Sample records for affect radionuclide transport

  1. Conditions and processes affecting radionuclide transport

    USGS Publications Warehouse

    Simmons, Ardyth M.; Neymark, Leonid A.

    2012-01-01

    Understanding of unsaturated-zone transport is based on laboratory and field-scale experiments. Fractures provide advective transport pathways. Sorption and matrix diffusion may contribute to retardation of radionuclides. Conversely, sorption onto mobile colloids may enhance radionuclide transport.

  2. Colloid-facilitated radionuclide transport: a regulatory perspective

    NASA Astrophysics Data System (ADS)

    Dam, W. L.; Pickett, D. A.; Codell, R. B.; Nicholson, T. J.

    2001-12-01

    What hydrogeologic-geochemical-microbial conditions and processes affect migration of radionuclides sorbed onto microparticles or native colloid-sized radionuclide particles? The U.S. Nuclear Regulatory Commission (NRC) is responsible for protecting public health, safety, and the environment at numerous nuclear facilities including a potential high-level nuclear waste disposal site. To fulfill these obligations, NRC needs to understand the mechanisms controlling radionuclide release and transport and their importance to performance. The current focus of NRC staff reviews and technical interactions dealing with colloid-facilitated transport relates to the potential nuclear-waste repository at Yucca Mountain, Nevada. NRC staff performed bounding calculations to quantify radionuclide releases available for ground-water transport to potential receptors from a Yucca Mountain repository. Preliminary analyses suggest insignificant doses of plutonium and americium colloids could be derived from spent nuclear fuel. Using surface complexation models, NRC staff found that colloids can potentially lower actinide retardation factors by up to several orders of magnitude. Performance assessment calculations, in which colloidal transport of plutonium and americium was simulated by assuming no sorption or matrix diffusion, indicated no effect of colloids on human dose within the 10,000 year compliance period due largely to long waste-package lifetimes. NRC staff have identified information gaps and developed technical agreements with the U.S. Department of Energy (DOE) to ensure sufficient information will be presented in any potential future Yucca Mountain license application. DOE has agreed to identify which radionuclides could be transported via colloids, incorporate uncertainties in colloid formation, release and transport parameters, and conceptual models, and address the applicability of field data using synthetic microspheres as colloid analogs. NRC is currently

  3. Radionuclides: Accumulation and Transport in Plants.

    PubMed

    Gupta, D K; Chatterjee, S; Datta, S; Voronina, A V; Walther, C

    Application of radioactive elements or radionuclides for anthropogenic use is a widespread phenomenon nowadays. Radionuclides undergo radioactive decays releasing ionizing radiation like gamma ray(s) and/or alpha or beta particles that can displace electrons in the living matter (like in DNA) and disturb its function. Radionuclides are highly hazardous pollutants of considerable impact on the environment, food chain and human health. Cleaning up of the contaminated environment through plants is a promising technology where the rhizosphere may play an important role. Plants belonging to the families of Brassicaceae, Papilionaceae, Caryophyllaceae, Poaceae, and Asteraceae are most important in this respect and offer the largest potential for heavy metal phytoremediation. Plants like Lactuca sativa L., Silybum marianum Gaertn., Centaurea cyanus L., Carthamus tinctorius L., Helianthus annuus and H. tuberosus are also important plants for heavy metal phytoremediation. However, transfer factors (TF) of radionuclide from soil/water to plant ([Radionuclide]plant/[Radionuclide]soil) vary widely in different plants. Rhizosphere, rhizobacteria and varied metal transporters like NRAMP, ZIP families CDF, ATPases (HMAs) family like P1B-ATPases, are involved in the radio-phytoremediation processes. This review will discuss recent advancements and potential application of plants for radionuclide removal from the environment.

  4. Radionuclide transport behavior in a generic geological radioactive waste repository.

    PubMed

    Bianchi, Marco; Liu, Hui-Hai; Birkholzer, Jens T

    2015-01-01

    We performed numerical simulations of groundwater flow and radionuclide transport to study the influence of several factors, including the ambient hydraulic gradient, groundwater pressure anomalies, and the properties of the excavation damaged zone (EDZ), on the prevailing transport mechanism (i.e., advection or molecular diffusion) in a generic nuclear waste repository within a clay-rich geological formation. By comparing simulation results, we show that the EDZ plays a major role as a preferential flowpath for radionuclide transport. When the EDZ is not taken into account, transport is dominated by molecular diffusion in almost the totality of the simulated domain, and transport velocity is about 40% slower. Modeling results also show that a reduction in hydraulic gradient leads to a greater predominance of diffusive transport, slowing down radionuclide transport by about 30% with respect to a scenario assuming a unit gradient. In addition, inward flow caused by negative pressure anomalies in the clay-rich formation further reduces transport velocity, enhancing the ability of the geological barrier to contain the radioactive waste. On the other hand, local high gradients associated with positive pressure anomalies can speed up radionuclide transport with respect to steady-state flow systems having the same regional hydraulic gradients. Transport behavior was also found to be sensitive to both geometrical and hydrogeological parameters of the EDZ. Results from this work can provide useful knowledge toward correctly assessing the post-closure safety of a geological disposal system. © 2014, National Ground Water Association.

  5. Structure and function of subsurface microbial communities affecting radionuclide transport and bioimmobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostka, Joel E.; Prakash, Om; Green, Stefan J.

    2012-05-01

    Our objectives were to: 1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), 2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and 3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations. Field sampling was conducted at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee. Themore » ORFRC subsurface is exposed to mixed contamination predominated by uranium and nitrate. In short, we effectively addressed all 3 stated objectives of the project. In particular, we isolated and characterized a large number of novel anaerobes with a high bioremediation potential that can be used as model organisms, and we are now able to quantify the function of subsurface sedimentary microbial communities in situ using state-of-the-art gene expression methods (molecular proxies).« less

  6. Pacific bluefin tuna transport Fukushima-derived radionuclides from Japan to California

    PubMed Central

    Madigan, Daniel J.; Baumann, Zofia; Fisher, Nicholas S.

    2012-01-01

    The Fukushima Dai-ichi release of radionuclides into ocean waters caused significant local and global concern regarding the spread of radioactive material. We report unequivocal evidence that Pacific bluefin tuna, Thunnus orientalis, transported Fukushima-derived radionuclides across the entire North Pacific Ocean. We measured γ-emitting radionuclides in California-caught tunas and found 134Cs (4.0 ± 1.4 Bq kg−1) and elevated 137Cs (6.3 ± 1.5 Bq kg−1) in 15 Pacific bluefin tuna sampled in August 2011. We found no 134Cs and background concentrations (∼1 Bq kg−1) of 137Cs in pre-Fukushima bluefin and post-Fukushima yellowfin tunas, ruling out elevated radiocesium uptake before 2011 or in California waters post-Fukushima. These findings indicate that Pacific bluefin tuna can rapidly transport radionuclides from a point source in Japan to distant ecoregions and demonstrate the importance of migratory animals as transport vectors of radionuclides. Other large, highly migratory marine animals make extensive use of waters around Japan, and these animals may also be transport vectors of Fukushima-derived radionuclides to distant regions of the North and South Pacific Oceans. These results reveal tools to trace migration origin (using the presence of 134Cs) and potentially migration timing (using 134Cs:137Cs ratios) in highly migratory marine species in the Pacific Ocean. PMID:22645346

  7. Radionuclide Transport in Fracture-Granite Interface Zones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Q; Mori, A

    In situ radionuclide migration experiments, followed by excavation and sample characterization, were conducted in a water-conducting shear zone at the Grimsel Test Site (GTS) in Switzerland to study diffusion paths of radionuclides in fractured granite. In this work, we employed a micro-scale mapping technique that interfaces laser ablation sampling with inductively coupled plasma-mass spectrometry (LA/ICP-MS) to measure the fine-scale (micron-range) distribution of actinides ({sup 234}U, {sup 235}U, and {sup 237}Np) in the fracture-granite interface zones. Long-lived {sup 234}U, {sup 235}U, and {sup 237}Np were detected in flow channels, as well as in the adjacent rock matrix, using the sensitive, feature-basedmore » mapping of the LA/ICP-MS technique. The injected sorbing actinides are mainly located within the advective flowing fractures and the immediately adjacent regions. The water-conducting fracture studied in this work is bounded on one side by mylonite and the other by granitic matrix regions. These actinides did not penetrate into the mylonite side as much as the relatively higher-porosity granite matrix, most likely due to the low porosity, hydraulic conductivity, and diffusivity of the fracture wall (a thickness of about 0.4 mm separates the mylonite region from the fracture) and the mylonite region itself. Overall, the maximum penetration depth detected with this technique for the more diffusive {sup 237}Np over the field experimental time scale of about 60 days was about 10 mm in the granitic matrix, illustrating the importance of matrix diffusion in retarding radionuclide transport from the advective fractures. Laboratory tests and numerical modeling of radionuclide diffusion into granitic matrix was conducted to complement and help interpret the field results. Measured apparent diffusivity of multiple tracers in granite provided consistent predictions for radionuclide transport in the fractured granitic rock.« less

  8. ITE CHARACTERIZATION TO SUPPORT CONCEPTUAL MODEL DEVELOPMENT FOR SUBSURFACE RADIONUCLIDE TRANSPORT

    EPA Science Inventory

    Remediation of radionuclide contaminants in ground water often begins with the development of conceptual and analytical models that guide our understanding of the processes controlling radionuclide transport. The reliability of these models is often predicated on the collection o...

  9. Radiogenic isotopic approaches for quantifying radionuclide transport (Invited)

    NASA Astrophysics Data System (ADS)

    Maher, K.; Depaolo, D. J.; Singleton, M. J.; Christensen, J. N.; Conrad, M. E.

    2009-12-01

    Naturally occurring variations in the isotopic compositions of U and Sr provide unique opportunities for assessing the fate and transport of radionuclides at field-scale conditions. When coupled with reactive transport models, U and Sr isotopes may also provide additional constraints on the rates of sediment-fluid or sediment-waste interactions. Such isotopic approaches can be useful for sites where subsurface characterization is complicated by a lack of accessibility or the presence of substantial heterogeneity. In addition, a variety of quantitative modeling approaches of different complexity can be used to evaluate experimentally determined parameters for radionuclide mobility at the field-scale. At the Hanford Site in eastern Washington, 87Sr/86Sr and 234U/238U ratios have been used to quantify the residence time of Sr and U in the unsaturated zone, the long-term background infiltration rate through the unsaturated zone, and to assess the influence of enhanced wastewater discharge on the regional unconfined aquifer. As a result of different processing techniques or due to interactions between caustic waste and the natural sediment, waste plumes may also inherit isotopic fingerprints (e.g. 234U/238U, 235U/238U, 236U/238U; δ15N & δ18O of nitrate) that can be used to resolve multiple sources of contamination. Finally, enriched isotopic tracers can be applied to experimental manipulations to assess the retardation of a variety of contaminants. Collectively this isotopic data contributes unique perspectives on both the hydrologic conditions across the site and the mobility of key radionuclides. Predicting the long-term fate and transport of radionuclides in the environment is often challenging due to natural heterogeneity and incomplete characterization of the subsurface, however detailed analysis of isotopic variations can provide one additional means of characterizing the subsurface.

  10. Chancellor Water Colloids: Characterization and Radionuclide Associated Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul William; Boukhalfa, Hakim

    2014-09-26

    Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy.more » In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240Pu desorbed from the colloids during the second column injection compared to the first injection

  11. Mathematical Basis and Test Cases for Colloid-Facilitated Radionuclide Transport Modeling in GDSA-PFLOTRAN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul William

    This report provides documentation of the mathematical basis for a colloid-facilitated radionuclide transport modeling capability that can be incorporated into GDSA-PFLOTRAN. It also provides numerous test cases against which the modeling capability can be benchmarked once the model is implemented numerically in GDSA-PFLOTRAN. The test cases were run using a 1-D numerical model developed by the author, and the inputs and outputs from the 1-D model are provided in an electronic spreadsheet supplement to this report so that all cases can be reproduced in GDSA-PFLOTRAN, and the outputs can be directly compared with the 1-D model. The cases include examplesmore » of all potential scenarios in which colloid-facilitated transport could result in the accelerated transport of a radionuclide relative to its transport in the absence of colloids. Although it cannot be claimed that all the model features that are described in the mathematical basis were rigorously exercised in the test cases, the goal was to test the features that matter the most for colloid-facilitated transport; i.e., slow desorption of radionuclides from colloids, slow filtration of colloids, and equilibrium radionuclide partitioning to colloids that is strongly favored over partitioning to immobile surfaces, resulting in a substantial fraction of radionuclide mass being associated with mobile colloids.« less

  12. Transport of Gas Phase Radionuclides in a Fractured, Low-Permeability Reservoir

    NASA Astrophysics Data System (ADS)

    Cooper, C. A.; Chapman, J.

    2001-12-01

    The U.S. Atomic Energy Commission (predecessor to the Department of Energy, DOE) oversaw a joint program between industry and government in the 1960s and 1970s to develop technology to enhance production from low-permeability gas reservoirs using nuclear stimulation rather than conventional means (e.g., hydraulic and/or acid fracturing). Project Rio Blanco, located in the Piceance Basin, Colorado, was the third experiment under the program. Three 30-kiloton nuclear explosives were placed in a 2134 m deep well at 1780, 1899, and 2039 m below the land surface and detonated in May 1973. Although the reservoir was extensively fractured, complications such as radionuclide contamination of the gas prevented production and subsequent development of the technology. Two-dimensional numerical simulations were conducted to identify the main transport processes that have occurred and are currently occurring in relation to the detonations, and to estimate the extent of contamination in the reservoir. Minor modifications were made to TOUGH2, the multiphase, multicomponent reservoir simulator developed at Lawrence Berkeley National Laboratories. The simulator allows the explicit incorporation of fractures, as well as heat transport, phase change, and first order radionuclide decay. For a fractured two-phase (liquid and gas) reservoir, the largest velocities are of gases through the fractures. In the gas phase, tritium and one isotope of krypton are the principle radionuclides of concern. However, in addition to existing as a fast pathway, fractures also permit matrix diffusion as a retardation mechanism. Another retardation mechanism is radionuclide decay. Simulations show that incorporation of fractures can significantly alter transport rates, and that radionuclides in the gas phase can preferentially migrate upward due to the downward gravity drainage of liquid water in the pores. This project was funded by the National Nuclear Security Administration, Nevada Operations Office

  13. GIS Modelling of Radionuclide Transport from the Semipalatinsk Test Site

    NASA Astrophysics Data System (ADS)

    Balakay, L.; Zakarin, E.; Mahura, A.; Baklanov, A.; Sorensen, J. H.

    2009-04-01

    In this study, the software complex GIS-project MigRad (Migration of Radionuclide) was developed, tested and applied for the territory of the Semipalatinsk test site/ polygon (Republic of Kazakhstan), where since 1961, in total 348 underground nuclear explosions were conducted. The MigRad is oriented on integration of large volumes of different information (mapping, ground-based, and satellite-based survey): and also includes modeling on its base local redistribution of radionuclides by precipitation and surface waters and by long-range transport of radioactive aerosols. The existing thermal anomaly on territory of the polygon was investigated in details, and the object-oriented analysis was applied for the studied area. Employing the RUNOFF model, the simulation of radionuclides migration with surface waters was performed. Employing the DERMA model, the simulation of long-term atmospheric transport, dispersion and deposition patterns for cesium was conducted from 3 selected locations (Balapan, Delegen, and Experimental Field). Employing geoinformation technology, the mapping of the of the high temperature zones and epicenters of radioactive aerosols transport for the territory of the test site was carried out with post-processing and integration of modelling results into GIS environment. Contamination levels of pollution due to former nuclear explosions for population and environment of the surrounding polygon territories of Kazakhstan as well as adjacent countries were analyzed and evaluated. The MigRad was designed as instrument for comprehensive analysis of complex territorial processes influenced by former nuclear explosions on the territory of Semipalatinsk test site. It provides possibilities in detailed analyses for (i) extensive cartographic material, remote sensing, and field measurements data collected in different level databases; (ii) radionuclide migration with flows using accumulation and redistribution of soil particles; (iii) thermal anomalies

  14. The impacts of pore-scale physical and chemical heterogeneities on the transport of radionuclide-carrying colloids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ning

    Independent of the methods of nuclear waste disposal, the degradation of packaging materials could lead to mobilization and transport of radionuclides into the geosphere. This process can be significantly accelerated due to the association of radionuclides with the backfill materials or mobile colloids in groundwater. The transport of these colloids is complicated by the inherent coupling of physical and chemical heterogeneities (e.g., pore space geometry, grain size, charge heterogeneity, and surface hydrophobicity) in natural porous media that can exist on the length scale of a few grains. In addition, natural colloids themselves are often heterogeneous in their surface properties (e.g.,more » clay platelets possess opposite charges on the surface and along the rim). Both physical and chemical heterogeneities influence the transport and retention of radionuclides under various groundwater conditions. However, the precise mechanisms how these coupled heterogeneities influence colloidal transport are largely elusive. This knowledge gap is a major source of uncertainty in developing accurate models to represent the transport process and to predict distribution of radionuclides in the geosphere.« less

  15. Atmospheric Transport Modelling and Radionuclide Analysis for the NPE 2015 scenario

    NASA Astrophysics Data System (ADS)

    Ross, J. Ole; Bollhöfer, Andreas; Heidmann, Verena; Krais, Roman; Schlosser, Clemens; Gestermann, Nicolai; Ceranna, Lars

    2017-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) prohibits all kinds of nuclear explosions. The International Monitoring System (IMS) is in place and at about 90% complete to verify compliance with the CTBT. The stations of the waveform technologies are capable to detect seismic, hydro-acoustic and infrasonic signals for detection, localization, and characterization of explosions. For practicing Comprehensive Nuclear-Test-Ban Treaty (CTBT) verification procedures and interplay between the International Data Centre (IDC) and National Data Centres (NDC), prepardness exercises (NPE) are regularly performed with selected events of fictitious CTBT-violation. The German NDC's expertise for radionuclide analyses and operation of station RN33 is provided by the Federal Office for Radiation Protection (BfS) while Atmospheric Transport Modelling (ATM) for CTBT purposes is performed at the Federal Institute for Geosciences and Natural Resources (BGR) for the combination of the radionuclide findings with waveform evidence. The radionuclide part of the NPE 2015 scenario is tackled in a joint effort by BfS and BGR. First, the NPE 2015 spectra are analysed, fission products are identified, and respective activity concentrations are derived. Special focus is on isotopic ratios which allow for source characterization and event timing. For atmospheric backtracking the binary coincidence method is applied for both, SRS fields from IDC and WMO-RSMC, and for in-house backward simulations in higher resolution for the first affected samples. Results are compared with the WebGrape PSR and the spatio-temporal domain with high atmospheric release probability is determined. The ATM results together with the radionuclide fingerprint are used for identification of waveform candidate events. Comparative forward simulations of atmospheric dispersion for candidate events are performed. Finally the overall consistency of various source scenarios is assessed and a fictitious government briefing on

  16. Developing of Watershed Radionuclide Transport Model DHSVM-R as Modification and Extension of Distributed Hydrological and Sediment Dynamics Model DHSVM

    NASA Astrophysics Data System (ADS)

    Zheleznyak, M.; Kivva, S.; Onda, Y.; Nanba, K.; Wakiyama, Y.; Konoplev, A.

    2015-12-01

    The reliable modeling tools for prediction wash - off radionuclides from watersheds are needed as for assessment the consequences of accidental and industrial releases of radionuclides, as for soil erosion studies using the radioactive tracers. The distributed model of radionuclide transport through watershed in exchangeable and nonexchangeable forms in solute and with sediments was developed and validated for small Chernobyl watersheds in 90th within EU SPARTACUS project (van der Perk et al., 1996). New tendency is coupling of radionuclide transport models and the widely validated hydrological distributed models. To develop radionuclide transport model DHSVM-R the open source Distributed Hydrology Soil Vegetation Model -DHSVM http://www.hydro.washington.edu/Lettenmaier/Models/DHSVM was modified and extended. The main changes provided in the hydrological and sediment transport modules of DHSVM are as follows: Morel-Seytoux infiltration model is added; four-directions schematization for the model's cells flows (D4) is replaced by D8 approach; the finite-difference schemes for solution of kinematic wave equations for overland water flow, stream net flow, and sediment transport are replaced by new computationally efficient scheme. New radionuclide transport module, coupled with hydrological and sediment transport modules, continues SPARTACUS's approach, - it describes radionuclide wash-off from watershed and transport via stream network in soluble phase and on suspended sediments. The hydrological module of DHSVM-R was calibrated and validated for the watersheds of Ukrainian Carpathian mountains and for the subwatersheds of Niida river flowing 137Cs in solute and with suspended sediments to Pacific Ocean at 30 km north of the Fukushima Daiichi NPP. The modules of radionuclide and sediment transport were calibrated and validated versus experimental data for USLE experimental plots in Fukushima Prefecture and versus monitoring data collected in Niida watershed. The role

  17. Radionuclides deposition and fine sediment transport in a forested watershed, central Japan

    NASA Astrophysics Data System (ADS)

    Nam, S.; Gomi, T.; Kato, H.; Tesfaye, T.; Onda, Y.

    2011-12-01

    We investigated radionuclides deposition and fine sediment transport in a 13 ha headwater watershed, Tochigi prefecture, located in 98.94 km north of Tokyo. The study site was within Karasawa experimental forest, Tokyo University of Agriculture and Technology. We conducted fingerprinting approach, based on the activities of fallout radionuclides, including caesium-134 (Cs-134) caesium-137 (Cs-137) and excess lead-210 (Pb-210ex). For indentifying specific sources of fine sediment, we sampled tree, soil on forested floor, soil on logging road surface, stream bed and stream banks. We investigated the radionuclides (i.e., as Cs-134, Cs-137 and Pb-210ex) deposition on tree after accident of nuclear power plants on March 11, 2011. We sampled fruits, leaves, branches, stems, barks on Japanese cedar (Sugi) and Japanese cypress (Hinoki). To analyze the samples, gammaray spectrometry was performed at a laboratory at the University of Tsukuba (Tsukuba City, Japan) using n-type coaxial low-energy HPGe gamma detectors (EGC-200-R and EGC25-195-R of EURYSIS Co., Lingolsheim, France) coupled with a multichannel analyzer. We also collected soil samples under the forest canopy in various soil depths from 2, 5, 10, 20, 30 cm along transect of hillslopes. Samples at forest road were collected road segments crossing on the middle section of monitoring watersheds. Fine sediment transport in the streams were collected at the outlet of 13 ha watersheds using integrated suspended sediment samplers. This study indicates the some portion of radio nuclide potentially remained on the tree surface. Part of the deposited radionuclides attached to soil particles and transported to the streams. Most of the fine sediment can be transported on road surface and/or near stream side (riparian zones).

  18. Modeling of U-series Radionuclide Transport Through Soil at Pena Blanca, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Pekar, K. E.; Goodell, P. C.; Walton, J. C.; Anthony, E. Y.; Ren, M.

    2007-05-01

    The Nopal I uranium deposit is located at Pena Blanca in Chihuahua, Mexico. Mining of high-grade uranium ore occurred in the early 1980s, with the ore stockpiled nearby. The stockpile was mostly cleared in the 1990s; however, some of the high-grade boulders have remained there, creating localized sources of radioactivity for a period of 25-30 years. This provides a unique opportunity to study radionuclide transport, because the study area did not have any uranium contamination predating the stockpile in the 1980s. One high-grade boulder was selected for study based upon its shape, location, and high activity. The presumed drip-line off of the boulder was marked, samples from the boulder surface were taken, and then the boulder was moved several feet away. Soil samples were taken from directly beneath the boulder, around the drip-line, and down slope. Eight of these samples were collected in a vertical profile directly beneath the boulder. Visible flakes of boulder material were removed from the surficial soil samples, because they would have higher concentrations of U-series radionuclides and cause the activities in the soil samples to be excessively high. The vertical sampling profile used 2-inch thicknesses for each sample. The soil samples were packaged into thin plastic containers to minimize the attenuation and to standardize sample geometry, and then they were analyzed by gamma-ray spectroscopy with a Ge(Li) detector for Th-234, Pa-234, U-234, Th-230, Ra-226, Pb-214, Bi-214, and Pb-210. The raw counts were corrected for self-attenuation and normalized using BL-5, a uranium standard from Beaverlodge, Saskatchewan. BL-5 allowed the counts obtained on the Ge(Li) to be referenced to a known concentration or activity, which was then applied to the soil unknowns for a reliable calculation of their concentrations. Gamma ray spectra of five soil samples from the vertical profile exhibit decreasing activities with increasing depth for the selected radionuclides

  19. The effect of coupled transport phenomena in the Opalinus Clay and implications for radionuclide transport

    NASA Astrophysics Data System (ADS)

    Soler, Josep M.

    2001-12-01

    In this study, the potential effects of coupled transport phenomena on radionuclide transport in the vicinity of a repository for vitrified high-level radioactive waste (HLW) and spent nuclear fuel (SF) hosted by the Opalinus Clay in Switzerland, at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years), are addressed. The solute fluxes associated with advection, chemical diffusion, thermal and chemical osmosis, hyperfiltration and thermal diffusion have been incorporated into a simple one-dimensional transport equation. The analytical solution of this equation, with appropriate parameters, shows that thermal osmosis is the only coupled transport mechanism that could, on its own, have a strong effect on repository performance. Based on the results from the analytical model, two-dimensional finite-difference models incorporating advection and thermal osmosis, and taking conservation of fluid mass into account, have been formulated. The results show that, under the conditions in the vicinity of the repository at the time scales of interest, and due to the constraints imposed by conservation of fluid mass, the advective component of flow will oppose and cancel the thermal-osmotic component. The overall conclusion is that coupled phenomena will only have a very minor impact on radionuclide transport in the Opalinus Clay, in terms of fluid and solute fluxes, at least under the conditions prevailing at times equal to or greater than the expected lifetime of the waste canisters (about 1000 years).

  20. Use of Transportable Radiation Detection Instruments to Assess Internal Contamination from Intakes of Radionuclides Part II: Calibration Factors and ICAT Computer Program.

    PubMed

    Anigstein, Robert; Olsher, Richard H; Loomis, Donald A; Ansari, Armin

    2016-12-01

    The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: Co, I, Cs, and Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates intakes of

  1. USE OF TRANSPORTABLE RADIATION DETECTION INSTRUMENTS TO ASSESS INTERNAL CONTAMINATION FROM INTAKES OF RADIONUCLIDES PART II: CALIBRATION FACTORS AND ICAT COMPUTER PROGRAM

    PubMed Central

    Anigstein, Robert; Olsher, Richard H.; Loomis, Donald A.; Ansari, Armin

    2017-01-01

    The detonation of a radiological dispersion device or other radiological incidents could result in widespread releases of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure radiation from gamma-emitting radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for in vitro assessments. The present study derived sets of calibration factors for four instruments: the Ludlum Model 44-2 gamma scintillator, a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal; the Captus 3000 thyroid uptake probe, which contains a 5.08 × 5.08-cm NaI(Tl) crystal; the Transportable Portal Monitor Model TPM-903B, which contains two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators; and a generic instrument, such as an ionization chamber, that measures exposure rates. The calibration factors enable these instruments to be used for assessing inhaled or ingested intakes of any of four radionuclides: 60Co, 131I, 137Cs, and 192Ir. The derivations used biokinetic models embodied in the DCAL computer software system developed by the Oak Ridge National Laboratory and Monte Carlo simulations using the MCNPX radiation transport code. The three physical instruments were represented by MCNP models that were developed previously. The affected individuals comprised children of five ages who were represented by the revised Oak Ridge National Laboratory pediatric phantoms, and adult men and adult women represented by the Adult Reference Computational Phantoms described in Publication 110 of the International Commission on Radiological Protection. These calibration factors can be used to calculate intakes; the intakes can be converted to committed doses by the use of tabulated dose coefficients. These calibration factors also constitute input data to the ICAT computer program, an interactive Microsoft Windows-based software package that estimates

  2. STRUCTURE AND FUNCTION OF SUBSURFACE MICROBIAL COMMUNITIES AFFECTING RADIONUCLIDE TRANSPORT AND BIOIMMOBILIZATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joel E. Kostka; Lee Kerkhof; Kuk-Jeong Chin

    2011-06-15

    The objectives of this project were to: (1) isolate and characterize novel anaerobic prokaryotes from subsurface environments exposed to high levels of mixed contaminants (U(VI), nitrate, sulfate), (2) elucidate the diversity and distribution of metabolically active metal- and nitrate-reducing prokaryotes in subsurface sediments, and (3) determine the biotic and abiotic mechanisms linking electron transport processes (nitrate, Fe(III), and sulfate reduction) to radionuclide reduction and immobilization. Mechanisms of electron transport and U(VI) transformation were examined under near in situ conditions in sediment microcosms and in field investigations at the Oak Ridge Field Research Center (ORFRC), in Oak Ridge, Tennessee, where themore » subsurface is exposed to mixed contamination predominated by uranium and nitrate. A total of 20 publications (16 published or 'in press' and 4 in review), 10 invited talks, and 43 contributed seminars/ meeting presentations were completed during the past four years of the project. PI Kostka served on one proposal review panel each year for the U.S. DOE Office of Science during the four year project period. The PI leveraged funds from the state of Florida to purchase new instrumentation that aided the project. Support was also leveraged by the PI from the Joint Genome Institute in the form of two successful proposals for genome sequencing. Draft genomes are now available for two novel species isolated during our studies and 5 more genomes are in the pipeline. We effectively addressed each of the three project objectives and research highlights are provided. Task I - Isolation and characterization of novel anaerobes: (1) A wide range of pure cultures of metal-reducing bacteria, sulfate-reducing bacteria, and denitrifying bacteria (32 strains) were isolated from subsurface sediments of the Oak Ridge Field Research Center (ORFRC), where the subsurface is exposed to mixed contamination of uranium and nitrate. These isolates which

  3. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerlach, Robin; Peyton, Brent M.; Apel, William A.

    2014-01-29

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and othermore » contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic

  4. Use of Transportable Radiation Detection Instruments to Assess Internal Contamination From Intakes of Radionuclides Part I: Field Tests and Monte Carlo Simulations.

    PubMed

    Anigstein, Robert; Erdman, Michael C; Ansari, Armin

    2016-06-01

    The detonation of a radiological dispersion device or other radiological incidents could result in the dispersion of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure photon radiation from radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for further assessments. Computer simulations and experimental measurements are required for these instruments to be used for assessing intakes of radionuclides. Count rates from calibrated sources of Co, Cs, and Am were measured on three instruments: a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal, a thyroid probe using a 5.08 × 5.08-cm NaI(Tl) crystal, and a portal monitor incorporating two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators. Computer models of the instruments and of the calibration sources were constructed, using engineering drawings and other data provided by the manufacturers. Count rates on the instruments were simulated using the Monte Carlo radiation transport code MCNPX. The computer simulations were within 16% of the measured count rates for all 20 measurements without using empirical radionuclide-dependent scaling factors, as reported by others. The weighted root-mean-square deviations (differences between measured and simulated count rates, added in quadrature and weighted by the variance of the difference) were 10.9% for the survey meter, 4.2% for the thyroid probe, and 0.9% for the portal monitor. These results validate earlier MCNPX models of these instruments that were used to develop calibration factors that enable these instruments to be used for assessing intakes and committed doses from several gamma-emitting radionuclides.

  5. Continuous transport of Pacific-derived anthropogenic radionuclides towards the Indian Ocean

    PubMed Central

    Pittauer, Daniela; Tims, Stephen G.; Froehlich, Michaela B.; Fifield, L. Keith; Wallner, Anton; McNeil, Steven D.; Fischer, Helmut W.

    2017-01-01

    Unusually high concentrations of americium and plutonium have been observed in a sediment core collected from the eastern Lombok Basin between Sumba and Sumbawa Islands in the Indonesian Archipelago. Gamma spectrometry and accelerator mass spectrometry data together with radiometric dating of the core provide a high-resolution record of ongoing deposition of anthropogenic radionuclides. A plutonium signature characteristic of the Pacific Proving Grounds (PPG) dominates in the first two decades after the start of the high yield atmospheric tests in 1950’s. Approximately 40–70% of plutonium at this site in the post 1970 period originates from the PPG. This sediment record of transuranic isotopes deposition over the last 55 years provides evidence for the continuous long-distance transport of particle-reactive radionuclides from the Pacific Ocean towards the Indian Ocean. PMID:28304374

  6. Wind Transport of Radionuclide- Bearing Dust, Peña Blanca, Chihuahua, Mexico

    NASA Astrophysics Data System (ADS)

    Velarde, R.; Goodell, P. C.; Gill, T. E.; Arimoto, R.

    2007-05-01

    This investigation evaluates radionuclide fractionation during wind erosion of high-grade uranium ore storage piles at Peña Blanca (50km north of Chihuahua City), Chihuahua, Mexico. The aridity of the local environment promotes dust resuspension by high winds. Although active operations ceased in 1983, the Peña Blanca mining district is one of Mexico`s most important uranium ore reserves. The study site contains piles of high grade ore, left loose on the surface, and separated by the specific deposits from which they were derived (Margaritas, Nopal I, and Puerto I). Similar locations do not exist in the United States, since uranium mining sites in the USA have been reclaimed. The Peña Blanca site serves as an analog for the Yucca Mountain project. Dust deposition is collected at Peña Blanca with BSNE sediment catchers (Fryrear, 1986) and marble dust traps (Reheis, 1999). These devices capture windblown sediment; subsequently, the sample data will help quantify potentially radioactive short term field sediment loss from the repository surface and determine sediment flux. Aerosols and surface materials will be analyzed and radioactivity levels established utilizing techniques such as gamma spectroscopy. As a result, we will be able to estimate how much radionuclide contaminated dust is being transported or attached geochemically to fine grain soils or minerals (e.g., clays or iron oxides). The high-grade uranium-bearing material is at secular equilibrium, thus the entire decay series is present. Of resulting interest is not only the aeolian transport of uranium, but also of the other daughter products. These studies will improve our understanding of geochemical cycling of radionuclides with respect to sources, transport, and deposition. The results may also have important implications for the geosciences and homeland security, and potential applications to public health. Funding for this project is provided in part via a NSF grant to Arimoto.

  7. Modeling Radionuclide Decay Chain Migration Using HYDROGEOCHEM

    NASA Astrophysics Data System (ADS)

    Lin, T. C.; Tsai, C. H.; Lai, K. H.; Chen, J. S.

    2014-12-01

    Nuclear technology has been employed for energy production for several decades. Although people receive many benefits from nuclear energy, there are inevitably environmental pollutions as well as human health threats posed by the radioactive materials releases from nuclear waste disposed in geological repositories or accidental releases of radionuclides from nuclear facilities. Theoretical studies have been undertaken to understand the transport of radionuclides in subsurface environments because that the radionuclide transport in groundwater is one of the main pathway in exposure scenarios for the intake of radionuclides. The radionuclide transport in groundwater can be predicted using analytical solution as well as numerical models. In this study, we simulate the transport of the radionuclide decay chain using HYDROGEOCHEM. The simulated results are verified against the analytical solution available in the literature. Excellent agreements between the numerical simulation and the analytical are observed for a wide spectrum of concentration. HYDROGECHEM is a useful tool assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  8. The role of organic complexants and microparticulates in the facilitated transport of radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilk, A.J.; Robertson, D.E.; Abel, K.H.

    1996-12-01

    This progress report describes the results of ongoing radiological and geochemical investigations of the mechanisms of radionuclide transport in groundwater at two low-level waste (LLW) disposal sites within the waste management area of the Chalk River Laboratories (CRL), Ontario, Canada. These sites, the Chemical Pit liquid disposal facility and the Waste Management Area C solid LLW disposal site, have provided valuable 30- to 40-year-old field locations for characterizing the migration of radionuclides and evaluating a number of recent site performance objectives for LLW disposal facilities. This information will aid the NRC and other federal, state, and local regulators, as wellmore » as LLW disposal site developers and waste generators, in maximizing the effectiveness of existing or projected LLW disposal facilities for isolating radionuclides from the general public and thereby improving the health and safety aspects of LLW disposal.« less

  9. USE OF TRANSPORTABLE RADIATION DETECTION INSTRUMENTS TO ASSESS INTERNAL CONTAMINATION FROM INTAKES OF RADIONUCLIDES PART I: FIELD TESTS AND MONTE CARLO SIMULATIONS

    PubMed Central

    Anigstein, Robert; Erdman, Michael C.; Ansari, Armin

    2017-01-01

    The detonation of a radiological dispersion device or other radiological incidents could result in the dispersion of radioactive materials and intakes of radionuclides by affected individuals. Transportable radiation monitoring instruments could be used to measure photon radiation from radionuclides in the body for triaging individuals and assigning priorities to their bioassay samples for further assessments. Computer simulations and experimental measurements are required for these instruments to be used for assessing intakes of radionuclides. Count rates from calibrated sources of 60Co, 137Cs, and 241Am were measured on three instruments: a survey meter containing a 2.54 × 2.54-cm NaI(Tl) crystal, a thyroid probe using a 5.08 × 5.08-cm NaI(Tl) crystal, and a portal monitor incorporating two 3.81 × 7.62 × 182.9-cm polyvinyltoluene plastic scintillators. Computer models of the instruments and of the calibration sources were constructed, using engineering drawings and other data provided by the manufacturers. Count rates on the instruments were simulated using the Monte Carlo radiation transport code MCNPX. The computer simulations were within 16% of the measured count rates for all 20 measurements without using empirical radionuclide-dependent scaling factors, as reported by others. The weighted root-mean-square deviations (differences between measured and simulated count rates, added in quadrature and weighted by the variance of the difference) were 10.9% for the survey meter, 4.2% for the thyroid probe, and 0.9% for the portal monitor. These results validate earlier MCNPX models of these instruments that were used to develop calibration factors that enable these instruments to be used for assessing intakes and committed doses from several gamma-emitting radionuclides. PMID:27115229

  10. Fukushima Daiichi-Derived Radionuclides in the Ocean: Transport, Fate, and Impacts.

    PubMed

    Buesseler, Ken; Dai, Minhan; Aoyama, Michio; Benitez-Nelson, Claudia; Charmasson, Sabine; Higley, Kathryn; Maderich, Vladimir; Masqué, Pere; Morris, Paul J; Oughton, Deborah; Smith, John N

    2017-01-03

    The events that followed the Tohoku earthquake and tsunami on March 11, 2011, included the loss of power and overheating at the Fukushima Daiichi nuclear power plants, which led to extensive releases of radioactive gases, volatiles, and liquids, particularly to the coastal ocean. The fate of these radionuclides depends in large part on their oceanic geochemistry, physical processes, and biological uptake. Whereas radioactivity on land can be resampled and its distribution mapped, releases to the marine environment are harder to characterize owing to variability in ocean currents and the general challenges of sampling at sea. Five years later, it is appropriate to review what happened in terms of the sources, transport, and fate of these radionuclides in the ocean. In addition to the oceanic behavior of these contaminants, this review considers the potential health effects and societal impacts.

  11. Fukushima Daiichi-Derived Radionuclides in the Ocean: Transport, Fate, and Impacts

    NASA Astrophysics Data System (ADS)

    Buesseler, Ken; Dai, Minhan; Aoyama, Michio; Benitez-Nelson, Claudia; Charmasson, Sabine; Higley, Kathryn; Maderich, Vladimir; Masqué, Pere; Morris, Paul J.; Oughton, Deborah; Smith, John N.

    2017-01-01

    The events that followed the Tohoku earthquake and tsunami on March 11, 2011, included the loss of power and overheating at the Fukushima Daiichi nuclear power plants, which led to extensive releases of radioactive gases, volatiles, and liquids, particularly to the coastal ocean. The fate of these radionuclides depends in large part on their oceanic geochemistry, physical processes, and biological uptake. Whereas radioactivity on land can be resampled and its distribution mapped, releases to the marine environment are harder to characterize owing to variability in ocean currents and the general challenges of sampling at sea. Five years later, it is appropriate to review what happened in terms of the sources, transport, and fate of these radionuclides in the ocean. In addition to the oceanic behavior of these contaminants, this review considers the potential health effects and societal impacts.

  12. Toward a Mechanistic Source Term in Advanced Reactors: Characterization of Radionuclide Transport and Retention in a Sodium Cooled Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brunett, Acacia J.; Bucknor, Matthew; Grabaskas, David

    A vital component of the U.S. reactor licensing process is an integrated safety analysis in which a source term representing the release of radionuclides during normal operation and accident sequences is analyzed. Historically, source term analyses have utilized bounding, deterministic assumptions regarding radionuclide release. However, advancements in technical capabilities and the knowledge state have enabled the development of more realistic and best-estimate retention and release models such that a mechanistic source term assessment can be expected to be a required component of future licensing of advanced reactors. Recently, as part of a Regulatory Technology Development Plan effort for sodium cooledmore » fast reactors (SFRs), Argonne National Laboratory has investigated the current state of knowledge of potential source terms in an SFR via an extensive review of previous domestic experiments, accidents, and operation. As part of this work, the significant sources and transport processes of radionuclides in an SFR have been identified and characterized. This effort examines all stages of release and source term evolution, beginning with release from the fuel pin and ending with retention in containment. Radionuclide sources considered in this effort include releases originating both in-vessel (e.g. in-core fuel, primary sodium, cover gas cleanup system, etc.) and ex-vessel (e.g. spent fuel storage, handling, and movement). Releases resulting from a primary sodium fire are also considered as a potential source. For each release group, dominant transport phenomena are identified and qualitatively discussed. The key product of this effort was the development of concise, inclusive diagrams that illustrate the release and retention mechanisms at a high level, where unique schematics have been developed for in-vessel, ex-vessel and sodium fire releases. This review effort has also found that despite the substantial range of phenomena affecting radionuclide

  13. Transport and fate of radionuclides in aquatic environments--the use of ecosystem modelling for exposure assessments of nuclear facilities.

    PubMed

    Kumblad, L; Kautsky, U; Naeslund, B

    2006-01-01

    In safety assessments of nuclear facilities, a wide range of radioactive isotopes and their potential hazard to a large assortment of organisms and ecosystem types over long time scales need to be considered. Models used for these purposes have typically employed approaches based on generic reference organisms, stylised environments and transfer functions for biological uptake exclusively based on bioconcentration factors (BCFs). These models are of non-mechanistic nature and involve no understanding of uptake and transport processes in the environment, which is a severe limitation when assessing real ecosystems. In this paper, ecosystem models are suggested as a method to include site-specific data and to facilitate the modelling of dynamic systems. An aquatic ecosystem model for the environmental transport of radionuclides is presented and discussed. With this model, driven and constrained by site-specific carbon dynamics and three radionuclide specific mechanisms: (i) radionuclide uptake by plants, (ii) excretion by animals, and (iii) adsorption to organic surfaces, it was possible to estimate the radionuclide concentrations in all components of the modelled ecosystem with only two radionuclide specific input parameters (BCF for plants and Kd). The importance of radionuclide specific mechanisms for the exposure to organisms was examined, and probabilistic and sensitivity analyses to assess the uncertainties related to ecosystem input parameters were performed. Verification of the model suggests that this model produces analogous results to empirically derived data for more than 20 different radionuclides.

  14. Colloid-Facilitated Radionuclide Transport: Current State of Knowledge from a Nuclear Waste Repository Risk Assessment Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul William; Zavarin, Mavrik; Wang, Yifeng

    2017-01-25

    This report provides an overview of the current state of knowledge of colloid-facilitated radionuclide transport from a nuclear waste repository risk assessment perspective. It draws on work that has been conducted over the past 3 decades, although there is considerable emphasis given to work that has been performed over the past 3-5 years as part of the DOE Used Fuel Disposition Campaign. The timing of this report coincides with the completion of a 3-year DOE membership in the Colloids Formation and Migration (CFM) partnership, an international collaboration of scientists studying colloid-facilitated transport of radionuclides at both the laboratory and field-scalesmore » in a fractured crystalline granodiorite at the Grimsel Test Site in Switzerland. This Underground Research Laboratory has hosted the most extensive and carefully-controlled set of colloid-facilitated solute transport experiments that have ever been conducted in an in-situ setting, and a summary of the results to date from these efforts, as they relate to transport over long time and distance scales, is provided in Chapter 3 of this report.« less

  15. New best estimates for radionuclide solid-liquid distribution coefficients in soils. Part 2: naturally occurring radionuclides.

    PubMed

    Vandenhove, H; Gil-García, C; Rigol, A; Vidal, M

    2009-09-01

    Predicting the transfer of radionuclides in the environment for normal release, accidental, disposal or remediation scenarios in order to assess exposure requires the availability of an important number of generic parameter values. One of the key parameters in environmental assessment is the solid liquid distribution coefficient, K(d), which is used to predict radionuclide-soil interaction and subsequent radionuclide transport in the soil column. This article presents a review of K(d) values for uranium, radium, lead, polonium and thorium based on an extensive literature survey, including recent publications. The K(d) estimates were presented per soil groups defined by their texture and organic matter content (Sand, Loam, Clay and Organic), although the texture class seemed not to significantly affect K(d). Where relevant, other K(d) classification systems are proposed and correlations with soil parameters are highlighted. The K(d) values obtained in this compilation are compared with earlier review data.

  16. Monitoring radionuclide and suspended-sediment transport in the Little Colorado River basin, Arizona and New Mexico, USA

    USGS Publications Warehouse

    Gray, John R.; Fisk, Gregory G.

    1992-01-01

    From July 1988 through September 1991, radionuclide and suspended-sediment transport were monitored in ephemeral streams in the semiarid Little Colorado River basin of Arizona and New Mexico, USA, where in-stream gross-alpha plus gross-beta activities have exceeded Arizona's Maximum Allowable Limit through releases from natural weathering processes and from uranium-mining operations in the Church Rock Mining District, Grants Mineral Belt, New Mexico. Water samples were collected at a network of nine continuous-record streamgauges equipped with microprocessor-based satellite telemetry and automatic water-sampling systems, and six partial-record streamgauges equipped with passive water samplers. Analytical results from these samples were used to calculate transport of selected suspended and dissolved radionuclides in the uranium-238 and thorium-232 decay series.

  17. Imaging, Mapping and Monitoring Environmental Radionuclide Transport Using Compton-Geometry Gamma Camera

    NASA Astrophysics Data System (ADS)

    Bridge, J. W.; Dormand, J.; Cooper, J.; Judson, D.; Boston, A. J.; Bankhead, M.; Onda, Y.

    2014-12-01

    The legacy to-date of the nuclear disaster at Fukushima Dai-ichi, Japan, has emphasised the fundamental importance of high quality radiation measurements in soils and plant systems. Current-generation radiometers based on coded-aperture collimation are limited in their ability to locate sources of radiation in three dimensions, and require a relatively long measurement time due to the poor efficiency of the collimation system. The quality of data they can provide to support biogeochemical process models in such systems is therefore often compromised. In this work we report proof-of-concept experiments demonstrating the potential of an alternative approach in the measurement of environmentally-important radionuclides (in particular 137Cs) in quartz sand and soils from the Fukushima exclusion zone. Compton-geometry imaging radiometers harness the scattering of incident radiation between two detectors to yield significant improvements in detection efficiency, energy resolution and spatial location of radioactive sources in a 180° field of view. To our knowledge we are reporting its first application to environmentally-relevant systems at low activity, dispersed sources, with significant background radiation and, crucially, movement over time. We are using a simple laboratory column setup to conduct one-dimensional transport experiments for 139Ce and 137Cs in quartz sand and in homogenized repacked Fukushima soils. Polypropylene columns 15 cm length with internal diameter 1.6 cm were filled with sand or soil and saturated slowly with tracer-free aqueous solutions. Radionuclides were introduced as 2mL pulses (step-up step-down) at the column inlet. Data were collected continuously throughout the transport experiment and then binned into sequential time intervals to resolve the total activity in the column and its progressive movement through the sand/soil. The objective of this proof-of-concept work is to establish detection limits, optimise image reconstruction

  18. Atmospheric Transport Modelling confining potential source location of East-Asian radionuclide detections in May 2010

    NASA Astrophysics Data System (ADS)

    Ross, J. Ole; Ceranna, Lars

    2016-04-01

    The radionuclide component of the International Monitoring System (IMS) to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is in place to detect tiny traces of fission products from nuclear explosions in the atmosphere. The challenge for the interpretation of IMS radionuclide data is to discriminate radionuclide sources of CTBT relevance against emissions from nuclear facilities. Remarkable activity concentrations of Ba/La-140 occurred at the IMS radionuclide stations RN 37 (Okinawa) and RN 58 (Ussurysk) mid of May 2010. In those days also an elevated Xe-133 level was measured at RN 38 (Takasaki). Additional regional measurements of radioxenon were reported in the press and further analyzed in various publications. The radionuclide analysis gives evidence for the presence of a nuclear fission source between 10 and 12 May 2010. Backward Atmospheric Transport Modelling (ATM) with HYSPLIT driven by 0.2° ECMWF meteorological data for the IMS samples indicates that, assuming a single source, a wide range of source regions is possible including the Korean Peninsula, the Sea of Japan (East Sea), and parts of China and Russia. Further confinement of the possible source location can be provided by atmospheric backtracking for the assumed sampling periods of the reported regional xenon measurements. New studies indicate a very weak seismic event at the DPRK test site on early 12 May 2010. Forward ATM for a pulse release caused by this event shows fairly good agreement with the observed radionuclide signature. Nevertheless, the underlying nuclear fission scenario remains quite unclear and speculative even if assuming a connection between the waveform and the radionuclide event.

  19. Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huff, Kathryn

    Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less

  20. Rapid methods for radionuclide contaminant transport in nuclear fuel cycle simulation

    DOE PAGES

    Huff, Kathryn

    2017-08-01

    Here, nuclear fuel cycle and nuclear waste disposal decisions are technologically coupled. However, current nuclear fuel cycle simulators lack dynamic repository performance analysis due to the computational burden of high-fidelity hydrolgic contaminant transport models. The Cyder disposal environment and repository module was developed to fill this gap. It implements medium-fidelity hydrologic radionuclide transport models to support assessment appropriate for fuel cycle simulation in the Cyclus fuel cycle simulator. Rapid modeling of hundreds of discrete waste packages in a geologic environment is enabled within this module by a suite of four closed form models for advective, dispersive, coupled, and idealized con-more » taminant transport: a Degradation Rate model, a Mixed Cell model, a Lumped Parameter model, and a 1-D Permeable Porous Medium model. A summary of the Cyder module, its timestepping algorithm, and the mathematical models implemented within it are presented. Additionally, parametric demonstrations simulations performed with Cyder are presented and shown to demonstrate functional agreement with parametric simulations conducted in a standalone hydrologic transport model, the Clay Generic Disposal System Model developed by the Used Fuel Disposition Campaign Department of Energy Office of Nuclear Energy.« less

  1. Nanostructures and radionuclide transport in clay formations (Invited)

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2010-12-01

    Nanostructures are widely present in geologic materials and are expected to directly affect the interactions of these materials with geologic fluids. The study of mineral-water interface chemistry as controlled by nanostructures is a necessary step to bridge the existing gap between the molecular level understanding of a geochemical process and the macro-scale laboratory and field observations. In this presentation, I will review the recent progresses in nanoscience and provide a perspective on how these progresses can potentially impact geochemical studies. My presentation will be focused the following areas: (1) the characterization of nanostructures in natural systems, (2) the study of water and chemical species in nanoconfinement, (3) the effects of nanopores on geochemical reaction and mass transfers, and (4) the use nanostructured materials for environmental remediation and cleanup. Specifically, I will demonstrate that the nanopore confinement can significantly modify geochemical reactions in porous geologic media. As the pore size is reduced to a few nanometers, the difference between surface acidity constants (pK2 - pK1) decreases, giving rise to a higher surface charge density on a nanopore surface than that on an unconfined mineral-water interface. The change in surface acidity constants results in a shift of ion sorption edges and enhances ion sorption on nanopore surfaces. This effect causes preferential enrichment of trace elements in nanopores and therefore directly impacts the bioavailability of these elements. The implication of these processes to radionuclide transport in clay formations will be discussed. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.

  2. Influence of atmospheric transport patterns on xenon detections at the CTBTO radionuclide network

    NASA Astrophysics Data System (ADS)

    Krysta, Monika; Kusmierczyk-Michulec, Jolanta

    2016-04-01

    In order to fulfil its task of monitoring for signals emanating from nuclear explosions, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) operates global International Monitoring System (IMS) comprising seismic, infrasound, hydroacoustic and radionuclide measurement networks. At present, 24 among 80 radionuclide stations foreseen by the Comprehensive Nuclear-Test-Ban Treaty (CTBT) are equipped with certified noble gas measurement systems. Over a past couple of years these systems collected a rich set of measurements of radioactive isotopes of xenon. Atmospheric transport modelling simulations are crucial to an assessment of the origin of xenon detected at the IMS stations. Numerous studies undertaken in the past enabled linking these detections to non Treaty-relevant activities and identifying main contributors. Presence and quantity of xenon isotopes at the stations is hence a result of an interplay of emission patterns and atmospheric circulation. In this presentation we analyse the presence or absence of radioactive xenon at selected stations from an angle of such an interplay. We attempt to classify the stations according to similarity of detection patterns, examine seasonality in those patterns and link them to large scale or local meteorological phenomena. The studies are undertaken using crude hypotheses on emission patterns from known sources and atmospheric transport modelling simulations prepared with the FLEXPART model.

  3. Final Technical Report: Viral Infection of Subsurface Microorganisms and Metal/Radionuclide Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Karrie A.; Bender, Kelly S.; Li, Yusong

    Microbially mediated metabolisms have been identified as a significant factor either directly or indirectly impacting the fate and transport of heavy metal/radionuclide contaminants. To date microorganisms have been isolated from contaminated environments. Examination of annotated finished genome sequences of many of these subsurface isolates from DOE sites, revealed evidence of prior viral infection. To date the role that viruses play influencing microbial mortality and the resulting community structure which directly influences biogeochemical cycling in soils and sedimentary environments remains poorly understood. The objective of this exploratory study was to investigate the role of viral infection of subsurface bacteria and themore » formation of contaminant-bearing viral particles. This objective was approached by examining the following working hypotheses: (i) subsurface microorganisms are susceptible to viral infections by the indigenous subsurface viral community, and (ii) viral surfaces will adsorb heavy metals and radionuclides. Our results have addressed basic research needed to accomplish the BER Long Term Measure to provide sufficient scientific understanding such that DOE sites would be able to incorporate coupled physical, chemical and biological processes into decision making for environmental remediation or natural attenuation and long-term stewardship by establishing viral-microbial relationships on the subsequent fate and transport of heavy metals and radionuclides. Here we demonstrated that viruses play a significant role in microbial mortality and community structure in terrestrial subsurface sedimentary systems. The production of viral-like particles within subsurface sediments in response to biostimulation with dissolved organic carbon and a terminal electron acceptor resulted in the production of viral-like particles. Organic carbon alone did not result in significant viral production and required the addition of a terminal electron

  4. Monitoring Radionuclide Transport and Spatial Distribution with a 1D Gamma-Ray Scanner

    NASA Astrophysics Data System (ADS)

    Dozier, R.; Erdmann, B.; Sams, A.; Barber, K.; DeVol, T. A.; Moysey, S. M.; Powell, B. A.

    2016-12-01

    Understanding radionuclide movement in the environment is important for informing strategies for radioactive waste management and disposal. A 1-dimensional (1D) gamma-ray emission scanning system was developed to investigate radionuclide transport behavior within soils. Two case studies illustrate the use of the system for non-destructively monitoring transport processes within a soil column. The first case study explores the system capabilities for simultaneously detecting technetium-99m (99mTc), iodine-131 (131I), and sodium-22 (22Na) moving through a column (length = 14.1 cm, diameter = 3.8 cm) packed with soil from the Department of Energy's Savannah River Site. A sodium iodide (NaI) detector was placed at 4 cm above the influent and a Bismuth germanate (BGO) detector at about 10 cm above the influent. The NaI detector results show 99mTc, 131I, and 22Na having similar breakthrough curves with the tail of 99mTc being lower than that of 131I and 22Na. NaCl tracer results compliment the gamma-ray emission measurements. These results are promising because we are able to monitor movement of the isotopes in the column in real-time. In the second case study, the 1D gamma scanner was used to quantify radionuclide mobility within a lysimeter (length = 51 cm, diameter = 10 cm). A cementitious waste form containing cobalt-60 (60Co), barium-133 (133Ba), cesium-137 (137Cs), and europium-152 (152Eu), with the amount of each contained in the cement ranging from 3 to 8.5 MBq, was placed at the midpoint of the lysimeter. The lysimeter was then exposed to natural rainfall and environmental conditions and effluent samples were collected and quantified on a quarterly basis. Following 3.3 years of exposure, the radionuclide distribution in the lysimeter was quantified with a 0.64 cm collimated high-purity germanium gamma-ray spectrometer. Diffusion of 137Cs away from the cementitious wasteform was observed. No movement was seen for 133Ba, 60Co, or 152Eu within the detection limits

  5. Modeling the Hydrogeochemical Transport of Radionuclides through Engineered Barriers System in the Proposed LLW Disposal Site of Taiwan - 12082

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Wen-Sheng; Liu, Chen-Wuing; Tsao, Jui-Hsuan

    2012-07-01

    A proposed site for final disposal of low-level radioactive waste located in Daren Township of Taitung County along the southeastern coast has been on the selected list in Taiwan. The geology of the Daren site consists of argillite and meta-sedimentary rocks. A mined cavern design with a tunnel system of 500 m below the surface is proposed. Concrete is used as the main confinement material for the engineered barrier. To investigate the hydrogeochemical transport of radionuclides through engineered barriers system, HYDROGEOCHEM5.0 model was applied to simulate the complex chemical interactions among radionuclides, the cement minerals of the concrete, groundwater flow,more » and transport in the proposed site. The simulation results showed that the engineered barriers system with the side ditch efficiently drained the ground water and lowered the concentration of the concrete degradation induced species (e.g., hydrogen ion, sulfate, and chloride). The velocity of groundwater observed at side ditch gradually decreased with time due to the fouling of pore space by the mineral formation of ettringite and thaumasite. The short half-life of Co-60, Sr-90 and Cs-137 significantly reduced the concentrations, whereas the long half-life of I-129(1.57x10{sup 7} years) and Am-241(432 years) remain stable concentrations at the interface of waste canister and concrete barrier after 300 years. The mineral saturation index (SI) was much less than zero due to the low aqueous concentration of radionuclide, so that the precipitation formation of Co-60, Sr-90, I-129, Cs-137 and Am-241 related minerals were not found. The effect of adsorption/desorption (i.e., surface complexation model) could be a crucial geochemical mechanism for the modeling of liquid-solid phase behavior of radionuclide in geochemically dynamic environments. Moreover, the development of advanced numerical models that are coupled with hydrogeochemical transport and dose assessment of radionuclide is required in the

  6. COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES THROUGH THE VADOSE ZONE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flury, Markus

    2003-09-14

    project has close relations to the following EMSP projects: Project: 70126, Interfacial Soil Chemistry of Radionuclides in the Unsaturated Zone (PI: Jon Chorover) Project: 70070, Reactivity of Primary Soil Minerals and Secondary Precipitates (PI: Kathy Nagy) Cesium Transport in Hanford Sediments: Application of an Experimentally Based Cation Exchange Model (PI: Susan Carroll and Carl Steefel).« less

  7. Uranium and Cesium sorption to bentonite colloids in high salinity and carbonate-rich environments: Implications for radionuclide transport

    NASA Astrophysics Data System (ADS)

    Tran, E. L.; Teutsch, N.; Klein-BenDavid, O.; Weisbrod, N.

    2017-12-01

    When radionuclides are leaked into the subsurface due to engineered waste disposal container failure, the ultimate barrier to migration of radionuclides into local aquifers is sorption to the surrounding rock matrix and sediments, which often includes a bentonite backfill. The extent of this sorption is dependent on pH, ionic strength, surface area availability, radionuclide concentration, surface mineral composition, and solution chemistry. Colloidal-sized bentonite particles eroded from the backfill have been shown to facilitate the transport of radionuclides sorbed to them away from their source. Thus, sorption of radionuclides such as uranium and cesium to bentonite surfaces can be both a mobilization or retardation factor. Though numerous studies have been conducted to-date on sorption of radionuclides under low ionic strength and carbonate-poor conditions, there has been little research conducted on the behavior of radionuclides in high salinities and carbonate rich conditions typical of aquifers in the vicinity of some potential nuclear repositories. This study attempts to characterize the sorption properties of U(VI) and Cs to bentonite colloids under these conditions using controlled batch experiments. Results indicated that U(VI) undergoes little to no sorption to bentonite colloids in a high-salinity (TDS= 9000 mg/L) artificial groundwater. This lack of sorption was attributed to the formation of CaUO2(CO3)22- and Ca2UO2(CO3)3 aqueous ions which stabilize the UO22+ ions in solution. In contrast, Cs exhibited greater sorption, the extent to which was influenced greatly by the matrix water's ionic strength and the colloid concentration used. Surprisingly, when both U and Cs were together, the presence of U(VI) in solution decreased Cs sorption, possibly due to the formation of stabilizing CaUO2(CO3)22- anions. The implications of this research are that rather than undergoing colloid-facilitated transport, U(VI) is expected to migrate similarly to a

  8. Emission, transport, deposition, and re-suspension of radionuclides from Fukushima Dai-ichi Nuclear Power Plant in the atmosphere - Overview of 2-year investigations in Japan

    NASA Astrophysics Data System (ADS)

    Kita, Kazuyuki; Igarashi, Yasuhiro; Yoshida, Naohiro; Nakajima, Teruyuki

    2013-04-01

    Following a huge earthquake and tsunami in Eastern Japan on 11 March, 2011, the accident in Fukushima Dai-ichi Nuclear Power Plant (FDNPP) occurred to emit a large amount of artificial radionuclides to the environment. Soon after the FDNPP accident, many Japanese researchers, as well as researchers in other countries, started monitoring radionuclides in various environmental fields and/or model calculations to understand extent and magnitude of radioactive pollution. In this presentation, we overview these activities for the atmospheric radionuclides in Japan as followings: 1. Investigations to evaluate radionuclide emissions by explosions at FNDPP in March 2011 and to estimate the respiration dose of the radiation at this stage. 2. Investigations to evaluate atmospheric transport and deposition processes of atmospheric radionuclide to determine the extent of radionuclide pollution. -- Based on results of the regular and urgent monitoring results, as well as the mapping of the distribution of radionuclide s accumulated by the deposition to the ground, restoration of their time-dependent emission rates has been tried, and processes determining atmospheric concentration and deposition to the ground have been investigated by using the model calculations. 3. Monitoring of the atmospheric concentrations of radionuclide after the initial, surge phase of FNDPP accident. 4. Investigations to evaluate re-suspension of radionuclide from the ground, including the soil and the vegetation. -- Intensive monitoring of the atmospheric concentrations and deposition amount of radionuclide after the initial, surge phase of the accident enable us to evaluate emission history from FNDPP, atmospheric transport and deposition processes, chemical and physical characteristics of atmospheric radionuclide especially of radio cesium, and re-suspension processes which has become dominant process to supply radio cesium to the atmosphere recently.

  9. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE PAGES

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; ...

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  10. Radionuclide gas transport through nuclear explosion-generated fracture networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gasmore » breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. In conclusion, seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.« less

  11. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks

    PubMed Central

    Jordan, Amy B.; Stauffer, Philip H.; Knight, Earl E.; Rougier, Esteban; Anderson, Dale N.

    2015-01-01

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable. PMID:26676058

  12. Radionuclide Gas Transport through Nuclear Explosion-Generated Fracture Networks.

    PubMed

    Jordan, Amy B; Stauffer, Philip H; Knight, Earl E; Rougier, Esteban; Anderson, Dale N

    2015-12-17

    Underground nuclear weapon testing produces radionuclide gases which may seep to the surface. Barometric pumping of gas through explosion-fractured rock is investigated using a new sequentially-coupled hydrodynamic rock damage/gas transport model. Fracture networks are produced for two rock types (granite and tuff) and three depths of burial. The fracture networks are integrated into a flow and transport numerical model driven by surface pressure signals of differing amplitude and variability. There are major differences between predictions using a realistic fracture network and prior results that used a simplified geometry. Matrix porosity and maximum fracture aperture have the greatest impact on gas breakthrough time and window of opportunity for detection, with different effects between granite and tuff simulations highlighting the importance of accurately simulating the fracture network. In particular, maximum fracture aperture has an opposite effect on tuff and granite, due to different damage patterns and their effect on the barometric pumping process. From stochastic simulations using randomly generated hydrogeologic parameters, normalized detection curves are presented to show differences in optimal sampling time for granite and tuff simulations. Seasonal and location-based effects on breakthrough, which occur due to differences in barometric forcing, are stronger where the barometric signal is highly variable.

  13. TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrew Wolfsberg; Lee Glascoe; Guoping Lu

    Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurementsmore » have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.« less

  14. Modelling radionuclide transport in fractured media with a dynamic update of K d values

    DOE PAGES

    Trinchero, Paolo; Painter, Scott L.; Ebrahimi, Hedieh; ...

    2015-10-13

    Radionuclide transport in fractured crystalline rocks is a process of interest in evaluating long term safety of potential disposal systems for radioactive wastes. Given their numerical efficiency and the absence of numerical dispersion, Lagrangian methods (e.g. particle tracking algorithms) are appealing approaches that are often used in safety assessment (SA) analyses. In these approaches, many complex geochemical retention processes are typically lumped into a single parameter: the distribution coefficient (Kd). Usually, the distribution coefficient is assumed to be constant over the time frame of interest. However, this assumption could be critical under long-term geochemical changes as it is demonstrated thatmore » the distribution coefficient depends on the background chemical conditions (e.g. pH, Eh, and major chemistry). In this study, we provide a computational framework that combines the efficiency of Lagrangian methods with a sound and explicit description of the geochemical changes of the site and their influence on the radionuclide retention properties.« less

  15. TERRA: a computer code for simulating the transport of environmentally released radionuclides through agriculture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baes, C.F. III; Sharp, R.D.; Sjoreen, A.L.

    1984-11-01

    TERRA is a computer code which calculates concentrations of radionuclides and ingrowing daughters in surface and root-zone soil, produce and feed, beef, and milk from a given deposition rate at any location in the conterminous United States. The code is fully integrated with seven other computer codes which together comprise a Computerized Radiological Risk Investigation System, CRRIS. Output from either the long range (> 100 km) atmospheric dispersion code RETADD-II or the short range (<80 km) atmospheric dispersion code ANEMOS, in the form of radionuclide air concentrations and ground deposition rates by downwind location, serves as input to TERRA. User-definedmore » deposition rates and air concentrations may also be provided as input to TERRA through use of the PRIMUS computer code. The environmental concentrations of radionuclides predicted by TERRA serve as input to the ANDROS computer code which calculates population and individual intakes, exposures, doses, and risks. TERRA incorporates models to calculate uptake from soil and atmospheric deposition on four groups of produce for human consumption and four groups of livestock feeds. During the environmental transport simulation, intermediate calculations of interception fraction for leafy vegetables, produce directly exposed to atmospherically depositing material, pasture, hay, and silage are made based on location-specific estimates of standing crop biomass. Pasture productivity is estimated by a model which considers the number and types of cattle and sheep, pasture area, and annual production of other forages (hay and silage) at a given location. Calculations are made of the fraction of grain imported from outside the assessment area. TERRA output includes the above calculations and estimated radionuclide concentrations in plant produce, milk, and a beef composite by location.« less

  16. Modeling the potential radionuclide transport by the Ob and Yenisey Rivers to the Kara Sea.

    PubMed

    Paluszkiewicz, T; Hibler, L F; Richmond, M C; Bradley, D J; Thomas, S A

    2001-01-01

    A major portion of the former Soviet Union (FSU) nuclear program is located in the West Siberian Basin. Among the many nuclear facilities are three production reactors and the spent nuclear fuel reprocessing sites, Mayak, Tomsk-7, and Krasnoyarsk-26, which together are probably responsible for the majority of the radioactive contamination found in the Ob and Yenisey River systems that feed into the Arctic Ocean through the Kara Sea. This manuscript describes ongoing research to estimate radionuclide fluxes to the Kara Sea from these river systems. Our approach is to apply a hierarchy of simple models that use existing and forthcoming data to quantify the transport and fate of radionuclide contaminants via various environmental pathways. We present an initial quantification of the contaminant inventory, hydrology, meteorology, and sedimentology of the Ob River system and preliminary conclusions from portions of the Ob River model.

  17. Characterization of Discharge Areas of Radionuclides Originating From Nuclear Waste Repositories

    NASA Astrophysics Data System (ADS)

    Marklund, L.; Xu, S.; Worman, A.

    2009-05-01

    If leakages in nuclear waste repositories located in crystalline bedrock arise, radionuclides will reach the biosphere and cause a risk of radiological impact. The extent of the radiological impact depends on in which landscape elements the radionuclides emerge. In this study, we investigate if there are certain landscape elements that generally will act as discharge areas for radionuclides leaking from subsurface deposits. We also characterize the typical properties that distinguish these areas from others. In humid regions, landscape topography is the most important driving force for groundwater flow. Because groundwater is the main transporting agent for migrating radionuclides, the topography will determine the flowpaths of leaking radionuclides. How topography and heterogeneities in the subsurface affect the discharge distribution of the radionuclides is therefore an important scope of this study. To address these issues, we developed a 3-D transport model. Our analyses are based on site-specific data from two different areas in Sweden, Forsmark, Uppland, and Oskarshamn, Småland. The Swedish Nuclear Waste Management Company (SKB) has selected these two areas as candidate areas for a deep repository of nuclear waste and the areas are currently subject to site investigations. Our results suggest that there are hot-spots in the landscape i.e. areas with high probability of receiving large amounts of radionuclides from a leaking repository of nuclear waste. The hot-spots concentrate in the sea, streams, lakes and wetlands. All these elements are found at lower elevations in the landscape. This pattern is mostly determined by the landscape topography and the locations of fracture zones. There is a relationship between fracture zones and topography, and therefore the importance of the topography for the discharge area distribution is not contradicted by the heterogeneity in the bedrock. The varieties of landscape elements which have potential for receiving

  18. Accumulation of radionuclides in selected marine biota from Manjung coastal area

    NASA Astrophysics Data System (ADS)

    Abdullah, Anisa; Hamzah, Zaini; Saat, Ahmad; Wood, Ab. Khalik; Alias, Masitah

    2015-04-01

    Distribution of radionuclides from anthropogenic activities has been intensively studied due to the accumulation of radionuclides in marine ecosystem. Manjung area is affected by rapid population growth and socio-economic development such as heavy industrial activities including coal fired power plant, iron foundries, port development and factories, agricultural runoff, waste and toxic discharge from factories.It has radiological risk and toxic effect when effluent from the industries in the area containing radioactive materials either being transported to the atmosphere and deposited back over the land or by run off to the river and flow into coastal area and being absorbed by marine biota. Radionuclides presence in the marine ecosystem can be adversely affect human health when it enters the food chain. This study is focusing on the radionuclides [thorium (Th), uranium (U), radium-226 (226Ra), radium-228 (228Ra) and potassium-40 (40K)] content in marine biota and sea water from Manjung coastal area. Five species of marine biota including Johnius dussumieri (Ikan Gelama), Pseudorhombus malayanus (Ikan Sebelah), Arius maculatus (Ikan Duri), Portunus pelagicus (Ketam Renjong) and Charybdis natator (Ketam Salib) were collected during rainy and dry seasons. Measurements were carried out using Inductively Coupled Plasma Mass Spectrometer (ICPMS). The results show that the concentration of radionuclides varies depends on ecological environment of respective marine biota species. The concentrations and activity concentrations are used for the assessment of potential internal hazard index (Hin), transfer factor (TF), ingestion dose rate (D) and health risk index (HRI) to monitor radiological risk for human consumption.

  19. Radionuclide Retention in Concrete Wasteforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.

    2012-09-24

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.« less

  20. Atmospheric transport of radionuclides emitted due to wildfires near the Chernobyl Nuclear Power Plant in 2015

    NASA Astrophysics Data System (ADS)

    Evangeliou, Nikolaos; Zibtsev, Sergey; Myroniuk, Viktor; Zhurba, Marina; Hamburger, Thomas; Stohl, Andreas; Balkanski, Yves; Paugam, Ronan; Mousseau, Timothy A.; Møller, Anders P.; Kireev, Sergey I.

