Sample records for affect slope stability

  1. Assessment of Slope Stability of Various Cut Slopes with Effects of Weathering by Using Slope Stability Probability Classification (SSPC)

    NASA Astrophysics Data System (ADS)

    Ersöz, Timur; Topal, Tamer

    2017-04-01

    Rocks containing pore spaces, fractures, joints, bedding planes and faults are prone to weathering due to temperature differences, wetting-drying, chemistry of solutions absorbed, and other physical and chemical agents. Especially cut slopes are very sensitive to weathering activities because of disturbed rock mass and topographical condition by excavation. During and right after an excavation process of a cut slope, weathering and erosion may act on this newly exposed rock material. These acting on the material may degrade and change its properties and the stability of the cut slope in its engineering lifetime. In this study, the effect of physical and chemical weathering agents on shear strength parameters of the rocks are investigated in order to observe the differences between weathered and unweathered rocks. Also, slope stability assessment of cut slopes affected by these weathering agents which may disturb the parameters like strength, cohesion, internal friction angle, unit weight, water absorption and porosity are studied. In order to compare the condition of the rock materials and analyze the slope stability, the parameters of weathered and fresh rock materials are found with in-situ tests such as Schmidt hammer and laboratory tests like uniaxial compressive strength, point load and direct shear. Moreover, slake durability and methylene blue tests are applied to investigate the response of the rock to weathering and presence of clays in rock materials, respectively. In addition to these studies, both rock strength parameters and any kind of failure mechanism are determined by probabilistic approach with the help of SSPC system. With these observations, the performances of the weathered and fresh zones of the cut slopes are evaluated and 2-D slope stability analysis are modeled with further recommendations for the cut slopes. Keywords: 2-D Modeling, Rock Strength, Slope Stability, SSPC, Weathering

  2. Slope Stability Analysis of Mountain Pine Beetle Impacted Areas

    NASA Astrophysics Data System (ADS)

    Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.

    2015-12-01

    The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.

  3. Arctic Submarine Slope Stability

    NASA Astrophysics Data System (ADS)

    Winkelmann, D.; Geissler, W.

    2010-12-01

    Submarine landsliding represents aside submarine earthquakes major natural hazard to coastal and sea-floor infrastructure as well as to coastal communities due to their ability to generate large-scale tsunamis with their socio-economic consequences. The investigation of submarine landslides, their conditions and trigger mechanisms, recurrence rates and potential impact remains an important task for the evaluation of risks in coastal management and offshore industrial activities. In the light of a changing globe with warming oceans and rising sea-level accompanied by increasing human population along coasts and enhanced near- and offshore activities, slope stability issues gain more importance than ever before. The Arctic exhibits the most rapid and drastic changes and is predicted to change even faster. Aside rising air temperatures, enhanced inflow of less cooled Atlantic water into the Arctic Ocean reduces sea-ice cover and warms the surroundings. Slope stability is challenged considering large areas of permafrost and hydrates. The Hinlopen/Yermak Megaslide (HYM) north of Svalbard is the first and so far only reported large-scale submarine landslide in the Arctic Ocean. The HYM exhibits the highest headwalls that have been found on siliciclastic margins. With more than 10.000 square kilometer areal extent and app. 2.400 cubic kilometer of involved sedimentary material, it is one of the largest exposed submarine slides worldwide. Geometry and age put this slide in a special position in discussing submarine slope stability on glaciated continental margins. The HYM occurred 30 ka ago, when the global sea-level dropped by app. 50 m within less than one millennium due to rapid onset of global glaciation. It probably caused a tsunami with circum-Arctic impact and wave heights exceeding 130 meters. The HYM affected the slope stability field in its neighbourhood by removal of support. Post-megaslide slope instability as expressed in creeping and smaller-scaled slides are

  4. Robustness for slope stability modelling under deep uncertainty

    NASA Astrophysics Data System (ADS)

    Almeida, Susana; Holcombe, Liz; Pianosi, Francesca; Wagener, Thorsten

    2015-04-01

    Landslides can have large negative societal and economic impacts, such as loss of life and damage to infrastructure. However, the ability of slope stability assessment to guide management is limited by high levels of uncertainty in model predictions. Many of these uncertainties cannot be easily quantified, such as those linked to climate change and other future socio-economic conditions, restricting the usefulness of traditional decision analysis tools. Deep uncertainty can be managed more effectively by developing robust, but not necessarily optimal, policies that are expected to perform adequately under a wide range of future conditions. Robust strategies are particularly valuable when the consequences of taking a wrong decision are high as is often the case of when managing natural hazard risks such as landslides. In our work a physically based numerical model of hydrologically induced slope instability (the Combined Hydrology and Stability Model - CHASM) is applied together with robust decision making to evaluate the most important uncertainties (storm events, groundwater conditions, surface cover, slope geometry, material strata and geotechnical properties) affecting slope stability. Specifically, impacts of climate change on long-term slope stability are incorporated, accounting for the deep uncertainty in future climate projections. Our findings highlight the potential of robust decision making to aid decision support for landslide hazard reduction and risk management under conditions of deep uncertainty.

  5. The Hydromechanics of Vegetation for Slope Stabilization

    NASA Astrophysics Data System (ADS)

    Mulyono, A.; Subardja, A.; Ekasari, I.; Lailati, M.; Sudirja, R.; Ningrum, W.

    2018-02-01

    Vegetation is one of the alternative technologies in the prevention of shallow landslide prevention that occurs mostly during the rainy season. The application of plant for slope stabilization is known as bioengineering. Knowledge of the vegetative contribution that can be considered in bioengineering was the hydrological and mechanical aspects (hydromechanical). Hydrological effect of the plant on slope stability is to reduce soil water content through transpiration, interception, and evapotranspiration. The mechanical impact of vegetation on slope stability is to stabilize the slope with mechanical reinforcement of soils through roots. Vegetation water consumption varies depending on the age and density, rainfall factors and soil types. Vegetation with high ability to absorb water from the soil and release into the atmosphere through a transpiration process will reduce the pore water stress and increase slope stability, and vegetation with deep root anchoring and strong root binding was potentially more significant to maintain the stability of the slope.

  6. Aggregate Stability and Erodibility of Purple Soil on Sloping Farmland as affected by different Soil Thickness

    NASA Astrophysics Data System (ADS)

    Huang, Xinjun; Zhang, Qingwen; Chen, Shanghong; Dong, Yuequn; Xiao, Meijia; Hamed, Lamy Mamdoh Mohamed

    2017-04-01

    Soil thickness is basic limiting condition for purple soil, not only due to its effect on crop production, but also its effect on soil structure. Steady-state of soil thickness will be achieved over time, as result the soil aggregate which the key factor of soil erodibility can be enhanced as well. However, the effect of soil thickness on aggregates stability and the characteristics of soil erodibility in sloping land have not yet fully understood.A field survey was conducted in hilly area of Sichuan region located in southeast China to study the relationship between soil aggregate stability and soil erodibility on sloping farmland under different four thickness (100cm, 80cm, 60cm, 30cm) of purple soil. Based on two different sieving methods (Dry and Wet sieving), we analyzed soil aggregate stability and its effect on soil erodibility within depth of 0-30cm soil layers. The results indicated that: Water stable aggregate on sloping farmland was ranged between 37.9% to 58.6%, where it increased with increasing the soil thickness. Moreover, fractal dimension calculated from dry-sieving and wet-sieving was 2.06-2.49 and 2.70-2.85 respectively, where it decreased with decreasing the soil thickness. The overall soil erodibility was 0.05-1.00 and a negative significant correlation was found between soil aggregate stability and erodibility(P<0.01). Moreover, farmland with thick soil profile tended to be high in soil erodibility within the top soil layer (0-30cm). The results reveal that soil thickness can affect soil aggregate stability as well as erodibility. As soil thickness increased, the top soil became more stable and less erodible. Keywords:purple soil; soil thickness; soil aggregate;soil erodibility

  7. Effect of hydraulic hysteresis on the stability of infinite slopes under steady infiltration

    USGS Publications Warehouse

    Chen, Pan; Mirus, Benjamin B.; Lu, Ning; Godt, Jonathan W.

    2017-01-01

    Hydraulic hysteresis, including capillary soil water retention (SWR), air entrapment SWR, and hydraulic conductivity, is a common phenomenon in unsaturated soils. However, the influence of hydraulic hysteresis on suction stress, and subsequently slope stability, is generally ignored. This paper examines the influence of each of these three types of hysteresis on slope stability using an infinite slope stability analysis under steady infiltration conditions. First, hypothetical slopes for representative silty and sandy soils are examined. Then a monitored hillslope in the San Francisco Bay Area, California is assessed, using observed rainfall conditions and measured hydraulic and geotechnical properties of the colluvial soil. Results show that profiles of suction stress and the corresponding factor of safety are generally strongly affected by hydraulic hysteresis. Results suggest that each of the three types of hydraulic hysteresis may play a major role in the occurrence of slope failure, indicating that ignoring hydraulic hysteresis will likely lead to underestimates of failure potential and hence to inaccurate slope stability analysis.

  8. Slope stability radar for monitoring mine walls

    NASA Astrophysics Data System (ADS)

    Reeves, Bryan; Noon, David A.; Stickley, Glen F.; Longstaff, Dennis

    2001-11-01

    Determining slope stability in a mining operation is an important task. This is especially true when the mine workings are close to a potentially unstable slope. A common technique to determine slope stability is to monitor the small precursory movements, which occur prior to collapse. The slope stability radar has been developed to remotely scan a rock slope to continuously monitor the spatial deformation of the face. Using differential radar interferometry, the system can detect deformation movements of a rough wall with sub-millimeter accuracy, and with high spatial and temporal resolution. The effects of atmospheric variations and spurious signals can be reduced via signal processing means. The advantage of radar over other monitoring techniques is that it provides full area coverage without the need for mounted reflectors or equipment on the wall. In addition, the radar waves adequately penetrate through rain, dust and smoke to give reliable measurements, twenty-four hours a day. The system has been trialed at three open-cut coal mines in Australia, which demonstrated the potential for real-time monitoring of slope stability during active mining operations.

  9. 30 CFR 56.3130 - Wall, bank, and slope stability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Wall, bank, and slope stability. 56.3130... Mining Methods § 56.3130 Wall, bank, and slope stability. Mining methods shall be used that will maintain wall, bank, and slope stability in places where persons work or travel in performing their assigned...

  10. Slope stabilization guide for Minnesota local government engineers.

    DOT National Transportation Integrated Search

    2017-06-01

    This user guide provides simple, costeffective methods for stabilizing locally maintained slopes along roadways in Minnesota. Eight slope stabilization techniques are presented that local government engineers can undertake using locally available ...

  11. Slope Stability. CEGS Programs Publication Number 15.

    ERIC Educational Resources Information Center

    Pestrong, Raymond

    Slope Stability is one in a series of single-topic problem modules intended for use in undergraduate and earth science courses. The module, also appropriate for use in undergraduate civil engineering and engineering geology courses, is a self-standing introduction to studies of slope stability. It has been designed to supplement standard…

  12. An alternative soil nailing system for slope stabilization: Akarpiles

    NASA Astrophysics Data System (ADS)

    Lim, Chun-Lan; Chan, Chee-Ming

    2017-11-01

    This research proposes an innovative solution for slope stabilization with less environmental footprint: AKARPILES. In Malaysia, landslide has become common civil and environmental problems that cause impacts to the economy, safety and environment. Therefore, effective slope stabilization method helps to improve the safety of public and protect the environment. This study focused on stabilizing surfacial slope failure. The idea of AKARPILES was generated from the tree roots system in slope stabilization. After the piles are installed in the slope and intercepting the slip plane, grout was pumped in and discharged through holes on the piles. The grout then filled the pores in the soil with random flow within the slip zone. SKW mixture was used to simulate the soil slope. There were two designs being proposed in this study and the prototypes were produced by a 3D printer. Trial mix of the grout was carried out to obtain the optimum mixing ratio of bentonite: cement: water. A series of tests were conducted on the single-pile-reinforced slope under vertical slope crest loading condition considering different slope gradients and nail designs. Parameters such as ultimate load, failure time and failure strain were recorded and compared. As comparison with the unreinforced slope, both designs of AKARPILES showed better but different performances in the model tests.

  13. Quantification of Urban Environment's Role in Slope Stability for Landslide Events.

    NASA Astrophysics Data System (ADS)

    Bozzolan, E.; Holcombe, E.; Wagener, T.; Pianosi, F.

    2017-12-01

    The combination of a rapid and unplanned urban development with a likely future climate change could significantly affect landslide occurrences in the humid tropics, where rainfall events of high intensity and duration are the dominant trigger for landslide risk. The attention of current landslide hazard studies is largely focussed on natural slope processes based on combinations of environmental factors, excluding the role of urbanisation on slope stability. This project aims to understand the relative influence of urbanisation features on local slope stability and to translate the findings to a wider region. Individual slopes are firstly analysed with the software CHASM, a physically based model which combines soil hydrology and slope stability assessment. Instead of relying on existing records, generally lacking for landslides, ranges of plausible preparatory (such as slope, cohesion, friction angles), triggering (rainfall) and aggravating factors (deforestation, house density and water network) are defined and possible combinations of these factors are created by sampling from those ranges. The influence of urban features on site hydrology and stability mechanisms are evaluated and then implemented in denser urban contexts, characteristic of unplanned settlements. The results of CHASMS can be transferred to regional maps in order to identify the areas belonging to the triggering combinations of factors previously found. In this way, areas susceptible to landslides can be detected not only in terms of natural factors but also in relation to the degree of urbanisation. Realistic scenarios can be extrapolated from the areas considered and then analysed again with CHASM. This permits to adapt (and improve) the initial variability ranges of the factors, creating a general-specific cycle able to identify the landslide susceptibility regions and outline a hazard map. Once the triggers are understood, possible consequences can be assessed and mitigation strategies can

  14. Impact of vegetation on stability of slopes subjected to rainfall - numerical aspect

    NASA Astrophysics Data System (ADS)

    Switala, Barbara Maria; Tamagnini, Roberto; Sudan Acharya, Madhu; Wu, Wei

    2015-04-01

    Recent years brought a significant development of soil bioengineering methods, considered as an ecological and economically effective measure for slope stabilization. This work aims to show the advantages of the soil bioengineering solutions for a slope subjected to a heavy rainfall, with the help of a numerical model, which integrates most of the significant plant and slope features. There are basically two different ways in which vegetation can affect stability of a slope: root reinforcement (mechanical impact) and root water uptake (evapotranspiration). In the numerical model, the first factor is modelled using the Cam-Clay model extended for unsaturated conditions by Tamagnini (2004). The original formulation of a constitutive model is modified by introducing an additional constitutive parameter, which causes an expansion of the yield surface as a consequence of an increase in root mass in a representative soil element. The second factor is the root water uptake, which is defined as a volumetric sink term in the continuity equation of groundwater flow. Water removal from the soil mass causes an increase in suction in the vicinity of the root zone, which leads to an increase in the soil cohesion and provides additional strength to the soil-root composite. The developed numerical model takes into account the above mentioned effects of plants and thus considers the multi-phase nature of the soil-plant-water relationship. Using the developed method, stability of some vegetated and non-vegetated slopes subjected to rainfall are investigated. The performance of each slope is evaluated by the time at which slope failure occurs. Different slope geometries and soil mechanical and hydrological properties are considered. Comparison of the results obtained from the analyses of vegetated and non-vegetated slopes leads to the conclusion, that the use of soil bioengineering methods for slope stabilization can be effective and can significantly delay the occurrence of a

  15. Infiltration on sloping terrain and its role on runoff generation and slope stability

    NASA Astrophysics Data System (ADS)

    Loáiciga, Hugo A.; Johnson, J. Michael

    2018-06-01

    A modified Green-and-Ampt model is formulated to quantify infiltration on sloping terrain underlain by homogeneous soil wetted by surficial water application. This paper's theory for quantifying infiltration relies on the mathematical statement of the coupled partial differential equations (pdes) governing infiltration and runoff. These pdes are solved by employing an explicit finite-difference numerical method that yields the infiltration, the infiltration rate, the depth to the wetting front, the rate of runoff, and the depth of runoff everywhere on the slope during external wetting. Data inputs consist of a water application rate or the rainfall hyetograph of a storm of arbitrary duration, soil hydraulic characteristics and antecedent moisture, and the slope's hydraulic and geometric characteristics. The presented theory predicts the effect an advancing wetting front has on slope stability with respect to translational sliding. This paper's theory also develops the 1D pde governing suspended sediment transport and slope degradation caused by runoff influenced by infiltration. Three examples illustrate the application of the developed theory to calculate infiltration and runoff on a slope and their role on the stability of cohesive and cohesionless soils forming sloping terrain.

  16. Three-dimensional modelling of slope stability using the Local Factor of Safety concept

    NASA Astrophysics Data System (ADS)

    Moradi, Shirin; Huisman, Sander; Beck, Martin; Vereecken, Harry; Class, Holger

    2017-04-01

    Slope stability is governed by coupled hydrological and mechanical processes. The slope stability depends on the effective stress, which in turn depends on the weight of the soil and the matrix potential. Therefore, changes in water content and matrix potential associated with infiltration will affect slope stability. Most available models describing these coupled hydro-mechanical processes either rely on a one- or two-dimensional representation of hydrological and mechanical properties and processes, which obviously is a strong simplification in many applications. Therefore, the aim of this work is to develop a three-dimensional hydro-mechanical model that is able to capture the effect of spatial and temporal variability of both mechanical and hydrological parameters on slope stability. For this, we rely on DuMux, which is a free and open-source simulator for flow and transport processes in porous media that facilitates coupling of different model approaches and offers flexibility for model development. We use the Richards equation to model unsaturated water flow. The simulated water content and matrix potential distribution is used to calculate the effective stress. We only consider linear elasticity and solve for statically admissible fields of stress and displacement without invoking failure or the redistribution of post-failure stress or displacement. The Local Factor of Safety concept is used to evaluate slope stability in order to overcome some of the main limitations of commonly used methods based on limit equilibrium considerations. In a first step, we compared our model implementation with a 2D benchmark model that was implemented in COMSOL Multiphysics. In a second step, we present in-silico experiments with the newly developed 3D model to show the effect of slope morphology, spatial variability in hydraulic and mechanical material properties, and spatially variable soil depth on simulated slope stability. It is expected that this improved physically

  17. Effect of tibial slope on the stability of the anterior cruciate ligament-deficient knee.

    PubMed

    Voos, James E; Suero, Eduardo M; Citak, Musa; Petrigliano, Frank P; Bosscher, Marianne R F; Citak, Mustafa; Wickiewicz, Thomas L; Pearle, Andrew D

    2012-08-01

    We aimed to quantify the effect of changes in tibial slope on the magnitude of anterior tibial translation (ATT) in the anterior cruciate ligament (ACL)-deficient knee during the Lachman and mechanized pivot shift tests. We hypothesized that increased posterior tibial slope would increase the amount of ATT of an ACL-deficient knee, while leveling the slope of the tibial plateau would decrease the amount of ATT. Lachman and mechanized pivot shift tests were performed on hip-to-toe cadaveric specimens, and ATT of the lateral and the medial compartments was measured using navigation (n = 11). The ACL was then sectioned. Stability testing was repeated, and ATT was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5 or -5° of tibial slope variation after which stability testing was repeated (n = 10). Sectioning the ACL resulted in a significant increase in ATT in both the Lachman and mechanized pivot shift tests (P < 0.05). Increasing or decreasing the slope of the tibial plateau had no effect on ATT during the Lachman test (n.s.). During the mechanized pivot shift tests, a 5° increase in posterior slope resulted in a significant increase in ATT compared to the native knee (P < 0.05), while a 5° decrease in slope reduced ATT to a level similar to that of the intact knee. Tibial slope changes did not affect the magnitude of translation during a Lachman test. However, large changes in tibial slope variation affected the magnitude of the pivot shift.

  18. A simplified approach for slope stability analysis of uncontrolled waste dumps.

    PubMed

    Turer, Dilek; Turer, Ahmet

    2011-02-01

    Slope stability analysis of municipal solid waste has always been problematic because of the heterogeneous nature of the waste materials. The requirement for large testing equipment in order to obtain representative samples has identified the need for simplified approaches to obtain the unit weight and shear strength parameters of the waste. In the present study, two of the most recently published approaches for determining the unit weight and shear strength parameters of the waste have been incorporated into a slope stability analysis using the Bishop method to prepare slope stability charts. The slope stability charts were prepared for uncontrolled waste dumps having no liner and leachate collection systems with pore pressure ratios of 0, 0.1, 0.2, 0.3, 0.4 and 0.5, considering the most critical slip surface passing through the toe of the slope. As the proposed slope stability charts were prepared by considering the change in unit weight as a function of height, they reflect field conditions better than accepting a constant unit weight approach in the stability analysis. They also streamline the selection of slope or height as a function of the desired factor of safety.

  19. Stability analysis and hazard assessment of the northern slopes of San Vicente Volcano in central El Salvador

    NASA Astrophysics Data System (ADS)

    Smith, Daniel M.

    Geologic hazards affect the lives of millions of people worldwide every year. El Salvador is a country that is regularly affected by natural disasters, including earthquakes, volcanic eruptions and tropical storms. Additionally, rainfall-induced landslides and debris flows are a major threat to the livelihood of thousands. The San Vicente Volcano in central El Salvador has a recurring and destructive pattern of landslides and debris flows occurring on the northern slopes of the volcano. In recent memory there have been at least seven major destructive debris flows on San Vicente volcano. Despite this problem, there has been no known attempt to study the inherent stability of these volcanic slopes and to determine the thresholds of rainfall that might lead to slope instability. This thesis explores this issue and outlines a suggested method for predicting the likelihood of slope instability during intense rainfall events. The material properties obtained from a field campaign and laboratory testing were used for a 2-D slope stability analysis on a recent landslide on San Vicente volcano. This analysis confirmed that the surface materials of the volcano are highly permeable and have very low shear strength and provided insight into the groundwater table behavior during a rainstorm. The biggest factors on the stability of the slopes were found to be slope geometry, rainfall totals and initial groundwater table location. Using the results from this analysis a stability chart was created that took into account these main factors and provided an estimate of the stability of a slope in various rainfall scenarios. This chart could be used by local authorities in the event of a known extreme rainfall event to help make decisions regarding possible evacuation. Recommendations are given to improve the methodology for future application in other areas as well as in central El Salvador.

  20. Regional variability of slope stability: Application to the Eel margin, California

    USGS Publications Warehouse

    Lee, H.; Locat, J.; Dartnell, P.; Israel, K.; Florence, Wong

    1999-01-01

    Relative values of downslope driving forces and sediment resisting forces determine the locations of submarine slope failures. Both of these vary regionally, and their impact can be addressed when the data are organized in a Geographic Information System (GIS). The study area on the continental margin near the Eel River provides an excellent opportunity to apply GIS spatial analysis techniques for evaluation of slope stability. In this area, swath bathymetric mapping shows seafloor morphology and distribution of slope steepness in fine detail, and sediment analysis of over 70 box cores delineates the variability of sediment density near the seafloor surface. Based on the results of ten geotechnical studies of submarine study areas, we developed an algorithm that relates surface sediment density to the shear strength appropriate to the type of cyclic loading produced by an earthquake. Strength and stress normalization procedures provide results that are conceptually independent of subbottom depth. Results at depth are rigorously applicable if sediment lithology does not vary significantly and consolidation state can be estimated. Otherwise, the method applies only to shallow-seated slope failure. Regional density, slope, and level of anticipated seismic shaking information were combined in a GIS framework to yield a map that illustrates the relative stability of slopes in the face of seismically induced failure. When a measure of predicted relative slope stability is draped on an oblique view of swath bathymetry, a variation in this slope stability is observed on an otherwise smooth slope along the mid-slope region north of a plunging anticline. The section of slope containing diffuse, pockmarked gullies has a lower measure of stability than a separate section containing gullies that have sharper boundaries and somewhat steeper sides. Such an association suggests that our slope-stability analysis relates to the stability of the gully sides. The remainder of the

  1. Assessing slope stability in unplanned settlements in developing countries.

    PubMed

    Anderson, Malcolm G; Holcombe, Liz; Renaud, Jean-Philippe

    2007-10-01

    Unplanned housing in developing countries is often located on steep slopes. Frequently no building code is enforced for such housing and mains water is provided with no drainage provision. Both of these factors can be particularly significant in terms of landslide risk if, as is so often the case, such slopes lack any planned drainage provision. There is thus a need to develop a model that facilitates the assessment of slope stability in an holistic context, incorporating a wide range of factors (including surface cover, soil water topographic convergence, slope loading and point source water leakage) in order that appropriate advice can be given as to the general controls on slope stability in such circumstances. This paper outlines a model configured for this specific purpose and describes an application to a site in St. Lucia, West Indies, where there is active slope movement in an unplanned housing development on relatively steep topography. The model findings are in accord with the nature of the current failure at the site, provide guidance as to the significance of slope drainage and correspond to inferences drawn from an application of resistance envelope methods to the site. In being able to scenario test a uniquely wide range of combinations of factors, the model structure is shown to be highly valuable in assessing dominant slope stability process controls in such complex environments.

  2. The Contribution of Particle Swarm Optimization to Three-Dimensional Slope Stability Analysis

    PubMed Central

    A Rashid, Ahmad Safuan; Ali, Nazri

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes. PMID:24991652

  3. The contribution of particle swarm optimization to three-dimensional slope stability analysis.

    PubMed

    Kalatehjari, Roohollah; Rashid, Ahmad Safuan A; Ali, Nazri; Hajihassani, Mohsen

    2014-01-01

    Over the last few years, particle swarm optimization (PSO) has been extensively applied in various geotechnical engineering including slope stability analysis. However, this contribution was limited to two-dimensional (2D) slope stability analysis. This paper applied PSO in three-dimensional (3D) slope stability problem to determine the critical slip surface (CSS) of soil slopes. A detailed description of adopted PSO was presented to provide a good basis for more contribution of this technique to the field of 3D slope stability problems. A general rotating ellipsoid shape was introduced as the specific particle for 3D slope stability analysis. A detailed sensitivity analysis was designed and performed to find the optimum values of parameters of PSO. Example problems were used to evaluate the applicability of PSO in determining the CSS of 3D slopes. The first example presented a comparison between the results of PSO and PLAXI-3D finite element software and the second example compared the ability of PSO to determine the CSS of 3D slopes with other optimization methods from the literature. The results demonstrated the efficiency and effectiveness of PSO in determining the CSS of 3D soil slopes.

  4. Numerical computation of homogeneous slope stability.

    PubMed

    Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong

    2015-01-01

    To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS).

  5. Numerical Computation of Homogeneous Slope Stability

    PubMed Central

    Xiao, Shuangshuang; Li, Kemin; Ding, Xiaohua; Liu, Tong

    2015-01-01

    To simplify the computational process of homogeneous slope stability, improve computational accuracy, and find multiple potential slip surfaces of a complex geometric slope, this study utilized the limit equilibrium method to derive expression equations of overall and partial factors of safety. This study transformed the solution of the minimum factor of safety (FOS) to solving of a constrained nonlinear programming problem and applied an exhaustive method (EM) and particle swarm optimization algorithm (PSO) to this problem. In simple slope examples, the computational results using an EM and PSO were close to those obtained using other methods. Compared to the EM, the PSO had a small computation error and a significantly shorter computation time. As a result, the PSO could precisely calculate the slope FOS with high efficiency. The example of the multistage slope analysis indicated that this slope had two potential slip surfaces. The factors of safety were 1.1182 and 1.1560, respectively. The differences between these and the minimum FOS (1.0759) were small, but the positions of the slip surfaces were completely different than the critical slip surface (CSS). PMID:25784927

  6. Slope Stability of Geosynthetic Clay Liner Test Plots

    EPA Science Inventory

    Fourteen full-scale field test plots containing five types of geosynthetic clay liners (GCLs) were constructed on 2H:IV and 3H:IV slopes for the purpose of assessing slope stability. The test plots were designed to simulate typical final cover systems for landfill. Slides occurr...

  7. Analysis of slope stabilization by soil bioengineering method

    NASA Astrophysics Data System (ADS)

    Switala, Barbara Maria; Wu, Wei

    2013-04-01

    The aim of the project is to create a numerical model which will include the impact of vegetation on the slope stability analysis, considering both mechanical and hydrological factors. This will enrich the current knowledge about how roots reinforce the soil layers on the slope and how it influences the increase of shear strength of the soil. This has to be combined together with hydrological effects caused by evapotranspiration: modified soil moisture regime, dissipation of excess pore pressure and established matric suction. Coupled analyses (mechanical and hydrological) are rarely conducted, or only outdated models are used, which leads to overestimation of the additional shear strength of soil. That is why there is a need to support this branch of landslide hazard assessment and develop a new model. This research will help to raise awareness, that soil bioengineering methods of slope stabilization can in some cases be more appropriate and less expensive than traditional methods. As an input to the model, the appropriate slope geometry and soil properties have to be chosen. It is also important to consider different plant types and root properties, as well as different levels of groundwater table. To assess the effect of evapotranspiration it is necessary to know the geographical location of the slope and the weather conditions in the chosen region. The final output of the model, which will help to quantitatively assess the impact of vegetation on the slope stability, is the factor of safety (FOS) for vegetated slope for different types of soil and degrees of saturation. Results may then be compared with different conditions and factors of safety, calculated for the corresponding non-vegetated slope. It will be possible to specify the most favorable and unfavorable conditions. Moreover, the calculations provide also information on changes of cohesion, caused by mechanical and hydrological effects, as well as the change in the friction angle of soil.

  8. Slope Stabilization Using Recycled Plastic Pins, Phase III.

    DOT National Transportation Integrated Search

    2007-01-01

    A new technique for stabilizing surficial slope failures using recycled plastic reinforcing members has been developed. The : objective of the project described in this report has been to develop, evaluate, and document a technique for stabilization ...

  9. Infinite slope stability under steady unsaturated seepage conditions

    USGS Publications Warehouse

    Lu, Ning; Godt, Jonathan W.

    2008-01-01

    We present a generalized framework for the stability of infinite slopes under steady unsaturated seepage conditions. The analytical framework allows the water table to be located at any depth below the ground surface and variation of soil suction and moisture content above the water table under steady infiltration conditions. The framework also explicitly considers the effect of weathering and porosity increase near the ground surface on changes in the friction angle of the soil. The factor of safety is conceptualized as a function of the depth within the vadose zone and can be reduced to the classical analytical solution for subaerial infinite slopes in the saturated zone. Slope stability analyses with hypothetical sandy and silty soils are conducted to illustrate the effectiveness of the framework. These analyses indicate that for hillslopes of both sandy and silty soils, failure can occur above the water table under steady infiltration conditions, which is consistent with some field observations that cannot be predicted by the classical infinite slope theory. A case study of shallow slope failures of sandy colluvium on steep coastal hillslopes near Seattle, Washington, is presented to examine the predictive utility of the proposed framework.

  10. The effects of soil suction on shallow slope stability.

    DOT National Transportation Integrated Search

    2013-07-01

    This study investigates the slope failures associated with clayey soils so engineers can better : understand the problem and better predict shallow slope stability, and implement preventive : measures if necessary. This research also examines the mec...

  11. Influences of geological parameters to probabilistic assessment of slope stability of embankment

    NASA Astrophysics Data System (ADS)

    Nguyen, Qui T.; Le, Tuan D.; Konečný, Petr

    2018-04-01

    This article considers influences of geological parameters to slope stability of the embankment in probabilistic analysis using SLOPE/W computational system. Stability of a simple slope is evaluated with and without pore–water pressure on the basis of variation of soil properties. Normal distributions of unit weight, cohesion and internal friction angle are assumed. Monte Carlo simulation technique is employed to perform analysis of critical slip surface. Sensitivity analysis is performed to observe the variation of the geological parameters and their effects on safety factors of the slope stability.

  12. Application of soil nails to the stability of mine waste slopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tant, C.R.; Drumm, E.C.; Mauldon, M.

    1996-12-31

    The traditional soil nailed structure incorporates grouted or driven nails, and a wire mesh reinforced shotcrete facing to increase the stability of a slope or wall. This paper describes the construction and monitoring of a full-scale demonstration of nailing to stabilize coal mine spoil. The purpose of the investigation is to evaluate the performance of nailed slopes in mine spoil using methods proven for the stabilization of soil walls and slopes. The site in eastern Tennessee is a 12 meter high slope of dumped fill, composed of weathered shale chips, sandstone, and coal. The slope was formed by {open_quotes}pre-regulatory{close_quotes} contourmore » surface mining operations and served as a work bench during mining. The material varies in size from silt to boulders, and has a small amount of cohesion. Portions of the mine spoil slope have experienced slope instability and erosion which have hampered subsequent reclamation activities. Three different nail spacings and three different nail lengths were used in the design. The 12 meter high structure is instrumented to permit measurement of nail strain, and vertical inclinometer readings and survey measurements will be used for the detection of ground movement. The results of this study will aid in the development of design recommendations and construction guidelines for the application of soil nailing to stabilize mine spoil.« less

  13. Effect of cement injection on sandy soil slope stability, case study: slope in Petang district, Badung regency

    NASA Astrophysics Data System (ADS)

    Arya, I. W.; Wiraga, I. W.; GAG Suryanegara, I.

