Sample records for affect regional sea

  1. Attributing extreme precipitation in the Black Sea region to sea surface warming

    NASA Astrophysics Data System (ADS)

    Meredith, Edmund; Semenov, Vladimir; Maraun, Douglas; Park, Wonsun; Chernokulsky, Alexander

    2016-04-01

    Higher sea surface temperatures (SSTs) warm and moisten the overlying atmosphere, increasing the low-level atmospheric instability, the moisture available to precipitating systems and, hence, the potential for intense convective systems. Both the Mediterranean and Black Sea regions have seen a steady increase in summertime SSTs since the early 1980s, by over 2 K in places. This raises the question of how this SST increase has affected convective precipitation extremes in the region, and through which mechanisms any effects are manifested. In particular, the Black Sea town of Krymsk suffered an unprecedented precipitation extreme in July 2012, which may have been influenced by Black Sea warming, causing over 170 deaths. To address this question, we adopt two distinct modelling approaches to event attribution and compare their relative merits. In the first, we use the traditional probabilistic event attribution approach involving global climate model ensembles representative of the present and a counterfactual past climate where regional SSTs have not increased. In the second, we use the conditional event attribution approach, taking the 2012 Krymsk precipitation extreme as a showcase example. Under the second approach, we carry out ensemble sensitivity experiments of the Krymsk event at convection-permitting resolution with the WRF regional model, and test the sensitivity of the event to a range of SST forcings. Both experiments show the crucial role of recent Black Sea warming in amplifying the 2012 Krymsk precipitation extreme. In the conditional event attribution approach, though, the explicit simulation of convective processes provides detailed insight into the physical mechanisms behind the extremeness of the event, revealing the dominant role of dynamical (i.e. static stability and vertical motions) over thermodynamical (i.e. increased atmospheric moisture) changes. Additionally, the wide range of SST states tested in the regional setup, which would be

  2. Improving sea level simulation in Mediterranean regional climate models

    NASA Astrophysics Data System (ADS)

    Adloff, Fanny; Jordà, Gabriel; Somot, Samuel; Sevault, Florence; Arsouze, Thomas; Meyssignac, Benoit; Li, Laurent; Planton, Serge

    2017-08-01

    For now, the question about future sea level change in the Mediterranean remains a challenge. Previous climate modelling attempts to estimate future sea level change in the Mediterranean did not meet a consensus. The low resolution of CMIP-type models prevents an accurate representation of important small scales processes acting over the Mediterranean region. For this reason among others, the use of high resolution regional ocean modelling has been recommended in literature to address the question of ongoing and future Mediterranean sea level change in response to climate change or greenhouse gases emissions. Also, it has been shown that east Atlantic sea level variability is the dominant driver of the Mediterranean variability at interannual and interdecadal scales. However, up to now, long-term regional simulations of the Mediterranean Sea do not integrate the full sea level information from the Atlantic, which is a substantial shortcoming when analysing Mediterranean sea level response. In the present study we analyse different approaches followed by state-of-the-art regional climate models to simulate Mediterranean sea level variability. Additionally we present a new simulation which incorporates improved information of Atlantic sea level forcing at the lateral boundary. We evaluate the skills of the different simulations in the frame of long-term hindcast simulations spanning from 1980 to 2012 analysing sea level variability from seasonal to multidecadal scales. Results from the new simulation show a substantial improvement in the modelled Mediterranean sea level signal. This confirms that Mediterranean mean sea level is strongly influenced by the Atlantic conditions, and thus suggests that the quality of the information in the lateral boundary conditions (LBCs) is crucial for the good modelling of Mediterranean sea level. We also found that the regional differences inside the basin, that are induced by circulation changes, are model-dependent and thus not

  3. Atmospheric teleconnections between the Arctic and the Baltic Sea regions

    NASA Astrophysics Data System (ADS)

    Jakobson, L.; Jakobson, E.

    2017-12-01

    The observed enhanced warming of the Arctic, referred to as the AA, is expected to be related to further changes that impact mid-latitudes and the rest of the world. Our aim is to clarify how the climatic parameters in the Baltic Sea and Arctic regions are associated. Knowledge of such connections helps to define regions in the Arctic that could be with higher extent associated with the Baltic Sea region climate change. We used monthly mean reanalysis data from NCEP-CFSR and ERA-Interim. The strongest teleconnections between the same parameter (temperature, SLP, specific humidity, wind speed) at the Baltic Sea region and the Arctic are found in winter, but they are clearly affected by the Arctic Oscillation (AO) index. After removal of the AO index variability, correlations in winter were everywhere below ±0.5, while in other seasons there remained regions with strong (|R|>0.5, p<0.002) correlations. Strong correlations are also present between different climate variables at the Baltic Sea region and different regions of the Arctic. Temperature from 1000 to 500 hPa level at the Baltic Sea region have a strong negative correlation with the Greenland sector (the region between 20 - 80W and 55 - 80N) during all seasons except summer. The positive temperature anomaly of mild winter at the Greenland sector shifts towards east during the next seasons, reaching to Scandinavia/Baltic Sea region in summer. The Greenland sector is the region which gives the most significant correlations with the climatic parameters (temperature, wind speed, specific humidity, SLP) of the Baltic Sea region. These relationships can be explained by the AO index variability only in winter. In other seasons there has to be other influencing factors. The results of this study are valuable for selecting regions in the Arctic that have statistically the largest effect on climate in the Baltic Sea region.

  4. North-western Mediterranean sea-breeze circulation in a regional climate system model

    NASA Astrophysics Data System (ADS)

    Drobinski, Philippe; Bastin, Sophie; Arsouze, Thomas; Béranger, Karine; Flaounas, Emmanouil; Stéfanon, Marc

    2017-04-01

    In the Mediterranean basin, moisture transport can occur over large distance from remote regions by the synoptic circulation or more locally by sea breezes, driven by land-sea thermal contrast. Sea breezes play an important role in inland transport of moisture especially between late spring and early fall. In order to explicitly represent the two-way interactions at the atmosphere-ocean interface in the Mediterranean region and quantify the role of air-sea feedbacks on regional meteorology and climate, simulations at 20 km resolution performed with WRF regional climate model (RCM) and MORCE atmosphere-ocean regional climate model (AORCM) coupling WRF and NEMO-MED12 in the frame of HyMeX/MED-CORDEX are compared. One result of this study is that these simulations reproduce remarkably well the intensity, direction and inland penetration of the sea breeze and even the existence of the shallow sea breeze despite the overestimate of temperature over land in both simulations. The coupled simulation provides a more realistic representation of the evolution of the SST field at fine scale than the atmosphere-only one. Temperature and moisture anomalies are created in direct response to the SST anomaly and are advected by the sea breeze over land. However, the SST anomalies are not of sufficient magnitude to affect the large-scale sea-breeze circulation. The temperature anomalies are quickly damped by strong surface heating over land, whereas the water vapor mixing ratio anomalies are transported further inland. The inland limit of significance is imposed by the vertical dilution in a deeper continental boundary-layer.

  5. Estimating shipping emissions in the region of the Sea of Marmara, Turkey.

    PubMed

    Deniz, Cengiz; Durmuşoğlu, Yalçin

    2008-02-01

    Ship emissions are significantly increasing globally and have remarkable impact on air quality on sea and land. These emissions contribute serious adverse health and environmental effects. Territorial waters, inland seas and ports are the regions most affected by ship emissions. As an inland sea the Sea of Marmara is an area that has too much ship traffic. Since the region of the Marmara is highly urbanized, emissions from ships affect human health and the overall environment. In this paper exhaust gas emissions from ships in the Sea of Marmara and the Turkish Straits are calculated by utilizing the data acquired in 2003. Main engine types, fuel types, operations types, navigation times and speeds of vessels are taken into consideration in the study. Total emissions from ships in the study area were estimated as 5,451,224 t y(-1) for CO(2), 111,039 t y(-1) for NO(x), 87,168 t y(-1) for SO(2), 20,281 t y(-1) for CO, 5801 t y(-1) for VOC, 4762 t y(-1) for PM. The shipping emissions in the region are equivalent to 11% of NO(x) 0.1% of CO and 0.12% of PM of the corresponding total emissions in Turkey. The shipping emissions in the area are 46% of NO(x), 25% of PM and 1.5% of CO of road traffic emissions in Turkey data between which and correspond to a higher level than aircraft emissions and rail emissions in Turkey.

  6. How Does Climate Change Affect the Bering Sea Ecosystem?

    NASA Astrophysics Data System (ADS)

    Sigler, Michael F.; Harvey, H. Rodger; Ashjian, Carin J.; Lomas, Michael W.; Napp, Jeffrey M.; Stabeno, Phyllis J.; Van Pelt, Thomas I.

    2010-11-01

    The Bering Sea is one of the most productive marine ecosystems in the world, sustaining nearly half of U.S. annual commercial fish catches and providing food and cultural value to thousands of coastal and island residents. Fish and crab are abundant in the Bering Sea; whales, seals, and seabirds migrate there every year. In winter, the topography, latitude, atmosphere, and ocean circulation combine to produce a sea ice advance in the Bering Sea unmatched elsewhere in the Northern Hemisphere, and in spring the retreating ice; longer daylight hours; and nutrient-rich, deep-ocean waters forced up onto the broad continental shelf result in intense marine productivity (Figure 1). This seasonal ice cover is a major driver of Bering Sea ecology, making this ecosystem particularly sensitive to changes in climate. Predicted changes in ice cover in the coming decades have intensified concern about the future of this economically and culturally important region. In response, the North Pacific Research Board (NPRB) and the U.S. National Science Foundation (NSF) entered into a partnership in 2007 to support the Bering Sea Project, a comprehensive $52 million investigation to understand how climate change is affecting the Bering Sea ecosystem, ranging from lower trophic levels (e.g., plankton) to fish, seabirds, marine mammals, and, ultimately, humans. The project integrates two research programs, the NSF Bering Ecosystem Study (BEST) and the NPRB Bering Sea Integrated Ecosystem Research Program (BSIERP), with substantial in-kind contributions from the U.S. National Oceanic and Atmospheric Administration (NOAA) and the U.S. Fish and Wildlife Service.

  7. How Changing Human Lifestyles are Shaping Europe's Regional Seas

    NASA Astrophysics Data System (ADS)

    Mee, L. D.; Lowe, C. D.; Langmead, O.; McQuatters-Gollop, A.; Attrill, M.; Cooper, P.; Gilbert, A.; Knudsen, S.; Garnacho, E.

    2007-05-01

    European society is experiencing unprecedented changes triggered by expansion of the European Union, the fall of Communism, economic growth and the onset of globalisation. Europe's regional seas, the Baltic, Black Sea, Mediterranean and North-East Atlantic (including the North Sea), provide key goods and services to the human population but have suffered from severe degradation in past decades. Their integrity as coupled social and ecological systems depends on how humanity will anticipate potential problems and deal with its ecological footprint in the future. We report the outcome of an EU-funded 15-country, 28 institution project entitled European Lifestyles and Marine Ecosystems (ELME). Our studies were designed to inform new EU policy and legislation that incorporates Ecosystem-Based Management. ELME has modelled the key relationships between economic and social drivers (D), environmental pressures (P) and changes in the state of the environment (S) in Europe's regional seas. We examined four key issues in each sea: habitat change, eutrophication, chemical pollution and fisheries. We developed conceptual models for each regional sea and employed a novel stochastic modelling technique to examine the interrelationship between key components of the conceptual models. We used the models to examine 2-3 decade projections of current trends in D, P and S and how a number of alternative development scenarios might modify these trends. These simulations demonstrate the vulnerability of Europe's seas to human pressure. As affluence increases in countries acceding to the EU, so does the demand for marine goods and services. There are `winners' and `losers' amongst marine species; the winners are often species that are opportunistic invaders or those with low economic value. In the case of eutrophication, semi-enclosed seas such as the Baltic or Black Sea are already affected by the `legacy of the past'; nutrients that have accumulated in soils, ground waters and

  8. Atmospheric forcing of sea ice anomalies in the Ross Sea Polynya region

    NASA Astrophysics Data System (ADS)

    Dale, Ethan; McDonald, Adrian; Rack, Wolfgang

    2016-04-01

    Despite warming trends in global temperatures, sea ice extent in the southern hemisphere has shown an increasing trend over recent decades. Wind-driven sea ice export from coastal polynyas is an important source of sea ice production. Areas of major polynyas in the Ross Sea, the region with largest increase in sea ice extent, have been suggested to produce the vast amount of the sea ice in the region. We investigate the impacts of strong wind events on polynyas and the subsequent sea ice production. We utilize Bootstrap sea ice concentration (SIC) measurements derived from satellite based, Special Sensor Microwave Imager (SSM/I) brightness temperature images. These are compared with surface wind measurements made by automatic weather stations of the University of Wisconsin-Madison Antarctic Meteorology Program. Our analysis focusses on the winter period defined as 1st April to 1st November in this study. Wind data was used to classify each day into characteristic regimes based on the change of wind speed. For each regime, a composite of SIC anomaly was formed for the Ross Sea region. We found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya area (RSP). Conversely we found negative SIC anomalies in this area during persistent strong winds. By analyzing sea ice motion vectors derived from SSM/I brightness temperatures, we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events. These anomalies persist for several days after the strong wing event. Strong, negative correlations are found between SIC within the RSP and wind speed indicating that strong winds cause significant advection of sea ice in the RSP. This rapid decrease in SIC is followed by a more gradual recovery in SIC. This increase occurs on a time scale greater than the average persistence of strong wind events and the resulting Sea ice motion anomalies, highlighting the production

  9. Quantifying and Projecting Relative Sea-Level Rise At The Regional Scale: The Bangladesh Sea-Level Project (BanD-AID)

    NASA Astrophysics Data System (ADS)

    Shum, C. K.; Kuo, C. Y.; Guo, J.; Shang, K.; Tseng, K. H.; Wan, J.; Calmant, S.; Ballu, V.; Valty, P.; Kusche, J.; Hossain, F.; Khan, Z. H.; Rietbroek, R.; Uebbing, B.

    2014-12-01

    The potential for accelerated sea-level rise under anthropogenic warming is a significant societal problem, in particular in world's coastal deltaic regions where about half of the world's population resides. Quantifying geophysical sources of sea-level rise with the goal of improved projection at local scales remains a complex and challenging interdisciplinary research problem. These processes include ice-sheet/glacier ablations, steric sea-level, solid Earth uplift or subsidence due to GIA, tectonics, sediment loading or anthropogenic causes, hydrologic imbalance, and human processes including water retention in reservoirs and aquifer extraction. The 2013 IPCC AR5 concluded that the observed and explained geophysical causes of global geocentric sea-level rise, 1993-2010, is closer towards closure. However, the discrepancy reveals that circa 1.3→37.5% of the observed sea-level rise remains unexplained. This relatively large discrepancy is primarily attributable to the wide range of estimates of respective contributions of Greenland and Antarctic ice-sheets and mountain/peripheral glaciers to sea-level rise. Understanding and quantifying the natural and anthropogenic processes governing solid Earth (land, islands and sea-floor) uplift or subsidence at the regional and local scales remain elusive to enable addressing coastal vulnerability due to relative sea-level rise hazards, such as the Bangladesh Delta. This study focuses on addressing coastal vulnerability of Bangladesh, a Belmont Forum/IGFA project, BanD-AID (http://Belmont-SeaLevel.org). Sea-level rise, along with tectonic, sediment load and groundwater extraction induced land uplift/subsidence, have exacerbated Bangladesh's coastal vulnerability, affecting 150 million people in one of the world's most densely populated regions. Here we present preliminary results using space geodetic observations, including satellite radar and laser altimetry, GRACE gravity, tide gauge, hydrographic, and GPS/InSAR observed

  10. Two centuries of extreme events over the Baltic Sea and North Sea regions

    NASA Astrophysics Data System (ADS)

    Stendel, Martin; den Besselaar Else, van; Abdel, Hannachi; Jaak, Jaagus; Elizabeth, Kent; Christiana, Lefebvre; Gudrun, Rosenhagen; Anna, Rutgersson; Frederik, Schenk; der Schrier Gerard, van; Tim, Woolings

    2017-04-01

    Two centuries of extreme events over the Baltic Sea and North Sea regions In the framework of the BACC 2 (for the Baltic Sea) and NOSCCA projects (for the North Sea region), studies of past and present variability and changes in atmospheric variables within the North Sea region over the instrumental period (roughly the past 200 years) have been investigated. Findings on trends in temperature and precipitation have already been presented. Here we focus on data homogeneity issues and examine how reliable reanalyses are in this context. Unlike most other regions in the world, there is a wealth of old observations available for the Baltic and North Sea regions, most of it in handwritten form in meteorological journals and other publications. These datasets need to be carefully digitised and homogenized. For this, a thorough quality control must be applied; otherwise the digitised datasets may prove useless or even counterproductive. We present evidence that this step cannot be conducted without human interference and thus cannot be fully automated. Furthermore, inhomogeneities due to e.g. instrumentation and station relocations need to be addressed. A wealth of reanalysis products is available, which can help detect such inhomogeneities in observed time series, but at the same time are prone to biases and/or spurious trends themselves e.g. introduced by changes in the availability and quality of the underlying assimilated data. It therefore in general remains unclear in how far we can simulate the pre-satellite era with respect to homogeneity with reanalyses based only on parts of the observing system. Extreme events and changes in extreme situations are more important and of greater (societal) significance than changes in mean climate. However, changes in extreme weather events are difficult to assess not only because they are, per definition, rare events, but also due to the homogeneity issues outlined above. Taking these into account, we present evidence for changes

  11. Upper Limit for Regional Sea Level Projections

    NASA Astrophysics Data System (ADS)

    Jevrejeva, Svetlana; Jackson, Luke; Riva, Riccardo; Grinsted, Aslak; Moore, John

    2016-04-01

    With more than 150 million people living within 1 m of high tide future sea level rise is one of the most damaging aspects of warming climate. The latest Intergovernmental Panel on Climate Change report (AR5 IPCC) noted that a 0.5 m rise in mean sea level will result in a dramatic increase the frequency of high water extremes - by an order of magnitude, or more in some regions. Thus the flood threat to the rapidly growing urban populations and associated infrastructure in coastal areas are major concerns for society. Hence, impact assessment, risk management, adaptation strategy and long-term decision making in coastal areas depend on projections of mean sea level and crucially its low probability, high impact, upper range. With probabilistic approach we produce regional sea level projections taking into account large uncertainties associated with Greenland and Antarctica ice sheets contribution. We calculate the upper limit (as 95%) for regional sea level projections by 2100 with RCP8.5 scenario, suggesting that for the most coastlines upper limit will exceed the global upper limit of 1.8 m.

  12. 15 CFR 918.6 - Duration of Sea Grant Regional Consortium designation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 15 Commerce and Foreign Trade 3 2012-01-01 2012-01-01 false Duration of Sea Grant Regional... REGULATIONS SEA GRANTS § 918.6 Duration of Sea Grant Regional Consortium designation. Designation will be made... consistent with the goals of the Act. Continuation of the Sea Grant Regional Consortium designation is...

  13. 15 CFR 918.6 - Duration of Sea Grant Regional Consortium designation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 15 Commerce and Foreign Trade 3 2010-01-01 2010-01-01 false Duration of Sea Grant Regional... REGULATIONS SEA GRANTS § 918.6 Duration of Sea Grant Regional Consortium designation. Designation will be made... consistent with the goals of the Act. Continuation of the Sea Grant Regional Consortium designation is...

  14. 15 CFR 918.6 - Duration of Sea Grant Regional Consortium designation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 15 Commerce and Foreign Trade 3 2011-01-01 2011-01-01 false Duration of Sea Grant Regional... REGULATIONS SEA GRANTS § 918.6 Duration of Sea Grant Regional Consortium designation. Designation will be made... consistent with the goals of the Act. Continuation of the Sea Grant Regional Consortium designation is...

  15. 15 CFR 918.6 - Duration of Sea Grant Regional Consortium designation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 15 Commerce and Foreign Trade 3 2013-01-01 2013-01-01 false Duration of Sea Grant Regional... REGULATIONS SEA GRANTS § 918.6 Duration of Sea Grant Regional Consortium designation. Designation will be made... consistent with the goals of the Act. Continuation of the Sea Grant Regional Consortium designation is...

  16. 15 CFR 918.6 - Duration of Sea Grant Regional Consortium designation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 15 Commerce and Foreign Trade 3 2014-01-01 2014-01-01 false Duration of Sea Grant Regional... REGULATIONS SEA GRANTS § 918.6 Duration of Sea Grant Regional Consortium designation. Designation will be made... consistent with the goals of the Act. Continuation of the Sea Grant Regional Consortium designation is...

  17. Climate change impacts on tropical cyclones and extreme sea levels in the South Pacific — A regional assessment

    NASA Astrophysics Data System (ADS)

    Walsh, Kevin J. E.; McInnes, Kathleen L.; McBride, John L.

    2012-01-01

    This paper reviews the current understanding of the effect of climate change on extreme sea levels in the South Pacific region. This region contains many locations that are vulnerable to extreme sea levels in the current climate, and projections indicate that this vulnerability will increase in the future. The recent publication of authoritative statements on the relationship between global warming and global sea level rise, tropical cyclones and the El Niño-Southern Oscillation phenomenon has motivated this review. Confident predictions of global mean sea level rise are modified by regional differences in the steric (density-related) component of sea level rise and changing gravitational interactions between the ocean and the ice sheets which affect the regional distribution of the eustatic (mass-related) contribution to sea level rise. The most extreme sea levels in this region are generated by tropical cyclones. The intensity of the strongest tropical cyclones is likely to increase, but many climate models project a substantial decrease in tropical cyclone numbers in this region, which may lead to an overall decrease in the total number of intense tropical cyclones. This projection, however, needs to be better quantified using improved high-resolution climate model simulations of tropical cyclones. Future changes in ENSO may lead to large regional variations in tropical cyclone incidence and sea level rise, but these impacts are also not well constrained. While storm surges from tropical cyclones give the largest sea level extremes in the parts of this region where they occur, other more frequent high sea level events can arise from swell generated by distant storms. Changes in wave climate are projected for the tropical Pacific due to anthropogenically-forced changes in atmospheric circulation. Future changes in sea level extremes will be caused by a combination of changes in mean sea level, regional sea level trends, tropical cyclone incidence and wave

  18. Skillful regional prediction of Arctic sea ice on seasonal timescales

    NASA Astrophysics Data System (ADS)

    Bushuk, Mitchell; Msadek, Rym; Winton, Michael; Vecchi, Gabriel A.; Gudgel, Rich; Rosati, Anthony; Yang, Xiaosong

    2017-05-01

    Recent Arctic sea ice seasonal prediction efforts and forecast skill assessments have primarily focused on pan-Arctic sea ice extent (SIE). In this work, we move toward stakeholder-relevant spatial scales, investigating the regional forecast skill of Arctic sea ice in a Geophysical Fluid Dynamics Laboratory (GFDL) seasonal prediction system. Using a suite of retrospective initialized forecasts spanning 1981-2015 made with a coupled atmosphere-ocean-sea ice-land model, we show that predictions of detrended regional SIE are skillful at lead times up to 11 months. Regional prediction skill is highly region and target month dependent and generically exceeds the skill of an anomaly persistence forecast. We show for the first time that initializing the ocean subsurface in a seasonal prediction system can yield significant regional skill for winter SIE. Similarly, as suggested by previous work, we find that sea ice thickness initial conditions provide a crucial source of skill for regional summer SIE.

  19. Baltic Earth - Earth System Science for the Baltic Sea Region

    NASA Astrophysics Data System (ADS)

    Meier, Markus; Rutgersson, Anna; Lehmann, Andreas; Reckermann, Marcus

    2014-05-01

    The Baltic Sea region, defined as its river catchment basin, spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It encompasses most of the Scandinavian Peninsula in the west; most of Finland and parts of Russia, Belarus, and the Baltic states in the east; and Poland and small parts of Germany and Denmark in the south. The region represents an old cultural landscape, and the Baltic Sea itself is among the most studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. Preliminary grand challenges and topics for which Working Groups have been installed include: • Salinity dynamics in the Baltic Sea • Land-Sea biogeochemical feedbacks in the Baltic Sea region • Natural hazards and extreme events in the Baltic Sea region • Understanding sea level dynamics in the Baltic Sea • Understanding regional variability of water and energy exchange • Utility of Regional Climate Models • Assessment of Scenario Simulations

  20. Influence of coupling on atmosphere, sea ice and ocean regional models in the Ross Sea sector, Antarctica

    NASA Astrophysics Data System (ADS)

    Jourdain, Nicolas C.; Mathiot, Pierre; Gallée, Hubert; Barnier, Bernard

    2011-04-01

    Air-sea ice-ocean interactions in the Ross Sea sector form dense waters that feed the global thermohaline circulation. In this paper, we develop the new limited-area ocean-sea ice-atmosphere coupled model TANGO to simulate the Ross Sea sector. TANGO is built up by coupling the atmospheric limited-area model MAR to a regional configuration of the ocean-sea ice model NEMO. A method is then developed to identify the mechanisms by which local coupling affects the simulations. TANGO is shown to simulate realistic sea ice properties and atmospheric surface temperatures. These skills are mostly related to the skills of the stand alone atmospheric and oceanic models used to build TANGO. Nonetheless, air temperatures over ocean and winter sea ice thickness are found to be slightly improved in coupled simulations as compared to standard stand alone ones. Local atmosphere ocean feedbacks over the open ocean are found to significantly influence ocean temperature and salinity. In a stand alone ocean configuration, the dry and cold air produces an ocean cooling through sensible and latent heat loss. In a coupled configuration, the atmosphere is in turn moistened and warmed by the ocean; sensible and latent heat loss is therefore reduced as compared to the stand alone simulations. The atmosphere is found to be less sensitive to local feedbacks than the ocean. Effects of local feedbacks are increased in the coastal area because of the presence of sea ice. It is suggested that slow heat conduction within sea ice could amplify the feedbacks. These local feedbacks result in less sea ice production in polynyas in coupled mode, with a subsequent reduction in deep water formation.

  1. Monitoring the Dead Sea Region by Multi-Parameter Stations

    NASA Astrophysics Data System (ADS)

    Mohsen, A.; Weber, M. H.; Kottmeier, C.; Asch, G.

    2015-12-01

    The Dead Sea Region is an exceptional ecosystem whose seismic activity has influenced all facets of the development, from ground water availability to human evolution. Israelis, Palestinians and Jordanians living in the Dead Sea region are exposed to severe earthquake hazard. Repeatedly large earthquakes (e.g. 1927, magnitude 6.0; (Ambraseys, 2009)) shook the whole Dead Sea region proving that earthquake hazard knows no borders and damaging seismic events can strike anytime. Combined with the high vulnerability of cities in the region and with the enormous concentration of historical values this natural hazard results in an extreme earthquake risk. Thus, an integration of earthquake parameters at all scales (size and time) and their combination with data of infrastructure are needed with the specific aim of providing a state-of-the-art seismic hazard assessment for the Dead Sea region as well as a first quantitative estimate of vulnerability and risk. A strong motivation for our research is the lack of reliable multi-parameter ground-based geophysical information on earthquakes in the Dead Sea region. The proposed set up of a number of observatories with on-line data access will enable to derive the present-day seismicity and deformation pattern in the Dead Sea region. The first multi-parameter stations were installed in Jordan, Israel and Palestine for long-time monitoring. All partners will jointly use these locations. All stations will have an open data policy, with the Deutsches GeoForschungsZentrum (GFZ, Potsdam, Germany) providing the hard and software for real-time data transmission via satellite to Germany, where all partners can access the data via standard data protocols.

  2. Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region

    NASA Astrophysics Data System (ADS)

    Dale, Ethan R.; McDonald, Adrian J.; Coggins, Jack H. J.; Rack, Wolfgang

    2017-01-01

    We investigate the impacts of strong wind events on the sea ice concentration within the Ross Sea polynya (RSP), which may have consequences on sea ice formation. Bootstrap sea ice concentration (SIC) measurements derived from satellite SSM/I brightness temperatures are correlated with surface winds and temperatures from Ross Ice Shelf automatic weather stations (AWSs) and weather models (ERA-Interim). Daily data in the austral winter period were used to classify characteristic weather regimes based on the percentiles of wind speed. For each regime a composite of a SIC anomaly was formed for the entire Ross Sea region and we found that persistent weak winds near the edge of the Ross Ice Shelf are generally associated with positive SIC anomalies in the Ross Sea polynya and vice versa. By analyzing sea ice motion vectors derived from the SSM/I brightness temperatures we find significant sea ice motion anomalies throughout the Ross Sea during strong wind events, which persist for several days after a strong wind event has ended. Strong, negative correlations are found between SIC and AWS wind speed within the RSP indicating that strong winds cause significant advection of sea ice in the region. We were able to partially recreate these correlations using colocated, modeled ERA-Interim wind speeds. However, large AWS and model differences are observed in the vicinity of Ross Island, where ERA-Interim underestimates wind speeds by a factor of 1.7 resulting in a significant misrepresentation of RSP processes in this area based on model data. Thus, the cross-correlation functions produced by compositing based on ERA-Interim wind speeds differed significantly from those produced with AWS wind speeds. In general the rapid decrease in SIC during a strong wind event is followed by a more gradual recovery in SIC. The SIC recovery continues over a time period greater than the average persistence of strong wind events and sea ice motion anomalies. This suggests that sea ice

  3. Coupled Regional Ocean-Atmosphere Modeling of the Mount Pinatubo Impact on the Red Sea

    NASA Astrophysics Data System (ADS)

    Stenchikov, G. L.; Osipov, S.

    2017-12-01

    The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic aerosols. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the Red Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic aerosols. The atmospheric circulation effect was significantly stronger than the direct volcanic aerosols effect. We found that the Red Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the Red Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the Red Sea.

  4. Relating Regional Arctic Sea Ice and climate extremes over Europe

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Lohmann, Gerrit; Scholz, Patrick

    2016-04-01

    The potential increase of temperature extremes under climate change is a major threat to society, as temperature extremes have a deep impact on environment, hydrology, agriculture, society and economy. Hence, the analysis of the mechanisms underlying their occurrence, including their relationships with the large-scale atmospheric circulation and sea ice concentration, is of major importance. At the same time, the decline in Arctic sea ice cover during the last 30 years has been widely documented and it is clear that this change is having profound impacts at regional as well as planetary scale. As such, this study aims to investigate the relation between the autumn regional sea ice concentration variability and cold winters in Europe, as identified by the numbers of cold nights (TN10p), cold days (TX10p), ice days (ID) and consecutive frost days (CFD). We analyze the relationship between Arctic sea ice variation in autumn (September-October-November) averaged over eight different Arctic regions (Barents/Kara Seas, Beaufort Sea, Chukchi/Bering Seas, Central Arctic, Greenland Sea, Labrador Sea/Baffin Bay, Laptev/East Siberian Seas and Northern Hemisphere) and variations in atmospheric circulation and climate extreme indices in the following winter season over Europe using composite map analysis. Based on the composite map analysis it is shown that the response of the winter extreme temperatures over Europe is highly correlated/connected to changes in Arctic sea ice variability. However, this signal is not symmetrical for the case of high and low sea ice years. Moreover, the response of temperatures extreme over Europe to sea ice variability over the different Arctic regions differs substantially. The regions which have the strongest impact on the extreme winter temperature over Europe are: Barents/Kara Seas, Beaufort Sea, Central Arctic and the Northern Hemisphere. For the years of high sea ice concentration in the Barents/Kara Seas there is a reduction in the number

  5. Regional Sea Level Changes and Projections over North Pacific Driven by Air-sea interaction and Inter-basin Teleconnections

    NASA Astrophysics Data System (ADS)

    Li, X.; Zhu, J.; Xie, S. P.

    2017-12-01

    After the launch of the TOPEX/Poseidon satellite since 1992, a series of regional sea level changes have been observed. The northwestern Pacific is among the most rapid sea-level-rise regions all over the world. The rising peak occurs around 40°N, with the value reaching 15cm in the past two decades. Moreover, when investigating the projection of global sea level changes using CMIP5 rcp simulations, we found that the northwestern Pacific remains one of the most rapid sea-level-rise regions in the 21st century. To investigate the physical dynamics of present and future sea level changes over the Pacific, we performed a series of numerical simulations with a hierarchy of climate models, including earth system model, ocean model, and atmospheric models, with different complexity. Simulation results indicate that this regional sea level change during the past two decades is mainly caused by the shift of the Kuroshio, which is largely driven by the surface wind anomaly associated with an intensified and northward shifted north Pacific sub-tropical high. Further analysis and simulations show that these changes of sub-tropical high can be primarily attributed to the regional SST forcing from the Pacific Decadal Oscillation, and the remote SST forcings from the tropical Atlantic and the Indian Ocean. In the rcp scenario, on the other hand, two processes are crucial. Firstly, the meridional temperature SST gradient drives a northward wind anomaly across the equator, raising the sea level all over the North Pacific. Secondly, the atmospheric circulation changes around the sub-tropical Pacific further increase the sea level of the North Western Pacific. The coastal region around the Northwest Pacific is the most densely populated region around the world, therefore more attention must be paid to the sea level changes over this region, as suggested by our study.

  6. SeaWinds - Oceans, Land, Polar Regions

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The SeaWinds scatterometer on the QuikScat satellite makes global radar measurements -- day and night, in clear sky and through clouds. The radar data over the oceans provide scientists and weather forecasters with information on surface wind speed and direction. Scientists also use the radar measurements directly to learn about changes in vegetation and ice extent over land and polar regions.

    This false-color image is based entirely on SeaWinds measurements obtained over oceans, land, and polar regions. Over the ocean, colors indicate wind speed with orange as the fastest wind speeds and blue as the slowest. White streamlines indicate the wind direction. The ocean winds in this image were measured by SeaWinds on September 20, 1999. The large storm in the Atlantic off the coast of Florida is Hurricane Gert. Tropical storm Harvey is evident as a high wind region in the Gulf of Mexico, while farther west in the Pacific is tropical storm Hilary. An extensive storm is also present in the South Atlantic Ocean near Antarctica.

    The land image was made from four days of SeaWinds data with the aid of a resolution enhancement algorithm developed by Dr. David Long at Brigham Young University. The lightest green areas correspond to the highest radar backscatter. Note the bright Amazon and Congo rainforests compared to the dark Sahara desert. The Amazon River is visible as a dark line running horizontally though the bright South American rain forest. Cities appear as bright spots on the images, especially in the U.S. and Europe.

    The image of Greenland and the north polar ice cap was generated from data acquired by SeaWinds on a single day. In the polar region portion of the image, white corresponds to the largest radar return, while purple is the lowest. The variations in color in Greenland and the polar ice cap reveal information about the ice and snow conditions present.

    NASA's Earth Science Enterprise is a long-term research and technology program designed to

  7. Petroleum geology of Azov-Black Sea region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lukin, A.; Trofimenko, G.

    1995-08-01

    The main features of tectonics, stratigraphy, paleogeography, lithology, hydrogeology, geothermics and hydrocarbon-bearingness of Azov-Black Sea Region are characterized on the basis of present-day data. Among the most prospective petroliferous complexes one ought to mention: Paleozoic (S - D - C{sub 1}) of Near-Dobrudga foredeep, Triassic - Jurassic of the Black Sea (shelf and continental slope); Lower Cretaceous of the various parts of the Region; Upper Cretaceous of the Black Sea shelf; Paleocene-Eocene of Azov Sea. In addition certain prospects are connected with Precambrian and Paleozoic basements within conjunction zone between Eastern-Europe platform and Scythian plate. Geodynamic evolution of the Regionmore » is considered with determination of tension and compression stages and characteristic of the main regularities of diapirs, mud volcanos, swells, horsts and grabens distribution. There determined the most interesting types of hydrocarbon traps connected with various tectonic forms, river and deltaic channels, bars, conturites, carbonate reefs, etc. Paleogeothermic and paleogeodynamic reconstructions allow to determine the main phases of oil and gas accumulation. The most prospective oil-gas-bearing zones and areas are mapped.« less

  8. Stormy Waters: Technology, Sea Control and Regional Warfare

    DTIC Science & Technology

    1994-06-01

    AD-A283 945 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA "DTIC TI ELECTETHESIS • S Sop()z 994 v G STOwM NATERS "T"CDOLOGY, SEA CNTROL AND REGIONAL... S . FUNDING NUMBERS Stormy Waters: Technology, Sea Control and Regional Warfare 6. AUTHOR( S ) David A. Schnell 7. PERFORMING ORGANIZATION NAME( S ) AND...ADDRESSRES) 8. PERFORMING ORGANIZATION Naval Postgraduate School REPORT NUMBER Monterey, CA 93943-5000 9. SPONSORING/MONITORING AGENCY NAME( S ) AND

  9. Regional Effects of the Mount Pinatubo Eruption on the Middle East and the Red Sea

    NASA Astrophysics Data System (ADS)

    Osipov, Sergey; Stenchikov, Georgiy

    2017-11-01

    The 1991 eruption of Mount Pinatubo had dramatic effects on the regional climate in the Middle East. Though acknowledged, these effects have not been thoroughly studied. To fill this gap and to advance understanding of the mechanisms that control variability in the Middle East's regional climate, we simulated the impact of the 1991 Pinatubo eruption using a regional coupled ocean-atmosphere modeling system set for the Middle East and North Africa (MENA) domain. We used the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) framework, which couples the Weather Research and Forecasting Model (WRF) model with the Regional Oceanic Modeling System (ROMS). We modified the WRF model to account for the radiative effect of volcanic aerosols. Our coupled ocean-atmosphere simulations verified by available observations revealed strong perturbations in the energy balance of the Red Sea, which drove thermal and circulation responses. Our modeling approach allowed us to separate changes in the atmospheric circulation caused by the impact of the volcano from direct regional radiative cooling from volcanic aerosols. The atmospheric circulation effect was significantly stronger than the direct volcanic aerosols effect. We found that the Red Sea response to the Pinatubo eruption was stronger and qualitatively different from that of the global ocean system. Our results suggest that major volcanic eruptions significantly affect the climate in the Middle East and the Red Sea and should be carefully taken into account in assessments of long-term climate variability and warming trends in MENA and the Red Sea.

  10. Features of Malignancy Prevalence among Children in the Aral Sea Region

    PubMed

    Mamyrbayev, Arstan; Dyussembayeva, Nailya; Ibrayeva, Lyazzat; Satenova, Zhanna; Tulyayeva, Anara; Kireyeva, Nurgul; Zholmukhamedova, Dinara; Rybalkina, Dina; Yeleuov, Galymzhan; Yeleuov, Almasbek

    2016-12-01

    Objective: A study of primary cancer morbidity among children and subsequent calculation of average annual incidence were carried out for boys and girls, and young men and women in Kazakhstan. Methods: The investigated population lived in three areas of the Aral Sea region: designated catastrophe (Aral, Kazalt, Shalkar regions), crisis (Zhalagash, Karmakshy, Shiely regions), pre-crisis (Irgiz, Arys, Ulytau regions). Zhanaarka region of Karaganda oblast was applied as a control. Parameters were retrospective analyzed for the 10 years from 2004 to 2013. Result: The results indicate that indices of children cancer morbidity were slightly higher in the Aral Sea region than in the control district, but they were comparable with similar data from studies in other regions. In all areas of the Aral Sea region, except for Ulytau, primary cancer morbidity exceeded the control level by 1.3-2.7 times (4.7%000). Hematological malignancies, including solid tumors - tumors of musculoskeletal system and skin, digestive system, brain and central nervous system predominated. Stress levels in zones of the Aral Sea region were slightly higher in the crisis zone than in the catastrophe zone that can be explained by the phenomenon of wave-like dynamics of disease growth risk. Gender differences in characteristics of malignancy formation were not more pronounced in the studied region. Conclusion: Indices of children cancer are slightly higher in the Aral Sea region than in the control area of Kazakhstan, but they are comparable to results for other regions. Creative Commons Attribution License

  11. Features of Malignancy Prevalence among Children in the Aral Sea Region

    PubMed Central

    Mamyrbayev, Arstan; Dyussembayeva, Nailya; Ibrayeva, Lyazzat; Satenova, Zhanna; Tulyayeva, Anara; Kireyeva, Nurgul; Zholmukhamedova, Dinara; Rybalkina, Dina; Yeleuov, Galymzhan; Yeleuov, Almasbek

    2016-01-01

    Objective: A study of primary cancer morbidity among children and subsequent calculation of average annual incidence were carried out for boys and girls, and young men and women in Kazakhstan. Methods: The investigated population lived in three areas of the Aral Sea region: designated catastrophe (Aral, Kazalt, Shalkar regions), crisis (Zhalagash, Karmakshy, Shiely regions), pre-crisis (Irgiz, Arys, Ulytau regions). Zhanaarka region of Karaganda oblast was applied as a control. Parameters were retrospective analyzed for the 10 years from 2004 to 2013. Result: The results indicate that indices of children cancer morbidity were slightly higher in the Aral Sea region than in the control district, but they were comparable with similar data from studies in other regions. In all areas of the Aral Sea region, except for Ulytau, primary cancer morbidity exceeded the control level by 1.3-2.7 times (4.7%000). Hematological malignancies, including solid tumors - tumors of musculoskeletal system and skin, digestive system, brain and central nervous system predominated. Stress levels in zones of the Aral Sea region were slightly higher in the crisis zone than in the catastrophe zone that can be explained by the phenomenon of wave-like dynamics of disease growth risk. Gender differences in characteristics of malignancy formation were not more pronounced in the studied region. Conclusion: Indices of children cancer are slightly higher in the Aral Sea region than in the control area of Kazakhstan, but they are comparable to results for other regions. PMID:28125864

  12. Can regional climate engineering save the summer Arctic sea ice?

    NASA Astrophysics Data System (ADS)

    Tilmes, S.; Jahn, Alexandra; Kay, Jennifer E.; Holland, Marika; Lamarque, Jean-Francois

    2014-02-01

    Rapid declines in summer Arctic sea ice extent are projected under high-forcing future climate scenarios. Regional Arctic climate engineering has been suggested as an emergency strategy to save the sea ice. Model simulations of idealized regional dimming experiments compared to a business-as-usual greenhouse gas emission simulation demonstrate the importance of both local and remote feedback mechanisms to the surface energy budget in high latitudes. With increasing artificial reduction in incoming shortwave radiation, the positive surface albedo feedback from Arctic sea ice loss is reduced. However, changes in Arctic clouds and the strongly increasing northward heat transport both counteract the direct dimming effects. A 4 times stronger local reduction in solar radiation compared to a global experiment is required to preserve summer Arctic sea ice area. Even with regional Arctic dimming, a reduction in the strength of the oceanic meridional overturning circulation and a shut down of Labrador Sea deep convection are possible.

  13. Air-sea exchange over Black Sea estimated from high resolution regional climate simulations

    NASA Astrophysics Data System (ADS)

    Velea, Liliana; Bojariu, Roxana; Cica, Roxana

    2013-04-01

    Black Sea is an important influencing factor for the climate of bordering countries, showing cyclogenetic activity (Trigo et al, 1999) and influencing Mediterranean cyclones passing over. As for other seas, standard observations of the atmosphere are limited in time and space and available observation-based estimations of air-sea exchange terms present quite large ranges of uncertainty. The reanalysis datasets (e.g. ERA produced by ECMWF) provide promising validation estimates of climatic characteristics against the ones in available climatic data (Schrum et al, 2001), while cannot reproduce some local features due to relatively coarse horizontal resolution. Detailed and realistic information on smaller-scale processes are foreseen to be provided by regional climate models, due to continuous improvements of physical parameterizations and numerical solutions and thus affording simulations at high spatial resolution. The aim of the study is to assess the potential of three regional climate models in reproducing known climatological characteristics of air-sea exchange over Black Sea, as well as to explore the added value of the model compared to the input (reanalysis) data. We employ results of long-term (1961-2000) simulations performed within ENSEMBLE project (http://ensemblesrt3.dmi.dk/) using models ETHZ-CLM, CNRM-ALADIN, METO-HadCM, for which the integration domain covers the whole area of interest. The analysis is performed for the entire basin for several variables entering the heat and water budget terms and available as direct output from the models, at seasonal and annual scale. A comparison with independent data (ERA-INTERIM) and findings from other studies (e.g. Schrum et al, 2001) is also presented. References: Schrum, C., Staneva, J., Stanev, E. and Ozsoy, E., 2001: Air-sea exchange in the Black Sea estimated from atmospheric analysis for the period 1979-1993, J. Marine Systems, 31, 3-19 Trigo, I. F., T. D. Davies, and G. R. Bigg (1999): Objective

  14. Does winter region affect spring arrival time and body mass of king eiders in northern Alaska?

    USGS Publications Warehouse

    Oppel, Steffen; Powell, Abby N.

    2009-01-01

    Events during the non-breeding season may affect the body condition of migratory birds and influence performance during the following breeding season. Migratory birds nesting in the Arctic often rely on endogenous nutrients for reproductive efforts, and are thus potentially subject to such carry-over effects. We tested whether king eider (Somateria spectabilis) arrival time and body mass upon arrival at breeding grounds in northern Alaska were affected by their choice of a winter region in the Bering Sea. We captured birds shortly after arrival on breeding grounds in early June 2002–2006 at two sites in northern Alaska and determined the region in which individuals wintered using satellite telemetry or stable isotope ratios of head feathers. We used generalized linear models to assess whether winter region explained variation in arrival body mass among individuals by accounting for sex, site, annual variation, and the date a bird was captured. We found no support for our hypothesis that either arrival time or arrival body mass of king eiders differed among winter regions. We conclude that wintering in different regions in the Bering Sea is unlikely to have reproductive consequences for king eiders in our study areas.

  15. Cenozoic plate reconstruction of the South China Sea region

    NASA Astrophysics Data System (ADS)

    Lee, Tung-Yi; Lawver, Lawrence A.

    1994-07-01

    Reconstructions of the South China Sea region at 60 Ma, 40 Ma, 30 Ma, 20 Ma, 10 Ma and 5 Ma are presented. We have attempted to place the South China Sea Basin in a regional tectonic framework. The tectonic evolution of the major blocks surrounding the South China Sea were analyzed, as well as the relative motions of the Indian and Australian plates. We have tried to correct the tectonic models available in this region. A 3-D graphics terminal was used to derive rotation poles for the different tectonic blocks and our model was then tested to determine its self-consistency. When the model conflicted with previous interpretations the input data were evaluated for alternative explanations. At least two, and possibly three, stages of extension can be recognized in this region. The earliest one, active in the Late Cretaceous to Eocene, involved NW-SE extension. The second one, active from the Late Eocene to Early Miocene involved north-south extension. The third stage of extension, which probably trended NW-SE, can be dated as post-Oligocene. The first extensional event produced the NE-SW trending proto-South China Sea and a series of sedimentary basins along the South China margin. Following the southeastward extrusion of Indochina, the proto-South China Sea was mostly consumed at the Palawan Trough. Renewed north-south extension in the South China continental margin started the present-day South China Sea spreading in the Oligocene. The southeastward extrusion of Indochina, blocked by Sundaland, resulted in the NW-SE trending opening of the South China Sea Basin in the Early Miocene. Collision of the North Palawan microcontinental block with the West Philippines block stopped the opening of the South China Sea at the end of Early Miocene. Spreading activity switched to the Sulu Sea Basin in the Middle Miocene but collision between the Sulu Ridge and the West Philippines at Mindanao halted the opening of the Sulu Sea at the end of the Middle Miocene. In the Late

  16. Sensitivity analysis of hydrogeological parameters affecting groundwater storage change caused by sea level rise

    NASA Astrophysics Data System (ADS)

    Shin, J.; Kim, K.-H.; Lee, K.-K.

    2012-04-01

    Sea level rise, which is one of the representative phenomena of climate changes caused by global warming, can affect groundwater system. The rising trend of the sea level caused by the global warming is reported to be about 3 mm/year for the most recent 10 year average (IPCC, 2007). The rate of sea level rise around the Korean peninsula is reported to be 2.30±2.22 mm/yr during the 1960-1999 period (Cho, 2002) and 2.16±1.77 mm/yr (Kim et al., 2009) during the 1968-2007 period. Both of these rates are faster than the 1.8±0.5 mm/yr global average for the similar 1961-2003 period (IPCC, 2007). In this study, we analyzed changes in the groundwater environment affected by the sea level rise by using an analytical methodology. We tried to find the most effective parameters of groundwater amount change in order to estimate the change in fresh water amount in coastal groundwater. A hypothetical island model of a cylindrical shape in considered. The groundwater storage change is bi-directional as the sea level rises according to the natural and hydrogeological conditions. Analysis of the computation results shows that topographic slope and hydraulic conductivity are the most sensitive factors. The contributions of the groundwater recharge rate and the thickness of aquifer below sea level are relatively less effective. In the island with steep seashore slopes larger than 1~2 degrees or so, the storage amount of fresh water in a coastal area increases as sea level rises. On the other hand, when sea level drops, the storage amount decreases. This is because the groundwater level also rises with the rising sea level in steep seashores. For relatively flat seashores, where the slope is smaller than around 1-2 degrees, the storage amount of coastal fresh water decreases when the sea level rises because the area flooded by the rising sea water is increased. The volume of aquifer fresh water in this circumstance is greatly reduced in proportion to the flooded area with the sea

  17. Assigning king eiders to wintering regions in the Bering Sea using stable isotopes of feathers and claws

    USGS Publications Warehouse

    Oppel, S.; Powell, A.N.

    2008-01-01

    Identification of wintering regions for birds sampled during the breeding season is crucial to understanding how events outside the breeding season may affect populations. We assigned king eiders captured on breeding grounds in northern Alaska to 3 broad geographic wintering regions in the Bering Sea using stable carbon and nitrogen isotopes obtained from head feathers. Using a discriminant function analysis of feathers obtained from birds tracked with satellite transmitters, we estimated that 88 % of feathers were assigned to the region in which they were grown. We then assigned 84 birds of unknown origin to wintering regions based on their head feather isotope ratios, and tested the utility of claws for geographic assignment. Based on the feather results, we estimated that similar proportions of birds in our study area use each of the 3 wintering regions in the Bering Sea. These results are in close agreement with estimates from satellite telemetry and show the usefulness of stable isotope signatures of feathers in assigning marine birds to geographic regions. The use of claws is currently limited by incomplete understanding of claw growth rates. Data presented here will allow managers of eiders, other marine birds, and marine mammals to assign animals to regions in the Bering Sea based on stable isotope signatures of body tissues. ?? Inter-Research 2008.

  18. Regional characteristics of the effects of the El Niño-Southern Oscillation on the sea level in the China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Liu, Kexiu; Wang, Aimei; Feng, Jianlong; Fan, Wenjing; Liu, Qiulin; Xu, Yao; Zhang, Zengjian

    2018-05-01

    Based on coastal tide level, satellite altimetry, and sea surface temperature (SST) data of offshore areas of China's coast and the equatorial Pacific Ocean, the regional characteristics of the effects of the El Niño-Southern Oscillation (ENSO) on the sea level in the China Sea were investigated. Singular value decomposition results show a significant teleconnection between the sea level in the China Sea and the SST of the tropical Pacific Ocean; the correlation coefficient decreases from south to north. Data from tide gauges along China's coast show that the seasonal sea-level variations are significantly correlated with the ENSO. In addition, China's coast was divided into three regions based on distinctive regional characteristics. Results obtained show that the annual amplitude of sea level was low during El Niño developing years, and especially so during the El Niño year. The ENSO intensity determined the response intensity of the annual amplitude of the sea level. The response region (amplitude) was relatively large for strong ENSO intensities. Significant oscillation periods at a timescale of 4-7 years existed in the sea level of the three regions. The largest amplitude of oscillation was 1.5 cm, which was the fluctuation with the 7-year period in the South China Sea. The largest amplitude of oscillation in the East China Sea was about 1.3 cm. The amplitude of oscillation with the 6-year period in the Bohai Sea and Yellow Sea was the smallest (less than 1 cm).

  19. Potential impacts of climate change on the primary production of regional seas: A comparative analysis of five European seas

    NASA Astrophysics Data System (ADS)

    Holt, Jason; Schrum, Corinna; Cannaby, Heather; Daewel, Ute; Allen, Icarus; Artioli, Yuri; Bopp, Laurent; Butenschon, Momme; Fach, Bettina A.; Harle, James; Pushpadas, Dhanya; Salihoglu, Baris; Wakelin, Sarah

    2016-01-01

    Regional seas are potentially highly vulnerable to climate change, yet are the most directly societally important regions of the marine environment. The combination of widely varying conditions of mixing, forcing, geography (coastline and bathymetry) and exposure to the open-ocean makes these seas subject to a wide range of physical processes that mediates how large scale climate change impacts on these seas' ecosystems. In this paper we explore the response of five regional sea areas to potential future climate change, acting via atmospheric, oceanic and terrestrial vectors. These include the Barents Sea, Black Sea, Baltic Sea, North Sea, Celtic Seas, and are contrasted with a region of the Northeast Atlantic. Our aim is to elucidate the controlling dynamical processes and how these vary between and within these seas. We focus on primary production and consider the potential climatic impacts on: long term changes in elemental budgets, seasonal and mesoscale processes that control phytoplankton's exposure to light and nutrients, and briefly direct temperature response. We draw examples from the MEECE FP7 project and five regional model systems each using a common global Earth System Model as forcing. We consider a common analysis approach, and additional sensitivity experiments. Comparing projections for the end of the 21st century with mean present day conditions, these simulations generally show an increase in seasonal and permanent stratification (where present). However, the first order (low- and mid-latitude) effect in the open ocean projections of increased permanent stratification leading to reduced nutrient levels, and so to reduced primary production, is largely absent, except in the NE Atlantic. Even in the two highly stratified, deep water seas we consider (Black and Baltic Seas) the increase in stratification is not seen as a first order control on primary production. Instead, results show a highly heterogeneous picture of positive and negative change

  20. Is the Climate of Bering Sea Warming and Affecting the Ecosystem?

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Stabeno, Phyllis J.

    2004-08-01

    Observations from the Bering Sea are good indicators of decadal shifts in climate, as the Bering is a transition region between the cold, dry Arctic air mass to the north, and the moist, relatively warm maritime air mass to the south. The Bering Sea is also a transition region between Arctic and sub-Arctic ecosystems; this boundary can be loosely identified with the extent of winter sea-ice cover. Like a similar transition zone in the eastern North Atlantic, the Bering Sea is experiencing a northward biogeographical shift in response to changing temperature and atmospheric forcing. If this shift continues over the next decade, it will have major impacts on commercial and subsistence harvests as Arctic species are displaced by sub-Arctic species. The stakes are enormous, as this rich and diverse ecosystem currently provides 47% of the U.S. fishery production by weight, and is home to 80% of the U.S. sea bird population, 95% of northern fur seals, and major populations of Steller sea lions, walrus, and whales.

  1. On the regional characteristics of past and future sea-level change (Invited)

    NASA Astrophysics Data System (ADS)

    Timmermann, A.; McGregor, S.

    2010-12-01

    Global sea-level rise due to the thermal expansion of the warming oceans and freshwater input from melting glaciers and ice-sheets is threatening to inundate low-lying islands and coast-lines worldwide. At present global mean sea level rises at 3.1 ± 0.7 mm/yr with an accelerating tendency. However, the magnitude of recent decadal sea-level trends varies greatly spatially attaining values of up to 10 mm/yr in some areas of the western tropical Pacific. Identifying the causes of recent regional sea-level trends and understanding the patterns of future projected sea-level change is of crucial importance. Using a wind-forced simplified dynamical ocean model, we show that the regional features of recent decadal and multidecadal sea-level trends in the tropical Indo-Pacific can be attributed to changes in the prevailing wind-regimes. Furthermore it is demonstrated that within an ensemble of ten state-of-the art coupled general circulation models, forced by increasing atmospheric CO2 concentrations over the next century, wind-induced re-distributions of upper-ocean water play a key role in establishing the spatial characteristics of projected regional sea-level rise. Wind-related changes in near- surface mass and heat convergence near the Solomon Islands, Tuvalu, Kiribati, the Cook Islands and French Polynesia oppose, but can not cancel the regional signal of global mean sea-level rise.

  2. The Ross Sea Dipole - temperature, snow accumulation and sea ice variability in the Ross Sea region, Antarctica, over the past 2700 years

    NASA Astrophysics Data System (ADS)

    Bertler, Nancy A. N.; Conway, Howard; Dahl-Jensen, Dorthe; Emanuelsson, Daniel B.; Winstrup, Mai; Vallelonga, Paul T.; Lee, James E.; Brook, Ed J.; Severinghaus, Jeffrey P.; Fudge, Taylor J.; Keller, Elizabeth D.; Baisden, W. Troy; Hindmarsh, Richard C. A.; Neff, Peter D.; Blunier, Thomas; Edwards, Ross; Mayewski, Paul A.; Kipfstuhl, Sepp; Buizert, Christo; Canessa, Silvia; Dadic, Ruzica; Kjær, Helle A.; Kurbatov, Andrei; Zhang, Dongqi; Waddington, Edwin D.; Baccolo, Giovanni; Beers, Thomas; Brightley, Hannah J.; Carter, Lionel; Clemens-Sewall, David; Ciobanu, Viorela G.; Delmonte, Barbara; Eling, Lukas; Ellis, Aja; Ganesh, Shruthi; Golledge, Nicholas R.; Haines, Skylar; Handley, Michael; Hawley, Robert L.; Hogan, Chad M.; Johnson, Katelyn M.; Korotkikh, Elena; Lowry, Daniel P.; Mandeno, Darcy; McKay, Robert M.; Menking, James A.; Naish, Timothy R.; Noerling, Caroline; Ollive, Agathe; Orsi, Anaïs; Proemse, Bernadette C.; Pyne, Alexander R.; Pyne, Rebecca L.; Renwick, James; Scherer, Reed P.; Semper, Stefanie; Simonsen, Marius; Sneed, Sharon B.; Steig, Eric J.; Tuohy, Andrea; Ulayottil Venugopal, Abhijith; Valero-Delgado, Fernando; Venkatesh, Janani; Wang, Feitang; Wang, Shimeng; Winski, Dominic A.; Winton, V. Holly L.; Whiteford, Arran; Xiao, Cunde; Yang, Jiao; Zhang, Xin

    2018-02-01

    High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually dated ice core record from the eastern Ross Sea, named the Roosevelt Island Climate Evolution (RICE) ice core. Comparison of this record with climate reanalysis data for the 1979-2012 interval shows that RICE reliably captures temperature and snow precipitation variability in the region. Trends over the past 2700 years in RICE are shown to be distinct from those in West Antarctica and the western Ross Sea captured by other ice cores. For most of this interval, the eastern Ross Sea was warming (or showing isotopic enrichment for other reasons), with increased snow accumulation and perhaps decreased sea ice concentration. However, West Antarctica cooled and the western Ross Sea showed no significant isotope temperature trend. This pattern here is referred to as the Ross Sea Dipole. Notably, during the Little Ice Age, West Antarctica and the western Ross Sea experienced colder than average temperatures, while the eastern Ross Sea underwent a period of warming or increased isotopic enrichment. From the 17th century onwards, this dipole relationship changed. All three regions show current warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea but increasing in the western Ross Sea. We interpret this pattern as reflecting an increase in sea ice in the eastern Ross Sea with perhaps the establishment of a modern Roosevelt Island polynya as a local moisture source for RICE.

  3. Contributions of internal climate variability to mitigation of projected future regional sea level rise

    NASA Astrophysics Data System (ADS)

    Hu, A.; Bates, S. C.

    2017-12-01

    Observations indicate that the global mean surface temperature is rising, so does the global mean sea level. Sea level rise (SLR) can impose significant impacts on island and coastal communities, especially when SLR is compounded with storm surges. Here, via analyzing results from two sets of ensemble simulations from the Community Earth System Model version 1, we investigate how the potential SLR benefits through mitigating the future emission scenarios from business as usual to a mild-mitigation over the 21st Century would be affected by internal climate variability. Results show that there is almost no SLR benefit in the near term due to the large SLR variability due to the internal ocean dynamics. However, toward the end of the 21st century, the SLR benefit can be as much as a 26±1% reduction of the global mean SLR due to seawater thermal expansion. Regionally, the benefits from this mitigation for both near and long terms are heterogeneous. They vary from just a 11±5% SLR reduction in Melbourne, Australia to a 35±6% reduction in London. The processes contributing to these regional differences are the coupling of the wind-driven ocean circulation with the decadal scale sea surface temperature mode in the Pacific and Southern Oceans, and the changes of the thermohaline circulation and the mid-latitude air-sea coupling in the Atlantic.

  4. Sea spray aerosol fluxes in the Baltic Sea region: Comparison of the WAM model with measurements

    NASA Astrophysics Data System (ADS)

    Markuszewski, Piotr; Kosecki, Szymon; Petelski, Tomasz

    2017-08-01

    Sea spray aerosol flux is an important element of sub-regional climate modeling. The majority of works related to this topic concentrate on open ocean research rather than on smaller, inland seas, e.g., the Baltic Sea. The Baltic Sea is one of the largest brackish inland seas by area, where major inflows of oceanic waters are rare. Furthermore, surface waves in the Baltic Sea have a relatively shorter lifespan in comparison with oceanic waves. Therefore, emission of sea spray aerosol may differ greatly from what is known from oceanic research and should be investigated. This article presents a comparison of sea spray aerosol measurements carried out on-board the s/y Oceania research ship with data calculated in accordance to the WAM model. The measurements were conducted in the southern region of the Baltic Sea during four scientific cruises. The gradient method was used to determinate aerosol fluxes. The fluxes were calculated for particles of diameter in range of 0.5-47 μm. The correlation between wind speed measured and simulated has a good agreement (correlation in range of 0.8). The comparison encompasses three different sea spray generation models. First, function proposed by Massel (2006) which is based only on wave parameters, such as significant wave height and peak frequency. Second, Callaghan (2013) which is based on Gong (2003) model (wind speed relation), and a thorough experimental analysis of whitecaps. Third, Petelski et al. (2014) which is based on in-situ gradient measurements with the function dependent on wind speed. The two first models which based on whitecaps analysis are insufficient. Moreover, the research shows strong relation between aerosol emission and wind speed history.

  5. Pn tomography of South China Sea, Taiwan Island, Philippine archipelago, and adjacent regions

    NASA Astrophysics Data System (ADS)

    Li, Xibing; Song, Xiaodong; Li, Jiangtao

    2017-02-01

    The South China Sea (SCS) and its surrounding areas are geologically highly heterogeneous from the interactions of multiple plates in Southeast Asia (Eurasian plate, Indian-Australian plate, Philippine Sea plate, and Pacific plate). To understand the tectonics at depth, here we combined bulletin and handpicked data to conduct Pn tomography of the region. The results show distinct features that are correlated with the complex geology at surface, suggesting a lithosphere-scale tectonics of the region. Low Pn velocities are found along a belt of the western Pacific transpressional system from the Okinawa Trough and eastern East China Sea, across central and eastern Taiwan orogeny, to the island arcs of the Luzon Strait and the entire Philippine Islands, as well as under the Palawan Island and part of the continental margin north of the Pearl River Basin. High velocities are found under Ryukyu subduction zone, part of the Philippine subduction zone, part of the Eurasian subduction beneath the southwestern Taiwan, and the continent-ocean boundary between the south China and the SCS basin. The Taiwan Strait, the Mainland SE coast, and the main SCS basin sea are relatively uniform with average Pn values. Crustal thicknesses show large variations in the study region but also coherency with tectonic elements. The Pn pattern in Taiwan shows linear trends of surface geology and suggests strongly lithosphere-scale deformation of the young Taiwan orogenic belt marked by the deformation boundary under the Western Foothill and the Western Coastal Plain at depth, and the crustal thickness shows a complex pattern from the transpressional collision. Our observations are consistent with rifting and extension in the northern margin of the SCS but are not consistent with mantle upwelling as a mechanism for the opening and the subsequent closing of the SCS. The Philippine island arc is affected by volcanisms from both the Asian and Philippine Sea subductions in the south but mainly from

  6. Regional sea level projections with observed gauge, altimeter and reconstructed data along China coast

    NASA Astrophysics Data System (ADS)

    Du, L.; Shi, H.; Zhang, S.

    2017-12-01

    Acting as the typical shelf seas in northwest Pacific Ocean, regional sea level along China coasts exhibits complicated and multiscale spatial-temporal characteristics under circumstance of global change. In this paper, sea level variability is investigated with tide gauges records, satellite altimetry data, reconstructed sea surface height, and CMIP simulation fields. Sea level exhibits the interannual variability imposing on a remarkable sea level rising in the China seas and coastal region, although its seasonal signals are significant as the results of global ocean. Sea level exhibits faster rising rate during the satellite altimetry era, nearly twice to the rate during the last sixty years. AVISO data and reconstructed sea surface heights illustrate good correlation coefficient, more than 0.8. Interannual sea level variation is mainly modulated by the low-frequency variability of wind fields over northern Pacific Ocean by local and remote processes. Meanwhile sea level varies obviously by the transport fluctuation and bimodality path of Kuroshio. Its variability possibly linked to internal variability of the ocean-atmosphere system influenced by ENSO oscillation. China Sea level have been rising during the 20th century, and are projected to continue to rise during this century. Sea level can reach the highest extreme level in latter half of 21st century. Modeled sea level including regional sea level projection combined with the IPCC climate scenarios play a significant role on coastal storm surge evolution. The vulnerable regions along the ECS coast will suffer from the increasing storm damage with sea level variations.

  7. Regional variability of sea level change using a global ocean model.

    NASA Astrophysics Data System (ADS)

    Lombard, A.; Garric, G.; Cazenave, A.; Penduff, T.; Molines, J.

    2007-12-01

    We analyse different runs of a global eddy-permitting (1/4 degree) ocean model driven by atmospheric forcing to evaluate regional variability of sea level change over 1993-2001, 1998-2006 and over the long period 1958-2004. No data assimilation is performed in the model, contrarily to previous similar studies (Carton et al., 2005; Wunsch et al., 2007; Koehl and Stammer, 2007). We compare the model-based regional sea level trend patterns with the one deduced from satellite altimetry data. We examine respective contributions of steric and bottom pressure changes to total regional sea level changes. For the steric component, we analyze separately the contributions of temperature and salinity changes as well as upper and lower ocean contributions.

  8. Affects of Changes in Sea Ice Cover on Bowhead Whales and Subsistence Whaling in the Western Arctic

    NASA Astrophysics Data System (ADS)

    Moore, S.; Suydam, R.; Overland, J.; Laidre, K.; George, J.; Demaster, D.

    2004-12-01

    Global warming may disproportionately affect Arctic marine mammals and disrupt traditional subsistence hunting activities. Based upon analyses of a 24-year time series (1979-2002) of satellite-derived sea ice cover, we identified significant positive trends in the amount of open-water in three large and five small-scale regions in the western Arctic, including habitats where bowhead whales (Balaena mysticetus) feed or are suspected to feed. Bowheads are the only mysticete whale endemic to the Arctic and a cultural keystone species for Native peoples from northwestern Alaska and Chukotka, Russia. While copepods (Calanus spp.) are a mainstay of the bowhead diet, prey sampling conducted in the offshore region of northern Chukotka and stomach contents from whales harvested offshore of the northern Alaskan coast indicate that euphausiids (Thysanoessa spp.) advected from the Bering Sea are also common prey in autumn. Early departure of sea ice has been posited to control availability of zooplankton in the southeastern Bering Sea and in the Cape Bathurst polynya in the southeastern Canadian Beaufort Sea, with maximum secondary production associated with a late phytoplankton bloom in insolatoin-stratified open water. While it is unclear if declining sea-ice has directly affected production or advection of bowhead prey, an extension of the open-water season increases opportunities for Native subsistence whaling in autumn. Therefore, bowhead whales may provide a nexus for simultaneous exploration of the effects sea ice reduction on pagophillic marine mammals and on the social systems of the subsistence hunting community in the western Arctic. The NOAA/Alaska Fisheries Science Center and NSB/Department of Wildlife Management will investigate bowhead whale stock identity, seasonal distribution and subsistence use patterns during the International Polar Year, as an extension of research planned for 2005-06. This research is in response to recommendations from the Scientific

  9. Multi-phase structural and tectonic evolution of the Andaman Sea Region

    NASA Astrophysics Data System (ADS)

    Masterton, Sheona; Hill, Catherine; Sagi, David Adam; Webb, Peter; Sevastjanova, Inga

    2017-04-01

    We present a new regional tectonic interpretation for Myanmar and the Andaman Sea, built within the framework of global plate motions. In our model the Present Day Andaman Sea region has been subjected to multiple phases of extension, culminating in its mid-Miocene to Present Day opening as a rhomboidal pull-apart basin. The Andaman Sea region is historically thought to have developed as a consequence of back-arc opening associated with plate convergence at the Andaman-Nicobar subduction system. We have undertaken detailed structural interpretation of potential field, Landsat and SRTM data, supported by 2-D crustal models of the Andaman Sea. From this analysis we identified several major north-south striking faults and a series of northeast-southwest striking structures across the region. We have also mapped the extent of the Andaman-Nicobar Accretionary Prism, a fore arc trough and volcanic arc, which we associate with a phase of traditional trench-parallel back-arc extension from the Paleocene to the middle Miocene. A regional tectonic event occurred during the middle Miocene that caused the cessation of back-arc extension in the Present Day Andaman Sea and an eastward shift in the locus of arc-related volcanism. At that time, N-S striking faults onshore and offshore Myanmar were reactivated with widespread right-lateral motion. This motion, accompanied by extension along new NE-SW striking faults, facilitated the opening of the Central Andaman Basin as a pull-apart basin (rhombochasm) in which a strike-slip tectonic regime has a greater impact on the mode of opening than the subduction process. The integration of our plate model solution within a global framework allows identification of major plate reorganisation events and their impact on a regional scale. We therefore attribute the onset of pull-apart opening in the Andaman Sea to ongoing clockwise rotation of the western Sundaland margin throughout the late Paleogene and early Miocene, possibly driven by the

  10. Sensitivity of the sea ice concentration over the Kara-Barents Sea in autumn to the winter temperature variability over East Asia

    NASA Astrophysics Data System (ADS)

    Cho, K. H.; Chang, E. C.

    2017-12-01

    In this study, we performed sensitivity experiments by utilizing the Global/Regional Integrated Model system with different conditions of the sea ice concentration over the Kara-Barents (KB) Sea in autumn, which can affect winter temperature variability over East Asia. Prescribed sea ice conditions are 1) climatological autumn sea ice concentration obtained from 1982 to 2016, 2) reduced autumn sea ice concentration by 50% of the climatology, and 3) increased autumn sea ice concentration by 50% of climatology. Differently prescribed sea ice concentration changes surface albedo, which affects surface heat fluxes and near-surface air temperature. The reduced (increased) sea ice concentration over the KB sea increases (decreases) near-surface air temperature that leads the lower (higher) sea level pressure in autumn. These patterns are maintained from autumn to winter season. Furthermore, it is shown that the different sea ice concentration over the KB sea has remote effects on the sea level pressure patterns over the East Asian region. The lower (higher) sea level pressure over the KB sea by the locally decreased (increased) ice concentration is related to the higher (lower) pressure pattern over the Siberian region, which induces strengthened (weakened) cold advection over the East Asian region. From these sensitivity experiments it is clarified that the decreased (increased) sea ice concentration over the KB sea in autumn can lead the colder (warmer) surface air temperature over East Asia in winter.

  11. BIAS: A Regional Management of Underwater Sound in the Baltic Sea.

    PubMed

    Sigray, Peter; Andersson, Mathias; Pajala, Jukka; Laanearu, Janek; Klauson, Aleksander; Tegowski, Jaroslaw; Boethling, Maria; Fischer, Jens; Tougaard, Jakob; Wahlberg, Magnus; Nikolopoulos, Anna; Folegot, Thomas; Matuschek, Rainer; Verfuss, Ursula

    2016-01-01

    Management of the impact of underwater sound is an emerging concern worldwide. Several countries are in the process of implementing regulatory legislations. In Europe, the Marine Strategy Framework Directive was launched in 2008. This framework addresses noise impacts and the recommendation is to deal with it on a regional level. The Baltic Sea is a semienclosed area with nine states bordering the sea. The number of ships is one of the highest in Europe. Furthermore, the number of ships is estimated to double by 2030. Undoubtedly, due to the unbound character of noise, an efficient management of sound in the Baltic Sea must be done on a regional scale. In line with the European Union directive, the Baltic Sea Information on the Acoustic Soundscape (BIAS) project was established to implement Descriptor 11 of the Marine Strategy Framework Directive in the Baltic Sea region. BIAS will develop tools, standards, and methodologies that will allow for cross-border handling of data and results, measure sound in 40 locations for 1 year, establish a seasonal soundscape map by combining measured sound with advanced three-dimensional modeling, and, finally, establish standards for measuring continuous sound. Results from the first phase of BIAS are presented here, with an emphasis on standards and soundscape mapping as well as the challenges related to regional handling.

  12. An Investigation of the Radiative Effects and Climate Feedbacks of Sea Ice Sources of Sea Salt Aerosol

    NASA Astrophysics Data System (ADS)

    Horowitz, H. M.; Alexander, B.; Bitz, C. M.; Jaegle, L.; Burrows, S. M.

    2017-12-01

    In polar regions, sea ice is a major source of sea salt aerosol through lofting of saline frost flowers or blowing saline snow from the sea ice surface. Under continued climate warming, an ice-free Arctic in summer with only first-year, more saline sea ice in winter is likely. Previous work has focused on climate impacts in summer from increasing open ocean sea salt aerosol emissions following complete sea ice loss in the Arctic, with conflicting results suggesting no net radiative effect or a negative climate feedback resulting from a strong first aerosol indirect effect. However, the radiative forcing from changes to the sea ice sources of sea salt aerosol in a future, warmer climate has not previously been explored. Understanding how sea ice loss affects the Arctic climate system requires investigating both open-ocean and sea ice sources of sea-salt aerosol and their potential interactions. Here, we implement a blowing snow source of sea salt aerosol into the Community Earth System Model (CESM) dynamically coupled to the latest version of the Los Alamos sea ice model (CICE5). Snow salinity is a key parameter affecting blowing snow sea salt emissions and previous work has assumed constant regional snow salinity over sea ice. We develop a parameterization for dynamic snow salinity in the sea ice model and examine how its spatial and temporal variability impacts the production of sea salt from blowing snow. We evaluate and constrain the snow salinity parameterization using available observations. Present-day coupled CESM-CICE5 simulations of sea salt aerosol concentrations including sea ice sources are evaluated against in situ and satellite (CALIOP) observations in polar regions. We then quantify the present-day radiative forcing from the addition of blowing snow sea salt aerosol with respect to aerosol-radiation and aerosol-cloud interactions. The relative contributions of sea ice vs. open ocean sources of sea salt aerosol to radiative forcing in polar regions is

  13. Quantifying and Projecting Relative Sea-Level Rise in The Deltaic Regions

    NASA Astrophysics Data System (ADS)

    Shum, C. K.; Chung-Yen, K.; Calmant, S.; Yang, T. Y.; Guo, Q.; Jia, Y.; Ballu, V.; Guo, J.; Karptychev, M.; Krien, Y.; Kusche, J.; Tseng, K. H.; Wan, J.; Uebbing, B.

    2017-12-01

    Half of the world's population lives within 200 km of coastlines. Accelerated sea-level rise, compounded by effects of population growth, severe land subsidence due to fluvial sediment compaction/load, and anthropogenic oil and natural gas and ground water extraction, tectonic motion, and the increasing threat of more intense and more frequent cyclone-driven storm surges, have exacerbated the vulnerability of many of world's deltaic regions, including the Bangladesh and the Mississippi River Deltas. At present, understanding and quantifying the natural and anthropogenic processes governing these solid Earth vertical motion processes remain elusive to enable addressing coastal vulnerability due to current and future projection of relative sea-level rise for deltaic regions at the regional scales. Bangladesh, a low-lying and one of the most densely populated countries in the world located at the Bay of Bengal, is prone to transboundary monsoonal flooding, and is believed to be aggravated by more frequent and intensified cyclones resulting from anthropogenic climate change. The Mississippi River Deltaic region has been severely subsiding due primarily to fluvial sediment compaction and load during the last 10 centuries, oil/gas and groundwater extractions, and commercial developments, making it vulnerable to sea-level rise hazards. Here we present results of global geocentric sea-level rise, 1950-2016, separating vertical land motion at global tide gauge datum, by integrating tide gauge and radar altimeter records in a novel sea-level reconstruction scheme, focusing on the Mississippi River and the Bangladesh Deltas. We then integrate the resulting sea level estimates with historic imageries, GPS and InSAR data, as well as sediment isostatic and load model predicted present-day land subsidence, to constrain the 3D land motion to study the impacts of various scenarios of future relative sea level projections on the Bangladesh Delta to the end of the 21st Century and

  14. Sea level variability influencing coastal flooding in the Swan River region, Western Australia

    NASA Astrophysics Data System (ADS)

    Eliot, Matt

    2012-02-01

    Coastal flooding refers to the incidence of high water levels produced by water level fluctuations of marine origin, rather than riverine floods. An understanding of the amplitude and frequency of high water level events is essential to foreshore management and the design of many coastal and estuarine facilities. Coastal flooding events generally determine public perception of sea level phenomena, as they are commonly associated with erosion events. This investigation has explored the nature of coastal flooding events affecting the Swan River Region, Western Australia, considering water level records at four sites in the estuary and lower river, extending from the mouth of the Swan River to 40 km upstream. The analysis examined the significance of tides, storms and mean sea level fluctuations over both seasonal and inter-annual time scales. The relative timing of these processes is significant for the enhanced or reduced frequency of coastal flooding. These variations overlie net sea level rise previously reported from the coastal Fremantle record, which is further supported by changes to the distribution of high water level events at an estuarine tidal station. Seasonally, coastal flooding events observed in the Swan River region are largely restricted to the period from May to July due to the relative phases of the annual mean sea fluctuation and biannual tidal cycle. Although significant storm surge events occur outside this period, their impact is normally reduced, as they are superimposed on lower tidal and mean sea level conditions. Over inter-annual time scales tide, storminess and mean sea level produce cycles of enhanced and depressed frequency of coastal flooding. For the Swan River region, the inter-annual tidal variation is regular, dominated by the 18.6 year lunar nodal cycle. Storminess and mean sea level variations are independent and irregular, with cycles from 3 to 10 year duration. Since 1960, these fluctuations have not occurred in phase

  15. Simulating Dust Regional Impact on the Middle East Climate and the Red Sea

    NASA Astrophysics Data System (ADS)

    Osipov, Sergey; Stenchikov, Georgiy

    2017-04-01

    Dust is one of the most abundant aerosols, however, currently only a few regional climate downscalings account for dust. This study focuses on the Middle East and the Red Sea regional climate response to the dust aerosol radiative forcing. The Red Sea is located between North Africa and Arabian Peninsula, which are first and third largest source regions of dust, respectively. MODIS and SEVIRI satellite observations show extremely high dust optical depths in the region, especially over the southern Red Sea during the summer season. The significant north-to-south gradient of the dust optical depth over the Red Sea persists throughout the entire year. Modeled atmospheric radiative forcing at the surface, top of the atmosphere and absorption in the atmospheric column indicate that dust significantly perturbs radiative balance. Top of the atmosphere modeled forcing is validated against independently derived GERB satellite product. Due to strong radiative forcing at the sea surface (daily mean forcing during summer reaches -32 Wm-2 and 10 Wm-2 in SW and LW, respectively), using uncoupled ocean model with prescribed atmospheric boundary conditions would result in an unrealistic ocean response. Therefore, here we employ the Regional Ocean Modeling system (ROMS) fully coupled with the Weather Research and Forecasting (WRF) model to study the impact of dust on the Red Sea thermal regime and circulation. The WRF was modified to interactively account for the radiative effect of dust. Daily spectral optical properties of dust are computed using Mie, T-matrix, and geometric optics approaches, and are based on the SEVIRI climatological optical depth. The WRF model parent and nested domains are configured over the Middle East and North Africa (MENA) region and over the Red Sea with 30 and 10 km resolution, respectively. The ROMS model over the Red Sea has 2 km grid spacing. The simulations show that, in the equilibrium response, dust causes 0.3-0.5 K cooling of the Red Sea surface

  16. Regional Changes in the Sea Ice Cover and Ice Production in the Antarctic

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino C.

    2011-01-01

    Coastal polynyas around the Antarctic continent have been regarded as sea ice factories because of high ice production rates in these regions. The observation of a positive trend in the extent of Antarctic sea ice during the satellite era has been intriguing in light of the observed rapid decline of the ice extent in the Arctic. The results of analysis of the time series of passive microwave data indicate large regional variability with the trends being strongly positive in the Ross Sea, strongly negative in the Bellingshausen/Amundsen Seas and close to zero in the other regions. The atmospheric circulation in the Antarctic is controlled mainly by the Southern Annular Mode (SAM) and the marginal ice zone around the continent shows an alternating pattern of advance and retreat suggesting the presence of a propagating wave (called Antarctic Circumpolar Wave) around the circumpolar region. The results of analysis of the passive microwave data suggest that the positive trend in the Antarctic sea ice cover could be caused primarily by enhanced ice production in the Ross Sea that may be associated with more persistent and larger coastal polynyas in the region. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate-of-increase in the net ice export of about 30,000 km2 per year. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 km3/year, which is almost identical, within error bars, to our estimate of the trend in ice production. In addition to the possibility of changes in SAM, modeling studies have also indicated that the ozone hole may have a role in that it causes the deepening of the lows in the western Antarctic region thereby causing strong winds to occur offthe Ross-ice shelf.

  17. Summer Drivers of Atmospheric Variability Affecting Ice Shelf Thinning in the Amundsen Sea Embayment, West Antarctica

    NASA Astrophysics Data System (ADS)

    Deb, Pranab; Orr, Andrew; Bromwich, David H.; Nicolas, Julien P.; Turner, John; Hosking, J. Scott

    2018-05-01

    Satellite data and a 35-year hindcast of the Amundsen Sea Embayment summer climate using the Weather Research and Forecasting model are used to understand how regional and large-scale atmospheric variability affects thinning of ice shelves in this sector of West Antarctica by melting from above and below (linked to intrusions of warm water caused by anomalous westerlies over the continental shelf edge). El Niño episodes are associated with an increase in surface melt but do not have a statistically significant impact on westerly winds over the continental shelf edge. The location of the Amundsen Sea Low and the polarity of the Southern Annular Mode (SAM) have negligible impact on surface melting, although a positive SAM and eastward shift of the Amundsen Sea Low cause anomalous westerlies over the continental shelf edge. The projected future increase in El Niño episodes and positive SAM could therefore increase the risk of disintegration of West Antarctic ice shelves.

  18. High Arctic sea ice conditions influence marine birds wintering in Low Arctic regions

    NASA Astrophysics Data System (ADS)

    McFarlane Tranquilla, Laura; Hedd, April; Burke, Chantelle; Montevecchi, William A.; Regular, Paul M.; Robertson, Gregory J.; Stapleton, Leslie Ann; Wilhelm, Sabina I.; Fifield, David A.; Buren, Alejandro D.

    2010-09-01

    Ocean climate change is having profound biological effects in polar regions. Such change can also have far-reaching downstream effects in sub-polar regions. This study documents an environmental relationship between High Arctic sea ice changes and mortality events of marine birds in Low Arctic coastal regions. During April 2007 and March 2009, hundreds of beached seabird carcasses and moribund seabirds were found along the east and northeast coasts of Newfoundland, Canada. These seabird "wrecks" (i.e. dead birds on beaches) coincided with a period of strong, persistent onshore winds and heavily-accumulated sea ice that blocked bays and trapped seabirds near beaches. Ninety-two percent of wreck seabirds were Thick-billed Murres ( Uria lomvia). Body condition and demographic patterns of wreck murres were compared to Thick-billed Murres shot in the Newfoundland murre hunt. Average body and pectoral masses of wreck carcasses were 34% and 40% lighter (respectively) than shot murres, indicating that wreck birds had starved. The acute nature of each wreck suggested that starvation and associated hypothermia occurred within 2-3 days. In 2007, first-winter murres (77%) dominated the wreck. In 2009, there were more adults (78%), mostly females (66%). These results suggest that spatial and temporal segregation in ages and sexes can play a role in differential survival when stochastic weather conditions affect discrete areas where these groups aggregate. In wreck years, southward movement of Arctic sea ice to Low Arctic latitudes was later and blocked bays longer than in most other years. These inshore conditions corresponded with recent climate-driven changes in High Arctic ice break-up and ice extent; coupled with local weather conditions, these ice conditions appeared to be the key environmental features that precipitated the ice-associated seabird wrecks in the Low Arctic region.

  19. The effect of regional sea level atmospheric pressure on sea level variations at globally distributed tide gauge stations with long records

    NASA Astrophysics Data System (ADS)

    Iz, H. Bâki

    2018-05-01

    This study provides additional information about the impact of atmospheric pressure on sea level variations. The observed regularity in sea level atmospheric pressure depends mainly on the latitude and verified to be dominantly random closer to the equator. It was demonstrated that almost all the annual and semiannual sea level variations at 27 globally distributed tide gauge stations can be attributed to the regional/local atmospheric forcing as an inverted barometric effect. Statistically significant non-linearities were detected in the regional atmospheric pressure series, which in turn impacted other sea level variations as compounders in tandem with the lunar nodal forcing, generating lunar sub-harmonics with multidecadal periods. It was shown that random component of regional atmospheric pressure tends to cluster at monthly intervals. The clusters are likely to be caused by the intraannual seasonal atmospheric temperature changes,which may also act as random beats in generating sub-harmonics observed in sea level changes as another mechanism. This study also affirmed that there are no statistically significant secular trends in the progression of regional atmospheric pressures, hence there was no contribution to the sea level trends during the 20th century by the atmospheric pressure.Meanwhile, the estimated nonuniform scale factors of the inverted barometer effects suggest that the sea level atmospheric pressure will bias the sea level trends inferred from satellite altimetry measurements if their impact is accounted for as corrections without proper scaling.

  20. High resolution sea ice modeling for the region of Baffin Bay and the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Zakharov, I.; Prasad, S.; McGuire, P.

    2016-12-01

    A multi-category numerical sea ice model (CICE) with a data assimilation module was implemented to derive sea ice parameters in the region of Baffin Bay and the Labrador Sea with resolution higher than 10 km. The model derived ice parameters include concentration, ridge keel measurement, thickness and freeboard. The module for assimilation of ice concentration uses data from the Advance Microwave Scanning Radiometer (AMSR-E) and OSI SAF data. The sea surface temperature (SST) data from AMSRE-AVHRR and Operational SST and Sea Ice Analysis (OSTIA) system were used to correct the SST computed by a mixed layer slab ocean model that is used to determine the growth and melt of sea ice. The ice thickness parameter from the model was compared with the measurements from Soil Moisture Ocean Salinity - Microwave Imaging Radiometer using Aperture Synthesis (SMOS-MIRAS). The freeboard measures where compared with the Cryosat-2 measurements. A spatial root mean square error computed for freeboard measures was found to be within the uncertainty limits of the observation. The model was also used to estimate the correlation parameter between the ridge and the ridge keel measurements in the region of Makkovik Bank. Also, the level ice draft estimated from the model was in good agreement with the ice draft derived from the upward looking sonar (ULS) instrument deployed in the Makkovik bank. The model corrected with ice concentration and SST from remote sensing data demonstrated significant improvements in accuracy of the estimated ice parameters. The model can be used for operational forecast and climate research.

  1. Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  2. Role of Perturbing Ocean Initial Condition in Simulated Regional Sea Level Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Aixue; Meehl, Gerald; Stammer, Detlef

    Multiple lines of observational evidence indicate that the global climate has been getting warmer since the early 20th century. This warmer climate has led to a global mean sea level rise of about 18 cm during the 20th century, and over 6 cm for the first 15 years of the 21st century. Regionally the sea level rise is not uniform due in large part to internal climate variability. To better serve the community, the uncertainties of predicting/projecting regional sea level changes associated with internal climate variability need to be quantified. Previous research on this topic has used single-model large ensemblesmore » with perturbed atmospheric initial conditions (ICs). Here we compare uncertainties associated with perturbing ICs in just the atmosphere and just the ocean using a state-of-the-art coupled climate model. We find that by perturbing the oceanic ICs, the uncertainties in regional sea level changes increase compared to those with perturbed atmospheric ICs. In order for us to better assess the full spectrum of the impacts of such internal climate variability on regional and global sea level rise, approaches that involve perturbing both atmospheric and oceanic initial conditions are thus necessary.« less

  3. Role of Perturbing Ocean Initial Condition in Simulated Regional Sea Level Change

    DOE PAGES

    Hu, Aixue; Meehl, Gerald; Stammer, Detlef; ...

