Liu, Jinghua; Li, Yuhua; Shi, Tieliu

    2011-01-01

    Mitochondria are major players on the production of energy, and host several key reactions involved in basic metabolism and biosynthesis of essential molecules. Currently, the majority of nucleus-encoded mitochondrial proteins are unknown even for model plant Arabidopsis. We reported a computational framework for predicting Arabidopsis mitochondrial proteins based on a probabilistic model, called Naive Bayesian Network, which integrates disparate genomic data generated from eight bioinformatics tools, multiple orthologous mappings, protein domain properties and co-expression patterns using 1,027 microarray profiles. Through this approach, we predicted 2,311 candidate mitochondrial proteins with 84.67% accuracy and 2.53% FPR performances. Together with those experimental confirmed proteins, 2,585 mitochondria proteins (named CoreMitoP) were identified, we explored those proteins with unknown functions based on protein-protein interaction network (PIN) and annotated novel functions for 26.65% CoreMitoP proteins. Moreover, we found newly predicted mitochondrial proteins embedded in particular subnetworks of the PIN, mainly functioning in response to diverse environmental stresses, like salt, draught, cold, and wound etc. Candidate mitochondrial proteins involved in those physiological acitivites provide useful targets for further investigation. Assigned functions also provide comprehensive information for Arabidopsis mitochondrial proteome. PMID:21297957

  14. The RNA-binding protein, ZC3H14, is required for proper poly(A) tail length control, expression of synaptic proteins, and brain function in mice.

    PubMed

    Rha, Jennifer; Jones, Stephanie K; Fidler, Jonathan; Banerjee, Ayan; Leung, Sara W; Morris, Kevin J; Wong, Jennifer C; Inglis, George Andrew S; Shapiro, Lindsey; Deng, Qiudong; Cutler, Alicia A; Hanif, Adam M; Pardue, Machelle T; Schaffer, Ashleigh; Seyfried, Nicholas T; Moberg, Kenneth H; Bassell, Gary J; Escayg, Andrew; García, Paul S; Corbett, Anita H

    2017-10-01

    A number of mutations in genes that encode ubiquitously expressed RNA-binding proteins cause tissue specific disease. Many of these diseases are neurological in nature revealing critical roles for this class of proteins in the brain. We recently identified mutations in a gene that encodes a ubiquitously expressed polyadenosine RNA-binding protein, ZC3H14 (Zinc finger CysCysCysHis domain-containing protein 14), that cause a nonsyndromic, autosomal recessive form of intellectual disability. This finding reveals the molecular basis for disease and provides evidence that ZC3H14 is essential for proper brain function. To investigate the role of ZC3H14 in the mammalian brain, we generated a mouse in which the first common exon of the ZC3H14 gene, exon 13 is removed (Zc3h14Δex13/Δex13) leading to a truncated ZC3H14 protein. We report here that, as in the patients, Zc3h14 is not essential in mice. Utilizing these Zc3h14Δex13/Δex13mice, we provide the first in vivo functional characterization of ZC3H14 as a regulator of RNA poly(A) tail length. The Zc3h14Δex13/Δex13 mice show enlarged lateral ventricles in the brain as well as impaired working memory. Proteomic analysis comparing the hippocampi of Zc3h14+/+ and Zc3h14Δex13/Δex13 mice reveals dysregulation of several pathways that are important for proper brain function and thus sheds light onto which pathways are most affected by the loss of ZC3H14. Among the proteins increased in the hippocampi of Zc3h14Δex13/Δex13 mice compared to control are key synaptic proteins including CaMK2a. This newly generated mouse serves as a tool to study the function of ZC3H14 in vivo. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. A single nucleotide polymorphism in COQ9 affects mitochondrial and ovarian function and fertility in Holstein cows.

    PubMed

    Ortega, M Sofia; Wohlgemuth, Stephanie; Tribulo, Paula; Siqueira, Luiz G B; Cole, John B; Hansen, Peter J

    2017-03-01

    A single missense mutation at position 159 of coenzyme Q9 (COQ9) (G→A; rs109301586) has been associated with genetic variation in fertility in Holstein cattle, with the A allele associated with higher fertility. COQ9 is involved in the synthesis of coenzyme COQ10, a component of the electron transport system of the mitochondria. Here we tested whether reproductive phenotype is associated with the mutation and evaluated functional consequences for cellular oxygen metabolism, body weight changes, and ovarian function. The mutation in COQ9 modifies predicted tertiary protein structure and affected mitochondrial respiration of peripheral blood mononuclear cells. The A allele was associated with low resting oxygen consumption and high electron transport system capacity. Phenotypic measurements for fertility were evaluated for up to five lactations in a population of 2273 Holstein cows. There were additive effects of the mutation (P < 0.05) in favor of the A allele for pregnancy rate, interval from calving to conception, and services per conception. There was no association of genotype with milk production or body weight changes postpartum. The mutation in COQ9 affected ovarian function; the A allele was associated with increased mitochondrial DNA copy number in oocytes, and there were overdominance effects for COQ9 expression in oocytes, follicle number, and antimullerian hormone concentrations. Overall, results show how a gene involved in mitochondrial function is associated with overall fertility, possibly in part by affecting oocyte quality. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Lexical and Affective Prosody in Children with High-Functioning Autism