    2018-01-01

    Slope is a part of soil topography formed due to elevation difference from two soil surface. Landslides is frequently occur in natural slope, it is because shear force is greater than shear strength in the soil. There are some factor that influence slope stability such as: rain dissipation, vibration from earthquake, construction and crack in the soil. Slope instability can cause risk in human activity or even threaten human lives. Every years in rainy season, landslides always occur in Indonesia. In 2016, there was some landslide occurred in Bali. One of the most damaging is landslide in Petang district, Badung regency. This landslide caused main road closed entirely. In order to overcome and prevent landslide, a lot of method have been practiced and still looking for more sophisticated method for forecasting slope stability. One of the method to strengthen soil stability is filling the soil pores with some certain material. Cement is one of the material that can be used to fill the soil pores because when it is in liquid form, it can infiltrate into soil pores and fill the gap between soil particles. And after it dry, it can formed a bond with soil particle so that soil become stronger and the slope as well. In this study, it will use experimental method, slope model in laboratory to simulate a real slope behavior in the field. The first model is the slope without any addition of cement. This model will be become a benchmark for the other models. The second model is a slope with improved soil that injects the slope with cement. Injection of cement is done with varying interval distance of injection point is 5 cm and 10 cm. Each slope model will be given a load until the slope collapses. The slope model will also be analyzed with slope stability program. The test results on the improved slope models will be compared with unimproved slope. In the initial test will consist of 3 model. First model is soil without improvement or cement injection, second model is soil

  14. Study on Stability Analysis and Monitoring Technology of Deep Concave Open-Pit Mine Slope

    NASA Astrophysics Data System (ADS)

    Xue, Dinglong; Ren, Fenghua; Li, Yuan

    2018-05-01

    In this paper, using the FLAC3D software to establish the numerical model of the rock slope in the south of Washan stope and to compare and verify with the monitoring result, reference is made to the original engineering and hydrogeological data of Washan stope. The results show that the stability of the South slope is mainly affected by the dominant structural plane, and the potential slip surface and the dominant structure surface are the same. During the recovery period of -120m platform residual mine, the disturbance stress is increasing but the overall amplitude is small and the slope is relatively stable.

  15. [Composition and stability of soil aggregates in hedgerow-crop slope land].

    PubMed

    Pu, Yu-Lin; Lin, Chao-Wen; Xie, De-Ti; Wei, Chao-Fu; Ni, Jiu-Pai

    2013-01-01

    Based on a long-term experiment of using hedgerow to control soil and water loss, this paper studied the composition and stability of soil aggregates in a hedgerow-crop slope land. Compared with those under routine contour cropping, the contents of > 0.25 mm soil mechanical-stable and water-stable aggregates under the complex mode hedgerow-crop increased significantly by 13.3%-16.1% and 37.8% -55.6%, respectively. Under the complex mode, the contents of > 0.25 mm soil water-stable aggregates on each slope position increased obviously, and the status of > 0.25 mm soil water-stable aggregates being relatively rich at low slope and poor at top slope was improved. Planting hedgerow could significantly increase the mean mass diameter and geometric mean diameter of soil aggregates, decrease the fractal dimension of soil aggregates and the destruction rate of > 0.25 mm soil aggregates, and thus, increase the stability and erosion-resistance of soil aggregates in slope cropland. No significant effects of slope and hedgerow types were observed on the composition, stability and distribution of soil aggregates.

  16. Stability Calculation Method of Slope Reinforced by Prestressed Anchor in Process of Excavation

    PubMed Central

    Li, Zhong; Wei, Jia; Yang, Jun

    2014-01-01

    This paper takes the effect of supporting structure and anchor on the slope stability of the excavation process into consideration; the stability calculation model is presented for the slope reinforced by prestressed anchor and grillage beam, and the dynamic search model of the critical slip surface also is put forward. The calculation model of the optimal stability solution of each anchor tension of the whole process is also given out, through which the real-time analysis and checking of slope stability in the process of excavation can be realized. The calculation examples indicate that the slope stability is changed with the dynamic change of the design parameters of anchor and grillage beam. So it is relatively more accurate and reasonable by using dynamic search model to determine the critical slip surface of the slope reinforced by prestressed anchor and grillage beam. Through the relationships of each anchor layout and the slope height of various stages of excavation, and the optimal stability solution of prestressed bolt tension design value in various excavation stages can be obtained. The arrangement of its prestressed anchor force reflects that the layout of the lower part of bolt and the calculation of slope reinforcement is in line with the actual. These indicate that the method is reasonable and practical. PMID:24683319

  17. Stability calculation method of slope reinforced by prestressed anchor in process of excavation.

    PubMed

    Li, Zhong; Wei, Jia; Yang, Jun

    2014-01-01

    This paper takes the effect of supporting structure and anchor on the slope stability of the excavation process into consideration; the stability calculation model is presented for the slope reinforced by prestressed anchor and grillage beam, and the dynamic search model of the critical slip surface also is put forward. The calculation model of the optimal stability solution of each anchor tension of the whole process is also given out, through which the real-time analysis and checking of slope stability in the process of excavation can be realized. The calculation examples indicate that the slope stability is changed with the dynamic change of the design parameters of anchor and grillage beam. So it is relatively more accurate and reasonable by using dynamic search model to determine the critical slip surface of the slope reinforced by prestressed anchor and grillage beam. Through the relationships of each anchor layout and the slope height of various stages of excavation, and the optimal stability solution of prestressed bolt tension design value in various excavation stages can be obtained. The arrangement of its prestressed anchor force reflects that the layout of the lower part of bolt and the calculation of slope reinforcement is in line with the actual. These indicate that the method is reasonable and practical.

  18. Physical Analysis Work for Slope Stability at Shah Alam, Selangor

    NASA Astrophysics Data System (ADS)

    Ishak, M. F.; Zaini, M. S. I.

    2018-04-01

    Slope stability analysis is performed to assess the equilibrium conditions and the safe design of a human-made or natural slope to find the endangered areas. Investigation of potential failure and determination of the slope sensitivity with regard to safety, reliability and economics were parts of this study. Ground anchor is designed to support a structure in this study. Ground anchor were implemented at the Mechanically Stabilized Earth (MSE) wall along Anak Persiaran Jubli Perak to overcome the further cracking of pavement parking, concrete deck and building of the Apartments. A result from the laboratory testing of soil sample such as index test and shear strength test were applied to the Slope/W software with regard to the ground anchors that were implemented. The ground anchors were implemented to increase the value of the factor of safety (FOS) of the MSE Wall. The value of the factor of safety (FOS) before implementing the ground anchor was 0.800 and after the ground anchor was implemented the value increase to 1.555. The increase percentage of factor of safety by implementing on stability of slope was 94.38%.

  19. Application of FBG Sensing Technology in Stability Analysis of Geogrid-Reinforced Slope.

    PubMed

    Sun, Yijie; Xu, Hongzhong; Gu, Peng; Hu, Wenjie

    2017-03-15

    By installing FBG sensors on the geogrids, smart geogrids can both reinforce and monitor the stability for geogrid-reinforced slopes. In this paper, a geogrid-reinforced sand slope model test is conducted in the laboratory and fiber Bragg grating (FBG) sensing technology is used to measure the strain distribution of the geogrid. Based on the model test, the performance of the reinforced soil slope is simulated by finite element software Midas-GTS, and the stability of the reinforced soil slope is analyzed by strength reduction method. The relationship between the geogrid strain and the factor of safety is set up. The results indicate that the measured strain and calculated results agree very well. The geogrid strain measured by FBG sensor can be applied to evaluate the stability of geogrid-reinforced sand slopes.

  20. Application of FBG Sensing Technology in Stability Analysis of Geogrid-Reinforced Slope

    PubMed Central

    Sun, Yijie; Xu, Hongzhong; Gu, Peng; Hu, Wenjie

    2017-01-01

    By installing FBG sensors on the geogrids, smart geogrids can both reinforce and monitor the stability for geogrid-reinforced slopes. In this paper, a geogrid-reinforced sand slope model test is conducted in the laboratory and fiber Bragg grating (FBG) sensing technology is used to measure the strain distribution of the geogrid. Based on the model test, the performance of the reinforced soil slope is simulated by finite element software Midas-GTS, and the stability of the reinforced soil slope is analyzed by strength reduction method. The relationship between the geogrid strain and the factor of safety is set up. The results indicate that the measured strain and calculated results agree very well. The geogrid strain measured by FBG sensor can be applied to evaluate the stability of geogrid-reinforced sand slopes. PMID:28294995

  1. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    PubMed

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  2. Landslide and slope stability evaluation in the historical town of Kruja, Albania

    NASA Astrophysics Data System (ADS)

    Muceku, Y.; Korini, O.

    2014-03-01

    This paper describes landslides and slope stability evaluation in the urban area of Kruja, Albania. Kruja is a historical and heritage center, due to the existence of many important cultural monuments, including "Skanderbeg" castle and Bazaar square, etc. The urban area of Kruja has been affected by landslide effects, in the past and also the present. From this phenomenon many engineering objects such as buildings, roads, etc., are damaged and demolished. From engineering geological mapping at scale 1:5000 it is observed that many active landslides have dramatically increased in activity since the 1980s. The landslide types found in the studied area are earthslides, debris flow, as well as rockfall and rock rolling. Also, from field works and laboratory analysis, the slope stability of the whole urban area has been determined; for this purpose the studied zone is divided into stable and unstable areas, which helps to better understand mass movement activity as one of the most harmful hazards of geodynamic phenomena.

  3. Postural Stability Margins as a Function of Support Surface Slopes.

    PubMed

    Dutt-Mazumder, Aviroop; Slobounov, Seymon M; Challis, John Henry; Newell, Karl Maxim

    2016-01-01

    This investigation examined the effects of slope of the surface of support (35°, 30°, 20°, 10° Facing(Toe) Down, 0° Flat and 10°, 20°, 25° Facing (Toe) Up) and postural orientation on the margins of postural stability in quiet standing of young adults. The findings showed that the center of pressure-CoP (displacement, area and length) had least motion at the baseline (0° Flat) platform condition that progressively increased as a function of platform angle in both facing up and down directions. The virtual time to collision (VTC) dynamics revealed that the spatio-temporal margins to the functional stability boundary were progressively smaller and the VTC time series also more regular (SampEn-Sample Entropy) as slope angle increased. Surface slope induces a restricted stability region with lower dimension VTC dynamics that is more constrained when postural orientation is facing down the slope. These findings provide further evidence that VTC acts as a control variable in standing posture that is influenced by the emergent dynamics of the individual-environment-task interaction.

  4. Delay-slope-dependent stability results of recurrent neural networks.

    PubMed

    Li, Tao; Zheng, Wei Xing; Lin, Chong

    2011-12-01

    By using the fact that the neuron activation functions are sector bounded and nondecreasing, this brief presents a new method, named the delay-slope-dependent method, for stability analysis of a class of recurrent neural networks with time-varying delays. This method includes more information on the slope of neuron activation functions and fewer matrix variables in the constructed Lyapunov-Krasovskii functional. Then some improved delay-dependent stability criteria with less computational burden and conservatism are obtained. Numerical examples are given to illustrate the effectiveness and the benefits of the proposed method.

  5. The role of Soil Water Retention Curve in slope stability analysis in unsaturated and heterogeneous soils.

    NASA Astrophysics Data System (ADS)

    Antinoro, Chiara; Arnone, Elisa; Noto, Leonardo V.

    2015-04-01

    The mechanisms of rainwater infiltration causing slope instability had been analyzed and reviewed in many scientific works. Rainwater infiltration into unsaturated soil increases the degree of saturation, hence affecting the shear strength properties and thus the probability of slope failure. It has been widely proved that the shear strength properties change with the soil water suction in unsaturated soils; therefore, the accuracy to predict the relationship between soil water content and soil water suction, parameterized by the soil-water characteristic curve, has significant effects on the slope stability analysis. The aim of this study is to investigate how the characterization of SWRC of differently structured unsaturated soils affects the slope stability on a simple infinite slope. In particular, the unimodal and bimodal distributions of the soil pore size were compared. Samples of 40 soils, highly different in terms of structure and texture, were collected and used to calibrate two bimodal SWRCs, i.e. Ross and Smettem (1993) and Dexter et al., (2008). The traditional unimodal van Genuchten (1980) model was also applied for comparison. Slope stability analysis was conducted in terms of Factor of Safety (FS) by applying the infinite slope model for unsaturated soils. In the used formulation, the contribution of the suction effect is tuned by a parameter 'chi' in a rate proportional to the saturation conditions. Different parameterizations of this term were also compared and analyzed. Results indicated that all three SWRC models showed good overall performance in fitting the sperimental SWRCs. Both the RS and DE models described adequately the water retention data for soils with a bimodal behavior confirmed from the analysis of pore size distribution, but the best performance was obtained by DE model confirmed. In terms of FS, the tree models showed very similar results as soil moisture approached to the saturated condition; however, within the residual zone

  6. Using three-dimensional plant root architecture in models of shallow-slope stability.

    PubMed

    Danjon, Frédéric; Barker, David H; Drexhage, Michael; Stokes, Alexia

    2008-05-01

    The contribution of vegetation to shallow-slope stability is of major importance in landslide-prone regions. However, existing slope stability models use only limited plant root architectural parameters. This study aims to provide a chain of tools useful for determining the contribution of tree roots to soil reinforcement. Three-dimensional digitizing in situ was used to obtain accurate root system architecture data for mature Quercus alba in two forest stands. These data were used as input to tools developed, which analyse the spatial position of roots, topology and geometry. The contribution of roots to soil reinforcement was determined by calculating additional soil cohesion using the limit equilibrium model, and the factor of safety (FOS) using an existing slope stability model, Slip4Ex. Existing models may incorrectly estimate the additional soil cohesion provided by roots, as the spatial position of roots crossing the potential slip surface is usually not taken into account. However, most soil reinforcement by roots occurs close to the tree stem and is negligible at a distance >1.0 m from the tree, and therefore global values of FOS for a slope do not take into account local slippage along the slope. Within a forest stand on a landslide-prone slope, soil fixation by roots can be minimal between uniform rows of trees, leading to local soil slippage. Therefore, staggered rows of trees would improve overall slope stability, as trees would arrest the downward movement of soil. The chain of tools consisting of both software (free for non-commercial use) and functions available from the first author will enable a more accurate description and use of root architectural parameters in standard slope stability analyses.

  7. The effect of posterior tibial slope on knee flexion in posterior-stabilized total knee arthroplasty.

    PubMed

    Shi, Xiaojun; Shen, Bin; Kang, Pengde; Yang, Jing; Zhou, Zongke; Pei, Fuxing

    2013-12-01

    To evaluate and quantify the effect of the tibial slope on the postoperative maximal knee flexion and stability in the posterior-stabilized total knee arthroplasty (TKA). Fifty-six patients (65 knees) who had undergone TKA with the posterior-stabilized prostheses were divided into the following 3 groups according to the measured tibial slopes: Group 1: ≤4°, Group 2: 4°-7° and Group 3: >7°. The preoperative range of the motion, the change in the posterior condylar offset, the elevation of the joint line, the postoperative tibiofemoral angle and the preoperative and postoperative Hospital for Special Surgery (HSS) scores were recorded. The tibial anteroposterior translation was measured using the Kneelax 3 Arthrometer at both the 30° and the 90° flexion angles. The mean values of the postoperative maximal knee flexion were 101° (SD 5), 106° (SD 5) and 113° (SD 9) in Groups 1, 2 and 3, respectively. A significant difference was found in the postoperative maximal flexion between the 3 groups (P < 0.001). However, no significant differences were found between the 3 groups in the postoperative HSS scores, the changes in the posterior condylar offset, the elevation of the joint line or the tibial anteroposterior translation at either the 30° or the 90° flexion angles. A 1° increase in the tibial slope resulted in a 1.8° flexion increment (r = 1.8, R (2) = 0.463, P < 0.001). An increase in the posterior tibial slope can significantly increase the postoperative maximal knee flexion. The tibial slope with an appropriate flexion and extension gap balance during the operation does not affect the joint stability.

  8. Influence of filling-drawdown cycles of the Vajont reservoir on Mt. Toc slope stability

    NASA Astrophysics Data System (ADS)

    Paronuzzi, Paolo; Rigo, Elia; Bolla, Alberto

    2013-06-01

    In the present work, the 1963 Vajont landslide has been back-analyzed in detail to examine the influence of reservoir operations (filling and drawdown) on Mt. Toc slope stability. The combined seepage-slope stability analyses carried out show that the main destabilizing factor that favored the 1963 Vajont landslide was the reservoir-induced water table that formed as a consequence of rapid seepage inflow within the submerged toe of the slope — decrease in the factor of safety (FOS) up to 12% compared to the initial slope stability condition, i.e., in the absence of the Vajont reservoir. Rainfall would only have been a decisive factor if the initial stability condition of the Mt. Toc slope had already been very close to failure (decrease in FOS caused by heavy or prolonged rainfall is about 3-4%, for the worst case scenario analyzed). The permeability of the shear zone material occurring at the base of the prehistoric Vajont rockslide has been evaluated at 5 × 10- 4 m/s, and back-calculated values of the friction angles Φ range from 17.5° to 27.5°. When considering mountain reservoirs, slope failures can occur during both filling and drawdown phases. In the Vajont case, owing to the highly permeable materials of the shear zone, slope stability decreased during filling and increased during drawdown. Another displacement-dependent phenomenon of a mechanical nature - progressive failure of the NE landslide constraint - has to be considered to understand the slope collapse that occurred during the last drawdown (26 September-9 October 1963). The results of the combined seepage-slope stability models indicate that permeability of bank-forming material and filling-drawdown rates of reservoirs can strongly influence slope stability. Slow lowering of the reservoir level is a necessary measure to reduce the occurrence of very dangerous transient negative peaks of FOS.

  9. Using Three-dimensional Plant Root Architecture in Models of Shallow-slope Stability

    PubMed Central

    Danjon, Frédéric; Barker, David H.; Drexhage, Michael; Stokes, Alexia

    2008-01-01

    Background The contribution of vegetation to shallow-slope stability is of major importance in landslide-prone regions. However, existing slope stability models use only limited plant root architectural parameters. This study aims to provide a chain of tools useful for determining the contribution of tree roots to soil reinforcement. Methods Three-dimensional digitizing in situ was used to obtain accurate root system architecture data for mature Quercus alba in two forest stands. These data were used as input to tools developed, which analyse the spatial position of roots, topology and geometry. The contribution of roots to soil reinforcement was determined by calculating additional soil cohesion using the limit equilibrium model, and the factor of safety (FOS) using an existing slope stability model, Slip4Ex. Key Results Existing models may incorrectly estimate the additional soil cohesion provided by roots, as the spatial position of roots crossing the potential slip surface is usually not taken into account. However, most soil reinforcement by roots occurs close to the tree stem and is negligible at a distance >1·0 m from the tree, and therefore global values of FOS for a slope do not take into account local slippage along the slope. Conclusions Within a forest stand on a landslide-prone slope, soil fixation by roots can be minimal between uniform rows of trees, leading to local soil slippage. Therefore, staggered rows of trees would improve overall slope stability, as trees would arrest the downward movement of soil. The chain of tools consisting of both software (free for non-commercial use) and functions available from the first author will enable a more accurate description and use of root architectural parameters in standard slope stability analyses. PMID:17766845

  10. Slope Stability Estimation of the Kościuszko Mound in Cracow

    NASA Astrophysics Data System (ADS)

    Wrana, Bogumił; Pietrzak, Natalia

    2015-06-01

    In the paper, the slope stability problem of the Kościuszko Mound in Cracow, Poland is considered. The slope stability analysis was performed using Plaxis FEM program. The outer surface of the mound has complex geometry. The slope of the cone is not uniform in all directions, on the surface of the cone are pedestrian paths. Due to its complicated geometry it was impossible to do computing by Plaxis input pre-procesor. The initial element mesh was generated using Autodesk Autocad 3D and next it was updated by Plaxis program. The soil parameters were adopted in accordance with the detailed geological soil testing performed in 2012. Calculating model includes geogrids. The upper part was covered by MacMat geogrid, while the lower part of the Mound was reinforced using Terramesh Matt geogrid. The slope analysis was performed by successives reduction of φ /c parameters. The total multiplayer ΣMsf is used to define the value of the soil strength parameters. The article presents the results of slope stability before and after the rainfall during 33 days of precipitation in flood of 2010.

  11. Slope Stability Analysis In Seismic Areas Of The Northern Apennines (Italy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lo Presti, D.; Fontana, T.; Marchetti, D.

    2008-07-08

    Several research works have been published on the slope stability in the northern Tuscany (central Italy) and particularly in the seismic areas of Garfagnana and Lunigiana (Lucca and Massa-Carrara districts), aimed at analysing the slope stability under static and dynamic conditions and mapping the landslide hazard. In addition, in situ and laboratory investigations are available for the study area, thanks to the activities undertaken by the Tuscany Seismic Survey. Based on such a huge information the co-seismic stability of few ideal slope profiles have been analysed by means of Limit equilibrium method LEM - (pseudo-static) and Newmark sliding block analysismore » (pseudo-dynamic). The analysis--results gave indications about the most appropriate seismic coefficient to be used in pseudo-static analysis after establishing allowable permanent displacement. Such indications are commented in the light of the Italian and European prescriptions for seismic stability analysis with pseudo-static approach. The stability conditions, obtained from the previous analyses, could be used to define microzonation criteria for the study area.« less

  12. Landslides and slope stability evaluation in the historical town of Kruja, Albania

    NASA Astrophysics Data System (ADS)

    Muceku, Y.; Korini, O.

    2013-07-01

    This paper describes the landslides and slope stability evaluation in the urban area of Kruja town, Albania. Kruja is a~historical and heritage center, due to the existence of many important cultural monuments including Skanderbeg castle and Bazaar square etc. The urban area of Kruja town has been affected from the Landslides effects, in the past and also present. From this phenomenon many engineering objects such as buildings, roads etc. are damaged and demolished. From the engineering geological mapping at scale 1 : 5000 it is observed that many active landslides have dramatically increased in activity after 1980s. The landslide types found in the studied area are earth slides, debris flow, as well as rock fall and rock rolling. Also, from field works and laboratory analysis, the slope stability of whole urban areas has been determined; for this purpose the studied zone is divided into the stable and unstable areas, which helps to better understand the mass movement's activity as one of the most harmful hazards of the geodynamics' phenomena.

  13. Measuring and Modeling Root Distribution and Root Reinforcement in Forested Slopes for Slope Stability Calculations

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Giadrossich, F.; Schwarz, M.; Vergani, C.

    2016-12-01

    Roots provide mechanical anchorage and reinforcement of soils on slopes. Roots also modify soil hydrological properties (soil moisture content, pore-water pressure, preferential flow paths) via subsurface flow path associated with root architecture, root density, and root-size distribution. Interactions of root-soil mechanical and hydrological processes are an important control of shallow landslide initiation during rainfall events and slope stability. Knowledge of root-distribution and root strength are key components to estimate slope stability in vegetated slopes and for the management of protection forest in steep mountainous area. We present data that show the importance of measuring root strength directly in the field and present methods for these measurements. These data indicate that the tensile force mobilized in roots depends on root elongation (a function of soil displacement), root size, and on whether roots break in tension of slip out of the soil. Measurements indicate that large lateral roots that cross tension cracks at the scarp are important for slope stability calculations owing to their large tensional resistance. These roots are often overlooked and when included, their strength is overestimated because extrapolated from measurements on small roots. We present planned field experiments that will measure directly the force held by roots of different sizes during the triggering of a shallow landslide by rainfall. These field data are then used in a model of root reinforcement based on fiber-bundle concepts that span different spacial scales, from a single root to the stand scale, and different time scales, from timber harvest to root decay. This model computes the strength of root bundles in tension and in compression and their effect on soil strength. Up-scaled to the stand the model yields the distribution of root reinforcement as a function of tree density, distance from tree, tree species and age with the objective of providing quantitative

  14. A nomogram for interpreting slope stability of fine-grained deposits in modern and ancient-marine environments.

    USGS Publications Warehouse

    Booth, J.S.; Sangrey, D.A.; Fugate, J.K.

    1985-01-01

    This nomogram was designed to aid in interpreting the causes of mass movement in modern and ancient settings, to provide a basis for evaluating and predicting slope stability under given conditions and to further the understanding of the relationships among the several key factors that control slope stability. Design of the nomogram is based on effective stress and combines consolidation theory as applicable to depositional environments with the infinite-slope model of slope-stability analysis. If infinite-slope conditions are assumed to exist, the effective overburden stress can be used to derive a factor of safety against static slope failure by using the angle of internal friction and the slope angle. -from Authors

  15. Sensitivity analysis and calibration of a dynamic physically based slope stability model

    NASA Astrophysics Data System (ADS)

    Zieher, Thomas; Rutzinger, Martin; Schneider-Muntau, Barbara; Perzl, Frank; Leidinger, David; Formayer, Herbert; Geitner, Clemens

    2017-06-01

    Physically based modelling of slope stability on a catchment scale is still a challenging task. When applying a physically based model on such a scale (1 : 10 000 to 1 : 50 000), parameters with a high impact on the model result should be calibrated to account for (i) the spatial variability of parameter values, (ii) shortcomings of the selected model, (iii) uncertainties of laboratory tests and field measurements or (iv) parameters that cannot be derived experimentally or measured in the field (e.g. calibration constants). While systematic parameter calibration is a common task in hydrological modelling, this is rarely done using physically based slope stability models. In the present study a dynamic, physically based, coupled hydrological-geomechanical slope stability model is calibrated based on a limited number of laboratory tests and a detailed multitemporal shallow landslide inventory covering two landslide-triggering rainfall events in the Laternser valley, Vorarlberg (Austria). Sensitive parameters are identified based on a local one-at-a-time sensitivity analysis. These parameters (hydraulic conductivity, specific storage, angle of internal friction for effective stress, cohesion for effective stress) are systematically sampled and calibrated for a landslide-triggering rainfall event in August 2005. The identified model ensemble, including 25 behavioural model runs with the highest portion of correctly predicted landslides and non-landslides, is then validated with another landslide-triggering rainfall event in May 1999. The identified model ensemble correctly predicts the location and the supposed triggering timing of 73.0 % of the observed landslides triggered in August 2005 and 91.5 % of the observed landslides triggered in May 1999. Results of the model ensemble driven with raised precipitation input reveal a slight increase in areas potentially affected by slope failure. At the same time, the peak run-off increases more markedly, suggesting

  16. The long-term hydrological effect of forest stands on the stability of slopes

    NASA Astrophysics Data System (ADS)

    Bogaard, T. A.; Meng, W.; van Beek, L. P. H.

    2012-04-01

    Forest is widely known to improve slope stability as a result of mechanical and hydrological effects. While the mechanics underlying the stabilizing process of root reinforcement are well understood and quantified, the influence of forest on the occurrence of critical hydrological conditions in terms of suction or pore pressure remains uncertain. Due to seasonal and inter-annual fluctuations, the stabilizing influence of evaporation and transpiration is difficult to isolate from the overall noise of the hydrological signal. More long-term effects of forest stands on soil development are highly variable and thus difficult to observe and quantify. Often these effects are ambivalent, having potentially a stabilizing or destabilizing influence on a slope under particular conditions (e.g., more structured soils leading to both rapid infiltration and drainage). Consequently, it can be postulated that forests will hydrologically influence the magnitude-frequency distribution of landsliding, not only at the stand level but also on a regional scale through the groundwater system. The overall aim of this research is to understand and quantify the stabilizing hydrological effect of forests on potentially unstable slopes. To this end, we focus on the changes in the magnitude-frequency distribution of landsliding that arise as a result of variations in evapotranspiration losses over the life cycle of stands. Temporal variations in evapotranspiration comprise first of all the interception that can account for an important amount of evaporation from a forest, and that changes with seasonal and annual variations in the interception capacity of the canopy and forest floor. Transpiration also represents an important loss that varies over the various growth stages of a forest stand. Based on a literature review of water consumption by tree species and water balance studies of forested catchments we defined the potential transpiration for different growth stages. This information we

  17. [Effects of posterior tibial slope on non-contact anterior cruciate ligament rupture and stability of anterior cruciate ligament rupture knee].

    PubMed

    Yue, De-bo; E, Sen; Wang, Bai-liang; Wang, Wei-guo; Guo, Wan-shou; Zhang, Qi-dong

    2013-05-07

    To retrospectively explore the correlation between anterior cruciate ligament (ACL)-ruptured knees, stability of ACL-rupture knee and posterior tibial slope (PTS). From January 2008 to October 2012, 150 knees with ACL rupture underwent arthroscopic surgery for ACL reconstruction. A control group was established for subjects undergoing arthroscopic surgery without ACL rupture during the same period. PTS was measured on a digitalized lateral radiograph. Lachman and mechanized pivot shift tests were performed for assessing the stability of knee. There was significant difference (P = 0.007) in PTS angle between the patients with ACL rupture (9.5 ± 2.2 degrees) and the control group (6.6 ± 1.8 degrees). Only among females, increased slope of tibial plateau had effect on the Lachman test. There was a higher positive rate of pivot shift test in patients of increased posterior slope in the ACL rupture group. Increased posterior tibial slope (>6.6) appears to contribute to non-contact ACL injuries in females. And the changes of tibial slope have no effect upon the Lachman test. However, large changes in tibial slope affect pivot shift.

  18. Texas lignite mining: Groundwater and slope stability control in the nineties and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence J.

    As lignite mining in Texas approaches and exceeds depths of 200 feet below ground level, rising costs demand that innovative mining approaches be used in order to maintain the economic viability of lignite mining. Groundwater and slope stability problems multiply at these depths, resulting in increasing focus on how to control these costs. Dewatering costs are consistently rising for the lignite industry, as deeper mining encounters more and larger saturated sand bodies. These sands require dewatering in order to improve slope stability. Planning and analysis become more important as the number of wells grows beyond what can be managed withmore » a simple {open_quotes}cookie-cutter{close_quotes} approach. Slope stability plays an increasing role in mining concerns as deeper lignite is recovered. Slope stability causes several problems, including loss of lignite, increased rehandle, and hazards to personnel and equipment. Traditional lignite mine planning involved a fairly {open_quotes}generic{close_quotes} pit design with one design highwall angle, one design spoil angle, and little geotechnical evaluation of the deposit. This {open_quotes}one mine-one design{close_quotes} approach, while cost-effective in the past, is now being replaced by a more critical analysis of the design requirements of each area. Geotechnical evaluation plays an increasing role in the planning and operational aspects of lignite mining. Laboratory core sample test results can be used for slope stability modeling, in order to obtain more accurate design and operational information.« less

  19. 75 FR 65366 - Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ...] Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities AGENCY: Federal... the final Recovery Policy RP9524.2, Landslides and Slope Stability Related to Public Facilities, which... facilities threatened by landslides or slope failures; as well as the eligibility of permanent repairs to...

  20. The effect of chestnut coppice forests abandon on slope stability: a case study

    NASA Astrophysics Data System (ADS)

    Vergani, Chiara; Bassanelli, Chiara; Rossi, Lorenzo; Chiaradia, Enrico Antonio; Battista Bischetti, Gian

    2013-04-01

    , as expected, show that management didn't affect root mechanical properties, whereas root distribution within the soil profile did. In terms of additional root cohesion, values are higher in the managed stand, and lower in the abandoned one, at least in the first 50 cm of soil. In the abandoned stand, in fact, roots reach deeper layers of soil (100 cm) than the managed one (50 cm), mainly because of an unexpected greater soil depth. To assess the implication of such results in terms of slope stability, a simple infinite slope model was applied to the two conditions. The results showed that the abandoned stand is prone to instability also with a low level of saturation. On the contrary, by applying the additional root cohesion profile obtained in the managed stand to the steeper slopes, stability should be guaranteed, except in the case of total saturation. In conclusion, although more investigations are required especially to extend the number of stands, coppicing practice seem to be fundamental to prevent shallow landsliding in sweet chestnut forests over cohesionless slopes.