    2016-04-01

    In 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) have caused concerns about the secondary radioactive contamination that might have spread over Europe. The total active burned area was estimated to be about 15,000 hectares, of which 9000 hectares burned in April and 6000 hectares in August. The present paper aims to assess, for the first time, the transport and impact of these fires over Europe. For this reason, direct observations of the prevailing deposition levels of 137Cs and 90Sr, 238Pu, 239Pu, 240Pu and 241Am in the CEZ were processed together with burned area estimates. Based on literature reports, we made the conservative assumption that 20% of the deposited labile radionuclides 137Cs and 90Sr, and 10% of the more refractory 238Pu, 239Pu, 240Pu and 241Am, were resuspended by the fires. We estimate that about 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events. These releases could be classified as of "Level 3" on the relative INES (International Nuclear Events Scale) scale, which corresponds to a serious incident, in which non-lethal deterministic effects are expected from radiation. To simulate the dispersion of the resuspended radionuclides in the atmosphere and their deposition onto the terrestrial environment, we used a Lagrangian dispersion model. Spring fires redistributed radionuclides over the northern and eastern parts of Europe, while the summer fires also affected Central and Southern Europe. The more labile elements escaped more easily from the CEZ and then reached and deposited in areas far from the source, whereas the larger refractory particles were removed more efficiently from the atmosphere and thus did mainly affect the CEZ and its vicinity. For the spring 2015 fires, we estimate that about 80% of 137Cs and 90Sr and about 69% of 238Pu, 239Pu, 240Pu and 241Am were deposited over areas outside the CEZ. 93% of the labile and 97% of

  1. Radionuclide speciation in effluent from La Hague reprocessing plant in France.

    PubMed

    Salbu, B; Skipperud, L; Germain, P; Guéguéniat, P; Strand, P; Lind, O C; Christensen, G

    2003-09-01

    Effluent from the La Hague nuclear fuel reprocessing plant was mixed with seawater in order to investigate the fate of the various radionuclides. Thus, a major objective of the present work is to characterize the effluent from La Hague reprocessing plant and to study how the radionuclide speciation changes with time when discharged into the marine environment. Discharges from the La Hague nuclear reprocessing plant represent an important source of artificially produced radionuclides to the North Sea. The transport, distribution, and biological uptake of radionuclides in the marine environment depends, however, on the physicochemical forms of radionuclides in the discharged effluents and on transformation processes that occur after entering the coastal waters. Information of these processes is needed to understand the transport and long-term distribution of the radionuclides. In the present work, a weekly discharged effluent from the nuclear fuel reprocessing plant at Cap La Hague in France was mixed with coastal water and fractionated with respect to particle size and charged species using ultra centrifugation and hollow fiber ultrafiltration with on line ion exchange. The size distribution pattern of gamma-emitting radionuclides was followed during a 62-h period after mixing the effluent with seawater. 54Mn was present as particulate material in the effluent, while other investigated radionuclides were discharged in a more mobile form or were mobilized after mixing with sea water (e.g., 60Co) and can be transported long distances in the sea. Sediments can act as a sink for less mobile discharged radionuclides (Skipperud et al. 2000). A kinetic model experiment was performed to provide information of the time-dependent distribution coefficients, Kd (t). The retention of the effluent radionuclides in sediments was surprisingly low (Kd 20-50), and the sediments acted as a poor sink for the released radionuclides. Due to the presence of non-reacting radionuclide

  2. Accumulation of radionuclides in selected marine biota from Manjung coastal area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdullah, Anisa, E-mail: coppering@ymail.com; Hamzah, Zaini; Wood, Ab. Khalik

    Distribution of radionuclides from anthropogenic activities has been intensively studied due to the accumulation of radionuclides in marine ecosystem. Manjung area is affected by rapid population growth and socio-economic development such as heavy industrial activities including coal fired power plant, iron foundries, port development and factories, agricultural runoff, waste and toxic discharge from factories.It has radiological risk and toxic effect when effluent from the industries in the area containing radioactive materials either being transported to the atmosphere and deposited back over the land or by run off to the river and flow into coastal area and being absorbed by marinemore » biota. Radionuclides presence in the marine ecosystem can be adversely affect human health when it enters the food chain. This study is focusing on the radionuclides [thorium (Th), uranium (U), radium-226 ({sup 226}Ra), radium-228 ({sup 228}Ra) and potassium-40 ({sup 40}K)] content in marine biota and sea water from Manjung coastal area. Five species of marine biota including Johnius dussumieri (Ikan Gelama), Pseudorhombus malayanus (Ikan Sebelah), Arius maculatus (Ikan Duri), Portunus pelagicus (Ketam Renjong) and Charybdis natator (Ketam Salib) were collected during rainy and dry seasons. Measurements were carried out using Inductively Coupled Plasma Mass Spectrometer (ICPMS). The results show that the concentration of radionuclides varies depends on ecological environment of respective marine biota species. The concentrations and activity concentrations are used for the assessment of potential internal hazard index (H{sub in}), transfer factor (TF), ingestion dose rate (D) and health risk index (HRI) to monitor radiological risk for human consumption.« less

  3. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... § 173.435 or § 173.436 or for which no relevant data are available: (1) the radionuclide values in... package must satisfy: ER26JA04.001 Where: B(i) is the activity of radionuclide i in special form; and A1... activity which may be transported in a Type A package must satisfy: ER26JA04.002 Where: C(j) is the...

  4. Fate and transport of radionuclides in soil-water environment. Review.

    NASA Astrophysics Data System (ADS)

    Konoplev, Aleksei

    2017-04-01

    is up to one order of magnitude higher than in Chernobyl. Long-term dynamics of radionuclide concentrations in rivers is approached from the standpoint of basic mechanisms of radionuclide sorption-desorption, fixation, vertical migration in catchment soils. Corresponding semi-empirical models are presented and discussed. For the Chernobyl case, radiostrontium (r-Sr) was shown to be more mobile and moving faster in dissolved state with surface runoff and river water in comparison with r-Cs. Similar pattern was observed for Mayak area in South Ural (Russia), where r-Sr was traced up to 1500 km away from the release point migrating through Techa-Iset'-Tobol-Irtysh-Ob' river system. On the other hand, r-Cs bound to clay particles settles down in Techa river reservoirs and is transported with river water only insignificantly. For the first 3 years after the accident vertical migration of r-Cs in soils of Fukushima catchments was found to be faster than in Chernobyl due to higher air temperature, higher precipitation and higher biological activity in top soil. However, with time this process slows down because of higher r-Cs retardation in Fukushima soils. In Fukushima case, extreme floods during typhoons lead to substantial reduction in dose rate on floodplain areas due to sedimentation of relatively clean material and burial of contaminated top soil layer. In general, due to higher precipitation, higher temperatures and higher biological activities in soils, self-purification of the environment and natural attenuation in Fukushima is essentially faster than in Chernobyl area.

  5. Flow and Transport of Radionuclides in the Rhizosphere: Imaging and Measurements in a 2D System

    NASA Astrophysics Data System (ADS)

    Pales, Ashley; Darnault, Christophe; Li, Biting; Clifford, Heather; Montgomery, Dawn; Moysey, Stephen; Powell, Brian; DeVol, Tim; Erdmann, Bryan; Edayilam, Nimisha; Tharayil, Nishanth; Dogan, Mine; Martinez, Nicole

    2017-04-01

    This research aims to build upon past 2D tank light transmission methods to quantify real-time flow in unsaturated porous media, understand how exudates effect unstable flow patterns, and understand radionuclide mobility and dispersion in the subsurface. A 2D tank light transmission method was created using a transparent flow through tank coupled with a random rainfall simulator; a commercial LED light and a CMOS DSLR Nikon D5500 camera were used to capture the real-time flow images. The images were broken down from RGB into HVI and analyzed in Matlab to produce quantifiable data about finger formation and water saturation distribution. Radionuclide locations were determined via handheld gamma scanner. Water saturation along the vertical and horizontal profile (Matlab) was used to quantify the finger more objectively than by eye assessment alone. The changes in finger formation and speed of propagation between the control rain water (0.01M NaCl) and the solutions containing plant exudates illustrates that the plant exudates increased the wettability (mobility) of water moving through unsaturated porous media. This understanding of plant exudates effect on unsaturated flow is important for works studying how plants, their roots and exudates, may affect the mobility of radionuclides in unsaturated porous media. As there is an increase in exudate concentration, the mobility of the radionuclides due to changing flow pattern and available water content in porous media may be improved causing more dispersion in the porous media and intake into the plant. Changes in plant root exudation impact the distribution and density of radionuclides in the rhizosphere and vadose zone.

  6. Migration of conservative and sorbing radionuclides in heterogeneous fractured rock aquifers at the Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Boryta, J. R.; Wolfsberg, A. V.

    2003-12-01

    The Nevada Test Site (NTS) is the United States continental nuclear weapons testing site. The larger underground tests, including BENHAM and TYBO, were conducted at Pahute Mesa. The BENHAM test, conducted in 1968, was detonated 1.4 km below the surface and the TYBO test, conducted in 1975, was detonated at a depth of 765 m. Between 1996 and 1998, several radionuclides were discovered in trace concentrations in a monitoring well complex 273 m from TYBO and 1300 m from BENHAM. Previous studies associated with these measurements have focused primarily on a) plutonium discovered in the observation wells, which was identified through isotopic finger printing as originating at BENHAM, b) colloid-facilitated plutonium transport processes, and c) vertical convection in subsurface nuclear test collapse chimneys. In addition to plutonium, several other non-, weakly-, and strongly-sorbing radionuclides were discovered in trace concentrations in the observation wells, including tritium, carbon-14, chlorine-36, iodine-129, technetium-99, neptunium-237, strontium-90, cesium-137, americium-241, and europium-152,154,155. The range in retardation processes affecting these different radionuclides provides additional information for assessing groundwater solute transport model formulations. For all radionuclides, simulation results are most sensitive to the fracture porosity and fracture aperture. Additionally, for weakly sorbing Np, simulation results are highly sensitive to the matrix sorption coefficient. For strongly sorbing species, migration in the absence of colloids can only be simulated if fracture apertures are set very large, reducing the amount of diffusion that can occur. For these species, colloid-facilitated transport appears to be a more likely explanation for the measurements. This is corroborated with colloid-transport model simulations.

  7. A reference skeletal dosimetry model for an adult male radionuclide therapy patient based on three-dimensional imaging and paired-image radiation transport

    NASA Astrophysics Data System (ADS)

    Shah, Amish P.

    The need for improved patient-specificity of skeletal dose estimates is widely recognized in radionuclide therapy. Current clinical models for marrow dose are based on skeletal mass estimates from a variety of sources and linear chord-length distributions that do not account for particle escape into cortical bone. To predict marrow dose, these clinical models use a scheme that requires separate calculations of cumulated activity and radionuclide S values. Selection of an appropriate S value is generally limited to one of only three sources, all of which use as input the trabecular microstructure of an individual measured 25 years ago, and the tissue mass derived from different individuals measured 75 years ago. Our study proposed a new modeling approach to marrow dosimetry---the Paired Image Radiation Transport (PIRT) model---that properly accounts for both the trabecular microstructure and the cortical macrostructure of each skeletal site in a reference male radionuclide patient. The PIRT model, as applied within EGSnrc, requires two sets of input geometry: (1) an infinite voxel array of segmented microimages of the spongiosa acquired via microCT; and (2) a segmented ex-vivo CT image of the bone site macrostructure defining both the spongiosa (marrow, endosteum, and trabeculae) and the cortical bone cortex. Our study also proposed revising reference skeletal dosimetry models for the adult male cancer patient. Skeletal site-specific radionuclide S values were obtained for a 66-year-old male reference patient. The derivation for total skeletal S values were unique in that the necessary skeletal mass and electron dosimetry calculations were formulated from the same source bone site over the entire skeleton. We conclude that paired-image radiation-transport techniques provide an adoptable method by which the intricate, anisotropic trabecular microstructure of the skeletal site; and the physical size and shape of the bone can be handled together, for improved

  8. Surface charge accumulation of particles containing radionuclides in open air

    DOE PAGES

    Kim, Yong-ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. But, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. Moreover, a charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify themore » particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. Our study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes.« less

  9. Surface charge accumulation of particles containing radionuclides in open air.

    PubMed

    Kim, Yong-Ha; Yiacoumi, Sotira; Tsouris, Costas

    2015-05-01

    Radioactivity can induce charge accumulation on radioactive particles. However, electrostatic interactions caused by radioactivity are typically neglected in transport modeling of radioactive plumes because it is assumed that ionizing radiation leads to charge neutralization. The assumption that electrostatic interactions caused by radioactivity are negligible is evaluated here by examining charge accumulation and neutralization on particles containing radionuclides in open air. A charge-balance model is employed to predict charge accumulation on radioactive particles. It is shown that particles containing short-lived radionuclides can be charged with multiple elementary charges through radioactive decay. The presence of radioactive particles can significantly modify the particle charge distribution in open air and yield an asymmetric bimodal charge distribution, suggesting that strong electrostatic particle interactions may occur during short- and long-range transport of radioactive particles. Possible effects of transported radioactive particles on electrical properties of the local atmosphere are reported. The study offers insight into transport characteristics of airborne radionuclides. Results are useful in atmospheric transport modeling of radioactive plumes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A regional sediment transport modeling for assessing dispersal and recirculation of land-derived radionuclides in the Fukushima coast

    NASA Astrophysics Data System (ADS)

    Yamanishi, T.; Uchiyama, Y.; Tsumune, D.; Miyazawa, Y.

    2014-12-01

    Fluvial discharge from the rivers is viewed as a missing piece in the inventory of the radionuclides in the ocean during the accident at the Fukushima Daiichi Nuclear Power Plant (FNPP). The land-derived input introduces a time lag behind the direct release through hydrological process because these radionuclides mostly attach to suspended fine particles (sediments) that are transported quite differently to the dissolved matter. Therefore, we implement a sediment transport model proposed by Blaas et al. (2007) consisting of a multi-class non-cohesive sediment transport model, a wave-enhanced bed boundary layer model, and a stratigraphy model into ROMS. A 128 x 256 km domain with the grid resolution of dx = 250 m centered at FNPP is configured as a test bed embedded in the existing ROMS model domain at dx = 1 km (Uchiyama et al., 2012, 2013). A spectral wave model SWAN at dx = 1 km nested in the JMA GPV-CWM wave reanalysis is used for the wave forcing field. A surface runoff model (Toyota et al., 2009) provides daily-mean discharges and associated sediment fluxes at the mouths of 20 rivers in the study area.The model results show that bed stresses are enhanced in the coastal area about 10 to 20 km from the shore, most part of the semi-sheltered Sendai Bay, and on the continental shelf slope at about 600 m deep. In contrast, band-like structures are formed between the nearshore and the shelf slope where bed stresses are found to be modest. This low stress bands correspond to the areas where fine particles such as silt and clay are predominant in the bed. Since the cesium 137 is quite readily attached to fine particles rather than coarse sediments (sand), this result suggests that the band acts as a hot spot of the sediment-attached radionuclides. Indeed, a qualitative correlation is found between the low stress band with high radioactivity of cesium 137 in the bed sediment off FNPP based on the field measurement (Ambe et al., 2013).

  11. Simulating Radionuclide Migrations of Low-level Wastes in Nearshore Environment

    NASA Astrophysics Data System (ADS)

    Lu, C. C.; Li, M. H.; Chen, J. S.; Yeh, G. T.

    2016-12-01

    Tunnel disposal into nearshore mountains was tentatively selected as one of final disposal sites for low-level wastes in Taiwan. Safety assessment on radionuclide migrations in far-filed may involve geosphere processes under coastal environments and into nearshore ocean. In this study the 3-D HYDROFEOCHE5.6 numerical model was used to perform simulations of groundwater flow and radionuclide transport with decay chains. Domain of interest on the surface includes nearby watersheds delineated by digital elevation models and nearshore seabed. As deep as 800 m below the surface and 400 m below sea bed were considered for simulations. The disposal site was located at 200m below the surface. Release rates of radionuclides from near-field was estimated by analytical solutions of radionuclide diffusion with decay out of engineered barriers. Far-field safety assessments were performed starting from the release of radionuclides out of engineered barriers to a time scale of 10,000 years. Sensitivity analyses of geosphere and transport parameters were performed to improve our understanding of safety on final disposal of low-level waste in nearshore environments.

  12. Modeling Cell and Tumor-Metastasis Dosimetry with the Particle and Heavy Ion Transport Code System (PHITS) Software for Targeted Alpha-Particle Radionuclide Therapy.

    PubMed

    Lee, Dongyoul; Li, Mengshi; Bednarz, Bryan; Schultz, Michael K

    2018-06-26

    The use of targeted radionuclide therapy for cancer is on the rise. While beta-particle-emitting radionuclides have been extensively explored for targeted radionuclide therapy, alpha-particle-emitting radionuclides are emerging as effective alternatives. In this context, fundamental understanding of the interactions and dosimetry of these emitted particles with cells in the tumor microenvironment is critical to ascertaining the potential of alpha-particle-emitting radionuclides. One important parameter that can be used to assess these metrics is the S-value. In this study, we characterized several alpha-particle-emitting radionuclides (and their associated radionuclide progeny) regarding S-values in the cellular and tumor-metastasis environments. The Particle and Heavy Ion Transport code System (PHITS) was used to obtain S-values via Monte Carlo simulation for cell and tumor metastasis resulting from interactions with the alpha-particle-emitting radionuclides, lead-212 ( 212 Pb), actinium-225 ( 225 Ac) and bismuth-213 ( 213 Bi); these values were compared to the beta-particle-emitting radionuclides yttrium-90 ( 90 Y) and lutetium-177 ( 177 Lu) and an Auger-electron-emitting radionuclide indium-111 ( 111 In). The effect of cellular internalization on S-value was explored at increasing degree of internalization for each radionuclide. This aspect of S-value determination was further explored in a cell line-specific fashion for six different cancer cell lines based on the cell dimensions obtained by confocal microscopy. S-values from PHITS were in good agreement with MIRDcell S-values (cellular S-values) and the values found by Hindié et al. (tumor S-values). In the cellular model, 212 Pb and 213 Bi decay series produced S-values that were 50- to 120-fold higher than 177 Lu, while 225 Ac decay series analysis suggested S-values that were 240- to 520-fold higher than 177 Lu. S-values arising with 100% cellular internalization were two- to sixfold higher for the nucleus

  13. Quantifying particulate and colloidal release of radionuclides in waste-weathered hanford sediments.

    PubMed

    Perdrial, Nicolas; Thompson, Aaron; LaSharr, Kelsie; Amistadi, Mary Kay; Chorover, Jon

    2015-05-01

    At the Hanford Site in the state of Washington, leakage of hyperalkaline, high ionic strength wastewater from underground storage tanks into the vadose zone has induced mineral transformations and changes in radionuclide speciation. Remediation of this wastewater will decrease the ionic strength of water infiltrating to the vadose zone and could affect the fate of the radionuclides. Although it was shown that radionuclide host phases are thermodynamically stable in the presence of waste fluids, a decrease in solution ionic strength and pH could alter aggregate stability and remobilize radionuclide-bearing colloids and particulate matter. We quantified the release of particulate, colloidal, and truly dissolved Sr, Cs, and I from hyperalkaline-weathered Hanford sediments during a low ionic strength pore water leach and characterized the released particles and colloids using electron microscopy and X-ray diffraction. Although most of the Sr, Cs, and I was released in dissolved form, between 3 and 30% of the Sr and 4 to 18% of the Cs was associated with a dominantly zeolitic mobile particulate fraction. Thus, the removal of hyperalkaline wastewater will likely induce Sr and Cs mobilization that will be augmented by particulate- and colloid-facilitated transport. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. IMS radionuclide monitoring after the announced nuclear test of the DPRK on 3 September 2017

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Kalinowski, M.; Bourgouin, P.; Boxue, L.; Gheddou, A.; Klingberg, F.; Leppaenen, A. P.; Schoeppner, M.; Werzi, R.; Wang, J.

    2017-12-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. The radionuclide network comprises 80 stations, out of which 40 are to be equipped with noble gas systems. The aim of radionuclide stations is a global monitoring of radioactive aerosols, radioactive noble gases and atmospheric transport modelling (ATM). To investigate the transport of radionuclide emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. The air mass trajectory provides a "link" between a radionuclide release and a detection confirmed by radionuclide measurements. The aim of this study is to demonstrate the RN analysis and the application of ATM to investigate the episodes of elevated levels of radioxenon observed by IMS stations after the sixth nuclear test, announced by the Democratic People's Republic of Korea (DPRK) at the Punggye-ri Nuclear Test Site on 3 September 2017. A comparison to the previous tests will be presented.

  15. A new statistical method for transfer coefficient calculations in the framework of the general multiple-compartment model of transport for radionuclides in biological systems.

    PubMed

    Garcia, F; Arruda-Neto, J D; Manso, M V; Helene, O M; Vanin, V R; Rodriguez, O; Mesa, J; Likhachev, V P; Filho, J W; Deppman, A; Perez, G; Guzman, F; de Camargo, S P

    1999-10-01

    A new and simple statistical procedure (STATFLUX) for the calculation of transfer coefficients of radionuclide transport to animals and plants is proposed. The method is based on the general multiple-compartment model, which uses a system of linear equations involving geometrical volume considerations. By using experimentally available curves of radionuclide concentrations versus time, for each animal compartment (organs), flow parameters were estimated by employing a least-squares procedure, whose consistency is tested. Some numerical results are presented in order to compare the STATFLUX transfer coefficients with those from other works and experimental data.

  16. Techniques for Loading Technetium-99m and Rhenium-186/188 Radionuclides into Preformed Liposomes for Diagnostic Imaging and Radionuclide Therapy.

    PubMed

    Goins, Beth; Bao, Ande; Phillips, William T

    2017-01-01

    Liposomes can serve as carriers of radionuclides for diagnostic imaging and therapeutic applications. Herein, procedures are outlined for radiolabeling liposomes with the gamma-emitting radionuclide, technetium-99m ( 99m Tc), for noninvasive detection of disease and for monitoring the pharmacokinetics and biodistribution of liposomal drugs, and/or with therapeutic beta-emitting radionuclides, rhenium-186/188 ( 186/188 Re), for radionuclide therapy. These efficient and practical liposome radiolabeling methods use a post-labeling mechanism to load 99m Tc or 186/188 Re into preformed liposomes prepared in advance of the labeling procedure. For all liposome radiolabeling methods described, a lipophilic chelator is used to transport 99m Tc or 186/188 Re across the lipid bilayer of the preformed liposomes. Once within the liposome interior, the pre-encapsulated glutathione or ammonium sulfate (pH) gradient provides for stable entrapment of the 99m Tc and 186/188 Re within the liposomes. In the first method, 99m Tc is transported across the lipid bilayer by the lipophilic chelator, hexamethylpropyleneamine oxime (HMPAO) and 99m Tc-HMPAO becomes trapped by interaction with the pre-encapsulated glutathione within the liposomes. In the second method, 99m Tc or 186/188 Re is transported across the lipid bilayer by the lipophilic chelator, N,N-bis(2-mercaptoethyl)-N',N'-diethylethylenediamine (BMEDA), and 99m Tc-BMEDA or 186/188 Re-BMEDA becomes trapped by interaction with pre-encapsulated glutathione within the liposomes. In the third method, an ammonium sulfate (pH) gradient loading technique is employed using liposomes with an extraliposomal pH of 7.4 and an interior pH of 5.1. BMEDA, which is lipophilic at pH 7.4, serves as a lipophilic chelator for 99m Tc or 186/188 Re to transport the radionuclides across the lipid bilayer. Once within the more acidic liposome interior, 99m Tc/ 186/188 Re-BMEDA complex becomes protonated and more hydrophilic, which results in stable

  17. Regulatory Technology Development Plan - Sodium Fast Reactor. Mechanistic Source Term - Metal Fuel Radionuclide Release

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grabaskas, David; Bucknor, Matthew; Jerden, James

    2016-02-01

    The development of an accurate and defensible mechanistic source term will be vital for the future licensing efforts of metal fuel, pool-type sodium fast reactors. To assist in the creation of a comprehensive mechanistic source term, the current effort sought to estimate the release fraction of radionuclides from metal fuel pins to the primary sodium coolant during fuel pin failures at a variety of temperature conditions. These release estimates were based on the findings of an extensive literature search, which reviewed past experimentation and reactor fuel damage accidents. Data sources for each radionuclide of interest were reviewed to establish releasemore » fractions, along with possible release dependencies, and the corresponding uncertainty levels. Although the current knowledge base is substantial, and radionuclide release fractions were established for the elements deemed important for the determination of offsite consequences following a reactor accident, gaps were found pertaining to several radionuclides. First, there is uncertainty regarding the transport behavior of several radionuclides (iodine, barium, strontium, tellurium, and europium) during metal fuel irradiation to high burnup levels. The migration of these radionuclides within the fuel matrix and bond sodium region can greatly affect their release during pin failure incidents. Post-irradiation examination of existing high burnup metal fuel can likely resolve this knowledge gap. Second, data regarding the radionuclide release from molten high burnup metal fuel in sodium is sparse, which makes the assessment of radionuclide release from fuel melting accidents at high fuel burnup levels difficult. This gap could be addressed through fuel melting experimentation with samples from the existing high burnup metal fuel inventory.« less

  18. Fast analysis of radionuclide decay chain migration

    NASA Astrophysics Data System (ADS)

    Chen, J. S.; Liang, C. P.; Liu, C. W.; Li, L.

    2014-12-01

    A novel tool for rapidly predicting the long-term plume behavior of an arbitrary length radionuclide decay chain is presented in this study. This fast tool is achieved based on generalized analytical solutions in compact format derived for a set of two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions in groundwater system. The performance of the developed tool is evaluated by a numerical model using a Laplace transform finite difference scheme. The results of performance evaluation indicate that the developed model is robust and accurate. The developed model is then used to fast understand the transport behavior of a four-member radionuclide decay chain. Results show that the plume extents and concentration levels of any target radionuclide are very sensitive to longitudinal, transverse dispersion, decay rate constant and retardation factor. The developed model are useful tools for rapidly assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  19. Initial Radionuclide Inventories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, H

    The purpose of this analysis is to provide an initial radionuclide inventory (in grams per waste package) and associated uncertainty distributions for use in the Total System Performance Assessment for the License Application (TSPA-LA) in support of the license application for the repository at Yucca Mountain, Nevada. This document is intended for use in postclosure analysis only. Bounding waste stream information and data were collected that capture probable limits. For commercially generated waste, this analysis considers alternative waste stream projections to bound the characteristics of wastes likely to be encountered using arrival scenarios that potentially impact the commercial spent nuclearmore » fuel (CSNF) waste stream. For TSPA-LA, this radionuclide inventory analysis considers U.S. Department of Energy (DOE) high-level radioactive waste (DHLW) glass and two types of spent nuclear fuel (SNF): CSNF and DOE-owned (DSNF). These wastes are placed in two groups of waste packages: the CSNF waste package and the codisposal waste package (CDSP), which are designated to contain DHLW glass and DSNF, or DHLW glass only. The radionuclide inventory for naval SNF is provided separately in the classified ''Naval Nuclear Propulsion Program Technical Support Document'' for the License Application. As noted previously, the radionuclide inventory data presented here is intended only for TSPA-LA postclosure calculations. It is not applicable to preclosure safety calculations. Safe storage, transportation, and ultimate disposal of these wastes require safety analyses to support the design and licensing of repository equipment and facilities. These analyses will require radionuclide inventories to represent the radioactive source term that must be accommodated during handling, storage and disposition of these wastes. This analysis uses the best available information to identify the radionuclide inventory that is expected at the last year of last emplacement, currently

  20. Hydrology and radionuclide migration program 1987 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsh, K.V.

    1991-03-01

    This report presents results from the Lawrence Livermore National Laboratory's participation in the Hydrology and Radionuclide Migration Program at the Nevada Test Site (NTS) during the fiscal year 1987. The report discussed initial data from a new well (UE20n-1) drilled at the Cheshire site; presents a description of a proposed laboratory study of migration of colloids in fractured media; lists data collected during the drilling and initial sampling of UE20n-1; and describes a tentative proposal for work to be performed in FY88 by Lamont-Doherty Geological Observatory. Groundwater sampled from the new well at the Cheshire site contains tritium concentrations comparablemore » to those measured in previous years from locations above and within the Cheshire cavity. This presence of tritium, as well as several other radionuclides, in a well 100 m away from the cavity region indicates transport of radionuclides, validates a proposed model of the flow path, and provides data on rates of groundwater flow. Previous work at the Cheshire site has shown that radionuclides are transported by colloids through fractured media. However, we have no data that can be used for predictive modeling, and existing theories are not applicable. While physical transport mechanisms of sub-micrometer colloids to defined mineral surfaces are well known, predictions based on well-defined conditions differ from experimental observations by orders of magnitude. The U.C. Berkeley group has designed a laboratory experiment to quantify colloid retention and permeability alteration by the retained colloids.« less

  1. Techniques for loading technetium-99m and rhenium-186/188 radionuclides into pre-formed liposomes for diagnostic imaging and radionuclide therapy.

    PubMed

    Goins, Beth; Bao, Ande; Phillips, William T

    2010-01-01

    Liposomes can serve as carriers of radionuclides for diagnostic imaging and therapeutic applications. Herein, procedures are outlined for radiolabeling liposomes with the gamma-emitting radionuclide, technetium-99m ((99m)Tc), for non-invasive detection of disease and for monitoring the pharmacokinetics and biodistribution of liposomal drugs, and/or with therapeutic beta-emitting radionuclides, rhenium-186/188 ((186/188)Re), for radionuclide therapy. These efficient and practical liposome radiolabeling methods use a post-labeling mechanism to load (99m)Tc or (186/188)Re into pre-formed liposomes prepared in advance of the labeling procedure. For all liposome radiolabeling methods described, a lipophilic chelator is used to transport (99m)Tc or (186/188)Re across the lipid bilayer of the pre-formed liposomes. Once within the liposome interior, the pre-encapsulated glutathione or ammonium sulfate (pH) gradient provides for stable entrapment of the (99m)Tc and (186/188)Re within the liposomes. In the first method, (99m)Tc is transported across the lipid bilayer by the lipophilic chelator, hexamethylpropyleneamine oxime (HMPAO) and (99m)Tc-HMPAO becomes trapped by interaction with the pre-encapsulated glutathione within the liposomes. In the second method, (99m)Tc or (186/188)Re is transported across the lipid bilayer by the lipophilic chelator, N,N-bis(2-mercaptoethyl)-N',N'-diethylethylenediamine (BMEDA), and (99m)Tc-BMEDA or (186/188)Re-BMEDA becomes trapped by interaction with pre-encapsulated glutathione within the liposomes. In the third method, an ammonium sulfate (pH) gradient loading technique is employed using liposomes with an extraliposomal pH of 7.4 and an interior pH of 5.1. BMEDA, which is lipophilic at pH 7.4, serves as a lipophilic chelator for (99m)Tc or (186/188)Re to transport the radionuclides across the lipid bilayer. Once within the more acidic liposome interior, (99m)Tc/(186/188)Re-BMEDA complex becomes protonated and more hydrophilic, which

  2. Effect of Selected Modeling Assumptions on Subsurface Radionuclide Transport Projections for the Potential Environmental Management Disposal Facility at Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Painter, Scott L.

    2016-06-28

    The Department of Energy’s Office of Environmental Management recently revised a Remedial Investigation/ Feasibility Study (RI/FS) that included an analysis of subsurface radionuclide transport at a potential new Environmental Management Disposal Facility (EMDF) in East Bear Creek Valley near Oak Ridge, Tennessee. The effect of three simplifying assumptions used in the RI/FS analyses are investigated using the same subsurface pathway conceptualization but with more flexible modeling tools. Neglect of vadose zone dispersion was found to be conservative or non-conservative, depending on the retarded travel time and the half-life. For a given equilibrium distribution coefficient, a relatively narrow range of half-lifemore » was identified for which neglect of vadose zone transport is non-conservative and radionuclide discharge into surface water is non-negligible. However, there are two additional conservative simplifications in the reference case that compensate for the non-conservative effect of neglecting vadose zone dispersion: the use of a steady infiltration rate and vadose zone velocity, and the way equilibrium sorption is used to represent transport in the fractured material of the saturated aquifer. With more realistic representations of all three processes, the RI/FS reference case was found to either provide a reasonably good approximation to the peak concentration or was significantly conservative (pessimistic) for all parameter combinations considered.« less

  3. Radionuclide Retention in Concrete Wasteforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.« less

  4. Biogeochemical cycles of Chernobyl-born radionuclides in the contaminated forest ecosystems: long-term dynamics of the migration processes

    NASA Astrophysics Data System (ADS)

    Shcheglov, Alexey; Tsvetnova, Ol'ga; Klyashtorin, Alexey

    2013-04-01

    Biogeochemical migration is a dominant factor of the radionuclide transport through the biosphere. In the early XX century, V.I. Vernadskii, a Russian scientist known, noted about a special role living things play in transport and accumulation of natural radionuclide in various environments. The role of biogeochemical processes in migration and redistribution of technogenic radionuclides is not less important. In Russia, V. M. Klechkovskii and N.V. Timofeev-Ressovskii showed some important biogeochemical aspects of radionuclide migration by the example of global fallout and Kyshtym accident. Their followers, R.M. Alexakhin, M.A. Naryshkin, N.V. Kulikov, F.A. Tikhomirov, E.B. Tyuryukanova, and others also contributed a lot to biogeochemistry of radionuclides. In the post-Chernobyl period, this area of knowledge received a lot of data that allowed building the radioactive element balance and flux estimation in various biogeochemical cycles [Shcheglov et al., 1999]. Regrettably, many of recent radioecological studies are only focused on specific radionuclide fluxes or pursue some applied tasks, missing the holistic approach. Most of the studies consider biogeochemical fluxes of radioactive isotopes in terms of either dose estimation or radionuclide migration rates in various food chains. However, to get a comprehensive picture and develop a reliable forecast of environmental, ecological, and social consequences of radioactive pollution in a vast contaminated area, it is necessary to investigate all the radionuclide fluxes associated with the biogeochemical cycles in affected ecosystems. We believe such an integrated approach would be useful to study long-term environmental consequences of the Fukushima accident as well. In our long-term research, we tried to characterize the flux dynamics of the Chernobyl-born radionuclides in the contaminated forest ecosystems and landscapes as a part of the integrated biogeochemical process. Our field studies were started in June of

  5. Geomorphic control of radionuclide diffusion in desert soils

    USGS Publications Warehouse

    Pelletier, J.D.; Harrington, C.D.; Whitney, J.W.; Cline, M.; DeLong, S.B.; Keating, G.; Ebert, T.K.

    2005-01-01

    Diffusion is a standard model for the vertical migration of radionuclides in soil profiles. Here we show that diffusivity values inferred from fallout 137CS profiles in soils on the Fortymile Wash alluvial fan, Nye County, Nevada, have a strong inverse correlation with the age of the geomorphic surface. This result suggests that radionuclide-bound particles are predominantly transported by infiltration rather than by bulk-mixing processes such as wetting/ drying, freeze/thaw, and bioturbation. Our results provide a preliminary basis for using soil-geomorphic mapping, point-based calibration data, and the diffusion model to predict radionuclide trans desert soils within a pedotransfer-function approach. Copyright 2005 by the American Geophysical Union.

  6. Radionuclide Therapy

    NASA Astrophysics Data System (ADS)

    Zalutsky, M. R.

    Radionuclide therapy utilizes unsealed sources of radionuclides as a treatment for cancer or other pathological conditions such as rheumatoid arthritis. Radionuclides that decay by the emission of β and α particles, as well as those that emit Auger electrons, have been used for this purpose. In this chapter, radiochemical aspects of radionuclide therapy, including criteria for radionuclide selection, radionuclide production, radiolabeling chemistry, and radiation dosimetry are discussed.

  7. Bio-inspired digital signal processing for fast radionuclide mixture identification

    NASA Astrophysics Data System (ADS)

    Thevenin, M.; Bichler, O.; Thiam, C.; Bobin, C.; Lourenço, V.

    2015-05-01

    Countries are trying to equip their public transportation infrastructure with fixed radiation portals and detectors to detect radiological threat. Current works usually focus on neutron detection, which could be useless in the case of dirty bomb that would not use fissile material. Another approach, such as gamma dose rate variation monitoring is a good indication of the presence of radionuclide. However, some legitimate products emit large quantities of natural gamma rays; environment also emits gamma rays naturally. They can lead to false detections. Moreover, such radio-activity could be used to hide a threat such as material to make a dirty bomb. Consequently, radionuclide identification is a requirement and is traditionally performed by gamma spectrometry using unique spectral signature of each radionuclide. These approaches require high-resolution detectors, sufficient integration time to get enough statistics and large computing capacities for data analysis. High-resolution detectors are fragile and costly, making them bad candidates for large scale homeland security applications. Plastic scintillator and NaI detectors fit with such applications but their resolution makes identification difficult, especially radionuclides mixes. This paper proposes an original signal processing strategy based on artificial spiking neural networks to enable fast radionuclide identification at low count rate and for mixture. It presents results obtained for different challenging mixtures of radionuclides using a NaI scintillator. Results show that a correct identification is performed with less than hundred counts and no false identification is reported, enabling quick identification of a moving threat in a public transportation. Further work will focus on using plastic scintillators.

  8. Method and apparatus for separating radionuclides from non-radionuclides

    DOEpatents

    Harp, Richard J.

    1990-01-01

    In an apparatus for separating radionuclides from non-radionuclides in a mixture of nuclear waste, a vessel is provided wherein the mixture is heated to a temperature greater than the temperature of vaporization for the non-radionuclides but less than the temperature of vaporization for the radionuclides. Consequently the non-radionuclides are vaporized while the non-radionuclides remain the solid or liquid state. The non-radionuclide vapors are withdrawn from the vessel and condensed to produce a flow of condensate. When this flow decreases the heat is reduced to prevent temperature spikes which might otherwise vaporize the radionuclides. The vessel is removed and capped with the radioactive components of the apparatus and multiple batches of the radionuclide residue disposed therein. Thus the vessel ultimately provides a burial vehicle for all of the radioactive components of the process.

  9. Subsurface Characterization To Support Evaluation Of Radionuclide Transport And Attenuation

    EPA Science Inventory

    Remediation of ground water contaminated with radionuclides may be achieved using attenuation-based technologies. These technologies may rely on engineered processes (e.g., bioremediation) or natural processes (e.g., monitored natural attenuation) within the subsurface. In gene...

  10. Resuspension and redistribution of radionuclides during grassland and forest fires in the Chernobyl exclusion zone: part II. Modeling the transport process.

    PubMed

    Yoschenko, V I; Kashparov, V A; Levchuk, S E; Glukhovskiy, A S; Khomutinin, Yu V; Protsak, V P; Lundin, S M; Tschiersch, J

    2006-01-01

    To predict parameters of radionuclide resuspension, transport and deposition during forest and grassland fires, several model modules were developed and adapted. Experimental data of controlled burning of prepared experimental plots in the Chernobyl exclusion zone have been used to evaluate the prognostic power of the models. The predicted trajectories and elevations of the plume match with those visually observed during the fire experiments in the grassland and forest sites. Experimentally determined parameters could be successfully used for the calculation of the initial plume parameters which provide the tools for the description of various fire scenarios and enable prognostic calculations. In summary, the model predicts a release of some per thousand from the radionuclide inventory of the fuel material by the grassland fires. During the forest fire, up to 4% of (137)Cs and (90)Sr and up to 1% of the Pu isotopes can be released from the forest litter according to the model calculations. However, these results depend on the parameters of the fire events. In general, the modeling results are in good accordance with the experimental data. Therefore, the considered models were successfully validated and can be recommended for the assessment of the resuspension and redistribution of radionuclides during grassland and forest fires in contaminated territories.

  11. Quantitative Modeling of Cerenkov Light Production Efficiency from Medical Radionuclides

    PubMed Central

    Beattie, Bradley J.; Thorek, Daniel L. J.; Schmidtlein, Charles R.; Pentlow, Keith S.; Humm, John L.; Hielscher, Andreas H.

    2012-01-01

    There has been recent and growing interest in applying Cerenkov radiation (CR) for biological applications. Knowledge of the production efficiency and other characteristics of the CR produced by various radionuclides would help in accessing the feasibility of proposed applications and guide the choice of radionuclides. To generate this information we developed models of CR production efficiency based on the Frank-Tamm equation and models of CR distribution based on Monte-Carlo simulations of photon and β particle transport. All models were validated against direct measurements using multiple radionuclides and then applied to a number of radionuclides commonly used in biomedical applications. We show that two radionuclides, Ac-225 and In-111, which have been reported to produce CR in water, do not in fact produce CR directly. We also propose a simple means of using this information to calibrate high sensitivity luminescence imaging systems and show evidence suggesting that this calibration may be more accurate than methods in routine current use. PMID:22363636

  12. Microbiological Transformations of Radionuclides in the Subsurface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, Matthew J.; Beliaev, Alex S.; Fredrickson, Jim K.

    2010-01-04

    Microorganisms are ubiquitous in subsurface environments although their populations sizes and metabolic activities can vary considerably depending on energy and nutrient inputs. As a result of their metabolic activities and the chemical properties of their cell surfaces and the exopolymers they produce, microorganisms can directly or indirectly facilitate the biotransformation of radionuclides, thus altering their solubility and overall fate and transport in the environment. Although biosorption to cell surfaces and exopolymers can be an important factor modifying the solubility of some radionuclides under specific conditions, oxidation state is often considered the single most important factor controlling their speciation and, therefore,more » environmental behavior.« less

  13. Illicit Trafficking of Natural Radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva

    2008-08-07

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from anmore » operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.« less

  14. Illicit Trafficking of Natural Radionuclides

    NASA Astrophysics Data System (ADS)

    Friedrich, Steinhäusler; Lyudmila, Zaitseva

    2008-08-01

    Natural radionuclides have been subject to trafficking worldwide, involving natural uranium ore (U 238), processed uranium (yellow cake), low enriched uranium (<20% U 235) or highly enriched uranium (>20% U 235), radium (Ra 226), polonium (Po 210), and natural thorium ore (Th 232). An important prerequisite to successful illicit trafficking activities is access to a suitable logistical infrastructure enabling an undercover shipment of radioactive materials and, in case of trafficking natural uranium or thorium ore, capable of transporting large volumes of material. Covert en route diversion of an authorised uranium transport, together with covert diversion of uranium concentrate from an operating or closed uranium mines or mills, are subject of case studies. Such cases, involving Israel, Iran, Pakistan and Libya, have been analyzed in terms of international actors involved and methods deployed. Using international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (DSTO) and international experience gained from the fight against drug trafficking, a generic Trafficking Pathway Model (TPM) is developed for trafficking of natural radionuclides. The TPM covers the complete trafficking cycle, ranging from material diversion, covert material transport, material concealment, and all associated operational procedures. The model subdivides the trafficking cycle into five phases: (1) Material diversion by insider(s) or initiation by outsider(s); (2) Covert transport; (3) Material brokerage; (4) Material sale; (5) Material delivery. An Action Plan is recommended, addressing the strengthening of the national infrastructure for material protection and accounting, development of higher standards of good governance, and needs for improving the control system deployed by customs, border guards and security forces.

  15. Scale-Dependent Fracture-Matrix Interactions And Their Impact on Radionuclide Transport - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detwiler, Russell

    Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacentmore » rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix

  16. Ion binding compounds, radionuclide complexes, methods of making radionuclide complexes, methods of extracting radionuclides, and methods of delivering radionuclides to target locations

    DOEpatents

    Chen, Xiaoyuan; Wai, Chien M.; Fisher, Darrell R.

    2000-01-01

    The invention pertains to compounds for binding lanthanide ions and actinide ions. The invention further pertains to compounds for binding radionuclides, and to methods of making radionuclide complexes. Also, the invention pertains to methods of extracting radionuclides. Additionally, the invention pertains to methods of delivering radionuclides to target locations. In one aspect, the invention includes a compound comprising: a) a calix[n]arene group, wherein n is an integer greater than 3, the calix[n]arene group comprising an upper rim and a lower rim; b) at least one ionizable group attached to the lower rim; and c) an ion selected from the group consisting of lanthanide and actinide elements bound to the ionizable group. In another aspect, the invention includes a method of extracting a radionuclide, comprising: a) providing a sample comprising a radionuclide; b) providing a calix[n]arene compound in contact with the sample, wherein n is an integer greater than 3; and c) extracting radionuclide from the sample into the calix[n]arene compound. In yet another aspect, the invention includes a method of delivering a radionuclide to a target location, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising at least one ionizable group; b) providing a radionuclide bound to the calix[n]arene compound; and c) providing an antibody attached to the calix[n]arene compound, the antibody being specific for a material found at the target location.

  17. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bray, L.A.; Ryan, J.L.

    1998-09-15

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of {sup 223}Ra and {sup 225}Ac, from a radionuclide ``cow`` of {sup 227}Ac or {sup 229}Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ``cow`` forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ``cow`` from at least one radionuclide daughter; (d) insuring that the at leastmore » one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ``cow``. In one embodiment the radionuclide ``cow`` is the {sup 227}Ac, the at least one daughter radionuclide is a {sup 227}Th and the product radionuclide is the {sup 223}Ra and the first nitrate form ion exchange column passes the {sup 227}Ac and retains the {sup 227}Th. In another embodiment the radionuclide ``cow`` is the {sup 229}Th, the at least one daughter radionuclide is a {sup 225}Ra and said product radionuclide is the {sup 225}Ac and the {sup 225}Ac and nitrate form ion exchange column retains the {sup 229}Th and passes the {sup 225}Ra/Ac. 8 figs.« less

  18. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, Lane A.; Ryan, Jack L.

    1998-01-01

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of .sup.223 Ra and .sup.225 Ac, from a radionuclide "cow" of .sup.227 Ac or .sup.229 Th respectively. The method comprises the steps of a) permitting ingrowth of at least one radionuclide daughter from said radionuclide "cow" forming an ingrown mixture; b) insuring that the ingrown mixture is a nitric acid ingrown mixture; c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the "cow" from at least one radionuclide daughter; d) insuring that the at least one radionuclide daughter contains the radionuclide product; e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and f) recycling the at least one radionuclide daughter by adding it to the "cow". In one embodiment the radionuclide "cow" is the .sup.227 Ac, the at least one daughter radionuclide is a .sup.227 Th and the product radionuclide is the .sup.223 Ra and the first nitrate form ion exchange column passes the .sup.227 Ac and retains the .sup.227 Th. In another embodiment the radionuclide "cow"is the .sup.229 Th, the at least one daughter radionuclide is a .sup.225 Ra and said product radionuclide is the .sup.225 Ac and the .sup.225 Ac and nitrate form ion exchange column retains the .sup.229 Th and passes the .sup.225 Ra/Ac.

  19. Methods of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, L.A.; Ryan, J.L.

    1998-09-15

    The present invention is a method of obtaining a radionuclide product selected from the group consisting of {sup 223}Ra and {sup 225}Ac, from a radionuclide ``cow`` of {sup 227}Ac or {sup 229}Th respectively. The method comprises the steps of (a) permitting ingrowth of at least one radionuclide daughter from said radionuclide ``cow`` forming an ingrown mixture; (b) insuring that the ingrown mixture is a nitric acid ingrown mixture; (c) passing the nitric acid ingrown mixture through a first nitrate form ion exchange column which permits separating the ``cow`` from at least one radionuclide daughter; (d) insuring that the at least one radionuclide daughter contains the radionuclide product; (e) passing the at least one radionuclide daughter through a second ion exchange column and separating the at least one radionuclide daughter from the radionuclide product and (f) recycling the at least one radionuclide daughter by adding it to the ``cow``. In one embodiment the radionuclide ``cow`` is the {sup 227}Ac, the at least one daughter radionuclide is a {sup 227}Th and the product radionuclide is the {sup 223}Ra and the first nitrate form ion exchange column passes the {sup 227}Ac and retains the {sup 227}Th. In another embodiment the radionuclide ``cow`` is the {sup 229}Th, the at least one daughter radionuclide is a {sup 225}Ra and said product radionuclide is the {sup 225}Ac and the {sup 225}Ac and nitrate form ion exchange column retains the {sup 229}Th and passes the {sup 225}Ra/Ac. 8 figs.

  20. Waste Form and Indrift Colloids-Associated Radionuclide Concentrations: Abstraction and Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Aguilar

    This Model Report describes the analysis and abstractions of the colloids process model for the waste form and engineered barrier system components of the total system performance assessment calculations to be performed with the Total System Performance Assessment-License Application model. Included in this report is a description of (1) the types and concentrations of colloids that could be generated in the waste package from degradation of waste forms and the corrosion of the waste package materials, (2) types and concentrations of colloids produced from the steel components of the repository and their potential role in radionuclide transport, and (3) typesmore » and concentrations of colloids present in natural waters in the vicinity of Yucca Mountain. Additionally, attachment/detachment characteristics and mechanisms of colloids anticipated in the repository are addressed and discussed. The abstraction of the process model is intended to capture the most important characteristics of radionuclide-colloid behavior for use in predicting the potential impact of colloid-facilitated radionuclide transport on repository performance.« less

  1. Tracing Fukushima Radionuclides in the Northern Hemisphere -An Overview

    NASA Astrophysics Data System (ADS)

    Thakur, Punam; Ballard, Sally; Nelson, Roger

    2013-04-01

    A massive 9.0 earthquake and ensuing tsunami struck the northern coast of the Honshu-island, Japan on March 11, 2011 and severely damaged the electric system of the Fukushima- Daiichi Nuclear Power Plant (NPP). The structural damage to the plant disabled the reactor's cooling systems. Subsequent fires, a hydrogen explosion and possible partial core meltdowns released radioactive fission products into the atmosphere. The atmospheric release from the crippled Fukushima NPP started on March 12, 2011 with a maximum release phase from March 14 to 17. The radioactivity released was dominated by volatile fission products including isotopes of the noble gases xenon (Xe-133) and krypton (Kr-85); iodine (I-131,I-132); cesium (Cs-134,Cs-136,Cs-137); and tellurium (Te-132). The non-volatile radionuclides such as isotopes of strontium and plutonium are believed to have remained largely inside the reactor, although there is evidence of plutonium release into the environment. Global air monitoring across the northern hemisphere was increased following the first reports of atmospheric releases. According to the source term, declared by the Nuclear and Industrial Safety Agency (NISA) of Japan), approximately 160 PBq (1 PBq (Peta Becquerel = 10^15 Bq)) of I-131 and 15 PBq of Cs-137 (or 770 PBq "iodine-131 equivalent"), were released into the atmosphere. The 770 PBq figure is about 15% of the Chernobyl release of 5200 PBq of "iodine-131 equivalent". For the assessment of contamination after the accident and to track the transport time of the contaminated air mass released from the Fukushima NPP across the globe, several model calculations were performed by various research groups. All model calculations suggested long-range transport of radionuclides from the damaged Fukushima NPP towards the North American Continent to Europe and to Central Asia. As a result, an elevated level of Fukushima radionuclides were detected in air, rain, milk, and vegetation samples across the northern

  2. Atmospheric Transport Modelling assessing radionuclide detection chances after the nuclear test announced by the DPRK in January 2016

    NASA Astrophysics Data System (ADS)

    Ross, J. Ole; Ceranna, Lars

    2016-04-01

    The Comprehensive Nuclear-Test-Ban Treaty (CTBT) prohibits all kinds of nuclear explosions. The International Monitoring System (IMS) is in place and at about 90% complete to verify compliance with the CTBT. The stations of the waveform technologies are capable to detect seismic, hydro-acoustic and infrasonic signals for detection, localization, and characterization of explosions. The seismic signals of the DPRK event on 6 January 2016 were detected by many seismic stations around the globe and allow for localization of the event and identification as explosion (see poster by G. Hartmann et al.). However, the direct evidence for a nuclear explosion is only possible through the detection of nuclear fission products which may be released. For that 80 Radionuclide (RN) Stations are part of the designed IMS, about 60 are already operational. All RN stations are highly sensitive for tiny traces of particulate radionuclides in large volume air samplers. There are 40 of the RN stations designated to be equipped with noble gas systems detecting traces of radioactive xenon isotopes which are more likely to escape from an underground test cavity than particulates. Already 30 of the noble gas systems are operational. Atmospheric Transport Modelling supports the interpretation of radionuclide detections (and as appropriate non-detections) by connecting the activity concentration measurements with potential source locations and release times. In our study forecasts with the Lagrangian Particle Dispersion Model HYSPLIT (NOAA) and GFS (NCEP) meteorological data are considered to assess the plume propagation patterns for hypothetical releases at the known DPRK nuclear test site. The results show a considerable sensitivity of the IMS station RN 38 Takasaki (Japan) to a potential radionuclide release at the test site in the days and weeks following the explosion in January 2016. In addition, backtracking simulations with ECMWF analysis data in 0.2° horizontal resolution are

  3. RADTRAD: A simplified model for RADionuclide Transport and Removal And Dose estimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humphreys, S.L.; Miller, L.A.; Monroe, D.K.

    1998-04-01

    This report documents the RADTRAD computer code developed for the U.S. Nuclear Regulatory Commission (NRC) Office of Nuclear Reactor Regulation (NRR) to estimate transport and removal of radionuclides and dose at selected receptors. The document includes a users` guide to the code, a description of the technical basis for the code, the quality assurance and code acceptance testing documentation, and a programmers` guide. The RADTRAD code can be used to estimate the containment release using either the NRC TID-14844 or NUREG-1465 source terms and assumptions, or a user-specified table. In addition, the code can account for a reduction in themore » quantity of radioactive material due to containment sprays, natural deposition, filters, and other natural and engineered safety features. The RADTRAD code uses a combination of tables and/or numerical models of source term reduction phenomena to determine the time-dependent dose at user-specified locations for a given accident scenario. The code system also provides the inventory, decay chain, and dose conversion factor tables needed for the dose calculation. The RADTRAD code can be used to assess occupational radiation exposures, typically in the control room; to estimate site boundary doses; and to estimate dose attenuation due to modification of a facility or accident sequence.« less

  4. Natural radionuclides in plants, soils and sediments affected by U-rich coal mining activities in Brazil.

    PubMed

    Galhardi, Juliana Aparecida; García-Tenorio, Rafael; Bonotto, Daniel Marcos; Díaz Francés, Inmaculada; Motta, João Gabriel

    2017-10-01

    Mining activities can increase the mobility of metals by accelerating the dissolution and leaching of minerals from the rocks and tailing piles to the environment and, consequently, their availability for plants and subsequent transfer to the food chain. The weathering of minerals and the disposal of coal waste in tailing piles can accelerate the generation of acid mine drainage (AMD), which is responsible for the higher dissolution of metals in mining areas. In this context, the behavior of U, Th and K in soils and sediment, and the transfer factor (TF) of 238 U, 234 U and 210 Po for soybean, wheat, pine and eucalyptus cultivated around a coal mine in southern Brazil was evaluated. Alpha and gamma spectrometry were used for the measurements of the activity concentration of the radioelements. 210 Po was the radionuclide that is most accumulated in the plants, especially in the leaves. When comparing the plant species, pine showed the highest TF values for 234 U (0.311 ± 0.420) for leaves, while eucalyptus showed the highest TF for 238 U (0.344 ± 0.414) for leaves. In general, TF were higher for the leaves of soybean and wheat when compared to the grains, and grains of wheat showed higher TF for 210 Po and 238 U than grains of soybean. Deviations from the natural U isotopic ratio were recorded at all investigated areas, indicating possible industrial and mining sources of U for the vegetables. A safety assessment of transport routes and accumulation of radionuclides in soils with a potential for cultivation is important, mainly in tropical areas contaminated with solid waste and effluents from mines and industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Leaching of radionuclides from decaying blueberry leaves: Relative rate independent of concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheppard, S.C.; Evenden, W.G.

    Leaching of radionuclides from decaying vegetation has not been extensively investigated, especially for radionuclides other than {sup 137}Cs. The authors obtained leaves of blueberry (Vaccinium angustifolium {times} V. corymbosum) that contained over 25-fold ranges in Se, Cs, and I concentrations, as well as a small quantity of leaves containing detectable U. All were contaminated by way of root uptake. Leaching took place for a period of 1 yr in the laboratory, using leach water from forest litter. Monthly, measurements were made of the radionuclide contents and decaying leaf dry weights. The data conformed to an exponential decay model with twomore » first-order components. In no case did the relative loss rates vary systematically with the initial tissue radionuclide concentrations. Loss rates decreased in the order Cs > I > U > dry wt. > Se. Because of the low leaching rate of Se relative to the loss of dry weight, decaying litter may actually accumulate elements such as Se. Accumulation of radionuclides in litter could have important implications for lateral transport, recycling, and direct incorporation into edible mushrooms.« less

  6. Sources and transport of anthropogenic radionuclides in the Ob River system, Siberia

    NASA Astrophysics Data System (ADS)

    Cochran, J. Kirk; Moran, S. Bradley; Fisher, Nicholas S.; Beasley, Thomas M.; Kelley, James M.

    2000-06-01

    The potential sources of anthropogenic radionuclides to the Ob River system of western Siberia include global stratospheric fallout, tropospheric fallout from atomic weapons tests and releases from production and reprocessing facilities. Samples of water, suspended and bottom sediments collected in 1994 and 1995 have been used to characterize the sources and transport of 137Cs, Pu isotopes, 237Np and 129I through the system. For the radionuclides that associate with particles, isotope ratios provide clues to their sources, providing any geochemical fractionation can be taken into account. Activity ratios of 239,240Pu/ 137Cs in suspended sediments are lower than the global fallout ratio in the Irtysh River before its confluence with the Ob, comparable to fallout in the central reach of the Ob, and greater than the fallout values in the lower Ob and in the Taz River. This pattern mirrors the downriver decrease in dissolved organic carbon (DOC) concentrations. Laboratory adsorption experiments with Ob River sediment and water show that Kd values for Am (and presumably other actinides) are depressed by two orders of magnitude in the presence of Ob DOC concentrations, relative to values measured in DOC-free Ob water. Iodine and cesium Kd values show little or no (less than a factor of 2) dependence on DOC. Mixing plots using plutonium isotope ratios (atom ratios) show that Pu in suspended sediments of the Ob is a mixture of stratospheric global fallout at northern latitudes, tropospheric fallout from the former Soviet Union test site at Semipalatinsk and reprocessing of spent fuel at Tomsk-7. Plutonium from Semipalatinsk is evident in the Irtysh River above its confluence with the Tobal. Suspended sediment samples taken in the Ob above its confluence with the Irtysh indicate the presence of Pu derived from the Tomsk-7 reprocessing facilities. A mixing plot constructed using 237Np/ 239Pu vs. 240Pu/ 239Pu shows similar mixtures of stratospheric and tropospheric fallout

  7. Colloid facilitated transport of lanthanides through discrete fractures in chalk

    NASA Astrophysics Data System (ADS)

    Tran, Emily; Klein Ben-David, Ofra; Teutsch, Nadya; Weisbrod, Noam

    2015-04-01

    Geological disposal of high-level radioactive waste is the internationally agreed-upon, long term solution for the disposal of long lived radionuclides and spent fuel. Eventually, corrosion of the waste canisters may lead to leakage of their hazardous contents, and the radionuclides can ultimately make their way into groundwater and pose a threat to the biosphere. Engineered bentonite barriers placed around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their storage location to the groundwater. However, colloidal-sized mobile bentonite particles eroding from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. In addition, the presence of organic matter in groundwater has been shown to additionally facilitate the uptake of radionuclides by the clay colloids. This study aims to evaluate the transport behaviors of radionuclides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative of the Negev desert, Israel. Lanthanides are considered an acceptable substitute to actinides for research on radionuclide transportation due to their similar chemical behavior. In this study, the migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide). Tracer solutions containing known concentrations of Ce, bentonite colloids, humic acid and bromide were prepared in a matrix solution containing salt concentrations representative of that of the average rain water found in the Negev. These solutions were then injected into a flow system constructed around a naturally fractured chalk core. Samples were analyzed for Ce and Br using ICP-MS, and colloid concentrations were determined using spectrophotographic analysis. Breakthrough curves comparing the rates of transportation of each tracer were obtained, allowing for comparison of

  8. Organ doses from radionuclides on the ground. Part I. Simple time dependences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacob, P.; Paretzke, H.G.; Rosenbaum, H.

    1988-06-01

    Organ dose equivalents of mathematical, anthropomorphical phantoms ADAM and EVA for photon exposures from plane sources on the ground have been calculated by Monte Carlo photon transport codes and tabulated in this article. The calculation takes into account the air-ground interface and a typical surface roughness, the energy and angular dependence of the photon fluence impinging on the phantom and the time dependence of the contributions from daughter nuclides. Results are up to 35% higher than data reported in the literature for important radionuclides. This manuscript deals with radionuclides, for which the time dependence of dose equivalent rates and dosemore » equivalents may be approximated by a simple exponential. A companion manuscript treats radionuclides with non-trivial time dependences.« less

  9. Radionuclide transport in the "sediments - water - plants" system of the water bodies at the Semipalatinsk test site.

    PubMed

    Aidarkhanova, A K; Lukashenko, S N; Larionova, N V; Polevik, V V

    2018-04-01

    This paper provides research data on levels and character of radionuclide contamination distribution in the «sediments- water - plants » system of objects of the Semipalatinsk test site (STS). As the research objects there were chosen water bodies of man-made origin which located at the territory of "Experimental Field", "Balapan", "Telkem" and "Sary-Uzen" testing sites. For research the sampling of bottom sediments, water, lakeside and water plants was taken. Collected samples were used to determine concentration of anthropogenic radionuclides 90 Sr, 239+240 Pu, 241 Am, 137 Cs. The distribution coefficient (K d ) was calculated as the ratio of the content of radionuclides in the sediments to the content in water, and the concentration ratio (F V ) was calculated as the ratio of radionuclide content in plants to the content in sediments or soil. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Radionuclide deposition control

    DOEpatents

    Brehm, William F.; McGuire, Joseph C.

    1980-01-01

    The deposition of radionuclides manganese-54, cobalt-58 and cobalt-60 from liquid sodium coolant is controlled by providing surfaces of nickel or high nickel alloys to extract the radionuclides from the liquid sodium, and by providing surfaces of tungsten, molybdenum or tantalum to prevent or retard radionuclide deposition.

  11. Fusion of waveform events and radionuclide detections with the help of atmospheric transport modelling

    NASA Astrophysics Data System (ADS)

    Krysta, Monika; Kushida, Noriyuki; Kotselko, Yuriy; Carter, Jerry

    2016-04-01

    Possibilities of associating information from four pillars constituting CTBT monitoring and verification regime, namely seismic, infrasound, hydracoustic and radionuclide networks, have been explored by the International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) for a long time. Based on a concept of overlying waveform events with the geographical regions constituting possible sources of the detected radionuclides, interactive and non-interactive tools were built in the past. Based on the same concept, a design of a prototype of a Fused Event Bulletin was proposed recently. One of the key design elements of the proposed approach is the ability to access fusion results from either the radionuclide or from the waveform technologies products, which are available on different time scales and through various different automatic and interactive products. To accommodate various time scales a dynamic product evolving while the results of the different technologies are being processed and compiled is envisioned. The product would be available through the Secure Web Portal (SWP). In this presentation we describe implementation of the data fusion functionality in the test framework of the SWP. In addition, we address possible refinements to the already implemented concepts.

  12. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2014-05-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. The hazardous consequences reach out on a national and continental scale. Environmental measurements and methods to model the transport and dispersion of the released radionuclides serve as a platform to assess the regional impact of nuclear accidents - both, for research purposes and, more important, to determine the immediate threat to the population. However, the assessments of the regional radionuclide activity concentrations and the individual exposure to radiation dose underlie several uncertainties. For example, the accurate model representation of wet and dry deposition. One of the most significant uncertainty, however, results from the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source terms of severe nuclear accidents may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on rather rough estimates of released key radionuclides given by the operators. Precise measurements are mostly missing due to practical limitations during the accident. Inverse modelling can be used to realise a feasible estimation of the source term (Davoine and Bocquet, 2007). Existing point measurements of radionuclide activity concentrations are therefore combined with atmospheric transport models. The release rates of radionuclides at the accident site are then obtained by improving the agreement between the modelled and observed concentrations (Stohl et al., 2012). The accuracy of the method and hence of the resulting source term depends amongst others on the availability, reliability and the resolution in time and space of the observations. Radionuclide activity concentrations are observed on a

  13. Temperature Effect on the Sorption of Radionuclides by Freshwater Algae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, R.S.

    2003-01-06

    The heavy waters of the reactor effluent streams within the Savannah River Plant area transport very low concentrations of fission and activation products through miles of natural streambeds and swamps to the Savannah River. This study emphasizes the effects of environmental factors on the sorption of radionuclides by representative species.

  14. Road transport and diet affect metabolic response to exercise in horses.

    PubMed

    Connysson, M; Muhonen, S; Jansson, A

    2017-11-01

    This study investigated the effects of transport and diet on metabolic response during a subsequent race-like test in Standardbred horses in training fed a forage-only diet and a 50:50 forage:oats diet. Six trained and raced Standardbred trotter mares were used. Two diets, 1 forage-only diet (FONLY) and 1 diet with 50% of DM intake from forage and 50% from oats (FOATS), were fed for two 29-d periods in a crossover design. At Day 21, the horses were subjected to transport for 100 km before and after they performed an exercise test (transport test [TT]). At Day 26, the horses performed a control test (CT), in which they were kept in their stall before and after the exercise test. Blood samples were collected throughout the study, and heart rate and water intake were recorded. Heart rate and plasma cortisol, glucose, and NEFA concentrations were greater for the TT than for the CT ( = 0.008, = 0.020, = 0.010, and = 0.0002, respectively) but were not affected by diet. Plasma acetate concentration was lower during the TT than during the CT ( = 0.034) and greater for the FONLY than for the FOATS ( = 0.003). There were no overall effects of the TT compared with the CT on total plasma protein concentration (TPP), but TPP was lower with the FONLY than with the FOATS ( = 0.016). There was no overall effect of the TT compared with the CT on water intake, but water intake was greater with the FONLY than the FOATS ( = 0.011). There were no overall effects of transport or diet on BW, plasma lactate, or plasma urea concentration. It was concluded that both transport and diet affect metabolic response during exercise in horses. Aerobic energy supply was most likely elevated by transportation and by the FONLY. The FONLY also decreased exercise-induced effects on extracellular fluid regulation. These results highlight the importance of experimental design in nutrition studies. If the aim is to examine how a diet affects exercise response in competition horses, transport should

  15. Review of Phosphate in soils: Interaction with micronutrients, radionuclides, and heavy metals

    USDA-ARS?s Scientific Manuscript database

    Phosphate-phosphorus present in the vadose zone of soil as native, added, or residual fertilizer influences the retention, transport, and bioavailability of heavy metals, metalloids, or metallic radionuclides to aboveground vegetation, soil microorganisms, and fauna that browse that vegetation, or d...

  16. Connexin-deficiency affects expression levels of glial glutamate transporters within the cerebrum.

    PubMed

    Unger, Tina; Bette, Stefanie; Zhang, Jiong; Theis, Martin; Engele, Jürgen

    2012-01-06

    The glial glutamate transporter subtypes, GLT-1/EAAT-2 and GLAST/EAAT-1 clear the bulk of extracellular glutamate and are severely dysregulated in various acute and chronic brain diseases. Despite the previous identification of several extracellular factors modulating glial glutamate transporter expression, our knowledge of the regulatory network controlling glial glutamate transport in health and disease still remains incomplete. In studies with cultured cortical astrocytes, we previously obtained evidence that glial glutamate transporter expression is also affected by gap junctions/connexins. To assess whether gap junctions would likewise control the in vivo expression of glial glutamate transporters, we have now assessed their expression levels in brains of conditional Cx43 knockout mice, total Cx30 knockouts, as well as Cx43/Cx30 double knockouts. We found that either knocking out Cx30, Cx43, or both increases GLT-1/EAAT-2 protein levels in the cerebral cortex to a similar extent. By contrast, GLAST/EAAT-1 protein levels maximally increased in cerebral cortices of Cx30/Cx43 double knockouts, implying that gap junctions differentially affect the expression of GLT-1/EAAT-2 and GLAST/EAAT-1. Quantitative PCR analysis further revealed that increases in glial glutamate transporter expression are brought about by transcriptional and translational/posttranslational processes. Moreover, GLT-1/EAAT-2- and GLAST/EAAT-1 protein levels remained unchanged in the hippocampi of Cx43/Cx30 double knockouts when compared to Cx43fl/fl controls, indicating brain region-specific effects of gap junctions on glial glutamate transport. Since astrocytic gap junction coupling is affected in various forms of brain injuries, our findings point to gap junctions/connexins as important regulators of glial glutamate turnover in the diseased cerebral cortex. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Progress of soil radionuclide distribution studies for the Nevada Applied Ecology Group: 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Essington, E.H.

    Two nuclear sites have been under intensive study by the Nevada Applied Ecology Group (NAEG) during 1980 and 1981, NS201 in area 18 and NS219,221 in area 20. In support of the various studies Los Alamos National Laboratory (Group LS-6) has provided consultation and evaluations relative to radionuclide distributions in soils inundated with radioactive debris from those tests. In addition, a referee effort was also conducted in both analysis of replicate samples and in evaluating various data sets for consistency of results. This report summarizes results of several of the data sets collected to test certain hypotheses relative to radionuclidemore » distributions and factors affecting calculations of hypotheses relative to radionuclide distributions and factors affecting calculations of radionuclide inventories and covers the period February 1980 to May 1981.« less

  18. Bioremediation: a genuine technology to remediate radionuclides from the environment

    PubMed Central

    Prakash, Dhan; Gabani, Prashant; Chandel, Anuj K; Ronen, Zeev; Singh, Om V

    2013-01-01

    Summary Radionuclides in the environment are a major human and environmental health concern. Like the Chernobyl disaster of 1986, the Fukushima Daiichi nuclear disaster in 2011 is once again causing damage to the environment: a large quantity of radioactive waste is being generated and dumped into the environment, and if the general population is exposed to it, may cause serious life-threatening disorders. Bioremediation has been viewed as the ecologically responsible alternative to environmentally destructive physical remediation. Microorganisms carry endogenous genetic, biochemical and physiological properties that make them ideal agents for pollutant remediation in soil and groundwater. Attempts have been made to develop native or genetically engineered (GE) microbes for the remediation of environmental contaminants including radionuclides. Microorganism-mediated bioremediation can affect the solubility, bioavailability and mobility of radionuclides. Therefore, we aim to unveil the microbial-mediated mechanisms for biotransformation of radionuclides under various environmental conditions as developing strategies for waste management of radionuclides. A discussion follows of ‘-omics’-integrated genomics and proteomics technologies, which can be used to trace the genes and proteins of interest in a given microorganism towards a cell-free bioremediation strategy. PMID:23617701

  19. Surrogate Indicators of Radionuclide Migration at the Amargosa Desert Research Site, Nye County, Nevada

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.; Andraski, B. J.; Baker, R. J.; Luo, W.; Michel, R. L.

    2005-05-01

    Contaminant-transport processes are being investigated at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS), adjacent to the Nation's first commercial disposal facility for low-level radioactive waste. Gases containing tritium and radiocarbon are migrating through a 110-m thick unsaturated zone from unlined trenches that received waste from 1962 to 1992. Information on plume dynamics comes from an array of shallow (<2 m) and two vertical arrays of deep (5-109 m) gas-sampling ports, plus ground-water monitoring wells. Migration is dominated by lateral transport in the upper 50 m of sediments. Radiological analyses require ex-situ wet-chemical techniques, because in-situ sensors for the radionuclides of interest do not exist. As at other LLRW-disposal facilities, radionuclides at the ADRS are mixed with varying amounts of volatile organic compounds (VOCs) and other substances. Halogenated-methanes, -ethanes, and -ethenes dominate the complex mixture of VOCs migrating from the disposal area. These compounds and their degradates provide a distinctive "fingerprint" of contamination originating from low-level radioactive waste. Carbon-dioxide and VOC anomalies provide indicator proxies for radionuclide contamination. Spatial and temporal patterns of co-disposed and byproduct constituents provide field-scale information about physical and biochemical processes involved in transport. Processes include reduction and biorespiration within trenches, and largely non-reactive, barometrically dispersed diffusion away from trenches.

  20. Facilities, breed and experience affect ease of sheep handling: the livestock transporter's perspective.

    PubMed

    Burnard, C L; Pitchford, W S; Hocking Edwards, J E; Hazel, S J

    2015-08-01

    An understanding of the perceived importance of a variety of factors affecting the ease of handling of sheep and the interactions between these factors is valuable in improving profitability and welfare of the livestock. Many factors may contribute to animal behaviour during handling, and traditionally these factors have been assessed in isolation under experimental conditions. A human social component to this phenomenon also exists. The aim of this study was to gain a deeper understanding of the importance of a variety of factors affecting ease of handling, and the interactions between these from the perspective of the livestock transporter. Qualitative interviews were used to investigate the factors affecting sheep behaviour during handling. Interview transcripts underwent thematic analysis. Livestock transporters discussed the effects of attitudes and behaviours towards sheep, helpers, facilities, distractions, environment, dogs and a variety of sheep factors including breed, preparation, experience and sex on sheep behaviour during handling. Transporters demonstrated care and empathy and stated that patience and experience were key factors determining how a person might deal with difficult sheep. Livestock transporters strongly believed facilities (ramps and yards) had the greatest impact, followed by sheep experience (naivety of the sheep to handling and transport) and breed. Transporters also discussed the effects of distractions, time of day, weather, dogs, other people, sheep preparation, body condition and sheep sex on ease of handling. The concept of individual sheep temperament was indirectly expressed.