    2017-06-05

    Multiple lines of observational evidence indicate that the global climate has been getting warmer since the early 20th century. This warmer climate has led to a global mean sea level rise of about 18 cm during the 20th century, and over 6 cm for the first 15 years of the 21st century. Regionally the sea level rise is not uniform due in large part to internal climate variability. To better serve the community, the uncertainties of predicting/projecting regional sea level changes associated with internal climate variability need to be quantified. Previous research on this topic has used single-model large ensemblesmore » with perturbed atmospheric initial conditions (ICs). Here we compare uncertainties associated with perturbing ICs in just the atmosphere and just the ocean using a state-of-the-art coupled climate model. We find that by perturbing the oceanic ICs, the uncertainties in regional sea level changes increase compared to those with perturbed atmospheric ICs. In order for us to better assess the full spectrum of the impacts of such internal climate variability on regional and global sea level rise, approaches that involve perturbing both atmospheric and oceanic initial conditions are thus necessary.« less

  4. Land subsidence and relative sea-level rise in the southern Chesapeake Bay region

    USGS Publications Warehouse

    Eggleston, Jack; Pope, Jason

    2013-01-01

    The southern Chesapeake Bay region is experiencing land subsidence and rising water levels due to global sea-level rise; land subsidence and rising water levels combine to cause relative sea-level rise. Land subsidence has been observed since the 1940s in the southern Chesapeake Bay region at rates of 1.1 to 4.8 millimeters per year (mm/yr), and subsidence continues today. This land subsidence helps explain why the region has the highest rates of sea-level rise on the Atlantic Coast of the United States. Data indicate that land subsidence has been responsible for more than half the relative sea-level rise measured in the region. Land subsidence increases the risk of flooding in low-lying areas, which in turn has important economic, environmental, and human health consequences for the heavily populated and ecologically important southern Chesapeake Bay region. The aquifer system in the region has been compacted by extensive groundwater pumping in the region at rates of 1.5- to 3.7-mm/yr; this compaction accounts for more than half of observed land subsidence in the region. Glacial isostatic adjustment, or the flexing of the Earth’s crust in response to glacier formation and melting, also likely contributes to land subsidence in the region.

  5. The influence of regional Arctic sea-ice decline on stratospheric and tropospheric circulation

    NASA Astrophysics Data System (ADS)

    McKenna, Christine; Bracegirdle, Thomas; Shuckburgh, Emily; Haynes, Peter

    2016-04-01

    Arctic sea-ice extent has rapidly declined over the past few decades, and most climate models project a continuation of this trend during the 21st century in response to greenhouse gas forcing. A number of recent studies have shown that this sea-ice loss induces vertically propagating Rossby waves, which weaken the stratospheric polar vortex and increase the frequency of sudden stratospheric warmings (SSWs). SSWs have been shown to increase the probability of a negative NAO in the following weeks, thereby driving anomalous weather conditions over Europe and other mid-latitude regions. In contrast, other studies have shown that Arctic sea-ice loss strengthens the polar vortex, increasing the probability of a positive NAO. Sun et al. (2015) suggest these conflicting results may be due to the region of sea-ice loss considered. They find that if only regions within the Arctic Circle are considered in sea-ice projections, the polar vortex weakens; if only regions outwith the Arctic Circle are considered, the polar vortex strengthens. This is because the anomalous Rossby waves forced in the former/latter scenario constructively/destructively interfere with climatological Rossby waves, thus enhancing/suppressing upward wave propagation. In this study, we investigate whether Sun et al.'s results are robust to a different model. We also divide the regions of sea-ice loss they considered into further sub-regions, in order to examine the regional differences in more detail. We do this by using the intermediate complexity climate model, IGCM4, which has a well resolved stratosphere and does a good job of representing stratospheric processes. Several simulations are run in atmosphere only mode, where one is a control experiment and the others are perturbation experiments. In the control run annually repeating historical mean surface conditions are imposed at the lower boundary, whereas in each perturbation run the model is forced by SST perturbations imposed in a specific

  6. Diversity and distribution of deep-sea shrimps in the Ross Sea region of Antarctica.

    PubMed

    Basher, Zeenatul; Bowden, David A; Costello, Mark J

    2014-01-01

    Although decapod crustaceans are widespread in the oceans, only Natantia (shrimps) are common in the Antarctic. Because remoteness, depth and ice cover restrict sampling in the South Ocean, species distribution modelling is a useful tool for evaluating distributions. We used physical specimen and towed camera data to describe the diversity and distribution of shrimps in the Ross Sea region of Antarctica. Eight shrimp species were recorded: Chorismus antarcticus; Notocrangon antarcticus; Nematocarcinus lanceopes; Dendrobranchiata; Pasiphaea scotiae; Pasiphaea cf. ledoyeri; Petalidium sp., and a new species of Lebbeus. For the two most common species, N. antarcticus and N. lanceopes, we used maximum entropy modelling, based on records of 60 specimens and over 1130 observations across 23 sites in depths from 269 m to 3433 m, to predict distributions in relation to environmental variables. Two independent sets of environmental data layers at 0.05° and 0.5° resolution respectively, showed how spatial resolution affected the model. Chorismus antarcticus and N. antarcticus were found only on the continental shelf and upper slopes, while N. lanceopes, Lebbeus n. sp., Dendrobranchiata, Petalidium sp., Pasiphaea cf. ledoyeri, and Pasiphaea scotiae were found on the slopes, seamounts and abyssal plain. The environmental variables that contributed most to models for N. antarcticus were depth, chlorophyll-a concentration, temperature, and salinity, and for N. lanceopes were depth, ice concentration, seabed slope/rugosity, and temperature. The relative ranking, but not the composition of these variables changed in models using different spatial resolutions, and the predicted extent of suitable habitat was smaller in models using the finer-scale environmental layers. Our modelling indicated that shrimps were widespread throughout the Ross Sea region and were thus likely to play important functional role in the ecosystem, and that the spatial resolution of data needs to be

  7. Diversity and Distribution of Deep-Sea Shrimps in the Ross Sea Region of Antarctica

    PubMed Central

    Basher, Zeenatul; Bowden, David A.; Costello, Mark J.

    2014-01-01

    Although decapod crustaceans are widespread in the oceans, only Natantia (shrimps) are common in the Antarctic. Because remoteness, depth and ice cover restrict sampling in the South Ocean, species distribution modelling is a useful tool for evaluating distributions. We used physical specimen and towed camera data to describe the diversity and distribution of shrimps in the Ross Sea region of Antarctica. Eight shrimp species were recorded: Chorismus antarcticus; Notocrangon antarcticus; Nematocarcinus lanceopes; Dendrobranchiata; Pasiphaea scotiae; Pasiphaea cf. ledoyeri; Petalidium sp., and a new species of Lebbeus. For the two most common species, N. antarcticus and N. lanceopes, we used maximum entropy modelling, based on records of 60 specimens and over 1130 observations across 23 sites in depths from 269 m to 3433 m, to predict distributions in relation to environmental variables. Two independent sets of environmental data layers at 0.05° and 0.5° resolution respectively, showed how spatial resolution affected the model. Chorismus antarcticus and N. antarcticus were found only on the continental shelf and upper slopes, while N. lanceopes, Lebbeus n. sp., Dendrobranchiata, Petalidium sp., Pasiphaea cf. ledoyeri, and Pasiphaea scotiae were found on the slopes, seamounts and abyssal plain. The environmental variables that contributed most to models for N. antarcticus were depth, chlorophyll-a concentration, temperature, and salinity, and for N. lanceopes were depth, ice concentration, seabed slope/rugosity, and temperature. The relative ranking, but not the composition of these variables changed in models using different spatial resolutions, and the predicted extent of suitable habitat was smaller in models using the finer-scale environmental layers. Our modelling indicated that shrimps were widespread throughout the Ross Sea region and were thus likely to play important functional role in the ecosystem, and that the spatial resolution of data needs to be

  8. Trends in Sea Ice Cover, Sea Surface Temperature, and Chlorophyll Biomass Across a Marine Distributed Biological Observatory in the Pacific Arctic Region

    NASA Astrophysics Data System (ADS)

    Frey, K. E.; Grebmeier, J. M.; Cooper, L. W.; Wood, C.; Panday, P. K.

    2011-12-01

    The northern Bering and Chukchi Seas in the Pacific Arctic Region (PAR) are among the most productive marine ecosystems in the world and act as important carbon sinks, particularly during May and June when seasonal sea ice-associated phytoplankton blooms occur throughout the region. Recent dramatic shifts in seasonal sea ice cover across the PAR should have profound consequences for this seasonal phytoplankton production as well as the intimately linked higher trophic levels. In order to investigate ecosystem responses to these observed recent shifts in sea ice cover, the development of a prototype Distributed Biological Observatory (DBO) is now underway in the PAR. The DBO is being developed as an internationally-coordinated change detection array that allows for consistent sampling and monitoring at five spatially explicit biologically productive locations across a latitudinal gradient: (1) DBO-SLP (south of St. Lawrence Island (SLI)), (2) DBO-NBS (north of SLI), (3) DBO-SCS (southern Chukchi Sea), (4) DBO-CCS (central Chukchi Sea), and (5) DBO-BCA (Barrow Canyon Arc). Standardized measurements at many of the DBO sites were made by multiple research cruises during the 2010 and 2011 pilot years, and will be expanded with the development of the DBO in coming years. In order to provide longer-term context for the changes occurring across the PAR, we utilize multi-sensor satellite data to investigate recent trends in sea ice cover, chlorophyll biomass, and sea surface temperatures for each of the five DBO sites, as well as a sixth long-term observational site in the Bering Strait. Satellite observations show that over the past three decades, trends in sea ice cover in the PAR have been heterogeneous, with significant declines in the Chukchi Sea, slight declines in the Bering Strait region, but increases in the northern Bering Sea south of SLI. Declines in the persistence of seasonal sea ice cover in the Chukchi Sea and Bering Strait region are due to both earlier sea

  9. Regional Sea Level Variation: California Coastal Subsidence (Invited)

    NASA Astrophysics Data System (ADS)

    Blewitt, G.; Hammond, W. C.; Nerem, R.

    2013-12-01

    Satellite altimetry over the last two decades has measured variations in geocentric sea level (GSL), relative to the Earth system center of mass, providing valuable data to test models of physical oceanography and the effects of global climate change. The societal impacts of sea level change however relate to variations in local sea level (LSL), relative to the land at the coast. Therefore, assessing the impacts of sea level change requires coastal measurements of vertical land motion (VLM). Indeed, ΔLSL = ΔGSL - ΔVLM, with subsidence mapping 1:1 into LSL. Measurements of secular coastal VLM also allow tide-gauge data to test models of GSL over the last century in some locations, which cannot be provided by satellite data. Here we use GPS geodetic data within 15 km of the US west coast to infer regional, secular VLM. A total of 89 GPS stations met the criteria that time series span >4.5 yr, and do not have obvious non-linear variation, as may be caused by local instability. VLM rates for the GPS stations are derived in the secular reference frame ITRF2008, which aligns with the Earth system center of mass to ×0.5 mm/yr. We find that regional VLM has different behavior north and south of the Mendocino Triple Junction (MTJ). The California coast has a coherent regional pattern of subsidence averaging 0.5 mm/yr, with an increasing trend to the north. This trend generally matches GIA model predictions. Around San Francisco Bay, the observed coastal subsidence of 1.0 mm/yr coherently decreases moving away from the Pacific Ocean to very small subsidence on the east shores of the bay. This gradient is likely caused by San Andreas-Hayward Fault tectonics, and possibly by differential surface loading across the bay and Sacramento-San Joachim River Delta. Thus in addition to the trend in subsidence from GIA going northward along the California coast, tectonics may also play a role where the plate boundary fault system approaches the coast. In contrast, we find that VLM

  10. BALTEX—an interdisciplinary research network for the Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Reckermann, Marcus; Langner, Joakim; Omstedt, Anders; von Storch, Hans; Keevallik, Sirje; Schneider, Bernd; Arheimer, Berit; Markus Meier, H. E.; Hünicke, Birgit

    2011-10-01

    BALTEX is an environmental research network dealing with the Earth system of the entire Baltic Sea drainage basin. Important elements include the water and energy cycle, climate variability and change, water management and extreme events, and related impacts on biogeochemical cycles. BALTEX was founded in 1993 as a GEWEX continental-scale experiment and is currently in its second 10 yr phase. Phase I (1993-2002) was primarily dedicated to hydrological, meteorological and oceanographic processes in the Baltic Sea drainage basin, hence mostly dealt with the physical aspects of the system. Scientific focus was on the hydrological cycle and the exchange of energy between the atmosphere, the Baltic Sea and the surface of its catchment. The BALTEX study area was hydrologically defined as the Baltic Sea drainage basin. The second 10 yr phase of BALTEX (Phase II: 2003-12) has strengthened regional climate research, water management issues, biogeochemical cycles and overarching efforts to reach out to stakeholders and decision makers, as well as to foster communication and education. Achievements of BALTEX Phase II have been the establishment of an assessment report of regional climate change and its impacts on the Baltic Sea basin (from hydrological to biological and socio-economic), the further development of regional physical climate models and the integration of biogeochemical and ecosystem models. BALTEX features a strong infrastructure, with an international secretariat and a publication series, and organizes various workshops and conferences. This article gives an overview of the BALTEX programme, with an emphasis on Phase II, with some examples from BALTEX-related research.

  11. Sea surface temperature 1871-2099 in 38 cells in the Caribbean region.

    PubMed

    Sheppard, Charles; Rioja-Nieto, Rodolfo

    2005-09-01

    Sea surface temperature (SST) data with monthly resolution are provided for 38 cells in the Caribbean Sea and Bahamas region, plus Bermuda. These series are derived from the HadISST1 data set for historical time (1871-1999) and from the HadCM3 coupled climate model for predicted SST (1950-2099). Statistical scaling of the forecast data sets are performed to produce confluent SST series according to a now established method. These SST series are available for download. High water temperatures in 1998 killed enormous amounts of corals in tropical seas, though in the Caribbean region the effects at that time appeared less marked than in the Indo-Pacific. However, SSTs are rising in accordance with world-wide trends and it has been predicted that temperature will become increasingly important in this region in the near future. Patterns of SST rise within the Caribbean region are shown, and the importance of sub-regional patterns within this biologically highly interconnected area are noted.

  12. Effects of typhoon events on chlorophyll and carbon fixation in different regions of the East China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Dongxing; He, Lei; Liu, Fenfen; Yin, Kedong

    2017-07-01

    Typhoons play an important role in the regulation of phytoplankton biomass and carbon fixation in the ocean. Data from the moderate-resolution imaging spectroradiometer (MODIS) on 35 typhoon events during 2002-2011 are analyzed to examine the effects of typhoon events on variations in sea surface temperature (SST), chlorophyll-a (Chl-a), and depth-integrated primary productivity (IPP) in the East China Sea (ECS). For all 35 typhoon cases, the average SST drops by 0.1 °C in the typhoon influenced regions, and the maximal decrease is 2.2 °C. During the same period, average Chl-a increases by 0.1 mg m-3, with the maximal increase reaching up to 1 mg m-3, and average IPP increases by 32.9 mg C m-2·d-1, with the largest increase being 221 mg C m-2·d-1. The IPP are significantly correlated with SST and Chl-a data, and the correlations become stronger after typhoon passage. On average, nearly one-third of the ECS is affected by typhoons during the 10 year period, and the resident time of the typhoons in the area reach to 38.2 h. Effects of the typhoon events on SST, Chl-a, and IPP manifest differently in the three key sea areas, namely, the coastal water (depths <50 m), continental shelf (depths 50-200 m), and open sea (depths >200 m) regions in the ECS. Specifically, stronger responses are observed in shallow water than in deeper depths. The comparisons between the pre- and post-typhoon periods show that IPP in the post-typhoon period increases by 19.7% and 12.2% in the coastal and continental shelf regions, respectively, but it decreases by 9.4% in the open sea region. Overall, our results reveal that there is a close coupling between Chl-a, SST, and IPP in shallow areas and that typhoon events can have strong effects on carbon fixation in coastal regions.

  13. The implementation of sea ice model on a regional high-resolution scale

    NASA Astrophysics Data System (ADS)

    Prasad, Siva; Zakharov, Igor; Bobby, Pradeep; McGuire, Peter

    2015-09-01

    The availability of high-resolution atmospheric/ocean forecast models, satellite data and access to high-performance computing clusters have provided capability to build high-resolution models for regional ice condition simulation. The paper describes the implementation of the Los Alamos sea ice model (CICE) on a regional scale at high resolution. The advantage of the model is its ability to include oceanographic parameters (e.g., currents) to provide accurate results. The sea ice simulation was performed over Baffin Bay and the Labrador Sea to retrieve important parameters such as ice concentration, thickness, ridging, and drift. Two different forcing models, one with low resolution and another with a high resolution, were used for the estimation of sensitivity of model results. Sea ice behavior over 7 years was simulated to analyze ice formation, melting, and conditions in the region. Validation was based on comparing model results with remote sensing data. The simulated ice concentration correlated well with Advanced Microwave Scanning Radiometer for EOS (AMSR-E) and Ocean and Sea Ice Satellite Application Facility (OSI-SAF) data. Visual comparison of ice thickness trends estimated from the Soil Moisture and Ocean Salinity satellite (SMOS) agreed with the simulation for year 2010-2011.

  14. Factors affecting summer distributions of Bering Sea forage fish species: Assessing competing hypotheses

    NASA Astrophysics Data System (ADS)

    Parker-Stetter, Sandra; Urmy, Samuel; Horne, John; Eisner, Lisa; Farley, Edward

    2016-12-01

    Hypotheses on the factors affecting forage fish species distributions are often proposed but rarely evaluated using a comprehensive suite of indices. Using 24 predictor indices, we compared competing hypotheses and calculated average models for the distributions of capelin, age-0 Pacific cod, and age-0 pollock in the eastern Bering Sea from 2006 to 2010. Distribution was described using a two stage modeling approach: probability of occurrence ("presence") and density when fish were present. Both local (varying by location and year) and annual (uniform in space but varying by year) indices were evaluated, the latter accounting for the possibility that distributions were random but that overall presence or densities changed with annual conditions. One regional index, distance to the location of preflexion larvae earlier in the year, was evaluated for age-0 pollock. Capelin distributions were best predicted by local indices such as bottom depth, temperature, and salinity. Annual climate (May sea surface temperature (SST), sea ice extent anomaly) and wind (June wind speed cubed) indices were often important for age-0 Pacific cod in addition to local indices (temperature and depth). Surface, midwater, and water column age-0 pollock distributions were best described by a combination of local (depth, temperature, salinity, zooplankton) and annual (May SST, sea ice anomaly, June wind speed cubed) indices. Our results corroborated some of those in previous distribution studies, but suggested that presence and density may also be influenced by other factors. Even though there were common environmental factors that influenced all species' distributions, it is not possible to generalize conditions for forage fish as a group.

  15. Regional Arctic sea-ice prediction: potential versus operational seasonal forecast skill

    NASA Astrophysics Data System (ADS)

    Bushuk, Mitchell; Msadek, Rym; Winton, Michael; Vecchi, Gabriel; Yang, Xiaosong; Rosati, Anthony; Gudgel, Rich

    2018-06-01

    Seasonal predictions of Arctic sea ice on regional spatial scales are a pressing need for a broad group of stakeholders, however, most assessments of predictability and forecast skill to date have focused on pan-Arctic sea-ice extent (SIE). In this work, we present the first direct comparison of perfect model (PM) and operational (OP) seasonal prediction skill for regional Arctic SIE within a common dynamical prediction system. This assessment is based on two complementary suites of seasonal prediction ensemble experiments performed with a global coupled climate model. First, we present a suite of PM predictability experiments with start dates spanning the calendar year, which are used to quantify the potential regional SIE prediction skill of this system. Second, we assess the system's OP prediction skill for detrended regional SIE using a suite of retrospective initialized seasonal forecasts spanning 1981-2016. In nearly all Arctic regions and for all target months, we find a substantial skill gap between PM and OP predictions of regional SIE. The PM experiments reveal that regional winter SIE is potentially predictable at lead times beyond 12 months, substantially longer than the skill of their OP counterparts. Both the OP and PM predictions display a spring prediction skill barrier for regional summer SIE forecasts, indicating a fundamental predictability limit for summer regional predictions. We find that a similar barrier exists for pan-Arctic sea-ice volume predictions, but is not present for predictions of pan-Arctic SIE. The skill gap identified in this work indicates a promising potential for future improvements in regional SIE predictions.

  16. The SeaDataNet data products: regional temperature and salinity historical data collections

    NASA Astrophysics Data System (ADS)

    Simoncelli, Simona; Coatanoan, Christine; Bäck, Orjan; Sagen, Helge; Scoy, Serge; Myroshnychenko, Volodymyr; Schaap, Dick; Schlitzer, Reiner; Iona, Sissy; Fichaut, Michele

    2016-04-01

    Temperature and Salinity (TS) historical data collections covering the time period 1900-2013 were created for each European marginal sea (Arctic Sea, Baltic Sea, Black Sea, North Sea, North Atlantic Ocean and Mediterranean Sea) within the framework of SeaDataNet2 (SDN) EU-Project and they are now available as ODV collections through the SeaDataNet web catalog at http://sextant.ifremer.fr/en/web/seadatanet/. Two versions have been published and they represent a snapshot of the SDN database content at two different times: V1.1 (January 2014) and V2 (March 2015). A Quality Control Strategy (QCS) has been developped and continuously refined in order to improve the quality of the SDN database content and to create the best product deriving from SDN data. The QCS was originally implemented in collaboration with MyOcean2 and MyOcean Follow On projects in order to develop a true synergy at regional level to serve operational oceanography and climate change communities. The QCS involved the Regional Coordinators, responsible of the scientific assessment, the National Oceanographic Data Centers (NODC) and the data providers that, on the base of the data quality assessment outcome, checked and eventually corrected anomalies in the original data. The QCS consists of four main phases: 1) data harvesting from the central CDI; 2) file and parameter aggregation; 3) quality check analysis at regional level; 4) analysis and correction of data anomalies. The approach is iterative to facilitate the upgrade of SDN database content and it allows also the versioning of data products with the release of new regional data collections at the end of each QCS loop. SDN data collections and the QCS will be presented and the results summarized.

  17. Seasonal and Interannual Variations of Heat Fluxes in the Barents Sea Region

    NASA Astrophysics Data System (ADS)

    Bashmachnikov, I. L.; Yurova, A. Yu.; Bobylev, L. P.; Vesman, A. V.

    2018-03-01

    Seasonal and interannual variations in adjective heat fluxes in the ocean ( dQ oc) and the convergence of advective heat fluxes in the atmosphere ( dQ atm) in the Barents Sea region have been investigated over the period of 1993-2012 using the results of the MIT regional eddy-permitting model and ERA-Interim atmospheric reanalysis. Wavelet analysis and singular spectrum analysis are used to reveal concealed periodicities. Seasonal 2- to 4- and 5- to 8-year cycles are revealed in the dQ oc and dQ atm data. It is also found that seasonal variations in dQ oc are primarily determined by the integrated volume fluxes through the western boundary of the Barents Sea, whereas the 20-year trend is determined by the temperature variation of the transported water. A cross-wavelet analysis of dQ oc and dQ atm in the Barents Sea region shows that the seasonal variations in dQ oc and dQ atm are nearly in-phase, while their interannual variations are out-of-phase. It is concluded that the basin of the Barents Sea plays an important role in maintaining the feedback mechanism (the Bjerknes compensation) of the ocean-atmosphere system in the Arctic region.

  18. Setting Priorities for Regional Conservation Planning in the Mediterranean Sea

    PubMed Central

    Micheli, Fiorenza; Levin, Noam; Giakoumi, Sylvaine; Katsanevakis, Stelios; Abdulla, Ameer; Coll, Marta; Fraschetti, Simonetta; Kark, Salit; Koutsoubas, Drosos; Mackelworth, Peter; Maiorano, Luigi; Possingham, Hugh P.

    2013-01-01

    Spatial prioritization in conservation is required to direct limited resources to where actions are most urgently needed and most likely to produce effective conservation outcomes. In an effort to advance the protection of a highly threatened hotspot of marine biodiversity, the Mediterranean Sea, multiple spatial conservation plans have been developed in recent years. Here, we review and integrate these different plans with the goal of identifying priority conservation areas that represent the current consensus among the different initiatives. A review of six existing and twelve proposed conservation initiatives highlights gaps in conservation and management planning, particularly within the southern and eastern regions of the Mediterranean and for offshore and deep sea habitats. The eighteen initiatives vary substantially in their extent (covering 0.1–58.5% of the Mediterranean Sea) and in the location of additional proposed conservation and management areas. Differences in the criteria, approaches and data used explain such variation. Despite the diversity among proposals, our analyses identified ten areas, encompassing 10% of the Mediterranean Sea, that are consistently identified among the existing proposals, with an additional 10% selected by at least five proposals. These areas represent top priorities for immediate conservation action. Despite the plethora of initiatives, major challenges face Mediterranean biodiversity and conservation. These include the need for spatial prioritization within a comprehensive framework for regional conservation planning, the acquisition of additional information from data-poor areas, species or habitats, and addressing the challenges of establishing transboundary governance and collaboration in socially, culturally and politically complex conditions. Collective prioritised action, not new conservation plans, is needed for the north, western, and high seas of the Mediterranean, while developing initial information

  19. The Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of five years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anti-correlation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7 and 10 percent, respectively, as year average sea ice extent has decreased by 5 to 7 percent. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Since longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  20. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network.

    PubMed

    Osland, Michael J; Griffith, Kereen T; Larriviere, Jack C; Feher, Laura C; Cahoon, Donald R; Enwright, Nicholas M; Oster, David A; Tirpak, John M; Woodrey, Mark S; Collini, Renee C; Baustian, Joseph J; Breithaupt, Joshua L; Cherry, Julia A; Conrad, Jeremy R; Cormier, Nicole; Coronado-Molina, Carlos A; Donoghue, Joseph F; Graham, Sean A; Harper, Jennifer W; Hester, Mark W; Howard, Rebecca J; Krauss, Ken W; Kroes, Daniel E; Lane, Robert R; McKee, Karen L; Mendelssohn, Irving A; Middleton, Beth A; Moon, Jena A; Piazza, Sarai C; Rankin, Nicole M; Sklar, Fred H; Steyer, Greg D; Swanson, Kathleen M; Swarzenski, Christopher M; Vervaeke, William C; Willis, Jonathan M; Wilson, K Van

    2017-01-01

    Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana's network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be used

  1. Variability and change of sea level and its components in the Indo-Pacific region during the altimetry era

    NASA Astrophysics Data System (ADS)

    Wu, Quran; Zhang, Xuebin; Church, John A.; Hu, Jianyu

    2017-03-01

    Previous studies have shown that regional sea level exhibits interannual and decadal variations associated with the modes of climate variability. A better understanding of those low-frequency sea level variations benefits the detection and attribution of climate change signals. Nonetheless, the contributions of thermosteric, halosteric, and mass sea level components to sea level variability and trend patterns remain unclear. By focusing on signals associated with dominant climate modes in the Indo-Pacific region, we estimate the interannual and decadal fingerprints and trend of each sea level component utilizing a multivariate linear regression of two adjoint-based ocean reanalyses. Sea level interannual, decadal, and trend patterns primarily come from thermosteric sea level (TSSL). Halosteric sea level (HSSL) is of regional importance in the Pacific Ocean on decadal time scale and dominates sea level trends in the northeast subtropical Pacific. The compensation between TSSL and HSSL is identified in their decadal variability and trends. The interannual and decadal variability of temperature generally peak at subsurface around 100 m but that of salinity tend to be surface-intensified. Decadal temperature and salinity signals extend deeper into the ocean in some regions than their interannual equivalents. Mass sea level (MassSL) is critical for the interannual and decadal variability of sea level over shelf seas. Inconsistencies exist in MassSL trend patterns among various estimates. This study highlights regions where multiple processes work together to control sea level variability and change. Further work is required to better understand the interaction of different processes in those regions.

  2. Seasonal regional forecast of the minimum sea ice extent in the LapteV Sea

    NASA Astrophysics Data System (ADS)

    Tremblay, B.; Brunette, C.; Newton, R.

    2017-12-01

    Late winter anomaly of sea ice export from the peripheral seas of the Atctic Ocean was found to be a useful predictor for the minimum sea ice extent (SIE) in the Arctic Ocean (Williams et al., 2017). In the following, we present a proof of concept for a regional seasonal forecast of the min SIE for the Laptev Sea based on late winter coastal divergence quantified using a Lagrangian Ice Tracking System (LITS) forced with satellite derived sea-ice drifts from the Polar Pathfinder. Following Nikolaeva and Sesterikov (1970), we track an imaginary line just offshore of coastal polynyas in the Laptev Sea from December of the previous year to May 1 of the following year using LITS. Results show that coastal divergence in the Laptev Sea between February 1st and May 1st is best correlated (r = -0.61) with the following September minimum SIE in accord with previous results from Krumpen et al. (2013, for the Laptev Sea) and Williams et a. (2017, for the pan-Arctic). This gives a maximum seasonal predictability of Laptev Sea min SIE anomalies from observations of approximately 40%. Coastal ice divergence leads to formation of thinner ice that melts earlier in early summer, hence creating areas of open water that have a lower albedo and trigger an ice-albedo feedback. In the Laptev Sea, we find that anomalies of coastal divergence in late winter are amplified threefold to result in the September SIE. We also find a correlation coefficient r = 0.49 between February-March-April (FMA) anomalies of coastal divergence with the FMA averaged AO index. Interestingly, the correlation is stronger, r = 0.61, when comparing the FMA coastal divergence anomalies to the DJFMA averaged AO index. It is hypothesized that the AO index at the beginning of the winter (and the associated anomalous sea ice export) also contains information that impact the magnitude of coastal divergence opening later in the winter. Our approach differs from previous approaches (e.g. Krumpen et al and Williams et al

  3. Two centuries of observed atmospheric variability and change over the North Sea region

    NASA Astrophysics Data System (ADS)

    Stendel, Martin; van den Besselaar, Else; Hannachi, Abdel; Kent, Elizabeth; Lefebvre, Christiana; Rosenhagen, Gudrun; Schenk, Frederik; van der Schrier, Gerard; Woollings, Tim

    2016-04-01

    In the upcoming North Sea Region Climate Change Assessment (NOSCCA), we present a synthesis of current knowledge about past, present and possible future climate change in the North Sea region. A climate change assessment from published scientific work has been conducted as a kind of regional IPCC report, and a book has been produced that will be published by Springer in 2016. In the framework of the NOSCCA project, we examine past and present studies of variability and changes in atmospheric variables within the North Sea region over the instrumental period, roughly the past 200 years, based on observations and reanalyses. The variables addressed in this presentation are large-scale circulation, pressure and wind, surface air temperature, precipitation and radiative properties (clouds, solar radiation, and sunshine duration). While air temperature over land, not unexpectedly, has increased everywhere in the North Sea region, with strongest trends in spring and in the north of the region, a precipitation increase has been observed in the north and a decrease in the south of the region. This pattern goes along with a north-eastward shift of storm tracks and is in agreement with climate model projections under enhanced greenhouse gas concentrations. For other variables, it is not obvious which part of the observed changes may be due to anthropogenic activities and which is internally forced. It remains also unclear to what extent atmospheric circulation over the North Sea region is influenced by distant factors, in particular Arctic sea-ice decline in recent decades. There are indications of an increase in the number of deep cyclones (but not in the total number of cyclones), while storminess since the late 19th century shows no robust trends. The persistence of circulation types appears to have increased over the last century, and consequently, there is an indication for 'more extreme' extreme events. However, changes in extreme weather events are difficult to assess

  4. 4DVAR data Assimilation with the Regional Ocean Modeling System (ROMS): Impact on the Water Mass Distributions in the Yellow Sea

    NASA Astrophysics Data System (ADS)

    Lee, Joon-Ho; Kim, Taekyun; Pang, Ig-Chan; Moon, Jae-Hong

    2018-04-01

    In this study, we evaluate the performance of the recently developed incremental strong constraint 4-dimensional variational (4DVAR) data assimilation applied to the Yellow Sea (YS) using the Regional Ocean Modeling System (ROMS). Two assimilation experiments are compared: assimilating remote-sensed sea surface temperature (SST) and both the SST and in-situ profiles measured by shipboard CTD casts into a regional ocean modeling from January to December of 2011. By comparing the two assimilation experiments against a free-run without data assimilation, we investigate how the assimilation affects the hydrographic structures in the YS. Results indicate that the SST assimilation notably improves the model behavior at the surface when compared to the nonassimilative free-run. The SST assimilation also has an impact on the subsurface water structure in the eastern YS; however, the improvement is seasonally dependent, that is, the correction becomes more effective in winter than in summer. This is due to a strong stratification in summer that prevents the assimilation of SST from affecting the subsurface temperature. A significant improvement to the subsurface temperature is made when the in-situ profiles of temperature and salinity are assimilated, forming a tongue-shaped YS bottom cold water from the YS toward the southwestern seas of Jeju Island.

  5. What About Sea Ice? People, animals, and climate change in the polar regions: An online resource for the International Polar Year and beyond

    NASA Astrophysics Data System (ADS)

    Renfrow, S.; Meier, W. N.; Wolfe, J.; Scott, D.; Leon, A.; Weaver, R.

    2005-12-01

    Decreasing Arctic sea ice has been one of the most noticeable changes on Earth over the past quarter-century. The years 2002 through 2005 have had much lower summer sea ice extents than the long-term (1979-2000). Reduced sea ice extent has a direct impact on Arctic wildlife and people, as well as ramifications for regional and global climate. Students, educators, and the general public want and need to have a better understanding of sea ice. Most of us are unfamiliar with sea ice: what it is, where it occurs, and how it affects global climate. The upcoming International Polar Year will provide an opportunity for the public to learn about sea ice. Here, we provide an overview of sea ice, the changes that the sea ice is undergoing, and information about the relation between sea ice and climate. The information presented here is condensed from the National Snow and Ice Data Center's new 'All About Sea Ice' Web site (http://www.nsidc.org/seaice/), a comprehensive resource of information for sea ice.

  6. Is the distribution of Prochlorococcus and Synechococcus ecotypes in the Mediterranean Sea affected by global warming?

    NASA Astrophysics Data System (ADS)

    Mella-Flores, D.; Mazard, S.; Humily, F.; Partensky, F.; Mahé, F.; Bariat, L.; Courties, C.; Marie, D.; Ras, J.; Mauriac, R.; Jeanthon, C.; Mahdi Bendif, E.; Ostrowski, M.; Scanlan, D. J.; Garczarek, L.

    2011-09-01

    Biological communities populating the Mediterranean Sea, which is situated at the northern boundary of the subtropics, are often claimed to be particularly affected by global warming. This is indicated, for instance, by the introduction of (sub)tropical species of fish or invertebrates that can displace local species. This raises the question of whether microbial communities are similarly affected, especially in the Levantine basin where sea surface temperatures have significantly risen over the last 25 years (0.50 ± 0.11 °C in average per decade, P < 0.01). In this paper, the genetic diversity of the two most abundant members of the phytoplankton community, the picocyanobacteria Prochlorococcus and Synechococcus, was examined during two cruises through both eastern and western Mediterranean Sea basins held in September 1999 (PROSOPE cruise) and in June-July 2008 (BOUM cruise). Diversity was studied using dot blot hybridization with clade-specific 16S rRNA oligonucleotide probes and/or clone libraries of the 16S-23S ribosomal DNA Internal Transcribed Spacer (ITS) region, with a focus on the abundance of clades that may constitute bioindicators of warm waters. During both cruises, the dominant Prochlorococcus clade in the upper mixed layer at all stations was HLI, a clade typical of temperate waters, whereas the HLII clade, the dominant group in (sub)tropical waters, was only present at very low concentrations. The Synechococcus community was dominated by clades I, III and IV in the northwestern waters of the Gulf of Lions and by clade III and groups genetically related to clades WPC1 and VI in the rest of the Mediterranean Sea. In contrast, only a few sequences of clade II, a group typical of warm waters, were observed. These data indicate that local cyanobacterial populations have not yet been displaced by their (sub)tropical counterparts.

  7. Regional influences on reconstructed global mean sea level

    NASA Astrophysics Data System (ADS)

    Natarov, Svetlana I.; Merrifield, Mark A.; Becker, Janet M.; Thompson, Phillip R.

    2017-04-01

    Reconstructions of global mean sea level (GMSL) based on tide gauge measurements tend to exhibit common multidecadal rate fluctuations over the twentieth century. GMSL rate changes may result from physical drivers, such as changes in radiative forcing or land water storage. Alternatively, these fluctuations may represent artifacts due to sampling limitations inherent in the historical tide gauge network. In particular, a high percentage of tide gauges used in reconstructions, especially prior to the 1950s, are from Europe and North America in the North Atlantic region. Here a GMSL reconstruction based on the reduced space optimal interpolation algorithm is deconstructed, with the contributions of individual tide gauge stations quantified and assessed regionally. It is demonstrated that the North Atlantic region has a disproportionate influence on reconstructed GMSL rate fluctuations prior to the 1950s, notably accounting for a rate minimum in the 1920s and contributing to a rate maximum in the 1950s. North Atlantic coastal sea level fluctuations related to wind-driven ocean volume redistribution likely contribute to these estimated GMSL rate inflections. The findings support previous claims that multidecadal rate changes in GMSL reconstructions are likely related to the geographic distribution of tide gauge stations within a sparse global network.

  8. Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations

    NASA Astrophysics Data System (ADS)

    Arndt, Stefanie; Willmes, Sascha; Dierking, Wolfgang; Nicolaus, Marcel

    2016-08-01

    An improved understanding of the temporal variability and the spatial distribution of snowmelt on Antarctic sea ice is crucial to better quantify atmosphere-ice-ocean interactions, in particular sea-ice mass and energy budgets. It is therefore important to understand the mechanisms that drive snowmelt, both at different times of the year and in different regions around Antarctica. In this study, we combine diurnal brightness temperature differences (dTB(37 GHz)) and ratios (TB(19 GHz)/TB(37 GHz)) to detect and classify snowmelt processes. We distinguish temporary snowmelt from continuous snowmelt to characterize dominant melt patterns for different Antarctic sea-ice regions from 1988/1989 to 2014/2015. Our results indicate four characteristic melt types. On average, 38.9 ± 6.0% of all detected melt events are diurnal freeze-thaw cycles in the surface snow layer, characteristic of temporary melt (Type A). Less than 2% reveal immediate continuous snowmelt throughout the snowpack, i.e., strong melt over a period of several days (Type B). In 11.7 ± 4.0%, Type A and B take place consecutively (Type C), and for 47.8 ± 6.8% no surface melt is observed at all (Type D). Continuous snowmelt is primarily observed in the outflow of the Weddell Gyre and in the northern Ross Sea, usually 17 days after the onset of temporary melt. Comparisons with Snow Buoy data suggest that also the onset of continuous snowmelt does not translate into changes in snow depth for a longer period but might rather affect the internal stratigraphy and density structure of the snowpack. Considering the entire data set, the timing of snowmelt processes does not show significant temporal trends.

  9. Regional sea level variability in a high-resolution global coupled climate model

    NASA Astrophysics Data System (ADS)

    Palko, D.; Kirtman, B. P.

    2016-12-01

    The prediction of trends at regional scales is essential in order to adapt to and prepare for the effects of climate change. However, GCMs are unable to make reliable predictions at regional scales. The prediction of local sea level trends is particularly critical. The main goal of this research is to utilize high-resolution (HR) (0.1° resolution in the ocean) coupled model runs of CCSM4 to analyze regional sea surface height (SSH) trends. Unlike typical, lower resolution (1.0°) GCM runs these HR runs resolve features in the ocean, like the Gulf Stream, which may have a large effect on regional sea level. We characterize the variability of regional SSH along the Atlantic coast of the US using tide gauge observations along with fixed radiative forcing runs of CCSM4 and HR interactive ensemble runs. The interactive ensemble couples an ensemble mean atmosphere with a single ocean realization. This coupling results in a 30% decrease in the strength of the Atlantic meridional overturning circulation; therefore, the HR interactive ensemble is analogous to a HR hosing experiment. By characterizing the variability in these high-resolution GCM runs and observations we seek to understand what processes influence coastal SSH along the Eastern Coast of the United States and better predict future SLR.

  10. Revisiting the contemporary sea-level budget on global and regional scales

    PubMed Central

    Brunnabend, Sandra-Esther; Kusche, Jürgen; Schröter, Jens; Dahle, Christoph

    2016-01-01

    Dividing the sea-level budget into contributions from ice sheets and glaciers, the water cycle, steric expansion, and crustal movement is challenging, especially on regional scales. Here, Gravity Recovery And Climate Experiment (GRACE) gravity observations and sea-level anomalies from altimetry are used in a joint inversion, ensuring a consistent decomposition of the global and regional sea-level rise budget. Over the years 2002–2014, we find a global mean steric trend of 1.38 ± 0.16 mm/y, compared with a total trend of 2.74 ± 0.58 mm/y. This is significantly larger than steric trends derived from in situ temperature/salinity profiles and models which range from 0.66 ± 0.2 to 0.94 ± 0.1 mm/y. Mass contributions from ice sheets and glaciers (1.37 ± 0.09 mm/y, accelerating with 0.03 ± 0.02 mm/y2) are offset by a negative hydrological component (−0.29 ± 0.26 mm/y). The combined mass rate (1.08 ± 0.3 mm/y) is smaller than previous GRACE estimates (up to 2 mm/y), but it is consistent with the sum of individual contributions (ice sheets, glaciers, and hydrology) found in literature. The altimetric sea-level budget is closed by coestimating a remaining component of 0.22 ± 0.26 mm/y. Well above average sea-level rise is found regionally near the Philippines (14.7 ± 4.39 mm/y) and Indonesia (8.3 ± 4.7 mm/y) which is dominated by steric components (11.2 ± 3.58 mm/y and 6.4 ± 3.18 mm/y, respectively). In contrast, in the central and Eastern part of the Pacific, negative steric trends (down to −2.8 ± 1.53 mm/y) are detected. Significant regional components are found, up to 5.3 ± 2.6 mm/y in the northwest Atlantic, which are likely due to ocean bottom pressure variations. PMID:26811469

  11. Revisiting the contemporary sea-level budget on global and regional scales.

    PubMed

    Rietbroek, Roelof; Brunnabend, Sandra-Esther; Kusche, Jürgen; Schröter, Jens; Dahle, Christoph

    2016-02-09

    Dividing the sea-level budget into contributions from ice sheets and glaciers, the water cycle, steric expansion, and crustal movement is challenging, especially on regional scales. Here, Gravity Recovery And Climate Experiment (GRACE) gravity observations and sea-level anomalies from altimetry are used in a joint inversion, ensuring a consistent decomposition of the global and regional sea-level rise budget. Over the years 2002-2014, we find a global mean steric trend of 1.38 ± 0.16 mm/y, compared with a total trend of 2.74 ± 0.58 mm/y. This is significantly larger than steric trends derived from in situ temperature/salinity profiles and models which range from 0.66 ± 0.2 to 0.94 ± 0.1 mm/y. Mass contributions from ice sheets and glaciers (1.37 ± 0.09 mm/y, accelerating with 0.03 ± 0.02 mm/y(2)) are offset by a negative hydrological component (-0.29 ± 0.26 mm/y). The combined mass rate (1.08 ± 0.3 mm/y) is smaller than previous GRACE estimates (up to 2 mm/y), but it is consistent with the sum of individual contributions (ice sheets, glaciers, and hydrology) found in literature. The altimetric sea-level budget is closed by coestimating a remaining component of 0.22 ± 0.26 mm/y. Well above average sea-level rise is found regionally near the Philippines (14.7 ± 4.39 mm/y) and Indonesia (8.3 ± 4.7 mm/y) which is dominated by steric components (11.2 ± 3.58 mm/y and 6.4 ± 3.18 mm/y, respectively). In contrast, in the central and Eastern part of the Pacific, negative steric trends (down to -2.8 ± 1.53 mm/y) are detected. Significant regional components are found, up to 5.3 ± 2.6 mm/y in the northwest Atlantic, which are likely due to ocean bottom pressure variations.

  12. Prophage-Encoded Staphylococcal Enterotoxin A: Regulation of Production in Staphylococcus aureus Strains Representing Different Sea Regions

    PubMed Central

    Zeaki, Nikoleta; Budi Susilo, Yusak; Pregiel, Anna; Rådström, Peter; Schelin, Jenny

    2015-01-01

    The present study investigates the nature of the link between the staphylococcal enterotoxin A (SEA) gene and the lifecycle of Siphoviridae bacteriophages, including the origin of strain variation regarding SEA production after prophage induction. Five strains representing three different genetic lines of the sea region were studied under optimal and prophage-induced growth conditions and the Siphoviridae lifecycle was followed through the phage replicative form copies and transcripts of the lysogenic repressor, cro. The role of SOS response on prophage induction was addressed through recA transcription in a recA-disruption mutant. Prophage induction was found to increase the abundance of the phage replicative form, the sea gene copies and transcripts and enhance SEA production. Sequence analysis of the sea regions revealed that observed strain variances were related to strain capacity for prophage induction, rather than sequence differences in the sea region. The impact of SOS response activation on the phage lifecycle was demonstrated by the absence of phage replicative form copies in the recA-disruption mutant after prophage induction. From this study it emerges that all aspects of SEA-producing strain, the Siphoviridae phage and the food environment must be considered when evaluating SEA-related hazards. PMID:26690218

  13. An Overview of Regional Experiments on Biomass Burning Aerosols and Related Pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS

    NASA Technical Reports Server (NTRS)

    Lin, Neng-Huei; Tsay, Si-Chee; Maring, Hal B.; Yen, Ming-Cheng; Sheu, Guey-Rong; Wang, Sheng-Hsiang; Chi, Kai Hsien; Chuang, Ming-Tung; Ou-Yang, Chang-Feng; Fu, Joshua S.; hide

    2013-01-01

    By modulating the Earth-atmosphere energy, hydrological and biogeochemical cycles, and affecting regional-to-global weather and climate, biomass burning is recognized as one of the major factors affecting the global carbon cycle. However, few comprehensive and wide-ranging experiments have been conducted to characterize biomass-burning pollutants in Southeast Asia (SEA) or assess their regional impact on meteorology, the hydrological cycle, the radiative budget, or climate change. Recently, BASEASIA (Biomass-burning Aerosols in South-East Asia: Smoke Impact Assessment) and the 7-SEAS (7- South-East Asian Studies) Dongsha Experiment were conducted during the spring seasons of 2006 and 2010 in northern SEA, respectively, to characterize the chemical, physical, and radiative properties of biomass-burning emissions near the source regions, and assess their effects. This paper provides an overview of results from these two campaigns and related studies collected in this special issue, entitled Observation, modeling and impact studies of biomass burning and pollution in the SE Asian Environment. This volume includes 28 papers, which provide a synopsis of the experiments, regional weatherclimate, chemical characterization of biomass-burning aerosols and related pollutants in source and sink regions, the spatial distribution of air toxics (atmospheric mercury and dioxins) in source and remote areas, a characterization of aerosol physical, optical, and radiative properties, as well as modeling and impact studies. These studies, taken together, provide the first relatively complete dataset of aerosol chemistry and physical observations conducted in the sourcesink region in the northern SEA, with particular emphasis on the marine boundary layer and lower free troposphere (LFT). The data, analysis and modeling included in these papers advance our present knowledge of source characterization of biomass-burning pollutants near the source regions as well as the physical and

  14. Challenges for the Baltic Sea Regional Stability

    DTIC Science & Technology

    2013-03-01

    statements show that Russia still has ambitions to expand her influence and control over the Baltic Sea region. Reduction of U.S. military presence in Europe...combat support units during 2013-2015, such as A-10 squadron at Spangdahlem Air Base in Germany, the 603rd Air Control Squadron at Aviano Air Base in ...other hand, such continued cooperation in the period of defense austerity would be the main option for sharing and reaching cost effectiveness

  15. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network

    PubMed Central

    Griffith, Kereen T.; Larriviere, Jack C.; Feher, Laura C.; Cahoon, Donald R.; Enwright, Nicholas M.; Oster, David A.; Tirpak, John M.; Woodrey, Mark S.; Collini, Renee C.; Baustian, Joseph J.; Breithaupt, Joshua L.; Cherry, Julia A.; Conrad, Jeremy R.; Cormier, Nicole; Coronado-Molina, Carlos A.; Donoghue, Joseph F.; Graham, Sean A.; Harper, Jennifer W.; Hester, Mark W.; Howard, Rebecca J.; Krauss, Ken W.; Kroes, Daniel E.; Lane, Robert R.; McKee, Karen L.; Mendelssohn, Irving A.; Middleton, Beth A.; Moon, Jena A.; Piazza, Sarai C.; Rankin, Nicole M.; Sklar, Fred H.; Steyer, Greg D.; Swanson, Kathleen M.; Swarzenski, Christopher M.; Vervaeke, William C.; Willis, Jonathan M.; Wilson, K. Van

    2017-01-01

    Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana’s network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be

  16. Assessing coastal wetland vulnerability to sea-level rise along the northern Gulf of Mexico coast: Gaps and opportunities for developing a coordinated regional sampling network

    USGS Publications Warehouse

    Osland, Michael J.; Griffith, Kereen T.; Larriviere, Jack C.; Feher, Laura C.; Cahoon, Donald R.; Enwright, Nicholas M.; Oster, David A.; Tirpak, John M.; Woodrey, Mark S.; Collini, Renee C.; Baustian, Joseph J.; Breithaupt, Joshua L.; Cherry, Julia A; Conrad, Jeremy R.; Cormier, Nicole; Coronado-Molina, Carlos A.; Donoghue, Joseph F.; Graham, Sean A.; Harper, Jennifer W.; Hester, Mark W.; Howard, Rebecca J.; Krauss, Ken W.; Kroes, Daniel; Lane, Robert R.; Mckee, Karen L.; Mendelssohn, Irving A.; Middleton, Beth A.; Moon, Jena A.; Piazza, Sarai; Rankin, Nicole M.; Sklar, Fred H.; Steyer, Gregory D.; Swanson, Kathleen M.; Swarzenski, Christopher M.; Vervaeke, William; Willis, Jonathan M; Van Wilson, K.

    2017-01-01

    Coastal wetland responses to sea-level rise are greatly influenced by biogeomorphic processes that affect wetland surface elevation. Small changes in elevation relative to sea level can lead to comparatively large changes in ecosystem structure, function, and stability. The surface elevation table-marker horizon (SET-MH) approach is being used globally to quantify the relative contributions of processes affecting wetland elevation change. Historically, SET-MH measurements have been obtained at local scales to address site-specific research questions. However, in the face of accelerated sea-level rise, there is an increasing need for elevation change network data that can be incorporated into regional ecological models and vulnerability assessments. In particular, there is a need for long-term, high-temporal resolution data that are strategically distributed across ecologically-relevant abiotic gradients. Here, we quantify the distribution of SET-MH stations along the northern Gulf of Mexico coast (USA) across political boundaries (states), wetland habitats, and ecologically-relevant abiotic gradients (i.e., gradients in temperature, precipitation, elevation, and relative sea-level rise). Our analyses identify areas with high SET-MH station densities as well as areas with notable gaps. Salt marshes, intermediate elevations, and colder areas with high rainfall have a high number of stations, while salt flat ecosystems, certain elevation zones, the mangrove-marsh ecotone, and hypersaline coastal areas with low rainfall have fewer stations. Due to rapid rates of wetland loss and relative sea-level rise, the state of Louisiana has the most extensive SET-MH station network in the region, and we provide several recent examples where data from Louisiana’s network have been used to assess and compare wetland vulnerability to sea-level rise. Our findings represent the first attempt to examine spatial gaps in SET-MH coverage across abiotic gradients. Our analyses can be

  17. Two centuries of observed atmospheric variability and change over the North Sea region

    NASA Astrophysics Data System (ADS)

    Stendel, Martin; van den Besselaar, Else; Hannachi, Abdel; Kent, Elizabeth; Lefebvre, Christiana; van Oldenborgh, Geert Jan; Rosenhagen, Gudrun; Schenk, Frederik; van der Schrier, Gerard

    2015-04-01

    Situated in northwestern Europe, the North Sea region is under influence of air masses from subtropical to arctic origin, and thus exhibits significant natural climate variability. As the land areas surrounding the North Sea are densely populated, climate change is an important issue in terms of e.g. coastal protection, fishery and trade. This study is part of the NOSCCA initiative (North Sea Region Climate Change Assessment) and presents observed variability and changes in atmospheric parameters during the last roughly 200 years. Circulation patterns show considerable decadal variability. In recent decades, a northward shift of storm tracks and increased cyclonic activity has been observed. There is also an indication of increased persistence of weather types. The wind climate is dominated by large multidecadal variability, and no robust long-term trends can be identified in the available datasets. There is a clear positive trend in near-surface temperatures, in particular during spring and winter. Over the region as a whole, no clear long-term precipitation trends are visible, although regional indications exist for an increased risk of extreme precipitation events.

  18. Global and Regional Sea Level Rise Scenarios for the United States

    NASA Technical Reports Server (NTRS)

    Sweet, William V.; Kopp, Robert E.; Weaver, Christopher P.; Obeysekera, Jayantha; Horton, Radley M.; Thieler, E. Robert; Zervas, Chris

    2017-01-01

    The Sea Level Rise and Coastal Flood Hazard Scenarios and Tools Interagency Task Force, jointly convened by the U.S. Global Change Research Program (USGCRP) and the National Ocean Council (NOC), began its work in August 2015. The Task Force has focused its efforts on three primary tasks: 1) updating scenarios of global mean sea level (GMSL) rise, 2) integrating the global scenarios with regional factors contributing to sea level change for the entire U.S. coastline, and 3) incorporating these regionally appropriate scenarios within coastal risk management tools and capabilities deployed by individual agencies in support of the needs of specific stakeholder groups and user communities. This technical report focuses on the first two of these tasks and reports on the production of gridded relative sea level (RSL, which includes both ocean-level change and vertical land motion) projections for the United States associated with an updated set of GMSL scenarios. In addition to supporting the longer-term Task Force effort, this new product will be an important input into the USGCRP Sustained Assessment process and upcoming Fourth National Climate Assessment (NCA4) due in 2018. This report also serves as a key technical input into the in-progress USGCRP Climate Science Special Report (CSSR).

  19. Eco-environmental implications of elemental and carbon isotope distributions in ornithogenic sediments from the Ross Sea region, Antarctica

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodong; Nie, Yaguang; Sun, Liguang; Emslie, Steven D.

    2013-09-01

    Seabirds have substantial influence on geochemical circulation of elements, serving as a link for substance exchange between their foraging area and colonies. In this study, we investigated the elemental and carbon isotopic composition of five penguin-affected sediment profiles excavated from Ross Island and Beaufort Island in the Ross Sea region, Antarctica. Among the three main constituents of the sediments (including weathered bedrock, guano and algae), guano was the main source of organic matter and nutrients, causing selective enrichment of several elements in each of the sediment profiles. In the 22 measured elements, As, Cd, Cu, P, S, Se and Zn were identified as penguin bio-elements in the Ross Sea region through statistical analysis and comparison with local end-member environmental media such as weathered bedrock, fresh guano and fresh algae. Carbon isotopic composition in the ornithogenic sediments showed a mixing feature of guano and algae. Using a two-member isotope mixing equation, we were able to reconstruct the historical change of guano input and algal bio-mass. Compared with research in other parts of Antarctic, Arctic, and South China Sea, we found apparent overlap of avian bio-elements including As, Cd, Cu, P, Se, and Zn. Information on the composition and behavior of bio-elements in seabird guano on a global scale, and the role that bio-vectors play in the geochemical circulation between land and sea, will facilitate future research on avian ecology and paleoclimatic reconstruction.

  20. Regional to Global Assessments of Phytoplankton Dynamics From The SeaWiFS Mission

    NASA Technical Reports Server (NTRS)

    Siegel, David; Behrenfeld, Michael; Maritorena, Stephanie; McClain, Charles R.; Antoine, David; Bailey, Sean W.; Bontempi, Paula S.; Boss, Emmanuel S.; Dierssen, Heidi M.; Doney, Scott C.; hide

    2013-01-01

    Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13 years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the oceanmay be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll

  1. Quality of life at the Dead Sea region: the lower the better? An observational study.

    PubMed

    Avriel, Avital; Fuchs, Lior; Plakht, Ygal; Cicurel, Assi; Apfelbaum, Armando; Satran, Robert; Friger, Michael; Dartava, Dimitry; Sukenik, Shaul

    2011-05-27

    The Dead Sea region, the lowest in the world at 410 meters below sea level, is considered a potent climatotherapy center for the treatment of different chronic diseases. To assess the prevalence of chronic diseases and the quality of life of residents of the Dead Sea region compared with residents of the Ramat Negev region, which has a similar climate, but is situated 600 meters above sea level. An observational study based on a self-administered questionnaire. Data were collected from kibbutz (communal settlement) members in both regions. Residents of the Dead Sea were the study group and of Ramat Negev were the control group. We compared demographic characteristics, the prevalence of different chronic diseases and health-related quality of life (HRQOL) using the SF-36 questionnaire. There was a higher prevalence of skin nevi and non-inflammatory rheumatic diseases (NIRD) among Dead Sea residents, but they had significantly higher HRQOL mean scores in general health (68.7 ± 21 vs. 64.4 ± 22, p = 0.023) and vitality (64.7 ± 17.9 vs. 59.6 ± 17.3, p = 0.001), as well as significantly higher summary scores: physical component score (80.7 ± 18.2 vs. 78 ± 18.6, p = 0.042), and mental component score (79 ± 16.4 vs. 77.2 ± 15, p = 0.02). These results did not change after adjusting for social-demographic characteristics, health-related habits, and chronic diseases. No significant difference between the groups was found in the prevalence of most chronic diseases, except for higher rates of skin nevi and NIRD among Dead Sea residents. HRQOL was significantly higher among Dead Sea residents, both healthy or with chronic disease.

  2. Temporal variability in SeaWiFS derived apparent optical properties in European seas

    NASA Astrophysics Data System (ADS)

    Vantrepotte, V.; Mélin, F.

    2010-02-01

    The 10-year record of ocean color data provided by the SeaWiFS mission is an important asset for monitoring and research activities conducted on the optically complex European seas. This study makes use of the SeaWiFS data set of normalized water leaving radiances LWN to study the major characteristics of temporal variability associated with optical properties across the entire European domain. Specifically, the time series of LWN and associated band ratios are decomposed into terms representing a fixed seasonal cycle, irregular variations and trends, and the contribution of these components to the total variance is described for the various basins. The diversity of the European waters is fully reflected by the range of results varying with regions and wavelengths. Generally, the Mediterranean and Baltic seas appear as two end-members with, respectively, high and low contributions of the seasonal component to the total variance. The existence of linear trends affecting the satellite products is also explored for each basin. By focusing the analysis on LWN and band ratios, the validity of the results is not limited by the varying levels of uncertainty that characterize derived products such as the concentration of chlorophyll a in optically complex waters. Statistically significant, and in some cases large, trends are detected in the Atlantic Ocean west of the European western shelf, the central North Sea, the English Channel, the Black Sea, the northern Adriatic, and various regions of the Mediterranean Sea and the northern Baltic Sea, revealing changes in the concentrations of optically significant constituents in these regions.

  3. Improvement of Global and Regional Mean Sea Level Trends Derived from all Altimetry Missions.

    NASA Astrophysics Data System (ADS)

    Ablain, Michael; Benveniste, Jérôme; Faugere, Yannice; Larnicol, Gilles; Cazenave, Anny; Johannessen, Johnny A.; Stammer, Detlef; Timms, Gary

    2012-07-01

    The global mean sea level (GMSL) has been calculated on a continual basis since January 1993 using data from satellite altimetry missions. The global mean sea level (MSL) deduced from TOPEX/Poseidon, Jason-1 and Jason-2 is increasing with a global trend of 3.2 mm from 1993 to 2010 applying the post glacial rebound (MSL Aviso website http://www.jason.oceanobs.com/msl). Besides, the regional sea level trends bring out an inhomogeneous repartition of the ocean elevation with local MSL slopes ranging from +/- 8 mm/year. A study published in 2009 [Ablain et al., 2009] has shown that the global MSL trend uncertainty was estimated at +/-0.6 mm/year with a confidence interval of 90%. The main sources of errors at global and regional scales are due to the orbit calculation and the wet troposphere correction. But others sea-level components have also a significant impact on the long-term stability of MSL as for instance the stability of instrumental parameters and the atmospheric corrections. Thanks to recent studies performed in Sea Level Essential Climate Variable Project in the frame of the Climate Change Initiative, an ESA Programme, in addition to activities performed within the SALP/CNES, strong improvements have been provided for the estimation of the global and regional MSL trends. In this paper, we propose to describe them; they concern the orbit calculation thanks to new gravity fields, the atmospheric corrections thanks to ERA-interim reanalyses, the wet troposphere corrections thanks to the stability improvement, and also empirical corrections allowing us to link regional time series together better. These improvements are described at global and regional scale for all the altimetry missions.

  4. Climatic anomaly affects the immune competence of California sea lions

    PubMed Central

    Banuet-Martínez, Marina; Espinosa-de Aquino, Wendy; Elorriaga-Verplancken, Fernando R.; Flores-Morán, Adriana; García, Olga P.; Camacho, Mariela

    2017-01-01

    The past decades have been characterized by a growing number of climatic anomalies. As these anomalies tend to occur suddenly and unexpectedly, it is often difficult to procure empirical evidence of their effects on natural populations. We analysed how the recent sea surface temperature (SST) anomaly in the northeastern Pacific Ocean affects body condition, nutritional status, and immune competence of California sea lion pups. We found that pup body condition and blood glucose levels of the pups were lower during high SST events, although other biomarkers of malnutrition remained unchanged, suggesting that pups were experiencing early stages of starvation. Glucose-dependent immune responses were affected by the SST anomaly; specifically, pups born during high SST events had lower serum concentrations of IgG and IgA, and were unable to respond to an immune challenge. This means that not only were pups that were born during the SST anomaly less able to synthesize protective antibodies; they were also limited in their ability to respond rapidly to nonspecific immune challenges. Our study provides empirical evidence that atypical climatic conditions can limit energetic reserves and compromise physiological responses that are essential for the survival of a marine top predator. PMID:28658317

  5. Regional Sea Level Changes Projected by the NASA/GISS Atmosphere-Ocean Model

    NASA Technical Reports Server (NTRS)

    Russell, Gary L.; Gornitz, Vivien; Miller, James R.

    1999-01-01

    Sea level has been rising for the past century, and inhabitants of the Earth's coastal regions will want to understand and predict future sea level changes. In this study we present results from new simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model from 1950 to 2099. Model results are compared with observed sea level changes during the past 40 years at 17 coastal stations around the world. Using observed levels of greenhouse gases between 1950 and 1990 and a compounded 0.5% annual increase in Co2 after 1990, model projections show that global sea level measured from 1950 will rise by 61 mm in the year 2000, by 212 mm in 2050, and by 408 mm in 2089. By 2089, two thirds of the global sea level rise will be due to thermal expansion and one third will be due to ocean mass changes. The spatial distribution of sea level rise is different than that projected by rigid lid ocean models.

  6. Understanding Flash Flood Generation in the Arid Region of the Dead Sea

    NASA Astrophysics Data System (ADS)

    Merz, R.; Hennig, H.; Rödiger, T.; Laronne, J. B.

    2017-12-01

    The arid region of the Dead Sea is prone by flash floods. Such flash floods in (semi-) arid regions are impressive. Generated within minutes, the peak unit discharge can be as high as 25 m³/s km². Floods are the main mechanism supplying water to alluvial aquifers, forming fluvial landscapes including canyons and often causing damage to humans, infrastructure, industry and tourism. Existing hydrological models in this region focus on peak discharges. However, these models are often based on simplified concepts and/or on concepts which were developed for humid regions. To more closely relate such models to local conditions, processes within catchments where floods occur require consideration. Therefore, a measurement network of rain gauges and level loggers to monitor runoff was installed in the beginning of the 2015/16 hydrological season in the tributaries of Wadi Arugot. The Arugot catchment is one of the largest ephemeral Wadis draining to the western shoreline of the Dead Sea at 450 m bsl. Due to the high gradient in elevation, the climate within the basin ranges from semiarid in the Judean Mountains, to hyper-arid near the Dead Sea with respective mean annual rainfall of 650 and 50 mm. The installed rain gauge network in the mountains is more dense compared to the Dead Sea area. Arid to semiarid catchments have different runoff generation processes compared to humid regions due local storm rainfall, low density of vegetation cover as well as patchy and shallow soil. These characteristics limit the contribution of groundwater flow, saturated overland flow and shallow subsurface flow, and therefore Hortonian overland flow is the most important contributor to overland flow. First analyses of the runoff data have shown that the storage capacity in the mountain area is lower compared to the more arid region. This is an evidence of high transmission losses in the coarse gravel wadi bed, therefore having a high permeability. The rain event duration and the amount of

  7. Toward a Euro-Atlantic Strategy for the Black Sea Region

    DTIC Science & Technology

    2006-04-01

    to a collection of countries with diverse and often compet- ing interests, security agendas, and urgent problems . These interests and agendas cannot...member of NATO, it was presented with an opportunity for regional leadership , based on TOWARD A EURO-ATLANTIC STRATEGY FOR THE BLACK SEA REGION Figure... problem , both countries suffer from some of the same problems , such as corruption, smuggling, and weak rule of law, that plague many of their

  8. Flooded! An Investigation of Sea-Level Rise in a Changing Climate

    ERIC Educational Resources Information Center

    Gillette, Brandon; Hamilton, Cheri

    2011-01-01

    Explore how melting ice sheets affect global sea levels. Sea-level rise (SLR) is a rise in the water level of the Earth's oceans. There are two major kinds of ice in the polar regions: sea ice and land ice. Land ice contributes to SLR and sea ice does not. This article explores the characteristics of sea ice and land ice and provides some hands-on…

  9. Simulating the Regional Impact of Dust on the Middle East Climate and the Red Sea

    NASA Astrophysics Data System (ADS)

    Osipov, Sergey; Stenchikov, Georgiy

    2018-02-01

    The Red Sea is located between North Africa and the Arabian Peninsula, the largest sources of dust in the world. Satellite retrievals show very high aerosol optical depth in the region, which increases during the summer season, especially over the southern Red Sea. Previously estimated and validated radiative effect from dust is expected to have a profound thermal and dynamic impact on the Red Sea, but that impact has not yet been studied or evaluated. Due to the strong dust radiative effect at the sea surface, uncoupled ocean modeling approaches with prescribed atmospheric boundary conditions result in an unrealistic ocean response. Therefore, to study the impact of dust on the regional climate of the Middle East and the Red Sea, we employed the Regional Ocean Modeling System fully coupled with the Weather Research and Forecasting model. We modified the atmospheric model to account for the radiative effect of dust. The simulations show that, in the equilibrium response, dust cools the Red Sea, reduces the surface wind speed, and weakens both the exchange at the Bab-el-Mandeb strait and the overturning circulation. The salinity distribution, freshwater, and heat budgets are significantly altered. A validation of the simulations against satellite products indicates that accounting for radiative effect from dust almost completely removes the bias and reduces errors in the top of the atmosphere fluxes and sea surface temperature. Our results suggest that dust plays an important role in the energy balance, thermal, and circulation regimes in the Red Sea.

  10. Influence of stochastic sea ice parametrization on climate and the role of atmosphere–sea ice–ocean interaction

    PubMed Central

    Juricke, Stephan; Jung, Thomas

    2014-01-01

    The influence of a stochastic sea ice strength parametrization on the mean climate is investigated in a coupled atmosphere–sea ice–ocean model. The results are compared with an uncoupled simulation with a prescribed atmosphere. It is found that the stochastic sea ice parametrization causes an effective weakening of the sea ice. In the uncoupled model this leads to an Arctic sea ice volume increase of about 10–20% after an accumulation period of approximately 20–30 years. In the coupled model, no such increase is found. Rather, the stochastic perturbations lead to a spatial redistribution of the Arctic sea ice thickness field. A mechanism involving a slightly negative atmospheric feedback is proposed that can explain the different responses in the coupled and uncoupled system. Changes in integrated Antarctic sea ice quantities caused by the stochastic parametrization are generally small, as memory is lost during the melting season because of an almost complete loss of sea ice. However, stochastic sea ice perturbations affect regional sea ice characteristics in the Southern Hemisphere, both in the uncoupled and coupled model. Remote impacts of the stochastic sea ice parametrization on the mean climate of non-polar regions were found to be small. PMID:24842027

  11. Atmospheric Deposition of Nitrogen and Sulfur in the Yellow Sea Region

    NASA Astrophysics Data System (ADS)

    Ghim, Y.; Kim, J.; Lee, S.; Moon, K.; Won, J.; Yoon, S.

    2002-05-01

    The Yellow Sea is a semi-enclosed, shelf-type shallow basin with reduced water exchange with the open ocean. The rim of the Yellow Sea--the west side is China and the east side is Korea--is one of the fastest developing zones in the world. During the past several years, considerable measurements have been made both around and over the Yellow Sea in order to study the pollutant transport in the region. Fine particles as well as gaseous pollutants have been routinely measured at three national background monitoring stations on the Korean side. Two ground stations have been operated for supplementing these monitoring stations; one is on the Korean side and the other is on the Chinese side. Aircraft and shipboard measurements were also made during selected intensive measurement periods. However, not all these measurements have been made for a common object. Rather, several research teams carried out their measurements for their own purposes according to separate plans. In the present work, the amounts of nitrogen and sulfur deposited in the region of the Yellow Sea in both dry and wet forms were estimated. Concentration data available from each measurement were reviewed to choose adequate ones. Meteorological data at ground stations were readily obtained either from a collocated automatic weather station or from a surface weather station in the nearby area. However, those over the sea were estimated from the output of RDAPS (Regional Data Assimilation and Prediction System), which were provided by the Korea Meteorological Administration. Precipitation data were only available from several routinely operated ground stations since intensive measurements accompanying aircraft or shipboard measurements were not made on rainy days. The amounts of dry and wet depositions were compared at these stations. (This work was supported in part by the Korea Ministry of Science and Technology under grant 98-LO-01-01-A-003 and in part by the Sustainable Water Resources Research Center

  12. Regional Sea Level Scenarios for Coastal Risk Management: Managing the Uncertainty of Future Sea Level Change and Extreme Water Levels for Department of Defense Coastal Sites Worldwide

    DTIC Science & Technology

    2016-04-01

    SERDP NOAA USACE Ocean MANAGING THE UNCERTAINTY OF FUTURE SEA LEVEL CHANGE AND EXTREME WATER LEVELS FOR DEPARTMENT OF DEFENSE COASTAL SITES...WORLDWIDE APRIL 2016 REGIONAL SEA LEVEL SCENARIOS FOR COASTAL RISK MANAGEMENT: COVER PHOTOS, FROM LEFT TO RIGHT: - Overwash of the island of Roi-Namur on...J.A., S. Gill, J. Obeysekera, W. Sweet, K. Knuuti, and J. Marburger. 2016. Regional Sea Level Scenarios for Coastal Risk Management: Managing the

  13. Regional variability in sea ice melt in a changing Arctic

    PubMed Central

    Perovich, Donald K.; Richter-Menge, Jacqueline A.

    2015-01-01

    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. PMID:26032323

  14. Regional variability in sea ice melt in a changing Arctic.

    PubMed

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2015-07-13

    In recent years, the Arctic sea ice cover has undergone a precipitous decline in summer extent. The sea ice mass balance integrates heat and provides insight on atmospheric and oceanic forcing. The amount of surface melt and bottom melt that occurs during the summer melt season was measured at 41 sites over the time period 1957 to 2014. There are large regional and temporal variations in both surface and bottom melting. Combined surface and bottom melt ranged from 16 to 294 cm, with a mean of 101 cm. The mean ice equivalent surface melt was 48 cm and the mean bottom melt was 53 cm. On average, surface melting decreases moving northward from the Beaufort Sea towards the North Pole; however interannual differences in atmospheric forcing can overwhelm the influence of latitude. Substantial increases in bottom melting are a major contributor to ice losses in the Beaufort Sea, due to decreases in ice concentration. In the central Arctic, surface and bottom melting demonstrate interannual variability, but show no strong temporal trends from 2000 to 2014. This suggests that under current conditions, summer melting in the central Arctic is not large enough to completely remove the sea ice cover. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. Simulation of Dust Radiative Impact on the Red Sea Using Coupled Regional Ocean/Atmosphere Modeling System

    NASA Astrophysics Data System (ADS)

    Stenchikov, G. L.; Osipov, S.

    2016-12-01

    This study focuses on the Middle East regional climate response to the dust aerosol radiative forcing. MODIS and SEVIRI satellite observations show extremely high (exceeding 1) dust optical depths over the southern Red Sea during the summer season. The significant north-to-south gradient of the dust optical depth over the Red Sea persists throughout the entire year. The radiative forcing of dust at the sea surface exceeds 120 Wm-2. The effect of this forcing to the Red Sea thermal regime and circulations is not well quantified yet. Therefore here we employ the Regional Ocean Modeling system (ROMS) fully coupled with the Weather Research and Forecasting (WRF) model to study the impact of dust on the Red Sea. The WRF was modified to interactively account for the radiative effect of dust. Daily spectral optical properties of dust are computed using Mie, T-matrix and geometric optics approaches, and are based on the SEVIRI climatological optical depth. The WRF model parent and nested domains are configured over the Middle East and North Africa (MENA) region and over the Red Sea with 30 and 10 km resolution, respectively. The ROMS model over the Red Sea has 2 km grid spacing. The simulations show that, in the equilibrium response, dust causes 0.5-0.7K cooling of the Red Sea surface waters, and weakens the overturning circulation in the Red Sea. The salinity distribution, fresh water and heat budgets are significantly perturbed. This indicates that dust plays an important role in formation of the Red Sea energy balance and circulation regimes, and has to be thoroughly accounted for in the future modeling studies.

  16. Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins

    PubMed Central

    Varrella, Stefano; Ruocco, Nadia; Ianora, Adrianna; Bentley, Matt G.; Costantini, Maria

    2016-01-01

    Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-κB, p53, δ-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure. PMID:26914213

  17. A transnational and holistic breeding approach is needed for sustainable wheat production in the Baltic Sea region.

    PubMed

    Chawade, Aakash; Armoniené, Rita; Berg, Gunilla; Brazauskas, Gintaras; Frostgård, Gunilla; Geleta, Mulatu; Gorash, Andrii; Henriksson, Tina; Himanen, Kristiina; Ingver, Anne; Johansson, Eva; Jørgensen, Lise Nistrup; Koppel, Mati; Koppel, Reine; Makela, Pirjo; Ortiz, Rodomiro; Podyma, Wieslaw; Roitsch, Thomas; Ronis, Antanas; Svensson, Jan T; Vallenback, Pernilla; Weih, Martin

    2018-03-14

    The Baltic Sea is one of the largest brackish water bodies in the world. Eutrophication is a major concern in the Baltic Sea due to the leakage of nutrients to the sea with agriculture being the primary source. Wheat (Triticum aestivum L.) is the most widely grown crop in the countries surrounding the Baltic Sea and thus promoting sustainable agriculture practices for wheat cultivation will have a major impact on reducing pollution in the Baltic Sea. This approach requires identifying and addressing key challenges for sustainable wheat production in the region. Implementing new technologies for climate-friendly breeding and digital farming across all surrounding countries should promote sustainable intensification of agriculture in the region. In this review, we highlight major challenges for wheat cultivation in the Baltic Sea region and discuss various solutions integrating transnational collaboration for pre-breeding and technology sharing to accelerate development of low input wheat cultivars with improved host plant resistance to pathogen and enhanced adaptability to the changing climate. © 2018 The Authors. Physiologia Plantarum published by John Wiley & Sons Ltd on behalf of Scandinavian Plant Physiology Society.

  18. A 21-Year Record of Arctic Sea Ice Extents and Their Regional, Seasonal, and Monthly Variability and Trends

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Cavalieri, Donald J.; Zukor, Dorothy J. (Technical Monitor)

    2001-01-01

    Satellite passive-microwave data have been used to calculate sea ice extents over the period 1979-1999 for the north polar sea ice cover as a whole and for each of nine regions. Over this 21-year time period, the trend in yearly average ice extents for the ice cover as a whole is -32,900 +/- 6,100 sq km/yr (-2.7 +/- 0.5 %/decade), indicating a reduction in sea ice coverage that has decelerated from the earlier reported value of -34,000 +/- 8,300 sq km/yr (-2.8 +/- 0.7 %/decade) for the period 1979-1996. Regionally, the reductions are greatest in the Arctic Ocean, the Kara and Barents Seas, and the Seas of Okhotsk and Japan, whereas seasonally, the reductions are greatest in summer, for which season the 1979-1999 trend in ice extents is -41,600 +/- 12,900 sq km/ yr (-4.9 +/- 1.5 %/decade). On a monthly basis, the reductions are greatest in July and September for the north polar ice cover as a whole, in September for the Arctic Ocean, in June and July for the Kara and Barents Seas, and in April for the Seas of Okhotsk and Japan. Only two of the nine regions show overall ice extent increases, those being the Bering Sea and the Gulf of St. Lawrence.For neither of these two regions is the increase statistically significant, whereas the 1079 - 1999 ice extent decreases are statistically significant at the 99% confidence level for the north polar region as a whole, the Arctic Ocean, the Seas of Okhotsk and Japan, and Hudson Bay.

  19. Polar bear and walrus response to the rapid decline in Arctic sea ice

    USGS Publications Warehouse

    Oakley, K.; Whalen, M.; Douglas, David C.; Udevitz, Mark S.; Atwood, Todd C.; Jay, C.

    2012-01-01

    The Arctic is warming faster than other regions of the world due to positive climate feedbacks associated with loss of snow and ice. One highly visible consequence has been a rapid decline in Arctic sea ice over the past 3 decades - a decline projected to continue and result in ice-free summers likely as soon as 2030. The polar bear (Ursus maritimus) and the Pacific walrus (Odobenus rosmarus divergens) are dependent on sea ice over the continental shelves of the Arctic Ocean's marginal seas. The continental shelves are shallow regions with high biological productivity, supporting abundant marine life within the water column and on the sea floor. Polar bears use sea ice as a platform for hunting ice seals; walruses use sea ice as a resting platform between dives to forage for clams and other bottom-dwelling invertebrates. How have sea ice changes affected polar bears and walruses? How will anticipated changes affect them in the future?

  20. Regional genetic differentiation in the blue mussel from the Baltic Sea area

    NASA Astrophysics Data System (ADS)

    Larsson, J.; Lind, E. E.; Corell, H.; Grahn, M.; Smolarz, K.; Lönn, M.

    2017-08-01

    Connectivity plays an important role in shaping the genetic structure and in evolution of local adaptation. In the marine environment barriers to gene flow are in most cases caused by gradients in environmental factors, ocean circulation and/or larval behavior. Despite the long pelagic larval stages, with high potential for dispersal many marine organisms have been shown to have a fine scale genetic structuring. In this study, by using a combination of high-resolution genetic markers, species hybridization data and biophysical modeling we can present a comprehensive picture of the evolutionary landscape for a keystone species in the Baltic Sea, the blue mussel. We identified distinct genetic differentiation between the West Coast, Baltic Proper and Bothnian Sea regions, with lower gene diversity in the Bothnian Sea. Oceanographic connectivity together with salinity and to some extent species identity provides explanations for the genetic differentiation between the West Coast and the Baltic Sea (Baltic Proper and Bothnian Sea). The genetic differentiation between the Baltic Proper and Bothnian Sea cannot be directly explained by oceanographic connectivity, species identity or salinity, while the lower connectivity to the Bothnian Sea may explain the lower gene diversity.

  1. Temperature affects the timing of spawning and migration of North Sea mackerel

    NASA Astrophysics Data System (ADS)

    Jansen, Teunis; Gislason, Henrik

    2011-01-01

    Climate change accentuates the need for knowing how temperature impacts the life history and productivity of economically and ecologically important species of fish. We examine the influence of temperature on the timing of the spawning and migrations of North Sea Mackerel using data from larvae CPR surveys, egg surveys and commercial landings from Danish coastal fisheries in the North Sea, Skagerrak, Kattegat and inner Danish waters. The three independent sources of data all show that there is a significant relationship between the timing of spawning and sea surface temperature. Large mackerel are shown to arrive at the feeding areas before and leave later than small mackerel and the sequential appearance of mackerel in each of the feeding areas studied supports the anecdotal evidence for an eastward post-spawning migration. Occasional commercial catches taken in winter in the Sound N, Kattegat and Skagerrak together with catches in the first quarter IBTS survey furthermore indicate some overwintering here. Significant relationships between temperature and North Sea mackerel spawning and migration have not been documented before. The results have implications for mackerel resource management and monitoring. An increase in temperature is likely to affect the timing and magnitude of the growth, recruitment and migration of North Sea mackerel with subsequent impacts on its sustainable exploitation.

  2. Simulation of the Pinatubo Impact on the Red Sea Using Coupled Regional Ocean/Atmosphere Modeling System

    NASA Astrophysics Data System (ADS)

    Stenchikov, G. L.; Osipov, S.

    2016-12-01

    This study focuses on the Middle East regional climate response to the Mt. Pinatubo volcanic eruption of 1991. It is motivated by the observed severe winter cooling in the Middle East during the winter of 1991/92. The Red Sea surface temperature dropped by more than 1K and deep water mixing caused coral bleaching for a few years. To better understand the mechanisms of the Middle East climate response and evaluate the effects of radiative cooling and regional meteorological processes on the Red Sea, we employ the Regional Ocean Modeling system (ROMS) fully coupled with the Weather Research and Forecasting (WRF) model. The WRF model parent and nested domains are configured over the Middle East and North Africa (MENA) region and over the Red Sea with 30 and 10 km resolution, respectively. The ROMS model over the Red Sea has 2 km grid spacing. The WRF code was modified to interactively account for the radiative effect of volcanic aerosols. Spectral optical properties of sulfate aerosols are computed using Mie based on the Sato's optical depth. Both atmosphere and ocean models capture the main features of the MENA climate response and correctly reproduce the anomalous winter cooling of 1991/92. We find that the sea surface cooling associated with meteorological effects prevails that caused by the direct radiative forcing of volcanic aerosols. The overturning circulation in the Red Sea strengthens. The salinity distribution and deep water formation are significantly perturbed.

  3. Chemical Composition of Sea Fog Water Along the South China Sea

    NASA Astrophysics Data System (ADS)

    Yue, Yanyu; Niu, Shengjie; Zhao, Lijuan; Zhang, Yu; Xu, Feng

    2012-12-01

    The chemical and microphysical properties of sea fog were measured during a field experiment on Donghai Island, Zhanjiang of China from March 15 to April 18, 2010. The average pH and electrical conductivity (EC) value of the six sea fog cases during the experiment was 5.2 and 1,884 μS/cm. The observed total ion concentration of sea fog was four orders of magnitude higher than those in the North Pacific and other sea areas of China. The dominant anion and cation in all sea fog water samples were Cl- and Na+, respectively. From backward trajectory analysis and ion loading computation, it can be concluded that the ions in the samples were transported either from pollutants in distant industrial cities or from local ion deposition processes. The concentration of Ca2+ in the sea fog water samples in Case 2 suggested that a dust storm in the Inner Mongolia, a northern region of China several thousand kilometers away, could reach the South China Sea. The data also showed that the sea fog droplet spectrum over the South China Sea is unimodal. Through relationship analysis, it is illustrated that the evolution of microphysics (such as droplet concentration, diameter, and liquid water content) during fog process could affect the chemical properties of sea fog.

  4. Study on the methods of rational analysis about the area of the Planning of Sea Usage of Regional Construction

    NASA Astrophysics Data System (ADS)

    Ya-Juan, Li; Tian-Yu, Mao; Mingjing-Tian

    2018-03-01

    The Planning of Sea Usage of Regional Construction is a new area, and the rational analysis about the area of which is one of its difficulties. Based on “Urban land classification and land use planning and construction standards”, the land use control index method study the rationality of the sea usage area of the whole region, by accumulating for specific land use indicators for each land type within the planning area. This paper, takeing the project named “caofeidian integrated service area” for example, make a little study on the land use control index method used by the sea usage demonstration of the planning of sea usage of regional construction. The study will be good for improving the technical methods of rational analysis about the area of the planning of sea usage of regional construction.

  5. Relevance of Regional Hydro-Climatic Projection Data for Hydrodynamics and Water Quality Modelling of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Goldenberg, R.; Vigouroux, G.; Chen, Y.; Bring, A.; Kalantari, Z.; Prieto, C.; Destouni, G.

    2017-12-01

    The Baltic Sea, located in Northern Europe, is one of the world's largest body of brackish water, enclosed and surrounded by nine different countries. The magnitude of climate change may be particularly large in northern regions, and identifying its impacts on vulnerable inland waters and their runoff and nutrient loading to the Baltic Sea is an important and complex task. Exploration of such hydro-climatic impacts is needed to understand potential future changes in physical, ecological and water quality conditions in the regional coastal and marine waters. In this study, we investigate hydro-climatic changes and impacts on the Baltic Sea by synthesizing multi-model climate projection data from the CORDEX regional downscaling initiative (EURO- and Arctic- CORDEX domains, http://www.cordex.org/). We identify key hydro-climatic variable outputs of these models and assess model performance with regard to their projected temporal and spatial change behavior and impacts on different scales and coastal-marine parts, up to the whole Baltic Sea. Model spreading, robustness and impact implications for the Baltic Sea system are investigated for and through further use in simulations of coastal-marine hydrodynamics and water quality based on these key output variables and their change projections. Climate model robustness in this context is assessed by inter-model spreading analysis and observation data comparisons, while projected change implications are assessed by forcing of linked hydrodynamic and water quality modeling of the Baltic Sea based on relevant hydro-climatic outputs for inland water runoff and waterborne nutrient loading to the Baltic sea, as well as for conditions in the sea itself. This focused synthesis and analysis of hydro-climatically relevant output data of regional climate models facilitates assessment of reliability and uncertainty in projections of driver-impact changes of key importance for Baltic Sea physical, water quality and ecological

  6. 50 CFR 697.12 - At-sea sea sampler/observer coverage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false At-sea sea sampler/observer coverage. 697... MANAGEMENT General Provisions § 697.12 At-sea sea sampler/observer coverage. (a) The Regional Administrator...-approved sea sampler/observer. If requested by the Regional Administrator to carry a sea sampler/observer...

  7. 50 CFR 697.12 - At-sea sea sampler/observer coverage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false At-sea sea sampler/observer coverage. 697... MANAGEMENT General Provisions § 697.12 At-sea sea sampler/observer coverage. (a) The Regional Administrator...-approved sea sampler/observer. If requested by the Regional Administrator to carry a sea sampler/observer...

  8. 50 CFR 697.12 - At-sea sea sampler/observer coverage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false At-sea sea sampler/observer coverage. 697... MANAGEMENT General Provisions § 697.12 At-sea sea sampler/observer coverage. (a) The Regional Administrator...-approved sea sampler/observer. If requested by the Regional Administrator to carry a sea sampler/observer...