  1. The Influence of Increasing Rain and Earthquake Activities on Landslide Slope Stability in Forest Areas

    NASA Astrophysics Data System (ADS)

    Kubota, T.; Aditian, A.

    2014-12-01

    Deriving the analysis of rainfall data in various mountainous locations, increase in rainfall that is deemed to be induced by the global climate change is obvious in Kyushu district, western Japan. On this point of view, its long term impact on the forest slope stability is analyzed with field investigation and numerical simulation such as finite element method (FEM). On the other hand, the influence of earthquake such as cracks on the slope due to seismic vibration was also analyzed with FEM. In this case, the slope stability analysis to obtain the factor of safety "Fs" is conducted. Here, in case of the Fs > 1.0, the slope is stable. In addition, the slope stabilizing effect of the forest mainly due to the roots strength is evaluated on some unstable slopes. Simultaneously, a holistic estimation over landslide groups is conducted by comparing "Fs" on forest slopes with non- forest slopes. Therefore, the following conclusions are obtained: 1) Comparing the Fs without increased rainfall from the previous decade and the one with actual rainfall, the former case is 1.04 ~1.06 times more stable than the latter. 2) On the other hand, the forest slopes are estimated to be up to approximately 1.5 to 2.5 times more stable than the slope without forest. Therefore, the slope stabilizing effect by the forest is much higher than the increasing rainfall influence i.e. the climate change effect. These results imply that an appropriate forest existence is important under the climate change condition to prevent forest slope degradation. 3) Comparing with the destabilization of the slope by seismic activities (vibration) due to the reduction of soil strength and "cracks = slope deformation" (8~9 % to 30% reduction in Fs even after an earthquake of 490gal), the influence of the long term rainfall increase on slopes (such as 1% decrease in Fs) is relatively small in the study area.

  2. Role of slope stability in cumulative impact assessment of hydropower development: North Cascades, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, R.R.; Staub, W.P.

    1993-08-01

    Two environmental assessments considered the potential cumulative environmental impacts resulting from the development of eight proposed hydropower projects in the Nooksack River Basin and 11 proposed projects in the Skagit River Basin, North Cascades, Washington, respectively. While not identified as a target resource, slope stability and the alteration of sediment supply to creeks and river mainstems significantly affect other resources. The slope stability assessment emphasized the potential for cumulative impacts under disturbed conditions (e.g., road construction and timber harvesting) and a landslide-induced pipeline rupture scenario. In the case of small-scale slides, the sluicing action of ruptured pipeline water on themore » fresh landslide scarp was found to be capable of eroding significantly more material than the original landslide. For large-scale landslides, sluiced material was found to be a small increment of the original landslide. These results predicted that hypothetical accidental pipeline rupture by small-scale landslides may result in potential cumulative impacts for 12 of the 19 projects with pending license applications in both river basins. 5 refs., 2 tabs.« less

  3. Denudational slope processes on weathered basalt in northern California: 130 ka history of soil development, periods of slope stability and colluviation, and climate change

    NASA Astrophysics Data System (ADS)

    McDonald, Eric; Harrison, Bruce; Baldwin, John; Page, William; Rood, Dylan

    2017-04-01

    The geomorphic history of hillslope evolution is controlled by multiple types of denudational processes. Detailed analysis of hillslope soil-stratigraphy provides a means to identify the timing of periods of slope stability and non-stability, evidence of the types of denudational processes, and possible links to climatic drivers. Moreover, the degree of soil formation and the presence of buried or truncated soils provide evidence of the relative age of alternating periods of colluviation and stability. We use evaluation of soil stratigraphy, for a small forested hillslope (<500 m of slope length) located in the Cascades of northern California, to elucidate both the timing and processes controlling 130 ka of hillslope evolution. The soils and slope colluvium are derived from highly weathered basalt. Stratigraphic interpretation is reinforced with soil profile development index (PDI) derived age estimates, tephrochronology, luminescence ages on colluvium, and He3 nuclide exposure dates. Soils formed along hilltop ridges are well developed and reflect deep (>2-3 m) in-situ weathering of the basalt bedrock. PDI age estimates and He3 exposure dates indicate that these hilltop soils had been in place for 100-130 ka, implying a long period of relative surface stability. At about 40-30 ka, soil stratigraphy indicates the onset of 3 distinct cycles of denudation of the hilltop and slopes. Evidence for changes in stability and onset of soil erosion is the presence of several buried soils formed in colluvium downslope of the hilltop. These buried soils have formed in sediment derived from erosion of the hilltop soils (i.e. soil parent material of previously weathered soil matrix and basalt cobbles). The oldest buried soil indicates that slope stability was re-established between 32-23 ka, with stability and soil formation lasting to about 10 ka. Soil-stratigraphy indicates that two additional intervals of downslope transport of sediment between 6-10 ka, and 2-5 ka. Soil

  4. Comparison of slope stability in two Brazilian municipal landfills.

    PubMed

    Gharabaghi, B; Singh, M K; Inkratas, C; Fleming, I R; McBean, E

    2008-01-01

    The implementation of landfill gas to energy (LFGTE) projects has greatly assisted in reducing the greenhouse gases and air pollutants, leading to an improved local air quality and reduced health risks. The majority of cities in developing countries still dispose of their municipal waste in uncontrolled 'open dumps.' Municipal solid waste landfill construction practices and operating procedures in these countries pose a challenge to implementation of LFGTE projects because of concern about damage to the gas collection infrastructure (horizontal headers and vertical wells) caused by minor, relatively shallow slumps and slides within the waste mass. While major slope failures can and have occurred, such failures in most cases have been shown to involve contributory factors or triggers such as high pore pressures, weak foundation soil or failure along weak geosynthetic interfaces. Many researchers who have studied waste mechanics propose that the shear strength of municipal waste is sufficient such that major deep-seated catastrophic failures under most circumstances require such contributory factors. Obviously, evaluation of such potential major failures requires expert analysis by geotechnical specialists with detailed site-specific information regarding foundation soils, interface shearing resistances and pore pressures both within the waste and in clayey barrier layers or foundation soils. The objective of this paper is to evaluate the potential use of very simple stability analyses which can be used to study the potential for slumps and slides within the waste mass and which may represent a significant constraint on construction and development of the landfill, on reclamation and closure and on the feasibility of a LFGTE project. The stability analyses rely on site-specific but simple estimates of the unit weight of waste and the pore pressure conditions and use "generic" published shear strength envelopes for municipal waste. Application of the slope stability

  5. Investigating the performance of LiDAR-derived biomass information in hydromechanic slope stability modelling

    NASA Astrophysics Data System (ADS)

    Schmaltz, Elmar; Steger, Stefan; Bogaard, Thom; Van Beek, Rens; Glade, Thomas

    2017-04-01

    Hydromechanic slope stability models are often used to assess the landslide susceptibility of hillslopes. Some of these models are able to account for vegetation related effects when assessing slope stability. However, spatial information of required vegetation parameters (especially of woodland) that are defined by land cover type, tree species and stand density are mostly underrepresented compared to hydropedological and geomechanical parameters. The aim of this study is to assess how LiDAR-derived biomass information can help to distinguish distinct tree stand-immanent properties (e.g. stand density and diversity) and further improve the performance of hydromechanic slope stability models. We used spatial vegetation data produced from sophisticated algorithms that are able to separate single trees within a stand based on LiDAR point clouds and thus allow an extraordinary detailed determination of the aboveground biomass. Further, this information is used to estimate the species- and stand-related distribution of the subsurface biomass using an innovative approach to approximate root system architecture and development. The hydrological tree-soil interactions and their impact on the geotechnical stability of the soil mantle are then reproduced in the dynamic and spatially distributed slope stability model STARWARS/PROBSTAB. This study highlights first advances in the approximation of biomechanical reinforcement potential of tree root systems in tree stands. Based on our findings, we address the advantages and limitations of highly detailed biomass information in hydromechanic modelling and physically based slope failure prediction.

  6. The modelling influence of water content to mechanical parameter of soil in analysis of slope stability

    NASA Astrophysics Data System (ADS)

    Gusman, M.; Nazki, A.; Putra, R. R.

    2018-04-01

    One of the parameters in slope stability analysis is the shear strength of the soil. Changes in soil shear strength characteristics lead to a decrease in safety factors on the slopes. This study aims to see the effect of increased moisture content on soil mechanical parameters. The case study study was conducted on the slopes of Sitinjau Lauik Kota Padang. The research method was done by laboratory analysis and simple liniear regression analysis and multiple. Based on the test soil results show that the increase in soil water content causes a decrease in cohesion values and internal shear angle. The relationship of moisture content to cohesion is described in equation Y = 55.713-0,6X with R2 = 0.842. While the relationship of water content to shear angle in soil is described in the equation Y = 38.878-0.258X with R2 = 0.915. From several simulations of soil water level improvement, calculation of safety factor (SF) of slope. The calculation results show that the increase of groundwater content is very significant affect the safety factor (SF) slope. SF slope values are in safe condition when moisture content is 50% and when it reaches maximum water content 73.74% slope safety factor value potentially for landslide.

  7. The study on length and diameter ratio of nail as preliminary design for slope stabilization

    NASA Astrophysics Data System (ADS)

    Gunawan, Indra; Silmi Surjandari, Niken; Muslih Purwana, Yusep

    2017-11-01

    Soil nailing technology has been widely applied in practice for reinforced slope. The number of studies for the effective design of nail-reinforced slopes has also increased. However, most of the previous study was focused on a safety factor of the slope; the ratio of length and diameter itself has likely never been studied before. The aim of this study is to relate the length and diameter ratio of the nail with the safety factor of the 20 m height of sand slope in the various angle of friction and steepness of the slope. Simplified Bishop method was utilized to analyze the safety factor of the slope. This study is using data simulation to calculate the safety factor of the slope with soil nailing reinforcement. The results indicate that safety factor of slope stability increases with the increase of length and diameter ratio of the nail. At any angle of friction and steepness of the slope, certain effective length and diameter ratio was obtain. These results may be considered as a preliminary design for slope stabilization.

  8. Reliability-Based Stability Analysis of Rock Slopes Using Numerical Analysis and Response Surface Method

    NASA Astrophysics Data System (ADS)

    Dadashzadeh, N.; Duzgun, H. S. B.; Yesiloglu-Gultekin, N.

    2017-08-01

    While advanced numerical techniques in slope stability analysis are successfully used in deterministic studies, they have so far found limited use in probabilistic analyses due to their high computation cost. The first-order reliability method (FORM) is one of the most efficient probabilistic techniques to perform probabilistic stability analysis by considering the associated uncertainties in the analysis parameters. However, it is not possible to directly use FORM in numerical slope stability evaluations as it requires definition of a limit state performance function. In this study, an integrated methodology for probabilistic numerical modeling of rock slope stability is proposed. The methodology is based on response surface method, where FORM is used to develop an explicit performance function from the results of numerical simulations. The implementation of the proposed methodology is performed by considering a large potential rock wedge in Sumela Monastery, Turkey. The accuracy of the developed performance function to truly represent the limit state surface is evaluated by monitoring the slope behavior. The calculated probability of failure is compared with Monte Carlo simulation (MCS) method. The proposed methodology is found to be 72% more efficient than MCS, while the accuracy is decreased with an error of 24%.

  9. The Stability Analysis Method of the Cohesive Granular Slope on the Basis of Graph Theory.

    PubMed

    Guan, Yanpeng; Liu, Xiaoli; Wang, Enzhi; Wang, Sijing

    2017-02-27

    This paper attempted to provide a method to calculate progressive failure of the cohesivefrictional granular geomaterial and the spatial distribution of the stability of the cohesive granular slope. The methodology can be divided into two parts: the characterization method of macro-contact and the analysis of the slope stability. Based on the graph theory, the vertexes, the edges and the edge sequences are abstracted out to characterize the voids, the particle contact and the macro-contact, respectively, bridging the gap between the mesoscopic and macro scales of granular materials. This paper adopts this characterization method to extract a graph from a granular slope and characterize the macro sliding surface, then the weighted graph is analyzed to calculate the slope safety factor. Each edge has three weights representing the sliding moment, the anti-sliding moment and the braking index of contact-bond, respectively, . The safety factor of the slope is calculated by presupposing a certain number of sliding routes and reducing Weight repeatedly and counting the mesoscopic failure of the edge. It is a kind of slope analysis method from mesoscopic perspective so it can present more detail of the mesoscopic property of the granular slope. In the respect of macro scale, the spatial distribution of the stability of the granular slope is in agreement with the theoretical solution.

  10. Stability of infinite slopes under transient partially saturated seepage conditions

    NASA Astrophysics Data System (ADS)

    Godt, Jonathan W.; ŞEner-Kaya, BaşAk; Lu, Ning; Baum, Rex L.

    2012-05-01

    Prediction of the location and timing of rainfall-induced shallow landslides is desired by organizations responsible for hazard management and warnings. However, hydrologic and mechanical processes in the vadose zone complicate such predictions. Infiltrating rainfall must typically pass through an unsaturated layer before reaching the irregular and usually discontinuous shallow water table. This process is dynamic and a function of precipitation intensity and duration, the initial moisture conditions and hydrologic properties of the hillside materials, and the geometry, stratigraphy, and vegetation of the hillslope. As a result, pore water pressures, volumetric water content, effective stress, and thus the propensity for landsliding vary over seasonal and shorter time scales. We apply a general framework for assessing the stability of infinite slopes under transient variably saturated conditions. The framework includes profiles of pressure head and volumetric water content combined with a general effective stress for slope stability analysis. The general effective stress, or suction stress, provides a means for rigorous quantification of stress changes due to rainfall and infiltration and thus the analysis of slope stability over the range of volumetric water contents and pressure heads relevant to shallow landslide initiation. We present results using an analytical solution for transient infiltration for a range of soil texture and hydrological properties typical of landslide-prone hillslopes and show the effect of these properties on the timing and depth of slope failure. We follow by analyzing field-monitoring data acquired prior to shallow landslide failure of a hillside near Seattle, Washington, and show that the timing of the slide was predictable using measured pressure head and volumetric water content and show how the approach can be used in a forward manner using a numerical model for transient infiltration.

  11. Construction of a Dry Ash Dam with Soilbags and Slope Stability Analysis

    NASA Astrophysics Data System (ADS)

    Li, Hui; Song, Yingjun; Gao, Jiaorong; Li, Longhua; Zhou, Yuqi; Qi, Hui

    2017-12-01

    In thermal power plants, it is necessary to build ash dams to store fly ash, which is the by-product after the combustion of coals. To solve the problem of lacking rockfill materials in Africa, A new technology of constructing ash dams using solibags filled with local sands is proposed and the method of analyzing its slope stability is suggested. The design of the ash dam using soilbags in Lamb Thermal Power Plant of Kenya is introduced in detail. The slope stability of the soilbags-constructed ash dam was analyzed by adopting the suggested method. The results show that the soilbags filled with ash or sands have high compressive strength, and the primary dam constructed with soilbags can effectively retain the backfill ash and the stacking dam reinforced with soilbags can stand stable even with the slope of 1:1.5.

  12. Slope Stability Problems and Back Analysis in Heavily Jointed Rock Mass: A Case Study from Manisa, Turkey

    NASA Astrophysics Data System (ADS)

    Akin, Mutluhan

    2013-03-01

    This paper presents a case study regarding slope stability problems and the remedial slope stabilization work executed during the construction of two reinforced concrete water storage tanks on a steep hill in Manisa, Turkey. Water storage tanks of different capacities were planned to be constructed, one under the other, on closely jointed and deformed shale and sandstone units. The tank on the upper elevation was constructed first and an approximately 20-m cut slope with two benches was excavated in front of this upper tank before the construction of the lower tank. The cut slope failed after a week and the failure threatened the stability of the upper water tank. In addition to re-sloping, a 15.6-m deep contiguous retaining pile wall without anchoring was built to support both the cut slope and the upper tank. Despite the construction of a retaining pile wall, a maximum of 10 mm of displacement was observed by inclinometer measurements due to the re-failure of the slope on the existing slip surface. Permanent stability was achieved after the placement of a granular fill buttress on the slope. Back analysis based on the non-linear (Hoek-Brown) failure criterion indicated that the geological strength index (GSI) value of the slope-forming material is around 21 and is compatible with the in situ-determined GSI value (24). The calculated normal-shear stress plots are also consistent with the Hoek-Brown failure envelope of the rock mass, indicating that the location of the sliding surface, GSI value estimated by back analysis, and the rock mass parameters are well defined. The long-term stability analysis illustrates a safe slope design after the placement of a permanent toe buttress.

  13. The Stability Analysis Method of the Cohesive Granular Slope on the Basis of Graph Theory

    PubMed Central

    Guan, Yanpeng; Liu, Xiaoli; Wang, Enzhi; Wang, Sijing

    2017-01-01

    This paper attempted to provide a method to calculate progressive failure of the cohesive-frictional granular geomaterial and the spatial distribution of the stability of the cohesive granular slope. The methodology can be divided into two parts: the characterization method of macro-contact and the analysis of the slope stability. Based on the graph theory, the vertexes, the edges and the edge sequences are abstracted out to characterize the voids, the particle contact and the macro-contact, respectively, bridging the gap between the mesoscopic and macro scales of granular materials. This paper adopts this characterization method to extract a graph from a granular slope and characterize the macro sliding surface, then the weighted graph is analyzed to calculate the slope safety factor. Each edge has three weights representing the sliding moment, the anti-sliding moment and the braking index of contact-bond, respectively, E1E2E3E1E2E3. The safety factor of the slope is calculated by presupposing a certain number of sliding routes and reducing Weight E3 repeatedly and counting the mesoscopic failure of the edge. It is a kind of slope analysis method from mesoscopic perspective so it can present more detail of the mesoscopic property of the granular slope. In the respect of macro scale, the spatial distribution of the stability of the granular slope is in agreement with the theoretical solution. PMID:28772596

  14. Assessment of Submarine Slope Stability on the Continental Margin off SW Taiwan

    NASA Astrophysics Data System (ADS)

    Hsu, Huai-Houh; Dong, Jia-Jyun; Cheng, Win-Bin; Su, Chih-Chieh

    2017-04-01

    The abundant gas hydrate reservoirs are distributed in the southwest (SW) off Taiwan. To explore this new energy, geological methods were systematically used and mainly emphasized on the storage potential evaluation. On the other hand, the correlation between gas hydrate dissociation and submarine slope stability is also an important issue. In this study, three submarine profiles on the active and passive continental margin were selected and assessed their slope stabilities by considering two influence factors (seismic forces and number of sedimentary layers). The gravity corers obtained from these three sites (Xiaoliuqiu, Yuan-An Ridge, and Pointer Ridge) to conduct soil laboratory tests. The physical property tests and isotropically consolidated undrained (CIU) triaxial tests were carried out to establish reference properties and shear strength parameters. Before the stability analysis is performed, it is also necessary to construct the seabed profile. For each submarine profile, data from P-waves and from S-waves generated by P-S conversion on reflection from airgun shots recorded along one line of ocean bottom seismometers were used to construct 2-D velocity sections. The seabed strata could be simplified to be only one sedimentary layer or to be multilayer in accordance with the velocity structure profile. Results show the safety factors (FS) of stability analysis are obviously different in considering the number of sedimentary layers, especially for a very thin layer of sediments on a steep slope. The simplified strata condition which treated all seabed strata as only one sedimentary layer might result in the FS lower than 1 and the slope was in an unstable state. On the contrary, the FS could be higher than 10 in a multilayer condition.

  15. SOSlope: a new slope stability model for vegetated hillslopes

    NASA Astrophysics Data System (ADS)

    Cohen, D.; Schwarz, M.

    2016-12-01

    Roots contribute to increase soil strength but forces mobilized by roots depend on soil relative displacement. This effect is not included in models of slope stability. Here we present a new numerical model of shallow landslides for vegetated hillslopes that uses a strain-step loading approach for force redistributions within a soil mass including the effects of root strength in both tension and compression. The hillslope is discretized into a two-dimensional array of blocks connected by bonds. During a rainfall event the blocks's mass increases and the soil shear strength decreases. At each time step, we compute a factor of safety for each block. If the factor of safety of one or more blocks is less than one, those blocks are moved in the direction of the local active force by a predefined amount and the factor of safety is recalculated for all blocks. Because of the relative motion between blocks that have moved and those that remain stationary, mechanical bond forces between blocks that depend on relative displacement change, modifying the force balance. This relative motion triggers instantaneous force redistributions across the entire hillslope similar to a self-organized critical system. Looping over blocks and moving those that are unstable is repeated until all blocks are stable and the system reaches a new equilibrium, or, some blocks have failed causing a landslide. Spatial heterogeneity of vegetation is included by computing the root density and distribution as a function of distance form trees. A simple subsurface hydrological model based on dual permeability concepts is used to compute the temporal evolution of water content, pore-water pressure, suction stress, and soil shear strength. Simulations for a conceptual slope indicates that forces mobilized in tension and compression both contribute to the stability of the slope. However, the maximum tensional and compressional forces imparted by roots do not contribute simultaneously to the stability of

  16. Implications of the USGS analysis of slope stability at Sulphur Creek

    Treesearch

    L. M. Reid

    1998-01-01

    The slope stability equation and values for material properties recommended by USGS geologist Dr. Raymond Wilson were used to map the stability regime of the four units of THP 1-97-307 HUM and the two units of THP 1-96-413 HUM. When calculations are carried out for conditions without trees, results indicate that each unit includes significant areas that would be...

  17. Physically-based slope stability modelling and parameter sensitivity: a case study in the Quitite and Papagaio catchments, Rio de Janeiro, Brazil

    NASA Astrophysics Data System (ADS)

    de Lima Neves Seefelder, Carolina; Mergili, Martin

    2016-04-01

    We use the software tools r.slope.stability and TRIGRS to produce factor of safety and slope failure susceptibility maps for the Quitite and Papagaio catchments, Rio de Janeiro, Brazil. The key objective of the work consists in exploring the sensitivity of the geotechnical (r.slope.stability) and geohydraulic (TRIGRS) parameterization on the model outcomes in order to define suitable parameterization strategies for future slope stability modelling. The two landslide-prone catchments Quitite and Papagaio together cover an area of 4.4 km², extending between 12 and 995 m a.s.l. The study area is dominated by granitic bedrock and soil depths of 1-3 m. Ranges of geotechnical and geohydraulic parameters are derived from literature values. A landslide inventory related to a rainfall event in 1996 (250 mm in 48 hours) is used for model evaluation. We attempt to identify those combinations of effective cohesion and effective internal friction angle yielding the best correspondence with the observed landslide release areas in terms of the area under the ROC Curve (AUCROC), and in terms of the fraction of the area affected by the release of landslides. Thereby we test multiple parameter combinations within defined ranges to derive the slope failure susceptibility (fraction of tested parameter combinations yielding a factor of safety smaller than 1). We use the tool r.slope.stability (comparing the infinite slope stability model and an ellipsoid-based sliding surface model) to test and to optimize the geotechnical parameters, and TRIGRS (a coupled hydraulic-infinite slope stability model) to explore the sensitivity of the model results to the geohydraulic parameters. The model performance in terms of AUCROC is insensitive to the variation of the geotechnical parameterization within much of the tested ranges. Assuming fully saturated soils, r.slope.stability produces rather conservative predictions, whereby the results yielded with the sliding surface model are more

  18. Stability analysis of nonlinear systems with slope restricted nonlinearities.

    PubMed

    Liu, Xian; Du, Jiajia; Gao, Qing

    2014-01-01

    The problem of absolute stability of Lur'e systems with sector and slope restricted nonlinearities is revisited. Novel time-domain and frequency-domain criteria are established by using the Lyapunov method and the well-known Kalman-Yakubovich-Popov (KYP) lemma. The criteria strengthen some existing results. Simulations are given to illustrate the efficiency of the results.

  19. Locating Critical Circular and Unconstrained Failure Surface in Slope Stability Analysis with Tailored Genetic Algorithm

    NASA Astrophysics Data System (ADS)

    Pasik, Tomasz; van der Meij, Raymond

    2017-12-01

    This article presents an efficient search method for representative circular and unconstrained slip surfaces with the use of the tailored genetic algorithm. Searches for unconstrained slip planes with rigid equilibrium methods are yet uncommon in engineering practice, and little publications regarding truly free slip planes exist. The proposed method presents an effective procedure being the result of the right combination of initial population type, selection, crossover and mutation method. The procedure needs little computational effort to find the optimum, unconstrained slip plane. The methodology described in this paper is implemented using Mathematica. The implementation, along with further explanations, is fully presented so the results can be reproduced. Sample slope stability calculations are performed for four cases, along with a detailed result interpretation. Two cases are compared with analyses described in earlier publications. The remaining two are practical cases of slope stability analyses of dikes in Netherlands. These four cases show the benefits of analyzing slope stability with a rigid equilibrium method combined with a genetic algorithm. The paper concludes by describing possibilities and limitations of using the genetic algorithm in the context of the slope stability problem.

  20. Parameterization experiments performed via synthetic mass movements prototypes generated by 3D slope stability simulator

    NASA Astrophysics Data System (ADS)

    Colangelo, Antonio C.

    2010-05-01

    The central purpose of this work is to perform a reverse procedure in the mass movement conventional parameterization approach. The idea is to generate a number of synthetic mass movements by means of the "slope stability simulator" (Colangelo, 2007), and compeer their morphological and physical properties with "real" conditions of effective mass movements. This device is an integrated part of "relief unity emulator" (rue), that permits generate synthetic mass movements in a synthetic slope environment. The "rue" was build upon fundamental geomorphological concepts. These devices operate with an integrated set of mechanical, geomorphic and hydrological models. The "slope stability simulator" device (sss) permits to perform a detailed slope stability analysis in a theoretical three dimensional space, by means of evaluation the spatial behavior of critical depths, gradients and saturation levels in the "potential rupture surfaces" inferred along a set of slope profiles, that compounds a synthetic slope unity. It's a meta-stable 4-dimensional object generated by means of "rue", that represents a sequence evolution of a generator profile applied here, was adapted the infinite slope model for slope. Any slope profiles were sliced by means of finite element solution like in Bishop method. For the synthetic slope systems generated, we assume that the potential rupture surface occurs at soil-regolith or soil-rock boundary in slope material. Sixteen variables were included in the "rue-sss" device that operates in an integrated manner. For each cell, the factor of safety was calculated considering the value of shear strength (cohesion and friction) of material, soil-regolith boundary depth, soil moisture level content, potential rupture surface gradient, slope surface gradient, top of subsurface flow gradient, apparent soil bulk density and vegetation surcharge. The slope soil was considered as cohesive material. The 16 variables incorporated in the models were analyzed for

  1. Slope Stability Analysis of Waste Dump in Sandstone Open Pit Osielec

    NASA Astrophysics Data System (ADS)

    Adamczyk, Justyna; Cała, Marek; Flisiak, Jerzy; Kolano, Malwina; Kowalski, Michał

    2013-03-01

    This paper presents the slope stability analysis for the current as well as projected (final) geometry of waste dump Sandstone Open Pit "Osielec". For the stability analysis six sections were selected. Then, the final geometry of the waste dump was designed and the stability analysis was conducted. On the basis of the analysis results the opportunities to improve the stability of the object were identified. The next issue addressed in the paper was to determine the proportion of the mixture containing mining and processing wastes, for which the waste dump remains stable. Stability calculations were carried out using Janbu method, which belongs to the limit equilibrium methods.

  2. Evaluating the Effect of Rainfall Infiltration on the Slope Stability of T16 tower of Taipei Mao-kong Gondola by Numerical Methods

    NASA Astrophysics Data System (ADS)

    RUNG, J.

    2013-12-01

    In this study, a series of rainfall-stability analyses were performed to simulate the failure mechanism and the function of remediation works of the down slope of T-16 tower pier, Mao-Kong gondola (or T-16 Slope) at the hillside of Taipei City using two-dimensional finite element method. The failure mechanism of T-16 Slope was simulated using the rainfall hyetograph of Jang-Mi typhoon in 2008 based on the field investigation data, monitoring data, soil/rock mechanical testing data and detail design plots of remediation works. Eventually, the numerical procedures and various input parameters in the analysis were verified by comparing the numerical results with the field observations. In addition, 48 hrs design rainfalls corresponding to 5, 10, 25 and 50 years return periods were prepared using the 20 years rainfall data of Mu-Zha rainfall observation station, Central Weather Bureau for the rainfall-stability analyses of T-16 Slope to inspect the effect of the compound stabilization works on the overall stability of the slope. At T-16 Slope, without considering the longitudinal and transverse drainages on the ground surface, there totally 4 types of stabilization works were installed to stabilize the slope. From the slope top to the slope toe, the stabilization works of T-16 Slope consists of RC-retaining wall with micro-pile foundation at the up-segment, earth anchor at the up-middle-segment, soil nailing at the middle-segment and retaining pile at the down-segment of the slope. The effect of each individual stabilization work on the slope stability under rainfall condition was examined and evaluated by raising field groundwater level.

  3. Slope stability analysis using limit equilibrium method in nonlinear criterion.

    PubMed

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu

    2014-01-01

    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci , and the parameter of intact rock m i . There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i , F decreases first and then increases.

  4. Slope Stability Analysis Using Limit Equilibrium Method in Nonlinear Criterion

    PubMed Central

    Lin, Hang; Zhong, Wenwen; Xiong, Wei; Tang, Wenyu

    2014-01-01

    In slope stability analysis, the limit equilibrium method is usually used to calculate the safety factor of slope based on Mohr-Coulomb criterion. However, Mohr-Coulomb criterion is restricted to the description of rock mass. To overcome its shortcomings, this paper combined Hoek-Brown criterion and limit equilibrium method and proposed an equation for calculating the safety factor of slope with limit equilibrium method in Hoek-Brown criterion through equivalent cohesive strength and the friction angle. Moreover, this paper investigates the impact of Hoek-Brown parameters on the safety factor of slope, which reveals that there is linear relation between equivalent cohesive strength and weakening factor D. However, there are nonlinear relations between equivalent cohesive strength and Geological Strength Index (GSI), the uniaxial compressive strength of intact rock σ ci, and the parameter of intact rock m i. There is nonlinear relation between the friction angle and all Hoek-Brown parameters. With the increase of D, the safety factor of slope F decreases linearly; with the increase of GSI, F increases nonlinearly; when σ ci is relatively small, the relation between F and σ ci is nonlinear, but when σ ci is relatively large, the relation is linear; with the increase of m i, F decreases first and then increases. PMID:25147838

  5. HDMR methods to assess reliability in slope stability analyses

    NASA Astrophysics Data System (ADS)

    Kozubal, Janusz; Pula, Wojciech; Vessia, Giovanna

    2014-05-01

    Stability analyses of complex rock-soil deposits shall be tackled considering the complex structure of discontinuities within rock mass and embedded soil layers. These materials are characterized by a high variability in physical and mechanical properties. Thus, to calculate the slope safety factor in stability analyses two issues must be taken into account: 1) the uncertainties related to structural setting of the rock-slope mass and 2) the variability in mechanical properties of soils and rocks. High Dimensional Model Representation (HDMR) (Chowdhury et al. 2009; Chowdhury and Rao 2010) can be used to carry out the reliability index within complex rock-soil slopes when numerous random variables with high coefficient of variations are considered. HDMR implements the inverse reliability analysis, meaning that the unknown design parameters are sought provided that prescribed reliability index values are attained. Such approach uses implicit response functions according to the Response Surface Method (RSM). The simple RSM can be efficiently applied when less than four random variables are considered; as the number of variables increases, the efficiency in reliability index estimation decreases due to the great amount of calculations. Therefore, HDMR method is used to improve the computational accuracy. In this study, the sliding mechanism in Polish Flysch Carpathian Mountains have been studied by means of HDMR. The Southern part of Poland where Carpathian Mountains are placed is characterized by a rather complicated sedimentary pattern of flysh rocky-soil deposits that can be simplified into three main categories: (1) normal flysch, consisting of adjacent sandstone and shale beds of approximately equal thickness, (2) shale flysch, where shale beds are thicker than adjacent sandstone beds, and (3) sandstone flysch, where the opposite holds. Landslides occur in all flysch deposit types thus some configurations of possible unstable settings (within fractured rocky

  6. Rock Slope Stability Evaluation in a Steep-Walled Canyon: Application to Elevator Construction in the Yunlong River Valley, Enshi, China

    NASA Astrophysics Data System (ADS)

    Xiao, Lili; Chai, Bo; Yin, Kunlong

    2015-09-01

    A passenger elevator is to be built on a nearly vertical slope in the National Geological Park in Enshi, Hubei province, China. Three steps comprise the construction: excavating the slope toe for the elevator platform, building the elevator on the platform, and affixing the elevator to the slope using anchors. To evaluate the rock slope stability in the elevator area and the safety of the elevator construction, we applied three techniques: qualitative analysis, formula calculation, and numerical simulation methods, based on field investigation and parameter selection, and considering both wet and dry conditions, pre- and post-construction. Qualitative stability factors for sliding and falling were calculated using the limit equilibrium method; the results show that the slope as a whole is stable, with a few unstable blocks, notably block BT1. Formula-based stability factors were calculated for four sections on block BT1, revealing the following: anchors will decrease the stability of certain rock pieces; the lowest average stability factor after anchoring will be K f = 1.36 in wet conditions; block BT1 should be reinforced during elevator construction, up to a first-class slope stability factor of K f = 1.40; and the slope as a whole is stable. Numerical simulation using FLAC3D indicated that the stress distribution will reach equilibrium for all steps before and after construction, and that the factor of safety (FOS) is within the general slope safety range (FOS > 1.05). We suggest that unstable pieces in block BT1 be reinforced during construction to a first-class slope safety range (FOS > 1.3), and that deformation monitoring on the slope surface be implemented.