  1. Skin dose from radionuclide contamination on clothing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, D.C.; Hussein, E.M.A.; Yuen, P.S.

    1997-06-01

    Skin dose due to radio nuclide contamination on clothing is calculated by Monte Carlo simulation of electron and photon radiation transport. Contamination due to a hot particle on some selected clothing geometries of cotton garment is simulated. The effect of backscattering in the surrounding air is taken into account. For each combination of source-clothing geometry, the dose distribution function in the skin, including the dose at tissue depths of 7 mg cm{sup -2} and 1,000 Mg cm{sup -2}, is calculated by simulating monoenergetic photon and electron sources. Skin dose due to contamination by a radionuclide is then determined by propermore » weighting of & monoenergetic dose distribution functions. The results are compared with the VARSKIN point-kernel code for some radionuclides, indicating that the latter code tends to under-estimate the dose for gamma and high energy beta sources while it overestimates skin dose for low energy beta sources. 13 refs., 4 figs., 2 tabs.« less

  2. Reactive transport in the complex heterogeneous alluvial aquifer of Fortymile Wash, Nevada

    DOE PAGES

    Soltanian, Mohamad Reza; Sun, Alexander; Dai, Zhenxue

    2017-04-02

    Yucca Mountain, Nevada, had been extensively investigated as a potential deep geologic repository for storing high-level nuclear wastes. Previous field investigations of stratified alluvial aquifer downstream of the site revealed that there is a hierarchy of sedimentary facies types. There is a corresponding log conductivity and reactive surface area subpopulations within each facies at each scale of sedimentary architecture. Here in this paper, we use a Lagrangian-based transport model in order to analyze radionuclide dispersion in the saturated alluvium of Fortymile Wash, Nevada. First, we validate the Lagrangian model using high-resolution flow and reactive transport simulations. Then, we used themore » validated model to investigate how each scale of sedimentary architecture may affect long-term radionuclide transport at Yucca Mountain. Results show that the reactive solute dispersion developed by the Lagrangian model matches the ensemble average of numerical simulations well. The link between the alluvium spatial variability and reactive solute dispersion at different spatiotemporal scales is demonstrated using the Lagrangian model. Finally, the longitudinal dispersivity of the reactive plume can be on the order of hundreds to thousands of meters, and it may not reach its asymptotic value even after 10,000 years of travel time and 2–3 km of travel distance.« less

  3. Space-Time Dependent Transport, Activation, and Dose Rates for Radioactivated Fluids.

    NASA Astrophysics Data System (ADS)

    Gavazza, Sergio

    Two methods are developed to calculate the space - and time-dependent mass transport of radionuclides, their production and decay, and the associated dose rates generated from the radioactivated fluids flowing through pipes. The work couples space- and time-dependent phenomena, treated as only space- or time-dependent in the open literature. The transport and activation methodology (TAM) is used to numerically calculate space- and time-dependent transport and activation of radionuclides in fluids flowing through pipes exposed to radiation fields, and volumetric radioactive sources created by radionuclide motions. The computer program Radionuclide Activation and Transport in Pipe (RNATPA1) performs the numerical calculations required in TAM. The gamma ray dose methodology (GAM) is used to numerically calculate space- and time-dependent gamma ray dose equivalent rates from the volumetric radioactive sources determined by TAM. The computer program Gamma Ray Dose Equivalent Rate (GRDOSER) performs the numerical calculations required in GAM. The scope of conditions considered by TAM and GAM herein include (a) laminar flow in straight pipe, (b)recirculating flow schemes, (c) time-independent fluid velocity distributions, (d) space-dependent monoenergetic neutron flux distribution, (e) space- and time-dependent activation process of a single parent nuclide and transport and decay of a single daughter radionuclide, and (f) assessment of space- and time-dependent gamma ray dose rates, outside the pipe, generated by the space- and time-dependent source term distributions inside of it. The methodologies, however, can be easily extended to include all the situations of interest for solving the phenomena addressed in this dissertation. A comparison is made from results obtained by the described calculational procedures with analytical expressions. The physics of the problems addressed by the new technique and the increased accuracy versus non -space and time-dependent methods

  4. Being prepared to verify the CTBT-Atmospheric Transport modeling and radionuclide analysis at the Austrian National Data Centre during the NDC Preparedness Exercise 2009

    NASA Astrophysics Data System (ADS)

    Wotawa, Gerhard; Schraick, Irene

    2010-05-01

    An explosion in the Kara-Zhyra mine in Eastern Kazakhstan on 28 November 2009 around 07:20 UTC was recorded by both the CTBTO seismic and infrasound networks. This event triggered a world-wide preparedness exercise among the CTBTO National Data Centres. Within an hour after the event was selected by the German NDC, a computer program developed by NDC Austria based on weather forecasts from the European Centre for Medium-Range Weather Forecasts (ECMWF) and from the U.S. National Centers for Environmental Prediction (NCEP) was started to analyse what Radionuclide Stations of the CTBTO International Monitoring System (IMS) would be potentially affected by the release from a nuclear explosion at this place in the course of the following 3-10 days. These calculations were daily updated to consider the observed state of the atmosphere instead of the predicted one. Based on these calculations, automated and reviewed radionuclide reports from the potentially affected stations as produced by the CTBTO International Data Centre (IDC) were looked at. An additional analysis of interesting spectra was provided by the Seibersdorf Laboratories. Based on all the results coming in, no evidence whatsoever was found that the explosion in Kazakhstan was nuclear. This is in accordance with ground truth information saying that the event was caused by the detonation of more than 53 Tons of explosives as part of mining operations. A number of conclusions can be drawn from this exercise. First, the international, bilateral as well as national mechanisms and procedures in place for such an event worked smoothly. Second, the products and services from the CTBTO IDC proved to be very useful to assist the member states in their verification efforts. Last but not least, issues with the availability of data from IMS radionuclide stations do remain.

  5. Radionuclide removal by apatite

    DOE PAGES

    Rigali, Mark J.; Brady, Patrick V.; Moore, Robert C.

    2016-12-01

    In this study, a growing body of research supports widespread future reliance on apatite for radioactive waste cleanup. Apatite is a multi-functional radionuclide sorbent that lowers dissolved radionuclide concentrations by surface sorption, ion exchange, surface precipitation, and by providing phosphate to precipitate low-solubility radionuclide-containing minerals. Natural apatites are rich in trace elements, and apatite’s stability in the geologic record suggest that radionuclides incorporated into apatite, whether in a permeable reactive barrier or a waste form, are likely to remain isolated from the biosphere for long periods of time. Here we outline the mineralogic and surface origins of apatite-radionuclide reactivity andmore » show how apatites might be used to environmental advantage in the future.« less

  6. Bioremediation: a genuine technology to remediate radionuclides from the environment.

    PubMed

    Prakash, Dhan; Gabani, Prashant; Chandel, Anuj K; Ronen, Zeev; Singh, Om V

    2013-07-01

    Radionuclides in the environment are a major human and environmental health concern. Like the Chernobyl disaster of 1986, the Fukushima Daiichi nuclear disaster in 2011 is once again causing damage to the environment: a large quantity of radioactive waste is being generated and dumped into the environment, and if the general population is exposed to it, may cause serious life-threatening disorders. Bioremediation has been viewed as the ecologically responsible alternative to environmentally destructive physical remediation. Microorganisms carry endogenous genetic, biochemical and physiological properties that make them ideal agents for pollutant remediation in soil and groundwater. Attempts have been made to develop native or genetically engineered (GE) microbes for the remediation of environmental contaminants including radionuclides. Microorganism-mediated bioremediation can affect the solubility, bioavailability and mobility of radionuclides. Therefore, we aim to unveil the microbial-mediated mechanisms for biotransformation of radionuclides under various environmental conditions as developing strategies for waste management of radionuclides. A discussion follows of '-omics'-integrated genomics and proteomics technologies, which can be used to trace the genes and proteins of interest in a given microorganism towards a cell-free bioremediation strategy. © 2013 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  7. Ensemble Simulation of the Atmospheric Radionuclides Discharged by the Fukushima Nuclear Accident

    NASA Astrophysics Data System (ADS)

    Sekiyama, Thomas; Kajino, Mizuo; Kunii, Masaru

    2013-04-01

    uncertainty of wet deposition triggered the uncertainty of atmospheric radionuclide amounts. Then the remained radionuclides were transported downwind; consequently the uncertainty signal of the radionuclide amounts was propagated downwind. The signal propagation was seen in the ensemble simulation by the tracking of the large deviation areas of radionuclide concentration and deposition. These statistics are able to provide information useful for the probabilistic prediction of radionuclides.

  8. Radionuclides in radiation-induced bystander effect; may it share in radionuclide therapy?

    PubMed

    Widel, M

    2017-01-01

    For many years in radiobiology and radiotherapy predominated the conviction that cellular DNA is the main target for ionizing radiation, however, the view has changed in the past 20 years. Nowadays, it is assumed that not only directed (targeted) radiation effect, but also an indirect (non-targeted) effect may contribute to the result of radiation treatment. Non-targeted effect is relatively well recognized after external beam irradiation in vitro and in vivo, and comprises such phenomena like radiation-induced bystander effect (RIBE), genomic instability, adaptive response and abscopal (out of field) effect. These stress-induced and molecular signaling mediated phenomena appear in non-targeted cells as variety responses resembling that observed in directly hit cells. Bystander effects can be both detrimental and beneficial in dependence on dose, dose-rate, cell type, genetic status and experimental condition. Less is known about radionuclide-induced non-targeted effects in radionuclide therapy, although, based on characteristics of the radionuclide radiation, on experiments in vitro utilizing classical and 3-D cell cultures, and preclinical study on animals it seems obvious that exposure to radionuclide is accompanied by various bystander effects, mostly damaging, less often protective. This review summarizes existing data on radionuclide induced bystander effects comprising radionuclides emitting beta- and alpha-particles and Auger electrons used in tumor radiotherapy and diagnostics. So far, separation of the direct effect of radionuclide decay from crossfire and bystander effects in clinical targeted radionuclide therapy is impossible because of the lack of methods to assess whether, and to what extent bystander effect is involved in human organism. Considerations on this topic are also included.

  9. Accumulation of radionuclides in bed sediments of the Columbia River between Hanford reactors and McNary Dam

    USGS Publications Warehouse

    Nelson, Jack L.; Haushild, W.L.

    1970-01-01

    Amounts of radionuclides from the Hanford reactors contained in bed sediments of the Columbia River were estimated by two methods: (1) from data on radionuclide concentration for the bed sediments between the reactors and McNary Dam, and (2) from data on radionuclide discharge for river stations at Pasco, Washington, and Umatilla, Oregon. Umatilla is 3.2 kilometers below McNary Dam. Accumulations of radionuclides in the Pasco to Umatilla reach estimated by the two methods agree within about 8%. In October 1965 approximately 16,000 curies of gamma emitting radionuclides were resident in bed sediments of the river between the Hanford reactors and McNary Dam. Concentrations and accumulations of chromium-51, zinc-65, cobalt-60, manganese-54, and scandium-46 generally are much higher near McNary Dam than they are in the vicinity of the reactors. These changes are caused by an increase downstream from the reactors in the proportion of the bed sediment that is fine grained and the proportions of the transported zinc, cobalt, manganese, and scandium radionuclides associated with sediment particles.

  10. Reactor-Produced Medical Radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzadeh, Saed; Mausner, Leonard; Garland, Marc A

    2011-01-01

    The therapeutic use of radionuclides in nuclear medicine, oncology and cardiology is the most rapidly growing use of medical radionuclides. Since most therapeutic radionuclides are neutron rich and decay by beta emission, they are reactor-produced. This chapter deals mainly with production approaches with neutrons. Neutron interactions with matter, neutron transmission and activation rates, and neutron spectra of nuclear reactors are discussed in some detail. Further, a short discussion of the neutron-energy dependence of cross sections, reaction rates in thermal reactors, cross section measurements and flux monitoring, and general equations governing the reactor production of radionuclides are presented. Finally, the chaptermore » is concluded by providing a number of examples encompassing the various possible reaction routes for production of a number of medical radionuclides in a reactor.« less

  11. Airborne radionuclides in the proglacial environment as indicators of sources and transfers of soil material.

    PubMed

    Łokas, Edyta; Wachniew, Przemysław; Jodłowski, Paweł; Gąsiorek, Michał

    2017-11-01

    A survey of artificial ( 137 Cs, 238 Pu, 239+240 Pu, 241 Am) and natural ( 226 Ra, 232 Th, 40 K, 210 Pb) radioactive isotopes in proglacial soils of an Arctic glacier have revealed high spatial variability of activity concentrations and inventories of the airborne radionuclides. Soil column 137 Cs inventories range from below the detection limit to nearly 120 kBq m -2 , this value significantly exceeding direct atmospheric deposition. This variability may result from the mixing of materials characterised by different contents of airborne radionuclides. The highest activity concentrations observed in the proglacial soils may result from the deposition of cryoconites, which have been shown to accumulate airborne radionuclides on the surface of glaciers. The role of cryoconites in radionuclide accumulation is supported by the concordant enrichment of the naturally occurring airborne 210 Pb in proglacial soil cores showing elevated levels of artificial radionuclides. The lithogenic radionuclides show less variability than the airborne radionuclides because their activity concentrations are controlled only by the mixing of material derived from the weathering of different parent rocks. Soil properties vary little within and between the profiles and there is no unequivocal relationship between them and the radionuclide contents. The inventories reflect the pathways and time variable inputs of soil material to particular sites of the proglacial zone. Lack of the airborne radionuclides reflects no deposition of material exposed to the atmosphere after the 1950s or its removal by erosion. Inventories above the direct atmospheric deposition indicate secondary deposition of radionuclide-bearing material. Very high inventories indicate sites where transport pathways of cryoconite material terminated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Technology assessment of future intercity passenger transporation systems. Volume 2: Identification of issues affecting intercity transportation

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Papers on major issues and trends that affect the future of intercity transportation are presented. Specific areas covered include: political, social, technological, institutional, and economic mechanisms, the workings of which determine how future intercity transporation technologies will evolve and be put into service; the major issues of intercity transportation from the point of view of reform, including candidate transporation technologies; and technical analysis of trends affecting the evolution of intercity transportation technologies.

  13. Genetic variants in cellular transport do not affect mesalamine response in ulcerative colitis

    PubMed Central

    Huang, Hailiang; Rivas, Manuel; Kaplan, Jess L.; Daly, Mark J.; Winter, Harland S.

    2018-01-01

    Background and aims Mesalamine is commonly used to treat ulcerative colitis (UC). Although mesalamine acts topically, in vitro data suggest that intracellular transport is required for its beneficial effect. Genetic variants in mucosal transport proteins may affect this uptake, but the clinical relevance of these variants has not been studied. The aim of this study was to determine whether variants in genes involved in cellular transport affect the response to mesalamine in UC. Methods Subjects with UC from a 6-week clinical trial using multiple doses of mesalamine were genotyped using a genome-wide array that included common exome variants. Analysis focused on cellular transport gene variants with a minor allele frequency >5%. Mesalamine response was defined as improvement in Week 6 Physician’s Global Assessment (PGA) and non-response as a lack of improvement in Week 6 PGA. Quality control thresholds included an individual genotyping rate of >90%, SNP genotyping rate of >98%, and exclusion for subjects with cryptic relatedness. All included variants met Hardy-Weinberg equilibrium (p>0.001). Results 457 adults with UC were included with 280 responders and 177 non-responders. There were no common variants in transporter genes that were associated with response to mesalamine. The genetic risk score of responders was similar to that of non-responders (p = 0.18). Genome-wide variants demonstrating a trend towards mesalamine response included ST8SIA5 (p = 1x10-5). Conclusions Common transporter gene variants did not affect response to mesalamine in adult UC. The response to mesalamine may be due to rare genetic events or environmental factors such as the intestinal microbiome. PMID:29579042

  14. Increased Concentrations of Short-Lived Decay-Series Radionuclides in Groundwaters Underneath the Nopal I Uranium Deposit at Pena Blanca, Mexico

    NASA Astrophysics Data System (ADS)

    Luo, S.; Ku, T.; Todd, V.; Murrell, M. T.; Dinsmoor, J. C.

    2007-05-01

    The Nopal I uranium ore deposit at Pena Blanca, Mexico, located at > 200 meters above the groundwater table, provides an ideal natural analog for quantifying the effectiveness of geological barrier for isolation of radioactive waste nuclides from reaching the human environments through ground water transport. To fulfill such natural analog studies, three wells (PB1, PB2, and PB3 respectively) were drilled at the site from the land surface down to the saturated groundwater zone and ground waters were collected from each of these wells through large- volume sampling/in-situ Mn-filter filtration for analyses of short-lived uranium/thorium-series radionuclides. Our measurements from PB1 show that the groundwater standing in the hole has much lower 222Rn activity than the freshly pumped groundwater. From this change in 222Rn activity, we estimate the residence time of groundwater in PB1 to be about 20 days. Our measurements also show that the activities of short-lived radioisotopes of Th (234Th), Ra (228Ra, 224Ra, 223Ra), Rn (222Rn), Pb (210Pb), and Po (210Po) in PB1, PB2, and PB3 are all significantly higher than those from the other wells near the Nopal I site. These high activities provide evidence for the enrichment of long-lived U and Ra isotopes in the groundwater as well as in the associated adsorbed phases on the fractured aquifer rocks underneath the ore deposit. Such enrichment suggests a rapid dissolution of U and Ra isotopes from the uranium ore deposit in the vadose zone and the subsequent migration to the groundwater underneath. A reactive transport model can be established to characterize the in-situ transport of radionuclides at the site. The observed change of 222Rn activity at PB1 also suggests that the measured high radioactivityies in ground waters from the site isare not an artifact of drilling operations. However, further studies are needed to assess if or to what extent the radionuclide migration is affected by the previous mining activities at

  15. 75 FR 8412 - Office of New Reactors: Interim Staff Guidance on Assessing Ground Water Flow and Transport of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0047] Office of New Reactors: Interim Staff Guidance on Assessing Ground Water Flow and Transport of Accidental Radionuclide Releases; Solicitation of Public... ground water flow and transport of accidental radionuclide releases necessary to demonstrate compliance...

  16. Coupling of hydrologic transport and chemical reactions in a stream affected by acid mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Broshears, R.E.; Bencala, K.E.; McKnight, Diane M.

    1994-01-01

    Experiments in St. Kevin Gulch, an acid mine drainage stream, examined the coupling of hydrologic transport to chemical reactions affecting metal concentrations. Injection of LiCl as a conservative tracer was used to determine discharge and residence time along a 1497-m reach. Transport of metals downstream from inflows of acidic, metal-rich water was evaluated based on synoptic samples of metal concentrations and the hydrologic characteristics of the stream. Transport of SO4 and Mn was generally conservative, but in the subreaches most affected by acidic inflows, transport was reactive. Both 0.1-??m filtered and particulate Fe were reactive over most of the stream reach. Filtered Al partitioned to the particulate phase in response to high instream concentrations. Simulations that accounted for the removal of SO4, Mn, Fe, and Al with first-order reactions reproduced the steady-state profiles. The calculated rate constants for net removal used in the simulations embody several processes that occur on a stream-reach scale. The comparison between rates of hydrologie transport and chemical reactions indicates that reactions are only important over short distances in the stream near the acidic inflows, where reactions occur on a comparable time scale with hydrologic transport and thus affect metal concentrations.

  17. Cardiac Radionuclide Imaging in Rodents: A Review of Methods, Results, and Factors at Play

    PubMed Central

    Cicone, Francesco; Viertl, David; Quintela Pousa, Ana Maria; Denoël, Thibaut; Gnesin, Silvano; Scopinaro, Francesco; Vozenin, Marie-Catherine; Prior, John O.

    2017-01-01

    The interest around small-animal cardiac radionuclide imaging is growing as rodent models can be manipulated to allow the simulation of human diseases. In addition to new radiopharmaceuticals testing, often researchers apply well-established probes to animal models, to follow the evolution of the target disease. This reverse translation of standard radiopharmaceuticals to rodent models is complicated by technical shortcomings and by obvious differences between human and rodent cardiac physiology. In addition, radionuclide studies involving small animals are affected by several extrinsic variables, such as the choice of anesthetic. In this paper, we review the major cardiac features that can be studied with classical single-photon and positron-emitting radiopharmaceuticals, namely, cardiac function, perfusion and metabolism, as well as the results and pitfalls of small-animal radionuclide imaging techniques. In addition, we provide a concise guide to the understanding of the most frequently used anesthetics such as ketamine/xylazine, isoflurane, and pentobarbital. We address in particular their mechanisms of action and the potential effects on radionuclide imaging. Indeed, cardiac function, perfusion, and metabolism can all be significantly affected by varying anesthetics and animal handling conditions. PMID:28424774

  18. Simple model for the reconstruction of radionuclide concentrations and radiation exposures along the Techa River

    NASA Technical Reports Server (NTRS)

    Vorobiova, M. I.; Degteva, M. O.; Neta, M. O. (Principal Investigator)

    1999-01-01

    The Techa River (Southern Urals, Russia) was contaminated in 1949-1956 by liquid radioactive wastes from the Mayak complex, the first Russian facility for the production of plutonium. The measurements of environmental contamination were started in 1951. A simple model describing radionuclide transport along the free-flowing river and the accumulation of radionuclides by bottom sediments is presented. This model successfully correlates the rates of radionuclide releases as reconstructed by the Mayak experts, hydrological data, and available environmental monitoring data for the early period of contamination (1949-1951). The model was developed to reconstruct doses for people who lived in the riverside communities during the period of the releases and who were chronically exposed to external and internal irradiation. The model fills the data gaps and permits reconstruction of external gamma-exposure rates in air on the river bank and radionuclide concentrations in river water used for drinking and other household needs in 1949-1951.

  19. Radionuclide detection devices and associated methods

    DOEpatents

    Mann, Nicholas R [Rigby, ID; Lister, Tedd E [Idaho Falls, ID; Tranter, Troy J [Idaho Falls, ID

    2011-03-08

    Radionuclide detection devices comprise a fluid cell comprising a flow channel for a fluid stream. A radionuclide collector is positioned within the flow channel and configured to concentrate one or more radionuclides from the fluid stream onto at least a portion of the radionuclide collector. A scintillator for generating scintillation pulses responsive to an occurrence of a decay event is positioned proximate at least a portion of the radionuclide collector and adjacent to a detection system for detecting the scintillation pulses. Methods of selectively detecting a radionuclide are also provided.

  20. Water-Chemistry Evolution and Modeling of Radionuclide Sorption and Cation Exchange during Inundation of Frenchman Flat Playa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershey, Ronald; Cablk, Mary; LeFebre, Karen

    2013-08-01

    Atmospheric tests and other experiments with nuclear materials were conducted on the Frenchman Flat playa at the Nevada National Security Site, Nye County, Nevada; residual radionuclides are known to exist in Frenchman Flat playa soils. Although the playa is typically dry, extended periods of winter precipitation or large single-event rainstorms can inundate the playa. When Frenchman Flat playa is inundated, residual radionuclides on the typically dry playa surface may become submerged, allowing water-soil interactions that could provide a mechanism for transport of radionuclides away from known areas of contamination. The potential for radionuclide transport by occasional inundation of the Frenchmanmore » Flat playa was examined using geographic information systems and satellite imagery to delineate the timing and areal extent of inundation; collecting water samples during inundation and analyzing them for chemical and isotopic content; characterizing suspended/precipitated materials and archived soil samples; modeling water-soil geochemical reactions; and modeling the mobility of select radionuclides under aqueous conditions. The physical transport of radionuclides by water was not evaluated in this study. Frenchman Flat playa was inundated with precipitation during two consecutive winters in 2009-2010 and 2010-2011. Inundation allowed for collection of multiple water samples through time as the areal extent of inundation changed and ultimately receded. During these two winters, precipitation records from a weather station in Frenchman Flat (Well 5b) provided information that was used in combination with geographic information systems, Landsat imagery, and image processing techniques to identify and quantify the areal extent of inundation. After inundation, water on the playa disappeared quickly, for example, between January 25, 2011 and February 10, 2011, a period of 16 days, 92 percent of the areal extent of inundation receded (2,062,800 m2). Water sampling

  1. Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium

    DOE PAGES

    Santschi, P. H.; Xu, C.; Zhang, S.; ...

    2017-03-09

    Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds thatmore » are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed in this paper that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. Finally and more importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.« less

  2. Recent advances in the detection of specific natural organic compounds as carriers for radionuclides in soil and water environments, with examples of radioiodine and plutonium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santschi, P. H.; Xu, C.; Zhang, S.

    Among the key environmental factors influencing the fate and transport of radionuclides in the environment is natural organic matter (NOM). While this has been known for decades, there still remains great uncertainty in predicting NOM-radionuclide interactions because of lack of understanding of radionuclide interactions with the specific organic moieties within NOM. Furthermore, radionuclide-NOM studies conducted using modelled organic compounds or elevated radionuclide concentrations provide compromised information related to true environmental conditions. Thus, sensitive techniques are required not only for the detection of radionuclides, and their different species, at ambient and/or far-field concentrations, but also for potential trace organic compounds thatmore » are chemically binding these radionuclides. GC-MS and AMS techniques developed in our lab are reviewed in this paper that aim to assess how two radionuclides, iodine and plutonium, form strong bonds with NOM by entirely different mechanisms; iodine tends to bind to aromatic functionalities, whereas plutonium binds to N-containing hydroxamate siderophores at ambient concentrations. While low-level measurements are a prerequisite for assessing iodine and plutonium migration at nuclear waste sites and as environmental tracers, it is necessary to determine their in-situ speciation, which ultimately controls their mobility and transport in natural environments. Finally and more importantly, advanced molecular-level instrumentation (e.g., nuclear magnetic resonance (NMR) and Fourier-transform ion cyclotron resonance coupled with electrospray ionization (ESI-FTICRMS) were applied to resolve either directly or indirectly the molecular environments in which the radionuclides are associated with the NOM.« less

  3. Comprehensive analysis of atmospheric radionuclides just after the Fukushima accident

    NASA Astrophysics Data System (ADS)

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Moriguchi, Yuichi; Nakajima, Teruyuki

    2017-04-01

    Even six years passed after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident, we still have large uncertainty for atmospheric transport and deposition models, the estimate of release rate of source terms and of internal exposure from inhalation. For our better understanding and to reduce the uncertainty, we thoroughly analyzed all the published data of radionuclides such as Cs-137, I-131 and Xe-133, and of radiation dose rates at many monitoring sites in eastern Japan. We also retrieved the spatio-temporal distributions of Cs-137 just after the accident by using the unique dataset of hourly radionuclides in atmospheric aerosols collected on the used filter-tapes installed in the suspended particulate matter (SPM) monitors operated at more than 100 stations in the air pollution monitoring network of Japan. The most important findings are summarized as follows. Analyzing the hourly Cs-137 concentrations at two SPM stations located within 20 km from the FD1NPP, we revealed the complicated behavior of plumes and atmospheric radionuclides near the FD1NPP just after the accident. The transport pathways to the northwestern and northern areas from the FD1NPP are clarified especially on March 12-21, 2011. Analysis of the published data clearly shows that atmospheric ratio of I-131/Cs-137 (=R) was mainly divided into two groups, one (R≦10) is for the plumes before March 21, 2011, and the other (R>100) is after that day. These two groups are consistent in all the measured sites, whether the sites are in the Fukushima prefecture or in the Tokyo Metropolitan area. These results are expected partially to identify the source term for each plume.

  4. 41 CFR 301-51.102 - How is my transportation reimbursement affected if I make an unauthorized cash purchase of common...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reimbursement affected if I make an unauthorized cash purchase of common carrier transportation? 301-51.102... transportation reimbursement affected if I make an unauthorized cash purchase of common carrier transportation... cost of the transportation. In all other instances, your reimbursement will be limited to the cost of...

  5. Hazardous Material Packaging and Transportation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hypes, Philip A.

    2016-02-04

    This is a student training course. Some course objectives are to: recognize and use standard international and US customary units to describe activities and exposure rates associated with radioactive material; determine whether a quantity of a single radionuclide meets the definition of a class 7 (radioactive) material; determine, for a given single radionuclide, the shipping quantity activity limits per 49 Code of Federal Regulations (CFR) 173.435; determine the appropriate radioactive material hazard class proper shipping name for a given material; determine when a single radionuclide meets the DOT definition of a hazardous substance; determine the appropriate packaging required for amore » given radioactive material; identify the markings to be placed on a package of radioactive material; determine the label(s) to apply to a given radioactive material package; identify the entry requirements for radioactive material labels; determine the proper placement for radioactive material label(s); identify the shipping paper entry requirements for radioactive material; select the appropriate placards for a given radioactive material shipment or vehicle load; and identify allowable transport limits and unacceptable transport conditions for radioactive material.« less

  6. Radionuclides in haematology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, S.M.; Bayly, R.J.

    1986-01-01

    This book contains the following chapters: Some prerequisites to the use of radionuclides in haematology; Instrumentation and counting techniques; In vitro techniques; Cell labelling; Protein labelling; Autoradiography; Imaging and quantitative scanning; Whole body counting; Absorption and excretion studies; Blood volume studies; Plasma clearance studies; and Radionuclide blood cell survival studies.

  7. Biochar pyrolyzed at two temperatures affects Escherichia coli transport through a sandy soil.

    PubMed

    Bolster, Carl H; Abit, Sergio M

    2012-01-01

    The incorporation of biochar into soils has been proposed as a means to sequester carbon from the atmosphere. An added environmental benefit is that biochar has also been shown to increase soil retention of nutrients, heavy metals, and pesticides. The goal of this study was to evaluate whether biochar amendments affect the transport of Escherichia coli through a water-saturated soil. We looked at the transport of three E. coli isolates through 10-cm columns packed with a fine sandy soil amended with 2 or 10% (w/w) poultry litter biochar pyrolyzed at 350 or 700°C. For all three isolates, mixing the high-temperature biochar at a rate of 2% into the soil had no impact on transport behavior. When added at a rate of 10%, a reduction of five orders of magnitude in the amount of E. coli transported through the soil was observed for two of the isolates, and a 60% reduction was observed for the third isolate. Mixing the low-temperature biochar into the soil resulted in enhanced transport through the soil for two of the isolates, whereas no significant differences in transport behavior were observed between the low-temperature and high-temperature biochar amendments for one isolate. Our results show that the addition of biochar can affect the retention and transport behavior of E. coli and that biochar application rate, biochar pyrolysis temperature, and bacterial surface characteristics were important factors determining the transport of E. coli through our test soil. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Accumulation of artificial radionuclides in deep sediments of the Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Garcia-Orellana, J.; Sanchez-Cabeza, J. A.; Masque, P.; Costa, E.; Bruach, J. M.; Morist, A.; Luna, J. A.

    2003-04-01

    Concentrations and inventories of artificial radionuclides (90Sr, 137Cs and 239,40Pu) were determined in deep sediment cores (3.000 m) collected in the western and eastern basins of the Mediterranean Sea in the frame of the ADIOS project. Artificial radionuclides enter the Mediterranean Sea mainly though atmospheric deposition after nuclear weapons tests and the Chernobyl accident, but also through the river discharge of effluents of nuclear facilities (e.g. Rhone and Ebro rivers). The aim of this work is to investigate the degree by which pollutants are transferred to the deep environment of the Mediterranean Sea as a basis to elucidate their effects on benthic organisms. The mean inventories of 239+240Pu, 137Cs and 90Sr in the Western basin are 2.77 ± 0.26, 68 ± 12 and < 7 Bq\\cdotm-2 respectively and 3.29 ± 0.60, 115 ± 33 and 249±154 Bq\\cdotm-2 in the Eastern basin. The activity - depth profiles of 210Pb, together with 14C dating, indicate that sediment mixing redistributes the artificial radionuclides within the first 2 cm of the sedimentary column. Artificial radionuclides inventories in the deep-sea sediments were used to calculate the fraction of the total inventory of artificial radionuclides that is accumulated in the deep sea sediments after scavenging from the water column. Indeed, a balance of the radionuclide distributions in the water column allows evaluating the importance of lateral transport of particulate matter from the continental margins on the accumulation of artificial radionuclides in the deep, open Mediterranean Sea. This is achieved in i) comparison with reported data from coastal areas at different locations in the Mediterranean Sea, and ii) balance of the distribution of the natural radionuclide 210Pb in studied areas (vertical profiles of dissolved and particulate activities, fluxes determined by using sediment trap deployed at different depths and inventories in the bottom sediments). The results, taking into account radioactive

  9. Identification of penetration path and deposition distribution of radionuclides in houses by experiments and numerical model

    NASA Astrophysics Data System (ADS)

    Hirouchi, Jun; Takahara, Shogo; Iijima, Masashi; Watanabe, Masatoshi; Munakata, Masahiro

    2017-11-01

    In order to lift of an evacuation order in evacuation areas and return residents to their homes, human dose assessments are required. However, it is difficult to exactly assess indoor external dose rate because the indoor distribution and infiltration pathways of radionuclides are unclear. This paper describes indoor and outdoor dose rates measured in eight houses in the difficult-to-return area in Fukushima Prefecture and identifies the distribution and main infiltration pathway of radionuclides in houses. In addition, it describes dose rates calculated with a Monte Carlo photon transport code to aid a thorough understanding of the measurements. The measurements and calculations indicate that radionuclides mainly infiltrate through visible openings such as vents, windows, and doors, and then deposit near these visible openings; however, they hardly infiltrate through sockets and air conditioning outlets. The measurements on rough surfaces such as bookshelves implies that radionuclides discharged from the Fukushima-Daiichi nuclear power plant did not deposit locally on rough surfaces.

  10. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...

  11. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...

  12. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...

  13. 49 CFR 173.433 - Requirements for determining basic radionuclide values, and for the listing of radionuclides on...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... radionuclide values, and for the listing of radionuclides on shipping papers and labels. (a) For individual... given in the table in § 173.436. (b) For individual radionuclides which are not listed in the tables in.... (d) Mixtures of radionuclides whose identities and respective activities are known must conform to...

  14. Transfer of fallout radionuclides derived from Fukushima NPP accident: 1 year study on transfer of radionuclides through geomorphic processes

    NASA Astrophysics Data System (ADS)

    Onda, Y.; Kato, H.; Fukushima, T.; Wakahara, T.; Kita, K.; Takahashi, Y.; Sakaguchi, A.; Tanaka, K.; Yamashiki, Y.; Yoshida, N.

    2012-12-01

    After the Fukushima Daiichi Nuclear Power Plant acciden, fallout radionuclides on the ground surface will transfer through geomorphic processes. Therefore, in order to estimate future changes in radionuclide deposition, migration process of radionuclides in forests, soils, ground water, rivers, and entrainment from trees and soils should be confirmed. We (FMWSE group) was funded by MEXT, Japanese government, and 1 year following monitoring has been conducted about 1 year. 1 Migration study of radionuclides in natural environment including forests and rivers 1) Study on depth distribution of radiocaesium in soils within forests, fields, and grassland. 2) Confirmation of radionuclide distribution and investigation on migration in forests. 3) Study on radionuclide migration due to soil erosion under different land use. 4) Measurement of radionuclides entrained from natural environment including forests and soils. 2 Migration study of radionuclides through hydrological cycle such as soil water, rivers, lakes and ponds, ground water. 1) Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use. 2) Study on paddy-to-river transfer of radionuclides through suspended sediment. 3) Study on river-to-ocean transfer of radionuclides via suspended sediment. 4) Confirmation of radionuclide deposition in ponds and reservoirs. We will present how and where the fallout radionulides transfter through geomorphic processes.

  15. Transfer of fallout radionuclides derived from Fukushima NPP accident: 1 year study on transfer of radionuclides through hydrological processes

    NASA Astrophysics Data System (ADS)

    Onda, Yuichi; Kato, Hiroaki; Patin, Jeremy; Yoshimura, Kazuya; Tsujimura, Maki; Wakahara, Taeko; Fukushima, Takehiko

    2013-04-01

    Previous experiences such as Chernobyl Nuclear Power Plant accident have confirmed that fallout radionuclides on the ground surface migrate through natural environment including soils and rivers. Therefore, in order to estimate future changes in radionuclide deposition, migration process of radionuclides in forests, soils, ground water, rivers should be monitored. However, such comprehensive studies on migration through forests, soils, ground water and rivers have not been conducted so far. Here, we present the following comprehensive investigation was conducted to confirm migration of radionuclides through natural environment including soils and rivers. 1)Study on depth distribution of radiocaesium in soils within forests, fields, and grassland 2)Confirmation of radionuclide distribution and investigation on migration in forests 3)Study on radionuclide migration due to soil erosion under different land use 4)Measurement of radionuclides entrained from natural environment including forests and soils 5)Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use 6)Study on paddy-to-river transfer of radionuclides through suspended sediments 7)Study on river-to-ocean transfer of radionuclides via suspended sediments 8)Confirmation of radionuclide deposition in ponds and reservoirs

  16. Amino acid carryover in the subzonal space of mouse fertilized ova affects subsequent transport kinetics.

    PubMed

    Rudraraju, Nirmala; Baltz, Jay M

    2009-11-01

    SummaryWe have investigated whether culture in glycine-containing medium affects subsequent glycine transport by the specific transport system, GLYT1, which is the sole glycine transporter in fertilized mouse ova. When fertilized ova were maintained for 6 h in culture with a physiological level of glycine (1 mM), subsequent transport of radiolabelled glycine was decreased by 40% compared with fertilized ova that had been maintained in glycine-free medium. Kinetic measurements showed that the apparent glycine affinity was decreased after culture with glycine (Km increased from 0.20 to 0.41 mM), but maximal transport rate was unchanged (similar Vmax of 20 and 23 fmol/fertilized ovum/min). These findings could have reflected activation of GLYT1 by prolonged substrate starvation, similar to some other amino acid transport systems. However, our findings were instead consistent with the alteration in glycine transport being due to trapping of glycine within the zona pellucida resulting in competitive transport inhibition even after ova were removed from glycine-containing media. First, even very brief exposures to glycine resulted in decreased subsequent glycine transport rates, with a maximal effect apparent within ~6 min. Second, extensive washing (at least six) reversed the effect. Third, the effect was absent when zona-free fertilized ova were used. Thus, it appears that components of the external environment of preimplantation embryos may continue to affect transport kinetics for a period even after embryos are removed from environments that contain them.

  17. Nitrogen affects cluster root formation and expression of putative peptide transporters

    PubMed Central

    Paungfoo-Lonhienne, Chanyarat; Schenk, Peer M.; Lonhienne, Thierry G. A.; Brackin, Richard; Meier, Stefan; Rentsch, Doris; Schmidt, Susanne

    2009-01-01

    Non-mycorrhizal Hakea actites (Proteaceae) grows in heathland where organic nitrogen (ON) dominates the soil nitrogen (N) pool. Hakea actites uses ON for growth, but the role of cluster roots in ON acquisition is unknown. The aim of the present study was to ascertain how N form and concentration affect cluster root formation and expression of peptide transporters. Hydroponically grown plants produced most biomass with low molecular weight ON>inorganic N>high molecular weight ON, while cluster roots were formed in the order no-N>ON>inorganic N. Intact dipeptide was transported into roots and metabolized, suggesting a role for the peptide transporter (PTR) for uptake and transport of peptides. HaPTR4, a member of subgroup II of the NRT1/PTR transporter family, which contains most characterized di- and tripeptide transporters in plants, facilitated transport of di- and tripeptides when expressed in yeast. No transport activity was demonstrated for HaPTR5 and HaPTR12, most similar to less well characterized transporters in subgroup III. The results provide further evidence that subgroup II of the NRT1/PTR family contains functional di- and tripeptide transporters. Green fluorescent protein fusion proteins of HaPTR4 and HaPTR12 localized to tonoplast, and plasma- and endomembranes, respectively, while HaPTR5 localized to vesicles of unknown identity. Grown in heathland or hydroponic culture with limiting N supply or starved of nutrients, HaPTR genes had the highest expression in cluster roots and non-cluster roots, and leaf expression increased upon re-supply of ON. It is concluded that formation of cluster roots and expression of PTR are regulated in response to N supply. PMID:19380419

  18. Estimation of aquifer radionuclide concentrations by postprocessing of conservative tracer model results

    NASA Astrophysics Data System (ADS)

    Gedeon, M.; Vandersteen, K.; Rogiers, B.

    2012-04-01

    Radionuclide concentrations in aquifers represent an important indicator in estimating the impact of a planned surface disposal for low and medium level short-lived radioactive waste in Belgium, developed by the Belgian Agency for Radioactive Waste and Enriched Fissile Materials (ONDRAF/NIRAS), who also coordinates and leads the corresponding research. Estimating aquifer concentrations for individual radionuclides represents a computational challenge because (a) different retardation values are applied to different hydrogeologic units and (b) sequential decay reactions with radionuclides of various sorption characteristics cause long computational times until a steady-state is reached. The presented work proposes a methodology reducing substantially the computational effort by postprocessing the results of a prior non-reactive tracer simulation. These advective transport results represent the steady-state concentration - source flux ratio and the break-through time at each modelling cell. These two variables are further used to estimate the individual radionuclide concentrations by (a) scaling the steady-state concentrations to the source fluxes of individual radionuclides; (b) applying the radioactive decay and ingrowth in a decay chain; (c) scaling the travel time by the retardation factor and (d) applying linear sorption. While all steps except (b) require solving simple linear equations, applying ingrowth of individual radionuclides in decay chains requires solving the differential Bateman equation. This equation needs to be solved once for a unit radionuclide activity at all arrival times found in the numerical grid. The ratios between the parent nuclide activity and the progeny activities are then used in the postprocessing. Results are presented for discrete points and examples of radioactive plume maps are given. These results compare well to the results achieved using a full numerical simulation including the respective chemical reaction processes

  19. Monitoring radionuclide contamination in the unsaturated zone - Lessons learned at the Amargosa Desert Research Site, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Abraham, Jared D.; Andraski, Brian J.; Baker, Ronald J.; Mayers, C. Justin; Michel, Robert L.; Prudic, David E.; Striegl, Robert G.; Walvoord, Michelle Ann

    2004-01-01

    Contaminant-transport processes are being investigated at the U.S. Geological Survey’s Amargosa Desert Research Site (A DRS), adjacent to the Nation’s first commercial disposal facility for low-level radioactive waste. Gases containing tritium and radiocarbon are migrating through a 110-m thick unsaturated zone from unlined trenches that received waste from 1962 to 1992. Results relevant to long- term monitoring of radionuclides are summarized as follows. Contaminant plumes have unexpected histories and spatial configurations due to uncertainties in the: (1) geologic framework, (2) biochemical reactions involving waste components, (3) interactions between plume components and unsaturated-zone materials, (4) disposal practices, and (5) physical transport processes. Information on plume dynamics depends on ex-situ wet-chemical techniques because in-situ sensors for the radionuclides of interest do not exist. As at other radioactive-waste disposal facilities, radionuclides at the ADRS are mixed with varying amounts of volatile organic compounds (VOCs). Carbon-dioxide and VOC anomalies provide proxies for radioactive contamination. Contaminants in the unsaturated zone migrate along preferential pathways. Effective monitoring thus requires accurate geologic characterization. Direct- current electrical-resistivity imaging successfully mapped geologic units controlling preferential transport at the ADRS. Direct sampling of water from the unsaturated zone is complex and time consuming. Sampling plant water is an efficient alternative for mapping shallow tritium contamination.

  20. Determining the times and distances of particle transit in a mountain stream using fallout radionuclides

    NASA Astrophysics Data System (ADS)

    Bonniwell, Everett C.; Matisoff, Gerald; Whiting, Peter J.

    1999-02-01

    Targeting of erosion and pollution control programs is much more effective if the time for fine particles to be transported through a watershed, the travel distance, the proportions of old and new sediment in suspension, and the rate of erosion of the landscape can be estimated. In this paper we present a novel technique for tracing suspended sediment in a mountain stream using fallout radionuclides sorbed to sediment. Atmospherically-delivered 7Be, 210Pb, and 137Cs accumulate in the snowpack, are released with its melting and sorb to fine particulates, a portion of which are carried downslope into stream channels. The half-life of cosmogenic 7Be is short (53.4 days), thus, sediment residing on the stream bed should contain little of the radionuclide. The different signatures of newly delivered sediment from the landscape with its 7Be tag and older untagged sediment from the channel is the basis for the tracing. The total flux of such radionuclides, compared to the inventory in the soil, permits estimates of the rates of erosion of the landscape. Fine suspended particulates in the Gold Fork River, ID, are transported downstream through the drainage in one or more steps having lengths of tens of kilometers. Length of the step decreases from about 60 km near the peak of the hydrograph to about 12 km near baseflow. The percent of sediment in suspension that is `new' (i.e., recently delivered from the landscape) ranges from 96 to 12%. The remaining sediment is resuspended older channel sediment. Residence times for particulates range from 1.6 days, early in the hydrograph at the upper site, to 103 days late in the hydrograph at the lowest elevation location. Rates of erosion of fine sediment calculated from the flux of radionuclides average 0.0023 cm/year. The long distance transport of fine particles suggests that delivery through the Gold Fork drainage to the basin outlet is fairly rapid once particles reach the channel and perhaps is also rapid in similar and

  1. Characterization of the Hanford 300 area burial grounds. Task IV. Biological transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzner, R.E.; Gano, K.A.; Rickard, W.H.

    The characteristics of radioactive waste burial sites at the 300 area burial grounds on the Department of Energy's Hanford Site, southeastern Washington were studied. The potential vectors of radionuclide transport studied were vegetation and animals. The overall results showed a low potential for uptake and transport of radionuclides from the 300 area sites. However, additional methods to control physical and biological mechanisms may contribute to the effectiveness of waste burial practices. From the results, the Biological Transport task recommended field studies which include reduction of soil erosion and addition of biobarriers to plants and animals. Vegetation plays a major rolemore » in reducing soil erosion, and thereby maintaining the backfill over the burial sites. Of the several species found on the 300 area sites, cheatgrass (Bromus tectorum) appears to be the most desirable as a cover. Besides retarding erosion, it has a shallow root system (does not easily penetrate buried material); it has a low affinity for radionuclide uptake; and its tissues are not easily blown away. Small mammals (specifically, mice) appear to have the most potential for radionuclide exposure and uptake. Small mammals were live-trapped within 10 x 10-meter trap grids. Each animal trapped was surgically implanted with a thermoluminescent dosimeter. When the animal was recaptured, the dosimeter was removed and read for exposure. Exposures were reported in milli-Roentgens. The most consistently trapped small mammals were the Great Basin pocket mouse (Perognathus parvus) and the deer mouse (Peromyscus maniculatus). Results from the dosimeter readings showed that some of those animals had higher than background exposures. Biobarriers to animals could be considered as a mechanism to reduce the potential for radionuclide transport.« less

  2. Intrinsic and Carrier Colloid-facilitated transport of lanthanides through discrete fractures in chalk

    NASA Astrophysics Data System (ADS)

    Weisbrod, N.; Tran, E. L.; Klein-BenDavid, O.; Teutsch, N.

    2015-12-01

    Geological disposal of high-level radioactive waste is the long term solution for the disposal of long lived radionuclides and spent fuel. However, some radionuclides might be released from these repositories into the subsurface as a result of leakage, which ultimately make their way into groundwater. Engineered bentonite barriers around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their source to the groundwater. However, colloidal-sized mobile bentonite particles ("carrier" colloids) originating from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. As lanthanides are generally accepted to have the same chemical behaviors as their more toxic actinide counterparts, lanthanides are considered an acceptable substitute for research on radionuclide transportation. This study aims to evaluate the transport behaviors of lanthanides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative the Negev desert, Israel. The migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide) using a flow system constructed around a naturally fractured chalk core. Results suggest that mobility of Ce as a solute is negligible. In experiments conducted without bentonite colloids, the 1% of the Ce that was recovered migrated as "intrinsic" colloids in the form of carbonate precipitates. However, the total recovery of the Ce increased to 9% when it was injected into the core in the presence of bentonite colloids and 13% when both bentonite and precipitate colloids were injected. This indicates that lanthanides are essentially immobile in chalk as a solute but may be mobile as carbonate precipitates. Bentonite colloids, however, markedly increase the mobility of lanthanides through fractured chalk matrices.

  3. Hydration status affects urea transport across rat urothelia.

    PubMed

    Spector, David A; Deng, Jie; Stewart, Kerry J

    2011-12-01

    Although mammalian urinary tract epithelium (urothelium) is generally considered impermeable to water and solutes, recent data suggest that urine constituents may be reabsorbed during urinary tract transit and storage. To study water and solute transport across the urothelium in an in vivo rat model, we instilled urine (obtained during various rat hydration conditions) into isolated in situ rat bladders and, after a 1-h dwell, retrieved the urine and measured the differences in urine volume and concentration and total quantity of urine urea nitrogen and creatinine between instilled and retrieved urine in rat groups differing by hydration status. Although urine volume did not change >1.9% in any group, concentration (and quantity) of urine urea nitrogen in retrieved urine fell significantly (indicating reabsorption of urea across bladder urothelia), by a mean of 18% (489 mg/dl, from an instilled 2,658 mg/dl) in rats receiving ad libitum water and by a mean of 39% (2,544 mg/dl, from an instilled 6,204 mg/dl) in water-deprived rats, but did not change (an increase of 15 mg/dl, P = not significant, from an instilled 300 mg/dl) in a water-loaded rat group. Two separate factors affected urea nitrogen reabsorption rates, a urinary factor related to hydration status, likely the concentration of urea nitrogen in the instilled urine, and a bladder factor(s), also dependent on the animal's state of hydration. Urine creatinine was also absorbed during the bladder dwell, and hydration group effects on the concentration and quantity of creatinine reabsorbed were qualitatively similar to the hydration group effect on urea transport. These findings support the notion(s) that urinary constituents may undergo transport across urinary tract epithelia, that such transport may be physiologically regulated, and that urine is modified during transit and storage through the urinary tract.

  4. TECHNOLOGIES FOR RADON AND RADIONUCLIDE REMOVAL

    EPA Science Inventory

    This paper provides a summary of the technologies that are currently being used to remove radionuclides from drinking water. The radionuclides that are featured are the radionuclides currently regulated by EPA; radium, radon and uranium. Tehnologies effective for removal of eac...

  5. Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer-aquitard complexes

    USGS Publications Warehouse

    Zhang, Yong; Green, Christopher T.; Tick, Geoffrey R.

    2015-01-01

    This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as media for flow and transport modeling. Numerical experiments show that 1) the Peclet number affects both the duration of the power-law segment of tracer breakthrough curves (BTCs) and the transition rate from anomalous to Fickian transport by determining the solute residence time for a given low-permeability layer, 2) mechanical dispersion has a limited contribution to the anomalous characteristics of late-time transport as compared to molecular diffusion due to an almost negligible velocity in floodplain deposits, and 3) the initial source dimensions only enhance the power-law tail of the BTCs at short travel distances. A tempered stable stochastic (TSS) model is then applied to analyze the modeled transport. Applications show that the time-nonlocal parameters in the TSS model relate to the Peclet number, Pe. In particular, the truncation parameter in the TSS model increases nonlinearly with a decrease in Pe due to the decrease of the mean residence time, and the capacity coefficient increases with an increase in molecular diffusion which is probably due to the increase in the number of immobile particles. The above numerical experiments and stochastic analysis therefore reveal that the Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer–aquitard complexes.

  6. Nanoparticles migration in fractured rocks and affects on contaminant migration

    NASA Astrophysics Data System (ADS)

    Missana, Tiziana; Garcia-Gutierrez, Miguel; Alonso, Ursula

    2014-05-01

    In previous studies, the transport behavior of artificial (gold and latex) and natural (smectite clay) colloids, within a planar fracture in crystalline rock, was analyzed. In order to better understand the effects of colloid size, shape and surface charge on nanoparticle migration and especially on filtration processes on natural rock surfaces, different clay colloids and oxide nanoparticles were selected and their transport studied as a function of the residence time. In all the cases, (a fraction of) the nanoparticles travelled in the fracture as fast as or faster than water (with a retardation factor, Rf ≤ 1) and the observed Rf, was related to the Taylor dispersion coefficient, accounting for colloid size, water velocity and fracture width. However, under most of the cases, in contrast to the behavior of a conservative tracer, colloids recovery was much lower than 100 %. Differences in recovery between different nanoparticles, under similar residence times, were analyzed. In order to evaluate the possible consequences, on contaminant migration, of the presence of nanoparticles in the system, transport tests were carried out with both colloids and sorbing radionuclides. The overall capacity for colloids of enhancing radionuclide migration in crystalline rock fractures is discussed. Acknowledgments: The research leading to these results received funding from EU FP7/2007-2011 grant agreement Nº 295487 (BELBAR, Bentonite Erosion: effects on the Long term performance of the engineered Barrier and Radionuclide Transport) and by the Spanish Government under the project NANOBAG (CTM2011-2797).

  7. Transportation of radionuclides in urban environs: draft environmental assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finley, N.C.; Aldrich, D.C.; Daniel, S.L.

    1980-07-01

    This report assesses the environmental consequences of the transportation of radioactive materials in densely populated urban areas, including estimates of the radiological, nonradiological, and social impacts arising from this process. The chapters of the report and the appendices which follow detail the methodology and results for each of four causative event categories: incident free transport, vehicular accidents, human errors or deviations from accepted quality assurance practices, and sabotage or malevolent acts. The numerical results are expressed in terms of the expected radiological and economic impacts from each. Following these discussions, alternatives to the current transport practice are considered. Then, themore » detailed analysis is extended from a limited area of New York city to other urban areas. The appendices contain the data bases and specific models used to evaluate these impacts, as well as discussions of chemical toxicity and the social impacts of radioactive material transport in urban areas. The latter are evaluated for each causative event category in terms of psychological, sociological, political, legal, and organizational impacts. The report is followed by an extensive bibliography covering the many fields of study which were required in performing the analysis.« less

  8. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, Lane A.; Ryan, Jack L.

    1999-01-01

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the 22.sup.9 Th or 2.sup.27 Ac "cow" radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium; lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture; are removed from the mixture on the chloride form anion exchange column.

  9. Method of separating short half-life radionuclides from a mixture of radionuclides

    DOEpatents

    Bray, L.A.; Ryan, J.L.

    1999-03-23

    The present invention is a method of removing an impurity of plutonium, lead or a combination thereof from a mixture of radionuclides that contains the impurity and at least one parent radionuclide. The method has the steps of (a) insuring that the mixture is a hydrochloric acid mixture; (b) oxidizing the acidic mixture and specifically oxidizing the impurity to its highest oxidation state; and (c) passing the oxidized mixture through a chloride form anion exchange column whereupon the oxidized impurity absorbs to the chloride form anion exchange column and the {sup 229}Th or {sup 227}Ac ``cow`` radionuclide passes through the chloride form anion exchange column. The plutonium is removed for the purpose of obtaining other alpha emitting radionuclides in a highly purified form suitable for medical therapy. In addition to plutonium, lead, iron, cobalt, copper, uranium, and other metallic cations that form chloride anionic complexes that may be present in the mixture are removed from the mixture on the chloride form anion exchange column. 8 figs.

  10. EANM guidelines for radionuclide therapy of bone metastases with beta-emitting radionuclides.

    PubMed

    Handkiewicz-Junak, Daria; Poeppel, Thorsten D; Bodei, Lisa; Aktolun, Cumali; Ezziddin, Samer; Giammarile, Francesco; Delgado-Bolton, Roberto C; Gabriel, Michael

    2018-05-01

    The skeleton is the most common metastatic site in patients with advanced cancer. Pain is a major healthcare problem in patients with bone metastases. Bone-seeking radionuclides that selectively accumulate in the bone are used to treat cancer-induced bone pain and to prolong survival in selected groups of cancer patients. The goals of these guidelines are to assist nuclear medicine practitioners in: (a) evaluating patients who might be candidates for radionuclide treatment of bone metastases using beta-emitting radionuclides such as strontium-89 ( 89 Sr), samarium-153 ( 153 Sm) lexidronam ( 153 Sm-EDTMP), and phosphorus-32 ( 32 P) sodium phosphate; (b) performing the treatments; and ©) understanding and evaluating the treatment outcome and side effects.

  11. First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations.

    PubMed

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2014-10-22

    No observed data have been found in the Fukushima Prefecture (FP) for the time-series of atmospheric radionuclides concentrations just after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident. Accordingly, current estimates of internal radiation doses from inhalation, and atmospheric radionuclide concentrations by atmospheric transport models are highly uncertain. Here, we present a new method for retrieving the hourly atmospheric (137)Cs concentrations by measuring the radioactivity of suspended particulate matter (SPM) collected on filter tapes in SPM monitors which were operated even after the accident. This new dataset focused on the period of March 12-23, 2011 just after the accident, when massive radioactive materials were released from the FD1NPP to the atmosphere. Overall, 40 sites of the more than 400 sites in the air quality monitoring stations in eastern Japan were studied. For the first time, we show the spatio-temporal variation of atmospheric (137)Cs concentrations in the FP and the Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPP. The comprehensive dataset revealed how the polluted air masses were transported to the FP and TMA, and can be used to re-evaluate internal exposure, time-series radionuclides release rates, and atmospheric transport models.

  12. First retrieval of hourly atmospheric radionuclides just after the Fukushima accident by analyzing filter-tapes of operational air pollution monitoring stations

    PubMed Central

    Tsuruta, Haruo; Oura, Yasuji; Ebihara, Mitsuru; Ohara, Toshimasa; Nakajima, Teruyuki

    2014-01-01

    No observed data have been found in the Fukushima Prefecture (FP) for the time-series of atmospheric radionuclides concentrations just after the Fukushima Daiichi Nuclear Power Plant (FD1NPP) accident. Accordingly, current estimates of internal radiation doses from inhalation, and atmospheric radionuclide concentrations by atmospheric transport models are highly uncertain. Here, we present a new method for retrieving the hourly atmospheric 137Cs concentrations by measuring the radioactivity of suspended particulate matter (SPM) collected on filter tapes in SPM monitors which were operated even after the accident. This new dataset focused on the period of March 12–23, 2011 just after the accident, when massive radioactive materials were released from the FD1NPP to the atmosphere. Overall, 40 sites of the more than 400 sites in the air quality monitoring stations in eastern Japan were studied. For the first time, we show the spatio-temporal variation of atmospheric 137Cs concentrations in the FP and the Tokyo Metropolitan Area (TMA) located more than 170 km southwest of the FD1NPP. The comprehensive dataset revealed how the polluted air masses were transported to the FP and TMA, and can be used to re-evaluate internal exposure, time-series radionuclides release rates, and atmospheric transport models. PMID:25335435

  13. Identification of CSF fistulas by radionuclide counting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Y.; Kunishio, K.; Sunami, N.

    1990-07-01

    A radionuclide counting method, performed with the patient prone and the neck flexed, was used successfully to diagnose CSF rhinorrhea in two patients. A normal radionuclide ratio (radionuclide counts in pledget/radionuclide counts in 1-ml blood sample) was obtained in 11 normal control subjects. Significance was determined to be a ratio greater than 0.37. Use of radionuclide counting method of determining CSF rhinorrhea is recommended when other methods have failed to locate a site of leakage or when posttraumatic meningitis suggests subclinical CSF rhinorrhea.

  14. Dietary protein affects urea transport across rat urothelia.

    PubMed

    Spector, David A; Deng, Jie; Stewart, Kerry J

    2012-10-01

    Recent evidence suggests that regulated solute transport occurs across mammalian lower urinary tract epithelia (urothelia). To study the effects of dietary protein on net urothelial transport of urea, creatinine, and water, we used an in vivo rat bladder model designed to mimic physiological conditions. We placed groups of rats on 3-wk diets differing only by protein content (40, 18, 6, and 2%) and instilled 0.3 ml of collected urine in the isolated bladder of anesthetized rats. After 1 h dwell, retrieved urine volumes were unchanged, but mean urea nitrogen (UN) and creatinine concentrations fell 17 and 4%, respectively, indicating transurothelial urea and creatinine reabsorption. The fall in UN (but not creatinine) concentration was greatest in high protein (40%) rats, 584 mg/dl, and progressively less in rats receiving lower protein content: 18% diet, 224 mg/dl; 6% diet, 135 mg/dl; and 2% diet, 87 mg/dl. The quantity of urea reabsorbed was directly related to a urine factor, likely the concentration of urea in the instilled urine. In contrast, the percentage of instilled urea reabsorbed was greater in the two dietary groups receiving the lowest protein (26 and 23%) than in those receiving higher protein (11 and 9%), suggesting the possibility that a bladder/urothelial factor, also affected by dietary protein, may have altered bladder permeability. These findings demonstrate significant regulated urea transport across the urothelium, resulting in alteration of urine excreted by the kidneys, and add to the growing evidence that the lower urinary tract may play an unappreciated role in mammalian solute homeostasis.

  15. Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer-aquitard complexes.

    PubMed

    Zhang, Yong; Green, Christopher T; Tick, Geoffrey R

    2015-01-01

    This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as media for flow and transport modeling. Numerical experiments show that 1) the Peclet number affects both the duration of the power-law segment of tracer breakthrough curves (BTCs) and the transition rate from anomalous to Fickian transport by determining the solute residence time for a given low-permeability layer, 2) mechanical dispersion has a limited contribution to the anomalous characteristics of late-time transport as compared to molecular diffusion due to an almost negligible velocity in floodplain deposits, and 3) the initial source dimensions only enhance the power-law tail of the BTCs at short travel distances. A tempered stable stochastic (TSS) model is then applied to analyze the modeled transport. Applications show that the time-nonlocal parameters in the TSS model relate to the Peclet number, Pe. In particular, the truncation parameter in the TSS model increases nonlinearly with a decrease in Pe due to the decrease of the mean residence time, and the capacity coefficient increases with an increase in molecular diffusion which is probably due to the increase in the number of immobile particles. The above numerical experiments and stochastic analysis therefore reveal that the Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer-aquitard complexes. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Redox Conditions Affect Ultrafast Exciton Transport in Photosynthetic Pigment-Protein Complexes.

    PubMed

    Allodi, Marco A; Otto, John P; Sohail, Sara H; Saer, Rafael G; Wood, Ryan E; Rolczynski, Brian S; Massey, Sara C; Ting, Po-Chieh; Blankenship, Robert E; Engel, Gregory S

    2018-01-04

    Pigment-protein complexes in photosynthetic antennae can suffer oxidative damage from reactive oxygen species generated during solar light harvesting. How the redox environment of a pigment-protein complex affects energy transport on the ultrafast light-harvesting time scale remains poorly understood. Using two-dimensional electronic spectroscopy, we observe differences in femtosecond energy-transfer processes in the Fenna-Matthews-Olson (FMO) antenna complex under different redox conditions. We attribute these differences in the ultrafast dynamics to changes to the system-bath coupling around specific chromophores, and we identify a highly conserved tyrosine/tryptophan chain near the chromophores showing the largest changes. We discuss how the mechanism of tyrosine/tryptophan chain oxidation may contribute to these differences in ultrafast dynamics that can moderate energy transfer to downstream complexes where reactive oxygen species are formed. These results highlight the importance of redox conditions on the ultrafast transport of energy in photosynthesis. Tailoring the redox environment may enable energy transport engineering in synthetic light-harvesting systems.

  17. Arctic Ocean sea ice drift origin derived from artificial radionuclides.

    PubMed

    Cámara-Mor, P; Masqué, P; Garcia-Orellana, J; Cochran, J K; Mas, J L; Chamizo, E; Hanfland, C

    2010-07-15

    Since the 1950s, nuclear weapon testing and releases from the nuclear industry have introduced anthropogenic radionuclides into the sea, and in many instances their ultimate fate are the bottom sediments. The Arctic Ocean is one of the most polluted in this respect, because, in addition to global fallout, it is impacted by regional fallout from nuclear weapon testing, and indirectly by releases from nuclear reprocessing facilities and nuclear accidents. Sea-ice formed in the shallow continental shelves incorporate sediments with variable concentrations of anthropogenic radionuclides that are transported through the Arctic Ocean and are finally released in the melting areas. In this work, we present the results of anthropogenic radionuclide analyses of sea-ice sediments (SIS) collected on five cruises from different Arctic regions and combine them with a database including prior measurements of these radionuclides in SIS. The distribution of (137)Cs and (239,240)Pu activities and the (240)Pu/(239)Pu atom ratio in SIS showed geographical differences, in agreement with the two main sea ice drift patterns derived from the mean field of sea-ice motion, the Transpolar Drift and Beaufort Gyre, with the Fram Strait as the main ablation area. A direct comparison of data measured in SIS samples against those reported for the potential source regions permits identification of the regions from which sea ice incorporates sediments. The (240)Pu/(239)Pu atom ratio in SIS may be used to discern the origin of sea ice from the Kara-Laptev Sea and the Alaskan shelf. However, if the (240)Pu/(239)Pu atom ratio is similar to global fallout, it does not provide a unique diagnostic indicator of the source area, and in such cases, the source of SIS can be constrained with a combination of the (137)Cs and (239,240)Pu activities. Therefore, these anthropogenic radionuclides can be used in many instances to determine the geographical source area of sea-ice. Copyright 2010 Elsevier B.V. All

  18. Measurement of radionuclides in waste packages

    DOEpatents

    Brodzinski, R.L.; Perkins, R.W.; Rieck, H.G.; Wogman, N.A.

    1984-09-12

    A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

  19. Measurement of radionuclides in waste packages

    DOEpatents

    Brodzinski, Ronald L.; Perkins, Richard W.; Rieck, Henry G.; Wogman, Ned A.

    1986-01-01

    A method is described for non-destructively assaying the radionuclide content of solid waste in a sealed container by analysis of the waste's gamma-ray spectrum and neutron emissions. Some radionuclides are measured by characteristic photopeaks in the gamma-ray spectrum; transuranic nuclides are measured by neutron emission rate; other radionuclides are measured by correlation with those already measured.

  20. Radionuclide desorption kinetics on synthetic Zn/Ni-labeled montmorillonite nanoparticles

    NASA Astrophysics Data System (ADS)

    Huber, F. M.; Heck, S.; Truche, L.; Bouby, M.; Brendlé, J.; Hoess, P.; Schäfer, T.

    2015-01-01

    experiments by contacting this FFM with pure Grimsel groundwater for 7 days. A positive correlation of 242Pu, 232Th(IV) and 237Np was observed with the Zn and Ni concentrations in the desorption experiments indicating a remobilization of sorbed montmorillonite colloids. The results of the study in hand highlight (i) the novel use of structural labeled colloids to decrease the uncertainties in the determination of nanoparticle attachment providing more confidence in the derived radionuclide desorption rates. Moreover, the data illustrate (ii) the importance of radionuclide colloid desorption to be considered in the analysis and application of colloid facilitated transport both in laboratory or in-situ experiments and numerical model simulations and (iii) a possible remobilization of sorbed colloids and associated radionuclides by desorption from the matrix material (FFM) under non-equilibrium conditions.

  1. Retardation of mobile radionuclides in granitic rock fractures by matrix diffusion

    NASA Astrophysics Data System (ADS)

    Hölttä, P.; Poteri, A.; Siitari-Kauppi, M.; Huittinen, N.

    Transport of iodide and sodium has been studied by means of block fracture and core column experiments to evaluate the simplified radionuclide transport concept. The objectives were to examine the processes causing retention in solute transport, especially matrix diffusion, and to estimate their importance during transport in different scales and flow conditions. Block experiments were performed using a Kuru Grey granite block having a horizontally planar natural fracture. Core columns were constructed from cores drilled orthogonal to the fracture of the granite block. Several tracer tests were performed using uranine, 131I and 22Na as tracers at water flow rates 0.7-50 μL min -1. Transport of tracers was modelled by applying the advection-dispersion model based on the generalized Taylor dispersion added with matrix diffusion. Scoping calculations were combined with experiments to test the model concepts. Two different experimental configurations could be modelled applying consistent transport processes and parameters. The processes, advection-dispersion and matrix diffusion, were conceptualized with sufficient accuracy to replicate the experimental results. The effects of matrix diffusion were demonstrated on the slightly sorbing sodium and mobile iodine breakthrough curves.

  2. Do Pediatric Teams Affect Outcomes of Injured Children Requiring Inter-hospital Transport?

    PubMed

    Calhoun, Amanda; Keller, Martin; Shi, Junxin; Brancato, Celeste; Donovan, Kathy; Kraus, Diana; Leonard, Julie C

    2017-01-01

    Studies show that pediatric trauma centers produce better outcomes and reduced mortality for injured children. Yet, most children do not have timely access to a pediatric trauma center and require stabilization locally with subsequent transfer. Investigators have demonstrated that pediatric transport teams (PTT) improve outcomes for critically ill children; however, these studies did not differentiate outcomes for injured children. It may be that moderate to severely injured children actually fare worse with PTT due to slower transport times inherent to their remote locations and thus delays in important interventions. The purpose of this study was to determine if outcomes for injured children are affected by use of PTT for inter-hospital transfer. We conducted a retrospective chart review of 1,177 children transferred to a pediatric trauma center for injury care between March 1st, 2012 and December 31st, 2013. We compared children who were transported by PTT (ground/air) to those transported by ground advanced life support (ALS) and air critical care (ACC). We described patient characteristics and transport times. For PTT vs. ALS and ACC, we compared hospital length of stay (LOS), transport interventions and adverse events. 1,177 injured children were transferred by the following modes: 68% ALS, 13% ACC, 11% Ground PTT, and 9% Air PTT. Children transported by PTT were younger and had higher ISS and lower GCS scores. PTT had a longer total transport time, departure preparation time, and patient bedside time. After controlling for age, ISS, GCS, transport mode, distance, and time, we found no significant difference in LOS between PTT vs. ALS and ACC. A subgroup analysis of children with higher ISS scores demonstrated a 65% longer LOS for children transported by ACC vs. PTT. There were no differences between transport teams with regard to acidosis, hypocarbia or hypercarbia, or maintenance of tubes and lines. Children transported by PTT were younger and sicker (vs

  3. Xenon adsorption on geological media and implications for radionuclide signatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, M. J.; Biegalski, S. R.; Haas, D. A.

    Here, the detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isothermmore » measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures.« less

  4. Xenon adsorption on geological media and implications for radionuclide signatures

    DOE PAGES

    Paul, M. J.; Biegalski, S. R.; Haas, D. A.; ...

    2018-02-13

    Here, the detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isothermmore » measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures.« less

  5. Radionuclide transfer in marine coastal ecosystems, a modelling study using metabolic processes and site data.

    PubMed

    Konovalenko, L; Bradshaw, C; Kumblad, L; Kautsky, U

    2014-07-01

    This study implements new site-specific data and improved process-based transport model for 26 elements (Ac, Ag, Am, Ca, Cl, Cm, Cs, Ho, I, Nb, Ni, Np, Pa, Pb, Pd, Po, Pu, Ra, Se, Sm, Sn, Sr, Tc, Th, U, Zr), and validates model predictions with site measurements and literature data. The model was applied in the safety assessment of a planned nuclear waste repository in Forsmark, Öregrundsgrepen (Baltic Sea). Radionuclide transport models are central in radiological risk assessments to predict radionuclide concentrations in biota and doses to humans. Usually concentration ratios (CRs), the ratio of the measured radionuclide concentration in an organism to the concentration in water, drive such models. However, CRs vary with space and time and CR estimates for many organisms are lacking. In the model used in this study, radionuclides were assumed to follow the circulation of organic matter in the ecosystem and regulated by radionuclide-specific mechanisms and metabolic rates of the organisms. Most input parameters were represented by log-normally distributed probability density functions (PDFs) to account for parameter uncertainty. Generally, modelled CRs for grazers, benthos, zooplankton and fish for the 26 elements were in good agreement with site-specific measurements. The uncertainty was reduced when the model was parameterized with site data, and modelled CRs were most similar to measured values for particle reactive elements and for primary consumers. This study clearly demonstrated that it is necessary to validate models with more than just a few elements (e.g. Cs, Sr) in order to make them robust. The use of PDFs as input parameters, rather than averages or best estimates, enabled the estimation of the probable range of modelled CR values for the organism groups, an improvement over models that only estimate means. Using a mechanistic model that is constrained by ecological processes enables (i) the evaluation of the relative importance of food and water

  6. Accelerator mass spectrometry of the heaviest long-lived radionuclides with a 3-MV tandem accelerator

    NASA Astrophysics Data System (ADS)

    Vockenhuber, Christof; Golser, Robin; Kutschera, Walter; Priller, Alfred; Steier, Peter; Winkler, Stephan; Liechtenstein, Vitaly

    2002-12-01

    A 3-MV pelletron tandem accelerator is the heart of the Vienna environmental research accelerator (VERA). The original design of the beam transport components allows the transport of ions of all elements, from the lightest to the heaviest. For light ions the suppression of neighboring masses was sufficient to measure isotopic ratios of {(14}) C/{(12}) C and {(26}) Al/{(27}) Al as low as 10{(-15}) and {(10}) Be/{(9}) Be down to 10{(-13}) . To suppress neighboring masses for the heaviest radionuclides in the energy range of 10-20 MeV, the resolution of VERA was increased both by improving the ion optics of existing elements at the injection side and by installing a new high-resolution electrostatic separator at the high-energy side. Interfering ions which pass all beam filters are identified with a Bragg-type ionization detector and a high-resolution time-of-flight system. Two ultra-thin diamond-like carbon (DLC) foils are used in the start and stop detector, which substantially reduces losses due to beam straggling. This improved set up enables us to measure even the heaviest long-lived radionuclides, where stable isobaric interferences are absent (e.g. {(236}) U and {(244}) Pu), down to environmental levels. Moreover, the advantage of a `small' and well manageable machine like VERA lies in its higher stability and reliability which allows to measure these heavy radionuclides more accurately, and also a large number of samples.