  9. Much ado about SEA/SA monitoring: The performance of English Regional Spatial Strategies, and some German comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanusch, Marie; Glasson, John

    Strategic Environmental Assessment (SEA) seeks to better integrate environmental considerations into the preparation and decision-making process of plans and programmes with a view to promoting sustainable development. Further to application of the European Directive 2001/42/EC (SEA Directive) in 2004, the body of practical SEA experience, and parallel research, has increased steadily. Yet there is a crucial element of SEA which cannot build on much experience but whose importance will grow over time - namely that of SEA monitoring. The paper explores the application of SEA monitoring for English Regional Spatial Strategies (RSSs). It briefly introduces the role of SEA monitoringmore » and its legal requirements, the English approach of integrating SEA into Sustainability Appraisal (SA) and the nature of the current English Regional Planning context. The main part presents the research findings and discusses how practitioners cope with the challenges of SEA/SA monitoring - with guiding questions: why, what, who, how, when, and with what outcomes? Reflecting that monitoring is just about to start, the paper draws on measures envisaged for monitoring in the SA reports prepared for RSS, and on expert interviews. It identifies monitoring trends and highlights workable approaches as well as shortcomings. For a critical reflection the findings are mirrored briefly with SEA monitoring approaches of German Regional Plans. Although it is still early days for such monitoring, the findings indicate that there is a danger that some of the specific requirements and objectives of SEA/SA monitoring are not fully met, mainly due to insufficient databases, inappropriate institutional conditions and limited personnel and financial resources. Some recommendations are offered in conclusion.« less

  10. Small Infrared Target Detection by Region-Adaptive Clutter Rejection for Sea-Based Infrared Search and Track

    PubMed Central

    Kim, Sungho; Lee, Joohyoung

    2014-01-01

    This paper presents a region-adaptive clutter rejection method for small target detection in sea-based infrared search and track. In the real world, clutter normally generates many false detections that impede the deployment of such detection systems. Incoming targets (missiles, boats, etc.) can be located in the sky, horizon and sea regions, which have different types of clutters, such as clouds, a horizontal line and sea-glint. The characteristics of regional clutter were analyzed after the geometrical analysis-based region segmentation. The false detections caused by cloud clutter were removed by the spatial attribute-based classification. Those by the horizontal line were removed using the heterogeneous background removal filter. False alarms by sun-glint were rejected using the temporal consistency filter, which is the most difficult part. The experimental results of the various cluttered background sequences show that the proposed region adaptive clutter rejection method produces fewer false alarms than that of the mean subtraction filter (MSF) with an acceptable degradation detection rate. PMID:25054633

  11. The Solomon Sea eddy activity from a 1/36° regional model

    NASA Astrophysics Data System (ADS)

    Djath, Bughsin; Babonneix, Antoine; Gourdeau, Lionel; Marin, Frédéric; Verron, Jacques

    2013-04-01

    In the South West Pacific, the Solomon Sea exhibits the highest levels of eddy kinetic energy but relatively little is known about the eddy activity in this region. This Sea is directly influenced by a monsoonal regime and ENSO variability, and occupies a strategical location as the Western Boundary Currents exiting it are known to feed the warm pool and to be the principal sources of the Equatorial UnderCurrent. During their transit in the Solomon Sea, meso-scale eddies are suspected to notably interact and influence these water masses. The goal of this study is to give an exhaustive description of this eddy activity. A dual approach, based both on altimetric data and high resolution modeling, has then been chosen for this purpose. First, an algorithm is applied on nearly 20 years of 1/3° x 1/3° gridded SLA maps (provided by the AVISO project). This allows eddies to be automatically detected and tracked, thus providing some basic eddy properties. The preliminary results show that two main and distinct types of eddies are detected. Eddies in the north-eastern part shows a variability associated with the mean structure, while those in the southern part are associated with generation/propagation processes. However, the resolution of the AVISO dataset is not very well suited to observe fine structures and to match with the numerous islands bordering the Solomon Sea. For this reason, we will confront these observations with the outputs of a 1/36° resolution realistic model of the Solomon Sea. The high resolution numerical model (1/36°) indeed permits to reproduce very fine scale features, such as eddies and filaments. The model is two-way embedded in a 1/12° regional model which is itself one-way embedded in the DRAKKAR 1/12° global model. The NEMO code is used as well as the AGRIF software for model nestings. Validation is realized by comparison with AVISO observations and available in situ data. In preparing the future wide-swath altimetric SWOT mission that is

  12. Detection time for global and regional sea level trends and accelerations

    NASA Astrophysics Data System (ADS)

    Jordà, G.

    2014-10-01

    Many studies analyze trends on sea level data with the underlying purpose of finding indications of a long-term change that could be interpreted as the signature of anthropogenic climate change. The identification of a long-term trend is a signal-to-noise problem where the natural variability (the "noise") can mask the long-term trend (the "signal"). The signal-to-noise ratio depends on the magnitude of the long-term trend, on the magnitude of the natural variability, and on the length of the record, as the climate noise is larger when averaged over short time scales and becomes smaller over longer averaging periods. In this paper, we evaluate the time required to detect centennial sea level linear trends and accelerations at global and regional scales. Using model results and tide gauge observations, we find that the averaged detection time for a centennial linear trend is 87.9, 76.0, 59.3, 40.3, and 25.2 years for trends of 0.5, 1.0, 2.0, 5.0, and 10.0 mm/yr, respectively. However, in regions with large decadal variations like the Gulf Stream or the Circumpolar current, these values can increase up to a 50%. The spatial pattern of the detection time for sea level accelerations is almost identical. The main difference is that the length of the records has to be about 40-60 years longer to detect an acceleration than to detect a linear trend leading to an equivalent change after 100 years. Finally, we have used a new sea level reconstruction, which provides a more accurate representation of interannual variability for the last century in order to estimate the detection time for global mean sea level trends and accelerations. Our results suggest that the signature of natural variability in a 30 year global mean sea level record would be less than 1 mm/yr. Therefore, at least 2.2 mm/yr of the recent sea level trend estimated by altimetry cannot be attributed to natural multidecadal variability. This article was corrected on 19 NOV 2014. See the end of the full text

  13. Improvement of global and regional mean sea level derived from satellite altimetry multi missions

    NASA Astrophysics Data System (ADS)

    Ablain, M.; Faugere, Y.; Larnicol, G.; Picot, N.; Cazenave, A.; Benveniste, J.

    2012-04-01

    With the satellite altimetry missions, the global mean sea level (GMSL) has been calculated on a continual basis since January 1993. 'Verification' phases, during which the satellites follow each other in close succession (Topex/Poseidon--Jason-1, then Jason-1--Jason-2), help to link up these different missions by precisely determining any bias between them. Envisat, ERS-1 and ERS-2 are also used, after being adjusted on these reference missions, in order to compute Mean Sea Level at high latitudes (higher than 66°N and S), and also to improve spatial resolution by combining all these missions together. The global mean sea level (MSL) deduced from TOPEX/Poseidon, Jason-1 and Jason-2 provide a global rate of 3.2 mm from 1993 to 2010 applying the post glacial rebound (MSL aviso website http://www.jason.oceanobs.com/msl). Besides, the regional sea level trends bring out an inhomogeneous repartition of the ocean elevation with local MSL slopes ranging from + 8 mm/yr to - 8 mm/year. A study published in 2009 [Ablain et al., 2009] has shown that the global MSL trend unceratainty was estimated at +/-0.6 mm/year with a confidence interval of 90%. The main sources of errors at global and regional scales are due to the orbit calculation and the wet troposphere correction. But others sea-level components have also a significant impact on the long-term stability of MSL as for instance the stability of instrumental parameters and the atmospheric corrections. Thanks to recent studies performed in the frame of the SALP project (supported by CNES) and Sea-level Climate Change Initiative project (supported by ESA), strong improvements have been provided for the estimation of the global and regional MSL trends. In this paper, we propose to describe them; they concern the orbit calculation thanks to new gravity fields, the atmospheric corrections thanks to ERA-interim reanalyses, the wet troposphere corrections thanks to the stability improvement, and also empirical corrections

  14. Faunistic Composition, Ecological Properties, and Zoogeographical Composition of the Elateridae (Coleoptera) Family in the Western Black Sea Region of Turkey

    PubMed Central

    Kabalak, Mahmut; Sert, Osman

    2013-01-01

    The main aim of this study was to understand the faunistic composition, ecological properties, and zoogeographical composition of the family Elateridae (Coleoptera) of the Western Black Sea region of Turkey. As a result, 44 species belonging to 5 subfamilies and 19 genera were identified. After adding species reported in the literature to the analysis, the fauna in the research area consists of 6 subfamilies, 23 genera and 72 species. Most of the Elateridae fauna of the Western Black Sea region were classified in the subfamilies Elaterinae and Dendrometrinae. The genus Athous was the most species-rich genus. The species composition of the Elateridae fauna of the Western Black Sea region partially overlaps with the known Elateridae fauna of Turkey. The Western Black Sea region shares the most species with the European part of the Western Palaearctic region, including many of those in the Elateridae family, compared to other regions. Comparisons of the three geographical regions of Turkey show that fauna composition, ecological properties, and zoogeographical compositions of the Middle and Western Black Sea regions are more similar to each other than to those of the Central Anatolian region. PMID:24787627

  15. Method of calculating tsunami travel times in the Andaman Sea region

    PubMed Central

    Visuthismajarn, Parichart; Tanavud, Charlchai; Robson, Mark G.

    2014-01-01

    A new model to calculate tsunami travel times in the Andaman Sea region has been developed. The model specifically provides more accurate travel time estimates for tsunamis propagating to Patong Beach on the west coast of Phuket, Thailand. More generally, the model provides better understanding of the influence of the accuracy and resolution of bathymetry data on the accuracy of travel time calculations. The dynamic model is based on solitary wave theory, and a lookup function is used to perform bilinear interpolation of bathymetry along the ray trajectory. The model was calibrated and verified using data from an echosounder record, tsunami photographs, satellite altimetry records, and eyewitness accounts of the tsunami on 26 December 2004. Time differences for 12 representative targets in the Andaman Sea and the Indian Ocean regions were calculated. The model demonstrated satisfactory time differences (<2 min/h), despite the use of low resolution bathymetry (ETOPO2v2). To improve accuracy, the dynamics of wave elevation and a velocity correction term must be considered, particularly for calculations in the nearshore region. PMID:25741129

  16. Method of calculating tsunami travel times in the Andaman Sea region.

    PubMed

    Kietpawpan, Monte; Visuthismajarn, Parichart; Tanavud, Charlchai; Robson, Mark G

    2008-07-01

    A new model to calculate tsunami travel times in the Andaman Sea region has been developed. The model specifically provides more accurate travel time estimates for tsunamis propagating to Patong Beach on the west coast of Phuket, Thailand. More generally, the model provides better understanding of the influence of the accuracy and resolution of bathymetry data on the accuracy of travel time calculations. The dynamic model is based on solitary wave theory, and a lookup function is used to perform bilinear interpolation of bathymetry along the ray trajectory. The model was calibrated and verified using data from an echosounder record, tsunami photographs, satellite altimetry records, and eyewitness accounts of the tsunami on 26 December 2004. Time differences for 12 representative targets in the Andaman Sea and the Indian Ocean regions were calculated. The model demonstrated satisfactory time differences (<2 min/h), despite the use of low resolution bathymetry (ETOPO2v2). To improve accuracy, the dynamics of wave elevation and a velocity correction term must be considered, particularly for calculations in the nearshore region.

  17. Timing and regional patterns of snowmelt on Antarctic sea ice from passive microwave satellite observations

    NASA Astrophysics Data System (ADS)

    Arndt, Stefanie; Willmes, Sascha; Dierking, Wolfgang; Nicolaus, Marcel

    2016-04-01

    The better understanding of temporal variability and regional distribution of surface melt on Antarctic sea ice is crucial for the understanding of atmosphere-ocean interactions and the determination of mass and energy budgets of sea ice. Since large regions of Antarctic sea ice are covered with snow during most of the year, observed inter-annual and regional variations of surface melt mainly represents melt processes in the snow. It is therefore important to understand the mechanisms that drive snowmelt, both at different times of the year and in different regions around Antarctica. In this study we combine two approaches for observing both surface and volume snowmelt by means of passive microwave satellite data. The former is achieved by measuring diurnal differences of the brightness temperature TB at 37 GHz, the latter by analyzing the ratio TB(19GHz)/TB(37GHz). Moreover, we use both melt onset proxies to divide the Antarctic sea ice cover into characteristic surface melt patterns from 1988/89 to 2014/15. Our results indicate four characteristic melt types. On average, 43% of the ice-covered ocean shows diurnal freeze-thaw cycles in the surface snow layer, resulting in temporary melt (Type A), less than 1% shows continuous snowmelt throughout the snowpack, resulting in strong melt over a period of several days (Type B), 19% shows Type A and B taking place consecutively (Type C), and for 37% no melt is observed at all (Type D). Continuous melt is primarily observed in the outflow of the Weddell Gyre and in the northern Ross Sea, usually 20 days after the onset of temporary melt. Considering the entire data set, snowmelt processes and onset do not show significant temporal trends. Instead, areas of increasing (decreasing) sea-ice extent have longer (shorter) periods of continuous snowmelt.

  18. Influence of projected snow and sea-ice changes on future climate in heavy snowfall region

    NASA Astrophysics Data System (ADS)

    Matsumura, S.; Sato, T.

    2011-12-01

    Snow/ice albedo and cloud feedbacks are critical for climate change projection in cryosphere regions. However, future snow and sea-ice distributions are significantly different in each GCM. Thus, surface albedo in cryosphere regions is one of the causes of the uncertainty for climate change projection. Northern Japan is one of the heaviest snowfall regions in the world. In particular, Hokkaido is bounded on the north by the Okhotsk Sea, where is the southernmost ocean in the Northern Hemisphere that is covered with sea ice during winter. Wintertime climate around Hokkaido is highly sensitive to fluctuations in snow and sea-ice. The purpose of this study is to evaluate the influence of global warming on future climate around Hokkaido, using the Pseudo-Global-Warming method (PGW) by a regional climate model. The boundary conditions of the PGW run were obtained by adding the difference between the future (2090s) and past (1990s) climates simulated by coupled general circulation model (MIROC3.2 medres), which is from the CMIP3 multi-model dataset, into the 6-hourly NCEP reanalysis (R-2) and daily OISST data in the past climate (CTL) run. The PGW experiments show that snow depth significantly decreases over mountainous areas and snow cover mainly decreases over plain areas, contributing to higher surface warming due to the decreased snow albedo. Despite the snow reductions, precipitation mainly increases over the mountainous areas because of enhanced water vapor content. However, precipitation decreases over the Japan Sea and the coastal areas, indicating the weakening of a convergent cloud band, which is formed by convergence between cold northwesteries from the Eurasian continent and anticyclonic circulation over the Okhotsk Sea. These results suggest that Okhotsk sea-ice decline may change the atmospheric circulation and the resulting effect on cloud formation, resulting in changes in winter snow or precipitation. We will also examine another CMIP3 model (MRI-CGCM2

  19. Multiple Factors Affect Socioeconomics and Wellbeing of Artisanal Sea Cucumber Fishers.

    PubMed

    Purcell, Steven W; Ngaluafe, Poasi; Foale, Simon J; Cocks, Nicole; Cullis, Brian R; Lalavanua, Watisoni

    2016-01-01

    Small-scale fisheries are important to livelihoods and subsistence seafood consumption of millions of fishers. Sea cucumbers are fished worldwide for export to Asia, yet few studies have assessed factors affecting socioeconomics and wellbeing among fishers. We interviewed 476 men and women sea cucumber fishers at multiple villages within multiple locations in Fiji, Kiribati, Tonga and New Caledonia using structured questionnaires. Low rates of subsistence consumption confirmed a primary role of sea cucumbers in income security. Prices of sea cucumbers sold by fishers varied greatly among countries, depending on the species. Gender variation in landing prices could be due to women catching smaller sea cucumbers or because some traders take advantage of them. Dissatisfaction with fishery income was common (44% of fishers), especially for i-Kiribati fishers, male fishers, and fishers experiencing difficulty selling their catch, but was uncorrelated with sale prices. Income dissatisfaction worsened with age. The number of livelihood activities averaged 2.2-2.5 across countries, and varied significantly among locations. Sea cucumbers were often a primary source of income to fishers, especially in Tonga. Other common livelihood activities were fishing other marine resources, copra production in Kiribati, agriculture in Fiji, and salaried jobs in New Caledonia. Fishing other coastal and coral reef resources was the most common fall-back livelihood option if fishers were forced to exit the fishery. Our data highlight large disparities in subsistence consumption, gender-related price equity, and livelihood diversity among parallel artisanal fisheries. Improvement of supply chains in dispersed small-scale fisheries appears as a critical need for enhancing income and wellbeing of fishers. Strong evidence for co-dependence among small-scale fisheries, through fall-back livelihood preferences of fishers, suggests that resource managers must mitigate concomitant effects on other

  20. Polar bears and sea ice habitat change

    USGS Publications Warehouse

    Durner, George M.; Atwood, Todd C.; Butterworth, Andy

    2017-01-01

    The polar bear (Ursus maritimus) is an obligate apex predator of Arctic sea ice and as such can be affected by climate warming-induced changes in the extent and composition of pack ice and its impacts on their seal prey. Sea ice declines have negatively impacted some polar bear subpopulations through reduced energy input because of loss of hunting habitats, higher energy costs due to greater ice drift, ice fracturing and open water, and ultimately greater challenges to recruit young. Projections made from the output of global climate models suggest that polar bears in peripheral Arctic and sub-Arctic seas will be reduced in numbers or become extirpated by the end of the twenty-first century if the rate of climate warming continues on its present trajectory. The same projections also suggest that polar bears may persist in the high-latitude Arctic where heavy multiyear sea ice that has been typical in that region is being replaced by thinner annual ice. Underlying physical and biological oceanography provides clues as to why polar bear in some regions are negatively impacted, while bears in other regions have shown no apparent changes. However, continued declines in sea ice will eventually challenge the survival of polar bears and efforts to conserve them in all regions of the Arctic.

  1. Physical processes affecting availability of dissolved silicate for diatom production in the Arabian Sea

    NASA Technical Reports Server (NTRS)

    Young, David K.; Kindle, John C.

    1994-01-01

    A passive tracer to represent dissolved silicate concentrations, with biologically realistic uptake kinetics, is successfully incorporated into a three-dimensional, eddy-resolving, ocean circulation model of the Indian Ocean. Hypotheses are tested to evaluate physical processes which potentially affect the availability of silicate for diatom production in the Arabian Sea. An alternative mechanism is offered to the idea that open ocean upwelling is primarily responsible for the high, vertical nutrient flux and consequent large-scale phytoplankton bloom in the northwestern Arabian Sea during the southwest monsoon. Model results show that dissolved silicate in surface waters available for uptake by diatoms is primarily influenced by the intensity of nearshore upwelling from soutwest monsoonal wind forcing and by the offshore advective transport of surface waters. The upwelling, which in the model occurs within 200 +/- 50 km of the coast, appears to be a result of a combination of coastal upwelling, Elkman pumping, and divergence of the coastal flow as it turns offshore. Localized intensifications of silicate concentrations appear to be hydrodynamically driven and geographically correlated to coastal topographic features. The absence of diatoms in sediments of the eastern Arabian Basin is consistent with modeled distributional patterns of dissolved silicate resulting from limited westward advection of upwelled coastal waters from the western continental margin of India and rapid uptake of available silicate by diatoms. Concentrations of modeled silicate become sufficiently low to become unavailable for diatom production in the eastern Arabian Sea, a region between 61 deg E and 70 deg E at 8 deg N on the south, with the east and west boundaries converging on the north at approximately 67 deg E, 20 deg N.

  2. Organic biomarkers in deep-sea regions affected by bottom trawling: pigments, fatty acids, amino acids and carbohydrates in surface sediments from the La Fonera (Palamós) Canyon, NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Sañé, E.; Martín, J.; Puig, P.; Palanques, A.

    2012-12-01

    Deep-sea ecosystems are in general adapted to a limited variability of physical conditions, resulting in high vulnerability and slow recovery rates from anthropogenic perturbations such as bottom trawling. Commercial trawling is the most recurrent and pervasive of human impacts on the deep-sea floor, but studies on its consequences on the biogeochemistry of deep-sea sediments are still scarce. Pigments, fatty acids, amino acids and carbohydrates were analyzed in sediments from the flanks of the La Fonera (Palamós) submarine canyon (NW Mediterranean Sea), where a commercial bottom trawling fishery has been active for more than 70 yr. More specifically, we investigated how trawling-induced sediment reworking affects the quality of sedimentary organic matter which reaches the seafloor and accumulates in the sediment column, which is fundamental for the development of benthic communities. Sediment samples were collected during two oceanographic cruises in spring and autumn 2011. The sampled sites included trawl fishing grounds as well as pristine (control) areas. We report that bottom trawling in the flanks of the La Fonera Canyon has caused an alteration of the quality of the organic matter accumulated in the upper 5 cm of the seafloor. The use of a wide pool of biochemical tracers characterized by different reactivity to degradation allowed us to discriminate the long-term effects of trawled-induced sediment reworking from the natural variability caused by the seasonal cycle of production and sinking of biogenic particles. Differences between untrawled and trawled areas were evidenced by labile amino acids, while differences between spring and autumn samples were detected only by the more labile indicators chlorophyll a and mono-unsaturated fatty acids. These results suggest that changes in the biochemical composition of the sedimentary organic matter caused by bottom trawling can be more relevant than those associated with natural seasonality and pose serious

  3. Organic biomarkers in deep-sea regions affected by bottom trawling: pigments, fatty acids, amino acids and carbohydrates in surface sediments from the La Fonera (Palamós) Canyon, NW Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Sañé, E.; Martín, J.; Puig, P.; Palanques, A.

    2013-12-01

    Deep-sea ecosystems are in general adapted to a limited variability of physical conditions, resulting in high vulnerability and slow recovery rates from anthropogenic perturbations such as bottom trawling. Commercial trawling is the most recurrent and pervasive of human impacts on the deep-sea floor, but studies on its consequences on the biogeochemistry of deep-sea sediments are still scarce. Pigments, fatty acids, amino acids and carbohydrates were analysed in sediments from the flanks of the La Fonera (Palamós) submarine canyon (NW Mediterranean Sea), where a commercial bottom trawling fishery has been active for more than 70 yr. More specifically, we investigated how trawling-induced sediment reworking affects the quality of sedimentary organic matter which reaches the seafloor and accumulates in the sediment column, which is fundamental for the development of benthic communities. Sediment samples were collected during two oceanographic cruises in spring and autumn 2011. The sampled sites included trawl fishing grounds as well as pristine (control) areas. We report that bottom trawling in the flanks of the La Fonera Canyon has caused an alteration of the quality of the organic matter accumulated in the upper 5 cm of the seafloor. The use of a wide pool of biochemical tracers characterized by different reactivity to degradation allowed for us to discriminate the long-term effects of trawl-induced sediment reworking from the natural variability caused by the seasonal cycle of production and sinking of biogenic particles. Differences between untrawled and trawled areas were evidenced by labile amino acids, while differences between spring and autumn samples were detected only by the more labile indicators chlorophyll a and monounsaturated fatty acids. These results suggest that changes in the biochemical composition of the sedimentary organic matter caused by bottom trawling can be more relevant than those associated with natural seasonality and pose serious

  4. Regional turbulence patterns driven by meso- and submesoscale processes in the Caribbean Sea

    NASA Astrophysics Data System (ADS)

    C. Pérez, Juan G.; R. Calil, Paulo H.

    2017-09-01

    The surface ocean circulation in the Caribbean Sea is characterized by the interaction between anticyclonic eddies and the Caribbean Upwelling System (CUS). These interactions lead to instabilities that modulate the transfer of kinetic energy up- or down-cascade. The interaction of North Brazil Current rings with the islands leads to the formation of submesoscale vorticity filaments leeward of the Lesser Antilles, thus transferring kinetic energy from large to small scales. Within the Caribbean, the upper ocean dynamic ranges from large-scale currents to coastal upwelling filaments and allow the vertical exchange of physical properties and supply KE to larger scales. In this study, we use a regional model with different spatial resolutions (6, 3, and 1 km), focusing on the Guajira Peninsula and the Lesser Antilles in the Caribbean Sea, in order to evaluate the impact of submesoscale processes on the regional KE energy cascade. Ageostrophic velocities emerge as the Rossby number becomes O(1). As model resolution is increased submesoscale motions are more energetic, as seen by the flatter KE spectra when compared to the lower resolution run. KE injection at the large scales is greater in the Guajira region than in the others regions, being more effectively transferred to smaller scales, thus showing that submesoscale dynamics is key in modulating eddy kinetic energy and the energy cascade within the Caribbean Sea.

  5. Climatological Factors Affecting Electromagnetic Surface Ducting in the Aegean Sea Region

    DTIC Science & Technology

    2012-03-01

    low precipitation, and northeasterly winds, all due to changes in large scale circulations and a northward shift in extratropical storm tracks. The...differences over the Aegean region, that are governed by large-scale climate factors. a. Winter During winter, the Aegean area is subject to extratropical ... extratropical cyclones from entering the Aegean region, while opposite shifts can 18 allow extratropical cyclones to more frequently enter the Aegean

  6. Tectonics of the Red Sea region reassessed

    NASA Astrophysics Data System (ADS)

    Ghebreab, Woldai

    1998-11-01

    The brittle upper level of the continental crust had been rifted with or without ocean opening many times in many places during the geological past and the process is still happening. Since the advent of plate tectonic theory in the early 1960s, the formation of such rifts has been viewed in the context of plate tectonic processes that caused the repeated dispersal of supercontinents. Several researchers focused on the mechanisms of formation of continental rifts because some rifts, like the Red Sea and Gulf of Aden, are precursors to ocean basins and many hydrocarbons yet to be located which are either directly or indirectly related to rift structures. The East African Rift System and the Red Sea-Gulf of Aden young oceans have been considered as prime examples of the early stage of continental separation that has long been a testing ground for classical hypotheses of continental drift. The Red Sea separates the once contiguous Neoproterozoic Arabian-Nubian Shields and started opening about 25 Ma ago. Geophysics and geochronology of dredged basaltic rocks indicate that sea-floor spreading began at only about 4-5 Ma. Numerous multidisciplinary investigations have been carried out in this region. However, several questions remain unresolved. Examples pertain to the nature of the crust that underlies the shelves, the extent of the ocean floor, the interplay between sea-floor spreading, crustal extension and plutonic activity and mechanisms of rifting. Several mechanisms of rifting have been proposed for the formation of the Red Sea. Examples include extension by prolonged steep normal faulting (horst-graben terrain), early diffuse ductile extension followed by brittle deformation, low-angle lithospheric simple shear, low-angle shear and magmatic expansion, lithospheric thinning by faulting and dike injection, northeastward migration of asymmetric rifting over a fixed mantle plume and the formation of pull-apart basin(s) by transtension. The major differences between

  7. Overview of the Frontal Air-Sea Interaction Experiment (FASINEX) - A study of air-sea interaction in a region of strong oceanic gradients

    NASA Technical Reports Server (NTRS)

    Weller, Robert A.

    1991-01-01

    From 1984 to 1986 the cooperative Frontal Air-Sea Interaction Experiment (FASINEX) was conducted in the subtropical convergence zone southwest of Bermuda. The overall objective of the experiment was to study air-sea interaction on 1- to 100-km horizontal scales in a region of the open ocean characterized by strong horizontal gradients in upper ocean and sea surface properties. Ocean fronts provided both large spatial gradients in sea surface temperature and strong jetlike flows in the upper ocean. The motivation for and detailed objectives of FASINEX are reviewed. Then the components of the field program are summarized. Finally, selected results are presented in order to provide an overview of the outcome of FASINEX.

  8. Factors affecting distribution patterns of organic carbon in sediments at regional and national scales in China.

    PubMed

    Cao, Qingqing; Wang, Hui; Zhang, Yiran; Lal, Rattan; Wang, Renqing; Ge, Xiuli; Liu, Jian

    2017-07-14

    Wetlands are an important carbon reservoir pool in terrestrial ecosystems. Light fraction organic carbon (LFOC), heavy fraction organic carbon (HFOC), and dissolved organic carbon (DOC) were fractionated in sediment samples from the four wetlands (ZR: Zhaoniu River; ZRCW: Zhaoniu River Constructed Wetland; XR: Xinxue River; XRCW: Xinxue River Constructed Wetland). Organic carbon (OC) from rivers and coasts of China were retrieved and statistically analyzed. At regional scale, HFOC stably dominates the deposition of OC (95.4%), whereas DOC and LFOC in ZR is significantly higher than in ZRCW. Concentration of DOC is significantly higher in XRCW (30.37 mg/l) than that in XR (13.59 mg/l). DOC and HFOC notably distinguish between two sampling campaigns, and the deposition of carbon fractions are limited by low nitrogen input. At the national scale, OC attains the maximum of 2.29% at precipitation of 800 mm. OC has no significant difference among the three climate zones but significantly higher in river sediments than in coasts. Coastal OC increases from Bohai Sea (0.52%) to South Sea (0.70%) with a decrease in latitude. This study summarizes the factors affecting organic carbon storage in regional and national scale, and have constructive implications for carbon assessment, modelling, and management.

  9. Comparison of two Centennial-scale Sea Surface Temperature Datasets in the Regional Climate Change Studies of the China Seas

    NASA Astrophysics Data System (ADS)

    Qingyuan, Wang; Yanan, Wang; Yiwei, Liu

    2017-08-01

    Two widely used sea surface temperature (SST) datasets are compared in this article. We examine characteristics in the climate variability of SST in the China Seas.Two series yielded almost the same warming trend for 1890-2013 (0.7-0.8°C/100 years). However, HadISST1 series shows much stronger warming trends during 1961-2013 and 1981-2013 than that of COBE SST2 series. The disagreement between data sets was marked after 1981. For the hiatus period 1998-2013, the cooling trends of HadISST1 series is much lower than that of COBE SST2. These differences between the two datasets are possibly caused by the different observations which are incorporated to fill with data-sparse regions since 1982. Those findings illustrate that there are some uncertainties in the estimate of SST warming patterns in certain regions. The results also indicate that the temporal and spatial deficiency of observed data is still the biggest handicap for analyzing multi-scale SST characteristics in regional area.

  10. Contribution of the upper river, the estuarine region, and the adjacent sea to the heavy metal pollution in the Yangtze Estuary.

    PubMed

    Yin, Su; Wu, Yuehan; Xu, Wei; Li, Yangyang; Shen, Zhenyao; Feng, Chenghong

    2016-07-01

    To determine whether the discharge control of heavy metals in the Yangtze River basin can significantly change the pollution level in the estuary, this study analyzed the sources (upper river, the estuarine region, and the adjacent sea) of ten heavy metals (As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn) in dissolved and particulate phases in the surface water of the estuary during wet, normal, and dry seasons. Metal sources inferred from section fluxes agree with those in statistical analysis methods. Heavy metal pollution in the surface water of Yangtze Estuary primarily depends on the sediment suspension and the wastewater discharge from estuary cities. Upper river only constitutes the main source of dissolved heavy metals during the wet season, while the estuarine region and the adjacent sea (especially the former) dominate the dissolved metal pollution in the normal and dry seasons. Particulate metals are mainly derived from sediment suspension in the estuary and the adjacent sea, and the contribution of the upper river can be neglected. Compared with the hydrologic seasons, flood-ebb tides exert a more obvious effect on the water flow directions in the estuary. Sediment suspension, not the upper river, significantly affects the suspended particulate matter concentration in the estuary. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Arctic sea ice is an important temporal sink and means of transport for microplastic.

    PubMed

    Peeken, Ilka; Primpke, Sebastian; Beyer, Birte; Gütermann, Julia; Katlein, Christian; Krumpen, Thomas; Bergmann, Melanie; Hehemann, Laura; Gerdts, Gunnar

    2018-04-24

    Microplastics (MP) are recognized as a growing environmental hazard and have been identified as far as the remote Polar Regions, with particularly high concentrations of microplastics in sea ice. Little is known regarding the horizontal variability of MP within sea ice and how the underlying water body affects MP composition during sea ice growth. Here we show that sea ice MP has no uniform polymer composition and that, depending on the growth region and drift paths of the sea ice, unique MP patterns can be observed in different sea ice horizons. Thus even in remote regions such as the Arctic Ocean, certain MP indicate the presence of localized sources. Increasing exploitation of Arctic resources will likely lead to a higher MP load in the Arctic sea ice and will enhance the release of MP in the areas of strong seasonal sea ice melt and the outflow gateways.

  12. Persistent organochlorine pesticides and polychlorinated biphenyls in air of the North Sea region and air-sea exchange.

    PubMed

    Mai, Carolin; Theobald, Norbert; Hühnerfuss, Heinrich; Lammel, Gerhard

    2016-12-01

    Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were studied to determine occurrence, levels and spatial distribution in the marine atmosphere and surface seawater during cruises in the German Bight and the wider North Sea in spring and summer 2009-2010. In general, the concentrations found in air are similar to, or below, the levels at coastal or near-coastal sites in Europe. Hexachlorobenzene and α-hexachlorocyclohexane (α-HCH) were close to phase equilibrium, whereas net atmospheric deposition was observed for γ-HCH. The results suggest that declining trends of HCH in seawater have been continuing for γ-HCH but have somewhat levelled off for α-HCH. Dieldrin displayed a close to phase equilibrium in nearly all the sampling sites, except in the central southwestern part of the North Sea. Here atmospheric deposition dominates the air-sea exchange. This region, close to the English coast, showed remarkably increased surface seawater concentrations. This observation depended neither on riverine input nor on the elevated abundances of dieldrin in the air masses of central England. A net depositional flux of p,p'-DDE into the North Sea was indicated by both its abundance in the marine atmosphere and the changes in metabolite pattern observed in the surface water from the coast towards the open sea. The long-term trends show that the atmospheric concentrations of DDT and its metabolites are not declining. Riverine input is a major source of PCBs in the German Bight and the wider North Sea. Atmospheric deposition of the lower molecular weight PCBs (PCB28 and PCB52) was indicated as a major source for surface seawater pollution.

  13. Implications for an Enhanced Biological Pump in the Sea-Ice Reduction Region of the Western Arctic Ocean

    NASA Astrophysics Data System (ADS)

    Nishino, S.; Shimada, K.; Itoh, M.; Yamamoto-Kawai, M.; Chiba, S.

    2009-12-01

    Since the late 1990s, catastrophic sea-ice reduction during summer has been observed in the western Arctic Ocean. Regions of decreasing sea ice might be associated with increased biological production compared to ice-covered ocean areas due to light intensification in the water column. The R/V Mirai field experiments in summer 2004 revealed that the algal biomass (chlorophyll a) in the open water region of the western Canada Basin increased from that observed in summer 1994, when the sea ice covered that area. Under the euphotic zone of the increased algal biomass area, evidence of diatom detritus decomposition was found, while such evidence was not observed in 1994, suggesting an enhancement of biological pump (see figure). The increase of algal biomass was not found throughout the sea-ice reduction region; rather, it was observed western Canada Basin where nutrients are effectively supplied from shelf regions. Further west from the Canada Basin, Russian river water with relatively high nutrients may play an important role in the biogeochemical cycles. Monthly sea-ice concentrations (white = 100%, black = 0%) in September of (a) 1994 and (b) 2004 (National Ice Center), and (c) vertical profiles of silicate obtained from the field experiments of Arctic Ocean Section 94 in 1994 (○) and Mirai04 in 2004 (■). The positions where the profiles were obtained are depicted by dots in (a) and (b), respectively.

  14. Multiple Factors Affect Socioeconomics and Wellbeing of Artisanal Sea Cucumber Fishers

    PubMed Central

    Ngaluafe, Poasi; Foale, Simon J.; Cocks, Nicole; Cullis, Brian R.; Lalavanua, Watisoni

    2016-01-01

    Small-scale fisheries are important to livelihoods and subsistence seafood consumption of millions of fishers. Sea cucumbers are fished worldwide for export to Asia, yet few studies have assessed factors affecting socioeconomics and wellbeing among fishers. We interviewed 476 men and women sea cucumber fishers at multiple villages within multiple locations in Fiji, Kiribati, Tonga and New Caledonia using structured questionnaires. Low rates of subsistence consumption confirmed a primary role of sea cucumbers in income security. Prices of sea cucumbers sold by fishers varied greatly among countries, depending on the species. Gender variation in landing prices could be due to women catching smaller sea cucumbers or because some traders take advantage of them. Dissatisfaction with fishery income was common (44% of fishers), especially for i-Kiribati fishers, male fishers, and fishers experiencing difficulty selling their catch, but was uncorrelated with sale prices. Income dissatisfaction worsened with age. The number of livelihood activities averaged 2.2–2.5 across countries, and varied significantly among locations. Sea cucumbers were often a primary source of income to fishers, especially in Tonga. Other common livelihood activities were fishing other marine resources, copra production in Kiribati, agriculture in Fiji, and salaried jobs in New Caledonia. Fishing other coastal and coral reef resources was the most common fall-back livelihood option if fishers were forced to exit the fishery. Our data highlight large disparities in subsistence consumption, gender-related price equity, and livelihood diversity among parallel artisanal fisheries. Improvement of supply chains in dispersed small-scale fisheries appears as a critical need for enhancing income and wellbeing of fishers. Strong evidence for co-dependence among small-scale fisheries, through fall-back livelihood preferences of fishers, suggests that resource managers must mitigate concomitant effects on

  15. Emerging Persistent Organic Pollutants in Chinese Bohai Sea and Its Coastal Regions

    PubMed Central

    Wang, Yawei; Pan, Yuanyuan

    2014-01-01

    Emerging persistent organic pollutants (POPs) have widely aroused public concern in recent years. Polybrominated diphenyl ethers (PBDEs) and perfluorooctane sulfonyl fluoride/perfluorooctane sulfonic acid (POSF/PFOS) had been newly listed in Stockholm Convention in 2009, and short chain chlorinated paraffins (SCCPs) and hexabromocyclododecanes (HBCDs) were listed as candidate POPs. Bohai Sea is located in the arms of numbers of industrial cities, the semienclosed location of which makes it an ideal sink of emerging pollutants. In the present paper, latest contamination status of emerging POPs in Bohai Sea was reviewed. According to the literature data, Bohai Sea areas are not heavily contaminated by emerging POPs (PBDE: 0.01–720 ng/g; perfluorinated compounds: 0.1–304 ng/g; SCCPs: 64.9–5510 ng/g; HBCDs: nd-634 ng/g). Therefore, humans are not likely to be under serious risk of emerging POPs exposure through consuming seafood from Bohai Sea. However, the ubiquitous occurrence of emerging POPs in Bohai Sea region might indicate that more work should be done to expand the knowledge about potential risk of emerging POPs pollution. PMID:24688410

  16. Is the distribution of Prochlorococcus and Synechococcus ecotypes in the Mediterranean Sea affected by global warming?

    NASA Astrophysics Data System (ADS)

    Mella-Flores, D.; Mazard, S.; Humily, F.; Partensky, F.; Mahé, F.; Bariat, L.; Courties, C.; Marie, D.; Ras, J.; Mauriac, R.; Jeanthon, C.; Bendif, E. M.; Ostrowski, M.; Scanlan, D. J.; Garczarek, L.

    2011-05-01

    Biological communities populating the Mediterranean Sea, which is situated at the northern boundary of the subtropics, are often claimed to be particularly affected by global warming. This is indicated, for instance, by the introduction of (sub)tropical species of fish or invertebrates that can displace local species. This raises the question of whether microbial communities are similarly affected, especially in the Levantine basin where sea surface temperatures have risen in recent years. In this paper, the genetic diversity of the two most abundant members of the phytoplankton community, the picocyanobacteria Prochlorococcus and Synechococcus, was examined on a transect from the South coast of France to Cyprus in the summer of 2008 (BOUM cruise). Diversity was studied using dot blot hybridization with clade-specific 16S rRNA oligonucleotide probes and clone libraries of the 16S-23S ribosomal DNA Internal Transcribed Spacer (ITS) region. Data were compared with those obtained during the PROSOPE cruise held almost a decade earlier, with a focus on the abundance of clades that may constitute bioindicators of warm waters. During both cruises, the dominant Prochlorococcus clade in the upper mixed layer at all stations was HLI, a clade typical of temperate waters, whereas the HLII clade, the dominant group in (sub)tropical waters, was only present at very low concentrations. The Synechococcus community was dominated by clades I, III and IV in the northwestern waters of the Gulf of Lions and by clade III and groups genetically related to clades WPC1 and VI in the rest of the Mediterranean Sea. In contrast, only a few sequences of clade II, a group typical of warm waters, were observed. These data indicate that local cyanobacterial populations have not yet been displaced by their (sub)tropical counterparts. This is discussed in the context of the low phosphorus concentrations found in surface waters in the eastern Mediterranean basin, as this may constitute a barrier to

  17. Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator

    PubMed Central

    Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D.; Massom, Rob A.; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A.; Charrassin, Jean-Benoit

    2017-01-01

    Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies. PMID:28233791

  18. Variability in sea ice cover and climate elicit sex specific responses in an Antarctic predator.

    PubMed

    Labrousse, Sara; Sallée, Jean-Baptiste; Fraser, Alexander D; Massom, Rob A; Reid, Phillip; Hobbs, William; Guinet, Christophe; Harcourt, Robert; McMahon, Clive; Authier, Matthieu; Bailleul, Frédéric; Hindell, Mark A; Charrassin, Jean-Benoit

    2017-02-24

    Contrasting regional changes in Southern Ocean sea ice have occurred over the last 30 years with distinct regional effects on ecosystem structure and function. Quantifying how Antarctic predators respond to such changes provides the context for predicting how climate variability/change will affect these assemblages into the future. Over an 11-year time-series, we examine how inter-annual variability in sea ice concentration and advance affect the foraging behaviour of a top Antarctic predator, the southern elephant seal. Females foraged longer in pack ice in years with greatest sea ice concentration and earliest sea ice advance, while males foraged longer in polynyas in years of lowest sea ice concentration. There was a positive relationship between near-surface meridional wind anomalies and female foraging effort, but not for males. This study reveals the complexities of foraging responses to climate forcing by a poleward migratory predator through varying sea ice property and dynamic anomalies.

  19. Contribution of atmospheric circulation to recent off-shore sea-level variations in the Baltic Sea and the North Sea

    NASA Astrophysics Data System (ADS)

    Karabil, Sitar; Zorita, Eduardo; Hünicke, Birgit

    2018-01-01

    The main purpose of this study is to quantify the contribution of atmospheric factors to recent off-shore sea-level variability in the Baltic Sea and the North Sea on interannual timescales. For this purpose, we statistically analysed sea-level records from tide gauges and satellite altimetry and several climatic data sets covering the last century. Previous studies had concluded that the North Atlantic Oscillation (NAO) is the main pattern of atmospheric variability affecting sea level in the Baltic Sea and the North Sea in wintertime. However, we identify a different atmospheric circulation pattern that is more closely connected to sea-level variability than the NAO. This circulation pattern displays a link to sea level that remains stable through the 20th century, in contrast to the much more variable link between sea level and the NAO. We denote this atmospheric variability mode as the Baltic Sea and North Sea Oscillation (BANOS) index. The sea-level pressure (SLP) BANOS pattern displays an SLP dipole with centres of action located over (5° W, 45° N) and (20° E, 70° N) and this is distinct from the standard NAO SLP pattern in wintertime. In summertime, the discrepancy between the SLP BANOS and NAO patterns becomes clearer, with centres of action of the former located over (30° E, 45° N) and (20° E, 60° N). This index has a stronger connection to off-shore sea-level variability in the study area than the NAO in wintertime for the period 1993-2013, explaining locally up to 90 % of the interannual sea-level variance in winter and up to 79 % in summer. The eastern part of the Gulf of Finland is the area where the BANOS index is most sensitive to sea level in wintertime, whereas the Gulf of Riga is the most sensitive region in summertime. In the North Sea region, the maximum sea-level sensitivity to the BANOS pattern is located in the German Bight for both winter and summer seasons. We investigated, and when possible quantified, the contribution of several

  20. Changes in the Areal Extent of Arctic Sea Ice: Observations from Satellites

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2000-01-01

    Wintertime sea ice covers 15 million square kilometers of the north polar region, an area exceeding one and a half times the area of the U. S. Even at the end of the summer melt season, sea ice still covers 7 million square kilometers. This vast ice cover is an integral component of the climate system, being moved around by winds and waves, restricting heat and other exchanges between the ocean and atmosphere, reflecting most of the solar radiation incident on it, transporting cold, relatively fresh water equatorward, and affecting the overturning of ocean waters underneath, with impacts that can be felt worldwide. Sea ice also is a major factor in the Arctic ecosystem, affecting life forms ranging from minute organisms living within the ice, sometimes to the tune of millions in a single ice floe, to large marine mammals like walruses that rely on sea ice as a platform for resting, foraging, social interaction, and breeding. Since 1978, satellite technology has allowed the monitoring of the vast Arctic sea ice cover on a routine basis. The satellite observations reveal that, overall, the areal extent of Arctic sea ice has been decreasing since 1978, at an average rate of 2.7% per decade through the end of 1998. Through 1998, the greatest rates of decrease occurred in the Seas of Okhotsk and Japan and the Kara and Barents Seas, with most other regions of the Arctic also experiencing ice extent decreases. The two regions experiencing ice extent increases over this time period were the Bering Sea and the Gulf of St. Lawrence. Furthermore, the satellite data reveal that the sea ice season shortened by over 25 days per decade in the central Sea of Okhotsk and the eastern Barents Sea, and by lesser amounts throughout much of the rest of the Arctic seasonal sea ice region, although not in the Bering Sea or the Gulf of St. Lawrence. Concern has been raised that if the trends toward shortened sea ice seasons and lesser sea ice coverage continue, this could entail major

  1. Variscan orogeny in the Black Sea region

    NASA Astrophysics Data System (ADS)

    Okay, Aral I.; Topuz, Gültekin

    2017-03-01

    Two Gondwana-derived Paleozoic belts rim the Archean/Paleoproterozoic nucleus of the East European Platform in the Black Sea region. In the north is a belt of Paleozoic passive-margin-type sedimentary rocks, which extends from Moesia to the Istanbul Zone and to parts of the Scythian Platform (the MOIS Block). This belt constituted the south-facing continental margin of the Laurussia during the Late Paleozoic. This margin was deformed during the Carboniferous by folding and thrusting and forms the Variscan foreland. In the south is a belt of metamorphic and granitic rocks, which extends from the Balkanides through Strandja, Sakarya to the Caucasus (BASSAC Block). The protoliths of the metamorphic rocks are predominantly late Neoproterozoic granites and Paleozoic sedimentary and igneous rocks, which were deformed and metamorphosed during the Early Carboniferous. There are also minor eclogites and serpentinites, mostly confined to the northern margin of the BASSAC Block. Typical metamorphism is of low pressure-high temperature type and occurred during the Early Carboniferous (Visean, 340-330 Ma) coevally with that observed in the Central Europe. Volumetrically, more than half of the crystalline belt is made up of Carboniferous-earliest Permian (335-294 Ma) granites. The type of metamorphism, its concurrent nature over 1800 km length of the BASSAC Block and voluminous acidic magmatism suggest that the thermal event probably occurred in the deep levels of a continental magmatic arc. The BASSAC arc collided with Laurussia in the mid-Carboniferous leading to the foreland deformation. The ensuing uplift in the Permian resulted in the deposition of continental red beds, which are associated with acidic magmatic rocks observed over the foreland as well as over the BASSAC Block. In the Black Sea region, there was no terminal collision of Laurussia with Gondwana during the Late Paleozoic and the Laurussia margin continued to face the Paleo-Tethyan ocean in the south.

  2. Trends and interannual variability of mass and steric sea level in the Tropical Asian Seas

    NASA Astrophysics Data System (ADS)

    Kleinherenbrink, Marcel; Riva, Riccardo; Frederikse, Thomas; Merrifield, Mark; Wada, Yoshihide

    2017-08-01

    The mass and steric components of sea level changes have been separated in the Tropical Asian Seas (TAS) using a statistically optimal combination of Jason satellite altimetry, GRACE satellite gravimetry, and ocean reanalyses. Using observational uncertainties, statistically optimally weighted time series for both components have been obtained in four regions within the TAS over the period January 2005 to December 2012. The mass and steric sea level variability is regressed with the first two principal components (PC1&2) of Pacific equatorial wind stress and the Dipole Mode Index (DMI). Sea level in the South China Sea is not affected by any of the indices. Steric variability in the TAS is largest in the deep Banda and Celebes seas and is affected by both PCs and the DMI. Mass variability is largest on the continental shelves, which is primarily controlled by PC1. We argue that a water flux from the Western Tropical Pacific Ocean is the cause for mass variability in the TAS. The steric trends are about 2 mm yr-1 larger than the mass trends in the TAS. A significant part of the mass trend can be explained by the aforementioned indices and the nodal cycle. Trends obtained from fingerprints of mass redistribution are statistically equal to mass trends after subtracting the nodal cycle and the indices. Ultimately, the effect of omitting the TAS in global sea level budgets is estimated to be 0.3 mm yr-1.

  3. Analytical chemistry in the Aegean Sea region: current status.

    PubMed

    Samanidou, Victoria F

    2012-12-01

    The Eighth Aegean Analytical Chemistry Days Conference took place in Urla, İzmir, Turkey, from 16-20 September 2012. This conference is held every 2 years, organized alternately by analytical chemistry departments of Turkish and Greek universities, so that analytical chemists from the region around the Aegean Sea can exchange experience and knowledge based on their research in a large number of fields. This report summarizes the most interesting presentations and posters pertaining to bioanalytical work.

  4. Vertical land motion controls regional sea level rise patterns on the United States east coast since 1900

    NASA Astrophysics Data System (ADS)

    Piecuch, C. G.; Huybers, P. J.; Hay, C.; Mitrovica, J. X.; Little, C. M.; Ponte, R. M.; Tingley, M.

    2017-12-01

    Understanding observed spatial variations in centennial relative sea level trends on the United States east coast has important scientific and societal applications. Past studies based on models and proxies variously suggest roles for crustal displacement, ocean dynamics, and melting of the Greenland ice sheet. Here we perform joint Bayesian inference on regional relative sea level, vertical land motion, and absolute sea level fields based on tide gauge records and GPS data. Posterior solutions show that regional vertical land motion explains most (80% median estimate) of the spatial variance in the large-scale relative sea level trend field on the east coast over 1900-2016. The posterior estimate for coastal absolute sea level rise is remarkably spatially uniform compared to previous studies, with a spatial average of 1.4-2.3 mm/yr (95% credible interval). Results corroborate glacial isostatic adjustment models and reveal that meaningful long-period, large-scale vertical velocity signals can be extracted from short GPS records.

  5. Uncertainties in Future Regional Sea Level Trends: How to Deal with the Internal Climate Variability?

    NASA Astrophysics Data System (ADS)

    Becker, M.; Karpytchev, M.; Hu, A.; Deser, C.; Lennartz-Sassinek, S.

    2017-12-01

    Today, the Climate models (CM) are the main tools for forecasting sea level rise (SLR) at global and regional scales. The CM forecasts are accompanied by inherent uncertainties. Understanding and reducing these uncertainties is becoming a matter of increasing urgency in order to provide robust estimates of SLR impact on coastal societies, which need sustainable choices of climate adaptation strategy. These CM uncertainties are linked to structural model formulation, initial conditions, emission scenario and internal variability. The internal variability is due to complex non-linear interactions within the Earth Climate System and can induce diverse quasi-periodic oscillatory modes and long-term persistences. To quantify the effects of internal variability, most studies used multi-model ensembles or sea level projections from a single model ran with perturbed initial conditions. However, large ensembles are not generally available, or too small, and computationally expensive. In this study, we use a power-law scaling of sea level fluctuations, as observed in many other geophysical signals and natural systems, which can be used to characterize the internal climate variability. From this specific statistical framework, we (1) use the pre-industrial control run of the National Center for Atmospheric Research Community Climate System Model (NCAR-CCSM) to test the robustness of the power-law scaling hypothesis; (2) employ the power-law statistics as a tool for assessing the spread of regional sea level projections due to the internal climate variability for the 21st century NCAR-CCSM; (3) compare the uncertainties in predicted sea level changes obtained from a NCAR-CCSM multi-member ensemble simulations with estimates derived for power-law processes, and (4) explore the sensitivity of spatial patterns of the internal variability and its effects on regional sea level projections.

  6. Impact of sea spray on the Yellow and East China Seas thermal structure during the passage of Typhoon Rammasun (2002)

    NASA Astrophysics Data System (ADS)

    Zhang, Lianxin; Zhang, Xuefeng; Chu, P. C.; Guan, Changlong; Fu, Hongli; Chao, Guofang; Han, Guijun; Li, Wei

    2017-10-01

    Strong winds lead to large amounts of sea spray in the lowest part of the atmospheric boundary layer. The spray droplets affect the air-sea heat fluxes due to their evaporation and the momentum due to the change of sea surface, and in turn change the upper ocean thermal structure. In this study, impact of sea spray on upper ocean temperatures in the Yellow and East China Seas (YES) during typhoon Rammasun's passage is investigated using the POMgcs ocean model with a sea spray parameterization scheme, in which the sea spray-induced heat fluxes are based on an improved Fairall's sea spray heat fluxes algorithm, and the sea spray-induced momentum fluxes are derived from an improved COARE version 2.6 bulk model. The distribution of the sea spray mediated turbulent fluxes was primarily located at Rammasun eye-wall region, in accord with the maximal wind speeds regions. When Rammasun enters the Yellow sea, the sea spray mediated latent (sensible) heat flux maximum is enhanced by 26% (13.5%) compared to that of the interfacial latent (sensible) heat flux. The maximum of the total air-sea momentum fluxes is enhanced by 43% compared to the counterpart of the interfacial momentum flux. Furthermore, the sea spray plays a key role in enhancing the intensity of the typhoon-induced "cold suction" and "heat pump" processes. When the effect of sea spray is considered, the maximum of the sea surface cooling in the right side of Rammasun's track is increased by 0.5°C, which is closer to the available satellite observations.

  7. Regional forecasting system of marine state and variability of dynamical processes in the easternmost part of the Black Sea

    NASA Astrophysics Data System (ADS)

    Kordzadze, Avtandil; Demetrashvili, Demuri

    2014-05-01

    The regional forecasting system for the easternmost part of the Black Sea developed at M. Nodia Institute of Geophysics of I. Javakhishvili Tbilisi State University under the EU framework projects ARENA and ECOOP is a part of the Black Sea basin-scale Nowcasting/Forecasting System. A core of the regional forecasting system is a baroclinic regional model of Black Sea dynamics with 1 km spacing based on hydrostatic primitive equations of ocean hydrothermodynamics, which are written in z-coordinates for deviations of thermodynamic values from their standard vertical distributions. To solve the problem the two-cycle method of splitting the model equation system with respect to both physical processes and coordinate planes and lines is used. The regional model of M. Nodia Institute of Geophysics is nested in the basin-scale model of Black Sea dynamics of Marine Hydrophysical Institute (Sevastopol/Ukraine). The regional forecasting system provides 3 days' forecasts of current, temperature and salinity for the easternmost part of the Black Sea, which is limited to the Caucasian and Turkish coastal lines and the western liquid boundary coinciding with the meridian 39.080E. Data needed on liquid and upper boundaries, also the 3-D initial hydrophysical fields for the easternmost regional area are provided in near operative mode from Marine hydrophysical Institute via Internet. These data on the liquid boundary are values of velocity components, temperature and salinity predicted by the basin-scale model of Black Sea dynamics of Marine Hydrophysical Institute and on the sea surface 2-D meteorological boundary fields - wind stress, heat fluxes, evaporation and precipitation rates predicted by the regional atmospheric model ALADIN are used. The analysis of the results of modeling and forecast of dynamic processes developed for 2010-2014 showed that the easternmost water area of the Black Sea is a dynamically very active zone, where continuously there are processes of generation

  8. Neutral models as a way to evaluate the Sea Level Affecting Marshes Model (SLAMM)

    EPA Science Inventory

    A commonly used landscape model to simulate wetland change – the Sea Level Affecting Marshes Model(SLAMM) – has rarely been explicitly assessed for its prediction accuracy. Here, we evaluated this model using recently proposed neutral models – including the random constraint matc...

  9. Recent Research in Black Sea Region on Assessment in Education (Review)

    ERIC Educational Resources Information Center

    Pipia, Ekaterine

    2016-01-01

    This article is written to inform educational community particularly in the respect of new tendencies in educational assessment and present a clear-cut picture of the recent studies conducted in the Black Sea Region. The review paper refers to the following countries: Georgia, Russia, Turkey and Ukraine. It stresses the prevalent approach detected…

  10. The geomagnetic environment in which sea turtle eggs incubate affects subsequent magnetic navigation behaviour of hatchlings.

    PubMed

    Fuxjager, Matthew J; Davidoff, Kyla R; Mangiamele, Lisa A; Lohmann, Kenneth J

    2014-09-22

    Loggerhead sea turtle hatchlings (Caretta caretta) use regional magnetic fields as open-ocean navigational markers during trans-oceanic migrations. Little is known, however, about the ontogeny of this behaviour. As a first step towards investigating whether the magnetic environment in which hatchlings develop affects subsequent magnetic orientation behaviour, eggs deposited by nesting female loggerheads were permitted to develop in situ either in the natural ambient magnetic field or in a magnetic field distorted by magnets placed around the nest. In orientation experiments, hatchlings that developed in the normal ambient field oriented approximately south when exposed to a field that exists near the northern coast of Portugal, a direction consistent with their migratory route in the northeastern Atlantic. By contrast, hatchlings that developed in a distorted magnetic field had orientation indistinguishable from random when tested in the same north Portugal field. No differences existed between the two groups in orientation assays involving responses to orbital movements of waves or sea-finding, neither of which involves magnetic field perception. These findings, to our knowledge, demonstrate for the first time that the magnetic environment present during early development can influence the magnetic orientation behaviour of a neonatal migratory animal. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  11. Modelling the thermosteric contribution to global and regional sea-level rise during the last interglacial

    NASA Astrophysics Data System (ADS)

    Singarayer, Joy; Stone, Emma; Whipple, Matthew; Lunt, Dan; Bouttes, Nathaelle; Gregory, Jonathan

    2014-05-01

    Global sea level during the last interglacial is likely to have been between 5.5 and 9m above present (Dutton and Lambeck, 2012). Recent calculations, taking into account latest NEEM ice core information, suggest that Greenland would probably not have contributed more than 2.2m to this (Stone et al, 2013), implying a considerable contribution from Antarctica. Previous studies have suggested a significant loss from the West Antarctic ice-sheet (e.g. Holden et al, 2010), which could be initiated following a collapse of the Atlantic Meridional Overturning Circulation (AMOC) and resultant warming in the Southern Ocean. Here, model simulations with FAMOUS and HadCM3 have been performed of the last interglacial under various scenarios of reduced Greenland and Antarctic ice-sheet configurations, and with and without collapsed AMOC. Thermal expansion and changes in regional density structure (resulting from ocean circulation changes) can also influence sea level, in addition to ice mass effects discussed thus far. The HadCM3 and FAMOUS simulations will be used to estimate the contribution to global and regional sea level change in interglacials from the latter two factors using a similar methodology to the IPCC TAR/AR4 estimations of future sea level rise (Gregory and Lowe, 2000). The HadCM3 and FAMOUS both have a rigid lid in their ocean model, and consequently a fixed ocean volume. Thermal expansion can, however, be calculated as a volume change from in-situ density (a prognostic variable from the model). Relative sea surface topography will then be estimated from surface pressure gradients and changes in atmospheric pressure. Dutton A., and Lambeck K., 2013. Ice Volume and Sea Level During the Last Interglacial. Science, 337, 216-219 Gregory J.M. and Lowe J.A., 2000. Predictions of global and regional sea-level using AOGCMs with and without flux adjustment. GRL, 27, 3069-3072 Holden P. et al., 2010. Interhemispheric coupling, the West Antarctic Ice Sheet and warm

  12. Modulation of Sea Ice Melt Onset and Retreat in the Laptev Sea by the Timing of Snow Retreat in the West Siberian Plain

    NASA Astrophysics Data System (ADS)

    Crawford, A. D.; Stroeve, J.; Serreze, M. C.; Rajagopalan, B.; Horvath, S.

    2017-12-01

    As much of the Arctic Ocean transitions to ice-free conditions in summer, efforts have increased to improve seasonal forecasts of not only sea ice extent, but also the timing of melt onset and retreat. This research investigates the potential of regional terrestrial snow retreat in spring as a predictor for subsequent sea ice melt onset and retreat in Arctic seas. One pathway involves earlier snow retreat enhancing atmospheric moisture content, which increases downwelling longwave radiation over sea ice cover downstream. Another pathway involves manipulation of jet stream behavior, which may affect the sea ice pack via both dynamic and thermodynamic processes. Although several possible connections between snow and sea ice regions are identified using a mutual information criterion, the physical mechanisms linking snow retreat and sea ice phenology are most clearly exemplified by variability of snow retreat in the West Siberian Plain impacting melt onset and sea ice retreat in the Laptev Sea. The detrended time series of snow retreat in the West Siberian Plain explains 26% of the detrended variance in Laptev Sea melt onset (29% for sea ice retreat). With modest predictive skill and an average time lag of 53 (88) days between snow retreat and sea ice melt onset (retreat), West Siberian Plains snow retreat is useful for refining seasonal sea ice predictions in the Laptev Sea.

  13. Anomalous secular sea-level acceleration in the Baltic Sea caused by glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Spada, Giorgio; Galassi, Gaia; Olivieri, Marco

    2014-05-01

    Observations from the global array of tide gauges show that global sea-level has been rising at an average rate of 1.5-2 mm/yr during the last ˜ 150 years (Spada & Galassi, 2012). Although a global sea-level acceleration was initially ruled out, subsequent studies have coherently proposed values of ˜1 mm/year/century (Olivieri & Spada, 2012). More complex non-linear trends and abrupt sea-level variations have now also been recognized. Globally, they could manifest a regime shift between the late Holocene and the current rhythms of sea-level rise, while locally they result from ocean circulation anomalies, steric effects and wind stress (Bromirski et al. 2011). Although isostatic readjustment affects the local rates of secular sea-level change, a possible impact on regional acceleration have been so far discounted (Woodworth et al., 2009) since the process evolves on a millennium scale. Here we report a previously unnoticed anomaly in the long-term sea-level acceleration of the Baltic Sea tide gauge records, and we explain it by the classical post-glacial rebound theory and numerical modeling of glacial isostasy. Contrary to previous assumptions, our findings demonstrate that isostatic compensation plays a role in the regional secular sea-level acceleration. In response to glacial isostatic adjustment (GIA), tide gauge records located along the coasts of the Baltic Sea exhibit a small - but significant - long-term sea-level acceleration in excess to those in the far field of previously glaciated regions. The sign and the amplitude of the anomaly is consistent with the post-glacial rebound theory and with realistic numerical predictions of GIA models routinely employed to decontaminate the tide gauges observations from the GIA effects (Peltier, 2004). Model computations predict the existence of anomalies of similar amplitude in other regions of the globe where GIA is still particularly vigorous at present, but no long-term instrumental observations are available to

  14. Geoacoustic models of the Donghae-to-Gangneung region in the Korean continental margin of the East Sea

    NASA Astrophysics Data System (ADS)

    Ryang, Woo Hun; Kim, Seong Pil; Hahn, Jooyoung

    2016-04-01

    Geoacoustic model is to provide a model of the real seafloor with measured, extrapolated, and predicted values of geoacoustic environmental parameters. It controls acoustic propagation in underwater acoustics. In the Korean continental margin of the East Sea, this study reconstructed geoacoustic models using geoacoustic and marine geologic data of the Donghae-to-Gangneung region (37.4° to 37.8° in latitude). The models were based on the data of the high-resolution subbottom and air-gun seismic profiles with sediment cores. The Donghae region comprised measured P-wave velocities and attenuations of the cores, whereas the Gangneung region comprised regression values using measured values of the adjacent areas. Geoacoustic data of the cores were extrapolated down to a depth of the geoacoustic models. For actual modeling, the P-wave speed of the models was compensated to in situ depth below the sea floor using the Hamilton method. These geoacoustic models of this region probably contribute for geoacoustic and underwater acoustic modelling reflecting vertical and lateral variability of acoustic properties in the Korean continental margin of the western East Sea. Keywords: geoacoustic model, environmental parameter, East Sea, continental margin Acknowledgements: This research was supported by the research grants from the Agency of Defense Development (UD140003DD and UE140033DD).

  15. Assessment of sea water inundation along Daboo creek area in Indus Delta Region, Pakistan

    NASA Astrophysics Data System (ADS)

    Zia, Ibrahim; Zafar, Hina; Shahzad, Muhammad I.; Meraj, Mohsin; Kazmi, Jamil H.

    2017-12-01

    Indus Deltaic Region (IDR) in Pakistan is an erosion vulnerable coast due to the high deep water wave energy. Livelihood of millions of people depends on the fisheries and mangrove forests in IDR. IDR consists of many creeks where Daboo is a major creek located at southeast of the largest city of Pakistan, Karachi. Unfortunately, there has been no detailed study to analyze the damages of sea water intrusion at a large temporal and spatial scale. Therefore, this study is designed to estimate the effects of sea water inundation based on changing sea water surface salinity and sea surface temperature (SST). Sea surface salinity and SST data from two different surveys in Daboo creek during 1986 and 2010 are analyzed to estimate the damages and extent of sea water intrusion. Mean salinity has increased 33.33% whereas mean SST decreased 13.79% from 1987 to 2010. Spatio-temporal analysis of creek area using LANDSAT 5 Thematic mapper (TM) data for the years 1987 and 2010 shows significant amount of erosion at macro scale. Creek area has increased approximately 9.93% (260.86 m2 per year) which is roughly equal to 60 extensive sized shrimp farms. Further Land Use Land Cover (LULC) analyses for years 2001 and 2014 using LANDSAT 7 Enhanced Thematic Mapper Plus (ETM+) has indicated 42.3% decrease in cultivated land. Wet mud flats have spread out at the inner mouth of creek with enormous increase of 123.3%. Significant sea water intrusion has increased the area of barren land by 37.9%. This also resulted in overall decrease of 6.7% in area covered by mangroves. Therefore, this study recorded a significant evidence of sea water intrusion in IDR that has caused serious damages to community living in the area, economical losses. Additionally, it has also changed the environment by reducing creek biological productivity as reported by earlier studies over other regions of the world.

  16. Toward Sub-seasonal to Seasonal Arctic Sea Ice Forecasting Using the Regional Arctic System Model (RASM)

    NASA Astrophysics Data System (ADS)

    Kamal, S.; Maslowski, W.; Roberts, A.; Osinski, R.; Cassano, J. J.; Seefeldt, M. W.

    2017-12-01

    The Regional Arctic system model has been developed and used to advance the current state of Arctic modeling and increase the skill of sea ice forecast. RASM is a fully coupled, limited-area model that includes the atmosphere, ocean, sea ice, land hydrology and runoff routing components and the flux coupler to exchange information among them. Boundary conditions are derived from NCEP Climate Forecasting System Reanalyses (CFSR) or Era Iterim (ERA-I) for hindcast simulations or from NCEP Coupled Forecast System Model version 2 (CFSv2) for seasonal forecasts. We have used RASM to produce sea ice forecasts for September 2016 and 2017, in contribution to the Sea Ice Outlook (SIO) of the Sea Ice Prediction Network (SIPN). Each year, we produced three SIOs for the September minimum, initialized on June 1, July 1 and August 1. In 2016, predictions used a simple linear regression model to correct for systematic biases and included the mean September sea ice extent, the daily minimum and the week of the minimum. In 2017, we produced a 12-member ensemble on June 1 and July 1, and 28-member ensemble August 1. The predictions of September 2017 included the pan-Arctic and regional Alaskan sea ice extent, daily and monthly mean pan-Arctic maps of sea ice probability, concentration and thickness. No bias correction was applied to the 2017 forecasts. Finally, we will also discuss future plans for RASM forecasts, which include increased resolution for model components, ecosystem predictions with marine biogeochemistry extensions (mBGC) to the ocean and sea ice components, and feasibility of optional boundary conditions using the Navy Global Environmental Model (NAVGEM).

  17. A Review of Recent Updates of Sea-Level Projections at Global and Regional Scales

    NASA Technical Reports Server (NTRS)

    Slangen, A. B. A.; Adloff, F.; Jevrejeva, S.; Leclercq, P. W.; Marzeion, B.; Wada, Yoshihide; Winkelmann, R.

    2016-01-01

    Sea-level change (SLC) is a much-studied topic in the area of climate research, integrating a range of climate science disciplines, and is expected to impact coastal communities around the world. As a result, this field is rapidly moving, and the knowledge and understanding of processes contributing to SLC is increasing. Here, we discuss noteworthy recent developments in the projection of SLC contributions and in the global mean and regional sea-level projections. For the Greenland Ice Sheet contribution to SLC, earlier estimates have been confirmed in recent research, but part of the source of this contribution has shifted from dynamics to surface melting. New insights into dynamic discharge processes and the onset of marine ice sheet instability increase the projected range for the Antarctic contribution by the end of the century. The contribution from both ice sheets is projected to increase further in the coming centuries to millennia. Recent updates of the global glacier outline database and new global glacier models have led to slightly lower projections for the glacier contribution to SLC (7-17 cm by 2100), but still project the glaciers to be an important contribution. For global mean sea-level projections, the focus has shifted to better estimating the uncertainty distributions of the projection time series, which may not necessarily follow a normal distribution. Instead, recent studies use skewed distributions with longer tails to higher uncertainties. Regional projections have been used to study regional uncertainty distributions, and regional projections are increasingly being applied to specific regions, countries, and coastal areas.

  18. Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong; hide

    2012-01-01

    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5

  19. Impact of Desiccation of Aral Sea on the Regional Climate of Central Asia Using WRF Model

    NASA Astrophysics Data System (ADS)

    Sharma, Ashish; Huang, Huei-Ping; Zavialov, Peter; Khan, Valentina

    2018-01-01

    This study explores the impacts of the desiccation of the Aral Sea and large-scale climate change on the regional climate of Central Asia in the post-1960 era. A series of climate downscaling experiments for the 1960's and 2000's decades were performed using the Weather Research and Forecast model at 12-km horizontal resolution. To quantify the impacts of the changing surface boundary condition, a set of simulations with an identical lateral boundary condition but different extents of the Aral Sea were performed. It was found that the desiccation of the Aral Sea leads to more snow (and less rain) as desiccated winter surface is relatively much colder than water surface. In summer, desiccation led to substantial warming over the Aral Sea. These impacts were largely confined to within the area covered by the former Aral Sea and its immediate vicinity, although desiccation of the Sea also led to minor cooling over the greater Central Asia in winter. A contrasting set of simulations with an identical surface boundary condition but different lateral boundary conditions produced more identifiable changes in regional climate over the greater Central Asia which was characterized by a warming trend in both winter and summer. Simulations also showed that while the desiccation of the Aral Sea has significant impacts on the local climate over the Sea, the climate over the greater Central Asia on inter-decadal time scale was more strongly influenced by the continental or global-scale climate change on that time scale.

  20. The effect of lagoons on Adriatic Sea tidal dynamics

    NASA Astrophysics Data System (ADS)

    Ferrarin, Christian; Maicu, Francesco; Umgiesser, Georg

    2017-11-01

    In this study the effects that lagoons exert on the barotropic tidal dynamics of a regional sea, the Adriatic Sea, were numerically explored. This semi-enclosed basin is one of the places with the highest tidal range in the Mediterranean Sea and is characterised by the presence of several lagoons in its northern part. The tidal dynamics of a system comprising the whole Adriatic Sea and the lagoons of Venice, Marano-Grado and Po Delta were investigated using an unstructured hydrodynamic model. Numerical experiments with and without lagoons reveal that even if the considered shallow water bodies represent only the 0.5 and 0.002% of the Adriatic Sea surface and volume, respectively, they significantly affect the entire Northern Adriatic Sea tidal dynamics by enhancing tidal range (by 5%) and currents (by 10%). The inclusion of lagoons in the computation improved the model performance by 25% in reproducing tidal constituents in the Adriatic Sea. The back-effect of the lagoons on the open-sea tide is due to the waves radiating from the co-oscillating lagoons into the adjacent sea. This is the first time these processes are shown to be relevant for the Adriatic Sea, thus enhancing the understanding of the tidal dynamics in this regional sea. These findings may also apply to other coastal seas with connections to lagoons, bays and estuaries.

  1. The Effect of Recent Decreases in Sea Ice Extent and Increases in SST on the Seasonal Availability of Arctic Cod (Boreogadus saida) to Seabirds in the Beaufort Sea

    NASA Astrophysics Data System (ADS)

    Divoky, G.; Druckenmiller, M. L.

    2016-02-01

    With major decreases in pan-Arctic summer sea ice extent steadily underway, the Beaufort Sea has been nearly ice-free in five of the last eight summers. This loss of a critical arctic marine habitat and the concurrent warming of the recently ice-free waters could potentially cause major changes in the biological oceanography of the Beaufort Sea and alter the distribution, abundance and condition of the region's upper trophic level predators that formerly relied on prey associated with sea ice or cold (<2°C) surface waters. Arctic cod (Boreogadus saida), the primary forage fish for seabirds in the Beaufort Sea, is part of the cryopelagic fauna associated with sea ice and is also found in adjacent ice-free waters. In the extreme western Beaufort Sea near Cooper Island, Arctic cod availability to breeding Black Guillemots (Cepphus grylle), a diving seabird, has declined since 2002. Guillemots are a good indicator of Arctic cod availability in surface waters and the upper water column as they feed at depths of 1-20m. Currently, when sea ice is absent from the nearshore and SST exceeds 4°C, guillemots are observed to seasonally shift from Arctic cod to nearshore demersal prey, with a resulting decrease in nestling survival and quality. Arctic cod is the primary prey for many of the seabirds utilizing the Beaufort Sea as a post-breeding staging area and migratory corridor in late summer and early fall. The loss of approximately 200-300 thousand sq km of summer sea ice habitat in recent years could be expected to affect the distribution, abundance, and movements of these species as there are few alternative fish resources in the region. We examine temporal and spatial variation in August sea ice extent and SST in the Beaufort Sea to determine the regions, periods and bird species that are potentially most affected as the Beaufort Sea transitions to becoming regularly ice-free in late summer.

  2. Long-term Variation of the East Sea Throughflow and its Possible Influences on the East Sea Warming

    NASA Astrophysics Data System (ADS)

    Kang, H.; Lee, H.; Kang, S.; Jung, K.

    2006-12-01

    The prominent long-term change of the East Sea (Japan Sea) is the deep water warming and the depletion of oxygen in the deep layer during the last 40 years. The cause of this phenomena explained mainly by the slow down of the deep convection in the northern region influenced by the global warming. A distinguished feature of the East Sea is the upper layer flow through the three major straits connected to the Pacific Ocean. Generally, East Sea Throughflow (EST) supplies the warm water through the Korea Strait and drains relatively cold water through the Tsugaru and the Soya Straits. In this study, the role of the EST transport variation on the East Sea warming has been investigated. To understand the EST transport variablililty, monthly mean EST transport time series extracted from the Simple Ocean Data Assimilation (SODA 1.4.2) data during the period of 1958 to 2001. It shows that winter time transport anomaly seems to have overall increasing trend with PDO (Pacific Decadal Oscillation) like fluctuation. The relation between the EST transport anomaly and the local or remote wind stress anomaly has been studied. We have also carried out a numerical experiment using a three-dimensional regional model to understand the East Sea response to the long-term EST transport change. Though the throughflow confined in the upper layer, it is interesting to note that the EST can affect on the meridional overturning strength by way of changing the heat transport amount to the convection favorable region. Possible influences of the EST transport variablity on the East Sea warming are discussed.

  3. 15 CFR 918.5 - Eligibility, qualifications, and responsibilities-Sea Grant Regional Consortia.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... qualifying areas which are pertinent to the Consortium's program: (1) Leadership. The Sea Grant Regional... Consortium candidate must have created the management organization to carry on a viable and productive... assistance as the consortium may offer, and (iii) to assist others in developing research and management...

  4. Toxic and essential elements in butter from the Black Sea region, Turkey.

    PubMed

    Dervisoglu, Muhammet; Gul, Osman; Yazici, Fehmi; Guvenc, Dilek; Atmaca, Enes; Aksoy, Abdurrahman

    2014-01-01

    In this study, 88 randomly selected samples of butter produced in the Black Sea region of Turkey were purchased from different retail markets during different periods and investigated for toxic and essential elements content. Quantitative analyses of elements in the samples were performed using an inductively coupled plasma-mass spectroscopy (ICP-MS). Mean concentrations of As, Cr, Cu, Fe, Mn, Ni, Pb, Se and Zn in the butter samples were 18.93, 100.32, 384.66, 4199.1, 887.47, 168.64, 56.13, 16.34 and 384.66 µg kg(-1), respectively. Cd and Co were detected in 19 (mean content 0.29 µg kg(-1)) and 81 (mean content 3.81 µg kg(-1)) samples of 88 butter samples, respectively. However, the dietary intake of these elements by the population of the Black Sea region is currently well below the dietary reference intake (DRI) and provisional tolerable weekly intake (PTWI) levels of essential and toxic elements.

  5. Air-Sea Interaction in the Somali Current Region

    NASA Astrophysics Data System (ADS)

    Jensen, T. G.; Rydbeck, A.

    2017-12-01

    The western Indian Ocean is an area of high eddy-kinetic energy generated by local wind-stress curl, instability of boundary currents as well as Rossby waves from the west coast of India and the equatorial wave guide as they reflect off the African coast. The presence of meso-scale eddies and coastal upwelling during the Southwest Monsoon affects the air-sea interaction on those scales. The U.S. Navy's Coupled Ocean-Atmosphere Mesoscale Prediction System (COAMPS) is used to understand and quantify the surface flux, effects on surface waves and the role of Sea Surface Temperature anomalies on ocean-atmosphere coupling in that area. The COAMPS atmosphere model component with 9 km resolution is fully coupled to the Navy Coastal Ocean Model (NCOM) with 3.5 km resolution and the Simulating WAves Nearshore (SWAN) wave model with 10 km resolution. Data assimilation using a 3D-variational approach is included in hindcast runs performed daily since June 1, 2015. An interesting result is that a westward jet associated with downwelling equatorial Rossy waves initiated the reversal from the southward Somali Current found during the northeast monsoon to a northward flow in March 2016 more than a month before the beginning of the southwest monsoon. It is also found that warm SST anomalies in the Somali Current eddies, locally increase surface wind speed due to an increase in the atmospheric boundary layer height. This results in an increase in significant wave height and also an increase in heat flux to the atmosphere. Cold SST anomalies over upwelling filaments have the opposite impacts on air-sea fluxes.

  6. Estimation of sea surface temperature from remote measurements in the 11-13 micron window region

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Conrath, B. J.; Kunde, V. G.

    1972-01-01

    The Nimbus-4 IRIS data was examined in the spectral region 775 to 1250/cm (8-13 microns) for useful information to determine the sea surface temperature. The high spectral resolution data of IRIS was degraded to low resolution by averaging to simulate a multi-channel radiometer in the window region. These simulated data show that within the region 775-975/cm (12.9-10.25 microns) the brightness temperatures are linearly related to the absorption parameters. Such a linear relationship is observed over cloudy as well as clear regions and over a wide range of latitudes. From this linear relationship it is feasible to correct for the atmospheric attenuation and get the sea surface temperature, accurate to within 1 K, in a cloud free field of view. The information about the cloud cover is taken from the TV pictures and BUV albedo measurements on board the Nimbus-4 satellite.

  7. How Rapid Change Affects Deltas in the Arctic Region

    NASA Astrophysics Data System (ADS)

    Overeem, I.; Bendixen, M.

    2017-12-01

    Deltas form where the river drains into the ocean. Consequently, delta depositional processes are impacted by either changes in the respective river drainage basin or by changes in the regional marine environment. In a warming Arctic region rapid change has occurred over the last few decades in both the terrestrial domain as well as in the marine domain. Important terrestrial controls include 1) change in permafrost possibly destabilizing river banks, 2) strong seasonality of river discharge due to a short melting season, 3) high sediment supply if basins are extensively glaciated, 4) lake outbursts and ice jams favoring river flooding. Whereas in the Arctic marine domain sea ice loss promotes wave and storm surge impact, and increased longshore transport. We here ask which of these factors dominate any morphological change in Arctic deltas. First, we analyze hydrological data to assess change in Arctic-wide river discharge characteristics and timing, and sea ice concentration data to map changes in sea ice regime. Based on this observational analysis we set up a number of scenarios of change. We then model hypothetical small-scale delta formation considering change in these primary controls by setting up a numerical delta model, and combining it dynamically with a permafrost model. We find that for typical Greenlandic deltas changes in river forcing due to ice sheet melt dominate the morphological change, which is corroborated by mapping of delta progradation from aerial photos and satellite imagery. Whereas in other areas, along the North Slope and the Canadian Arctic small deltas are more stable or experienced retreat. Our preliminary coupled model allows us to further disentangle the impact of major forcing factors on delta evolution in high-latitude systems.

  8. Impact of increasing antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Merino, Nacho; Jourdain, Nicolas C.; Le Sommer, Julien; Goosse, Hugues; Mathiot, Pierre; Durand, Gael

    2018-01-01

    The sensitivity of Antarctic sea-ice to increasing glacial freshwater release into the Southern Ocean is studied in a series of 31-year ocean/sea-ice/iceberg model simulations. Glaciological estimates of ice-shelf melting and iceberg calving are used to better constrain the spatial distribution and magnitude of freshwater forcing around Antarctica. Two scenarios of glacial freshwater forcing have been designed to account for a decadal perturbation in glacial freshwater release to the Southern Ocean. For the first time, this perturbation explicitly takes into consideration the spatial distribution of changes in the volume of Antarctic ice shelves, which is found to be a key component of changes in freshwater release. In addition, glacial freshwater-induced changes in sea ice are compared to typical changes induced by the decadal evolution of atmospheric states. Our results show that, in general, the increase in glacial freshwater release increases Antarctic sea ice extent. But the response is opposite in some regions like the coastal Amundsen Sea, implying that distinct physical mechanisms are involved in the response. We also show that changes in freshwater forcing may induce large changes in sea-ice thickness, explaining about one half of the total change due to the combination of atmospheric and freshwater changes. The regional contrasts in our results suggest a need for improving the representation of freshwater sources and their evolution in climate models.

  9. Short-term Inundation Forecasting for Tsunamis in the Caribbean Sea Region

    NASA Astrophysics Data System (ADS)

    Mercado-Irizarry, A.; Schmidt, W.

    2007-05-01

    After the 2004 Indian Ocean tsunami, the USA Congress gave a mandate to the National Oceanographic and Atmospheric Administration (NOAA) to assess the tsunami threat for all USA interests, and adapt to them the Short-term Inundation Forecasting for Tsunamis (SIFT) methodology first developed for the USA Pacific seaboard states. This methodology would be used with the DART buoys deployed in the Atlantic Ocean and Caribbean Sea. The first step involved the evaluation and characterization of the major tsunamigenic regions in both regions, work done by the US Geological Survey (USGS). This was followed by the modeling of the generation and propagation of tsunamis due to unit slip tsunamigenic earthquakes located at different locations along the tsunamigenic zones identified by the USGS. These pre-computed results are stored and are used as sources (in an inverse modeling approach using the DART buoys) for so-called Standby Inundation Models (SIM's) being developed for selected coastal cities in Puerto Rico, the US Virgin Islands, and others along the Atlantic seaboard of the USA. It is the purpose of this presentation to describe the work being carried out in the Caribbean Sea region, where two SIM's for Puerto Rico have already being prepared, allowing for near real-time assessment (less than 10 minutes after detection by the DART buoys) of the expected tsunami impact for two major coastal cities.

  10. New model for Jurassic microcontinent movement and Gondwana breakup in the Weddell Sea region

    NASA Astrophysics Data System (ADS)

    Jordan, Tom; Ferraccioli, Fausto; Leat, Philip

    2017-04-01

    The breakup of the Gondwana supercontinent changed the face of our planet. Precursors of supercontinental breakup are widely recognised in the Weddell Sea region in the Jurassic. These include the Karoo/Ferrar Large Igneous Province that extends from South Africa to East Antarctica and significant continental rifting and associated translation of microcontinental blocks in the Weddell Sea Embayment region. However, significant controversy surrounds the pre-breakup position, extent, timing and driving mechanism of inferred microcontinental movement. In particular geological and paleomagnetic data suggest >1000 km of translation and 90 degree rotation of the Haag-Ellsworth Whitmore block (HEW) away from East Antarctica. In contrast, some geophysical interpretations suggest little or no Jurassic or subsequent HEW block movement. Here we present a simpler tectonic model for the Weddell Sea Rift System and HEW movement, derived from our new compilation of airborne geophysical data, satellite magnetic data and potential field modelling (Jordan et al., 2016- Gondwana Res.). Based on the amount of inferred Jurassic crustal extension and pattern of magnetic anomalies we propose that the HEW was translated 500 km towards the Paleo-Pacific margin of Gondwana, possibly in response to a process of slab roll-back that led to distributed back-arc extension in the Weddell Sea Rift System. Widespread magmatism in the region was likely influenced by the presence of one or more mantle plumes impinging beneath the stretching lithosphere. A second phase of continental extension is inferred to have occurred between 180 and 165 Ma (prior to seafloor spreading) and is more closely associated with Gondwana breakup. This second phase over-printed the northern part of the older back arc system. We find no geophysical evidence indicating more than 30 degrees of syn-extensional HEW rotation during Jurassic rifting in the southern Weddell Sea Rift System. Instead, we propose the majority ( 60

  11. The impact of a pressurized regional sea or global ocean on stresses on Enceladus

    NASA Astrophysics Data System (ADS)

    Johnston, Stephanie A.; Montési, Laurent G. J.

    2017-06-01

    Liquid water is likely present in the interior of Enceladus, but it is still debated whether this water forms a global ocean or a regional sea and whether the present-day situation is stable. As the heat flux of Enceladus exceeds most heat source estimates, the liquid water is likely cooling and crystallizing, which results in expansion and pressurization of the sea or ocean. We determine, using an axisymmetric Finite Element Model, the tectonic patterns that pressurization of a regional sea or global ocean might produce at the surface of Enceladus. Tension is always predicted above where the ice is thinnest and generates cracks that might be at the origin of the Tiger Stripes. Tectonic activity is also expected in an annulus around the sea if the ice shell is in contact with but slips freely along the rocky core of the satellite. Cracks at the north pole are expected if the shell slips along the core or if there is a global ocean with thin ice at the pole. Water is likely injected along the base of the ice when the shell is grounded, which may lead to cycles of tectonic activity with the shell alternating between floating and grounded states and midlatitude faulting occurring at the transition from a grounded to a floating state.

  12. Stable isotopes in barnacles as a tool to understand green sea turtle (Chelonia mydas) regional movement patterns

    NASA Astrophysics Data System (ADS)

    Detjen, M.; Sterling, E.; Gómez, A.

    2015-12-01

    Sea turtles are migratory animals that travel long distances between their feeding and breeding grounds. Traditional methods for researching sea turtle migratory behavior have important disadvantages, and the development of alternatives would enhance our ability to monitor and manage these globally endangered species. Here we report on the isotope signatures in green sea-turtle (Chelonia mydas) barnacles (Platylepas sp.) and discuss their potential relevance as tools with which to study green sea turtle migration and habitat use patterns. We analyzed oxygen (δ18O) and carbon (δ13C) isotope ratios in barnacle calcite layers from specimens collected from green turtles captured at the Palmyra Atoll National Wildlife Refuge (PANWR) in the central Pacific. Carbon isotopes were not informative in this study. However, the oxygen isotope results suggest likely regional movement patterns when mapped onto a predictive oxygen isotope map of the Pacific. Barnacle proxies could therefore complement other methods in understanding regional movement patterns, informing more effective conservation policy that takes into account connectivity between populations.

  13. Stable isotopes in barnacles as a tool to understand green sea turtle (Chelonia mydas) regional movement patterns

    NASA Astrophysics Data System (ADS)

    Detjen, M.; Sterling, E.; Gómez, A.