  7. The role of vegetation in the stability of forested slopes

    Treesearch

    Robert R. Ziemer

    1981-01-01

    Summary - Vegetation helps stabilize forested slopes by providing root strength and by modifying the saturated soil water regime. Plant roots can anchor through the soil mass into fractures in bedrock, can cross zones of weakness to more stable soil, and can provide interlocking long fibrous binders within a weak soil mass. In Mediterranean-type climates, having warm...

  8. SLOPE STABILITY EVALUATION AND EQUIPMENT SETBACK DISTANCES FOR BURIAL GROUND EXCAVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MCSHANE DS

    2010-03-25

    After 1970 Transuranic (TRU) and suspect TRU waste was buried in the ground with the intention that at some later date the waste would be retrieved and processed into a configuration for long term storage. To retrieve this waste the soil must be removed (excavated). Sloping the bank of the excavation is the method used to keep the excavation from collapsing and to provide protection for workers retrieving the waste. The purpose of this paper is to document the minimum distance (setback) that equipment must stay from the edge of the excavation to maintain a stable slope. This evaluation examinesmore » the equipment setback distance by dividing the equipment into two categories, (1) equipment used for excavation and (2) equipment used for retrieval. The section on excavation equipment will also discuss techniques used for excavation including the process of benching. Calculations 122633-C-004, 'Slope Stability Analysis' (Attachment A), and 300013-C-001, 'Crane Stability Analysis' (Attachment B), have been prepared to support this evaluation. As shown in the calculations the soil has the following properties: Unit weight 110 pounds per cubic foot; and Friction Angle (natural angle of repose) 38{sup o} or 1.28 horizontal to 1 vertical. Setback distances are measured from the top edge of the slope to the wheels/tracks of the vehicles and heavy equipment being utilized. The computer program utilized in the calculation uses the center of the wheel or track load for the analysis and this difference is accounted for in this evaluation.« less

  9. Comprehensive evaluation of high-steep slope stability and optimal high-steep slope design by 3D physical modeling

    NASA Astrophysics Data System (ADS)

    Lai, Xing-ping; Shan, Peng-fei; Cai, Mei-feng; Ren, Fen-hua; Tan, Wen-hui

    2015-01-01

    High-steep slope stability and its optimal excavation design in Shuichang open pit iron mine were analyzed based on a large 3D physical simulation technique. An optimal excavation scheme with a relatively steeper slope angle was successfully implemented at the northwest wall between Nos. 4 and 5 exploration lines of Shuichang Iron Mine, taking into account the 3D scale effect. The physico-mechanical properties of rock materials were obtained by laboratory tests conducted on sample cores from exploration drilling directly from the iron mine. A porous rock-like composite material was formed for the model, and the mechanical parameters of the material were assessed experimentally; specifically, the effect of water on the sample was quantitatively determined. We adopted an experimental setup using stiff modular applied static loading to carry out a visual excavation of the slope at a random depth. The setup was equipped with acoustic emission (AE) sensors, and the experiments were monitored by crack optical acquirement, ground penetrating radar, and close-field photogrammetry to investigate the mechanisms of rock-mass destabilization in the high-steep slope. For the complex study area, the model results indicated a clear correlation between the model's destabilization resulting from slope excavation and the collected monitoring information. During the model simulation, the overall angle of the slope increased by 1-6 degrees in different sections. Dramatically, the modeled excavation scheme saved over 80 million tons of rock from extraction, generating enormous economic and ecological benefits.

  10. A multidisciplinary methodological approach for slope stability assessment of an area prone to shallow landslides

    NASA Astrophysics Data System (ADS)

    Bordoni, Massimiliano; Meisina, Claudia; Valentino, Roberto; Bittelli, Marco; Battista Bischetti, Gian; Vercesi, Alberto; Chersich, Silvia; Giuseppina Persichillo, Maria

    2016-04-01

    Rainfall-induced shallow landslides are widespread slope instabilities phenomena in several hilly and mountainous contexts all over the world. Due to their high density of diffusion also in small areas, they can provoke important damages to terrains, infrastructures, buildings, and, sometimes, loss of human lives. Shallow landslides affect superficial soils of limited thickness (generally lower than 2 m), located above weathered or not bedrock levels. Their triggering mechanism is strictly linked to the hydrological response of the soils to rainfall events. Thus, it becomes fundamental a comprehensive analysis of the soil properties which can influence the susceptibility of a slope to shallow landslides. In this study, a multidisciplinary approach was followed for the characterization of the soils and the individuation of the triggering conditions in an area particularly prone to shallow failures, for slope stability assessment. This area corresponded to the hilly sector of North-Eastern Oltrepò Pavese (Lombardy Region, Northern Italy), where the density of shallow landslides is really high, reaching more than 36 landslides per km2. The soils of the study area were analyzed through a multidisciplinary characterization, which took into account for the main geotechnical, mechanical and mineralogical parameters and also for the main pedological features of the materials. This approach allowed for identifying the main features and the horizons which could influence the soil behavior in relation to the conditions that are preparatory to shallow landslides development. In a test-site slope, representative of the main geomorphological, geological and landslides distribution characteristics typical of the study area, a continuous in time monitoring of meteorological (rainfall amount, air temperature, air humidity, atmospheric pressure, net solar radiation, wind speed and direction) and hydrological (soil water content, pore water pressure) parameters was implemented. In

  11. Slope stability and bearing capacity of landfills and simple on-site test methods.

    PubMed

    Yamawaki, Atsushi; Doi, Yoichi; Omine, Kiyoshi

    2017-07-01

    This study discusses strength characteristics (slope stability, bearing capacity, etc.) of waste landfills through on-site tests that were carried out at 29 locations in 19 sites in Japan and three other countries, and proposes simple methods to test and assess the mechanical strength of landfills on site. Also, the possibility of using a landfill site was investigated by a full-scale eccentric loading test. As a result of this, landfills containing more than about 10 cm long plastics or other fibrous materials were found to be resilient and hard to yield. An on-site full scale test proved that no differential settlement occurs. The repose angle test proposed as a simple on-site test method has been confirmed to be a good indicator for slope stability assessment. The repose angle test suggested that landfills which have high, near-saturation water content have considerably poorer slope stability. The results of our repose angle test and the impact acceleration test were related to the internal friction angle and the cohesion, respectively. In addition to this, it was found that the air pore volume ratio measured by an on-site air pore volume ratio test is likely to be related to various strength parameters.

  12. Dip-slope and Dip-slope Failures in Taiwan - a Review

    NASA Astrophysics Data System (ADS)

    Lee, C.

    2011-12-01

    Taiwan is famous for dip-slope and dip-slope slides. Dip-slopes exist at many places in the fold-and-thrust belt of Taiwan. Under active cutting of stream channels and man-made excavations, a dip-slope may become unstable and susceptible for mass sliding. Daylight of a bedding parallel clay seam is the most dangerous type for dip-slope sliding. Buckling or shear-off features may also happen at toe of a long dip-slope. Besides, a dip-slope is also dangerous for shallow debris slides, if the slope angle is between 25 to 45 degrees and the debris (colluvium or slope wash) is thick (>1m). These unstable slopes may slide during a triggering event, earthquake or typhoon storm; or even slide without a triggering event, like the 2010 Tapu case. Initial buckling feature had been found in the dip-slope of the Feitsui arch dam abutment after detailed explorations. Shear-off feature have also been found in dip-slope located in right bank of the Nahua reservoir after field investigation and drilling. The Chiufengerhshan slide may also be shear-off type. On the other hand, the Tapu, the Tsaoling slides and others are of direct slide type. The Neihoo Bishan slide is a shallow debris slide on dip-slope. All these cases demonstrate the four different types of dip-slope slide. The hazard of a dip-slope should be investigated to cover these possible types of failure. The existence of bedding parallel clay seams is critical for the stability of a dip-slope, either for direct slide or buckling or shear-off type of failure, and is a hot point during investigation. Because, the stability of a dip-slope is changing with time, therefore, detailed explorations to including weathering and erosion rates are also very necessary to ensure the long-term stability of a dip-slope.

  13. Optimization of stabilization of highway embankment slopes using driven piles : phase I.

    DOT National Transportation Integrated Search

    2010-12-01

    This study determined the feasibility of using driven piles to stabilize highway embankment slopes. The activities : performed under this study were a detailed literature review, a national survey of state DOTs, a review of inspection and : stabiliza...

  14. Relationships between slope erosion processes and aggregate stability of Ultisols from subtropical China during rainstorms

    NASA Astrophysics Data System (ADS)

    Liu, Gang; Xiao, Hai; Liu, Puling

    2017-04-01

    Soil aggregates, being a key soil structural unit, influence several soil physical properties such as water infiltration, runoff and erosion. The relationship between soil aggregate stability and interrill and rill erodibility is unclear but critical to process-based erosion prediction models. One obvious reason is that it is hard to distinguish between interrill and rill-eroded sediment during the erosion process. This study was designed to partition interrill and rill erosion rates and relates them to the aggregate stability of Ultisols in subtropical China. Six kinds of rare earth element (REE) were applied as tracers mixed with two cultivated soils derived from the Quaternary red clay soil and the shale soil at six slope positions. Soil aggregate stability was determined by the Le Bissonnais (LB)-method. Simulated rainfall with three intensities (60, 90 and 120 mm/h) were applied to a soil plot (2.25 m long, 0.5 m wide, 0.2 m deep) at three slope gradients (10°, 20° and 30°) with duration of 30 min after runoff initiation. The results indicated that interrill and rill erosion increased with increasing rainfall intensity and slope gradient for both types of soil. Rill and interrill erosion rates of the shale soil were much higher than those of the Quaternary red clay soil. Rill erosion contribution enhanced with increasing rainfall intensity and slope gradient for both soils. Percentage of the downslope area erosion to total erosion was the largest, followed by the mid-slope area and then upslope area. Equations using an aggregate stability index As to replace the erodibility factor of interrill and rill erosion in the Water Erosion Prediction Project (WEPP) model were constructed after analyzing the relationships between estimated and measured rill and interrill erosion data. It was shown that these equations based on the stability index, As, have the potential to improve methods for assessing interrill and rill erosion erodibility synchronously for the

  15. Constraints on mechanisms for the growth of gully alcoves in Gasa crater, Mars, from two-dimensional stability assessments of rock slopes

    USGS Publications Warehouse

    Okubo, C.H.; Tornabene, L.L.; Lanza, N.L.

    2011-01-01

    The value of slope stability analyses for gaining insight into the geologic conditions that would facilitate the growth of gully alcoves on Mars is demonstrated in Gasa crater. Two-dimensional limit equilibrium methods are used in conjunction with high-resolution topography derived from stereo High Resolution Imaging Science Experiment (HiRISE) imagery. These analyses reveal three conditions that may produce observed alcove morphologies through slope failure: (1) a ca >10m thick surface layer that is either saturated with H2O ground ice or contains no groundwater/ice at all, above a zone of melting H2O ice or groundwater and under dynamic loading (i.e., seismicity), (2) a 1-10m thick surface layer that is saturated with either melting H2O ice or groundwater and under dynamic loading, or (3) a >100m thick surface layer that is saturated with either melting H2O ice or groundwater and under static loading. This finding of three plausible scenarios for slope failure demonstrates how the triggering mechanisms and characteristics of future alcove growth would be affected by prevailing environmental conditions. HiRISE images also reveal normal faults and other fractures tangential to the crowns of some gully alcoves that are interpreted to be the result of slope instability, which may facilitate future slope movement. Stability analyses show that the most failure-prone slopes in this area are found in alcoves that are adjacent to crown fractures. Accordingly, crown fractures appear to be a useful indicator of those alcoves that should be monitored for future landslide activity. ?? 2010.

  16. Slope Stability Analysis of Mountainous/Hilly regions of Nepal: A case study of Bhotekoshi Hydropower site

    NASA Astrophysics Data System (ADS)

    Acharya, A.; Gautam, S.; Kafle, K. R.

    2017-12-01

    Nepal is a mountainous, developing country that straddles the boundary between the Indian and Himalayan tectonic plates. In Nepal, landslides represent a major constraint on development, causing high levels of economic loss and substantial number of fatalities each year. There is a general consensus that the impacts of landslides in mountainous countries such as Nepal are increasing with time due to unstable slopes. The present study deals with the field investigation of slope stability in mountainous/hilly region of Nepal. Among the natural hazards that occur in regularly in Nepal, flood and landslides due to unstable slopes are by far the serious ones. They claim many human lives every year and cause other damages such as destruction and blockage of highway, destruction of hydropower, losses of livestock, crops and agricultural land. Slope Mass Rating system and stereographic projection has been carried out for analysis of slope stability using standard formats and parameters. It has been found that there are few major discontinuities that play the role for the rock/soil slides around the area. The major discontinuities are 235°/67°. These joint sets play the main role to the plane as well as wedge failures around the area. The rock mass rating of the slope has been found to be 27 and the slope mass rating has been found to be 37.8. The obtained slope mass rating value lies on IV class (Bad) that represents unstable slope having planner or big wedge failure and needs to be corrective measures in the slope. From stereographic projection, wedge failure of the slope has been seen according to the conditions of slope failure.

  17. The effects of the mineral phase on C stabilization mechanisms and the microbial community along an eroding slope transect

    NASA Astrophysics Data System (ADS)

    Doetterl, S.; Opfergelt, S.; Cornelis, J.; Boeckx, P. F.; van oost, K.; Six, J.

    2013-12-01

    An increasing number of studies show the importance of including soil redistribution processes in understanding carbon (C) dynamics in eroding landscapes. The quality and quantity of soil organic carbon in sloping cropland differs with topographic position. These differences are commonly more visible in the subsoil, while the size and composition of topsoil C pools are similar along the hillslope. The type (plant- or microbial-derived) and quality (level of degradation) of C found in a specific soil fraction depends on the interplay between the temporal dynamic of the specific mechanism and it's strength to protect C from decomposition. Here, we present an analysis that aims to clarify the bio/geo-chemical and mineralogical components involved in stabilizing C at various depths and slope positions and how they affect the microbial community and the degradation of C. For this we analyzed soil samples from different soil depths along a slope transect applying (i) a sequential extraction of the reactive soil phase using pyrophosphate, oxalate and dithionite-citrate-bicarbonate, (ii) a semi-quantitative and qualitative analysis of the clay mineralogy, (iii) an analysis of the microbial community using amino sugars and (iv) an analysis of the level of degradation of C in different soil fractions focusing on the soil Lignin signature. The results show that the pattern of minerals and their relative importance in stabilizing C varies greatly along the transect. In the investigated soils, pyrophosphate extractable Manganese, and not Iron or Aluminum as often observed, is strongly correlated to C in the bulk soil and in the non-aggregated silt and clay fractions. This suggests a certain role of Manganese for C stabilization where physical protection is absent. In contrast, pyrophosphate extractable Iron and Aluminum components are largely abundant in water-stable soil aggregates but not correlated to C, suggesting importance of these extracts to stabilize aggregates and

  18. The effects of trait and state affect on diurnal cortisol slope among children affected by parental HIV/AIDS in rural China.

    PubMed

    Chen, Lihua; Chi, Peilian; Li, Xiaoming; Zilioli, Samuele; Zhao, Junfeng; Zhao, Guoxiang; Lin, Danhua

    2017-08-01

    Affect is believed to be one of the most prominent proximal psychological pathway through which more distal psychosocial factors influence physiology and ultimately health. The current study examines the relative contributions of trait affect and state affect to the hypothalamic-pituitary-adrenal axis activity, with particular focus on cortisol slope, in children affected by parental HIV/AIDS. A sample of 645 children (8-15 years old) affected by parental HIV/AIDS in rural China completed a multiple-day naturalistic salivary cortisol protocol. Trait and state affect, demographics, and psychosocial covariates were assessed via self-report. Hierarchical linear modeling was used for estimating the effects of trait affect and state affect on cortisol slope. Confidence intervals for indirect effects were estimated using the Monte Carlo method. Our results indicated that both trait and state negative affect (NA) predicted flatter (less "healthy") diurnal cortisol slopes. Subsequent analyses revealed that children's state NA mediated the effect of their trait NA on diurnal cortisol slope. The same relationships did not emerge for trait and state positive affect. These findings provide a rationale for future interventions that target NA as a modifiable antecedent of compromised health-related endocrine processes among children affected by parental HIV/AIDS.

  19. Local dynamic stability of lower extremity joints in lower limb amputees during slope walking.

    PubMed

    Chen, Jin-Ling; Gu, Dong-Yun

    2013-01-01

    Lower limb amputees have a higher fall risk during slope walking compared with non-amputees. However, studies on amputees' slope walking were not well addressed. The aim of this study was to identify the difference of slope walking between amputees and non-amputees. Lyapunov exponents λS was used to estimate the local dynamic stability of 7 transtibial amputees' and 7 controls' lower extremity joint kinematics during uphill and downhill walking. Compared with the controls, amputees exhibited significantly lower λS in hip (P=0.04) and ankle (P=0.01) joints of the sound limb, and hip joints (P=0.01) of the prosthetic limb during uphill walking, while they exhibited significantly lower λS in knee (P=0.02) and ankle (P=0.03) joints of the sound limb, and hip joints (P=0.03) of the prosthetic limb during downhill walking. Compared with amputees level walking, they exhibited significantly lower λS in ankle joints of the sound limb during both uphill (P=0.01) and downhill walking (P=0.01). We hypothesized that the better local dynamic stability of amputees was caused by compensation strategy during slope walking.

  20. Linking slope stability and climate change: the Nordfjord region, western Norway, case study

    NASA Astrophysics Data System (ADS)

    Vasskog, K.; Waldmann, N.; Ariztegui, D.; Simpson, G.; Støren, E.; Chapron, E.; Nesje, A.

    2009-12-01

    Valleys, lakes and fjords are spectacular features of the Norwegian landscape and their sedimentary record recall past climatic, environmental and glacio-isostatic changes since the late glacial. A high resolution multi-proxy study is being performed on three lakes in western Norway combining different geophysical methods and sediment coring with the aim of reconstructing paleoclimate and to investigate how the frequency of hazardous events in this area has changed through time. A very high resolution reflection seismic profiling revealed a series of mass-wasting deposits. These events, which have also been studied in radiocarbon-dated cores, suggest a changing impact of slope instability on lake sedimentation since the late glacial. A specially tailored physically-based mathematical model allowed a numerical simulation of one of these mass wasting events and related tsunami, which occurred during a devastating rock avalanche in 1936 killing 74 persons. The outcome has been further validated against historical, marine and terrestrial information, providing a model that can be applied to comparable basins at various temporal and geographical scales. Detailed sedimentological and geochemical studies of selected cores allows characterizing the sedimentary record and to disentangle each mass wasting event. This combination of seismic, sedimentary and geophysical data permits to extend the record of mass wasting events beyond historical times. The geophysical and coring data retrieved from these lakes is a unique trace of paleo-slope stability generated by isostatic rebound and climate change, thus providing a continuous archive of slope stability beyond the historical record. The results of this study provide valuable information about the impact of climate change on slope stability and source-to-sink processes.

  1. Stability of submarine slopes in the northern South China Sea: a numerical approach

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Luan, Xiwu

    2013-01-01

    Submarine landslides occur frequently on most continental margins. They are effective mechanisms of sediment transfer but also a geological hazard to seafloor installations. In this paper, submarine slope stability is evaluated using a 2D limit equilibrium method. Considerations of slope, sediment, and triggering force on the factor of safety (FOS) were calculated in drained and undrained ( Φ=0) cases. Results show that submarine slopes are stable when the slope is <16° under static conditions and without a weak interlayer. With a weak interlayer, slopes are stable at <18° in the drained case and at <9° in the undrained case. Earthquake loading can drastically reduce the shear strength of sediment with increased pore water pressure. The slope became unstable at >13° with earthquake peak ground acceleration (PGA) of 0.5 g; whereas with a weak layer, a PGA of 0.2 g could trigger instability at slopes >10°, and >3° for PGA of 0.5 g. The northern slope of the South China Sea is geomorphologically stable under static conditions. However, because of the possibility of high PGA at the eastern margin of the South China Sea, submarine slides are likely on the Taiwan Bank slope and eastern part of the Dongsha slope. Therefore, submarine slides recognized in seismic profiles on the Taiwan Bank slope would be triggered by an earthquake, the most important factor for triggering submarine slides on the northern slope of the South China Sea. Considering the distribution of PGA, we consider the northern slope of the South China Sea to be stable, excluding the Taiwan Bank slope, which is tectonically active.

  2. Subsurface Characterization using Geophysical Seismic Refraction Survey for Slope Stabilization Design with Soil Nailing

    NASA Astrophysics Data System (ADS)

    Ashraf Mohamad Ismail, Mohd; Ng, Soon Min; Hazreek Zainal Abidin, Mohd; Madun, Aziman

    2018-04-01

    The application of geophysical seismic refraction for slope stabilization design using soil nailing method was demonstrated in this study. The potential weak layer of the study area is first identify prior to determining the appropriate length and location of the soil nail. A total of 7 seismic refraction survey lines were conducted at the study area with standard procedures. The refraction data were then analyzed by using the Pickwin and Plotrefa computer software package to obtain the seismic velocity profiles distribution. These results were correlated with the complementary borehole data to interpret the subsurface profile of the study area. It has been identified that layer 1 to 3 is the potential weak zone susceptible to slope failure. Hence, soil nails should be installed to transfer the tensile load from the less stable layer 3 to the more stable layer 4. The soil-nail interaction will provide a reinforcing action to the soil mass thereby increasing the stability of the slope.

  3. Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope

    PubMed Central

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θ s - θ r), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process. PMID:24672332

  4. Analysis of rainfall infiltration law in unsaturated soil slope.

    PubMed

    Zhang, Gui-rong; Qian, Ya-jun; Wang, Zhang-chun; Zhao, Bo

    2014-01-01

    In the study of unsaturated soil slope stability under rainfall infiltration, it is worth continuing to explore how much rainfall infiltrates into the slope in a rain process, and the amount of rainfall infiltrating into slope is the important factor influencing the stability. Therefore, rainfall infiltration capacity is an important issue of unsaturated seepage analysis for slope. On the basis of previous studies, rainfall infiltration law of unsaturated soil slope is analyzed. Considering the characteristics of slope and rainfall, the key factors affecting rainfall infiltration of slope, including hydraulic properties, water storage capacity (θs - θr), soil types, rainfall intensities, and antecedent and subsequent infiltration rates on unsaturated soil slope, are discussed by using theory analysis and numerical simulation technology. Based on critical factors changing, this paper presents three calculation models of rainfall infiltrability for unsaturated slope, including (1) infiltration model considering rainfall intensity; (2) effective rainfall model considering antecedent rainfall; (3) infiltration model considering comprehensive factors. Based on the technology of system response, the relationship of rainfall and infiltration is described, and the prototype of regression model of rainfall infiltration is given, in order to determine the amount of rain penetration during a rain process.

  5. A coupled distributed hydrological-stability analysis on a terraced slope of Valtellina (northern Italy)

    NASA Astrophysics Data System (ADS)

    Camera, C.; Apuani, T.; Masetti, M.

    2013-02-01

    The aim of this work was to understand and reproduce the hydrological dynamics of a slope, which was terraced using dry-stone retaining walls and its response to these processes in terms of stability at the slope scale. The slope studied is located in Valtellina (northern Italy), near the village of Tresenda, and in the last 30 yr has experienced several soil slip/debris flow events. In 1983 alone, such events caused the death of 18 people. Direct observation of the events of 1983 enabled the principal triggering cause of these events to be recognized in the formation of an overpressure at the base of a dry-stone wall, which caused its failure. To perform the analyses it is necessary to include the presence of dry-stone walls, considering the importance they have in influencing hydrological and geotechnical processes at the slope scale. This requires a very high resolution DEM (1 m × 1 m because the walls are from 0.60 m to 1.0 m wide) that has been appositely derived. A hydrogeological raster-based model, which takes into account both the unsaturated and saturated flux components, was applied. This was able to identify preferential infiltration zones and was rather precise in the prediction of maximum groundwater levels, providing valid input for the distributed stability analysis. Results of the hydrogeological model were used for the successive stability analysis. Sections of terrace were identified from the downslope base of a retaining wall to the top of the next downslope retaining wall. Within each section a global method of equilibrium was applied to determine its safety factor. The stability model showed a general tendency to overestimate the amount of unstable areas. An investigation of the causes of this unexpected behavior was, therefore, also performed in order to progressively improve the reliability of the model.

  6. Rock mass characterisation and stability analyses of excavated slopes

    NASA Astrophysics Data System (ADS)

    Zangerl, Christian; Lechner, Heidrun

    2016-04-01

    Excavated slopes in fractured rock masses are frequently designed for open pit mining, quarries, buildings, highways, railway lines, and canals. These slopes can reach heights of several hundreds of metres and in cases concerning open pit mines slopes larger than 1000 m are not uncommon. Given that deep-seated slope failures can cause large damage or even loss of life, the slope design needs to incorporate sufficient stability. Thus, slope design methods based on comprehensive approaches need to be applied. Excavation changes slope angle, groundwater flow, and blasting increases the degree of rock mass fracturing as well as rock mass disturbance. As such, excavation leads to considerable stress changes in the slopes. Generally, slope design rely on the concept of factor of safety (FOS), often a requirement by international or national standards. A limitation of the factor of safety is that time dependent failure processes, stress-strain relationships, and the impact of rock mass strain and displacement are not considered. Usually, there is a difficulty to estimate the strength of the rock mass, which in turn is controlled by an interaction of intact rock and discontinuity strength. In addition, knowledge about in-situ stresses for the failure criterion is essential. Thus, the estimation of the state of stress of the slope and the strength parameters of the rock mass is still challenging. Given that, large-scale in-situ testing is difficult and costly, back-calculations of case studies in similar rock types or rock mass classification systems are usually the methods of choice. Concerning back-calculations, often a detailed and standardised documentation is missing, and a direct applicability to new projects is not always given. Concerning rock mass classification systems, it is difficult to consider rock mass anisotropy and thus the empirical estimation of the strength properties possesses high uncertainty. In the framework of this study an approach based on

  7. Three-Dimensional Stability of Slopes and Excavations

    DTIC Science & Technology

    2009-12-01

    BIH f3 30° 45° 60° 75° 90° 0·5 - 21·741 16-979 12-428 0·6 - 27·618 18·561 14· 048 10·995 0· 8 52·325 22·362 15·236 11·372 9·349 1·0 39·136 19-672...W911NF-08-1-0376 611102 Form Approved OMB NO. 0704-0188 53315-EV.9 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8 ...To) Standard Form 298 (Rev 8 /98) Prescribed by ANSI Std. Z39.18 - Three-dimensional stability of slopes and excavations Report Title ABSTRACT

  8. Integrating the effects of forest cover on slope stability in a deterministic landslide susceptibility model (TRIGRS 2.0)

    NASA Astrophysics Data System (ADS)

    Zieher, T.; Rutzinger, M.; Bremer, M.; Meissl, G.; Geitner, C.

    2014-12-01

    The potentially stabilizing effects of forest cover in respect of slope stability have been the subject of many studies in the recent past. Hence, the effects of trees are also considered in many deterministic landslide susceptibility models. TRIGRS 2.0 (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability; USGS) is a dynamic, physically-based model designed to estimate shallow landslide susceptibility in space and time. In the original version the effects of forest cover are not considered. As for further studies in Vorarlberg (Austria) TRIGRS 2.0 is intended to be applied in selected catchments that are densely forested, the effects of trees on slope stability were implemented in the model. Besides hydrological impacts such as interception or transpiration by tree canopies and stems, root cohesion directly influences the stability of slopes especially in case of shallow landslides while the additional weight superimposed by trees is of minor relevance. Detailed data on tree positions and further attributes such as tree height and diameter at breast height were derived throughout the study area (52 km²) from high-resolution airborne laser scanning data. Different scenarios were computed for spruce (Picea abies) in the study area. Root cohesion was estimated area-wide based on published correlations between root reinforcement and distance to tree stems depending on the stem diameter at breast height. In order to account for decreasing root cohesion with depth an exponential distribution was assumed and implemented in the model. Preliminary modelling results show that forest cover can have positive effects on slope stability yet strongly depending on tree age and stand structure. This work has been conducted within C3S-ISLS, which is funded by the Austrian Climate and Energy Fund, 5th ACRP Program.

  9. Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling

    NASA Astrophysics Data System (ADS)

    Török, Ákos; Barsi, Árpád; Bögöly, Gyula; Lovas, Tamás; Somogyi, Árpád; Görög, Péter

    2018-02-01

    Steep, hardly accessible cliffs of rhyolite tuff in NE Hungary are prone to rockfalls, endangering visitors of a castle. Remote sensing techniques were employed to obtain data on terrain morphology and to provide slope geometry for assessing the stability of these rock walls. A RPAS (Remotely Piloted Aircraft System) was used to collect images which were processed by Pix4D mapper (structure from motion technology) to generate a point cloud and mesh. The georeferencing was made by Global Navigation Satellite System (GNSS) with the use of seven ground control points. The obtained digital surface model (DSM) was processed (vegetation removal) and the derived digital terrain model (DTM) allowed cross sections to be drawn and a joint system to be detected. Joint and discontinuity system was also verified by field measurements. On-site tests as well as laboratory tests provided additional engineering geological data for slope modelling. Stability of cliffs was assessed by 2-D FEM (finite element method). Global analyses of cross sections show that weak intercalating tuff layers may serve as potential slip surfaces. However, at present the greatest hazard is related to planar failure along ENE-WSW joints and to wedge failure. The paper demonstrates that RPAS is a rapid and useful tool for generating a reliable terrain model of hardly accessible cliff faces. It also emphasizes the efficiency of RPAS in rockfall hazard assessment in comparison with other remote sensing techniques such as terrestrial laser scanning (TLS).

  10. Effect of Tibial Posterior Slope on Knee Kinematics, Quadriceps Force, and Patellofemoral Contact Force After Posterior-Stabilized Total Knee Arthroplasty.

    PubMed

    Okamoto, Shigetoshi; Mizu-uchi, Hideki; Okazaki, Ken; Hamai, Satoshi; Nakahara, Hiroyuki; Iwamoto, Yukihide

    2015-08-01

    We used a musculoskeletal model validated with in vivo data to evaluate the effect of tibial posterior slope on knee kinematics, quadriceps force, and patellofemoral contact force after posterior-stabilized total knee arthroplasty. The maximum quadriceps force and patellofemoral contact force decreased with increasing posterior slope. Anterior sliding of the tibial component and anterior impingement of the anterior aspect of the tibial post were observed with tibial posterior slopes of at least 5° and 10°, respectively. Increased tibial posterior slope contributes to improved exercise efficiency during knee extension, however excessive tibial posterior slope should be avoided to prevent knee instability. Based on our computer simulation we recommend tibial posterior slopes of less than 5° in posterior-stabilized total knee arthroplasty. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Overpressure, Flow Focusing, Compaction and Slope Stability on the continental slope: Insights from IODP Expedition 308

    NASA Astrophysics Data System (ADS)

    Flemings, P. B.

    2010-12-01

    Integrated Ocean Drilling Program Expepedition 308 used direct measurements of pore pressure, analysis of hydromechanical properties, and geological analysis to illuminate how sedimentation, flow focusing, overpressure, and slope stability couple beneath the seafloor on the deepwater continental slope in the Gulf of Mexico. We used pore pressure penetrometers to measure severe overpressures (60% of the difference between lithostatic stress and hydrostatic pressure) that extend from the seafloor for 100’s of meters. We ran uniaxial consolidation experiments on whole core and found that although permeability is relatively high near the seafloor, the sediments are highly compressible. As a result, the coefficient of consolidation (the hydraulic diffusivity) is remarkably constant over a large range of effective stresses. This behavior accounts for the high overpressure that begins near the seafloor and extends to depth. Forward modeling suggests that flow is driven laterally along a permeable unit called the Blue Unit. Calculations suggest that soon after deposition, lateral flow lowered the effective stress and triggered the submarine landslides that we observe. Later in the evolution of this system, overpressure may have pre-conditioned the slope to failure by earthquakes. Results from IODP Expedition 308 illustrate how pore pressure and sedimentation control the large-scale form of continental margins, how submarine landslides form, and provide strategies for designing stable drilling programs.