    ERIC Educational Resources Information Center

    Grossman, Ruth B.; Bemis, Rhyannon H.; Skwerer, Daniela Plesa; Tager-Flusberg, Helen

    2010-01-01

    Purpose: To investigate the perception and production of lexical stress and processing of affective prosody in adolescents with high-functioning autism (HFA). We hypothesized preserved processing of lexical and affective prosody but atypical lexical prosody production. Method: Sixteen children with HFA and 15 typically developing (TD) peers…

  17. Constraints imposed by non-functional protein–protein interactions on gene expression and proteome size

    PubMed Central

    Zhang, Jingshan; Maslov, Sergei; Shakhnovich, Eugene I

    2008-01-01

    Crowded intracellular environments present a challenge for proteins to form functional specific complexes while reducing non-functional interactions with promiscuous non-functional partners. Here we show how the need to minimize the waste of resources to non-functional interactions limits the proteome diversity and the average concentration of co-expressed and co-localized proteins. Using the results of high-throughput Yeast 2-Hybrid experiments, we estimate the characteristic strength of non-functional protein–protein interactions. By combining these data with the strengths of specific interactions, we assess the fraction of time proteins spend tied up in non-functional interactions as a function of their overall concentration. This allows us to sketch the phase diagram for baker's yeast cells using the experimentally measured concentrations and subcellular localization of their proteins. The positions of yeast compartments on the phase diagram are consistent with our hypothesis that the yeast proteome has evolved to operate closely to the upper limit of its size, whereas keeping individual protein concentrations sufficiently low to reduce non-functional interactions. These findings have implication for conceptual understanding of intracellular compartmentalization, multicellularity and differentiation. PMID:18682700

  18. Tagging methyl-CpG-binding domain proteins reveals different spatiotemporal expression and supports distinct functions.

    PubMed

    Wood, Kathleen H; Johnson, Brian S; Welsh, Sarah A; Lee, Jun Y; Cui, Yue; Krizman, Elizabeth; Brodkin, Edward S; Blendy, Julie A; Robinson, Michael B; Bartolomei, Marisa S; Zhou, Zhaolan

    2016-04-01

    DNA methylation is recognized by methyl-CpG-binding domain (MBD) proteins. Multiple MBDs are linked to neurodevelopmental disorders in humans and mice. However, the functions of MBD2 are poorly understood. We characterized Mbd2 knockout mice and determined spatiotemporal expression of MBDs and MBD2-NuRD (nucleosome remodeling deacetylase) interactions. We analyzed behavioral phenotypes, generated biotin-tagged MBD1 and MBD2 knockin mice, and performed biochemical studies of MBD2-NuRD. Most behavioral measures are minimally affected in Mbd2 knockout mice. In contrast to other MBDs, MBD2 shows distinct expression patterns. Unlike most MBDs, MBD2 is ubiquitously expressed in all tissues examined and appears dispensable for brain functions measured in this study. We provide novel genetic tools and reveal new directions to investigate MBD2 functions in vivo.

  19. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer.

    PubMed

    Fujisawa, Takao; Filippakopoulos, Panagis

    2017-04-01

    Bromodomains (BRDs) are evolutionarily conserved protein-protein interaction modules that are found in a wide range of proteins with diverse catalytic and scaffolding functions and are present in most tissues. BRDs selectively recognize and bind to acetylated Lys residues - particularly in histones - and thereby have important roles in the regulation of gene expression. BRD-containing proteins are frequently dysregulated in cancer, they participate in gene fusions that generate diverse, frequently oncogenic proteins, and many cancer-causing mutations have been mapped to the BRDs themselves. Importantly, BRDs can be targeted by small-molecule inhibitors, which has stimulated many translational research projects that seek to attenuate the aberrant functions of BRD-containing proteins in disease.

  20. Familial Clustering of Executive Functioning in Affected Sibling Pair Families with ADHD

    ERIC Educational Resources Information Center

    Slaats-Willemse, Dorine; Swaab-Barneveld, Hanna; De Sonneville, Leo; Buitelaar, Jan

    2005-01-01

    Objective: To investigate familial clustering of executive functioning (i.e., response inhibition, fine visuomotor functioning, and attentional control) in attention-deficit/hyperactivity disorder (ADHD)-affected sibling pairs. Method: Fifty-two affected sibling pairs aged 6 to 18 years and diagnosed with ADHD according to DSM-IV performed the…