    2015-03-01

    Sea turtles are migratory animals that travel long distances between their feeding and breeding grounds. Traditional methods for researching sea turtle migratory behavior have important disadvantages, and the development of alternatives would enhance our ability to monitor and manage these globally endangered species. Here we report on the isotope signatures in green sea turtle (Chelonia mydas) barnacles (Platylepas sp.) and discuss their potential relevance as tools with which to study green sea turtle migration and habitat use patterns. We analyzed oxygen (δ18O) and carbon (δ13C) isotope ratios in barnacle calcite layers from specimens collected from green turtles captured at the Palmyra Atoll National Wildlife Refuge (PANWR) in the Central Pacific. Carbon isotopes were not informative in this study. However, the oxygen isotope results suggest likely regional movement patterns when mapped onto a predictive oxygen isotope map of the Pacific. Barnacle proxies could therefore complement other methods in understanding regional movement patterns, informing more effective conservation policy that takes into account connectivity between populations.

  14. Transport of contaminants by Arctic sea ice and surface ocean currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfirman, S.

    1995-12-31

    Sea ice and ocean currents transport contaminants in the Arctic from source areas on the shelves, to biologically active regions often more than a thousand kilometers away. Coastal regions along the Siberian margin are polluted by discharges of agricultural, industrial and military wastes in river runoff, from atmospheric deposition and ocean dumping. The Kara Sea is of particular concern because of deliberate dumping of radioactive waste, as well as the large input of polluted river water. Contaminants are incorporated in ice during suspension freezing on the shelves, and by atmospheric deposition during drift. Ice releases its contaminant load through brinemore » drainage, surface runoff of snow and meltwater, and when the floe disintegrates. The marginal ice zone, a region of intense biological activity, may also be the site of major contaminant release. Potentially contaminated ice from the Kara Sea is likely to influence the marginal ice zones of the Barents and Greenland seas. From studies conducted to date it appears that sea ice from the Kara Sea does not typically enter the Beaufort Gyre, and thus is unlikely to affect the northern Canadian and Alaskan margins.« less

  15. Satellite altimetry in sea ice regions - detecting open water for estimating sea surface heights

    NASA Astrophysics Data System (ADS)

    Müller, Felix L.; Dettmering, Denise; Bosch, Wolfgang

    2017-04-01

    The Greenland Sea and the Farm Strait are transporting sea ice from the central Arctic ocean southwards. They are covered by a dynamic changing sea ice layer with significant influences on the Earth climate system. Between the sea ice there exist various sized open water areas known as leads, straight lined open water areas, and polynyas exhibiting a circular shape. Identifying these leads by satellite altimetry enables the extraction of sea surface height information. Analyzing the radar echoes, also called waveforms, provides information on the surface backscatter characteristics. For example waveforms reflected by calm water have a very narrow and single-peaked shape. Waveforms reflected by sea ice show more variability due to diffuse scattering. Here we analyze altimeter waveforms from different conventional pulse-limited satellite altimeters to separate open water and sea ice waveforms. An unsupervised classification approach employing partitional clustering algorithms such as K-medoids and memory-based classification methods such as K-nearest neighbor is used. The classification is based on six parameters derived from the waveform's shape, for example the maximum power or the peak's width. The open-water detection is quantitatively compared to SAR images processed while accounting for sea ice motion. The classification results are used to derive information about the temporal evolution of sea ice extent and sea surface heights. They allow to provide evidence on climate change relevant influences as for example Arctic sea level rise due to enhanced melting rates of Greenland's glaciers and an increasing fresh water influx into the Arctic ocean. Additionally, the sea ice cover extent analyzed over a long-time period provides an important indicator for a globally changing climate system.

  16. The Caspian Sea regionalism in a globalized world: Energy security and regional trajectories of Azerbaijan and Iran

    NASA Astrophysics Data System (ADS)

    Hedjazi, Babak

    2007-12-01

    This dissertation is fundamentally about the formation of new regional spaces in Central Eurasia viewed from a dynamic, comparative and historical approach. Analyzing the global-local economic and political interactions and their consequences on resource rich countries of the Caspian Sea enable us to reframe security as a central element of the new global order. In this respect, the dissertation examines how two particular states, Azerbaijan and Iran, respond to the changing global security environment and optimize their capacity to absorb or control change. Here, security as I conceive is multidimensional and engages various social, political and economic domains. My research is articulated along three hypotheses regarding the formation of a new regional space and its consequences on territorial polarization and interstate rivalry. These hypotheses, respectively and cumulatively, elucidate global and domestic contexts of regional space formation, regional strategic and discursive trajectories, and regional tensions of global/local interactions. In order to empirically test these hypotheses, a series of thirty interviews were conducted by the author with local and foreign business representatives, civilian and government representatives, and corroborated by economic data collected from the International Energy Agency. The findings of the research validate the primary assumption of the dissertation that Azerbaijan and Iran have chosen the regional scale to address discrepancies between their aspired place in the new world order and the reality of their power and international status. Extending the argument for structural scarcity of oil towards contenders, this dissertation concludes that the Caspian oil has become a fundamental element of the regional discourse. The mismatch between the rhetoric of sovereign rights and energy security on one side and the reality of regional countries' powerlessness and their need to reach international markets on the other side are

  17. Tropical Marginal Seas: Priority Regions for Managing Marine Biodiversity and Ecosystem Function

    NASA Astrophysics Data System (ADS)

    McKinnon, A. David; Williams, Alan; Young, Jock; Ceccarelli, Daniela; Dunstan, Piers; Brewin, Robert J. W.; Watson, Reg; Brinkman, Richard; Cappo, Mike; Duggan, Samantha; Kelley, Russell; Ridgway, Ken; Lindsay, Dhugal; Gledhill, Daniel; Hutton, Trevor; Richardson, Anthony J.

    2014-01-01

    Tropical marginal seas (TMSs) are natural subregions of tropical oceans containing biodiverse ecosystems with conspicuous, valued, and vulnerable biodiversity assets. They are focal points for global marine conservation because they occur in regions where human populations are rapidly expanding. Our review of 11 TMSs focuses on three key ecosystems - coral reefs and emergent atolls, deep benthic systems, and pelagic biomes - and synthesizes, illustrates, and contrasts knowledge of biodiversity, ecosystem function, interaction between adjacent habitats, and anthropogenic pressures. TMSs vary in the extent that they have been subject to human influence - from the nearly pristine Coral Sea to the heavily exploited South China and Caribbean Seas - but we predict that they will all be similarly complex to manage because most span multiple national jurisdictions. We conclude that developing a structured process to identify ecologically and biologically significant areas that uses a set of globally agreed criteria is a tractable first step toward effective multinational and transboundary ecosystem management of TMSs.

  18. Tropical marginal seas: priority regions for managing marine biodiversity and ecosystem function.

    PubMed

    McKinnon, A David; Williams, Alan; Young, Jock; Ceccarelli, Daniela; Dunstan, Piers; Brewin, Robert J W; Watson, Reg; Brinkman, Richard; Cappo, Mike; Duggan, Samantha; Kelley, Russell; Ridgway, Ken; Lindsay, Dhugal; Gledhill, Daniel; Hutton, Trevor; Richardson, Anthony J

    2014-01-01

    Tropical marginal seas (TMSs) are natural subregions of tropical oceans containing biodiverse ecosystems with conspicuous, valued, and vulnerable biodiversity assets. They are focal points for global marine conservation because they occur in regions where human populations are rapidly expanding. Our review of 11 TMSs focuses on three key ecosystems-coral reefs and emergent atolls, deep benthic systems, and pelagic biomes-and synthesizes, illustrates, and contrasts knowledge of biodiversity, ecosystem function, interaction between adjacent habitats, and anthropogenic pressures. TMSs vary in the extent that they have been subject to human influence-from the nearly pristine Coral Sea to the heavily exploited South China and Caribbean Seas-but we predict that they will all be similarly complex to manage because most span multiple national jurisdictions. We conclude that developing a structured process to identify ecologically and biologically significant areas that uses a set of globally agreed criteria is a tractable first step toward effective multinational and transboundary ecosystem management of TMSs.

  19. Chemosterilization of male sea lampreys (Petromyzon marinus) does not affect sex pheromone release

    USGS Publications Warehouse

    Siefkes, Michael J.; Bergstedt, Roger A.; Twohey, Michael B.; Li, Weiming

    2003-01-01

    Release of males sterilized by injection with bisazir is an important experimental technique in management of sea lamprey (Petromyzon marinus), an invasive, nuisance species in the Laurentian Great Lakes. Sea lampreys are semelparous and sterilization can theoretically eliminate a male's reproductive capacity and, if the ability to obtain mates is not affected, waste the sex products of females spawning with him. It has been demonstrated that spermiating males release a sex pheromone that attracts ovulating females. We demonstrated that sterilized, spermiating males also released the pheromone and attracted ovulating females. In a two-choice maze, ovulating females increased searching behavior and spent more time in the side of the maze containing chemical stimuli from sterilized, spermiating males. This attraction response was also observed in spawning stream experiments. Also, electro-olfactograms showed that female olfactory organs were equally sensitive to chemical stimuli from sterilized and nonsterilized, spermiating males. Finally, fast atom bombardment mass spectrometry showed that extracts from water conditioned with sterilized and nonsterilized, spermiating males contained the same pheromonal molecule at similar levels. We concluded that injection of bisazir did not affect the efficacy of sex pheromone in sterilized males.

  20. Slab interactions in 3-D subduction settings: The Philippine Sea Plate region

    NASA Astrophysics Data System (ADS)

    Holt, Adam F.; Royden, Leigh H.; Becker, Thorsten W.; Faccenna, Claudio

    2018-05-01

    The importance of slab-slab interactions is manifested in the kinematics and geometry of the Philippine Sea Plate and western Pacific subduction zones, and such interactions offer a dynamic basis for the first-order observations in this complex subduction setting. The westward subduction of the Pacific Sea Plate changes, along-strike, from single slab subduction beneath Japan, to a double-subduction setting where Pacific subduction beneath the Philippine Sea Plate occurs in tandem with westward subduction of the Philippine Sea Plate beneath Eurasia. Our 3-D numerical models show that there are fundamental differences between single slab systems and double slab systems where both subduction systems have the same vergence. We find that the observed kinematics and slab geometry of the Pacific-Philippine subduction can be understood by considering an along-strike transition from single to double subduction, and is largely independent from the detailed geometry of the Philippine Sea Plate. Important first order features include the relatively shallow slab dip, retreating/stationary trenches, and rapid subduction for single slab systems (Pacific Plate subducting under Japan), and front slabs within a double slab system (Philippine Sea Plate subducting at Ryukyu). In contrast, steep to overturned slab dips, advancing trench motion, and slower subduction occurs for rear slabs in a double slab setting (Pacific subducting at the Izu-Bonin-Mariana). This happens because of a relative build-up of pressure in the asthenosphere beneath the Philippine Sea Plate, where the asthenosphere is constrained between the converging Ryukyu and Izu-Bonin-Mariana slabs. When weak back-arc regions are included, slab-slab convergence rates slow and the middle (Philippine) plate extends, which leads to reduced pressure build up and reduced slab-slab coupling. Models without back-arcs, or with back-arc viscosities that are reduced by a factor of five, produce kinematics compatible with present

  1. Effects of Regional Climate Change on the Wave Conditions in the Western Baltic Sea

    NASA Astrophysics Data System (ADS)

    Dreier, N.; Fröhle, P.

    2017-12-01

    The local wave climate in the Western Baltic Sea is mainly generated by the local wind field over the area. Long-term changes of the local wind conditions that are induced e.g. by regional climate change, directly affect the local wave climate and other local wind driven coastal processes like e.g. the longshore sediment transport. The changes of the local wave climate play an important role for the safe functional and structural design of new, or the adaption of existing, coastal protection structures as well as for the assessment of long-term morphological changes of the coastline. In this study, the wave model SWAN is used for the calculation of hourly wave conditions in the Western Baltic Sea between 1960 and 2100. Future wind conditions from two regional climate models (Cosmo-CLM and REMO) that have been forced by different future greenhouse gas emission scenarios used within AR4 (A1B, B1) and AR5 (RCP4.5 and RCP8.5) of IPCC are used as input for the wave model. The changes of the average wave conditions are analyzed from comparisons between the 30 years averages for the future (e.g. 2071-2100) and the reference period 1971-2000. Regarding the emission scenarios A1B and B1, a significant change of the 30 years averages of significant wave height at westerly wind exposed locations with predominant higher values up to +10% is found (cf. Fig. 1). In contrast, the change of the 30 years averages of significant wave height is more weak at easterly wind exposed locations, resulting in higher and lower values between -5% to +5%. Moreover, more wave events from W-NW and fewer events from N-NE can be expected, due to changes of the frequency of occurrence of the 30 years averages of mean wave direction. The changes of extreme wave heights are analyzed based on methods of extreme value analysis and the time series of wave parameters at selected locations nearby the German Baltic Sea coast. No robust changes of the significant wave heights with a return period of 200

  2. Variability and Trends in Sea Ice Extent and Ice Production in the Ross Sea

    NASA Technical Reports Server (NTRS)

    Comiso, Josefino; Kwok, Ronald; Martin, Seelye; Gordon, Arnold L.

    2011-01-01

    Salt release during sea ice formation in the Ross Sea coastal regions is regarded as a primary forcing for the regional generation of Antarctic Bottom Water. Passive microwave data from November 1978 through 2008 are used to examine the detailed seasonal and interannual characteristics of the sea ice cover of the Ross Sea and the adjacent Bellingshausen and Amundsen seas. For this period the sea ice extent in the Ross Sea shows the greatest increase of all the Antarctic seas. Variability in the ice cover in these regions is linked to changes in the Southern Annular Mode and secondarily to the Antarctic Circumpolar Wave. Over the Ross Sea shelf, analysis of sea ice drift data from 1992 to 2008 yields a positive rate of increase in the net ice export of about 30,000 sq km/yr. For a characteristic ice thickness of 0.6 m, this yields a volume transport of about 20 cu km/yr, which is almost identical, within error bars, to our estimate of the trend in ice production. The increase in brine rejection in the Ross Shelf Polynya associated with the estimated increase with the ice production, however, is not consistent with the reported Ross Sea salinity decrease. The locally generated sea ice enhancement of Ross Sea salinity may be offset by an increase of relatively low salinity of the water advected into the region from the Amundsen Sea, a consequence of increased precipitation and regional glacial ice melt.

  3. Decadal trends in deep ocean salinity and regional effects on steric sea level

    NASA Astrophysics Data System (ADS)

    Purkey, S. G.; Llovel, W.

    2017-12-01

    We present deep (below 2000 m) and abyssal (below 4000 m) global ocean salinity trends from the 1990s through the 2010s and assess the role of deep salinity in local and global sea level budgets. Deep salinity trends are assessed using all deep basins with available full-depth, high-quality hydrographic section data that have been occupied two or more times since the 1980s through either the World Ocean Circulation Experiment (WOCE) Hydrographic Program or the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). All salinity data is calibrated to standard seawater and any intercruise offsets applied. While the global mean deep halosteric contribution to sea level rise is close to zero (-0.017 +/- 0.023 mm/yr below 4000 m), there is a large regional variability with the southern deep basins becoming fresher and northern deep basins becoming more saline. This meridional gradient in the deep salinity trend reflects different mechanisms driving the deep salinity variability. The deep Southern Ocean is freshening owing to a recent increased flux of freshwater to the deep ocean. Outside of the Southern Ocean, the deep salinity and temperature changes are tied to isopycnal heave associated with a falling of deep isopycnals in recent decades. Therefore, regions of the ocean with a deep salinity minimum are experiencing both a halosteric contraction with a thermosteric expansion. While the thermosteric expansion is larger in most cases, in some regions the halosteric compensates for as much as 50% of the deep thermal expansion, making a significant contribution to local sea level rise budgets.

  4. 76 FR 30956 - Outer Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-27

    ... Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY: Bureau of...: BOEMRE announces the availability of a Revised Draft SEIS, OCS Oil and Gas Lease Sale 193, Chukchi Sea.... The Revised Draft SEIS augments the analysis of the Final EIS, Oil and Gas Lease Sale 193, Chukchi Sea...

  5. Sea-Based Infrared Scene Interpretation by Background Type Classification and Coastal Region Detection for Small Target Detection

    PubMed Central

    Kim, Sungho

    2015-01-01

    Sea-based infrared search and track (IRST) is important for homeland security by detecting missiles and asymmetric boats. This paper proposes a novel scheme to interpret various infrared scenes by classifying the infrared background types and detecting the coastal regions in omni-directional images. The background type or region-selective small infrared target detector should be deployed to maximize the detection rate and to minimize the number of false alarms. A spatial filter-based small target detector is suitable for identifying stationary incoming targets in remote sea areas with sky only. Many false detections can occur if there is an image sector containing a coastal region, due to ground clutter and the difficulty in finding true targets using the same spatial filter-based detector. A temporal filter-based detector was used to handle these problems. Therefore, the scene type and coastal region information is critical to the success of IRST in real-world applications. In this paper, the infrared scene type was determined using the relationships between the sensor line-of-sight (LOS) and a horizontal line in an image. The proposed coastal region detector can be activated if the background type of the probing sector is determined to be a coastal region. Coastal regions can be detected by fusing the region map and curve map. The experimental results on real infrared images highlight the feasibility of the proposed sea-based scene interpretation. In addition, the effects of the proposed scheme were analyzed further by applying region-adaptive small target detection. PMID:26404308

  6. An inter-decadal increase in summer sea level pressure over the Mongolian region around the early 1990s

    NASA Astrophysics Data System (ADS)

    Zhang, Haiyan; Wen, Zhiping; Wu, Renguang; Li, Xiuzhen; Chen, Ruidan

    2018-05-01

    The East Asian summer monsoon is affected by processes in the mid-high latitudes in addition to various tropical and subtropical systems. The present study investigates the summer sea level pressure (SLP) variability over northern East Asia (NEA) and emphasizes the closed active center over the Mongolian region. It is found that the seasonal mean Mongolian SLP (MSLP) anomaly is closely connected with the variability of summertime regional synoptic extra-tropical cyclones on longer time scales. A significant inter-decadal increase in the MSLP around the early 1990s has been detected, which is accompanied by a weakening in the activity of regional extra-tropical cyclones. Recent warming over NEA may have a contribution to the inter-decadal change, which features evidently meridional inhomogeneity around 45°N. The inhomogeneous air temperature anomaly distribution results in decreased vertical wind shear, reduced atmospheric baroclinicity over the Mongolian region, and thus inactive regional cyclones and increased MSLP in the latter decade. The associated temperature anomaly distribution may be partly attributed to regional inhomogeneity in cloud and radiation anomalies, and it is further maintained by two positive feedback mechanisms associated with atmospheric internal processes: one via adiabatic heating and the other via horizontal temperature advection.

  7. Interactions of ice sheet evolution, sea level and GIA in a region of complex Earth structure

    NASA Astrophysics Data System (ADS)

    Gomez, N. A.; Chan, N. H.; Latychev, K.; Pollard, D.; Powell, E. M.

    2017-12-01

    Constraining glacial isostatic adjustment (GIA) is challenging in Antarctica, where the solid Earth deformation, sea level changes and ice dynamics are strongly linked on all timescales. Furthermore, Earth structure beneath the Antarctic Ice Sheet is characterized by significant lateral variability. A stable, thick craton exists in the east, while the west is underlain by a large continental rift system, with a relatively thin lithosphere and hot, low viscosity asthenosphere, as indicated by high resolution seismic tomography. This implies that in parts of the West Antarctic, the Earth's mantle may respond to surface loading on shorter than average (centennial, or even decadal) timescales. Accounting for lateral variations in viscoelastic Earth structure alters the timing and geometry of load-induced Earth deformation, which in turn impacts the timing and extent of the ice-sheet retreat via a sea-level feedback, as well as predictions of relative sea-level change and GIA. We explore the impact of laterally varying Earth structure on ice-sheet evolution, sea level change and Earth deformation in the Antarctic region since the Last Glacial Maximum using a newly developed coupled ice sheet - sea level model that incorporates 3-D variations in lithospheric thickness and mantle viscosity derived from recent seismic tomographic datasets. Our results focus on identifying the regions and time periods in which the incorporation of 3-D Earth structure is critical for accurate predictions of ice sheet evolution and interpretation of geological and geodetic observations. We also investigate the sensitivity to the regional Earth structure of the relative contributions to modern GIA predictions of Last Deglacial and more recent Holocene ice cover changes.

  8. Observed modes of sea surface temperature variability in the South Pacific region

    NASA Astrophysics Data System (ADS)

    Saurral, Ramiro I.; Doblas-Reyes, Francisco J.; García-Serrano, Javier

    2018-02-01

    The South Pacific (SP) region exerts large control on the climate of the Southern Hemisphere at many times scales. This paper identifies the main modes of interannual sea surface temperature (SST) variability in the SP which consist of a tropical-driven mode related to a horseshoe structure of positive/negative SST anomalies within midlatitudes and highly correlated to ENSO and Interdecadal Pacific Oscillation (IPO) variability, and another mode mostly confined to extratropical latitudes which is characterized by zonal propagation of SST anomalies within the South Pacific Gyre. Both modes are associated with temperature and rainfall anomalies over the continental regions of the Southern Hemisphere. Besides the leading mode which is related to well known warmer/cooler and drier/moister conditions due to its relationship with ENSO and the IPO, an inspection of the extratropical mode indicates that it is associated with distinct patterns of sea level pressure and surface temperature advection. These relationships are used here as plausible and partial explanations to the observed warming trend observed within the Southern Hemisphere during the last decades.

  9. Seismicity of the Indo-Australian/Solomon Sea Plate boundary in the Southeast Papua region

    NASA Astrophysics Data System (ADS)

    Ripper, I. D.

    1982-08-01

    Seismicity and earthquake focal mechanism plots of the Southeast Papua and Woodlark Basin region for the period January 1960 to May 1979 show that: (a) the West Woodlark Basin spreading centre extends from the deep West Woodlark Basin, through Dawson Strait into Goodenough Bay, Southeast Papua; (b) a southeast seismic trend in the West Woodlark Basin is associated with a left-lateral transform fault, but a gap exists between this zone and the seismic East Woodlark Basin spreading centre; (c) Southeast Papua Seismicity divides into a shallow earthquake zone in which the earthquakes occur mainly in the northeast side of the Owen Stanley Range, and an intermediate depth southwest dipping Benioff zone which extends almost from Mt. Lamington to Goroka. The Benioff zone indicates the presence of a southwest dipping slab of Solomon Sea Plate beneath the Indo-Australian Plate in the Southeast Papua and Ramu-Markham Valley region. This subduction zone has collided with the New Britain subduction zone of the Solomon Sea Plate along the Ramu-Markham Valley. The Solomon Sea Plate is now hanging suspended in the form of an arch beneath Ramu-Markham Valley, inhibiting further subduction beneath Southeast Papua.

  10. Modification of misovortices during landfall in the Japan Sea coastal region

    NASA Astrophysics Data System (ADS)

    Kato, Ryohei; Kusunoki, Kenichi; Inoue, Hanako Y.; Arai, Ken-ichiro; Nishihashi, Masahide; Fujiwara, Chusei; Shimose, Ken-ichi; Mashiko, Wataru; Sato, Eiichi; Saito, Sadao; Hayashi, Syugo; Yoshida, Satoru; Suzuki, Hiroto

    2015-05-01

    Misovortices frequently occur near the coastline of the Japan Sea during wintertime cold air outbreaks, generally developing over the sea and moving inland. To clarify the behavior of misovortices during landfall, temporal changes in the intensity and tilt of 12 misovortices over the coastal region of the Japan Sea were investigated during the winters of 2010/11 and 2011/12 using an X-band Doppler radar. For 11 vortices whose diameters were more than twice the effective radar beamwidth, the temporal change in the peak tangential velocity at lower levels (averaged below 400 m AGL) was analyzed. It was found that 8 out of the 11 vortices decreased after progressing between 0 and 6 km inland. For the remaining three vortices, the patterns of Doppler velocity couplet became unclear between 0 and 5 km inland, suggesting that these vortices also decayed soon after landfall. For four of the vortices, for which the analysis of the temporal evolution of tilt with height was made possible by several successive volume scans, the forward tilt with height increased after landfall. This study showed that modification to both the intensity and tilt with height of misovortices occurred after landfall.

  11. Added value of high-resolution regional climate model over the Bohai Sea and Yellow Sea areas

    NASA Astrophysics Data System (ADS)

    Li, Delei; von Storch, Hans; Geyer, Beate

    2016-04-01

    Added value from dynamical downscaling has long been a crucial and debatable issue in regional climate studies. A 34 year (1979-2012) high-resolution (7 km grid) atmospheric hindcast over the Bohai Sea and the Yellow Sea (BYS) has been performed using COSMO-CLM (CCLM) forced by ERA-Interim reanalysis data (ERA-I). The accuracy of CCLM in surface wind reproduction and the added value of dynamical downscaling to ERA-I have been investigated through comparisons with the satellite data (including QuikSCAT Level2B 12.5 km version 3 (L2B12v3) swath data and MODIS images) and in situ observations, with adoption of quantitative metrics and qualitative assessment methods. The results revealed that CCLM has a reliable ability to reproduce the regional wind characteristics over the BYS areas. Over marine areas, added value to ERA-I has been detected in the coastal areas with complex coastlines and orography. CCLM was better able to represent light and moderate winds but has even more added value for strong winds relative to ERA-I. Over land areas, the high-resolution CCLM hindcast can add value to ERA-I in reproducing wind intensities and direction, wind probability distribution and extreme winds mainly at mountain areas. With respect to atmospheric processes, CCLM outperforms ERA-I in resolving detailed temporal and spatial structures for phenomena of a typhoon and of a coastal atmospheric front; CCLM generates some orography related phenomena such as a vortex street which is not captured by ERA-I. These added values demonstrate the utility of the 7-km-resolution CCLM for regional and local climate studies and applications. The simulation was constrained with adoption of spectral nudging method. The results may be different when simulations are considered, which are not constrained by spectral nudging.

  12. Contemporary Arctic Sea Level

    NASA Astrophysics Data System (ADS)

    Cazenave, A. A.

    2017-12-01

    During recent decades, the Arctic region has warmed at a rate about twice the rest of the globe. Sea ice melting is increasing and the Greenland ice sheet is losing mass at an accelerated rate. Arctic warming, decrease in the sea ice cover and fresh water input to the Arctic ocean may eventually impact the Arctic sea level. In this presentation, we review our current knowledge of contemporary Arctic sea level changes. Until the beginning of the 1990s, Arctic sea level variations were essentially deduced from tide gauges located along the Russian and Norwegian coastlines. Since then, high inclination satellite altimetry missions have allowed measuring sea level over a large portion of the Arctic Ocean (up to 80 degree north). Measuring sea level in the Arctic by satellite altimetry is challenging because the presence of sea ice cover limits the full capacity of this technique. However adapted processing of raw altimetric measurements significantly increases the number of valid data, hence the data coverage, from which regional sea level variations can be extracted. Over the altimetry era, positive trend patterns are observed over the Beaufort Gyre and along the east coast of Greenland, while negative trends are reported along the Siberian shelf. On average over the Arctic region covered by satellite altimetry, the rate of sea level rise since 1992 is slightly less than the global mea sea level rate (of about 3 mm per year). On the other hand, the interannual variability is quite significant. Space gravimetry data from the GRACE mission and ocean reanalyses provide information on the mass and steric contributions to sea level, hence on the sea level budget. Budget studies show that regional sea level trends over the Beaufort Gyre and along the eastern coast of Greenland, are essentially due to salinity changes. However, in terms of regional average, the net steric component contributes little to the observed sea level trend. The sea level budget in the Arctic

  13. 50 CFR 648.11 - At-sea sea sampler/observer coverage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false At-sea sea sampler/observer coverage. 648... Provisions § 648.11 At-sea sea sampler/observer coverage. (a) The Regional Administrator may request any vessel holding a permit for Atlantic sea scallops, NE multispecies, monkfish, skates, Atlantic mackerel...

  14. Ice in Caspian Sea and Aral Sea, Kazakhstan

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this MODIS image from December 3, 2001, winter sea ice can be seen forming in the shallow waters of the northern Caspian (left) and Aral (upper right) Seas. Despite the inflow of the Volga River (upper left), the northern portion of the Caspian Sea averages only 17 ft in depth, and responds to the region's continental climate, which is cold in winter and hot and dry in the summer. The southern part of the Sea is deeper and remains ice-free throughout the winter. The dirty appearance of the ice may be due to sediment in the water, but may also be due to wind-driven dust. The wind in the region can blow at hurricane-force strength and can cause the ice to pile up in hummocks that are anchored to the sea bottom. The eastern portion of the Aral Sea is also beginning to freeze. At least two characteristics of the Aral Sea 'compete' in determining whether its waters will freeze. The Sea is shallow, which increases the likelihood of freezing, but it is also very salty, which means that lower temperatures are required to freeze it than would be required for fresh water. With average December temperatures of 18o F, it's clearly cold enough to allow ice to form. As the waters that feed the Aral Sea continue to be diverted for agriculture, the Sea becomes shallower and the regional climate becomes even more continental. This is because large bodies of water absorb and retain heat, moderating seasonal changes in temperature. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  15. Plastic Accumulation in the Mediterranean Sea

    PubMed Central

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J. Ignacio; Ubeda, Bárbara; Gálvez, José Á.; Irigoien, Xabier; Duarte, Carlos M.

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region. PMID:25831129

  16. Plastic accumulation in the Mediterranean sea.

    PubMed

    Cózar, Andrés; Sanz-Martín, Marina; Martí, Elisa; González-Gordillo, J Ignacio; Ubeda, Bárbara; Gálvez, José Á; Irigoien, Xabier; Duarte, Carlos M

    2015-01-01

    Concentrations of floating plastic were measured throughout the Mediterranean Sea to assess whether this basin can be regarded as a great accumulation region of plastic debris. We found that the average density of plastic (1 item per 4 m2), as well as its frequency of occurrence (100% of the sites sampled), are comparable to the accumulation zones described for the five subtropical ocean gyres. Plastic debris in the Mediterranean surface waters was dominated by millimeter-sized fragments, but showed a higher proportion of large plastic objects than that present in oceanic gyres, reflecting the closer connection with pollution sources. The accumulation of floating plastic in the Mediterranean Sea (between 1,000 and 3,000 tons) is likely related to the high human pressure together with the hydrodynamics of this semi-enclosed basin, with outflow mainly occurring through a deep water layer. Given the biological richness and concentration of economic activities in the Mediterranean Sea, the affects of plastic pollution on marine and human life are expected to be particularly frequent in this plastic accumulation region.

  17. Structural-geophysical model of the basement complex of the Aden-Red Sea region

    NASA Astrophysics Data System (ADS)

    Isaev, E. N.

    1987-11-01

    A relief map of the basement complex underlying the volcanogenic sedimentary cover has been constructed on the basis of composite Bouguer anomaly maps and maps of magnetic anomalies ΔT. Seismic and geological data on the Gulf of Aden and the Red Sea as well as on adjacent areas of Africa and Arabia have also been used. The mid-Red Sea and mid-Aden uplifts (similar to the mid-oceanic ones) as well as the foredeep have been identified. The thickness of cover in the foredeeps is 6-8 km. A regional negative Bouguer anomaly crosses the Aden-Red Sea rift system and includes the area of young volcanism. Intensive linear magnetic anomalies are traceable only within the area of overlap of the rift system and the zone of young volcanism. Rift system apophyses have advanced into the continent and their nature is similar to that of the Afar triangle.

  18. Biogeochemical regions of the Mediterranean Sea: An objective multidimensional and multivariate environmental approach

    NASA Astrophysics Data System (ADS)

    Reygondeau, Gabriel; Guieu, Cécile; Benedetti, Fabio; Irisson, Jean-Olivier; Ayata, Sakina-Dorothée; Gasparini, Stéphane; Koubbi, Philippe

    2017-02-01

    When dividing the ocean, the aim is generally to summarise a complex system into a representative number of units, each representing a specific environment, a biological community or a socio-economical specificity. Recently, several geographical partitions of the global ocean have been proposed using statistical approaches applied to remote sensing or observations gathered during oceanographic cruises. Such geographical frameworks defined at a macroscale appear hardly applicable to characterise the biogeochemical features of semi-enclosed seas that are driven by smaller-scale chemical and physical processes. Following the Longhurst's biogeochemical partitioning of the pelagic realm, this study investigates the environmental divisions of the Mediterranean Sea using a large set of environmental parameters. These parameters were informed in the horizontal and the vertical dimensions to provide a 3D spatial framework for environmental management (12 regions found for the epipelagic, 12 for the mesopelagic, 13 for the bathypelagic and 26 for the seafloor). We show that: (1) the contribution of the longitudinal environmental gradient to the biogeochemical partitions decreases with depth; (2) the partition of the surface layer cannot be extrapolated to other vertical layers as the partition is driven by a different set of environmental variables. This new partitioning of the Mediterranean Sea has strong implications for conservation as it highlights that management must account for the differences in zoning with depth at a regional scale.

  19. Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes

    NASA Astrophysics Data System (ADS)

    Asplin, Matthew G.; Scharien, Randall; Else, Brent; Howell, Stephen; Barber, David G.; Papakyriakou, Tim; Prinsenberg, Simon

    2014-04-01

    Decline of the Arctic summer minimum sea ice extent is characterized by large expanses of open water in the Siberian, Laptev, Chukchi, and Beaufort Seas, and introduces large fetch distances in the Arctic Ocean. Long waves can propagate deep into the pack ice, thereby causing flexural swell and failure of the sea ice. This process shifts the floe size diameter distribution smaller, increases floe surface area, and thereby affects sea ice dynamic and thermodynamic processes. The results of Radarsat-2 imagery analysis show that a flexural fracture event which occurred in the Beaufort Sea region on 6 September 2009 affected ˜40,000 km2. Open water fractional area in the area affected initially decreased from 3.7% to 2.7%, but later increased to ˜20% following wind-forced divergence of the ice pack. Energy available for lateral melting was assessed by estimating the change in energy entrainment from longwave and shortwave radiation in the mixed-layer of the ocean following flexural fracture. 11.54 MJ m-2 of additional energy for lateral melting of ice floes was identified in affected areas. The impact of this process in future Arctic sea ice melt seasons was assessed using estimations of earlier occurrences of fracture during the melt season, and is discussed in context with ocean heat fluxes, atmospheric mixing of the ocean mixed layer, and declining sea ice cover. We conclude that this process is an important positive feedback to Arctic sea ice loss, and timing of initiation is critical in how it affects sea ice thermodynamic and dynamic processes.

  20. New tool for the Black Sea environmental safety: BlackSea Track Web

    NASA Astrophysics Data System (ADS)

    Kubryakov, A. I.; Korotayev, G. K.; Thoorens, F.-X.; Liungman, O.; Ambjorn, C.

    2012-04-01

    wind fields, which is provided by the Black Sea MFC located at MHI in Sevastopol. The Black Sea MFC is the MyOcean regional marine forecasting center. It runs operationally and forms weather and ocean forecasts; - the oil drift model jointly developed by SMHI and the Royal Danish Administration of Navigation and Hydrography and which takes into account and adequately describes almost all physical processes affecting the oil spill; - the graphical user interface developed by SMHI and based on open source GIS-server technology. The developed BSTW system is available via the Internet, fully operational 24 hours a day and user friendly. It allows immediate access to the latest forecasts that drives the system. And in addition, it provides other floating objects and back tracking.

  1. The impact of ENSO on regional chlorophyll-a anomaly in the Arafura Sea

    NASA Astrophysics Data System (ADS)

    Dewi, D. M. P. R.; Fatmasari, D.; Kurniawan, A.; Munandar, M. A.

    2018-03-01

    The El Niño-Southern Oscillation (ENSO) is a naturally occurring phenomenon that involves fluctuating ocean temperature in the equatorial Pacific. ENSO influences ocean climate variability in Indonesia including the Arafura Sea. The relationship between oceanic chlorophyll-a and ENSO has been the focus of study over the past decade. Here we examine the impact of ENSO on regional chlorophyll-a anomaly in the Papua waters using 14 years of chlorophyll-a and sea surface temperature (SST) data from AQUA MODIS and sea level anomaly data from AVISO. It is found that when El Niño events occur the negative SST anomaly in the Papua waters as well as the enhanced upwelling cause the increase of chlorophyll-a concentration. The highest chlorophyll-a concentration (> 1 mg–cm-3) occured during El Niño and observed around the Aru archipelago. In contrast during La Niña event, the positive SST anomaly in Papua waters and the suppressed upwelling cause the decrease of chlorophyll-a concentration. Our results suggest that during El Niño (La Niña), the enhanced (suppressed) upwelling related to the significant decreasing (increasing) of sea level anomaly.

  2. Potential sea salt aerosol sources from frost flowers in the pan-Arctic region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Li; Russell, Lynn M.; Burrows, Susannah M.

    In order to better represent observed wintertime aerosol concentrations at Barrow, Alaska, we implemented an observationally-based parameterization for estimating sea salt production from frost flowers in the Community Earth System Model (CESM). In this work, we evaluate the potential influence of this sea salt source on the pan-Arctic (60ºN-90ºN) climate. Results show that frost flower salt emissions substantially increase the modeled surface sea salt aerosol concentration in the winter months when new sea ice and frost flowers are present. The parameterization reproduces both the magnitude and seasonal variation of the observed submicron sea salt aerosol concentration at surface in Barrowmore » during winter much better than the standard CESM simulation without a frost-flower salt particle source. Adding these frost flower salt particle emissions increases aerosol optical depth by 10% and results in a small cooling at surface. The increase in salt particle mass concentrations of a factor of 8 provides nearly two times the cloud condensation nuclei concentration, as well as 10% increases in cloud droplet number and 40% increases in liquid water content near coastal regions adjacent to continents. These cloud changes reduce longwave cloud forcing by 3% and cause a small surface warming, increasing the downward longwave flux at the surface by 2 W m-2 in the pan-Arctic under the present-day climate.« less

  3. Nucleosome-free DNA regions differentially affect distant communication in chromatin

    PubMed Central

    Nizovtseva, Ekaterina V.; Clauvelin, Nicolas; Todolli, Stefjord; Kulaeva, Olga I.; Wengrzynek, Scott

    2017-01-01

    Abstract Communication between distantly spaced genomic regions is one of the key features of gene regulation in eukaryotes. Chromatin per se can stimulate efficient enhancer-promoter communication (EPC); however, the role of chromatin structure and dynamics in this process remains poorly understood. Here we show that nucleosome spacing and the presence of nucleosome-free DNA regions can modulate chromatin structure/dynamics and, in turn, affect the rate of EPC in vitro and in silico. Increasing the length of internucleosomal linker DNA from 25 to 60 bp results in more efficient EPC. The presence of longer nucleosome-free DNA regions can positively or negatively affect the rate of EPC, depending upon the length and location of the DNA region within the chromatin fiber. Thus the presence of histone-free DNA regions can differentially affect the efficiency of EPC, suggesting that gene regulation over a distance could be modulated by changes in the length of internucleosomal DNA spacers. PMID:27940560

  4. Regional air-sea coupled model simulation for two types of extreme heat in North China

    NASA Astrophysics Data System (ADS)

    Li, Donghuan; Zou, Liwei; Zhou, Tianjun

    2018-03-01

    Extreme heat (EH) over North China (NC) is affected by both large scale circulations and local topography, and could be categorized into foehn favorable and no-foehn types. In this study, the performance of a regional coupled model in simulating EH over NC was examined. The effects of regional air-sea coupling were also investigated by comparing the results with the corresponding atmosphere-alone regional model. On foehn favorable (no-foehn) EH days, a barotropic cyclonic (anticyclonic) anomaly is located to the northeast (northwest) of NC, while anomalous northwesterlies (southeasterlies) prevail over NC in the lower troposphere. In the uncoupled simulation, barotropic anticyclonic bias occurs over China on both foehn favorable and no-foehn EH days, and the northwesterlies in the lower troposphere on foehn favorable EH days are not obvious. These biases are significantly reduced in the regional coupled simulation, especially on foehn favorable EH days with wind anomalies skill scores improving from 0.38 to 0.47, 0.47 to 0.61 and 0.38 to 0.56 for horizontal winds at 250, 500 and 850 hPa, respectively. Compared with the uncoupled simulation, the reproduction of the longitudinal position of Northwest Pacific subtropical high (NPSH) and the spatial pattern of the low-level monsoon flow over East Asia are improved in the coupled simulation. Therefore, the anticyclonic bias over China is obviously reduced, and the proportion of EH days characterized by anticyclonic anomaly is more appropriate. The improvements in the regional coupled model indicate that it is a promising choice for the future projection of EH over NC.

  5. Identifying Glacial Meltwater in the Amundsen Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Biddle, L. C.; Heywood, K. J.; Jenkins, A.; Kaiser, J.

    2016-02-01

    Pine Island Glacier, located in the Amundsen Sea, is losing mass rapidly due to relatively warm ocean waters melting its ice shelf from below. The resulting increase in meltwater production may be the root of the freshening in the Ross Sea over the last 30 years. Tracing the meltwater travelling away from the ice sheets is important in order to identify the regions most affected by the increased input of this water type. We use water mass characteristics (temperature, salinity, O2 concentration) derived from 105 CTD casts during the Ocean2ice cruise on RRS James Clark Ross in January-March 2014 to calculate meltwater fractions north of Pine Island Glacier. The data show maximum meltwater fractions at the ice front of up to 2.4 % and a plume of meltwater travelling away from the ice front along the 1027.7 kg m-3 isopycnal. We investigate the reliability of these results and attach uncertainties to the measurements made to ascertain the most reliable method of meltwater calculation in the Amundsen Sea. Processes such as atmospheric interaction and biological activity also affect the calculated apparent meltwater fractions. We analyse their effects on the reliability of the calculated meltwater fractions across the region using a bulk mixed layer model based on the one-dimensional Price-Weller-Pinkel model (Price et al., 1986). The model includes sea ice, dissolved oxygen concentrations and a simple respiration model, forced by NCEP climatology and an initial linear mixing profile between Winter Water (WW) and Circumpolar Deep Water (CDW). The model mimics the seasonal cycle of mixed layer warming and freshening and simulates how increases in sea ice formation and the influx of slightly cooler Lower CDW impact on the apparent meltwater fractions. These processes could result in biased meltwater signatures across the eastern Amundsen Sea.

  6. Identifying glacial meltwater in the Amundsen Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Biddle, Louise; Heywood, Karen; Jenkins, Adrian; Kaiser, Jan

    2016-04-01

    Pine Island Glacier, located in the Amundsen Sea, is losing mass rapidly due to relatively warm ocean waters melting its ice shelf from below. The resulting increase in meltwater production may be the root of the freshening in the Ross Sea over the last 30 years. Tracing the meltwater travelling away from the ice sheets is important in order to identify the regions most affected by the increased input of this water type. We use water mass characteristics (temperature, salinity, O2 concentration) derived from 105 CTD casts during the Ocean2ice cruise on RRS James Clark Ross in January-March 2014 to calculate meltwater fractions north of Pine Island Glacier. The data show maximum meltwater fractions at the ice front of up to 2.4 % and a plume of meltwater travelling away from the ice front along the 1027.7 kg m-3 isopycnal. We investigate the reliability of these results and attach uncertainties to the measurements made to ascertain the most reliable method of meltwater calculation in the Amundsen Sea. Processes such as atmospheric interaction and biological activity also affect the calculated apparent meltwater fractions. We analyse their effects on the reliability of the calculated meltwater fractions across the region using a bulk mixed layer model based on the one-dimensional Price-Weller-Pinkel model (1986). The model includes sea ice, dissolved oxygen concentrations and a simple respiration model, forced by NCEP climatology and an initial linear mixing profile between Winter Water (WW) and Circumpolar Deep Water (CDW). The model mimics the seasonal cycle of mixed layer warming and freshening and simulates how increases in sea ice formation and the influx of slightly cooler Lower CDW impact on the apparent meltwater fractions. These processes could result in biased meltwater signatures across the eastern Amundsen Sea.

  7. A method for the calculation of anaerobic oxidation of methane rates across regional scales: an example from the Belt Seas and The Sound (North Sea-Baltic Sea transition)

    NASA Astrophysics Data System (ADS)

    Mogollón, José M.; Dale, Andrew W.; Jensen, Jørn B.; Schlüter, Michael; Regnier, Pierre

    2013-08-01

    Estimating the amount of methane in the seafloor globally as well as the flux of methane from sediments toward the ocean-atmosphere system are important considerations in both geological and climate sciences. Nevertheless, global estimates of methane inventories and rates of methane production and consumption through anaerobic oxidation in marine sediments are very poorly constrained. Tools for regionally assessing methane formation and consumption rates would greatly increase our understanding of the spatial heterogeneity of the methane cycle as well as help constrain the global methane budget. In this article, an algorithm for calculating methane consumption rates in the inner shelf is applied to the gas-rich sediments of the Belt Seas and The Sound (North Sea-Baltic Sea transition). It is based on the depth of free gas determined by hydroacoustic techniques and the local methane solubility concentration. Due to the continuous nature of shipboard hydroacoustic measurements, this algorithm captures spatial heterogeneities in methane fluxes better than geochemical analyses of point sources such as observational/sampling stations. The sensibility of the algorithm with respect to the resolution of the free gas depth measurements (2 m vs. 50 cm) is proven of minor importance (a discrepancy of <10%) for a small part of the study area. The algorithm-derived anaerobic methane oxidation rates compare well with previous measured and modeling studies. Finally, regional results reveal that contemporary anaerobic methane oxidation in worldwide inner-shelf sediments may be an order of magnitude lower (ca. 0.24 Tmol year-1) than previous estimates (4.6 Tmol year-1). These algorithms ultimately help improve regional estimates of anaerobic oxidation of methane rates.

  8. Partitioning Regional Sea Level in the Bay of Bengal from a Global Grace and Jason-1/-2 Joint Inversion

    NASA Astrophysics Data System (ADS)

    Kusche, J.; Uebbing, B.; Rietbroek, R.

    2014-12-01

    In Bangladesh, large areas are located just above sea level. Present-day sea level rise in combination with land subsidence, poses a major threat to the coastal regions, home of about 30 million people. Consequently, monitoring of sea level and knowledge of all recurrent effects are crucial for coastal protection. As part of the Belmont-project "Bangladesh Delta: Assessment of the Causes of Sea-level Rise Hazards and Integrated Development of Predictive Modeling Towards Mitigation and Adaptation" (BAND-AID) a global inverse method is employed to estimate the different contributors to sea level, such as melting of glaciers and ice-sheets, hydrology, glacial isostatic adjustment, as well as shallow and deep steric effects from Jason-1/2 altimetry and GRACE data. In the global inverse method, spatial patterns (fingerprints) are computed a-priori for each of the contributing process, applying the sea level equation for mass fingerprints, and empirically (PCA) for steric fingerprints from ARGO data. Temporal GRACE gravity data and along-track Jason-1/ -2 altimetry is then combined to estimate the temporal evolution of these patterns, which allows the partitioning of altimetric sea level into individual sources. This method largely mitigates truncation and leakage problems associated with GRACE resolution. Globally, our estimates are close to others, although they point at a somewhat larger deep steric effect. In this work we provide preliminary results for the Bay of Bengal / Bangladesh region by confronting global inversion with local measurements. Estimated sea level trends are compared to trends from tide gauges and differences are interpreted in terms of unmodeled regional effects, such as land subsidence. Initial results provide an indication on the magnitude of the contributions from the different sources at the coast of Bangladesh / in the Bay of Bengal; e.g. the contribution from the Greenland ice-sheets between 2003 and 2011 (0.69 mm/a) is significantly larger

  9. Daily temperature and precipitation extremes in the Baltic Sea region derived from the BaltAn65+ reanalysis

    NASA Astrophysics Data System (ADS)

    Toll, Velle; Post, Piia

    2018-04-01

    Daily 2-m temperature and precipitation extremes in the Baltic Sea region for the time period of 1965-2005 is studied based on data from the BaltAn65 + high resolution atmospheric reanalysis. Moreover, the ability of regional reanalysis to capture extremes is analysed by comparing the reanalysis data to gridded observations. The shortcomings in the simulation of the minimum temperatures over the northern part of the region and in the simulation of the extreme precipitation over the Scandinavian mountains in the BaltAn65+ reanalysis data are detected and analysed. Temporal trends in the temperature and precipitation extremes in the Baltic Sea region, with the largest increases in temperature and precipitation in winter, are detected based on both gridded observations and the BaltAn65+ reanalysis data. However, the reanalysis is not able to capture all of the regional trends in the extremes in the observations due to the shortcomings in the simulation of the extremes.

  10. Affective Learning in Higher Education: A Regional Perspective

    ERIC Educational Resources Information Center

    Evans, Nina; Ziaian, Tahereh; Sawyer, Janet; Gillham, David

    2013-01-01

    A pilot study was conducted in a regional university setting to promote awareness of the value of affective teaching and learning amongst staff and students. Academic staff and students from diverse disciplines at University of South Australia's (UniSA) Centre for Regional Engagement (CRE) were recruited to the study. The research investigated…

  11. Caspian Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In this Moderate-resolution Imaging Spectroradiometer (MODIS) image from December 3, 2001, winter sea ice can be seen forming in the shallow waters of the northern Caspian (left) and Aral (upper right) Seas. Despite the inflow of the Volga River (upper left), the northern portion of the Caspian Sea averages only 17 feet in depth, and responds to the region's continental climate, which is cold in winter and hot and dry in the summer. The southern part of the Sea is deeper and remains ice-free throughout the winter. The dirty appearance of the ice may be due to sediment in the water, but may also be due to wind-driven dust. The wind in the region can blow at hurricane-force strength and can cause the ice to pile up in hummocks that are anchored to the sea bottom. The eastern portion of the Aral Sea is also beginning to freeze. At least two characteristics of the Aral Sea 'compete' in determining whether its waters will freeze. The Sea is shallow, which increases the likelihood of freezing, but it is also very salty, which means that lower temperatures are required to freeze it than would be required for fresh water. With average December temperatures of 18oF, it's clearly cold enough to allow ice to form. As the waters that feed the Aral Sea continue to be diverted for agriculture, the Sea becomes shallower and the regional climate becomes even more continental. This is because large bodies of water absorb and retain heat, moderating seasonal changes in temperature. Image courtesy Jacques Descloitres, MODIS Land Rapid Response Team at NASA GSFC

  12. 75 FR 59687 - Proposed Information Collection; Comment Request; Alaska Region Bering Sea & Aleutian Islands...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-28

    ... among harvesters, processors, and coastal communities and monitors the ``economic stability for... Collection; Comment Request; Alaska Region Bering Sea & Aleutian Islands (BSAI) Crab Economic Data Reports... CR Program's mandatory economic data collection report (EDR) used to assess the efficacy of the CR...

  13. Widespread Ice across the South Weddell Sea Region prior to the Late Eocene Transition

    NASA Astrophysics Data System (ADS)

    Carter, A.; Riley, T. R.; Hillenbrand, C. D.; Rittner, M.

    2016-12-01

    The extent of ice sheets across East Antarctica, and Antarctica in general during the high CO2 world of the late Eocene is not well understood due to a paucity of direct evidence. Examination of late Eocene-Oligocene marine sands from Ocean Drilling Program Leg 113 Site 696 located on the southeastern margin of the South Orkney Microcontinent (SOM) has revealed abundant sand grains with mechanical features diagnostic of iceberg-rafted debris (IBRD). Using a multi-proxy approach that included petrographic analysis of over 250,000 grains, detrital zircon geochronology and apatite thermochronometry we found that the IBRD sources ranged from the Ellsworth-Whitmore Mountains of West Antarctica to the coastal region of Dronning Maud Land in East Antarctica. This evidence requires that glaciers quite possibly draining mountainous regions calved at sea level across the southern Weddell Sea coast at least 2.5 million years before the oxygen isotope event Oi-1 (34-33.5 Ma), a time when atmospheric CO2 was declining. Icebergs from East Antarctic sources were transported to the SOM by the Antarctic Coastal Current and thereby mixed with icebergs from West Antarctic sources in the cyclonic Weddell Gyre, which then transported the icebergs northwards towards the Scotia Sea.

  14. How will ocean acidification affect Baltic sea ecosystems? an assessment of plausible impacts on key functional groups.

    PubMed

    Havenhand, Jonathan N

    2012-09-01

    Increasing partial pressure of atmospheric CO₂ is causing ocean pH to fall-a process known as 'ocean acidification'. Scenario modeling suggests that ocean acidification in the Baltic Sea may cause a ≤ 3 times increase in acidity (reduction of 0.2-0.4 pH units) by the year 2100. The responses of most Baltic Sea organisms to ocean acidification are poorly understood. Available data suggest that most species and ecologically important groups in the Baltic Sea food web (phytoplankton, zooplankton, macrozoobenthos, cod and sprat) will be robust to the expected changes in pH. These conclusions come from (mostly) single-species and single-factor studies. Determining the emergent effects of ocean acidification on the ecosystem from such studies is problematic, yet very few studies have used multiple stressors and/or multiple trophic levels. There is an urgent need for more data from Baltic Sea populations, particularly from environmentally diverse regions and from controlled mesocosm experiments. In the absence of such information it is difficult to envision the likely effects of future ocean acidification on Baltic Sea species and ecosystems.

  15. Model projections of rapid sea-level rise on the northeast coast of the United States

    NASA Astrophysics Data System (ADS)

    Yin, Jianjun; Schlesinger, Michael E.; Stouffer, Ronald J.

    2009-04-01

    Human-induced climate change could cause global sea-level rise. Through the dynamic adjustment of the sea surface in response to a possible slowdown of the Atlantic meridional overturning circulation, a warming climate could also affect regional sea levels, especially in the North Atlantic region, leading to high vulnerability for low-lying Florida and western Europe. Here we analyse climate projections from a set of state-of-the-art climate models for such regional changes, and find a rapid dynamical rise in sea level on the northeast coast of the United States during the twenty-first century. For New York City, the rise due to ocean circulation changes amounts to 15, 20 and 21cm for scenarios with low, medium and high rates of emissions respectively, at a similar magnitude to expected global thermal expansion. Analysing one of the climate models in detail, we find that a dynamic, regional rise in sea level is induced by a weakening meridional overturning circulation in the Atlantic Ocean, and superimposed on the global mean sea-level rise. We conclude that together, future changes in sea level and ocean circulation will have a greater effect on the heavily populated northeastern United States than estimated previously.

  16. Model Projections of Rapid Sea-Level Rise on the Northeast Coast of the United States

    NASA Astrophysics Data System (ADS)

    Yin, J.; Schlesinger, M.; Stouffer, R. J.

    2009-12-01

    Human-induced climate change could cause global sea-level rise. Through the dynamic adjustment of the sea surface in response to a possible slowdown of the Atlantic meridional overturning circulation, a warming climate could also affect regional sea levels, especially in the North Atlantic region, leading to high vulnerability for low-lying Florida and western Europe. In the present study, we analyse climate projections from a set of state-of-the-art climate models for such regional changes, and find a rapid dynamical rise in sea level on the northeast coast of the United States during the twenty-first century. For New York City, the rise due to ocean circulation changes amounts to 15, 20 and 21 cm for scenarios with low, medium and high rates of emissions respectively, at a similar magnitude to expected global thermal expansion. Analysing one of the climate models in detail, we find that a dynamic, regional rise in sea level is induced by a weakening meridional overturning circulation in the Atlantic Ocean, and superimposed on the global mean sea level rise. We conclude that together, future changes in sea level and ocean circulation will have a greater effect on the heavily populated northeastern United States than estimated previously.

  17. Snow accumulation on Arctic sea ice: is it a matter of how much or when?

    NASA Astrophysics Data System (ADS)

    Webster, M.; Petty, A.; Boisvert, L.; Markus, T.

    2017-12-01

    Snow on sea ice plays an important, yet sometimes opposing role in sea ice mass balance depending on the season. In autumn and winter, snow reduces the heat exchange from the ocean to the atmosphere, reducing sea ice growth. In spring and summer, snow shields sea ice from solar radiation, delaying sea ice surface melt. Changes in snow depth and distribution in any season therefore directly affect the mass balance of Arctic sea ice. In the western Arctic, a decreasing trend in spring snow depth distribution has been observed and attributed to the combined effect of peak snowfall rates in autumn and the coincident delay in sea ice freeze-up. Here, we build on this work and present an in-depth analysis on the relationship between snow accumulation and the timing of sea ice freeze-up across all Arctic regions. A newly developed two-layer snow model is forced with eight reanalysis precipitation products to: (1) identify the seasonal distribution of snowfall accumulation for different regions, (2) highlight which regions are most sensitive to the timing of sea ice freeze-up with regard to snow accumulation, and (3) show, if precipitation were to increase, which regions would be most susceptible to thicker snow covers. We also utilize a comprehensive sensitivity study to better understand the factors most important in controlling winter/spring snow depths, and to explore what could happen to snow depth on sea ice in a warming Arctic climate.

  18. Air-sea interactions during strong winter extratropical storms

    USGS Publications Warehouse

    Nelson, Jill; He, Ruoying; Warner, John C.; Bane, John

    2014-01-01

    A high-resolution, regional coupled atmosphere–ocean model is used to investigate strong air–sea interactions during a rapidly developing extratropical cyclone (ETC) off the east coast of the USA. In this two-way coupled system, surface momentum and heat fluxes derived from the Weather Research and Forecasting model and sea surface temperature (SST) from the Regional Ocean Modeling System are exchanged via the Model Coupling Toolkit. Comparisons are made between the modeled and observed wind velocity, sea level pressure, 10 m air temperature, and sea surface temperature time series, as well as a comparison between the model and one glider transect. Vertical profiles of modeled air temperature and winds in the marine atmospheric boundary layer and temperature variations in the upper ocean during a 3-day storm period are examined at various cross-shelf transects along the eastern seaboard. It is found that the air–sea interactions near the Gulf Stream are important for generating and sustaining the ETC. In particular, locally enhanced winds over a warm sea (relative to the land temperature) induce large surface heat fluxes which cool the upper ocean by up to 2 °C, mainly during the cold air outbreak period after the storm passage. Detailed heat budget analyses show the ocean-to-atmosphere heat flux dominates the upper ocean heat content variations. Results clearly show that dynamic air–sea interactions affecting momentum and buoyancy flux exchanges in ETCs need to be resolved accurately in a coupled atmosphere–ocean modeling framework.

  19. Time-Series Analysis of Remotely-Sensed SeaWiFS Chlorophyll in River-Influenced Coastal Regions

    NASA Technical Reports Server (NTRS)

    Acker, James G.; McMahon, Erin; Shen, Suhung; Hearty, Thomas; Casey, Nancy

    2009-01-01

    The availability of a nearly-continuous record of remotely-sensed chlorophyll a data (chl a) from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission, now longer than ten years, enables examination of time-series trends for multiple global locations. Innovative data analysis technology available on the World Wide Web facilitates such analyses. In coastal regions influenced by river outflows, chl a is not always indicative of actual trends in phytoplankton chlorophyll due to the interference of colored dissolved organic matter and suspended sediments; significant chl a timeseries trends for coastal regions influenced by river outflows may nonetheless be indicative of important alterations of the hydrologic and coastal environment. Chl a time-series analysis of nine marine regions influenced by river outflows demonstrates the simplicity and usefulness of this technique. The analyses indicate that coastal time-series are significantly influenced by unusual flood events. Major river systems in regions with relatively low human impact did not exhibit significant trends. Most river systems with demonstrated human impact exhibited significant negative trends, with the noteworthy exception of the Pearl River in China, which has a positive trend.

  20. Tectonics of the Andaman Sea Region

    NASA Astrophysics Data System (ADS)

    Curray, J. R.

    2005-12-01

    The Andaman Sea is an active backarc basin lying above and behind the Sunda subduction zone where convergence between the overriding Eurasian, Sunda or Southeast Asian plate and the subducting Indian and Australian plates is highly oblique. The effect of the oblique convergence has been formation of a sliver plate between the subduction zone and a complex right lateral fault system. The late Paleocene collision of Greater India and Asia with approximately normal convergence started clockwise rotation and bending of the northern and western Sunda Arc. The initial sliver fault, which probably started in the Eocene, extended through the outer arc ridge offshore from Sumatra, through the present region of the Andaman Sea into the Sagaing fault in Myanmar. With more oblique convergence due to the rotation, the rate of strike slip motion increased and a series of extensional basins opened obliquely by the combination of backarc extension and the strike slip motion. These basins in sequence are the Mergui Basin starting in early Oligocene, the conjoined Alcock and Sewell Rises starting in early Miocene, East Basin separating the rises from the foot of the continental slope starting at the end of early Miocene; and finally in early Pliocene at ~ 4 Ma, the present sliver plate edge was formed, Alcock and Sewell Rises were separated by formation of the Central Andaman Basin, and the faulting moved onshore from the Mentawai Fault to the Sumatra Fault System bisecting Sumatra. The opening of each basin can be expressed in vectors with north and west components. The total of the north component vectors may be the total offset of the Sagaing Fault since early Oligocene, and the total of the west component vectors may explain the outward bulge in the alignment of the northwestern Sunda Arc. The present average convergence rate of the Andaman-Nicobar Ridge and India is about 28 to 38 mm/yr.

  1. Biodiversity of the Deep-Sea Continental Margin Bordering the Gulf of Maine (NW Atlantic): Relationships among Sub-Regions and to Shelf Systems

    PubMed Central

    Kelly, Noreen E.; Shea, Elizabeth K.; Metaxas, Anna; Haedrich, Richard L.; Auster, Peter J.

    2010-01-01

    Background In contrast to the well-studied continental shelf region of the Gulf of Maine, fundamental questions regarding the diversity, distribution, and abundance of species living in deep-sea habitats along the adjacent continental margin remain unanswered. Lack of such knowledge precludes a greater understanding of the Gulf of Maine ecosystem and limits development of alternatives for conservation and management. Methodology/Principal Findings We use data from the published literature, unpublished studies, museum records and online sources, to: (1) assess the current state of knowledge of species diversity in the deep-sea habitats adjacent to the Gulf of Maine (39–43°N, 63–71°W, 150–3000 m depth); (2) compare patterns of taxonomic diversity and distribution of megafaunal and macrofaunal species among six distinct sub-regions and to the continental shelf; and (3) estimate the amount of unknown diversity in the region. Known diversity for the deep-sea region is 1,671 species; most are narrowly distributed and known to occur within only one sub-region. The number of species varies by sub-region and is directly related to sampling effort occurring within each. Fishes, corals, decapod crustaceans, molluscs, and echinoderms are relatively well known, while most other taxonomic groups are poorly known. Taxonomic diversity decreases with increasing distance from the continental shelf and with changes in benthic topography. Low similarity in faunal composition suggests the deep-sea region harbours faunal communities distinct from those of the continental shelf. Non-parametric estimators of species richness suggest a minimum of 50% of the deep-sea species inventory remains to be discovered. Conclusions/Significance The current state of knowledge of biodiversity in this deep-sea region is rudimentary. Our ability to answer questions is hampered by a lack of sufficient data for many taxonomic groups, which is constrained by sampling biases, life

  2. The Roles of Sea-Ice, Light and Sedimentation in Structuring Shallow Antarctic Benthic Communities

    PubMed Central

    Clark, Graeme F.; Stark, Jonathan S.; Palmer, Anne S.; Riddle, Martin J.; Johnston, Emma L.

    2017-01-01

    On polar coasts, seasonal sea-ice duration strongly influences shallow marine environments by affecting environmental conditions, such as light, sedimentation, and physical disturbance. Sea-ice dynamics are changing in response to climate, but there is limited understanding of how this might affect shallow marine environments and benthos. Here we present a unique set of physical and biological data from a single region of Antarctic coast, and use it to gain insights into factors shaping polar benthic communities. At sites encompassing a gradient of sea-ice duration, we measured temporal and spatial variation in light and sedimentation and hard-substrate communities at different depths and substrate orientations. Biological trends were highly correlated with sea-ice duration, and appear to be driven by opposing gradients in light and sedimentation. As sea-ice duration decreased, there was increased light and reduced sedimentation, and concurrent shifts in community structure from invertebrate to algal dominance. Trends were strongest on shallower, horizontal surfaces, which are most exposed to light and sedimentation. Depth and substrate orientation appear to mediate exposure of benthos to these factors, thereby tempering effects of sea-ice and increasing biological heterogeneity. However, while light and sedimentation both varied spatially with sea-ice, their dynamics differed temporally. Light was sensitive to the site-specific date of sea-ice breakout, whereas sedimentation fluctuated at a regional scale coincident with the summer phytoplankton bloom. Sea-ice duration is clearly the overarching force structuring these shallow Antarctic benthic communities, but direct effects are imposed via light and sedimentation, and mediated by habitat characteristics. PMID:28076438

  3. The Roles of Sea-Ice, Light and Sedimentation in Structuring Shallow Antarctic Benthic Communities.

    PubMed

    Clark, Graeme F; Stark, Jonathan S; Palmer, Anne S; Riddle, Martin J; Johnston, Emma L

    2017-01-01

    On polar coasts, seasonal sea-ice duration strongly influences shallow marine environments by affecting environmental conditions, such as light, sedimentation, and physical disturbance. Sea-ice dynamics are changing in response to climate, but there is limited understanding of how this might affect shallow marine environments and benthos. Here we present a unique set of physical and biological data from a single region of Antarctic coast, and use it to gain insights into factors shaping polar benthic communities. At sites encompassing a gradient of sea-ice duration, we measured temporal and spatial variation in light and sedimentation and hard-substrate communities at different depths and substrate orientations. Biological trends were highly correlated with sea-ice duration, and appear to be driven by opposing gradients in light and sedimentation. As sea-ice duration decreased, there was increased light and reduced sedimentation, and concurrent shifts in community structure from invertebrate to algal dominance. Trends were strongest on shallower, horizontal surfaces, which are most exposed to light and sedimentation. Depth and substrate orientation appear to mediate exposure of benthos to these factors, thereby tempering effects of sea-ice and increasing biological heterogeneity. However, while light and sedimentation both varied spatially with sea-ice, their dynamics differed temporally. Light was sensitive to the site-specific date of sea-ice breakout, whereas sedimentation fluctuated at a regional scale coincident with the summer phytoplankton bloom. Sea-ice duration is clearly the overarching force structuring these shallow Antarctic benthic communities, but direct effects are imposed via light and sedimentation, and mediated by habitat characteristics.

  4. Geodynamic Evolution of the Banda Sea Region

    NASA Astrophysics Data System (ADS)

    Kaymakci, N.; Decker, J.; Orange, D.; Teas, P.; Van Heiningen, P.

    2013-12-01

    We've carried out a large on- and offshore study in Eastern Indonesia to characterize the major structures and to provide constraints on the Neogene geodynamic evolution of the Banda Sea region. The onshore portion utilized remote sensing data and published geology. We tied the onshore to the offshore using recently acquired high resolution bathymetric data (16m and 25m bin size) and 2D seismic profiles that extend from Sulawesi in the west to Irian Jaya in the east across the northern part of the Banda Arc. We interpret the northern boundary of the 'Birds Head' (BH) of Papua, the Sorong Fault, to be a sinistral strike-slip fault zone with a minimum of 48 km displacement over the last few million years. The western boundary fault of Cendrawasih Basin defines the eastern boundary of BH and corresponds to the Wandamen Peninsula which comprises high pressure metamorphic rocks, including eclogite and granulite facies rocks, with exhumation ages from 4 to 1 Ma. Earthquake focal mechanism solutions indicate that the eastern boundary of BH is linked with a large scale offshore normal fault which we suggest may be related to the exhumation of the Wandamen Peninsula. The eastern boundary of Cendrawasih Basin is defined by a large transpressive belt along which BH is decoupled from the rest of Papua / Irian Jaya. This interpretation is supported by recent GPS studies. We propose that the BH and the Pacific plate are coupled, and therefore the Birds Head is therefore completely detached from Irian Jaya. Furthermore, Aru Basin, located at the NE corner of Banda Arc, is a Fault-Fault-Transform (FFT) type triple junction. According to available literature information the Banda Sea includes three distinct basins with different geologic histories; the North Banda Sea Basin (NBSB) was opened during 12-7 Ma, Wetar-Damar Basin (WDB) during 7-3.5 Ma and Weber Basin (WB) 3-0 Ma. Our bathymetric and seismic data indicated that the NBSB and Weber Basin lack normal oceanic crust and are

  5. Catalogue of polar bear (Ursus maritimus) maternal den locations in the Beaufort Sea and neighboring regions, Alaska, 1910-2010

    USGS Publications Warehouse

    Durner, George M.; Fischbach, Anthony S.; Amstrup, Steven C.; Douglas, David C.

    2010-01-01

    This report presents data on the approximate locations and methods of discovery of 392 polar bear (Ursus maritimus) maternal dens found in the Beaufort Sea and neighboring regions between 1910 and 2010 that are archived by the U.S. Geological Survey, Alaska Science Center, Anchorage, Alaska. A description of data collection methods, biases associated with collection method, primary time periods, and spatial resolution are provided. Polar bears in the Beaufort Sea and nearby regions den on both the sea ice and on land. Standardized VHF surveys and satellite radio telemetry data provide a general understanding of where polar bears have denned in this region over the past 3 decades. Den observations made during other research activities and anecdotal reports from other government agencies, coastal residents, and industry personnel also are reported. Data on past polar bear maternal den locations are provided to inform the public and to provide information for natural resource agencies in planning activities to avoid or minimize interference with polar bear maternity dens.

  6. Using expert opinion surveys to rank threats to endangered species: a case study with sea turtles.

    PubMed

    Donlan, C Josh; Wingfield, Dana K; Crowder, Larry B; Wilcox, Chris

    2010-12-01

    Little is known about how specific anthropogenic hazards affect the biology of organisms. Quantifying the effect of regional hazards is particularly challenging for species such as sea turtles because they are migratory, difficult to study, long lived, and face multiple anthropogenic threats. Expert elicitation, a technique used to synthesize opinions of experts while assessing uncertainty around those views, has been in use for several decades in the social science and risk assessment sectors. We conducted an internet-based survey to quantify expert opinion on the relative magnitude of anthropogenic hazards to sea turtle populations at the regional level. Fisheries bycatch and coastal development were most often ranked as the top hazards to sea turtle species in a geographic region. Nest predation and direct take followed as the second and third greatest threats, respectively. Survey results suggest most experts believe sea turtles are threatened by multiple factors, including substantial at-sea threats such as fisheries bycatch. Resources invested by the sea turtle community, however, appear biased toward terrestrial-based impacts. Results from the survey are useful for conservation planning because they provide estimates of relative impacts of hazards on sea turtles and a measure of consensus on the magnitude of those impacts among researchers and practitioners. Our survey results also revealed patterns of expert bias, which we controlled for in our analysis. Respondents with no experience with respect to a sea turtle species tended to rank hazards affecting that sea turtle species higher than respondents with experience. A more-striking pattern was with hazard-based expertise: the more experience a respondent had with a specific hazard, the higher the respondent scored the impact of that hazard on sea turtle populations. Bias-controlled expert opinion surveys focused on threatened species and their hazards can help guide and expedite species recovery plans.

  7. [Contribution to determination of hepatitis C virus genotypes in Black Sea region: data from single high volume center in Zonguldak, Turkey].

    PubMed

    Akar, Tarık; Aynıoğlu, Aynur; Dındar, Gökhan; Babür, Taner

    2014-07-01

    We've read with great interest the article entitled "Determination of hepatitis C virus genotypes among hepatitis C patients in Eastern Black Sea Region, Turkey" by Buruk et al. published in Mikrobiyol Bul 2013; 47(4): 650-7. In that study, the authors described the determination and distribution of hepatitis C virus (HCV) genotypes in Eastern Black Sea Region comprehensively. According to the current information, the determination of HCV genotypes is the most important factor for the management of therapy and virus-related complications, such as chirrhosis and hepatocellular carcinoma. The distribution of HCV genotypes varies geographically throughout the world. Therefore every country and even each region within the country should know the distribution of HCV genotypes to determine the appropriate treatment strategy. Herein we would like to contribute the data about distribution of HCV genotypes in whole Black Sea Region by presenting our current results obtained from Zonguldak province, where maximum number of chronic hepatit C patients have already been identified in Eastern Black Sea Region. A total of 53 chronic hepatitis C patients (26 female, 27 male; mean age: 57.1 ± 14.3, age range: 21-82 years) who were admitted to Zonguldak Ataturk State Hospital between January 2012-December 2013 were evaluated. Genotype analysis was performed by RealTime HCV Genotype II (Abbott Molecular, ABD) system. Genotype-1 was found to be the most frequently detected type with a rate of 96.2% (51/53). The prevalences of genotype-2 (1/53) and genotype-4 (1/53) were same, with a rate of 1.9%, in our study. Subtyping of genotype-1 strains yielded 52.9% (27/51) genotype-1b, 3.9% genotype-1a (2/51) and 47% untypeable genotype-1 (24/51). The present study was the second study from the Western Black Sea Region in our country, regarding HCV genotypes. In conclusion, considering entire Black Sea Region, genotype-1 is the most common genotype (96.2%), and 1b (52.9%) is the most common

  8. The impact of sea surface currents in wave power potential modeling

    NASA Astrophysics Data System (ADS)

    Zodiatis, George; Galanis, George; Kallos, George; Nikolaidis, Andreas; Kalogeri, Christina; Liakatas, Aristotelis; Stylianou, Stavros

    2015-11-01

    The impact of sea surface currents to the estimation and modeling of wave energy potential over an area of increased economic interest, the Eastern Mediterranean Sea, is investigated in this work. High-resolution atmospheric, wave, and circulation models, the latter downscaled from the regional Mediterranean Forecasting System (MFS) of the Copernicus marine service (former MyOcean regional MFS system), are utilized towards this goal. The modeled data are analyzed by means of a variety of statistical tools measuring the potential changes not only in the main wave characteristics, but also in the general distribution of the wave energy and the wave parameters that mainly affect it, when using sea surface currents as a forcing to the wave models. The obtained results prove that the impact of the sea surface currents is quite significant in wave energy-related modeling, as well as temporally and spatially dependent. These facts are revealing the necessity of the utilization of the sea surface currents characteristics in renewable energy studies in conjunction with their meteo-ocean forecasting counterparts.

  9. A 100-year Reconstruction of Regional Sea Ice Extent in the Ross and Amundsen-Bellingshausen Seas as Derived from the RICE Ice Core, Coastal West Antarctica

    NASA Astrophysics Data System (ADS)

    Emanuelsson, D. B.; Bertler, N. A. N.; Baisden, W. T.; Keller, E. D.

    2014-12-01

    Antarctic sea ice increased over the past decades. This increase is the result of an increase in the Ross Sea (RS) and along the coast of East Antarctica, whereas the Amundsen-Bellingshausen Seas (ABS) and the Antarctic Peninsula has seen a general decline. Several mechanisms have been suggested as drivers for the regional, complex sea ice pattern, which include changes in ocean currents, wind pattern, as well as ocean and atmospheric temperature. As part of the Roosevelt Island Climate Evolution (RICE) project, a 763 m deep ice core was retrieved from Roosevelt Island (RI; W161° 21', S79°41', 560 m a.s.l.), West Antarctica. The new record provides a unique opportunity to investigate mechanism driving sea ice variability in the RS and ABS sectors. Here we present the water stable isotope record (δD) from the upper part of the RICE core 0-40 m, spanning the time period from 1894 to 2011 (Fig. 1a). Annual δD are correlated with Sea Ice Concentration (SIC). A significant negative (r= -0.45, p≤ 0.05) correlation was found between annual δD and SIC in the eastern RS sector (boxed region in Fig. 1b) for the following months NDJFMA (austral summer and fall). During NDJFMA, RI receives local moisture input from the RS, while during the rest of the year a large extent of this local moisture source area will be covered with sea ice with the exception of the RS Polynya. Concurrently, we observe positive δD and SIC correlations in the ABS, showing a dipole pattern with the eastern RS. For this reason, we suggest that the RICE δD might be used as a proxy for past SIC for the RS and ABS region. There is no overall trend in δD over 100 years (r= -0.08 ‰ dec-1, p= 0.81, 1894-2011). However, we observe a strong increase from 2000-2011 of 17.7 ‰ dec-1(p≤ 0.1), yet the recent δD values and trend of the last decade are not unprecedented (Fig. 1a). We investigate changes in sea surface temperature, atmospheric temperature, inferred surface ocean currents and

  10. ENSURF: multi-model sea level forecast - implementation and validation results for the IBIROOS and Western Mediterranean regions

    NASA Astrophysics Data System (ADS)

    Pérez, B.; Brower, R.; Beckers, J.; Paradis, D.; Balseiro, C.; Lyons, K.; Cure, M.; Sotillo, M. G.; Hacket, B.; Verlaan, M.; Alvarez Fanjul, E.

    2011-04-01

    ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast that makes use of existing storm surge or circulation models today operational in Europe, as well as near-real time tide gauge data in the region, with the following main goals: - providing an easy access to existing forecasts, as well as to its performance and model validation, by means of an adequate visualization tool - generation of better forecasts of sea level, including confidence intervals, by means of the Bayesian Model Average Technique (BMA) The system was developed and implemented within ECOOP (C.No. 036355) European Project for the NOOS and the IBIROOS regions, based on MATROOS visualization tool developed by Deltares. Both systems are today operational at Deltares and Puertos del Estado respectively. The Bayesian Modelling Average technique generates an overall forecast probability density function (PDF) by making a weighted average of the individual forecasts PDF's; the weights represent the probability that a model will give the correct forecast PDF and are determined and updated operationally based on the performance of the models during a recent training period. This implies the technique needs the availability of sea level data from tide gauges in near-real time. Results of validation of the different models and BMA implementation for the main harbours will be presented for the IBIROOS and Western Mediterranean regions, where this kind of activity is performed for the first time. The work has proved to be useful to detect problems in some of the circulation models not previously well calibrated with sea level data, to identify the differences on baroclinic and barotropic models for sea level applications and to confirm the general improvement of the BMA forecasts.

  11. Geodynamic evolution of the lithosphere of the Sea of Okhotsk region from geophysical data

    NASA Astrophysics Data System (ADS)

    Verzhbitsky, E. V.; Kononov, M. V.

    2006-06-01

    The tectonic structure and anomalous distributions of geophysical fields of the Sea of Okhotsk region are considered; the lack of reliable data on the age of the lithosphere beneath basins of various origins in the Sea of Okhotsk is noted. Model calculations based on geological and geophysical data yielded an age of 65 Ma (the Cretaceous-Paleocene boundary) for the Central Okhotsk rise underlain by the continental lithosphere. This estimate agrees with the age (the end of the Cretaceous) derived from seismostratigraphic data. A comparative analysis of theoretical and measured heat fluxes in the Akademii Nauk Rise, underlain by a thinned continental crust, is performed. The analysis points to a higher (by 20%) value of the measured thermal background of the rise, which is consistent with a high negative gradient of gravity anomalies in this area. Calculations yielded an age of 36 Ma (the Early Oligocene) and a lithosphere thickness of 50 km for the South Okhotsk depression, whose seafloor was formed by processes of backarc spreading. The estimated age of the depression is supported by kinematic data on the region; the calculated thickness of the lithosphere coincides with the value estimated from data of magnetotelluric sounding here. This indicates that the formation time (36 Ma) of the South Okhotsk depression was estimated correctly. Numerical modeling performed for the determination of the basement age of rifting basins in the Sea of Okhotsk gave the following estimates: 18 Ma (the Early Miocene) for the Deryugin basin, 12 Ma (the Middle Miocene) for the TINRO basin, and 23 Ma (the Late Oligocene) for the West Kamchatka trough. These estimates agree with the formation time (Oligocene-Quaternary) of the sedimentary cover in rifting basins of the Sea of Okhotsk derived from geological and geophysical data. Model temperature estimates are obtained for lithologic and stratigraphic boundaries of the sedimentary cover in the Deryugin and TINRO basins and the West

  12. MMAB Sea Ice Analysis Page

    Science.gov Websites

    . Consequently we produce two sorts of field. One is suitable for use by models, the global field. And the other color bar gif of the Alaska Region map Previous Alaska Region Maps NCEP MMAB Interactive Sea Ice Image Generation Animation Alaska Region Sea of Okhotsk and Sea of Japan - current figure concentration color bar

  13. The wind sea and swell waves climate in the Nordic seas

    NASA Astrophysics Data System (ADS)

    Semedo, Alvaro; Vettor, Roberto; Breivik, Øyvind; Sterl, Andreas; Reistad, Magnar; Soares, Carlos Guedes; Lima, Daniela

    2015-02-01

    A detailed climatology of wind sea and swell waves in the Nordic Seas (North Sea, Norwegian Sea, and Barents Sea), based on the high-resolution reanalysis NORA10, developed by the Norwegian Meteorological Institute, is presented. The higher resolution of the wind forcing fields, and the wave model (10 km in both cases), along with the inclusion of the bottom effect, allowed a better description of the wind sea and swell features, compared to previous global studies. The spatial patterns of the swell-dominated regional wave fields are shown to be different from the open ocean, due to coastal geometry, fetch dimensions, and island sheltering. Nevertheless, swell waves are still more prevalent and carry more energy in the Nordic Seas, with the exception of the North Sea. The influence of the North Atlantic Oscillation on the winter regional wind sea and swell patterns is also presented. The analysis of the decadal trends of wind sea and swell heights during the NORA10 period (1958-2001) shows that the long-term trends of the total significant wave height (SWH) in the Nordic Seas are mostly due to swell and to the wave propagation effect.

  14. Sensitivity of WRF-ARW for Heavy Precipitation Event over the Eastern Black Sea Region

    NASA Astrophysics Data System (ADS)

    Doǧan, Onur Hakan; Önol, Barış

    2017-04-01

    In this study, we examined the extreme summer precipitation case over the Eastern Black Sea region of Turkey by using WRF-ARW. 11 people were killed by the flood and many buildings were damaged by the landslides in Artvin province. The flood caused by heavy precipitation between August 23 and 24, 2015 and the station observation is 255 mm total precipitation for the two days. We have also used satellite based observational data (Global Precipitation Measurement: GPM), which represents 150 mm total precipitation during case, to validate precipitation simulations. We designed three nested domains with 27-9-3 km resolutions for the simulations and the inner domain covers the all Black Sea and the surrounded coasts. The simulations have been driven by ECMWF ERA-Interim data and the initial conditions have been generated for 4 different simulations which are 3-days, 7-days, 15-days and 25-days long. WRF-ARW model physics parameters have been tested to improve simulation capability for extreme precipitation events. The microphysics (Kessler and New-Thompson) and PBL (YSU PBL and Mellor-Yamada-Janjic) options have been applied for each simulations separately, therefore 15 sensitivity simulation have been analyzed by using different parametrizations. In general, all simulations underestimated the two days extreme precipitation event which the large scale flow interact with warmer sea surface temperatures and complex topography over the eastern Black Sea region. The 3-days simulation with Kessler microphysics and YSU PBL predicts 148 mm precipitation which is highest simulated precipitation compare to all simulations for the corresponding station location. Moreover 25-days simulation represents better spatial coverage for precipitation pattern compare to the GPM data.

  15. A 300m-width sinkhole threatens the stability of the embankment of a saltpan in Jordan, Dead Sea Region

    NASA Astrophysics Data System (ADS)

    Closson, Damien; Abou Karaki, Najib; Pasquali, Paolo; Riccardi, Paolo

    2013-04-01

    Since the 1980s, the Dead Sea coastal zone is affected by sinkholes. The dynamic of the salt karst system is attested by a drastic increase of collapse events. The energy available for sub-surface erosion (or cavities genesis) is related to the head difference between the water table and the lake level which drop down at an accelerating rate of more than 1 m/yr. In the region of Ghor Al Haditha, Jordan, the size of the craters increased significantly during the last decade. Up to now, the greatest compound structure observed (association of metric subsidence, decametric sinkholes, and landslides) was about 150-200 m in diameter. End of December 2012, a single circular structure having 250-300 m in diameter was identified within a 10 km x 1.5 km saltpan of the Arab Potash Company. This finding raises questions regarding the origin of the underlying cavity and the capability of prediction of all models developed up to now in Israel and Jordan regarding the Dead Sea sinkholes. The analysis of satellite images of the past shows that the appearance of this unique depression is very recent (probably less than 5 years). Cosmo-SkyMed radar images have been processed to map the associated deformation field. Ground motions attest that the overall diameter could be around 600 m. Currently, this sinkhole is threatening the stability of more than one kilometer of a 12 km long dike holding 90 million m3 of Dead Sea brine. This case study underlines the great fragility of the Dead Sea salt karst and demonstrates the need for the setting up of an early warning system.

  16. Contrasting population histories of the deep-sea demersal fish, Lycodes matsubarai, in the Sea of Japan and the Sea of Okhotsk.

    PubMed

    Sakuma, Kay; Ueda, Yuji; Hamatsu, Tomonori; Kojima, Shigeaki

    2014-06-01

    Recent studies have revealed the impact of the drastic climate change during the last glacial period on coastal marine and anadromous species in the marginal seas of the northwestern Pacific Ocean; however, its influence on deep-sea species remains poorly understood. To compare the effects of the last glacial period on populations from the Sea of Japan and the Sea of Okhotsk, we examined the mitochondrial control region and cytochrome b gene sequences of Lycodes matsubarai, a deepsea demersal fish that inhabits these two seas. Our results showed clear genetic differentiation of populations between the two seas. The populations may have diverged during the last glacial period, probably as a result of vicariance due to the drastic sea level change. The population in the Sea of Okhotsk was larger than that in the Sea of Japan, but suddenly decreased after the last glacial period. However, the Sea of Japan population expanded after the last glacial period, coincident with high levels of oxygenation in deep-sea areas. These results elucidate regional-scale impacts of climate change on deep-sea organisms.

  17. Vulnerability of marginal seas to sea level rise

    NASA Astrophysics Data System (ADS)

    Gomis, Damia; Jordà, Gabriel

    2017-04-01

    Sea level rise (SLR) is a serious thread for coastal areas and has a potential negative impact on society and economy. SLR can lead for instance to land loss, beach reduction, increase of the damage of marine storms on coastal infrastructures and to the salinization of underground water streams. It is well acknowledged that future SLR will be inhomogeneous across the globe, with regional differences of up to 100% with respect to global mean sea level (GMSL). Several studies have addressed the projections of SLR at regional scale, but most of them are based on global climate models (GCMs) that have a relatively coarse spatial resolution (>1°). In marginal seas this has proven to be a strong limitation, as their particular configurations require spatial resolutions that are not reachable by present GCMs. A paradigmatic case is the Mediterranean Sea, connected to the global ocean through the Strait of Gibraltar, a narrow passage of 14 km width. The functioning of the Mediterranean Sea involves a variety of processes including an overturning circulation, small-scale convection and a rich mesoscale field. Moreover, the long-term evolution of Mediterranean sea level has been significantly different from the global mean during the last decades. The observations of present climate and the projections for the next decades have lead some authors to hypothesize that the particular characteristics of the basin could allow Mediterranean mean sea level to evolve differently from the global mean. Assessing this point is essential to undertake proper adaptation strategies for the largely populated Mediterranean coastal areas. In this work we apply a new approach that combines regional and global projections to analyse future SLR. In a first step we focus on the quantification of the expected departures of future Mediterranean sea level from GMSL evolution and on the contribution of different processes to these departures. As a result we find that, in spite of its particularities

  18. Evolution of the Andaman Sea region: Dextral transtension as consequence of the India-Asia collision

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Xu, J.; Ben-Avraham, Z.; Kelty, T. K.