  12. Methods for assessing the stability of slopes during earthquakes-A retrospective

    USGS Publications Warehouse

    Jibson, R.W.

    2011-01-01

    During the twentieth century, several methods to assess the stability of slopes during earthquakes were developed. Pseudostatic analysis was the earliest method; it involved simply adding a permanent body force representing the earthquake shaking to a static limit-equilibrium analysis. Stress-deformation analysis, a later development, involved much more complex modeling of slopes using a mesh in which the internal stresses and strains within elements are computed based on the applied external loads, including gravity and seismic loads. Stress-deformation analysis provided the most realistic model of slope behavior, but it is very complex and requires a high density of high-quality soil-property data as well as an accurate model of soil behavior. In 1965, Newmark developed a method that effectively bridges the gap between these two types of analysis. His sliding-block model is easy to apply and provides a useful index of co-seismic slope performance. Subsequent modifications to sliding-block analysis have made it applicable to a wider range of landslide types. Sliding-block analysis provides perhaps the greatest utility of all the types of analysis. It is far easier to apply than stress-deformation analysis, and it yields much more useful information than does pseudostatic analysis. ?? 2010.

  13. Recent and future warm extreme events and high-mountain slope stability.

    PubMed

    Huggel, C; Salzmann, N; Allen, S; Caplan-Auerbach, J; Fischer, L; Haeberli, W; Larsen, C; Schneider, D; Wessels, R

    2010-05-28

    The number of large slope failures in some high-mountain regions such as the European Alps has increased during the past two to three decades. There is concern that recent climate change is driving this increase in slope failures, thus possibly further exacerbating the hazard in the future. Although the effects of a gradual temperature rise on glaciers and permafrost have been extensively studied, the impacts of short-term, unusually warm temperature increases on slope stability in high mountains remain largely unexplored. We describe several large slope failures in rock and ice in recent years in Alaska, New Zealand and the European Alps, and analyse weather patterns in the days and weeks before the failures. Although we did not find one general temperature pattern, all the failures were preceded by unusually warm periods; some happened immediately after temperatures suddenly dropped to freezing. We assessed the frequency of warm extremes in the future by analysing eight regional climate models from the recently completed European Union programme ENSEMBLES for the central Swiss Alps. The models show an increase in the higher frequency of high-temperature events for the period 2001-2050 compared with a 1951-2000 reference period. Warm events lasting 5, 10 and 30 days are projected to increase by about 1.5-4 times by 2050 and in some models by up to 10 times. Warm extremes can trigger large landslides in temperature-sensitive high mountains by enhancing the production of water by melt of snow and ice, and by rapid thaw. Although these processes reduce slope strength, they must be considered within the local geological, glaciological and topographic context of a slope.

  14. Radar Detected Rainfall Intensity As An Input For Shallow Landslides Slope Stability Model

    NASA Astrophysics Data System (ADS)

    Leoni, L.; Rossi, G.; Catani, F.; Righini, G.; Rudari, R.

    2008-12-01

    The term "shallow landslides" is widely used in literature to describe a slope movement of limited size that mainly develops in soils up to a maximum of a few meters. Shallow landslides are usually triggered by heavy rainfall because, as the water starts to infiltrate in the soil, the pore-water pressure increases so that the shear strength of the soil is reduced leading to slope failure. For this work we have developed a distributed hydrological-geotechnical model for the forecasting of the temporal and spatial distribution of shallow landslide to be used as a warning system for civil protection purpose. The main goal of this work is the use of radar detected rainfall intensity as the input for the hydrological simulation of the infiltration. Using the rainfall pattern detected by the radar is in fact possible to dynamically control the redistribution of groundwater pressure associated with transient infiltration of rain so as to infer the slope stability of the studied area. The model deals with both saturated and unsaturated conditions. Two pilot sites have been chosen to develop and test this model: the Armea basin (Liguria, Italy) and the Ischia Island (Campania, Italy). In recent years several severe rainstorms have occurred in both these areas. In at least two cases these have triggered numerous shallow landslides that have caused victims and damaged roads, buildings and agricultural activities. In its current stage the basic basin-scale model applied for predicting the probable location of shallow landslides involves several stand-alone components. A module for estimating the groundwater pressure head distribution according to radar detected rainfall intensity, a soil depth prediction scheme and a limit-equilibrium infinite slope stability algorithm which produces a factor of safety (FS). The additional ancillary data required have been collected during the field work. The single components are seamlessly integrated into a system that automatically

  15. Development of kenaf mat for slope stabilization

    NASA Astrophysics Data System (ADS)

    Ahmad, M. M.; Manaf, M. B. H. Ab; Zainol, N. Z.

    2017-09-01

    This study focusing on the ability of kenaf mat to act as reinforcement to laterite compared to the conventional geosynthetic in term of stabilizing the slope. Kenaf mat specimens studied in this paper are made up from natural kenaf fiber with 3mm thickness, 150mm length and 20mm width. With the same size of specimens, geosynthetic that obtain from the industry are being tested for both direct shear and tensile tests. Plasticity index of the soil sample used is equal to 13 which indicate that the soil is slightly plastic. Result shows that the friction angle of kenaf mat is higher compared to friction between soil particles itself. In term of resistance to tensile load, the tensile strength of kenaf mat is 0.033N/mm2 which is lower than the tensile strength of geosynthetic.

  16. A hybrid method for quasi-three-dimensional slope stability analysis in a municipal solid waste landfill.

    PubMed

    Yu, L; Batlle, F

    2011-12-01

    Limited space for accommodating the ever increasing mounds of municipal solid waste (MSW) demands the capacity of MSW landfill be maximized by building landfills to greater heights with steeper slopes. This situation has raised concerns regarding the stability of high MSW landfills. A hybrid method for quasi-three-dimensional slope stability analysis based on the finite element stress analysis was applied in a case study at a MSW landfill in north-east Spain. Potential slides can be assumed to be located within the waste mass due to the lack of weak foundation soils and geosynthetic membranes at the landfill base. The only triggering factor of deep-seated slope failure is the higher leachate level and the relatively high and steep slope in the front. The valley-shaped geometry and layered construction procedure at the site make three-dimensional slope stability analyses necessary for this landfill. In the finite element stress analysis, variations of leachate level during construction and continuous settlement of the landfill were taken into account. The "equivalent" three-dimensional factor of safety (FoS) was computed from the individual result of the two-dimensional analysis for a series of evenly spaced cross sections within the potential sliding body. Results indicate that the hybrid method for quasi-three-dimensional slope stability analysis adopted in this paper is capable of locating roughly the spatial position of the potential sliding mass. This easy to manipulate method can serve as an engineering tool in the preliminary estimate of the FoS as well as the approximate position and extent of the potential sliding mass. The result that FoS obtained from three-dimensional analysis increases as much as 50% compared to that from two-dimensional analysis implies the significance of the three-dimensional effect for this study-case. Influences of shear parameters, time elapse after landfill closure, leachate level as well as unit weight of waste on FoS were also

  17. Using Controlled Landslide Initiation Experiments to Test Limit-Equilibrium Analyses of Slope Stability

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Iverson, R. M.; Brien, D. L.; Iverson, N. R.; Lahusen, R. G.; Logan, M.

    2004-12-01

    Most studies of landslide initiation employ limit equilibrium analyses of slope stability. Owing to a lack of detailed data, however, few studies have tested limit-equilibrium predictions against physical measurements of slope failure. We have conducted a series of field-scale, highly controlled landslide initiation experiments at the USGS debris-flow flume in Oregon; these experiments provide exceptional data to test limit equilibrium methods. In each of seven experiments, we attempted to induce failure in a 0.65m thick, 2m wide, 6m3 prism of loamy sand placed behind a retaining wall in the 31° sloping flume. We systematically investigated triggering of sliding by groundwater injection, by prolonged moderate-intensity sprinkling, and by bursts of high intensity sprinkling. We also used vibratory compaction to control soil porosity and thereby investigate differences in failure behavior of dense and loose soils. About 50 sensors were monitored at 20 Hz during the experiments, including nests of tiltmeters buried at 7 cm spacing to define subsurface failure geometry, and nests of tensiometers and pore-pressure sensors to define evolving pore-pressure fields. In addition, we performed ancillary laboratory tests to measure soil porosity, shear strength, hydraulic conductivity, and compressibility. In loose soils (porosity of 0.52 to 0.55), abrupt failure typically occurred along the flume bed after substantial soil deformation. In denser soils (porosity of 0.41 to 0.44), gradual failure occurred within the soil prism. All failure surfaces had a maximum length to depth ratio of about 7. In even denser soil (porosity of 0.39), we could not induce failure by sprinkling. The internal friction angle of the soils varied from 28° to 40° with decreasing porosity. We analyzed stability at failure, given the observed pore-pressure conditions just prior to large movement, using a 1-D infinite-slope method and a more complete 2-D Janbu method. Each method provides a static

  18. Permeability test and slope stability analysis of municipal solid waste in Jiangcungou Landfill, Shaanxi, China.

    PubMed

    Yang, Rong; Xu, Zengguang; Chai, Junrui; Qin, Yuan; Li, Yanlong

    2016-07-01

    With the rapid increase of city waste, landfills have become a major method to deals with municipal solid waste. Thus, the safety of landfills has become a valuable research topic. In this paper, Jiangcungou Landfill, located in Shaanxi, China, was investigated and its slope stability was analyzed. Laboratory tests were used to obtain permeability coefficients of municipal solid waste. Based on the results, the distribution of leachate and stability in the landfill was computed and analyzed. These results showed: the range of permeability coefficient was from 1.0 × 10(-7) cm sec(-1) to 6.0 × 10(-3) cm sec(-1) on basis of laboratory test and some parameters of similar landfills. Owing to the existence of intermediate cover layers in the landfill, the perched water level appeared in the landfill with heavy rain. Moreover, the waste was filled with leachate in the top layer, and the range of leachate level was from 2 m to 5 m in depth under the waste surface in other layers. The closer it gets to the surface of landfill, the higher the perched water level of leachate. It is indicated that the minimum safety factors were 1.516 and 0.958 for winter and summer, respectively. Additionally, the slope failure may occur in summer. The research of seepage and stability in landfills may provide a less costly way to reduce accidents. Landslides often occur in the Jiangcungou Landfill because of the high leachate level. Some measures should be implemented to reduce the leachate level. This paper investigated seepage and slope stability of landfills by numerical methods. These results may provide the basis for increasing stability of landfills.

  19. Best practices of using shotcrete for wall fascia and slope stabilization (phase 1 study)

    DOT National Transportation Integrated Search

    2017-06-01

    Shotcrete has become attractive and holds potential to replace cast-in-place (CIP) concrete for elements like retaining walls and slope stabilization. However, this practice is still limited due to concerns of drying shrinkage cracking, long-term dur...

  20. Evaluating a slope-stability model for shallow rain-induced landslides using gage and satellite data

    USGS Publications Warehouse

    Yatheendradas, S.; Kirschbaum, D.; Baum, Rex L.; Godt, Jonathan W.

    2014-01-01

    Improving prediction of landslide early warning systems requires accurate estimation of the conditions that trigger slope failures. This study tested a slope-stability model for shallow rainfall-induced landslides by utilizing rainfall information from gauge and satellite records. We used the TRIGRS model (Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis) for simulating the evolution of the factor of safety due to rainfall infiltration. Using a spatial subset of a well-characterized digital landscape from an earlier study, we considered shallow failure on a slope adjoining an urban transportation roadway near the Seattle area in Washington, USA.We ran the TRIGRS model using high-quality rain gage and satellite-based rainfall data from the Tropical Rainfall Measuring Mission (TRMM). Preliminary results with parameterized soil depth values suggest that the steeper slope values in this spatial domain have factor of safety values that are extremely close to the failure limit within an extremely narrow range of values, providing multiple false alarms. When the soil depths were constrained using a back analysis procedure to ensure that slopes were stable under initial condtions, the model accurately predicted the timing and location of the landslide observation without false alarms over time for gage rain data. The TRMM satellite rainfall data did not show adequately retreived rainfall peak magnitudes and accumulation over the study period, and as a result failed to predict the landslide event. These preliminary results indicate that more accurate and higher-resolution rain data (e.g., the upcoming Global Precipitation Measurement (GPM) mission) are required to provide accurate and reliable landslide predictions in ungaged basins.

  1. Assessing deep-seated landslide susceptibility using 3-D groundwater and slope-stability analyses, southwestern Seattle, Washington

    USGS Publications Warehouse

    Brien, Dianne L.; Reid, Mark E.

    2008-01-01

    In Seattle, Washington, deep-seated landslides on bluffs along Puget Sound have historically caused extensive damage to land and structures. These large failures are controlled by three-dimensional (3-D) variations in strength and pore-water pressures. We assess the slope stability of part of southwestern Seattle using a 3-D limit-equilibrium analysis coupled with a 3-D groundwater flow model. Our analyses use a high-resolution digital elevation model (DEM) combined with assignment of strength and hydraulic properties based on geologic units. The hydrogeology of the Seattle area consists of a layer of permeable glacial outwash sand that overlies less permeable glacial lacustrine silty clay. Using a 3-D groundwater model, MODFLOW-2000, we simulate a water table above the less permeable units and calibrate the model to observed conditions. The simulated pore-pressure distribution is then used in a 3-D slope-stability analysis, SCOOPS, to quantify the stability of the coastal bluffs. For wet winter conditions, our analyses predict that the least stable areas are steep hillslopes above Puget Sound, where pore pressures are elevated in the outwash sand. Groundwater flow converges in coastal reentrants, resulting in elevated pore pressures and destabilization of slopes. Regions predicted to be least stable include the areas in or adjacent to three mapped historically active deep-seated landslides. The results of our 3-D analyses differ significantly from a slope map or results from one-dimensional (1-D) analyses.

  2. The horizontal transport of pollutants from a slope wind layer into the valley core as a function of atmospheric stability

    NASA Astrophysics Data System (ADS)

    Leukauf, Daniel; Gohm, Alexander; Rotach, Mathias W.; Posch, Christian

    2016-04-01

    Slope winds provide a mechanism for the vertical exchange of air between the valley and the free atmosphere aloft. By this means, heat, moisture and pollutants are exported or imported. However, it the static stability of the valley atmosphere is strong, one part of the up-slope flow is redirected towards the valley center and pollutants are recirculated within the valley. This may limit the venting potential of slope winds severely. The main objective of this study is to quantify the horizontal transport of pollutants from the slope wind layer into the stable valley core and to determine the dependency of this flux as a function of the initial stability of the atmosphere. For this purpose, we conducted large eddy simulations with the Weather Research and Forecasting (WRF) model for a quasi-two-dimensional valley. The valley geometry consists of two slopes with constant slope angle rising to a crest height of 1500 m and a 4 km wide flat valley floor in between. The valley is 20 km long and homogeneous in along-valley direction. Hence, only slope winds but no valley winds can evolve. The surface sensible heat flux is prescribed by a sine function with an amplitude of 125 W m-2. The initial sounding characterized by an atmosphere at rest and by a constant Brunt-Väisälä frequency which is varied between 0.006 s-1 and 0.02 s-1. A passive tracer is released with an arbitrary but constant rate at the valley floor. As expected, the atmospheric stability has a strong impact on the vertical and horizontal transport of tracer mass. A horizontal intrusion forms at the top of the mixed layer due to outflow from the slope wind layer. Tracer mass is transported from the slope towards the center of the valley. The efficiency of this mechanism increases with increasing stability N. For the lowest value of N, about 70% of the tracer mass released at the valley bottom is exported out of the valley. This value drops to about 12% in the case of the strongest stability. Hence, most

  3. The effect of proximal tibial slope on dynamic stability testing of the posterior cruciate ligament- and posterolateral corner-deficient knee.

    PubMed

    Petrigliano, Frank A; Suero, Eduardo M; Voos, James E; Pearle, Andrew D; Allen, Answorth A

    2012-06-01

    Proximal tibial slope has been shown to influence anteroposterior translation and tibial resting point in the posterior cruciate ligament (PCL)-deficient knee. The effect of proximal tibial slope on rotational stability of the knee is unknown. Change in proximal tibial slope produced via osteotomy can influence both static translation and dynamic rotational kinematics in the PCL/posterolateral corner (PLC)-deficient knee. Controlled laboratory study. Posterior drawer, dial, and mechanized reverse pivot-shift (RPS) tests were performed on hip-to-toe specimens and translation of the lateral and medial compartments measured utilizing navigation (n = 10). The PCL and structures of the PLC were then sectioned. Stability testing was repeated, and compartmental translation was recorded. A proximal tibial osteotomy in the sagittal plane was then performed achieving either +5° or -5° of tibial slope variation, after which stability testing was repeated (n = 10). Analysis was performed using 1-way analysis of variance (ANOVA; α = .05). Combined sectioning of the PCL and PLC structures resulted in a 10.5-mm increase in the posterior drawer, 15.5-mm increase in the dial test at 30°, 14.5-mm increase in the dial test at 90°, and 17.9-mm increase in the RPS (vs intact; P < .05). Increasing the posterior slope (high tibial osteotomy [HTO] +5°) in the PCL/PLC-deficient knee reduced medial compartment translation by 3.3 mm during posterior drawer (vs deficient; P < .05) but had no significant effect on the dial test at 30°, dial test at 90°, or RPS. Conversely, reversing the slope (HTO -5°) caused a 4.8-mm increase in medial compartment translation (vs deficient state; P < .05) during posterior drawer and an 8.6-mm increase in lateral compartment translation and 9.0-mm increase in medial compartment translation during RPS (vs deficient state; P < .05). Increasing posterior tibial slope diminished static posterior instability of the PCL/PLC-deficient knee as measured by the

  4. Hydro-mechanically coupled finite-element analysis of the stability of a fractured-rock slope using the equivalent continuum approach: a case study of planned reservoir banks in Blaubeuren, Germany

    NASA Astrophysics Data System (ADS)

    Song, Jie; Dong, Mei; Koltuk, Serdar; Hu, Hui; Zhang, Luqing; Azzam, Rafig

    2018-05-01

    Construction works associated with the building of reservoirs in mountain areas can damage the stability of adjacent valley slopes. Seepage processes caused by the filling and drawdown operations of reservoirs also affect the stability of the reservoir banks over time. The presented study investigates the stability of a fractured-rock slope subjected to seepage forces in the lower basin of a planned pumped-storage hydropower (PSH) plant in Blaubeuren, Germany. The investigation uses a hydro-mechanically coupled finite-element analyses. For this purpose, an equivalent continuum model is developed by using a representative elementary volume (REV) approach. To determine the minimum required REV size, a large number of discrete fracture networks are generated using Monte Carlo simulations. These analyses give a REV size of 28 × 28 m, which is sufficient to represent the equivalent hydraulic and mechanical properties of the investigated fractured-rock mass. The hydro-mechanically coupled analyses performed using this REV size show that the reservoir operations in the examined PSH plant have negligible effect on the adjacent valley slope.

  5. Feasibility of biochar application on a landfill final cover-a review on balancing ecology and shallow slope stability.

    PubMed

    Chen, Xun-Wen; Wong, James Tsz-Fung; Ng, Charles Wang-Wai; Wong, Ming-Hung

    2016-04-01

    Due to the increasing concerns on global warming, scarce land for agriculture, and contamination impacts on human health, biochar application is being considered as one of the possible measures for carbon sequestration, promoting higher crop yield and contamination remediation. Significant amount of researches focusing on these three aspects have been conducted during recent years. Biochar as a soil amendment is effective in promoting plant performance and sustainability, by enhancing nutrient bioavailability, contaminants immobilization, and microbial activities. The features of biochar in changing soil physical and biochemical properties are essential in affecting the sustainability of an ecosystem. Most studies showed positive results and considered biochar application as an effective and promising measure for above-mentioned interests. Bio-engineered man-made filled slope and landfill slope increasingly draw the attention of geologists and geotechnical engineers. With increasing number of filled slopes, sustainability, low maintenance, and stability are the major concerns. Biochar as a soil amendment changes the key factors and parameters in ecology (plant development, soil microbial community, nutrient/contaminant cycling, etc.) and slope engineering (soil weight, internal friction angle and cohesion, etc.). This paper reviews the studies on the production, physical and biochemical properties of biochar and suggests the potential areas requiring study in balancing ecology and man-made filled slope and landfill cover engineering. Biochar-amended soil should be considered as a new type of soil in terms of soil mechanics. Biochar performance depends on soil and biochar type which imposes challenges to generalize the research outcomes. Aging process and ecotoxicity studies of biochar are strongly required.

  6. Using a Remotely Piloted Aircraft System (RPAS) to analyze the stability of a natural rock slope

    NASA Astrophysics Data System (ADS)

    Salvini, Riccardo; Esposito, Giuseppe; Mastrorocco, Giovanni; Seddaiu, Marcello

    2016-04-01

    This paper describes the application of a rotary wing RPAS for monitoring the stability of a natural rock slope in the municipality of Vecchiano (Pisa, Italy). The slope under investigation is approximately oriented NNW-SSE and has a length of about 320 m; elevation ranges from about 7 to 80 m a.s.l.. The hill consists of stratified limestone, somewhere densely fractured, with dip direction predominantly oriented in a normal way respect to the slope. Fracture traces are present in variable lengths, from decimetre to metre, and penetrate inward the rock versant with thickness difficult to estimate, often exceeding one meter in depth. The intersection between different fracture systems and the slope surface generates rocky blocks and wedges of variable size that may be subject to phenomena of gravitational instability (with reference to the variation of hydraulic and dynamic conditions). Geometrical and structural info about the rock mass, necessary to perform the analysis of the slope stability, were obtained in this work from geo-referenced 3D point clouds acquired using photogrammetric and laser scanning techniques. In particular, a terrestrial laser scanning was carried out from two different point of view using a Leica Scanstation2. The laser survey created many shadows in the data due to the presence of vegetation in the lower parts of the slope and limiting the feasibility of geo-structural survey. To overcome such a limitation, we utilized a rotary wing Aibotix Aibot X6 RPAS geared with a Nikon D3200 camera. The drone flights were executed in manual modality and the images were acquired, according to the characteristics of the outcrops, under different acquisition angles. Furthermore, photos were captured very close to the versant (a few meters), allowing to produce a dense 3D point cloud (about 80 Ma points) by the image processing. A topographic survey was carried out in order to guarantee the necessary spatial accuracy to the process of images exterior

  7. Prediction of slope stability based on numerical modeling of stress–strain state of rocks

    NASA Astrophysics Data System (ADS)

    Kozhogulov Nifadyev, KCh, VI; Usmanov, SF

    2018-03-01

    The paper presents the developed technique for the estimation of rock mass stability based on the finite element modeling of stress–strain state of rocks. The modeling results on the pit wall landslide as a flow of particles along a sloped surface are described.

  8. Experimental test of theory for the stability of partially saturated vertical cut slopes

    USGS Publications Warehouse

    Morse, Michael M.; Lu, N.; Wayllace, Alexandra; Godt, Jonathan W.; Take, W.A.

    2014-01-01

    This paper extends Culmann's vertical-cut analysis to unsaturated soils. To test the extended theory, unsaturated sand was compacted to a uniform porosity and moisture content in a laboratory apparatus. A sliding door that extended the height of the free face of the slope was lowered until the vertical cut failed. Digital images of the slope cross section and upper surface were acquired concurrently. A recently developed particle image velocimetry (PIV) tool was used to quantify soil displacement. The PIV analysis showed strain localization at varying distances from the sliding door prior to failure. The areas of localized strain were coincident with the location of the slope crest after failure. Shear-strength and soil-water-characteristic parameters of the sand were independently tested for use in extended analyses of the vertical-cut stability and of the failure plane angle. Experimental failure heights were within 22.3% of the heights predicted using the extended theory.

  9. The numerical simulation on the stability of steep rock slope by DDA

    NASA Astrophysics Data System (ADS)

    Zhu, Jianye; Xue, Yiguo; Tao, Yufan; Zhang, Kai; Li, Zhiqiang; Zhang, Xuedong; Yang, Ying

    2017-05-01

    China is a mountainous country, especially in the southwest area. Recently, the variety of geological disasters such as landslides caused by roadway excavation has become a growing concern for our society. Blindly pursuing mining interests without regard for either the environment or residents in the surrounding areas has created a dangerous situation. In recent years, frequent collapses have occurred at Zengzi Rock in Chongqing, especially after torrential rains [1]. This landslide site is a typical example of collapse caused by mine roadway excavations. To study the mechanism of mining slope stability, we conducted a numerical simulation by DDA based on Zengzi Rock in Chongqing, China. The numerical simulation analyzes the slopes under different engineering conditions and rainfall conditions. The results show that the slope has already been changed under the action of its own joints and fissures. After the excavation of the roadway and the rainfall action, this change is drastically increased and the effect is obvious. Through the result graph, we can find that the change of the displacement and stress distribution is obvious, and the simulation results can be great significance to the mining and support of similar mountain conditions.

  10. Laboratory and 3-D-distinct element analysis of failure mechanism of slope under external surcharge

    NASA Astrophysics Data System (ADS)

    Li, N.; Cheng, Y. M.

    2014-09-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient details. There are however increasing interest on the consequences after the initiation of failure which includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more details and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanism and the post-failure mechanism of slope will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure which can give additional information not available from the classical methods of analysis.

  11. Stability of sulfur slopes on Io

    NASA Technical Reports Server (NTRS)

    Clow, G. D.; Carr, M. H.

    1980-01-01

    The mechanical properties of elemental sulfur are such that the upper crust of Io cannot be primarily sulfur. For heat flows in the range 100-1000 ergs/sq cm sec sulfur becomes ductile within several hundred meters of the surface and would prevent the formation of calderas with depths greater than this. However, the one caldera for which precise depth data are available is 2 km deep, and this value may be typical. A study of the mechanical equilibrium of simple slopes shows that the depth to the zone of rapid ductile flow strongly controls the maximum heights for sulfur slopes. Sulfur scarps with heights greater than 1 km will fail for all heat flows greater than 180 ergs/sq cm sec and slope angles greater than 22.5 deg. The observed relief on Io is inconsistent with that anticipated for a predominantly sulfur crust. However, a silicate crust with several percent sulfur included satisfies both the mechanical constraints and the observed presence of sulfur on Io.

  12. The Influence of Upward Groundwater between Joints on the Stability and the Behavior of Dip Slope Failures

    NASA Astrophysics Data System (ADS)

    Weng, C. H.; Lin, M. L.; Hsieh, P. C.

    2016-12-01

    In recent years, landslides have attracted much attention in the engineering field in Taiwan. As previous studies, landslides are induced by earthquakes, rainfall, and groundwater. That groundwater flows into upper layer through vertical joints, upward groundwater, erodes the slope and reduces its stability. Nevertheless, in the literature, the impact of upward groundwater to the location of sliding surface and the behaviors of dip slope failure has not be investigated. In this study, physical model tests with water flow inclinometers are used to investigate the kinematics of dip slope failures under various conditions and to identify the failure modes of specimens (Fig. 1). Besides, the mechanics of one landslide case owing to upward groundwater is studied by numerical simulation. In the physical tests, the effects of upward groundwater on slope stability are investigated with different angles of inclinometers, different position of joints on specimens and different locations of upward seepage. The test results suggest that the upward water pressure becomes lower when the number of joints increases. As the water pressure increases to 3.8 times the weight of one block of the specimen, the block will slide. Another, when the specimen is covered by one granular content layer (see Fig. 2), the failure surface tends to develop at the granular content layer, and its kinematics is similar to debris slide; when the clay seam is below of the specimen, the translational slide occurs along the bottom of the blocks. Moreover, one dip slope case, Taiwan's National Highway No. 3 landslide event, are studied by numerical simulation. According to the results, some points are concluded: water pressure makes tension cracks on the top of the vertical joints on weathered sandstones; with anchor attenuation, the sandstone moves downslope, which makes the shear strain of the slope toe region increases (see Fig. 3). If friction angle of the slope decreases, the slide surface occurs

  13. Side-sloped surfaces substantially affect lower limb running kinematics.

    PubMed

    Damavandi, Mohsen; Eslami, Mansour; Pearsall, David J

    2017-03-01

    Running on side-sloped surfaces is a common obstacle in the environment; however, how and to what extent the lower extremity kinematics adapt is not well known. The purpose of this study was to determine the effects of side-sloped surfaces on three-dimensional kinematics of hip, knee, and ankle during stance phase of running. Ten healthy adult males ran barefoot along an inclinable runway in level (0°) and side-sloped (10° up-slope and down-slope inclinations, respectively) configurations. Right hip, knee, and ankle angles along with their time of occurrence were analysed using repeated measures MANOVA. Up-slope hip was more adducted (p = 0.015) and internally rotated (p = 0.030). Knee had greater external rotations during side-sloped running at heel-strike (p = 0.005), while at toe-off, it rotated externally and internally during up-slope and down-slope running, respectively (p = 0.001). Down-slope ankle had greatest plantar flexion (p = 0.001). Up-slope ankle had greatest eversion compared with down-slope (p = 0.043), while it was more externally rotated (p = 0.030). These motion patterns are necessary to adjust the lower extremity length during side-sloped running. Timing differences in the kinematic events of hip adduction and external rotation, and ankle eversion were observed (p = 0.006). Knowledge on these alterations is a valuable tool in adopting strategies to enhance performance while preventing injury.

  14. Optimization of Stabilization of Highway Embankment Slopes Using Driven Piles (Phase II – Development and Verification)

    DOT National Transportation Integrated Search

    2015-01-01

    This study examines the feasibility of using driven piles to stabilize highway embankment slopes. The literature review showed that there has been significant research done concerning the lateral capacity of piles. This research tends to be focused o...

  15. Road embankment and slope stabilization.

    DOT National Transportation Integrated Search

    2010-07-31

    This report and the accompanying software are part of efforts to improve the characterization and analysis of pilestabilized : slopes using one or two rows of driven piles. A combination of the limit equilibrium analysis and strain : wedge (SW) model...

  16. Soil aggregation and slope stability related to soil density, root length, and mycorrhiza

    NASA Astrophysics Data System (ADS)

    Graf, Frank; Frei, Martin

    2013-04-01

    Eco-engineering measures combine the use of living plants and inert mechanical constructions to protect slopes against erosion and shallow mass movement. Whereas in geotechnical engineering several performance standards and guidelines for structural safety and serviceability of construction exist, there is a lack of comparable tools in the field of ecological restoration. Various indicators have been proposed, including the fractal dimension of soil particle size distribution, microbiological parameters, and soil aggregate stability. We present results of an soil aggregate stability investigation and compare them with literature data of the angle of internal friction ?' which is conventionally used in slope stability analysis and soil failure calculation. Aggregate stability tests were performed with samples of differently treated moraine, including soil at low (~15.5 kN/m³) and high (~19.0 kN/m³) dry unit weight, soil planted with Alnus incana (White Alder) as well as the combination of soil planted with alder and inoculated with the mycorrhizal fungus Melanogaster variegatus s.l. After a 20 weeks growth period in a greenhouse, a total of 100 samples was tested and evaluated. Positive correlations were found between the soil aggregate stability and the three variables dry unit weight, root length per soil volume, and degree of mycorrhization. Based on robust statistics it turned out that dry unit weight and mycorrhization degree were strongest correlated with soil aggregate stability. Compared to the non-inoculated control plants, mycorrhized White Alder produced significantly more roots and higher soil aggregate stability. Furthermore, the combined biological effect of plant roots and mycorrhizal mycelia on aggregate stability on soil with low density (~15.5 kN/m³) was comparable to the compaction effect of the pure soil from 15.5 to ~19.0 kN/m³. Literature data on the effect of vegetation on the angle of internal friction ?' of the same moraine showed

  17. Coir geotextile for slope stabilization and cultivation - A case study in a highland region of Kerala, South India

    NASA Astrophysics Data System (ADS)

    Vishnudas, Subha; Savenije, Hubert H. G.; Van der Zaag, Pieter; Anil, K. R.