  7. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    PubMed Central

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  8. Radionuclides in surface and groundwater

    USGS Publications Warehouse

    Campbell, Kate M.

    2009-01-01

    Unique among all the contaminants that adversely affect surface and water quality, radioactive compounds pose a double threat from both toxicity and damaging radiation. The extreme energy potential of many of these materials makes them both useful and toxic. The unique properties of radioactive materials make them invaluable for medical, weapons, and energy applications. However, mining, production, use, and disposal of these compounds provide potential pathways for their release into the environment, posing a risk to both humans and wildlife. This chapter discusses the sources, uses, and regulation of radioactive compounds in the United States, biogeochemical processes that control mobility in the environment, examples of radionuclide contamination, and current work related to contaminated site remediation.

  9. Oocyte aging-induced Neuronatin (NNAT) hypermethylation affects oocyte quality by impairing glucose transport in porcine.

    PubMed

    Gao, Ying-Ying; Chen, Li; Wang, Tao; Nie, Zheng-Wen; Zhang, Xia; Miao, Yi-Liang

    2016-10-26

    DNA methylation plays important roles in regulating many physiological behaviors; however, few studies were focused on the changes of DNA methylation during oocyte aging. Early studies showed that some imprinted genes' DNA methylation had been changed in aged mouse oocytes. In this study, we used porcine oocytes to test the hypothesis that oocyte aging would alter DNA methylation pattern of genes and disturb their expression in age oocytes, which affected the developmental potential of oocytes. We compared several different types of genes and found that the expression and DNA methylation of Neuronatin (NNAT) were disturbed in aged oocytes significantly. Additional experiments demonstrated that glucose transport was impaired in aged oocytes and injection of NNAT antibody into fresh oocytes led to the same effects on glucose transport. These results suggest that the expression of NNAT was declined by elevating DNA methylation, which affected oocyte quality by decreasing the ability of glucose transport in aged oocytes.

  10. A review of numerical models to predict the atmospheric dispersion of radionuclides.

    PubMed

    Leelőssy, Ádám; Lagzi, István; Kovács, Attila; Mészáros, Róbert

    2018-02-01

    The field of atmospheric dispersion modeling has evolved together with nuclear risk assessment and emergency response systems. Atmospheric concentration and deposition of radionuclides originating from an unintended release provide the basis of dose estimations and countermeasure strategies. To predict the atmospheric dispersion and deposition of radionuclides several numerical models are available coupled with numerical weather prediction (NWP) systems. This work provides a review of the main concepts and different approaches of atmospheric dispersion modeling. Key processes of the atmospheric transport of radionuclides are emission, advection, turbulent diffusion, dry and wet deposition, radioactive decay and other physical and chemical transformations. A wide range of modeling software are available to simulate these processes with different physical assumptions, numerical approaches and implementation. The most appropriate modeling tool for a specific purpose can be selected based on the spatial scale, the complexity of meteorology, land surface and physical and chemical transformations, also considering the available data and computational resource. For most regulatory and operational applications, offline coupled NWP-dispersion systems are used, either with a local scale Gaussian, or a regional to global scale Eulerian or Lagrangian approach. The dispersion model results show large sensitivity on the accuracy of the coupled NWP model, especially through the description of planetary boundary layer turbulence, deep convection and wet deposition. Improvement of dispersion predictions can be achieved by online coupling of mesoscale meteorology and atmospheric transport models. The 2011 Fukushima event was the first large-scale nuclear accident where real-time prognostic dispersion modeling provided decision support. Dozens of dispersion models with different approaches were used for prognostic and retrospective simulations of the Fukushima release. An unknown

  11. MIRD Pamphlet No. 23: Quantitative SPECT for Patient-Specific 3-Dimensional Dosimetry in Internal Radionuclide Therapy

    PubMed Central

    Dewaraja, Yuni K.; Frey, Eric C.; Sgouros, George; Brill, A. Bertrand; Roberson, Peter; Zanzonico, Pat B.; Ljungberg, Michael

    2012-01-01

    In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and requirements for internal dosimetry at both regional and voxel levels. Combined SPECT/CT image-based methods are emphasized, because the CT-derived anatomic information allows one to address multiple technical factors that affect SPECT quantification while facilitating the patient-specific voxel-level dosimetry calculation itself. SPECT imaging and reconstruction techniques for quantification in radionuclide therapy are not necessarily the same as those designed to optimize diagnostic imaging quality. The current overview is intended as an introduction to an upcoming series of MIRD pamphlets with detailed radionuclide-specific recommendations intended to provide best-practice SPECT quantification–based guidance for radionuclide dosimetry. PMID:22743252

  12. Radionuclide labeled lymphocytes for therapeutic use

    DOEpatents

    Srivastava, Suresh C.; Fawwaz, Rashid A.; Richards, Powell

    1985-01-01

    Lymphocytes labelled with .beta.-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.

  13. Radionuclide labeled lymphocytes for therapeutic use

    DOEpatents

    Srivastava, S.C.; Fawwaz, R.A.; Richards, P.

    1983-05-03

    Lymphocytes labelled with ..beta..-emitting radionuclides are therapeutically useful, particularly for lymphoid ablation. They are prepared by incubation of the lymphocytes with the selected radionuclide-oxine complex.

  14. Twenty-five years of environmental radionuclide concentrations near a nuclear power plant.

    PubMed

    Harris, Charles; Kreeger, Danielle; Patrick, Ruth; Palms, John

    2015-05-01

    The areas in and along a 262-km length of the Susquehanna River in Pennsylvania were monitored for the presence of radioactive materials. This study began two months after the 1979 Three Mile Island (TMI) partial reactor meltdown; it spanned the next 25 y. Monitoring points included stations at the PPL Susquehanna and TMI nuclear power plants. Monthly gamma measurements document concentrations of radionuclides from natural and anthropogenic sources. During this study, various series of gamma-emitting radionuclide concentration measurements were made in many general categories of animals, plants, and other inorganic matter. Sampling began in 1979 before the first start-up of the PPL Susquehanna power plant. Although all species were not continuously monitored for the entire period, an extensive database was compiled. In 1986, the ongoing measurements detected fallout from the Chernobyl nuclear accident. These data may be used in support of dose or environmental transport calculations.

  15. Methane transport and emissions from soil as affected by water table and vascular plants.

    PubMed

    Bhullar, Gurbir S; Iravani, Majid; Edwards, Peter J; Olde Venterink, Harry

    2013-09-08

    The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions.

  16. Isotopic ratio and vertical distribution of radionuclides in soil affected by the accident of Fukushima Dai-ichi nuclear power plants.

    PubMed

    Fujiwara, Takeshi; Saito, Takumi; Muroya, Yusa; Sawahata, Hiroyuki; Yamashita, Yuji; Nagasaki, Shinya; Okamoto, Koji; Takahashi, Hiroyuki; Uesaka, Mitsuru; Katsumura, Yosuke; Tanaka, Satoru

    2012-11-01

    The results of γ analyses of soil samples obtained from 50 locations in Fukushima prefecture on April 20, 2011, revealed the presence of a spectrum of radionuclides resulted from the accident of the Fukushima Dai-ichi nuclear power plant (FDNPP). The sum γ radioactivity concentration ranged in more than 3 orders of magnitude, depending on the sampling locations. The contamination of soils in the northwest of the FDNPP was considerable. The (131)I/(137)Cs activity ratios of the soil samples plotted as a function of the distance from the F1 NPPs exhibited three distinctive patterns. Such patterns would reflect not only the different deposition behaviors of these radionuclides, but also on the conditions of associated release events such as temperature and compositions and physicochemical forms of released radionuclides. The (136)Cs/(137)Cs activity ratio, on the other hand, was considered to only reflect the difference in isotopic compositions of source materials. Two locations close to the NPP in the northwest direction were found to be depleted in short-lived (136)Cs. This likely suggested the presence of distinct sources with different (136)Cs/(137)Cs isotopic ratios, although their details were unknown at present. Vertical γ activity profiles of (131)I and (137)Cs were also investigated, using 20-30 cm soil cores in several locations. About 70% or more of the radionuclides were present in the uppermost 2-cm regions. It was found that the profiles of (131)I/(137)Cs activity ratios showed maxima in the 2-4 cm regions, suggesting slightly larger migration of the former nuclide. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Radionuclide concentration processes in marine organisms: A comprehensive review.

    PubMed

    Carvalho, Fernando P

    2018-06-01

    The first measurements made of artificial radionuclides released into the marine environment did reveal that radionuclides are concentrated by marine biological species. The need to report radionuclide accumulation in biota in different conditions and geographical areas prompted the use of concentration factors as a convenient way to describe the accumulation of radionuclides in biota relative to radionuclide concentrations in seawater. Later, concentration factors became a tool in modelling radionuclide distribution and transfer in aquatic environments and to predicting radioactivity in organisms. Many environmental parameters can modify the biokinetics of accumulation and elimination of radionuclides in marine biota, but concentration factors remained a convenient way to describe concentration processes of radioactive and stable isotopes in aquatic organisms. Revision of CF values is periodically undertaken by international organizations, such as the International Atomic Energy Agency (IAEA), to make updated information available to the international community. A brief commented review of radionuclide concentration processes and concentration factors in marine organisms is presented for key groups of radionuclides such as fission products, activation products, transuranium elements, and naturally-occurring radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. SIMULATING RADIONUCLIDE FATE AND TRANSPORT IN THE UNSATURATED ZONE: EVALUATION AND SENSITIVITY ANALYSES OF SELECT COMPUTER MODELS

    EPA Science Inventory

    Numerical, mathematical models of water and chemical movement in soils are used as decision aids for determining soil screening levels (SSLs) of radionuclides in the unsaturated zone. Many models require extensive input parameters which include uncertainty due to soil variabil...

  19. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1990-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  20. Detecting low levels of radionuclides in fluids

    DOEpatents

    Patch, Keith D.; Morgan, Dean T.

    2000-01-01

    An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.

  1. Electrochemical separation is an attractive strategy for development of radionuclide generators for medical applications.

    PubMed

    Chakravarty, Rubel; Dash, Ashutosh; Pillai, M R A

    2012-07-01

    Electrochemical separation techniques are not widely used in radionuclide generator technology and only a few studies have been reported [1-4]. Nevertheless, this strategy is useful when other parent-daughter separation techniques are not effective or not possible. Such situations are frequent when low specific activity (LSA) parent radionuclides are used for instance with adsorption chromatographic separations, which can result in lower concentration of the daughter radionuclide in the eluent. In addition, radiation instability of the column matrix in many cases can affect the performance of the generator when long lived parent radionuclides are used. Intricate knowledge of the chemistry involved in the electrochemical separation is crucial to develop a reproducible technology that ensures that the pure daughter radionuclide can be obtained in a reasonable time of operation. Crucial parameters to be critically optimized include the applied potential, choice of electrolyte, selection of electrodes, temperature of electrolyte bath and the time of electrolysis in order to ensure that the daughter radionuclide can be reproducibly recovered in high yields and high purity. The successful electrochemical generator technologies which have been developed and are discussed in this paper include the (90)Sr/(90)Y, (188)W/(188)Re and (99)Mo/(99m)Tc generators. Electrochemical separation not only acts as a separation technique but also is an effective concentration methodology which yields high radioactive concentrations of the daughter products. The lower consumption of reagents and minimal generation of radioactive wastes using such electrochemical techniques are compatible with 'green chemistry' principles.

  2. Radionuclides in Chesapeake Bay sediments

    NASA Technical Reports Server (NTRS)

    Cressy, P. J., Jr.

    1976-01-01

    Natural and manmade gamma-ray emitting radionuclides were measured in Chesapeake Bay sediments taken near the Calvert Cliffs Nuclear Power Plant site. Samples represented several water depths, at six locations, for five dates encompassing a complete seasonal cycle. Radionuclide contents of dry sediments ranged as follows: Tl-208, 40 to 400 pCi/kg; Bi-214, 200 to 800 pCi/kg; K, 0.04 to 2.1 percent; Cs-137 5 to 1900 pCi/kg; Ru106, 40 to 1000 pCikg Co60, 1 to 27 pCi/kg. In general, radionuclide contents were positively correlated with each other and negatively correlated with sediment grain size.

  3. Inverse modelling of radionuclide release rates using gamma dose rate observations

    NASA Astrophysics Data System (ADS)

    Hamburger, Thomas; Evangeliou, Nikolaos; Stohl, Andreas; von Haustein, Christoph; Thummerer, Severin; Wallner, Christian

    2015-04-01

    Severe accidents in nuclear power plants such as the historical accident in Chernobyl 1986 or the more recent disaster in the Fukushima Dai-ichi nuclear power plant in 2011 have drastic impacts on the population and environment. Observations and dispersion modelling of the released radionuclides help to assess the regional impact of such nuclear accidents. Modelling the increase of regional radionuclide activity concentrations, which results from nuclear accidents, underlies a multiplicity of uncertainties. One of the most significant uncertainties is the estimation of the source term. That is, the time dependent quantification of the released spectrum of radionuclides during the course of the nuclear accident. The quantification of the source term may either remain uncertain (e.g. Chernobyl, Devell et al., 1995) or rely on estimates given by the operators of the nuclear power plant. Precise measurements are mostly missing due to practical limitations during the accident. The release rates of radionuclides at the accident site can be estimated using inverse modelling (Davoine and Bocquet, 2007). The accuracy of the method depends amongst others on the availability, reliability and the resolution in time and space of the used observations. Radionuclide activity concentrations are observed on a relatively sparse grid and the temporal resolution of available data may be low within the order of hours or a day. Gamma dose rates, on the other hand, are observed routinely on a much denser grid and higher temporal resolution and provide therefore a wider basis for inverse modelling (Saunier et al., 2013). We present a new inversion approach, which combines an atmospheric dispersion model and observations of radionuclide activity concentrations and gamma dose rates to obtain the source term of radionuclides. We use the Lagrangian particle dispersion model FLEXPART (Stohl et al., 1998; Stohl et al., 2005) to model the atmospheric transport of the released radionuclides. The

  4. Radionuclide injury to the lung.

    PubMed Central

    Dagle, G E; Sanders, C L

    1984-01-01

    Radionuclide injury to the lung has been studied in rats, hamsters, dogs, mice and baboons. Exposure of the lung to high dose levels of radionuclides produces a spectrum of progressively more severe functional and morphological changes, ranging from radiation pneumonitis and fibrosis to lung tumors. These changes are somewhat similar for different species. Their severity can be related to the absorbed radiation dose (measured in rads) produced by alpha, beta or gamma radiation emanating from various deposited radionuclides. The chemicophysical forms of radionuclides and spatial-temporal factors are also important variables. As with other forms of injury to the lung, repair attempts are highlighted by fibrosis and proliferation of pulmonary epithelium. Lung tumors are the principal late effect observed in experimental animals following pulmonary deposition of radionuclides at dose levels that do not result in early deaths from radiation pneumonitis or fibrosis. The predominant lung tumors described have been of epithelial origin and have been classified, in decreasing frequency of occurrence, as adenocarcinoma, bronchioloalveolar carcinoma, epidermoid carcinomas and combined epidermoid and adenocarcinoma. Mesothelioma and fibrosarcoma have been observed in rats, but less commonly in other species. Hemangiosarcomas were frequency observed in dogs exposed to beta-gamma emitters, and occasionally in rats exposed to alpha emitters. These morphologic changes in the lungs of experimental animals were reviewed and issues relevant to the prediction of human hazards discussed. PMID:6376095

  5. Colloid labelled with radionuclide and method

    DOEpatents

    Atcher, R.W.; Hines, J.J.

    1990-11-13

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints. No Drawings

  6. Radionuclide cisternogram

    MedlinePlus

    ... please enable JavaScript. A radionuclide cisternogram is a nuclear scan test. It is used to diagnose problems ... damage. The amount of radiation used during the nuclear scan is very small. Almost all of the ...

  7. VULNERABILITY OF HEADWATER CATCHMENT RESOURCES TO INCIDENCES OF 210PB EXCESS AND 137CS RADIONUCLIDE FALLOUT

    EPA Science Inventory

    Recent identification of elevated excess 210Pb (≤302.6 mBq L-1) and 137Cs (≤ 111.3 mBq L-1) activity in drinking water wells up to 20 m depth indicates some transport of airborne radionuclide fallout beyond soils in the Shaker Village c...

  8. Methane transport and emissions from soil as affected by water table and vascular plants

    PubMed Central

    2013-01-01

    Background The important greenhouse gas (GHG) methane is produced naturally in anaerobic wetland soils. By affecting the production, oxidation and transport of methane to the atmosphere, plants have a major influence upon the quantities emitted by wetlands. Different species and functional plant groups have been shown to affect these processes differently, but our knowledge about how these effects are influenced by abiotic factors such as water regime and temperature remains limited. Here we present a mesocosm experiment comparing eight plant species for their effects on internal transport and overall emissions of methane under contrasting hydrological conditions. To quantify how much methane was transported internally through plants (the chimney effect), we blocked diffusion from the soil surface with an agar seal. Results We found that graminoids caused higher methane emissions than forbs, although the emissions from mesocosms with different species were either lower than or comparable to those from control mesocosms with no plant (i.e. bare soil). Species with a relatively greater root volume and a larger biomass exhibited a larger chimney effect, though overall methane emissions were negatively related to plant biomass. Emissions were also reduced by lowering the water table. Conclusions We conclude that plant species (and functional groups) vary in the degree to which they transport methane to the atmosphere. However, a plant with a high capacity to transport methane does not necessarily emit more methane, as it may also cause more rhizosphere oxidation of methane. A shift in plant species composition from graminoids to forbs and/or from low to high productive species may lead to reduction of methane emissions. PMID:24010540

  9. Tumor Immunotargeting Using Innovative Radionuclides

    PubMed Central

    Kraeber-Bodéré, Françoise; Rousseau, Caroline; Bodet-Milin, Caroline; Mathieu, Cédric; Guérard, François; Frampas, Eric; Carlier, Thomas; Chouin, Nicolas; Haddad, Ferid; Chatal, Jean-François; Faivre-Chauvet, Alain; Chérel, Michel; Barbet, Jacques

    2015-01-01

    This paper reviews some aspects and recent developments in the use of antibodies to target radionuclides for tumor imaging and therapy. While radiolabeled antibodies have been considered for many years in this context, only a few have reached the level of routine clinical use. However, alternative radionuclides, with more appropriate physical properties, such as lutetium-177 or copper-67, as well as alpha-emitting radionuclides, including astatine-211, bismuth-213, actinium-225, and others are currently reviving hopes in cancer treatments, both in hematological diseases and solid tumors. At the same time, PET imaging, with short-lived radionuclides, such as gallium-68, fluorine-18 or copper-64, or long half-life ones, particularly iodine-124 and zirconium-89 now offers new perspectives in immuno-specific phenotype tumor imaging. New antibody analogues and pretargeting strategies have also considerably improved the performances of tumor immunotargeting and completely renewed the interest in these approaches for imaging and therapy by providing theranostics, companion diagnostics and news tools to make personalized medicine a reality. PMID:25679452

  10. Modeling radionuclide migration from underground nuclear explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harp, Dylan Robert; Stauffer, Philip H.; Viswanathan, Hari S.

    2017-03-06

    The travel time of radionuclide gases to the ground surface in fracture rock depends on many complex factors. Numerical simulators are the most complete repositories of knowledge of the complex processes governing radionuclide gas migration to the ground surface allowing us to verify conceptualizations of physical processes against observations and forecast radionuclide gas travel times to the ground surface and isotopic ratios

  11. The long-range transport of aerosol particles over the north Atlantic Ocean

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, W.G. Jr.

    1992-01-01

    As part of the Atmosphere/Ocean Chemistry Experiment (AE-ROCE), daily aerosol samples were collected at Bermuda and Barbados. In addition, gas-phase [sup 222]Rn concentrations were analyzed hourly from July 1991 to June 1992. Isentropic analyses, isentropic trajectories, and non-isentropic tranjectories were used to understand the long-range transport of these substances. In particular, the sources of selenium (Se) at Bermuda and Barbados, the transport of aluminum (Al) at Barbados, and the effect of atmospheric stability on radionuclides at Bermuda, were investigated. At Bermuda, approximately 55% of the aerosol Se came from anthropogenic sources located in North America, while the remainder appeared tomore » be from a marine biogenic sources. At Barbados, 60-80% of the Se was attributed to marine biogenic sources. At Barbados, the transport of Al from northern Africa to Barbados was modeled using a vertical interpolation of wind fields. Stoke's law of gravitational settling was used to parameterize the vertical motion. The trajectories using Stokes's law more more accurately predicted the source region of the Al compared to low-level isentropic trajectories. The affect of tropospheric stability on the concentrations of [sup 222]Rn, [sup 210]Pb, and [sup 7]Be sampled at Bermuda was investigated. [sup 7]Be has an upper tropospheric source, while [sup 222]Rn and [sup 210]Pb both have a continental source. The stability of the lower troposphere was calculated based on the relative separation of isentropic surfaces over North America. The results showed that this measure of stability was able to resolve the seasonal effect of stability on these radionuclides, but was not a quantitative predictor.« less

  12. Selected radionuclides important to low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-11-01

    The purpose of this document is to provide information to state representatives and developers of low level radioactive waste (LLW) management facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the environment. Extensive surveys of available literature provided information for this report. Certain radionuclides may contribute significantly to the dose estimated during a radiological performance assessment analysis of an LLW disposal facility. Among these are the radionuclides listed in Title 10 of the Code of Federal Regulations Part 61.55, Tables 1 and 2 (including alpha emitting transuranics with half-lives greater than 5 years). Thismore » report discusses these radionuclides and other radionuclides that may be significant during a radiological performance assessment analysis of an LLW disposal facility. This report not only includes essential information on each radionuclide, but also incorporates waste and disposal information on the radionuclide, and behavior of the radionuclide in the environment and in the human body. Radionuclides addressed in this document include technetium-99, carbon-14, iodine-129, tritium, cesium-137, strontium-90, nickel-59, plutonium-241, nickel-63, niobium-94, cobalt-60, curium -42, americium-241, uranium-238, and neptunium-237.« less

  13. Xenon adsorption on geological media and implications for radionuclide signatures.

    PubMed

    Paul, M J; Biegalski, S R; Haas, D A; Jiang, H; Daigle, H; Lowrey, J D

    2018-07-01

    The detection of radioactive noble gases is a primary technology for verifying compliance with the pending Comprehensive Nuclear-Test-Ban Treaty. A fundamental challenge in applying this technology for detecting underground nuclear explosions is estimating the timing and magnitude of the radionuclide signatures. While the primary mechanism for transport is advective transport, either through barometric pumping or thermally driven advection, diffusive transport in the surrounding matrix also plays a secondary role. From the study of primordial noble gas signatures, it is known that xenon has a strong physical adsorption affinity in shale formations. Given the unselective nature of physical adsorption, isotherm measurements reported here show that non-trivial amounts of xenon adsorb on a variety of media, in addition to shale. A dual-porosity model is then discussed demonstrating that sorption amplifies the diffusive uptake of an adsorbing matrix from a fracture. This effect may reduce the radioxenon signature down to approximately one-tenth, similar to primordial xenon isotopic signatures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. THE USE OF BATCH TESTS AS A SCREENING TOOL FOR RADIONUCLIDE SORPTION CHARACTERIZATION STUDIES, HANFORD, WASHINGTON, U.S.A.

    EPA Science Inventory

    The U.S. Department of Energy was studying the feasibility of locating a high-level radioactive waste repository in basalt at the Hanford site in south-central Washington. This is a saturated site where ground water transport of radionuclides away from a repository is the mechani...

  15. Estimation of apparent rate coefficients for radionuclides interacting with marine sediments from Novaya Zemlya.

    PubMed

    Børretzen, P; Salbu, B

    2000-10-30

    residuals were compared. The rate of sorption of the irreversibly (or slowly reversibly) associated fraction was greater than the rate of desorption of the reversibly bound fractions (i.e. k3 > k2) for both radionuclides. Thus, the Novaya Zemlya sediment are supposed to act as a sink for the radionuclides under oxic conditions, and transport to the water phase should mainly be attributed to resuspended particles.

  16. Old and new radionuclide presence in Romania after Chernobyl and Fukushima disasters

    NASA Astrophysics Data System (ADS)

    Cosma, Constantin; Iurian, Andra; Nita, Dan; Pantelica, Ana; Prodan, Eugen

    2013-04-01

    Our laboratory measured the radionuclide presence in Transylvania region both after Chernobyl and Fukushima accidents. The paper presents old and new data connected with these disasters obtained not only by us but also by others laboratories from Romania. It is an attempt to mark the mainly aspects regarding the radioactive contamination in our country connected with these catastrophes. After the Chernobyl accident the radioactive cloud passage over Romania on NE - SW direction brought relatively intesive radionuclide deposition. On this direction the highest deposition were found in the areas where this passage during April 30-st and May 1-st were accompanied by rainfalls. In the rain water and fresh sediment colected at May 1-st, 1986 and measured the next days, all radionuclide species from Chernobyl could be identified [1]. Additional measurements of 90Sr and 239/240Pu have been made several years later in different environmental samples (roof sediment, soil, pollen, sand, roof-water, street dust) collected in 1986 from Cluj-Napoca, Romania [2]. In the case of Fukushima disaster the air transport from west and north-west brought small quantities of radionuclides over the Romanian teritorry. Even if in this case the radioactive cloud was very dilluted, 131I could be clearly identified and measured in air, rain water and other products as: milk, vegetables, grass, fresh meat from the NW of Romania [3]. Measurements have been also conducted in Bucharest and Pitesti. During the last 5 years suplimentary 137Cs measurements were made in different areas as an attempt to use this radionuclide as soil and sediment tracer. [1]. C. Cosma, Some Aspects of Radioactive Contamination after Chernobyl Accident in Romania, J. Radioanal. Nucl. Chem., 251, 2, 221-226 (2002) [2]. C. Cosma, Strontium-90 Measurement without Chemical Separation in Samples after Chernobyl Accident, Spectrochimica Acta, Part B, 55, 1165-1171 (2000) [3]. C. Cosma, AR. Iurian, DC. Ni?, R. Begy R, C. C

  17. Five years database of landslides and floods affecting Swiss transportation networks

    NASA Astrophysics Data System (ADS)

    Voumard, Jérémie; Derron, Marc-Henri; Jaboyedoff, Michel

    2017-04-01

    Switzerland is a country threatened by a lot of natural hazards. Many events occur in built environment, affecting infrastructures, buildings or transportation networks and producing occasionally expensive damages. This is the reason why large landslides are generally well studied and monitored in Switzerland to reduce the financial and human risks. However, we have noticed a lack of data on small events which have impacted roads and railways these last years. This is why we have collect all the reported natural hazard events which have affected the Swiss transportation networks since 2012 in a database. More than 800 roads and railways closures have been recorded in five years from 2012 to 2016. These event are classified into six classes: earth flow, debris flow, rockfall, flood, avalanche and others. Data come from Swiss online press articles sorted by Google Alerts. The search is based on more than thirty keywords, in three languages (Italian, French, German). After verifying that the article relates indeed an event which has affected a road or a railways track, it is studied in details. We get finally information on about sixty attributes by event about event date, event type, event localisation, meteorological conditions as well as impacts and damages on the track and human damages. From this database, many trends over the five years of data collection can be outlined: in particular, the spatial and temporal distributions of the events, as well as their consequences in term of traffic (closure duration, deviation, etc.). Even if the database is imperfect (by the way it was built and because of the short time period considered), it highlights the not negligible impact of small natural hazard events on roads and railways in Switzerland at a national level. This database helps to better understand and quantify this events, to better integrate them in risk assessment.

  18. Radionuclide data analysis in connection of DPRK event in May 2009

    NASA Astrophysics Data System (ADS)

    Nikkinen, Mika; Becker, Andreas; Zähringer, Matthias; Polphong, Pornsri; Pires, Carla; Assef, Thierry; Han, Dongmei

    2010-05-01

    The seismic event detected in DPRK on 25.5.2009 was triggering a series of actions within CTBTO/PTS to ensure its preparedness to detect any radionuclide emissions possibly linked with the event. Despite meticulous work to detect and verify, traces linked to the DPRK event were not found. After three weeks of high alert the PTS resumed back to normal operational routine. This case illuminates the importance of objectivity and procedural approach in the data evaluation. All the data coming from particulate and noble gas stations were evaluated daily, some of the samples even outside of office hours and during the weekends. Standard procedures were used to determine the network detection thresholds of the key (CTBT relevant) radionuclides achieved across the DPRK event area and for the assessment of radionuclides typically occurring at IMS stations (background history). Noble gas system has sometimes detections that are typical for the sites due to legitimate non-nuclear test related activities. Therefore, set of hypothesis were used to see if the detection is consistent with event time and location through atmospheric transport modelling. Also the consistency of event timing and isotopic ratios was used in the evaluation work. As a result it was concluded that if even 1/1000 of noble gasses from a nuclear detonation would had leaked, the IMS system would not had problems to detect it. This case also showed the importance of on-site inspections to verify the nuclear traces of possible tests.

  19. Factors affecting body weight loss during commercial long haul transport of cattle in North America.

    PubMed

    González, L A; Schwartzkopf-Genswein, K S; Bryan, M; Silasi, R; Brown, F

    2012-10-01

    The objective of the present study was to identify and quantify several factors affecting shrink in cattle during commercial long-haul transport (≥400 km; n = 6,152 journeys). Surveys were designed and delivered to transport carriers to collect relevant information regarding the characteristics of animals, time of loading, origin and destination, and loaded weight before and after transport. In contrast to fat cattle, feeder cattle exhibited greater shrink (4.9 vs. 7.9 ± 0.2% of BW, respectively; P < 0.01), and experienced longer total transport durations (12.4 vs. 14.9 ± 0.99, respectively; P < 0.01) due to border crossing protocols which require mandatory animal inspection. Shrink was greater (P < 0.001) for feeder cattle loaded at ranches/farms and feed yards compared with those loaded at auction markets. Cattle loaded during the afternoon and evening shrank more than those loaded during the night and morning (P < 0.05). Shrinkage was less in cattle transported by truck drivers having 6 or more years of experience hauling livestock compared with those with 5 yr or less (P < 0.05). Shrink increased with both midpoint ambient temperature (% of BW/°C; P < 0.001) and time on truck (% of BW/h; P < 0.001). Temperature and time on truck had a multiplicative effect on each other because shrink increased most rapidly in cattle transported for both longer durations and at higher ambient temperatures (P < 0.001). The rate of shrink over time (% of BW/h) was greatest in cull cattle, intermediate in calves and feeder cattle, and slowest in fat cattle (P < 0.05) but such differences disappeared when the effects of place of origin, loading time, and experience of truck drivers were included in the model. Cull cattle, calves and feeder cattle appear to be more affected by transport compared with fat cattle going to slaughter because of greater shrink. Several factors should be considered when developing guidelines to reduce cattle transport stress and shrink including type

  20. Ground transport stress affects bacteria in the rumen of beef cattle: A real-time PCR analysis.

    PubMed

    Deng, Lixin; He, Cong; Zhou, Yanwei; Xu, Lifan; Xiong, Huijun

    2017-05-01

    Transport stress syndrome often appears in beef cattle during ground transportation, leading to changes in their capacity to digest food due to changes in rumen microbiota. The present study aimed to analyze bacteria before and after cattle transport. Eight Xianan beef cattle were transported over 1000 km. Rumen fluid and blood were sampled before and after transport. Real-time PCR was used to quantify rumen bacteria. Cortisol and adrenocorticotrophic hormone (ACTH) were measured. Cortisol and ACTH were increased on day 1 after transportation and decreased by day 3. Cellulolytic bacteria (Fibrobacter succinogenes and Ruminococcus flavefaciens), Ruminococcus amylophilus and Prevotella albensis were increased at 6 h and declined by 15 days after transport. There was a significant reduction in Succinivibrio dextrinosolvens, Prevotella bryantii, Prevotella ruminicola and Anaerovibrio lipolytica after transport. Rumen concentration of acetic acid increased after transport, while rumen pH and concentrations of propionic and butyric acids were decreased. Body weight decreased by 3 days and increased by 15 days after transportation. Using real-time PCR analysis, we detected changes in bacteria in the rumen of beef cattle after transport, which might affect the growth of cattle after transport. © 2016 Japanese Society of Animal Science.

  1. Therapeutic radionuclides in nuclear medicine: current and future prospects

    PubMed Central

    Yeong, Chai-Hong; Cheng, Mu-hua; Ng, Kwan-Hoong

    2014-01-01

    The potential use of radionuclides in therapy has been recognized for many decades. A number of radionuclides, such as iodine-131 (131I), phosphorous-32 (32P), strontium-90 (90Sr), and yttrium-90 (90Y), have been used successfully for the treatment of many benign and malignant disorders. Recently, the rapid growth of this branch of nuclear medicine has been stimulated by the introduction of a number of new radionuclides and radiopharmaceuticals for the treatment of metastatic bone pain and neuroendocrine and other malignant or non-malignant tumours. Today, the field of radionuclide therapy is enjoying an exciting phase and is poised for greater growth and development in the coming years. For example, in Asia, the high prevalence of thyroid and liver diseases has prompted many novel developments and clinical trials using targeted radionuclide therapy. This paper reviews the characteristics and clinical applications of the commonly available therapeutic radionuclides, as well as the problems and issues involved in translating novel radionuclides into clinical therapies. PMID:25294374

  2. Principles of landscape-geochemical studies in the zones contaminated by technogenical radionuclides for ecological and geochemical mapping

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Romanov, Sergey

    2013-04-01

    Efficiency of landscape-geochemical approach was proved to be helpful in spatial and temporal evaluation of the Chernobyl radionuclide distribution in the environment. The peculiarity of such approach is in hierarchical consideration of factors responsible for radionuclide redistribution and behavior in a system of inter-incorporated landscape-geochemical structures of the local and regional scales with due regard to the density of the initial fallout and patterns of radionuclide migration in soil-water-plant systems. The approach has been applied in the studies of distribution of Cs-137, Sr-90 and some other radionuclides in soils and vegetation cover and in evaluation of contribution of the stable iodine supply in soils to spatial variation of risk of thyroid cancer in areas subjected to radioiodine contamination after the Chernobyl accident. The main feature of the proposed approach is simultaneous consideration of two types of spatial heterogeneities: firstly, the inhomogeneity of external radiation exposure due to a complex structure of the contamination field, and, secondly, the landscape geochemical heterogeneity of the affected area, so that the resultant effect of radionuclide impact could significantly vary in space. The main idea of risk assessment in this respect was to reproduce as accurately as possible the result of interference of two surfaces in the form of risk map. The approach, although it demands to overcome a number of methodological difficulties, allows to solve the problems associated with spatially adequate protection of the affected population and optimization of the use of contaminated areas. In general it can serve the basis for development of the idea of the two-level structure of modern radiobiogeochemical provinces formed by superposition of the natural geochemical structures and the fields of technogenic contamination accompanied by the corresponding peculiar and integral biological reactions.

  3. Analysis of fission and activation radionuclides produced by a uranium-fueled nuclear detonation and identification of the top dose-producing radionuclides.

    PubMed

    Kraus, Terry; Foster, Kevin

    2014-08-01

    The radiological assessment of the nuclear fallout (i.e., fission and neutron-activation radionuclides) from a nuclear detonation is complicated by the large number of fallout radionuclides. This paper provides the initial isotopic source term inventory of the fallout from a uranium-fueled nuclear detonation and identifies the significant and insignificant radiological dose producing radionuclides over 11 dose integration time periods (time phases) of interest. A primary goal of this work is to produce a set of consistent, time phase-dependent lists of the top dose-producing radionuclides that can be used to prepare radiological assessment calculations and data products (e.g., maps of areas that exceed protective action guidelines) in support of public and worker protection decisions. The ranked lists of top dose-producing radionuclides enable assessors to perform atmospheric dispersion modeling and radiological dose assessment modeling more quickly by using relatively short lists of radionuclides without significantly compromising the accuracy of the modeling and the dose projections. This paper also provides a superset-list of the top dose-producing fallout radionuclides from a uranium-fueled nuclear detonation that can be used to perform radiological assessments over any desired time phase. Furthermore, this paper provides information that may be useful to monitoring and sampling and laboratory analysis personnel to help understand which radionuclides are of primary concern. Finally, this paper may be useful to public protection decision makers because it shows the importance of quickly initiating public protection actions to minimize the radiological dose from fallout.

  4. Modeling Np and Pu transport with a surface complexation model and spatially variant sorption capacities: Implications for reactive transport modeling and performance assessments of nuclear waste disposal sites

    USGS Publications Warehouse

    Glynn, P.D.

    2003-01-01

    One-dimensional (1D) geochemical transport modeling is used to demonstrate the effects of speciation and sorption reactions on the ground-water transport of Np and Pu, two redox-sensitive elements. Earlier 1D simulations (Reardon, 1981) considered the kinetically limited dissolution of calcite and its effect on ion-exchange reactions (involving 90Sr, Ca, Na, Mg and K), and documented the spatial variation of a 90Sr partition coefficient under both transient and steady-state chemical conditions. In contrast, the simulations presented here assume local equilibrium for all reactions, and consider sorption on constant potential, rather than constant charge, surfaces. Reardon's (1981) seminal findings on the spatial and temporal variability of partitioning (of 90Sr) are reexamined and found partially caused by his assumption of a kinetically limited reaction. In the present work, sorption is assumed the predominant retardation process controlling Pu and Np transport, and is simulated using a diffuse-double-layer-surface-complexation (DDLSC) model. Transport simulations consider the infiltration of Np- and Pu-contaminated waters into an initially uncontaminated environment, followed by the cleanup of the resultant contamination with uncontaminated water. Simulations are conducted using different spatial distributions of sorption capacities (with the same total potential sorption capacity, but with different variances and spatial correlation structures). Results obtained differ markedly from those that would be obtained in transport simulations using constant Kd, Langmuir or Freundlich sorption models. When possible, simulation results (breakthrough curves) are fitted to a constant K d advection-dispersion transport model and compared. Functional differences often are great enough that they prevent a meaningful fit of the simulation results with a constant K d (or even a Langmuir or Freundlich) model, even in the case of Np, a weakly sorbed radionuclide under the

  5. Study on the factors affecting the quality of public bus transportation service in Bali Province using factor analysis

    NASA Astrophysics Data System (ADS)

    Susilawati, M.; Nilakusmawati, D. P. E.

    2017-06-01

    The volume of mobility flows are increasing day by day and the condition of the number of people using private transport modes contribute to traffic congestion. With the limited capacity of the road, one of the alternatives solution to reduce congestion is to optimize the use of public transport. The purposes of this study are to determine the factors that influence user’s satisfaction on the quality of public bus transportation service and determine variables that became identifier on the dominant factor affecting user’s satisfaction. The study was conducted for the public bus transportation between districts in the province of Bali, which is among the eight regencies and one municipality, using a questionnaire as a data collection instrument. Service variables determinant of user’s satisfaction in this study, described in 25 questions, which were analyzed using factor analysis. The results showed there were six factors that explain the satisfaction of users of public transport in Bali, with a total diversity of data that can be parsed by 61.436%. These factors are: Safety and comfort, Responsiveness, Capacity, Tangible, Safety, Reliability. The dominant factor affecting public transport user satisfaction is the safety and comfort, with the most influential variable is feeling concerned about the personal safety of users when on the bus.

  6. Method of making colloid labeled with radionuclide

    DOEpatents

    Atcher, Robert W.; Hines, John J.

    1991-01-01

    A ferric hydroxide colloid having an alpha-emitting radionuclide essentially on the outer surfaces and a method of forming same. The method includes oxidizing a ferrous hydroxide to ferric hydroxide in the presence of a preselected radionuclide to form a colloid having the radionuclide on the outer surface thereof, and thereafter washing the colloid, and suspending the washed colloid in a suitable solution. The labelled colloid is useful in cancer therapy and for the treatment of inflamed joints.

  7. How U-Th series radionuclides have come to trace estuarine processes

    NASA Astrophysics Data System (ADS)

    Church, T. M.

    2014-12-01

    Some forty years ago, the essence of estuarine processes was pioneered in terms of property-property (salinity) parameterization and end member mixing experiments. The result revealed how scavenging via "flocculation" of organic material such as humic acids affect primary nutrients and trace elements, many of pollutant interest. Defined in the Delaware are estuarine reaction zones, including one more "geochemical" in upper turbid areas and another more" biochemical" in more productive photic zones of lower areas. Since then, the natural U-Th radionuclide series have been employed to quantify estuarine transport and scavenging processes. Parent U appears negatively non-conserved during summer in estuarine and coastal waters, while that of Ra isotopes positively non-conservative dominated by a ground water end member. For both U and Ra, the biogeochemical influence of marginal salt marshes is significant. Indeed in the marsh atmospheric 210-Pb has become the metric of choice for the chronology of estuarine pollutant records. Using the more particle reactive isotopes in quantifying estuarine mixing processes (e.g. Th or Pb) proves to be fruitful in the Delaware and upper Chesapeake. While Th simply tracks that of particle abundance, both 210-Pb and 210-Po show differential scavenging with residence times of weeks to a month according to lithogenic and biogenic cycling processes, respectively.

  8. Radionuclides in Diagnosis.

    ERIC Educational Resources Information Center

    Williams, E. D.

    1989-01-01

    Discussed is a radionuclide imaging technique, including the gamma camera, image analysis computer, radiopharmaceuticals, and positron emission tomography. Several pictures showing the use of this technique are presented. (YP)

  9. Interacting Physical and Biological Processes Affecting Nutrient Transport Through Human Dominated Landscapes

    NASA Astrophysics Data System (ADS)

    Finlay, J. C.

    2015-12-01

    Human activities increasingly dominate biogeochemical cycles of limiting nutrients on Earth. Urban and agricultural landscapes represent the largest sources of excess nutrients that drive water quality degradation. The physical structure of both urban and agricultural watersheds has been extensively modified, and these changes have large impacts on water and nutrient transport. Despite strong physical controls over nutrient transport in human dominated landscapes, biological processes play important roles in determining the fates of both nitrogen and phosphorus. This talk uses examples from research in urban and agricultural watersheds in the Midwestern USA to illustrate interactions of physical and biological controls over nutrient cycles that have shifted nitrogen (N) and phosphorus (P) sources and cycling in unexpected ways in response to management changes. In urban watersheds, efforts to improve water quality have been hindered by legacy sources of phosphorus added to storm water through transport to drainage systems by vegetation. Similarly, reductions in field erosion in agricultural watersheds have not led to major reductions in phosphorus transport, because of continued release of biological sources of P. Where management of phosphorus has been most effective in reducing eutrophication of lakes, decreases in N removal processes have led to long term increases in N concentration and transport. Together, these examples show important roles for biological processes affecting nutrient movement in highly modified landscapes. Consideration of the downstream physical and biological responses of management changes are thus critical toward identification of actions that will most effectively reduce excess nutrients watersheds and coastal zones.

  10. Trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations: A review.

    PubMed

    Olafisoye, O B; Oguntibeju, O O; Osibote, O A

    2017-05-03

    Oil palm (Elaeisguineensis) is one of the most productive oil producing plant in the world. Crude palm oil is composed of triglycerides supplying the world's need of edible oils and fats. Palm oil also provides essential elements and antioxidants that are potential mediators of cellular functions. Experimental studies have demonstrated the toxicity of the accumulation of significant amounts of nonessential trace elements and radionuclides in palm oil that affects the health of consumers. It has been reported that uptake of trace elements and radionuclides from the oil palm tree may be from water and soil on the palm plantations. In the present review, an attempt was made to revise and access knowledge on the presence of some selected trace elements and radionuclides in palm oil, soil, water, and leaves from oil palm plantations based on the available facts and data. Existing reports show that the presence of nonessential trace elements and radionuclides in palm oil may be from natural or anthropogenic sources in the environment. However, the available literature is limited and further research need to be channeled to the investigation of trace elements and radionuclides in soil, water, leaves, and palm oil from oil palm plantations around the globe.

  11. Systematic review of factors affecting driving and motor vehicle transportation among people with autism spectrum disorder.

    PubMed

    Lindsay, Sally

    2017-05-01

    This systematic review is to critically appraise the literature on factors affecting driving and motor vehicle transportation experiences of people with autism spectrum disorders (ASD) and to provide insight into future directions for research. Systematic searches of eight databases identified 22 studies meeting our inclusion criteria. These studies were analysed in terms of the characteristics of the participants, methodology, results of the study and quality of the evidence. Among the 22 studies, 2919 participants (364 individuals with ASD; 2555 parents of youth with ASD; mean age of person with ASD = 17.3) were represented, across six countries. Studies (n = 13) focused on factors affecting driving, including challenges in obtaining a licence, driving confidence, driving behaviours and strategies to improve driving skills. In regards to factors related to public and/or school transportation, nine studies explored rates of transportation use, access, cost and safety. Our findings highlight several gaps in the research and an urgent need for further transportation-related training and supports for people with ASD. Implications for rehabilitation Many people with ASD encounter challenges in obtaining a driver's licence, driving confidence and driving performance compared to those without ASD. Several strategies can be useful when teaching people with ASD to drive including direct communication, encouraging coping mechanisms, breaking down tasks and providing regular and consistent driving lessons. Clinicians and educators should advocate for further transportation-related training and supports for people with ASD. More research is needed from the perspective of people with ASD to understand their experiences and the particular challenges that they encounter in obtaining a licence and navigating public transportation.

  12. Fukushima-derived radionuclides in the ocean and biota off Japan

    PubMed Central

    Buesseler, Ken O.; Jayne, Steven R.; Fisher, Nicholas S.; Rypina, Irina I.; Baumann, Hannes; Baumann, Zofia; Breier, Crystaline F.; Douglass, Elizabeth M.; George, Jennifer; Macdonald, Alison M.; Miyamoto, Hiroomi; Nishikawa, Jun; Pike, Steven M.; Yoshida, Sashiko

    2012-01-01

    The Tōhoku earthquake and tsunami of March 11, 2011, resulted in unprecedented radioactivity releases from the Fukushima Dai-ichi nuclear power plants to the Northwest Pacific Ocean. Results are presented here from an international study of radionuclide contaminants in surface and subsurface waters, as well as in zooplankton and fish, off Japan in June 2011. A major finding is detection of Fukushima-derived 134Cs and 137Cs throughout waters 30–600 km offshore, with the highest activities associated with near-shore eddies and the Kuroshio Current acting as a southern boundary for transport. Fukushima-derived Cs isotopes were also detected in zooplankton and mesopelagic fish, and unique to this study we also find 110mAg in zooplankton. Vertical profiles are used to calculate a total inventory of ∼2 PBq 137Cs in an ocean area of 150,000 km2. Our results can only be understood in the context of our drifter data and an oceanographic model that shows rapid advection of contaminants further out in the Pacific. Importantly, our data are consistent with higher estimates of the magnitude of Fukushima fallout and direct releases [Stohl et al. (2011) Atmos Chem Phys Discuss 11:28319–28394; Bailly du Bois et al. (2011) J Environ Radioact, 10.1016/j.jenvrad.2011.11.015]. We address risks to public health and marine biota by showing that though Cs isotopes are elevated 10–1,000× over prior levels in waters off Japan, radiation risks due to these radionuclides are below those generally considered harmful to marine animals and human consumers, and even below those from naturally occurring radionuclides. PMID:22474387

  13. High-fat diet affects gut nutrients transporters in hypo and hyperthyroid mice by PPAR-a independent mechanism.

    PubMed

    Losacco, Mariana Cerqueira; de Almeida, Carolina Fernanda Theodora; Hijo, Andressa Harumi Torelli; Bargi-Souza, Paula; Gama, Patricia; Nunes, Maria Tereza; Goulart-Silva, Francemilson

    2018-06-01

    High fat diet consumes and thyroid hormones (THs) disorders may affect nutrients metabolism, but their impact on the absorptive epithelium, the first place of nutrients access, remains unknown. Our aim was to evaluate the intestinal morphology and nutrients transporters content in mice fed standard (LFD) or high fat (HFD) diets in hypo or hyperthyroidism-induced condition. C57BL/6 male mice fed LFD or HFD diets for 12 weeks, followed by saline, PTU (antithyroid drug) or T3 treatment up to 30 days. The mice were euthanized and proximal intestine was removed to study GLUT2, GLUT5, PEPT1, FAT-CD36, FATP4, NPC1L1 and NHE3 distribution by Western blotting. Since PPAR-a is activated by fatty acids, which is abundant in the HFD, we also evaluated whether PPAR-a affects nutrients transporters. Thus, mice were treated with fenofibrate, a PPAR-a agonist. HFD decreased GLUT2, PEPT1, FAT-CD6 and NPC1L1, but increased NHE3, while GLUT5 and FATP4 remained unaltered. THs did not alter distribution of nutrients transporters neither in LFD nor in HFD groups, but they increased villi length and depth crypt in LFD and HFD, respectively. Fenofibrate did not affect content of nutrients transporters, excluding PPAR-a involvement on the HFD-induced changes. We assume that chronic HFD consumption reduced most of the nutrients transporters content in the small intestine of mice, which might limit the entrance of nutrients and gain weight. Since NHE3 promotes sodium absorption, and it was increased in HFD group, this finding could contribute to explain the hypertension observed in obesity. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. ABC transporters affect the elimination and toxicity of CdTe quantum dots in liver and kidney cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mingli; Yin, Huancai; Bai, Pengli

    This paper aimed to investigate the role of adenosine triphosphate-binding cassette (ABC) transporters on the efflux and the toxicity of nanoparticles in liver and kidney cells. In this study, we synthesized CdTe quantum dots (QDs) that were monodispersed and emitted green fluorescence (maximum peak at 530 nm). Such QDs tended to accumulate in human hepatocellular carcinoma cells (HepG2), human kidney cells 2 (HK-2), and Madin-Darby canine kidney (MDCK) cells, and cause significant toxicity in all the three cell lines. Using specific inhibitors and inducers of P-glycoprotein (Pgp) and multidrug resistance associated proteins (Mrps), the cellular accumulation and subsequent toxicity ofmore » QDs in HepG2 and HK-2 cells were significantly affected, while only slight changes appeared in MDCK cells, corresponding well with the functional expressions of ABC transporters in cells. Moreover, treatment of QDs caused concentration- and time- dependent induction of ABC transporters in HepG2 and HK-2 cells, but such phenomenon was barely found in MDCK cells. Furthermore, the effects of CdTe QDs on ABC transporters were found to be greater than those of CdCl{sub 2} at equivalent concentrations of cadmium, indicating that the effects of QDs should be a combination of free Cd{sup 2+} and specific properties of QDs. Overall, these results indicated a strong dependence between the functional expressions of ABC transporters and the efflux of QDs, which could be an important reason for the modulation of QDs toxicity by ABC transporters. - Highlights: • ABC transporters contributed actively to the cellular efflux of CdTe quantum dots. • ABC transporters affected the cellular toxicity of CdTe quantum dots. • Treatment of CdTe quantum dots induced the gene expression of ABC transporters. • Free Cd{sup 2+} should be partially involved in the effects of QDs on ABC transporters. • Cellular efflux of quantum dots could be an important modulator for its toxicity.« less

  15. Adsorption of radionuclides on the monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Zhao, Qiang; Zhang, Zheng; Ouyang, Xiaoping

    2018-04-01

    How to remove radionuclides from radioactive wastewater has long been a difficult problem, especially in nuclear accidents. In this paper, the adsorption of radionuclides Cs, Sr, and Ba on the monolayer MoS2 was investigated by using the first principles calculation method. Through the calculation of adsorption energy and Hirshfeld charge of the radionuclides on the monolayer MoS2 at six adsorption sites, the results show that all of the radionuclides chemisorbed on the monolayer MoS2, and the adsorption strength of these three kinds of radionuclides on the monolayer MoS2 is Ba > Sr > Cs. This work might shed some light on the treatment of the radioactive wastewater.

  16. A Coincidence Signature Library for Multicoincidence Radionuclide Analysis Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Leon E.; Ellis, J E.; Valsan, Andrei B.

    Pacific Northwest National Laboratory (PNNL) is currently developing multicoincidence systems to perform trace radionuclide analysis at or near the sample collection point, for applications that include emergency response, nuclear forensics, and environmental monitoring. Quantifying radionuclide concentrations with these systems requires a library of accurate emission intensities for each detected signature, for all candidate radionuclides. To meet this need, a Coincidence Lookup Library (CLL) is being developed to calculate the emission intensities of coincident signatures from a user-specified radionuclide, or conversely, to determine the radionuclides that may be responsible for a specific detected coincident signature. The algorithms used to generate absolutemore » emission intensities and various query modes for our developmental CLL are described.« less

  17. Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport

    NASA Astrophysics Data System (ADS)

    Annewandter, Robert

    2014-05-01

    The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite

  18. Understanding Radionuclide Interactions with Layered Materials

    NASA Astrophysics Data System (ADS)

    Wang, Y.

    2015-12-01

    Layered materials play an important role in nuclear waste management and environmental cleanup. Better understanding of radionuclide interactions with those materials is critical for engineering high-performance materials for various applications. This presentation will provide an overview on radionuclide interactions with two general categories of layered materials - cationic clays and anionic clays - from a perspective of nanopore confinement. Nanopores are widely present in layered materials, either as the interlayers or as inter-particle space. Nanopore confinement can significantly modify chemical reactions in those materials. This effect may cause the preferential enrichment of radionuclides in nanopores and therefore directly impact the mobility of the radionuclides. This effect also implies that conventional sorption measurements using disaggregated samples may not represent chemical conditions in actual systems. The control of material structures on ion exchange, surface complexation, and diffusion in layered materials will be systematically examined, and the related modeling approaches will be discussed. This work was performed at Sandia National Laboratories, which is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the DOE under contract DE-AC04-94AL8500.

  19. Atmospheric transport and deposition of radionuclides released after the Fukushima Dai-chi accident and resulting effective dose

    NASA Astrophysics Data System (ADS)

    Marzo, Giuseppe A.

    2014-09-01

    On 11 March 2011 an earthquake off the Pacific coast of the Fukushima prefecture generated a tsunami that hit Fukushima Dai-ichi and Fukushima Da-ini Nuclear Power Plants. From 12 March a significant amount of radioactive material was released into the atmosphere and dispersed worldwide. Among the most abundant radioactive species released were iodine and cesium isotopes. By means of an atmospheric dispersion Lagrangian code and publicly available meteorological data, the atmospheric dispersion of 131I, 134Cs, and 137Cs have been simulated for three months after the event with a spatial resolution of 0.5° × 0.5° globally. The simulation has been validated by comparison to publicly available measurements collected in 206 locations worldwide. Sensitivity analysis shows that release height of the radionuclides, wet deposition velocity, and source term are the parameters with the most impact on the simulation results. The simulation shows that the radioactive plume, consisting of about 200 PBq by adding contributions from 131I, 134Cs, and 137Cs, has been transported over the entire northern hemisphere depositing up to 1.2 MBq m-2 nearby the NPPs to less than 20 Bq m-2 in Europe. The consequent effective dose to the population over a 50-year period, calculated by considering both external and internal pathways of exposure, is found to be about 40 mSv in the surroundings of Fukushima Dai-ichi, while other countries in the northern hemisphere experienced doses several orders of magnitude lower suggesting a small impact on the population health elsewhere.

  20. Coupling of Nuclear Waste Form Corrosion and Radionuclide Transports in Presence of Relevant Repository Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Nathalie A.; Neeway, James J.; Qafoku, Nikolla P.

    2015-09-30

    Assessments of waste form and disposal options start with the degradation of the waste forms and consequent mobilization of radionuclides. Long-term static tests, single-pass flow-through tests, and the pressurized unsaturated flow test are often employed to study the durability of potential waste forms and to help create models that predict their durability throughout the lifespan of the disposal site. These tests involve the corrosion of the material in the presence of various leachants, with different experimental designs yielding desired information about the behavior of the material. Though these tests have proved instrumental in elucidating various mechanisms responsible for material corrosion,more » the chemical environment to which the material is subject is often not representative of a potential radioactive waste repository where factors such as pH and leachant composition will be controlled by the near-field environment. Near-field materials include, but are not limited to, the original engineered barriers, their resulting corrosion products, backfill materials, and the natural host rock. For an accurate performance assessment of a nuclear waste repository, realistic waste corrosion experimental data ought to be modeled to allow for a better understanding of waste form corrosion mechanisms and the effect of immediate geochemical environment on these mechanisms. Additionally, the migration of radionuclides in the resulting chemical environment during and after waste form corrosion must be quantified and mechanisms responsible for migrations understood. The goal of this research was to understand the mechanisms responsible for waste form corrosion in the presence of relevant repository sediments to allow for accurate radionuclide migration quantifications. The rationale for this work is that a better understanding of waste form corrosion in relevant systems will enable increased reliance on waste form performance in repository environments and

  1. Disposition of Naringenin via Glucuronidation Pathway Is Affected by Compensating Efflux Transporters of Hydrophilic Glucuronides

    PubMed Central

    Xu, Haiyan; Kulkarni, Kaustubh H.; Singh, Rashim; Yang, Zhen; Wang, Stephen W.J.; Tam, Vincent H.; Hu, Ming

    2010-01-01

    The purposes of this study were to investigate how efflux transporters and UDP-glucuronosyltransferases (UGT) affect the disposition of naringenin. A rat intestinal perfusion model with bile duct cannulation was used along with rat intestinal and liver microsomes. In the intestinal perfusion model, both absorption and subsequent excretion of naringenin metabolites were rapid and site-dependent (p < 0.05). Naringenin was absorbed the most in colon and its glucuronides were excreted the most in duodenum. In metabolism studies, the intrinsic clearance value of naringenin glucuronidation was the highest in jejunum microsomes, followed by liver, ileal and colonic microsomes. The rapid metabolism in microsomes did not always translate into more efficient excretion in the rat perfusion model, however, because of presence of rate-limiting efflux transporters. When used separately, MK-571 (an inhibitor of multidrug resistance-related protein 2 or Mrp2) or dipyridamole (an inhibitor of breast cancer resistance protein or Bcrp1) did not affect excretion of naringenin glucuronides, but when used together, they significantly (p < 0.05) decreased intestinal and biliary excretion of naringenin glucuronides. In conclusion, efflux transporters Mrp2 and Bcrp1 are shown to compensate for each other and enable the intestinal excretion of flavonoid (i.e., naringenin) glucuronides. PMID:19736994

  2. System and method for assaying a radionuclide

    DOEpatents

    Cadieux, James R; King, III, George S; Fugate, Glenn A

    2014-12-23

    A system for assaying a radionuclide includes a liquid scintillation detector, an analyzer connected to the liquid scintillation detector, and a delay circuit connected to the analyzer. A gamma detector and a multi-channel analyzer are connected to the delay circuit and the gamma detector. The multi-channel analyzer produces a signal reflective of the radionuclide in the sample. A method for assaying a radionuclide includes selecting a sample, detecting alpha or beta emissions from the sample with a liquid scintillation detector, producing a first signal reflective of the alpha or beta emissions, and delaying the first signal a predetermined time. The method further includes detecting gamma emissions from the sample, producing a second signal reflective of the gamma emissions, and combining the delayed first signal with the second signal to produce a third signal reflective of the radionuclide.

  3. Video instrumentation for radionuclide angiocardiography.

    NASA Technical Reports Server (NTRS)

    Kriss, J. P.

    1973-01-01

    Two types of videoscintiscopes for performing radioisotopic angiocardiography with a scintillation camera are described, and use of these instruments in performing clinical studies is illustrated. Radionuclide angiocardiography is a simple, quick and accurate procedure recommended as a screening test for patients with a variety of congenital and acquired cardiovascular lesions. When performed in conjunction with coronary arterial catheterization, dynamic radionuclide angiography may provide useful information about regional myocardial perfusion. Quantitative capabilities greatly enhance the potential of this diagnostic tool.

  4. Uranium-series constraints on radionuclide transport and groundwater flow at the Nopal I uranium deposit, Sierra Pena Blanca, Mexico.

    PubMed

    Goldstein, Steven J; Abdel-Fattah, Amr I; Murrell, Michael T; Dobson, Patrick F; Norman, Deborah E; Amato, Ronald S; Nunn, Andrew J

    2010-03-01

    Uranium-series data for groundwater samples from the Nopal I uranium ore deposit were obtained to place constraints on radionuclide transport and hydrologic processes for a nuclear waste repository located in fractured, unsaturated volcanic tuff. Decreasing uranium concentrations for wells drilled in 2003 are consistent with a simple physical mixing model that indicates that groundwater velocities are low ( approximately 10 m/y). Uranium isotopic constraints, well productivities, and radon systematics also suggest limited groundwater mixing and slow flow in the saturated zone. Uranium isotopic systematics for seepage water collected in the mine adit show a spatial dependence which is consistent with longer water-rock interaction times and higher uranium dissolution inputs at the front adit where the deposit is located. Uranium-series disequilibria measurements for mostly unsaturated zone samples indicate that (230)Th/(238)U activity ratios range from 0.005 to 0.48 and (226)Ra/(238)U activity ratios range from 0.006 to 113. (239)Pu/(238)U mass ratios for the saturated zone are <2 x 10(-14), and Pu mobility in the saturated zone is >1000 times lower than the U mobility. Saturated zone mobility decreases in the order (238)U approximately (226)Ra > (230)Th approximately (239)Pu. Radium and thorium appear to have higher mobility in the unsaturated zone based on U-series data from fractures and seepage water near the deposit.

  5. Convective transport in ATM simulations and its relation to the atmospheric stability conditions

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, Jolanta

    2017-04-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which more than 60 are certified. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases, in particular xenon isotopes, supported by the atmospheric transport modeling (ATM). One of the important noble gases, monitored on a daily basis, is radioxenon. It can be produced either during a nuclear explosion with a high fission yield, and thus be considered as an important tracer to prove the nuclear character of an explosion, or be emitted from nuclear power plants (NPPs) or from isotope production facilities (IPFs). To investigate the transport of xenon emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. To address the question whether including the convective transport in ATM simulations will change the results significantly, the differences between the outputs with the convective transport turned off and turned on, were computed and further investigated taking into account the atmospheric stability conditions. For that purpose series of 14 days forward simulations, with convective transport and without it, released daily in the period January 2011 to February 2012, were analysed. The release point was at the ANSTO facility in Australia. The unique opportunity of having access to both daily emission values for ANSTO as well as measured Xe-133 activity concentration (AC) values at the IMS stations, gave a chance to validate the simulations.

  6. Ion beam analyses of radionuclide migration in heterogeneous rocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alonso, Ursula; Missana, Tiziana; Garcia-Gutierrez, Miguel

    2013-07-18

    The migration of radionuclides (RN) in the environment is a topic of general interest, for its implications on public health, and it is an issue for the long-term safety studies of deep geological repositories (DGR) for high-level radioactive waste. The role played by colloids on RN migration is also of great concern. Diffusion and sorption are fundamental mechanisms controlling RN migration in rocks and many experimental approaches are applied to determine transport parameters for low sorbing RN in homogeneous rocks. However, it is difficult to obtain relevant data for high sorbing RN or colloids, for which diffusion lengths are extremelymore » short, or within heterogeneous rocks, where transport might be different in different minerals. The ion beam techniques Rutherford Backscattering Spectrometry (RBS) and micro-Particle Induced X-Ray Emission ({mu}PIXE), rarely applied in the field, were selected for their micro-analytical potential to study RN diffusion and surface retention within heterogeneous rocks. Main achievements obtained during last 12 years are highlighted.« less

  7. Considerations for Bioassay Monitoring of Mixtures of Radionuclides

    DOE PAGES

    Klumpp, John; Waters, Tom; Bertelli, Luiz

    2017-10-01

    Complying with regulations for bioassay monitoring of radionuclide intakes is significantly more complex for mixtures than it is for pure radionuclides. Different constituents will naturally have different dose coefficients, be detectable at significantly different levels, and may require very different amounts of effort to bioassay. The ability to use certain constituents as surrogates for others will depend on how well characterized the mixture is, as well as whether the employee is also working with other radionuclides. This is further compounded by the fact that the composition of a mixture (or even of a pure radionuclide) is likely to change overmore » time. Internal dosimetrists must decide how best to monitor employees who work with radionuclide mixtures. In particular, they must decide which constituents should be monitored routinely, which constituents only need to be monitored in the case of an intake, and how to estimate doses based on intakes of monitored and unmonitored constituents.« less

  8. Effects of decontamination work on riverine radiocaesium activity concentrations in Fukushima affected area

    NASA Astrophysics Data System (ADS)

    Taniguchi, K.; Onda, Y.; Yoshimura, K.; Smith, H.; Brake, W.; Kubo, T.; Kuramoto, T.; Sato, T.; Onuma, S.

    2016-12-01

    Radionuclides such as Cs-134 and Cs-137 were widely distributed in the area affected by the accident at Fukushima Daiichi nuclear power plant. The radionuclides were deposited on the surface, absorbed by soil particles, and transported via river systems to Pacific Ocean due to rainfall events. In order to reduce air dose rate surrounding residential area, decontamination works have been conducted between 2013 and 2016 Fiscal Years. In paddy field and farmland contaminated by the fallout, 5 cm of surface soil was stripped, and then clean sands put on the surface. This work could reduce radiocaesium inventory, while the coverage of vegetation was significantly decreased. Therefore, runoff characteristics in the decontaminated area were different before and after the decontamination. Activity concentrations of particulate Cs-137 were measured in Abukuma river system and 8 small catchments located in coastal zone of Fukushima affected area. In all monitoring sites, Cs-137 concentrations have decreased over an entire monitoring period. Kuchibuto river, which is a tributary of Abukuma river showed significant effect of decontamination. In Yamakiya district, in the watershed of the tributary, the decontamination work had conducted from 2013 FY to December 2015. Particulate Cs-137 concentration at two monitoring sites located in the district showed around 30% of decline in the beginning of 2014 FY whereas the decline was not so significant at sites in lower reach of the tributary. Decontaminated paddy field and farmland can be judged as the important source of suspended sediments in the tributary.

  9. Seven years of radionuclide laboratory at IMC - important achievements.

    PubMed

    Hrubý, M; Kučka, J; Pánek, J; Štěpánek, P

    2016-10-20

    For many important research topics in polymer science the use of radionuclides brings significant benefits concerning nanotechnology, polymer drug delivery systems, tissue engineering etc. This contribution describes important achievements of the radionuclide laboratory at Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic (IMC) in the area of polymers for biomedical applications. Particular emphasis will be given to water-soluble polymer carriers of radionuclides, thermoresponsive polymer radionuclide carriers, thermoresponsive polymers for local brachytherapy, polymer scaffolds modified with (radiolabeled) peptides and polymer copper chelators for the therapy of Wilson´s disease.

  10. Glutathione affects the transport activity of Rhizobium leguminosarum 3841 and is essential for efficient nodulation.

    PubMed

    Cheng, Guojun; Karunakaran, Ramakrishnan; East, Alison K; Munoz-Azcarate, Olaya; Poole, Philip S

    2017-04-01

    As glutathione (GSH) plays an essential role in growth and symbiotic capacity of rhizobia, a glutathione synthetase (gshB) mutant of Rhizobium leguminosarum biovar viciae 3841 (Rlv3841) was characterised. It fails to efficiently utilise various compounds as a sole carbon source, including glucose, succinate, glutamine and histidine, and shows 60%-69% reduction in uptake rates of glucose, succinate and the non-metabolisable substrate α-amino isobutyric acid. The defect in glucose uptake can be overcome by addition of exogenous GSH, indicating GSH, but not its bacterial synthesis, is required for efficient transport. GSH is not involved in the regulation of the activity of Rlv3841's transporters via the global regulator of transport, PtsNTR. Although lack of GSH reduces transcription of the branched amino acid transporter, this was not the case for all uptake transport systems, for example, the amino acid permease. This suggests GSH alters activity and/or assembly of transport systems by an unknown mechanism. In interaction with plants, the gshB mutant is not only severely impaired in rhizosphere colonisation, but also shows a 50% reduction in dry weight of plants and nitrogen-fixation ability. This reveals that changes in GSH metabolism affect the bacterial-plant interactions required for symbiosis. © FEMS 2017.

  11. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide brachytherapy source. 892.5730 Section 892.5730 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5730 Radionuclide brachytherapy...

  12. Stochastic study of solute transport in a nonstationary medium.

    PubMed

    Hu, Bill X

    2006-01-01

    A Lagrangian stochastic approach is applied to develop a method of moment for solute transport in a physically and chemically nonstationary medium. Stochastic governing equations for mean solute flux and solute covariance are analytically obtained in the first-order accuracy of log conductivity and/or chemical sorption variances and solved numerically using the finite-difference method. The developed method, the numerical method of moments (NMM), is used to predict radionuclide solute transport processes in the saturated zone below the Yucca Mountain project area. The mean, variance, and upper bound of the radionuclide mass flux through a control plane 5 km downstream of the footprint of the repository are calculated. According to their chemical sorption capacities, the various radionuclear chemicals are grouped as nonreactive, weakly sorbing, and strongly sorbing chemicals. The NMM method is used to study their transport processes and influence factors. To verify the method of moments, a Monte Carlo simulation is conducted for nonreactive chemical transport. Results indicate the results from the two methods are consistent, but the NMM method is computationally more efficient than the Monte Carlo method. This study adds to the ongoing debate in the literature on the effect of heterogeneity on solute transport prediction, especially on prediction uncertainty, by showing that the standard derivation of solute flux is larger than the mean solute flux even when the hydraulic conductivity within each geological layer is mild. This study provides a method that may become an efficient calculation tool for many environmental projects.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olsen, C.R.; Larsen, I.L.; Lowry, P.D.

    Radionuclides released into the Susquehanna--Chesapeake System from the Three Mile Island, Peach Bottom, and Calvert Cliffs nuclear power plants are partitioned among dissolved, particulate, and biological phases and may thus exist in a number of physical and chemical forms. In this project, we have measured the dissolved and particulate distributions of fallout /sup 137/Cs; reactor-released /sup 137/Cs, /sup 134/Cs, /sup 65/Zn, /sup 60/Co, and /sup 58/Co; and naturally occurring /sup 7/Be and /sup 210/Pb in the lower Susquehanna River and Upper Chesapeake Bay. In addition, we chemically leached suspended particles and bottom sediments in the laboratory to determine radionuclide partitioningmore » among different particulate-sorbing phases to complement the site-specific field data. This information has been used to document the important geochemical processes that affect the transport, sorption, distribution, and fate of reactor-released radionuclides (and by analogy, other trace contaminants) in this river-estuarine system. Knowledge of the mechanisms, kinetic factors, and processes that affect radionuclide distributions is crucial for predicting their biological availability, toxicity, chemical behavior, physical transport, and accumulation in aquatic systems. The results from this project provide the information necessary for developing accurate radionuclide-transport and biological-uptake models. 76 refs., 12 figs.« less

  14. 21 CFR 892.5740 - Radionuclide teletherapy source.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide teletherapy source. 892.5740 Section 892.5740 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Therapeutic Devices § 892.5740 Radionuclide teletherapy source...

  15. 21 CFR 892.1360 - Radionuclide dose calibrator.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide dose calibrator. 892.1360 Section 892.1360 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1360 Radionuclide dose calibrator. (a...

  16. Radionuclide transport from soil to air, native vegetation, kangaroo rats and grazing cattle on the Nevada test site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert, R.O.; Shinn, J.H.; Essington, E.H.