    2010-12-01

    The two gigantic conjugate strike-slip faults: the Altyn Fault and the Sagaing Fault in northwest and southeast of the proto-Tibet plateau respectively, began to form as consequence of initiation of the India-Asia collision at around 50 Ma (Xu, 2005; Xu et al., 2010). The Sagaing Fault, Andaman trench fault as well as the Sumatra Fault controlled the evolution of the Andaman Sea region while the collision proceeded. By synthesis of geometry and rifting history of the Andaman Sea Basin and Mergui Basin and the plate tectonic setting, we suggest the following five-stage evolution model for the Andaman Sea region: (1) dextral pull-apart rifting and seafloor spreading from 50 Ma to 32 Ma; (2) dextral transform margin-type rifting was active in Mergui Basin with principal fault being the Sumatran Fault system, and both the transform margin-type rifting and the dextral pull-apart rifting were coevally active in the Andaman Sea Basin during 32 Ma to 20 Ma, when the Sumatra fault rotated CW enough and obliquity of subduction of the Indian plate motion along the Sumatra trench was enough to trigger the dextral displacement to take place on the Sumatra Fault system and the Mottawi fault; (3) the Alcock and Sewell plateaus formed in the Andaman Sea by the NNW transtension and the transform margin-type rifting continued in the Mergui basin during 20 Ma to 15 Ma; (4) NNW weak transtensional rifting on the Alcock and Sewell plateaus and NW weak transform margin-type rifting continued in the Mergui basin during 15 Ma to 5 Ma; (5)transtensional rifting similar with but more intensive than earlier stage kept on, forming the central Andaman Basin and the East basin, from 5 Ma to present.

  19. Seismotectonics of the Armutlu peninsula (Marmara Sea, NW Turkey) from geological field observation and regional moment tensor inversion

    NASA Astrophysics Data System (ADS)

    Kinscher, J.; Krüger, F.; Woith, H.; Lühr, B. G.; Hintersberger, E.; Irmak, T. S.; Baris, S.

    2013-11-01

    The Armutlu peninsula, located in the eastern Marmara Sea, coincides with the western end of the rupture of the 17 August 1999, İzmit MW 7.6 earthquake which is the penultimate event of an apparently westward migrating series of strong and disastrous earthquakes along the NAFZ during the past century. We present new seismotectonic data of this key region in order to evaluate previous seismotectonic models and their implications for seismic hazard assessment in the eastern Marmara Sea. Long term kinematics were investigated by performing paleo strain reconstruction from geological field investigations by morphotectonic and kinematic analysis of exposed brittle faults. Short term kinematics were investigated by inverting for the moment tensor of 13 small to moderate recent earthquakes using surface wave amplitude spectra. Our results confirm previous models interpreting the eastern Marmara Sea Region as an active transtensional pull-apart environment associated with significant NNE-SSW extension and vertical displacement. At the northern peninsula, long term deformation pattern did not change significantly since Pliocene times contradicting regional tectonic models which postulate a newly formed single dextral strike slip fault in the Marmara Sea Region. This area is interpreted as a horsetail splay fault structure associated with a major normal fault segment that we call the Waterfall Fault. Apart from the Waterfall Fault, the stress strain relation appears complex associated with a complicated internal fault geometry, strain partitioning, and reactivation of pre-existing plane structures. At the southern peninsula, recent deformation indicates active pull-apart tectonics constituted by NE-SW trending dextral strike slip faults. Earthquakes generated by stress release along large rupture zones seem to be less probable at the northern, but more probable at the southern peninsula. Additionally, regional seismicity appears predominantly driven by plate boundary

  20. Simulation of 1986 South China Sea Monsoon with a Regional Climate Model

    NASA Technical Reports Server (NTRS)

    Tao, W. -K.; Lau, W. K.-M.; Jia, Y.; Juang, H.; Wetzel, P.; Qian, J.; Chen, C.

    1999-01-01

    A Regional Land-Atmosphere Climate Simulation System (RELACS) project is being developed at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model with improved physical processes and in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water/energy cycles in the IndoChina/South China Sea (SCS) region. The Penn State/NCAR MM5 atmospheric modeling system, a state of the art atmospheric numerical model designed to simulate regional weather and climate, has been successfully coupled to the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. The original MM5 model (without PLACE) includes the option for either a simple slab soil model or a five-layer soil model (MRF) in which the soil moisture availability evolves over time. However, the MM5 soil models do not include the effects of vegetation, and thus important physical processes such as evapotranspiration and interception are precluded. The PLACE model incorporates vegetation type and has been shown in international comparisons to accurately predict evapotranspiration and runoff over a wide variety of land surfaces. The coupling of MM5 and PLACE creates a numerical modeling system with the potential to more realistically simulate atmosphere and land surface processes including land-sea interaction, regional circulations such as monsoons, and flash flood events. In addition, the Penn State/NCAR MM5 atmospheric modeling system has been: (1) coupled to the Goddard Ice Microphysical scheme; (2) coupled to a turbulent kinetic energy (TKE) scheme; (3) modified to ensure cloud budget balance; and (4) incorporated initialization with the Goddard EOS data sets at NASA/Goddard Laboratory for Atmospheres. The improved MM5 with two nested domains (60 and 20 km horizontal resolution) was used to simulate convective activity over IndoChina and the South China Sea

  1. Faulting, Seismicity and Stress Interaction in the Salton Sea Region of Southern California

    NASA Astrophysics Data System (ADS)

    Kilb, D. L.; Brothers, D. S.; Lin, G.; Kent, G.; Newman, R. L.; Driscoll, N.

    2009-12-01

    The Salton Sea region in southern California provides an ideal location to study the relationship between transcurrent and extensional motion in the northern Gulf of California margin, allowing us to investigate the spatial and temporal interaction of faults in the area and better understand their kinematics. In this region, the San Andreas Fault (SAF) and Imperial Fault present two major transform faults separated by the Salton Sea transtensional domain. Earthquakes over magnitude 4 in this area almost always have associated aftershock sequences. Recent seismic reflection surveys in the Salton Sea reveal that the majority of faults under the southern Salton Sea trend ~N15°E, appear normal-dominant and have very minimal associated microseismicity. These normal faults rupture every 100-300 years in large earthquakes and most of the nearby microseismicity locates east of the mapped surface traces. For example, there is profuse microseismicity in the Brawley Seismic Zone (BSZ), which is coincident with the southern terminus of the SAF as it extends offshore into the Salton Sea. Earthquakes in the BSZ are dominantly swarm-like, occurring along short (<5 km) ~N45°E oriented sinistral and N35°W oriented dextral fault planes. This mapped seismicity makes a rung-and-ladder pattern. In an effort to reconcile differences between processes at the surface and those at seismogenic depths we integrate near surface fault kinematics, geometry and paleoseismic history with seismic data. We identify linear and planer trends in these data (20 near surface faults, >20,000 relocated earthquakes and >2,000 earthquake focal mechanisms) and when appropriate estimate the fault strike and dip using principal component analysis. With our more detailed image of the fault structure we assess how static stress changes imparted by magnitude ~6.0 ruptures along N15E oriented normal faults beneath the Salton Sea can modulate the stress field in the BSZ and along the SAF. These tests include

  2. The circulation of the Dead Sea brine in the regional aquifer

    NASA Astrophysics Data System (ADS)

    Weber, Nurit; Yechieli, Yoseph; Stein, Mordechai; Yokochi, Reika; Gavrieli, Ittai; Zappala, Jake; Mueller, Peter; Lazar, Boaz

    2018-07-01

    Ca-chloride brines have circulated between the lakes and the adjacent aquifers throughout the history of the Dead Sea lacustrine-hydrology system. The Ein-Qedem (EQ) hydrothermal saline springs system discharging at the western shores of the modern Dead Sea is the modern manifestation of this essential and continuous process. The EQ springs comprise the most significant source of Ca-chloride brine that currently discharges into the lake. The chemical composition of EQ brine has remained virtually uniform during the past ca. 40 yr, indicating that the brine represents a large groundwater reservoir. The EQ brine evolved from ancient Ca-chloride brine that occupied the tectonic depression of the Dead Sea Basin during the Quaternary. During this period, the composition of lake's brine was affected by mixing with freshwater and formation of primary minerals. Based on chronological and geochemical data, we argue that the EQ brine comprises the epilimnetic solution of last glacial Lake Lisan that penetrated and circulated through the adjacent Judea Group aquifer. 14C and 81Kr dating indicates recharge ages spanning the time interval of ∼40-20 ka, coinciding with the period when the lake reached its highest stand (of ∼ 200 ± 30 m below msl, at ∼31-17.4 ka) and maintained a stable layered (stratified) configuration for a period of several ten thousand years. The presented evidence suggests that the circulation of the Ca-chloride brine involves penetration into the aquifer during high stands (EQ brine recharge) and its discharge back into the lake during the modern low stands (∼400 to 430 m below msl). Accordingly, the mechanism of brine circulation between the lake and the marginal aquifers is related to the long-term hydro-climate history of the Dead Sea basin and its vicinity.

  3. Sea level rise and variability around Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Tkalich, Pavel; Luu, Quang-Hung; Tay, Tze-Wei

    2014-05-01

    Peninsular Malaysia is bounded from the west by Malacca Strait and the Andaman Sea, both connected to the Indian Ocean, and from the east by South China Sea being largest marginal sea in the Pacific Basin. As a result, sea level along Peninsular Malaysia coast is assumed to be governed by various regional phenomena associated with the adjacent parts of the Indian and Pacific Oceans. At annual scale, sea level anomalies (SLAs) are generated by the Asian monsoon; interannual sea level variability is determined by the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD); whilst long term sea level trend is coordinated by the global climate change. To quantify the relative impacts of these multi-scale phenomena on sea level trend and variability surrounding the Peninsular Malaysia, long-term tide gauge record and satellite altimetry are used. During 1984-2011, relative sea level rise (SLR) rates in waters of Malacca Strait and eastern Peninsular Malaysia are found to be 2.4 ± 0.8 mm/yr and 2.7 ± 0.6 mm/yr, respectively. Discounting for their vertical land movements (0.8 ± 2.6 mm/yr and 0.9 ± 2.2 mm/yr, respectively), their pure SLR rates are 1.6 ± 3.4 mm/yr and 1.8 ± 2.8 mm/yr, respectively, which are lower than the global tendency. At interannual scale, ENSO affects sea level over the Malaysian east coast in the range of ± 5 cm with very high correlation coefficient. Meanwhile, IOD modulates sea level anomalies in the Malacca Strait in the range of ± 2 cm with high correlation coefficient. Interannual regional sea level drops are associated with El Niño events and positive phases of the IOD index; while the rises are correlated with La Niña episodes and the negative periods of the IOD index. Seasonally, SLAs are mainly monsoon-driven, in the order of 10-25 cm. Geographically, sea level responds differently to the monsoon: two cycles per year are observed in the Malacca Strait, presumably due to South Asian - Indian Monsoon; while single

  4. Is snow-ice now a major contributor to sea ice mass balance in the western Transpolar Drift region?

    NASA Astrophysics Data System (ADS)

    Graham, R. M.; Merkouriadi, I.; Cheng, B.; Rösel, A.; Granskog, M. A.

    2017-12-01

    During the Norwegian young sea ICE (N-ICE2015) campaign, which took place in the first half of 2015 north of Svalbard, a deep winter snow pack (50 cm) on sea ice was observed, that was 50% thicker than earlier climatological studies suggested for this region. Moreover, a significant fraction of snow contributed to the total ice mass in second-year ice (SYI) (9% on average). Interestingly, very little snow (3% snow by mass) was present in first-year ice (FYI). The combination of sea ice thinning and increased precipitation north of Svalbard is expected to promote the formation of snow-ice. Here we use the 1-D snow/ice thermodynamic model HIGHTSI forced with reanalysis data, to show that for the case study of N-ICE2015, snow-ice would even form over SYI with an initial thickness of 2 m. In current conditions north of Svalbard, snow-ice is ubiquitous and contributes to the thickness growth up to 30%. This contribution is important, especially in the absence of any bottom thermodynamic growth due to the thick insulating snow cover. Growth of FYI north of Svalbard is mainly controlled by the timing of growth onset relative to snow precipitation events and cold spells. These usually short-lived conditions are largely determined by the frequency of storms entering the Arctic from the Atlantic Ocean. In our case, a later freeze onset was favorable for FYI growth due to less snow accumulation in early autumn. This limited snow-ice formation but promoted bottom thermodynamic growth. We surmise these findings are related to a regional phenomenon in the Atlantic sector of the Arctic, with frequent storm events which bring increasing amounts of precipitation in autumn and winter, and also affect the duration of cold temperatures required for ice growth in winter. We discuss the implications for the importance of snow-ice in the future Arctic, formerly believed to be non-existent in the central Arctic due to thick perennial ice.

  5. Infectious diseases of fishes in the Salish Sea

    USGS Publications Warehouse

    Hershberger, Paul; Rhodes, Linda; Kurath, Gael; Winton, James

    2013-01-01

    As in marine regions throughout other areas of the world, fishes in the Salish Sea serve as hosts for many pathogens, including nematodes, trematodes, protozoans, protists, bacteria, viruses, and crustaceans. Here, we review some of the better-documented infectious diseases that likely contribute to significant losses among free-ranging fishes in the Salish Sea and discuss the environmental and ecological factors that may affect the population-level impacts of disease. Demonstration of these diseases and their impacts to critical and endangered resources provides justification to expand pathogen surveillance efforts and to incorporate disease forecasting and mitigation tools into ecosystem restoration efforts.

  6. Estimates of the temperatures of hydrocarbon generation in the region of the Sea of Okhotsk

    NASA Astrophysics Data System (ADS)

    Verzhbitsky, E. V.; Berlin, Yu. M.; Kononov, M. V.; Marina, M. M.

    2006-07-01

    Particular features of the tectonic structure and anomalous distribution of the geothermal, geomagnetic, and gravity fields in the region of the Sea of Okhotsk are considered. On the basis of heat flow data, the ages of large-scale structures in the Sea of Okhotsk are estimated at 65 Ma for the Central Okhotsk Rise and 36 Ma for the South Okhotsk Basin. The age of the South Okhotsk Basin is confirmed by the data on the kinematics and corresponds to a 50-km thickness of the lithosphere. This is in accordance with the thickness value obtained by magnetotelluric soundings. A comparative analysis of the model geothermal background and the measured heat flow values on the Akademii Nauk Rise is performed. The analysis points to an abnormally high (by approximately 20%) measured heat flow, which agrees with the high negative gradient of gravity anomalies. The estimates of the deep heat flow and the basement age of the riftogenic basins in the Sea of Okhotsk were carried out in the following areas: the Deryugin Basin (18 Ma, Early Miocene), the TINRO Basin (12 Ma, Middle Miocene), and the West Kamchatka Basin (23 Ma, Late Oligocene). The temperatures at the boundaries of the main lithological complexes of the sedimentary cover are calculated and the zones of oil and gas generation are defined. On the basis of geothermal, magnetic, structural, and other geological-geophysical data, a kinematic model of the region of the Sea of Okhotsk for a period of 36 Ma was calculated and constructed.

  7. Major determinants of the biogeographic pattern of the shallow-sea fauna

    NASA Technical Reports Server (NTRS)

    Valentine, J. W.; Jablonski, D.

    1982-01-01

    The benthic shallow-sea is defined as the region of sea floor lying between the supralittoral zone at the shoreline and the impingement of the thermocline separating a warm shallow and variable portion of the water column from rather homogeneous and constant cooler waters beneath. Three types of shallow-sea provinces can be recognized: (1) one-dimensional, linear shelves; (2) two-dimensional shelves; and (3) scattered islands in two-dimensional arrays. Dispersal powers of marine invertebrates vary with developmental mode, and patterns of dispersal, endemism and speciation vary among the different provincial types. Invertebrate developmental modes vary systematically with geography, and presumably are adaptive to environmental conditions. Clades with only a single mode of development tend to be restricted to regions appropriate to that mode, significantly affecting their biogeographic patterns. The consequences of geographic and other environmental changes are reviewed.

  8. A comparative study of ground motion hybrid simulations and the modified NGA ground motion predictive equations for directivity and its application to the the Marmara Sea region (Turkey)

    NASA Astrophysics Data System (ADS)

    Pischiutta, M.; Akinci, A.; Spagnuolo, E.; Taroni, M.; Herrero, A.; Aochi, H.

    2016-12-01

    We have simulated strong ground motions for two Mw>7.0 rupture scenarios on the North Anatolian Fault, in the Marmara Sea within 10-20 km from Istanbul. This city is characterized by one of the highest levels of seismic risk in Europe and the Mediterranean region. The increased risk in Istanbul is due to eight destructive earthquakes that ruptured the fault system and left a seismic gap at the western portion of the 1000km-long North Anatolian Fault Zone. To estimate the ground motion characteristics and its variability in the region we have simulated physics-based rupture scenarios, producing hybrid broadband time histories. We have merged two simulation techniques: a full 3D wave propagation method to generate low-frequency seismograms (Aochi and Ulrich, 2015) and the stochastic finite-fault model approach based on a dynamic corner frequency (Motazedian and Atkinson, 2005) to simulate high-frequency seismograms (Akinci et al., 2016, submitted to BSSA, 2016). They are merged to compute realistic broadband hybrid time histories. The comparison of ground motion intensity measures (PGA, PGV, SA) resulting from our simulations with those predicted by the recent Ground Motion Prediction Equations (GMPEs) in the region (Boore & Atkinson, 2008; Chiou & Young, 2008; Akkar & Bommer, 2010; Akkar & Cagnan, 2010) seems to indicate that rupture directivity and super-shear rupture effects affect the ground motion in the Marmara Sea region. In order to account for the rupture directivity we improve the comparison using the directivity predictor proposed by Spudich & Chiu (2008). This study highlights the importance of the rupture directivity for the hazard estimation in the Marmara Sea region, especially for the city of Istanbul.

  9. Sea ice concentration temporal variability over the Weddell Sea and its relationship with tropical sea surface temperature

    USGS Publications Warehouse

    Barreira, S.; Compagnucci, R.

    2007-01-01

    Principal Components Analysis (PCA) in S-Mode (correlation between temporal series) was performed on sea ice monthly anomalies, in order to investigate which are the main temporal patterns, where are the homogenous areas located and how are they related to the sea surface temperature (SST). This analysis provides 9 patterns (4 in the Amundsen and Bellingshausen Seas and 5 in the Weddell Sea) that represent the most important temporal features that dominated sea ice concentration anomalies (SICA) variability in the Weddell, Amundsen and Bellingshausen Seas over the 1979-2000 period. Monthly Polar Gridded Sea Ice Concentrations data set derived from satellite information generated by NASA Team algorithm and acquired from the National Snow and Ice Data Center (NSIDC) were used. Monthly means SST are provided by the National Center for Environmental Prediction reanalysis. The first temporal pattern series obtained by PCA has its homogeneous area located at the external region of the Weddell and Bellingshausen Seas and Drake Passage, mostly north of 60°S. The second region is centered in 30°W and located at the southeast of the Weddell. The third area is localized east of 30°W and north of 60°S. South of the first area, the fourth PC series has its homogenous region, between 30° and 60°W. The last area is centered at 0° W and south of 60°S. Correlation charts between the five Principal Components series and SST were performed. Positive correlations over the Tropical Pacific Ocean were found for the five PCs when SST series preceded SICA PC series. The sign of the correlation could relate the occurrence of an El Niño/Southern Oscillation (ENSO) warm (cold) event with posterior positive (negative) anomalies of sea ice concentration over the Weddell Sea.

  10. Challenges to estimate surface- and groundwater flow in arid regions: the Dead Sea catchment.

    PubMed

    Siebert, Christian; Rödiger, Tino; Mallast, Ulf; Gräbe, Agnes; Guttman, Joseph; Laronne, Jonathan B; Storz-Peretz, Yael; Greenman, Anat; Salameh, Elias; Al-Raggad, Marwan; Vachtman, Dina; Zvi, Arie Ben; Ionescu, Danny; Brenner, Asher; Merz, Ralf; Geyer, Stefan

    2014-07-01

    The overall aim of the this study, which was conducted within the framework of the multilateral IWRM project SUMAR, was to expand the scientific basement to quantify surface- and groundwater fluxes towards the hypersaline Dead Sea. The flux significance for the arid vicinity around the Dead Sea is decisive not only for a sustainable management in terms of water availability for future generations but also for the resilience of the unique ecosystems along its coast. Coping with different challenges interdisciplinary methods like (i) hydrogeochemical fingerprinting, (ii) satellite and airborne-based thermal remote sensing, (iii) direct measurement with gauging station in ephemeral wadis and a first multilateral gauging station at the river Jordan, (iv) hydro-bio-geochemical approach at submarine and shore springs along the Dead Sea and (v) hydro(geo)logical modelling contributed to the overall aim. As primary results, we deduce that the following: (i) Within the drainage basins of the Dead Sea, the total mean annual precipitation amounts to 300 mm a(−1) west and to 179 mm a(−1) east of the lake, respectively. (ii) The total mean annual runoff volumes from side wadis (except the Jordan River) entering the Dead Sea is approximately 58–66 × 10(6) m(3) a(−1) (western wadis: 7–15 × 10(6) m(3) a(−1); eastern wadis: 51 × 10(6) m(3) a(−1)). (iii) The modelled groundwater discharge from the upper Cretaceous aquifers in both flanks of the Dead Sea towards the lake amounts to 177 × 10(6) m(3) a(−1). (iv) An unexpected abundance of life in submarine springs exists, which in turn explains microbial moderated geo-bio-chemical processes in the Dead Sea sediments, affecting the highly variable chemical composition of on- and offshore spring waters.The results of this work show a promising enhancement of describing and modelling the Dead Sea basin as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Manganese overload affects p38 MAPK phosphorylation and metalloproteinase activity during sea urchin embryonic development.

    PubMed

    Pinsino, A; Roccheri, M C; Matranga, V

    2014-02-01

    In the marine environment, manganese represents a potential emerging contaminant, resulting from an increased production of manganese-containing compounds. In earlier reports we found that the exposure of Paracentrotus lividus sea urchin embryos to manganese produced phenotypes with no skeleton. In addition, manganese interfered with calcium uptake, perturbed extracellular signal-regulated kinase (ERK) signaling, affected the expression of skeletogenic genes, and caused an increase of the hsc70 and hsc60 protein levels. Here, we extended our studies focusing on the temporal activation of the p38 mitogen-activated protein kinase (p38 MAPK) and the proteolytic activity of metalloproteinases (MMPs). We found that manganese affects the stage-dependent dynamics of p38 MAPK activation and inhibits the total gelatin-auto-cleaving activity of MMPs, with the exclusion of the 90-85 kDa and 68-58 kDa MMPs, whose levels remain high all throughout development. Our findings correlate, for the first time to our knowledge, an altered activation pattern of the p38 MAPK with an aberrant MMP proteolytic activity in the sea urchin embryo. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Interannual-to-decadal air-sea interactions in the tropical Atlantic region

    NASA Astrophysics Data System (ADS)

    Ruiz-Barradas, Alfredo

    2001-09-01

    The present research identifies modes of atmosphere-ocean interaction in the tropical Atlantic region and the mechanisms by which air-sea interactions influence the regional climate. Novelties of the present work are (1)the use of relevant ocean and atmosphere variables important to identity coupled variability in the system. (2)The use of new data sets, including realistic diabatic heating. (3)The study of interactions between ocean and atmosphere relevant at interannual-to-decadal time scales. Two tropical modes of variability are identified during the period 1958-1993, the Atlantic Niño mode and the Interhemispheric mode. Those modes have defined structures in both ocean and atmosphere. Anomalous sea surface temperatures and winds are associated to anomalous placement of the Intertropical Convergence Zone (ITCZ). They develop maximum amplitude during boreal summer and spring, respectively. The anomalous positioning of the ITCZ produces anomalous precipitation in some places like Nordeste, Brazil and the Caribbean region. Through the use of a diagnostic primitive equation model, it is found that the most important terms controlling local anomalous surface winds over the ocean are boundary layer temperature gradients and diabatic heating anomalies at low levels (below 780 mb). The latter is of particular importance in the deep tropics in producing the anomalous meridional response to the surface circulation. Simulated latent heat anomalies indicate that a thermodynamic feedback establishes positive feedbacks at both sides of the equator and west of 20°W in the deep tropics and a negative feedback in front of the north west coast of Africa for the Interhemispheric mode. This thermodynamic feedback only establishes negative feedbacks for the Atlantic Niño mode. Transients establish some connection between the tropical Atlantic and other basins. Interhemispheric gradients of surface temperature in the tropical Atlantic influence winds in the midlatitude North

  13. A three-dimensional geophysical model of the crust in the Barents Sea region: Model construction and basement characterization

    USGS Publications Warehouse

    Ritzmann, O.; Maercklin, N.; Inge, Faleide J.; Bungum, H.; Mooney, W.D.; Detweiler, S.T.

    2007-01-01

    BARENTS50, a new 3-D geophysical model of the crust in the Barents Sea Region has been developed by the University of Oslo, NORSAR and the U.S. Geological Survey. The target region comprises northern Norway and Finland, parts of the Kola Peninsula and the East European lowlands. Novaya Zemlya, the Kara Sea and Franz-Josef Land terminate the region to the east, while the Norwegian-Greenland Sea marks the western boundary. In total, 680 1-D seismic velocity profiles were compiled, mostly by sampling 2-D seismic velocity transects, from seismic refraction profiles. Seismic reflection data in the western Barents Sea were further used for density modelling and subsequent density-to-velocity conversion. Velocities from these profiles were binned into two sedimentary and three crystalline crustal layers. The first step of the compilation comprised the layer-wise interpolation of the velocities and thicknesses. Within the different geological provinces of the study region, linear relationships between the thickness of the sedimentary rocks and the thickness of the remaining crystalline crust are observed. We therefore, used the separately compiled (area-wide) sediment thickness data to adjust the total crystalline crustal thickness according to the total sedimentary thickness where no constraints from 1-D velocity profiles existed. The BARENTS50 model is based on an equidistant hexagonal grid with a node spacing of 50 km. The P-wave velocity model was used for gravity modelling to obtain 3-D density structure. A better fit to the observed gravity was achieved using a grid search algorithm which focussed on the density contrast of the sediment-basement interface. An improvement compared to older geophysical models is the high resolution of 50 km. Velocity transects through the 3-D model illustrate geological features of the European Arctic. The possible petrology of the crystalline basement in western and eastern Barents Sea is discussed on the basis of the observed seismic

  14. 75 FR 63504 - Outer Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... Continental Shelf, Alaska OCS Region, Chukchi Sea Planning Area, Oil and Gas Lease Sale 193 AGENCY: Bureau of... development; (2) determine whether missing information identified by BOEMRE in the 193 FEIS was essential or... in the FEIS for Chukchi Sea Lease Sale 193 was essential or relevant under 40 CFR 1502.22; and (3...

  15. Saharan Dust Deposition May Affect Phytoplankton Growth in the Mediterranean Sea at Ecological Time Scales

    PubMed Central

    Gallisai, Rachele; Peters, Francesc; Volpe, Gianluca; Basart, Sara; Baldasano, José Maria

    2014-01-01

    The surface waters of the Mediterranean Sea are extremely poor in the nutrients necessary for plankton growth. At the same time, the Mediterranean Sea borders with the largest and most active desert areas in the world and the atmosphere over the basin is subject to frequent injections of mineral dust particles. We describe statistical correlations between dust deposition over the Mediterranean Sea and surface chlorophyll concentrations at ecological time scales. Aerosol deposition of Saharan origin may explain 1 to 10% (average 5%) of seasonally detrended chlorophyll variability in the low nutrient-low chlorophyll Mediterranean. Most of the statistically significant correlations are positive with main effects in spring over the Eastern and Central Mediterranean, conforming to a view of dust events fueling needed nutrients to the planktonic community. Some areas show negative effects of dust deposition on chlorophyll, coinciding with regions under a large influence of aerosols from European origin. The influence of dust deposition on chlorophyll dynamics may become larger in future scenarios of increased aridity and shallowing of the mixed layer. PMID:25333783

  16. Revisiting sea level changes in the North Sea during the Anthropocene

    NASA Astrophysics Data System (ADS)

    Jensen, Jürgen; Dangendorf, Sönke; Wahl, Thomas; Niehüser, Sebastian

    2016-04-01

    The North Sea is one of the best instrumented ocean basins in the world. Here we revisit sea level changes in the North Sea region from tide gauges, satellite altimetry, hydrographic profiles and ocean reanalysis data from the beginning of the 19th century to present. This includes an overview of the sea level chapter of the North Sea Climate Change Assessment (NOSCCA) complemented by results from more recent investigations. The estimates of long-term changes from tide gauge records are significantly affected by vertical land motion (VLM), which is related to both the large-scale viscoelastic response of the solid earth to ice melting since the last deglaciation and local effects. Removing VLM (estimated from various data sources such as GPS, tide gauge minus altimetry and GIA) significantly reduces the spatial variability of long-term trends in the basin. VLM corrected tide gauge records suggest a transition from relatively moderate changes in the 19th century towards modern trends of roughly 1.5 mm/yr during the 20th century. Superimposed on the long-term changes there is a considerable inter-annual to multi-decadal variability. On inter-annual timescales this variability mainly reflects the barotropic response of the ocean to atmospheric forcing with the inverted barometer effect dominating along the UK and Norwegian coastlines and wind forcing controlling the southeastern part of the basin. The decadal variability is mostly remotely forced and dynamically linked to the North Atlantic via boundary waves in response to long-shore winds along the continental slope. These findings give valuable information about the required horizontal resolution of ocean models and the necessary boundary conditions and are therefore important for the dynamical downscaling of sea level projections for the North Sea coastlines.

  17. Impact of wave mixing on the sea ice cover

    NASA Astrophysics Data System (ADS)

    Rynders, Stefanie; Aksenov, Yevgeny; Madec, Gurvan; Nurser, George; Feltham, Daniel

    2017-04-01

    As information on surface waves in ice-covered regions becomes available in ice-ocean models, there is an opportunity to model wave-related processes more accurate. Breaking waves cause mixing of the upper water column and present mixing schemes in ocean models take this into account through surface roughness. A commonly used approach is to calculate surface roughness from significant wave height, parameterised from wind speed. We present results from simulations using modelled significant wave height instead, which accounts for the presence of sea ice and the effect of swell. The simulations use the NEMO ocean model coupled to the CICE sea ice model, with wave information from the ECWAM model of the European Centre for Medium-Range Weather Forecasts (ECMWF). The new waves-in-ice module allows waves to propagate in sea ice and attenuates waves according to multiple scattering and non-elastic losses. It is found that in the simulations with wave mixing the mixed layer depth (MLD) under ice cover is reduced, since the parameterisation from wind speed overestimates wave height in the ice-covered regions. The MLD change, in turn, affects sea ice concentration and ice thickness. In the Arctic, reduced MLD in winter translates into increased ice thicknesses overall, with higher increases in the Western Arctic and decreases along the Siberian coast. In summer, shallowing of the mixed layer results in more heat accumulating in the surface ocean, increasing ice melting. In the Southern Ocean the meridional gradient in ice thickness and concentration is increased. We argue that coupling waves with sea ice - ocean models can reduce negative biases in sea ice cover, affecting the distribution of nutrients and, thus, biological productivity and ecosystems. This coupling will become more important in the future, when wave heights in a large part of the Arctic are expected to increase due to sea ice retreat and a larger wave fetch. Therefore, wave mixing constitutes a possible

  18. Celtic Sea

    Atmospheric Science Data Center

    2013-04-17

    article title:  Coccoliths in the Celtic Sea     View Larger Image As ... This image is a natural-color view of the Celtic Sea and English Channel regions, and was acquired by the Multi-angle Imaging ...

  19. Sea ice around Ostrov Sakhalin, eastern Russia

    NASA Image and Video Library

    2017-12-08

    Located off the east coast of Russia, the Sea of Okhotsk stretches down to 45 degrees North latitude, and sea ice forms regularly in the basin. In fact, it is the lowest latitude for seasonal sea ice formation in the world. On January 4, 2015, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra satellite captured this true-color image of the ice-covered Sea of Okhotsk. Every winter, winds from East Siberia, frigid air temperatures, and a large amount of freshwater flowing out from rivers promote the formation of sea ice in the region. Much of the freshwater comes from the Amur River, one of the ten longest rivers in the world. From year to year, variations in temperature and wind speed can cause large fluctuations in sea ice extent. The sea spans more than 1,500,000 square kilometers (600,000 square miles), and ice cover can spread across 50 to 90 percent of it at its annual peak. On average, that ice persists for 180 days. According to research published in 2014, the region's sea ice has been decreasing over a 34-year period. Annual ice production in the Sea of Okhotsk dropped by more than 11 percent from 1974 to 2008. The researchers suggest that this decline has, at least in part, "led to weakening of the overturning in the North Pacific." Water with less sea ice is fresher, less dense, and unable to sink and circulate as well as salty, dense water. A weakened circulation in the North Pacific has implications for the supply of nutrients, such as iron, that affect biological productivity. Credit: NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  20. Seasonal Study of Mercury Species in the Antarctic Sea Ice Environment.

    PubMed

    Nerentorp Mastromonaco, Michelle G; Gårdfeldt, Katarina; Langer, Sarka; Dommergue, Aurélien

    2016-12-06

    Limited studies have been conducted on mercury concentrations in the polar cryosphere and the factors affecting the distribution of mercury within sea ice and snow are poorly understood. Here we present the first comprehensive seasonal study of elemental and total mercury concentrations in the Antarctic sea ice environment covering data from measurements in air, sea ice, seawater, snow, frost flowers, and brine. The average concentration of total mercury in sea ice decreased from winter (9.7 ng L -1 ) to spring (4.7 ng L -1 ) while the average elemental mercury concentration increased from winter (0.07 ng L -1 ) to summer (0.105 ng L -1 ). The opposite trends suggest potential photo- or dark oxidation/reduction processes within the ice and an eventual loss of mercury via brine drainage or gas evasion of elemental mercury. Our results indicate a seasonal variation of mercury species in the polar sea ice environment probably due to varying factors such as solar radiation, temperature, brine volume, and atmospheric deposition. This study shows that the sea ice environment is a significant interphase between the polar ocean and the atmosphere and should be accounted for when studying how climate change may affect the mercury cycle in polar regions.

  1. Holocene sea surface temperature and sea ice extent in the Okhotsk and Bering Seas

    USGS Publications Warehouse

    Harada, Naomi; Katsuki, Kota; Nakagawa, Mitsuhiro; Matsumoto, Akiko; Seki, Osamu; Addison, Jason A.; Finney, Bruce P.; Sato, Miyako

    2014-01-01

    Accurate prediction of future climate requires an understanding of the mechanisms of the Holocene climate; however, the driving forces, mechanisms, and processes of climate change in the Holocene associated with different time scales remain unclear. We investigated the drivers of Holocene sea surface temperature (SST) and sea ice extent in the North Pacific Ocean, and the Okhotsk and Bering Seas, as inferred from sediment core records, by using the alkenone unsaturation index as a biomarker of SST and abundances of sea ice-related diatoms (F. cylindrus and F. oceanica) as an indicator of sea ice extent to explore controlling mechanisms in the high-latitude Pacific. Temporal changes in alkenone content suggest that alkenone production was relatively high during the middle Holocene in the Okhotsk Sea and the western North Pacific, but highest in the late Holocene in the eastern Bering Sea and the eastern North Pacific. The Holocene variations of alkenone-SSTs at sites near Kamchatka in the Northwest Pacific, as well as in the western and eastern regions of the Bering Sea, and in the eastern North Pacific track the changes of Holocene summer insolation at 50°N, but at other sites in the western North Pacific, in the southern Okhotsk Sea, and the eastern Bering Sea they do not. In addition to insolation, other atmosphere and ocean climate drivers, such as sea ice distribution and changes in the position and activity of the Aleutian Low, may have systematically influenced the timing and magnitude of warming and cooling during the Holocene within the subarctic North Pacific. Periods of high sea ice extent in both the Okhotsk and Bering Seas may correspond to some periods of frequent or strong winter–spring dust storms in the Mongolian Gobi Desert, particularly one centered at ∼4–3 thousand years before present (kyr BP). Variation in storm activity in the Mongolian Gobi Desert region may reflect changes in the strength and positions of the Aleutian Low and Siberian

  2. Determination of Seasonal Vitamin and Mineral Contents of Sea Bream (Sparus aurata L., 1758) Cultured in Net Cages in Central Black Sea Region.

    PubMed

    Öztürk, Dilara Kaya; Baki, Birol; Karayücel, İsmihan; Öztürk, Recep; Gören, Gülşen Uzun; Karayücel, Sedat

    2018-05-12

    This study aimed to determine the seasonal vitamin and mineral contents of sea bream (Sparus aurata) cultured in net cages in Central Black Sea region. The average seasonal A, D 3 , and E vitamins values in fish meat were between 0.27 ± 0.02-0.60 ± 0.00, 0.98 ± 0.01-1.70 ± 0.00, and 3.10 ± 0.14-6.00 ± 0.21 mg/kg, respectively (p < 0.05). The average seasonal Ca, Fe, K, Mg, Na, P, Zn, and Se values in fish meat were between 276.90 ± 0.99-1788.50 ± 51.27 (p < 0.05), 3.50 ± 0.12-4.47 ± 0.18 (p > 0.05), 4244.50 ± 8.84-4761.50 ± 1.06 (p < 0.05), 251.55 ± 2.55-312.65 ± 11.42 (p < 0.05), 56.49 ± 0.04-128.75 ± 0.18 (p < 0.05), 2234.50 ± 15.20-2619.00 ± 7.07 (p < 0.05), 5.62 ± 0.10-15.30 ± 0.22 (p < 0.05), and 0.30 ± 0.00-0.38 ± 0.01 mg/kg (p > 0.05), respectively. As a result, it can be concluded that sea bream cultured in the Central Black Sea region is a rich source of nutrients in terms of vitamins and mineral matters, and fish size, feed quality, and the environmental factors are influential on the contents of vitamin and mineral substances in the fish tissue.

  3. Regional biases in absolute sea-level estimates from tide gauge data due to residual unmodeled vertical land movement

    NASA Astrophysics Data System (ADS)

    King, Matt A.; Keshin, Maxim; Whitehouse, Pippa L.; Thomas, Ian D.; Milne, Glenn; Riva, Riccardo E. M.

    2012-07-01

    The only vertical land movement signal routinely corrected for when estimating absolute sea-level change from tide gauge data is that due to glacial isostatic adjustment (GIA). We compare modeled GIA uplift (ICE-5G + VM2) with vertical land movement at ˜300 GPS stations located near to a global set of tide gauges, and find regionally coherent differences of commonly ±0.5-2 mm/yr. Reference frame differences and signal due to present-day mass trends cannot reconcile these differences. We examine sensitivity to the GIA Earth model by fitting to a subset of the GPS velocities and find substantial regional sensitivity, but no single Earth model is able to reduce the disagreement in all regions. We suggest errors in ice history and neglected lateral Earth structure dominate model-data differences, and urge caution in the use of modeled GIA uplift alone when interpreting regional- and global- scale absolute (geocentric) sea level from tide gauge data.

  4. Genotypic Diversity and Virulence Characteristics of Clinical and Environmental Vibrio vulnificus Isolates from the Baltic Sea Region

    PubMed Central

    Bier, Nadja; Bechlars, Silke; Diescher, Susanne; Klein, Florian; Hauk, Gerhard; Duty, Oliver; Strauch, Eckhard

    2013-01-01

    The genetic diversity of Vibrio vulnificus isolates from clinical and environmental sources originating from the Baltic Sea region was evaluated by multilocus sequence typing (MLST), and possible relationships between MLST clusters, potential genotypic and phenotypic traits associated with pathogenicity, and source of isolation were investigated. The studied traits included genotyping of polymorphic loci (16S rRNA, vcg, and pilF), presence/absence of potential virulence genes, including nanA, nab, and genes of pathogenicity regions, metabolic features, hemolytic activity, resistance to human serum, and cytotoxicity to human intestinal cells. MLST generated 35 (27 new) sequence types and divided the 53 isolates (including four reference strains) into two main clusters, with cluster I containing biotype 1 and 2 isolates of mainly environmental origin and cluster II containing biotype 1 isolates of mainly clinical origin. Cluster II isolates were further subdivided into two branches. Branch IIB included isolates from recent cases of wound infections that were acquired at the German Baltic Sea coastline between 2010 and 2011 and isolates from seawater samples of the same regions isolated between 1994 and 2010. Comparing the MLST data with the results of genotyping and phenotyping showed that strains of MLST cluster II possess a number of additional pathogenicity-associated traits compared to cluster I strains. Rapid microbiological methods such as matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry combined with typing of selected virulence-associated traits (e.g., serum resistance, mannitol fermentation, nanA, and pathogenicity region XII) could be used for risk assessment purposes regarding V. vulnificus strains isolated from the Baltic Sea region. PMID:23542621

  5. Neuropsychological state of the population living in the Aral Sea region (zone of ecological crisis).

    PubMed

    Sakiev, Kanat; Battakova, Sharbanu; Namazbaeva, Zulkiya; Ibrayeva, Lyazat; Otarbayeva, Maral; Sabirov, Zhanbol

    2017-04-01

    Background The Aral Sea crisis has led to harmful effects on human habitat. In recent years, mild cognitive impairment is a growing problem. Objectives This article provides the results of studying the neuropsychological state of residents living in the crisis zone of the Aral Sea region in the case of Shalkar city. We have provided an assessment of the neuropsychological state of examined population and determined the leading pathology in this region. Methods The survey sample included 344 persons of reproductive age from 21 to 45 years. We have obtained results in biochemical studies, indicating perturbations of proteometabolism and lipid metabolism. Results A correlation analysis showed dependence between a decrease of albumin and high-density lipoproteins, an increase of low-density lipoproteins and parameters of cognitive function. Conclusions The research suggests a high prevalence of cerebrovascular pathology among the population, changes in cognitive function parameters, long-term and short-term memory problems and high levels of depression.

  6. ENSURF: multi-model sea level forecast - implementation and validation results for the IBIROOS and Western Mediterranean regions

    NASA Astrophysics Data System (ADS)

    Pérez, B.; Brouwer, R.; Beckers, J.; Paradis, D.; Balseiro, C.; Lyons, K.; Cure, M.; Sotillo, M. G.; Hackett, B.; Verlaan, M.; Fanjul, E. A.

    2012-03-01

    ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast that makes use of several storm surge or circulation models and near-real time tide gauge data in the region, with the following main goals: 1. providing easy access to existing forecasts, as well as to its performance and model validation, by means of an adequate visualization tool; 2. generation of better forecasts of sea level, including confidence intervals, by means of the Bayesian Model Average technique (BMA). The Bayesian Model Average technique generates an overall forecast probability density function (PDF) by making a weighted average of the individual forecasts PDF's; the weights represent the Bayesian likelihood that a model will give the correct forecast and are continuously updated based on the performance of the models during a recent training period. This implies the technique needs the availability of sea level data from tide gauges in near-real time. The system was implemented for the European Atlantic facade (IBIROOS region) and Western Mediterranean coast based on the MATROOS visualization tool developed by Deltares. Results of validation of the different models and BMA implementation for the main harbours are presented for these regions where this kind of activity is performed for the first time. The system is currently operational at Puertos del Estado and has proved to be useful in the detection of calibration problems in some of the circulation models, in the identification of the systematic differences between baroclinic and barotropic models for sea level forecasts and to demonstrate the feasibility of providing an overall probabilistic forecast, based on the BMA method.

  7. Effects of sea-ice extent and krill or salp dominance on the Antarctic food web

    NASA Astrophysics Data System (ADS)

    Loeb, V.; Siegel, V.; Holm-Hansen, O.; Hewitt, R.; Fraser, W.; Trivelpiece, W.; Trivelpiece, S.

    1997-06-01

    Krill (Euphausia superba) provide a direct link between primary producers and higher trophic levels in the Antarctic marine food web. The pelagic tunicate Salpa thompsoni can also be important during spring and summer through the formation of extensive and dense blooms. Although salps are not a major dietary item for Antarctic vertebrate predators,, their blooms can affect adult krill reproduction and survival of krill larvae. Here we provide data from 1995 and 1996 that support hypothesized relationships between krill, salps and region-wide sea-ice conditions,. We have assessed salp consumption as a proportion of net primary production, and found correlations between herbivore densities and integrated chlorophyll-a that indicate that there is a degree of competition between krill and salps. Our analysis of the relationship between annual sea-ice cover and a longer time series of air temperature measurements, indicates a decreased frequency of winters with extensive sea-ice development over the last five decades. Our data suggest that decreased krill availability may affect the levels of their vertebrate predators. Regional warming and reduced krill abundance therefore affect the marine food web and krill resource management.

  8. The regional structure of the Red Sea Rift revised

    NASA Astrophysics Data System (ADS)

    Augustin, Nico; van der Zwan, Froukje M.; Devey, Colin W.; Brandsdóttir, Bryndís

    2017-04-01

    The Red Sea Rift has, for decades, been considered a text book example of how young ocean basins form and mature. Nevertheless, most studies of submarine processes in the Red Sea were previously based on sparse data (mostly obtained between the late 1960's and 1980's) collected at very low resolution. This low resolution, combined with large gaps between individual datasets, required large interpolations when developing geological models. Thus, these models generally considered the Red Sea Rift a special case of young ocean basement formation, dividing it from North to South into three zones: a continental thinning zone, a "transition zone" and a fully developed spreading zone. All these zones are imagined, in most of the models, to be separated by large transform faults, potentially starting and ending on the African and Arabian continental shields. However, no consensus between models e.g. about the locations (or even the existence) of major faults, the nature of the transition zone or the extent of oceanic crust in the Red Sea Rift has been reached. Recently, high resolution bathymetry revealed detailed seafloor morphology as never seen before from the Red Sea, very comparable to other (ultra)slow spreading mid-ocean ridges such as the Gakkel Ridge, the Mid-Atlantic Ridge and SW-Indian Ridge, changing the overall picture of the Red Sea significantly. New discoveries about the extent, movement and physical properties of submarine salt deposits led to the Red Sea Rift being linked to the young Aptian-age South Atlantic. Extensive crosscutting transform faults are not evident in the modern bathymetry data, neither in teleseismic nor vertical gravity gradient data and comparisons to Gakkel Ridge and the SW-Indian Ridge suggest that the Red Sea is much simpler in terms of structural geology than was previously thought. Complicated tectonic models do not appear necessary and there appears to be large areas of oceanic crust under the Red Sea salt blankets. Based on

  9. Biodiversity of the Deep-Sea Benthic Fauna in the Sangihe-Talaud Region, Indonesia: Observations from the INDEX-SATAL 2010 Expedition

    NASA Astrophysics Data System (ADS)

    Herrera, S.; Munro, C.; Nganro, N.; Tunnicliffe, V.; Wirasantosa, S.; Sibert, E.; Hammond, S. R.; Bors, E.; Butterfield, D.; Holden, J. F.; Baker, E. T.; Sherrin, J.; Makarim, S.; Troa, R.; Shank, T. M.

    2010-12-01

    The benthic ecosystems found in the deep-sea promontories of Sangihe Talaud region were explored, between June and August 2010, using the ROV Little Hercules aboard the NOAA ship Okeanos Explorer. The Sangihe-Talaud region is part of the Coral Triangle (CT) an area known for harboring the most biodiverse shallow-water coral reefs in the world. Notwithstanding the significant research efforts that have been undertaken to catalog and protect the biodiversity of the CT prior this expedition, virtually nothing was known about the life inhabiting the deep sea. The high-resolution imagery obtained from the 27 ROV dives revealed remarkably high abundances and diversity of animal species, many of which appear to be novel. On hard bottom substrates, cold-water corals were the dominant sessile macrofauna, in terms of biomass, followed by glass sponges (Hexactinellida) and sea lilies (Crinoidea). The coral taxa observed in this area represent six large orders of cnidarians: antipatharians (black corals), scleractinians (stony corals), zoanthideans (gold corals), alcyonaceans (octocorals), pennatulaceans (sea pens), and anthoathecates (hydrocorals). Most sessile species, independently of their size class or taxonomic affiliation, harbor a wide variety of associated fauna. Brittle stars (Ophiuroidea), squat lobsters (Galatheoidea), shrimp (Caridea), amphipods (Amphipoda), anemones (Actinaria), zanthideans, barnacles (Cirripedia), hydroids (Hydrozoa) and worms (Polychaeta) are the animal groups most commonly found forming these associations. In contrast, soft bottom habitats were dominated by stalked sponges, sea pens, sea cucumbers (Holothuroidea) and brittle stars. Other conspicuous fauna include fish, hermit crabs (Paguridae), urchins (Echinoidea) and octopuses (Cephalopoda). The abundance of habitats generated by the high number of geological and biological features and depth ranges present in the deep coral triangle (e.g., ridges, seamounts, island margins, plains, and rock

  10. Multi-model seasonal forecast of Arctic sea-ice: forecast uncertainty at pan-Arctic and regional scales

    NASA Astrophysics Data System (ADS)

    Blanchard-Wrigglesworth, E.; Barthélemy, A.; Chevallier, M.; Cullather, R.; Fučkar, N.; Massonnet, F.; Posey, P.; Wang, W.; Zhang, J.; Ardilouze, C.; Bitz, C. M.; Vernieres, G.; Wallcraft, A.; Wang, M.

    2017-08-01

    Dynamical model forecasts in the Sea Ice Outlook (SIO) of September Arctic sea-ice extent over the last decade have shown lower skill than that found in both idealized model experiments and hindcasts of previous decades. Additionally, it is unclear how different model physics, initial conditions or forecast post-processing (bias correction) techniques contribute to SIO forecast uncertainty. In this work, we have produced a seasonal forecast of 2015 Arctic summer sea ice using SIO dynamical models initialized with identical sea-ice thickness in the central Arctic. Our goals are to calculate the relative contribution of model uncertainty and irreducible error growth to forecast uncertainty and assess the importance of post-processing, and to contrast pan-Arctic forecast uncertainty with regional forecast uncertainty. We find that prior to forecast post-processing, model uncertainty is the main contributor to forecast uncertainty, whereas after forecast post-processing forecast uncertainty is reduced overall, model uncertainty is reduced by an order of magnitude, and irreducible error growth becomes the main contributor to forecast uncertainty. While all models generally agree in their post-processed forecasts of September sea-ice volume and extent, this is not the case for sea-ice concentration. Additionally, forecast uncertainty of sea-ice thickness grows at a much higher rate along Arctic coastlines relative to the central Arctic ocean. Potential ways of offering spatial forecast information based on the timescale over which the forecast signal beats the noise are also explored.

  11. Management of the Wadden Sea

    NASA Astrophysics Data System (ADS)

    Wolff, W. J.; Zijlstra, J. J.

    1980-03-01

    The Wadden Sea situated along the North Sea coasts of Denmark, the Federal Republic of Germany and The Netherlands represents one of the world's largest bar-built type of estuaries. The area is a typical sedimentation and mineralization basin, with a large influx of organic matter from the adjoining North Sea, consequently a delicate oxygen balance and a rich benthic macrofauna, poor in species, which serves as food for juveniles of some commercially important North Sea fishes and for large numbers of migrating and wintering waders and waterfowl. Past and present activities of the human society in the area include fisheries (mainly for shrimp and mussels, semi-culture), shipping, land reclamation, recreation, dredging for sand and shells, and waste discharge from industries and human communities. Until the present these activities, although sometimes conflicting, did not fundamentally affect the area and its biota (pollution excluded), but future claims, including the construction of large deep-sea harbours, drilling for natural gas and oil, large-scale land reclamation and increased industrialization etc., might gradually induce degradation. For instance, area reduction by continued land reclamation could lead to irreversible losses of specific biotopes (e. g. salt-marshes, mud-flats), which could affect the size of bird and fish populations in a much wider region. Increased pollution, which has already inflicted damage on bird and seal populations, could reduce the fauna and hence the value of the area as a natural sanctuary. In the event of a proposal for a new human activity in the area, the present standing practice in the countries concerned requires an evaluation of its safety and economic aspects and its environmental impact. However, the various plans are considered separately and there is a general need for integrated management of the area.

  12. Avian influenza virus wild bird surveillance in the Azov and Black Sea regions of Ukraine

    USDA-ARS?s Scientific Manuscript database

    The Azov and Black Sea basins are transcontinental migration routes of wild birds from Northern Asia and Europe to the Mediterranean, Africa and Southwest Asia. These regions constitute an area of transit, stops during migration, and nesting of many migratory bird species with a very high level of ...

  13. Regional Interdependence in Adaptation to Sea Level Rise and Coastal Flooding

    NASA Astrophysics Data System (ADS)

    Stacey, M. T.; Lubell, M.; Hummel, M.; Wang, R. Q.; Barnard, P.; Erikson, L. H.; Herdman, L.; Pozdnukhov, A.; Sheehan, M.

    2017-12-01

    Projections of sea level rise may differ in the pace of change, but there is clear consensus that coastal communities will be facing more frequent and severe flooding events in the coming century. As communities adapt to future conditions, infrastructure systems will be developed, modified and abandoned, with important consequences for services and resilience. Whether action or inaction is pursued, the decisions made by an individual community regarding a single infrastructure system have implications that extend spatially and temporally due to geographic and infrastructure system interactions. At the same time, there are a number of barriers to collective or coordinated action that inhibit regional solutions. This interplay between local actions and regional responses is one of the great challenges facing decision-makers grappling with both local and regional climate-change adaptation. In this talk, I present case studies of the San Francisco Bay Area that examine how shoreline infrastructure, transporation sytems and decision-making networks interact to define the regional response to local actions and the local response to regional actions. I will characterize the barriers that exist to regional solutions, and characterize three types of interdependence that may motivate decision-makers to overcome those barriers. Using these examples, I will discuss the importance of interdisciplinary analyses that integrate the natural sciences, engineering and the social science to climate change adaptation more generally.

  14. Fog water collection under sea breeze conditions in the Western Mediterranean basin (Valencia region, Spain)

    NASA Astrophysics Data System (ADS)

    Azorin-Molina, C.; Corell, D.; Estrela, M. J.; Valiente, J. A.

    2010-07-01

    Orographic fog occurrences associated with sea breezes determine water collection potential over the mountain ranges near the Mediterranean coast of the Iberian Peninsula. Previous works have confirmed that the effect of sea breezes on cloud genera is to increase the frequency of low (Stratus) and convective (Cumulus) clouds. The primary impact of sea breeze flows corresponds to low stratiform clouds (Stratus, St, and Stratocumulus, Sc) formed in the convective internal boundary layer due to the inflow of moist sea air at lower levels. The formation of Sc clouds is caused by the rising and cooling of turbulent moist sea air over the highest slopes of the mountains at the end of the day. In the most Sc formation, we also observed dense fog banks of Stratus nebulosus (St neb) and dew during the early next morning, covering the inland topographical depressions. The aim of this study is to statistically analyze the impact of sea breezes on fog water collection in the convective internal boundary layer. The study area is located in the eastern of the Iberian Peninsula (Valencia region, Spain) and the survey corresponds to a 7-yr study period (2003-2009). This research is based upon a small network of eight passive fog water collectors distributed over 6 coastal- and 2 inland-mountain areas. A cylindrical fog water instrument (i.e. omnidirectional collection efficiency) based on the ASRC (Atmospheric Science Research Centre, State University of New York) string collector is used to sample fog water volumes on a daily basis. These stations also sampled temperature, humidity, wind speed and direction and precipitation measurements. The current study used these meteorological measurements to apply an automated and manual selection methodologies for identifying past sea breeze episodes. The dataset created by means of these selection techniques allows for the study of fog water volumes associated with sea breeze situations. A detailed statistical characterization of the

  15. Potential Inundation due to Rising Sea Levels in the San Francisco Bay Region

    USGS Publications Warehouse

    Knowles, Noah

    2009-01-01

    An increase in the rate of sea level rise is one of the primary impacts of projected global climate change. To assess potential inundation associated with a continued acceleration of sea level rise, the highest resolution elevation data available were assembled from various sources and mosaicked to cover the land surfaces of the San Francisco Bay region. Next, to quantify high water levels throughout the bay, a hydrodynamic model of the San Francisco Estuary was driven by a projection of hourly water levels at the Presidio. This projection was based on a combination of climate model outputs and empirical models and incorporates astronomical, storm surge, El Niño, and long-term sea level rise influences. Based on the resulting data, maps of areas vulnerable to inundation were produced, corresponding to specific amounts of sea level rise and recurrence intervals. These maps portray areas where inundation will likely be an increasing concern. In the North Bay, wetland survival and developed fill areas are at risk. In Central and South bays, a key feature is the bay-ward periphery of developed areas that would be newly vulnerable to inundation. Nearly all municipalities adjacent to South Bay face this risk to some degree. For the Bay as a whole, as early as 2050 under this scenario, the one-year peak event nearly equals the 100-year peak event in 2000. Maps of vulnerable areas are presented and some implications discussed.

  16. Do pelagic grazers benefit from sea ice? Insights from the Antarctic sea ice proxy IPSO25

    NASA Astrophysics Data System (ADS)

    Schmidt, Katrin; Brown, Thomas A.; Belt, Simon T.; Ireland, Louise C.; Taylor, Kyle W. R.; Thorpe, Sally E.; Ward, Peter; Atkinson, Angus

    2018-04-01

    Sea ice affects primary production in polar regions in multiple ways. It can dampen water column productivity by reducing light or nutrient supply, provide a habitat for ice algae and condition the marginal ice zone (MIZ) for phytoplankton blooms on its seasonal retreat. The relative importance of three different carbon sources (sea ice derived, sea ice conditioned, non-sea-ice associated) for the polar food web is not well understood, partly due to the lack of methods that enable their unambiguous distinction. Here we analysed two highly branched isoprenoid (HBI) biomarkers to trace sea-ice-derived and sea-ice-conditioned carbon in Antarctic krill (Euphausia superba) and relate their concentrations to the grazers' body reserves, growth and recruitment. During our sampling in January-February 2003, the proxy for sea ice diatoms (a di-unsaturated HBI termed IPSO25, δ13C = -12.5 ± 3.3 ‰) occurred in open waters of the western Scotia Sea, where seasonal ice retreat was slow. In suspended matter from surface waters, IPSO25 was present at a few stations close to the ice edge, but in krill the marker was widespread. Even at stations that had been ice-free for several weeks, IPSO25 was found in krill stomachs, suggesting that they gathered the ice-derived algae from below the upper mixed layer. Peak abundances of the proxy for MIZ diatoms (a tri-unsaturated HBI termed HBI III, δ13C = -42.2 ± 2.4 ‰) occurred in regions of fast sea ice retreat and persistent salinity-driven stratification in the eastern Scotia Sea. Krill sampled in the area defined by the ice edge bloom likewise contained high amounts of HBI III. As indicators for the grazer's performance we used the mass-length ratio, size of digestive gland and growth rate for krill, and recruitment for the biomass-dominant calanoid copepods Calanoides acutus and Calanus propinquus. These indices consistently point to blooms in the MIZ as an important feeding ground for pelagic grazers. Even though ice

  17. A Sensitivity Analysis of the Impact of Rain on Regional and Global Sea-Air Fluxes of CO2

    PubMed Central

    Shutler, J. D.; Land, P. E.; Woolf, D. K.; Quartly, G. D.

    2016-01-01

    The global oceans are considered a major sink of atmospheric carbon dioxide (CO2). Rain is known to alter the physical and chemical conditions at the sea surface, and thus influence the transfer of CO2 between the ocean and atmosphere. It can influence gas exchange through enhanced gas transfer velocity, the direct export of carbon from the atmosphere to the ocean, by altering the sea skin temperature, and through surface layer dilution. However, to date, very few studies quantifying these effects on global net sea-air fluxes exist. Here, we include terms for the enhanced gas transfer velocity and the direct export of carbon in calculations of the global net sea-air fluxes, using a 7-year time series of monthly global climate quality satellite remote sensing observations, model and in-situ data. The use of a non-linear relationship between the effects of rain and wind significantly reduces the estimated impact of rain-induced surface turbulence on the rate of sea-air gas transfer, when compared to a linear relationship. Nevertheless, globally, the rain enhanced gas transfer and rain induced direct export increase the estimated annual oceanic integrated net sink of CO2 by up to 6%. Regionally, the variations can be larger, with rain increasing the estimated annual net sink in the Pacific Ocean by up to 15% and altering monthly net flux by > ± 50%. Based on these analyses, the impacts of rain should be included in the uncertainty analysis of studies that estimate net sea-air fluxes of CO2 as the rain can have a considerable impact, dependent upon the region and timescale. PMID:27673683

  18. Impact of the ocean diurnal cycle on the North Atlantic mean sea surface temperatures in a regionally coupled model

    NASA Astrophysics Data System (ADS)

    Guemas, Virginie; Salas-Mélia, David; Kageyama, Masa; Giordani, Hervé; Voldoire, Aurore

    2013-03-01

    This study investigates the mechanisms by which the ocean diurnal cycle can affect the ocean mean state in the North Atlantic region. We perform two ocean-atmosphere regionally coupled simulations (20°N-80°N, 80°W-40°E) using the CNRMOM1D ocean model coupled to the ARPEGE4 atmospheric model: one with a 1 h coupling frequency (C1h) and another with a 24 h coupling frequency (C24h). The comparison between both experiments shows that accounting for the ocean diurnal cycle tends to warm up the surface ocean at high latitudes and cool it down in the subtropics during the boreal summer season (June-August). In the subtropics, the leading cause for the formation of the negative surface temperature anomalies is the fact that the nocturnal entrainment heat flux overcompensates the diurnal absorption of solar heat flux. Both in the subtropics and in the high latitudes, the surface temperature anomalies are involved in a positive feedback loop: the cold (warm) surface anomalies favour a decrease (increase) in evaporation, a decrease (increase) in tropospheric humidity, a decrease (increase) in downwelling longwave radiative flux which in turn favours the surface cooling (warming). Furthermore, the decrease in meridional sea surface temperature gradient affects the large-scale atmospheric circulation by a decrease in the zonal mean flow.

  19. Description and assessment of regional sea-level trends and variability from altimetry and tide gauges at the northern Australian coast

    NASA Astrophysics Data System (ADS)

    Gharineiat, Zahra; Deng, Xiaoli

    2018-05-01

    This paper aims at providing a descriptive view of the low-frequency sea-level changes around the northern Australian coastline. Twenty years of sea-level observations from multi-mission satellite altimetry and tide gauges are used to characterize sea-level trends and inter-annual variability over the study region. The results show that the interannual sea-level fingerprint in the northern Australian coastline is closely related to El Niño Southern Oscillation (ENSO) and Madden-Julian Oscillation (MJO) events, with the greatest influence on the Gulf Carpentaria, Arafura Sea, and the Timor Sea. The basin average of 14 tide-gauge time series is in strong agreement with the basin average of the altimeter data, with a root mean square difference of 18 mm and a correlation coefficient of 0.95. The rate of the sea-level trend over the altimetry period (6.3 ± 1.4 mm/yr) estimated from tide gauges is slightly higher than that (6.1 ± 1.3 mm/yr) from altimetry in the time interval 1993-2013, which can vary with the length of the time interval. Here we provide new insights into examining the significance of sea-level trends by applying the non-parametric Mann-Kendall test. This test is applied to assess if the trends are significant (upward or downward). Apart from a positive rate of sea-level trends are not statistically significant in this region due to the effects of natural variability. The findings suggest that altimetric trends are not significant along the coasts and some parts of the Gulf Carpentaria (14°S-8°S), where geophysical corrections (e.g., ocean tides) cannot be estimated accurately and altimeter measurements are contaminated by reflections from the land.

  20. Relative Sea Level Trends Along the Coast of the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Becker, M.; Calmant, S.; Papa, F.; Delebecque, C.; Islam, A. S.; Shum, C. K.

    2016-12-01

    In the coastal belt of the Bay of Bengal, the sea level rise is one of a major threat, linked to climate change, which drastically affects the livelihoods of millions of people. A comprehensive understanding of sea level trends and its variability in this region is therefore crucial and should help to anticipate the impacts of climate change and implement adaptation strategies. This region is bordered mostly by Bangladesh, India, Malaysia, Myanmar, and Thailand. Here, we revisit the sea level changes in the Bay of Bengal region from tide gauges and satellite altimetry over the period 1993-2014. The 23 monthly mean tide gauge records, used in this study, are retrieved from PSMSL (15 records) and supplemented with Bangladeshi observations (8 records). We show that, over the satellite altimetry era, the sea level interannual/decadal variability is mainly due to ocean thermal expansion variability driven by IOD/ENSO events and their low frequency modulation. We focus on relative sea level rise at major coastal cities and try to separate the climatic signal (long term trend plus interannual/decadal variability) from local effects, in particular vertical land movements. Results from GPS are analysed where available. When no such data exist, vertical land movements are deduced from the combined use of tide gauge and altimetry data. While the analysis is performed over the whole region, a particular attention is given to the low-lyingBangladesh's coastal area.

  1. Sea-ice indicators of polar bear habitat

    NASA Astrophysics Data System (ADS)

    Stern, Harry L.; Laidre, Kristin L.

    2016-09-01

    Nineteen subpopulations of polar bears (Ursus maritimus) are found throughout the circumpolar Arctic, and in all regions they depend on sea ice as a platform for traveling, hunting, and breeding. Therefore polar bear phenology - the cycle of biological events - is linked to the timing of sea-ice retreat in spring and advance in fall. We analyzed the dates of sea-ice retreat and advance in all 19 polar bear subpopulation regions from 1979 to 2014, using daily sea-ice concentration data from satellite passive microwave instruments. We define the dates of sea-ice retreat and advance in a region as the dates when the area of sea ice drops below a certain threshold (retreat) on its way to the summer minimum or rises above the threshold (advance) on its way to the winter maximum. The threshold is chosen to be halfway between the historical (1979-2014) mean September and mean March sea-ice areas. In all 19 regions there is a trend toward earlier sea-ice retreat and later sea-ice advance. Trends generally range from -3 to -9 days decade-1 in spring and from +3 to +9 days decade-1 in fall, with larger trends in the Barents Sea and central Arctic Basin. The trends are not sensitive to the threshold. We also calculated the number of days per year that the sea-ice area exceeded the threshold (termed ice-covered days) and the average sea-ice concentration from 1 June through 31 October. The number of ice-covered days is declining in all regions at the rate of -7 to -19 days decade-1, with larger trends in the Barents Sea and central Arctic Basin. The June-October sea-ice concentration is declining in all regions at rates ranging from -1 to -9 percent decade-1. These sea-ice metrics (or indicators of habitat change) were designed to be useful for management agencies and for comparative purposes among subpopulations. We recommend that the National Climate Assessment include the timing of sea-ice retreat and advance in future reports.

  2. Variability of Arctic Sea Ice as Viewed from Space

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    1998-01-01

    Over the past 20 years, satellite passive-microwave radiometry has provided a marvelous means for obtaining information about the variability of the Arctic sea ice cover and particularly about sea ice concentrations (% areal coverages) and from them ice extents and the lengths of the sea ice season. This ability derives from the sharp contrast between the microwave emissions of sea ice versus liquid water and allows routine monitoring of the vast Arctic sea ice cover, which typically varies in extent from a minimum of about 8,000,000 sq km in September to a maximum of about 15,000,000 sq km in March, the latter value being over 1.5 times the area of either the United States or Canada. The vast Arctic ice cover has many impacts, including hindering heat, mass, and y momentum exchanges between the oceans and the atmosphere, reducing the amount of solar radiation absorbed at the Earth's surface, affecting freshwater transports and ocean circulation, and serving as a vital surface for many species of polar animals. These direct impacts also lead to indirect impacts, including effects on local and perhaps global atmospheric temperatures, effects that are being examined in general circulation modeling studies, where preliminary results indicate that changes on the order of a few percent sea ice concentration can lead to temperature changes of 1 K or greater even in local areas outside of the sea ice region. Satellite passive-microwave data for November 1978 through December 1996 reveal marked regional and interannual variabilities in both the ice extents and the lengths of the sea ice season, as well as some statistically significant trends. For the north polar ice cover as a whole, maximum ice extents varied over a range of 14,700,000 - 15,900,000 km(2), while individual regions showed much greater percentage variations, e.g., with the Greenland Sea experiencing a range of 740,000 - 1,1110,000 km(2) in its yearly maximum ice coverage. Although variations from year to

  3. Effects of Sea-Surface Waves and Ocean Spray on Air-Sea Momentum Fluxes

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Song, Jinbao

    2018-04-01

    The effects of sea-surface waves and ocean spray on the marine atmospheric boundary layer (MABL) at different wind speeds and wave ages were investigated. An MABL model was developed that introduces a wave-induced component and spray force to the total surface stress. The theoretical model solution was determined assuming the eddy viscosity coefficient varied linearly with height above the sea surface. The wave-induced component was evaluated using a directional wave spectrum and growth rate. Spray force was described using interactions between ocean-spray droplets and wind-velocity shear. Wind profiles and sea-surface drag coefficients were calculated for low to high wind speeds for wind-generated sea at different wave ages to examine surface-wave and ocean-spray effects on MABL momentum distribution. The theoretical solutions were compared with model solutions neglecting wave-induced stress and/or spray stress. Surface waves strongly affected near-surface wind profiles and sea-surface drag coefficients at low to moderate wind speeds. Drag coefficients and near-surface wind speeds were lower for young than for old waves. At high wind speeds, ocean-spray droplets produced by wind-tearing breaking-wave crests affected the MABL strongly in comparison with surface waves, implying that wave age affects the MABL only negligibly. Low drag coefficients at high wind caused by ocean-spray production increased turbulent stress in the sea-spray generation layer, accelerating near-sea-surface wind. Comparing the analytical drag coefficient values with laboratory measurements and field observations indicated that surface waves and ocean spray significantly affect the MABL at different wind speeds and wave ages.

  4. Observed mean sea level changes around the North Sea coastline from 1800 to present

    NASA Astrophysics Data System (ADS)

    Wahl, T.; Haigh, I. D.; Woodworth, P. L.; Albrecht, F.; Dillingh, D.; Jensen, J.; Nicholls, R. J.; Weisse, R.; Wöppelmann, G.

    2013-09-01

    This paper assesses historic changes in mean sea level around the coastline of the North Sea, one of the most densely populated coasts in the world. Typically, such analyses have been conducted at a national level, and detailed geographically wider analyses have not been undertaken for about 20 years. We analyse long records (up to 200 years) from 30 tide gauge sites, which are reasonably uniformly distributed along the coastline, and: (1) calculate relative sea level trends; (2) examine the inter-annual and decadal variations; (3) estimate regional geocentric (sometimes also referred to as 'absolute') sea level rise throughout the 20th century; and (4) assess the evidence for regional acceleration of sea-level rise. Relative sea level changes are broadly consistent with known vertical land movement patterns. The inter-annual and decadal variability is partly coherent across the region, but with some differences between the Inner North Sea and the English Channel. Data sets from various sources are used to provide estimates of the geocentric sea level changes. The long-term geocentric mean sea level trend for the 1900 to 2011 period is estimated to be 1.5 ± 0.1 mm/yr for the entire North Sea region. The trend is slightly higher for the Inner North Sea (i.e. 1.6 ± 0.1 mm/yr), and smaller but not significantly different on the 95% confidence level for the English Channel (i.e. 1.2 ± 0.1 mm/yr). The uncertainties in the estimates of vertical land movement rates are still large, and the results from a broad range of approaches for determining these rates are not consistent. Periods of sea level rise acceleration are detected at different times throughout the last 200 years and are to some extent related to air pressure variations. The recent rates of sea level rise (i.e. over the last two to three decades) are high compared to the long-term average, but are comparable to those which have been observed at other times in the late 19th and 20th century.

  5. Sea Level Trend and Variability in the Straits of Singapore and Malacca

    NASA Astrophysics Data System (ADS)

    Luu, Q.; Tkalich, P.

    2013-12-01

    of -0.7 (in correspondence with the Multivariate ENSO Index). The IOD modulates interannual sea level variability only in the Malacca Strait in the range of ×3 cm with a correlation coefficient of -0.6 (with respect to the Dipole Mode Index). At annual scale, SLAs in the SSM are mainly monsoon-driven; of the order of 20 cm. Mean sea level in the Singapore Strait reach the peak during northeast monsoon and trough during southwest monsoon; while these in the Malacca Strait are highest at middle of both monsoons and lowest during their transitional monsoonal seasons. Global and regional signals are quantitatively captured in the SSM. In comparison with the global sea level trends, SSM sea level rise are larger for recent decades 1984-2009. Taking into account the rough estimate of land subsidence rates in Singapore (2006-2011) and Peninsular Malaysia (1994-2004), the trend of absolute sea level rise in SSM follows regional tendency. At interannual scale, ENSO modulates sea level variabilities in the entire SSM region, while IOD affects the Malacca Strait only. At annual scale, sea level responds differently to the Asian monsoon: quasi-periodic cycles are observed twice a year in the Malacca Strait, but once a year in the Singapore Strait. Such behavior implies that the narrow channel constriction between the Singapore and Malacca Straits may be a reason of different variability of sea level in the domains.

  6. Sensitivity of the atmospheric water cycle to corrections of the sea surface temperature bias over southern Africa in a regional climate model

    NASA Astrophysics Data System (ADS)

    Weber, Torsten; Haensler, Andreas; Jacob, Daniela

    2017-12-01

    Regional climate models (RCMs) have been used to dynamically downscale global climate projections at high spatial and temporal resolution in order to analyse the atmospheric water cycle. In southern Africa, precipitation pattern were strongly affected by the moisture transport from the southeast Atlantic and southwest Indian Ocean and, consequently, by their sea surface temperatures (SSTs). However, global ocean models often have deficiencies in resolving regional to local scale ocean currents, e.g. in ocean areas offshore the South African continent. By downscaling global climate projections using RCMs, the biased SSTs from the global forcing data were introduced to the RCMs and affected the results of regional climate projections. In this work, the impact of the SST bias correction on precipitation, evaporation and moisture transport were analysed over southern Africa. For this analysis, several experiments were conducted with the regional climate model REMO using corrected and uncorrected SSTs. In these experiments, a global MPI-ESM-LR historical simulation was downscaled with the regional climate model REMO to a high spatial resolution of 50 × 50 km2 and of 25 × 25 km2 for southern Africa using a double-nesting method. The results showed a distinct impact of the corrected SST on the moisture transport, the meridional vertical circulation and on the precipitation pattern in southern Africa. Furthermore, it was found that the experiment with the corrected SST led to a reduction of the wet bias over southern Africa and to a better agreement with observations as without SST bias corrections.

  7. Dust Storm, Aral Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Aral Sea has shrunk to less than half its size since 1985. The Aral Sea receives little water (sometimes no water) from the two major rivers that empty into it-the Syr Darya and Amu Darya. Instead, the river water is diverted to support irrigation for the region's extensive cotton fields. Recently, water scarcity has increased due to a prolonged drought in Central Asia. As the Aral Sea recedes, its former sea bed is exposed. The Aral's sea bed is composed of fine sediments-including fertilizers and other agricultural chemicals-that are easily picked up by the region's strong winds, creating thick dust storms. The International Space Station crew observed and recorded a large dust storm blowing eastward from the Aral Sea in late June 2001. This image illustrates the strong coupling between human activities (water diversions and irrigation), and rapidly changing land, sea and atmospheric processes-the winds blow across the

  8. Processes driving sea ice variability in the Bering Sea in an eddying ocean/sea ice model: Mean seasonal cycle

    NASA Astrophysics Data System (ADS)

    Li, Linghan; McClean, Julie L.; Miller, Arthur J.; Eisenman, Ian; Hendershott, Myrl C.; Papadopoulos, Caroline A.

    2014-12-01

    The seasonal cycle of sea ice variability in the Bering Sea, together with the thermodynamic and dynamic processes that control it, are examined in a fine resolution (1/10°) global coupled ocean/sea-ice model configured in the Community Earth System Model (CESM) framework. The ocean/sea-ice model consists of the Los Alamos National Laboratory Parallel Ocean Program (POP) and the Los Alamos Sea Ice Model (CICE). The model was forced with time-varying reanalysis atmospheric forcing for the time period 1970-1989. This study focuses on the time period 1980-1989. The simulated seasonal-mean fields of sea ice concentration strongly resemble satellite-derived observations, as quantified by root-mean-square errors and pattern correlation coefficients. The sea ice energy budget reveals that the seasonal thermodynamic ice volume changes are dominated by the surface energy flux between the atmosphere and the ice in the northern region and by heat flux from the ocean to the ice along the southern ice edge, especially on the western side. The sea ice force balance analysis shows that sea ice motion is largely associated with wind stress. The force due to divergence of the internal ice stress tensor is large near the land boundaries in the north, and it is small in the central and southern ice-covered region. During winter, which dominates the annual mean, it is found that the simulated sea ice was mainly formed in the northern Bering Sea, with the maximum ice growth rate occurring along the coast due to cold air from northerly winds and ice motion away from the coast. South of St Lawrence Island, winds drive the model sea ice southwestward from the north to the southwestern part of the ice-covered region. Along the ice edge in the western Bering Sea, model sea ice is melted by warm ocean water, which is carried by the simulated Bering Slope Current flowing to the northwest, resulting in the S-shaped asymmetric ice edge. In spring and fall, similar thermodynamic and dynamic

  9. Distribution of Different Biogeographical Tintinnids in Yellow Sea and Bohai Sea

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Li, Haibo; Zhao, Yuan; Zhao, Li; Dong, Yi; Zhang, Wuchang; Xiao, Tian

    2018-04-01

    There were different biogeographical tintinnids in the oceans. Knowledge of their distribution pattern and mixing was important to the understanding of ecosystem functions. Yellow Sea (YS) and Bohai Sea (BS) were semi-enclosed seas influenced by warm water intrusion and YS cold bottom water. The occurrence of tintinnids in YS and BS during two cruises (summer and winter) were investigated to find out: i) whether warm-water tintinnids appeared in YS and BS; ii) whether boreal tintinnids appeared in high summer; iii) the core area of neritic tintinnids and iv) how these different biogeographical tintinnids mixed. Our results showed that tintinnid community was dominated by neritic tintinnid. We confirmed the occurrence of warm-water tintinnids in summer and winter. In summer, they intruded into BS and mainly distributed in the upper 20 m where Yellow Sea Surface Warm Water (YSSWW) developed. In winter, they were limited in the surface water of central deep region (bottom depth >50 m) of YS where were affected by Yellow Sea Warm Water (YSWW). Boreal tintinnids occurred in YS in high summer (August) and in winter, while they were not observed in BS. In summer, the highest abundance of boreal tintinnids occurred in Yellow Sea Bottom Cold Water, indicating the presence of an oversummering stock. In winter, they were concentrated in the north of YSWW. Vertically, neritic tintinnids abundance was high in the bottom layers. Horizontally, high neritic tintinnids abundance in bottom layers occurred along the 50 m isobath coinciding with the position of front systems. Front systems were the core distribution area of neritic tintinnids. High abundance areas of warm-water and boreal tintinnids were clearly separated vertically in summer, and horizontally in winter. High abundance of neritic tintinnids rarely overlapped with that of warm-water or boreal tintinnids.

  10. Levels of organochlorine pesticide residues in butter samples collected from the Black Sea Region of Turkey.

    PubMed

    Aksoy, Abdurrahman; Dervisoglu, Muhammed; Guvenc, Dilek; Gul, Osman; Yazici, Fehmi; Atmaca, Enes

    2013-01-01

    The aim of the present study was to evaluate the levels of 9 organochlorine compounds (aldrin, hexachlorobenzene, 2,4-DDE, 4,4-DDE, 2,4-DDT, 4,4-DDT, and α-, β-, and γ-HCH) in butter samples collected in the Eastern, Middle and Western Black Sea Regions of Turkey between October 2009 and June 2010. The liquid-liquid extraction method was used to extract the organochlorine compounds from the samples and the measurements were performed by using a gas chromatograph-electron capture detector system. DDT metabolites, aldrin, hexachlorobenzene (HCB), and α-, and γ-HCH were not detected in the samples but β-HCH was detected in 3 of a total of 88 samples. In the first period, only one sample from the West Black Sea Region was β-HCH positive (0.014 mg kg(-1)). The other β-HCH positive samples collected in Middle and West Black Sea Regions in the second period had a concentration of 0.066 and 0.019 mg kg(-1), respectively. All concentrations of the detected compounds exceeded the legal limits of 0.003 mg kg(-1) for β-HCH, as prescribed by the Turkish Food Codex, and therefore pose a potential health risk for consumers. The contamination detected is most likely due to the past usage of β-HCH in agriculture and its long term persistence in the environment. These results strongly suggest that further research should be focused on the detection of pesticide residues in agricultural areas across the nation.

  11. Calculation of temperature distribution and rheological properties of the lithosphere along geotransect in the Red Sea region

    NASA Astrophysics Data System (ADS)

    Dérerová, Jana; Kohút, Igor; Radwan, Anwar H.; Bielik, Miroslav

    2017-12-01

    The temperature model of the lithosphere along profile passing through the Red Sea region has been derived using 2D integrated geophysical modelling method. Using the extrapolation of failure criteria, lithology and calculated temperature distribution, we have constructed the rheological model of the lithosphere in the area. We have calculated the strength distribution in the lithosphere and constructed the strength envelopes for both compressional and extensional regimes. The obtained results indicate that the strength steadily decreases from the Western desert through the Eastern desert towards the Red Sea where it reaches its minimum for both compressional and extensional regime. Maximum strength can be observed in the Western desert where the largest strength reaches values of about 250-300 MPa within the upper crust on the boundary between upper and lower crust. In the Eastern desert we observe slightly decreased strength with max values about 200-250 MPa within upper crust within 15 km with compression being dominant. These results suggest mostly rigid deformation in the region or Western and Eastern desert. In the Red Sea, the strength rapidly decreases to its minimum suggesting ductile processes as a result of higher temperatures.

  12. Controls on Albian-Cenomanian carbonate platform sedimentation in middle eastern region: Kesalon event, a middle Cretaceous sea level change in Israel and its correlation with global sea level changes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, M.; Hirsch, F.

    1987-05-01

    After Neocomian regional denudation, Aptian Telemim (= Blanche) carbonates onlapped the Arabian subplate, followed by Yavne-Tammun regression and Albian transgression. Near the Levant coast, the Albian-early Coniacian Judea carbonate platform interfingers with the Talme Yaffe basin to the west. To the south and east, Judea-type carbonates gradually onlap the mainly continental Kurnub (Nubia type) clastics of the peri-Arabian belt. Detailed analysis of the cyclic sedimentation within the 700-m thick Judea Limestone reveals a regressive trend near the top of the Albian Yagur Formation in Galilee, the Hevyon Formation in the Negev, and the ledge of the Kesalon formation in centralmore » Israel Judean Hills, which represents the end of the Early Cretaceous sedimentary cycle. The early Cenomanian marly chalk of the En Yorqeam Formation starts the Cenomanian cycle, followed by bedded and massive dolomite and ammonoid-bearing limestone. Platform sedimentation before this Kesalon event is dominated by bank facies with some rudistid bioherms of presumable Albian age. After the Kesalon event, Cenomanian and Turonian platforms have fast-changing paleogeography on basinal chalks, shales, bioherms and backreef lagoons. Facies boundaries, running mainly east-west to southwest-northeast up to the Early Cretaceous, became close to north-south in the Late Cretaceous. Albian-Cenomanian regressive-transgressive cycles in Israel match fairly well with global sea level changes, in particular the Kesalon event, which corresponds to the Ka-Kb sea level change of Vail et al. Late Turonian-early Senonian thrusting of the peri-Arabian alpine belt and folding in the Syrian arc heavily affect the unraveling of global sea level changes on the Arabian subplate.« less

  13. Stakeholder-based evaluation categories for regional climate services - a case study at the German Baltic Sea coast

    NASA Astrophysics Data System (ADS)

    Meinke, Insa

    2017-08-01

    In this study, categories, dimensions, and criteria for evaluating regional climate services are derived by a participatory approach with potential service users at the German Baltic Sea coast. The development is carried out within nine face-to-face interviews conducted with decision makers, working in climate sensitive sectors at the German Baltic Sea coast. Three main groups of categories were localized which seem to matter most to the considered stakeholders and which seem to be crucial evaluation categories for regional climate services: (1) credibility, (2) relevance, and (3) appropriateness. For each of these evaluation categories several dimensions emerged, indicating certain perspectives of stakeholder demands. When summarizing these evaluation categories and their dimensions, 13 evaluation criteria for regional climate services can be derived (see Table 1). The results show that stakeholders do mainly address components other than those found in the literature (e.g. inputs, process, outputs, outcomes, and impacts). This might indicate that an evaluation, following solely literature-based (non-participative) components, is not sufficient to localize deficiencies or efficiencies within a regional climate service, since it might lead to results which are not relevant for potential users.

  14. Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider

    PubMed Central

    Soler-Membrives, Anna; Linse, Katrin; Miller, Karen J.

    2017-01-01

    The evolutionary history of Antarctic organisms is becoming increasingly important to understand and manage population trajectories under rapid environmental change. The Antarctic sea spider Nymphon australe, with an apparently large population size compared with other sea spider species, is an ideal target to look for molecular signatures of past climatic events. We analysed mitochondrial DNA of specimens collected from the Antarctic continent and two Antarctic islands (AI) to infer past population processes and understand current genetic structure. Demographic history analyses suggest populations survived in refugia during the Last Glacial Maximum. The high genetic diversity found in the Antarctic Peninsula and East Antarctic (EA) seems related to multiple demographic contraction–expansion events associated with deep-sea refugia, while the low genetic diversity in the Weddell Sea points to a more recent expansion from a shelf refugium. We suggest the genetic structure of N. australe from AI reflects recent colonization from the continent. At a local level, EA populations reveal generally low genetic differentiation, geographically and bathymetrically, suggesting limited restrictions to dispersal. Results highlight regional differences in demographic histories and how these relate to the variation in intensity of glaciation–deglaciation events around Antarctica, critical for the study of local evolutionary processes. These are valuable data for understanding the remarkable success of Antarctic pycnogonids, and how environmental changes have shaped the evolution and diversification of Southern Ocean benthic biodiversity. PMID:29134072

  15. Genetic signature of Last Glacial Maximum regional refugia in a circum-Antarctic sea spider

    NASA Astrophysics Data System (ADS)

    Soler-Membrives, Anna; Linse, Katrin; Miller, Karen J.; Arango, Claudia P.

    2017-10-01

    The evolutionary history of Antarctic organisms is becoming increasingly important to understand and manage population trajectories under rapid environmental change. The Antarctic sea spider Nymphon australe, with an apparently large population size compared with other sea spider species, is an ideal target to look for molecular signatures of past climatic events. We analysed mitochondrial DNA of specimens collected from the Antarctic continent and two Antarctic islands (AI) to infer past population processes and understand current genetic structure. Demographic history analyses suggest populations survived in refugia during the Last Glacial Maximum. The high genetic diversity found in the Antarctic Peninsula and East Antarctic (EA) seems related to multiple demographic contraction-expansion events associated with deep-sea refugia, while the low genetic diversity in the Weddell Sea points to a more recent expansion from a shelf refugium. We suggest the genetic structure of N. australe from AI reflects recent colonization from the continent. At a local level, EA populations reveal generally low genetic differentiation, geographically and bathymetrically, suggesting limited restrictions to dispersal. Results highlight regional differences in demographic histories and how these relate to the variation in intensity of glaciation-deglaciation events around Antarctica, critical for the study of local evolutionary processes. These are valuable data for understanding the remarkable success of Antarctic pycnogonids, and how environmental changes have shaped the evolution and diversification of Southern Ocean benthic biodiversity.

  16. Highly variable Pliocene sea surface conditions in the Norwegian Sea

    NASA Astrophysics Data System (ADS)

    Bachem, Paul E.; Risebrobakken, Bjørg; De Schepper, Stijn; McClymont, Erin L.

    2017-09-01

    The Pliocene was a time of global warmth with small sporadic glaciations, which transitioned towards the larger-scale Pleistocene glacial-interglacial variability. Here, we present high-resolution records of sea surface temperature (SST) and ice-rafted debris (IRD) in the Norwegian Sea from 5.32 to 3.14 Ma, providing evidence that the Pliocene surface conditions of the Norwegian Sea underwent a series of transitions in response to orbital forcing and gateway changes. Average SSTs are 2 °C above the regional Holocene mean, with notable variability on millennial to orbital timescales. Both gradual changes and threshold effects are proposed for the progression of regional climate towards the Late Pliocene intensification of Northern Hemisphere glaciation. Cooling from 4.5 to 4.3 Ma may be linked to the onset of poleward flow through the Bering Strait. This cooling was further intensified by a period of cool summers due to weak obliquity forcing. A 7 °C warming of the Norwegian Sea at 4.0 Ma suggests a major increase in northward heat transport from the North Atlantic, leading to an enhanced zonal SST gradient in the Nordic Seas, which may be linked to the expansion of sea ice in the Arctic and Nordic Seas. A warm Norwegian Sea and enhanced zonal temperature gradient between 4.0 and 3.6 Ma may have been a priming factor for increased glaciation around the Nordic Seas due to enhanced evaporation and precipitation at high northern latitudes.