    A sloping field is not only vulnerable to soil erosion it may also suffer from soil moisture deficiency. Farmers that cultivate on slopes everywhere face similar problems. Conservation technologies may reduce soil and nutrient losses, and thus enhance water holding capacity and soil fertility. But although these technologies promote sustainable crop production on steep slopes, the construction of physical structure such as bench terraces are often labour intensive and expensive to the farmers, since construction and maintenance require high investments. Here we studied the efficiency of coir geotextile with and without crop cultivation in reducing soil moisture deficiency on marginal slopes in Kerala, India. From the results it is evident that the slopes treated with geotextile and crops have the highest moisture retention capacity followed by geotextiles alone, and that the control plot has the lowest moisture retention capacity. As the poor and marginal farmers occupy the highland region, this method provides an economically viable option for income generation and food security along with slope stabilization.

  18. The Q-Slope Method for Rock Slope Engineering

    NASA Astrophysics Data System (ADS)

    Bar, Neil; Barton, Nick

    2017-12-01

    Q-slope is an empirical rock slope engineering method for assessing the stability of excavated rock slopes in the field. Intended for use in reinforcement-free road or railway cuttings or in opencast mines, Q-slope allows geotechnical engineers to make potential adjustments to slope angles as rock mass conditions become apparent during construction. Through case studies across Asia, Australia, Central America, and Europe, a simple correlation between Q-slope and long-term stable slopes was established. Q-slope is designed such that it suggests stable, maintenance-free bench-face slope angles of, for instance, 40°-45°, 60°-65°, and 80°-85° with respective Q-slope values of approximately 0.1, 1.0, and 10. Q-slope was developed by supplementing the Q-system which has been extensively used for characterizing rock exposures, drill-core, and tunnels under construction for the last 40 years. The Q' parameters (RQD, J n, J a, and J r) remain unchanged in Q-slope. However, a new method for applying J r/ J a ratios to both sides of potential wedges is used, with relative orientation weightings for each side. The term J w, which is now termed J wice, takes into account long-term exposure to various climatic and environmental conditions such as intense erosive rainfall and ice-wedging effects. Slope-relevant SRF categories for slope surface conditions, stress-strength ratios, and major discontinuities such as faults, weakness zones, or joint swarms have also been incorporated. This paper discusses the applicability of the Q-slope method to slopes ranging from less than 5 m to more than 250 m in height in both civil and mining engineering projects.

  19. Laboratory and 3-D distinct element analysis of the failure mechanism of a slope under external surcharge

    NASA Astrophysics Data System (ADS)

    Li, N.; Cheng, Y. M.

    2015-01-01

    Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient detail. There is however increasing interest in the consequences after the initiation of failure that includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more detail and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM) and a laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanisms and the post-failure mechanisms of slopes will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure, which can give additional information not available from the classical methods of analysis.

  20. How to model the stability of terraced slopes? The case study of Tresenda (northern Italy)

    NASA Astrophysics Data System (ADS)

    Camera, Corrado; Apuani, Tiziana; Masetti, Marco

    2015-04-01

    Terraces are very common morphological features all around the Mediterranean Basin. They have been built to adapt the natural morphology of the territory to the development of anthropogenic activities, particularly agriculture. However, the increasing land abandonment during the last century is leading to soil degradation and stability issues, mainly due to lack of maintenance of these peculiar environments. The objective of this study was to develop a coupled hydrologic-stability model to identify possible triggering areas of superficial landslides during intense rainfall events. The model was tested on a slope uphill of the village of Tresenda, in Northern Italy, which experienced several superficial landslides in the last 35 years. Distributed stability analyses are usually carried out using an infinite slope approach, but in the case of terraces some basic assumptions of this method fail: the parallelism between topographical surface and potential sliding surface and the high ratio between slope length and failure surface depth are the most important examples. In addition, the interest is more on the stability of the terrace system (dry stone retaining wall and backfill soil) and not on soil alone. For these reasons, a stability analysis based on the global method of equilibrium is applied and soft coupled to a well know hydrological model (STARWARS). Sections of terrace, one cell wide, are recognized from the base of a wall to the top of the closest downstream one, and each cell (1 x 1 m2) is considered as a slice. The method of Sarma for circular and non-circular failure is applied. The very fine horizontal resolution (1 m) is crucial to take into consideration the hydrogeological and mechanical properties of dry stone walls (0.6-1.0 m wide). A sensitivity analysis was conducted for saturated water content, initial volumetric water content, the cohesion and friction angle of soil and walls and soil depth. The results of the sensitivity analysis showed that

  1. Numerical Modelling of Seismic Slope Stability

    NASA Astrophysics Data System (ADS)

    Bourdeau, Céline; Havenith, Hans-Balder; Fleurisson, Jean-Alain; Grandjean, Gilles

    Earthquake ground-motions recorded worldwide have shown that many morphological and geological structures (topography, sedimentary basin) are prone to amplify the seismic shaking (San Fernando, 1971 [Davis and West 1973] Irpinia, 1980 [Del Pezzo et al. 1983]). This phenomenon, called site effects, was again recently observed in El Salvador when, on the 13th of January 2001, the country was struck by a M = 7.6 earthquake. Indeed, while horizontal accelerations on a rock site at Berlin, 80 km from the epicentre, did not exceed 0.23 g, they reached 0.6 g at Armenia, 110 km from the epicentre. Armenia is located on a small hill underlaid by a few meters thick pyroclastic deposits. Both the local topography and the presence of surface layers are likely to have caused the observed amplification effects, which are supposed to have contributed to the triggering of some of the hundreds of landslides related to this seismic event (Murphy et al. 2002). In order to better characterize the way site effects may influence the triggering of landslides along slopes, 2D numerical elastic and elasto-plastic models were developed. Various geometrical, geological and seismic conditions were analysed and the dynamic behaviour of the slope under these con- ditions was studied in terms of creation and location of a sliding surface. Preliminary results suggest that the size of modelled slope failures is dependent on site effects.

  2. Study on the response of unsaturated soil slope based on the effects of rainfall intensity and slope angle

    NASA Astrophysics Data System (ADS)

    Ismail, Mohd Ashraf Mohamad; Hamzah, Nur Hasliza

    2017-07-01

    Rainfall has been considered as the major cause of the slope failure. The mechanism leading to slope failures included the infiltration process, surface runoff, volumetric water content and pore-water pressure of the soil. This paper describes a study in which simulated rainfall events were used with 2-dimensional soil column to study the response of unsaturated soil behavior based on different slope angle. The 2-dimensional soil column is used in order to demonstrate the mechanism of the slope failure. These unsaturated soil were tested with four different slope (15°, 25°, 35° and 45°) and subjected to three different rainfall intensities (maximum, mean and minimum). The following key results were obtained: (1) the stability of unsaturated soil decrease as the rainwater infiltrates into the soil. Soil that initially in unsaturated state will start to reach saturated state when rainwater seeps into the soil. Infiltration of rainwater will reduce the matric suction in the soil. Matric suction acts in controlling soil shear strength. Reduction in matric suction affects the decrease in effective normal stress, which in turn diminishes the available shear strength to a point where equilibrium can no longer be sustained in the slope. (2) The infiltration rate of rainwater decreases while surface runoff increase when the soil nearly achieve saturated state. These situations cause the soil erosion and lead to slope failure. (3) The steepness of the soil is not a major factor but also contribute to slope failures. For steep slopes, rainwater that fall on the soil surface will become surface runoff within a short time compare to the water that infiltrate into the soil. While for gentle slopes, water that becomes surface runoff will move slowly and these increase the water that infiltrate into the soil.

  3. Measurement of Posterior Tibial Slope Using Magnetic Resonance Imaging.

    PubMed

    Karimi, Elham; Norouzian, Mohsen; Birjandinejad, Ali; Zandi, Reza; Makhmalbaf, Hadi

    2017-11-01

    Posterior tibial slope (PTS) is an important factor in the knee joint biomechanics and one of the bone features, which affects knee joint stability. Posterior tibial slope has impact on flexion gap, knee joint stability and posterior femoral rollback that are related to wide range of knee motion. During high tibial osteotomy and total knee arthroplasty (TKA) surgery, proper retaining the mechanical and anatomical axis is important. The aim of this study was to evaluate the value of posterior tibial slope in medial and lateral compartments of tibial plateau and to assess the relationship among the slope with age, gender and other variables of tibial plateau surface. This descriptive study was conducted on 132 healthy knees (80 males and 52 females) with a mean age of 38.26±11.45 (20-60 years) at Imam Reza hospital in Mashhad, Iran. All patients, selected and enrolled for MRI in this study, were admitted for knee pain with uncertain clinical history. According to initial physical knee examinations the study subjects were reported healthy. The mean posterior tibial slope was 7.78± 2.48 degrees in the medial compartment and 6.85± 2.24 degrees in lateral compartment. No significant correlation was found between age and gender with posterior tibial slope ( P ≥0.05), but there was significant relationship among PTS with mediolateral width, plateau area and medial plateau. Comparison of different studies revealed that the PTS value in our study is different from other communities, which can be associated with genetic and racial factors. The results of our study are useful to PTS reconstruction in surgeries.

  4. GIS-based seismic shaking slope vulnerability map of Sicily (Central Mediterranean)

    NASA Astrophysics Data System (ADS)

    Nigro, Fabrizio; Arisco, Giuseppe; Perricone, Marcella; Renda, Pietro; Favara, Rocco

    2010-05-01

    Earthquakes often represent very dangerouses natural events in terms of human life and economic losses and their damage effects are amplified by the synchronous occurrence of seismically-induced ground-shaking failures in wide regions around the seismogenic source. In fact, the shaking associated with big earthquakes triggers extensive landsliding, sometimes at distances of more than 100 km from the epicenter. The active tectonics and the geomorphic/morphodinamic pattern of the regions affected by earthquakes contribute to the slopes instability tendency. In fact, earthquake-induced groun-motion loading determines inertial forces activation within slopes that, combined with the intrinsic pre-existing static forces, reduces the slope stability towards its failure. Basically, under zero-shear stress reversals conditions, a catastrophic failure will take place if the earthquake-induced shear displacement exceeds the critical level of undrained shear strength to a value equal to the gravitational shear stress. However, seismic stability analyses carried out for various infinite slopes by using the existing Newmark-like methods reveal that estimated permanent displacements smaller than the critical value should also be regarded as dangerous for the post-earthquake slope safety, in terms of human activities use. Earthquake-induced (often high-speed) landslides are among the most destructive phenomena related to slopes failure during earthquakes. In fact, damage from earthquake-induced landslides (and other ground-failures), sometimes exceeds the buildings/infrastructures damage directly related to ground-shaking for fault breaking. For this matter, several hearthquakes-related slope failures methods have been developed, for the evaluation of the combined hazard types represented by seismically ground-motion landslides. The methodologies of analysis of the engineering seismic risk related to the slopes instability processes is often achieved through the evaluation of the

  5. Structural Stabilities of β-Ti Alloys Studied Using a New Mo Equivalent Derived from [ β/( α + β)] Phase-Boundary Slopes

    NASA Astrophysics Data System (ADS)

    Wang, Qing; Dong, Chuang; Liaw, Peter K.

    2015-08-01

    Structural stabilities of β-Ti alloys are generally investigated by an empirical Mo equivalent, which quantifies the stability contribution of each alloying element, M, in comparison to that of the major β-Ti stabilizer, Mo. In the present work, a new Mo equivalent (Moeq)Q is proposed, which uses the slopes of the boundary lines between the β and ( α + β) phase zones in binary Ti-M phase diagrams. This (Moeq)Q reflects a simple fact that the β-Ti stability is enhanced, when the β phase zone is enlarged by a β-Ti stabilizer. It is expressed as (Moeq)Q = 1.0 Mo + 0.74 V + 1.01 W + 0.23 Nb + 0.30 Ta + 1.23 Fe + 1.10 Cr + 1.09 Cu + 1.67 Ni + 1.81 Co + 1.42 Mn + 0.38 Sn + 0.34 Zr + 0.99 Si - 0.57 Al (at. pct), where the equivalent coefficient of each element is the slope ratio of the [ β/( α + β)] boundary line of the binary Ti-M phase diagram to that of the Ti-Mo. This (Moeq)Q is shown to reliably characterize the critical stability limit of multi-component β-Ti alloys with low Young's moduli, where the critical lower limit for β stabilization is (Moeq)Q = 6.25 at. pct or 11.8 wt pct Mo.

  6. Importance of tibial slope for stability of the posterior cruciate ligament deficient knee.

    PubMed

    Giffin, J Robert; Stabile, Kathryne J; Zantop, Thore; Vogrin, Tracy M; Woo, Savio L-Y; Harner, Christopher D

    2007-09-01

    observed. Under a 134-N A-P load, the osteotomy did not significantly affect total A-P translation when compared with the PCL-deficient knee. However, because of the anterior shift in resting position, there was a relative decrease in posterior tibial translation and increase in anterior tibial translation. Increasing tibial slope in a PCL-deficient knee reduces tibial sag by shifting the resting position of the tibia anteriorly. This sag is even further reduced when the knee is subjected to axial compressive loads. These data suggest that increasing tibial slope may be beneficial for patients with PCL-deficient knees.

  7. Seasonal Effects on the Relationships Between Soil Water Content, Pore Water Pressure and Shear Strength and Their Implications for Slope Stability

    NASA Astrophysics Data System (ADS)

    Hughes, P. N.

    2015-12-01

    A soil's shear resistance is mainly dependent upon the magnitude of effective stress. For small to medium height slopes (up to 10m) in clay soils the total stress acting along potential failure planes will be low, therefore the magnitude of effective stress (and hence soil shear strength) will be dominated by the pore-water pressure. The stability of slopes on this scale through periods of increased precipitation is improved by the generation of negative pore pressures (soil suctions) during preceding, warmer, drier periods. These negative pore water pressures increase the effective stress within the soil and cause a corresponding increase in shearing resistance. The relationships between soil water content and pore water pressure (soil water retention curves) are known to be hysteretic, but for the purposes of the majority of slope stability assessments in partially saturated clay soils, these are assumed to be consistent with time. Similarly, the relationship between shear strength and water content is assumed to be consistent over time. This research presents a laboratory study in which specimens of compacted Glacial Till (typical of engineered slopes within the UK) were subjected to repeated cycles of wetting and drying to simulate seasonal cycles. At predetermined water contents, measurements of soil suction were made using tensiometer and dewpoint potentiometer methods. The undrained shear strength of the specimens was then measured using triaxial strength testing equipment. Results indicate that repeated wetting and drying cycles caused a change in the soil water retention behaviour. A reduction in undrained shear strength at corresponding water contents along the wetting and drying paths was also observed. The mechanism for the change in the relationship is believed to be a deterioration in the soil physical structure due to shrink/swell induced micro-cracking. The non-stationarity of these relationships has implications for slope stability assessment.

  8. Design of Rock Slope Reinforcement: An Himalayan Case Study

    NASA Astrophysics Data System (ADS)

    Tiwari, Gaurav; Latha, Gali Madhavi

    2016-06-01

    The stability analysis of the two abutment slopes of a railway bridge proposed at about 359 m above the ground level, crossing a river and connecting two hill faces in the Himalayas, India, is presented. The bridge is located in a zone of high seismic activity. The rock slopes are composed of a heavily jointed rock mass and the spacing, dip and dip direction of joint sets are varying at different locations. Geological mapping was carried out to characterize all discontinuities present along the slopes. Laboratory and field investigations were conducted to assess the geotechnical properties of the intact rock, rock mass and joint infill. Stability analyses of these rock slopes were carried out using numerical programmes. Loads from the foundations resting on the slopes and seismic accelerations estimated from site-specific ground response analysis were considered. The proposed slope profile with several berms between successive foundations was simulated in the numerical model. An equivalent continuum approach with Hoek and Brown failure criterion was initially used in a finite element model to assess the global stability of the slope abutments. In the second stage, finite element analysis of rock slopes with all joint sets with their orientations, spacing and properties explicitly incorporated into the numerical model was taken up using continuum with joints approach. It was observed that the continuum with joints approach was able to capture the local failures in some of the slope sections, which were verified using wedge failure analysis and stereographic projections. Based on the slope deformations and failure patterns observed from the numerical analyses, rock anchors were designed to achieve the target factors of safety against failure while keeping the deformations within the permissible limits. Detailed design of rock anchors and comparison of the stability of slopes with and without reinforcement are presented.

  9. Rock slope stability analysis along the North Carolina section of the Blue Ridge Parkway: Using a geographic information system (GIS) to integrate site data and digital geologic maps

    USGS Publications Warehouse

    Latham, R.S.; Wooten, R.M.; Cattanach, B.L.; Merschat, C.E.; Bozdog, G.N.

    2009-01-01

    In 2008, the North Carolina Geological Survey (NCGS) completed a five-year geologic and geohazards inventory of the 406-km long North Carolina segment of the Blue Ridge Parkway (BRP). The ArcGIS??? format deliverables for rock slopes include a slope movement and slope movement deposit database and maps and site-specific rock slope stability assessments at 158 locations. Database entries for known and potential rock slope failures include: location data, failure modes and dimensions, activity dates and levels, structural and lithologic data, the occurrence of sulfide minerals and acid-producing potential test results. Rock slope stability assessments include photographs of the rock cuts and show locations and orientations of rock data, seepage zones, and kinematic stability analyses. Assigned preliminary geologic hazard ratings of low, moderate and high indicate the generalized relative probability of rock fall and/or rock slide activity at a given location. Statistics compiled based on the database indicate some general patterns within the data. This information provides the National Park Service with tools that can aid in emergency preparedness, and in budgeting mitigation, maintenance and repair measures. Copyright 2009 ARMA, American Rock Mechanics Association.

  10. Verification of the GIS-based Newmark method through 2D dynamic modelling of slope stability

    NASA Astrophysics Data System (ADS)

    Torgoev, A.; Havenith, H.-B.

    2012-04-01

    The goal of this work is to verify the simplified GIS-based Newmark displacement approach through 2D dynamic modelling of slope stability. The research is applied to a landslide-prone area in Central Asia, the Mailuu-Suu Valley, situated in the south of Kyrgyzstan. The comparison is carried out on the basis of 30 different profiles located in the target area, presenting different geological, tectonic and morphological settings. One part of the profiles were selected within landslide zones, the other part was selected in stable areas. Many of the landslides are complex slope failures involving falls, rotational sliding and/or planar sliding and flows. These input data were extracted from a 3D structural geological model built with the GOCAD software. Geophysical and geomechanical parameters were defined on the basis of results obtained by multiple surveys performed in the area over the past 15 years. These include geophysical investigation, seismological experiments and ambient noise measurements. Dynamic modelling of slope stability is performed with the UDEC version 4.01 software that is able to compute deformation of discrete elements. Inside these elements both elasto-plastic and purely elastic materials (similar to rigid blocks) were tested. Various parameter variations were tested to assess their influence on the final outputs. And even though no groundwater flow was included, the numerous simulations are very time-consuming (20 mins per model for 10 secs simulated shaking) - about 500 computation hours have been completed so far (more than 100 models). Preliminary results allow us to compare Newmark displacements computed using different GIS approaches (Jibson et al., 1998; Miles and Ho, 1999, among others) with the displacements computed using the original Newmark method (Newmark, 1965, here simulated seismograms were used) and displacements produced along joints by the corresponding 2D dynamical models. The generation of seismic amplification and its impact

  11. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    USGS Publications Warehouse

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  12. Slope stability in the critical zone: The relative influence of long vs. short-time scale soil and vegetation properties on debris-flow initiation during a catastrophic rainfall.

    NASA Astrophysics Data System (ADS)

    Rengers, F. K.; McGuire, L.; Coe, J. A.; Kean, J. W.; Baum, R. L.; Staley, D. M.; Godt, J.

    2016-12-01

    Within the critical zone there is a feedback between the state of soil and vegetation development, boundary conditions (e.g. topography, climate, hillslope aspect), and biogeochemical and geophysical process fluxes. Here we explore how one process—debris flows initiated by shallow landslides—is influenced by the critical zone development state and the imposed boundary conditions. In this study, we examine a rainstorm in September 2013 in the Colorado Front Range wherein 78% of 1138 debris flows were triggered on south-facing slopes. One hypothesis is that debris-flow initiation sites are controlled by long-term soil formation and bedrock weathering, which are aspect-dependent in the Front Range. A competing hypothesis is that debris flow initiation locations are controlled by present-day vegetation patterns within the critical zone. We tested these hypotheses with a regional investigation of the Green-Red Vegetation Index (GRVI), a metric used to identify the degree of vegetation cover. Although the majority of debris flows were observed on south-facing hillslopes, the GRVI analysis revealed that most debris-flow initiation locations had low tree density and high rainfall, regardless of hillslope aspect. We next numerically simulated soil pore pressure and slope stability using the September 2013 rainfall data at one site. Results suggest that spatial variations in soil depth and the relative extent of bedrock weathering on north- versus south-facing slopes are insufficient to explain the observed spatial variations in debris flow initiation. However, decreased debris flow initiation on north-facing slopes likely resulted from increased root reinforcement provided by trees on north-facing slopes. While the current vegetation regimes in the Colorado Front Range, and throughout much of the semi-arid southwestern U.S., are superimposed on a landscape where soil development and bedrock weathering (both of which affect slope stability) are responding to longer

  13. Influence of the Geometry Alteration of the Landslide Slope on its Stability: A Case Study in the Carnian Alps (Italy)

    NASA Astrophysics Data System (ADS)

    Zabuski, Lesław; Bossi, Giulia; Marcato, Gianluca

    2017-12-01

    The paper presents the principles of the slope reprofiling and proves the effectiveness of this stabilization measure. The case study of two adjacent landslides in the National Road 52 "Carnica" in the Tagliamento River valley, the Carnian Alps (46°23'49″N, 12°42'51″E) are the example allowing for illustration of this approach. The phenomena have been studied for more than a decade, making it possible to carry out a detailed geological and geomorphological reconstruction. That was done on the basis of a large amount of monitoring data collected during that period. Since the landslides are threatening an important road, countermeasure works to ameliorate the stability conditions of the slides need to be designed. The paper focuses on the creation of a numerical model consistent with monitoring data and capable of reconstructing the dynamics of both landslides. Two cross-sections, one for each landslide, were selected for the analysis. The geometry of the slip surface was determined on the basis of control points, such as slip surface readings from inclinometers, and geomorphological evidence for the contour. The FLAC2D code was used to evaluate the current stability of these landslides and to determine the effectiveness of changing the slope geometry by removing material from the upper part of the slope and putting it to the lowest part as reinforcement.

  14. Effects of topographic data quality on estimates of shallow slope stability using different regolith depth models

    USGS Publications Warehouse

    Baum, Rex L.

    2017-01-01

    Thickness of colluvium or regolith overlying bedrock or other consolidated materials is a major factor in determining stability of unconsolidated earth materials on steep slopes. Many efforts to model spatially distributed slope stability, for example to assess susceptibility to shallow landslides, have relied on estimates of constant thickness, constant depth, or simple models of thickness (or depth) based on slope and other topographic variables. Assumptions of constant depth or thickness rarely give satisfactory results. Geomorphologists have devised a number of different models to represent the spatial variability of regolith depth and applied them to various settings. I have applied some of these models that can be implemented numerically to different study areas with different types of terrain and tested the results against available depth measurements and landslide inventories. The areas include crystalline rocks of the Colorado Front Range, and gently dipping sedimentary rocks of the Oregon Coast Range. Model performance varies with model, terrain type, and with quality of the input topographic data. Steps in contour-derived 10-m digital elevation models (DEMs) introduce significant errors into the predicted distribution of regolith and landslides. Scan lines, facets, and other artifacts further degrade DEMs and model predictions. Resampling to a lower grid-cell resolution can mitigate effects of facets in lidar DEMs of areas where dense forest severely limits ground returns. Due to its higher accuracy and ability to penetrate vegetation, lidar-derived topography produces more realistic distributions of cover and potential landslides than conventional photogrammetrically derived topographic data.

  15. Development of a GIS-based failure investigation system for highway soil slopes

    NASA Astrophysics Data System (ADS)

    Ramanathan, Raghav; Aydilek, Ahmet H.; Tanyu, Burak F.

    2015-06-01

    A framework for preparation of an early warning system was developed for Maryland, using a GIS database and a collective overlay of maps that highlight highway slopes susceptible to soil slides or slope failures in advance through spatial and statistical analysis. Data for existing soil slope failures was collected from geotechnical reports and field visits. A total of 48 slope failures were recorded and analyzed. Six factors, including event precipitation, geological formation, land cover, slope history, slope angle, and elevation were considered to affect highway soil slope stability. The observed trends indicate that precipitation and poor surface or subsurface drainage conditions are principal factors causing slope failures. 96% of the failed slopes have an open drainage section. A majority of the failed slopes lie in regions with relatively high event precipitation ( P>200 mm). 90% of the existing failures are surficial erosion type failures, and only 1 out of the 42 slope failures is deep rotational type failure. More than half of the analyzed slope failures have occurred in regions having low density land cover. 46% of failures are on slopes with slope angles between 20° and 30°. Influx of more data relating to failed slopes should give rise to more trends, and thus the developed slope management system will aid the state highway engineers in prudential budget allocation and prioritizing different remediation projects based on the literature reviewed on the principles, concepts, techniques, and methodology for slope instability evaluation (Leshchinsky et al., 2015).

  16. Can sea level rise cause large submarine landslides on continental slopes?

    NASA Astrophysics Data System (ADS)

    Urlaub, Morelia

    2014-05-01

    Submarine landslides are one of the volumetrically most important sediment transport processes at continental margins. Moreover, these landslides are a major geohazard as they can cause damaging tsunamis and destroy seabed infrastructure. Due to their inaccessibility our understanding of what causes these landslides is limited and based on hypotheses that are difficult to test. Some of the largest submarine landslides, such as the Storegga Slide off Norway, occurred during times of eustatic sea level rise. It has been suggested that this global sea level rise was implicated in triggering of the landslides by causing an increase in excess pore pressure in the subseafloor. However, in a homogeneous slope a change in the thickness of the overlying water mass is not expected to affect its stability, as only the hydrostatic pressure component will change, whereas pore pressures in excess of hydrostatic will remain unaltered. Whether sufficiently rapid sea level rise, aided by rather impermeable sediment and complex layering, could cause excess pore pressures that may destabilise a continental slope is more difficult to answer and has not yet been tested. I use Finite Element Modelling to explore and quantify the direct effect of changes in the thickness of the overlying water mass on the stability of a generic sediment column with different stratigraphic conditions and hydro-mechanical properties. The results show that the direct effect of sea level rise on continental slope stability is minimal. Nevertheless, sea level rise may foster other processes, such as lithospheric stress changes resulting in increased seismicity, that could potentially cause large submarine landslides on continental slopes.

  17. Aggregate stability, root length and root thickness influenced by a mycorrhizal inoculum? - Results from a three-year eco-engineering field experiment on an alpine slope.

    NASA Astrophysics Data System (ADS)

    Bast, Alexander; Wilcke, Wolfgang; Lüscher, Peter; Graf, Frank; Gärtner, Holger

    2014-05-01

    In mountain environments many slopes are covered by coarse grained, glacial-, periglacial- or/and denudation-derived substrate. These slopes show a high geomorphic activity and are susceptible for erosional processes, shallow landslides or debris flows, which can result in a high socio-economic hazard potential. This is especially true for steep slopes, lacking a protecting vegetation cover. Regarding hazard prevention, eco-engineering gained in importance because related techniques provide a sustainable measure to protect erosion-prone hillslopes. The idea of using plants for sustainable erosion control and protection against shallow landslides, demands some essential requirements, as e.g., a stable seedbed providing appropriate water and nutrient supply. However, degraded alpine slopes are often unstable and the coarse-grained material shows a low retention capacity of water and nutrients. Extreme conditions like this hamper a fast and sustainable development of a protecting vegetation cover even if pioneer plants are used to stabilize the slopes. Thus, the question arises what needs to be done to give planted saplings within eco-engineering projects maximum support developing their above- and belowground structures to promote slope stabilization. Laboratory experiments using potted plants have shown a positive impact of mycorrhizal fungi inoculation plant development and soil structure, i.e. the formation of (stable) aggregates within several months. Soil aggregate stability is an integrating parameter, reflecting several aspects of the plant-soil system and for this also an indicator of soil development and soil stability. Because of this and based on the promising laboratory results, we intended to apply this approach in a field-experiment We established (i) mycorrhizal and (ii) non-mycorrhizal treated eco-engineered research plots on a field experimental scale, covering a total area of approx. 1000 m2 on an ENE exposed slope (coarse morainic and denudation

  18. Instrumental record of debris flow initiation during natural rainfall: Implications for modeling slope stability

    USGS Publications Warehouse

    Montgomery, D.R.; Schmidt, K.M.; Dietrich, W.E.; McKean, J.

    2009-01-01

    The middle of a hillslope hollow in the Oregon Coast Range failed and mobilized as a debris flow during heavy rainfall in November 1996. Automated pressure transducers recorded high spatial variability of pore water pressure within the area that mobilized as a debris flow, which initiated where local upward flow from bedrock developed into overlying colluvium. Postfailure observations of the bedrock surface exposed in the debris flow scar reveal a strong spatial correspondence between elevated piezometric response and water discharging from bedrock fractures. Measurements of apparent root cohesion on the basal (Cb) and lateral (Cl) scarp demonstrate substantial local variability, with areally weighted values of Cb = 0.1 and Cl = 4.6 kPa. Using measured soil properties and basal root strength, the widely used infinite slope model, employed assuming slope parallel groundwater flow, provides a poor prediction of hydrologie conditions at failure. In contrast, a model including lateral root strength (but neglecting lateral frictional strength) gave a predicted critical value of relative soil saturation that fell within the range defined by the arithmetic and geometric mean values at the time of failure. The 3-D slope stability model CLARA-W, used with locally observed pore water pressure, predicted small areas with lower factors of safety within the overall slide mass at sites consistent with field observations of where the failure initiated. This highly variable and localized nature of small areas of high pore pressure that can trigger slope failure means, however, that substantial uncertainty appears inevitable for estimating hydrologie conditions within incipient debris flows under natural conditions. Copyright 2009 by the American Geophysical Union.

  19. Submarine slope failures due to pipe structure formation.

    PubMed

    Elger, Judith; Berndt, Christian; Rüpke, Lars; Krastel, Sebastian; Gross, Felix; Geissler, Wolfram H

    2018-02-19

    There is a strong spatial correlation between submarine slope failures and the occurrence of gas hydrates. This has been attributed to the dynamic nature of gas hydrate systems and the potential reduction of slope stability due to bottom water warming or sea level drop. However, 30 years of research into this process found no solid supporting evidence. Here we present new reflection seismic data from the Arctic Ocean and numerical modelling results supporting a different link between hydrates and slope stability. Hydrates reduce sediment permeability and cause build-up of overpressure at the base of the gas hydrate stability zone. Resulting hydro-fracturing forms pipe structures as pathways for overpressured fluids to migrate upward. Where these pipe structures reach shallow permeable beds, this overpressure transfers laterally and destabilises the slope. This process reconciles the spatial correlation of submarine landslides and gas hydrate, and it is independent of environmental change and water depth.

  20. Analysis of slope stabillity and controlling factor on residual soil of folded breccia formation

    NASA Astrophysics Data System (ADS)

    Rachman, S.; Muslim, D.; Sulaksana, N.; Burhannuddinnur, M.; Pramudito, H.

    2018-01-01

    This research aims to obtain a potential landslide zonation. Theresearch area is located in Depok Village and surroundings, Jatigede District, Sumedang regency, West Java province. Geographically located at the point of coordinates 06°50‧33-06°51‧00″ South Latitude and 108°05‧37 ″- 108°06‧17″ East Longitude. This research is intended to mapping the identification of landslide and soil properties data. The mapping and soil sampling were conducted only in the research area. The methodology used was mapping and finding the safety factor with Bishop Analysis. The morphological condition of the study area indicates moderate conditions undulating hilly area with slopes between 15° - 40°, with a tick soil layer was covering the slope. This condition is greatly affected by rainfall. This research is to know the type of ground movement along with the value of the safety factor of the slope so that can provide suggestions for overcoming instability in the study area.