    Between 1970 and 1986 the Nevada Applied Ecology Group (NAEG), U.S. Department of Energy, conducted environmental radionuclide studies at weapons-testing sites on or adjacent to the Nevada Test Site. In this paper, NAEG studies conducted at two nuclear (fission) sites (NS201, NS219) and two nonnuclear (nonfission) sites (Area 13 (Project 57) and Clean Slate 2) are reviewed, synthesized and compared regarding (1) soil particle-size distribution and physical-chemical characteristics of 239 + 240Pu-bearing radioactive particles, (2) 239 + 240Pu resuspension rates and (3) transuranic and fission-product radionuclide transfers from soil to native vegetation, kangaroo rats and grazing cattle. The data indicatemore » that transuranic radionuclides were transferred more readily on the average from soil to air, the external surfaces of native vegetation and to tissues of kangaroo rats at Area 13 than at NS201 or NS219. The 239 + 240Pu resuspension factor for undisturbed soil at Area 13 was three to four orders-of-magnitude larger than at NS201 and NS219, the geometric mean (GM) vegetation-over-soil 239 + 240Pu concentration ratio was from ten to 100 times larger than at NS201, and the GM GI-over-soil, carcass-over-soil and pelt-over-soil 239 + 240Pu ratios for kangaroo rats were about ten times larger than at NS201. These results are consistent with the finding that Area 13, compared with NS201 or NS219, has a higher percentage of radioactivity associated with smaller soil particles and a larger percentage of resuspendable and respirable soil. However, the resuspension factor increased by a factor of 27 at NS201 when the surface soil was disturbed, and by a factor of 12 at NS219 following a wildfire.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Liange; Li, Lianchong; Rutqvist, Jonny

    Clay/shale has been considered as potential host rock for geological disposal of high-level nuclear waste throughout the world, because of its low permeability, low diffusion coefficient, high retention capacity for radionuclides, and capability to self-seal fractures induced by tunnel excavation. For example, Callovo-Oxfordian argillites at the Bure site, France (Fouche et al., 2004), Toarcian argillites at the Tournemire site, France (Patriarche et al., 2004), Opalinus Clay at the Mont Terri site, Switzerland (Meier et al., 2000), and Boom clay at the Mol site, Belgium (Barnichon and Volckaert, 2003) have all been under intensive scientific investigation (at both field and laboratorymore » scales) for understanding a variety of rock properties and their relationships to flow and transport processes associated with geological disposal of nuclear waste. Clay/shale formations may be generally classified as indurated or plastic clays (Tsang and Hudson, 2010). The latter (including Boom clay) is a softer material without high cohesion; its deformation is dominantly plastic. During the lifespan of a clay repository, the repository performance is affected by complex thermal, hydrogeological, mechanical, chemical (THMC) processes, such as heat release due to radionuclide decay, multiphase flow, formation of damage zones, radionuclide transport, waste dissolution, and chemical reactions. All these processes are related to each other. An in-depth understanding of these coupled processes is critical for the performance assessment (PA) of the repository. These coupled processes may affect radionuclide transport by changing transport paths (e.g., formation and evolution of excavation damaged zone (EDZ)) and altering flow, mineral, and mechanical properties that are related to radionuclide transport. While radionuclide transport in clay formation has been studied using laboratory tests (e,g, Appelo et al. 2010, Garcia-Gutierrez et al., 2008, Maes et al., 2008), short

  18. Radionuclide concentrations in underground waters of Mururoa and Fangataufa Atolls.

    PubMed

    Mulsow, S; Coquery, M; Dovlete, C; Gastaud, J; Ikeuchi, Y; Pham, M K; Povinec, P P

    1999-09-30

    water (colloids included) these radionuclides were below detection limits, may be accounted for the conspicuous quantity of iron oxy-hydroxides present in the particulate fraction that under the appropriate redox conditions may be interacting selectively with elements in solution (scavenging) resulting in the enhanced transuranic signal. While transuranics have been found in places of their origin, radionuclides with low Kd values (3H, 90Sr, 137Cs) have already been transported to monitoring wells, as well as to the atolls' lagoons and the open ocean.

  19. Radionuclide Therapies in Molecular Imaging and Precision Medicine.

    PubMed

    Kendi, A Tuba; Moncayo, Valeria M; Nye, Jonathon A; Galt, James R; Halkar, Raghuveer; Schuster, David M

    2017-01-01

    This article reviews recent advances and applications of radionuclide therapy. Individualized precision medicine, new treatments, and the evolving role of radionuclide therapy are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Space Weather affects on Air Transportation

    NASA Astrophysics Data System (ADS)

    Jones, J. B. L.; Bentley, R. D.; Dyer, C.; Shaw, A.

    In Europe, legislation requires the airline industry to monitor the occupational exposure of aircrew to cosmic radiation. However, there are other significant impacts of space weather phenomena on the technological systems used for day-to-day operations which need to be considered by the airlines. These were highlighted by the disruption caused to the industry by the period of significant solar activity in late October and early November 2003. Next generation aircraft will utilize increasingly complex avionics as well as expanding the performance envelopes. These and future generation platforms will require the development of a new air-space management infrastructure with improved position accuracy (for route navigation and landing in bad weather) and reduced separation minima in order to cope with the expected growth in air travel. Similarly, greater reliance will be placed upon satellites for command, control, communication and information (C3I) of the operation. However, to maximize effectiveness of this globally interoperable C3I and ensure seamless fusion of all components for a safe operation will require a greater understanding of the space weather affects, their risks with increasing technology, and the inclusion of space weather information into the operation. This paper will review space weather effects on air transport and the increasing risks for future operations cause by them. We will examine how well the effects can be predicted, some of the tools that can be used and the practicalities of using such predictions in an operational scenario. Initial results from the SOARS ESA Space Weather Pilot Project will also be discussed,

  1. Natural and anthropogenic radionuclide activity concentrations in the New Zealand diet.

    PubMed

    Pearson, Andrew J; Gaw, Sally; Hermanspahn, Nikolaus; Glover, Chris N

    2016-01-01

    To support New Zealand's food safety monitoring regime, a survey was undertaken to establish radionuclide activity concentrations across the New Zealand diet. This survey was undertaken to better understand the radioactivity content of the modern diet and also to assess the suitability of the current use of milk as a sentinel for dietary radionuclide trends. Thirteen radionuclides were analysed in 40 common food commodities, including animal products, fruits, vegetables, cereal grains and seafood. Activity was detected for (137)Caesium, (90)Strontium and (131)Iodine. No other anthropogenic radionuclides were detected. Activity concentrations of the three natural radionuclides of Uranium and the daughter radionuclide (210)Polonium were detected in the majority of food sampled, with a large variation in magnitude. The maximum activity concentrations were detected in shellfish for all these radionuclides. Based on the established activity concentrations and ranges, the New Zealand diet contains activity concentrations of anthropogenic radionuclides far below the Codex Alimentarius guideline levels. Activity concentrations obtained for milk support its continued use as a sentinel for monitoring fallout radionuclides in terrestrial agriculture. The significant levels of natural and anthropogenic radionuclide activity concentrations detected in finfish and molluscs support undertaking further research to identify a suitable sentinel for New Zealand seafood monitoring. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Flavonols Accumulate Asymmetrically and Affect Auxin Transport in Arabidopsis1[C][W][OA

    PubMed Central

    Kuhn, Benjamin M.; Geisler, Markus; Bigler, Laurent; Ringli, Christoph

    2011-01-01

    Flavonoids represent a class of secondary metabolites with diverse functions in plants including ultraviolet protection, pathogen defense, and interspecies communication. They are also known as modulators of signaling processes in plant and animal systems and therefore are considered to have beneficial effects as nutraceuticals. The rol1-2 (for repressor of lrx1) mutation of Arabidopsis (Arabidopsis thaliana) induces aberrant accumulation of flavonols and a cell-growth phenotype in the shoot. The hyponastic cotyledons, aberrant shape of pavement cells, and deformed trichomes in rol1-2 mutants are suppressed by blocking flavonoid biosynthesis, suggesting that the altered flavonol accumulation in these plants induces the shoot phenotype. Indeed, the identification of several transparent testa, myb, and fls1 (for flavonol synthase1) alleles in a rol1-2 suppressor screen provides genetic evidence that flavonols interfere with shoot development in rol1-2 seedlings. The increased accumulation of auxin in rol1-2 seedlings appears to be caused by a flavonol-induced modification of auxin transport. Quantification of auxin export from mesophyll protoplasts revealed that naphthalene-1-acetic acid but not indole-3-acetic acid transport is affected by the rol1-2 mutation. Inhibition of flavonol biosynthesis in rol1-2 fls1-3 restores naphthalene-1-acetic acid transport to wild-type levels, indicating a very specific mode of action of flavonols on the auxin transport machinery. PMID:21502189

  3. Modeling of the fate of radionuclides in urban sewer systems after contamination due to nuclear or radiological incidents.

    PubMed

    Urso, L; Kaiser, J C; Andersson, K G; Andorfer, H; Angermair, G; Gusel, C; Tandler, R

    2013-04-01

    After an accidental radioactive contamination by aerosols in inhabited areas, the radiation exposure to man is determined by complex interactions between different factors such as dry or wet deposition, different types of ground surfaces, chemical properties of the radionuclides involved and building development as well as dependence on bomb construction e.g. design and geometry. At short-term, the first rainfall is an important way of natural decontamination: deposited radionuclides are washed off from surfaces and in urban areas the resulting contaminated runoff enters the sewer system and is collected in a sewage plant. Up to now the potential exposure caused by this process has received little attention and is estimated here with simulation models. The commercial rainfall-runoff model for urban sewer systems KANAL++ has been extended to include transport of radionuclides from surfaces through the drainage to various discharge facilities. The flow from surfaces is modeled by unit hydrographs, which produce boundary conditions for a system of 1d coupled flow and transport equations in a tube system. Initial conditions are provided by a map of surface contamination which is produced by geo-statistical interpolation of γ-dose rate measurements taking into account the detector environment. The corresponding methodology is implemented in the Inhabited Area Monitoring Module (IAMM) software module as part of the European decision system JRODOS. A hypothetical scenario is considered where a Radiation Dispersal Device (RDD) with Cs-137 is detonated in a small inhabited area whose drainage system is realistically modeled. The transition of deposited radionuclides due to rainfall into the surface runoff is accounted for by different nuclide-specific entrainment coefficients for paved and unpaved surfaces. The concentration of Cs-137 in water is calculated at the nodes of the drainage system and at the sewage treatment plant. The external exposure to staff of the

  4. Monitoring release of disposable radionuclides in the Kara sea: Bioaccumulation of long-lived radionuclides in echinoderms and molluscs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, N.S.

    1994-01-01

    The objective of the present proposal is to continue and extend our research on the trophic transfer of important radionuclides in benthic fauna of the Kara Sea. This project is assessing the extent to which select species of seastars, brittle stars, and clams typical of the Kara Sea concentrate and retain a variety of long-lived radionuclides known to be (or suspected to be) present in the disposed wastes in the Russian Arctic. The rates and routes of uptake and depuration of isotopes in the same or in closely related species are being quantified so that endemic benthic organisms can bemore » assessed as potential bioindicators of released radionuclides in Arctic waters.« less

  5. Global atmospheric monitoring of noble gases: insight into transport processes in the southern hemisphere.

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Kalinowski, M.; Bourgouin, P.; Schoeppner, M.

    2017-12-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which 31 stations are located in the Southern Hemisphere. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases supported by atmospheric transport modeling (ATM). The air mass trajectory provides a "link" between a radionuclide release and a detection confirmed by radionuclide measurements. One of the important noble gases, monitored on a daily basis, is xenon. It can be produced either during a nuclear explosion with a high fission yield, and thus be considered as an important tracer to prove the nuclear character of an explosion, or be emitted from nuclear power plants (NPPs) or from isotope production facilities (IPFs). On the southern hemisphere the number of IPF is rather limited in comparison to the northern hemisphere. Among the major sources are: the ANSTO facility in Sydney (Australia), CNEA in Ezeiza (Argentina), BaTek/INUKI in Jakarta (Indonesia) and NECSA in Pelindaba (South Africa). This study will demonstrate the examples of seasonal contribution of Xe-133 emissions from major sources as observed at selected IMS stations located in the southern hemisphere. It will show as well examples of the atmospheric transport from the northern to the southern hemisphere, and the influence of strong atmospheric convection.

  6. Tracing Fallout Radionuclide Behavior During Atmospheric Deposition and Pedogenesis

    NASA Astrophysics Data System (ADS)

    Landis, J. D.

    2017-12-01

    Short-lived fallout radionuclides 7Be (54 day half-life) and 210Pbexcess (22.3 year half-life) inform problems in geomorphology covering timespans of days to decades. Linking these radionuclides together is a powerful strategy, since the ratio 7Be:210Pb can control for changes in the activity of each, provided that the tracers have similar behavior through relevant chemical and physical processes such as interception, sorption, dilution, transport, etc. To investigate the extent to which 7Be and 210Pbxs share a common behavior, I measured these radionuclides in atmospheric deposition, vegetation, and stable soil, sediment and peat profiles. Bulk deposition of 7Be and 210Pb was measured in weekly intervals for 6 years of continuous record. Samples of red oak leaves (Quercus rubra) were collected regularly over 4 years at a site co-located with precipitation collection. Soil pits were sampled by high resolution methods at regional, undisturbed sites. In all samples 7Be, 210Pb, and other nuclides were measured by high-precision gamma spectrometry. Depositional fluxes of 7Be and 210Pb were highly correlated, with 7Be:210Pb converging to the long-term mean activity ratio of ca. 10.5 over intervals of 7 to 14 days. Red oak foliage accumulated 7Be and 210Pb at a linear rate during both growth and senescence, and appeared to maintain a dynamic equilibrium with atmospheric deposition. Canopies of both forest and grass intercepted on the order of 50% of deposition; the remainder reached underlying soil, where 7Be activity showed an exponential decline due to rapid hydrologic penetration of soil surface. Features of 210Pbxs soil profiles, including a subsurface maximum, reflect the same penetration pattern integrated over decades of deposition. Application of the Linked Radionuclide aCcumulation (LRC) model demonstrated that 210Pb moves through soil, peat and fluvial sediment profiles at rates on the order of 1 mm per year, similar to other atmospherically-derived metals

  7. A random walk model to simulate the atmospheric dispersion of radionuclide

    NASA Astrophysics Data System (ADS)

    Zhuo, Jun; Huang, Liuxing; Niu, Shengli; Xie, Honggang; Kuang, Feihong

    2018-01-01

    To investigate the atmospheric dispersion of radionuclide in large-medium scale, a numerical simulation method based on random walk model for radionuclide atmospheric dispersion was established in the paper. The route of radionuclide migration and concentration distribution of radionuclide can be calculated out by using the method with the real-time or historical meteorological fields. In the simulation, a plume of radionuclide is treated as a lot of particles independent of each other. The particles move randomly by the fluctuations of turbulence, and disperse, so as to enlarge the volume of the plume and dilute the concentration of radionuclide. The dispersion of the plume over time is described by the variance of the particles. Through statistical analysis, the relationships between variance of the particles and radionuclide dispersion characteristics can be derived. The main mechanisms considered in the physical model are: (1) advection of radionuclide by mean air motion, (2) mixing of radionuclide by atmospheric turbulence, (3) dry and wet deposition, (4) disintegration. A code named RADES was developed according the method. And then, the European Tracer Experiment (ETEX) in 1994 is simulated by the RADES and FLEXPART codes, the simulation results of the concentration distribution of tracer are in good agreement with the experimental data.

  8. Radionuclide bone imaging: an illustrative review.

    PubMed

    Love, Charito; Din, Anabella S; Tomas, Maria B; Kalapparambath, Tomy P; Palestro, Christopher J

    2003-01-01

    Bone scintigraphy with technetium-99m-labeled diphosphonates is one of the most frequently performed of all radionuclide procedures. Radionuclide bone imaging is not specific, but its excellent sensitivity makes it useful in screening for many pathologic conditions. Moreover, some conditions that are not clearly depicted on anatomic images can be diagnosed with bone scintigraphy. Bone metastases usually appear as multiple foci of increased activity, although they occasionally manifest as areas of decreased uptake. Traumatic processes can often be detected, even when radiographic findings are negative. Most fractures are scintigraphically detectable within 24 hours, although in elderly patients with osteopenia, further imaging at a later time is sometimes indicated. Athletic individuals are prone to musculoskeletal trauma, and radionuclide bone imaging is useful for identifying pathologic conditions such as plantar fasciitis, stress fractures, "shin splints," and spondylolysis, for which radiographs may be nondiagnostic. A combination of focal hyperperfusion, focal hyperemia, and focally increased bone uptake is virtually diagnostic for osteomyelitis in patients with nonviolated bone. Bone scintigraphy is also useful for evaluating disease extent in Paget disease and for localizing avascular necrosis in patients with negative radiographs. Radionuclide bone imaging will likely remain a popular and important imaging modality for years to come. Copyright RSNA, 2003

  9. Effect of reducing groundwater on the retardation of redox-sensitive radionuclides

    PubMed Central

    Hu, QH; Zavarin, M; Rose, TP

    2008-01-01

    Laboratory batch sorption experiments were used to investigate variations in the retardation behavior of redox-sensitive radionuclides. Water-rock compositions were designed to simulate subsurface conditions at the Nevada Test Site (NTS), where a suite of radionuclides were deposited as a result of underground nuclear testing. Experimental redox conditions were controlled by varying the oxygen content inside an enclosed glove box and by adding reductants into the testing solutions. Under atmospheric (oxidizing) conditions, radionuclide distribution coefficients varied with the mineralogic composition of the sorbent and the water chemistry. Under reducing conditions, distribution coefficients showed marked increases for 99Tc (from 1.22 at oxidizing to 378 mL/g at mildly reducing conditions) and 237Np (an increase from 4.6 to 930 mL/g) in devitrified tuff, but much smaller variations in alluvium, carbonate rock, and zeolitic tuff. This effect was particularly important for 99Tc, which tends to be mobile under oxidizing conditions. A review of the literature suggests that iodine sorption should decrease under reducing conditions when I- is the predominant species; this was not consistently observed in batch tests. Overall, sorption of U to alluvium, devitrified tuff, and zeolitic tuff under atmospheric conditions was less than in the glove-box tests. However, the mildly reducing conditions achieved here were not likely to result in substantial U(VI) reduction to U(IV). Sorption of Pu was not affected by the decreasing Eh conditions achieved in this study, as the predominant sorbed Pu species in all conditions was expected to be the low-solubility and strongly sorbing Pu(OH)4. Depending on the aquifer lithology, the occurrence of reducing conditions along a groundwater flowpath could potentially contribute to the retardation of redox-sensitive radionuclides 99Tc and 237Np, which are commonly identified as long-term dose contributors in the risk assessment in various

  10. The serotonin transporter 5-HTTLPR polymorphism in the association between sleep quality and affect.

    PubMed

    Hartmann, Jessica A; Wichers, Marieke; van Bemmel, Alex L; Derom, Catherine; Thiery, Evert; Jacobs, Nele; van Os, Jim; Simons, Claudia J P

    2014-07-01

    A link between sleep and affect is well-known. Serotonin (5-HT) is associated with the regulation of affective as well as sleep-related processes. A functional polymorphism in the serotonin transporter gene (5-HTTLPR) has been associated with serotonergic functioning. The present study investigated whether allelic variation of this gene moderates the association between nighttime subjective sleep quality and affect the following day. A population-based sample of 361 ethnically homogenous adult female twins underwent a five day protocol based on the experience sampling method (ESM), assessing momentary negative affect, positive affect, and subjective sleep quality repeatedly and prospectively. There was a significant interaction between sleep quality and genotype in predicting positive affect the next day: carriers of one (n=167) or two S-alleles (n=78) had a significantly steeper slope compared to LL carriers (n=116) (χ(2)=4.16, p=.042 and χ(2)=3.90, p=.048 respectively). The association between subjective sleep quality and positive affect the next day varied as a function of 5-HTTLPR: it was stronger in carriers of at least one copy of the S-allele compared to homozygous L-carriers, supporting a link between sleep and affect regulation, in which serotonin may play a role. However, these results are preliminary and require replication. Copyright © 2014 Elsevier B.V. and ECNP. All rights reserved.

  11. DsSWEET17, a Tonoplast-Localized Sugar Transporter from Dianthus spiculifolius, Affects Sugar Metabolism and Confers Multiple Stress Tolerance in Arabidopsis.

    PubMed

    Zhou, Aimin; Ma, Hongping; Feng, Shuang; Gong, Shufang; Wang, Jingang

    2018-05-24

    Plant SWEETs (Sugars Will Eventually be Exported Transporters) affect the growth of plants by regulating the transport of sugar from source to sink and its intracellular transport between different organelles. In this study, DsSWEET17 from Dianthus spiculifolius was identified and characterized. Real-time quantitative PCR analysis revealed that the expression of DsSWEET17 was affected by exogenous application of fructose and glucose as well as under salt, osmotic, and oxidation stress. Colocalization experiments showed that the DsSWEET17-GFP (green fluorescent protein) fusion protein was localized to the FM4-64-labeled tonoplasts in Arabidopsis . Compared to the wild type, the transgenic Arabidopsis seedlings overexpressing DsSWEET17 had longer roots, greater fresh weight, and a faster root growth upon exogenous application of fructose. Furthermore, transgenic Arabidopsis seedlings had significantly higher fructose accumulation than was observed for the wild-type seedlings. The analysis of root length revealed that transgenic Arabidopsis had higher tolerance to salt, osmotic, and oxidative stresses. Taken together, our results suggest that DsSWEET17 may be a tonoplast sugar transporter, and its overexpression affects sugar metabolism and confers multiple stress tolerance in Arabidopsis .

  12. 3D model of radionuclide dispersion in coastal areas with multifraction cohesive and non-cohesive sediments

    NASA Astrophysics Data System (ADS)

    Brovchenko, Igor; Maderich, Vladimir; Jung, Kyung Tae

    2015-04-01

    We developed new radionuclide dispersion model that may be used in coastal areas, rivers and estuaries with non-uniform distribution of suspended and bed sediments both cohesive and non-cohesive types. Model describes radionuclides concentration in dissolved phase in water column, particulated phase on suspended sediments on each sediment class types, bed sediments and pore water. The transfer of activity between the water column and the pore water in the upper layer of the bottom sediment is governed by diffusion processes. The phase exchange between dissolved and particulate radionuclides is written in terms of desorption rate a12 (s-1) and distribution coefficient Kd,iw and Kd,ib (m3/kg) for water column and for bottom deposit, respectively. Following (Periáñez et al., 1996) the dependence of distribution coefficients is inversely proportional to the sediment particle size. For simulation of 3D circulation, turbulent diffusion and wave fields a hydrostatic model SELFE (Roland et. al. 2010) that solves Reynolds-stress averaged Navier-Stokes (RANS) equations and Wave Action transport equation on the unstructured grids was used. Simulation of suspended sediment concentration and bed sediments composition is based on (L. Pinto et. al., 2012) approach that originally was developed for non-cohesive sediments. In present study we modified this approach to include possibility of simulating mixture of cohesive and non-cohesive sediments by implementing parameterizations for erosion and deposition fluxes for cohesive sediments and by implementing flocculation model for determining settling velocity of cohesive flocs. Model of sediment transport was calibrated on measurements in the Yellow Sea which is shallow tidal basin with strongly non-uniform distribution of suspended and bed sediments. Model of radionuclide dispersion was verified on measurements of 137Cs concentration in surface water and bed sediments after Fukushima Daiichi nuclear accident. References Peri

  13. Fallout Radionuclides as Tracers in Southern Alps Sediment Studies

    NASA Astrophysics Data System (ADS)

    Carey, A. E.; Karanovic, Z.; Dibb, J. E.

    2005-12-01

    The primary geologic processes shaping the landscape are physical and chemical weathering and the transport of solids by erosion. As part of our studies on the coupling between physical erosion and chemical weathering, we have determined depositional and erosional processes in New Zealand's tectonically active, rapidly uplifting Southern Alps, specifically focusing on the Hokitika River watershed. The South Island watersheds we are studying are subject to extreme orographic precipitation (as high as 7-12 m annually) and high landslide frequency, but have modest topography due to the rapid erosion. In concert with our studies of chemical weathering and physical erosion, we have used the atmospherically-delivered radionuclides of 7Be, 137Cs and 210Pbexcess to determine the relative magnitude of particle residence time in the high elevation Cropp and Whitcombe subwatersheds and the rates of sedimentation. One- and two-box modeling with 7Be and 210Pbexcess was used to determine soil and sediment residence times. Residence time of fine suspended particles is short and particles can travel the length of the river during a single storm, probably due to the short duration, high-intensity rainfalls which produce rapidly moving, steep flood waves. The readily detected peak of 137Cs activity in Cropp terrace and Hokitika gorge soils yielded sedimentation rates of 0.06-0.12 cm yr-1. At the Cropp terrace, inventory models of 210Pbexcess yield soil accumulation rates significantly less than those determined using the 137Cs activity peak. We attribute the differences to overestimation of 210Pbexcess in surface soils and to contrasting fallout fluxes, geochemical behavior and radionuclide contents of sedimenting materials. Total inventories of 210Pbexcess in soils greatly exceed the expected direct atmospheric deposition, suggesting that lateral transport of this nuclide occurs within the watershed. At the Hokitika gorge, all nuclides studied yielded similar sedimentation rates

  14. Distribution of artificial radionuclides in particle-size fractions of soil on fallout plumes of nuclear explosions.

    PubMed

    Kabdyrakova, A M; Lukashenko, S N; Mendubaev, A T; Kunduzbayeva, A Ye; Panitskiy, A V; Larionova, N V

    2018-06-01

    In this paper are analyzed the artificial radionuclide distributions ( 137 Cs, 90 Sr, 241 Am, 239+240 Pu) in particle-size fractions of soils from two radioactive fallout plumes at the Semipalatinsk Test Site. These plumes were generated by a low-yield surface nuclear test and a surface non-nuclear experiment with insignificant nuclear energy release, respectively, and their lengths are approximately 3 and 0,65 km. In contrast with the great majority of similar studies performed in areas affected mainly by global fallout where adsorbing radionuclides such as Pu are mainly associated with the finest soil fractions, in this study it was observed that along both analyzed plumes the highest activity concentrations are concentrated in the coarse soil fractions. At the plume generated by the surface nuclear test, the radionuclides are concentrated mainly in the 1000-500 μm soil fraction (enrichment factor values ranging from 1.2 to 3.8), while at the plume corresponding to the surface non-nuclear test is the 500-250 μm soil fraction the enriched one by technogenic radionuclides (enrichment factor values ranging from 1.1 to 5.1). In addition, the activity concentration distributions among the different soil size fractions are similar for all radionuclides in both plumes. All the obtained data are in agreement with the hypothesis indicating that enrichment observed in the coarse fractions is caused by the presence of radioactive particles resulted from the indicated nuclear tests. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Dosimetric evaluation of radionuclides for VCAM-1-targeted radionuclide therapy of early brain metastases.

    PubMed

    Falzone, Nadia; Ackerman, Nicole L; Rosales, Liset de la Fuente; Bernal, Mario A; Liu, Xiaoxuan; Peeters, Sarah Gja; Soto, Manuel Sarmiento; Corroyer-Dulmont, Aurélien; Bernaudin, Myriam; Grimoin, Elisa; Touzani, Omar; Sibson, Nicola R; Vallis, Katherine A

    2018-01-01

    Brain metastases develop frequently in patients with breast cancer, and present a pressing therapeutic challenge. Expression of vascular cell adhesion molecule 1 (VCAM-1) is upregulated on brain endothelial cells during the early stages of metastasis and provides a target for the detection and treatment of early brain metastases. The aim of this study was to use a model of early brain metastasis to evaluate the efficacy of α-emitting radionuclides, 149 Tb, 211 At, 212 Pb, 213 Bi and 225 Ac; β-emitting radionuclides, 90 Y, 161 Tb and 177 Lu; and Auger electron (AE)-emitters 67 Ga, 89 Zr, 111 In and 124 I, for targeted radionuclide therapy (TRT). Histologic sections and two photon microscopy of mouse brain parenchyma were used to inform a cylindrical vessel geometry using the Geant4 general purpose Monte Carlo (MC) toolkit with the Geant4-DNA low energy physics models. Energy deposition was evaluated as a radial function and the resulting phase spaces were superimposed on a DNA model to estimate double-strand break (DSB) yields for representative β- and α-emitters, 177 Lu and 212 Pb. Relative biological effectiveness (RBE) values were determined by only evaluating DNA damage due to physical interactions. 177 Lu produced 2.69 ± 0.08 DSB per GbpGy, without significant variation from the lumen of the vessel to a radius of 100 µm. The DSB yield of 212 Pb included two local maxima produced by the 6.1 MeV and 8.8 MeV α-emissions from decay products, 212 Bi and 212 Po, with yields of 7.64 ± 0.12 and 9.15 ± 0.24 per GbpGy, respectively. Given its higher DSB yield 212 Pb may be more effective for short range targeting of early micrometastatic lesions than 177 Lu. MC simulation of a model of early brain metastases provides invaluable insight into the potential efficacy of α-, β- and AE-emitting radionuclides for TRT. 212 Pb, which has the attributes of a theranostic radionuclide since it can be used for SPECT imaging, showed a favorable dose profile and RBE.

  16. Radionuclides, radiotracers and radiopharmaceuticals for in vivo diagnosis

    NASA Astrophysics Data System (ADS)

    Wiebe, Leonard I.

    Radioactive tracers for in vivo clinical diagnosis fall within a narrow, strictly-defined set of specifications in respect of their physical properties, chemical and biochemical characteristics, and (approved) medical applications. The type of radioactive decay and physical half-life of the radionuclide are immutable properties which, along with the demands of production and supply, limit the choice of radionuclides used in medicine to only a small fraction of those known to exist. In use, the biochemical and physiological properties of a radiotracer are dictated by the chemical form of the radionuclide. This chemical form may range from elemental, molecular or ionic, to complex compounds formed by coordinate or covalent bonding of the radionuclide to either simple organic or inorganic molecules, or complex macromolecules. Few of the radiotracers which are tested in model systems ever become radiopharmaceuticals in the strictest sense. Radionuclides, radiotracers and radiopharmaceuticals in use are reviewed. Drug legislation and regulations concerning drug manufacture, as well as hospital ethical constraints and legislation concerning unsealed sources of radiation must all be satisfied in order to translate a radiopharmaceutical from the laboratory to clinical use.

  17. Radionuclide demonstration of urinary extravasation with ureteral obstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, V.A.; Chiang, L.C.; Meade, R.C.

    Two cases of urinary extravasation with ureteral obstruction demonstrated by the radionuclide studies are reported. The value of radionuclide studies in patients with renal transplantation has been reported previously, but studies in patients without transplantation have rarely been described in the literature. Ureteral obstruction may cause urinary extravasation, which may be demonstrated by radionuclide studies even when radiologic studies are inconclusive. In one case, urinary extravasation was detected in the sitting position but not in the supine position. Renal imaging should probably be performed not only with multiple projections but also in different positions.

  18. Dynamics and transformations of radionuclides in soils and ecosystem health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellows, Robert J.; Ainsworth, Calvin C.; Driver, Crystal J.

    1998-12-01

    The chemical behavior of radionuclides can vary widely in soil and sediment environments. Equally important, for a given radionuclide the physico-chemical properties of the solids and aqueous phase can greatly influence a radionuclides behavior. Radionuclides can conceivably occur in soils as soluble-free, inorganic-soluble-complexed, organic-soluble, complexed, adsorbed, precipitated, coprecipitated, or solid structural species. While it is clear that an assessment of a radionuclide?s soil chemistry and potential shifts in speciation will yield a considerable understanding of its behavior in the natural environment, it does not directly translate to bioavailability or its impact on ecosystems health. The soil chemical factors have tomore » be linked to food chain considerations and other ecological parameters that directly tie to an analysis of ecosystem health. In general, the movement of radionuclides from lower to higher trophic levels diminishes with each trophic level in both aqua tic and terrestrial systems. In some cases, transfer is limited because of low absorption/assimilation by successive trophic organisms (Pu, U); for other radionuclides (Tc, H) assimilation may be high but rapid metabolic turnover and low retention greatly reduce tissue concentrations available to predator species. Still others are chemical analogs of essential elements whose concentrations are maintained under strict metabolic control in tissues (Cs) or are stored in tissues seldom consumed by other organisms (Sr storage in exoskeleton, shells, and bone). Therefore, the organisms that receive the greatest ingestion exposures are those in lower trophic positions or are in higher trophic levels but within simple, short food chains. Food source, behavior, and habitat influence the accumulation of radionuclides in animals.« less

  19. Method for preparing radionuclide-labeled chelating agent-ligand complexes

    DOEpatents

    Meares, Claude F.; Li, Min; DeNardo, Sally J.

    1999-01-01

    Radionuclide-labeled chelating agent-ligand complexes that are useful in medical diagnosis or therapy are prepared by reacting a radionuclide, such as .sup.90 Y or .sup.111 In, with a polyfunctional chelating agent to form a radionuclide chelate that is electrically neutral; purifying the chelate by anion exchange chromatography; and reacting the purified chelate with a targeting molecule, such as a monoclonal antibody, to form the complex.

  20. Influence of hydrological and geochemical processes on the transport of chelated metals and chromate in fractured shale bedrock

    NASA Astrophysics Data System (ADS)

    Jardine, P. M.; Mehlhorn, T. L.; Larsen, I. L.; Bailey, W. B.; Brooks, S. C.; Roh, Y.; Gwo, J. P.

    2002-03-01

    Field-scale processes governing the transport of chelated radionuclides in groundwater remain conceptually unclear for highly structured, heterogeneous environments. The objectives of this research were to provide an improved understanding and predictive capability of the hydrological and geochemical mechanisms that control the transport behavior of chelated radionuclides and metals in anoxic subsurface environments that are complicated by fracture flow and matrix diffusion. Our approach involved a long-term, steady-state natural gradient field experiment where nonreactive Br - and reactive 57Co(II)EDTA 2-, 109CdEDTA 2-, and 51Cr(VI) were injected into a fracture zone of a contaminated fractured shale bedrock. The spatial and temporal distribution of the tracer and solutes was monitored for 500 days using an array of groundwater sampling wells instrumented within the fast-flowing fracture regime and a slower flowing matrix regime. The tracers were preferentially transported along strike-parallel fractures coupled with the slow diffusion of significant tracer mass into the bedrock matrix. The chelated radionuclides and metals were significantly retarded by the solid phase with the mechanisms of retardation largely due to redox reactions and sorption coupled with mineral-induced chelate-radionuclide dissociation. The formation of significant Fe(III)EDTA - byproduct that accompanied the dissociation of the radionuclide-chelate complexes was believed to be the result of surface interactions with biotite which was the only Fe(III)-bearing mineral phase present in these Fe-reducing environments. These results counter current conceptual models that suggest chelated contaminants move conservatively through Fe-reducing environments since they are devoid of Fe-oxyhydroxides that are known to aggressively compete for chelates in oxic regimes. Modeling results further demonstrated that chelate-radionuclide dissociation reactions were most prevalent along fractures where

  1. Mobile detection system to evaluate reactive hyperemia using radionuclide plethysmography.

    PubMed

    Harel, François; Ngo, Quam; Finnerty, Vincent; Hernandez, Edgar; Khairy, Paul; Dupuis, Jocelyn

    2007-08-01

    We validated a novel mobile detection system to evaluate reactive hyperemia using the radionuclide plethysmography technique. Twenty-six subjects underwent simultaneously radionuclide plethysmography with strain gauge plethysmography. Strain gauge and radionuclide methods showed excellent reproducibility with intraclass correlation coefficients of 0.96 and 0.89 respectively. There was also a good correlation of flows between the two methods during reactive hyperemia (r = 0.87). We conclude that radionuclide plethysmography using this mobile detection system is a non-invasive alternative to assess forearm blood flow and its dynamic variations during reactive hyperemia.

  2. Activity concentration and spatial distribution of radionuclides in marine sediments close to the estuary of Shatt al-Arab/Arvand Rud River, the Gulf.

    PubMed

    Patiris, D L; Tsabaris, C; Anagnostou, C L; Androulakaki, E G; Pappa, F K; Eleftheriou, G; Sgouros, G

    2016-06-01

    Tigris and Euphrates rivers both emerge in eastern Turkey and cross Syria and Iraq. They unite to Shatt al-Arab/Arvand Rud River and discharge in Arabic/Persian Gulf. The activity concentration of natural and anthropogenic radionuclides was measured during the August of 2011 in a number of surficial sediment samples collected from the seabed along an almost straight line beginning near the estuary mouth and extending seaward. The results exhibited low activity concentration levels and an almost homogeneous spatial distribution except locations where sediment of biogenic origin, poor in radionuclides, dilute their concentrations. Dose rates absorbed by reference marine biota were calculated by the ERICA Assessment Tool considering the contribution of 40 K. The results revealed a relatively low impact of 40 K mainly to species living in, on and close to the seabed. Also, statistical association of radionuclides with selected stable elements (Ca, Ba and Sr) did not indicate presence of by-products related with oil and gas exploitation and transportation activities. Moreover, a semi-empirical sedimentology model applied to reproduce seabed granulometric facies based entirely on radionuclides activity concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Mass spectrometry of long-lived radionuclides

    NASA Astrophysics Data System (ADS)

    Becker, Johanna Sabine

    2003-10-01

    The capability of determining element concentrations at the trace and ultratrace level and isotope ratios is a main feature of inorganic mass spectrometry. The precise and accurate determination of isotope ratios of long-lived natural and artificial radionuclides is required, e.g. for their environmental monitoring and health control, for studying radionuclide migration, for age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, for quality assurance and determination of the burn-up of fuel material in a nuclear power plant, for reprocessing plants, nuclear material accounting and radioactive waste control. Inorganic mass spectrometry, especially inductively coupled plasma mass spectrometry (ICP-MS) as the most important inorganic mass spectrometric technique today, possesses excellent sensitivity, precision and good accuracy for isotope ratio measurements and practically no restriction with respect to the ionization potential of the element investigated—therefore, thermal ionization mass spectrometry (TIMS), which has been used as the dominant analytical technique for precise isotope ratio measurements of long-lived radionuclides for many decades, is being replaced increasingly by ICP-MS. In the last few years instrumental progress in improving figures of merit for the determination of isotope ratio measurements of long-lived radionuclides in ICP-MS has been achieved by the application of a multiple ion collector device (MC-ICP-MS) and the introduction of the collision cell interface in order to dissociate disturbing argon-based molecular ions, to reduce the kinetic energy of ions and neutralize the disturbing noble gas ions (e.g. of 129Xe + for the determination of 129I). The review describes the state of the art and the progress of different inorganic mass spectrometric techniques such as ICP-MS, laser ablation ICP-MS vs. TIMS, glow discharge mass spectrometry, secondary ion mass spectrometry, resonance ionization mass

  4. PCR detection of groundwater bacteria associated with colloidal transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-02-29

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineralmore » transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.« less

  5. Transporters affecting biochemical test results: Creatinine-drug interactions.

    PubMed

    Chu, X; Bleasby, K; Chan, G H; Nunes, I; Evers, R

    2016-11-01

    Creatinine is eliminated by the kidneys through a combination of glomerular filtration and active transport. Drug-induced increases in serum creatinine (SCr) and/or reduced creatinine renal clearance are used as a marker for acute kidney injury. However, inhibition of active transport of creatinine can result in reversible and, therefore, benign increases in SCr levels. Herein, the transporters involved in creatinine clearance are discussed, in addition to limitations of using creatinine as a biomarker for kidney damage. © 2016 American Society for Clinical Pharmacology and Therapeutics.

  6. Americium, Cesium, and Plutonium Colloid-Facilitated Transport in a Groundwater/Bentonite/Fracture Fill Material System: Column Experiments and Model Results

    NASA Astrophysics Data System (ADS)

    Dittrich, T. M.; Boukhalfa, H.; Reimus, P. W.

    2014-12-01

    The objective of this study was to investigate and quantify the effects of desorption kinetics and colloid transport on radionuclides with different sorption affinities. We focused on quantifying transport mechanisms important for upscaling in time and distance. This will help determine the long-term fate and transport of radionuclides to aid in risk assessments. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model crystalline rock repository system because the system has been thoroughly studied and field experiments involving radionuclides have already been conducted. Working on this system provides a unique opportunity to compare lab experiments with field-scale observations. Weathered fracture fill material (FFM) and bentonite used as backfill at the GTS were characterized (e.g., BET, SEM/EDS, QXRD), and batch and breakthrough column experiments were conducted. Solutions were prepared in synthetic groundwaters that matched the natural water chemistry. FFM samples were crushed, rinsed, sieved (150-355 μm), and equilibrated with synthetic groundwater. Bentonite was crushed, sodium-saturated, equilibrated with synthetic groundwater, and settled to yield a stable suspension. Suspensions were equilibrated with Am, Cs, or Pu. All experiments were conducted with Teflon®materials to limit sorption to system components. After radionuclide/colloid injections reached stability, radionuclide-free solutions were injected to observe the desorption and release behavior. Aliquots of effluent were measured for pH, colloid concentration, and total and dissolved radionuclides. Unanalyzed effluent from the first column was then injected through a second column of fresh material. The process was repeated for a third column and the results of all three breakthrough curves were modeled with a multi-site/multi-rate MATLAB code to elucidate the sorption rate coefficients and binding site densities of the bentonite colloids and

  7. Developments in Bioremediation of Soils and Sediments Pollutedwith Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazen, Terry C.; Tabak, Henry H.

    2007-03-15

    Bioremediation of metals and radionuclides has had manyfield tests, demonstrations, and full-scale implementations in recentyears. Field research in this area has occurred for many different metalsand radionuclides using a wide array of strategies. These strategies canbe generally characterized in six major categories: biotransformation,bioaccumulation/bisorption, biodegradation of chelators, volatilization,treatment trains, and natural attenuation. For all field applicationsthere are a number of critical biogeochemical issues that most beaddressed for the successful field application. Monitoring andcharacterization parameters that are enabling to bioremediation of metalsand radionuclides are presented here. For each of the strategies a casestudy is presented to demonstrate a field application that usesmore » thisstrategy.« less

  8. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Manual radionuclide applicator system. 892.5650... planning computer programs, and accessories. (b) Classification. Class I (general controls). The device is...

  9. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Manual radionuclide applicator system. 892.5650... planning computer programs, and accessories. (b) Classification. Class I (general controls). The device is...

  10. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Manual radionuclide applicator system. 892.5650... planning computer programs, and accessories. (b) Classification. Class I (general controls). The device is...

  11. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Manual radionuclide applicator system. 892.5650... planning computer programs, and accessories. (b) Classification. Class I (general controls). The device is...

  12. 21 CFR 892.5650 - Manual radionuclide applicator system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... system. (a) Identification. A manual radionuclide applicator system is a manually operated device... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Manual radionuclide applicator system. 892.5650... planning computer programs, and accessories. (b) Classification. Class I (general controls). The device is...

  13. Gallbladder radionuclide scan (image)

    MedlinePlus

    ... gallbladder radionuclide scan is performed by injecting a tracer (radioactive chemical) into the bloodstream. A gamma camera ... detect the gamma rays being emitted from the tracer, and the image of where the tracer is ...

  14. Fukushima Daiichi Radionuclide Inventories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoni, Jeffrey N.; Jankovsky, Zachary Kyle

    Radionuclide inventories are generated to permit detailed analyses of the Fukushima Daiichi meltdowns. This is necessary information for severe accident calculations, dose calculations, and source term and consequence analyses. Inventories are calculated using SCALE6 and compared to values predicted by international researchers supporting the OECD/NEA's Benchmark Study on the Accident at Fukushima Daiichi Nuclear Power Station (BSAF). Both sets of inventory information are acceptable for best-estimate analyses of the Fukushima reactors. Consistent nuclear information for severe accident codes, including radionuclide class masses and core decay powers, are also derived from the SCALE6 analyses. Key nuclide activity ratios are calculated asmore » functions of burnup and nuclear data in order to explore the utility for nuclear forensics and support future decommissioning efforts.« less

  15. Impact of natural organic matter on uranium transport through saturated geologic materials: from molecular to column scale.

    PubMed

    Yang, Yu; Saiers, James E; Xu, Na; Minasian, Stefan G; Tyliszczak, Tolek; Kozimor, Stosh A; Shuh, David K; Barnett, Mark O

    2012-06-05

    The risk stemming from human exposure to actinides via the groundwater track has motivated numerous studies on the transport of radionuclides within geologic environments; however, the effects of waterborne organic matter on radionuclide mobility are still poorly understood. In this study, we compared the abilities of three humic acids (HAs) (obtained through sequential extraction of a peat soil) to cotransport hexavalent uranium (U) within water-saturated sand columns. Relative breakthrough concentrations of U measured upon elution of 18 pore volumes increased from undetectable levels (<0.001) in an experiment without HAs to 0.17 to 0.55 in experiments with HAs. The strength of the HA effect on U mobility was positively correlated with the hydrophobicity of organic matter and NMR-detected content of alkyl carbon, which indicates the possible importance of hydrophobic organic matter in facilitating U transport. Carbon and uranium elemental maps collected with a scanning transmission X-ray microscope (STXM) revealed uneven microscale distribution of U. Such molecular- and column-scale data provide evidence for a critical role of hydrophobic organic matter in the association and cotransport of U by HAs. Therefore, evaluations of radionuclide transport within subsurface environments should consider the chemical characteristics of waterborne organic substances, especially hydrophobic organic matter.

  16. Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents in the coming decades

    NASA Astrophysics Data System (ADS)

    Christoudias, T.; Proestos, Y.; Lelieveld, J.

    2014-05-01

    We estimate the global risk from the release and atmospheric dispersion of radionuclides from nuclear power plant accidents using the EMAC atmospheric chemistry-general circulation model. We included all nuclear reactors that are currently operational, under construction and planned or proposed. We implemented constant continuous emissions from each location in the model and simulated atmospheric transport and removal via dry and wet deposition processes over 20 years (2010-2030), driven by boundary conditions based on the IPCC A2 future emissions scenario. We present global overall and seasonal risk maps for potential surface layer concentrations and ground deposition of radionuclides, and estimate potential doses to humans from inhalation and ground-deposition exposures to radionuclides. We find that the risk of harmful doses due to inhalation is typically highest in the Northern Hemisphere during boreal winter, due to relatively shallow boundary layer development and limited mixing. Based on the continued operation of the current nuclear power plants, we calculate that the risk of radioactive contamination to the citizens of the USA will remain to be highest worldwide, followed by India and France. By including stations under construction and those that are planned and proposed, our results suggest that the risk will become highest in China, followed by India and the USA.

  17. Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents in the coming decades

    NASA Astrophysics Data System (ADS)

    Christoudias, T.; Proestos, Y.; Lelieveld, J.

    2013-11-01

    We estimate the global risk from the release and atmospheric dispersion of radionuclides from nuclear power plant accidents using the EMAC atmospheric chemistry-general circulation model. We included all nuclear reactors that are currently operational, under construction and planned or proposed. We implemented constant continuous emissions from each location in the model and simulated atmospheric transport and removal via dry and wet deposition processes over 20 yr (2010-2030), driven by boundary conditions based on the IPCC A2 future emissions scenario. We present global overall and seasonal risk maps for potential surface layer concentrations and ground deposition of radionuclides, and estimate potential dosages to humans from the inhalation and the exposure to ground deposited radionuclides. We find that the risk of harmful doses due to inhalation is typically highest during boreal winter due to relatively shallow boundary layer development and reduced mixing. Based on the continued operation of the current nuclear power plants, we calculate that the risk of radioactive contamination to the citizens of the USA will remain to be highest worldwide, followed by India and France. By including stations under construction and those that are planned and proposed our results suggest that the risk will become highest in China, followed by India and the USA.

  18. Global Risk from the Atmospheric Dispersion of Radionuclides by Nuclear Power Plant Accidents in the Coming Decades

    NASA Astrophysics Data System (ADS)

    Christoudias, T.; Proestos, Y.; Lelieveld, J.

    2014-12-01

    We estimate the global risk from the release and atmospheric dispersion of radionuclides from nuclear power plant accidents using the EMAC atmospheric chemistry-general circulation model. We included all nuclear reactors that are currently operational, under construction and planned or proposed. We implemented constant continuous emissions from each location in the model and simulated atmospheric transport and removal via dry and wet deposition processes over 20 years (2010-2030), driven by boundary conditions based on the IPCC A2 future emissions scenario. We present global overall and seasonal risk maps for potential surface layer concentrations and ground deposition of radionuclides, and estimate potential doses to humans from inhalation and ground-deposition exposures to radionuclides. We find that the risk of harmful doses due to inhalation is typically highest in the Northern Hemisphere during boreal winter, due to relatively shallow boundary layer development and limited mixing. Based on the continued operation of the current nuclear power plants, we calculate that the risk of radioactive contamination to the citizens of the USA will remain to be highest worldwide, followed by India and France. By including stations under construction and those that are planned and proposed, our results suggest that the risk will become highest in China, followed by India and the USA.

  19. Microtomography-based Inter-Granular Network for the simulation of radionuclide diffusion and sorption in a granitic rock

    NASA Astrophysics Data System (ADS)

    Iraola, Aitor; Trinchero, Paolo; Voutilainen, Mikko; Gylling, Björn; Selroos, Jan-Olof; Molinero, Jorge; Svensson, Urban; Bosbach, Dirk; Deissmann, Guido

    2017-12-01

    Field investigation studies, conducted in the context of safety analyses of deep geological repositories for nuclear waste, have pointed out that in fractured crystalline rocks sorbing radionuclides can diffuse surprisingly long distances deep into the intact rock matrix; i.e. much longer distances than those predicted by reactive transport models based on a homogeneous description of the properties of the rock matrix. Here, we focus on cesium diffusion and use detailed micro characterisation data, based on micro computed tomography, along with a grain-scale Inter-Granular Network model, to offer a plausible explanation for the anomalously long cesium penetration profiles observed in these in-situ experiments. The sparse distribution of chemically reactive grains (i.e. grains belonging to sorbing mineral phases) is shown to have a strong control on the diffusive patterns of sorbing radionuclides. The computed penetration profiles of cesium agree well with an analytical model based on two parallel diffusive pathways. This agreement, along with visual inspection of the spatial distribution of cesium concentration, indicates that for sorbing radionuclides the medium indeed behaves as a composite system, with most of the mass being retained close to the injection boundary and a non-negligible part diffusing faster along preferential diffusive pathways.

  20. Radionuclide-binding compound, a radionuclide delivery system, a method of making a radium complexing compound, a method of extracting a radionuclide, and a method of delivering a radionuclide

    DOEpatents

    Fisher, Darrell R.; Wai, Chien M.; Chen, Xiaoyuan

    2000-01-01

    The invention pertains to compounds which specifically bind radionuclides, and to methods of making radionuclide complexing compounds. In one aspect, the invention includes a radionuclide delivery system comprising: a) a calix[n]arene-crown-[m]-ether compound, wherein n is an integer greater than 3, and wherein m is an integer greater than 3, the calix[n]arene-crown-[m]-ether compound comprising at least two ionizable groups; and b) an antibody attached to the calix[n]arene-crown-[m]-ether compound. In another aspect, the invention includes a method of making a radium complexing compound, comprising: a) providing a calix[n]arene compound, wherein n is an integer greater than 3, the calix[n]arene compound comprising n phenolic hydroxyl groups; b) providing a crown ether precursor, the crown ether precursor comprising a pair of tosylated ends; c) reacting the pair of tosylated ends with a pair of the phenolic hydroxyl groups to convert said pair of phenolic hydroxyl groups to ether linkages, the ether linkages connecting the crown ether precursor to the calix[n]arene to form a calix[n]arene-crown-[m]-ether compound, wherein m is an integer greater than 3; d) converting remaining phenolic hydroxyl groups to esters; e) converting the esters to acids, the acids being proximate a crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound; and f) providing a Ra.sup.2+ ion within the crown-[m]-ether portion of the calix[n]arene-crown-[m]-ether compound.

  1. Evidence of Rapid Localized Groundwater Transport in Volcanic Tuffs Beneath Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Freifeld, B.; Walker, J.; Doughty, C.; Kryder, L.; Gilmore, K.; Finsterle, S.; Sampson, J.

    2006-12-01

    At Yucca Mountain, Nevada, the proposed location for a national high-level nuclear waste repository radionuclides, if released from breached waste storage canisters, could make their way down through the unsaturated zone (where the repository would be located) into the underlying groundwater and eventually back to the biosphere (i.e., where they could adversely affect human health). The compliance boundary, 18 km south of the proposed repository, is defined as the location where a human being using groundwater would be maximally exposed to radionuclides outside of an exclusion zone set around the repository. It is thus important to predict how these radionuclides would be transported by the groundwater flow, and to predict both the concentration of and the rate at which any leaked radionuclides would arrive at the compliance boundary. We recently conducted a study of groundwater flux in the saturated zone through the Crater Flat Group, in a wellbore 15 km south of the proposed repository. The Crater Flat Group, a sequence of ash-flow tuff formations, is laterally extensive beneath the footprint of the proposed repository. Because of its intense fracturing and high permeabilities, the Bullfrog tuff is the primary unit within the Crater Flat Group through which radionuclides would be transported, as indicated by groundwater models. In a new wellbore, NC-EWDP- 24PB, we conducted flowing electrical conductivity logging (FEC), an open-wellbore logging technique, to identify flowing fractures prior to wellbore completion. While the FEC logs have identified transmissive zones, quantitative interpretation of the FEC results was difficult because differences in hydraulic heads in different flowing intervals created significant intraborehole fluid flow. The well was subsequently backfilled and completed with a distributed thermal perturbation sensor (DTPS), which introduces a thermal pulse to the wellbore and uses the thermal transient to estimate groundwater flux

  2. Quantitative analysis of soil chromatography. I. Water and radionuclide transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reeves, M.; Francis, C.W.; Duguid, J.O.

    Soil chromatography has been used successfully to evaluate relative mobilities of pesticides and nuclides in soils. Its major advantage over the commonly used suspension technique is that it more accurately simulates field conditions. Under such conditions the number of potential exchange sites is limited both by the structure of the soil matrix and by the manner in which the carrier fluid moves through this structure. The major limitation of the chromatographic method, however, has been its qualitative nature. This document represents an effort to counter this objection. A theoretical basis is specified for the transport both of the carrier elutingmore » fluid and of the dissolved constituent. A computer program based on this theory is developed which optimizes the fit of theoretical data to experimental data by automatically adjusting the transport parameters, one of which is the distribution coefficient k/sub d/. This analysis procedure thus constitutes an integral part of the soil chromatographic method, by means of which mobilities of nuclides and other dissolved constituents in soils may be quantified.« less

  3. Livermore Accelerator Source for Radionuclide Science (LASRS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Scott; Bleuel, Darren; Johnson, Micah

    The Livermore Accelerator Source for Radionuclide Science (LASRS) will generate intense photon and neutron beams to address important gaps in the study of radionuclide science that directly impact Stockpile Stewardship, Nuclear Forensics, and Nuclear Material Detection. The co-location of MeV-scale neutral and photon sources with radiochemical analytics provides a unique facility to meet current and future challenges in nuclear security and nuclear science.

  4. Issues Involving The OSI Concept of Operation For Noble Gas Radionuclide Detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrigan, C R; Sun, Y

    2011-01-21

    The development of a technically sound protocol for detecting the subsurface release of noble gas radionuclides is critical to the successful operation of an on site inspection (OSI) under the CTBT and has broad ramifications for all aspects of the OSI regime including the setting of specifications for both sampling and analysis equipment used during an OSI. With NA-24 support, we are investigating a variety of issues and concerns that have significant bearing on policy development and technical guidance regarding the detection of noble gases and the creation of a technically justifiable OSI concept of operation. The work at LLNLmore » focuses on optimizing the ability to capture radioactive noble gases subject to the constraints of possible OSI scenarios. This focus results from recognizing the difficulty of detecting gas releases in geologic environments - a lesson we learned previously from the LLNL Non-Proliferation Experiment (NPE). Evaluation of a number of important noble gas detection issues, potentially affecting OSI policy, has awaited the US re-engagement with the OSI technical community. Thus, there have been numerous issues to address during the past 18 months. Most of our evaluations of a sampling or transport issue necessarily involve computer simulations. This is partly due to the lack of OSI-relevant field data, such as that provided by the NPE, and partly a result of the ability of LLNL computer-based models to test a range of geologic and atmospheric scenarios far beyond what could ever be studied in the field making this approach very highly cost effective. We review some highlights of the transport and sampling issues we have investigated during the past year. We complete the discussion of these issues with a description of a preliminary design for subsurface sampling that is intended to be a practical solution to most if not all the challenges addressed here.« less

  5. 21 CFR 892.1420 - Radionuclide test pattern phantom.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radionuclide test pattern phantom. 892.1420 Section 892.1420 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1420 Radionuclide test pattern phantom...

  6. External dose-rate conversion factors of radionuclides for air submersion, ground surface contamination and water immersion based on the new ICRP dosimetric setting.

    PubMed

    Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong

    2013-01-01

    For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13.

  7. External dose-rate conversion factors of radionuclides for air submersion, ground surface contamination and water immersion based on the new ICRP dosimetric setting

    PubMed Central

    Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong

    2013-01-01

    For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13. PMID:23542764

  8. Production of novel diagnostic radionuclides in small medical cyclotrons.

    PubMed

    Synowiecki, Mateusz Adam; Perk, Lars Rutger; Nijsen, J Frank W

    2018-01-01

    The global network of cyclotrons has expanded rapidly over the last decade. The bulk of its industrial potential is composed of small medical cyclotrons with a proton energy below 20 MeV for radionuclides production. This review focuses on the recent developments of novel medical radionuclides produced by cyclotrons in the energy range of 3 MeV to 20 MeV. The production of the following medical radionuclides will be described based on available literature sources: Tc-99 m, I-123, I-124, Zr-89, Cu-64, Ga-67, Ga-68, In-111, Y-86 and Sc-44. Remarkable developments in the production process have been observed in only some cases. More research is needed to make novel radionuclide cyclotron production available for the medical industry.

  9. An air-mass trajectory study of the transport of radioactivity from Fukushima to Thessaloniki, Greece and Milan, Italy

    NASA Astrophysics Data System (ADS)

    Ioannidou, A.; Giannakaki, E.; Manolopoulou, M.; Stoulos, S.; Vagena, E.; Papastefanou, C.; Gini, L.; Manenti, S.; Groppi, F.

    2013-08-01

    Analyses of 131I, 137Cs and 134Cs in airborne aerosols were carried out in daily samples at two different sites of investigation: Thessaloniki, Greece (40° N) and Milan, Italy (45° N) after the Fukushima accident during the period of March-April, 2011. The radionuclide concentrations were determined and studied as a function of time. The 131I concentration in air over Milan and Thessaloniki peaked on April 3-4, 2011, with observed activities 467 μBq m-3 and 497 μBq m-3, respectively. The 134Cs/137Cs activity ratio values in air were around 1 in both regions, related to the burn-up history of the damaged nuclear fuel of the destroyed nuclear reactor. The high 131I/137Cs ratio, observed during the first days after the accident, followed by lower values during the following days, reflects not only the initial release ratio but also the different volatility, attachment and removal of the two isotopes during transportation due to their different physico-chemical properties. No artificial radionuclides could be detected in air after April 28, 2011 in both regions of investigation. The different maxima of airborne 131I and 134,137Cs in these two regions were related to long-range air mass transport from Japan, across the Pacific and to Central Europe. Analysis of backward trajectories was used to confirm the arrival of artificial radionuclides following atmospheric transport and processing. HYSPLIT backward trajectories were applied for the interpretation of activity variations of measured radionuclides.

  10. Diffusion and Leaching Behavior of Radionuclides in Category 3 Waste Encasement Concrete and Soil Fill Material – Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.

    2011-08-31

    of diffusion of radionuclides may be affected by the formation of structural cracks in concrete, the carbonation of the buried waste form, and any potential effect of metallic iron (in the form of rebars) on the mobility of radionuclides. The radionuclides iodine-129 ({sup 129}I), technetium-99 ({sup 99}Tc), and uranium-238 ({sup 238}U) are identified as long-term dose contributors in Category 3 waste (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, {sup 129}I, {sup 99}Tc, and carbonate-complexed {sup 238}U may readily leach into the subsurface environment (Serne et al. 1989, 1992a, b, 1993, and 1995). The leachability and/or diffusion of radionuclide species must be measured to assess the long-term performance of waste grouts when contacted with vadose-zone pore water or groundwater. Although significant research has been conducted on the design and performance of cementitious waste forms, the current protocol conducted to assess radionuclide stability within these waste forms has been limited to the Toxicity Characteristic Leaching Procedure, Method 1311 Federal Registry (EPA 1992) and ANSI/ANS-16.1 leach test (ANSI 1986). These tests evaluate the performance under water-saturated conditions and do not evaluate the performance of cementitious waste forms within the context of waste repositories which are located within water-deficient vadose zones. Moreover, these tests assess only the diffusion of radionuclides from concrete waste forms and neglect evaluating the mechanisms of retention, stability of the waste form, and formation of secondary phases during weathering, which may serve as long-term secondary hosts for immobilization of radionuclides. The results of recent investigations conducted under arid and semi-arid conditions (Al-Khayat et al. 2002; Garrabrants et al. 2002; Garrabrants and Kosson 2003; Garrabrants et al. 2004; Gervais et al. 2004; Sanchez et al. 2002; Sanchez et al. 2003) provide valuable information

  11. Exposure to radionuclides in smoke from vegetation fires.

    PubMed

    Carvalho, Fernando P; Oliveira, João M; Malta, Margarida

    2014-02-15

    Naturally occurring radionuclides of uranium, thorium, radium, lead and polonium were determined in bushes and trees and in the smoke from summer forest fires. Activity concentrations of radionuclides in smoke particles were much enriched when compared to original vegetation. Polonium-210 ((210)Po) in smoke was measured in concentrations much higher than all other radionuclides, reaching 7,255 ± 285 Bq kg(-1), mostly associated with the smaller size smoke particles (<1.0 μm). Depending on smoke particle concentration, (210)Po in surface air near forest fires displayed volume concentrations up to 70 m Bq m(-3), while in smoke-free air (210)Po concentration was about 30 μ Bq m(-3). The estimated absorbed radiation dose to an adult member of the public or a firefighter exposed for 24h to inhalation of smoke near forest fires could exceed 5 μSv per day, i.e, more than 2000 times above the radiation dose from background radioactivity in surface air, and also higher than the radiation dose from (210)Po inhalation in a chronic cigarette smoker. It is concluded that prolonged exposure to smoke allows for enhanced inhalation of radionuclides associated with smoke particles. Due to high radiotoxicity of alpha emitting radionuclides, and in particular of (210)Po, the protection of respiratory tract of fire fighters is strongly recommended. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Radionuclides in nephrology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lausanne, A.B.D.

    In 47 expert contributions, this volume provides a summary of the latest research on radionuclides in nephro-urology together with current and new clinical applications especially in renovascular hypertension, kidney transplantation, and metabolic and urological diseases. In addition, attention is given to aspects of basic renal physiology and function and possible applications of nuclear magnetic resonance and spectroscopy in nephro-urology. New testing procedures which promise to improve diagnosis, and new radiopharmaceuticals are described. The reports are divided into eight sections, the first of which features studies on the renin-angiotensin system, cisplatin, atrial natriuretic factor and determining plasma oxalate. Four papers describemore » a number of new radiopharmaceuticals which have the potential to replace hippuran. In the third section, radionuclide methods for the measurement of renal function parameters are discussed. The book then focuses on the potential role of captopril in the improved diagnosis of renovascular hypertension. Applications of nuclear magnetic resonance and spectroscopy are demonstrated in the diagnosis of acute pyelonephritis, kidney assessment after lithotripsy, kidney evaluation prior to transplantation, and in monitoring renal ischemia during hypotension.« less

  13. Review of the transport of selected radionuclides in the interim risk assessment for the Radioactive Waste Management Complex, Waste Area Group 7 Operable Unit 7-13/14, Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Rousseau, Joseph P.; Landa, Edward R.; Nimmo, John R.; Cecil, L. DeWayne; Knobel, LeRoy L.; Glynn, Pierre D.; Kwicklis, Edward M.; Curtis, Gary P.; Stollenwerk, Kenneth G.; Anderson, Steven R.; Bartholomay, Roy C.; Bossong, Clifford R.; Orr, Brennon R.

    2005-01-01

    The U.S. Department of Energy (DOE) requested that the U.S. Geological Survey conduct an independent technical review of the Interim Risk Assessment (IRA) and Contaminant Screening for the Waste Area Group 7 (WAG-7) Remedial Investigation, the draft Addendum to the Work Plan for Operable Unit 7-13/14 WAG-7 comprehensive Remedial Investigation and Feasibility Study (RI/FS), and supporting documents that were prepared by Lockheed Martin Idaho Technologies, Inc. The purpose of the technical review was to assess the data and geotechnical approaches that were used to estimate future risks associated with the release of the actinides americium, uranium, neptunium, and plutonium to the Snake River Plain aquifer from wastes buried in pits and trenches at the Subsurface Disposal Area (SDA). The SDA is located at the Radioactive Waste Management Complex in southeastern Idaho within the boundaries of the Idaho National Engineering and Environmental Laboratory. Radionuclides have been buried in pits and trenches at the SDA since 1957 and 1952, respectively. Burial of transuranic wastes was discontinued in 1982. The five specific tasks associated with this review were defined in a ?Proposed Scope of Work? prepared by the DOE, and a follow-up workshop held in June 1998. The specific tasks were (1) to review the radionuclide sampling data to determine how reliable and significant are the reported radionuclide detections and how reliable is the ongoing sampling program, (2) to assess the physical and chemical processes that logically can be invoked to explain true detections, (3) to determine if distribution coefficients that were used in the IRA are reliable and if they have been applied properly, (4) to determine if transport model predictions are technically sound, and (5) to identify issues needing resolution to determine technical adequacy of the risk assessment analysis, and what additional work is required to resolve those issues.

  14. Distribution of radionuclides in Dardanelle Reservoir sediments.

    PubMed

    Forgy, J R; Epperson, C E; Swindle, D L

    1984-02-01

    Natural and reactor-discharged gamma-ray emitting radionuclides were measured in Dardanelle Reservoir surface sediments taken near the Arkansas Nuclear One Power Plant site. Samples represented several water depths and particle sizes, at 33 locations, in a field survey conducted in early September 1980. Radionuclide contents of dry sediments ranged as follows: natural radioactivity (40K as well as uranium and thorium decay products) 661-1210 Bq/kg; and reactor discharged radioactivity (137Cs, 134Cs, 60Co,, 58Co, 54Mn), no detectable activity to 237 Bq/kg. In general, radionuclide contents were positively correlated with decreasing sediment particle size. The average external whole-body and skin doses from all measurable reactor-discharged radionuclides were calculated according to the mathematical formula for determining external dose from sediment given by the U.S. Nuclear Regulatory Commission (NRC). Inside the discharge embayment near the reactor discharge canal, the doses were 1.7 X 10(-3) mSv/yr to the whole body and 2.0 X 10(-3) mSv/yr to the skin. Outside this area, the doses were 0.15 X 10(-3) and 0.18 X 10(-3) mSv/yr to the whole body and skin, respectively.

  15. The Dnieper River Aquatic System Radioactive Contamination; Long-tern Natural Attenuation And Remediation History

    NASA Astrophysics Data System (ADS)

    Voitsekhovych, Oleg; Laptev, Genadiy; Kanivets, Vladimir; Konoplev, Alexey

    2013-04-01

    Near 27 year passed after the Chernobyl Accident, and the experience gained to study radionuclide behavior in the aquatic systems and to mitigate water contamination are still pose of interest for scientists, society and regulatory austerities. There are different aspects of radionuclide transport in the environment were studied since the Chernobyl fallout in 1986 covered the river catchments, wetlands, river, lakes/reservoirs and reached the Black Sea. The monitoring time series data set and also data on the radionuclides behavior studies in the water bodies (river, lakes and the Black Sea) are available now in Ukraine and other affected countries. Its causation analyses, considering the main geochemical, physical and chemical and hydrological process, governing by radionuclide mobility and transport on the way from the initially contaminated catchments, through the river-reservoir hydrological system to the Black Sea can help in better understanding of the main factors governing be the radionuclide behavior in the environment. Radionuclide washout and its hydrological transport are determined speciation of radionuclides as well as soil types and hydrological mode and also geochemistry and landscape conditions at the affected areas. Mobility and bioavailability of radionuclides are determined by ratio of radionuclide chemical forms in fallout and site-specific environmental characteristics determining rates of leaching, fixation/remobilization as well as sorption-desorption of mobile fraction (its solid-liquid distribution). In many cases the natural attenuation processes governing by the above mentioned processes supported by water flow transportation and sedimentation played the key role in self-rehabilitation of the aquatic ecosystems. The models developed during post-Chernobyl decade and process parameters studies can help in monitoring and remediation programs planed for Fukusima Daichi affected watersheds areas as well. Some most important monitoring data

  16. Radionuclides in groundwater flow system understanding

    NASA Astrophysics Data System (ADS)

    Erőss, Anita; Csondor, Katalin; Horváth, Ákos; Mádl-Szőnyi, Judit; Surbeck, Heinz

    2017-04-01

    Using radionuclides is a novel approach to characterize fluids of groundwater flow systems and understand their mixing. Particularly, in regional discharge areas, where different order flow systems convey waters with different temperature, composition and redox-state to the discharge zone. Radium and uranium are redox-sensitive parameters, which causes fractionation along groundwater flow paths. Discharging waters of regional flow systems are characterized by elevated total dissolved solid content (TDS), temperature and by reducing conditions, and therefore with negligible uranium content, whereas local flow systems have lower TDS and temperature and represent oxidizing environments, and therefore their radium content is low. Due to the short transit time, radon may appear in local systems' discharge, where its source is the soil zone. However, our studies revealed the importance of FeOOH precipitates as local radon sources throughout the adsorption of radium transported by the thermal waters of regional flow systems. These precipitates can form either by direct oxidizing of thermal waters at discharge, or by mixing of waters with different redox state. Therefore elevated radon content often occurs in regional discharge areas as well. This study compares the results of geochemical studies in three thermal karst areas in Hungary, focusing on radionuclides as natural tracers. In the Buda Thermal Karst, the waters of the distinct discharge areas are characterized by different temperature and chemical composition. In the central discharge area both lukewarm (20-35°C, 770-980 mg/l TDS) and thermal waters (40-65°C, 800-1350 mg/l TDS), in the South only thermal water discharge (33-43°C, 1450-1700 mg/l TDS) occur. Radionuclides helped to identify mixing of fluids and to infer the temperature and chemical composition of the end members for the central discharge area. For the southern discharge zone mixing components could not be identified, which suggests different cave

  17. Zinc Transport Differs in Rat Spermatogenic Cell Types and Is Affected by Treatment with Cyclophosphamide1

    PubMed Central

    Downey, Anne Marie; Hales, Barbara F.; Robaire, Bernard

    2016-01-01

    Adequate zinc levels are required for proper cellular functions and for male germ cell development. Zinc transport is accomplished by two families of zinc transporters, the ZIPs and the ZnTs, that increase and decrease cytosolic zinc levels, respectively. However, very little is known about zinc transport in the testis. Furthermore, whether cytotoxic agents such as cyclophosphamide (CPA), a known male germ cell toxicant, can affect zinc transport and homeostasis is unknown. We examined zinc transporter expression and zinc transport in pachytene spermatocytes (PS) and round spermatids (RS) in a normal state and after exposure to CPA. We observed differences in the expression of members of the ZnT and ZIP families in purified populations of PS and RS. We also observed that RS accumulate more zinc over time than PS. The expression of many zinc binding genes was altered after CPA treatment. Interestingly, we found that the expression levels of ZIP5 and ZIP14 were increased in PS from animals treated daily with 6 mg/kg CPA for 4 wk but not in RS. This up-regulation led to an increase in zinc uptake in PS but not in RS from treated animals compared to controls. These data suggest that CPA treatment may alter zinc homeostasis in male germ cells leading to an increased need for zinc. Altered zinc homeostasis may disrupt proper germ cell development and contribute to infertility and effects on progeny. PMID:27281708

  18. Reliability of Current Biokinetic and Dosimetric Models for Radionuclides: A Pilot Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leggett, Richard Wayne; Eckerman, Keith F; Meck, Robert A.