  17. Greenland uplift and regional sea level changes from ICESat observations and GIA modelling

    NASA Astrophysics Data System (ADS)

    Spada, G.; Ruggieri, G.; Sørensen, L. S.; Nielsen, K.; Melini, D.; Colleoni, F.

    2012-06-01

    We study the implications of a recently published mass balance of the Greenland ice sheet (GrIS), derived from repeated surface elevation measurements from NASA's ice cloud and land elevation satellite (ICESat) for the time period between 2003 and 2008. To characterize the effects of this new, high-resolution GrIS mass balance, we study the time-variations of various geophysical quantities in response to the current mass loss. They include vertical uplift and subsidence, geoid height variations, global patterns of sea level change (or fingerprints), and regional sea level variations along the coasts of Greenland. Long-wavelength uplifts and gravity variations in response to current or past ice thickness variations are obtained solving the sea level equation, which accounts for both the elastic and the viscoelastic components of deformation. To capture the short-wavelength components of vertical uplift in response to current ice mass loss, which is not resolved by satellite gravity observations, we have specifically developed a high-resolution regional elastic rebound (ER) model. The elastic component of vertical uplift is combined with estimates of the viscoelastic displacement fields associated with the process of glacial-isostatic adjustment (GIA), according to a set of published ice chronologies and associated mantle rheological profiles. We compare the sensitivity of global positioning system (GPS) observations along the coasts of Greenland to the ongoing ER and GIA. In notable contrast with past reports, we show that vertical velocities obtained by GPS data from five stations with sufficiently long records and from one tide gauge at the GrIS margins can be reconciled with model predictions based on the ICE-5G deglaciation model and the ER associated with the new ICESat-derived mass balance.

  18. Indirect Costs SEA-LEA Workshop. Report of Workshop Conducted by Upper Midwest Regional Interstate Project. (Chicago, Illinois, January 17-18, 1973).

    ERIC Educational Resources Information Center

    Shanks, Robb L., Comp.

    The Policy Committee of the Upper Midwest Regional Interstate Project saw a need to inform the State Education Agencies (SEAs) concerning the implications of federal program indirect costs. The Indirect Cost Workshop was established to develop communication concerning the problems between the United States Office of Education (USOE), SEAs, and…

  19. Carbon Dioxide Variability in the Gulf of Trieste (GOT) in the Northern Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Turk, D.; McGillis, W. R.; Malacic, V.; Degrandpre, M.

    2008-12-01

    Coastal marine regions such as the Gulf of Trieste GOT in the Northern Adriatic Sea serve as the link between carbon cycling on land and the ocean interior and potentially contribute large uncertainties in the estimate of anthropogenic CO2 uptake. This system may be either a sink or a source for atmospheric CO2. Understanding the sources and sinks as a result of biological and physical controls for air-sea carbon dioxide fluxes in coastal waters may substantially alter the current view of the global carbon budget for unique terrestrial and ocean regions such as the GOT. GOT is a semi-enclosed Mediterranean basin situated in the northern part of Adriatic Sea. It is one of the most productive regions in the Mediterranean and is affected by extreme fresh river input, phytoplankton blooms, and large changes of air-sea exchange during Bora high wind events. The unique combination of these environmental processes and relatively small size of the area makes the region an excellent study site for investigations of air-sea interaction, and changes in biology and carbon chemistry. However, there is a dearth of current data or information from the region. Here we present the first measurements of air and water CO2 flux in the GOT. The aqueous CO2 was measured at the Coastal Oceanographic buoy Piran, Slovenia using the SAMI CO2 sensor during spring and late summer and fall 2007. CO2 measurements were combined with hydrological and biological observations to evaluate the processes that control carbon cycling in the region.

  20. Wind-sea surface temperature-sea ice relationship in the Chukchi-Beaufort Seas during autumn

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Stegall, Steve T.; Zhang, Xiangdong

    2018-03-01

    Dramatic climate changes, especially the largest sea ice retreat during September and October, in the Chukchi-Beaufort Seas could be a consequence of, and further enhance, complex air-ice-sea interactions. To detect these interaction signals, statistical relationships between surface wind speed, sea surface temperature (SST), and sea ice concentration (SIC) were analyzed. The results show a negative correlation between wind speed and SIC. The relationships between wind speed and SST are complicated by the presence of sea ice, with a negative correlation over open water but a positive correlation in sea ice dominated areas. The examination of spatial structures indicates that wind speed tends to increase when approaching the ice edge from open water and the area fully covered by sea ice. The anomalous downward radiation and thermal advection, as well as their regional distribution, play important roles in shaping these relationships, though wind-driven sub-grid scale boundary layer processes may also have contributions. Considering the feedback loop involved in the wind-SST-SIC relationships, climate model experiments would be required to further untangle the underlying complex physical processes.

  1. Lithospheric structure of the South China Sea and adjacent regions: Results from potential field modelling

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Fang, Jian; Cui, Ronghua

    2018-02-01

    This work aims to investigate the crustal and lithospheric mantle thickness of the South China Sea (SCS) and adjacent regions. The crust-mantle interface, average crustal density, and lithospheric mantle base are calculated from free-air gravity anomaly and topographic data using an iterative inversion method. We construct a three-dimensional lithospheric model with different hierarchical layers. The satellite-derived gravity is used to invert the average crustal density and Moho (crust-mantle interface) undulations. The average crustal density and LAB (lithosphere-asthenosphere boundary) depths are further adjusted by topographic data under the assumption of local isostasy. The average difference in Moho depths between this study and the seismic measurement results is <1.5 km. The results show that in oceanic regions, the Moho depths are 7.5-30 km and the LAB depths are 65-120 km. The lithospheric thickness of the SCS basin and the adjacent regions increases from the sea basin to the continental margin with a large gradient in the ocean-continent transition zones. The Moho depths of conjugate plots during the opening of SCS, Zhongsha Islands and Reed Bank, reveal the asymmetric spreading pattern of SCS seafloor spreading. The lithospheric thinning pattern indicate two different spreading directions during seafloor spreading, which changed from N-S to NW-SE after the southward transition of the spreading axis. The lithosphere of the SCS basin and adjacent regions indicate that the SCS basin is a young basin with a stable interior lithosphere.

  2. Role of atmospheric heating over the South China Sea and western Pacific regions in modulating Asian summer climate under the global warming background

    NASA Astrophysics Data System (ADS)

    He, Bian; Yang, Song; Li, Zhenning

    2016-05-01

    The response of monsoon precipitation to global warming, which is one of the most significant climate change signals at the earth's surface, exhibits very distinct regional features, especially over the South China Sea (SCS) and adjacent regions in boreal summer. To understand the possible atmospheric dynamics in these specific regions under the global warming background, changes in atmospheric heating and their possible influences on Asian summer climate are investigated by both observational diagnosis and numerical simulations. Results indicate that heating in the middle troposphere has intensified in the SCS and western Pacific regions in boreal summer, accompanied by increased precipitation, cloud cover, and lower-tropospheric convergence and decreased sea level pressure. Sensitivity experiments show that middle and upper tropospheric heating causes an east-west feedback pattern between SCS and western Pacific and continental South Asia, which strengthens the South Asian High in the upper troposphere and moist convergence in the lower troposphere, consequently forcing a descending motion and adiabatic warming over continental South Asia. When air-sea interaction is considered, the simulation results are overall more similar to observations, and in particular the bias of precipitation over the Indian Ocean simulated by AGCMs has been reduced. The result highlights the important role of air-sea interaction in understanding the changes in Asian climate.

  3. High-resolution tide projections reveal extinction threshold in response to sea-level rise.

    PubMed

    Field, Christopher R; Bayard, Trina S; Gjerdrum, Carina; Hill, Jason M; Meiman, Susan; Elphick, Chris S

    2017-05-01

    Sea-level rise will affect coastal species worldwide, but models that aim to predict these effects are typically based on simple measures of sea level that do not capture its inherent complexity, especially variation over timescales shorter than 1 year. Coastal species might be most affected, however, by floods that exceed a critical threshold. The frequency and duration of such floods may be more important to population dynamics than mean measures of sea level. In particular, the potential for changes in the frequency and duration of flooding events to result in nonlinear population responses or biological thresholds merits further research, but may require that models incorporate greater resolution in sea level than is typically used. We created population simulations for a threatened songbird, the saltmarsh sparrow (Ammodramus caudacutus), in a region where sea level is predictable with high accuracy and precision. We show that incorporating the timing of semidiurnal high tide events throughout the breeding season, including how this timing is affected by mean sea-level rise, predicts a reproductive threshold that is likely to cause a rapid demographic shift. This shift is likely to threaten the persistence of saltmarsh sparrows beyond 2060 and could cause extinction as soon as 2035. Neither extinction date nor the population trajectory was sensitive to the emissions scenarios underlying sea-level projections, as most of the population decline occurred before scenarios diverge. Our results suggest that the variation and complexity of climate-driven variables could be important for understanding the potential responses of coastal species to sea-level rise, especially for species that rely on coastal areas for reproduction. © 2016 John Wiley & Sons Ltd.

  4. GIS analysis of effects of future Baltic sea level rise on the island of Gotland, Sweden

    NASA Astrophysics Data System (ADS)

    Ebert, Karin; Ekstedt, Karin; Jarsjö, Jerker

    2016-07-01

    Future sea level rise as a consequence of global warming will affect the world's coastal regions. Even though the pace of sea level rise is not clear, the consequences will be severe and global. Commonly the effects of future sea level rise are investigated for relatively vulnerable development countries; however, a whole range of varying regions needs to be considered in order to improve the understanding of global consequences. In this paper we investigate consequences of future sea level rise along the coast of the Baltic Sea island of Gotland, Sweden, with the aim to fill knowledge gaps regarding comparatively well-suited areas in developed countries. We study both the quantity of the loss of features of infrastructure, cultural, and natural value in the case of a 2 m sea level rise of the Baltic Sea and the effects of climate change on seawater intrusion in coastal aquifers, which indirectly cause saltwater intrusion in wells. We conduct a multi-criteria risk analysis by using lidar data on land elevation and GIS-vulnerability mapping, which gives the application of distance and elevation parameters formerly unimaginable precision. We find that in case of a 2 m sea level rise, 3 % of the land area of Gotland, corresponding to 99 km2, will be inundated. The features most strongly affected are items of touristic or nature value, including camping places, shore meadows, sea stack areas, and endangered plants and species habitats. In total, 231 out of 7354 wells will be directly inundated, and the number of wells in the high-risk zone for saltwater intrusion in wells will increase considerably. Some valuable features will be irreversibly lost due to, for example, inundation of sea stacks and the passing of tipping points for seawater intrusion into coastal aquifers; others might simply be moved further inland, but this requires considerable economic means and prioritization. With nature tourism being one of the main income sources of Gotland, monitoring and

  5. Greenland coastal air temperatures linked to Baffin Bay and Greenland Sea ice conditions during autumn through regional blocking patterns

    NASA Astrophysics Data System (ADS)

    Ballinger, Thomas J.; Hanna, Edward; Hall, Richard J.; Miller, Jeffrey; Ribergaard, Mads H.; Høyer, Jacob L.

    2018-01-01

    Variations in sea ice freeze onset and regional sea surface temperatures (SSTs) in Baffin Bay and Greenland Sea are linked to autumn surface air temperatures (SATs) around coastal Greenland through 500 hPa blocking patterns, 1979-2014. We find strong, statistically significant correlations between Baffin Bay freeze onset and SSTs and SATs across the western and southernmost coastal areas, while weaker and fewer significant correlations are found between eastern SATs, SSTs, and freeze periods observed in the neighboring Greenland Sea. Autumn Greenland Blocking Index values and the incidence of meridional circulation patterns have increased over the modern sea ice monitoring era. Increased anticyclonic blocking patterns promote poleward transport of warm air from lower latitudes and local warm air advection onshore from ocean-atmosphere sensible heat exchange through ice-free or thin ice-covered seas bordering the coastal stations. Temperature composites by years of extreme late freeze conditions, occurring since 2006 in Baffin Bay, reveal positive monthly SAT departures that often exceed 1 standard deviation from the 1981-2010 climate normal over coastal areas that exhibit a similar spatial pattern as the peak correlations.

  6. Forecasting consequences of changing sea ice availability for Pacific walruses

    USGS Publications Warehouse

    Udevitz, Mark S.; Jay, Chadwick V.; Taylor, Rebecca; Fischbach, Anthony S.; Beatty, William S.; Noren, Shawn R.

    2017-01-01

    The accelerating rate of anthropogenic alteration and disturbance of environments has increased the need for forecasting effects of environmental change on fish and wildlife populations. Models linking projections of environmental change with behavioral responses and bioenergetic effects can provide a basis for these forecasts. There is particular interest in forecasting effects of projected reductions in sea ice availability on Pacific walruses (Odobenus rosmarus divergens). Declining extent of summer sea ice in the Chukchi Sea has caused Pacific walruses to increase use of coastal haulouts and decrease use of more productive offshore feeding areas. Such climate-induced changes in distribution and behavior could ultimately affect the status of the population. We developed behavioral models to relate changes in sea ice availability to adult female walrus movements and activity levels, and adapted previously developed bioenergetics models to relate those activity levels to energy requirements and the ability to meet those requirements. We then linked these models to general circulation model projections of future ice availability to forecast autumn body condition for female walruses during mid- and late-century time periods. Our results suggest that as sea ice becomes less available in the Chukchi Sea, female walruses will spend more time in the southwestern region of that sea, less time resting, and less time foraging. Median forecasted autumn body masses were 7–12% lower in future scenarios than during recent times, but posterior distributions broadly overlapped and median forecasted seasonal mass losses (15–34%) were comparable to seasonal mass losses routinely experienced by other pinnipeds. These seasonal reductions in body condition would be unlikely to result in demographic effects, but if walruses were unable to rebuild endogenous reserves while wintering in the Bering Sea, cumulative effects could have implications for reproduction and survival

  7. Impact of a nitrogen emission control area (NECA) for ship traffic on the future air quality in the Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Karl, Matthias; Geyer, Beate; Bieser, Johannes; Matthias, Volker; Quante, Markus; Jalkanen, Jukka-Pekka; Johansson, Lasse; Fridell, Erik

    2017-04-01

    Deposition of nitrogen compounds originating from shipping activities contribute to eutrophication of the Baltic Sea and coastal areas in the Baltic Sea region. Emissions of nitrogen oxides (NOx) from shipping on the Baltic Sea are comparable to the combined land-based emissions of NOx from Finland and Sweden and have been relatively stable over the last decade. However, expected future growth of maritime transport will result in higher fuel consumption and, if not compensated by increased transport efficiency or other measures, lead to higher total emissions of NOx from shipping. For the Baltic Sea a nitrogen emission control area (NECA) will become effective in 2021 - permitting only new built ships that are compliant with stringent Tier III emission limits - with the target of reducing NOx-emissions. In order to study the effect of implementing a Baltic Sea NECA-2021 on air quality and nitrogen deposition two future scenarios were designed; one with implementation of a NECA for the Baltic Sea starting in 2021 and another with no NECA implemented. The same increase of ship traffic was assumed for both future scenarios. Since complete fleet renewal with low NOx-emitting engines is not expected until 20-30 years after the NECA entry date, year 2040 was chosen as future scenario year. The Community Multiscale Air Quality (CMAQ) model was used to simulate the current and future air quality situation. The nested simulation runs with CMAQ were performed on a horizontal resolution of 4 km × 4 km for the entire Baltic Sea region. The meteorological year 2012 was chosen for the simulation of the current and future air quality situation since the 2m-temperature and precipitation anomalies of 2012 are closely aligned to the 2004-2014 decadal average over Baltic Proper. High-resolution meteorology obtained from COSMO-CLM was used for the regional simulations. Ship emissions were generated with the Ship Traffic Emission Assessment Model (STEAM) by the Finnish Meteorological

  8. Iron Fertilization of the Southern Ocean: Regional Simulation and Analysis of C-Sequestration in the Ross Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Arrigo

    2012-03-13

    A modified version of the dynamic 3-dimensional mesoscale Coupled Ice, Atmosphere, and Ocean model (CIAO) of the Ross Sea ecosystem has been used to simulate the impact of environmental perturbations upon primary production and biogenic CO2 uptake. The Ross Sea supports two taxonomically, and spatially distinct phytoplankton populations; the haptophyte Phaeocystis antarctica and diatoms. Nutrient utilization ratios predict that P. antarctica and diatoms will be driven to nitrate and phosphate limitation, respectively. Model and field data have confirmed that the Ross Sea is iron limited with only two-thirds of the macronutrients consumed by the phytoplankton by the end of themore » growing season. In this study, the CIAO model was improved to simulate a third macronutrient (phosphate), dissolved organic carbon, air-sea gas exchange, and the carbonate system. This enabled us to effectively model pCO2 and subsequently oceanic CO2 uptake via gas exchange, allowing investigations into the affect of alleviating iron limitation on both pCO2 and nutrient drawdown.« less

  9. Trends in Arctic Sea Ice Leads Detection

    NASA Astrophysics Data System (ADS)

    Ackerman, S. A.; Hoffman, J.; Liu, Y.; Key, J. R.

    2016-12-01

    Sea ice leads (fractures) play a critical role in the exchange of mass and energy between the ocean and atmosphere in the polar regions, particularly in the Arctic. Leads result in warming water and accelerated melting because leads absorb more solar energy than the surrounding ice. In the autumn, winter, and spring leads impact the local atmospheric structure and cloud properties because of the large flux of heat and moisture into the atmosphere. Given the rapid thinning and loss of Arctic sea ice over the last few decades, changes in the distribution of leads can be expected in response. Leads are largely wind driven, so their distributions will also be affected by the changes in atmospheric circulation that have occurred. From a climate perspective, identifying trends in lead characteristics (width, orientation, and spatial distribution) will advance our understanding of both thermodynamic and mechanical processes. This study presents the spatial and temporal distributions of Arctic sea ice leads since 2002 using a new method to detect and characterize sea ice leads with optical (visible, infrared) satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS). Using reflective and emissive channels, ice concentration is derived in cloud-free regions and used to create a mask of potential leads. An algorithm then uses a combination of image processing techniques to identify and characterizes leads. The results show interannual variability of leads positioning as well as parameters such as area, length, orientation and width.

  10. Optimization and field use of a bioassay to monitor sea lice Lepeophtheirus salmonis sensitivity to emamectin benzoate.

    PubMed

    Westcott, Jillian D; Stryhn, Henrik; Burka, John F; Hammell, K Larry

    2008-04-01

    A bioassay for sea lice Lepeophtheirus salmonis sensitivity towards emamectin benzoate (EMB) was validated for field use. A probit regression model with natural responsiveness was used for the number of affected (moribund or dead) sea lice in bioassays involving different concentrations of EMB. Bioassay optimization included an evaluation of the inter-rater reliability of sea lice responsiveness to EMB and an evaluation of gender-related differences in susceptibility. Adoption of a set of bioassay response criteria improved the concordance (evaluated using the concordance correlation coefficient) between raters' assessments and the model estimation of EC50 values (the 'effective concentration' leading to a response of 50% of the lice not prone to natural response). An evaluation of gender-related differences in EMB susceptibility indicated that preadult stage female sea lice exhibited a significantly larger sensitivity towards EMB in 12 of 19 bioassays compared to preadult males. In order to evaluate sea lice sensitivity to EMB in eastern Canada, the intensive salmon farming area in the Bay of Fundy in southwestern New Brunswick was divided into 4 distinct regions based on industry health management practices and hydrographics. A total of 38 bioassays were completed from 2002 to 2005 using populations of preadult stage sea lice collected from Atlantic salmon Salmo salar farms within the 4 described regions. There was no significant overall effect of region or year on EC50 values; however, analysis of variance indicated a significant effect of time of year on EC50 values in 2002 and a potential effect in 2004 to 2005. Although the range of EC50 values obtained in this 3 yr study did not appear sufficient to affect current clinical success in the control of sea lice, the results suggest a seasonal- or temperature-associated variation in sensitivity to EMB. This will need to be considered if changes in EMB efficacy occur in the future.

  11. Integrated Studies of a Regional Ozone Pollution Synthetically Affected by Subtropical High and Typhoon System in the Yangtze River Delta Region, China

    NASA Astrophysics Data System (ADS)

    Xie, M.; Shu, L.

    2017-12-01

    Severe high ozone (O3) episodes usually have close relations to synoptic systems. A regional continuous O3 pollution episode was detected over the Yangtze River Delta (YRD) region in China during August 7-12, 2013, in which the O3 concentrations in more than half of the cities exceeded the national air quality standard. By means of the observational analysis and the WRF/CMAQ numerical simulation, the characteristics and the essential impact factors of the typical regional O3 pollution are investigated. The observational analysis shows that the atmospheric subsidence dominated by Western Pacific subtropical high plays a crucial role in the formation of high-level O3. In addition, when the YRD cities at the front of Typhoon Utor, the periphery circulation of typhoon system can enhance the downward airflows and cause more serious air pollution. But when the typhoon system weakens the subtropical high, the prevailing southeasterly surface wind leads to the mitigation of the O3 pollution. The Integrated Process Rate (IPR) analysis incorporated in CMAQ is applied to further illustrate the combined influence of subtropical high and typhoon system in this O3 episode. The results show that the vertical diffusion (VDIF) and the gas-phase chemistry (CHEM) are two major contributors to O3 formation. On August 10-11, the cities close to the sea are apparently affected by the typhoon system, with the contribution of VDIF increasing to 28.45 ppb/h in Shanghai and 19.76 ppb/h in Hangzhou. When the YRD region is under the control of the typhoon system, the contribution values of all individual processes decrease to a low level in all cities. These results provide an insight for the O3 pollution synthetically impacted by the Western Pacific subtropical high and the tropical cyclone system.

  12. Climatological aspects of mesoscale cyclogenesis over the Ross Sea and Ross Ice shelf regions of Antarctica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carrasco, J.F.; Bromwich, D.H.

    1994-11-01

    A one-year (1988) statistical study of mesoscale cyclogenesis near Terra Nova Bay and Byrd Glacier, Antarctica, was conducted using high-resolution digital satellite imagery and automatic weather station data. Results indicate that on average two (one) mesoscale cyclones form near Terra Nova Bay (Byrd Glacier) each week, confirming these two locations as mesoscale cyclogeneis areas. The maximum (minimum) weekly frequency of mesoscale cyclones occurred during the summer (winter). The satellite survey of mesoscale vortices was extended over the Ross Sea and Ross Ice Shelf. Results suggest southern Marie Byrd Land as another area of mesoscale cyclone formation. Also, frequent mesoscale cyclonicmore » activity was noted over the Ross Sea and Ross Ice Shelf, where, on average, six and three mesoscale vortices were observed each week, respectively, with maximum (minimum) frequency during summer (winter) in both regions. The majority (70-80%) of the vortices were of comma-cloud type and were shallow. Only around 10% of the vortices near Terra Nova Bay and Byrd Glacier were classified as deep vortices, while over the Ross Sea and Ross Ice Shelf around 20% were found to be deep. The average large-scale pattern associated with cyclogenesis days near Terra Nova Bay suggests a slight decrease in the sea level pressure and 500-hPa geopotential height to the northwest of this area with respect to the annual average. This may be an indication of the average position of synoptic-scale cyclones entering the Ross Sea region. Comparison with a similar study but for 1984-85 shows that the overall mesoscale cyclogenesis activity was similar during the three years, but 1985 was found to be the year with greater occurrence of {open_quotes}significant{close_quotes} mesoscales cyclones. The large-scale pattern indicates that this greater activity is related to a deeper circumpolar trough and 500-hPa polar vortex for 1985 in comparison to 1984 and 1988. 64 refs., 13 figs., 5 tabs.« less

  13. Seasonal Storminess in the North Pacific, Bering Sea, and Alaskan Regions

    NASA Astrophysics Data System (ADS)

    Shippee, N. J.; Atkinson, D. E.; Walsh, J. E.; Partain, J.; Gottschalck, J.; Marra, J.

    2012-12-01

    Annually, extra-tropical cyclones present a high impact natural hazard to the North Pacific, Bering Sea, and Alaskan regions. In these regions, extensive subsistence and commercial fishing, new oil and gas field development, tourism, growing interest in and exploitation of new commercial shipping potential, and increasing military and Coast Guard activity, all represent potential parties impacted by storms in these waters. It is of interest to many parties to begin developing capacity to provide some indication of storm activity at a monthly- to seasonal-outlook (30 to 90 days) timeframe. Using storm track data from NOAA's Climate Prediction Center for the North Pacific and Alaskan region, an experimental seasonal storminess outlook product, using eigen-based methods similar to the operational seasonal temperature and precipitation products currently produced at NOAA CPC, has been created and tested in hindcast mode using predicted states of ENSO, the Pacific Decadal Oscillation (PDO), the Pacific-North American Pattern (PNA), and the Arctic Oscillation (AO). A sample of the seasonal storminess outlook product will be shown along with a discussion of the utility of individual teleconnection patterns in the generation of the product.

  14. Sea-ice thickness from field measurements in the northwestern Barents Sea

    NASA Astrophysics Data System (ADS)

    King, Jennifer; Spreen, Gunnar; Gerland, Sebastian; Haas, Christian; Hendricks, Stefan; Kaleschke, Lars; Wang, Caixin

    2017-02-01

    The Barents Sea is one of the fastest changing regions of the Arctic, and has experienced the strongest decline in winter-time sea-ice area in the Arctic, at -23±4% decade-1. Sea-ice thickness in the Barents Sea is not well studied. We present two previously unpublished helicopter-borne electromagnetic (HEM) ice thickness measurements from the northwestern Barents Sea acquired in March 2003 and 2014. The HEM data are compared to ice thickness calculated from ice draft measured by ULS deployed between 1994 and 1996. These data show that ice thickness varies greatly from year to year; influenced by the thermodynamic and dynamic processes that govern local formation vs long-range advection. In a year with a large inflow of sea-ice from the Arctic Basin, the Barents Sea ice cover is dominated by thick multiyear ice; as was the case in 2003 and 1995. In a year with an ice cover that was mainly grown in situ, the ice will be thin and mechanically unstable; as was the case in 2014. The HEM data allow us to explore the spatial and temporal variability in ice thickness. In 2003 the dominant ice class was more than 2 years old; and modal sea-ice thickness varied regionally from 0.6 to 1.4 m, with the thinner ice being either first-year ice, or multiyear ice which had come into contact with warm Atlantic water. In 2014 the ice cover was predominantly locally grown ice less than 1 month old (regional modes of 0.5-0.8 m). These two situations represent two extremes of a range of possible ice thickness distributions that can present very different conditions for shipping traffic; or have a different impact on heat transport from ocean to atmosphere.

  15. Caribbean Sea Level Network

    NASA Astrophysics Data System (ADS)

    von Hillebrandt-Andrade, C.; Crespo Jones, H.

    2012-12-01

    Over the past 500 years almost 100 tsunamis have been observed in the Caribbean and Western Atlantic, with at least 3510 people having lost their lives to this hazard since 1842. Furthermore, with the dramatic increase in population and infrastructure along the Caribbean coasts, today, millions of coastal residents, workers and visitors are vulnerable to tsunamis. The UNESCO IOC Intergovernmental Coordination Group for Tsunamis and other Coastal Hazards for the Caribbean and Adjacent Regions (CARIBE EWS) was established in 2005 to coordinate and advance the regional tsunami warning system. The CARIBE EWS focuses on four areas/working groups: (1) Monitoring and Warning, (2) Hazard and Risk Assessment, (3) Communication and (4) Education, Preparedness and Readiness. The sea level monitoring component is under Working Group 1. Although in the current system, it's the seismic data and information that generate the initial tsunami bulletins, it is the data from deep ocean buoys (DARTS) and the coastal sea level gauges that are critical for the actual detection and forecasting of tsunamis impact. Despite multiple efforts and investments in the installation of sea level stations in the region, in 2004 there were only a handful of sea level stations operational in the region (Puerto Rico, US Virgin Islands, Bermuda, Bahamas). Over the past 5 years there has been a steady increase in the number of stations operating in the Caribbean region. As of mid 2012 there were 7 DARTS and 37 coastal gauges with additional ones being installed or funded. In order to reach the goal of 100 operational coastal sea level stations in the Caribbean, the CARIBE EWS recognizes also the importance of maintaining the current stations. For this, a trained workforce in the region for the installation, operation and data analysis and quality control is considered to be critical. Since 2008, three training courses have been offered to the sea level station operators and data analysts. Other

  16. Lithofacies variability in the Lower Khvalynian sediments of the North Caspian Sea region.

    NASA Astrophysics Data System (ADS)

    Makshaev, Radik; Svitoch, Aleksandr

    2016-04-01

    The Early Khvalynian period (~15 500-12 500 cal years B.P.) is characterized by continuous dynamic changes in North Caspian Sea region environment, which has been confirmed by numerous data obtained during the lithofacies analysis of its key sections. Lithofacies complex of the North Caspian Sea region contains four subfacies - clayey, laminated, sandy-clayey and aleurite-clayey. Clayey facie is characterized by absolutely clayey structure with massive nonlamellated or subfissile dark-brown clays and rarely contains thin aleurite layers. This subfacie is one of the most widespread in the North Caspian Sea region. Clayey facies are typical for the most of the key sections in the Middle Volga (Bykovo, Torgun, Rovnoe, Novoprivolnoe, Chapaevka), Lower Volga (Svetly Yar) and on the left side of the Volga River valley (Verkhny Baskunchak, Krivaya Loshchina, Bolshoy Liman). Deep paleodepressions of the Lower Volga and the left side of the Volga River valley are also characterized by the maximum of the average clays thickness, which can reach up to 10 m. Sandy-clayey subfacie is characterized by stratified structure with horizontal and lenticular lamination of clays with sandy-aleuritic interlayers. The average thickness of sand layers is 2-5 cm. At most of the key sections thickness of clay layers is up to twice larger than the sands layers and only on depressions' periphery can be exceeded by some terrigenous interlayers. Sandy-aleuritic parts of clays have different mineral structure. Light suite is dominated by quartz and feldspar with some debris of heavy minerals, glauconite and calcite. Fraction of the heavy minerals contains titano ferrite, epidote, granite, zircon, amphibole, rutile, disthene, tourmaline, sillimanite. Layered subfacie is the most abundant among the chocolate clays and is widespread in the Lower Volga River region and the Ural River valley, but sporadic in Kalmykia and the Volga Delta. Sandy-clayey and aleurit-clayey subfacies have rare

  17. Discovery of Sound in the Sea (DOSITS) Website Development

    DTIC Science & Technology

    2013-03-04

    life affect ocean sound levels? • Science of Sound > Sounds in the Sea > How will ocean acidification affect ocean sound levels? • Science of Sound...Science of Sound > Sounds in the Sea > How does shipping affect ocean sound levels? • Science of Sound > Sounds in the Sea > How does marine

  18. Sea level variation

    NASA Technical Reports Server (NTRS)

    Douglas, Bruce C.

    1992-01-01

    Published values for the long-term, global mean sea level rise determined from tide gauge records range from about one to three mm per year. The scatter of the estimates appears to arise largely from the use of data from gauges located at convergent tectonic plate boundaries where changes of land elevation give fictitious sea level trends, and the effects of large interdecadal and longer sea level variations on short (less than 50+ years) or sappy records. In addition, virtually all gauges undergo subsidence or uplift due to isostatic rebound from the last deglaciation at a rate comparable to or greater than the secular rise of sea level. Modeling rebound by the ICE-3G model of Tushingham and Peltier (1990) and avoiding tide gauge records in areas of converging tectonic plates produces a highly consistent set of long sea level records. A global set of 21 such stations in nine oceanic regions with an average record length of 76 years during the period 1880-1980 yields the global sea level rise value 1.8 mm/year +/- 0.1. Greenhouse warming scenarios commonly forecast an additional acceleration of global sea level in the next 5 or 6+ decades in the range 0.1-0.2 mm/yr2. Because of the large power at low frequencies in the sea level spectrum, very long tide gauge records (75 years minimum) have been examined for past apparent sea level acceleration. For the 80-year period 1905-1985, 23 essentially complete tide gauge records in 10 geographic groups are available for analysis. These yielded the apparent global acceleration -0.011 (+/- 0.012) mm/yr2. A larger, less uniform set of 37 records in the same 10 groups with 92 years average length covering the 141 years from 1850-1991 gave 0.001 (+/- 0.008) mm/yr2. Thus there is no evidence for an apparent acceleration in the past 100+ years that is significant either statistically, or in comparison to values associated with global warming. Unfortunately, the large interdecadal fluctuations of sea level severely affect

  19. Arctic Sea ice, 1973-1976: Satellite passive-microwave observations

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.; Comiso, Josefino C.; Zwally, H. Jay; Cavalieri, Donald J.; Gloersen, Per; Campbell, William J.

    1987-01-01

    The Arctic region plays a key role in the climate of the earth. The sea ice cover affects the radiative balance of the earth and radically changes the fluxes of heat between the atmosphere and the ocean. The observations of the Arctic made by the Electrically Scanning Microwave Radiometer (ESMR) on board the Nimbus 5 research satellite are summarized for the period 1973 through 1976.

  20. Improved regional sea-level estimates from Ice Sheets, Glaciers and land water storage using GRACE time series and other data

    NASA Astrophysics Data System (ADS)

    He, Z.; Velicogna, I.; Hsu, C. W.; Rignot, E. J.; Mouginot, J.; Scheuchl, B.; Fettweis, X.; van den Broeke, M. R.

    2017-12-01

    Changes in ice sheets, glaciers and ice caps (GIC) and land water mass cause regional sea level variations that differ significantly from a uniform re-distribution of mass over the ocean, with a decrease in sea level compared to the global mean sea level contribution (GMSL) near the sources of mass added to the ocean and an increase up to 30% larger than the GMSL in the far field. The corresponding sea level fingerprints (SLF) are difficult to separate from ocean dynamics on short time and spatial scales but as ice melt continues, the SLF signal will become increasingly dominant in the pattern of regional sea level rise. It has been anticipated that it will be another few decades before the land ice SLF could be identified in the pattern of regional sea level rise. Here, we combine 40 years of observations of ice sheet mass balance for Antarctica (1975-present) and Greenland (1978-present), along with surface mass balance reconstructions of glacier and ice caps mass balance (GIC) from 1970s to present to determine the contribution to the SLF from melting land ice (MAR and RACMO). We compare the results with observations from GRACE for the time period 2002 to present for evaluation of our approach. Land hydrology is constrained by GRACE data for the period 2002-present and by the GLDAS-NOAH land hydrology model for the longer time period. Over the long time period, we find that the contribution from land ice dominates. We quantify the contribution to the total SLF from Greenland and Antarctica in various parts of the world over the past 40 years. More important, we compare the cumulative signal from SLF with tide gauge records around the world, corrected for earth dynamics, to determine whether the land ice SLF can be detected in that record. Early results will be reported at the meeting. This work was performed at UC Irvine and at Caltech's Jet Propulsion Laboratory under a contract with NASA's Cryospheric Science Program.

  1. Precise mean sea level measurements using the Global Positioning System

    NASA Technical Reports Server (NTRS)

    Kelecy, Thomas M.; Born, George H.; Parke, Michael E.; Rocken, Christian

    1994-01-01

    This paper describes the results of a sea level measurement test conducted off La Jolla, California, in November of 1991. The purpose of this test was to determine accurate sea level measurements using a Global Positioning System (GPS) equipped buoy. These measurements were intended to be used as the sea level component for calibration of the ERS 1 satellite altimeter. Measurements were collected on November 25 and 28 when the ERS 1 satellite overflew the calibration area. Two different types of buoys were used. A waverider design was used on November 25 and a spar design on November 28. This provided the opportunity to examine how dynamic effects of the measurement platform might affect the sea level accuracy. The two buoys were deployed at locations approximately 1.2 km apart and about 15 km west of a reference GPS receiver located on the rooftop of the Institute of Geophysics and Planetary Physics at the Scripps Institute of Oceanography. GPS solutions were computed for 45 minutes on each day and used to produce two sea level time series. An estimate of the mean sea level at both locations was computed by subtracting tide gage data collected at the Scripps Pier from the GPS-determined sea level measurements and then filtering out the high-frequency components due to waves and buoy dynamics. In both cases the GPS estimate differed from Rapp's mean altimetric surface by 0.06 m. Thus, the gradient in the GPS measurements matched the gradient in Rapp's surface. These results suggest that accurate sea level can be determined using GPS on widely differing platforms as long as care is taken to determine the height of the GPS antenna phase center above water level. Application areas include measurement of absolute sea level, of temporal variations in sea level, and of sea level gradients (dominantly the geoid). Specific applications would include ocean altimeter calibration, monitoring of sea level in remote regions, and regional experiments requiring spatial and

  2. Global and Regional Evaluation of Over-Land Spectral Aerosol Optical Depth Retrievals from SeaWiFS

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M. J.; Holben, B. N.; Zhang, J.

    2012-01-01

    This study evaluates a new spectral aerosol optical depth (AOD) dataset derived from Sea-viewing Wide Field-of-view Sensor (Sea WiFS) measurements over land. First, the data are validated against Aerosol Robotic Network (AERONET) direct-sun AOD measurements, and found to compare well on a global basis. If only data with the highest quality flag are used, the correlation is 0.86 and 72% of matchups fall within an expected absolute uncertainty of 0.05 + 20% (for the wavelength of 550 nm). The quality is similar at other wavelengths and stable over the 13-year (1997-2010) mission length. Performance tends to be better over vegetated, low-lying terrain with typical AOD of 0.3 or less, such as found over much of North America and Eurasia. Performance tends to be poorer for low-AOD conditions near backscattering geometries, where Sea WiFS overestimates AOD, or optically-thick cases of absorbing aerosol, where SeaWiFS tends to underestimate AOD. Second, the SeaWiFS data are compared with midvisible AOD derived from the Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). All instruments show similar spatial and seasonal distributions of AOD, although there are regional and seasonal offsets between them. At locations where AERONET data are available, these offsets are largely consistent with the known validation characteristics of each dataset. With the results of this study in mind, the SeaWiFS over-land AOD record should be suitable for quantitative scientific use.

  3. The influence of tide on sea surface temperature in the marginal sea of northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Jen; Tsai, Yun-Chan; Ho, Chung-Ru; Lo, Yao-Tsai; Kuo, Nan-Jung

    2017-10-01

    Tide gauge data provided by the University of Hawaii Sea Level Center and daily sea surface temperature (SST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) product are used in this study to analyze the influence of tide on the SST in the seas of Northwestern Pacific. In the marginal region, the climatology SST is lower in the northwestern area than that in the southeastern area. In the coastal region, the SST at spring tide is higher than that at neap tide in winter, but it is lower in other seasons. In the adjacent waters of East China Sea and Yellow Sea, the SST at spring tide is higher than that at neap tide in winter and summer but it is lower in spring and autumn. In the open ocean region, the SST at spring tide is higher than that at neap tide in winter, but it is lower in other seasons. In conclusion, not only the river discharge and topography, but also tides could influence the SST variations, especially in the open ocean region.

  4. Assessment of Current Estimates of Global and Regional Mean Sea Level from the TOPEX/Poseidon, Jason-1, and OSTM 17-Year Record

    NASA Technical Reports Server (NTRS)

    Beckley, Brian D.; Ray, Richard D.; Lemoine, Frank G.; Zelensky, N. P.; Holmes, S. A.; Desal, Shailen D.; Brown, Shannon; Mitchum, G. T.; Jacob, Samuel; Luthcke, Scott B.

    2010-01-01

    The science value of satellite altimeter observations has grown dramatically over time as enabling models and technologies have increased the value of data acquired on both past and present missions. With the prospect of an observational time series extending into several decades from TOPEX/Poseidon through Jason-1 and the Ocean Surface Topography Mission (OSTM), and further in time with a future set of operational altimeters, researchers are pushing the bounds of current technology and modeling capability in order to monitor global sea level rate at an accuracy of a few tenths of a mm/yr. The measurement of mean sea-level change from satellite altimetry requires an extreme stability of the altimeter measurement system since the signal being measured is at the level of a few mm/yr. This means that the orbit and reference frame within which the altimeter measurements are situated, and the associated altimeter corrections, must be stable and accurate enough to permit a robust MSL estimate. Foremost, orbit quality and consistency are critical to satellite altimeter measurement accuracy. The orbit defines the altimeter reference frame, and orbit error directly affects the altimeter measurement. Orbit error remains a major component in the error budget of all past and present altimeter missions. For example, inconsistencies in the International Terrestrial Reference Frame (ITRF) used to produce the precision orbits at different times cause systematic inconsistencies to appear in the multimission time-frame between TOPEX and Jason-1, and can affect the intermission calibration of these data. In an effort to adhere to cross mission consistency, we have generated the full time series of orbits for TOPEX/Poseidon (TP), Jason-1, and OSTM based on recent improvements in the satellite force models, reference systems, and modeling strategies. The recent release of the entire revised Jason-1 Geophysical Data Records, and recalibration of the microwave radiometer correction also

  5. Biogeochemical Coupling between Ocean and Sea Ice

    NASA Astrophysics Data System (ADS)

    Wang, S.; Jeffery, N.; Maltrud, M. E.; Elliott, S.; Wolfe, J.

    2016-12-01

    Biogeochemical processes in ocean and sea ice are tightly coupled at high latitudes. Ongoing changes in Arctic and Antarctic sea ice domain likely influence the coupled system, not only through physical fields but also biogeochemical properties. Investigating the system and its changes requires representation of ocean and sea ice biogeochemical cycles, as well as their coupling in Earth System Models. Our work is based on ACME-HiLAT, a new offshoot of the Community Earth System Model (CESM), including a comprehensive representation of marine ecosystems in the form of the Biogeochemical Elemental Cycling Module (BEC). A full vertical column sea ice biogeochemical module has recently been incorporated into the sea ice component. We have further introduced code modifications to couple key growth-limiting nutrients (N, Si, Fe), dissolved and particulate organic matter, and phytoplankton classes that are important in polar regions between ocean and sea ice. The coupling of ocean and sea ice biology-chemistry will enable representation of key processes such as the release of important climate active constituents or seeding algae from melting sea ice into surface waters. Sensitivity tests suggest sea ice and ocean biogeochemical coupling influences phytoplankton competition, biological production, and the CO2 flux. Sea ice algal seeding plays an important role in determining phytoplankton composition of Arctic early spring blooms, since different groups show various responses to the seeding biomass. Iron coupling leads to increased phytoplankton biomass in the Southern Ocean, which also affects carbon uptake via the biological pump. The coupling of macronutrients and organic matter may have weaker influences on the marine ecosystem. Our developments will allow climate scientists to investigate the fully coupled responses of the sea ice-ocean BGC system to physical changes in polar climate.

  6. Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region

    PubMed Central

    ANUFRIIEVA, Elena V.; SHADRIN, Nickolai V.

    2015-01-01

    Inter-species variability in morphological traits creates a need to know the range of variability of characteristics in the species for taxonomic and ecological tasks. Copepoda Arctodiaptomus salinus, which inhabits water bodies across Eurasia and North Africa, plays a dominant role in plankton of different water bodies-from fresh to hypersaline. This work assesses the intra- and inter-population morphometric variability of A. salinus in the Mediterranean-Black Sea region and discusses some observed regularities. The variability of linear body parameters and proportions was studied. The impacts of salinity, temperature, and population density on morphological characteristics and their variability can manifest themselves in different ways at the intra- and inter-population levels. A significant effect of salinity, pH and temperature on the body proportions was not found. Their intra-population variability is dependent on temperature and salinity. Sexual dimorphism of A. salinus manifests in different linear parameters, proportions, and their variability. There were no effects of temperature, pH and salinity on the female/male parameter ratio. There were significant differences in the body proportions of males and females in different populations. The influence of temperature, salinity, and population density can be attributed to 80%-90% of intra-population variability of A. salinus. However, these factors can explain less than 40% of inter-population differences. Significant differences in the body proportions of males and females from different populations may suggest that some local populations of A. salinus in the Mediterranean-Black Sea region are in the initial stages of differentiation. PMID:26646569

  7. Morphometric variability of Arctodiaptomus salinus (Copepoda) in the Mediterranean-Black Sea region.

    PubMed

    Anufriieva, Elena V; Shadrin, Nickolai V

    2015-11-18

    Inter-species variability in morphological traits creates a need to know the range of variability of characteristics in the species for taxonomic and ecological tasks. Copepoda Arctodiaptomus salinus, which inhabits water bodies across Eurasia and North Africa, plays a dominant role in plankton of different water bodies-from fresh to hypersaline. This work assesses the intra- and inter-population morphometric variability of A. salinus in the Mediterranean-Black Sea region and discusses some observed regularities. The variability of linear body parameters and proportions was studied. The impacts of salinity, temperature, and population density on morphological characteristics and their variability can manifest themselves in different ways at the intra- and inter-population levels. A significant effect of salinity, pH and temperature on the body proportions was not found. Their intra-population variability is dependent on temperature and salinity. Sexual dimorphism of A. salinus manifests in different linear parameters, proportions, and their variability. There were no effects of temperature, pH and salinity on the female/male parameter ratio. There were significant differences in the body proportions of males and females in different populations. The influence of temperature, salinity, and population density can be attributed to 80%-90% of intra-population variability of A. salinus. However, these factors can explain less than 40% of inter-population differences. Significant differences in the body proportions of males and females from different populations may suggest that some local populations of A. salinus in the Mediterranean-Black Sea region are in the initial stages of differentiation.

  8. Monitoring and modeling of sinkholes affecting the Jordanian coast of the Dead Sea through satellite interferometric techniques

    NASA Astrophysics Data System (ADS)

    Tessari, Giulia; Pasquali, Paolo; Floris, Mario

    2016-04-01

    Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques have been applied to investigate sinkholes affecting the Jordanian coast of the Dead Sea. The Dead Sea is a hyper saline terminal lake located in a pull-apart basin. Most of the area is characterized by highly karstic and fractured rock formations that are connected with faults. Karstic conduits extend from the land into the sea. Since the 1960s, the Dead Sea level is dropping at an increasing rate: from about 60 cm/yr in the 1970s up to 1 m/yr in the 2000s. From about the mid-1980s, sinkholes appeared more and more frequently over and around the emerged mudflats and salt flats. Strong subsidence and landslides also affect some segments of the coast. Nowadays, several thousands of sinkholes attest that the degradation of the Dead Sea coast is worsening. Deformation analysis has been focused on the Ghor Al Haditha area, located in the South-Eastern part of the lake coast. SAR data acquired by three different sensors, ERS, ENVISAT and COSMO- SkyMed have been analysed. 70 ERS images from 1992 to 2009 and 30 ENVISAT images from 2003 to 2010 have been processed. SBAS technique has been applied to define surface velocity and displacement maps. Results obtained from the SBAS technique, applied to ERS and Envisat data, highlight a diffuse subsiding of the entire Eastern coast of the Dead Sea. It was not possible to detect single sinkholes because of the resolution of these sensors (25m2) and the small size of each punctual event that is generally varying from a few meters to a hundred meters diameter. Furthermore, SBAS has been applied to 23 COSMO-SkyMed SAR satellite images from December 2011 to May 2013. The high resolution of these data (3m x 3m) and the short revisiting time allowed precise information of the displacement of punctual sinkholes beyond the overall subsidence of the coast. A specific sinkhole has been identified in order to understand its temporal evolution. The considered

  9. Identifying source regions for the atmospheric input of PCDD/Fs to the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Sellström, Ulla; Egebäck, Anna-Lena; McLachlan, Michael S.

    PCDD/F contamination of the Baltic Sea has resulted in the European Union imposing restrictions on the marketing of several fish species. Atmospheric deposition is the major source of PCDD/Fs to the Baltic Sea, and hence there is a need to identify the source regions of the PCDD/Fs in ambient air over the Baltic Sea. A novel monitoring strategy was employed to address this question. During the winter of 2006-2007 air samples were collected in Aspvreten (southern Sweden) and Pallas (northern Finland). Short sampling times (24 h) were employed and only samples with stable air mass back trajectories were selected for analysis of the 2,3,7,8-substituted PCDD/F congeners. The range in the PCDD/F concentrations from 40 samples collected at Aspvreten was a factor of almost 50 (range 0.6-29 fg TEQ/m 3). When the samples were grouped according to air mass origin into seven compass sectors, the variability was much lower (typically less than a factor of 3). This indicates that air mass origin was the primary source of the variability. The contribution of each sector to the PCDD/F contamination over the Baltic Sea during the winter half year of 2006/2007 was calculated from the average PCDD/F concentration for each sector and the frequency with which the air over the Baltic Sea came from that sector. Air masses originating from the south-southwest, south-southeast and east segments contributed 65% of the PCDDs and 75% of the PCDFs. Strong correlations were obtained between the concentrations of most of the PCDD/F congeners and the concentration of soot. These correlations can be used to predict the PCDD/F concentrations during the winter half year from inexpensive soot measurements.

  10. Physicochemical conditions in affecting the distribution of spring phytoplankton community

    NASA Astrophysics Data System (ADS)

    Wei, Yuqiu; Liu, Haijiao; Zhang, Xiaodong; Xue, Bing; Munir, Sonia; Sun, Jun

    2017-11-01

    To better understand the physicochemical conditions in affecting regional distribution of phytoplankton community, one research cruise was carried out in the Bohai Sea and Yellow Sea during 3rd and 23th May, 2010. The phytoplankton community, including Bacillariophyta (105 taxa), Pyrrophyta (54 taxa), Chrysophyta (1 taxon) and Chlorophyta (2 taxa), had been identified and clearly described from six ecological provinces. And, the six ecological provinces were partitioned based on the top twenty dominant species related with notable physicochemical parameters. In general, the regional distributions of phytoplankton ecological provinces were predominantly influenced by the physicochemical properties induced by the variable water masses and circulations. The predominant diatoms in most of water samples showed well adaptability in turbulent and eutrophic conditions. However, several species of dinoflagellates e.g., Protoperidinium conicum, Protoperidinium triestinum, Protoperidinium sp. and Gymnodinium lohmanni preferred warmer, saltier and nutrient-poor environment. Moreover, the dinoflagellates with high frequency in the Yellow Sea might be transported from the Yellow Sea Warm Current. The horizontal distribution of phytoplankton was depicted by diatoms and controlled by phosphate concentration, while the vertical distribution was mainly supported by light and nutrients availability in the subsurface and bottom layers, respectively.

  11. Aral Sea basin: a sea dies, a sea also rises.

    PubMed

    Glantz, Michael H

    2007-06-01

    The thesis of this article is quite different from many other theses of papers, books, and articles on the Aral Sea. It is meant to purposely highlight the reality of the situation in Central Asia: the Aral Sea that was once a thriving body of water is no more. That sea is dead. What does exist in its place are the Aral seas: there are in essence three bodies of water, one of which is being purposefully restored and its level is rising (the Little Aral), and two others which are still marginally connected, although they continue to decline in level (the Big Aral West and the Big Aral East). In 1960 the level of the sea was about 53 m above sea level. By 2006 the level had dropped by 23 m to 30 m above sea level. This was not a scenario generated by a computer model. It was a process of environmental degradation played out in real life in a matter of a few decades, primarily as a result of human activities. Despite wishes and words to the contrary, it will take a heroic global effort to save what remains of the Big Aral. It would also take a significant degree of sacrifice by people and governments in the region to restore the Big Aral to an acceptable level, given that the annual rate of flow reaching the Amudarya River delta is less than a 10th of what it was several decades ago. Conferring World Heritage status to the Aral Sea(s) could spark restoration efforts for the Big Aral.

  12. Simulation of the Aerosol-Atmosphere Interaction in the Dead Sea Area with COSMO-ART

    NASA Astrophysics Data System (ADS)

    Vogel, Bernhard; Bangert, Max; Kottmeier, Christoph; Rieger, Daniel; Schad, Tobias; Vogel, Heike

    2014-05-01

    The Dead Sea is a unique environment located in the Dead Sea Rift Valley. The fault system of the Dead Sea Rift Valley marks the political borders between Israel, Jordan, and Palestine. The Dead Sea region and the ambient Eastern Mediterranean coastal zone provide a natural laboratory for studying atmospheric processes ranging from the smallest scale of cloud processes to regional weather and climate. The virtual institute DESERVE is designed as a cross-disciplinary and cooperative international project of the Helmholtz Centers KIT, GFZ, and UFZ with well-established partners in Israel, Jordan and Palestine. One main focus of one of the work packages is the role of aerosols in modifying clouds and precipitation and in developing the Dead Sea haze layer as one of the most intriguing questions. The haze influences visibility, solar radiation, and evaporation and may even affect economy and health. We applied the online coupled model system COSMO-ART, which is able to treat the feedback processes between aerosol, radiation, and cloud formation, for a case study above the Dead Sea and adjacent regions. Natural aerosol like mineral dust and sea salt as well as anthropogenic primary and secondary aerosol is taken into account. Some of the observed features like the vertical double structure of the haze layer are already covered by the simulation. We found that absorbing aerosol like mineral dust causes a temperature increase in parts of the model domain. In other areas a decrease in temperature due to cirrus clouds modified by elevated dust layers is simulated.

  13. Gas transport processes in sea ice: How convection and diffusion processes might affect biological imprints, a challenge for modellers

    NASA Astrophysics Data System (ADS)

    Tison, J.-L.; Zhou, J.; Thomas, D. N.; Rysgaard, S.; Eicken, H.; Crabeck, O.; Deleu, F.; Delille, B.

    2012-04-01

    Recent data from a year-round survey of landfast sea ice growth in Barrow (Alaska) have shown how O2/N2 and O2/Ar ratios could be used to pinpoint primary production in sea ice and derive net productivity rates from the temporal evolution of the oxygen concentration at a given depth within the sea ice cover. These rates were however obtained surmising that neither convection, nor diffusion had affected the gas concentration profiles in the ice between discrete ice core collections. This paper discusses examples from three different field surveys (the above-mentioned Barrow experiment, the INTERICE IV tank experiment in Hamburg and a short field survey close to the Kapisilit locality in the South-East Greenland fjords) where convection or diffusion processes have clearly affected the temporal evolution of the gas profiles in the ice, therefore potentially affecting biological signatures. The INTERICE IV and Barrow experiment show that the initial equilibrium dissolved gas entrapment within the skeletal layer basically governs most of the profiles higher up in the sea ice cover during the active sea ice growth. However, as the ice layers age and cool down under the temperature gradient, bubble nucleation occurs while the concentration in the ice goes well above the theoretical one, calculated from brine equilibrium under temperature and salinity changes and observed brine volumes. This phase change locks the gases within the sea ice structure, preventing "degassing" of the ice, as is observed for salts under the mushy layer brine convection process. In some cases, mainly in the early stages of the freezing process (first 10-20 cm) where temperature gradients are strong and the ice still permeable on its whole thickness, repeated convection and bubble nucleation can actually increase the gas concentration in the ice above the one initially acquired within the skeletal layer. Convective processes will also occur on ice decay, when ice permeability is restored and the

  14. Avian influenza virus wild bird surveillance in the Azov and Black Sea regions of Ukraine (2010-2011)

    USDA-ARS?s Scientific Manuscript database

    The Azov and Black Sea basins are part of the transcontinental wild bird migration routes from Northern Asia and Europe to the Mediterranean, Africa and Southwest Asia. These regions constitute an area of transit, stops during migration, and nesting for many different bird species. From September ...

  15. Sea water acidification affects osmotic swelling, regulatory volume decrease and discharge in nematocytes of the jellyfish Pelagia noctiluca.

    PubMed

    Morabito, Rossana; Marino, Angela; Lauf, Peter K; Adragna, Norma C; La Spada, Giuseppa

    2013-01-01

    Increased acidification/PCO2 of sea water is a threat to the environment and affects the homeostasis of marine animals. In this study, the effect of sea water pH changes on the osmotic phase (OP), regulatory volume decrease (RVD) and discharge of the jellyfish Pelagia noctiluca (Cnidaria, Scyphozoa) nematocytes, collected from the Strait of Messina (Italy), was assessed. Isolated nematocytes, suspended in artificial sea water (ASW) with pH 7.65, 6.5 and 4.5, were exposed to hyposmotic ASW of the same pH values and their osmotic response and RVD measured optically in a special flow through chamber. Nematocyte discharge was analyzed in situ in ASW at all three pH values. At normal pH (7.65), nematocytes subjected to hyposmotic shock first expanded osmotically and then regulated their cell volume within 15 min. Exposure to hyposmotic ASW pH 6.5 and 4.5 compromised the OP and reduced or totally abrogated the ensuing RVD, respectively. Acidic pH also significantly reduced the nematocyte discharge response. Data indicate that the homeostasis and function of Cnidarians may be altered by environmental changes such as sea water acidification, thereby validating their use as novel bioindicators for the quality of the marine environment. © 2014 S. Karger AG, Basel.

  16. Divergent movements of walrus and sea ice in the Nothern Bering Sea

    USGS Publications Warehouse

    Jay, Chadwick V.; Udevitz, Mark S.; Kwok, Ron; Fischbach, Anthony S.; Douglas, David C.

    2010-01-01

    The Pacific walrus Odobenus rosmarus divergens is a large Arctic pinniped of the Chukchi and Bering Seas. Reductions of sea ice projected to occur in the Arctic by mid-century raise concerns for conservation of the Pacific walrus. To understand the significance of sea ice loss to the viability of walruses, it would be useful to better understand the spatial associations between the movements of sea ice and walruses. We investigated whether local-scale (~1 to 100 km) walrus movements correspond to movements of sea ice in the Bering Sea in early spring, using locations from radio-tracked walruses and measures of ice floe movements from processed synthetic aperture radar satellite imagery. We used generalized linear mixed-effects models to analyze the angle between walrus and ice floe movement vectors and the distance between the final geographic position of walruses and their associated ice floes (displacement), as functions of observation duration, proportion of time the walrus was in water, and geographic region. Analyses were based on 121 walrus-ice vector pairs and observations lasting 12 to 36 h. Angles and displacements increased with observation duration, proportion of time the walrus spent in the water, and varied among regions (regional mean angles ranged from 40° to 81° and mean displacements ranged from 15 to 35 km). Our results indicated a lack of correspondence between walruses and their initially associated ice floes, suggesting that local areas of walrus activities were independent of the movement of ice floes.

  17. Late Quaternary chronology of paleo-climatic changes in Caspian Sea region based on Lower Volga sections

    NASA Astrophysics Data System (ADS)

    Kurbanov, Redzhep; Yanina, Tamara; Murray, Andrew; Svitoch, Alexander; Tkach, Nikolai

    2017-04-01

    Lower Volga is a unique region for understanding the history of the Caspian Sea in the Pleistocene, its correlation of paleogeographic events with glacial-interglacial rhythms of the East European Plain and the global and regional climate changes. The reason is representativeness of Quaternary sections, their completeness, presence of both marine and subaerial sediments, paleontological richness of the materials and available for study. The purpose of this work is to reconstruct the paleogeographic events in the Late Pleistocene of the Lower Volga region on the basis of summarizing the study results for the Srednyaya Akhtuba reference section. Located near city of Volgograd, at Khvaynian plain natural outcrop of Srednyaya Akhtuba section, reveals in a series of exposures a unique to the region series of marine Caspian continental deposits with four levels of buried soil horizons and loess. The results were obtained during 2015 and 2016 complex field research with application of lithological, paleopedological, paleontological, paleocryological, OSL-dating, paleomagnetic methods, that allowed more fundamental approach to the chronological assessment of individual horizons. The structure of the Srednyaya Akhtuba reference section reflects a number of paleogeographic stages of development of the study area. The oldest phase (layers 22-19) is not characterized by OSL dating or faunal material. Based on the sequence of dated layers, we assume its Middle Pleistocene age (MIS-6 stage), corresponding to Moscow stage of the Dnieper glaciation of the East European Plain and the final stage of Early Khazarian transgressive era of Caspian sea. The next stage (layers 18-14), represented by three horizons of paleosols, refers to the first half of the Late Pleistocene (MIS 5). Epoch of soil formation, based on the results the OSL-dating, can be referred to the warm sub-stages (MIS 5c and 5a), with unstable climatically transitional phase from Mikulino (Eemian) interglacial to the

  18. Quaternary Sea-Level History from the US Atlantic Coastal Plain

    NASA Astrophysics Data System (ADS)

    Poirier, R. K.; Cronin, T. M.; Katz, M. E.; Browning, J. V.; Miller, K. G.; Willard, D. A.

    2014-12-01

    Analyses of emerged Quaternary paleo-shorelines and marine deposits aid in the reconstruction of environmental conditions and variability surrounding recent ice volume and sea-level histories derived from oxygen isotope records. We present preliminary results from a project designed to analyze the age, elevation, and paleoclimate history of Quaternary sediments deposited during sea level highstands along the United States Atlantic Coastal Plain (ACP) from Maryland to Florida. Prior studies have shown that, depending on the region, ACP sediments correlate with past interglacial periods corresponding to Marine Isotope Stages (MIS) 5, 7, possibly 9, and 11. Stratigraphy, marine micropaleontology, and palynology indicate at least two major marine transgressive sequences on the Delmarva Peninsula in Virginia corresponding to MIS 5a and 11, the Nassawadox Formation and Accomack beds of the Omar Formation, respectively. These depositional sequences represent sea-level positions of approximately +10m and +15m, relative to today. Despite generally corresponding to glacio-eustatic sea levels of +5-9m for MIS 5a-e (Potter & Lambeck, 2003; Kopp et al., 2009), and of +6-13m for MIS 11 (Raymo & Mitrovica, 2012), the relative sea-level positions during both interglacial periods were likely affected by glacio-isostatic adjustment in the region. Corresponding marine units and paleo-shorelines, identified by pronounced inland scarps separated by intermittent terraces on the western side of the Chesapeake Bay, are likely from MIS 5, 7, and 11. Ostracode and foraminifera assemblages identify significant environmental variability within these transgressive interglacial deposits, likely driven by relatively minor, suborbital climatic and sea-level oscillations.

  19. The Regional Influence of the Arctic Oscillation and Arctic Dipole on the Wintertime Arctic Surface Radiation Budget and Sea Ice Growth

    NASA Technical Reports Server (NTRS)

    Hegyi, Bradley M.; Taylor, Patrick C.

    2017-01-01

    An analysis of 2000-2015 monthly Clouds and the Earth's Radiant Energy System-Energy Balanced and Filled (CERES-EBAF) and Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA2) data reveals statistically significant fall and wintertime relationships between Arctic surface longwave (LW) radiative flux anomalies and the Arctic Oscillation (AO) and Arctic Dipole (AD). Signifying a substantial regional imprint, a negative AD index corresponds with positive downwelling clear-sky LW flux anomalies (greater than10W m(exp -2)) north of western Eurasia (0 deg E-120 deg E) and reduced sea ice growth in the Barents and Kara Seas in November-February. Conversely, a positive AO index coincides with negative clear-sky LW flux anomalies and minimal sea ice growth change in October-November across the Arctic. Increased (decreased) atmospheric temperature and water vapor coincide with the largest positive (negative) clear-sky flux anomalies. Positive surface LW cloud radiative effect anomalies also accompany the negative AD index in December-February. The results highlight a potential pathway by which Arctic atmospheric variability influences the regional surface radiation budget over areas of Arctic sea ice growth.

  20. Shipping and natural environmental conditions determine the distribution of the invasive non-indigenous round goby Neogobius melanostomus in a regional sea

    NASA Astrophysics Data System (ADS)

    Kotta, Jonne; Nurkse, Kristiina; Puntila, Riikka; Ojaveer, Henn

    2016-02-01

    Introductions of non-indigenous species (NIS) are considered a major threat to aquatic ecosystems worldwide. While it is valuable to know the distributions and ranges of NIS, predictive spatial models along different environmental gradients are more useful for management of these species. In this study we modelled how external drivers and local environmental conditions contribute to the spatial distribution of an invasive species using the distribution of the round goby Neogobius melanostomus in the Baltic Sea as an example. Using the collected distribution data, an updated map on the species distribution and its invasion progress in the Baltic Sea was produced. The current range of the round goby observations is extensive, covering all major sub-basins of the Baltic Sea. The most recent observations appeared in the northern regions (Northern Baltic Proper, the Gulf of Bothnia and the Gulf of Finland) and on the eastern and western coasts of southern Sweden. Modelling results show that the distribution of the round goby is primarily related to local abiotic hydrological conditions (wave exposure). Furthermore, the probability of round goby occurrence was very high in areas in close proximity to large cargo ports. This links patterns of the round goby distribution in the Baltic Sea to shipping traffic and suggests that human factors together with natural environmental conditions are responsible for the spread of NIS at a regional sea scale.

  1. North-Australian tropical seas circulation study

    NASA Technical Reports Server (NTRS)

    Burrage, Derek; Coleman, R.; Bode, L.; Inoue, M.

    1991-01-01

    This investigation is intended to fully address the stated objective of the TOPEX/POSEIDON mission (National Aeronautics and Space Administration, 1986). Hence, we intend to use TOPEX/POSEIDON altimetry data to study the large-scale circulation of the Coral Sea Basin and the Arafura Sea and the mass exchange between these and adjoining basins. We will obtain data from two such cruises in 1993 and 1994 and combine them with TOPEX/POSEIDON radar altimetry data to identify interannual and seasonal changes in: (1) the location of the major ocean currents and the South Equatorial Current bifurcation in the Coral Sea; (2) the source region of the South Tropical Counter Current (STCC); and (3) the water exchange between the Coral Sea and the adjoining seas. We will also estimate seasonal and interannual variations in the horizontal transport of mass and heat associated with near-surface geostrophic and wind-driven currents. In addition, the tidal components of the Coral Sea will be studied to provide a correction for altimetry subtidal sea level changes and to develop a regional numerical model for tidal forcing in the Great Barrier Reef (GBR) and Papua New Guinea Reef regions.

  2. Identification of Transportation Infrastructure at Risk Due To Sea-Level Rise and Subsidence of Land In Coastal Louisiana

    NASA Astrophysics Data System (ADS)

    Tewari, S.; Palmer, W.; Manning, F.

    2017-12-01

    Climate change can affect coastal areas in a variety of ways. Coasts are sensitive to sea level rise, changes in the frequency/intensity of storms, increase in precipitation and storm surges. The resilience of transportation infrastructure located in Louisiana's coastal zone, against storm surges and climatic sea-level rise is critical. The net change in sea-level is affected by the increase in global sea level as well as land movement up or down. There are many places in coastal Louisiana that have a high subsidence rate. The subsidence could be related to excess extraction activities of oil and water, natural and/or human induced compaction, and tectonic movement. Where the land is sinking, the rate of relative sea level rise is larger than the global rate. Some of the fastest rates of relative sea level rise in the United States are occurring in areas where the land is sinking, including parts of the Gulf Coast. For example, coastal Louisiana has seen its relative sea level rise by eight inches or more in the last 50 years, which is about twice the global rate. Subsiding land in the Gulf area worsens the effects of relative sea level rise, increasing the risk of flooding in cities, inhabited islands, and tidal wetlands. The research team is investigating the trends for sea-level rise and land subsidence in coastal region of Louisiana. The variability in storm surges and its potential implication on the transportation infrastructure in the region is the focus of the study. The spatial maps will be created for spatial trends. This is extremely useful in being prepared for long-term natural hazards. The results of this study will be helpful to LADOTD and infrastructure managers and officials who are tasked with resiliency planning and management. Research results will also directly benefit university researchers in the state, Coastal Protection and Restoration Authority and LADOTD/LTRC through collaborative activity which will educate both professionals and the

  3. Aerosol Optical Properties over Northwestern European Seas

    NASA Astrophysics Data System (ADS)

    Avgousta Floutsi, Athina; Korras Carraca, Marios Bruno; Matsoukas, Christos; Riva, Riccardo; Biskos, George

    2017-04-01

    Atmospheric aerosols, both natural and anthropogenic, can affect the regional and global climate through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. In order to quantify these effects it is necessary to determine the aerosol load. An effective way to do this is by measuring the aerosol optical depth (AOD). Besides AOD, the Fine mode Fraction (AOD of particles smaller than 1 μm / total AOD, FF) is a useful parameter for the characterization of the aerosol and provides a good proxy for particle size. In this study, we investigate the spatial and temporal variability of the AOD and FF over the Western and Northwestern European Seas (43° N - 67° N, 10° W - 31° E), where significant sources of both natural and anthropogenic particles are located. Anthropogenic particles (mostly fine mode) originate from ship activity, or from urban-industrial and biomass-burning processes in the European countries. The natural, coarse mode particles are primarily sea salt. The study is performed using Collection 006 Level-3 mean daily aerosol data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board Aqua satellite, available in 1° × 1° resolution (ca. 100 km × 100 km) over the period 2002- 2014. Our results indicate significant spatial variability of the aerosol load over the study region. The highest AOD values (up to 0.32 on annual level) are observed over the English Channel and the coasts of the Netherlands and Germany. In these regions the highest FF values are also observed (up to 0.77), indicating a relatively large contribution of anthropogenic particles to the aerosol load. Offshore, both AOD and FF are lower compared to coastal regions, indicating the predominance of maritime aerosols (sea salt). The data also show a clear seasonal cycle, with larger aerosol load during spring and summer (AOD up to 0.60), and lower during autumn and winter (AOD up to 0.30). A similar

  4. Variability of Antarctic Sea Ice 1979-1998

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Comiso, Josefino C.; Parkinson, Claire L.; Cavalieri, Donald J.; Gloersen, Per; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    The principal characteristics of the variability of Antarctic sea ice cover as previously described from satellite passive-microwave observations are also evident in a systematically-calibrated and analyzed data set for 20.2 years (1979-1998). The total Antarctic sea ice extent (concentration > 15 %) increased by 13,440 +/- 4180 sq km/year (+1.18 +/- 0.37%/decade). The area of sea ice within the extent boundary increased by 16,960 +/- 3,840 sq km/year (+1.96 +/- 0.44%/decade). Regionally, the trends in extent are positive in the Weddell Sea (1.5 +/- 0.9%/decade), Pacific Ocean (2.4 +/- 1.4%/decade), and Ross (6.9 +/- 1.1 %/decade) sectors, slightly negative in the Indian Ocean (-1.5 +/- 1.8%/decade, and strongly negative in the Bellingshausen-Amundsen Seas sector (-9.5 +/- 1.5%/decade). For the entire ice pack, small ice increases occur in all seasons with the largest increase during autumn. On a regional basis, the trends differ season to season. During summer and fall, the trends are positive or near zero in all sectors except the Bellingshausen-Amundsen Seas sector. During winter and spring, the trends are negative or near zero in all sectors except the Ross Sea, which has positive trends in all seasons. Components of interannual variability with periods of about 3 to 5 years are regionally large, but tend to counterbalance each other in the total ice pack. The interannual variability of the annual mean sea-ice extent is only 1.6% overall, compared to 5% to 9% in each of five regional sectors. Analysis of the relation between regional sea ice extents and spatially-averaged surface temperatures over the ice pack gives an overall sensitivity between winter ice cover and temperature of -0.7% change in sea ice extent per K. For summer, some regional ice extents vary positively with temperature and others negatively. The observed increase in Antarctic sea ice cover is counter to the observed decreases in the Arctic. It is also qualitatively consistent with the

  5. Pelagic sea snakes dehydrate at sea

    PubMed Central

    Lillywhite, Harvey B.; Sheehy, Coleman M.; Brischoux, François; Grech, Alana

    2014-01-01

    Secondarily marine vertebrates are thought to live independently of fresh water. Here, we demonstrate a paradigm shift for the widely distributed pelagic sea snake, Hydrophis (Pelamis) platurus, which dehydrates at sea and spends a significant part of its life in a dehydrated state corresponding to seasonal drought. Snakes that are captured following prolonged periods without rainfall have lower body water content, lower body condition and increased tendencies to drink fresh water than do snakes that are captured following seasonal periods of high rainfall. These animals do not drink seawater and must rehydrate by drinking from a freshwater lens that forms on the ocean surface during heavy precipitation. The new data based on field studies indicate unequivocally that this marine vertebrate dehydrates at sea where individuals may live in a dehydrated state for possibly six to seven months at a time. This information provides new insights for understanding water requirements of sea snakes, reasons for recent declines and extinctions of sea snakes and more accurate prediction for how changing patterns of precipitation might affect these and other secondarily marine vertebrates living in tropical oceans. PMID:24648228

  6. Transport calculations in the Tasman and Coral seas

    NASA Astrophysics Data System (ADS)

    Thompson, R. O. R. Y.; Veronis, G.

    1980-05-01

    The inverse method ( WUNSCH, Reviews of Geophysics and Space Physics, 16, 583-620, 1978) has been used to determine the flow for a closed-box region in the Tasman and Coral seas. The object of the study was to determine the large scale transport through the region, and in particular, to obtain an updated estimate of the amount of water carried by the East Australian Current. We conclude that there was no evidence of an East Australian Current in late March, 1960, when the only strong, identifiable feature was a cyclonic gyre in the CoralSea. As an East Australian Current has been identified at other times, the flow appears to be transient. A series of experiments testing various aspects of the use of the inverse method in such problems is also reported. Transports in the bottom layer are shown to be sensitive to noise and to the procedure adopted for extrapolating available data to the bottom, particularly in regions of large topographic variations. The importance of working with synoptic, as opposed to climatological, data is demonstrated by the experiments. It is also shown that local eddies can affect solution at relatively distant points.

  7. Incorporating Tsunami Projections to Sea Level Rise Vulnerability Assessments -A Case Study for Midway Atoll-

    NASA Astrophysics Data System (ADS)

    Gica, E.; Reynolds, M.

    2012-12-01

    Recent global models predict a rise of approximately one meter in global sea level by 2100, with potentially larger increases in areas of the Pacific Ocean. If current climate change trends continue, low-lying islands across the globe may become inundated over the next century, placing island biodiversity at risk. Adding to the risk of inundation due to sea level rise is the occurrence of cyclones and tsunamis. This combined trend will affect the low-lying islands of the Northwestern Hawaiian Islands and it is therefore important to assess its impact since these islands are critical habitats to many endangered endemic species and support the largest tropical seabird rookery in the world. The 11 March 2011 Tohoku (Mw=8.8) earthquake-tsunami affected the habitat of many endangered endemic species in Midway Atoll National Wildlife Refuge because all three islands (Sand, Eastern and Spit) were inundated by tsunami waves. At present sea level, some tsunamis from certain source regions would not affect Midway Atoll. For example, the previous earthquake-tsunamis such as the 15 November 2006 Kuril (Mw=8.1) and 13 February 2007 Kuril (Mw=7.9) were not significant enough to affect Midway Atoll. But at higher sea levels, tsunamis with similar characteristics could pose a threat to such terrestrial habitats and wildlife. To visualize projected impacts to vegetation composition, wildlife habitat, and wildlife populations, we explored and analyzed inundation vulnerability for a range of possible sea level rise and tsunami scenarios at Midway Atoll National Wildlife Refuge. Studying the combined threat of tsunamis and sea level rise can provide more accurate and comprehensive assessments of the vulnerability of the unique natural resources on low-lying islands. A passive sea level rise model was used to determine how much inundation will occur at different sea level rise values for the three islands of Midway Atoll and each scenario was coupled with NOAA Center for Tsunami

  8. Spatial distribution of earthquake hypocenters in the Crimea—Black Sea region

    NASA Astrophysics Data System (ADS)

    Burmin, V. Yu; Shumlianska, L. O.

    2018-03-01

    Some aspects of the seismicity the Crime—Black Sea region are considered on the basis of the catalogued data on earthquakes that have occurred between 1970 and 2012. The complete list of the Crimean earthquakes for this period contains about 2140 events with magnitude ranging from -1.5 to 5.5. Bulletins contain information about compressional and shear waves arrival times regarding nearly 2000 earthquakes. A new approach to the definition of the coordinates of all of the events was applied to re-establish the hypocenters of the catalogued earthquakes. The obtained results indicate that the bulk of the earthquakes' foci in the region are located in the crust. However, some 2.5% of the foci are located at the depths ranging from 50 to 250 km. The new distribution of foci of earthquakes shows the concentration of foci in the form of two inclined branches, the center of which is located under the Yalto-Alushta seismic focal zone. The whole distribution of foci in depth corresponds to the relief of the lithosphere.

  9. 2011 Great East Japan tsunami in Okhotsk Sea region: numerical modelings and observation data

    NASA Astrophysics Data System (ADS)

    Kostenko, Irina; Zaytsev, Andrey; Yalciner, Ahmet; Pelinovsky, Efim

    2013-04-01

    The 11 March, 2011 Great East Japan Earthquake with Mw: 9.0 occurred at 05:46:23 UTC with its epicenter estimated at 38.322_N, 142.369_E, and focal depth of 32 km (USGS, 2011). Tsunami waves propagated in Pacific Ocean to all directions. At Russian coast the highest waves were observed in the Kuril Islands (Malokurilskoye, Kunashir Island) which located in between Pacific ocean and the Okhotsk Sea. Kuril island provides limited transmission of tsunami waves from Pacific ocean. tsunami In 2011 Great East Japan Earthquake and Tsunami event, the maximum amplitude of the tsunami was observed as 3 m in Kuril islands. However, tsunami arrived Okhotsk Sea losing a significant amount of energy. Therefore the tsunami amplitudes at the coast of the Okhotsk Sea were smaller. In order to estimate the level of energy loss while passing through the narrow straits of the Kuril Islands, a series of numerical simulations was done by using tsunami numerical code NAMI DANCE. Ten largest earthquake shocks capable of generating tsunami were used as inputs of tsunami sources in the modeling. Hence the relation between the transmission of tsunami and the dimensions of the straits are compared and discussed. Finally the characteristics of tsunami propagation (arrival time and coastal amplification) at the coast in the Okhotsk Sea. The varying grid structure is used in numerical modeling in order to make finer analysis of tsunami passing through narrow straits of the Kuril Islands. This allows to combine exactly the installation locations of stationary and computational gauges. The simulation results are compared with the observations. The linear form of shallow water equations are used in the deep ocean region offshore part of the Sea of Okhotsk. Boussinesq type equations were also used at the near shore area in simulations. Since the Okhotsk Sea Results are a semi enclosed basin, the reflection characteristics at the coastal boundaries may be important. The numerical experiments are also

  10. Typhoon air-sea drag coefficient in coastal regions

    NASA Astrophysics Data System (ADS)

    Zhao, Zhong-Kuo; Liu, Chun-Xia; Li, Qi; Dai, Guang-Feng; Song, Qing-Tao; Lv, Wei-Hua

    2015-02-01

    The air-sea drag during typhoon landfalls is investigated for a 10 m wind speed as high as U10 ≈ 42 m s-1, based on multilevel wind measurements from a coastal tower located in the South China Sea. The drag coefficient (CD) plotted against the typhoon wind speed is similar to that of open ocean conditions; however, the CD curve shifts toward a regime of lower winds, and CD increases by a factor of approximately 0.5 relative to the open ocean. Our results indicate that the critical wind speed at which CD peaks is approximately 24 m s-1, which is 5-15 m s-1 lower than that from deep water. Shoaling effects are invoked to explain the findings. Based on our results, the proposed CD formulation, which depends on both water depth and wind speed, is applied to a typhoon forecast model. The forecasts of typhoon track and surface wind speed are improved. Therefore, a water-depth-dependence formulation of CD may be particularly pertinent for parameterizing air-sea momentum exchanges over shallow water.

  11. Antarctic Sea Ice Variability and Trends, 1979-2010

    NASA Technical Reports Server (NTRS)

    Parkinson, C. L.; Cavalieri, D. J.

    2012-01-01

    In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978 - December 2010 reveal an overall positive trend in ice extents of 17,100 +/- 2,300 square km/yr. Much of the increase, at 13,700 +/- 1,500 square km/yr, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea ice decreases, with an overall ice extent trend of -8,200 +/- 1,200 square km/yr. When examined through the annual cycle over the 32-year period 1979-2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9,100 +/- 6,300 square km/yr in February to a high of 24,700 +/- 10,000 square km/yr in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing ice concentrations and others with overall decreasing ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.

  12. Operational Monitoring and Forecasting in Regional Seas: the Aegean Sea example

    NASA Astrophysics Data System (ADS)

    Nittis, K.; Perivoliotis, L.; Zervakis, V.; Papadopoulos, A.; Tziavos, C.

    2003-04-01

    The increasing economic activities in the coastal zone and the associated pressure on the marine environment have raised the interest on monitoring systems able to provide supporting information for its effective management and protection. Such an integrated monitoring, forecasting and information system is being developed during the past years in the Aegean Sea. Its main component is the POSEIDON network that provides real-time data for meteorological and surface oceanographic parameters (waves, currents, hydrological and biochemical data) from 11 fixed oceanographic buoys. The numerical forecasting system is composed by an ETA atmospheric model, a WAM wave model and a POM hydrodynamic model that provide every day 72 hours forecasts. The system is operational since May 2000 and its products are published through Internet while a sub-set is also available through cellular telephony. New type of observing platforms will be available in the near future through a number of EU funded research projects. The Mediterranean Moored Multi-sensor Array (M3A) that was developed for the needs of the Mediterranean Forecasting System and was tested during 2000-2001 will be operational in 2004 during the MFSTEP project. The M3A system incorporates sensors for optical and chemical measurements (Oxygen, Turbidity, Chlorophyll-a, Nutrients and PAR) in the euphotic zone (0-100m) together with sensors for physical parameters (Temperature, Salinity, Current speed and direction) at the 0-500m layer. A Ferry-Box system will also operate during 2004 in the southern Aegean Sea, providing surface data for physical and bio-chemical properties. The ongoing modeling efforts include coupling with larger scale circulation models of the Mediterranean, high-resolution downscaling to coastal areas of the Aegean Sea and development of multi-variate data assimilation methods.

  13. Marine Spatial Planning Applied to the High Seas - Process and Results of an Exercise Focused on the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Siuda, A. N.; Smythe, T. C.

    2016-12-01

    The Sargasso Sea, at the center of the North Atlantic gyre, is recognized by the United Nations Convention on Biological Diversity as a globally unique ecosystem threatened by anthropogenic activity. In its stewardship capacity, the Sargasso Sea Commission works within the current system of international organizations and treaties to secure protection for particular species or areas. Without a single governing authority to implement and enforce protective measures across the region, a coordinated management plan for the region is lacking. A research team comprised of 20 advanced undergraduate scientists participating in the spring 2015 SEA Semester: Marine Biodiversity and Conservation program of Sea Education Association (Woods Hole, MA) engaged in a groundbreaking simulated high seas marine spatial planning process resulting in A Marine Management Proposal for the Sargasso Sea. Based on natural and social science research, the interdisciplinary Proposal outlines goals, objectives and realistic strategies that encompass ecological, economic, human use, and future use considerations. Notably, the Proposal is the product of a classroom-based simulation intended to improve emerging scientists' understanding of how research is integrated into the policy process and how organizations work across disciplinary boundaries to address complex ocean management problems. Student researchers identified several discrete management areas and associated policy recommendations for those areas, as well as strategies for coordinated management across the entire Sargasso Sea region. The latter include establishment of a United Nations Regional Ocean Management Organization as well as provisions for monitoring and managing high seas traffic. To make progress toward these strategies, significant attention to the importance of high seas regions for global-scale conservation will be necessary.

  14. Marine Spatial Planning Applied to the High Seas - Process and Results of an Exercise Focused on the Sargasso Sea

    NASA Astrophysics Data System (ADS)

    Siuda, A. N.; Smythe, T. C.

    2016-02-01

    The Sargasso Sea, at the center of the North Atlantic gyre, is recognized by the United Nations Convention on Biological Diversity as a globally unique ecosystem threatened by anthropogenic activity. In its stewardship capacity, the Sargasso Sea Commission works within the current system of international organizations and treaties to secure protection for particular species or areas. Without a single governing authority to implement and enforce protective measures across the region, a coordinated management plan for the region is lacking. A research team comprised of 20 advanced undergraduate scientists participating in the spring 2015 SEA Semester: Marine Biodiversity and Conservation program of Sea Education Association (Woods Hole, MA) engaged in a groundbreaking simulated high seas marine spatial planning process resulting in A Marine Management Proposal for the Sargasso Sea. Based on natural and social science research, the interdisciplinary Proposal outlines goals, objectives and realistic strategies that encompass ecological, economic, human use, and future use considerations. Notably, the Proposal is the product of a classroom-based simulation intended to improve emerging scientists' understanding of how research is integrated into the policy process and how organizations work across disciplinary boundaries to address complex ocean management problems. Student researchers identified several discrete management areas and associated policy recommendations for those areas, as well as strategies for coordinated management across the entire Sargasso Sea region. The latter include establishment of a United Nations Regional Ocean Management Organization as well as provisions for monitoring and managing high seas traffic. To make progress toward these strategies, significant attention to the importance of high seas regions for global-scale conservation will be necessary.

  15. Seabed images from Southern Ocean shelf regions off the northern Antarctic Peninsula and in the southeastern Weddell Sea

    NASA Astrophysics Data System (ADS)

    Piepenburg, Dieter; Buschmann, Alexander; Driemel, Amelie; Grobe, Hannes; Gutt, Julian; Schumacher, Stefanie; Segelken-Voigt, Alexandra; Sieger, Rainer

    2017-07-01

    Recent advances in underwater imaging technology allow for the gathering of invaluable scientific information on seafloor ecosystems, such as direct in situ views of seabed habitats and quantitative data on the composition, diversity, abundance, and distribution of epibenthic fauna. The imaging approach has been extensively used within the research project DynAMo (Dynamics of Antarctic Marine Shelf Ecosystems) at the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven (AWI), which aimed to comparatively assess the pace and quality of the dynamics of Southern Ocean benthos. Within this framework, epibenthic spatial distribution patterns have been comparatively investigated in two regions in the Atlantic sector of the Southern Ocean: the shelf areas off the northern tip of the Antarctic Peninsula, representing a region with above-average warming of surface waters and sea-ice reduction, and the shelves of the eastern Weddell Sea as an example of a stable high-Antarctic marine environment that is not (yet) affected by climate change. The AWI Ocean Floor Observation System (OFOS) was used to collect seabed imagery during two cruises of the German research vessel Polarstern, ANT-XXIX/3 (PS81) to the Antarctic Peninsula from January to March 2013 and ANT-XXXI/2 (PS96) to the Weddell Sea from December 2015 to February 2016. Here, we report on the image and data collections gathered during these cruises. During PS81, OFOS was successfully deployed at a total of 31 stations at water depths between 29 and 784 m. At most stations, series of 500 to 530 pictures ( > 15 000 in total, each depicting a seabed area of approximately 3.45 m2 or 2.3 × 1.5 m) were taken along transects approximately 3.7 km in length. During PS96, OFOS was used at a total of 13 stations at water depths between 200 and 754 m, yielding series of 110 to 293 photos (2670 in total) along transects 0.9 to 2.6 km in length. All seabed images taken during the two cruises

  16. Freshwater lake to salt-water sea causing widespread hydrate dissociation in the Black Sea.

    PubMed

    Riboulot, Vincent; Ker, Stephan; Sultan, Nabil; Thomas, Yannick; Marsset, Bruno; Scalabrin, Carla; Ruffine, Livio; Boulart, Cédric; Ion, Gabriel

    2018-01-09

    Gas hydrates, a solid established by water and gas molecules, are widespread along the continental margins of the world. Their dynamics have mainly been regarded through the lens of temperature-pressure conditions. A fluctuation in one of these parameters may cause destabilization of gas hydrate-bearing sediments below the seafloor with implications in ocean acidification and eventually in global warming. Here we show throughout an example of the Black Sea, the world's most isolated sea, evidence that extensive gas hydrate dissociation may occur in the future due to recent salinity changes of the sea water. Recent and forthcoming salt diffusion within the sediment will destabilize gas hydrates by reducing the extension and thickness of their thermodynamic stability zone in a region covering at least 2800 square kilometers which focus seepages at the observed sites. We suspect this process to occur in other world regions (e.g., Caspian Sea, Sea of Marmara).