  1. Finite Element analyses of soil bioengineered slopes

    NASA Astrophysics Data System (ADS)

    Tamagnini, Roberto; Switala, Barbara Maria; Sudan Acharya, Madhu; Wu, Wei; Graf, Frank; Auer, Michael; te Kamp, Lothar

    2014-05-01

    Soil Bioengineering methods are not only effective from an economical point of view, but they are also interesting as fully ecological solutions. The presented project is aimed to define a numerical model which includes the impact of vegetation on slope stability, considering both mechanical and hydrological effects. In this project, a constitutive model has been developed that accounts for the multi-phase nature of the soil, namely the partly saturated condition and it also includes the effects of a biological component. The constitutive equation is implemented in the Finite Element (FE) software Comes-Geo with an implicit integration scheme that accounts for the collapse of the soils structure due to wetting. The mathematical formulation of the constitutive equations is introduced by means of thermodynamics and it simulates the growth of the biological system during the time. The numerical code is then applied in the analysis of an ideal rainfall induced landslide. The slope is analyzed for vegetated and non-vegetated conditions. The final results allow to quantitatively assessing the impact of vegetation on slope stability. This allows drawing conclusions and choosing whenever it is worthful to use soil bioengineering methods in slope stabilization instead of traditional approaches. The application of the FE methods show some advantages with respect to the commonly used limit equilibrium analyses, because it can account for the real coupled strain-diffusion nature of the problem. The mechanical strength of roots is in fact influenced by the stress evolution into the slope. Moreover, FE method does not need a pre-definition of any failure surface. FE method can also be used in monitoring the progressive failure of the soil bio-engineered system as it calculates the amount of displacements and strains of the model slope. The preliminary study results show that the formulated equations can be useful for analysis and evaluation of different soil bio

  2. Stabilization of erodible slopes with geofibers and nontraditional liquid additives.

    DOT National Transportation Integrated Search

    2013-05-01

    Instability of erodible slopes due to extreme climate events and of permafrost slopes due degradation and thawing is a significant : engineering problem for northern transportation infrastructure. Engineers continually look for mitigation alternative...

  3. Elucidating the mechanical effects of pore water pressure increase on the stability of unsaturated soil slopes

    NASA Astrophysics Data System (ADS)

    Buscarnera, G.

    2012-12-01

    The increase of the pore water pressure due to rain infiltration can be a dominant component in the activation of slope failures. This paper shows an application of the theory of material stability to the triggering analysis of this important class of natural hazards. The goal is to identify the mechanisms through which the process of suction removal promotes the initiation of mechanical instabilities. The interplay between increase in pore water pressure, and failure mechanisms is investigated at material point level. In order to account for multiple failure mechanisms, the second-order work criterion is used and different stability indices are devised. The paper shows that the theory of material stability can assess the risk of shear failure and static liquefaction in both saturated and unsaturated contexts. It is shown that the combined use of an enhanced definition of second-order work for unsaturated porous media and a hydro-mechanical constitutive framework enables to retrieve bifurcation conditions for water-infiltration processes in unsaturated deposits. This finding discloses the importance of the coupling terms that incorporate the interaction between the solid skeleton and the pore fluids. As a consequence, these theoretical results suggest that some material properties that are not directly associated with the shearing resistance (e.g., the potential for wetting compaction) can play an important role in the initiation of slope failures. According to the proposed interpretation, the process of pore pressure increase can be understood as a trigger of uncontrolled strains, which at material point level are reflected by the onset of bifurcation conditions.

  4. The effect of plate position and size on tibial slope in high tibial osteotomy: a cadaveric study.

    PubMed

    Rubino, L Joseph; Schoderbek, Robert J; Golish, S Raymond; Baumfeld, Joshua; Miller, Mark D

    2008-01-01

    Opening wedge high tibial osteotomies are performed for degenerative changes and varus. Opening wedge osteotomies can change proximal tibial slope in the sagittal plane, possibly imparting stability in the ACL-deficient knee. The aim of this study was to assess the effect of plate position and size on change in tibial slope. Eight cadaveric knees underwent opening wedge high tibial osteotomy with Puddu plates of each different size. Plates were placed anterior, central, and posterior for each size used. Lateral radiographs were obtained. Tibial slope was measured and compared with baseline slope. Tibial slope was affected by plate position (P < 0.05) and size (P < 0.001). Smaller, posterior plates had less effect on tibial slope. However, anterior and central plates increased tibial slope over all plate sizes (P < 0.05). This study found that tibial slope increases with opening wedge high tibial osteotomy. Larger corrections and anterior placement of the plate are associated with larger increases in slope.

  5. Reducing the risk of the collapse of the soil by macro system modeling the slopes stability of the quarries

    NASA Astrophysics Data System (ADS)

    Klimova, E. V.; Semeykin, A. Yu

    2018-01-01

    The urgent task of modern production is to reduce the risks of man-made disasters and, as a consequence, preserve the life and health of workers, material properties and natural environment. In the mining industry, one of the reasons for the high level of injuries and accidents is the collapse of the soil. Macro system modelling of slopes stability of the quarries is based on the compliance with the conditions of physical and mathematical correctness of the application of the model of a continuous medium. This type of modelling allows to choose the safe parameters of the slopes of the quarries and to reduce the risk of collapse of the soil.

  6. Rock Slope Design Criteria

    DOT National Transportation Integrated Search

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary : rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, : and siltstones ...

  7. Supersonic Wave Interference Affecting Stability

    NASA Technical Reports Server (NTRS)

    Love, Eugene S.

    1958-01-01

    Some of the significant interference fields that may affect stability of aircraft at supersonic speeds are briefly summarized. Illustrations and calculations are presented to indicate the importance of interference fields created by wings, bodies, wing-body combinations, jets, and nacelles.

  8. Geospatial Data Integration for Assessing Landslide Hazard on Engineered Slopes

    NASA Astrophysics Data System (ADS)

    Miller, P. E.; Mills, J. P.; Barr, S. L.; Birkinshaw, S. J.

    2012-07-01

    Road and rail networks are essential components of national infrastructures, underpinning the economy, and facilitating the mobility of goods and the human workforce. Earthwork slopes such as cuttings and embankments are primary components, and their reliability is of fundamental importance. However, instability and failure can occur, through processes such as landslides. Monitoring the condition of earthworks is a costly and continuous process for network operators, and currently, geospatial data is largely underutilised. The research presented here addresses this by combining airborne laser scanning and multispectral aerial imagery to develop a methodology for assessing landslide hazard. This is based on the extraction of key slope stability variables from the remotely sensed data. The methodology is implemented through numerical modelling, which is parameterised with the slope stability information, simulated climate conditions, and geotechnical properties. This allows determination of slope stability (expressed through the factor of safety) for a range of simulated scenarios. Regression analysis is then performed in order to develop a functional model relating slope stability to the input variables. The remotely sensed raster datasets are robustly re-sampled to two-dimensional cross-sections to facilitate meaningful interpretation of slope behaviour and mapping of landslide hazard. Results are stored in a geodatabase for spatial analysis within a GIS environment. For a test site located in England, UK, results have shown the utility of the approach in deriving practical hazard assessment information. Outcomes were compared to the network operator's hazard grading data, and show general agreement. The utility of the slope information was also assessed with respect to auto-population of slope geometry, and found to deliver significant improvements over the network operator's existing field-based approaches.

  9. Integrated satellite InSAR and slope stability modeling to support hazard assessment at the Safuna Alta glacial lake, Peru

    NASA Astrophysics Data System (ADS)

    Cochachin, Alejo; Frey, Holger; Huggel, Christian; Strozzi, Tazio; Büechi, Emanuel; Cui, Fanpeng; Flores, Andrés; Saito, Carlos

    2017-04-01

    The Safuna glacial lakes (77˚ 37' W, 08˚ 50' S) are located in the headwater of the Tayapampa catchment, in the northernmost part of the Cordillera Blanca, Peru. The upper lake, Laguna Safuna Alta at 4354 m asl has formed in the 1960s behind a terminal moraine of the retreating Pucajirca Glacier, named after the peak south of the lakes. Safuna Alta currently has a volume of 15 x 106 m3. In 2002 a rock fall of several million m3 from the proximal left lateral moraine hit the Safuna Alta lake and triggered an impact wave which overtopped the moraine dam and passed into the lower lake, Laguna Safuna Baja, which absorbed most of the outburst flood from the upper lake, but nevertheless causing loss in cattle, degradation of agricultural land downstream and damages to a hydroelectric power station in Quitaracsa gorge. Event reconstructions showed that the impact wave in the Safuna Alta lake had a runup height of 100 m or more, and weakened the moraine dam of Safuna Alta. This fact, in combination with the large lake volumes and the continued possibility for landslides from the left proximal moraine pose a considerable risk for the downstream settlements as well as the recently completed Quitaracsa hydroelectric power plant. In the framework of a project funded by the European Space Agency (ESA), the hazard situation at the Safuna Alta lake is assessed by a combination of satellite radar data analysis, field investigations, and slope stability modeling. Interferometric analyses of the Synthetic Aperture Radar (InSAR) of ALOS-1 Palsar-1, ALOS-2 Palsar-2 and Sentinel-1 data from 2016 reveal terrain displacements of 2 cm y-1 in the detachment zone of the 2002 rock avalanche. More detailed insights into the characteristics of these terrain deformations are gained by repeat surveys with differential GPS (DGPS) and tachymetric measurements. A drone flight provides the information for the generation of a high-resolution digital elevation model (DEM), which is used for the

  10. High resolution measurement of earthquake impacts on rock slope stability and damage using pre- and post-earthquake terrestrial laser scans

    NASA Astrophysics Data System (ADS)

    Hutchinson, Lauren; Stead, Doug; Rosser, Nick

    2017-04-01

    Understanding the behaviour of rock slopes in response to earthquake shaking is instrumental in response and relief efforts following large earthquakes as well as to ongoing risk management in earthquake affected areas. Assessment of the effects of seismic shaking on rock slope kinematics requires detailed surveys of the pre- and post-earthquake condition of the slope; however, at present, there is a lack of high resolution monitoring data from pre- and post-earthquake to facilitate characterization of seismically induced slope damage and validate models used to back-analyze rock slope behaviour during and following earthquake shaking. Therefore, there is a need for additional research where pre- and post- earthquake monitoring data is available. This paper presents the results of a direct comparison between terrestrial laser scans (TLS) collected in 2014, the year prior to the 2015 earthquake sequence, with that collected 18 months after the earthquakes and two monsoon cycles. The two datasets were collected using Riegl VZ-1000 and VZ-4000 full waveform laser scanners with high resolution (c. 0.1 m point spacing as a minimum). The scans cover the full landslide affected slope from the toe to the crest. The slope is located in Sindhupalchok District, Central Nepal which experienced some of the highest co-seismic and post-seismic landslide intensities across Nepal due to the proximity to the epicenters (<20 km) of both of the main aftershocks on April 26, 2015 (M 6.7) and May 12, 2015 (M7.3). During the 2015 earthquakes and subsequent 2015 and 2016 monsoons, the slope experienced rockfall and debris flows which are evident in satellite imagery and field photographs. Fracturing of the rock mass associated with the seismic shaking is also evident at scales not accessible through satellite and field observations. The results of change detection between the TLS datasets with an emphasis on quantification of seismically-induced slope damage is presented. Patterns in the

  11. Effects of tibial slope changes in the stability of fixed bearing medial unicompartmental arthroplasty in anterior cruciate ligament deficient knees.

    PubMed

    Suero, Eduardo M; Citak, Musa; Cross, Michael B; Bosscher, Marianne R F; Ranawat, Anil S; Pearle, Andrew D

    2012-08-01

    Patients with anterior cruciate ligament (ACL) deficiency may have increased failure rates with UKA as a result of abnormal contact stresses and altered knee kinematics. Variations in the slope of the tibial component in UKA may alter tibiofemoral translation, and affect outcomes. This cadaveric study evaluated tibiofemoral translation during the Lachman and pivot shift tests after changing the slope of a fixed bearing unicondylar tibial component. Sectioning the ACL increased tibiofemoral translation in both the Lachman and pivot shift tests (P<0.05). Tibial slope leveling (decreasing the posterior slope) of the polyethylene insert in a UKA decreases anteroposterior tibiofemoral translation in the sagittal plane to a magnitude similar to that of the intact knee. With 8° of tibial slope leveling, anterior tibial translation during the Lachman test decreased by approximately 5mm. However, no variation in slope altered the pivot shift kinematics in the ACL deficient knees. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Roots and the stability of forested slopes

    Treesearch

    R. R. Ziemer

    1981-01-01

    Abstract - Root decay after timber cutting can lead to slope failure. In situ measurements of soil with tree roots showed that soil strength increased linearly as root biomass increased. Forests clear-felled 3 years earlier contained about one-third of the root biomass of old-growth forests. Nearly all of the roots

  13. Qualitative stability assessment of cut slopes along the National Highway-05 around Jhakri area, Himachal Pradesh, India

    NASA Astrophysics Data System (ADS)

    Kundu, Jagadish; Sarkar, Kripamoy; Tripathy, Ashutosh; Singh, T. N.

    2017-12-01

    Several deformation phases in tectonically active Himalayas have rendered the rock masses very complex in terms of structure, lithology and degree of metamorphism. Again, anthropogenic activities such as roads, tunnels and other civil engineering constructions have led to a state of disequilibrium which in many cases, results in failure of rock masses. National Highway-05 around Jhakri area in India is a major connecting route to the China border in the hilly terrains of the state Himachal Pradesh. It cuts through the Himalayan rocks and has a hazardous history of landslides destroying human lives and interrupting communication very frequently. As a contribution towards the mitigation process, a study has been carried out along the highway to analyse kinematic stability and qualitative estimation of rock mass condition through rock mass classification systems. The kinematic analysis shows that the rock slopes are prone to planar and wedge failure. Rock mass rating for most of the locations lies between 7 and 34, representing a poor rock mass quality (Class IV), whereas slope mass rating is more disperse and ranges from 11 to 52 for most of the slopes (Class III, IV and V).

  14. Influence of the posterior tibial slope on the flexion gap in total knee arthroplasty.

    PubMed

    Okazaki, Ken; Tashiro, Yasutaka; Mizu-uchi, Hideki; Hamai, Satoshi; Doi, Toshio; Iwamoto, Yukihide

    2014-08-01

    Adjusting the joint gap length to be equal in both extension and flexion is an important issue in total knee arthroplasty (TKA). It is generally acknowledged that posterior tibial slope affects the flexion gap; however, the extent to which changes in the tibial slope angle directly affect the flexion gap remains unclear. This study aimed to clarify the influence of tibial slope changes on the flexion gap in cruciate-retaining (CR) or posterior-stabilizing (PS) TKA. The flexion gap was measured using a tensor device with the femoral trial component in 20 cases each of CR- and PS-TKA. A wedge plate with a 5° inclination was placed on the tibial cut surface by switching its front-back direction to increase or decrease the tibial slope by 5°. The flexion gap after changing the tibial slope was compared to that of the neutral slope measured with a flat plate that had the same thickness as that of the wedge plate center. When the tibial slope decreased or increased by 5°, the flexion gap decreased or increased by 1.9 ± 0.6mm or 1.8 ± 0.4mm, respectively, with CR-TKA and 1.2 ± 0.4mm or 1.1 ± 0.3mm, respectively, with PS-TKA. The influence of changing the tibial slope by 5° on the flexion gap was approximately 2mm with CR-TKA and 1mm with PS-TKA. This information is useful when considering the effect of manipulating the tibial slope on the flexion gap when performing CR- or PS-TKA. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Species type controls root strength and influences slope stability in coastal Ecuador

    NASA Astrophysics Data System (ADS)

    Anttila, E.; Wray, M. E.; Knappe, E.; Ogasawara, T.; Tholt, A.; Cliffe, B.; Oshun, J.

    2014-12-01

    Tree roots, particular those of old growth trees, provide significant cohesive strength that can prevent shallow landslides. Little is known about the root strength of trees growing in dry tropical forests. In 1997, Bahía de Caráquez, Ecuador experienced a large landslide, which may have been precipitated by massive deforestation along the Ecuadorian coast. We used a tensile spring apparatus combined with root maps to caclulate the cohesive strength of different native species of trees. Whereas the results show the previously reported power law relationship between root diameter and tensile strength, our data also reveals new contributions. First, we find that trees have far stronger and more abundant roots than neighboring bushes, and thus add far more cohesive strength to the hillslope. Furthermore, there is a wide range of tensile strength among the native trees measured, with algarrobo having the strongest roots, and ceibo gernally being weak rooted. Finally, we use a slope stability model to predict failure conditions considering the strength added to a hillslope if vegetation is predominantly composed of bushes, algarrobo, or ceibo. Our results, which are the first of their kind for the Ecuadorian dry tropical forest, will be used to guide the ongoing native reforestation efforts of Global Student Embassy. Our unique partnership with Global Student Embassy connects our field study to practical land use decisions that will lead to increased slope and decreased human danger along coastal Ecuador's dry tropical forest.

  16. Anchorage strength and slope stability of a landfill liner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villard, P.; Gourc, J.P.; Feki, N.

    1997-11-01

    In order to determine reliable dimensions of an anchorage system and satisfactory operation of the watertight liner in a waste landfill, it is essential to make an accurate assessment of the tensions acting on the geosynthetics on the top of the slope. Experimental and theoretical studies have been carried out in parallel. The former concern a full-scale experiment undertaken in Montreuil sur Barse on a waste storage site with instrumented slope. The latter concern anchorage tests performed on a scale model for different anchorage geometries.

  17. Characteristics of low-slope streams that affect O2 transfer rates

    USGS Publications Warehouse

    Parker, Gene W.; Desimone, Leslie A.

    1991-01-01

    Multiple-regression techniques were used to derive the reaeration coefficients estimating equation for low sloped streams: K2 = 3.83 MBAS-0.41 SL0.20 H-0.76, where K2 is the reaeration coefficient in base e units per day; MBAS is the methylene blue active substances concentration in milligrams per liter; SL is the water-surface slope in foot per foot; and H is the mean-flow depth in feet. Fourteen hydraulic, physical, and water-quality characteristics were regressed against 29 measured-reaeration coefficients for low-sloped (water surface slopes less than 0.002 foot per foot) streams in Massachusetts and New York. Reaeration coefficients measured from May 1985 to October 1988 ranged from 0.2 to 11.0 base e units per day for 29 low-sloped tracer studies. Concentration of methylene blue active substances is significant because it is thought to be an indicator of concentration of surfactants which could change the surface tension at the air-water interface.

  18. Workflow for the fast evaluation of rock mass properties and stability of rock slopes along trafficways in Lower Austria

    NASA Astrophysics Data System (ADS)

    Straka, Wolfgang; Zangerl, Christian

    2016-04-01

    In Lower Austria there is a total of 17.000 km of provincial and 24.000 km of communal roads, to be maintained by the province and the municipalities. In addition, there are approx. 1.500 km of railroads, and the Danube as a major waterway. A large part of this infrastructure is, or is potentially, affected by various types of instability of adjacent slopes. Due to insufficient knowledge, as well as slope design and management practice in the past, every year, especially in connection to weather extremes, slopes known to be critical become active landslides again, and unexpected new ones arise, causing damage as well as financial stress. Engineering intervention, if possible, should be quick and effective. Geologists and engineers in public service, not having the means for detailed investigation in most cases, are using guidelines to assess the requirements to be met by slope design on traffic ways. But these guidelines don't reflect many of the newer scientific advances. Therefore, scientists at BOKU and backers in the administration want to gain more insight into causative factors, which, if successful, may render maintenance of traffic lines under critical conditions more effective and predictable. The specific project goal is to produce new guidelines to allow quick assessment of the most likely behaviour of rock masses common in the area, especially when cut into shape along infrastructure lines, using readily available information. The scientific investigations include simple and ready tests (like Schmidt hammer), as well as photogrammetry, laserscanning, and other complex geophysical and numerical techniques, but the final product (guidelines) is expected to work without such difficult methods. It is important to note, on the other hand, that the rock mass stability classification inherent in the new guidelines must allow distinction between conclusions which are safe, and conjectures which are in need of validation by contracted experts. It is planned to

  19. Radar-derived asteroid shapes point to a 'zone of stability' for topography slopes and surface erosion rates

    NASA Astrophysics Data System (ADS)

    Richardson, J.; Graves, K.; Bowling, T.

    2014-07-01

    Previous studies of the combined effects of asteroid shape, spin, and self-gravity have focused primarily upon the failure limits for bodies with a variety of standard shapes, friction, and cohesion values [1,2,3]. In this study, we look in the opposite direction and utilize 22 asteroid shape-models derived from radar inversion [4] and 7 small body shape-models derived from spacecraft observations [5] to investigate the region in shape/spin space [1,2] wherein self-gravity and rotation combine to produce a stable minimum state with respect to surface potential differences, dynamic topography, slope magnitudes, and erosion rates. This erosional minimum state is self-correcting, such that changes in the body's rotation rate, either up or down, will increase slope magnitudes across the body, thereby driving up erosion rates non-linearly until the body has once again reached a stable, minimized surface state [5]. We investigated this phenomenon in a systematic fashion using a series of synthesized, increasingly prolate spheroid shape models. Adjusting the rotation rate of each synthetic shape to minimize surface potential differences, dynamic topography, and slope magnitudes results in the magenta curve of the figure (right side), defining the zone of maximum surface stability (MSS). This MSS zone is invariant both with respect to body size (gravitational potential and rotational potential scale together with radius), and density when the scaled-spin of [2] is used. Within our sample of observationally derived small-body shape models, slow rotators (Group A: blue points), that are not in the maximum surface stability (MSS) zone and where gravity dominates the slopes, will generally experience moderate erosion rates (left plot) and will tend to move up and to the right in shape/spin space as the body evolves (right plot). Fast rotators (Group C: red points), that are not in the MSS zone and where spin dominates the slopes, will generally experience high erosion rates

  20. Instability risk assessment of construction waste pile slope based on fuzzy entropy

    NASA Astrophysics Data System (ADS)

    Ma, Yong; Xing, Huige; Yang, Mao; Nie, Tingting

    2018-05-01

    Considering the nature and characteristics of construction waste piles, this paper analyzed the factors affecting the stability of the slope of construction waste piles, and established the system of the assessment indexes for the slope failure risks of construction waste piles. Based on the basic principles and methods of fuzzy mathematics, the factor set and the remark set were established. The membership grade of continuous factor indexes is determined using the "ridge row distribution" function, while that for the discrete factor indexes was determined by the Delphi Method. For the weight of factors, the subjective weight was determined by the Analytic Hierarchy Process (AHP) and objective weight by the entropy weight method. And the distance function was introduced to determine the combination coefficient. This paper established a fuzzy comprehensive assessment model of slope failure risks of construction waste piles, and assessed pile slopes in the two dimensions of hazard and vulnerability. The root mean square of the hazard assessment result and vulnerability assessment result was the final assessment result. The paper then used a certain construction waste pile slope as the example for analysis, assessed the risks of the four stages of a landfill, verified the assessment model and analyzed the slope's failure risks and preventive measures against a slide.

  1. Laboratory investigation of coupled deformation and fluid flow in mudrock: implications for slope stability in the Ursa Basin, Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Flemings, P. B.; Song, I.; Saffer, D. M.

    2012-04-01

    Integrated Ocean Drilling Program (IODP) Expedition 308 was dedicated to the study of fluid flow, overpressure, and slope stability in the Ursa Basin, on the continental slope of the Gulf of Mexico. In this location, turbidite channel levees deposited a wedge-shaped body: the deposition rate in the thick part of the wedge exceeded 12 mm/yr. This rapid deposition of fine grained sediments generated excess pore pressure observed near the seafloor. IODP drilling focused on three Sites: U1322, U1323, and U1324, along the steepest slope (2°) on the eastern section of the Ursa Canyon levee deposits. In this study, we conducted a suite of deformation experiments on samples from Site 1324, to understand the stress-strain behavior and stress history of the recovered core material. Our samples were taken from depths of 30-160 meters below seafloor, and are composed of ~40% silt and ~60% clay, with porosities ranging from ~42-55%. We first conducted uniaxial consolidation tests to determine pre-consolidation stresses and define deformation behavior due to simulated vertical loading. In a subset of tests, we subjected the samples to undrained shearing following consolidation, to define the friction angle and define relationships between stress state and deformation. We find that the lateral effective stress during uniaxial compression is 56-64% of the vertical effective stress (avg. K0=0.6). Pre-consolidation stresses suggest that pore pressure is hydrostatic to 50 mbsf (meters below seafloor), and is overpressured below this, with excess pressures up to 70% of the hydrostatic effective vertical stress (λ*=0.7) at 160 mbsf. The time coefficient of consolidation (cv) in these experiments is ~2.2x10-8 m2/s. Undrained shear tests define a failure envelope with a residual friction angle (φ) of 23° and zero cohesion. In our shearing tests, we observed no pore pressure change during initial (primarily elastic) shear deformation, but note a monotonic increase in pore pressure

  2. Groundwater monitoring of an open-pit limestone quarry: groundwater characteristics, evolution and their connections to rock slopes.

    PubMed

    Eang, Khy Eam; Igarashi, Toshifumi; Fujinaga, Ryota; Kondo, Megumi; Tabelin, Carlito Baltazar

    2018-03-06

    Groundwater flow and its geochemical evolution in mines are important not only in the study of contaminant migration but also in the effective planning of excavation. The effects of groundwater on the stability of rock slopes and other mine constructions especially in limestone quarries are crucial because calcite, the major mineral component of limestone, is moderately soluble in water. In this study, evolution of groundwater in a limestone quarry located in Chichibu city was monitored to understand the geochemical processes occurring within the rock strata of the quarry and changes in the chemistry of groundwater, which suggests zones of deformations that may affect the stability of rock slopes. There are three distinct geological formations in the quarry: limestone layer, interbedded layer of limestone and slaty greenstone, and slaty greenstone layer as basement rock. Although the hydrochemical facies of all groundwater samples were Ca-HCO 3 type water, changes in the geochemical properties of groundwater from the three geological formations were observed. In particular, significant changes in the chemical properties of several groundwater samples along the interbedded layer were observed, which could be attributed to the mixing of groundwater from the limestone and slaty greenstone layers. On the rainy day, the concentrations of Ca 2+ and HCO 3 - in the groundwater fluctuated notably, and the groundwater flowing along the interbedded layer was dominated by groundwater from the limestone layer. These suggest that groundwater along the interbedded layer may affect the stability of rock slopes.

  3. Combining slope stability and groundwater flow models to assess stratovolcano collapse hazard

    NASA Astrophysics Data System (ADS)

    Ball, J. L.; Taron, J.; Reid, M. E.; Hurwitz, S.; Finn, C.; Bedrosian, P.

    2016-12-01

    Flank collapses are a well-documented hazard at volcanoes. Elevated pore-fluid pressures and hydrothermal alteration are invoked as potential causes for the instability in many of these collapses. Because pore pressure is linked to water saturation and permeability of volcanic deposits, hydrothermal alteration is often suggested as a means of creating low-permeability zones in volcanoes. Here, we seek to address the question: What alteration geometries will produce elevated pore pressures in a stratovolcano, and what are the effects of these elevated pressures on slope stability? We initially use a finite element groundwater flow model (a modified version of OpenGeoSys) to simulate `generic' stratovolcano geometries that produce elevated pore pressures. We then input these results into the USGS slope-stability code Scoops3D to investigate the effects of alteration and magmatic intrusion on potential flank failure. This approach integrates geophysical data about subsurface alteration, water saturation and rock mechanical properties with data about precipitation and heat influx at Cascade stratovolcanoes. Our simulations show that it is possible to maintain high-elevation water tables in stratovolcanoes given specific ranges of edifice permeability (ideally between 10-15 and 10-16 m2). Low-permeability layers (10-17 m2, representing altered pyroclastic deposits or altered breccias) in the volcanoes can localize saturated regions close to the surface, but they may actually reduce saturation, pore pressures, and water table levels in the core of the volcano. These conditions produce universally lower factor-of-safety (F) values than at an equivalent dry edifice with the same material properties (lower values of F indicate a higher likelihood of collapse). When magmatic intrusions into the base of the cone are added, near-surface pore pressures increase and F decreases exponentially with time ( 7-8% in the first year). However, while near-surface impermeable layers

  4. Modeling 3-D Slope Stability of Coastal Bluffs Using 3-D Ground-Water Flow, Southwestern Seattle, Washington

    USGS Publications Warehouse

    Brien, Dianne L.; Reid, Mark E.

    2007-01-01

    Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the

  5. Study of root tensile strength of softwood and hardwood tree species: Implications for slope stability

    NASA Astrophysics Data System (ADS)

    Esmaiili, Marzieh; Abdi, Ehsan; Jafary, Mohammad; Majnounian, Baris

    2017-04-01

    Landslides are known as one of the major natural hazards and often incurring economics and human life losses. The role of tree roots in slope stability is very important, especially when human lives and infrastructure are at risk. The anchorage of roots and improvement of slope stability mainly depend on specific properties of root network systems, such as tensile strength. These properties of the roots which govern the degree of reinforcement are different among tree species. Although, many studies have been conducted about plant biotechnical properties of species, yet there is lack of knowledge on comparing root systems of softwood and hardwood tree species for similar site conditions. Therefore this study was conducted to assess the tensile strength of the root system of Picea abies (softwood species) and Fraxinus excelsior (hardwood species) planted on two forested hillslopes. To this aim, single root specimens were sampled for each species and their tensile strength were then measured in laboratory using a computer controlled Instron Universal Testing Machine. According to the results root tensile strength tends to decrease with diameter according to a power law for both species. Based on analysis of covariance (ANCOVA), a significant difference has been observed in the tensile strength between the two studied species. Also the results showed that the value of mean root tensile strength for Picea abies (19.31 ± 2.64 MPa) was much more than that of Fraxinus excelsior (16.98 ± 1.01 MPa) within all root diameter classes. The data presented in this study may expand the knowledge of biotechnical properties of Picea abies and Fraxinus excelsior, as biomaterial for soil bioengineering.

  6. Temporal pattern of soil matric suction in the unsaturated soil slope under different forest cover

    NASA Astrophysics Data System (ADS)

    Hayati, Elyas; Abdi, Ehsan; Mohseni Saravi, Mohsen; Nieber, John; Majnounian, Baris; Chirico, Giovanni

    2017-04-01

    In the vadose zone, usually, soils experience high matric suction during dry periods which results in a significant additional soil strength component (i.e., apparent cohesion) and thus plays a crucial role in the stability of unsaturated soil slopes. But, in the wet periods, when rain-water infiltrates into the soil, the matric suction of the soil dissipates partially or completely. It is a well-understood concept that vegetation can modify the hillslope hydrology and subsequent stability conditions by increasing soil matric suction through both interception of rainfall and depletion of soil water content via transpiration. Anthropogenic pressures, particularly clear-cutting and deforestation, affect many hydro-geomorphological processes including catchment and hillslope hydrology and stability. However, quantifying the changes in soil hydrologic conditions and the resulted stability of slopes due to these degrading activities remained an unresolved problem. To address this gap, a continuous measurement of soil water dynamics has been conducted at two adjacent hillslopes (one forested hillslope and one degraded hillslope) using PR2/6 profile probe for a 9-month period of time to demonstrate the forest cover-specific influence on the hillslope hydrology and stability during different seasons. The results have been then presented in terms of estimated soil matric suction to facilitate analyzing the resulted stability states due to the changes in soil water balance with time in the two studied hillslopes. The data were tested to check whether there are any differences between the forested and degraded hillslopes in terms of soil matric suction and augmented soil cohesion during different seasons. Finally, the response of soil hydrologic condition and the resulted slope stability for the 9-month period were analyzed and discussed for the different hillslopes.

  7. Seismically induced rock slope failures resulting from topographic amplification of strong ground motions: The case of Pacoima Canyon, California

    USGS Publications Warehouse

    Sepulveda, S.A.; Murphy, W.; Jibson, R.W.; Petley, D.N.

    2005-01-01

    The 1994 Northridge earthquake (Mw = 6.7) triggered extensive rock slope failures in Pacoima Canyon, immediately north of Los Angeles, California. Pacoima Canyon is a narrow and steep canyon incised in gneissic and granitic rocks. Peak accelerations of nearly 1.6 g were recorded at a ridge that forms the left abutment of Pacoima Dam; peak accelerations at the bottom of the canyon were less than 0.5 g, suggesting the occurrence of topographic amplification. Topographic effects have been previously suggested to explain similarly high ground motions at the site during the 1971 (Mw = 6.7) San Fernando earthquake. Furthermore, high landslide concentrations observed in the area have been attributed to unusually strong ground motions rather than higher susceptibility to sliding compared with nearby zones. We conducted field investigations and slope stability back-analyses to confirm the impact of topographic amplification on the triggering of landslides during the 1994 earthquake. Our results suggest that the observed extensive rock sliding and falling would have not been possible under unamplified seismic conditions, which would have generated a significantly lower number of areas affected by landslides. In contrast, modelling slope stability using amplified ground shaking predicts slope failure distributions matching what occurred in 1994. This observation confirms a significant role for topographic amplification on the triggering of landslides at the site, and emphasises the need to select carefully the inputs for seismic slope stability analyses. ?? 2005 Elsevier B.V. All rights reserved.