    2008-10-01

    This report describes the results of a pilot study of the reliability of the biokinetic and dosimetric models currently used by the U.S. Nuclear Regulatory Commission (NRC) as predictors of dose per unit internal or external exposure to radionuclides. The study examines the feasibility of critically evaluating the accuracy of these models for a comprehensive set of radionuclides of concern to the NRC. Each critical evaluation would include: identification of discrepancies between the models and current databases; characterization of uncertainties in model predictions of dose per unit intake or unit external exposure; characterization of variability in dose per unit intakemore » or unit external exposure; and evaluation of prospects for development of more accurate models. Uncertainty refers here to the level of knowledge of a central value for a population, and variability refers to quantitative differences between different members of a population. This pilot study provides a critical assessment of models for selected radionuclides representing different levels of knowledge of dose per unit exposure. The main conclusions of this study are as follows: (1) To optimize the use of available NRC resources, the full study should focus on radionuclides most frequently encountered in the workplace or environment. A list of 50 radionuclides is proposed. (2) The reliability of a dose coefficient for inhalation or ingestion of a radionuclide (i.e., an estimate of dose per unit intake) may depend strongly on the specific application. Multiple characterizations of the uncertainty in a dose coefficient for inhalation or ingestion of a radionuclide may be needed for different forms of the radionuclide and different levels of information of that form available to the dose analyst. (3) A meaningful characterization of variability in dose per unit intake of a radionuclide requires detailed information on the biokinetics of the radionuclide and hence is not feasible for many

  19. U/Th series radionuclides as coastal groundwater tracers

    USGS Publications Warehouse

    Swarzenski, P.W.

    2007-01-01

    The study of coastal groundwater has recently surfaced as an active interdisciplinary area of research, driven foremost by its importance as a poorly quantified pathway for subsurface material transport into coastal ecosystems. Key issue in coastal groundwater research include a complete geochemical characterization of the groundwater(s); quantification of the kinetics of subsurface transport, including rock-water interactions; determination of groundwater ages; tracing of groundwater discharge into coastal waters using radiochemical fingerprints; and an assessment of the potential ecological impact of such subsurface flow to a reviving water body. For such applications, the isotopic systemics of select naturally occurring radionucludes in the U/Th series has proven to be particularly useful. These radionuclides (e.g., U, Th, Ram and Rn) are ubiquitous in all groundwaters ad are represented by several isotopes with widely different half-lives and chemistries (Figure 1). As a result, varied biogeochemical processes occurring over a broad range of time scales can be studied. In source rock, most U/Th series isotopes in secular equilibrium; that is, the rate of decay of a daughter isotope is equal to that of it radiogenic parent, and so will have equal activities (in this context, the specific activity is simply a measure of the amount of radioactivity per unit amount). In contrast, these nuclides exhibit strong fractionations within the surrounding groundwaters because of their respective physiochemical differences. Disequilibria in U/Th series radionuclides can thus be used to identify distinct water masses, quantify release rates from source rocks, assess groundwater migration rates, and assess groundwater discharge rates in coastal waters., Large isotopic variations also have the potential for providing precise fingerprints for groundwaters from specific aquifers and have been explored as a means for calculating groundwater ages and estuarine water mass transit

  20. Radionuclide field lysimeter experiment (RadFLEx): geochemical and hydrological data for SRS performance assessments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, D.; Powell, B.; Barber, K.

    The SRNL Radiological Field Lysimeter Experiment (RadFLEx) is a one-of-a-kind test bed facility designed to study radionuclide geochemical processes in the Savannah River Site (SRS) vadose zone at a larger spatial scale (from grams to tens of kilograms of sediment) and temporal scale (from months to decade) than is readily afforded through laboratory studies. RadFLEx is a decade-long project that was initiated on July 5, 2012 and is funded by six different sources. The objective of this status report is as follows: 1) to report findings to date that have an impact on SRS performance assessment (PA) calculations, and 2)more » to provide performance metrics of the RadFLEx program. The PA results are focused on measurements of transport parameters, such as distribution coefficients (Kd values), solubility, and unsaturated flow values. As this is an interim report, additional information from subsequent research may influence our interpretation of current results. Research related to basic understanding of radionuclide geochemistry in these vadose zone soils and other source terms are not described here but are referenced for the interested reader.« less

  1. Natural Radionuclide Activity Concentrations In Spas Of Argentina

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnoni, G.; Czerniczyniec, M.; Canoba, A.

    2008-08-07

    Geothermal waters have been used on a large scale for bathing, drinking and medical purposes. These waters can contain natural radionuclides that may increase the exposure to people. In this work the most important natural radionuclide activity concentrations in different thermal spas of Argentina were measured to characterize waters and to evaluate the exposure of workers and members of the public.

  2. Estimation of the time-dependent radioactive source-term from the Fukushima nuclear power plant accident using atmospheric transport modelling

    NASA Astrophysics Data System (ADS)

    Schoeppner, M.; Plastino, W.; Budano, A.; De Vincenzi, M.; Ruggieri, F.

    2012-04-01

    Several nuclear reactors at the Fukushima Dai-ichi power plant have been severely damaged from the Tōhoku earthquake and the subsequent tsunami in March 2011. Due to the extremely difficult on-site situation it has been not been possible to directly determine the emissions of radioactive material. However, during the following days and weeks radionuclides of 137-Caesium and 131-Iodine (amongst others) were detected at monitoring stations throughout the world. Atmospheric transport models are able to simulate the worldwide dispersion of particles accordant to location, time and meteorological conditions following the release. The Lagrangian atmospheric transport model Flexpart is used by many authorities and has been proven to make valid predictions in this regard. The Flexpart software has first has been ported to a local cluster computer at the Grid Lab of INFN and Department of Physics of University of Roma Tre (Rome, Italy) and subsequently also to the European Mediterranean Grid (EUMEDGRID). Due to this computing power being available it has been possible to simulate the transport of particles originating from the Fukushima Dai-ichi plant site. Using the time series of the sampled concentration data and the assumption that the Fukushima accident was the only source of these radionuclides, it has been possible to estimate the time-dependent source-term for fourteen days following the accident using the atmospheric transport model. A reasonable agreement has been obtained between the modelling results and the estimated radionuclide release rates from the Fukushima accident.

  3. Seismic reflection characteristics of naturally-induced subsidence affecting transportation

    USGS Publications Warehouse

    Miller, R.D.; Xia, J.; Steeples, D.W.

    2009-01-01

    High-resolution seismic reflections have been used effectively to investigate sinkholes formed from the dissolution of a bedded salt unit found throughout most of Central Kansas. Surface subsidence can have devastating effects on transportation structures. Roads, rails, bridges, and pipelines can even be dramatically affected by minor ground instability. Areas susceptible to surface subsidence can put public safety at risk. Subsurface expressions significantly larger than surface depressions are consistently observed on seismic images recorded over sinkholes in Kansas. Until subsidence reaches the ground surface, failure appears to be controlled by compressional forces evidenced by faults with reverse orientation. Once a surface depression forms or dissolution of the salt slows or stops, subsidence structures are consistent with a tensional stress environment with prevalent normal faults. Detecting areas of rapid subsidence potential, prior to surface failure, is the ultimate goal of any geotechnical survey where the ground surface is susceptible to settling. Seismic reflection images have helped correlate active subsidence to dormant paleofeatures, project horizontal growth of active sinkholes based on subsurface structures, and appraise the risk of catastrophic failure. ?? China University of Geosciences (Wuhan) and Springer-Verlag GmbH 2009.

  4. Determination of radionuclides in foods from Minsk, Belarus, from Chernobyl to the present

    NASA Astrophysics Data System (ADS)

    Baratta, E. J.

    2003-01-01

    The U.S. Food and Drug Administration (FDA) are responsible for the wholesomeness of the food supply in the United States (US). The FDA has been monitoring the food supply in the United States for radioactivity since 1961, because of the Fallout generated by above the ground testing in the early 60’s. This Radionuclide in Foods Program is maintained to allow the FDA to respond to any nuclear emergency that may affect the food supply. The Three Mile Island incident in 1979 was one of these. In 1986 the Chernobyl incident occurred. As a result, the FDA began extensive monitoring of imported foods, especially those from Europe. One of its sister agencies has personnel in the areas effected by the latter incident and requested that the FDA analyze selected food samples from these places. Since that time, they have requested on a periodic basis, selected food samples be analysed. One such city was Minsk in Belarus. This paper will discuss the radionuclides of interest such as iodine-131, cesium-134/137, strontium-90, ruthenium-106 and other short-lived ones. It will discuss the types of foods sampled and the methodology used in determining the concentrations found in these items. The results will be compared to the permissible levels allowed in the US. In addition it will show the lower limits of detection for each of the radionuclides of interest.

  5. Basic Residues R260 and K357 Affect the Conformational Dynamics of the Major Facilitator Superfamily Multidrug Transporter LmrP

    PubMed Central

    Wang, Wei; van Veen, Hendrik W.

    2012-01-01

    Secondary-active multidrug transporters can confer resistance on cells to pharmaceuticals by mediating their extrusion away from intracellular targets via substrate/H+(Na+) antiport. While the interactions of catalytic carboxylates in these transporters with coupling ions and substrates (drugs) have been studied in some detail, the functional importance of basic residues has received much less attention. The only two basic residues R260 and K357 in transmembrane helices in the Major Facilitator Superfamily transporter LmrP from Lactococcus lactis are present on the outer surface of the protein, where they are exposed to the phospholipid head group region of the outer leaflet (R260) and inner leaflet (K357) of the cytoplasmic membrane. Although our observations on the proton-motive force dependence and kinetics of substrate transport, and substrate-dependent proton transport demonstrate that K357A and R260A mutants are affected in ethidium-proton and benzalkonium-proton antiport compared to wildtype LmrP, our findings suggest that R260 and K357 are not directly involved in the binding of substrates or the translocation of protons. Secondary-active multidrug transporters are thought to operate by a mechanism in which binding sites for substrates are alternately exposed to each face of the membrane. Disulfide crosslinking experiments were performed with a double cysteine mutant of LmrP that reports the substrate-stimulated transition from the outward-facing state to the inward-facing state with high substrate-binding affinity. In the experiments, the R260A and K357A mutations were found to influence the dynamics of these major protein conformations in the transport cycle, potentially by removing the interactions of R260 and K357 with phospholipids and/or other residues in LmrP. The R260A and K357A mutations therefore modify the maximum rate at which the transport cycle can operate and, as the transitions between conformational states are differently affected by

  6. The interference of medical radionuclides with occupational in vivo gamma spectrometry.

    PubMed

    Kol, R; Pelled, O; Canfi, A; Gilad, Y; German, U; Laichter, Y; Lantsberg, S; Fuksbrauner, R; Gold, B

    2003-06-01

    Radiation workers undergo routine monitoring for the evaluation of external and internal radiation exposures. The monitoring of internal exposures involves gamma spectrometry of the whole body (whole body counting) and measurements of excreta samples. Medical procedures involving internal administration of radioactive radionuclides are widely and commonly used. Medical radionuclides are typically short-lived, but high activities are generally administered, whereas occupational radionuclides are mostly long-lived and, if present, are found generally in relatively smaller quantities. The aim of the present work was to study the interference of some common medical radionuclides (201Tl, 9mTc, 57Co, and 131I) with the detection of internal occupational exposures to natural uranium and to 137Cs. Workers having undergone a medical procedure with one of the radionuclides mentioned above were asked to give frequent urine samples and to undergo whole body and thyroid counting with phoswich detectors operated at the Nuclear Research Center Negev. Urine and whole body counting monitoring were continued as long as radioactivity was detectable by gamma spectrometry. The results indicate that the activity of medical radionuclides may interfere with interpretation of occupational intakes for months after administration.

  7. Meeting report from the Prostate Cancer Foundation PSMA-directed radionuclide scientific working group.

    PubMed

    Miyahira, Andrea K; Pienta, Kenneth J; Morris, Michael J; Bander, Neil H; Baum, Richard P; Fendler, Wolfgang P; Goeckeler, William; Gorin, Michael A; Hennekes, Hartwig; Pomper, Martin G; Sartor, Oliver; Tagawa, Scott T; Williams, Scott; Soule, Howard R

    2018-05-01

    The Prostate Cancer Foundation (PCF) convened a PSMA-Directed Radionuclide Scientific Working Group on November 14, 2017, at Weill Cornell Medicine, New York, NY. The meeting was attended by 35 global investigators with expertise in prostate cancer biology, radionuclide therapy, molecular imaging, prostate-specific membrane antigen (PSMA)-targeted agents, drug development, and prostate cancer clinical trials. The goal of this meeting was to discuss the potential for using PSMA-targeted radionuclide agents for the treatment of advanced prostate cancer and to define the studies and clinical trials necessary for validating and optimizing the use of these agents. Several major topic areas were discussed including the overview of PSMA biology, lessons and applications of PSMA-targeted PET imaging, the nuances of designing PSMA-targeted radionuclide agents, clinical experiences with PSMA-targeted radionuclides, PCF-funded projects to accelerate PSMA-targeted radionuclide therapy, and barriers to the use of radionuclide treatments in widespread clinical practice. This article reviews the major topics discussed at the meeting with the goal of promoting research that will validate and optimize the use of PSMA-targeted radionuclide therapies for the treatment of advanced prostate cancer. © 2018 Wiley Periodicals, Inc.

  8. APPROXIMATE AND ANALYTICAL SOLUTIONS FOR SOLUTE TRANSPORT FROM AN INJECTION WELL INTO A SINGLE FRACTURE

    EPA Science Inventory

    In dealing with problems related to land-based nuclear waste management, a number of analytical and approximate solutions were developed to quantify radionuclide transport through fractures contained in the porous formation. t has been reported that by treating the radioactive de...

  9. Diffusion of Radionuclides in Concrete and Soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.

    2012-04-25

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability ofmore » the surrounding soil to retard radionuclide migration. The objective of our study was to measure the diffusivity of Re, Tc and I in concrete containment and the surrounding vadose zone soil. Effects of carbonation, presence of metallic iron, and fracturing of concrete and the varying moisture contents in soil on the diffusivities of Tc and I were evaluated.« less

  10. Heat and Moisture Transport and Storage Parameters of Bricks Affected by the Environment

    NASA Astrophysics Data System (ADS)

    Kočí, Václav; Čáchová, Monika; Koňáková, Dana; Vejmelková, Eva; Jerman, Miloš; Keppert, Martin; Maděra, Jiří; Černý, Robert

    2018-05-01

    The effect of external environment on heat and moisture transport and storage properties of the traditional fired clay brick, sand-lime brick and highly perforated ceramic block commonly used in the Czech Republic and on their hygrothermal performance in building envelopes is analyzed by a combination of experimental and computational techniques. The experimental measurements of thermal, hygric and basic physical parameters are carried out in the reference state and after a 3-year exposure of the bricks to real climatic conditions of the city of Prague. The obtained results showed that after 3 years of weathering the porosity of the analyzed bricks increased up to five percentage points which led to an increase in liquid and gaseous moisture transport parameters and a decrease in thermal conductivity. Computational modeling of hygrothermal performance of building envelopes made of the studied bricks was done using both reference and weather-affected data. The simulated results indicated an improvement in the annual energy balances and a decrease in the time-of-wetness functions as a result of the use of data obtained after the 3-year exposure to the environment. The effects of weathering on both heat and moisture transport and storage parameters of the analyzed bricks and on their hygrothermal performance were found significant despite the occurrence of warm winters in the time period of 2012-2015 when the brick specimens were exposed to the environment.

  11. Methods of increasing the performance of radionuclide generators used in nuclear medicine: daughter nuclide build-up optimisation, elution-purification-concentration integration, and effective control of radionuclidic purity.

    PubMed

    Le, Van So; Do, Zoe Phuc-Hien; Le, Minh Khoi; Le, Vicki; Le, Natalie Nha-Truc

    2014-06-10

    Methods of increasing the performance of radionuclide generators used in nuclear medicine radiotherapy and SPECT/PET imaging were developed and detailed for 99Mo/99mTc and 68Ge/68Ga radionuclide generators as the cases. Optimisation methods of the daughter nuclide build-up versus stand-by time and/or specific activity using mean progress functions were developed for increasing the performance of radionuclide generators. As a result of this optimisation, the separation of the daughter nuclide from its parent one should be performed at a defined optimal time to avoid the deterioration in specific activity of the daughter nuclide and wasting stand-by time of the generator, while the daughter nuclide yield is maintained to a reasonably high extent. A new characteristic parameter of the formation-decay kinetics of parent/daughter nuclide system was found and effectively used in the practice of the generator production and utilisation. A method of "early elution schedule" was also developed for increasing the daughter nuclide production yield and specific radioactivity, thus saving the cost of the generator and improving the quality of the daughter radionuclide solution. These newly developed optimisation methods in combination with an integrated elution-purification-concentration system of radionuclide generators recently developed is the most suitable way to operate the generator effectively on the basis of economic use and improvement of purposely suitable quality and specific activity of the produced daughter radionuclides. All these features benefit the economic use of the generator, the improved quality of labelling/scan, and the lowered cost of nuclear medicine procedure. Besides, a new method of quality control protocol set-up for post-delivery test of radionuclidic purity has been developed based on the relationship between gamma ray spectrometric detection limit, required limit of impure radionuclide activity and its measurement certainty with respect to

  12. Radionuclides in drinking water: the recent legislative requirements of the European Union.

    PubMed

    Grande, Sveva; Risica, Serena

    2015-03-01

    In November 2013, a new EURATOM Directive was issued on the protection of public health from the radionuclide content in drinking water. After introducing the contents of the Directive, the paper analyses the hypotheses about drinking water ingestion adopted in documents of international and national organizations and the data obtained from national/regional surveys. Starting from the Directive's parametric value for the Indicative Dose, some examples of derived activity concentrations of radionuclides in drinking water are reported for some age classes and three exposure situations, namely, (i) artificial radionuclides due to routine water release from nuclear power facilities, (ii) artificial radionuclides from nuclear medicine procedures, and (iii) naturally occurring radionuclides in drinking water or resulting from existing or past NORM industrial activities.

  13. The saturated zone at Yucca Mountain: An overview of the characterization and assessment of the saturated zone as a barrier to potential radionuclide migration

    USGS Publications Warehouse

    Eddebbarh, A.-A.; Zyvoloski, G.A.; Robinson, B.A.; Kwicklis, E.M.; Reimus, P.W.; Arnold, B.W.; Corbet, T.; Kuzio, S.P.; Faunt, C.

    2003-01-01

    The US Department of Energy is pursuing Yucca Mountain, Nevada, for the development of a geologic repository for the disposal of spent nuclear fuel and high-level radioactive waste, if the repository is able to meet applicable radiation protection standards established by the US Nuclear Regulatory Commission and the US Environmental Protection Agency (EPA). Effective performance of such a repository would rely on a number of natural and engineered barriers to isolate radioactive waste from the accessible environment. Groundwater beneath Yucca Mountain is the primary medium through which most radionuclides might move away from the potential repository. The saturated zone (SZ) system is expected to act as a natural barrier to this possible movement of radionuclides both by delaying their transport and by reducing their concentration before they reach the accessible environment. Information obtained from Yucca Mountain Site Characterization Project activities is used to estimate groundwater flow rates through the site-scale SZ flow and transport model area and to constrain general conceptual models of groundwater flow in the site-scale area. The site-scale conceptual model is a synthesis of what is known about flow and transport processes at the scale required for total system performance assessment of the site. This knowledge builds on and is consistent with knowledge that has accumulated at the regional scale but is more detailed because more data are available at the site-scale level. The mathematical basis of the site-scale model and the associated numerical approaches are designed to assist in quantifying the uncertainty in the permeability of rocks in the geologic framework model and to represent accurately the flow and transport processes included in the site-scale conceptual model. Confidence in the results of the mathematical model was obtained by comparing calculated to observed hydraulic heads, estimated to measured permeabilities, and lateral flow rates

  14. Radionuclides from the Fukushima accident in the air over Lithuania: measurement and modelling approaches.

    PubMed

    Lujanienė, G; Byčenkienė, S; Povinec, P P; Gera, M

    2012-12-01

    Analyses of (131)I, (137)Cs and (134)Cs in airborne aerosols were carried out in daily samples in Vilnius, Lithuania after the Fukushima accident during the period of March-April, 2011. The activity concentrations of (131)I and (137)Cs ranged from 12 μBq/m(3) and 1.4 μBq/m(3) to 3700 μBq/m(3) and 1040 μBq/m(3), respectively. The activity concentration of (239,240)Pu in one aerosol sample collected from 23 March to 15 April, 2011 was found to be 44.5 nBq/m(3). The two maxima found in radionuclide concentrations were related to complicated long-range air mass transport from Japan across the Pacific, the North America and the Atlantic Ocean to Central Europe as indicated by modelling. HYSPLIT backward trajectories and meteorological data were applied for interpretation of activity variations of measured radionuclides observed at the site of investigation. (7)Be and (212)Pb activity concentrations and their ratios were used as tracers of vertical transport of air masses. Fukushima data were compared with the data obtained during the Chernobyl accident and in the post Chernobyl period. The activity concentrations of (131)I and (137)Cs were found to be by 4 orders of magnitude lower as compared to the Chernobyl accident. The activity ratio of (134)Cs/(137)Cs was around 1 with small variations only. The activity ratio of (238)Pu/(239,240)Pu in the aerosol sample was 1.2, indicating a presence of the spent fuel of different origin than that of the Chernobyl accident. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Fuel-mix, fuel efficiency, and transport demand affect prospects for biofuels in northern Europe.

    PubMed

    Bright, Ryan M; Strømman, Anders Hammer

    2010-04-01

    Rising greenhouse gas (GHG) emissions in the road transport sector represents a difficult mitigation challenge due to a multitude of intricate factors, namely the dependency on liquid energy carriers and infrastructure lock-in. For this reason, low-carbon renewable energy carriers, particularly second generation biofuels, are often seen as a prominent candidate for realizing reduced emissions and lowered oil dependency over the medium- and long-term horizons. However, the overarching question is whether advanced biofuels can be an environmentally effective mitigation strategy in the face of increasing consumption and resource constraints. Here we develop both biofuel production and road transport consumption scenarios for northern Europe-a region with a vast surplus of forest bioenergy resources-to assess the potential role that forest-based biofuels may play over the medium- and long-term time horizons using an environmentally extended, multiregion input-output model. Through scenarios, we explore how evolving vehicle technologies and consumption patterns will affect the mitigation opportunities afforded by any future supply of forest biofuels. We find that in a scenario involving ambitious biofuel targets, the size of the GHG mitigation wedge attributed to the market supply of biofuels is severely reduced under business-as-usual growth in consumption in the road transport sector. Our results indicate that climate policies targeting the road transport sector which give high emphases to reducing demand (volume), accelerating the deployment of more fuel-efficient vehicles, and promoting altered consumption patterns (structure) can be significantly more effective than those with single emphasis on expanded biofuel supply.

  16. Mutation in the Monocarboxylate Transporter 12 Gene Affects Guanidinoacetate Excretion but Does Not Cause Glucosuria.

    PubMed

    Dhayat, Nasser; Simonin, Alexandre; Anderegg, Manuel; Pathare, Ganesh; Lüscher, Benjamin P; Deisl, Christine; Albano, Giuseppe; Mordasini, David; Hediger, Matthias A; Surbek, Daniel V; Vogt, Bruno; Sass, Jörn Oliver; Kloeckener-Gruissem, Barbara; Fuster, Daniel G

    2016-05-01

    A heterozygous mutation (c.643C>A; p.Q215X) in the monocarboxylate transporter 12-encoding gene MCT12 (also known as SLC16A12) that mediates creatine transport was recently identified as the cause of a syndrome with juvenile cataracts, microcornea, and glucosuria in a single family. Whereas the MCT12 mutation cosegregated with the eye phenotype, poor correlation with the glucosuria phenotype did not support a pathogenic role of the mutation in the kidney. Here, we examined MCT12 in the kidney and found that it resides on basolateral membranes of proximal tubules. Patients with MCT12 mutation exhibited reduced plasma levels and increased fractional excretion of guanidinoacetate, but normal creatine levels, suggesting that MCT12 may function as a guanidinoacetate transporter in vivo However, functional studies in Xenopus oocytes revealed that MCT12 transports creatine but not its precursor, guanidinoacetate. Genetic analysis revealed a separate, undescribed heterozygous mutation (c.265G>A; p.A89T) in the sodium/glucose cotransporter 2-encoding gene SGLT2 (also known as SLC5A2) in the family that segregated with the renal glucosuria phenotype. When overexpressed in HEK293 cells, the mutant SGLT2 transporter did not efficiently translocate to the plasma membrane, and displayed greatly reduced transport activity. In summary, our data indicate that MCT12 functions as a basolateral exit pathway for creatine in the proximal tubule. Heterozygous mutation of MCT12 affects systemic levels and renal handling of guanidinoacetate, possibly through an indirect mechanism. Furthermore, our data reveal a digenic syndrome in the index family, with simultaneous MCT12 and SGLT2 mutation. Thus, glucosuria is not part of the MCT12 mutation syndrome. Copyright © 2016 by the American Society of Nephrology.

  17. Lung dosimetry for inhaled long-lived radionuclides and radon progeny.

    PubMed

    Hussain, M; Winkler-Heil, R; Hofmann, W

    2011-05-01

    The current version of the stochastic lung dosimetry model IDEAL-DOSE considers deposition in the whole tracheobronchial (TB) and alveolar airway system, while clearance is restricted to TB airways. For the investigation of doses produced by inhaled long-lived radionuclides (LLR) together with short-lived radon progeny, alveolar clearance has to be considered. Thus, present dose calculations are based on the average transport rates proposed for the revision of the ICRP human respiratory tract model. The results obtained indicate that LLR cleared from the alveolar region can deliver up to two to six times higher doses to the TB region when compared with the doses from directly deposited particles. Comparison of LLR doses with those of short-lived radon progeny indicates that LLR in uranium mines can deliver up to 5 % of the doses predicted for the short-lived radon daughters.

  18. Radionuclide-anesthetic flow study: a new technique for the study of regional anesthesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bauman, J.M.; Middaugh, R.E.; Cawthon, M.A.

    1986-09-01

    A new technique to study the dynamics of in vivo distribution of regional anesthetics is described. Five hundred microcuries of technetium-99m diethylenetriaminepentaacetic acid (DTPA) added to the anesthetic in a syringe prior to injection allows both dynamic and static imaging to assess the initial distribution of the injected anesthetic. Superimposed bone scans or transmission scans help delineate anatomy. The radionuclide-anesthetic flow study is a simple, safe technique to investigate both the spread of regional anesthetics and the factors that affect it.

  19. Radionuclides from past uranium mining in rivers of Portugal.

    PubMed

    Carvalho, Fernando P; Oliveira, João M; Lopes, Irene; Batista, Aleluia

    2007-01-01

    During several decades and until a few years ago, uranium mines were exploited in the Centre of Portugal and wastewaters from uranium ore milling facilities were discharged into river basins. To investigate enhancement of radioactivity in freshwater ecosystems, radionuclides of uranium and thorium series were measured in water, sediments, suspended matter, and fish samples from the rivers Vouga, Dão, Távora and Mondego. The results show that these rivers carry sediments with relatively high naturally occurring radioactivity, and display relatively high concentrations of radon dissolved in water, which is typical of a uranium rich region. Riverbed sediments show enhanced concentrations of radionuclides in the mid-section of the Mondego River, a sign of past wastewater discharges from mining and milling works at Urgeiriça confirmed by the enhanced values of (238)U/(232)Th radionuclide ratios in sediments. Radionuclide concentrations in water, suspended matter and freshwater fish from that section of Mondego are also enhanced in comparison with concentrations measured in other rivers. Based on current radionuclide concentrations in fish, regular consumption of freshwater species by local populations would add 0.032 mSv a(-1) of dose equivalent (1%) to the average background radiation dose. Therefore, it is concluded that current levels of enhanced radioactivity do not pose a significant radiological risk either to aquatic fauna or to freshwater fish consumers.

  20. A new approach to nuclear fuel safeguard enhancement through radionuclide profiling

    NASA Astrophysics Data System (ADS)

    Peterson, Aaron Dawon

    The United States has led the effort to promote peaceful use of nuclear power amongst states actively utilizing it as well as those looking to deploy the technology in the near future. With the attraction being demonstrated by various countries towards nuclear power comes the concern that a nation may have military aspirations for the use of nuclear energy. The International Atomic Energy Agency (IAEA) has established nuclear safeguard protocols and procedures to mitigate nuclear proliferation. The work herein proposed a strategy to further enhance existing safeguard protocols by considering safeguard in nuclear fuel design. The strategy involved the use of radionuclides to profile nuclear fuels. Six radionuclides were selected as identifier materials. The decay and transmutation of these radionuclides were analyzed in reactor operation environment. MCNPX was used to simulate a reactor core. The perturbation in reactivity of the core due to the loading of the radionuclides was insignificant. The maximum positive and negative reactivity change induced was at day 1900 with a value of 0.00185 +/- 0.00256 and at day 2000 with -0.00441 +/- 0.00249, respectively. The mass of the radionuclides were practically unaffected by transmutation in the core; the change in radionuclide inventory was dominated by natural decay. The maximum material lost due to transmutation was 1.17% in Eu154. Extraneous signals from fission products identical to the radionuclide compromised the identifier signals. Eu154 saw a maximum intensity change at EOC and 30 days post-irradiation of 1260% and 4545%, respectively. Cs137 saw a minimum change of 12% and 89%, respectively. Mitigation of the extraneous signals is cardinal to the success of the proposed strategy. The predictability of natural decay provides a basis for the characterization of the signals from the radionuclide.

  1. Influence of long-range atmospheric transport pathways and climate teleconnection patterns on the variability of surface 210Pb and 7Be concentrations in southwestern Europe.

    PubMed

    Grossi, C; Ballester, J; Serrano, I; Galmarini, S; Camacho, A; Curcoll, R; Morguí, J A; Rodò, X; Duch, M A

    2016-12-01

    The variability of the atmospheric concentration of the 7 Be and 210 Pb radionuclides is strongly linked to the origin of air masses, the strength of their sources and the processes of wet and dry deposition. It has been shown how these processes and their variability are strongly affected by climate change. Thus, a deeper knowledge of the relationship between the atmospheric radionuclides variability measured close to the ground and these atmospheric processes could help in the analysis of climate scenarios. In the present study, we analyze the atmospheric variability of a 14-year time series of 7 Be and 210 Pb in a Mediterranean coastal city using a synergy of different indicators and tools such as: the local meteorological conditions, global and regional climate indexes and a lagrangian atmospheric transport model. We particularly focus on the relationships between the main pathways of air masses and sun spots occurrence, the variability of the local relative humidity and temperature conditions, and the main modes of regional climate variability, such as the North Atlantic Oscillation (NAO) and the Western Mediterranean Oscillation (WeMO). The variability of the observed atmospheric concentrations of both 7 Be and 210 Pb radionuclides was found to be mainly positively associated to the local climate conditions of temperature and to the pathways of air masses arriving at the station. Measured radionuclide concentrations significantly increase when air masses travel at low tropospheric levels from central Europe and the western part of the Iberian Peninsula, while low concentrations are associated with westerly air masses. We found a significant negative correlation between the WeMO index and the atmospheric variability of both radionuclides and no significant association was observed for the NAO index. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment

    NASA Astrophysics Data System (ADS)

    Evangeliou, N.; Zibtsev, S.; Myroniuk, V.; Zhurba, M.; Hamburger, T.; Stohl, A.; Balkanski, Y.; Paugam, R.; Mousseau, T. A.; Møller, A. P.; Kireev, S. I.

    2016-05-01

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y-1 in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray.

  3. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment

    PubMed Central

    Evangeliou, N.; Zibtsev, S.; Myroniuk, V.; Zhurba, M.; Hamburger, T.; Stohl, A.; Balkanski, Y.; Paugam, R.; Mousseau, T. A.; Møller, A. P.; Kireev, S. I.

    2016-01-01

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of 137Cs, 1.5 TBq of 90Sr, 7.8 GBq of 238Pu, 6.3 GBq of 239Pu, 9.4 GBq of 240Pu and 29.7 GBq of 241Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y−1 in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray. PMID:27184191

  4. Resuspension and atmospheric transport of radionuclides due to wildfires near the Chernobyl Nuclear Power Plant in 2015: An impact assessment.

    PubMed

    Evangeliou, N; Zibtsev, S; Myroniuk, V; Zhurba, M; Hamburger, T; Stohl, A; Balkanski, Y; Paugam, R; Mousseau, T A; Møller, A P; Kireev, S I

    2016-05-17

    In April and August 2015, two major fires in the Chernobyl Exclusion Zone (CEZ) caused concerns about the secondary radioactive contamination that might have spread over Europe. The present paper assessed, for the first time, the impact of these fires over Europe. About 10.9 TBq of (137)Cs, 1.5 TBq of (90)Sr, 7.8 GBq of (238)Pu, 6.3 GBq of (239)Pu, 9.4 GBq of (240)Pu and 29.7 GBq of (241)Am were released from both fire events corresponding to a serious event. The more labile elements escaped easier from the CEZ, whereas the larger refractory particles were removed more efficiently from the atmosphere mainly affecting the CEZ and its vicinity. During the spring 2015 fires, about 93% of the labile and 97% of the refractory particles ended in Eastern European countries. Similarly, during the summer 2015 fires, about 75% of the labile and 59% of the refractory radionuclides were exported from the CEZ with the majority depositing in Belarus and Russia. Effective doses were above 1 mSv y(-1) in the CEZ, but much lower in the rest of Europe contributing an additional dose to the Eastern European population, which is far below a dose from a medical X-ray.

  5. Potential for post-closure radionuclide redistribution due to biotic intrusion: aboveground biomass, litter production rates, and the distribution of root mass with depth at material disposal area G, Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    French, Sean B; Christensen, Candace; Jennings, Terry L

    2008-01-01

    Low-level radioactive waste (LLW) generated at the Los Alamos National Laboratories (LANL) is disposed of at LANL's Technical Area (T A) 54, Material Disposal Area (MDA) G. The ability of MDA G to safely contain radioactive waste during current and post-closure operations is evaluated as part of the facility's ongoing performance assessment (PA) and composite analysis (CA). Due to the potential for uptake and incorporation of radio nuclides into aboveground plant material, the PA and CA project that plant roots penetrating into buried waste may lead to releases of radionuclides into the accessible environment. The potential amount ofcontamination deposited onmore » the ground surface due to plant intrusion into buried waste is a function of the quantity of litter generated by plants, as well as radionuclide concentrations within the litter. Radionuclide concentrations in plant litter is dependent on the distribution of root mass with depth and the efficiency with which radionuclides are extracted from contaminated soils by the plant's roots. In order to reduce uncertainties associated with the PA and CA for MDA G, surveys are being conducted to assess aboveground biomass, plant litter production rates, and root mass with depth for the four prominent vegetation types (grasses, forbs, shrubs and trees). The collection of aboveground biomass for grasses and forbs began in 2007. Additional sampling was conducted in October 2008 to measure root mass with depth and to collect additional aboveground biomass data for the types of grasses, forbs, shrubs, and trees that may become established at MDA G after the facility undergoes final closure, Biomass data will be used to estimate the future potential mass of contaminated plant litter fall, which could act as a latent conduit for radionuclide transport from the closed disposal area. Data collected are expected to reduce uncertainties associated with the PA and CA for MDA G and ultimately aid in the assessment and

  6. Humic acid facilitates the transport of ARS-labeled hydroxyapatite nanoparticles in iron oxyhydroxide-coated sand

    USDA-ARS?s Scientific Manuscript database

    Hydroxyapatite nanoparticles (nHAP) have been widely used to remediate soil and wastewater contaminated with metals and radionuclides. However, our understanding of nHAP transport and fate is limited in natural environments that exhibit significant variability in solid and solution chemistry. The tr...

  7. Preliminary testing of turbulence and radionuclide transport modeling in deep ocean environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Dummuller, D.C.; Trent, D.S.

    Pacific Northwest Laboratory (PNL) performed a study for the US Environmental Protection Agency's Office of Radiation Programs to (1) identify candidate models for regional modeling of low-level waste ocean disposal sites in the mid-Atlantic ocean; (2) evaluate mathematical representation of the model's eddy viscosity/dispersion coefficients; and (3) evaluate the adequacy of the k-{epsilon} turbulence model and the feasibility of one of the candidate models, TEMPEST{copyright}/FLESCOT{copyright}, to deep-ocean applications on a preliminary basis. PNL identified the TEMPEST{copyright}/FLESCOT{copyright}, FLOWER, Blumberg's, and RMA 10 models as appropriate candidates for the regional radionuclide modeling. Among these models, TEMPEST/FLESCOT is currently the only model thatmore » solves distributions of flow, turbulence (with the k-{epsilon} model), salinity, water temperature, sediment, dissolved contaminants, and sediment-sorbed contaminants. Solving the Navier-Stokes equations using higher order correlations is not practical for regional modeling because of the prohibitive computational requirements; therefore, the turbulence modeling is a more practical approach. PNL applied the three-dimensional code, TEMPEST{copyright}/FLESCOT{copyright} with the k-{epsilon} model, to a very simple, hypothetical, two-dimensional, deep-ocean case, producing at least qualitatively appropriate results. However, more detailed testing should be performed for the further testing of the code. 46 refs., 39 figs., 6 tabs.« less

  8. Selection of plants for phytoremediation of soils contaminated with radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Entry J.A.; Vance, N.C.; Watrud, L.S.

    1996-12-31

    Remediation of soil contaminated with radionuclides typically requires that soil be removed from the site and treated with various dispersing and chelating chemicals. Numerous studies have shown that radionuclides are generally not leached from the top 0.4 meters of soil, where plant roots actively accumulate elements. Restoration of large areas of land contaminated with low levels of radionuclides may be feasible using phytoremediation. Criteria for the selection of plants for phytoremediation, molecular approaches to increase radio nuclide uptake, effects of cultural practices on uptake and assessment of environmental effects of phytoremediation will be discussed.

  9. Redistribution of fallout radionuclides in Enewetak Atoll lagoon sediments by callianassid bioturbation.

    PubMed

    McMurtry, G M; Schneider, R C; Colin, P L; Buddemeier, R W; Suchanek, T H

    The lagoon sediments of Enewetak Atoll in the Marshall Islands contain a large selection of fallout radionuclides as a result of 43 nuclear weapon tests conducted there between 1948 and 1958. Studies of the burial of fallout radionuclides have been conducted on the islands and in several of the large craters, but studies of their vertical distribution have been limited to about the upper 20 cm of the lagoon sediments. We have found elevated fallout radionuclide concentrations buried more deeply in the lagoon sediments and evidence of burrowing into the sediment by several species of callianassid ghost shrimp (Crustacea: Thalassinidea) which has displaced highly radioactive sediment. The burrowing activities of callianassids, which are ubiquitous on the lagoon floor, facilitate radionuclide redistribution and complicate the fallout radionuclide inventory of the lagoon.

  10. Processes affecting suspended sediment transport in the mid-field plume region of the Rhine River, Netherlands.

    NASA Astrophysics Data System (ADS)

    Flores, R. P.; Rijnsburger, S.; Horner-Devine, A.; Souza, A. J.; Pietrzak, J.

    2016-02-01

    This work will describe dominant processes affecting suspended sediment transport along the Dutch coast, in the mid-field plume region of the Rhine River. We will present field observations from two long-term deployments conducted in the vicinity of the Sand Engine, a mega-nourishment experiment located 10 km north of the Rhine river mouth. To investigate the role of density stratification, winds, tides, waves and river plume processes on sediment transport, frames and moorings were deployed within the excursion of the tidal plume front generated by the freshwater outflow from the Rhine River for 4 and 6 weeks during years 2013 and 2014, respectively. The moorings were designed to measure vertical profiles of suspended sediment concentration (SSC) and salinity, using arrays of CTDs and OBS sensors. Mean tidal velocities were measured using bottom-mounted ADCPs. The near-bed dynamics and the near-bottom sediment concentrations were measured as well using a set of synchronized ADVs and OBSs. By combining the two deployments we observe hydrodynamics and suspended sediment dynamics under a wide range of forcing conditions. Preliminary observations indicate that stratification is highly dependent on wind magnitude and direction, and its role is primarily identified as to induce significant cross-shore sediment transport product of the generation of cross-shore velocities due to the modification of the tidal ellipses and the passage of the surface plume front. The passage of the surface plume front generates strong offshore currents near the bottom, producing transport events that can be similar in magnitude to the dominant alongshore transport. Preliminary results also indicate that storms play an important role in alongshore transport primarily by wave-induced sediment resuspension, but as stratification is suppressed due to the enhancement of mixing processes, no significant cross-shore transport is observed during very energetic conditions.

  11. Radionuclide transport from soil to air, native vegetation, kangaroo rats and grazing cattle on the Nevada test site.

    PubMed

    Gilbert, R O; Shinn, J H; Essington, E H; Tamura, T; Romney, E M; Moor, K S; O'Farrell, T P

    1988-12-01

    Between 1970 and 1986 the Nevada Applied Ecology Group (NAEG), U.S. Department of Energy, conducted environmental radionuclide studies at weapons-testing sites on or adjacent to the Nevada Test Site. In this paper, NAEG studies conducted at two nuclear (fission) sites (NS201, NS219) and two nonnuclear (nonfission) sites (Area 13 [Project 57] and Clean Slate 2) are reviewed, synthesized and compared regarding (1) soil particle-size distribution and physical-chemical characteristics of 239 + 240Pu-bearing radioactive particles, (2) 239 + 240Pu resuspension rates and (3) transuranic and fission-product radionuclide transfers from soil to native vegetation, kangaroo rats and grazing cattle. The data indicate that transuranic radionuclides were transferred more readily on the average from soil to air, the external surfaces of native vegetation and to tissues of kangaroo rats at Area 13 than at NS201 or NS219. The 239 + 240Pu resuspension factor for undisturbed soil at Area 13 was three to four orders-of-magnitude larger than at NS201 and NS219, the geometric mean (GM) vegetation-over-soil 239 + 240Pu concentration ratio was from ten to 100 times larger than at NS201, and the GM GI-over-soil, carcass-over-soil and pelt-over-soil 239 + 240Pu ratios for kangaroo rats were about ten times larger than at NS201. These results are consistent with the finding that Area 13, compared with NS201 or NS219, has a higher percentage of radioactivity associated with smaller soil particles and a larger percentage of resuspendable and respirable soil. However, the resuspension factor increased by a factor of 27 at NS201 when the surface soil was disturbed, and by a factor of 12 at NS219 following a wildfire. The average (GM) concentration of 239 + 240Pu for the GI (and contents) of Area 13 kangaroo rats and for the rumen contents of beef cattle that grazed Area 13 were very similar (400 vs. 440 Bq kg-1 dry wt, respectively) although the variability between individuals was very large. The

  12. Environmental evolution records reflected by radionuclides in the sediment of coastal wetlands: A case study in the Yellow River Estuary wetland.

    PubMed

    Wang, Qidong; Song, Jinming; Li, Xuegang; Yuan, Huamao; Li, Ning; Cao, Lei

    2016-10-01

    Vertical profiles of environmental radionuclides ( 210 Pb, 137 Cs, 238 U, 232 Th, 226 Ra and 4 0 K) in a sediment core (Y1) of the Yellow River Estuary wetland were investigated to assess whether environmental evolutions in the coastal wetland could be recorded by the distributions of radionuclides. Based on 210 Pb and 137 Cs dating, the average sedimentation rate of core Y1 was estimated to be 1.0 cm y -1 . Vertical distributions of natural radionuclides ( 238 U, 232 Th, 226 Ra and 40 K) changed dramatically, reflecting great changes in sediment input. Concentrations of 238 U, 232 Th, 226 Ra and 40 K all had significant positive relationships with organic matter and clay content, but their distributions were determined by different factors. Factor analysis showed that 238 U was determined by the river sediment input while 226 Ra was mainly affected by the seawater erosion. Environmental changes such as river channel migrations and sediment discharge variations could always cause changes in the concentrations of radionuclides. High concentrations of 238 U and 226 Ra were consistent with high accretion rate. Frequent seawater intrusion decreased the concentration of 226 Ra significantly. The value of 238 U/ 226 Ra tended to be higher when the sedimentation rate was low and tide intrusion was frequent. In summary, environmental evolutions in the estuary coastal wetland could be recorded by the vertical profiles of natural radionuclides. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Does lipophilicity affect the effectiveness of a transmembrane anion transporter? Insight from squaramido-functionalized bis(choloyl) conjugates.

    PubMed

    Li, Zhi; Deng, Li-Qun; Chen, Jin-Xiang; Zhou, Chun-Qiong; Chen, Wen-Hua

    2015-12-28

    Six squaramido-functionalized bis(choloyl) conjugates were synthesized and fully characterized on the basis of NMR ((1)H and (13)C) and ESI MS (LR and HR) data. Their transmembrane anionophoric activity was investigated in detail by means of chloride ion selective electrode technique and pyranine assay. The data indicate that this set of compounds is capable of promoting the transmembrane transport of anions presumably via proton/anion symport and anion exchange processes, and that lipophilicity in terms of clog P from 3.90 to 8.32 affects the apparent ion transport rate in a concentration-dependent fashion. Detailed kinetic analysis on the data obtained from both the chloride efflux and pH discharge experiments reveals that there may exist an optimum clog P range for the intrinsic ion transport rate. However, lipophilicity exhibits little effect on the effectiveness of this set of compounds in terms of either k2/Kdiss or EC50 values.

  14. MODELING OF THE GROUNDWATER TRANSPORT AROUND A DEEP BOREHOLE NUCLEAR WASTE REPOSITORY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N. Lubchenko; M. Rodríguez-Buño; E.A. Bates

    2015-04-01

    The concept of disposal of high-level nuclear waste in deep boreholes drilled into crystalline bedrock is gaining renewed interest and consideration as a viable mined repository alternative. A large amount of work on conceptual borehole design and preliminary performance assessment has been performed by researchers at MIT, Sandia National Laboratories, SKB (Sweden), and others. Much of this work relied on analytical derivations or, in a few cases, on weakly coupled models of heat, water, and radionuclide transport in the rock. Detailed numerical models are necessary to account for the large heterogeneity of properties (e.g., permeability and salinity vs. depth, diffusionmore » coefficients, etc.) that would be observed at potential borehole disposal sites. A derivation of the FALCON code (Fracturing And Liquid CONvection) was used for the thermal-hydrologic modeling. This code solves the transport equations in porous media in a fully coupled way. The application leverages the flexibility and strengths of the MOOSE framework, developed by Idaho National Laboratory. The current version simulates heat, fluid, and chemical species transport in a fully coupled way allowing the rigorous evaluation of candidate repository site performance. This paper mostly focuses on the modeling of a deep borehole repository under realistic conditions, including modeling of a finite array of boreholes surrounded by undisturbed rock. The decay heat generated by the canisters diffuses into the host rock. Water heating can potentially lead to convection on the scale of thousands of years after the emplacement of the fuel. This convection is tightly coupled to the transport of the dissolved salt, which can suppress convection and reduce the release of the radioactive materials to the aquifer. The purpose of this work has been to evaluate the importance of the borehole array spacing and find the conditions under which convective transport can be ruled out as a radionuclide transport

  15. Risk Due to Radiological Terror Attacks With Natural Radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedrich, Steinhaeusler; Lyudmila, Zaitseva; Stan, Rydell

    The naturally occurring radionuclides radium (Ra-226) and polonium (Po-210) have the potential to be used for criminal acts. Analysis of international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (CSTO), operated at the University of Salzburg, shows that several acts of murder and terrorism with natural radionuclides have already been carried out in Europe and Russia. Five different modes of attack (T) are possible: (1) Covert irradiation of an individual in order to deliver a high individual dose; (2) Covert irradiation of a group of persons delivering a large collective dose; (3) Contamination ofmore » food or drink; (4) Generation of radioactive aerosols or solutions; (5) Combination of Ra-226 with conventional explosives (Dirty Bomb).This paper assesses the risk (R) of such criminal acts in terms of: (a) Probability of terrorist motivation deploying a certain attack mode T; (b) Probability of success by the terrorists for the selected attack mode T; (c) Primary damage consequence (C) to the attacked target (activity, dose); (d) Secondary damage consequence (C') to the attacked target (psychological and socio-economic effects); (e) Probability that the consequences (C, C') cannot be brought under control, resulting in a failure to manage successfully the emergency situation due to logistical and/or technical deficits in implementing adequate countermeasures. Extensive computer modelling is used to determine the potential impact of such a criminal attack on directly affected victims and on the environment.« less

  16. Risk Due to Radiological Terror Attacks With Natural Radionuclides

    NASA Astrophysics Data System (ADS)

    Friedrich, Steinhäusler; Stan, Rydell; Lyudmila, Zaitseva

    2008-08-01

    The naturally occurring radionuclides radium (Ra-226) and polonium (Po-210) have the potential to be used for criminal acts. Analysis of international incident data contained in the Database on Nuclear Smuggling, Theft and Orphan Radiation Sources (CSTO), operated at the University of Salzburg, shows that several acts of murder and terrorism with natural radionuclides have already been carried out in Europe and Russia. Five different modes of attack (T) are possible: (1) Covert irradiation of an individual in order to deliver a high individual dose; (2) Covert irradiation of a group of persons delivering a large collective dose; (3) Contamination of food or drink; (4) Generation of radioactive aerosols or solutions; (5) Combination of Ra-226 with conventional explosives (Dirty Bomb). This paper assesses the risk (R) of such criminal acts in terms of: (a) Probability of terrorist motivation deploying a certain attack mode T; (b) Probability of success by the terrorists for the selected attack mode T; (c) Primary damage consequence (C) to the attacked target (activity, dose); (d) Secondary damage consequence (C') to the attacked target (psychological and socio-economic effects); (e) Probability that the consequences (C, C') cannot be brought under control, resulting in a failure to manage successfully the emergency situation due to logistical and/or technical deficits in implementing adequate countermeasures. Extensive computer modelling is used to determine the potential impact of such a criminal attack on directly affected victims and on the environment.

  17. Radionuclide contamination of sediment deposits in the Ob and Yenisey estuaries and areas of the Kara Sea.

    PubMed

    Standring, W J F; Stepanets, O; Brown, J E; Dowdall, M; Borisov, A; Nikitin, A

    2008-04-01

    The Ob and Yenisey rivers are major contributors to total riverine discharge to the Arctic Ocean. Several large nuclear facilities discharge into these rivers, which could affect actual and potential discharges of radionuclides to the Arctic region. This article presents new radionuclide concentration and grain-size data resulting from analyses of several sediment samples collected during research cruises in the Ob and Yenisey estuaries and adjacent areas during 2000 and 2001. Results indicate that discharges from the main nuclear facilities do not constitute a major contribution to the level of radioactive contamination in the marine areas studied, though Co-60 was detected at low concentrations in some sediment horizons. However, the aggregate contamination from different sources is not radioecologically significant in sediments within the study area, maximum Cs-137 levels being approximately 80 Bq kg(-1) dry weight.

  18. Phosphate-Mediated Remediation of Metals and Radionuclides

    DOE PAGES

    Martinez, Robert J.; Beazley, Melanie J.; Sobecky, Patricia A.

    2014-01-01

    Worldwide industrialization activities create vast amounts of organic and inorganic waste streams that frequently result in significant soil and groundwater contamination. Metals and radionuclides are of particular concern due to their mobility and long-term persistence in aquatic and terrestrial environments. As the global population increases, the demand for safe, contaminant-free soil and groundwater will increase as will the need for effective and inexpensive remediation strategies. Remediation strategies that include physical and chemical methods (i.e., abiotic) or biological activities have been shown to impede the migration of radionuclide and metal contaminants within soil and groundwater. However, abiotic remediation methods are oftenmore » too costly owing to the quantities and volumes of soils and/or groundwater requiring treatment. The in situ sequestration of metals and radionuclides mediated by biological activities associated with microbial phosphorus metabolism is a promising and less costly addition to our existing remediation methods. This review highlights the current strategies for abiotic and microbial phosphate-mediated techniques for uranium and metal remediation.« less

  19. Pediatric radiation dosimetry for positron-emitting radionuclides using anthropomorphic phantoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Tianwu; Bolch, Wesley E.; Lee, Choonsik

    2013-10-15

    Purpose: Positron emission tomography (PET) plays an important role in the diagnosis, staging, treatment, and surveillance of clinically localized diseases. Combined PET/CT imaging exhibits significantly higher sensitivity, specificity, and accuracy than conventional imaging when it comes to detecting malignant tumors in children. However, the radiation dose from positron-emitting radionuclide to the pediatric population is a matter of concern since children are at a particularly high risk when exposed to ionizing radiation.Methods: The authors evaluate the absorbed fractions and specific absorbed fractions (SAFs) of monoenergy photons/electrons as well as S-values of 9 positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Rb-82,more » Y-86, and I-124) in 48 source regions for 10 anthropomorphic pediatric hybrid models, including the reference newborn, 1-, 5-, 10-, and 15-yr-old male and female models, using the Monte Carlo N-Particle eXtended general purpose Monte Carlo transport code.Results: The self-absorbed SAFs and S-values for most organs were inversely related to the age and body weight, whereas the cross-dose terms presented less correlation with body weight. For most source/target organ pairs, Rb-82 and Y-86 produce the highest self-absorbed and cross-absorbed S-values, respectively, while Cu-64 produces the lowest S-values because of the low-energy and high-frequency of electron emissions. Most of the total self-absorbed S-values are contributed from nonpenetrating particles (electrons and positrons), which have a linear relationship with body weight. The dependence of self-absorbed S-values of the two annihilation photons varies to the reciprocal of 0.76 power of the mass, whereas the self-absorbed S-values of positrons vary according to the reciprocal mass.Conclusions: The produced S-values for common positron-emitting radionuclides can be exploited for the assessment of radiation dose delivered to the pediatric population from

  20. Reactive transport studies at the Raymond Field Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freifeld, B.; Karasaki, K.; Solbau, R.

    1995-12-01

    To ensure the safety of a nuclear waste repository, an understanding of the transport of radionuclides from the repository nearfield to the biosphere is necessary. At the Raymond Field Site, in Raymond, California, tracer tests are being conducted to test characterization methods for fractured media and to evaluate the equipment and tracers that will be used for Yucca Mountain`s fracture characterization. Recent tracer tests at Raymond have used reactive cations to demonstrate transport with sorption. A convective-dispersive model was used to simulate a two-well recirculating test with reasonable results. However, when the same model was used to simulate a radiallymore » convergent tracer test, the model poorly predicted the actual test data.« less

  1. A systematic review of factors affecting driving and public transportation among youth and young adults with acquired brain injury.

    PubMed

    Lindsay, Sally; Stoica, Andrei

    2017-01-01

    Although many people with an acquired brain injury (ABI) encounter difficulties with executive functioning and memory which could negatively affect driving, few people are assessed for fitness to drive after injury. The purpose of this systematic review was to synthesize the literature on factors affecting driving and public transportation among youth and young adults with ABI, post injury. Seven databases were systematically searched for articles from 1980 to 2016. Studies were screened independently by two researchers who performed the data extraction. Study quality was appraised using the Standard Quality Assessment Criteria (Kmet) for evaluating primary research from a variety of fields. Of the 6577 studies identified in the search, 25 met the inclusion criteria, which involved 1527 participants with ABI (mean age = 25.1) across eight countries. Six studies focused on driving assessment and fitness to drive, ten on driving performance or risk of accidents and nine studies explored issues related to accessing or navigating public transportation. Quality assessment of the included studies ranged from 0.60 to 0.95. Our findings highlight several gaps in clinical practice and research along with a critical need for enhanced fitness to drive assessments and transportation-related training for young people with ABI.

  2. GHSI Emergency Radionuclide Bioassay Laboratory Network - Summary of the Second Exercise

    PubMed Central

    Li, Chunsheng; Bartizel, Christine; Battisti, Paolo; Böttger, Axel; Bouvier, Céline; Capote-Cuellar, Antonio; Carr, Zhanat; Hammond, Derek; Hartmann, Martina; Heikkinen, Tarja; Jones, Robert L.; Kim, Eunjoo; Ko, Raymond; Koga, Roberto; Kukhta, Boris; Mitchell, Lorna; Morhard, Ryan; Paquet, Francois; Quayle, Debora; Rulik, Petr; Sadi, Baki; Sergei, Aleksanin; Sierra, Inmaculada; de Oliveira Sousa, Wanderson; Szabó, Gyula

    2017-01-01

    The Global Health Security Initiative (GHSI) established a laboratory network within the GHSI community to develop collective surge capacity for radionuclide bioassay in response to a radiological or nuclear emergency as a means of enhancing response capability, health outcomes and community resilience. GHSI partners conducted an exercise in collaboration with the WHO REMPAN (Radiation Emergency Medical Preparedness and Assistance Network) and the IAEA RANET (Response and Assistance Network), to test the participating laboratories (18) for their capabilities in in vitro assay of biological samples, using a urine sample spiked with multiple high-risk radionuclides (90Sr, 106Ru, 137Cs, and 239Pu). Laboratories were required to submit their reports within 72 hours following receipt of the sample, using a pre-formatted template, on the procedures, methods and techniques used to identify and quantify the radionuclides in the sample, as well as the bioassay results with a 95% confidence interval. All of the participating laboratories identified and measured all or some of the radionuclides in the sample. However, gaps were identified in both the procedures used to assay multiple radionuclides in one sample, as well as in the methods or techniques used to assay specific radionuclides in urine. Two third of the participating laboratories had difficulties in determining all the radionuclides in the sample. Results from this exercise indicate that challenges remain with respect to ensuring that results are delivered in a timely, consistent and reliable manner to support medical interventions. Laboratories within the networks are encouraged to work together to develop and maintain collective capabilities and capacity for emergency bioassay, which is an important component of radiation emergency response. PMID:27574317

  3. SOLID PHASE MICROEXTRACTION SAMPLING OF HIGH EXPLOSIVE RESIDUES IN THE PRESENCE OF RADIONUCLIDES AND RADIONUCLIDE SURROGATE METALS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duff, M; S Crump, S; Robert02 Ray, R

    2007-04-13

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) evidence while maintaining evidentiary value. One experimental method for the isolation of HE residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research was to examine the affinity of dissolvedmore » radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.« less

  4. Cosmogenic radionuclides

    NASA Astrophysics Data System (ADS)

    Cosmic rays interact with the earth's atmosphere and surface to produce the “cosmogenic” nuclides. In many instances the radioactive ones are readily distinguished from the anthropogenic and meteoritic backgrounds. Measurements of these cosmogenic radionuclides (RCN) can contribute to the solution of a variety of geophysical problems [Lai and Peters, 1967]. Recent progress in this area was discussed at a symposium entitled Application of Cosmic-Ray-Produced Nuclides in Geophysics held May 30, 1983, at the AGU Spring Meeting in Baltimore (see Eos, May 3, 1983, pp. 282-284, for the abstracts). We summarize here the symposium presentations.

  5. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.

    1991-09-10

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solution and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal. 18 figures.

  6. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    1991-01-01

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solutin and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal.

  7. Genetic variation in serotonin transporter function affects human fear expression indexed by fear-potentiated startle.

    PubMed

    Klumpers, Floris; Heitland, Ivo; Oosting, Ronald S; Kenemans, J Leon; Baas, Johanna M P

    2012-02-01

    The serotonin transporter (SERT) plays a crucial role in anxiety. Accordingly, variance in SERT functioning appears to constitute an important pathway to individual differences in anxiety. The current study tested the hypothesis that genetic variation in SERT function is associated with variability in the basic reflex physiology of defense. Healthy subjects (N=82) were presented with clearly instructed cues of shock threat and safety to induce robust anxiety reactions. Subjects carrying at least one short allele for the 5-HTTLPR polymorphism showed stronger fear-potentiated startle compared to long allele homozygotes. However, short allele carriers showed no deficit in the downregulation of fear after the offset of threat. These results suggest that natural variation in SERT function affects the magnitude of defensive reactions while not affecting the capacity for fear regulation. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Drug membrane transporters and CYP3A4 are affected by hypericin, hyperforin or aristoforin in colon adenocarcinoma cells.

    PubMed

    Šemeláková, M; Jendželovský, R; Fedoročko, P

    2016-07-01

    Our previous results have shown that the combination of hypericin-mediated photodynamic therapy (HY-PDT) at sub-optimal dose with hyperforin (HP) (compounds of Hypericum sp.), or its stable derivative aristoforin (AR) stimulates generation of reactive oxygen species (ROS) leading to antitumour activity. This enhanced oxidative stress evoked the need for an explanation for HY accumulation in colon cancer cells pretreated with HP or AR. Generally, the therapeutic efficacy of chemotherapeutics is limited by drug resistance related to the overexpression of drug efflux transporters in tumour cells. Therefore, the impact of non-activated hypericin (HY), HY-PDT, HP and AR on cell membrane transporter systems (Multidrug resistance-associated protein 1-MRP1/ABCC1, Multidrug resistance-associated protein 2-MRP2/ABCC2, Breast cancer resistance protein - BCRP/ABCG2, P-glycoprotein-P-gp/ABCC1) and cytochrome P450 3A4 (CYP3A4) was evaluated. The different effects of the three compounds on their expression, protein level and activity was determined under specific PDT light (T0+, T6+) or dark conditions (T0- T6-). We found that HP or AR treatment affected the protein levels of MRP2 and P-gp, whereas HP decreased MRP2 and P-gp expression mostly in the T0+ and T6+ conditions, while AR decreased MRP2 in T0- and T6+. Moreover, HY-PDT treatment induced the expression of MRP1. Our data demonstrate that HP or AR treatment in light or dark PDT conditions had an inhibitory effect on the activity of individual membrane transport proteins and significantly decreased CYP3A4 activity in HT-29 cells. We found that HP or AR significantly affected intracellular accumulation of HY in HT-29 colon adenocarcinoma cells. These results suggest that HY, HP and AR might affect the efficiency of anti-cancer drugs, through interaction with membrane transporters and CYP3A4. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Cosmogenic radionuclides as a synchronisation tool - present status

    NASA Astrophysics Data System (ADS)

    Muscheler, Raimund; Adolphi, Florian; Mekhaldi, Florian; Mellström, Anette; Svensson, Anders; Aldahan, Ala; Possnert, Göran

    2014-05-01

    Changes in the flux of galactic cosmic rays into Earth's atmosphere produce variations in the production rates of cosmogenic radionuclides. The resulting globally synchronous signal in cosmogenic radionuclide records can be used to compare time scales and synchronise climate records. The most prominent example is the 14C wiggle match dating approach where variations in the atmospheric 14C concentration are used to match climate records and the tree-ring based part of the 14C calibration record. This approach can be extended to other cosmogenic radionuclide records such as 10Be time series provided that the different geochemical behaviour of 10Be and 14C is taken into account. Here we will present some recent results that illustrate the potential of using cosmogenic radionuclide records for comparing and synchronising different time scales. The focus will be on the last 50000 years where we will show examples how geomagnetic field, solar activity and unusual short-term cosmic ray changes can be used for comparing ice core, tree ring and sediment time scales. We will discuss some unexpected offsets between Greenland ice core and 14C time scale and we will examine how far back in time solar induced 10Be and 14C variations presently can be used to reliably synchronise ice core and 14C time scales.

  10. Radiation, radionuclides and bacteria: An in-perspective review.

    PubMed

    Shukla, Arpit; Parmar, Paritosh; Saraf, Meenu

    2017-12-01

    There has been a significant surge in consumption of radionuclides for various academic and commercial purposes. Correspondingly, there has been a considerable amount of generation of radioactive waste. Bacteria and archaea, being earliest inhabitants on earth serve as model microorganisms on earth. These microbes have consistently proven their mettle by surviving extreme environments, even extreme ionizing radiations. Their ability to accept and undergo stable genetic mutations have led to development of recombinant mutants that are been exploited for remediation of various pollutants such as; heavy metals, hydrocarbons and even radioactive waste (radwaste). Thus, microbes have repeatedly presented themselves to be prime candidates suitable for remediation of radwaste. It is interesting to study the behind-the-scenes interactions these microbes possess when observed in presence of radionuclides. The emphasis is on the indigenous bacteria isolated from radionuclide containing environments as well as the five fundamental interaction mechanisms that have been studied extensively, namely; bioaccumulation, biotransformation, biosorption, biosolubilisation and bioprecipitation. Application of microbes exhibiting such mechanisms in remediation of radioactive waste depends largely on the individual capability of the species. Challenges pertaining to its potential bioremediation activity is also been briefly discussed. This review provides an insight into the various mechanisms bacteria uses to tolerate, survive and carry out processes that could potentially lead the eco-friendly approach for removal of radionuclides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Nitric Oxide Affects Rice Root Growth by Regulating Auxin Transport Under Nitrate Supply

    PubMed Central

    Sun, Huwei; Feng, Fan; Liu, Juan; Zhao, Quanzhi

    2018-01-01

    Nitrogen (N) is a major essential nutrient for plant growth, and rice is an important food crop globally. Although ammonium (NH4+) is the main N source for rice, nitrate (NO3-) is also absorbed and utilized. Rice responds to NO3- supply by changing root morphology. However, the mechanisms of rice root growth and formation under NO3- supply are unclear. Nitric oxide (NO) and auxin are important regulators of root growth and development under NO3- supply. How the interactions between NO and auxin in regulating root growth in response to NO3- are unknown. In this study, the levels of indole-3-acetic acid (IAA) and NO in roots, and the responses of lateral roots (LRs) and seminal roots (SRs) to NH4+ and NO3-, were investigated using wild-type (WT) rice, as well as osnia2 and ospin1b mutants. NO3- supply promoted LR formation and SR elongation. The effects of NO donor and NO inhibitor/scavenger supply on NO levels and the root morphology of WT and nia2 mutants under NH4+ or NO3- suggest that NO3--induced NO is generated by the nitrate reductase (NR) pathway rather than the NO synthase (NOS)-like pathway. IAA levels, [3H] IAA transport, and PIN gene expression in roots were enhanced under NO3- relative to NH4+ supply. These results suggest that NO3- regulates auxin transport in roots. Application of SNP under NH4+ supply, or of cPTIO under NO3- supply, resulted in auxin levels in roots similar to those under NO3- and NH4+ supply, respectively. Compared to WT, the roots of the ospin1b mutant had lower auxin levels, fewer LRs, and shorter SRs. Thus, NO affects root growth by regulating auxin transport in response to NO3-. Overall, our findings suggest that NO3- influences LR formation and SR elongation by regulating auxin transport via a mechanism involving NO. PMID:29875779

  12. Modeling nearshore dispersal of river-derived multi-class suspended sediments and radionuclides during a flood event around the mouth of Niida River, Fukushima, Japan

    NASA Astrophysics Data System (ADS)

    Uchiyama, Y.; Yamanishi, T.; Iwasaki, T.; Shimizu, Y.; Tsumune, D.; Misumi, K.; Onda, Y.

    2016-12-01

    A quadruple nested synoptic oceanic downscale modeling based on ROMS was carried out to investigate hydrodynamics, multi-class non-cohesive sediment transport and associated dispersal of suspended radionuclides (cesium-137; 137Cs) originated from the nuclear accident occurred at the Fukushima Dai-ichi Power Plant in March 2011. The innermost model has horizontal grid resolution of 50 m to marginally resolve the topography around the river mouth including the surf zone. The model is forced by the JCOPE2 oceanic reanalysis as the outermost boundary conditions, the GPV-MSM atmospheric reanalysis, and an in-house SWAN spectral wave hindcast embedded in the operational GPV-CWM wave reanalysis. A particular attention is paid to nearshore behaviors and inventory of the nuclides attached to terrestrial minerals with grain sizes ranging from 5 to 79 micrometers that have been occasionally discharged out to the coastal ocean through hydrological processes within the river basin even after several years since the accident. We examine oceanic dispersal of sediment and suspended 137Cs influxes from Niida River, Fukushima, evaluated with the iRIC-Nays2DH river model. Our focus is on the first flood event in late May of 2011 after the accident. Alongshore asymmetry in transport of suspended sediments and 137Cs is exhibited, comprising storm-driven southward transport confined in the shallow area due to shoreward Ekman transport associated with strong northerly wind, followed by northwestward wide-spread transport under mild southerly wind condition. About 70 % of the Niida River-derived suspended 137Cs remains near the mouth for 20 days after the flood event. Nevertheless, our model results as well as an observation suggest that the area is dominated by erosion as for high bed shear stress all the time, thus suspended radionuclides are redistributed to dissipate away in long term.

  13. Conditions inside Water Pooled in a Failed Nuclear Waste Container and its Effect on Radionuclide Release

    NASA Astrophysics Data System (ADS)

    Hamdan, L. K.; Walton, J. C.; Woocay, A.

    2009-12-01

    Nuclear power use is expected to expand in the future, as part of the global clean energy initiative, to meet the world’s surging energy demand, and attenuate greenhouse gas emissions, which are mainly caused by fossil fuels. As a result, it is estimated that hundreds of thousands of metric tons of spent nuclear fuel (SNF) will accumulate. SNF disposal has major environmental (radiation exposure) and security (nuclear proliferation) concerns. Storage in unsaturated zone geological repositories is a reasonable solution for dealing with SNF. One of the key factors that determine the performance of the geological repository is the release of radionuclides from the engineered barrier system. Over time, the nuclear waste containers are expected to fail gradually due to general and localized corrosions and eventually infiltrating water will have access to the nuclear waste. Once radionuclides are released, they will be transported by water, and make their way to the accessible environment. Physical and chemical disturbances in the environment over the container will lead to different corrosion rates, causing different times and locations of penetration. One possible scenario for waste packages failure is the bathtub model, where penetrations occur on the top of the waste package and water pools inside it. In this paper the bathtub-type failed waste container is considered. We shed some light on chemical and physical processes that take place in the pooled water inside a partially failed waste container (bathtub category), and the effects of these processes on radionuclide release. Our study considers two possibilities: temperature stratification of the pooled water versus mixing process. Our calculations show that temperature stratification of the pooled water is expected when the waste package is half (or less) filled with water. On the other hand, when the waste package is fully filled (or above half) there will be mixing in the upper part of water. The effect of

  14. RADIONUCLIDE INVENTORY AND DISTRIBUTION: FOURMILE BRANCH, PEN BRANCH, AND STEEL CREEK IOUS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiergesell, R.; Phifer, M.

    2014-04-29

    As a condition to the Department of Energy (DOE) Low Level Waste Disposal Federal Facility Review Group (LFRG) review team approving the Savannah River Site (SRS) Composite Analysis (CA), SRS agreed to follow up on a secondary issue, which consisted of the consolidation of several observations that the team concluded, when evaluated collectively, could potentially impact the integration of the CA results. This report addresses secondary issue observations 4 and 21, which identify the need to improve the CA sensitivity and uncertainty analysis specifically by improving the CA inventory and the estimate of its uncertainty. The purpose of the workmore » described herein was to be responsive to these secondary issue observations by re-examining the radionuclide inventories of the Integrator Operable Units (IOUs), as documented in ERD 2001 and Hiergesell, et. al. 2008. The LFRG concern has been partially addressed already for the Lower Three Runs (LTR) IOU (Hiergesell and Phifer, 2012). The work described in this investigation is a continuation of the effort to address the LFRG concerns by re-examining the radionuclide inventories associated with Fourmile Branch (FMB) IOU, Pen Branch (PB) IOU and Steel Creek (SC) IOU. The overall approach to computing radionuclide inventories for each of the IOUs involved the following components: • Defining contaminated reaches of sediments along the IOU waterways • Identifying separate segments within each IOU waterway to evaluate individually • Computing the volume and mass of contaminated soil associated with each segment, or “compartment” • Obtaining the available and appropriate Sediment and Sediment/Soil analytical results associated with each IOU • Standardizing all radionuclide activity by decay-correcting all sample analytical results from sample date to the current point in time, • Computing representative concentrations for all radionuclides associated with each compartment in each of the IOUs • Computing

  15. Monte Carlo-based evaluation of S-values in mouse models for positron-emitting radionuclides

    NASA Astrophysics Data System (ADS)

    Xie, Tianwu; Zaidi, Habib

    2013-01-01

    In addition to being a powerful clinical tool, Positron emission tomography (PET) is also used in small laboratory animal research to visualize and track certain molecular processes associated with diseases such as cancer, heart disease and neurological disorders in living small animal models of disease. However, dosimetric characteristics in small animal PET imaging are usually overlooked, though the radiation dose may not be negligible. In this work, we constructed 17 mouse models of different body mass and size based on the realistic four-dimensional MOBY mouse model. Particle (photons, electrons and positrons) transport using the Monte Carlo method was performed to calculate the absorbed fractions and S-values for eight positron-emitting radionuclides (C-11, N-13, O-15, F-18, Cu-64, Ga-68, Y-86 and I-124). Among these radionuclides, O-15 emits positrons with high energy and frequency and produces the highest self-absorbed S-values in each organ, while Y-86 emits γ-rays with high energy and frequency which results in the highest cross-absorbed S-values for non-neighbouring organs. Differences between S-values for self-irradiated organs were between 2% and 3%/g difference in body weight for most organs. For organs irradiating other organs outside the splanchnocoele (i.e. brain, testis and bladder), differences between S-values were lower than 1%/g. These appealing results can be used to assess variations in small animal dosimetry as a function of total-body mass. The generated database of S-values for various radionuclides can be used in the assessment of radiation dose to mice from different radiotracers in small animal PET experiments, thus offering quantitative figures for comparative dosimetry research in small animal models.