  17. Analyzing Flood Vulnerability Due to Sea Level Rise Using K-Means Clustering: Implications for Regional Flood Mitigation Planning

    NASA Astrophysics Data System (ADS)

    Hummel, M.; Wood, N. J.; Stacey, M. T.; Schweikert, A.; Barnard, P.; Erikson, L. H.

    2016-12-01

    The threat of tidal flooding in coastal regions is exacerbated by sea level rise (SLR), which can lead to more frequent and persistent nuisance flooding and permanent inundation of low-lying areas. When coupled with extreme storm events, SLR also increases the extent and depth of flooding due to storm surges. To mitigate these impacts, bayfront communities are considering a variety of options for shoreline protection, including restoration of natural features such as wetlands and hardening of the shoreline using levees and sea walls. These shoreline modifications can produce changes in the tidal dynamics in a basin, either by increasing dissipation of tidal energy or enhancing tidal amplification [1]. As a result, actions taken by individual communities not only impact local inundation, but can also have implications for flooding on a regional scale. However, regional collaboration is lacking in flood mitigation planning, which is often done on a community-by-community basis. This can lead to redundancy in planning efforts and can also have adverse effects on communities that are not included in discussions about shoreline infrastructure improvements. Using flooding extent outputs from a hydrodynamic model of San Francisco Bay, we performed a K-means clustering analysis to identify similarities between 65 bayfront communities in terms of the spatial, demographic, and economic characteristics of their vulnerable assets for a suite of SLR and storm scenarios. Our clustering analysis identifies communities with similar vulnerabilities and allows for more effective collaboration and decision-making at a regional level by encouraging comparable communities to work together and pool resources to find effective adaptation strategies as flooding becomes more frequent and severe. [1] Holleman RC, Stacey MT (2014) Coupling of sea level rise, tidal amplification, and inundation. Journal of Physical Oceanography 44:1439-1455.

  18. The occurrence of pathogenic bacteria in some ships' ballast water incoming from various marine regions to the Sea of Marmara, Turkey.

    PubMed

    Altug, Gulsen; Gurun, Sevan; Cardak, Mine; Ciftci, Pelin S; Kalkan, Samet

    2012-10-01

    The composition and frequency of antibiotic resistance of pathogenic bacteria, the abundance of heterotrophic aerobic bacteria (HPC) and possible in-situ use of chromogenic agar were investigated in the ships' ballast water coming from different regions of the world to the Sea of Marmara, Turkey for the first time. The samples that were taken from 21 unit ships coming from various marine environments of the Southern China Sea, the Atlantic Ocean, the Mediterranean and the Black Sea to the Sea of Marmara, Turkey in 2009 and 2010 were tested. 38 bacteria species, 27 of them pathogenic bacteria belonging to 17 familia, were detected. Vibrio cholera was not detected in the samples. However, the presence of a high number of HPC, including a cocktail of pathogenic bacteria showed that the ships carry a potential risk for the Sea of Marmara. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The impact of land and sea surface variations on the Delaware sea breeze at local scales

    NASA Astrophysics Data System (ADS)

    Hughes, Christopher P.

    The summertime climate of coastal Delaware is greatly influenced by the intensity, frequency, and location of the local sea breeze circulation. Sea breeze induced changes in temperature, humidity, wind speed, and precipitation influence many aspects of Delaware's economy by affecting tourism, farming, air pollution density, energy usage, and the strength, and persistence of Delaware's wind resource. The sea breeze front can develop offshore or along the coastline and often creates a near surface thermal gradient in excess of 5°C. The purpose of this dissertation is to investigate the dynamics of the Delaware sea breeze with a focus on the immediate coastline using observed and modeled components, both at high resolutions (~200m). The Weather Research and Forecasting model (version 3.5) was employed over southern Delaware with 5 domains (4 levels of nesting), with resolutions ranging from 18km to 222m, for June 2013 to investigate the sensitivity of the sea breeze to land and sea surface variations. The land surface was modified in the model to improve the resolution, which led to the addition of land surface along the coastline and accounted for recent urban development. Nine-day composites of satellite sea surface temperatures were ingested into the model and an in-house SST forcing dataset was developed to account for spatial SST variation within the inland bays. Simulations, which include the modified land surface, introduce a distinct secondary atmospheric circulation across the coastline of Rehoboth Bay when synoptic offshore wind flow is weak. Model runs using high spatial- and temporal-resolution satellite sea surface temperatures over the ocean indicate that the sea breeze landfall time is sensitive to the SST when the circulation develops offshore. During the summer of 2013 a field campaign was conducted in the coastal locations of Rehoboth Beach, DE and Cape Henlopen, DE. At each location, a series of eleven small, autonomous thermo-sensors (i

  20. Sea-ice evaluation of NEMO-Nordic 1.0: a NEMO-LIM3.6-based ocean-sea-ice model setup for the North Sea and Baltic Sea

    NASA Astrophysics Data System (ADS)

    Pemberton, Per; Löptien, Ulrike; Hordoir, Robinson; Höglund, Anders; Schimanke, Semjon; Axell, Lars; Haapala, Jari

    2017-08-01

    The Baltic Sea is a seasonally ice-covered marginal sea in northern Europe with intense wintertime ship traffic and a sensitive ecosystem. Understanding and modeling the evolution of the sea-ice pack is important for climate effect studies and forecasting purposes. Here we present and evaluate the sea-ice component of a new NEMO-LIM3.6-based ocean-sea-ice setup for the North Sea and Baltic Sea region (NEMO-Nordic). The setup includes a new depth-based fast-ice parametrization for the Baltic Sea. The evaluation focuses on long-term statistics, from a 45-year long hindcast, although short-term daily performance is also briefly evaluated. We show that NEMO-Nordic is well suited for simulating the mean sea-ice extent, concentration, and thickness as compared to the best available observational data set. The variability of the annual maximum Baltic Sea ice extent is well in line with the observations, but the 1961-2006 trend is underestimated. Capturing the correct ice thickness distribution is more challenging. Based on the simulated ice thickness distribution we estimate the undeformed and deformed ice thickness and concentration in the Baltic Sea, which compares reasonably well with observations.

  1. Mitochondrial control region haplotypes of the South American sea lion Otaria flavescens (Shaw, 1800).

    PubMed

    Artico, L O; Bianchini, A; Grubel, K S; Monteiro, D S; Estima, S C; Oliveira, L R de; Bonatto, S L; Marins, L F

    2010-09-01

    The South American sea lion, Otaria flavescens, is widely distributed along the Pacific and Atlantic coasts of South America. However, along the Brazilian coast, there are only two nonbreeding sites for the species (Refúgio de Vida Silvestre da Ilha dos Lobos and Refúgio de Vida Silvestre do Molhe Leste da Barra do Rio Grande), both in Southern Brazil. In this region, the species is continuously under the effect of anthropic activities, mainly those related to environmental contamination with organic and inorganic chemicals and fishery interactions. This paper reports, for the first time, the genetic diversity of O. flavescens found along the Southern Brazilian coast. A 287-bp fragment of the mitochondrial DNA control region (D-loop) was analyzed. Seven novel haplotypes were found in 56 individuals (OFA1-OFA7), with OFA1 being the most frequent (47.54%). Nucleotide diversity was moderate (π = 0.62%) and haplotype diversity was relatively low (67%). Furthermore, the median joining network analysis indicated that Brazilian haplotypes formed a reciprocal monophyletic clade when compared to the haplotypes from the Peruvian population on the Pacific coast. These two populations do not share haplotypes and may have become isolated some time back. Further genetic studies covering the entire species distribution are necessary to better understand the biological implications of the results reported here for the management and conservation of South American sea lions.

  2. The regional geology and hydrocarbon potential of the Baltic Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haselton, T.M.; Brangulis, A.P.; Margulis, L.S.

    The Baltic Sea is roughly equivalent in size to the North Sea. Like the North Sea, is has an excellent oil prone source rock present over most of the area. In the entire Baltic Sea about 40 wells have been drilled. During the 1980s, exploration was carried out in the Soviet, Polish, and East German sectors of the Baltic Sea by Petrobaltic. Twenty-eight wells were drilled, 14 of which tested hydrocarbons. Two wells have been drilled in Danish waters and 11 in Swedish waters - all dry holes. Most of the Baltic Sea is included in the Baltic syneclise. Inmore » the deepest part of the basin a full Paleozoic and Mesozoic section is present. Major structural features are associated with reactivation of old basement faults. Most hydrocarbon discoveries are associated with structural arches. Exploration targets are Cambrian sandstones and Ordovician and Silurian reefs. The major discoveries are the B3 field in Poland and the D6 field offshore Lithuania and Kaliningrad, both of which have in-place reserves of around 100 million bbl. The Teisseyre-Tornquist line to the southwest represents the plate boundary between the East European platform and Europe. Repeated strike slip movements along this zone result in a complex pattern of extensional and compressional features in the Danish and German sectors. Primary exploration targets include Permian carbonates and sandstones as well as older zones. Gas has been tested in the German sector onshore.« less

  3. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins

    NASA Astrophysics Data System (ADS)

    Cronin, Thomas M.; O'Regan, Matt; Pearce, Christof; Gemery, Laura; Toomey, Michael; Semiletov, Igor; Jakobsson, Martin

    2017-09-01

    Deglacial (12.8-10.7 ka) sea level history on the East Siberian continental shelf and upper continental slope was reconstructed using new geophysical records and sediment cores taken during Leg 2 of the 2014 SWERUS-C3 expedition. The focus of this study is two cores from Herald Canyon, piston core SWERUS-L2-4-PC1 (4-PC1) and multicore SWERUS-L2-4-MC1 (4-MC1), and a gravity core from an East Siberian Sea transect, SWERUS-L2-20-GC1 (20-GC1). Cores 4-PC1 and 20-GC were taken at 120 and 115 m of modern water depth, respectively, only a few meters above the global last glacial maximum (LGM; ˜ 24 kiloannum or ka) minimum sea level of ˜ 125-130 meters below sea level (m b.s.l.). Using calibrated radiocarbon ages mainly on molluscs for chronology and the ecology of benthic foraminifera and ostracode species to estimate paleodepths, the data reveal a dominance of river-proximal species during the early part of the Younger Dryas event (YD, Greenland Stadial GS-1) followed by a rise in river-intermediate species in the late Younger Dryas or the early Holocene (Preboreal) period. A rapid relative sea level rise beginning at roughly 11.4 to 10.8 ka ( ˜ 400 cm of core depth) is indicated by a sharp faunal change and unconformity or condensed zone of sedimentation. Regional sea level at this time was about 108 m b.s.l. at the 4-PC1 site and 102 m b.s.l. at 20-GC1. Regional sea level near the end of the YD was up to 42-47 m lower than predicted by geophysical models corrected for glacio-isostatic adjustment. This discrepancy could be explained by delayed isostatic adjustment caused by a greater volume and/or geographical extent of glacial-age land ice and/or ice shelves in the western Arctic Ocean and adjacent Siberian land areas.

  4. Past storminess recorded in the internal architecture of coastal formations of Estonia in the NE Baltic Sea region

    NASA Astrophysics Data System (ADS)

    Tõnisson, Hannes; Vilumaa, Kadri; Kont, Are; Sugita, Shinya; Rosentau, Alar; Muru, Merle; Anderson, Agnes

    2016-04-01

    Over the past 50 years, storminess has increased in northern Europe because of the changes in cyclonic activity. The cyclone season in the Baltic Sea area has shifted from autumn to winter; this has led to intensification of shore processes (erosion, sediment transport and accumulation) and has increased pressure to the economy (land use, coastal protection measures) of the coastal regions in the Baltic states. Therefore, studing the effects of such changes on shore processes in the past is critical for prediction of the future changes along the Baltic coasts. Beach ridge plains are found worldwide, where cyclones and storm surges affect accumulation forms. These sandy shores are highly susceptible to erosion. Due to the isostatic uplift on the NE coast of the Baltic Sea, the signs of major past events are well-preserved in the internal architecture of old coastal formations (dune ridge-swale complexes). Wave-eroded scarps in beach deposits are visible in subsurface ground-penetrating radar (GPR) records, indicating the past high-energy events. Several study areas and transects were selected on the NW coast of Estonia, using high-resolution topographic maps (LiDAR). Shore-normal subsurface surveys have been conducted with a digital GSSI SIR-3000 georadar with a 270 MHz antenna at each transect. Interpretation of GPR facies was based on hand auger and window sampler coring, which provided accurate depths of key stratigraphic boundaries and bounding surfaces. Several samples for luminescence and 14C dating were collected to determine the approximate chronology of the coastal formations along the Estonian coast. We have found that changes in storminess, including the periods of high and low intensity of storms in late Holocene, are clearly reflected in the internal patterns of ancient coastal formations. The sections with small ridges with short seaward-dipped layers (interface between wave-built and aeolian deposits) in deeper horizons are probably formed during

  5. Sea Level Affecting Marshes Model (SLAMM) ‐ New functionality for predicting changes in distribution of submerged aquatic vegetation in response to sea level rise

    USGS Publications Warehouse

    Lee II, Henry; Reusser, Deborah A.; Frazier, Melanie R; McCoy, Lee M; Clinton, Patrick J.; Clough, Jonathan S.

    2014-01-01

    The “Sea‐Level Affecting Marshes Model” (SLAMM) is a moderate resolution model used to predict the effects of sea level rise on marsh habitats (Craft et al. 2009). SLAMM has been used extensively on both the west coast (e.g., Glick et al., 2007) and east coast (e.g., Geselbracht et al., 2011) of the United States to evaluate potential changes in the distribution and extent of tidal marsh habitats. However, a limitation of the current version of SLAMM, (Version 6.2) is that it lacks the ability to model distribution changes in seagrass habitat resulting from sea level rise. Because of the ecological importance of SAV habitats, U.S. EPA, USGS, and USDA partnered with Warren Pinnacle Consulting to enhance the SLAMM modeling software to include new functionality in order to predict changes in Zostera marina distribution within Pacific Northwest estuaries in response to sea level rise. Specifically, the objective was to develop a SAV model that used generally available GIS data and parameters that were predictive and that could be customized for other estuaries that have GIS layers of existing SAV distribution. This report describes the procedure used to develop the SAV model for the Yaquina Bay Estuary, Oregon, appends a statistical script based on the open source R software to generate a similar SAV model for other estuaries that have data layers of existing SAV, and describes how to incorporate the model coefficients from the site‐specific SAV model into SLAMM to predict the effects of sea level rise on Zostera marina distributions. To demonstrate the applicability of the R tools, we utilize them to develop model coefficients for Willapa Bay, Washington using site‐specific SAV data.

  6. Seismotectonic analysis of the Andaman Sea region from high-precision teleseismic double-difference locations

    NASA Astrophysics Data System (ADS)

    Diehl, T.; Waldhauser, F.; Schaff, D. P.; Engdahl, E. R.

    2009-12-01

    The Andaman Sea region in the Northeast Indian Ocean is characterized by a complex extensional back-arc basin, which connects the Sumatra Fault System in the south with the Sagaing fault in the north. The Andaman back-arc is generally classified as a convergent pull-apart basin (leaky-transform) rather than a typical extensional back-arc basin. Oblique subduction of the Indian-Australian plate results in strike-slip faulting parallel to the trench axis, formation of a sliver plate and back-arc pull-apart extension. Active spreading occurs predominately along a NE-SW oriented ridge-segment bisecting the Central Andaman basin at the SW end of the back-arc. Existing models of the Andaman back-arc system are mainly derived from bathymetry maps, seismic surveys, magnetic anomalies, and seismotectonic analysis. The latter are typically based on global bulletin locations provided by the NEIC or ISC. These bulletin locations, however, usually have low spatial resolution (especially in focal depth), which hampers a detailed seismotectonic interpretation. In order to better study the seismotectonic processes of the Andaman Sea region, specifically its role during the recent 2004 M9.3 earthquake, we improve on existing hypocenter locations by apply the double-difference algorithm to regional and teleseismic data. Differential times used for the relocation process are computed from phase picks listed in the ISC and NEIC bulletins, and from cross-correlating regional and teleseismic waveforms. EHB hypocenter solutions are used as reference locations to improve the initial locations in the ISC/NEIC catalog during double-difference processing. The final DD solutions show significantly reduced scatter in event locations along the back arc ridge. The various observed focal mechanisms tend to cluster by type and, in addition, the structure and orientation of individual clusters are generally consistent with available CMT solutions for individual events and reveal the detailed

  7. Potential effects of sea-level rise on coastal wetlands in southeastern Louisiana

    USGS Publications Warehouse

    Glick, Patty; Clough, Jonathan; Polaczyk, Amy; Couvillion, Brady R.; Nunley, Brad

    2013-01-01

    Coastal Louisiana wetlands contain about 37% of the estuarine herbaceous marshes in the conterminous United States. The long-term stability of coastal wetlands is often a function of a wetland's ability to maintain elevation equilibrium with mean sea level through processes such as primary production and sediment accretion. However, Louisiana has sustained more coastal wetland loss than all other states in the continental United States combined due to a combination of natural and anthropogenic factors, including sea-level rise. This study investigates the potential impact of current and accelerating sea-level rise rates on key coastal wetland habitats in southeastern Louisiana using the Sea Level Affecting Marshes Model (SLAMM). Model calibration was conducted using a 1956–2007 observation period and hindcasting results predicted 35% versus observed 39% total marsh loss. Multiple sea-level-rise scenarios were then simulated for the period of 2007–2100. Results indicate a range of potential wetland losses by 2100, from an additional 2,188.97 km2 (218,897 ha, 9% of the 2007 wetland area) under the lowest sea-level-rise scenario (0.34 m), to a potential loss of 5,875.27 km2 (587,527 ha, 24% of the 2007 wetland area) in the highest sea-level-rise scenario (1.9 m). Model results suggest that one area of particular concern is the potential vulnerability of the region's baldcypress-water tupelo (Taxodium distichum-Nyssa aquatica) swamp habitat, much of which is projected to become permanently flooded (affecting regeneration) under all modeled scenarios for sea-level rise. These findings will aid in the development of ecosystem management plans that support the processes and conditions that result in sustainable coastal ecosystems.

  8. Relative sea level in the Western Mediterranean basin: A regional test of the ICE-7G_NA (VM7) model and a constraint on late Holocene Antarctic deglaciation

    NASA Astrophysics Data System (ADS)

    Roy, Keven; Peltier, W. R.

    2018-03-01

    The Mediterranean Basin is a region of special interest in the study of past and present relative sea level evolution, given its location south of the ice sheets that covered large fractions of Northern Europe during the last glaciation, the large number of biological, geological and archaeological sea level indicators that have been retrieved from its coastal regions, as well as its high density of modern coastal infrastructure. Models of the Glacial Isostatic Adjustment (GIA) process provide reconstructions of past relative sea level evolution, and can be tested for validity against past sea level indicators from the region. It is demonstrated herein that the latest ICE-7G_NA (VM7) model of the GIA process, the North American component of which was refined using a full suite of geophysical observables, is able to reconcile the vast majority of uniformly analyzed relative sea level constraints available for the Western part of the Mediterranean basin, a region to which it was not tuned. We also revisit herein the previously published interpretations of relative sea level information obtained from Roman-era coastal Mediterranean "fish tanks", analyze the far-field influence of the rate of late Holocene Antarctic ice sheet melting history on the exceptionally detailed relative sea level history available from southern Tunisia, and extend the analysis to complementary constraints on the history of Antarctic ice-sheet melting available from islands in the equatorial Pacific Ocean. The analyses reported herein provide strong support for the global "exportability" of the ICE-7G_NA (VM7) model, a result that speaks directly to the ability of spherically symmetric models of the internal viscoelastic structure to explain globally distributed observations, while also identifying isolated regions of remaining misfit which will benefit from further study.

  9. A Simple Technique for Creating Regional Composites of Sea Surface Temperature from MODIS for Use in Operational Mesoscale NWP

    NASA Technical Reports Server (NTRS)

    Knievel, Jason C.; Rife, Daran L.; Grim, Joseph A.; Hahmann, Andrea N.; Hacker, Joshua P.; Ge, Ming; Fisher, Henry H.

    2010-01-01

    This paper describes a simple technique for creating regional, high-resolution, daytime and nighttime composites of sea surface temperature (SST) for use in operational numerical weather prediction (NWP). The composites are based on observations from NASA s Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua and Terra. The data used typically are available nearly in real time, are applicable anywhere on the globe, and are capable of roughly representing the diurnal cycle in SST. The composites resolution is much higher than that of many other standard SST products used for operational NWP, including the low- and high-resolution Real-Time Global (RTG) analyses. The difference in resolution is key because several studies have shown that highly resolved SSTs are important for driving the air sea interactions that shape patterns of static stability, vertical and horizontal wind shear, and divergence in the planetary boundary layer. The MODIS-based composites are compared to in situ observations from buoys and other platforms operated by the National Data Buoy Center (NDBC) off the coasts of New England, the mid-Atlantic, and Florida. Mean differences, mean absolute differences, and root-mean-square differences between the composites and the NDBC observations are all within tenths of a degree of those calculated between RTG analyses and the NDBC observations. This is true whether or not one accounts for the mean offset between the skin temperatures of the MODIS dataset and the bulk temperatures of the NDBC observations and RTG analyses. Near the coast, the MODIS-based composites tend to agree more with NDBC observations than do the RTG analyses. The opposite is true away from the coast. All of these differences in point-wise comparisons among the SST datasets are small compared to the 61.08C accuracy of the NDBC SST sensors. Because skin-temperature variations from land to water so strongly affect the development and life cycle of the sea breeze, this

  10. Mycobacterium haemophilum infection in a juvenile leatherback sea turtle (Dermochelys coriacea).

    PubMed

    Donnelly, Kyle; Waltzek, Thomas B; Wellehan, James F X; Stacy, Nicole I; Chadam, Maria; Stacy, Brian A

    2016-11-01

    Mycobacteriosis is infrequently reported in free-ranging sea turtles. Nontuberculous Mycobacterium haemophilum was identified as the causative agent of disseminated mycobacteriosis in a juvenile leatherback turtle (Dermochelys coriacea) that was found stranded on the Atlantic coast of Florida. Disseminated granulomatous inflammation was identified histologically, most notably affecting the nervous system. Identification of mycobacterial infection was based on cytologic, molecular, histologic, and microbiologic methods. Among stranded sea turtles received for diagnostic evaluation from the Atlantic and Gulf of Mexico coasts of the United States between 2004 and 2015, the diagnosis of mycobacteriosis was overrepresented in stranded oceanic-phase juveniles compared with larger size classes, which suggests potential differences in susceptibility or exposure among different life phases in this region. We describe M. haemophilum in a sea turtle, which contributes to the knowledge of diseases of small juvenile sea turtles, an especially cryptic life phase of the leatherback turtle. © 2016 The Author(s).

  11. Hydrological and biogeochemical response of the Mediterranean Sea to freshwater flow changes for the end of the 21st century.

    PubMed

    Macias, Diego; Stips, Adolf; Garcia-Gorriz, Elisa; Dosio, Alessandro

    2018-01-01

    We evaluate the changes on the hydrological (temperature and salinity) and biogeochemical (phytoplankton biomass) characteristics of the Mediterranean Sea induced by freshwater flow modifications under two different scenarios for the end of the 21st century. An ensemble of four regional climate model realizations using different global circulation models at the boundary and different emission scenarios are used to force a single ocean model for the Mediterranean Sea. Freshwater flow is modified according to the simulated changes in the precipitation rates for the different rivers' catchment regions. To isolate the effect resulting from a change in freshwater flow, model results are evaluated against a 'baseline' simulation realized assuming a constant inflow equivalent to climatologic values. Our model results indicate that sea surface salinity could be significantly altered by freshwater flow modification in specific regions and that the affected area and the sign of the anomaly are highly dependent on the used climate model and emission scenario. Sea surface temperature and phytoplankton biomass, on the contrary, show no coherent spatial pattern but a rather widespread scattered response. We found in open-water regions a significant negative relationship between sea surface temperature anomalies and phytoplankton biomass anomalies. This indicates that freshwater flow modification could alter the vertical stability of the water column throughout the Mediterranean Sea, by changing the strength of vertical mixing and consequently upper water fertilization. In coastal regions, however, the correlation between sea temperature anomalies and phytoplankton biomass is positive, indicating a larger importance of the physiological control of growth rates by temperature.

  12. Assessment of ocean models in Mediterranean Sea against altimetry and gravimetry measurements

    NASA Astrophysics Data System (ADS)

    Fenoglio-Marc, Luciana; Uebbing, Bernd; Kusche, Jürgen

    2017-04-01

    This work aims at assessing in a regional study in the Mediterranean Sea the agreement between ocean model outputs and satellite altimetry and satellite gravity observations. Satellite sea level change are from altimeter data made available by the Sea Level Climate Change Initiative (SLCCI) and from satellite gravity data made available by GRACE. We consider two ocean simulations not assimilating satellite altimeter data and one ocean model reanalysis assimilating satellite altimetry. Ocean model simulations can provide some insight on the ocean variability, but they are affected by biases due to errors in model formulation, specification of initial states and forcing, and are not directly constrained by observations. Their trend can be quite different from the altimetric observations due to surface radiation biases, however they are physically consistent. Ocean reanalyses are the combination of ocean models, atmospheric forcing fluxes and ocean observations via data assimilation methods and have the potential to provide more accurate information than observation-only or model-only based ocean estimations. They will be closer to altimetry at long and short timescales, but assimilation may destroy mass consistency. We use two ocean simulations which are part of the Med-CORDEX initiative (https://www.medcordex.eu). The first is the CNRM-RCM4 fully-coupled Regional Climate System Model (RCMS) simulation developed at METEOFRANCE for 1980-2012. The second is the PROTHEUS standalone hindcast simulation developed at ENEA and covers the interval 1960-2012. The third model is the regional model MEDSEA_REANALYSIS_PHIS_006_004 assimilating satellite altimeter data (http://marine.copernicus.eu/) and available over 1987-2014. Comparison at basin and regional scale are made. First the steric, thermo-steric, halosteric and dynamic components output of the models are compared. Then the total sea level given by the models is compared to the altimeter observations. Finally the mass

  13. The ocean mixed layer under Southern Ocean sea-ice: seasonal cycle and forcing.

    NASA Astrophysics Data System (ADS)

    Violaine, P.; Sallee, J. B.; Schmidtko, S.; Roquet, F.; Charrassin, J. B.

    2016-02-01

    The mixed-layer at the surface of the ocean is the gateway for all exchanges between air and sea. A vast area of the Southern Ocean is however seasonally capped by sea-ice, which alters this gateway and the characteristic the ocean mixed-layer. The interaction between the ocean mixed-layer and sea-ice plays a key role for water-mass formation and circulation, carbon cycle, sea-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the mixed layer, as well as the processes responsible for its evolution, are poorly understood due to the lack of in-situ observations and measurements. We urgently need to better understand the forcing and the characteristics of the ocean mixed-layer under sea-ice if we are to understand and predict the world's climate. In this study, we combine a range of distinct sources of observation to overcome this lack in our understanding of the Polar Regions. Working on Elephant Seal-derived data as well as ship-based observations and Argo float data, we describe the seasonal cycle of the characteristics and stability of the ocean mixed layer over the entire Southern Ocean (South of 40°S), and specifically under sea-ice. Mixed-layer budgets of heat and freshwater are used to investigate the main forcings of the mixed-layer seasonal cycle. The seasonal variability of sea surface salinity and temperature are primarily driven by surface processes, dominated by sea-ice freshwater flux for the salt budget, and by air-sea flux for the heat budget. Ekman advection, vertical diffusivity and vertical entrainment play only secondary role.Our results suggest that changes in regional sea-ice distribution or sea-ice seasonal cycle duration, as currently observed, would widely affect the buoyancy budget of the underlying mixed-layer, and impacts large-scale water-mass formation and transformation.

  14. Limb reduction defects in the northern region of England 1985-92.

    PubMed Central

    Wright, M J; Newell, J N; Charlton, M E; Hey, E N; Donaldson, L J; Burn, J

    1995-01-01

    STUDY OBJECTIVE--To test the hypothesis that children born to mothers living near the sea are at increased risk of limb reduction defects. DESIGN--Descriptive data analysis. SETTING--The northern health region of England. PATIENTS--All children born between 1 January 1985 and 31 December 1992 in the northern region of England with isolated limb reduction defects. MAIN RESULTS--The birth prevalence of isolated limb reduction defects was not affected by the distance the mother lived from the sea. There was some evidence of space-time clustering, but there was no evidence of statistically significant variation in the occurrence of the condition with sex, time of birth (monthly or yearly), or county of birth. CONCLUSIONS--There is no evidence that children born to mothers living near the sea are at increased risk of limb reduction defects. PMID:7629469

  15. Regionalization and Evaluation of Impacts of Climate Change on Mexican Coasts

    NASA Astrophysics Data System (ADS)

    Nava-Sanchez, E. H.; Murillo-Jimenez, J. M.; Godinez-Orta, L.; Morales-Perez, R. A.

    2009-04-01

    Mexican coasts exhibit a high variety of geoforms and processes, and consequently, are exposed to a variability of types and impact levels of geological hazards. Tropical cyclones are the most devastating hazards for the Mexican coast, although, impact levels are higher on the southern coast of both Atlantic and Pacific oceans. The second dangerous geo-hazards are earthquakes and tsunamis, which affect all Pacific coast, causing more damage the earthquakes generated in the Cocos Trench. For seismic hazards, there is a regionalization of the Mexican territory, however, even though the high levels of damages caused by other natural hazards, there is a lack of initiatives for performing atlas of natural hazards or coastal management plans. Exceptions are the local scale atlas of natural hazards by the Mexican Geological Survey or some other local scale atlas made with several errors by non experience private consultant companies. Our work shows results of analyses of coastal geological hazards associated to global warming such as the sea level rise, and the increase in strength of some coastal processes. Initially, due to the high diversity in coastal environments for the Mexican coast, it was considered that, a regional characterization of the coastal zone, and the gathering of environmental data for determining levels of impact of the various coastal hazards, as an evaluation of coastal vulnerability. Thus, the basic criteria for defining Coastal Regions, in order of importance, were the following: geomorphology, climate, geology, tectonics, and oceanography. Also, some anthropogenic factors were taken in account for the coastal regionalization, such as civil construction along the coastline, land used and modification of the fluvial system. The analysis of such criteria, allows us to classify the Mexican coasts in 10 Coastal Regions. On the Pacific coast regions are: (I) Pacific Coast of Baja California, (II) Gulf Coast of Baja California, (III) Coastal Plain of

  16. IODP expedition 347: Baltic Sea basin paleoenvironment and biosphere

    NASA Astrophysics Data System (ADS)

    Andrén, T.; Barker Jørgensen, B.; Cotterill, C.; Green, S.; IODP expedition 347 scientific party, the

    2015-12-01

    The Integrated Ocean Drilling Program (IODP) expedition 347 cored sediments from different settings of the Baltic Sea covering the last glacial-interglacial cycle. The main aim was to study the geological development of the Baltic Sea in relation to the extreme climate variability of the region with changing ice cover and major shifts in temperature, salinity, and biological communities. Using the Greatship Manisha as a European Consortium for Ocean Research Drilling (ECORD) mission-specific platform, we recovered 1.6 km of core from nine sites of which four were additionally cored for microbiology. The sites covered the gateway to the North Sea and Atlantic Ocean, several sub-basins in the southern Baltic Sea, a deep basin in the central Baltic Sea, and a river estuary in the north. The waxing and waning of the Scandinavian ice sheet has profoundly affected the Baltic Sea sediments. During the Weichselian, progressing glaciers reshaped the submarine landscape and displaced sedimentary deposits from earlier Quaternary time. As the glaciers retreated they left a complex pattern of till, sand, and lacustrine clay, which in the basins has since been covered by a thick deposit of Holocene, organic-rich clay. Due to the stratified water column of the brackish Baltic Sea and the recurrent and widespread anoxia, the deeper basins harbor laminated sediments that provide a unique opportunity for high-resolution chronological studies. The Baltic Sea is a eutrophic intra-continental sea that is strongly impacted by terrestrial runoff and nutrient fluxes. The Holocene deposits are recorded today to be up to 50 m deep and geochemically affected by diagenetic alterations driven by organic matter degradation. Many of the cored sequences were highly supersaturated with respect to methane, which caused strong degassing upon core recovery. The depth distributions of conservative sea water ions still reflected the transition at the end of the last glaciation from fresh-water clays to

  17. Deep-sea pennatulaceans (sea pens) - recent discoveries, morphological adaptations, and responses to benthic oceanographic parameters

    NASA Astrophysics Data System (ADS)

    Williams, G. C.

    2015-12-01

    Pennatulaceans are sessile, benthic marine organisms that are bathymetrically wide-ranging, from the intertidal to approximately 6300 m in depth, and are conspicuous constituents of deep-sea environments. The vast majority of species are adapted for anchoring in soft sediments by the cylindrical peduncle - a muscular hydrostatic skeleton. However, in the past decade a few species ("Rockpens") have been discovered and described that can attach to hard substratum such as exposed rocky outcrops at depths between 669 and 1969 m, by a plunger-like adaptation of the base of the peduncle. Of the thirty-six known genera, eleven (or 30%) have been recorded from depths greater than 1000 m. The pennatulacean depth record holders are an unidentified species of Umbellula from 6260 m in the Peru-Chile Trench and a recently-discovered and described genus and species, Porcupinella profunda, from 5300 m the Porcupine Abyssal Plain of the northeastern Atlantic. A morphologically-differentiated type of polyp (acrozooid) have recently been discovered and described in two genera of shallow-water coral reef sea pens. Acrozooids apparently represent asexual buds and presumably can detach from the adult to start clonal colonies through asexual budding. Acrozooids are to be expected in deep-sea pennatulaceans, but so far have not been observed below 24 m in depth. Morphological responses at depths greater than 1000 m in deep-sea pennatulaceas include: fewer polyps, larger polyps, elongated stalks, and clustering of polyps along the rachis. Responses to deep-ocean physical parameters and anthropogenic changes that could affect the abundance and distribution of deep-sea pennatulaceans include changes in bottom current flow and food availability, changes in seawater temperature and pH, habitat destruction by fish trawling, and sunken refuse pollution. No evidence of the effects of ocean acidification or other effects of anthropogenic climate change in sea pens of the deep-sea has been

  18. Composite Earthquake Catalog of the Yellow Sea for Seismic Hazard Studies

    NASA Astrophysics Data System (ADS)

    Kang, S. Y.; Kim, K. H.; LI, Z.; Hao, T.

    2017-12-01

    The Yellow Sea (a.k.a West Sea in Korea) is an epicontinental and semi-closed sea located between Korea and China. Recent earthquakes in the Yellow Sea including, but not limited to, the Seogyuckryulbi-do (1 April 2014, magnitude 5.1), Heuksan-do (21 April 2013, magnitude 4.9), Baekryung-do (18 May 2013, magnitude 4.9) earthquakes, and the earthquake swarm in the Boryung offshore region in 2013, remind us of the seismic hazards affecting east Asia. This series of earthquakes in the Yellow Sea raised numerous questions. Unfortunately, both governments have trouble in monitoring seismicity in the Yellow Sea because earthquakes occur beyond their seismic networks. For example, the epicenters of the magnitude 5.1 earthquake in the Seogyuckryulbi-do region in 2014 reported by the Korea Meteorological Administration and China Earthquake Administration differed by approximately 20 km. This illustrates the difficulty with seismic monitoring and locating earthquakes in the region, despite the huge effort made by both governments. Joint effort is required not only to overcome the limits posed by political boundaries and geographical location but also to study seismicity and the underground structures responsible. Although the well-established and developing seismic networks in Korea and China have provided unprecedented amount and quality of seismic data, high quality catalog is limited to the recent 10s of years, which is far from major earthquake cycle. It is also noticed the earthquake catalog from either country is biased to its own and cannot provide complete picture of seismicity in the Yellow Sea. In order to understand seismic hazard and tectonics in the Yellow Sea, a composite earthquake catalog has been developed. We gathered earthquake information during last 5,000 years from various sources. There are good reasons to believe that some listings account for same earthquake, but in different source parameters. We established criteria in order to provide consistent

  19. Microalgal photophysiology and macronutrient distribution in summer sea ice in the Amundsen and Ross Seas, Antarctica

    PubMed Central

    Fransson, Agneta; Currie, Kim; Wulff, Angela; Chierici, Melissa

    2018-01-01

    Our study addresses how environmental variables, such as macronutrients concentrations, snow cover, carbonate chemistry and salinity affect the photophysiology and biomass of Antarctic sea-ice algae. We have measured vertical profiles of inorganic macronutrients (phosphate, nitrite + nitrate and silicic acid) in summer sea ice and photophysiology of ice algal assemblages in the poorly studied Amundsen and Ross Seas sectors of the Southern Ocean. Brine-scaled bacterial abundance, chl a and macronutrient concentrations were often high in the ice and positively correlated with each other. Analysis of photosystem II rapid light curves showed that microalgal cells in samples with high phosphate and nitrite + nitrate concentrations had reduced maximum relative electron transport rate and photosynthetic efficiency. We also observed strong couplings of PSII parameters to snow depth, ice thickness and brine salinity, which highlights a wide range of photoacclimation in Antarctic pack-ice algae. It is likely that the pack ice was in a post-bloom situation during the late sea-ice season, with low photosynthetic efficiency and a high degree of nutrient accumulation occurring in the ice. In order to predict how key biogeochemical processes are affected by future changes in sea ice cover, such as in situ photosynthesis and nutrient cycling, we need to understand how physicochemical properties of sea ice affect the microbial community. Our results support existing hypothesis about sea-ice algal photophysiology, and provide additional observations on high nutrient concentrations in sea ice that could influence the planktonic communities as the ice is retreating. PMID:29634756

  20. Influence of air-sea coupling on Indian Ocean tropical cyclones

    NASA Astrophysics Data System (ADS)

    Lengaigne, Matthieu; Neetu, S.; Samson, Guillaume; Vialard, Jérôme; Krishnamohan, K. S.; Masson, Sébastien; Jullien, Swen; Suresh, I.; Menkes, Christophe E.

    2018-02-01

    This paper assesses the impact of air-sea coupling on Indian Ocean tropical cyclones (TCs) by comparing a 20-year long simulation of a ¼° regional coupled ocean-atmosphere model with a twin experiment, where the atmospheric component is forced by sea surface temperature from the coupled simulation. The coupled simulation reproduces the observed spatio-temporal TCs distribution and TC-induced surface cooling reasonably well, but overestimates the number of TCs. Air-sea coupling does not affect the cyclogenesis spatial distribution but reduces the number of TCs by 20% and yields a better-resolved bimodal seasonal distribution in the northern hemisphere. Coupling also affects intensity distribution, inducing a four-fold decrease in the proportion of intense TCs (Cat-2 and stronger). Air-sea coupling damps TCs growth through a reduction of inner-core upward enthalpy fluxes due to the TC-induced cooling. This reduction is particularly large for the most intense TCs of the northern Indian Ocean (up to 250 W m-2), due to higher ambient surface temperatures and larger TC-induced cooling there. The negative feedback of air-sea coupling on strongest TCs is mainly associated with slow-moving storms, which spend more time over the cold wake they induce. Sensitivity experiments using a different convective parameterization yield qualitatively similar results, with a larger ( 65%) reduction in the number of TCs. Because of their relatively coarse resolution (¼°), both set of experiments however fail to reproduce the most intense observed TCs. Further studies with finer resolution models in the Bay of Bengal will be needed to assess the expectedly large impact of air-sea coupling on those intense and deadly TCs.

  1. Grain-size based sea-level reconstruction in the south Bohai Sea during the past 135 kyr

    NASA Astrophysics Data System (ADS)

    Yi, Liang; Chen, Yanping

    2013-04-01

    Future anthropogenic sea-level rise and its impact on coastal regions is an important issue facing human civilizations. Due to the short nature of the instrumental record of sea-level change, development of proxies for sea-level change prior to the advent of instrumental records is essential to reconstruct long-term background sea-level changes on local, regional and global scales. Two of the most widely used approaches for past sea-level changes are: (1) exploitation of dated geomorphologic features such as coastal sands (e.g. Mauz and Hassler, 2000), salt marsh (e.g. Madsen et al., 2007), terraces (e.g. Chappell et al., 1996), and other coastal sediments (e.g. Zong et al., 2003); and (2) sea-level transfer functions based on faunal assemblages such as testate amoebae (e.g. Charman et al., 2002), foraminifera (e.g. Chappell and Shackleton, 1986; Horton, 1997), and diatoms (e.g. Horton et al., 2006). While a variety of methods has been developed to reconstruct palaeo-changes in sea level, many regions, including the Bohai Sea, China, still lack detailed relative sea-level curves extending back to the Pleistocene (Yi et al., 2012). For example, coral terraces are absent in the Bohai Sea, and the poor preservation of faunal assemblages makes development of a transfer function for a relative sea-level reconstruction unfeasible. In contrast, frequent alternations between transgression and regression has presumably imprinted sea-level change on the grain size distribution of Bohai Sea sediments, which varies from medium silt to coarse sand during the late Quaternary (IOCAS, 1985). Advantages of grainsize-based relative sea-level transfer function approaches are that they require smaller sample sizes, allowing for replication, faster measurement and higher spatial or temporal resolution at a fraction of the cost of detail micro-palaeontological analysis (Yi et al., 2012). Here, we employ numerical methods to partition sediment grain size using a combined database of

  2. Examining Differences in Arctic and Antarctic Sea Ice Change

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.; Rigor, I. G.; Clemente-Colon, P.; Neumann, G.; Li, P.

    2015-12-01

    The paradox of the rapid reduction of Arctic sea ice versus the stability (or slight increase) of Antarctic sea ice remains a challenge in the cryospheric science research community. Here we start by reviewing a number of explanations that have been suggested by different researchers and authors. One suggestion is that stratospheric ozone depletion may affect atmospheric circulation and wind patterns such as the Southern Annular Mode, and thereby sustaining the Antarctic sea ice cover. The reduction of salinity and density in the near-surface layer may weaken the convective mixing of cold and warmer waters, and thus maintaining regions of no warming around the Antarctic. A decrease in sea ice growth may reduce salt rejection and upper-ocean density to enhance thermohalocline stratification, and thus supporting Antarctic sea ice production. Melt water from Antarctic ice shelves collects in a cool and fresh surface layer to shield the surface ocean from the warmer deeper waters, and thus leading to an expansion of Antarctic sea ice. Also, wind effects may positively contribute to Antarctic sea ice growth. Moreover, Antarctica lacks of additional heat sources such as warm river discharge to melt sea ice as opposed to the case in the Arctic. Despite of these suggested explanations, factors that can consistently and persistently maintains the stability of sea ice still need to be identified for the Antarctic, which are opposed to factors that help accelerate sea ice loss in the Arctic. In this respect, using decadal observations from multiple satellite datasets, we examine differences in sea ice properties and distributions, together with dynamic and thermodynamic processes and interactions with land, ocean, and atmosphere, causing differences in Arctic and Antarctic sea ice change to contribute to resolving the Arctic-Antarctic sea ice paradox.

  3. Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights (Invited)

    NASA Astrophysics Data System (ADS)

    Tsuda, A.

    2010-12-01

    Western Pacific Air-Sea Interaction Study (W-PASS), Introduction and Highlights Atsushi Tsuda Atmosphere and Ocean Research Institute, The University of Tokyo In the western Pacific (WESTPAC) region, dust originating from Asian and Australian arid regions to the North and South Pacific, biomass burning emissions from the Southeast Asia to sub-tropical Pacific, and other anthropogenic substances are transported regionally and globally to affect cloud and rainfall patterns, air quality, and radiative budgets downwind. Deposition of these compounds into the Asian marginal seas and onto the Pacific Ocean influence surface primary productivity and species composition. In the WESTPAC region, subarctic, subtropical oceans and marginal seas are located relatively narrow latitudinal range and these areas are influenced by the dust and anthropogenic inputs. Moreover, anthropogenic emission areas are located between the arid region and the oceans. The W-PASS (Western Pacific Air-Sea interaction Study) project has been funded for 5 years as a part of SOLAS-Japan activity in the summer of 2006. We aim to resolve air-sea interaction through field observation studies mainly using research vessels and island observatories over the western Pacific. We have carried out 5 cruises to the western North Pacific focusing on air-sea interactions. Also, an intensive marine atmospheric observation including direct atmospheric deposition measurement was accomplished by a dozen W-PASS research groups at the NIES Atmospheric and Aerosol Monitoring Station of Cape Hedo in the northernmost tip of the Okinawa main Island facing the East China Sea in the spring 2008. A few weak Kosa (dust) events, anthropogenic air outflows, typical local air and occupation of marine background air were identified during the campaign period. The W-PASS has four research groups mainly focusing on VOC emissions, air-sea gas exchange processes, biogeochemical responses to dust depositions and its modeling. We also

  4. Prospects of the New Science and Outreach Network Baltic Earth with Results of the Second Climate Change Assessment for the Baltic Sea Region (BACC II)

    NASA Astrophysics Data System (ADS)

    Reckermann, M.; Von Storch, H.; Omstedt, A. T.; Meier, M.; Rutgersson, A.

    2014-12-01

    The Baltic Sea region in Northern Europe spans different climate and population zones, from a temperate, highly populated, industrialized south with intensive agriculture to a boreal, rural north. It represents an old cultural landscape, and the Baltic Sea itself is among the most intensively studied sea areas of the world. Baltic Earth is the new Earth system research network for the Baltic Sea region. It is the successor to BALTEX, which was terminated in June 2013 after 20 years and two successful phases. Baltic Earth stands for the vision to achieve an improved Earth system understanding of the Baltic Sea region. This means that the research disciplines of BALTEX continue to be relevant, i.e. atmospheric and climate sciences, hydrology, oceanography and biogeochemistry, but a more holistic view of the Earth system encompassing processes in the atmosphere, on land and in the sea as well as in the anthroposphere shall gain in importance in Baltic Earth. Specific grand research challenges have been formulated, representing interdisciplinary research questions to be tackled in the coming years. A major means will be scientific assessments of particular research topics by expert groups, similar to the BACC approach, which shall help to identify knowledge gaps and develop research strategies. A major outcome of Baltic Earth will be the update of the BALTEX Assessment of Climate Change for the Baltic Sea Basin (BACC II). This new study after 5 years finds the results of BACC I still valid. Climate change can be detected at the regional scale but attribution is still weak. The effect of changing atmospheric aerosol loads and land use change is largely unknown so far and needs further attention in the coming years. For the observed changes in biogeochemical and ecological systems, multiple drivers are at work of which climate change is one. Their relative importance still needs to be evaluated. When addressing climate change impacts on e.g. forestry, agriculture, urban

  5. Sea Ice Retreat and its Impact on the Intensity of Open-Ocean Convection in the Greenland and Iceland Seas

    NASA Astrophysics Data System (ADS)

    Moore, K.; Våge, K.; Pickart, R. S.; Renfrew, I.

    2016-12-01

    The air-sea transfer of heat and freshwater plays a critical role in the global climate system. This is particularly true for the Greenland and Iceland Seas, where these fluxes drive ocean convection that contributes to Denmark Strait Overflow Water, the densest component of the lower limb of the Atlantic Meridional Overturning Circulation (AMOC). This buoyancy transfer is most pronounced during the winter downstream of the ice edge, where the cold and dry Arctic air first comes in contact with the relatively warm ocean surface. Here we show that the wintertime retreat of sea ice in the region, combined with different rates of warming for the atmosphere and sea surface of the Greenland and Iceland Seas, has resulted in statistically significant reductions of approximately 20% in the magnitude of the winter air-sea heat fluxes since 1979. Furthermore, it is demonstrated that modes of climate variability other than the North Atlantic Oscillation (NAO) are required to fully characterize the regional air-sea interaction in this region. Mixed-layer model simulations imply that a continued decrease in atmospheric forcing will exceed a threshold for the Greenland Sea whereby convection will become depth limited, reducing the ventilation of mid-depth waters in the Nordic Seas. In the Iceland Sea, further reductions have the potential to decrease the supply of the densest overflow waters to the AMOC.

  6. The Last Arctic Sea Ice Refuge

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Tremblay, B.; Newton, R.; Fowler, C.

    2010-12-01

    Summer sea ice may persist along the northern flank of Canada and Greenland for decades longer than the rest of the Arctic, raising the possibility of a naturally formed refugium for ice-associated species. Observations and models indicate that some ice in this region forms locally, while some is transported to the area by winds and ocean currents. Depending on future changes in melt patterns and sea ice transport rates, both the central Arctic and Siberian shelf seas may be sources of ice to the region. An international system of monitoring and management of the sea ice refuge, along with the ice source regions, has the potential to maintain viable habitat for ice-associated species, including polar bears, for decades into the future. Issues to consider in developing a strategy include: + the likely duration and extent of summer sea ice in this region based on observations, models and paleoenvironmental information + the extent and characteristics of the “ice shed” contributing sea ice to the refuge, including its dynamics, physical and biological characteristics as well as potential for contamination from local or long-range sources + likely assemblages of ice-associated species and their habitats + potential stressors such as transportation, tourism, resource extraction, contamination + policy, governance, and development issues including management strategies that could maintain the viability of the refuge.

  7. Simulation of bombe radiocarbon transient in the Mediterranean Sea using a high-resolution regional model.

    NASA Astrophysics Data System (ADS)

    Ayache, Mohamed; Dutay, Jean-claude; Mouchet, Anne; Tisnérat-Laborde, Nadine; Houma-Bachari, Fouzia; Louanchi, Ferial; jean-baptiste, Philippe

    2016-04-01

    The radiocarbon isotope of carbon "14C", which a half-life of 5730 years, is continually formed naturally in the atmosphere by the neutron bombardment of 14N atoms. However, in the 1950s and early1960s, the atmospheric testing of thermonuclear weapons added a large amount of 14C into the atmosphere. The gradual infusion and spread of this "bomb" 14C through the oceans has provided a unique opportunity to gain insight into the specific rates characterizing the carbon cycle and ocean ventilations on such timescales. This numerical study provides, for the first time in the Mediterranean Sea, a simulation of the anthropogenic 14C invasion covers a 70-years period spanning the entire 14C generated by the bomb test, by using a high resolution regional model NEMO-MED12 (1/12° of horizontal resolution). This distribution and evolution of Δ14C of model is compared with recent high resolution 14C measurements obtained from surface water corals (Tisnérat-Laborde et al, 2013). In addition to providing constraints on the air-sea transfer of 14C, our work provides information on the thermohaline circulation and the ventilation of the deep waters to constrain the degree to which the NEMO-MED12 can reproduce correctly the main hydrographic features of the Mediterranean Sea circulation and its variations estimated from corals 14C time series measurements. This study is part of the work carried out to assess the robustness of the NEMO-MED12 model, which will be used to study the evolution of the climate and its effect on the biogeochemical cycles in the Mediterranean Sea, and to improve our ability to predict the future evolution of the Mediterranean Sea under the increasing anthropogenic pressure.

  8. Exploring New Challenges of High-Resolution SWOT Satellite Altimetry with a Regional Model of the Solomon Sea

    NASA Astrophysics Data System (ADS)

    Brasseur, P.; Verron, J. A.; Djath, B.; Duran, M.; Gaultier, L.; Gourdeau, L.; Melet, A.; Molines, J. M.; Ubelmann, C.

    2014-12-01

    The upcoming high-resolution SWOT altimetry satellite will provide an unprecedented description of the ocean dynamic topography for studying sub- and meso-scale processes in the ocean. But there is still much uncertainty on the signal that will be observed. There are many scientific questions that are unresolved about the observability of altimetry at vhigh resolution and on the dynamical role of the ocean meso- and submesoscales. In addition, SWOT data will raise specific problems due to the size of the data flows. These issues will probably impact the data assimilation approaches for future scientific or operational oceanography applications. In this work, we propose to use a high-resolution numerical model of the Western Pacific Solomon Sea as a regional laboratory to explore such observability and dynamical issues, as well as new data assimilation challenges raised by SWOT. The Solomon Sea connects subtropical water masses to the equatorial ones through the low latitude western boundary currents and could potentially modulate the tropical Pacific climate. In the South Western Pacific, the Solomon Sea exhibits very intense eddy kinetic energy levels, while relatively little is known about the mesoscale and submesoscale activities in this region. The complex bathymetry of the region, complicated by the presence of narrow straits and numerous islands, raises specific challenges. So far, a Solomon sea model configuration has been set up at 1/36° resolution. Numerical simulations have been performed to explore the meso- and submesoscales dynamics. The numerical solutions which have been validated against available in situ data, show the development of small scale features, eddies, fronts and filaments. Spectral analysis reveals a behavior that is consistent with the SQG theory. There is a clear evidence of energy cascade from the small scales including the submesoscales, although those submesoscales are only partially resolved by the model. In parallel

  9. The instrumental seismicity of the Barents and Kara sea region: relocated event catalog from early twentieth century to 1989

    NASA Astrophysics Data System (ADS)

    Morozov, Alexey Nikolaevich; Vaganova, Natalya V.; Asming, Vladimir E.; Konechnaya, Yana V.; Evtyugina, Zinaida A.

    2018-05-01

    We have relocated seismic events registered within the Barents and Kara sea region from early twentieth century to 1989 with a view to creating a relocated catalog. For the relocation, we collected all available seismic bulletins from the global network using data from the ISC Bulletin (International Seismological Centre), ISC-GEM project (International Seismological Centre-Global Earthquake Model), EuroSeismos project, and by Soviet seismic stations from Geophysical Survey of the Russian Academy of Sciences. The location was performed by applying a modified method of generalized beamforming. We have considered several travel time models and selected one with the best location accuracy for ground truth events. Verification of the modified method and selection of the travel time model were performed using data on four nuclear explosions that occurred in the area of the Novaya Zemlya Archipelago and in the north of the European part of Russia. The modified method and the Barents travel time model provide sufficient accuracy for event location in the region. The relocation procedure was applied to 31 of 36 seismic events registered within the Barents and Kara sea region.

  10. Assessing the impact of sea level rise due to climate change on seawater intrusion in Mekong Delta, Vietnam.

    PubMed

    Vu, D T; Yamada, T; Ishidaira, H

    2018-03-01

    In the context of climate change, salinity intrusion into rivers has been, and will be, one of the most important issues for coastal water resources management. A combination of changes, including increased temperature, change in regional rainfall, especially sea level rise (SLR) related to climate change, will have significant impacts on this phenomenon. This paper presents the outcomes of a study conducted in the Mekong Delta of Vietnam (MKD) for evaluating the effect of sea water intrusion under a new SLR scenario. Salinity intrusion was simulated by one-dimensional (1D) modeling. The relative sea level projection was constructed corresponding to the RCP 6.0 emission scenario for MKD based on the statistical downscaling method. The sea level in 2050 is projected to increase from 25 cm to 30 cm compared to the baseline period (in 2000). Furthermore, the simulated results suggested that salinity greater than 4 g/l, which affects rice yield, will intrude up to 50-60 km into the river. Approximately 30,000 ha of agricultural area will be affected if the sea level rise is 30 cm.

  11. Subtle reproductive impairment through nitric oxide-mediated mechanisms in sea urchins from an area affected by harmful algal blooms

    PubMed Central

    Migliaccio, Oriana; Castellano, Immacolata; Di Cioccio, Davide; Tedeschi, Gabriella; Negri, Armando; Cirino, Paola; Romano, Giovanna; Zingone, Adriana; Palumbo, Anna

    2016-01-01

    The health of the sea urchin Paracentrotus lividus, a key species in the Mediterranean Sea, is menaced by several pressures in coastal environments. Here, we aimed at assessing the reproductive ability of apparently healthy P. lividus population in a marine protected area affected by toxic blooms of Ostreospsis cf. ovata. Wide-ranging analyses were performed in animals collected prior to and during the bloom, as well as at several times thereafter, during the reproductive season. Adults showed a low fertilization rate, along with high nitric oxide (NO) levels in the gonads and the nitration of the major yolk protein toposome, which is an important player in sea urchin development. Serious developmental anomalies were observed in the progeny, which persist several months after the bloom. NO levels were high in the different developmental stages, which also showed variations in the transcription of several genes that were found to be directly or indirectly modulated by NO. These results highlight subtle but important reproductive flaws transmitted from the female gonads to the offspring with the NO involvement. Despite a recovery along time after the bloom, insidious damages can be envisaged in the local sea urchin population, with possible reverberation on the whole benthic system. PMID:27192939

  12. Subtle reproductive impairment through nitric oxide-mediated mechanisms in sea urchins from an area affected by harmful algal blooms

    NASA Astrophysics Data System (ADS)

    Migliaccio, Oriana; Castellano, Immacolata; di Cioccio, Davide; Tedeschi, Gabriella; Negri, Armando; Cirino, Paola; Romano, Giovanna; Zingone, Adriana; Palumbo, Anna

    2016-05-01

    The health of the sea urchin Paracentrotus lividus, a key species in the Mediterranean Sea, is menaced by several pressures in coastal environments. Here, we aimed at assessing the reproductive ability of apparently healthy P. lividus population in a marine protected area affected by toxic blooms of Ostreospsis cf. ovata. Wide-ranging analyses were performed in animals collected prior to and during the bloom, as well as at several times thereafter, during the reproductive season. Adults showed a low fertilization rate, along with high nitric oxide (NO) levels in the gonads and the nitration of the major yolk protein toposome, which is an important player in sea urchin development. Serious developmental anomalies were observed in the progeny, which persist several months after the bloom. NO levels were high in the different developmental stages, which also showed variations in the transcription of several genes that were found to be directly or indirectly modulated by NO. These results highlight subtle but important reproductive flaws transmitted from the female gonads to the offspring with the NO involvement. Despite a recovery along time after the bloom, insidious damages can be envisaged in the local sea urchin population, with possible reverberation on the whole benthic system.

  13. XXI century projections of wind-wave conditions and sea-level rise in the Black sea

    NASA Astrophysics Data System (ADS)

    Polonsky, A.; Garmashov, A.; Fomin, V.; Valchev, N.; Trifonova, E.

    2012-04-01

    Projection of regional climate changes for XXI century is one of the priorities of EC environmental programme. Potential worsening of the waves' statistics, sea level rise and extreme surges are the principal negative consequences of the climate change for marine environment. That is why the main purpose of this presentation is to discuss the above issue for the Black sea region (with a strong focus to the south-west subregion because the maximum heights of waves exceeding 10 m occur just here) using output of several global coupled models (GCM) for XXI century, wave simulation, long-term observations of sea level and statistical techniques. First of all we tried to choose the best coupled model (s) simulated the Black sea climate change and variability using the control experiments for 20 century (203). The principal result is as follows. There is not one model which is simulating adequately even one atmospheric parameter for all seasons. Therefore we considered (for the climate projection) different outputs form various models. When it was possible we calculated also the ensemble mean projection for the selected model (s) and emission scenarios. To calculate the wave projection we used the output of SWAN model forced by the GCM wind projection for 2010 to 2100. To estimate the sea level rise in XXI century and future surges statistics we extrapolate the observed sea level rise tendencies, statistical relation between wave heights and sea level and wave scenarios. Results show that in general, the climate change in XXI century doesn't lead to the catastrophic change of the Black sea wind-wave statistics including the extreme waves in the S-W Black sea. The typical atmospheric pattern leading to the intense storm in the S-W Black sea is characterized by the persistent anticyclonic area to the North of the Black sea and cyclonic conditions in the Southern Black sea region. Such pressure pattern causes persistent and strong eastern or north-eastern wind which

  14. The role of Amundsen-Bellingshausen Sea anticyclonic circulation in forcing marine air intrusions into West Antarctica

    NASA Astrophysics Data System (ADS)

    Emanuelsson, B. Daniel; Bertler, Nancy A. N.; Neff, Peter D.; Renwick, James A.; Markle, Bradley R.; Baisden, W. Troy; Keller, Elizabeth D.

    2018-01-01

    Persistent positive 500-hPa geopotential height anomalies from the ECMWF ERA-Interim reanalysis are used to quantify Amundsen-Bellingshausen Sea (ABS) anticyclonic event occurrences associated with precipitation in West Antarctica (WA). We demonstrate that multi-day (minimum 3-day duration) anticyclones play a key role in the ABS by dynamically inducing meridional transport, which is associated with heat and moisture advection into WA. This affects surface climate variability and trends, precipitation rates and thus WA ice sheet surface mass balance. We show that the snow accumulation record from the Roosevelt Island Climate Evolution (RICE) ice core reflects interannual variability of blocking and geopotential height conditions in the ABS/Ross Sea region. Furthermore, our analysis shows that larger precipitation events are related to enhanced anticyclonic circulation and meridional winds, which cause pronounced dipole patterns in air temperature anomalies and sea ice concentrations between the eastern Ross Sea and the Bellingshausen Sea/Weddell Sea, as well as between the eastern and western Ross Sea.

  15. Distribution and region-specific sources of Dechlorane Plus in marine sediments from the coastal East China Sea.

    PubMed

    Wang, Guoguang; Peng, Jialin; Hao, Ting; Liu, Yao; Zhang, Dahai; Li, Xianguo

    2016-12-15

    Dechlorane Plus (DP) is a highly chlorinated flame retardant and found to be ubiquitously present in the environment. We reported here the first record of DP in sediments from the coastal East China Sea (ECS). DP was detected in most of the surface sediments, and the concentrations ranged from 14.8 to 198pg/g dry weight (dw) with a mean value of 64.4pg/g dw. Overall, DP levels exhibited a seaward decreasing trend from the inshore toward outer sea. The fractional abundance of anti-DP (f anti ) showed regional discrepancies, attributing to different environmental behaviors of DP isomers. Depth profiles of DP in a sediment core from estuarine environment showed distinct fluctuation, and the core in open sea had stable deposition environment with two peak values of DP in ~1978 and 2000. The f anti exhibited downward decreasing trend prior to mid-1950s, indicating a preferential degradation of anti-DP and/or a greater adsorption capacity of syn-DP after its burial. Lignin and lipid biomarkers (∑C 27 +C 29 +C 31 n-alkanes) of terrestrial organic matters were introduced to identify region-specific sources of DP, and the results showed that DP in the northern inner shelf, southern inner shelf of 29 °N and mud area southwest of Cheju Island was mainly come from Yangtze River (YR) input, surface runoffs after discharge of local sources close to the Taizhou-Wenzhou Region and the atmospheric deposition from the North China and East Asia, respectively. The coastal ECS was an important reservoir of DP in the world, with mass inventory of approximately 310.7kg in the surface sediments (0-5cm). Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Comprehensive Measurements of Wind Systems at the Dead Sea

    NASA Astrophysics Data System (ADS)

    Metzger, Jutta; Corsmeier, Ulrich; Kalthoff, Norbert; Wieser, Andreas; Alpert, Pinhas; Lati, Joseph

    2016-04-01

    The Dead Sea is a unique place on earth. It is located at the lowest point of the Jordan Rift valley and its water level is currently at -429 m above mean sea level (amsl). To the West the Judean Mountains (up to 1000 m amsl) and to the East the Moab mountains (up to 1300 m amsl) confine the north-south oriented valley. The whole region is located in a transition zone of semi-arid to arid climate conditions and together with the steep orography, this forms a quite complex and unique environment. The Virtual Institute DEad SEa Research Venue (DESERVE) is an international project funded by the German Helmholtz Association and was established to study coupled atmospheric, hydrological, and lithospheric processes in the changing environment of the Dead Sea. Previous studies showed that the valley's atmosphere is often governed by periodic wind systems (Bitan, 1974), but most of the studies were limited to ground measurements and could therefore not resolve the three dimensional development and evolution of these wind systems. Performed airborne measurements found three distinct layers above the Dead Sea (Levin, 2005). Two layers are directly affected by the Dead Sea and the third is the commonly observed marine boundary layer over Israel. In the framework of DESERVE a field campaign with the mobile observatory KITcube was conducted to study the three dimensional structure of atmospheric processes at the Dead Sea in 2014. The combination of several in-situ and remote sensing instruments allows temporally and spatially high-resolution measurements in an atmospheric volume of about 10x10x10 km3. With this data set, the development and evolution of typical local wind systems, as well as the impact of regional scale wind conditions on the valley's atmosphere could be analyzed. The frequent development of a nocturnal drainage flow with wind velocities of over 10 m s-1, the typical lake breeze during the day, its onset and vertical extension as well as strong downslope winds

  17. Distribution of low-level natural radioactivity in a populated marine region of the Eastern Mediterranean Sea.

    PubMed

    Evangeliou, Nikolaos; Florou, Heleny; Kritidis, Panayotis

    2012-12-01

    The levels of natural radioactivity have been evaluated in the water column of an eastern Mediterranean region (Saronikos Gulf), with respect to the relevant environmental parameters. A novel methodology was used for the determination of natural radionuclides, which substitutes the time-consuming radiochemical analysis, based on an in situ sample preconcentration using ion-selective manganese fibres placed on pumping systems. With regard to the results obtained, (238)U-series radionuclides were found at the same level or lower than those observed previously in Mediterranean regions indicating the absence of technologically enhanced naturally occurring radioactive material (TENORM) activities in the area. Similar results were observed for the (232)Th-series radionuclides and (40)K in the water column in comparison with the relevant literature on the Mediterranean Sea. The calculated ratios of (238)U-(232)Th and (40)K-(232)Th verified the lack of TENORM contribution in the Saronikos Gulf. Finally, a rough estimation was attempted concerning the residence times of fresh water inputs from a treatment plant of domestic wastes (Waste Water Treatment Plant of Psitalia) showing that fresh waters need a maximum of 15.7±7.6 d to be mixed with the open sea water.

  18. Speleothem evidence for MIS 5c and 5a sea level above modern level at Bermuda

    NASA Astrophysics Data System (ADS)

    Wainer, Karine A. I.; Rowe, Mark P.; Thomas, Alexander L.; Mason, Andrew J.; Williams, Bruce; Tamisiea, Mark E.; Williams, Felicity H.; Düsterhus, André; Henderson, Gideon M.

    2017-01-01

    The history of sea level in regions impacted by glacio-isostasy provides constraints on past ice-sheet distribution and on the characteristics of deformation of the planet in response to loading. The Western North Atlantic-Caribbean region, and Bermuda in particular, is strongly affected by the glacial forebulge that forms as a result of the Laurentide ice-sheet present during glacial periods. The timing of growth of speleothems, at elevations close to sea level can provide records of minimum relative sea level (RSL). In this study we used U-Th dating to precisely date growth periods of speleothems from Bermuda which were found close to modern-day sea level. Results suggest that RSL at this location was above modern during MIS5e, MIS5c and MIS5a. These data support controversial previous indications that Bermudian RSL was significantly higher than RSL at other locations during MIS 5c and MIS 5a. We confirm that it is possible to explain a wide range of MIS5c-a relative sea levels observed across the Western North Atlantic-Caribbean in glacial isostatic adjustment models, but only with a limited range of mantle deformation constants. This study demonstrates the particular power of Bermuda as a gauge for response of the forebulge to glacial loading, and demonstrates the potential for highstands at this location to be significantly higher than in other regions, helping to explain the high sea levels observed for Bermuda from earlier highstands.

  19. How sea level change mediates genetic divergence in coastal species across regions with varying tectonic and sediment processes.

    PubMed

    Dolby, Greer A; Ellingson, Ryan A; Findley, Lloyd T; Jacobs, David K

    2018-02-01

    Plate tectonics and sediment processes control regional continental shelf topography. We examine the genetic consequences of how glacial-associated sea level change interacted with variable nearshore topography since the last glaciation. We reconstructed the size and distribution of areas suitable for tidal estuary formation from the last glacial maximum, ~20 thousand years ago, to present from San Francisco, California, USA (~38°N) to Reforma, Sinaloa, Mexico (~25°N). We assessed range-wide genetic structure and diversity of three codistributed tidal estuarine fishes (California Killifish, Shadow Goby, Longjaw Mudsucker) along ~4,600 km using mitochondrial control region and cytB sequence, and 16-20 microsatellite loci from a total of 524 individuals. Results show that glacial-associated sea level change limited estuarine habitat to few, widely separated refugia at glacial lowstand, and present-day genetic clades were sourced from specific refugia. Habitat increased during postglacial sea level rise and refugial populations admixed in newly formed habitats. Continental shelves with active tectonics and/or low sediment supply were steep and hosted fewer, smaller refugia with more genetically differentiated populations than on broader shelves. Approximate Bayesian computation favoured the refuge-recolonization scenarios from habitat models over isolation by distance and seaway alternatives, indicating isolation at lowstand is a major diversification mechanism among these estuarine (and perhaps other) coastal species. Because sea level change is a global phenomenon, we suggest this top-down physical control of extirpation-isolation-recolonization may be an important driver of genetic diversification in coastal taxa inhabiting other topographically complex coasts globally during the Mid- to Late Pleistocene and deeper timescales. © 2018 John Wiley & Sons Ltd.

  20. Impact of the North Atlantic circulation on the climate change patterns of North Sea.

    NASA Astrophysics Data System (ADS)

    Narayan, Nikesh; Mathis, Mortiz; Klein, Birgit; Klein, Holger; Mikolajewicz, Uwe

    2017-04-01

    The physical properties of the North Sea are characterized by the exchange of water masses with the North Atlantic at the northern boundary and Baltic Sea to the east. The combined effects of localized forcing, tidal mixing and advection of water masses make the North Sea a challenging study area. Previous investigations indicated a possibility that the variability of the North Atlantic circulation and the strength of the sub-polar gyre (SPG) might influence the physical properties of the North Sea. The assessment of the complex interaction between the North Atlantic and the North Sea in a climate change scenario requires regionally coupled global RCP simulations with enhanced resolution of the North Sea and the North Atlantic. In this study we analyzed result from the regionally coupled ocean-atmosphere-biogeochemistry model system (MPIOM-REMO-HAMOCC) with a hydrodynamic (HD) model. The ocean model has a zoomed grid which provides the highest resolution over the West European Shelf by shifting its poles over Chicago and Central Europe. An index for the intensity of SPG was estimated by averaging the barotropic stream function (ψ) over the North Atlantic. Various threshold values for ψ were tested to define the strength of the SPG. These SPG indices have been correlated with North Sea hydrographic parameters at various levels to identify areas affected by SPG variability. The influence of the Atlantic's eastern boundary current, contributing more saline waters to the North West European shelf area is also investigated.

  1. Polar Seas Oceanography: An Integrated Case Study of the Kara Sea

    NASA Astrophysics Data System (ADS)

    Harms, Ingo

    2004-02-01

    What strikes first when browsing through this book is that the main title is misleading. Polar Seas Oceanography is, first of all, a book on ``an integrated case study of the Kara Sea,'' as the subtitle says. For readers who are interested more generally in polar oceanography, the book is probably the wrong choice. The Kara Sea is a rather shallow shelf sea within the Arctic Ocean, located between the Barents Sea to the west and the Laptev Sea to the east. The importance of the Kara Sea is manifold: climate change issues like ice formation and freshwater runoff, environmental problems from dumping of radioactive waste or oil exploitation, and finally, the Northern Sea route, which crosses large parts of the Kara Sea, underline the economical and ecological relevance of that region. In spite of severe climate conditions, the Kara Sea is relatively well investigated. This was achieved through intense oceanographic expeditions, aircraft surveys, and polar drift stations. Russian scientists from the Arctic and Antarctic Research Institute (AARI) carried out a major part of this outstanding work during the second half of the last century.

  2. Summer at-sea distribution of seabirds and marine mammals in polar ecosystems: a comparison between the European Arctic seas and the Weddell Sea, Antarctica

    NASA Astrophysics Data System (ADS)

    Joiris, Claude R.

    2000-12-01

    The summer at-sea distribution of seabirds and marine mammals was quantitatively established both in Antarctica (Weddell Sea) and in the European Arctic: Greenland, Norwegian and Barents seas. Data can directly be compared, since the same transect counts were applied by the same team from the same icebreaking ship in both regions. The main conclusion is that densities of seabirds and marine mammals are similar in open water and at the ice edge from both polar regions, while the presence of Adélie penguins, minke whales and crabeater seals in densities more than one order of magnitude higher in Antarctic pack-ice must reflect a major ecological difference between both polar systems. The ecological implications of these observations are discussed, especially concerning important primary and secondary (krill) productions under the Weddell Sea pack-ice.

  3. i4OilSpill, an operational marine oil spill forecasting model for Bohai Sea

    NASA Astrophysics Data System (ADS)

    Yu, Fangjie; Yao, Fuxin; Zhao, Yang; Wang, Guansuo; Chen, Ge

    2016-10-01

    Oil spill models can effectively simulate the trajectories and fate of oil slicks, which is an essential element in contingency planning and effective response strategies prepared for oil spill accidents. However, when applied to offshore areas such as the Bohai Sea, the trajectories and fate of oil slicks would be affected by time-varying factors in a regional scale, which are assumed to be constant in most of the present models. In fact, these factors in offshore regions show much more variation over time than in the deep sea, due to offshore bathymetric and climatic characteristics. In this paper, the challenge of parameterizing these offshore factors is tackled. The remote sensing data of the region are used to analyze the modification of wind-induced drift factors, and a well-suited solution is established in parameter correction mechanism for oil spill models. The novelty of the algorithm is the self-adaptive modification mechanism of the drift factors derived from the remote sensing data for the targeted sea region, in respect to empirical constants in the present models. Considering this situation, a new regional oil spill model (i4OilSpill) for the Bohai Sea is developed, which can simulate oil transformation and fate processes by Eulerian-Lagrangian methodology. The forecasting accuracy of the proposed model is proven by the validation results in the comparison between model simulation and subsequent satellite observations on the Penglai 19-3 oil spill accident. The performance of the model parameter correction mechanism is evaluated by comparing with the real spilled oil position extracted from ASAR images.

  4. Impact of sea-level rise on earthquake and landslide triggering offshore the Alentejo margin (SW Iberia)

    NASA Astrophysics Data System (ADS)

    Neves, M. C.; Roque, C.; Luttrell, K. M.; Vázquez, J. T.; Alonso, B.

    2016-12-01

    Earthquakes and submarine landslides are recurrent and widespread manifestations of fault activity offshore SW Iberia. The present work tests the effects of sea-level rise on offshore fault systems using Coulomb stress change calculations across the Alentejo margin. Large-scale faults capable of generating large earthquakes and tsunamis in the region, especially NE-SW trending thrusts and WNW-ESE trending dextral strike-slip faults imaged at basement depths, are either blocked or unaffected by flexural effects related to sea-level changes. Large-magnitude earthquakes occurring along these structures may, therefore, be less frequent during periods of sea-level rise. In contrast, sea-level rise promotes shallow fault ruptures within the sedimentary sequence along the continental slope and upper rise within distances of <100 km from the coast. The results suggest that the occurrence of continental slope failures may either increase (if triggered by shallow fault ruptures) or decrease (if triggered by deep fault ruptures) as a result of sea-level rise. Moreover, observations of slope failures affecting the area of the Sines contourite drift highlight the role of sediment properties as preconditioning factors in this region.

  5. Intercomparison of global, ultraviolet B and A radiation measurements in the Dead Sea region (Ein Bokek) and Beer Sheva.

    PubMed

    Kushelevsky, A P; Kudish, A I

    1996-07-01

    Thousands of patients suffering from psoriasis have been treated successfully in the Dead Sea area by climatological methods, without medication. This high rate of success, measured in terms of partial to complete plaque clearance and reported to exceed 85% after 3-4 weeks of treatment, has been assumed to be associated with a unique ultraviolet (UV) radiation environment present in the Dead Sea region. In order to broaden our knowledge of the UV radiation environment at the Dead Sea, continuous monitoring of UV (both B and A) and global radiation has recently been initiated at two sites--Ein Bokek (located in the vicinity of the Dead Sea 375 m below mean sea level) and Beer Sheva (315 m above mean sea level)--to facilitate an intercomparison of their respective radiation intensities. The results of the first year of a detailed study of the global, UVB and UVA radiation intensities measured at both sites are summarized and reported in terms of the monthly average daily, average midday (11:00-13:00) and the corresponding maximum values. The radiation data for clear days (based upon the absolute magnitude of the global radiation) were also analyzed to perform an intercomparison between Ein Bokek and Beer Sheva for a winter month and a summer month for which all three types of radiation data were available at both sites.

  6. Formation and spreading of Red Sea Outflow Water in the Red Sea

    NASA Astrophysics Data System (ADS)

    Zhai, Ping; Bower, Amy S.; Smethie, William M.; Pratt, Larry J.

    2015-09-01

    Hydrographic data, chlorofluorocarbon-12 (CFC-12) and sulfur hexafluoride (SF6) measurements collected in March 2010 and September-October 2011 in the Red Sea, as well as an idealized numerical experiment are used to study the formation and spreading of Red Sea Outflow Water (RSOW) in the Red Sea. Analysis of inert tracers, potential vorticity distributions, and model results confirm that RSOW is formed through mixed-layer deepening caused by sea surface buoyancy loss in winter in the northern Red Sea and reveal more details on RSOW spreading rates, pathways, and vertical structure. The southward spreading of RSOW after its formation is identified as a layer with minimum potential vorticity and maximum CFC-12 and SF6. Ventilation ages of seawater within the RSOW layer, calculated from the partial pressure of SF6 (pSF6), range from 2 years in the northern Red Sea to 15 years at 17°N. The distribution of the tracer ages is in agreement with the model circulation field which shows a rapid transport of RSOW from its formation region to the southern Red Sea where there are longer circulation pathways and hence longer residence time due to basin wide eddies. The mean residence time of RSOW within the Red Sea estimated from the pSF6 age is 4.7 years. This time scale is very close to the mean transit time (4.8 years) for particles from the RSOW formation region to reach the exit at the Strait of Bab el Mandeb in the numerical experiment.

  7. Sea ice and oceanic processes on the Ross Sea continental shelf

    NASA Technical Reports Server (NTRS)

    Jacobs, S. S.; Comiso, J. C.

    1989-01-01

    The spatial and temporal variability of Antarctic sea ice concentrations on the Ross Sea continental shelf have been investigated in relation to oceanic and atmospheric forcing. Sea ice data were derived from Nimbus 7 scanning multichannel microwave radiometer (SMMR) brightness temperatures from 1979-1986. Ice cover over the shelf was persistently lower than above the adjacent deep ocean, averaging 86 percent during winter with little month-to-month of interannual variability. The large spring Ross Sea polynya on the western shelf results in a longer period of summer insolation, greater surface layer heat storage, and later ice formation in that region the following autumn.

  8. Measurements of Turbulent Fluxes over Sea Ice Region in the Sea of Okhotsk.

    NASA Astrophysics Data System (ADS)

    Fujisaki, A.; Yamaguchi, H.; Toyota, T.; Futatsudera, A.; Miyanaga, M.

    2007-12-01

    The measurements of turbulent fluxes over sea ice area were done in the southern part of the Sea of Okhotsk, during the cruises of the ice-breaker P/V 'Soya' in 2000-2005. The air-ice drag coefficients CDN were 3.57×10-3 over small floes \\left(diameter:φ=20- 100m\\right), 3.38×10-3 over medium floes \\left(φ=100-500m\\right), and 2.12×10-3 over big floes \\left( φ=500m-2km\\right), which showed a decrease with the increase of floe size. This is because the smaller floes contribue to the roughness of sea-ice area by their edges more than the larger ones. The average CDN values showed a gradual upslope with ice concentration, which is simply due to the rougher surface of sea ice than that of open water, while they showed a slight decline at ice concentration 100%, which is possibly due to the lack of freeboard effect of lateral side of floes. We also compared the relation between the roughness length zM and the friction velocity u* with the model developed in the previous study. The zM-u* relation well corresponded with the model results, while the range of zM we obtained was larger than those obtained at the Ice Station Weddell and during the Surface Heat Budget of the Arctic Ocean project. The sensible heat transfer coefficients CHN were 1.35×10-3 at 80-90% ice concentration, and 0.95×10-3 at 100% ice concentration, which are comparable with the results of the past reaserches. On the other hand, we obtained a maximum CHN value of 2.39×10-3at 20-50% ice concentration, and 2.35×10-3 over open water, which are more than twice as the typical value of 1.0×10-3 over open water. These large CHN values are due to the significant upward sensible heat flux during the measurements.

  9. Sediments in Arctic sea ice: Implications for entrainment, transport and release

    USGS Publications Warehouse

    Nurnberg, D.; Wollenburg, I.; Dethleff, D.; Eicken, H.; Kassens, H.; Letzig, T.; Reimnitz, E.; Thiede, Jorn

    1994-01-01

    Despite the Arctic sea ice cover's recognized sensitivity to environmental change, the role of sediment inclusions in lowering ice albedo and affecting ice ablation is poorly understood. Sea ice sediment inclusions were studied in the central Arctic Ocean during the Arctic 91 expedition and in the Laptev Sea (East Siberian Arctic Region Expedition 1992). Results from these investigations are here combined with previous studies performed in major areas of ice ablation and the southern central Arctic Ocean. This study documents the regional distribution and composition of particle-laden ice, investigates and evaluates processes by which sediment is incorporated into the ice cover, and identifies transport paths and probable depositional centers for the released sediment. In April 1992, sea ice in the Laptev Sea was relatively clean. The sediment occasionally observed was distributed diffusely over the entire ice column, forming turbid ice. Observations indicate that frazil and anchor ice formation occurring in a large coastal polynya provide a main mechanism for sediment entrainment. In the central Arctic Ocean sediments are concentrated in layers within or at the surface of ice floes due to melting and refreezing processes. The surface sediment accumulation in central Arctic multi-year sea ice exceeds by far the amounts observed in first-year ice from the Laptev Sea in April 1992. Sea ice sediments are generally fine grained, although coarse sediments and stones up to 5 cm in diameter are observed. Component analysis indicates that quartz and clay minerals are the main terrigenous sediment particles. The biogenous components, namely shells of pelecypods and benthic foraminiferal tests, point to a shallow, benthic, marine source area. Apparently, sediment inclusions were resuspended from shelf areas before and incorporated into the sea ice by suspension freezing. Clay mineralogy of ice-rafted sediments provides information on potential source areas. A smectite

  10. The Caribbean conundrum of Holocene sea level.

    NASA Astrophysics Data System (ADS)

    Jackson, Luke; Mound, Jon

    2014-05-01

    In the tropics, pre-historic sea-level curve reconstruction is often problematic because it relies upon sea-level indicators whose vertical relationship to the sea surface is poorly constrained. In the Caribbean, fossil corals, mangrove peats and shell material dominate the pre-historic indicator record. The common approach to reconstruction involves the use of modern analogues to these indicators to establish a fixed vertical habitable range. The aim of these reconstructions is to find spatial variability in the Holocene sea level in an area gradually subsiding (< 1.2 mm yr-1) due the water loading following the deglaciation of the Laurentide ice sheet. We construct two catalogues: one of published Holocene sea-level indicators and the other of published, modern growth rates, abundance and coverage of mangrove and coral species for different depths. We use the first catalogue to calibrate 14C ages to give a probabilistic age range for each indicator. We use the second catalogue to define a depth probability distribution function (pdf) for mangroves and each coral species. The Holocene indicators are grouped into 12 sub-regions around the Caribbean. For each sub-region we apply our sea-level reconstruction, which involves stepping a fixed-length time window through time and calculating the position (and rate) of sea-level (change) using a thousand realisations of the time/depth pdfs to define an envelope of probable solutions. We find that the sub-regional relative sea-level curves display spatio-temporal variability including a south-east to north-west 1500 year lag in the arrival of Holocene sea level to that of the present day. We demonstrate that these variations are primarily due to glacial-isostatic-adjustment induced sea-level change and that sub-regional variations (where sufficient data exists) are due to local uplift variability.

  11. Satellite observations of the ice cover of the Kuril Basin region of the Okhotsk Sea and its relation to the regional oceanography

    NASA Technical Reports Server (NTRS)

    Wakatsuchi, Masaaki; Martin, Seelye

    1990-01-01

    For the period 1978-1982, this paper examines the nature of the sea ice which forms over the Kuril Basin of the Okhotsk Sea and describes the impact of this ice on the regional oceanography. The oceanographic behavior during the heavy ice season associated with the cold 1979 winter is compared with the behavior during the lighter ice years of 1980 and 1982. Examination of the oceanography in the Okhotsk and the adjacent Pacific shows that the early summer water column structure depends on the heat loss from the Okhotsk during the preceding ice season, the total amount of Okhotsk ice formation, and, specifically, the amount of the ice formation in the Kuril Basin. Following the 1979 ice season, the upper 200-300 m of the Kuril Basin waters were cooler, less saline, and richer in oxygen than for the other years. This modification appears to be a process local to the Kuril Basin, driven by eddy-induced mixing, local cooling, and ice melting.

  12. Interannual sea level variability in the Pearl River Estuary and its response to El Niño-Southern Oscillation

    NASA Astrophysics Data System (ADS)

    Wang, Linlin; Li, Qiang; Mao, Xian-zhong; Bi, Hongsheng; Yin, Peng

    2018-03-01

    The South China coast, especially the Pearl River Estuary (PRE) region, is prosperous and densely populated, but vulnerable to sea level changes. Sea level anomalies (SLA) during 1954-2012 from tide gauge station data and regional SLAs during 1993-2012 from satellite altimetry are analyzed and compare to the El Niño-Southern Oscillation (ENSO). Results show that sea level declines during El Niño events and rises during La Niña. Sea level in the PRE responds to ENSO with 3-month lag. The ENSO can cause sea level in the PRE to fluctuate from -8.70 to 8.11 cm. Sea level cycles of 3 and 5 years are related to ENSO. The ENSO mechanism affecting sea level in the PRE was analyzed by identifying dominant regional and local forces. Weak/strong SLAs in most El Niño/La Niña events may be attributed to less/more seawater transport driven by anomalously weak/strong north winds and local anomalously high/low sea level pressure. Wind-driven coastal current is the predominant factor. It generated coastal seawater volume transport along a 160 km wide cross section to decrease by 21.07% in a typical El Niño period (January 2010) and increase by 44.03% in a typical La Niña period (January 2011) as compared to an ENSO neutral situation (January 2013). Results of sea level rise and its potential mechanism provide insight for disaster protection during extreme El Niño/La Niña events.

  13. Observed platelet ice distributions in Antarctic sea ice: An index for ocean-ice shelf heat flux

    NASA Astrophysics Data System (ADS)

    Langhorne, P. J.; Hughes, K. G.; Gough, A. J.; Smith, I. J.; Williams, M. J. M.; Robinson, N. J.; Stevens, C. L.; Rack, W.; Price, D.; Leonard, G. H.; Mahoney, A. R.; Haas, C.; Haskell, T. G.

    2015-07-01

    Antarctic sea ice that has been affected by supercooled Ice Shelf Water (ISW) has a unique crystallographic structure and is called platelet ice. In this paper we synthesize platelet ice observations to construct a continent-wide map of the winter presence of ISW at the ocean surface. The observations demonstrate that, in some regions of coastal Antarctica, supercooled ISW drives a negative oceanic heat flux of -30 Wm-2 that persists for several months during winter, significantly affecting sea ice thickness. In other regions, particularly where the thinning of ice shelves is believed to be greatest, platelet ice is not observed. Our new data set includes the longest ice-ocean record for Antarctica, which dates back to 1902 near the McMurdo Ice Shelf. These historical data indicate that, over the past 100 years, any change in the volume of very cold surface outflow from this ice shelf is less than the uncertainties in the measurements.

  14. Seasonal thickness changes of Arctic sea ice north of Svalbard and implications for satellite remote sensing, ecosystem, and environmental management

    NASA Astrophysics Data System (ADS)

    Gerland, S.; Rösel, A.; King, J.; Spreen, G.; Divine, D.; Eltoft, T.; Gallet, J. C.; Hudson, S. R.; Itkin, P.; Krumpen, T.; Liston, G. E.; Merkouriadi, I.; Negrel, J.; Nicolaus, M.; Polashenski, C.; Assmy, P.; Barber, D. G.; Duarte, P.; Doulgeris, A. P.; Haas, C.; Hughes, N.; Johansson, M.; Meier, W.; Perovich, D. K.; Provost, C.; Richter-Menge, J.; Skourup, H.; Wagner, P.; Wilkinson, J.; Granskog, M. A.; Steen, H.