  16. GHSI EMERGENCY RADIONUCLIDE BIOASSAY LABORATORY NETWORK - SUMMARY OF THE SECOND EXERCISE.

    PubMed

    Li, Chunsheng; Bartizel, Christine; Battisti, Paolo; Böttger, Axel; Bouvier, Céline; Capote-Cuellar, Antonio; Carr, Zhanat; Hammond, Derek; Hartmann, Martina; Heikkinen, Tarja; Jones, Robert L; Kim, Eunjoo; Ko, Raymond; Koga, Roberto; Kukhta, Boris; Mitchell, Lorna; Morhard, Ryan; Paquet, Francois; Quayle, Debora; Rulik, Petr; Sadi, Baki; Sergei, Aleksanin; Sierra, Inmaculada; de Oliveira Sousa, Wanderson; Szab, Gyula

    2017-05-01

    The Global Health Security Initiative (GHSI) established a laboratory network within the GHSI community to develop collective surge capacity for radionuclide bioassay in response to a radiological or nuclear emergency as a means of enhancing response capability, health outcomes and community resilience. GHSI partners conducted an exercise in collaboration with the WHO Radiation Emergency Medical Preparedness and Assistance Network and the IAEA Response and Assistance Network, to test the participating laboratories (18) for their capabilities in in vitro assay of biological samples, using a urine sample spiked with multiple high-risk radionuclides (90Sr, 106Ru, 137Cs, and 239Pu). Laboratories were required to submit their reports within 72 h following receipt of the sample, using a pre-formatted template, on the procedures, methods and techniques used to identify and quantify the radionuclides in the sample, as well as the bioassay results with a 95% confidence interval. All of the participating laboratories identified and measured all or some of the radionuclides in the sample. However, gaps were identified in both the procedures used to assay multiple radionuclides in one sample, as well as in the methods or techniques used to assay specific radionuclides in urine. Two-third of the participating laboratories had difficulties in determining all the radionuclides in the sample. Results from this exercise indicate that challenges remain with respect to ensuring that results are delivered in a timely, consistent and reliable manner to support medical interventions. Laboratories within the networks are encouraged to work together to develop and maintain collective capabilities and capacity for emergency bioassay, which is an important component of radiation emergency response. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. The course of peritoneal membrane transport in patients on long-term peritoneal dialysis: what is it affected by?

    PubMed

    Unal, Aydin; Sipahioglu, Murat H; Kocyigit, Ismail; Tunca, Onur; Tokgoz, Bulent; Oymak, Oktay

    2016-02-01

    The aim of this study was to investigate the course of peritoneal membrane transport in patients on long-term peritoneal dialysis (PD) and to identify possible factors affecting its course. This study included 101 patients on long-term PD. The median duration of PD was 106 (range, 80-189) months. All patients had least 2 peritoneal equilibration tests (PET). The patients were divided to 3 groups according to the change between the peritoneal transport types at the first PET and the last PET. In the first group, peritoneal transport type stayed stable. It tended to increase in second group whereas there was a trend toward to decrease in the third group. Mean dialysate/plasma creatinine was significantly increased with time. It was 0.64±0.1 and 0.74±0.1 at the first and the last PET, respectively (P<0.001). Number of patients in low and low-average groups was significantly decreased whereas number of patients in high average and high groups was significantly increased with time (P<0.001). There was significant difference among 3 groups with regard to glucose exposure (P=0.018). It was significantly higher in second group compared to other two groups. There was no significant difference among 3 groups with regard to other demographic, clinical, and biochemical parameters (P>0.05). Peritoneal membrane permeability was increased in patients on long-term PD with time and the increase in the permeability was affected by glucose exposure.

  18. Reactor-released radionuclides in Susquehanna River sediments

    USGS Publications Warehouse

    Olsen, C.R.; Larsen, I.L.; Cutshall, N.H.; Donoghue, J.F.; Bricker, O.P.; Simpson, H.J.

    1981-01-01

    Three Mile Island (TMI) and Peach Bottom (PB) reactors have introduced 137Cs, 134Cs, 60Co, 58Co and several other anthropogenic radionuclides into the lower Susquehanna River. Here we present the release history for these nuclides (Table 1) and radionuclide concentration data (Table 2) for sediment samples collected in the river and upper portions of the Chesapeake Bay (Fig. 1) within a few months after the 28 March 1979 loss-of-coolant-water problem at TMI. Although we found no evidence for nuclides characteristic of a ruptured fuel element, we did find nuclides characteristic of routine operations. Despite the TMI incident, more than 95% of the total 134Cs input to the Susquehanna has been a result of controlled low-level releases from the PB site. 134Cs activity released into the river is effectively trapped by sediments with the major zones of reactor-nuclide accumulation behind Conowingo Dam and in the upper portions of Chesapeake Bay. The reported distributions document the fate of reactor-released radionuclides and their extent of environmental contamination in the Susquehanna-Upper Chesapeake Bay System. ?? 1981 Nature Publishing Group.

  19. Radionuclide development at BNL for nuclear medicine therapy.

    PubMed

    Mausner, L F; Kolsky, K L; Joshi, V; Srivastava, S C

    1998-04-01

    Radionuclides with medium energy beta emission and a several day half-life have often been viewed as attractive candidates for radioimmunotherapy. Among the most promising in this category are 47Sc, 67Cu, 153Sm, 188Re, and 199Au. The production of 67Cu, 153Sm, 199Au at BNL is summarized and the development of the latest candidate for this application, 47Sc, is described in detail. We also summarize the development of another important therapeutic radionuclide, 117mSn for bone pain palliation.

  20. DETERMINATION OF REPORTABLE RADIONUCLIDES FOR DWPF SLUDGE BATCH 7B (MACROBATCH 9)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C. L.; Diprete, D. P.

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that “The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115”. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production throughmore » the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu- 242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that

  1. Determination Of Reportable Radionuclides For DWPF Sludge Batch 7B (Macrobatch 9)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, C. L.; DiPrete, D. P.

    The Waste Acceptance Product Specifications (WAPS) 1.2 require that “The Producer shall report the inventory of radionuclides (in Curies) that have half-lives longer than 10 years and that are, or will be, present in concentrations greater than 0.05 percent of the total inventory for each waste type indexed to the years 2015 and 3115”. As part of the strategy to comply with WAPS 1.2, the Defense Waste Processing Facility (DWPF) will report for each waste type, all radionuclides (with half-lives greater than 10 years) that have concentrations greater than 0.01 percent of the total inventory from time of production throughmore » the 1100 year period from 2015 through 3115. The initial listing of radionuclides to be included is based on the design-basis glass as identified in the Waste Form Compliance Plan (WCP) and Waste Form Qualification Report (WQR). However, it is required that this list be expanded if other radionuclides with half-lives greater than 10 years are identified that may meet the greater than 0.01% criterion for Curie content. Specification 1.6 of the WAPS, International Atomic Energy Agency (IAEA) Safeguards Reporting for High Level Waste (HLW), requires that the ratio by weights of the following uranium and plutonium isotopes be reported: U-233, U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, and Pu-242. Therefore, the complete set of reportable radionuclides must also include this set of U and Pu isotopes. The DWPF is receiving radioactive sludge slurry from HLW Tank 40. The radioactive sludge slurry in Tank 40 is a blend of the heel from Sludge Batch 7a (SB7a) and Sludge Batch 7b (SB7b) that was transferred to Tank 40 from Tank 51. The blend of sludge in Tank 40 is also referred to as Macrobatch 9 (MB9). This report develops the list of reportable radionuclides and associated activities as a function of time. The DWPF will use this list and the activities as one of the inputs for the development of the Production Records that

  2. Long-range transport of Xe-133 emissions under convective and non-convective conditions.

    PubMed

    Kuśmierczyk-Michulec, J; Krysta, M; Kalinowski, M; Hoffmann, E; Baré, J

    2017-09-01

    To investigate the transport of xenon emissions, the Provisional Technical Secretariat (PTS) operates an Atmospheric Transport Modelling (ATM) system based on the Lagrangian Particle Dispersion Model FLEXPART. The air mass trajectory ideally provides a "link" between a radionuclide release and a detection confirmed by radionuclide measurements. This paper investigates the long-range transport of Xe-133 emissions under convective and non-convective conditions, with special emphasis on evaluating the changes in the simulated activity concentration values due to the inclusion of the convective transport in the ATM simulations. For that purpose a series of 14 day forward simulations, with and without convective transport, released daily in the period from 1 January 2011 to 30 June 2013, were analysed. The release point was at the ANSTO facility in Australia. The simulated activity concentrations for the period January 2011 to February 2012 were calculated using the daily emission values provided by the ANSTO facility; outside the aforementioned period, the median daily emission value was used. In the simulations the analysed meteorological input data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) were used with the spatial resolution of 0.5°. It was found that the long-range transport of Xe-133 emissions under convective conditions, where convection was included in the ATM simulation, led to a small decrease in the activity concentration, as compared to transport without convection. In special cases related to deep convection, the opposite effect was observed. Availability of both daily emission values and measured Xe-133 activity concentration values was an opportunity to validate the simulations. Based on the paired t-test, a 95% confidence interval for the true mean difference between simulations without convective transport and measurements was constructed. It was estimated that the overall uncertainty lies between 0.08 and 0.25 mBq/m 3

  3. Radionuclide evaluation of free vascularized bone graft viability. [/sup 99m/Tc-methylene diphosphonate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisbona, R.; Rennie, W.R.J.; Daniel, R.K.

    1980-02-01

    Free vascularized bone grafting is a new technique applied to the reconstructive surgery of long bones affected by aggressive benign or malignant processes, as well as traumatic deficiencies. These bone lesions may be treated by en bloc excision and replacement with fibular segments or osteocutaneous flaps from the groin isolated on their vascular pedicle. Microvascular anastomosis of the pedicle at the recipient site is necessary. Radionuclide bone imaging is unique in the assessment of the free vascularized bone graft because postoperative graft uptake of radiopharmaceutical reflects patent anastomoses and segmental bone viability.

  4. Characteristics of radionuclide contamination of different zones of Semipalatinsk Nuclear Test Site ``Opytnoe pole''

    NASA Astrophysics Data System (ADS)

    Kadyrzhanov, K. K.; Khazhekber, S.; Lukashenko, S. N.; Solodukhin, V. P.; Kazachevskiy, I. V.; Poznyak, V. L.; Knyazev, B. B.; Rofer, Ch.

    2003-01-01

    Data on the spatial distribution of radionuclides (241Am, 239Pu, 137Cs and 152Eu) formed during nuclear explosions of different types near P2 SNTS test site are presented. Radionuclide contamination induced by the explosions varies in the concentrations of individual radionuclides, their proportions and species. Examination of the variations is a crucial task to plan remediation activities as well as those aimed at decrease of radiation risk for population and prevention of repeated contamination. Concentrations of 241Am and 239+240Pu that are the most toxic radionuclides in the area lie in hundred thousands of Bqkg-1. The most contaminated areas are classified by the radionuclide concentration, ratio and form present in soil.

  5. Behaviour and fluxes of natural radionuclides in the production process of a phosphoric acid plant.

    PubMed

    Bolívar, J P; Martín, J E; García-Tenorio, R; Pérez-Moreno, J P; Mas, J L

    2009-02-01

    In recent years there has been an increasing awareness of the occupational and public hazards of the radiological impact of non-nuclear industries which process materials containing naturally occurring radionuclides. These include the industries devoted to the production of phosphoric acid by treating sedimentary phosphate rocks enriched in radionuclides from the uranium series. With the aim of evaluating the radiological impact of a phosphoric acid factory located in the south-western Spain, the distribution and levels of radionuclides in the materials involved in its production process have been analysed. In this way, it is possible to asses the flows of radionuclides at each step and to locate those points where a possible radionuclide accumulation could be produced. A set of samples collected along the whole production process were analysed to determine their radionuclide content by both alpha-particle and gamma spectrometry techniques. The radionuclide fractionation steps and enrichment sources have been located, allowing the establishment of their mass (activity) balances per year.

  6. Real-time gamma imaging of technetium transport through natural and engineered porous materials for radioactive waste disposal.

    PubMed

    Corkhill, Claire L; Bridge, Jonathan W; Chen, Xiaohui C; Hillel, Phil; Thornton, Steve F; Romero-Gonzalez, Maria E; Banwart, Steven A; Hyatt, Neil C

    2013-12-03

    We present a novel methodology for determining the transport of technetium-99m, a γ-emitting metastable isomer of (99)Tc, through quartz sand and porous media relevant to the disposal of nuclear waste in a geological disposal facility (GDF). Quartz sand is utilized as a model medium, and the applicability of the methodology to determine radionuclide transport in engineered backfill cement is explored using the UK GDF candidate backfill cement, Nirex Reference Vault Backfill (NRVB), in a model system. Two-dimensional distributions in (99m)Tc activity were collected at millimeter-resolution using decay-corrected gamma camera images. Pulse-inputs of ~20 MBq (99m)Tc were introduced into short (<10 cm) water-saturated columns at a constant flow of 0.33 mL min(-1). Changes in calibrated mass distribution of (99m)Tc at 30 s intervals, over a period of several hours, were quantified by spatial moments analysis. Transport parameters were fitted to the experimental data using a one-dimensional convection-dispersion equation, yielding transport properties for this radionuclide in a model GDF environment. These data demonstrate that (99)Tc in the pertechnetate form (Tc(VII)O4(-)) does not sorb to cement backfill during transport under model conditions, resulting in closely conservative transport behavior. This methodology represents a quantitative development of radiotracer imaging and offers the opportunity to conveniently and rapidly characterize transport of gamma-emitting isotopes in opaque media, relevant to the geological disposal of nuclear waste and potentially to a wide variety of other subsurface environments.

  7. Real-Time Gamma Imaging of Technetium Transport through Natural and Engineered Porous Materials for Radioactive Waste Disposal

    PubMed Central

    2013-01-01

    We present a novel methodology for determining the transport of technetium-99m, a γ-emitting metastable isomer of 99Tc, through quartz sand and porous media relevant to the disposal of nuclear waste in a geological disposal facility (GDF). Quartz sand is utilized as a model medium, and the applicability of the methodology to determine radionuclide transport in engineered backfill cement is explored using the UK GDF candidate backfill cement, Nirex Reference Vault Backfill (NRVB), in a model system. Two-dimensional distributions in 99mTc activity were collected at millimeter-resolution using decay-corrected gamma camera images. Pulse-inputs of ∼20 MBq 99mTc were introduced into short (<10 cm) water-saturated columns at a constant flow of 0.33 mL min–1. Changes in calibrated mass distribution of 99mTc at 30 s intervals, over a period of several hours, were quantified by spatial moments analysis. Transport parameters were fitted to the experimental data using a one-dimensional convection–dispersion equation, yielding transport properties for this radionuclide in a model GDF environment. These data demonstrate that 99Tc in the pertechnetate form (Tc(VII)O4–) does not sorb to cement backfill during transport under model conditions, resulting in closely conservative transport behavior. This methodology represents a quantitative development of radiotracer imaging and offers the opportunity to conveniently and rapidly characterize transport of gamma-emitting isotopes in opaque media, relevant to the geological disposal of nuclear waste and potentially to a wide variety of other subsurface environments. PMID:24147650

  8. Radionuclide transfer to fruit in the IAEA TRS No. 472

    NASA Astrophysics Data System (ADS)

    Carini, F.; Pellizzoni, M.; Giosuè, S.

    2012-04-01

    This paper describes the approach taken to present the information on fruits in the IAEA report TRS No. 472, supported by the IAEA-TECDOC-1616, which describes the key transfer processes, concepts and conceptual models regarded as important for dose assessment, as well as relevant parameters for modelling radionuclide transfer in fruits. Information relate to fruit plants grown in agricultural ecosystems of temperate regions. The relative significance of each pathway after release of radionuclides depends upon the radionuclide, the kind of crop, the stage of plant development and the season at time of deposition. Fruit intended as a component of the human diet is borne by plants that are heterogeneous in habits, and morphological and physiological traits. Information on radionuclides in fruit systems has therefore been rationalised by characterising plants in three groups: woody trees, shrubs, and herbaceous plants. Parameter values have been collected from open literature, conference proceedings, institutional reports, books and international databases. Data on root uptake are reported as transfer factor values related to fresh weight, being consumption data for fruits usually given in fresh weight.

  9. 40 CFR Appendix D to Part 61 - Methods for Estimating Radionuclide Emissions

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Table 1. Table 1—Adjustment to Emission Factors for Effluent Controls Controls Types of radionuclides... applicable to gaseous radionuclides; periodic testing is prudent to ensure high removal efficiency. Fabric...

  10. 40 CFR Appendix D to Part 61 - Methods for Estimating Radionuclide Emissions

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Table 1. Table 1—Adjustment to Emission Factors for Effluent Controls Controls Types of radionuclides... applicable to gaseous radionuclides; periodic testing is prudent to ensure high removal efficiency. Fabric...

  11. Chemical fractionation of radionuclides and stable elements in aquatic plants of the Yenisei River.

    PubMed

    Bolsunovsky, Alexander

    2011-09-01

    The Yenisei River is contaminated with artificial radionuclides released by one of the Russian nuclear plants. The aquatic plants growing in the radioactively contaminated parts of the river contain artificial radionuclides. The aim of the study was to investigate accumulation of artificial radionuclides and stable elements by submerged plants of the Yenisei River and estimate the strength of their binding to plant biomass by using a new sequential extraction scheme. The aquatic plants sampled were: Potamogeton lucens, Fontinalis antipyretica, and Batrachium kauffmanii. Gamma-spectrometric analysis of the samples of aquatic plants has revealed more than 20 radionuclides. We also investigated the chemical fractionation of radionuclides and stable elements in the biomass and rated radionuclides and stable elements based on their distribution in biomass. The greatest number of radionuclides strongly bound to biomass cell structures was found for Potamogeton lucens and the smallest for Batrachium kauffmanii. For Fontinalis antipyretica, the number of distribution patterns that were similar for both radioactive isotopes and their stable counterparts was greater than for the other studied species. The transuranic elements (239)Np and (241)Am were found in the intracellular fraction of the biomass, and this suggested their active accumulation by the plants.

  12. Assessment of radionuclide contents in food in Hong Kong

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, K.N.; Mao, S.Y.

    1999-12-01

    Baseline values of concentrations of the natural radionuclides ({sup 238}U, {sup 226}Ra, {sup 228}Ra/{sup 232}Th, {sup 210}Pb) and artificial radionuclides ({sup 137}Cs, {sup 60}Co) in food and drinks (tap water, milk, and water-based drinks) were determined by gamma spectroscopy. All food and drinks were found to contain detectable {sup 40}K contents: 0.1 to 160 Bq Kg{sup {minus}1} for food and 0.006 to 61 Bq L{sup {minus}1} for drinks. Most of the other natural radionuclides in solid food were found to have contents below the minimum detectable activities (MDA). More samples in the leafy vegetable, tomato, carrot and potato categories containedmore » detectable amounts of {sup 228}Ra than the meat, cereal, and fish categories, with concentrations up to 1.2 Bq kg{sup {minus}1} for the former categories and 0.35 Bq kg{sup {minus}1} for the latter categories. The {sup 238}U and {sup 226}Ra radionuclides were detectable in most of the water-based drink samples, and the {sup 228}Ra and {sup 210}Pb radionuclides were detectable in fewer water-based drink samples. The {sup 137}Cs contents in solid food were detectable in most of the solid food samples (reaching 0.59 Bq kg{sup {minus}1}), but in drinks the {sup 137}Cs contents were very low and normally lower than the MDA values. Nearly all the {sup 60}Co contents in food and drinks were below the MDA values and their contents were below those of {sup 137}Cs.« less

  13. Joint release rate estimation and measurement-by-measurement model correction for atmospheric radionuclide emission in nuclear accidents: An application to wind tunnel experiments.

    PubMed

    Li, Xinpeng; Li, Hong; Liu, Yun; Xiong, Wei; Fang, Sheng

    2018-03-05

    The release rate of atmospheric radionuclide emissions is a critical factor in the emergency response to nuclear accidents. However, there are unavoidable biases in radionuclide transport models, leading to inaccurate estimates. In this study, a method that simultaneously corrects these biases and estimates the release rate is developed. Our approach provides a more complete measurement-by-measurement correction of the biases with a coefficient matrix that considers both deterministic and stochastic deviations. This matrix and the release rate are jointly solved by the alternating minimization algorithm. The proposed method is generic because it does not rely on specific features of transport models or scenarios. It is validated against wind tunnel experiments that simulate accidental releases in a heterogonous and densely built nuclear power plant site. The sensitivities to the position, number, and quality of measurements and extendibility of the method are also investigated. The results demonstrate that this method effectively corrects the model biases, and therefore outperforms Tikhonov's method in both release rate estimation and model prediction. The proposed approach is robust to uncertainties and extendible with various center estimators, thus providing a flexible framework for robust source inversion in real accidents, even if large uncertainties exist in multiple factors. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mobility of radionuclides and trace elements in soil from legacy NORM and undisturbed naturally 232Th-rich sites.

    PubMed

    Mrdakovic Popic, Jelena; Meland, Sondre; Salbu, Brit; Skipperud, Lindis

    2014-05-01

    Investigation of radionuclides (232Th and 238U) and trace elements (Cr, As and Pb) in soil from two legacy NORM (former mining sites) and one undisturbed naturally 232Th-rich site was conducted as a part of the ongoing environmental impact assessment in the Fen Complex area (Norway). The major objectives were to determine the radionuclide and trace element distribution and mobility in soils as well as to analyze possible differences between legacy NORM and surrounding undisturbed naturally 232Th-rich soils. Inhomogeneous soil distribution of radionuclides and trace elements was observed for each of the investigated sites. The concentration of 232Th was high (up to 1685 mg kg(-1), i.e., ∼7000 Bq kg(-1)) and exceeded the screening value for the radioactive waste material in Norway (1 Bq g(-1)). Based on the sequential extraction results, the majority of 232Th and trace elements were rather inert, irreversibly bound to soil. Uranium was found to be potentially more mobile, as it was associated with pH-sensitive soil phases, redox-sensitive amorphous soil phases and soil organic compounds. Comparison of the sequential extraction datasets from the three investigated sites revealed increased mobility of all analyzed elements at the legacy NORM sites in comparison with the undisturbed 232Th-rich site. Similarly, the distribution coefficients Kd (232Th) and Kd (238U) suggested elevated dissolution, mobility and transportation at the legacy NORM sites, especially at the decommissioned Nb-mining site (346 and 100 L kg(-1) for 232Th and 238U, respectively), while the higher sorption of radionuclides was demonstrated at the undisturbed 232Th-rich site (10,672 and 506 L kg(-1) for 232Th and 238U, respectively). In general, although the concentration ranges of radionuclides and trace elements were similarly wide both at the legacy NORM and at the undisturbed 232Th-rich sites, the results of soil sequential extractions together with Kd values supported the expected differences

  15. Vesicoureteral reflux in asymptomatic siblings of patients with known reflux: radionuclide cystography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van den Abbeele, A.D.; Treves, S.T.; Lebowitz, R.L.

    1987-01-01

    The familial nature of vesicoureteral reflux among siblings of patients with vesicoureteral reflux has been reported to be from 8% to 32%. These included both symptomatic and asymptomatic siblings. The incidence of vesicoureteral reflux in asymptomatic siblings, however, has not been studied extensively. Sixty asymptomatic siblings of patients known to have vesicoureteral reflux were studied with radionuclide voiding cystography. Their ages ranged from 2 months to 15 years (mean, 4.2 years). Vesicoureteral reflux was detected in 27 of 60 (45%) of the siblings. Vesicoureteral reflux was unilateral in 15 and bilateral in 12 of the siblings. Radionuclide cystography is moremore » sensitive than radiographic cystography and results in a very low radiation dose to the patient. The gonadal dose with radionuclide cystography is only 1.0 to 2.0 mrads. Because of these features, radionuclide cystography is a nearly ideal technique for the diagnosis of vesicoureteral reflux in siblings of patients with known vesicoureteral reflux. All siblings (symptomatic or asymptomatic) of patients with known vesicoureteral reflux should have a screening radionuclide cystography.« less

  16. Quantification of the Spatial Distribution of Radionuclides in Field Lysimeters with a Collimated High-Resolution Gamma-Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Erdmann, Bryan James

    The objective of this work is to quantify the one-dimensional spatial distribution of radionuclides in field lysimeters from the Radionuclide Field Lysimeter Experiment (RadFLEX) facility at the Savannah River Nationals Laboratory (SRNL). The lysimeters, containing 137Cs, 60Co, 133Ba and 152Eu incorporated either into solid wasteforms (Portland cement and reducing grout) or introduced into soil via a filter paper wasteform, were weathered for three to four years. The initial contaminant activities range from 4.0 to 9.0 MBq for the cementitious wasteforms and 0.25 to 0.47 MBq for the filter paper wasteform. An analytical method was developed to perform non-destructive measurements to quantify the spatial distributions measured in field lysimeters. This method provides an alternative to traditional destructive techniques to determine the spatial distribution of activity. This non-destructive method also allows for multiple scans to be performed periodically. Observing how these distributions change with time would improve modeling transport parameters. The detection system consists of a collimated high-purity germanium (HPGe) radiation detector coupled with a linear translational table. A lead collimator is used to achieve spatial resolution as high as 0.25 cm. The lysimeters are positioned relative to the detector using a linear translation stage that can move vertically via a computercontrolled stepping motor. A user control interface was developed with National Instruments LabVIEWRTM that synchronizes the data acquisition from the radiation detector with the lysimeter movement and positioning thus allowing the lysimeter scans to be automated. The detection efficiency of the system was investigated using two methods. Europium-152 is an ideal candidate for calibration source due to its multiple gamma-ray emissions across a wide range of energies. One method uses a 152Eu point source as the calibration standard while the other method uses the 152Eu within the

  17. Methylammonium-resistant mutants of Nicotiana plumbaginifolia are affected in nitrate transport.

    PubMed

    Godon, C; Krapp, A; Leydecker, M T; Daniel-Vedele, F; Caboche, M

    1996-02-25

    This work reports the isolation and preliminary characterization of Nicotiana plumbaginifolia mutants resistant to methylammonium. Nicotiana plumbaginifolia plants cannot grow on low levels of nitrate in the presence of methylammonium. Methylammonium is not used as a nitrogen source, although it can be efficiently taken up by Nicotiana plumbaginifolia cells and converted into methylglutamine, an analog of glutamine. Glutamine is known to repress the expression of the enzymes that mediate the first two steps in the nitrate assimilatory pathway, nitrate reductase (NR) and nitrite reductase (NiR). Methylammonium has therefore been used, in combination with low concentrations of nitrate, as a selective agent in order to screen for mutants in which the nitrate pathway is de-repressed. Eleven semi-dominant mutants, all belonging to the same complementation group, were identified. The mutant showing the highest resistance to methylammonium was not affected either in the utilization of ammonium, accumulation of methylammonium or in glutamine synthase activity. A series of experiments showed that utilization of nitrite by the wild-type and the mutant was comparable, in the presence or the absence of methylammonium, thus suggesting that the mutation specifically affected nitrate transport or reduction. Although NR mRNA levels were less repressed by methylammonium treatment of the wild-type than the mutant, NR activities of the mutant remained comparable with or without methylammonium, leading to the hypothesis that modified expression of NR is probably not responsible for resistance to methylammonium. Methylammonium inhibited nitrate uptake in the wild-type but had only a limited effect in the mutant. The implications of these results are discussed.

  18. Risk assessment during transport of radioactive materials through the Suez Canal

    NASA Astrophysics Data System (ADS)

    Sabek, M. G.; El-Shinawy, R. M. K.; Gomaa, M.

    1997-03-01

    In this paper a study for risk assessment of the impact of transporting radioactive materials, during the period 1986-1992, through the Suez Canal of Egypt is given. The code RADTRAN-IV was used for this study. The results of the code, for a normal case, show that the transportation of low activity materials such as uranium (U 3O 8) represent the main items that contribute significantly to the collective dose within the Suez Canal area (Port-Said, Ismailia and Suez). The values of the annual collective dose due to transportation of all radionuclide materials was found to be at a maximum in Suez town and is equal to 5.04 × 10 -8 Man-Sv for the whole populations. If we only consider the workder at the harbour (estimated to be 50 persons), the value of the annual collective dose is about 3.33 × 10 -4 Man-Sv. These values are less than the exemption value of 1 Man-Sv recommended by the IAEA. For the accident case, the following pathways are considered by the code: ground-shine, direct inhalation, inhalation of resuspended material and cloud-shine. The total values of the estimated risks for each radionuclide material are presented in table form and, in addition, health effects (genetic effects, GE, and latent cancer fatality), LCF) are discussed. The calculated values of the radiological risks are very low for the three towns, showing that no radiation-induced early deaths are to be expected.

  19. Radionuclide transfer from feed to camel milk.

    PubMed

    Al-Masri, M S; Al-Hamwi, A; Amin, Y; Safieh, M B; Zarkawi, M; Soukouti, A; Dayyoub, R; Voigt, G; Fesenko, S

    2014-06-01

    The transfer of (137)Cs, (85)Sr, (131)I, (210)Po, (210)Pb and (238)U from feed to camel's milk was investigated in a pilot experiment with three lactating camels. For a period of 60 days, the animals were fed on spiked feed containing the studied radionuclides. They were subsequently returned to a contamination-free diet and monitored for another 90 days. The activity concentrations of (137)Cs, (85)Sr and (131)I in milk decreased with time and reached background levels after 20 days. Equilibrium transfer coefficients and biological half-lives were estimated and transfer coefficients were calculated as (8.1 ± 3.6) × 10(-4), (4.4 ± 1.6) × 10(-2), (7.8 ± 3.9) × 10(-4), (2.7 ± 3.5) × 10(-4), (1.8 ± 1.5) × 10(-4) and (7.0 ± 3.6) × 10(-3) d L(-1) for (85)Sr, (131)I, (137)Cs, (210)Po, (210)Pb and (238)U, respectively. The biological half-lives were estimated to be 6.4, 4.2, 8.9, and 53.3 days for (85)Sr, (131)I, (137)Cs, and (238)U, respectively. Estimates of the half-lives were based on a one component model: it was found that the half-life values measured for artificial radionuclides were slightly shorter than those for natural radionuclides. The data obtained in the study are the first published experimental data on radionuclide transfer to camel milk. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Incorporation of additional radionuclides and the external exposure pathway into the BECAMP (Basic Environmental Compliance and Monitoring Program) radiological assessment model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Yook C.; Rodean, H.C.; Anspaugh, L.R.

    The Nevada Applied Ecology Group (NAEG) Model of transport and dose for transuranic radionuclides was modified and expanded for the analysis of radionuclides other than pure alpha-emitters. Doses from internal and external exposures were estimated for the inventories and soil distributions of the individual radionuclides quantified in Areas 2 and 4 of the Nevada Test Site (NTS). We found that the dose equivalents via inhalation to liver, lungs, bone marrow, and bone surface from the plutonium isotopes and /sup 241/Am, those via ingestion to bone marrow and bone surfaces from /sup 90/Sr, and those via ingestion to all the targetmore » organs from /sup 137/Cs were the highest from internal exposures. The effective dose equivalents from /sup 137/Cs, /sup 152/Eu, and /sup 154/Eu were the highest from the external exposures. The /sup 60/Co, /sup 152/Eu, /sup 154/Eu, and /sup 155/Eu dose estimates for external exposures greatly exceeded those for internal exposures. The /sup 60/Co, /sup 90/Sr, and /sup 137/Cs dose equivalents from internal exposures were underestimated due to the adoption of some of the foodchain parameter values originally selected for /sup 239/Pu. Nonetheless, the ingestion pathway contributed significantly to the dose estimates for /sup 90/Sr and /sup 137/Cs, but contributed very much less than external exposures to the dose estimates for /sup 60/Co. Therefore, the use of more appropriate values would not alter the identification of important radionuclides, pathways, target organs, and exposure modes in this analysis. 19 refs., 13 figs., 12 tabs.« less

  1. How Do Radionuclides Accumulate in Marine Organisms? A Case Study of Europium with Aplysina cavernicola

    DOE PAGES

    Maloubier, Melody; Shuh, David K.; Minasian, Stefan G.; ...

    2016-09-15

    In the ocean, complex interactions between natural and anthropogenic radionuclides, seawater, and diverse marine biota provide a unique window through which to examine ecosystem and trophic transfer mechanisms in cases of accidental dissemination. The nature of interaction between radionuclides, the marine environment, and marine species is therefore essential for better understanding transfer mechanisms from the hydrosphere to the biosphere. Although data pertaining to the rate of global transfer are often available, little is known regarding the mechanism of environmental transport and uptake of heavy radionuclides by marine species. Among marine species, sponges are immobile active filter feeders and have beenmore » identified as hyperaccumulators of several heavy metals. We have selected the Mediterranean sponge Aplysina cavernicola as a model species for this study. Actinide elements are not the only source of radioactive release in cases of civilian nuclear events; however, their physicochemical transfer mechanisms to marine species remain largely unknown. We have targeted europium(III) as a representative of the trivalent actinides such as americium or curium. To unravel biological uptake mechanisms of europium in A. cavernicola, we have combined radiometric (γ) measurements with spectroscopic (time-resolved laser-induced fluorescence spectroscopy, TRLIFS, and X-ray absorption near-edge structure, XANES) and imaging (transmission electron microscopy, TEM, and scanning transmission X-ray microscopy, STXM) techniques. Here, we have observed that the colloids of NaEu(CO 3) 2 ·nH 2O formed in seawater are taken up by A. cavernicola with no evidence that lethal dose has been reached in our working conditions. Spectroscopic results suggest that there is no change of speciation during uptake. Finally, TEM and STXM images recorded at different locations across a sponge cross section, together with differential cell separation, indicate the presence of europium

  2. How Do Radionuclides Accumulate in Marine Organisms? A Case Study of Europium with Aplysina cavernicola

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maloubier, Melody; Shuh, David K.; Minasian, Stefan G.

    In the ocean, complex interactions between natural and anthropogenic radionuclides, seawater, and diverse marine biota provide a unique window through which to examine ecosystem and trophic transfer mechanisms in cases of accidental dissemination. The nature of interaction between radionuclides, the marine environment, and marine species is therefore essential for better understanding transfer mechanisms from the hydrosphere to the biosphere. Although data pertaining to the rate of global transfer are often available, little is known regarding the mechanism of environmental transport and uptake of heavy radionuclides by marine species. Among marine species, sponges are immobile active filter feeders and have beenmore » identified as hyperaccumulators of several heavy metals. We have selected the Mediterranean sponge Aplysina cavernicola as a model species for this study. Actinide elements are not the only source of radioactive release in cases of civilian nuclear events; however, their physicochemical transfer mechanisms to marine species remain largely unknown. We have targeted europium(III) as a representative of the trivalent actinides such as americium or curium. To unravel biological uptake mechanisms of europium in A. cavernicola, we have combined radiometric (γ) measurements with spectroscopic (time-resolved laser-induced fluorescence spectroscopy, TRLIFS, and X-ray absorption near-edge structure, XANES) and imaging (transmission electron microscopy, TEM, and scanning transmission X-ray microscopy, STXM) techniques. Here, we have observed that the colloids of NaEu(CO 3) 2 ·nH 2O formed in seawater are taken up by A. cavernicola with no evidence that lethal dose has been reached in our working conditions. Spectroscopic results suggest that there is no change of speciation during uptake. Finally, TEM and STXM images recorded at different locations across a sponge cross section, together with differential cell separation, indicate the presence of europium

  3. Hydrogeological interpretation of natural radionuclide contents in Austrian groundwaters

    NASA Astrophysics Data System (ADS)

    Schubert, Gerhard; Berka, Rudolf; Hörhan, Thomas; Katzlberger, Christian; Landstetter, Claudia; Philippitsch, Rudolf

    2010-05-01

    The Austrian Agency for Health and Food Safety (AGES) stores comprehensive data sets of radionuclide contents in Austrian groundwater. There are several analyses concerning Rn-222, Ra-226, gross alpha and gross beta as well as selected analyses of Ra-228, Pb-210, Po-210, Uranium and U-234/U-238. In a current project financed by the Austrian Federal Ministry of Agriculture, Forestry, Environment and Water Management, AGES and the Geological Survey of Austria (GBA) are evaluating these data sets with regard to the geological backgrounds. Several similar studies based on groundwater monitoring have been made in the USA (for instance by Focazio, M.J., Szabo, Z., Kraemer, T.F., Mullin, A.H., Barringer, T.H., De Paul, V.T. (2001): Occurrence of selected radionuclides in groundwater used for drinking water in the United States: a reconnaissance survey, 1998. U.S. Geological Survey Water-Resources Investigations Report 00-4273). The geological background for the radionuclide contents of groundwater will be derived from geological maps in combination with existing Thorium and Uranium analyses of the country rocks and stream-sediments and from airborne radiometric maps. Airborne radiometric data could contribute to identify potential radionuclide hot spot areas as only airborne radiometric mapping could provide countrywide Thorium and Uranium data coverage in high resolution. The project will also focus on the habit of the sampled wells and springs and the hydrological situation during the sampling as these factors can have an important influence on the Radon content of the sampled groundwater (Schubert, G., Alletsgruber, I., Finger, F., Gasser, V., Hobiger, G. and Lettner, H. (2010): Radon im Grundwasser des Mühlviertels (Oberösterreich) Grundwasser. - Springer (in print). Based on the project results an overview map (1:500,000) concerning the radionuclide potential should be produced. The first version should be available in February 2011.

  4. UPTAKE OF RADIONUCLIDE METALS BY SPME FIBERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duff, M; S Crump, S; Robert02 Ray, R

    2006-08-28

    The Federal Bureau of Investigation (FBI) Laboratory currently does not have on site facilities for handling radioactive evidentiary materials and there are no established FBI methods or procedures for decontaminating high explosive (HE) and fire debris (FD) evidence while maintaining evidentiary value. One experimental method for the isolation of HE and FD residue involves using solid phase microextraction or SPME fibers to remove residue of interest. Due to their high affinity for organics, SPME fibers should have little affinity for most metals. However, no studies have measured the affinity of radionuclides for SPME fibers. The focus of this research wasmore » to examine the affinity of dissolved radionuclide ({sup 239/240}Pu, {sup 238}U, {sup 237}Np, {sup 85}Sr, {sup 133}Ba, {sup 137}Cs, {sup 60}Co and {sup 226}Ra) and stable radionuclide surrogate metals (Sr, Co, Ir, Re, Ni, Ba, Cs, Nb, Zr, Ru, and Nd) for SPME fibers at the exposure conditions that favor the uptake of HE and FD residues. Our results from radiochemical and mass spectrometric analyses indicate these metals have little measurable affinity for these SPME fibers during conditions that are conducive to HE and FD residue uptake with subsequent analysis by liquid or gas phase chromatography with mass spectrometric detection.« less

  5. [Biosorption of Radionuclide Uranium by Deinococcus radiodurans].

    PubMed

    Yang, Jie; Dong, Fa-qin; Dai, Qun-wei; Liu, Ming-xue; Nie, Xiao-qin; Zhang, Dong; Ma, Jia-lin; Zhou, Xian

    2015-04-01

    As a biological adsorbent, Living Deinococcus radiodurans was used for removing radionuclide uranium in the aqueous solution. The effect factors on biosorption of radionuclide uranium were researched in the present paper, including solution pH values and initial uranium concentration. Meanwhile, the biosorption mechanism was researched by the method of FTIR and SEM/EDS. The results show that the optimum conditions for biosorption are as follows: pH = 5, co = 100 mg · L(-1) and the maximum biosorption capacity is up to 240 mgU · g(-1). According to the SEM results and EDXS analysis, it is indicated that the cell surface is attached by lots of sheet uranium crystals, and the main biosorpiton way of uranium is the ion exchange or surface complexation. Comparing FTIR spectra and FTIR fitting spectra before and after biosorption, we can find that the whole spectra has a certain change, particularly active groups (such as amide groups of the protein, hydroxy, carboxyl and phosphate group) are involved in the biosorption process. Then, there is a new peak at 906 cm(-1) and it is a stretching vibration peak of UO2(2+). Obviously, it is possible that as an anti radiation microorganism, Deinococcus radiodurans could be used for removing radionuclide uranium in radiation environment.

  6. FOREWORD: Special issue on radionuclide metrology

    NASA Astrophysics Data System (ADS)

    Simpson, Bruce; Judge, Steven

    2007-08-01

    This special issue of Metrologia on radionuclide metrology is the first of a trilogy on the subject of ionizing radiation measurement, a field that is overseen by Sections I, II and III of the CIPM's Consultative Committee for Ionizing Radiation (CCRI). The idea was first proposed at the 2003 series of CCRI Section meetings, with the general aim of showcasing the relevance and importance of metrology in ionizing radiation to a broader metrological audience. After the 2005 meeting of Section II (measurement of radionuclides), the radioactivity aspect of the project began to move forward in earnest. A working group was set up with the brief that the special issue should be of use by experienced metrologists as an overview of the 'state of the art' to compare progress and scientific content with those in other fields of metrology, as a resource for new metrologists joining the field and as a guide for users of radioactivity to explain how traceability to the international measurement system may be achieved. Since mankind first became aware of the existence of radioactivity just over a century ago (due to its discovery by Becquerel and further work by the Curies), much has been learnt and understood in the interim period. The field of radionuclide metrology that developed subsequently is broad-based and encompasses, amongst others, nuclear physics (experimental and theory), chemistry, mathematics, mathematical statistics, uncertainty analysis and advanced computing for data analysis, simulation and modelling. To determine the activity of radionuclides accurately requires elements of all of these subjects. In more recent decades the focus has been on the practical applications of radioactivity in industry and the health field in particular. In addition, low-level environmental radioactivity monitoring has taken on ever greater importance in the nuclear power era. These developments have required new detection instrumentation and techniques on an ongoing basis to ensure

  7. Continuous energy adjoint transport for photons in PHITS

    NASA Astrophysics Data System (ADS)

    Malins, Alex; Machida, Masahiko; Niita, Koji

    2017-09-01

    Adjoint Monte Carlo can be an effcient algorithm for solving photon transport problems where the size of the tally is relatively small compared to the source. Such problems are typical in environmental radioactivity calculations, where natural or fallout radionuclides spread over a large area contribute to the air dose rate at a particular location. Moreover photon transport with continuous energy representation is vital for accurately calculating radiation protection quantities. Here we describe the incorporation of an adjoint Monte Carlo capability for continuous energy photon transport into the Particle and Heavy Ion Transport code System (PHITS). An adjoint cross section library for photon interactions was developed based on the JENDL- 4.0 library, by adding cross sections for adjoint incoherent scattering and pair production. PHITS reads in the library and implements the adjoint transport algorithm by Hoogenboom. Adjoint pseudo-photons are spawned within the forward tally volume and transported through space. Currently pseudo-photons can undergo coherent and incoherent scattering within the PHITS adjoint function. Photoelectric absorption is treated implicitly. The calculation result is recovered from the pseudo-photon flux calculated over the true source volume. A new adjoint tally function facilitates this conversion. This paper gives an overview of the new function and discusses potential future developments.

  8. Verifying the operational set-up of a radionuclide air-monitoring station.

    PubMed

    Werzi, R; Padoani, F

    2007-05-01

    A worldwide radionuclide network of 80 stations, part of the International Monitoring System, was designed to monitor compliance with the Comprehensive Nuclear-Test-Ban Treaty. After installation, the stations are certified to comply with the minimum requirements laid down by the Preparatory Commission of the Comprehensive Nuclear-Test-Ban Treaty Organization. Among the several certification tests carried out at each station, the verification of the radionuclide activity concentrations is a crucial one and is based on an independent testing of the airflow rate measurement system and of the gamma detector system, as well as on the assessment of the samples collected during parallel sampling and measured at radionuclide laboratories.

  9. New Catalytic DNA Biosensors for Radionuclides and Metal ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi Lu

    2008-03-01

    We aim to develop new DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides, such as uranium, technetium, and plutonium, and metal contaminants, such as lead, chromium, and mercury. The sensors will be highly sensitive and selective. They will be applied to on-site, real-time assessment of concentration, speciation, and stability of the individual contaminants before and during bioremediation, and for long-term monitoring of DOE contaminated sites. To achieve this goal, we have employed a combinatorial method called “in vitro selection” to search from a large DNA library (~ 1015 different molecules) for catalytic DNA molecules that are highly specificmore » for radionuclides or other metal ions through intricate 3-dimensional interactions as in metalloproteins. Comprehensive biochemical and biophysical studies have been performed on the selected DNA molecules. The findings from these studies have helped to elucidate fundamental principles for designing effective sensors for radionuclides and metal ions. Based on the study, the DNA have been converted to fluorescent or colorimetric sensors by attaching to it fluorescent donor/acceptor pairs or gold nanoparticles, with 11 part-per-trillion detection limit (for uranium) and over million fold selectivity (over other radionuclides and metal ions tested). Practical application of the biosensors for samples from the Environmental Remediation Sciences Program (ERSP) Field Research Center (FRC) at Oak Ridge has also been demonstrated.« less

  10. Radionuclide inventories for the F- and H-area seepage basin groundwater plumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiergesell, Robert A; Kubilius, Walter P.

    2016-05-01

    Within the General Separations Areas (GSA) at the Savannah River Site (SRS), significant inventories of radionuclides exist within two major groundwater contamination plumes that are emanating from the F- and H-Area seepage basins. These radionuclides are moving slowly with groundwater migration, albeit more slowly due to interaction with the soil and aquifer matrix material. The purpose of this investigation is to quantify the activity of radionuclides associated with the pore water component of the groundwater plumes. The scope of this effort included evaluation of all groundwater sample analyses obtained from the wells that have been established by the Environmental Compliancemore » & Area Completion Projects (EC&ACP) Department at SRS to monitor groundwater contamination emanating from the F- and H-Area Seepage Basins. Using this data, generalized groundwater plume maps for the radionuclides that occur in elevated concentrations (Am-241, Cm-243/244, Cs-137, I-129, Ni-63, Ra-226/228, Sr-90, Tc-99, U-233/234, U-235 and U-238) were generated and utilized to calculate both the volume of contaminated groundwater and the representative concentration of each radionuclide associated with different plume concentration zones.« less

  11. Sedimentation Deposition Patterns on the Chukchi Shelf Using Radionuclide Inventories

    NASA Astrophysics Data System (ADS)

    Cooper, L. W.; Grebmeier, J. M.

    2016-02-01

    Sediment core collections and assays of the anthropogenic and natural radioisotopes, 137Cs and 210Pb, respectively, are providing long-term indications of sedimentation and current flow processes on the Chukchi and East Siberian sea continental shelf. This work, which has been integrated into interdisciplinary studies of the Chukchi Sea supported by both the US Bureau of Ocean Energy Management (COMIDA Hanna Shoal Project) and the National Oceanic and Atmospheric Administration (Russian-US Long Term Census of the Arctic, RUSALCA) includes studies of total radiocesium inventories, sedimentation rate determinations, where practical, and depths of maxima in radionuclide deposition. Shallow maxima in the activities of the anthropogenic radionuclide in sediment cores reflect areas with higher current flow (Barrow Canyon and Herald Canyon; 3-6 cm) or low sedimentation (Hanna Shoal; 1-3 cm). The first sedimentation studies from Long Strait are consistent with quiescent current conditions and steady recent sedimentation of clay particles. Elsewhere, higher and more deeply buried radionuclide inventories (> 2 mBq cm-2 at 15-17 cm depth) in the sediments correspond to areas of high particle deposition north of Bering Strait where bioturbation in productive sediments is also clearly an important influence. Radiocesium activities from bomb fallout dating to 1964 are now present at low levels (<1 mBq cm-2) at the sediment surface, but burial of the bomb era radionuclide in sediments is observed to >20 cm. Independent sedimentation rate measurements with the natural radionuclide 210Pb are largely consistent with the radiocesium measurements.

  12. Long- range transport of Xe-133 emissions under convective and non-convective conditions.

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, Jolanta; Gheddou, Abdelhakim

    2015-04-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 80 stations, of which more than 60 are certified. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases, in particular xenon isotopes, supported by the atmospheric transport modeling (ATM). The aim of this study is to investigate the long-range transport of Xe-133 emissions under convective and non-convective conditions. For that purpose a series of 14 days forward simulations was conducted using the Lagrangian Particle Diffusion Model FLEXPART, designed for calculating the long-range and mesoscale dispersion of air pollution from point sources. The release point was at the ANSTO facility in Australia. The geographical localization to some extent justifies the assumption that the only source of Xe-133 observed at the neighbouring stations, comes from the ANSTO facility. In the simulations the analysed wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) were used with the spatial resolution of 0.5 degree. Studies have been performed to link Xe-133 emissions with detections at the IMS stations supported by the ATM, and to assess the impact of atmospheric convection on non-detections at the IMS stations. The results of quantitative and qualitative comparison will be presented.

  13. Atmospheric residence time of (210)Pb determined from the activity ratios with its daughter radionuclides (210)Bi and (210)Po.

    PubMed

    Semertzidou, P; Piliposian, G T; Appleby, P G

    2016-08-01

    The residence time of (210)Pb created in the atmosphere by the decay of gaseous (222)Rn is a key parameter controlling its distribution and fallout onto the landscape. These in turn are key parameters governing the use of this natural radionuclide for dating and interpreting environmental records stored in natural archives such as lake sediments. One of the principal methods for estimating the atmospheric residence time is through measurements of the activities of the daughter radionuclides (210)Bi and (210)Po, and in particular the (210)Bi/(210)Pb and (210)Po/(210)Pb activity ratios. Calculations used in early empirical studies assumed that these were governed by a simple series of equilibrium equations. This approach does however have two failings; it takes no account of the effect of global circulation on spatial variations in the activity ratios, and no allowance is made for the impact of transport processes across the tropopause. This paper presents a simple model for calculating the distributions of (210)Pb, (210)Bi and (210)Po at northern mid-latitudes (30°-65°N), a region containing almost all the available empirical data. By comparing modelled (210)Bi/(210)Pb activity ratios with empirical data a best estimate for the tropospheric residence time of around 10 days is obtained. This is significantly longer than earlier estimates of between 4 and 7 days. The process whereby (210)Pb is transported into the stratosphere when tropospheric concentrations are high and returned from it when they are low, significantly increases the effective residence time in the atmosphere as a whole. The effect of this is to significantly enhance the long range transport of (210)Pb from its source locations. The impact is illustrated by calculations showing the distribution of (210)Pb fallout versus longitude at northern mid-latitudes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Dispersion of Fukushima radionuclides in the global atmosphere and the ocean.

    PubMed

    Povinec, P P; Gera, M; Holý, K; Hirose, K; Lujaniené, G; Nakano, M; Plastino, W; Sýkora, I; Bartok, J; Gažák, M

    2013-11-01

    Large quantities of radionuclides were released in March-April 2011 during the accident of the Fukushima Dai-ichi Nuclear Power Plant to the atmosphere and the ocean. Atmospheric and marine modeling has been carried out to predict the dispersion of radionuclides worldwide, to compare the predicted and measured radionuclide concentrations, and to assess the impact of the accident on the environment. Atmospheric Lagrangian dispersion modeling was used to simulate the dispersion of (137)Cs over America and Europe. Global ocean circulation model was applied to predict the dispersion of (137)Cs in the Pacific Ocean. The measured and simulated (137)Cs concentrations in atmospheric aerosols and in seawater are compared with global fallout and the Chernobyl accident, which represent the main sources of the pre-Fukushima radionuclide background in the environment. The radionuclide concentrations in the atmosphere have been negligible when compared with the Chernobyl levels. The maximum (137)Cs concentration in surface waters of the open Pacific Ocean will be around 20 Bq/m(3). The plume will reach the US coast 4-5 y after the accident, however, the levels will be below 3 Bq/m(3). All the North Pacific Ocean will be labeled with Fukushima (137)Cs 10 y after the accident with concentration bellow 1 Bq/m(3). Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Activity measurement and effective dose modelling of natural radionuclides in building material.

    PubMed

    Maringer, F J; Baumgartner, A; Rechberger, F; Seidel, C; Stietka, M

    2013-11-01

    In this paper the assessment of natural radionuclides' activity concentration in building materials, calibration requirements and related indoor exposure dose models is presented. Particular attention is turned to specific improvements in low-level gamma-ray spectrometry to determine the activity concentration of necessary natural radionuclides in building materials with adequate measurement uncertainties. Different approaches for the modelling of the effective dose indoor due to external radiation resulted from natural radionuclides in building material and results of actual building material assessments are shown. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Consultative Committee on Ionizing Radiation: Impact on Radionuclide Metrology

    PubMed Central

    Karam, L.R.; Ratel, G.

    2016-01-01

    In response to the CIPM MRA, and to improve radioactivity measurements in the face of advancing technologies, the CIPM’s consultative committee on ionizing radiation developed a strategic approach to the realization and validation of measurement traceability for radionuclide metrology. As a consequence, measurement institutions throughout the world have devoted no small effort to establish radionuclide metrology capabilities, supported by active quality management systems and validated through prioritized participation in international comparisons, providing a varied stakeholder community with measurement confidence. PMID:26688351

  17. Deposition of radionuclides by fogwater on plants at Houdelaincourt, France

    NASA Astrophysics Data System (ADS)

    Tav, Jackie; Masson, Olivier; Burnet, Frédéric; De Visme, Anne; Paulat, Pascal; Bourrianne, Thierrry; Conil, Sébastien; Simon, Maxime

    2015-04-01

    polystyrene support; the whole set was placed on a precision balance and under a protection box to avoid wind induced variations. The box was removed for ten minutes for the fog droplets to be deposited, then the box was put back for weighing. Simultaneously another precision balance was used to determine the deposition of water only on the polystyrene support in order to remove its weight from that of the precious set. A mass of water deposited by surface or mass unit of plant was measured for each fog event. The first results of fog activity levels and fogwater deposition on plants are presented along with the characterization of the studied fog events. References Bourcier, L. (2009). "Transport and deposition of radionuclides and particles at the Puy De DÙme, France". Demoz, B. B., J. L. Collett Jr, et al. (1996). "On the Caltech Active Strand Cloudwater Collectors." Atmospheric Research 41(1): 47-62.

  18. Influence of atmospheric convection on the long and short-range transport of Xe133 emissions.

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, Jolanta; Krysta, Monika; Gheddou, Abdelhakim; Nikkinen, Mika

    2014-05-01

    The International Monitoring System (IMS) developed by the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) is a global system of monitoring stations, using four complementary technologies: seismic, hydroacoustic, infrasound and radionuclide. Data from all stations, belonging to IMS, are collected and transmitted to the International Data Centre (IDC) in Vienna, Austria. The radionuclide network comprises 79 stations, of which more than 60 are certified. The aim of radionuclide stations is a global monitoring of radioactive aerosols and radioactive noble gases supported by the atmospheric transport modelling (ATM). The ATM system is based on the Lagrangian Particle Dispersion Model, FLEXPART, designed for calculating the long-range and mesoscale dispersion of air pollution from point sources. In the operational configuration only the transport of the passive tracer is simulated. The question arises whether including other atmospheric processes, like convection, will improve results. To answer this question a series of forward simulations was conducted, assuming the maximum transport of 14 days. Each time 2 runs were performed: one with convection and one without convection. The release point was at the ANSTO facility in Australia. Due to the fact that CTBTO has recently received a noble gas emission inventory from the ANSTO facility we had a chance to do more accurate simulations. Studies have been performed to link Xe133 emissions with detections at the IMS stations supported by the ATM. The geographical localization to some extend justifies the assumption that the only source of Xe133 observed at the neighbouring stations, e.g. AUX04, AUX09 and NZX46, comes from the ANSTO facility. In simulations the analysed wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF) were used with the spatial resolution of 0.5 degree. The results of quantitative and qualitative comparison will be presented.

  19. Transportation energy data book

    DOT National Transportation Integrated Search

    1999-09-01

    This report presents statistics that characterize transportation activities and data on other factors that affect transportation energy use. The 12 chapters of the 19th edition of the Data Book focus on various aspects of the transportation industry:...

  20. Apparatus for real-time airborne particulate radionuclide collection and analysis

    DOEpatents

    Smart, John E.; Perkins, Richard W.

    2001-01-01

    An improved apparatus for collecting and analyzing an airborne particulate radionuclide having a filter mounted in a housing, the housing having an air inlet upstream of the filter and an air outlet downstream of the filter, wherein an air stream flows therethrough. The air inlet receives the air stream, the filter collects the airborne particulate radionuclide and permits a filtered air stream to pass through the air outlet. The improvement which permits real time counting is a gamma detecting germanium diode mounted downstream of the filter in the filtered air stream. The gamma detecting germanium diode is spaced apart from a downstream side of the filter a minimum distance for a substantially maximum counting detection while permitting substantially free air flow through the filter and uniform particulate radionuclide deposition on the filter.

  1. Radionuclide Incorporation and Long Term Performance of Apatite Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jianwei; Lian, Jie; Gao, Fei

    2016-01-04

    This project aims to combines state-of-the-art experimental and characterization techniques with atomistic simulations based on density functional theory (DFT) and molecular dynamics (MD) simulations. With an initial focus on long-lived I-129 and other radionuclides such as Cs, Sr in apatite structure, specific research objectives include the atomic scale understanding of: (1) incorporation behavior of the radionuclides and their effects on the crystal chemistry and phase stability; (2) stability and microstructure evolution of designed waste forms under coupled temperature and radiation environments; (3) incorporation and migration energetics of radionuclides and release behaviors as probed by DFT and molecular dynamics (MD) simulations;more » and (4) chemical durability as measured in dissolution experiments for long term performance evaluation and model validation.« less

  2. Effect on radioactivity concentration estimation of radon progenies with NaI(Tl) pulse height distribution from considering geometric structure around detector and infiltration of radionuclides.

    PubMed

    Hirouchi, J; Terasaka, Y; Hirao, S; Moriizumi, J; Yamazawa, H

    2015-11-01

    The surface radioactivity concentrations of the radon progenies, (214)Pb and (214)Bi, were estimated from NaI(Tl) pulse height distributions during rain. The improvement in estimation errors caused by considering geometric structures around measuring points and infiltration of radionuclides was discussed. The surface radioactivity concentrations were determined by comparing the count rates at the full-energy peak ranges between observation and calculation with the electron-photon transport code EGS5. It was shown that the concentrations can be underestimated by about 30 % unless the obstacles around the detector or infiltration of radionuclides are considered in gamma ray transfer calculations at measuring points, where there are many tall obstacles, or the ground is covered with unpaved areas. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Radionuclides in the Great Lakes basin.

    PubMed Central

    Ahier, B A; Tracy, B L

    1995-01-01

    The Great Lakes basin is of radiologic interest due to the large population within its boundaries that may be exposed to various sources of ionizing radiation. Specific radionuclides of interest in the basin arising from natural and artificial sources include 3H, 14C, 90Sr, 129I, 131I, 137Cs, 222Rn, 226Ra, 235U, 238U, 239Pu, and 241Am. The greatest contribution to total radiation exposure is the natural background radiation that provides an average dose of about 2.6 mSv/year to all basin residents. Global fallout from atmospheric nuclear weapons tests conducted before 1963 has resulted in the largest input of anthropogenic radioactivity into the lakes. Of increasing importance is the radionuclide input from the various components of the nuclear fuel cycle. Although the dose from these activities is currently very low, it is expected to increase if there is continued growth of the nuclear industry. In spite of strict regulations on design and operation of nuclear power facilities, the potential exists for a serious accident as a result of the large inventories of radionuclides contained in the reactor cores; however, these risks are several orders of magnitude less than the risks from other natural and man-made hazards. An area of major priority over the next few decades will be the management of the substantial amounts of radioactive waste generated by nuclear fuel cycle activities. Based on derived risk coefficients, the theoretical incidence of fatal and weighted nonfatal cancers and hereditary defects in the basin's population, attributable to 50 years of exposure to natural background radiation, is conservatively estimated to be of the order of 3.4 x 10(5) cases. The total number of attributable health effects to the year 2050 from fallout radionuclides in the Great Lakes basin is of the order of 5.0 x 10(3). In contrast, estimates of attributable health effects from 50 years of exposure to current nuclear fuel cycle effluent in the basin are of the order of 2

  4. Past and present levels of some radionuclides in fish from Bikini and Enewetak Atolls.

    PubMed

    Noshkin, V E; Robison, W L; Wong, K M; Brunk, J L; Eagle, R J; Jones, H E

    1997-07-01

    Bikini and Enewetak were the sites in the Northern Marshall Islands that were used by the United States as testing grounds for nuclear devices between 1946 and 1958. The testing produced close-in fallout debris that was contaminated with different radionuclides and which entered the aquatic environment. The contaminated lagoon sediments became a reservoir and source term of manmade radionuclides for the resident marine organisms. This report contains a summary of all the available data on the concentrations of 137Cs, 60Co and 207Bi in flesh samples of reef and pelagic fish collected from Bikini and Enewetak Atolls between 1964 and 1995. The selection of these three radionuclides for discussion is based on the fact that these are the only radionuclides that have been routinely detected by gamma spectrometry in flesh samples from all fish for the last 20 y. Flesh from fish is an important source of food in the Marshallese diet. These radionuclides along with the transuranic radionuclides and 90Sr contribute most of the small radiological dose from ingesting marine foods. Some basic relationships among concentrations in different tissues and organs are discussed. The reef fish can be used as indicator species because their body burden is derived from feeding, over a lifetime, within a relatively small contaminated area of the lagoon. Therefore, the emphasis of this report is to use this extensive and unique concentration data base to describe the effective half lives and cycling for the radionuclides in the marine environments during the 31-y period between 1964 and 1995. The results from an analysis of the radionuclide concentrations in the flesh samples indicate the removal rates for the 3 radionuclides are significantly different. 137Cs is removed from the lagoons with an effective half life of 9-12 y. Little 60Co is mobilized to the water column so that it is depleted in both environments, primarily through radioactive decay. The properties of 207Bi are different

  5. Dynamic phantom for radionuclide cardiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickles, R.J.

    1979-06-01

    A flow-based phantom has been developed to verify analysis routines most frequently employed in clinical radionuclide cardiology. Ejection-fraction studies by first-pass or equilibrium techniques are simulated, as well as assessment of shunts and cardiac output. This hydraulic phantom, with its valve-selectable dysfunctions, offers a greater role in training than in quality control, as originally intended.

  6. Analytical Modeling of Aquifer Decontamination by Pulsed Pumping When Contaminant Transport is Affected by Rate-Limited Sorption and Desorption

    DTIC Science & Technology

    1993-09-01

    CONTAMINANT TRANSPORT IS AFFECTED BY RATE-LIMITED SORPTION AND DESORPTION IgIntroduction Groundwater is the source of drinking water for...depend upon groundwater as their drinking water source [Wentz, 1989:271] . Historically, groundwater has been considered an unlimited and safe source...of drinking water. However, the widespread contamination of groundwater due to years of accidental or deliberate dumping of various synthetic organic

  7. Research of Radionuclides Migrating in Porous Media Allowing for the "Solution-Rock" Interaction

    NASA Astrophysics Data System (ADS)

    Drozhko, E.; Aleksakhin, A. I.; Samsanova, L.; Kotchergina, N.; Zinin, A.

    2001-12-01

    Industrial solutions from the surface storage of liquid radioactive waste in Lake Karachay, near the Mayak Production Association in Russia, enter groundwaters through the reservoir loamy bed and have formed a contaminated groundwater plume. In order to predict radionuclide migration with the groundwater flow in porous unconsolidated rocks and to assess the protective mechanism of the natural environment, it is necessary to allow for the "solution-rock" physical and chemical interaction described by the distribution factor (Kd). In order to study radionuclide distribution in porous media, a numerical model was developed which models stontium-90 migration in a uniform unit of loams typical for the Karachay Lake bed. For the migration to be calculated, the results of the in situ and laboratory reasearch on strontium-90 sorption and desorption were used in the code, as well as strontium-90 dependance on sodium nitrate concentration in the solution. The code uses various models of the "solution-rock" interaction, taking into account both sorption/desorption and diffusion processes. Numerical research of strontium-90 migration resulted in data on strontium-90 distribution in solid and liquid phases of the porous loam unit over different time periods. Various models of the "solution-rock" interaction affecting strontium-90 migration are demonstrated.

  8. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-09-07

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  9. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-01-01

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  10. Preliminary Interpretation of a Radionuclide and Colloid Tracer Test in a Granodiorite Shear Zone at the Grimsel Test Site, Switzerland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reimus, Paul W.

    2012-08-30

    In February and March 2012, a tracer test involving the injection of a radionuclide-colloid cocktail was conducted in the MI shear zone at the Grimsel Test Site, Switzerland, as part of the Colloids Formation and Migration (CFM) project. The colloids were derived from FEBEX bentonite, which is mined in Spain and is being considered as a potential waste package backfill in a Spanish nuclear waste repository. The tracer test, designated test 12-02 (second test in 2012), involved the injection of the tracer cocktail into borehole CFM 06.002i2 and extraction from the Pinkel surface packer at the main access tunnel wallmore » approximately 6.1 m from the injection interval. The test configuration is depicted in Figure 1. This configuration has been used in several conservative tracer tests and two colloid-homologue tracer tests since 2007, and it is will be employed in an upcoming test involving the emplacement of a radionuclide-doped bentonite plug into CFM 06.002i2 to evaluate the swelling and erosion of the bentonite and the transport of bentonite colloids and radionuclides from the source to the extraction point at the tunnel wall. Interpretive analyses of several of the previous tracer tests, from 09-01 through 12-02 were provided in two previous Used Fuel Disposition Program milestone reports (Arnold et al., 2011; Kersting et al., 2012). However, only the data for the conservative tracer Amino-G Acid was previously analyzed from test 12-02 because the other tracer data from this test were not available at the time. This report documents the first attempt to quantitatively analyze the radionuclide and colloid breakthrough curves from CFM test 12-02. This report was originally intended to also include an experimental assessment of colloid-facilitated transport of uranium by bentonite colloids in the Grimsel system, but this assessment was not conducted because it was reported by German collaborators at the Karlsruhe Institute of Technology (KIT) that neither

  11. Aquaporin Expression and Water Transport Pathways inside Leaves Are Affected by Nitrogen Supply through Transpiration in Rice Plants

    PubMed Central

    Ding, Lei; Li, Yingrui; Gao, Limin; Lu, Zhifeng; Wang, Min; Ling, Ning; Shen, Qirong; Guo, Shiwei

    2018-01-01

    The photosynthetic rate increases under high-N supply, resulting in a large CO2 transport conductance in mesophyll cells. It is less known that water movement is affected by nitrogen supply in leaves. This study investigated whether the expression of aquaporin and water transport were affected by low-N (0.7 mM) and high-N (7 mM) concentrations in the hydroponic culture of four rice varieties: (1) Shanyou 63 (SY63), a hybrid variant of the indica species; (2) Yangdao 6 (YD6), a variant of indica species; (3) Zhendao 11 (ZD11), a hybrid variant of japonica species; and (4) Jiuyou 418 (JY418), another hybrid of the japonica species. Both the photosynthetic and transpiration rate were increased by the high-N supply in the four varieties. The expressions of aquaporins, plasma membrane intrinsic proteins (PIPs), and tonoplast membrane intrinsic protein (TIP) were higher in high-N than low-N leaves, except in SY63. Leaf hydraulic conductance (Kleaf) was lower in high-N than low-N leaves in SY63, while Kleaf increased under high-N supply in the YD6 variant. Negative correlations were observed between the expression of aquaporin and the transpiration rate in different varieties. Moreover, there was a significant negative correlation between transpiration rate and intercellular air space. In conclusion, the change in expression of aquaporins could affect Kleaf and transpiration. A feedback effect of transpiration would regulate aquaporin expression. The present results imply a coordination of gas exchange with leaf hydraulic conductance. PMID:29337869

  12. Method for image reconstruction of moving radionuclide source distribution

    DOEpatents

    Stolin, Alexander V.; McKisson, John E.; Lee, Seung Joon; Smith, Mark Frederick

    2012-12-18

    A method for image reconstruction of moving radionuclide distributions. Its particular embodiment is for single photon emission computed tomography (SPECT) imaging of awake animals, though its techniques are general enough to be applied to other moving radionuclide distributions as well. The invention eliminates motion and blurring artifacts for image reconstructions of moving source distributions. This opens new avenues in the area of small animal brain imaging with radiotracers, which can now be performed without the perturbing influences of anesthesia or physical restraint on the biological system.

  13. Radionuclides and heavy metals in Borovac, Southern Serbia.

    PubMed

    Popovic, Dragana; Todorovic, Dragana; Frontasyeva, Marina; Ajtic, Jelena; Tasic, Mirjana; Rajsic, Slavica

    2008-09-01

    The paper presents the complex approach to the assessment of the state of the environment in Southern Serbia, surroundings of Bujanovac, the region which is of great concern as being exposed to contamination by depleted uranium (DU) ammunition during the North Atlantic Treaty Organization (NATO) attacks in 1999. It includes studies on concentrations of radionuclides and heavy metals in different environmental samples 5 years after the military actions. In October 2004, samples of soil, grass, lichen, moss, honey, and water were collected at two sites, in the immediate vicinity of the targeted area and 5 km away from it. Radionuclide ((7)Be, (40)K, (137)Cs, (210)Pb, (226)Ra, (232)Th, (235)U, (238)U) activities in solid samples were determined by standard gamma spectrometry and total alpha and beta activity in water was determined by proportional alpha-beta counting. Concentrations of 35 elements were determined in the samples of soil, moss, grass, and lichen by instrumental neutron activation analysis (INAA). The results are discussed in the context of a possible contamination by DU that reached the environment during the attacks as well as in the context of an environmental pollution by radionuclides and heavy metals in Southern Serbia. The results are compared to the state of environment in the region and other parts of the country both prior to and following the attacks. This is the first comprehensive study of the contents of radionuclides and heavy metals in Southern Serbia and consequently highly important for the assessment of the state of environment in this part of the country concerning possible effects of DU ammunition on the environment, as well as anthropogenic source of pollution by radionuclides and heavy metals and other elements. Also, the highly sensitive method of INAA was used for the first time to analyze the environmental samples from this area. The results of the study of radionuclides in the samples of soils, leaves, grass, moss, lichen

  14. A survey of natural terrestrial and airborne radionuclides in moss samples from the peninsular Thailand.

    PubMed

    Wattanavatee, Komrit; Krmar, Miodrag; Bhongsuwan, Tripob

    2017-10-01

    The aim of this study was to determine the activity concentrations of natural terrestrial radionuclides ( 238 U, 226 Ra, 232 Th and 40 K) and airborne radionuclides ( 210 Pb, 210 Pb ex and 7 Be) in natural terrestrial mosses. The collected moss samples (46) representing 17 species were collected from 17 sampling localities in the National Parks and Wildlife Sanctuaries of Thailand, situated in the mountainous areas between the northern and the southern ends of peninsular Thailand (∼7-12 °N, 99-102 °E). Activity concentrations of radionuclides in the samples were measured using a low background gamma spectrometer. The results revealed non-uniform spatial distributions of all the radionuclides in the study area. Principal component analysis and cluster analysis revealed two distinct origins for the studied radionuclides, and furthermore, the Pearson correlations were strong within 226 Ra, 232 Th, 238 U and 40 K as well as within 210 Pb and 210 Pb ex , but there was no significant correlation between these two groups. Also 7 Be was uncorrelated to the others, as expected due to different origins of the airborne and terrestrial radionuclides. The radionuclide activities of moss samples varied by moss species, topography, geology, and meteorology of each sampling area. The observed abnormally high concentrations of some radionuclides probably indicate that the concentrations of airborne and terrestrial radionuclides in moss samples were directly related to local geological features of the sampling site, or that high levels of 7 Be were most probably linked with topography and regional NE monsoonal winds from mainland China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Meteorological Processes Affecting the Transport of Emissions from the Navajo Generating Station to Grand Canyon National Park.

    NASA Astrophysics Data System (ADS)

    Lindsey, Charles G.; Chen, Jun; Dye, Timothy S.; Willard Richards, L.; Blumenthal, Donald L.