    2016-12-01

    Sea-ice thickness is a crucial parameter to consider when assessing the status of Arctic sea ice, whether for environmental management, monitoring projects, or regional or pan-arctic assessments. Modern satellite remote sensing techniques allow us to monitor ice extent and to estimate sea-ice thickness changes; but accurate quantifications of sea-ice thickness distribution rely on in situ and airborne surveys. From January to June 2015, an international expedition (N-ICE2015) took place in the Arctic Ocean north of Svalbard, with the Norwegian research vessel RV Lance frozen into drifting sea ice. In total, four drifts, with four different floes were made during that time. Sea-ice and snow thickness measurements were conducted on all main ice types present in the region, first year ice, multiyear ice, and young ice. Measurement methods included ground and helicopter based electromagnetic surveys, drillings, hot-wire installations, snow-sonde transects, snow stakes, and ice mass balance and snow buoys. Ice thickness distributions revealed modal thicknesses in spring between 1.6 and 1.7 m, which is lower than reported for the region from comparable studies in 2009 (2.4 m) and 2011 (1.8 m). Knowledge about the ice thickness distribution in a region is crucial to the understanding of climate processes, and also relevant to other disciplines. Sea-ice thickness data collected during N-ICE2015 can also give us insights into how ice and snow thicknesses affect ecosystem processes. In this presentation, we will explore the influence of snow cover and ocean properties on ice thickness, and the role of sea-ice thickness in air-ice-ocean interactions. We will also demonstrate how information about ice thickness aids classification of different sea ice types from SAR satellite remote sensing, which has real-world applications for shipping and ice forecasting, and how sea ice thickness data contributes to climate assessments.

  15. Virulence Profiles of Vibrio vulnificus in German Coastal Waters, a Comparison of North Sea and Baltic Sea Isolates.

    PubMed

    Bier, Nadja; Jäckel, Claudia; Dieckmann, Ralf; Brennholt, Nicole; Böer, Simone I; Strauch, Eckhard

    2015-12-15

    Vibrio vulnificus is a halophilic bacterium of coastal environments known for sporadically causing severe foodborne or wound infections. Global warming is expected to lead to a rising occurrence of V. vulnificus and an increasing incidence of human infections in Northern Europe. So far, infections in Germany were exclusively documented for the Baltic Sea coast, while no cases from the North Sea region have been reported. Regional variations in the prevalence of infections may be influenced by differences in the pathogenicity of V. vulnificus populations in both areas. This study aimed to compare the distribution of virulence-associated traits and genotypes among 101 V. vulnificus isolates from the Baltic Sea and North Sea in order to assess their pathogenicity potential. Furthermore, genetic relationships were examined by multilocus sequence typing (MLST). A high diversity of MLST sequences (74 sequence types) and differences regarding the presence of six potential pathogenicity markers were observed in the V. vulnificus populations of both areas. Strains with genotypes and markers associated with pathogenicity are not restricted to a particular geographic region. This indicates that lack of reported cases in the North Sea region is not caused by the absence of potentially pathogenic strains.

  16. Virulence Profiles of Vibrio vulnificus in German Coastal Waters, a Comparison of North Sea and Baltic Sea Isolates

    PubMed Central

    Bier, Nadja; Jäckel, Claudia; Dieckmann, Ralf; Brennholt, Nicole; Böer, Simone I.; Strauch, Eckhard

    2015-01-01

    Vibrio vulnificus is a halophilic bacterium of coastal environments known for sporadically causing severe foodborne or wound infections. Global warming is expected to lead to a rising occurrence of V. vulnificus and an increasing incidence of human infections in Northern Europe. So far, infections in Germany were exclusively documented for the Baltic Sea coast, while no cases from the North Sea region have been reported. Regional variations in the prevalence of infections may be influenced by differences in the pathogenicity of V. vulnificus populations in both areas. This study aimed to compare the distribution of virulence-associated traits and genotypes among 101 V. vulnificus isolates from the Baltic Sea and North Sea in order to assess their pathogenicity potential. Furthermore, genetic relationships were examined by multilocus sequence typing (MLST). A high diversity of MLST sequences (74 sequence types) and differences regarding the presence of six potential pathogenicity markers were observed in the V. vulnificus populations of both areas. Strains with genotypes and markers associated with pathogenicity are not restricted to a particular geographic region. This indicates that lack of reported cases in the North Sea region is not caused by the absence of potentially pathogenic strains. PMID:26694432

  17. NCEP MMAB Sea Ice Home Page

    Science.gov Websites

    NCEP MMAB Sea Ice Home Page The Polar and Great Lakes Ice group works on sea ice analysis from satellite, sea ice modeling, and ice-atmosphere-ocean coupling. Our work supports the Alaska Region of the @noaa.gov Last Modified 2 July 2012 Pages of Interest Analysis Daily Sea Ice Analyses Animations of the

  18. The Challenges Affecting Heavy Lift Aircraft Development to Support Sea Basing

    DTIC Science & Technology

    2005-06-17

    effect timely development of heavy lift aircraft to support sea basing. 15. SUBJECT TERMS Aircraft Development, Aircraft Acquisition, Aircraft Program...bullet theory, vision, technology, and politics are the most prevalent factors, amongst many, that could potentially effect timely development of heavy...discussion will focus on some current examples of aircraft that will support sea basing and on factors effecting their development. 14 Secondary Questions

  19. U.S. Geological Survey (USGS), Western Region: Coastal ecosystem responses to influences from land and sea, Coastal and Ocean Science

    USGS Publications Warehouse

    Bodkin, James L.

    2010-01-01

    Sea otters and the nearshore ecosystems they inhabit-from highly urbanized California to relatively pristine Alaska-are the focus of a new multidisciplinary study by scientists with the U.S. Geological Survey (USGS) and a suite of international, academic and government collaborators. The Coastal Ecosystem Responses to Influences from Land and Sea project will investigate the many interacting variables that influence the health of coastal ecosystems along the Northeast Pacific shore. These ecosystems face unprecedented challenges, with threats arising from the adjacent oceans and lands. From the ocean, challenges include acidification, sea level rise, and warming. From the land, challenges include elevated biological, geological and chemical pollutants associated with burgeoning human populations along coastlines. The implications of these challenges for biological systems are only beginning to be explored. Comparing sea otter population status indicators from around the northeastern Pacific Rim, will begin the process of defining factors of coastal ecosystem health in this broad region.

  20. Sea Ice in the Chukchi Sea

    NASA Image and Video Library

    2017-12-08

    The U.S. Coast Guard Cutter Healy encountered only small patches of sea ice in the Chukchi Sea during the final days collecting ocean data for the 2011 ICESCAPE mission. The ICESCAPE mission, or "Impacts of Climate on Ecosystems and Chemistry of the Arctic Pacific Environment," is a NASA shipborne investigation to study how changing conditions in the Arctic affect the ocean's chemistry and ecosystems. The bulk of the research took place in the Beaufort and Chukchi seas in summer 2010 and 2011. Credit: NASA/Kathryn Hansen NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  1. Evaluating the impact of sea surface temperature (SST) on spatial distribution of chlorophyll-a concentration in the East China Sea

    NASA Astrophysics Data System (ADS)

    Ji, Chenxu; Zhang, Yuanzhi; Cheng, Qiuming; Tsou, JinYeu; Jiang, Tingchen; Liang, X. San

    2018-06-01

    In this study, we analyze spatial and temporal sea surface temperature (SST) and chlorophylla (Chl-a) concentration in the East China Sea (ECS) during the period 2003-2016. Level 3 (4 km) monthly SST and Chl-a data from the Moderate Resolution Imaging Spectroradiometer Satellite (MODIS-Aqua) were reconstructed using the data interpolation empirical orthogonal function (DINEOF) method and used to evaluated the relationship between the two variables. The approaches employed included correlation analysis, regression analysis, and so forth. Our results show that certain strong oceanic SSTs affect Chl-a concentration, with particularly high correlation seen in the coastal area of Jiangsu and Zhejiang provinces. The mean temperature of the high correlated region was 18.67 °C. This finding may suggest that the SST has an important impact on the spatial distribution of Chl-a concentration in the ECS.

  2. Measurement of spectral sea ice albedo at Qaanaaq fjord in northwest Greenland

    NASA Astrophysics Data System (ADS)

    Tanikawa, T.

    2017-12-01

    The spectral albedos of sea ice were measured at Qaanaaq fjord in northwest Greenland. Spectral measurements were conducted for sea ice covered with snow and sea ice without snow where snow was artificially removed around measurement point. Thickness of the sea ice was approximately 1.3 m with 5 cm of snow over the sea ice. The measurements show that the spectral albedos of the sea ice with snow were lower than those of natural pure snow especially in the visible regions though the spectral shapes were similar to each other. This is because the spectral albedos in the visible region have information of not only the snow but also the sea ice under the snow. The spectral albedos of the sea ice without the snow were approximately 0.4 - 0.5 in the visible region, 0.05-0.25 in the near-infrared region and almost constant of approximately 0.05 in the region of 1500 - 2500 nm. In the visible region, it would be due to multiple scattering by an air bubble within the sea ice. In contrast, in the near-infrared and shortwave infrared wavelengths, surface reflection at the sea ice surface would be dominant. Since a light absorption by the ice in these regions is relatively strong comparing to the visible region, the light could not be penetrated deeply within the sea ice, resulting that surface reflection based on Fresnel reflection would be dominant. In this presentation we also show the results of comparison between the radiative transfer calculation and spectral measurement data.

  3. The ocean mixed layer under Southern Ocean sea-ice: Seasonal cycle and forcing

    NASA Astrophysics Data System (ADS)

    Pellichero, Violaine; Sallée, Jean-Baptiste; Schmidtko, Sunke; Roquet, Fabien; Charrassin, Jean-Benoît

    2017-02-01

    The oceanic mixed layer is the gateway for the exchanges between the atmosphere and the ocean; in this layer, all hydrographic ocean properties are set for months to millennia. A vast area of the Southern Ocean is seasonally capped by sea-ice, which alters the characteristics of the ocean mixed layer. The interaction between the ocean mixed layer and sea-ice plays a key role for water mass transformation, the carbon cycle, sea-ice dynamics, and ultimately for the climate as a whole. However, the structure and characteristics of the under-ice mixed layer are poorly understood due to the sparseness of in situ observations and measurements. In this study, we combine distinct sources of observations to overcome this lack in our understanding of the polar regions. Working with elephant seal-derived, ship-based, and Argo float observations, we describe the seasonal cycle of the ocean mixed-layer characteristics and stability of the ocean mixed layer over the Southern Ocean and specifically under sea-ice. Mixed-layer heat and freshwater budgets are used to investigate the main forcing mechanisms of the mixed-layer seasonal cycle. The seasonal variability of sea surface salinity and temperature are primarily driven by surface processes, dominated by sea-ice freshwater flux for the salt budget and by air-sea flux for the heat budget. Ekman advection, vertical diffusivity, and vertical entrainment play only secondary roles. Our results suggest that changes in regional sea-ice distribution and annual duration, as currently observed, widely affect the buoyancy budget of the underlying mixed layer, and impact large-scale water mass formation and transformation with far reaching consequences for ocean ventilation.

  4. Indo-Pacific sea level variability during recent decades

    NASA Astrophysics Data System (ADS)

    Yamanaka, G.; Tsujino, H.; Nakano, H.; Urakawa, S. L.; Sakamoto, K.

    2016-12-01

    Decadal variability of sea level in the Indo-Pacific region is investigated using a historical OGCM simulation. The OGCM driven by the atmospheric forcing removing long-term trends clearly exhibits decadal sea level variability in the Pacific Ocean, which is associated with eastern tropical Pacific thermal anomalies. During the period of 1977-1987, the sea level anomalies are positive in the eastern equatorial Pacific and show deviations from a north-south symmetric distribution, with strongly negative anomalies in the western tropical South Pacific. During the period of 1996-2006, in contrast, the sea level anomalies are negative in the eastern equatorial Pacific and show a nearly north-south symmetric pattern, with positive anomalies in both hemispheres. Concurrently, sea level anomalies in the south-eastern Indian Ocean vary with those in the western tropical Pacific. These sea level variations are closely related to large-scale wind fields. Indo-Pacific sea level distributions are basically determined by wind anomalies over the equatorial region as well as wind stress curl anomalies over the off-equatorial region.

  5. Dispersal and behavior of pacific halibut hippoglossus stenolepis in the bering sea and Aleutian islands region

    USGS Publications Warehouse

    Seitz, A.C.; Loher, Timothy; Norcross, Brenda L.; Nielsen, J.L.

    2011-01-01

    Currently, it is assumed that eastern Pacific halibut Hippoglossus stenolepis belong to a single, fully mixed population extending from California through the Bering Sea, in which adult halibut disperse randomly throughout their range during their lifetime. However, we hypothesize that hali but dispersal is more complex than currently assumed and is not spatially random. To test this hypo thesis, we studied the seasonal dispersal and behavior of Pacific halibut in the Bering Sea and Aleutian Islands (BSAI). Pop-up Archival Transmitting tags attached to halibut (82 to 154 cm fork length) during the summer provided no evidence that individuals moved out of the Bering Sea and Aleutian Islands region into the Gulf of Alaska during the mid-winter spawning season, supporting the concept that this region contains a separate spawning group of adult halibut. There was evidence for geographically localized groups of halibut along the Aleutian Island chain, as all of the individuals tagged there displayed residency, with their movements possibly impeded by tidal currents in the passes between islands. Mid-winter aggregation areas of halibut are assumed to be spawning grounds, of which 2 were previously unidentified and extend the species' presumed spawning range ~1000 km west and ~600 km north of the nearest documented spawning area. If there are indeed independent spawning groups of Pacific halibut in the BSAI, their dynamics may vary sufficiently from those of the Gulf of Alaska, so that specifically accounting for their relative segregation and unique dynamics within the larger population model will be necessary for correctly predicting how these components may respond to fishing pressure and changing environmental conditions.?? Inter-Research 2011.

  6. Linkages between the spatial toxicity of sediments and sediment dynamics in the Yangtze River Estuary and neighboring East China Sea.

    PubMed

    Gao, Jinjuan; Shi, Huahong; Dai, Zhijun; Mei, Xuefei; Zong, Haibo; Yang, Hongwei; Hu, Lingling; Li, Shushi

    2018-02-01

    Anthropogenic activities are driving an increase in sediment contamination in coastal areas. This poses significant challenges for the management of estuarine ecosystems and their adjacent seas worldwide. However, few studies have been conducted on how dynamic mechanisms affect the sediment toxicity in the estuarine environment. This study was designed to investigate the linkages between sediment toxicity and hydrodynamics in the Yangtze River Estuary (YRE) area. High sediment toxicity was found in the Yangtze River mouth (Region I), the depocenter of the Yangtze River Delta (Region II), and the southeastern area of the adjacent sea (Region III), while low sediment toxicity was found in the northeastern offshore region (Region IV). A spatial comparison analysis and regression model indicated that the distributed pattern of sediment toxicity was likely related to hydrodynamics and circumfluence in the East China Sea (ECS) shelf. Specifically, high sediment toxicity in Region I may be affected by the Yangtze River Pump (YRP) and the low hydrodynamics there, and high toxicity in Region II can be influenced by the low sediment dynamics and fine sediment in the depocenter. The high sediment toxicity in Region III might be related to the combination of the YRP and Taiwan Warm Current, while the low toxicity in Region IV may be influenced by the local coarse-grained relict sand with strong sediment dynamics there. The present research results further suggest that it is necessary to link hydrodynamics and the spatial behavior of sediment and sediment-derived pollutants when assessing the pollution status of estuarine environments, especially for those mega-estuaries and their neighboring ocean environments with complex waves, tides and ocean currents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Deep-sea Hexactinellida (Porifera) of the Weddell Sea

    NASA Astrophysics Data System (ADS)

    Janussen, Dorte; Tabachnick, Konstantin R.; Tendal, Ole S.

    2004-07-01

    New Hexactinellida from the deep Weddel Sea are described. This moderately diverse hexactinellid fauna includes 14 species belonging to 12 genera, of which five species and one subgenus are new to science: Periphragella antarctica n. sp., Holascus pseudostellatus n. sp., Caulophacus (Caulophacus) discohexactinus n. sp., C. ( Caulodiscus) brandti n. sp., C. ( Oxydiscus) weddelli n. sp., and C. ( Oxydiscus) n. subgen. So far, 20 hexactinellid species have been reported from the deep Weddell Sea, 15 are known from the northern part and 10 only from here, while 10 came from the southern area, and five of these only from there. However, this apparent high "endemism" of Antarctic hexactinellid sponges is most likely the result of severe undersampling of the deep-sea fauna. We find no reason to believe that a division between an oceanic and a more continental group of species exists. The current poor database indicates that a substantial part of the deep hexactinellid fauna of the Weddell Sea is shared with other deep-sea regions, but it does not indicate a special biogeographic relationship with any other ocean.

  8. Cassini RADAR observations of lakes and seas in the Northern Polar region of Titan: Bathymetry and Composition

    NASA Astrophysics Data System (ADS)

    Mastrogiuseppe, Marco; Hayes, Alex; Poggiali, Valerio; Lunine, Jonathan; Seu, Roberto; Hofgartner, Jason; Le Gall, Alice; Lorenz, Ralph; Mitri, Giuseppe

    2017-04-01

    Recent observations by the Cassini spacecraft has revealed its RADAR to be an invaluable tool for investigating Titan's seas and lakes. The T91 (May 2013) observation of Ligeia Mare, Titan's second largest sea, has demonstrated the capabilities of the RADAR, in its altimeter mode, to measure depth, composition and seafloor topography. The 104 (August 2014) observation provided similar data over the largest sea, Kraken Mare, and the T108 (January 2015) flyby acquired an altimetry pass over Punga Mare. The T49 (December 2007) altimetry pass over Ontario Lacus, the largest southern liquid body, has also been processed to retrieve subsurface echoes. Cassini's final flyby of Titan, T126 (April 2017), is the next and unique opportunity to observe an area in the Northern Polar region of Titan, where several small - medium size (5 - 30 km) lakes are present and have been previously imaged by Cassini. In our presentation, we will report the integrated results of these investigations and discuss them in the overall context of Titan's hydrologic cycle.

  9. Deglacial sea level history of the East Siberian Sea and Chukchi Sea margins

    USGS Publications Warehouse

    Cronin, Thomas M.; O'Regan, Matt; Pearce, Christof; Gemery, Laura; Toomey, Michael; Semiletov, Igor

    2017-01-01

    Deglacial (12.8–10.7 ka) sea level history on the East Siberian continental shelf and upper continental slope was reconstructed using new geophysical records and sediment cores taken during Leg 2 of the 2014 SWERUS-C3 expedition. The focus of this study is two cores from Herald Canyon, piston core SWERUS-L2-4-PC1 (4-PC1) and multicore SWERUS-L2-4-MC1 (4-MC1), and a gravity core from an East Siberian Sea transect, SWERUS-L2-20-GC1 (20-GC1). Cores 4-PC1 and 20-GC were taken at 120 and 115 m of modern water depth, respectively, only a few meters above the global last glacial maximum (LGM;  ∼  24 kiloannum or ka) minimum sea level of  ∼  125–130 meters below sea level (m b.s.l.). Using calibrated radiocarbon ages mainly on molluscs for chronology and the ecology of benthic foraminifera and ostracode species to estimate paleodepths, the data reveal a dominance of river-proximal species during the early part of the Younger Dryas event (YD, Greenland Stadial GS-1) followed by a rise in river-intermediate species in the late Younger Dryas or the early Holocene (Preboreal) period. A rapid relative sea level rise beginning at roughly 11.4 to 10.8 ka ( ∼  400 cm of core depth) is indicated by a sharp faunal change and unconformity or condensed zone of sedimentation. Regional sea level at this time was about 108 m b.s.l. at the 4-PC1 site and 102 m b.s.l. at 20-GC1. Regional sea level near the end of the YD was up to 42–47 m lower than predicted by geophysical models corrected for glacio-isostatic adjustment. This discrepancy could be explained by delayed isostatic adjustment caused by a greater volume and/or geographical extent of glacial-age land ice and/or ice shelves in the western Arctic Ocean and adjacent Siberian land areas.

  10. Future Climate Change in the Baltic Sea Area

    NASA Astrophysics Data System (ADS)

    Bøssing Christensen, Ole; Kjellström, Erik; Zorita, Eduardo; Sonnenborg, Torben; Meier, Markus; Grinsted, Aslak

    2015-04-01

    Regional climate models have been used extensively since the first assessment of climate change in the Baltic Sea region published in 2008, not the least for studies of Europe (and including the Baltic Sea catchment area). Therefore, conclusions regarding climate model results have a better foundation than was the case for the first BACC report of 2008. This presentation will report model results regarding future climate. What is the state of understanding about future human-driven climate change? We will cover regional models, statistical downscaling, hydrological modelling, ocean modelling and sea-level change as it is projected for the Baltic Sea region. Collections of regional model simulations from the ENSEMBLES project for example, financed through the European 5th Framework Programme and the World Climate Research Programme Coordinated Regional Climate Downscaling Experiment, have made it possible to obtain an increasingly robust estimation of model uncertainty. While the first Baltic Sea assessment mainly used four simulations from the European 5th Framework Programme PRUDENCE project, an ensemble of 13 transient regional simulations with twice the horizontal resolution reaching the end of the 21st century has been available from the ENSEMBLES project; therefore it has been possible to obtain more quantitative assessments of model uncertainty. The literature about future climate change in the Baltic Sea region is largely built upon the ENSEMBLES project. Also within statistical downscaling, a considerable number of papers have been published, encompassing now the application of non-linear statistical models, projected changes in extremes and correction of climate model biases. The uncertainty of hydrological change has received increasing attention since the previous Baltic Sea assessment. Several studies on the propagation of uncertainties originating in GCMs, RCMs, and emission scenarios are presented. The number of studies on uncertainties related to

  11. Arctic sea ice decline: Projected changes in timing and extent of sea ice in the Bering and Chukchi Seas

    USGS Publications Warehouse

    Douglas, David C.

    2010-01-01

    The Arctic region is warming faster than most regions of the world due in part to increasing greenhouse gases and positive feedbacks associated with the loss of snow and ice cover. One consequence has been a rapid decline in Arctic sea ice over the past 3 decades?a decline that is projected to continue by state-of-the-art models. Many stakeholders are therefore interested in how global warming may change the timing and extent of sea ice Arctic-wide, and for specific regions. To inform the public and decision makers of anticipated environmental changes, scientists are striving to better understand how sea ice influences ecosystem structure, local weather, and global climate. Here, projected changes in the Bering and Chukchi Seas are examined because sea ice influences the presence of, or accessibility to, a variety of local resources of commercial and cultural value. In this study, 21st century sea ice conditions in the Bering and Chukchi Seas are based on projections by 18 general circulation models (GCMs) prepared for the fourth reporting period by the Intergovernmental Panel on Climate Change (IPCC) in 2007. Sea ice projections are analyzed for each of two IPCC greenhouse gas forcing scenarios: the A1B `business as usual? scenario and the A2 scenario that is somewhat more aggressive in its CO2 emissions during the second half of the century. A large spread of uncertainty among projections by all 18 models was constrained by creating model subsets that excluded GCMs that poorly simulated the 1979-2008 satellite record of ice extent and seasonality. At the end of the 21st century (2090-2099), median sea ice projections among all combinations of model ensemble and forcing scenario were qualitatively similar. June is projected to experience the least amount of sea ice loss among all months. For the Chukchi Sea, projections show extensive ice melt during July and ice-free conditions during August, September, and October by the end of the century, with high agreement

  12. Sea Extremes: Integrated impact assessment in coastal climate adaptation

    NASA Astrophysics Data System (ADS)

    Sorensen, Carlo; Knudsen, Per; Broge, Niels; Molgaard, Mads; Andersen, Ole

    2016-04-01

    We investigate effects of sea level rise and a change in precipitation pattern on coastal flooding hazards. Historic and present in situ and satellite data of water and groundwater levels, precipitation, vertical ground motion, geology, and geotechnical soil properties are combined with flood protection measures, topography, and infrastructure to provide a more complete picture of the water-related impact from climate change at an exposed coastal location. Results show that future sea extremes evaluated from extreme value statistics may, indeed, have a large impact. The integrated effects from future storm surges and other geo- and hydro-parameters need to be considered in order to provide for the best protection and mitigation efforts, however. Based on the results we present and discuss a simple conceptual model setup that can e.g. be used for 'translation' of regional sea level rise evidence and projections to concrete impact measures. This may be used by potentially affected stakeholders -often working in different sectors and across levels of governance, in a common appraisal of the challenges faced ahead. The model may also enter dynamic tools to evaluate local impact as sea level research advances and projections for the future are updated.

  13. Predictions of extreme precipitation and sea-level rise under climate change.

    PubMed

    Senior, C A; Jones, R G; Lowe, J A; Durman, C F; Hudson, D

    2002-07-15

    Two aspects of global climate change are particularly relevant to river and coastal flooding: changes in extreme precipitation and changes in sea level. In this paper we summarize the relevant findings of the IPCC Third Assessment Report and illustrate some of the common results found by the current generation of coupled atmosphere-ocean general circulation models (AOGCMs), using the Hadley Centre models. Projections of changes in extreme precipitation, sea-level rise and storm surges affecting the UK will be shown from the Hadley Centre regional models and the Proudman Oceanographic Laboratory storm-surge model. A common finding from AOGCMs is that in a warmer climate the intensity of precipitation will increase due to a more intense hydrological cycle. This leads to reduced return periods (i.e. more frequent occurrences) of extreme precipitation in many locations. The Hadley Centre regional model simulates reduced return periods of extreme precipitation in a number of flood-sensitive areas of the UK. In addition, simulated changes in storminess and a rise in average sea level around the UK lead to reduced return periods of extreme high coastal water events. The confidence in all these results is limited by poor spatial resolution in global coupled models and by uncertainties in the physical processes in both global and regional models, and is specific to the climate change scenario used.

  14. Climate change impacts on sea-air fluxes of CO2 in three Arctic seas: a sensitivity study using Earth observation

    NASA Astrophysics Data System (ADS)

    Land, P. E.; Shutler, J. D.; Cowling, R. D.; Woolf, D. K.; Walker, P.; Findlay, H. S.; Upstill-Goddard, R. C.; Donlon, C. J.

    2013-12-01

    We applied coincident Earth observation data collected during 2008 and 2009 from multiple sensors (RA2, AATSR and MERIS, mounted on the European Space Agency satellite Envisat) to characterise environmental conditions and integrated sea-air fluxes of CO2 in three Arctic seas (Greenland, Barents, Kara). We assessed net CO2 sink sensitivity due to changes in temperature, salinity and sea ice duration arising from future climate scenarios. During the study period the Greenland and Barents seas were net sinks for atmospheric CO2, with integrated sea-air fluxes of -36 ± 14 and -11 ± 5 Tg C yr-1, respectively, and the Kara Sea was a weak net CO2 source with an integrated sea-air flux of +2.2 ± 1.4 Tg C yr-1. The combined integrated CO2 sea-air flux from all three was -45 ± 18 Tg C yr-1. In a sensitivity analysis we varied temperature, salinity and sea ice duration. Variations in temperature and salinity led to modification of the transfer velocity, solubility and partial pressure of CO2 taking into account the resultant variations in alkalinity and dissolved organic carbon (DOC). Our results showed that warming had a strong positive effect on the annual integrated sea-air flux of CO2 (i.e. reducing the sink), freshening had a strong negative effect and reduced sea ice duration had a small but measurable positive effect. In the climate change scenario examined, the effects of warming in just over a decade of climate change up to 2020 outweighed the combined effects of freshening and reduced sea ice duration. Collectively these effects gave an integrated sea-air flux change of +4.0 Tg C in the Greenland Sea, +6.0 Tg C in the Barents Sea and +1.7 Tg C in the Kara Sea, reducing the Greenland and Barents sinks by 11% and 53%, respectively, and increasing the weak Kara Sea source by 81%. Overall, the regional integrated flux changed by +11.7 Tg C, which is a 26% reduction in the regional sink. In terms of CO2 sink strength, we conclude that the Barents Sea is the most

  15. Synoptic conditions of fine-particle transport to the last interglacial Red Sea-Dead Sea from Nd-Sr compositions of sediment cores

    NASA Astrophysics Data System (ADS)

    Palchan, Daniel; Stein, Mordechai; Goldstein, Steven L.; Almogi-Labin, Ahuva; Tirosh, Ofir; Erel, Yigal

    2018-01-01

    The sediments deposited at the depocenter of the Dead Sea comprise high-resolution archive of hydrological changes in the lake's watershed and record the desert dust transport to the region. This paper reconstructs the dust transport to the region during the termination of glacial Marine Isotope Stage 6 (MIS 6; ∼135-129 ka) and the last interglacial peak period (MIS5e, ∼129-116 ka). We use chemical and Nd and Sr isotope compositions of fine detritus material recovered from sediment core drilled at the deepest floor of the Dead Sea. The data is integrated with data achieved from cores drilled at the floor of the Red Sea, thus, forming a Red Sea-Dead Sea transect extending from the desert belt to the Mediterranean climate zone. The Dead Sea accumulated flood sediments derived from three regional surface cover types: settled desert dust, mountain loess-soils and loess-soils filling valleys in the Dead Sea watershed termed here "Valley Loess". The Valley Loess shows a distinct 87Sr/86Sr ratio of 0.7081 ± 1, inherited from dissolved detrital calcites that originate from dried waterbodies in the Sahara and are transported with the dust to the entire transect. Our hydro-climate and synoptic conditions reconstruction illustrates the following history: During glacial period MIS6, Mediterranean cyclones governed the transport of Saharan dust and rains to the Dead Sea watershed, driving the development of both mountain soils and Valley Loess. Then, at Heinrich event 11, dry western winds blew Saharan dust over the entire Red Sea - Dead Sea transect marking latitudinal expansion of the desert belt. Later, when global sea-level rose, the Dead Sea watershed went through extreme aridity, the lake retreated, depositing salt and accumulating fine detritus of the Valley Loess. During peak interglacial MIS 5e, enhanced flooding activity flushed the mountain soils and fine detritus from all around the Dead Sea and Red Sea, marking a significant "contraction" of the desert belt

  16. SIPEX--Exploring the Antarctic Sea Ice Zone

    ERIC Educational Resources Information Center

    Zicus, Sandra; Dobson, Jane; Worby, Anthony

    2008-01-01

    Sea ice in the polar regions plays a key role in both regulating global climate and maintaining marine ecosystems. The international Sea Ice Physics and Ecosystem eXperiment (SIPEX) explored the sea ice zone around Antarctica in September and October 2007, investigating relationships between the physical sea ice environment and the structure of…

  17. Maps Showing Sea Floor Topography, Sun-Illuminated Sea Floor Topography, and Backscatter Intensity of Quadrangles 1 and 2 in the Great South Channel Region, Western Georges Bank

    USGS Publications Warehouse

    Valentine, Page C.; Middleton, Tammie J.; Malczyk, Jeremy T.; Fuller, Sarah J.

    2002-01-01

    The Great South Channel separates the western part of Georges Bank from Nantucket Shoals and is a major conduit for the exchange of water between the Gulf of Maine to the north and the Atlantic Ocean to the south. Water depths range mostly between 65 and 80 m in the region. A minimum depth of 45 m occurs in the east-central part of the mapped area, and a maximum depth of 100 m occurs in the northwest corner. The channel region is characterized by strong tidal and storm currents that flow dominantly north and south. Major topographic features of the seabed were formed by glacial and postglacial processes. Ice containing rock debris moved from north to south, sculpting the region into a broad shallow depression and depositing sediment to form the irregular depressions and low gravelly mounds and ridges that are visible in parts of the mapped area. Many other smaller glacial featuresprobably have been eroded by waves and currents at worksince the time when the region, formerly exposed bylowered sea level or occupied by ice, was invaded by the sea. The low, irregular and somewhat lumpy fabric formed by the glacial deposits is obscured in places by drifting sand and by the linear, sharp fabric formed by modern sand features. Today, sand transported by the strong north-south-flowing tidal and storm currents has formed large, east-west-trending dunes. These bedforms (ranging between 5 and 20 m in height) contrast strongly with, and partly mask, the subdued topography of the older glacial features.

  18. Arctic Sea Ice: Using Airborne Topographic Mapper Measurements (ATM) to Determine Sea Ice Thickness

    DTIC Science & Technology

    2011-05-10

    Track Distance (Km) E le v a ti o n ( m ) ATM Elevation Profile Elevation 18 Figure 13: Geoid shape of earth’s equipotential surface , which is...inferred for the region between successive leads. Therefore, flying over a lead in the ice is very important for determining the exact sea surface elevation...inferred for the region between successive leads. Therefore, flying over a lead in the ice is very important for determining the exact sea surface

  19. The Red Sea during the Last Glacial Maximum: implications for sea level reconstructions

    NASA Astrophysics Data System (ADS)

    Gildor, H.; Biton, E.; Peltier, W. R.

    2006-12-01

    The Red Sea (RS) is a semi-enclosed basin connected to the Indian Ocean via a narrow and shallow strait, and surrounded by arid areas which exhibits high sensitivity to atmospheric changes and sea level reduction. We have used the MIT GCM to investigate the changes in the hydrography and circulation in the RS in response to reduced sea level, variability in the Indian monsoons, and changes in atmospheric temperature and humidity that occurred during the Last Glacial Maximum (LGM). The model results show high sensitivity to sea level reduction especially in the salinity field (increasing with the reduction in sea level) together with a mild atmospheric impact. Sea level reduction decreases the stratification, increases subsurface temperatures, and alters the circulation pattern at the Strait of Bab el Mandab, which experiences a transition from submaximal flow to maximal flow. The reduction in sea level at LGM alters the location of deep water formation which shifts to an open sea convective site in the northern part of the RS compared to present day situation in which deep water is formed from the Gulf of Suez outflow. Our main result based on both the GCM and on a simple hydraulic control model which takes into account mixing process at the Strait of Bab El Mandeb, is that sea level was reduced by only ~100 m in the Bab El Mandeb region during the LGM, i.e. the water depth at the Hanish sill (the shallowest part in the Strait Bab el Mandab) was around 34 m. This result agrees with the recent reconstruction of the LGM low stand of the sea in this region based upon the ICE-5G (VM2) model of Peltier (2004).

  20. The Role of Atmospheric Heating over the South China Sea and Western Pacific Regions in Modulating Asian Summer Climate under the Global Warming Background

    NASA Astrophysics Data System (ADS)

    He, B.

    2015-12-01

    Global warming is one of the most significant climate change signals at the earth's surface. However, the responses of monsoon precipitation to global warming show very distinct regional features, especially over the South China Sea (SCS) and surrounding regions during boreal summer. To understand the possible dynamics in these specific regions under the global warming background, the changes in atmospheric latent heating and their possible influences on global climate are investigated by both observational diagnosis and numerical sensitivity simulations. Results indicate that summertime latent heating has intensified in the SCS and western Pacific, accompanied by increased precipitation, cloud cover, lower-tropospheric convergence, and decreased sea level pressure. Sensitivity experiments show that middle and upper tropospheric heating causes an east-west feedback pattern between SCS-western Pacific and South Asia, which strengthens the South Asian High in the upper troposphere and moist convergence in the lower troposphere, consequently forcing a descending motion and adiabatic warming over continental South Asia and leading to a warm and dry climate. When air-sea interaction is considered, the simulation results are overall more similar to observations, and in particular the bias of precipitation over the Indian Ocean simulated by AGCMs has been reduced. The results highlight the important role of latent heating in adjusting the changes in sea surface temperature through atmospheric dynamics.

  1. Mechanisms of interannual- to decadal-scale winter Labrador Sea ice variability

    NASA Astrophysics Data System (ADS)

    Close, S.; Herbaut, C.; Houssais, M.-N.; Blaizot, A.-C.

    2017-12-01

    The variability of the winter sea ice cover of the Labrador Sea region and its links to atmospheric and oceanic forcing are investigated using observational data, a coupled ocean-sea ice model and a fully-coupled model simulation drawn from the CMIP5 archive. A consistent series of mechanisms associated with high sea ice cover are found amongst the various data sets. The highest values of sea ice area occur when the northern Labrador Sea is ice covered. This region is found to be primarily thermodynamically forced, contrasting with the dominance of mechanical forcing along the eastern coast of Baffin Island and Labrador, and the growth of sea ice is associated with anomalously fresh local ocean surface conditions. Positive fresh water anomalies are found to propagate to the region from a source area off the southeast Greenland coast with a 1 month transit time. These anomalies are associated with sea ice melt, driven by the enhanced offshore transport of sea ice in the source region, and its subsequent westward transport in the Irminger Current system. By combining sea ice transport through the Denmark Strait in the preceding autumn with the Greenland Blocking Index and the Atlantic Multidecadal Oscillation Index, strong correlation with the Labrador Sea ice area of the following winter is obtained. This relationship represents a dependence on the availability of sea ice to be melted in the source region, the necessary atmospheric forcing to transport this offshore, and a further multidecadal-scale link with the large-scale sea surface temperature conditions.

  2. Decadal sea level variability in the East China Sea linked to the North Pacific Gyre Oscillation

    NASA Astrophysics Data System (ADS)

    Moon, Jae-Hong; Song, Y. Tony

    2017-07-01

    In view of coastal community's need for adapting to sea level rise (SLR), understanding and predicting regional variability on decadal to longer time scales still remain a challenging issue in SLR research. Here, we have examined the low-frequency sea level signals in the East China Sea (ECS) from the 50-year hindcast of a non-Boussinesq ocean model in comparison with data sets from altimeters, tide-gauges, and steric sea level produced by in-situ profiles. It is shown that the mean sea levels in the ECS represent significant decadal fluctuations over the past 50 years, with a multi-decadal trend shift since the mid-1980s compared to the preceding 30 years. The decadal fluctuations in sea level are more closely linked to the North Pacific Gyre Oscillation (NPGO) rather than the Pacific Decadal Oscillation, which reflects the multi-decadal trend shift. A composite analysis indicates that wind patterns associated with the NPGO is shown to control the decadal variability of the western subtropical North Pacific. A positive NPGO corresponds to cyclonic wind stress curl anomaly in the western subtropical regions that results in a higher sea level in the ECS, particularly along the continental shelf, and lower sea levels off the ECS. The reverse occurs in years of negative NPGO.

  3. Potential for shoreline changes due to sea-level rise along the U.S. mid-Atlantic region

    USGS Publications Warehouse

    Gutierrez, Benjamin T.; Williams, S. Jeffress; Thieler, E. Robert

    2007-01-01

    Sea-level rise over the next century is expected to contribute significantly to physical changes along open-ocean shorelines. Predicting the form and magnitude of coastal changes is important for understanding the impacts to humans and the environment. Presently, the ability to predict coastal changes is limited by the scientific understanding of the many variables and processes involved in coastal change, and the lack of consensus regarding the validity of existing conceptual, analytical, or numerical models. In order to assess potential future coastal changes in the mid-Atlantic U.S. for the U.S. Climate Change Science Program (CCSP), a workshop was convened by the U.S. Geological Survey. Assessments of future coastal change were made by a committee of coastal scientists with extensive professional experience in the mid-Atlantic region. Thirteen scientists convened for a two-day meeting to exchange information and develop a consensus opinion on potential future coastal changes for the mid-Atlantic coast in response to sea-level rise. Using criteria defined in past work, the mid-Atlantic coast was divided into four geomorphic compartments: spits, headlands, wave-dominated barriers, and mixed-energy barriers. A range of potential coastal responses was identified for each compartment based on four sea-level rise scenarios. The four scenarios were based on the assumptions that: a) the long-term sea-level rise rate observed over the 20th century would persist over the 21st century, b) the 20th century rate would increase by 2 mm/yr, c) the 20th century rate would increase by 7 mm/yr, or d) sea-level would rise by 2 m over the next few hundred years. Potential responses to these sea-level rise scenarios depend on the landforms that occur within a region and include increased likelihood for erosion and shoreline retreat for all coastal types, increased likelihood for erosion, overwash and inlet breaching for barrier islands, as well as the possibility of a threshold

  4. Projected Sea Level Rise and Changes in Extreme Storm Surge and Wave Events During the 21st Century in the Region of Singapore

    NASA Astrophysics Data System (ADS)

    Palmer, M. D.; Cannaby, H.; Howard, T.; Bricheno, L.

    2016-02-01

    Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea-level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time mean sea level were evaluated using the process-based climate model data and methods presented in the IPCC AR5. Regional surge and wave solutions extending from 1980 to 2100 were generated using 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled ( 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980-2010, enabling a quantitative assessment of model skill. Simulated historical sea surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m(0.74 m) under the RCP 4.5(8.5) scenarios respectively. Trends in surge and significant wave height 2-year return levels were found to be statistically insignificant and/or physically very small under the more severe RCP8.5 scenario. We conclude that changes to long-term mean sea level constitute the

  5. Projected sea level rise and changes in extreme storm surge and wave events during the 21st century in the region of Singapore

    NASA Astrophysics Data System (ADS)

    Cannaby, H.; Palmer, M. D.; Howard, T.; Bricheno, L.; Calvert, D.; Krijnen, J.; Wood, R.; Tinker, J.; Bunney, C.; Harle, J.; Saulter, A.; O'Neill, C.; Bellingham, C.; Lowe, J.

    2015-12-01

    Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea-level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time mean sea level were evaluated using the process-based climate model data and methods presented in the IPCC AR5. Regional surge and wave solutions extending from 1980 to 2100 were generated using ~ 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled (~ 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980-2010, enabling a quantitative assessment of model skill. Simulated historical sea surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m (0.74 m) under the RCP 4.5 (8.5) scenarios respectively. Trends in surge and significant wave height 2 year return levels were found to be statistically insignificant and/or physically very small under the more severe RCP8.5 scenario. We conclude that changes to long-term mean sea level constitute the

  6. Characteristics of Winter Surface Air Temperature Anomalies in Moscow in 1970-2016 under Conditions of Reduced Sea Ice Area in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Semenov, V. A.

    2018-01-01

    On the basis of observational data on daily mean surface air temperature (SAT) and sea ice concentration (SIC) in the Barents Sea (BS), the characteristics of strong positive and negative winter SAT anomalies in Moscow have been studied in comparison with BS SIC data obtained in 1949-2016. An analysis of surface backward trajectories of air-particle motions has revealed the most probable paths of both cold and warm air invasions into Moscow and located regions that mostly affect strong winter SAT anomalies in Moscow. Atmospheric circulation anomalies that cause strong winter SAT anomalies in Moscow have been revealed. Changes in the ways of both cold and warm air invasions have been found, as well as an increase in the frequency of blocking anticyclones in 2005-2016 when compared to 1970-1999. The results suggest that a winter SIC decrease in the BS in 2005-2016 affects strong winter SAT anomalies in Moscow due to an increase in the frequency of occurrence of blocking anticyclones to the south of and over the BS.

  7. Sedimentology and geochemistry of mud volcanoes in the Anaximander Mountain Region from the Eastern Mediterranean Sea.

    PubMed

    Talas, Ezgi; Duman, Muhammet; Küçüksezgin, Filiz; Brennan, Michael L; Raineault, Nicole A

    2015-06-15

    Investigations carried out on surface sediments collected from the Anaximander mud volcanoes in the Eastern Mediterranean Sea to determine sedimentary and geochemical properties. The sediment grain size distribution and geochemical contents were determined by grain size analysis, organic carbon, carbonate contents and element analysis. The results of element contents were compared to background levels of Earth's crust. The factors that affect element distribution in sediments were calculated by the nine push core samples taken from the surface of mud volcanoes by the E/V Nautilus. The grain size of the samples varies from sand to sandy silt. Enrichment and Contamination factor analysis showed that these analyses can also be used to evaluate of deep sea environmental and source parameters. It is concluded that the biological and cold seep effects are the main drivers of surface sediment characteristics from the Anaximander mud volcanoes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Sea-level rise induced amplification of coastal protection design heights.

    PubMed

    Arns, Arne; Dangendorf, Sönke; Jensen, Jürgen; Talke, Stefan; Bender, Jens; Pattiaratchi, Charitha

    2017-01-06

    Coastal protection design heights typically consider the superimposed effects of tides, surges, waves, and relative sea-level rise (SLR), neglecting non-linear feedbacks between these forcing factors. Here, we use hydrodynamic modelling and multivariate statistics to show that shallow coastal areas are extremely sensitive to changing non-linear interactions between individual components caused by SLR. As sea-level increases, the depth-limitation of waves relaxes, resulting in waves with larger periods, greater amplitudes, and higher run-up; moreover, depth and frictional changes affect tide, surge, and wave characteristics, altering the relative importance of other risk factors. Consequently, sea-level driven changes in wave characteristics, and to a lesser extent, tides, amplify the resulting design heights by an average of 48-56%, relative to design changes caused by SLR alone. Since many of the world's most vulnerable coastlines are impacted by depth-limited waves, our results suggest that the overall influence of SLR may be greatly underestimated in many regions.

  9. Assessing Flood Risk Under Sea Level Rise and Extreme Sea Levels Scenarios: Application to the Ebro Delta (Spain)

    NASA Astrophysics Data System (ADS)

    Sayol, J. M.; Marcos, M.

    2018-02-01

    This study presents a novel methodology to estimate the impact of local sea level rise and extreme surges and waves in coastal areas under climate change scenarios. The methodology is applied to the Ebro Delta, a valuable and vulnerable low-lying wetland located in the northwestern Mediterranean Sea. Projections of local sea level accounting for all contributions to mean sea level changes, including thermal expansion, dynamic changes, fresh water addition and glacial isostatic adjustment, have been obtained from regionalized sea level projections during the 21st century. Particular attention has been paid to the uncertainties, which have been derived from the spread of the multi-model ensemble combined with seasonal/inter-annual sea level variability from local tide gauge observations. Besides vertical land movements have also been integrated to estimate local relative sea level rise. On the other hand, regional projections over the Mediterranean basin of storm surges and wind-waves have been used to evaluate changes in extreme events. The compound effects of surges and extreme waves have been quantified using their joint probability distributions. Finally, offshore sea level projections from extreme events superimposed to mean sea level have been propagated onto a high resolution digital elevation model of the study region in order to construct flood hazards maps for mid and end of the 21st century and under two different climate change scenarios. The effect of each contribution has been evaluated in terms of percentage of the area exposed to coastal hazards, which will help to design more efficient protection and adaptation measures.

  10. Mental health issues from rising sea level in a remote coastal region of the Solomon Islands: current and future.

    PubMed

    Asugeni, James; MacLaren, David; Massey, Peter D; Speare, Rick

    2015-12-01

    There is little published research about mental health and climate change in the Pacific, including Solomon Islands. Solomon Islands has one of the highest rates of sea-level rise globally. The aim of this research was to document mental health issues related to sea-level rise for people in East Malaita, Solomon Islands. A cross-sectional study was carried out in six low-lying villages in East Malaita, Solomon Islands. The researcher travelled to villages by dugout canoe. In addition to quantitative, closed-ended questions, open-ended questions with villagers explored individual and community responses to rising sea level. Of 60 people asked, 57 completed the questionnaire. Of these, 90% reported having seen a change in the weather patterns. Nearly all participants reported that sea-level rise is affecting them and their family and is causing fear and worry on a personal and community level. Four themes emerged from the qualitative analysis: experience of physical impacts of climate change; worry about the future; adaptation to climate change; government response needed. Given predictions of ongoing sea-level rise in the Pacific it is essential that more research is conducted to further understand the human impact of climate change for small island states which will inform local, provincial and national-level mental health responses. © The Royal Australian and New Zealand College of Psychiatrists 2015.

  11. Assessing Sea Level Rise Impacts on the Surficial Aquifer in the Kennedy Space Center Region

    NASA Astrophysics Data System (ADS)

    Xiao, H.; Wang, D.; Hagen, S. C.; Medeiros, S. C.; Warnock, A. M.; Hall, C. R.

    2014-12-01

    Global sea level rise in the past century due to climate change has been seen at an average rate of approximately 1.7-2.2 mm per year, with an increasing rate over the next century. The increasing SLR rate poses a severe threat to the low-lying land surface and the shallow groundwater system in the Kennedy Space Center in Florida, resulting in saltwater intrusion and groundwater induced flooding. A three-dimensional groundwater flow and salinity transport model is implemented to investigate and evaluate the extent of floods due to rising water table as well as saltwater intrusion. The SEAWAT model is chosen to solve the variable-density groundwater flow and salinity transport governing equations and simulate the regional-scale spatial and temporal evolution of groundwater level and chloride concentration. The horizontal resolution of the model is 50 m, and the vertical domain includes both the Surficial Aquifer and the Floridan Aquifer. The numerical model is calibrated based on the observed hydraulic head and chloride concentration. The potential impacts of sea level rise on saltwater intrusion and groundwater induced flooding are assessed under various sea level rise scenarios. Based on the simulation results, the potential landward movement of saltwater and freshwater fringe is projected. The existing water supply wells are examined overlaid with the projected salinity distribution map. The projected Surficial Aquifer water tables are overlaid with data of high resolution land surface elevation, land use and land cover, and infrastructure to assess the potential impacts of sea level rise. This study provides useful tools for decision making on ecosystem management, water supply planning, and facility management.

  12. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modestmore » reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.« less

  13. Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    DOE PAGES

    Cvijanovic, Ivana; Caldeira, Ken; MacMartin, Douglas G.

    2015-04-01

    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO₂ climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modestmore » reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO₂ induced global warming.« less

  14. Toward breeding new land-sea plant hybrid species irrigable with seawater for dry regions.

    PubMed

    Moustafa, Khaled

    2015-01-01

    A plant species growing in sea or coastal saltmarsh is greatly tolerant to high concentrations of salts, and a plant species growing in desert or dry regions is highly tolerant to drought. Breeding a new plant hybrid species from both species by means of cellular grafting, genome fusion or nuclear transfer would generate, at least in theory, a hybrid plant species that should be strongly tolerant to harsh aridity and salinity and would be potentially irrigable with seawater. Such prospective species can be used for example as a fodder, biofuel crop or stabilizer species to protect soil from wind erosion and sandy storms in dry regions. Breeding such species would change the surface of the world and help to solve major challenges of starvation, malnutrition and poverty. Here, I propose potential approaches that would be worthy of investigation toward this purpose.

  15. Regional Mapping and Resource Assessment of Shallow Gas Hydrates of Japan Sea - METI Launched 3 Years Project in 2013.

    NASA Astrophysics Data System (ADS)

    Matsumoto, R.

    2014-12-01

    Agency of Natural Resources and Energy of METI launched a 3 years shallow gas hydrate exploration project in 2013 to make a precise resource assessment of shallow gas hydrates in the eastern margin of Japan Sea and around Hokkaido. Shallow gas hydrates of Japan Sea occur in fine-grained muddy sediments of shallow subsurface of mounds and gas chimneys in the form of massive nodular to platy accumulation. Gas hydrate bearing mounds are often associated with active methane seeps, bacterial mats and carbonate concretions and pavements. Gases of gas hydrates are derived either from deep thermogenic, shallow microbial or from the mixed gases, contrasting with totally microbial deep-seated stratigraphically controlled hydrates. Shallow gas hydrates in Japan Sea have not been considered as energy resource due to its limited distribution in narrow Joetsu basin. However recently academic research surveys have demonstrated regional distribution of gas chimney and hydrate mound in a number of sedimentary basins along the eastern margin of Japan Sea. Regional mapping of gas chimney and hydrate mound by means of MBES and SBP surveys have confirmed that more than 200 gas chimneys exist in 100 km x 100 km area. ROV dives have identified dense accumulation of hydrates on the wall of half collapsed hydrate mound down to 30 mbsf. Sequential LWD and shallow coring campaign in the Summer of 2014, R/V Hakurei, which is equipped with Fugro Seacore R140 drilling rig, drilled through hydrate mounds and gas chimneys down to the BGHS (base of gas hydrate stability) level and successfully recovered massive gas hydrates bearing sediments from several horizons.

  16. Consideration of the baseline environment in examples of voluntary SEAs from Scotland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wright, Fiona

    2007-07-15

    Evidence from analysing and evaluating examples of three voluntary SEAs prepared in Scotland in the mid-late 1990s showed that different spatial and temporal scales were used when providing a baseline environment description. The SEAs analysed were prepared for: a wind farm siting programme that looked at national and short-term impacts; a land use plan that looked at regional and short-term impacts; and a transport plan that examined local and medium-term impacts. It was found that the two SEAs prepared by local government only considered impacts on the baseline environment within their jurisdictional boundaries whilst the SEA prepared by the privatemore » business considered impacts on the national baseline. A mixture of baseline data about planning, economic, environmental and social issues were included in the SEAs, however, evidence suggested that each SEA only focussed on those baseline features that might be significantly affected by the proposal. Each SEA also made extensive use of existing baseline information available from a variety of sources including local, and central government records and information from statutory bodies. All of the SEAs acknowledged that baseline data deficiencies existed and in certain cases steps were taken to obtain primary field data to help address these, however, it was also acknowledged that resource restrictions and decision-making deadlines limited the amount of primary baseline data that could be collected.« less

  17. Monitoring of sinkholes and subsidence affecting the Jordanian coast of the Dead Sea through Synthetic Aperture Radar data and last generation Sentinel-1 data

    NASA Astrophysics Data System (ADS)

    Tessari, Giulia; Riccardi, Paolo; Lecci, Daniele; Pasquali, Paolo; Floris, Mario

    2017-04-01

    Since the mid-1980s the coast of the Dead Sea is affected by sinkholes occurring over and around the emerged mud and salt flats. Strong subsidence and landslides also affect some segments of the coast. Nowadays, several thousands of sinkholes attest that the degradation of the Dead Sea coast is worsening. Furthermore, soil deformations are interesting the main streets running along both the Israeli and Jordanian sides of the Dead Sea. These hazards are due to the dramatic dropping of the Dead Sea level, characterized by an increasing rate from about 60 cm/yr in the 1970s up to 1 m/yr in the 2000s, which provokes a lowering of the fresh-saline groundwater interface, replacing the hypersaline groundwater with fresh water and causing a consequent erosion of the subsurface salt layers. Subsidence, sinkholes, river erosion and landslides damage bridges, roads, dikes, houses, factories worsening this ongoing disaster. One of the most emblematic effects is the catastrophic collapse of a 12-km newly constructed dyke, located on the Lisan Peninsula (Jordan), occurred in 2000. Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques and Advanced stacking DInSAR techniques (A-DInSAR) were applied to investigate sinkholes and subsidence affecting the Jordanian coast of the Dead Sea. The use of SAR data already proof to be efficient on the risk management of the area, allowing to identify a vulnerable portion of an Israeli highway, averting a possible collapse. Deformation analysis has been focused on the Ghor Al Haditha area and Lisan peninsula, located in the South-Eastern part of the lake coast. The availability of a huge database of SAR data, since the beginning of the 90s, allowed to observe the evolution of the displacements which are damaging this area. Furthermore, last generation Sentinel-1 data, acquired by the ESA mission, were processed to obtain information about the recent evolution of the subsidence and sinkholes affecting the study area, from

  18. Optimisation of sea surface current retrieval using a maximum cross correlation technique on modelled sea surface temperature

    NASA Astrophysics Data System (ADS)

    Heuzé, Céline; Eriksson, Leif; Carvajal, Gisela

    2017-04-01

    Using sea surface temperature from satellite images to retrieve sea surface currents is not a new idea, but so far its operational near-real time implementation has not been possible. Validation studies are too region-specific or uncertain, due to the errors induced by the images themselves. Moreover, the sensitivity of the most common retrieval method, the maximum cross correlation, to the three parameters that have to be set is unknown. Using model outputs instead of satellite images, biases induced by this method are assessed here, for four different seas of Western Europe, and the best of nine settings and eight temporal resolutions are determined. For all regions, tracking a small 5 km pattern from the first image over a large 30 km region around its original location on a second image, separated from the first image by 6 to 9 hours returned the most accurate results. Moreover, for all regions, the problem is not inaccurate results but missing results, where the velocity is too low to be picked by the retrieval. The results are consistent both with limitations caused by ocean surface current dynamics and with the available satellite technology, indicating that automated sea surface current retrieval from sea surface temperature images is feasible now, for search and rescue operations, pollution confinement or even for more energy efficient and comfortable ship navigation.

  19. Sea ice variations in the central Okhotsk Sea during the last two glacial-interglacial cycles

    NASA Astrophysics Data System (ADS)

    Lo, L.; Cabedo-Sanz, P.; Lattaud, J.; Belt, S. T.; Schouten, S.; Huang, J. J.; Timmermann, A.; Zeeden, C.; Wei, K. Y.; Shen, C. C.; Hodell, D. A.; Elderfield, H.

    2016-12-01

    Sea ice system as one of the critical and sensitive climate components in the Earth's climate system has experienced dramatically declination for the past few decades. Little knowledge, however, about the sea ice variations in the past orbital timescales has been obtained by paleoclimatic studies due to the lack of reliable sea ice proxy and age model constrain in the high productivity subpolar to polar regions. Here we present continuous 180,000 years subarctic northwestern Pacific sea ice and surface temperature (SST) records in the center Okhotsk Sea, the southernmost of seasonal sea ice fomration region in the Northern Hemisphere by using by using novel organic and non-destructive geochemical proxies from Site MD01-2414 (53oN, 149oE, water depth 1123 m). High resolution X-ray fluoresces scanning biogenic/terrestrial (Ba/Ti) elemental ratio represent clear glacial-interglacial cycles. Organic geochemical proxies (IP25 and TEX86) derived sea ice and SST changes in the same time resolution reveal the seasonality in the center Okhotsk Sea. Sea ice shows strong 23-kyr precession cycle control with modulation of 100-kyr eccentricity cycle during the peak interglacial periods (Marine Isotope Stage 5e and Holocene). On the other hand, SST represent global background climate change of 100-kyr cycle with very strong obliquity changes. According to the timeseries analyses, we argue that the sea ice minimum in the center of Okhotsk Sea has mainly been controlled by the local autumn insolation. SST represent annual insolation increasing due to local summer insolation and the obliquity pacing. This study firstly demonstrated clear seasonality in the same site. Further study of the relationship between sea ice and seawater thermal hisotries on the orbital timescale in the subarctic Pacific is crucial in the understanding of past major climate event, e.g. Middle Pleistocene Transition and Middle Brunhes Event.

  20. Multi-method Quantification of Sea-ice Production in Weddell Sea Polynyas (Antarctica)

    NASA Astrophysics Data System (ADS)

    Heinemann, G.; Zentek, R.; Stulic, L.; Paul, S.; Preusser, A.; Timmermann, R.

    2017-12-01

    Coastal polynyas occur frequently during winter in the Weddell Sea, which leads to strong sea ice production and to the formation of a highly saline water mass which is considered to be a major source of bottom water and one of the main drivers of the circulation beneath the Filchner-Ronne Ice Shelf. Thus the quantification of sea ice production in Weddell Sea polynyas is of vital interest for understanding water mass modification in this region. We use a multi-method approach to quantify sea ice production. Method 1) is based on the energy balance simulated by the regional climate model COSMO-CLM (CCLM) with 15 / 5 km resolution for the period 2002-2015 (nested in ERA-Interim data). Daily sea ice concentrations were taken from microwave satellite measurements. Method 2) is based on remote sensing using MODIS thermal infrared data at a resolution of 1-2km and a surface energy balance model taking atmospheric data from different reanalyses (ERA-Interim, JRA55, NCEP2) as well as data of CCLM. Method 3) relies on simulations using the Finite Element Sea ice-Ocean Model (FESOM). FESOM is run on a global grid with a resolution of about 5 km along the coast of the Weddell Sea using atmospheric forcing from reanalyses (ERA-Interim (80km) and CFSR (38km)) as well as from CCLM. In addition, an experiment with assimilation of MODIS thin ice retrievals was conducted. Estimates of polynya area (POLA) and sea ice production (IP) from the different methods are presented. The MODIS-based method with ERA-Interim shows the largest POLA as well as the largest IP for the Ronne polynya (RO, POLA / IP = 2800 km² / 29 km³/a) and for the polynya off Brunt Ice Shelf (BR, 3400 km² / 30 km³/a). Sensitivity to the choice of atmosphere data is high. In particular, too low temperatures in JRA55 cause very large ice production events and a strong overestimation of IP rates. Estimates based on CCLM simulations agree generally well with MODIS/ERA-Interim. FESOM yields a generally larger ice

  1. The Impact of Sea Level Rise on Florida's Everglades

    NASA Astrophysics Data System (ADS)

    Senarath, S. U.

    2005-12-01

    Global warming and the resulting melting of polar ice sheets could increase global sea levels significantly. Some studies have predicted mean sea level increases in the order of six inches to one foot in the next 25 to 50 years. This could have severe irreversible impacts on low-lying areas of Florida's Everglades. The key objective of this study is to evaluate the effects of a one foot sea level rise on Cape Sable Seaside Sparrow (CSSS) nesting areas within the Everglades National Park (ENP). A regional-scale hydrologic model is used to assess the sensitivities of this sea-level rise scenario. Florida's Everglades supports a unique ecosystem. At present, about 50 percent of this unique ecosystem has been lost due to urbanization and farming. Today, the water flow in the remnant Everglades is also regulated to meet a variety of competing environmental, water-supply and flood-control needs. A 30-year, eight billion dollar (1999 estimate) project has been initiated to improve Everglades' water flows. The expected benefits of this restoration project will be short-lived if the predicted sea level rise causes severe impacts on the environmentally sensitive areas of the Everglades. Florida's Everglades is home to many threatened and endangered species of wildlife. The Cape Sable Seaside Sparrow population in the ENP is one such species that is currently listed as endangered. Since these birds build their nests close to the ground surface (the base of the nest is approximately six inches from the ground surface), they are directly affected by any sea level induced ponding depth, frequency or duration change. Therefore, the CSSS population serves as a good indicator species for evaluating the negative impacts of sea level rise on the Everglades' ecosystem. The impact of sea level rise on the CSSS habitat is evaluated using the Regional Simulation Model (RSM) developed by the South Florida Water Management District. The RSM is an implicit, finite-volume, continuous

  2. Sea Star Wasting Disease in Asterias forbesi along the Atlantic Coast of North America

    PubMed Central

    Bucci, Caitlin; Francoeur, Madison; McGreal, Jillon; Smolowitz, Roxanna; Zazueta-Novoa, Vanesa; Wessel, Gary M.

    2017-01-01

    As keystone species, sea stars serve to maintain biodiversity and species distribution through trophic level interactions in marine ecosystems. Recently, Sea Star Wasting Disease (SSWD) has caused widespread mass mortality in several sea star species from the Pacific Coast of the United States of America (USA) and Asterias forbesi on the Atlantic Coast. A densovirus, named Sea Star associated Densovirus (SSaDV), has been associated with the wasting disease in Pacific Coast sea stars, and limited samples of A. forbesi. The goal of this research is to examine the pathogenesis of SSWD in A. forbesi on the Atlantic Coast of the USA and to determine if SSaDV is associated with the wasting disease in this species. Histological examination of A. forbesi tissues affected with SSWD showed cuticle loss, vacuolation and necrosis of epidermal cells, and oedema of the dermis, but no consistent evidence indicating the cause of the lesions. Challenge experiments by cohabitation and immersion in infected water suggest that the cause of SSWD is viral in nature, as filtration (0.22 μm) of water from tanks with sea stars exhibiting SSWD did not prevent the transmission and progression of the disease. Death of challenged sea stars occurred 7–10 d after exposure to infected water or sea stars, and the infectivity crossed species (A. forbesi and Pateria miniata) with equal penetrance. Of the 48 stars tested by quantitative real time PCR, 29 (60%) were positive for the SSaDV VP1 gene. These stars represent field-collected sea stars from all geographical regions (South Carolina to Maine) in 2012–2015, as well as stars exposed to infected stars or water from affected tanks. However, a clear association between the presence of SSaDV and SSWD signs in experimental and field-collected A. forbesi was not found in this study. PMID:29228006

  3. New data on earthquake focal mechanisms in the Laptev Sea region of the Arctic-Asian seismic belt

    NASA Astrophysics Data System (ADS)

    Seredkina, Alena I.; Melnikova, Valentina I.

    2018-05-01

    We consider 16 earthquakes with M w = 4.2-5.2 that occurred in the south-eastern part of the Laptev Sea shelf, Lena River Delta, and North Verkhoyanye (Russia) in 1990-2014. Focal mechanisms, scalar seismic moments, moment magnitudes, and hypocentral depths of the seismic events have been calculated from the data on amplitude spectra of surface waves and P wave first-motion polarities. The obtained results sufficiently implement the existing dataset on reliable earthquake source parameters for the study region and prove the change of the stress-strain state of the crust from extension on the Laptev Sea shelf to compression on the continent providing finer spatial details of the deformation field in the transition zones such as Buor-Khaya Bay and the Lena River Delta.

  4. Sea level anomaly in the North Atlantic and seas around Europe: Long-term variability and response to North Atlantic teleconnection patterns.

    PubMed

    Iglesias, Isabel; Lorenzo, M Nieves; Lázaro, Clara; Fernandes, M Joana; Bastos, Luísa

    2017-12-31

    Sea level anomaly (SLA), provided globally by satellite altimetry, is considered a valuable proxy for detecting long-term changes of the global ocean, as well as short-term and annual variations. In this manuscript, monthly sea level anomaly grids for the period 1993-2013 are used to characterise the North Atlantic Ocean variability at inter-annual timescales and its response to the North Atlantic main patterns of atmospheric circulation variability (North Atlantic Oscillation, Eastern Atlantic, Eastern Atlantic/Western Russia, Scandinavian and Polar/Eurasia) and main driven factors as sea level pressure, sea surface temperature and wind fields. SLA variability and long-term trends are analysed for the North Atlantic Ocean and several sub-regions (North, Baltic and Mediterranean and Black seas, Bay of Biscay extended to the west coast of the Iberian Peninsula, and the northern North Atlantic Ocean), depicting the SLA fluctuations at basin and sub-basin scales, aiming at representing the regions of maximum sea level variability. A significant correlation between SLA and the different phases of the teleconnection patterns due to the generated winds, sea level pressure and sea surface temperature anomalies, with a strong variability on temporal and spatial scales, has been identified. Long-term analysis reveals the existence of non-stationary inter-annual SLA fluctuations in terms of the temporal scale. Spectral density analysis has shown the existence of long-period signals in the SLA inter-annual component, with periods of ~10, 5, 4 and 2years, depending on the analysed sub-region. Also, a non-uniform increase in sea level since 1993 is identified for all sub-regions, with trend values between 2.05mm/year, for the Bay of Biscay region, and 3.98mm/year for the Baltic Sea (no GIA correction considered). The obtained results demonstrated a strong link between the atmospheric patterns and SLA, as well as strong long-period fluctuations of this variable in spatial and

  5. Inspection guide for column splice regions affected by premature concrete deterioration.

    DOT National Transportation Integrated Search

    2016-07-01

    This guideline aims to help bridge inspectors and engineers in identifying and assessing the : capability of reinforced concrete column splice regions affected by varying degrees of premature : concrete deterioration due to alkali-silica reaction (AS...

  6. Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region

    NASA Astrophysics Data System (ADS)

    Wang, Xujia; Zheng, Zhihai; Feng, Guolin

    2018-04-01

    The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16-18 days in all months, while the atmospheric model reaches 10-11 days in January, April, and July and only 7-8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.

  7. Vertical water mass structure in the North Atlantic influences the bathymetric distribution of species in the deep-sea coral genus Paramuricea

    NASA Astrophysics Data System (ADS)

    Radice, Veronica Z.; Quattrini, Andrea M.; Wareham, Vonda E.; Edinger, Evan N.; Cordes, Erik E.

    2016-10-01

    Deep-sea corals are the structural foundation of their ecosystems along continental margins worldwide, yet the factors driving their broad distribution are poorly understood. Environmental factors, especially depth-related variables including water mass properties, are thought to considerably affect the realized distribution of deep-sea corals. These factors are governed by local and regional oceanographic conditions that directly influence the dispersal of larvae, and therefore affect the ultimate distribution of adult corals. We used molecular barcoding of mitochondrial and nuclear sequences to identify species of octocorals in the genus Paramuricea collected from the Labrador Sea to the Grand Banks of Newfoundland, Canada at depths of 150-1500 m. The results of this study revealed overlapping bathymetric distributions of the Paramuricea species present off the eastern Canadian coast, including the presence of a few cryptic species previously designated as Paramuricea placomus. The distribution of Paramuricea species in the western North Atlantic differs from the Gulf of Mexico, where five Paramuricea species exhibit strong segregation by depth. The different patterns of Paramuricea species in these contrasting biogeographic regions provide insight into how water mass structure may shape species distribution. Investigating Paramuricea prevalence and distribution in conjunction with oceanographic conditions can help demonstrate the factors that generate and maintain deep-sea biodiversity.

  8. Potential new production in two upwelling regions of the western Arabian Sea: Estimation and comparison

    NASA Astrophysics Data System (ADS)

    Liao, Xiaomei; Zhan, Haigang; Du, Yan

    2016-07-01

    Using satellite-derived and in situ data, the wind-driven potential new production (nitrate supply) for the 300 km wide coastal band in two upwelling regions of the western Arabian Sea (AS) during the southwest monsoon is estimated. The upward nitrate flux to the euphotic zone is generally based on the physical processes of coastal transport (Ekman transport and geostrophic transport) and offshore Ekman pumping. The coastal geostrophic current in the western AS influences the upwelling intensity and latitudinal distributions of nitrate supply. The Oman and Somalia upwelling regions have similar level of potential new production (nitrate supply) during the summer monsoon, while the satellite estimates of primary production off Oman are 2 times greater than those off Somalia. The much higher potential f-ratio in the Somalia upwelling region indicates that the primary production could be limited by availability of other macronutrients (e.g., silicate). The correlation analysis of the primary production and the aerosol optical thickness shows that the Oman upwelling region displays a stronger coupling between the atmospheric deposition and the phytoplankton abundance. The high summertime dust levels in the atmosphere are suggested to contribute to the high primary production in the Oman upwelling region.

  9. Climate change impacts on southern Ross Sea phytoplankton composition, productivity, and export

    NASA Astrophysics Data System (ADS)

    Kaufman, Daniel E.; Friedrichs, Marjorie A. M.; Smith, Walker O.; Hofmann, Eileen E.; Dinniman, Michael S.; Hemmings, John C. P.

    2017-03-01

    changes will affect each region differently. It is especially important to determine these behaviors for regions changing in unique ways and for regions relatively undisturbed by human influences. One such region is the Ross Sea, which has some of the most productive marine plants and animals around Antarctica. Significant changes in the Ross Sea environment are likely over the next century, but it is not known how these changes will impact the marine food web. In this study, computer simulations give us an idea of how warmer temperatures combined with other changes related to melting sea ice may impact the base of the Ross Sea food web over the next century. The simulations show changes in algae species, increases in the amount of plant matter produced, and increases in the amount of plant matter that sinks from the well-lit ocean surface to deeper waters. The details of what cause these changes in the simulations give us new ways of thinking about change in the Ross Sea and point us toward parts of the system warranting further study.

  10. Assessment of coastal vulnerability to climate change hazards at the regional scale: the case study of the North Adriatic Sea

    NASA Astrophysics Data System (ADS)

    Torresan, S.; Critto, A.; Rizzi, J.; Marcomini, A.

    2012-07-01

    Sea level rise, changes in storms and wave climate as a consequence of global climate change are expected to increase the size and magnitude of flooded and eroding coastal areas, thus having profound impacts on coastal communities and ecosystems. River deltas, beaches, estuaries and lagoons are considered particularly vulnerable to the adverse effects of climate change, which should be studied at the regional/local scale. This paper presents a regional vulnerability assessment (RVA) methodology developed to analyse site-specific spatial information on coastal vulnerability to the envisaged effects of global climate change, and assist coastal communities in operational coastal management and conservation. The main aim of the RVA is to identify key vulnerable receptors (i.e. natural and human ecosystems) in the considered region and localize vulnerable hot spot areas, which could be considered as homogeneous geographic sites for the definition of adaptation strategies. The application of the RVA methodology is based on a heterogeneous subset of bio-geophysical and socio-economic vulnerability indicators (e.g. coastal topography, geomorphology, presence and distribution of vegetation cover, location of artificial protection), which are a measure of the potential harm from a range of climate-related impacts (e.g. sea level rise inundation, storm surge flooding, coastal erosion). Based on a system of numerical weights and scores, the RVA provides relative vulnerability maps that allow to prioritize more vulnerable areas and targets of different climate-related impacts in the examined region and to support the identification of suitable areas for human settlements, infrastructures and economic activities, providing a basis for coastal zoning and land use planning. The implementation, performance and results of the methodology for the coastal area of the North Adriatic Sea (Italy) are fully described in the paper.

  11. Arctic and Antarctic Sea Ice Changes and Impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Nghiem, S. V.

    2013-12-01

    The extent of springtime Arctic perennial sea ice, important to preconditioning summer melt and to polar sunrise photochemistry, continues its precipitous reduction in the last decade marked by a record low in 2012, as the Bromine, Ozone, and Mercury Experiment (BROMEX) was conducted around Barrow, Alaska, to investigate impacts of sea ice reduction on photochemical processes, transport, and distribution in the polar environment. In spring 2013, there was further loss of perennial sea ice, as it was not observed in the ocean region adjacent to the Alaskan north coast, where there was a stretch of perennial sea ice in 2012 in the Beaufort Sea and Chukchi Sea. In contrast to the rapid and extensive loss of sea ice in the Arctic, Antarctic sea ice has a trend of a slight increase in the past three decades. Given the significant variability in time and in space together with uncertainties in satellite observations, the increasing trend of Antarctic sea ice may arguably be considered as having a low confidence level; however, there was no overall reduction of Antarctic sea ice extent anywhere close to the decreasing rate of Arctic sea ice. There exist publications presenting various factors driving changes in Arctic and Antarctic sea ice. After a short review of these published factors, new observations and atmospheric, oceanic, hydrological, and geological mechanisms contributed to different behaviors of sea ice changes in the Arctic and Antarctic are presented. The contribution from of hydrologic factors may provide a linkage to and enhance thermal impacts from lower latitudes. While geological factors may affect the sensitivity of sea ice response to climate change, these factors can serve as the long-term memory in the system that should be exploited to improve future projections or predictions of sea ice changes. Furthermore, similarities and differences in chemical impacts of Arctic and Antarctic sea ice changes are discussed. Understanding sea ice changes and

  12. Geoid undulations and gravity anomalies over the Aral Sea, the Black Sea and the Caspian Sea from a combined GEOS-3/SEASAT/GEOSAT altimeter data set

    NASA Technical Reports Server (NTRS)

    Au, Andrew Y.; Brown, Richard D.; Welker, Jean E.

    1991-01-01

    Satellite-based altimetric data taken by GOES-3, SEASAT, and GEOSAT over the Aral Sea, the Black Sea, and the Caspian Sea are analyzed and a least squares collocation technique is used to predict the geoid undulations on a 0.25x0.25 deg. grid and to transform these geoid undulations to free air gravity anomalies. Rapp's 180x180 geopotential model is used as the reference surface for the collocation procedure. The result of geoid to gravity transformation is, however, sensitive to the information content of the reference geopotential model used. For example, considerable detailed surface gravity data were incorporated into the reference model over the Black Sea, resulting in a reference model with significant information content at short wavelengths. Thus, estimation of short wavelength gravity anomalies from gridded geoid heights is generally reliable over regions such as the Black Sea, using the conventional collocation technique with local empirical covariance functions. Over regions such as the Caspian Sea, where detailed surface data are generally not incorporated into the reference model, unconventional techniques are needed to obtain reliable gravity anomalies. Based on the predicted gravity anomalies over these inland seas, speculative tectonic structures are identified and geophysical processes are inferred.

  13. Decadal shifts in autumn migration timing by Pacific Arctic beluga whales are related to delayed annual sea ice formation.

    PubMed

    Hauser, Donna D W; Laidre, Kristin L; Stafford, Kathleen M; Stern, Harry L; Suydam, Robert S; Richard, Pierre R

    2017-06-01

    Migrations are often influenced by seasonal environmental gradients that are increasingly being altered by climate change. The consequences of rapid changes in Arctic sea ice have the potential to affect migrations of a number of marine species whose timing is temporally matched to seasonal sea ice cover. This topic has not been investigated for Pacific Arctic beluga whales (Delphinapterus leucas) that follow matrilineally maintained autumn migrations in the waters around Alaska and Russia. For the sympatric Eastern Chukchi Sea ('Chukchi') and Eastern Beaufort Sea ('Beaufort') beluga populations, we examined changes in autumn migration timing as related to delayed regional sea ice freeze-up since the 1990s, using two independent data sources (satellite telemetry data and passive acoustics) for both populations. We compared dates of migration between 'early' (1993-2002) and 'late' (2004-2012) tagging periods. During the late tagging period, Chukchi belugas had significantly delayed migrations (by 2 to >4 weeks, depending on location) from the Beaufort and Chukchi seas. Spatial analyses also revealed that departure from Beaufort Sea foraging regions by Chukchi whales was postponed in the late period. Chukchi beluga autumn migration timing occurred significantly later as regional sea ice freeze-up timing became later in the Beaufort, Chukchi, and Bering seas. In contrast, Beaufort belugas did not shift migration timing between periods, nor was migration timing related to freeze-up timing, other than for southward migration at the Bering Strait. Passive acoustic data from 2008 to 2014 provided independent and supplementary support for delayed migration from the Beaufort Sea (4 day yr -1 ) by Chukchi belugas. Here, we report the first phenological study examining beluga whale migrations within the context of their rapidly transforming Pacific Arctic ecosystem, suggesting flexible responses that may enable their persistence yet also complicate predictions of how

  14. North Atlantic influence on 19th-20th century rainfall in the Dead Sea watershed, teleconnections with the Sahel, and implication for Holocene climate fluctuations

    NASA Astrophysics Data System (ADS)

    Kushnir, Yochanan; Stein, Mordechai

    2010-12-01

    The importance of understanding processes that govern the hydroclimate of the Mediterranean Basin is highlighted by the projected significant drying of the region in response to the increase in greenhouse gas concentrations. Here we study the long-term hydroclimatic variability of the central Levant region, situated in the eastern boundary of the Basin, as reveled by instrumental observations and the Holocene record of Dead Sea level variations. Observations of 19th and 20th century precipitation in the Dead Sea watershed region display a multidecadal, anti-phase relationship to North Atlantic (NAtl) sea surface temperature (SST) variability, such that when the NAtl is relatively cold, Jerusalem experiences higher than normal precipitation and vice versa. This association is underlined by a negative correlation to precipitation in the sub-Saharan Sahel and a positive correlation to precipitation in western North America, areas that are also affected by multidecadal NAtl SST variability. These observations are consistent with a broad range of Holocene hydroclimatic fluctuations from the epochal, to the millennial and centennial time scales, as displayed by the Dead Sea lake level, by lake levels in the Sahel, and by direct and indirect proxy indicators of NAtl SSTs. On the epochal time scale, the gradual cooling of NAtl SSTs throughout the Holocene in response to precession-driven reduction of summer insolation is associated with previously well-studied wet-to-dry transition in the Sahel and with a general increase in Dead Sea lake levels from low stands after the Younger Dryas to higher stands in the mid- to late-Holocene. On the millennial and centennial time scales there is also evidence for an anti-phase relationship between Holocene variations in the Dead Sea and Sahelian lake levels and with proxy indicators of NAtl SSTs. However the records are punctuated by abrupt lake-level drops, which appear to be in-phase and which occur during previously documented

  15. Abnormal Winter Melting of the Arctic Sea Ice Cap Observed by the Spaceborne Passive Microwave Sensors

    NASA Astrophysics Data System (ADS)

    Lee, Seongsuk; Yi, Yu

    2016-12-01

    The spatial size and variation of Arctic sea ice play an important role in Earth’s climate system. These are affected by conditions in the polar atmosphere and Arctic sea temperatures. The Arctic sea ice concentration is calculated from brightness temperature data derived from the Defense Meteorological Satellite program (DMSP) F13 Special Sensor Microwave/Imagers (SSMI) and the DMSP F17 Special Sensor Microwave Imager/Sounder (SSMIS) sensors. Many previous studies point to significant reductions in sea ice and their causes. We investigated the variability of Arctic sea ice using the daily sea ice concentration data from passive microwave observations to identify the sea ice melting regions near the Arctic polar ice cap. We discovered the abnormal melting of the Arctic sea ice near the North Pole during the summer and the winter. This phenomenon is hard to explain only surface air temperature or solar heating as suggested by recent studies. We propose a hypothesis explaining this phenomenon. The heat from the deep sea in Arctic Ocean ridges and/ or the hydrothermal vents might be contributing to the melting of Arctic sea ice. This hypothesis could be verified by the observation of warm water column structure below the melting or thinning arctic sea ice through the project such as Coriolis dataset for reanalysis (CORA).

  16. Influence of sea ice on Arctic precipitation

    PubMed Central

    Kopec, Ben G.; Feng, Xiahong; Michel, Fred A.; Posmentier, Eric S.

    2016-01-01

    Global climate is influenced by the Arctic hydrologic cycle, which is, in part, regulated by sea ice through its control on evaporation and precipitation. However, the quantitative link between precipitation and sea ice extent is poorly constrained. Here we present observational evidence for the response of precipitation to sea ice reduction and assess the sensitivity of the response. Changes in the proportion of moisture sourced from the Arctic with sea ice change in the Canadian Arctic and Greenland Sea regions over the past two decades are inferred from annually averaged deuterium excess (d-excess) measurements from six sites. Other influences on the Arctic hydrologic cycle, such as the strength of meridional transport, are assessed using the North Atlantic Oscillation index. We find that the independent, direct effect of sea ice on the increase of the percentage of Arctic sourced moisture (or Arctic moisture proportion, AMP) is 18.2 ± 4.6% and 10.8 ± 3.6%/100,000 km2 sea ice lost for each region, respectively, corresponding to increases of 10.9 ± 2.8% and 2.7 ± 1.1%/1 °C of warming in the vapor source regions. The moisture source changes likely result in increases of precipitation and changes in energy balance, creating significant uncertainty for climate predictions. PMID:26699509

  17. Effects of sea state on offshore wind resourcing in Florida

    NASA Astrophysics Data System (ADS)

    Collier, Cristina

    Offshore resource assessment relies on estimating wind speeds at turbine hub height using observations typically made at substantially lower height. The methods used to adjust from observed wind speeds to hub height can impact resource estimation. The importance of directional sea state is examined, both as seasonal averages and as a function of the diurnal cycle. A General Electric 3.6 MW offshore turbine is used as a model for a power production. Including sea state increases or decreases seasonally averaged power production by roughly 1%, which is found to be an economically significant change. These changes occur because the sea state modifies the wind shear (vector wind difference between the buoy height and the moving surface) and therefore the extrapolation from the observation to hub height is affected. These seemingly small differences in capacity can alter profits by millions of dollars depending upon the size of the farm and fluctuations in price per kWh throughout the year. A 2% change in capacity factor can lead to a 10 million dollar difference from total kWh produced from a wind farm of 100 3.6MW turbines. These economic impacts can be a deciding factor in determining whether a resource is viable for development. Modification of power output due to sea states are shown for seasonal and diurnal time scales. Three regions are examined herein: West Florida, East Florida, and Nantucket Sound. The average capacity after sea state is included suggests areas around Florida could provide substantial amounts of wind power throughout three-fourths of the calendar year. At certain times of day winter average produced capacity factors in West Florida can be up to 45% more than in summer when sea state is included. Nantucket Sound capacity factors are calculated for comparison to a region near a planned United States offshore wind farm. This study provides evidence to suggest including sea state in offshore wind resource assessment causes economically significant

  18. Topography of the 410 km and 660 km discontinuities beneath the Japan Sea and adjacent regions by analysis of multiple-ScS waves

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Li, Juan; Chen, Qi-Fu

    2017-02-01

    The northwest Pacific subduction region is an ideal location to study the interaction between the subducting slab and upper mantle discontinuities. Due to the sparse distribution of seismic stations in the sea, previous studies mostly focus on mantle transition zone (MTZ) structures beneath continents or island arcs, leaving the vast area of the Japan Sea and Okhotsk Sea untouched. In this study, we analyzed multiple-ScS reverberation waves, and a common-reflection-point stacking technique was applied to enhance consistent signals beneath reflection points. A topographic image of the 410 km and 660 km discontinuities is obtained beneath the Japan Sea and adjacent regions. One-dimensional and 3-D velocity models are adapted to obtain the "apparent" and "true" depth. We observe a systematic pattern of depression ( 10-20 km) and elevation ( 5-10 km) of the 660, with the topography being roughly consistent with the shift of the olivine-phase transition boundary caused by the subducting Pacific plate. The behavior of the 410 is more complex. It is generally 5-15 km shallower at the location where the slab penetrates and deepened by 5-10 km oceanward of the slab where a low-velocity anomaly is observed in tomography images. Moreover, we observe a wide distribution of depressed 410 beneath the southern Okhotsk Sea and western Japan Sea. The hydrous wadsleyite boundary caused by the high water content at the top of the MTZ could explain the depression. The long-history trench rollback motion of Pacific slab might be responsible for the widely distributed depression of the 410 ranging upward and landward from the slab.

  19. Influence of sea-land breezes on the tempospatial distribution of atmospheric aerosols over coastal region.

    PubMed

    Tsai, Hsieh-Hung; Yuan, Chung-Shin; Hung, Chung-Hsuang; Lin, Chitsan; Lin, Yuan-Chung

    2011-04-01

    The influence of sea-land breezes (SLBs) on the spatial distribution and temporal variation of particulate matter (PM) in the atmosphere was investigated over coastal Taiwan. PM was simultaneously sampled at inland and offshore locations during three intensive sampling periods. The intensive PM sampling protocol was continuously conducted over a 48-hr period. During this time, PM2.5 and PM(2.5-10) (PM with aerodynamic diameters < 2.5 microm and between 2.5 and 10 microm, respectively) were simultaneously measured with dichotomous samplers at four sites (two inland and two offshore sites) and PM10 (PM with aerodynamic diameters < or =10 microm) was measured with beta-ray monitors at these same 4 sites and at 10 sites of the Taiwan Air Quality Monitoring Network. PM sampling on a mobile air quality monitoring boat was further conducted along the coastline to collect offshore PM using a beta-ray monitor and a dichotomous sampler. Data obtained from the inland sites (n=12) and offshore sites (n=2) were applied to plot the PM10 concentration contour using Surfer software. This study also used a three-dimensional meteorological model (Pennsylvania State University/National Center for Atmospheric Research Meteorological Model 5) and the Comprehensive Air Quality Model with Extensions to simulate surface wind fields and spatial distribution of PM10 over the coastal region during the intensive sampling periods. Spatial distribution of PM10 concentration was further used in investigating the influence of SLBs on the transport of PM10 over the coastal region. Field measurement and model simulation results showed that PM10 was transported back and forth across the coastline. In particular, a high PM10 concentration was observed at the inland sites during the day because of sea breezes, whereas a high PM10 concentration was detected offshore at night because of land breezes. This study revealed that the accumulation of PM in the near-ocean region because of SLBs influenced the

  20. Seismicity in Azerbaijan and Adjacent Caspian Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panahi, Behrouz M.

    2006-03-23

    So far no general view on the geodynamic evolution of the Black Sea to the Caspian Sea region is elaborated. This is associated with the geological and structural complexities of the region revealed by geophysical, geochemical, petrologic, structural, and other studies. A clash of opinions on geodynamic conditions of the Caucasus region, sometimes mutually exclusive, can be explained by a simplified interpretation of the seismic data. In this paper I analyze available data on earthquake occurrences in Azerbaijan and the adjacent Caspian Sea region. The results of the analysis of macroseismic and instrumental data, seismic regime, and earthquake reoccurrence indicatemore » that a level of seismicity in the region is moderate, and seismic event are concentrated in the shallow part of the lithosphere. Seismicity is mostly intra-plate, and spatial distribution of earthquake epicenters does not correlate with the plate boundaries.« less