    1999-08-01

    During the 1990 Navajo Generating Station (NGS) Winter Visibility Study, a network of surface and upper-air meteorological measurement systems was operated in and around Grand Canyon National Park to investigate atmospheric processes in complex terrain that affected the transport of emissions from the nearby NGS. This network included 15 surface monitoring stations, eight balloon sounding stations (equipped with a mix of rawinsonde, tethersonde, and Airsonde sounding systems), three Doppler radar wind profilers, and four Doppler sodars. Measurements were made from 10 January through 31 March 1990. Data from this network were used to prepare objectively analyzed wind fields, trajectories, and streak lines to represent transport of emissions from the NGS, and to prepare isentropic analyses of the data. The results of these meteorological analyses were merged in the form of a computer animation that depicted the streak line analyses along with measurements of perfluorocarbon tracer, SO2, and sulfate aerosol concentrations, as well as visibility measurements collected by an extensive surface monitoring network. These analyses revealed that synoptic-scale circulations associated with the passage of low pressure systems followed by the formation of high pressure ridges accompanied the majority of cases when NGS emittants appeared to be transported to the Grand Canyon. The authors' results also revealed terrain influences on transport within the topography of the study area, especially mesoscale flows inside the Lake Powell basin and along the plain above the Marble Canyon.

  16. Drifter-based estimate of the 5 year dispersal of Fukushima-derived radionuclides

    NASA Astrophysics Data System (ADS)

    Rypina, I. I.; Jayne, S. R.; Yoshida, S.; Macdonald, A. M.; Buesseler, K.

    2014-11-01

    Employing some 40 years of North Pacific drifter-track observations from the Global Drifter Program database, statistics defining the horizontal spread of radionuclides from Fukushima nuclear power plant into the Pacific Ocean are investigated over a time scale of 5 years. A novel two-iteration method is employed to make the best use of the available drifter data. Drifter-based predictions of the temporal progression of the leading edge of the radionuclide distribution are compared to observed radionuclide concentrations from research surveys occupied in 2012 and 2013. Good agreement between the drifter-based predictions and the observations is found.

  17. The enrichment behavior of natural radionuclides in pulverized oil shale-fired power plants.

    PubMed

    Vaasma, Taavi; Kiisk, Madis; Meriste, Tõnis; Tkaczyk, Alan Henry

    2014-12-01

    The oil shale industry is the largest producer of NORM (Naturally Occurring Radioactive Material) waste in Estonia. Approximately 11-12 million tons of oil shale containing various amounts of natural radionuclides is burned annually in the Narva oil shale-fired power plants, which accounts for approximately 90% of Estonian electricity production. The radionuclide behavior characteristics change during the fuel combustion process, which redistributes the radionuclides between different ash fractions. Out of 24 operational boilers in the power plants, four use circulating fluidized bed (CFB) technology and twenty use pulverized fuel (PF) technology. Over the past decade, the PF boilers have been renovated, with the main objective to increase the efficiency of the filter systems. Between 2009 and 2012, electrostatic precipitators (ESP) in four PF energy blocks were replaced with novel integrated desulphurization technology (NID) for the efficient removal of fly ash and SO2 from flue gases. Using gamma spectrometry, activity concentrations and enrichment factors for the (238)U ((238)U, (226)Ra, (210)Pb) and (232)Th ((232)Th, (228)Ra) family radionuclides as well as (40)K were measured and analyzed in different PF boiler ash fractions. The radionuclide activity concentrations in the ash samples increased from the furnace toward the back end of the flue gas duct. The highest values in different PF boiler ash fractions were in the last field of the ESP and in the NID ash, where radionuclide enrichment factors were up to 4.2 and 3.3, respectively. The acquired and analyzed data on radionuclide activity concentrations in different PF boiler ashes (operating with an ESP and a NID system) compared to CFB boiler ashes provides an indication that changes in the fuel (oil shale) composition and boiler working parameters, as well as technological enhancements in Estonian oil shale fired power plants, have had a combined effect on the distribution patterns of natural radionuclides

  18. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2013 and FY2014 (revised)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, Steve A.; Miller, Julianne J.; McCurdy, Greg D.

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Contamination Area (CA) as a result of storm runoff, which supports National Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the Soils Corrective Action Unit (CAU) contamination areas. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the appropriate closure designmore » and post-closure monitoring program.« less

  19. Compositions and methods for removal of toxic metals and radionuclides

    NASA Technical Reports Server (NTRS)

    McKay, David S. (Inventor); Cuero, Raul G. (Inventor)

    2007-01-01

    The present invention relates to compositions and methods for the removal of toxic metals or radionuclides from source materials. Toxic metals may be removed from source materials using a clay, such as attapulgite or highly cationic bentonite, and chitin or chitosan. Toxic metals may also be removed using volcanic ash alone or in combination with chitin or chitosan. Radionuclides may be removed using volcanic ash alone or in combination with chitin or chitosan.

  20. Exploring Factors Affecting Emergency Medical Services Staffs' Decision about Transporting Medical Patients to Medical Facilities.

    PubMed

    Ebrahimian, Abbasali; Seyedin, Hesam; Jamshidi-Orak, Roohangiz; Masoumi, Gholamreza

    2014-01-01

    Transfer of patients in medical emergency situations is one of the most important missions of emergency medical service (EMS) staffs. So this study was performed to explore affecting factors in EMS staffs' decision during transporting of patients in medical situations to medical facilities. The participants in this qualitative study consisted of 18 EMS staffs working in prehospital care facilities in Tehran, Iran. Data were gathered through semistructured interviews. The data were analyzed using a content analysis approach. The data analysis revealed the following theme: "degree of perceived risk in EMS staffs and their patients." This theme consisted of two main categories: (1) patient's condition' and (2) the context of the EMS mission'. The patent's condition category emerged from "physical health statuses," "socioeconomic statuses," and "cultural background" subcategories. The context of the EMS mission also emerged from two subcategories of "characteristics of the mission" and EMS staffs characteristics'. EMS system managers can consider adequate technical, informational, financial, educational, and emotional supports to facilitate the decision making of their staffs. Also, development of an effective and user-friendly checklist and scoring system was recommended for quick and easy recognition of patients' needs for transportation in a prehospital situation.

  1. Separation of nuclear isomers for cancer therapeutic radionuclides based on nuclear decay after-effects.

    PubMed

    Bhardwaj, R; van der Meer, A; Das, S K; de Bruin, M; Gascon, J; Wolterbeek, H T; Denkova, A G; Serra-Crespo, P

    2017-03-13

    177 Lu has sprung as a promising radionuclide for targeted therapy. The low soft tissue penetration of its β - emission results in very efficient energy deposition in small-size tumours. Because of this, 177 Lu is used in the treatment of neuroendocrine tumours and is also clinically approved for prostate cancer therapy. In this work, we report a separation method that achieves the challenging separation of the physically and chemically identical nuclear isomers, 177m Lu and 177 Lu. The separation method combines the nuclear after-effects of the nuclear decay, the use of a very stable chemical complex and a chromatographic separation. Based on this separation concept, a new type of radionuclide generator has been devised, in which the parent and the daughter radionuclides are the same elements. The 177m Lu/ 177 Lu radionuclide generator provides a new production route for the therapeutic radionuclide 177 Lu and can bring significant growth in the research and development of 177 Lu based pharmaceuticals.

  2. Radionuclide imaging of bone marrow disorders

    PubMed Central

    Agool, Ali; Glaudemans, Andor W. J. M.; Boersma, Hendrikus H.; Dierckx, Rudi A. J. O.; Vellenga, Edo

    2010-01-01

    Noninvasive imaging techniques have been used in the past for visualization the functional activity of the bone marrow compartment. Imaging with radiolabelled compounds may allow different bone marrow disorders to be distinguished. These imaging techniques, almost all of which use radionuclide-labelled tracers, such as 99mTc-nanocolloid, 99mTc-sulphur colloid, 111In-chloride, and radiolabelled white blood cells, have been used in nuclear medicine for several decades. With these techniques three separate compartments can be recognized including the reticuloendothelial system, the erythroid compartment and the myeloid compartment. Recent developments in research and the clinical use of PET tracers have made possible the analysis of additional properties such as cellular metabolism and proliferative activity, using 18F-FDG and 18F-FLT. These tracers may lead to better quantification and targeting of different cell systems in the bone marrow. In this review the imaging of different bone marrow targets with radionuclides including PET tracers in various bone marrow diseases are discussed. PMID:20625724

  3. Improving cancer treatment with cyclotron produced radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, S.M. Finn, R.D.

    1992-08-04

    This report describes the author's continuing long term goal of promoting nuclear medicine applications by improving the scientific basis for tumor diagnosis treatment and treatment follow-up based on the use of cyclotron produced radiotracers in oncology. The program has 3 interactive components: Radiochemistry /Cyclotron; Pharmacology; and Immunology. An essential strategy is as follows: novel radionuclides and radiotracers developed in the Radiochemistry/Cyclotron section under the DOE grant during the 1989--1992 grant period, will be employed in the Pharmacology and Immunology sections of the DOE grant during the 1992--1995 grant period. The development of novel radionuclides and tracers is of course usefulmore » in and of itself, but their utility is greatly enhanced by the interaction with the immunology and pharmacology components of the program.« less

  4. Methods and systems for detection of radionuclides

    DOEpatents

    Coates, Jr., John T.; DeVol, Timothy A.

    2010-05-25

    Disclosed are materials and systems useful in determining the existence of radionuclides in an aqueous sample. The materials provide the dual function of both extraction and scintillation to the systems. The systems can be both portable and simple to use, and as such can beneficially be utilized to determine presence and optionally concentration of radionuclide contamination in an aqueous sample at any desired location and according to a relatively simple process without the necessity of complicated sample handling techniques. The disclosed systems include a one-step process, providing simultaneous extraction and detection capability, and a two-step process, providing a first extraction step that can be carried out in a remote field location, followed by a second detection step that can be carried out in a different location.

  5. Mutations affecting transport of the hexitols D-mannitol, D-glucitol, and galactitol in Escherichia coli K-12: isolation and mapping.

    PubMed Central

    Lengeler, J

    1975-01-01

    Mutants of Escherichia coli K-12 unable to grow on any of the three naturally occurring hexitols D-manitol, D-glucitol, and galactitol and, among these specifically, mutants with altered transport and phosphorylating activity have been isolated. Different isolation procedures have been utilized, including suicide by D-[3H]mannitol, chemotaxis, and resistance to the toxic hexitol analogue 2-deoxy-arabino-hexitol. Mutations thus obtained have been mapped in four distinct operons. (i) Mutations affecting an enzyme II-complexmt1 activity of the phosphoenolpyruvate-dependent phosphotransferase system all map in gene mtlA. This gene has previously been shown (Solomon and Lin, 1972) to be part of an operon, mtl, located at 71 min on the E. coli linkage map containing, in addition to mtlA, the cis-dominant regulatory gene mtlC and mtlD, the structural gene for the enzyme D-mannitol-1-phosphate dehydrogenase. The gene order in this operon, induced by D-mannitol, is mtlC A D. (ii) Mutations in gene gutA affecting a second enzyme II-complexgut of the phosphotransferase system map at 51 min, clustered in operon gutC A D together with the cis-dominant regulatory gene gutC and the structural gene gutD for the enzyme D-glucitol-6-phosphate dehydrogenase. The gut operon, previously called sbl or srl, is induced by D-glucitol. (iii) Mutations affecting the transport and catabolism of galactitol are clustered in a third operon, gatC A D, located at 40.5 min. This operon again contains a cis-dominant regulatory gene, gatC, the structural gene gatD for galactitol-1-phosphate dehydrogenase, and gene gatA coding for a thrid hexitol-specific enzyme II-complexgat. Other genes coding for two additional enzymes involved in galactitol catabolism apparently are not linked to gatC A D. (iv) A fourth class of mutants pleiotropically negative for hexitol growth and transport maps in the pts operon. Triple-negative mutants (mtlA gutA gatA) do not have further transport or phosphorylating activity

  6. Reactive transport modeling in fractured rock: A state-of-the-science review

    NASA Astrophysics Data System (ADS)

    MacQuarrie, Kerry T. B.; Mayer, K. Ulrich

    2005-10-01

    The field of reactive transport modeling has expanded significantly in the past two decades and has assisted in resolving many issues in Earth Sciences. Numerical models allow for detailed examination of coupled transport and reactions, or more general investigation of controlling processes over geologic time scales. Reactive transport models serve to provide guidance in field data collection and, in particular, enable researchers to link modeling and hydrogeochemical studies. In this state-of-science review, the key objectives were to examine the applicability of reactive transport codes for exploring issues of redox stability to depths of several hundreds of meters in sparsely fractured crystalline rock, with a focus on the Canadian Shield setting. A conceptual model of oxygen ingress and redox buffering, within a Shield environment at time and space scales relevant to nuclear waste repository performance, is developed through a review of previous research. This conceptual model describes geochemical and biological processes and mechanisms materially important to understanding redox buffering capacity and radionuclide mobility in the far-field. Consistent with this model, reactive transport codes should ideally be capable of simulating the effects of changing recharge water compositions as a result of long-term climate change, and fracture-matrix interactions that may govern water-rock interaction. Other aspects influencing the suitability of reactive transport codes include the treatment of various reaction and transport time scales, the ability to apply equilibrium or kinetic formulations simultaneously, the need to capture feedback between water-rock interactions and porosity-permeability changes, and the representation of fractured crystalline rock environments as discrete fracture or dual continuum media. A review of modern multicomponent reactive transport codes indicates a relatively high-level of maturity. Within the Yucca Mountain nuclear waste disposal

  7. Transport of terrigenous polycyclic aromatic hydrocarbons affected by the coastal upwelling in the northwestern coast of South China Sea.

    PubMed

    Ya, Miaolei; Wu, Yuling; Li, Yongyu; Wang, Xinhong

    2017-10-01

    Coastal upwelling prevails in the coast of Hainan Island, the northern South China Sea (SCS) during summer. We studied the influences of the upwelling on the horizontal and vertical transport of terrigenous polycyclic aromatic hydrocarbons (PAHs). PAHs in dissolved and suspended particulate phase of water samples were determined in the upper (depth < 1 m) and water column (depth > 10 m). PAH levels decreased sharply from inshore to offshore to open sea. The results showed that terrestrial input was the main source of coastal PAHs. Perylene, an important indicator of land plant-derived PAH, showed the significant correlation with PAHs (p < 0.005). This implied that fluvial transport was the primary pathway of terrigenous PAHs into the coast of northern SCS. Variations of the concentrations, compositions and diagnostic ratios of PAHs, accompanied the partition equilibrium in the water column, could indicate the selective degradation of PAHs by the plankton affected by upwelling. Different from the "traditional" transport pathway of PAHs in the water column (surface enrichment-depth depletion distribution), the upwelling could provide the original driver to elevate the upward diffusion of sediment entrained contaminants towards the intermediate even the upper waters. It could also enhance the outward diffusion of terrigenous PAHs accompanied by the offshore transport of the upper waters. Therefore, the transport pathway of PAHs can be summarized by the coastal upwelling rising PAHs with their subsequent transport offshore and settling in the adjacent open sea. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Impact of radionuclide spatial variability on groundwater quality downstream from a shallow waste burial in the Chernobyl Exclusion Zone

    NASA Astrophysics Data System (ADS)

    Nguyen, H. L.; de Fouquet, C.; Courbet, C.; Simonucci, C. A.

    2016-12-01

    The effects of spatial variability of hydraulic parameters and initial groundwater plume localization on the possible extent of groundwater pollution plumes have already been broadly studied. However, only a few studies, such as Kjeldsen et al. (1995), take into account the effect of source term spatial variability. We explore this question with the 90Sr migration modeling from a shallow waste burial located in the Chernobyl Exclusion Zone to the underlying sand aquifer. Our work is based upon groundwater sampled once or twice a year since 1995 until 2015 from about 60 piezometers and more than 3,000 137Cs soil activity measurements. These measurements were taken in 1999 from one of the trenches dug after the explosion of the Chernobyl nuclear power plant, the so-called "T22 Trench", where radioactive waste was buried in 1987. The geostatistical analysis of 137Cs activity data in soils from Bugai et al. (2005) is first reconsidered to delimit the trench borders using georadar data as a covariable and to perform geostatistical simulations in order to evaluate the uncertainties of this inventory. 90Sr activity in soils is derived from 137Cs/154Eu and 90Sr/154Eu activity ratios in Chernobyl hot fuel particles (Bugai et al., 2003). Meanwhile, a coupled 1D non saturated/3D saturated transient transport model is constructed under the MELODIE software (IRSN, 2009). The previous 90Sr transport model developed by Bugai et al. (2012) did not take into account the effect of water table fluctuations highlighted by Van Meir et al. (2007) which may cause some discrepancies between model predictions and field observations. They are thus reproduced on a 1D vertical non saturated model. The equiprobable radionuclide localization maps produced by the geostatistical simulations are selected to illustrate different heterogeneities in the radionuclide inventory and are implemented in the 1D model. The obtained activity fluxes from all the 1D vertical models are then injected in a 3D

  9. DARTAB: a program to combine airborne radionuclide environmental exposure data with dosimetric and health effects data to generate tabulations of predicted health impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Begovich, C.L.; Eckerman, K.F.; Schlatter, E.C.

    1981-08-01

    The DARTAB computer code combines radionuclide environmental exposure data with dosimetric and health effects data to generate tabulations of the predicted impact of radioactive airborne effluents. DARTAB is independent of the environmental transport code used to generate the environmental exposure data and the codes used to produce the dosimetric and health effects data. Therefore human dose and risk calculations need not be added to every environmental transport code. Options are included in DARTAB to permit the user to request tabulations by various topics (e.g., cancer site, exposure pathway, etc.) to facilitate characterization of the human health impacts of the effluents.more » The DARTAB code was written at ORNL for the US Environmental Protection Agency, Office of Radiation Programs.« less

  10. Monitoring Potential Transport of Radioactive Contaminants in Shallow Ephemeral Channels: FY2015 and FY2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizell, Steve A; Miller, Julianne J; McCurdy, Greg

    The Desert Research Institute (DRI) is conducting a field assessment of the potential for contaminated soil to be transported from the Smoky Contamination Area (CA) as a result of storm runoff. This activity supports Nevada Nuclear Security Administration (NNSA) efforts to complete regulatory closure of the Soils Corrective Action Unit (CAU) contamination areas. The work is intended to confirm the likely mechanism of transport and determine the meteorological conditions that might cause movement of contaminated soils, as well as determine the particle size fraction that is most closely associated with transported radionuclide-contaminated soils. These data will facilitate the appropriate closuremore » design and post-closure monitoring program.« less

  11. Knock-Down of a Tonoplast Localized Low-Affinity Nitrate Transporter OsNPF7.2 Affects Rice Growth under High Nitrate Supply

    PubMed Central

    Hu, Rui; Qiu, Diyang; Chen, Yi; Miller, Anthony J.; Fan, Xiaorong; Pan, Xiaoping; Zhang, Mingyong

    2016-01-01

    The large nitrate transporter 1/peptide transporter family (NPF) has been shown to transport diverse substrates, including nitrate, amino acids, peptides, phytohormones, and glucosinolates. However, the rice (Oryza sativa) root-specific family member OsNPF7.2 has not been functionally characterized. Here, our data show that OsNPF7.2 is a tonoplast localized low-affinity nitrate transporter, that affects rice growth under high nitrate supply. Expression analysis showed that OsNPF7.2 was mainly expressed in the elongation and maturation zones of roots, especially in the root sclerenchyma, cortex and stele. It was also induced by high concentrations of nitrate. Subcellular localization analysis showed that OsNPF7.2 was localized on the tonoplast of large and small vacuoles. Heterologous expression in Xenopus laevis oocytes suggested that OsNPF7.2 was a low-affinity nitrate transporter. Knock-down of OsNPF7.2 retarded rice growth under high concentrations of nitrate. Therefore, we deduce that OsNPF7.2 plays a role in intracellular allocation of nitrate in roots, and thus influences rice growth under high nitrate supply. PMID:27826301

  12. Final Report (BMWi Project No.: 02 E 10971): Joint project: Retention of radionuclides relevant for final disposal in natural clay rock and saline systems - Subproject 2: Geochemical behavior and transport of radionuclides in saline systems in the prese

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmeide, Katja; Fritsch, Katharina; Lippold, Holger

    2016-02-29

    The objective of this project was to study the influence of increased salinities on interaction processes in the system radionuclide – organics – clay – aquifer. For this, complexation, redox, sorption, and diffusion studies were performed under variation of the ionic strength (up to 4 mol kg -1) and the background electrolyte (NaCl, CaCl 2, MgCl 2).

  13. WORKER INHALATION DOSE COEFFICIENTS FOR RADIONUCLIDES NOT PREVIOUSLY IDENTIFIED IN ICRP PUBLICATION 68

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaughlin, David A; Schwahn, Scott O

    2011-01-01

    While inhalation dose coefficients are provided for about 800 radionuclides in International Commission on Radiological Protection (ICRP) Publication 68, many radionuclides of practical dosimetric interest for facilities such as high-energy proton accelerators are not specifically addressed, nor are organ-specific dose coefficients tabulated. The ICRP Publication 68 methodology is used, along with updated radiological decay data and metabolic data, to identify committed equivalent dose coefficients [hT(50)] and committed effective dose coefficients [e(50)] for radionuclides produced at the Oak Ridge National Laboratory s Spallation Neutron Source.

  14. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... radionuclide which may be enclosed in a sealed container made of gold, titanium, stainless steel, or platinum and intended for medical purposes to be placed onto a body surface or into a body cavity or tissue as...

  15. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... radionuclide which may be enclosed in a sealed container made of gold, titanium, stainless steel, or platinum and intended for medical purposes to be placed onto a body surface or into a body cavity or tissue as...

  16. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... radionuclide which may be enclosed in a sealed container made of gold, titanium, stainless steel, or platinum and intended for medical purposes to be placed onto a body surface or into a body cavity or tissue as...

  17. 21 CFR 892.5730 - Radionuclide brachytherapy source.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... radionuclide which may be enclosed in a sealed container made of gold, titanium, stainless steel, or platinum and intended for medical purposes to be placed onto a body surface or into a body cavity or tissue as...

  18. Geochemical effects on the behavior of LLW radionuclides in soil/groundwater environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krupka, K.M.; Sterne, R.J.

    1995-12-31

    Assessing the migration potential of radionuclides leached from low-level radioactive waste (LLW) and decommissioning sites necessitates information on the effects of sorption and precipitation on the concentrations of dissolved radionuclides. Such an assessment requires that the geochemical processes of aqueous speciation, complexation, oxidation/reduction, and ion exchange be taken into account. The Pacific Northwest National Laboratory (PNNL) is providing technical support to the U.S. Nuclear Regulatory Commission (NRC) for defining the solubility and sorption behavior of radionuclides in soil/ground-water environments associated with engineered cementitious LLW disposal systems and decommissioning sites. Geochemical modeling is being used to predict solubility limits for radionuclidesmore » under geochemical conditions associated with these environments. The solubility limits are being used as maximum concentration limits in performance assessment calculations describing the release of contaminants from waste sources. Available data were compiled regarding the sorption potential of radionuclides onto {open_quotes}fresh{close_quotes} cement/concrete where the expected pH of the cement pore waters will equal to or exceed 10. Based on information gleaned from the literature, a list of preferred minimum distribution coefficients (Kd`s) was developed for these radionuclides. The K{sub d} values are specific to the chemical environments associated with the evolution of the compositions of cement/concrete pore waters.« less

  19. TH-AB-206-01: Advances in Radionuclide Therapy - From Radioiodine to Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Humm, J.

    In the past few decades, the field of nuclear medicine has made long strides with the continued advancement of related sciences and engineering and the availability of diagnostic and therapeutic radionuclides. Leveraging these advancements while combining the advantages of therapeutic and diagnostic radionuclides into one radiopharmaceutical has also created a new subfield “theranostics” in nuclear medicine that has the potential to further propel the field into the future. This session is composed of two talks; one focused on the physics principles of theranostics from properties of beta and alpha emitting radionuclides to dosimetric models and quantification; while the second describesmore » preclinical and clinical applications of theranostics and discusses the challenges and opportunities of bringing them to the clinic. At the end of the session the listener should be able to identify: The different properties of beta and alpha emitting radionuclides Which radionuclides are selected for which nuclear medicine therapies and why How PET can be used to accurately quantify the uptake of tumor targeting molecules How individualized dosimetry can be performed from the management of thyroid cancer to novel radiolabeled antibody therapies Promising pre-clinical radiopharmaceutical pairs in prostate cancer and melanoma. Promising clinical Theranostics in neuroendocrine cancers. Challenges of bringing Theranostics to the clinic. E. Delpassand, RITA Foundation -Houston; SBIR Grant; CEO and share holder of RadioMedix.« less

  20. Numerical modeling of the radionuclide water pathway with HYDRUS and comparison with the IAEA model of SR 44.

    PubMed

    Merk, Rainer

    2012-02-01

    This study depicts a theoretical experiment in which the radionuclide transport through the porous material of a landfill consisting of concrete rubble (e.g., from the decommissioning of nuclear power plants) and the subsequent migration through the vadose zone and aquifer to a model well is calculated by means of the software HYDRUS-1D (Simunek et al., 2008). The radionuclides originally contained within the rubble become dissolved due to leaching caused by infiltrated rainwater. The resulting well-water contamination (in Bq/L) is calculated numerically as a function of time and location and compared with the outcome of a simplified analytic model for the groundwater pathway published by the IAEA (2005). Identical model parameters are considered. The main objective of the present work is to evaluate the predictive capacity of the more simple IAEA model using HYDRUS-1D as a reference. For most of the radionuclides considered (e.g., ¹²⁹I, and ²³⁹Pu), results from applying the IAEA model were found to be comparable to results from the more elaborate HYDRUS modeling, provided the underlying parameter values are comparable. However, the IAEA model appears to underestimate the effects resulting from, for example, high nuclide mobility, short half-life, or short-term variations in the water infiltration. The present results indicate that the IAEA model is suited for screening calculations and general recommendation purposes. However, the analysis of a specific site should be accompanied by detailed HYDRUS computer simulations. In all models considered, the calculation outcome largely depends on the choice of the sorption parameter K(d). Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Radionuclide migration in clayrock host formations for deep geological disposal of radioactive waste: advances in process understanding and up-scaling methods resulting from the EC integrated project `Funmig

    NASA Astrophysics Data System (ADS)

    Altmann, S.; Tournassat, C.; Goutelard, F.; Parneix, J. C.; Gimmi, T.; Maes, N.

    2009-04-01

    One of the ‘pillars' supporting Safety Cases for deep geological disposal of radioactive waste in clayrock formations is the knowledge base regarding radionuclide (Rn) retention by sorption and diffusion-driven transport which is why the EC integrated project ‘Funmig' focused a major part of its effort on advancing understanding of these two macroscopic phenomena. This talk presents some of the main results of this four year effort (2005-2008). One of the keys to understanding diffusion-driven transport of anionic and cationic radionuclide species in clayrocks lies in a detailed understanding of the phenomena governing Rn total concentration and speciation (dissolved, adsorbed) in the different types of pore spaces present in highly-compacted masses of permanently charged clay minerals. Work carried out on a specifically synthesized montmorillonite (a model for the clay mineral fraction in clayrocks) led to development, and preliminary experimental validation, of a conceptually coherent set of theoretical models (molecular dynamics, electrostatic double layer, thermodynamic) describing dissolved ion and water solvent behavior in this material. This work, complemented by the existing state of the art, provides a sound theoretical basis for explaining such important phenomena as anion exclusion, cation exchange and the diffusion behavior of anions, weakly sorbing cations and water tracers. Concerning the behavior of strongly sorbing and/or redox-reactive radionuclides in clay systems, project research improved understanding of the nature of sorption reactions and sorbed species structure for key radioelements, or analogues (U, Se, Eu, Sm, Yb, Nd) on the basal surfaces and in the interlayers of synthetic or purified clay minerals. A probable mechanism for Se(IV) retention by reduction to Se° in Fe2+-containing clays was brought to light; this same process was also studied on the Callovo-Oxfordien clayrock targeted by the French radwaste management program. The

  2. Evaluation of meniscus tears of the knee by radionuclide imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marymont, J.V.; Lynch, M.A.; Henning, C.E.

    We compare the accuracy of radionuclide imaging of the knee with Tc99m-pyrophosphate with arthrography for the evaluation of meniscus tears in young athletes with clinically suspected knee injury. All patients had arthroscopy which was used as the standard against which the other two diagnostic procedures were compared. Radionuclide scintigraphy and arthrography were comparable in their ability to detect tears of the medial meniscus. Scintigraphy was superior for the detection of tears of the lateral meniscus and of both menisci.

  3. Anthropogenic radionuclide fluxes and distribution in bottom sediments of the cooling basin of the Ignalina Nuclear Power Plant.

    PubMed

    Marčiulionienė, D; Mažeika, J; Lukšienė, B; Jefanova, O; Mikalauskienė, R; Paškauskas, R

    2015-07-01

    Based on γ-ray emitting artificial radionuclide spectrometric measurements, an assessment of areal and vertical distribution of (137)Cs, (60)Co and (54)Mn activity concentrations in bottom sediments of Lake Drūkšiai was performed. Samples of bottom sediments from seven monitoring stations within the cooling basin were collected in 1988-1996 and 2007-2010 (in July-August). For radionuclide areal distribution analysis, samples from the surface 0-5 cm layer were used. Multi sample cores sliced 2 cm, 3 cm or 5 cm thick were used to study the vertical distribution of radionuclides. The lowest (137)Cs activity concentrations were obtained for two stations that were situated close to channels with radionuclide discharges, but with sediments that had a significantly smaller fraction of organic matter related to finest particles and consequently smaller radionuclide retention potential. The (137)Cs activity concentration was distributed quite evenly in the bottom sediments from other investigated monitoring stations. The highest (137)Cs activity concentrations in the bottom sediments of Lake Drūkšiai were measured in the period of 1988-1989; in 1990, the (137)Cs activity concentrations slightly decreased and they varied insignificantly over the investigation period. The obtained (238)Pu/(239,240)Pu activity ratio values in the bottom sediments of Lake Drūkšiai represented radioactive pollution with plutonium from nuclear weapon tests. Higher (60)Co and (54)Mn activity concentrations were observed in the monitoring stations that were close to the impact zones of the technical water outlet channel and industrial rain drainage system channel. (60)Co and (54)Mn activity concentrations in the bottom sediments of Lake Drūkšiai significantly decreased when operations at both INPP reactor units were stopped. The vertical distribution of radionuclides in bottom sediments revealed complicated sedimentation features, which may have been affected by a number of natural and

  4. Using Short-Lived Fallout Radionuclides to Study Soil Mixing on Hillslopes in Different Climatic and Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Kaste, J. M.; Heimsath, A. M.

    2002-12-01

    Hillslope soil processes can be difficult to quantify, but an understanding of soil and sediment dynamics is required for an accurate prediction of topographic evolution. Our data indicate that soil mixing processes and rates on hillslopes vary widely across different climatic and geologic settings. We use the depth-profiles of short-lived fallout radionuclides 210Pb, 137Cs, and 241Am measured in soils sampled from the Hubbard Brook Experimental Forest in NH (HBEF), USA, from Point Rays National Seashore (PRNS), CA, USA, and from the Nunnock River Valley (NR) in Southeastern Australia to study short-term (<100 y) soil mixing resulting from bioturbation. Results from the radionuclide analysis suggest that some fraction of the soil at NR is mixed from the surface to a depth of up to 0.5m on timescales of a few decades. These results support previous studies at NR quantifying soil mixing at millennial timescales using optically stimulated luminescence (OSL). Field evidence at NR corroborates these data, showing a clear lack of soil profile development and differentiation. However, in well-developed spodosols at the HBEF, radionuclide data suggests that mixing is confined to the forest floor (upper 12 cm of organic matter) and surface grains do not penetrate to significant depth in the profile on short timescales. Tree-throw seems to be the primary process mixing soil at the HBEF, which mixes soil on timescales of several centuries. At NR and PRNS however, bioturbation by insects and burrowing mammals mixes surface soil particles deep into the profile on timescales of decades. These differences in bioturbation rates result from different climatic and geologic settings, and we will discuss the implications for sediment transport mechanisms on hillslopes, as well as for soil carbon storage and the fate of atmospherically-delivered conaminants.

  5. Reactive transport simulations of alternative flow pathways in the ambient unsaturated zone at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Browning, L.; Murphy, W.; Manepally, C.; Fedors, R.

    2003-04-01

    Uncertainties in simulated ambient system unsaturated zone flow could have a significant impact on performance evaluations of the proposed nuclear waste repository at Yucca Mountain, Nevada. In addition to determining variations in the quantity of water available to corrode engineered materials and transport radionuclides, model assumptions regarding flow pathways may significantly affect estimates of groundwater chemistry. The manner and extent to which groundwater compositions evolve along a flow pathway are determined mainly by thermohydrologic conditions, the types of reactive materials encountered, and the interaction times with those materials. Simulated groundwater compositions can thus vary significantly depending on whether or not the flow model includes lateral diversion of infiltrating waters, or preferential flow pathways in variably-saturated materials. To assist a regulatory review of a potential license application for a geologic repository for high-level waste, we developed a reactive transport model for the ambient hydrogeochemical system at Yucca Mountain. The model simulates two phase, nonisothermal, advective and diffusive flow and transport through a one dimensional, matrix and fracture continua (dual permeability) containing ten kinetically reactive hydrostatigraphic layers in the vicinity of the SD-9 borehole at Yucca Mountain. In this presentation, we describe how the model was used to evaluate alternative ambient unsaturated zone flow pathways proposed by the U.S. Department of Energy. This abstract is an independent product of the CNWRA and does not necessarily reflect the views or regulatory position of the NRC.

  6. Transfer of radionuclides to plants of natural ecosystems at the Semipalatinsk Test Site.

    PubMed

    Larionova, N V; Lukashenko, S N; Kabdyrakova, A M; Kunduzbayeva, A Ye; Panitskiy, A V; Ivanova, A R

    2018-06-01

    A systematic study devoted to 137 Cs, 90 Sr, 241 Am, 239+240 Pu radionuclides in vegetation cover from several spots of the Semipalatinsk test site (STS) is summarised in this paper, highlighting the main findings obtained. The analysed spots are characterized by various types of radioactive contamination. Transfer factors (Tf) required for the quantitative description of the radionuclides transition from the soil to aboveground plant parts were determined, being found that, on average, the minimum Tf for all the radionuclides concerned were determined on the "Experimental Field" ground, followed by the determined ones in the "plumes" of radioactive fallout and in the conditionally "background" territories analysed. The highest transfer factors were characteristic of zones of radioactive streamflows and places of warfare radioactive agent (WRA) tests. On the other hand, ordering the radionuclide transferring factors in descending order, the following sequence was obtained: 90 Sr Tf > Cs Tf >  239+240 Pu Tf >  241 Am Tf, with the 90 Sr Tf, on the average, exceeding the 137 Cs Tf by 8 times and exceeding the 239+240 Pu Tf by up 16 times. 239+240 Pu Tf values were up to 3 times higher than the 241 Am Tf. The exception to the indicated radionuclide Tf descending order corresponded to places of WRA tests where Tf of radionuclides of interest by plants follows the sequence 90 Sr >  239+240 Pu >  137 Cs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. REMOVAL OF RADIONUCLIDES BY ELECTROKINETIC SOIL PROCESSING

    EPA Science Inventory

    Electrokinetics promises to be an innovative treatment process for in-situ treatment of soils and groundwater contaminated with heavy metals and radionuclides. Electrokinetics refers to the movement of ionic liquids and charged particles relative to one another under the action ...

  8. Natural chelates for radionuclide decorporation

    DOEpatents

    Premuzic, E.T.

    1983-08-25

    This invention relates to the method and resulting chelates of desorbing a radionuclide selected from thorium, uranium, and plutonium containing cultures in a bioavailable form involving pseudomonas or other microorganisms. A preferred microorganism is Pseudomonas aeruginosa which forms multiple chelates with thorium in the range of molecular weight 1000 to 1000 and also forms chelates with uranium of molecular weight in the area of 100 to 1000 and 1000 to 2000.

  9. Spatial and temporal dynamics of sediment in contrasted mountainous watersheds (Mexican transvolcanic belt and French Southern Alps) combining river gauging, elemental geochemistry and fallout radionuclides

    NASA Astrophysics Data System (ADS)

    Evrard, O.; Navratil, O.; Gratiot, N.; Némery, J.; Duvert, C.; Ayrault, S.; Lefèvre, I.; Legout, C.; Bonté, P.; Esteves, M.

    2009-12-01

    In mountainous environments, an excessive fine sediment supply to the rivers typically leads to an increase in water turbidity, contaminant transport and a rapid filling of reservoirs. This situation is particularly problematic in regions where water reservoirs are used to provide drinking water to large cities (e.g. in central Mexico) or where stream water is used to run hydroelectric power plants (e.g. in the French Southern Alps). In such areas, sediment source areas first need to be delineated and sediment fluxes between hillslopes and the river system must be better understood before implementing efficient erosion control measures. In this context, the STREAMS (« Sediment Transport and Erosion Across MountainS ») project funded by the French National Research Agency (ANR) aims at understanding the spatial and temporal dynamics of sediment at the scale of mountainous watersheds (between 500 - 1000 km2) located in contrasted environments. This 3-years study is carried out simultaneously in a volcanic watershed located in the Mexican transvolcanic belt undergoing a subhumid tropical climate, as well as in a sedimentary watershed of the French Southern Alps undergoing a transitional climate with Mediterranean and continental influences. One of the main specificities of this project consists in combining traditional monitoring techniques (i.e. installation of river gauges, turbidimeters and sediment samplers in several sub-catchments) and sediment fingerprinting using elemental geochemistry (measured by Instrumental Neutron Activation Analysis - INAA - and Inductively Coupled Plasma - Mass Spectrometry - ICP-MS) and fallout radionuclides (measured by gamma spectrometry). In the French watershed, geochemical analysis allows outlining different sediment sources (e.g. the contribution of calcareous vs. marl-covered sub-watersheds). Radionuclide ratios (e.g.Be-7/Cs-137) allow identifying the dominant erosion processes occurring within the watershed. Areas mostly

  10. Docking 90Sr radionuclide in cement: An atomistic modeling study

    NASA Astrophysics Data System (ADS)

    Youssef, Mostafa; Pellenq, Roland J.-M.; Yildiz, Bilge

    Cementitious materials are considered to be a waste form for the ultimate disposal of radioactive materials in geological repositories. We investigated by means of atomistic simulations the encapsulation of strontium-90, an important radionuclide, in calcium-silicate-hydrate (C-S-H) and its crystalline analog, the 9 Å-tobermorite. C-S-H is the major binding phase of cement. Strontium was shown to energetically favor substituting calcium in the interlayer sites in C-S-H and 9 Å-tobermorite with the trend more pronounced in the latter. The integrity of the silicate chains in both cementitious waste forms were not affected by strontium substitution within the time span of molecular dynamics simulation. Finally, we observed a limited degradation of the mechanical properties in the strontium-containing cementitious waste form with the increasing strontium concentration. These results suggest the cement hydrate as a good candidate for immobilizing radioactive strontium.

  11. The Storage, Transportation, and Disposal of Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Younker, J. L.

    2002-12-01

    The U.S. Congress established a comprehensive federal policy to dispose of wastes from nuclear reactors and defense facilities, centered on deep geologic disposal of high-level radioactive waste. Site screening led to selection of three potential sites and in 1987, Congress directed the Secretary of Energy to characterize only one site: Yucca Mountain in Nevada. For more than 20 years, teams of scientists and engineers have been evaluating the potential suitability of the site. On the basis of their work, the U.S. Secretary of Energy, Spencer Abraham, concluded in February 2002 that a safe repository can be sited at Yucca Mountain. On July 23, 2002, President Bush signed Joint Resolution 87 approving the site at Yucca Mountain for development of a repository, which allows the U.S. Department of Energy (DOE) to prepare and submit a license application to the U.S. Nuclear Regulatory Commission (NRC). Concerns have been raised relative to the safe transportation of nuclear materials. The U.S. history of transportation of nuclear materials demonstrates that high-level nuclear materials can be safely transported. Since the 1960s, over 1.6 million miles have been traveled by more than 2,700 spent nuclear fuel shipments, and there has never been an accident severe enough to cause a release of radioactive materials. The DOE will use NRC-certified casks that must be able to withstand very stringent tests. The same design features that allow the casks to survive severe accidents also limit their vulnerability to sabotage. In addition, the NRC will approve all shipping routes and security plans. With regard to long-term safety, the Yucca Mountain disposal system has five key attributes. First, the arid climate and geology of Yucca Mountain combine to ensure that limited water will enter the emplacement tunnels. Second, the DOE has designed a waste package and drip shield that are expected to have very long lifetimes in the repository environment. Third, waste form

  12. GHSI EMERGENCY RADIONUCLIDE BIOASSAY LABORATORY NETWORK: SUMMARY OF A RECENT EXERCISE.

    PubMed

    Li, Chunsheng; Ansari, Armin; Bartizel, Christine; Battisti, Paolo; Franck, Didier; Gerstmann, Udo; Giardina, Isabella; Guichet, Claude; Hammond, Derek; Hartmann, Martina; Jones, Robert L; Kim, Eunjoo; Ko, Raymond; Morhard, Ryan; Quayle, Deborah; Sadi, Baki; Saunders, David; Paquet, Francois

    2016-11-01

    The Global Health Security Initiative (GHSI) established a laboratory network within the GHSI community to develop their collective surge capacity for radionuclide bioassay in response to a radiological or nuclear emergency. A recent exercise was conducted to test the participating laboratories for their capabilities in screening and in vitro assay of biological samples, performing internal dose assessment and providing advice on medical intervention, if necessary, using a urine sample spiked with a single radionuclide, 241 Am. The laboratories were required to submit their reports according to the exercise schedule and using pre-formatted templates. Generally, the participating laboratories were found to be capable with respect to rapidly screening samples for radionuclide contamination, measuring the radionuclide in the samples, assessing the intake and radiation dose, and providing advice on medical intervention. However, gaps in bioassay measurement and dose assessment have been identified. The network may take steps to ensure that procedures and practices within this network be harmonised and a follow-up exercise be organised on a larger scale, with potential participation of laboratories from the networks coordinated by the International Atomic Energy Agency and the World Health Organization. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Computational modeling of radiobiological effects in bone metastases for different radionuclides.

    PubMed

    Liberal, Francisco D C Guerra; Tavares, Adriana Alexandre S; Tavares, João Manuel R S

    2017-06-01

    Computational simulation is a simple and practical way to study and to compare a variety of radioisotopes for different medical applications, including the palliative treatment of bone metastases. This study aimed to evaluate and compare cellular effects modelled for different radioisotopes currently in use or under research for treatment of bone metastases using computational methods. Computational models were used to estimate the radiation-induced cellular effects (Virtual Cell Radiobiology algorithm) post-irradiation with selected particles emitted by Strontium-89 ( 89 Sr), Samarium-153 ( 153 Sm), Lutetium-177 ( 177 Lu), and Radium-223 ( 223 Ra). Cellular kinetics post-irradiation using 89 Sr β - particles, 153 Sm β -  particles, 177 Lu β -  particles and 223 Ra α particles showed that the cell response was dose- and radionuclide-dependent. 177 Lu beta minus particles and, in particular, 223 Ra alpha particles, yielded the lowest survival fraction of all investigated particles. 223 Ra alpha particles induced the highest cell death of all investigated particles on metastatic prostate cells in comparison to irradiation with β -  radionuclides, two of the most frequently used radionuclides in the palliative treatment of bone metastases in clinical routine practice. Moreover, the data obtained suggest that the used computational methods might provide some perception about cellular effects following irradiation with different radionuclides.

  14. Bone stress: a radionuclide imaging perspective. [/sup 99m/Tc-pyrophosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roub, L.W.; Gumerman, L.W.; Hanley, E.N. Jr.

    Thirty-five college athletes with lower leg pain underwent radiography and radionuclide studies to rule out a stress fracture. Their asymptomatic extremities and 13 pain-free athletes served as controls. Four main patterns were observed: (a) sharply marginated scintigraphic abnormalities and positive radiographs; (b) sharply marginated scintigraphic abnormalities and negatives radiographs; (c) ill-defined scintigraphic abnormalities and negative radiographs; and (d) negative radionuclide images and negative radiographs. Since the patients with the first two patterns were otherwise identical medically, the authors feel that this scintigraphic appearance is characterisic of bone stress in the appropriate clinical setting, regardless of the radiographic findings. A schemamore » is proposed to explain the occurrence of positive radionuclide images and negative radiographs in the same patient, using a broad conceptual approach to the problem of bone stress.« less

  15. Characterizing multiple timescales of stream and storage zone interaction that affect solute fate and transport in streams

    USGS Publications Warehouse

    Choi, Jungyill; Harvey, Judson W.; Conklin, Martha H.

    2000-01-01

    The fate of contaminants in streams and rivers is affected by exchange and biogeochemical transformation in slowly moving or stagnant flow zones that interact with rapid flow in the main channel. In a typical stream, there are multiple types of slowly moving flow zones in which exchange and transformation occur, such as stagnant or recirculating surface water as well as subsurface hyporheic zones. However, most investigators use transport models with just a single storage zone in their modeling studies, which assumes that the effects of multiple storage zones can be lumped together. Our study addressed the following question: Can a single‐storage zone model reliably characterize the effects of physical retention and biogeochemical reactions in multiple storage zones? We extended an existing stream transport model with a single storage zone to include a second storage zone. With the extended model we generated 500 data sets representing transport of nonreactive and reactive solutes in stream systems that have two different types of storage zones with variable hydrologic conditions. The one storage zone model was tested by optimizing the lumped storage parameters to achieve a best fit for each of the generated data sets. Multiple storage processes were categorized as possessing I, additive; II, competitive; or III, dominant storage zone characteristics. The classification was based on the goodness of fit of generated data sets, the degree of similarity in mean retention time of the two storage zones, and the relative distributions of exchange flux and storage capacity between the two storage zones. For most cases (>90%) the one storage zone model described either the effect of the sum of multiple storage processes (category I) or the dominant storage process (category III). Failure of the one storage zone model occurred mainly for category II, that is, when one of the storage zones had a much longer mean retention time (ts ratio > 5.0) and when the dominance of

  16. Cadastral valuation of lands polluted with radionuclides

    NASA Astrophysics Data System (ADS)

    Makarov, O. A.; Tsvetnov, E. V.; Shcheglov, A. I.; Romashkina, A. D.; Ermiyaev, Ya. R.

    2016-11-01

    The major method to correct the cadastral value of land for contamination with radionuclides is to reduce it by the sum of expenses necessary for land remediation and for special measures ensuring the obtaining of agricultural and forestry products satisfying safety norms. Lands contaminated with radionuclides and used in agriculture and forestry are often removed from the system of land taxation. In this case, their cadastral value becomes an excessive element of the state cadaster of real estate. An approach toward cadastral valuation of such lands suggested by the authors assumes the creation of a system of compensation payments as the main source of financing of land rehabilitation and soil conservation measures. An original system of calculation of such payments has been tested for radioactively contaminated lands in Plavsk district of Tula oblast. It is argued that compensation payments for radioactively contaminated agrocenoses should be higher than those for natural cenoses.

  17. Vadose Zone Transport Field Study: Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gee, Glendon W.; Ward, Anderson L.

    2001-11-30

    Studies were initiated at the Hanford Site to evaluate the process controlling the transport of fluids in the vadose zone and to develop a reliable database upon which vadose-zone transport models can be calibrated. These models are needed to evaluate contaminant migration through the vadose zone to underlying groundwaters at Hanford. A study site that had previously been extensively characterized using geophysical monitoring techniques was selected in the 200 E Area. Techniques used previously included neutron probe for water content, spectral gamma logging for radionuclide tracers, and gamma scattering for wet bulk density. Building on the characterization efforts of themore » past 20 years, the site was instrumented to facilitate the comparison of nine vadose-zone characterization methods: advanced tensiometers, neutron probe, electrical resistance tomography (ERT), high-resolution resistivity (HRR), electromagnetic induction imaging (EMI), cross-borehole radar (XBR), and cross-borehole seismic (XBS). Soil coring was used to obtain soil samples for analyzing ionic and isotopic tracers.« less

  18. Paving the way to personalized medicine: production of some theragnostic radionuclides at Brookhaven National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava S. C.

    2011-06-06

    This paper introduces a relatively novel paradigm that involves specific individual radionuclides or radionuclide pairs that have emissions that allow pre-therapy low-dose imaging plus higher-dose therapy in the same patient. We have made an attempt to sort out and organize a number of such theragnostic radionuclides and radionuclide pairs that may potentially bring us closer to the age-long dream of personalized medicine for performing tailored low-dose molecular imaging (SPECT/CT or PET/CT) to provide the necessary pre-therapy information on biodistribution, dosimetry, the limiting or critical organ or tissue, and the maximum tolerated dose (MTD), etc. If the imaging results then warrantmore » it, it would be possible to perform higher-dose targeted molecular therapy in the same patient with the same radiopharmaceutical. A major problem that remains yet to be fully resolved is the lack of availability, in sufficient quantities, of a majority of the best candidate theragnostic radionuclides in a no-carrier-added (NCA) form. A brief description of the recently developed new or modified methods at BNL for the production of four theragnostic radionuclides, whose nuclear, physical, and chemical characteristics seem to show great promise for personalized cancer therapy are described.« less

  19. Effects of radionuclides on the recent foraminifera from the clastic sediments of the Çanakkale Strait-Turkey

    NASA Astrophysics Data System (ADS)

    Yümün, Zeki Ünal; Kam, Erol

    2017-07-01

    The radionuclides that cause radioactivity accumulate in the sediments as they descend to the seabed, similar to heavy metals. As radionuclides are present on the surface of the sediment or within the sediment, marine benthic foraminifera can be affected by the radioactive pollution. In this study, the habitat of benthic foraminifera was evaluated for radioactive pollution in the Çanakkale Strait, which constitutes the passage of the Marmara Sea and the Aegean Sea. In 2015, seven core samples and one drilling sample were taken from the shallow marine environment, which is the habitat of benthic foraminifera, in the Çanakkale Strait. Locations of the core samples were specifically selected to be pollution indicators in port areas. Gamma spectrometric analysis was used to determine the radioactivity properties of sediments. The radionuclide concentration activity values in the sediment samples obtained from the locations were Cs-137: <2-20 (Bq/kg), Th-232: 17.5-58.3 (Bq/kg), Ra-226: 16.9-48.6 (Bq/kg) and K-40: 443.7-725.6 (Bq/kg). These values were compared with the Turkish Atomic Energy Agency (TAEK) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) data and environmental analysis was carried out. The Ra-226 series, the Th-232 series and the K-40 radionuclides accumulate naturally and increase continuously due to anthropogenic pollution. Although the Ra-226 values obtained in the study areas remained within normal limits according to UNSCEAR values, the K-40 and Th-232 series values were observed to be high in almost all locations. The values of Cs-137 were found to be maximum 20 in Çanakkale Dere Port and they were parallel to the values in the other places. In the study, 13 genera and 20 species were identified from core and drilling samples. The number of foraminifera species and individuals obtained at locations with high pollution was very low compared to those in non-polluted zones.

  20. Novel Applications of Radionuclide Imaging in Peripheral Vascular Disease

    PubMed Central

    Stacy, Mitchel R.; Sinusas, Albert J.

    2015-01-01

    Peripheral vascular disease (PVD) is a progressive atherosclerotic disease that leads to stenosis or occlusion of blood vessels supplying the lower extremities. Current diagnostic imaging techniques commonly focus on evaluation of anatomy or blood flow at the macrovascular level and do not permit assessment of the underlying pathophysiology associated with disease progression or treatment response. Molecular imaging with radionuclide-based approaches, such as PET and SPECT, can offer novel insight into PVD by providing non-invasive assessment of biological processes such as angiogenesis and atherosclerosis. This review discusses emerging radionuclide-based imaging approaches that have potential clinical applications in the evaluation of PVD progression and treatment. PMID:26590787

  1. Sediment transport and Hg recovery in Lavaca Bay, as evaluated from radionuclide and Hg distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santschi, P.H.; Allison, M.A.; Asbill, S.

    1999-02-01

    Mercury was released in the late 1960s from a chloralkali facility managed by ALCOA and deposited into sediments of Lavaca Bay, TX. Sediments have recorded this event as a well-defined subsurface concentration maximum. Radionuclide, mercury, X-radiography, and grain size data from sediment cores taken in 1997 at 15 stations in Lavaca bay were used to assess sediment and Hg movements in the bay. Sediment accumulation rates were calculated from bomb fallout nuclide ({sup 137}Cs, {sup 239,240}Pu) peaks in 1963 and from the steady-state delivery of {sup 210}Pb from the atmosphere. Sedimentation rates are highest at near-shore sites near the ALCOAmore » facility and generally decrease away from shore. Sedimentation rates in some areas are likely influenced by anthropogenic activities such as dredging. Particle reworking, as assessed from {sup 7}Be measurements, is generally restricted to the upper 2--7 cm of sediments. Numerical simulations of Hg profiles using measured sedimentation and mixing parameters indicate that at most sites high remnant mercury concentrations at 15--60 cm depth cannot supply substantial amounts of Hg to surface sediments. Assuming no future Hg supplies, Hg concentrations in surface sediments are predicted to decrease exponentially with a recovery half-time of 4 {+-} 2 years.« less

  2. Analysis of Radionuclide Releases from the Fukushima Dai-ichi Nuclear Power Plant Accident Part II

    NASA Astrophysics Data System (ADS)

    Achim, Pascal; Monfort, Marguerite; Le Petit, Gilbert; Gross, Philippe; Douysset, Guilhem; Taffary, Thomas; Blanchard, Xavier; Moulin, Christophe

    2014-03-01

    The present part of the publication (Part II) deals with long range dispersion of radionuclides emitted into the atmosphere during the Fukushima Dai-ichi accident that occurred after the March 11, 2011 tsunami. The first part (Part I) is dedicated to the accident features relying on radionuclide detections performed by monitoring stations of the Comprehensive Nuclear Test Ban Treaty Organization network. In this study, the emissions of the three fission products Cs-137, I-131 and Xe-133 are investigated. Regarding Xe-133, the total release is estimated to be of the order of 6 × 1018 Bq emitted during the explosions of units 1, 2 and 3. The total source term estimated gives a fraction of core inventory of about 8 × 1018 Bq at the time of reactors shutdown. This result suggests that at least 80 % of the core inventory has been released into the atmosphere and indicates a broad meltdown of reactor cores. Total atmospheric releases of Cs-137 and I-131 aerosols are estimated to be 1016 and 1017 Bq, respectively. By neglecting gas/particulate conversion phenomena, the total release of I-131 (gas + aerosol) could be estimated to be 4 × 1017 Bq. Atmospheric transport simulations suggest that the main air emissions have occurred during the events of March 14, 2011 (UTC) and that no major release occurred after March 23. The radioactivity emitted into the atmosphere could represent 10 % of the Chernobyl accident releases for I-131 and Cs-137.

  3. National low-level waste management program radionuclide report series, Volume 15: Uranium-238

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.P.

    1995-09-01

    This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.

  4. ICRP Publication 137: Occupational Intakes of Radionuclides: Part 3.

    PubMed

    Paquet, F; Bailey, M R; Leggett, R W; Lipsztein, J; Marsh, J; Fell, T P; Smith, T; Nosske, D; Eckerman, K F; Berkovski, V; Blanchardon, E; Gregoratto, D; Harrison, J D

    2017-12-01

    The 2007 Recommendations of the International Commission on Radiological Protection (ICRP, 2007) introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series (ICRP, 1979, 1980, 1981, 1988) and Publication 68 (ICRP, 1994). In addition, new data are now available that support an update of the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1988a, 1997b) for the design of monitoring programmes and retrospective assessment of occupational internal doses. Provision of new biokinetic models, dose coefficients, monitoring methods, and bioassay data was performed by Committee 2, Task Group 21 on Internal Dosimetry, and Task Group 4 on Dose Calculations. A new series, the Occupational Intakes of Radionuclides (OIR) series, will replace the Publication 30 series and Publications 54, 68, and 78. OIR Part 1 has been issued (ICRP, 2015), and describes the assessment of internal occupational exposure to radionuclides, biokinetic and dosimetric models, methods of individual and workplace monitoring, and general aspects of retrospective dose assessment. OIR Part 2 (ICRP, 2016), this current publication and upcoming publications in the OIR series (Parts 4 and 5) provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; the parameter values of the reference biokinetic model; and data on monitoring techniques for the radioisotopes encountered most commonly in workplaces. Reviews of data on inhalation, ingestion, and systemic biokinetics are also provided for most of the elements. Dosimetric data provided in the printed publications of the OIR series include tables of committed effective dose per intake (Sv Bq−1 intake) for inhalation and ingestion, tables of committed effective dose

  5. ICRP Publication 134: Occupational Intakes of Radionuclides: Part 2.

    PubMed

    Paquet, F; Bailey, M R; Leggett, R W; Lipsztein, J; Fell, T P; Smith, T; Nosske, D; Eckerman, K F; Berkovski, V; Ansoborlo, E; Giussani, A; Bolch, W E; Harrison, J D

    2016-12-01

    The 2007 Recommendations of the International Commission on Radiological Protection (ICRP, 2007) introduced changes that affect the calculation of effective dose, and implied a revision of the dose coefficients for internal exposure, published previously in the Publication 30 series (ICRP, 1979, 1980, 1981, 1988b) and Publication 68 (ICRP, 1994b). In addition, new data are available that support an update of the radionuclide-specific information given in Publications 54 and 78 (ICRP, 1988a, 1997b) for the design of monitoring programmes and retrospective assessment of occupational internal doses. Provision of new biokinetic models, dose coefficients, monitoring methods, and bioassay data was performed by Committee 2, Task Group 21 on Internal Dosimetry, and Task Group 4 on Dose Calculations. A new series, the Occupational Intakes of Radionuclides (OIR) series, will replace the Publication 30 series and Publications 54, 68, and 78. Part 1 of the OIR series has been issued (ICRP, 2015), and describes the assessment of internal occupational exposure to radionuclides, biokinetic and dosimetric models, methods of individual and workplace monitoring, and general aspects of retrospective dose assessment. The following publications in the OIR series (Parts 2–5) will provide data on individual elements and their radioisotopes, including information on chemical forms encountered in the workplace; a list of principal radioisotopes and their physical half-lives and decay modes; the parameter values of the reference biokinetic model; and data on monitoring techniques for the radioisotopes encountered most commonly in workplaces. Reviews of data on inhalation, ingestion, and systemic biokinetics are also provided for most of the elements. Dosimetric data provided in the printed publications of the OIR series include tables of committed effective dose per intake (Sv per Bq intake) for inhalation and ingestion, tables of committed effective dose per content (Sv per Bq

  6. Modeling of transport phenomena in concrete porous media.

    PubMed

    Plecas, Ilija

    2014-02-01

    Two fundamental concerns must be addressed when attempting to isolate low-level waste in a disposal facility on land. The first concern is isolating the waste from water, or hydrologic isolation. The second is preventing movement of the radionuclides out of the disposal facility, or radionuclide migration. Particularly, we have investigated here the latter modified scenario. To assess the safety for disposal of radioactive waste-concrete composition, the leakage of 60Co from a waste composite into a surrounding fluid has been studied. Leakage tests were carried out by the original method, developed at the Vinča Institute. Transport phenomena involved in the leaching of a radioactive material from a cement composite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source: an equation for diffusion coupled to a first-order equation, and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-y mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center.

  7. Tonopah Test Range Air Monitoring: CY2016 Meteorological, Radiological, and Wind Transported Particulate Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, Jenny; Nikolich, George; Shadel, Craig

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective ofmore » the monitoring effort is to determine if wind blowing across the Clean Slate sites is transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites.« less

  8. Determination of the Distribution and Inventory of Radionuclides within a Savannah River Site Waterway - 13202

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hiergesell, R.A.; Phifer, M.A.

    2013-07-01

    An investigation was conducted to evaluate the radionuclide inventory within the Lower Three Runs (LTR) Integrator Operable Unit (IOU) at the U.S. Department of Energy's (DOE's) Savannah River Site (SRS). The scope of this effort included the analysis of previously existing sampling and analysis data as well as additional stream bed and flood plain sampling and analysis data acquired to delineate horizontal and vertical distributions of the radionuclide as part of the ongoing SRS environmental restoration program, and specifically for the LTR IOU program. While cesium-137 (Cs-137) is the most significant and abundant radionuclide associated with the LTR IOU itmore » is not the only radionuclide, hence the scope included evaluating all radionuclides present and includes an evaluation of inventory uncertainty for use in sensitivity and uncertainty analyses. The scope involved evaluation of the radionuclide inventory in the P-Reactor and R-Reactor cooling water effluent canal systems, PAR Pond (including Pond C) and the flood plain and stream sediment sections of LTR between the PAR Pond Dam and the Savannah River. The approach taken was to examine all of the available Sediment and Sediment/Soil analysis data available along the P- and R-Reactor cooling water re-circulation canal system, the ponds situated along those canal reaches and along the length of LTR below Par Pond dam. By breaking the IOU into a series of sub-components and sub-sections, the mass of contaminated material was estimated and a representative central concentration of each radionuclide was computed for each compartment. The radionuclide inventory associated with each sub-compartment was then aggregated to determine the total radionuclide inventory that represented the full LTR IOU. Of special interest was the inventory of Cs-137 due to its role in contributing to the potential dose to an offsite member of the public. The overall LTR IOU inventory of Cs-137 was determined to be 2.87 E+02 GBq

  9. The air transportation/energy system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The changing pattern of transportation is discussed, and the energy intensiveness of various modes of transportation is also analyzed. Sociopsychological data affecting why people travel by air are presented, along with governmental regulation and air transportation economics. The aviation user tax structure is shown in tabular form.

  10. Aircraft borne combined measurements of the Fukushima radionuclide Xe-133 and fossil fuel combustion generated pollutants in the TIL - Implications for Cyclone induced lift and TIL physical-chemical processes

    NASA Astrophysics Data System (ADS)

    Arnold, Frank; Schlager, Hans; Simgen, Hardy; Aufmhoff, Heinfried; Baumann, Robert; Lindemann, Sigfried; Rauch, Ludwig; Kaether, Frank; Pirjolla, Liisa; Schumann, Ulrich

    2013-04-01

    The radionuclide Xe-133, released by the March 2011 nuclear disaster at Fukushima/Daiichi (hereafter FD), represents an ideal tracer for atmospheric transport. We report the, to our best knowledge, only aircraft borne measurements of FD Xe-133 in the Tropopause Inversion Layer (TIL), indicating rapid lift of Xe-133 rich planetary boundary layer air to the TIL. On the same research aircraft (FALCON), we have also conducted on-line measurements of fossil fuel combustion generated pollutant gases (SO2, NOx, HNO3,NOy), which were found to have increased concentrations in the TIL. In addition, we have conducted supporting model simulations of transport, chemical processes, and aerosol processes. Our investigations reveal a potentially important influence of East-Asian cyclone induced pollutants transport to the TIL, particularly influencing aerosol formation in the TIL.

  11. Transport of ARS-labeled hydroxyapatite nanoparticles in saturated granular media is influenced by surface charge variability even in the presence of humic acid

    USDA-ARS?s Scientific Manuscript database

    Hydroxyapatite nanoparticles (nHAP) are increasingly being used to remediate soils and water polluted by metals and radionuclides. The transport and retention of Alizarin red S (ARS)-labeled nHAP in water-saturated granular media were investigated. Experiments were conducted over a range of ionic ...

  12. Radionuclide identification algorithm for organic scintillator-based radiation portal monitor

    NASA Astrophysics Data System (ADS)

    Paff, Marc Gerrit; Di Fulvio, Angela; Clarke, Shaun D.; Pozzi, Sara A.

    2017-03-01

    We have developed an algorithm for on-the-fly radionuclide identification for radiation portal monitors using organic scintillation detectors. The algorithm was demonstrated on experimental data acquired with our pedestrian portal monitor on moving special nuclear material and industrial sources at a purpose-built radiation portal monitor testing facility. The experimental data also included common medical isotopes. The algorithm takes the power spectral density of the cumulative distribution function of the measured pulse height distributions and matches these to reference spectra using a spectral angle mapper. F-score analysis showed that the new algorithm exhibited significant performance improvements over previously implemented radionuclide identification algorithms for organic scintillators. Reliable on-the-fly radionuclide identification would help portal monitor operators more effectively screen out the hundreds of thousands of nuisance alarms they encounter annually due to recent nuclear-medicine patients and cargo containing naturally occurring radioactive material. Portal monitor operators could instead focus on the rare but potentially high impact incidents of nuclear and radiological material smuggling detection for which portal monitors are intended.

  13. Remediation of Deep Vadose Zone Radionuclide and Metal Contamination: Status and Issues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dresel, P. Evan; Truex, Michael J.; Cantrell, Keri

    2008-12-30

    This report documents the results of a PNNL literature review to report on the state of maturity of deep vadose zone remediation technologies for metal contaminants including some radionuclides. Its recommendations feed into decisionmakers need for scientific information and cost-effective in situ remediation technlogies needed under DOE's Environmental Management initiative Enhanced Remediation Methods: Scientific & Technical Basis for In Stu Treatment Systems for Metals and Radionuclides.

  14. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    NASA Astrophysics Data System (ADS)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that

  15. Switch loop flexibility affects substrate transport of the AcrB efflux pump

    DOE PAGES

    Muller, Reinke T.; Travers, Timothy; Cha, Hi-jea; ...

    2017-10-05

    The functionally important switch-loop of the trimeric multidrug transporter AcrB separates the access and deep drug binding pockets in every protomer. This loop, comprising 11 amino acid residues, has been shown to be crucial for substrate transport, as drugs have to travel past the loop to reach the deep binding pocket and from there are transported outside the cell via the connected AcrA and TolC channels. It contains four symmetrically arranged glycine residues suggesting that flexibility is a key feature for pump activity. Upon combinatorial substitution of these glycine residues to proline, functional and structural asymmetry was observed. Proline substitutionsmore » on the PC1 proximal side completely abolished transport and reduced backbone flexibility of the switch loop, which adopted a conformation restricting the pathway towards the deep binding pocket. Here, two phenylalanine residues located adjacent to the substitution sensitive glycine residues play a role in blocking the pathway upon rigidification of the loop, since the removal of the phenyl rings from the rigid loop restores drug transport activity.« less

  16. Switch loop flexibility affects substrate transport of the AcrB efflux pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Reinke T.; Travers, Timothy; Cha, Hi-jea

    The functionally important switch-loop of the trimeric multidrug transporter AcrB separates the access and deep drug binding pockets in every protomer. This loop, comprising 11 amino acid residues, has been shown to be crucial for substrate transport, as drugs have to travel past the loop to reach the deep binding pocket and from there are transported outside the cell via the connected AcrA and TolC channels. It contains four symmetrically arranged glycine residues suggesting that flexibility is a key feature for pump activity. Upon combinatorial substitution of these glycine residues to proline, functional and structural asymmetry was observed. Proline substitutionsmore » on the PC1 proximal side completely abolished transport and reduced backbone flexibility of the switch loop, which adopted a conformation restricting the pathway towards the deep binding pocket. Here, two phenylalanine residues located adjacent to the substitution sensitive glycine residues play a role in blocking the pathway upon rigidification of the loop, since the removal of the phenyl rings from the rigid loop restores drug transport activity.« less

  17. Failure Behavior of Granite Affected by Confinement and Water Pressure and Its Influence on the Seepage Behavior by Laboratory Experiments

    PubMed Central

    Cheng, Cheng; Li, Xiao; Li, Shouding; Zheng, Bo

    2017-01-01

    Failure behavior of granite material is paramount for host rock stability of geological repositories for high-level waste (HLW) disposal. Failure behavior also affects the seepage behavior related to transportation of radionuclide. Few of the published studies gave a consistent analysis on how confinement and water pressure affect the failure behavior, which in turn influences the seepage behavior of the rock during the damage process. Based on a series of laboratory experiments on NRG01 granite samples cored from Alxa area, a candidate area for China’s HLW disposal, this paper presents some detailed observations and analyses for a better understanding on the failure mechanism and seepage behavior of the samples under different confinements and water pressure. The main findings of this study are as follows: (1) Strength reduction properties were found for the granite under water pressure. Besides, the complete axial stress–strain curves show more obvious yielding process in the pre-peak region and a more gradual stress drop in the post-peak region; (2) Shear fracturing pattern is more likely to form in the granite samples with the effect of water pressure, even under much lower confinements, than the predictions from the conventional triaxial compressive results; (3) Four stages of inflow rate curves are divided and the seepage behaviors are found to depend on the failure behavior affected by the confinement and water pressure. PMID:28773157

  18. Failure Behavior of Granite Affected by Confinement and Water Pressure and Its Influence on the Seepage Behavior by Laboratory Experiments.

    PubMed

    Cheng, Cheng; Li, Xiao; Li, Shouding; Zheng, Bo

    2017-07-14

    Failure behavior of granite material is paramount for host rock stability of geological repositories for high-level waste (HLW) disposal. Failure behavior also affects the seepage behavior related to transportation of radionuclide. Few of the published studies gave a consistent analysis on how confinement and water pressure affect the failure behavior, which in turn influences the seepage behavior of the rock during the damage process. Based on a series of laboratory experiments on NRG01 granite samples cored from Alxa area, a candidate area for China's HLW disposal, this paper presents some detailed observations and analyses for a better understanding on the failure mechanism and seepage behavior of the samples under different confinements and water pressure. The main findings of this study are as follows: (1) Strength reduction properties were found for the granite under water pressure. Besides, the complete axial stress-strain curves show more obvious yielding process in the pre-peak region and a more gradual stress drop in the post-peak region; (2) Shear fracturing pattern is more likely to form in the granite samples with the effect of water pressure, even under much lower confinements, than the predictions from the conventional triaxial compressive results; (3) Four stages of inflow rate curves are divided and the seepage behaviors are found to depend on the failure behavior affected by the confinement and water pressure.

  19. Nevada National Security Site Underground Radionuclide Inventory, 1951-1992: Accounting for Radionuclide Decay through September 30, 2012

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Finnegan, David Lawrence; Bowen, Scott Michael; Thompson, Joseph L.

    This report is an update of report LA-13859-MS (Bowen et al., 2001). In that original report, the underground radionuclide inventory at the Nevada National Security Site (NNSS) was decay corrected to September 23, 1992, the date of the last underground nuclear test at the NNSS. In this report, the inventory is updated to account for the decay of radionuclides over two additional decades (1992-2012) and revised tritium, fission product and actinide inventory figures and tables are presented. The maximum contaminant levels for radionuclides were also updated to Safe Drinking Water Act Maximum Contaminant Levels (MCLs) (CFR, 2013). Also, a numbermore » of minor errata found in the original publication were corrected. An inventory of radionuclides produced by 828 underground nuclear tests conducted at the NNSS by the Lawrence Livermore National Laboratory, the Los Alamos National Laboratory, and the Department of the Defense from 1951 to 1992 includes tritium, fission products, actinides, and activation products. The inventory presented in this report provides an estimate of radioactivity remaining underground at the NNSS after nuclear testing. The original test inventory is decayed to September 30, 2012, and predictions of inventory decay over the subsequent 1000 years are presented. For the purposes of summary and publication, the Los Alamos National Laboratory and Lawrence Livermore National Laboratory authors of this report subdivided the inventory into five areas corresponding to the principal geographic test centers at the NNSS. The five areas roughly correspond to Underground Test Area “Corrective Action Units” (CAUs) for remediation of groundwater. In addition, the inventory is further subdivided for the Yucca Flat region by tests where the working point depth is more than 328 feet (100 meters) above the water table and tests that were detonated below that level. Water levels used were those from the U. S. Department of Energy, Nevada Operations Office

  20. Maternal transfer of anthropogenic radionuclides to eggs in a small shark.

    PubMed

    Jeffree, Ross A; Oberhansli, Francois; Teyssie, Jean-Louis; Fowler, Scott W

    2015-09-01

    Maternal transfer of radionuclides to progeny is one of the least known sources of contamination in marine biota and more information is needed to assess its radiological significance. A radiotracer study on spotted dogfish, Scyliorhinus canicula, evaluated the hypothesis that four anthropogenic radionuclides (Cobalt-60, Zinc-65, Americium-241 and Cesium-134) could be maternally transferred to eggs and each of their major components during maternal ingestion of radiolabelled food. The linear regressions between cumulative radioactivity that had been maternally ingested and the level in subsequently laid eggs were used to derive maternal-to-egg transfer factors (mTFs). These maternal transfers varied over an order of magnitude and were ranked (134)Cs > (65)Zn > (60)Co > (241)Am. This ranking was the same as their relative assimilation efficiencies in radiolabelled food consumed by adults. Among these four radionuclides the potential radiological exposure of embryos is accentuated for (65)Zn and (134)Cs due to their predominant transfer to egg yolk where they are available for subsequent absorption by the embryo as it develops prior to hatching from the egg capsule. Thus, for cartilaginous fish like shark, the potential radioecological consequences of a pulsed release of these radionuclides into the marine environment may extend beyond the temporal duration of the release. Copyright © 2015 Elsevier Ltd. All rights reserved.