  8. Scale dependence of the diversity-stability relationship in a temperate grassland.

    PubMed

    Zhang, Yunhai; He, Nianpeng; Loreau, Michel; Pan, Qingmin; Han, Xingguo

    2018-05-01

    A positive relationship between biodiversity and ecosystem stability has been reported in many ecosystems; however, it has yet to be determined whether and how spatial scale affects this relationship. Here, for the first time, we assessed the effects of alpha, beta and gamma diversity on ecosystem stability and the scale dependence of the slope of the diversity-stability relationship.By employing a long-term (33 years) dataset from a temperate grassland, northern China, we calculated the all possible spatial scales with the complete combination from the basic 1-m 2 plots.Species richness was positively associated with ecosystem stability through species asynchrony and overyielding at all spatial scales (1, 2, 3, 4 and 5 m 2 ). Both alpha and beta diversity were positively associated with gamma stability.Moreover, the slope of the diversity-area relationship was significantly higher than that of the stability-area relationship, resulting in a decline of the slope of the diversity-stability relationship with increasing area. Synthesis. With the positive species diversity effect on ecosystem stability from small to large spatial scales, our findings demonstrate the need to maintain a high biodiversity and biotic heterogeneity as insurance against the risks incurred by ecosystems in the face of global environmental changes.

  9. Effects of heel base size, walking speed, and slope angle on center of pressure trajectory and plantar pressure when wearing high-heeled shoes.

    PubMed

    Luximon, Yan; Cong, Yan; Luximon, Ameersing; Zhang, Ming

    2015-06-01

    High-heeled shoes are associated with instability and a high risk of fall, fracture, and ankle sprain. This study investigated the effects of heel base size (HBS) on walking stability under different walking speeds and slope angles. The trajectory of the center of pressure (COP), maximal peak pressure, pressure time integral, contact area, and perceived stability were analyzed. The results revealed that a small HBS increased the COP deviations, shifting the COP more medially at the beginning of the gait cycle. The slope angle mainly affected the COP in the anteroposterior direction. An increased slope angle shifted the COP posterior and caused greater pressure and a larger contact area in the midfoot and rearfoot regions, which can provide more support. Subjective measures on perceived stability were consistent with objective measures. The results suggested that high-heeled shoes with a small HBS did not provide stable plantar support, particularly on a small slope angle. The changes in the COP and pressure pattern caused by a small HBS might increase joint torque and muscle activity and induce lower limb problems. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Scale dependence of the diversity–stability relationship in a temperate grassland

    PubMed Central

    Zhang, Yunhai; He, Nianpeng; Loreau, Michel; Pan, Qingmin; Han, Xingguo

    2018-01-01

    A positive relationship between biodiversity and ecosystem stability has been reported in many ecosystems; however, it has yet to be determined whether and how spatial scale affects this relationship. Here, for the first time, we assessed the effects of alpha, beta and gamma diversity on ecosystem stability and the scale dependence of the slope of the diversity–stability relationship.By employing a long-term (33 years) dataset from a temperate grassland, northern China, we calculated the all possible spatial scales with the complete combination from the basic 1-m2 plots.Species richness was positively associated with ecosystem stability through species asynchrony and overyielding at all spatial scales (1, 2, 3, 4 and 5 m2). Both alpha and beta diversity were positively associated with gamma stability.Moreover, the slope of the diversity–area relationship was significantly higher than that of the stability–area relationship, resulting in a decline of the slope of the diversity–stability relationship with increasing area.Synthesis. With the positive species diversity effect on ecosystem stability from small to large spatial scales, our findings demonstrate the need to maintain a high biodiversity and biotic heterogeneity as insurance against the risks incurred by ecosystems in the face of global environmental changes. PMID:29725139

  11. The stability of locus equation slopes across stop consonant voicing/aspiration

    NASA Astrophysics Data System (ADS)

    Sussman, Harvey M.; Modarresi, Golnaz

    2004-05-01

    The consistency of locus equation slopes as phonetic descriptors of stop place in CV sequences across voiced and voiceless aspirated stops was explored in the speech of five male speakers of American English and two male speakers of Persian. Using traditional locus equation measurement sites for F2 onsets, voiceless labial and coronal stops had significantly lower locus equation slopes relative to their voiced counterparts, whereas velars failed to show voicing differences. When locus equations were derived using F2 onsets for voiced stops that were measured closer to the stop release burst, comparable to the protocol for measuring voiceless aspirated stops, no significant effects of voicing/aspiration on locus equation slopes were observed. This methodological factor, rather than an underlying phonetic-based explanation, provides a reasonable account for the observed flatter locus equation slopes of voiceless labial and coronal stops relative to voiced cognates reported in previous studies [Molis et al., J. Acoust. Soc. Am. 95, 2925 (1994); O. Engstrand and B. Lindblom, PHONUM 4, 101-104]. [Work supported by NIH.

  12. Time shift in slope failure prediction between unimodal and bimodal modeling approaches

    NASA Astrophysics Data System (ADS)

    Ciervo, Fabio; Casini, Francesca; Nicolina Papa, Maria; Medina, Vicente

    2016-04-01

    Together with the need to use more appropriate mathematical expressions for describing hydro-mechanical soil processes, a challenge issue relates to the need of considering the effects induced by terrain heterogeneities on the physical mechanisms, taking into account the implications of the heterogeneities in affecting time-dependent hydro-mechanical variables, would improve the prediction capacities of models, such as the ones used in early warning systems. The presence of the heterogeneities in partially-saturated slopes results in irregular propagation of the moisture and suction front. To mathematically represent the "dual-implication" generally induced by the heterogeneities in describing the hydraulic terrain behavior, several bimodal hydraulic models have been presented in literature and replaced the conventional sigmoidal/unimodal functions; this presupposes that the scale of the macrostructure is comparable with the local scale (Darcy scale), thus the Richards' model can be assumed adequate to mathematically reproduce the processes. The purpose of this work is to focus on the differences in simulating flow infiltration processes and slope stability conditions originated from preliminary choices of hydraulic models and contextually between different approaches to evaluate the factor of safety (FoS). In particular, the results of two approaches are compared. The first one includes the conventional expression of the FoS under saturated conditions and the widespread used hydraulic model of van Genuchten-Mualem. The second approach includes a generalized FoS equation for infinite-slope model under variably saturated soil conditions (Lu and Godt, 2008) and the bimodal Romano et al.'s (2011) functions to describe the hydraulic response. The extension of the above mentioned approach to the bimodal context is based on an analytical method to assess the effects of the hydraulic properties on soil shear developed integrating a bimodal lognormal hydraulic function

  13. Investigation on the water retention curve of loose pyroclastic ashes of Campania (Italy) and its potential implications on slope stability

    NASA Astrophysics Data System (ADS)

    Comegna, Luca; Damiano, Emilia; Greco, Roberto; Olivares, Lucio; Piccolo, Marco; Picarelli, Luciano

    2017-04-01

    Loose pyroclastic soils in Campania cover a large amount of steep slopes in the area surrounding the volcanic complex of Somma-Vesuvius. The stability of such slopes is assured by the contribution of suction to soil shear strength, which decreases during rainy periods till the possible attainment of a failure condition. The resulting landslide may evolve in form of a fast flow, if at the onset of instability the soil is nearly saturated and undrained conditions establish, so that soil liquefaction arises. The attainment of instability near saturation is not uncommon, as it requires the slope to have an inclination close to the friction angle of the soil constituting the deposit. The pyroclastic ashes of Campania are typically silty sands with friction angle between 36° and 38°, and small or even null cohesion. Many of the flow-like landslides, occurred during the last decades, were indeed triggered along slopes with inclination around 40°, which are quite common in Campania. As a suction of few kPa may be enough to guarantee the stability of a slope, knowledge of the water retention curve of the soil constituting the deposit is mandatory to correctly predict soil conditions at failure. Several studies report that the pyroclastic ashes of Campania exhibit a quite complex water retention behavior, showing a bimodal porosity distribution and, in some cases, a marked hysteresis domain, possibly enhanced by air entrapment during the infiltration of steep wetting fronts. In this study, a series of vertical infiltration and evaporation cycles have been carried out over two reconstituted specimens, both 20cm high, of pyroclastic ashes collected at the slope of Cervinara. TDR probes and minitensiometers were buried at various depths to provide coupled measurements of soil water content and suction. In order to highlight the possible hysteretic effects due to air entrapment, different hydraulic boundary conditions were established at the base of the two specimens: in one

  14. Purpose-driven public sector reform: the need for within-government capacity build for the management of slope stability in communities in the Caribbean.

    PubMed

    Anderson, Malcolm; Holcombe, Liz

    2006-01-01

    This article stresses the importance of within-government capacity build as the optimal approach to minimizing landslide risk to the most vulnerable communities in the developing world. Landslide risk is an integrated issue that demands strong managerial leadership and multidisciplinary inclusion to develop structures that deliver sustainable improvements in the reduction of risk. The tension between projects demanding international technical and financial intervention and those capable of "within-country" solutions are examined. More particularly, the challenges of developing a management methodology capable of energizing inter-ministry collaboration to achieve community-level action is examined in the context of a recently established program of slope stability management in St. Lucia. The program, Management of Slope Stability in Communities (MoSSaiC), is shown to have successfully fostered not only extensive technical collaboration within government but also to have energized local communities in the shared mission of capacity build through their direct involvement in the management process.

  15. Purpose-Driven Public Sector Reform: The Need for Within-Government Capacity Build for the Management of Slope Stability in Communities in the Caribbean

    NASA Astrophysics Data System (ADS)

    Anderson, Malcolm; Holcombe, Liz

    2006-01-01

    This article stresses the importance of within-government capacity build as the optimal approach to minimizing landslide risk to the most vulnerable communities in the developing world. Landslide risk is an integrated issue that demands strong managerial leadership and multidisciplinary inclusion to develop structures that deliver sustainable improvements in the reduction of risk. The tension between projects demanding international technical and financial intervention and those capable of “within-country” solutions are examined. More particularly, the challenges of developing a management methodology capable of energizing inter-ministry collaboration to achieve community-level action is examined in the context of a recently established program of slope stability management in St. Lucia. The program, Management of Slope Stability in Communities (MoSSaiC), is shown to have successfully fostered not only extensive technical collaboration within government but also to have energized local communities in the shared mission of capacity build through their direct involvement in the management process.

  16. Conceptualization of preferential flow for hillslope stability assessment

    NASA Astrophysics Data System (ADS)

    Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip

    2018-03-01

    This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.

  17. Efficient Meshfree Large Deformation Simulation of Rainfall Induced Soil Slope Failure

    NASA Astrophysics Data System (ADS)

    Wang, Dongdong; Li, Ling

    2010-05-01

    An efficient Lagrangian Galerkin meshfree framework is presented for large deformation simulation of rainfall-induced soil slope failure. Detailed coupled soil-rainfall seepage equations are given for the proposed formulation. This nonlinear meshfree formulation is featured by the Lagrangian stabilized conforming nodal integration method where the low cost nature of nodal integration approach is kept and at the same time the numerical stability is maintained. The initiation and evolution of progressive failure in the soil slope is modeled by the coupled constitutive equations of isotropic damage and Drucker-Prager pressure-dependent plasticity. The gradient smoothing in the stabilized conforming integration also serves as a non-local regularization of material instability and consequently the present method is capable of effectively capture the shear band failure. The efficacy of the present method is demonstrated by simulating the rainfall-induced failure of two typical soil slopes.

  18. Submarine slope failures along the convergent continental margin of the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Harders, Rieka; Ranero, CéSar R.; Weinrebe, Wilhelm; Behrmann, Jan H.

    2011-06-01

    We present the first comprehensive study of mass wasting processes in the continental slope of a convergent margin of a subduction zone where tectonic processes are dominated by subduction erosion. We have used multibeam bathymetry along ˜1300 km of the Middle America Trench of the Central America Subduction Zone and deep-towed side-scan sonar data. We found abundant evidence of large-scale slope failures that were mostly previously unmapped. The features are classified into a variety of slope failure types, creating an inventory of 147 slope failure structures. Their type distribution and abundance define a segmentation of the continental slope in six sectors. The segmentation in slope stability processes does not appear to be related to slope preconditioning due to changes in physical properties of sediment, presence/absence of gas hydrates, or apparent changes in the hydrogeological system. The segmentation appears to be better explained by changes in slope preconditioning due to variations in tectonic processes. The region is an optimal setting to study how tectonic processes related to variations in intensity of subduction erosion and changes in relief of the underthrusting plate affect mass wasting processes of the continental slope. The largest slope failures occur offshore Costa Rica. There, subducting ridges and seamounts produce failures with up to hundreds of meters high headwalls, with detachment planes that penetrate deep into the continental margin, in some cases reaching the plate boundary. Offshore northern Costa Rica a smooth oceanic seafloor underthrusts the least disturbed continental slope. Offshore Nicaragua, the ocean plate is ornamented with smaller seamounts and horst and graben topography of variable intensity. Here mass wasting structures are numerous and comparatively smaller, but when combined, they affect a large part of the margin segment. Farther north, offshore El Salvador and Guatemala the downgoing plate has no large seamounts but

  19. A new improved multicopter chassis structure tested on slope stability monitoring

    NASA Astrophysics Data System (ADS)

    Rossi, Guglielmo; Tanteri, Luca; Salvatici, Teresa; Scaduto, Gabriele; Tacconi Stefanelli, Carlo; Casagli, Nicola; Moretti, Sandro

    2017-04-01

    The multicopter has an increasing role in remote sensing and aerial photography. The piloting ease and the mechanical simplicity are the main reasons for drone diffusion as a hobby and for professional use. Usually multicopters have a "spider" structure with a central body and many radial arms that support the propulsion device. To improve the structure of the existing multicopter, the Department of Earth Sciences of Florence (DST) has developed and patented a new type of chassis structure that allows us to overcome some critical issues for scientific and heavy payload or long flight applications. The drone has an innovative perimetric chassis that fully supports flight dynamics. The new structure allows us to obtain high flight performance combined with low vibration transmission to the carried instruments. The new patented structure is implemented in two new prototypes of high performance drones completely developed by the Department of Earth Sciences of Florence: Saturn 2 and Saturn mini X-21. Saturn 2 is a high performance multi-role drone capable of carrying up to 14 kg of scientific instruments. Saturn Mini X-21 is a high performance drone, entirely 3D printed and specialized for digital and 3D rapid mapping. The Saturn mini X-21 was especially developed to obtain for the first time, by a drone, a 3D high resolution digital model for slope monitoring purposes of the Stromboli Sciara del Fuoco, a large inaccessible area that presents harsh flight conditions such as high persistent wind, rotors, volcanic ash and saltiness. The Saturn drones are mainly developed and tested, all around software and hardware, on slope stability monitoring. Four test cases are proposed, which were performed during the development and testing phase: a large area 3D survey (Scillato - Sicily), a harsh condition 3D survey (Stromboli -Sicily), a multitemporal 3D survey (Ricasoli - Tuscany) and the testing phase of measurement performed by onboard radar equipment.

  20. Seismic response of rock slopes: Numerical investigations on the role of internal structure

    NASA Astrophysics Data System (ADS)

    Arnold, L.; Applegate, K.; Gibson, M.; Wartman, J.; Adams, S.; Maclaughlin, M.; Smith, S.; Keefer, D. K.

    2013-12-01

    The stability of rock slopes is significantly influenced and often controlled by the internal structure of the slope created by such discontinuities as joints, shear zones, and faults. Under seismic conditions, these discontinuities influence both the resistance of a slope to failure and its response to dynamic loading. The dynamic response, which can be characterized by the slope's natural frequency and amplification of ground motion, governs the loading experienced by the slope in a seismic event and, therefore, influences the slope's stability. In support of the Network for Earthquake Engineering Simulation (NEES) project Seismically-Induced Rock Slope Failure: Mechanisms and Prediction (NEESROCK), we conducted a 2D numerical investigation using the discrete element method (DEM) coupled with simple discrete fracture networks (DFNs). The intact rock mass is simulated with a bonded assembly of discrete particles, commonly referred to as the bonded-particle model (BPM) for rock. Discontinuities in the BPM are formed by the insertion of smooth, unbonded contacts along specified planes. The influence of discontinuity spacing, orientation, and stiffness on slope natural frequency and amplification was investigated with the commercially available Particle Flow Code (PFC2D). Numerical results indicate that increased discontinuity spacing has a non-linear effect in decreasing the amplification and increasing the natural frequency of the slope. As discontinuity dip changes from sub-horizontal to sub-vertical, the slope's level of amplification increases while the natural frequency of the slope decreases. Increased joint stiffness decreases amplification and increases natural frequency. The results reveal that internal structure has a strong influence on rock slope dynamics that can significantly change the system's dynamic response and stability during seismic loading. Financial support for this research was provided by the United States National Science Foundation (NSF

  1. Coarse root topology of Norway spruce (Picea abies) and its effects on slope stability

    NASA Astrophysics Data System (ADS)

    Lith, Aniek; Schmaltz, Elmar; Bogaard, Thom; Keesstra, Saskia

    2017-04-01

    The structural distribution of coarse roots and its beneficial effects on soil reinforcement has widely been assessed. However, it is still not fully understood how topological features of coarse roots (e.g. branching patterns) are affected by slope inclination and further influence the ability of young trees to reinforce soil. This study aims to analyse empirically the impact of slope gradient on the topological development of coarse roots and thus to assess its effects on soil reinforcement. We performed root system excavations on two young Picea abies: tree A on a gently inclined plane (β ≈ 12°) where slope failures are not expected; tree B on a slope (β ≈ 35°) with failure potential. The diameter (d) of the segments between distinct root nodes (root ends, branching locations, direction changes and attachments to stem) of coarse roots (d > 2mm) were measured in situ. The spatial coordinates (x,y,z) of the nodes and surface were measured on a plane raster grid, from which segment length (ls), direction and inclination towards the surface (βr) were derived. Roots and segments were classified into laterals (βr < 10°), obliques (10° ≤ βr < 70°) and verticals (βr ≥ 70°), with βr,max = 90°. We assigned topological orders to the segments according to developmental (DSC) and functional segment classifications (FSC), to obtain quantitative relations between the topological order and number of segments, total and average ls. The maximal root cohesion (cr) of each segment was assessed using material specific tensile forces (Tr), root area ratio (RAR) and βr, assuming that a potential slip surface would cross the root system parallel to the slope. Laterals depicted the majority of roots (57 %) for tree A orientated rather in upslope direction (76.8 %), whereas tree B showed mostly obliques (54 %) orientated rather in downslope direction (55.4 %). Vertical roots were scarcely observable for both trees. DSC showed a high r2 (> 0.84) for the segments and

  2. A Preliminary Design of a Calibration Chamber for Evaluating the Stability of Unsaturated Soil Slope

    NASA Astrophysics Data System (ADS)

    Hsu, H.-H.

    2012-04-01

    The unsaturated soil slopes, which have ground water tables and are easily failure caused by heavy rainfalls, are widely distributed in the arid and semi-arid areas. For analyzing the stability of slope, in situ tests are the direct methods to obtain the test site characteristics. The cone penetration test (CPT) is a popular in situ test method. Some of the CPT empirical equations established from calibration chamber tests. The CPT performed in calibration chamber was commonly used clean quartz sand as testing material in the past. The silty sand is observed in many actual slopes. Because silty sand is relatively compressible than quartz sand, it is not suitable to apply the correlations between soil properties and CPT results built from quartz sand to silty sand. The experience on CPT calibration in silty sand has been limited. CPT calibration tests were mostly performed in dry or saturated soils. The condition around cone tip during penetration is assumed to be fully drained or fully undrained, yet it was observed to be partially drained for unsaturated soils. Because of the suction matrix has a great effect on the characteristics of unsaturated soils, they are much sensitive to the water content than saturated soils. The design of an unsaturated calibration chamber is in progress. The air pressure is supplied from the top plate and the pore water pressure is provided through the high air entry value ceramic disks located at the bottom plate of chamber cell. To boost and uniform distribute the unsaturated effect, four perforated burettes are installed onto the ceramic disks and stretch upwards to the midheight of specimen. This paper describes design concepts, illustrates this unsaturated calibration chamber, and presents the preliminary test results.

  3. Physical and geotechnical properties and assessment of sediment stability on the continental slope and basin of the Bransfield Basin (Antarctica Peninsula)

    USGS Publications Warehouse

    Casas, D.; Ercilla, G.; Estrada, F.; Alonso, B.; Baraza, J.; Lee, H.; Kayen, R.; Chiocci, F.

    2004-01-01

    Our investigation is centred on the continental slope of the Antarctic Peninsula and adjacent basin. Type of sediments, sedimentary stratigraphy, and physical and geotechnical characterization of the sediments have been integrated. Four different types of sediments have been defined: diamictons, silty and muddy turbidites, muddy, silty and muddy matrix embedded clast contourites. There is a close correspondence between the physical properties (density, magnetic susceptibility and p-wave velocity) and the texture and/or fabric as laminations and stratification. From a quantitative point of view, only a few statistical correlations between textural and physical properties have been found. Within the geotechnical properties, only water content is most influenced by texture. This slope, with a maximum gradient observed (20??), is stable, according to the stability under gravitational loading concepts, and the maximum stable slope that would range from 22?? to 29??. Nevertheless, different instability features have been observed. Volcanic activity, bottom currents, glacial loading-unloading or earthquakes can be considered as potential mechanisms to induce instability in this area. Copyright ?? Taylor & Francis Inc.

  4. A Hybrid FEM-ANN Approach for Slope Instability Prediction

    NASA Astrophysics Data System (ADS)

    Verma, A. K.; Singh, T. N.; Chauhan, Nikhil Kumar; Sarkar, K.

    2016-09-01

    Assessment of slope stability is one of the most critical aspects for the life of a slope. In any slope vulnerability appraisal, Factor Of Safety (FOS) is the widely accepted index to understand, how close or far a slope from the failure. In this work, an attempt has been made to simulate a road cut slope in a landslide prone area in Rudrapryag, Uttarakhand, India which lies near Himalayan geodynamic mountain belt. A combination of Finite Element Method (FEM) and Artificial Neural Network (ANN) has been adopted to predict FOS of the slope. In ANN, a three layer, feed- forward back-propagation neural network with one input layer and one hidden layer with three neurons and one output layer has been considered and trained using datasets generated from numerical analysis of the slope and validated with new set of field slope data. Mean absolute percentage error estimated as 1.04 with coefficient of correlation between the FOS of FEM and ANN as 0.973, which indicates that the system is very vigorous and fast to predict FOS for any slope.

  5. Slope evolution at the Calvert Cliffs, Maryland -- measuring the change from eroding bluffs to stable slopes

    USGS Publications Warehouse

    Herzog, Martha; Larsen, Curtis E.; McRae, Michele

    2002-01-01

    Despite a long history of geomorphic studies, it is difficult to ascertain the time required for slopes to change from near vertical exposures to relatively stable slopes due to inadequate age control. Actively eroding coastal bluffs along the western shore of the Chesapeake Bay provide a key for understanding the centennial-scale development of stable slopes from eroding bluff faces. The Calvert Cliffs are composed of sandy silts, silty sands, and clayey silts of Miocene-age. Active wave erosion at the bluff toes encourages rapid sloughing from bluff faces and maintains slope angles of 70-80 degrees and relatively constant bluff-retreat rates. Naturally stabilized slopes are preserved as a fossil bluff line inland from a prograding cuspate foreland at Cove Point. The foreland is migrating southward at a rate of ca. 1.5 m/yr. As it moves south, it progressively protects bluffs from wave action as new beaches are deposited at their toes. Wave erosion is reinitiated at the northern end of the complex as the landform passes. An incremental record of slope change is preserved along the fossil bluff line. 14C dating of swales between beach ridges shows the complex to span 1700 years of progressive migration history. We hypothesized that slopes would change from steep, eroding faces to low-angle slopes covered with vegetation and sought to document the rate of change. Our team measured slope angles at intervals along the fossil bluff line and dated profiles by interpolating 14C ages of adjacent beach ridges. There was no progressive decrease in slope with age. All slopes along the fossil bluff line were 30-40 degrees with a mean of 35 degrees. Constancy in slope angle suggests that steep, actively eroding bluffs were quickly changed to stable slopes by landslides and slumping once they were protected. Given the accuracy of our age control, we conclude that the time required to attain a stable slope under natural processes is less than one century. This indicates that

  6. Correction of broadband albedo measurements affected by unknown slope and sensor tilts

    NASA Astrophysics Data System (ADS)

    Weiser, Ursula; Olefs, Marc; Schöner, Wolfgang; Weyss, Gernot; Hynek, Bernhard

    2017-02-01

    Geometric effects induced by the underlying terrain slope or by tilt errors of radiation sensors lead to an erroneous measurement of snow or ice albedo. Consequently, diurnal albedo variations are observed. A general method to correct tilt errors of albedo measurements in cases where tilts of both the sensors and the slopes are not accurately measured or known is presented. Atmospheric parameters for this correction method can either be taken from a nearby well-maintained and horizontally levelled measurement of global radiation or alternatively from a solar radiation model. In a next step the model is fitted to the measured data to determine tilts and directions of the sensors and the underlying terrain slope. This then allows to correct the measured albedo, the radiative balance and the energy balance. Depending on the direction of the slope and the sensors a comparison between measured and corrected albedo values reveals obvious over-or underestimations of albedo.

  7. Observations of Radiation Divergence and Stability Driven Slope Flows during the Field Experiment KASCADE

    NASA Astrophysics Data System (ADS)

    Duine, Gert-Jan; Durand, Pierre; Hedde, Thierry; Roubin, Pierre; Augustin, Patrick; Fourmentin, Marc; Lohou, Fabienne; Lothon, Marie

    2014-05-01

    This work is in the frame of the PhD-thesis entitled "Dispersion of pollutants in stable boundary layer conditions in the middle valley of the Durance", financed by the Commissariat à l'Energie Atomique (CEA) and jointly supervised by CEA and Laboratoire d'Aérologie (LA), Toulouse. It takes place in a wider context of R & D work performed at CEA to characterize the site specific atmospheric conditions, with a view to improve the knowledge of the impact of the potential release of pollutants. During the winter of 2013 the intensive field measurement campaign KASCADE (KAtabatic winds and Stability over CAdarache for Dispersion of Effluents) has been carried out at Cadarache, a research centre of CEA, located in South-Eastern France. The stability of the lower atmospheric boundary layer caused by radiative cooling at night, combined with the local orography, strongly affects the conditions for the dispersion of potential pollutants. Understanding the complex patterns of drainage flow and cold pool build up in the smaller valleys confluent to the Durance river is thus a major issue for refining the models used to assess the sanitary and environmental impact of Cadarache. Stability is easily formed in the region and in combination with the orographic complexity, there is a need to study the Stable Boundary Layer (SBL), which potentially can have a large impact on the dispersion of gaseous emissions released by the various facilities of Cadarache. KASCADE was designed to characterize the local SBL in order to feed future planned numerical simulations with WRF and impact studies involving numerical models coping with dispersion. With a focus on night time, a combination of continuous observations (SODAR and a flux-measurement tower of 30 meter [M30]) and 23 Intensive Observational Periods (IOPs) (Tethered Balloon [TB] profiling and radio-soundings) allows to study the relevant phenomena for SBL-formation. M30 was equipped with sonic anemometers at 3 levels for

  8. Do Crisis Response Operations Affect Political and Economic Stability?

    DTIC Science & Technology

    2003-05-01

    military presence itself actually affects overall levels of political and economic stability is still an open question. We look at the following two...relationship between military actions and political and economic stability . In this paper, we focus only on the crisis response piece of the overseas presence issue.

  9. Pressure-Dependent Friction on Granular Slopes Close to Avalanche.

    PubMed

    Crassous, Jérôme; Humeau, Antoine; Boury, Samuel; Casas, Jérôme

    2017-08-04

    We investigate the sliding of objects on an inclined granular surface close to the avalanche threshold. Our experiments show that the stability is driven by the surface deformations. Heavy objects generate footprintlike deformations which stabilize the objects on the slopes. Light objects do not disturb the sandy surfaces and are also stable. For intermediate weights, the deformations of the surface generate a sliding of the objects. The solid friction coefficient does not follow the Amontons-Coulomb laws, but is found minimal for a characteristic pressure. Applications to the locomotion of devices and animals on sandy slopes as a function of their mass are proposed.

  10. Pressure-Dependent Friction on Granular Slopes Close to Avalanche

    NASA Astrophysics Data System (ADS)

    Crassous, Jérôme; Humeau, Antoine; Boury, Samuel; Casas, Jérôme

    2017-08-01

    We investigate the sliding of objects on an inclined granular surface close to the avalanche threshold. Our experiments show that the stability is driven by the surface deformations. Heavy objects generate footprintlike deformations which stabilize the objects on the slopes. Light objects do not disturb the sandy surfaces and are also stable. For intermediate weights, the deformations of the surface generate a sliding of the objects. The solid friction coefficient does not follow the Amontons-Coulomb laws, but is found minimal for a characteristic pressure. Applications to the locomotion of devices and animals on sandy slopes as a function of their mass are proposed.

  11. Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.

    PubMed

    Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B

    2015-04-17

    Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability. Copyright © 2015, American Association for the Advancement of Science.

  12. Effects of grapevine root density and reinforcement on slopes prone to shallow slope instability

    NASA Astrophysics Data System (ADS)

    Meisina, Claudia; Bordoni, Massimiliano; Bischetti, Gianbattista; Vercesi, Alberto; Chiaradia, Enrico; Cislaghi, Alessio; Valentino, Roberto; Bittelli, Marco; Vergani, Chiara; Chersich, Silvia; Giuseppina Persichillo, Maria; Comolli, Roberto

    2016-04-01

    density and root strength have been combined in a physical model (Fiber Bundle Model), for the assessment of the trends of the root reinforcement in soil. The results of this study have contributed to identify root distribution behaviours, in different agricultural and environmental conditions, that have not been enough to guarantee slope stability or that can promote an increase of it. This can furnish important indications for a better identification of slopes more susceptible to slope instabilities and for improving land planning.

  13. Rock Slope Design Criteria : Executive Summary Report

    DOT National Transportation Integrated Search

    2010-06-01

    Based on the stratigraphy and the type of slope stability problems, the flat lying, Paleozoic age, sedimentary rocks of Ohio were divided into three design units: 1) competent rock design unit consisting of sandstones, limestones, and siltstones that...

  14. A rill erosion-vegetation modeling approach for the evaluation of slope reclamation success in water-limited environments

    NASA Astrophysics Data System (ADS)

    Moreno de las Heras, Mariano; Diaz Sierra, Ruben; Nicolau, Jose M.; Zavala, Miguel A.

    2013-04-01

    Slope reclamation from surface mining and road construction usually shows important constraints in water-limited environments. Soil erosion is perceived as a critical process, especially when rill formation occurs, as rills can condition the spatial distribution and availability of soil moisture for plant growth, hence affecting vegetation development. On the other hand, encouraging early vegetation establishment is essential to reduce the risk of degradation in these man-made systems. This work describes a modeling approach focused on stability analysis of water-limited reclaimed slopes, where interactive relationships between rill erosion and vegetation regulate ecosystem stability. Our framework reproduces two main groups of trends along the temporal evolution of reclaimed slopes: successful trends, characterized by widespread vegetation development and the effective control of rill erosion processes; and gullying trends, characterized by the progressive loss of vegetation and a sharp logistic increase in erosion rates. Furthermore, this analytical approach allows the determination of threshold values for both vegetation cover and rill erosion that drive the system's stability, facilitating the identification of critical situations that require specific human intervention (e.g. revegetation or, in very problematic cases, revegetation combined with rill network destruction) to ensure the long-term sustainability of the restored ecosystem. We apply our threshold analysis framework in Mediterranean-dry reclaimed slopes derived form surface coal mining (the Teruel coalfield in central-east Spain), obtaining a good field-based performance. Therefore, we believe that this model is a valuable contribution for the management of water-limited reclaimed systems, as it can play an important role in decision-making during ecosystem restoration and provides a tool for the assessment of restoration success in severely disturbed landscapes.

  15. How does slope form affect erosion in CATFLOW-SED?

    NASA Astrophysics Data System (ADS)

    Gabelmann, Petra; Wienhöfer, Jan; Zehe, Erwin

    2016-04-01

    Erosion is a severe environmental problem in agro-ecosystems with highly erodible loess soils. It is controlled by various factors, e.g. rainfall intensity, initial wetness conditions, soil type, land use and tillage practice. Furthermore slope form and gradient have been shown to influence erosion amounts to a large extent. Within the last fifty years, various erosion models have been developed to describe the erosion process, estimate erosion amounts and identify erosion-prone areas. These models differ in terms of complexity, the processes which are considered, and the data required for model calibration and they can be categorised into empirical or statistical, conceptual, and physically-based models. CATFLOW-SED is a process-based hydrology and erosion model that can operate on catchment and hillslope scales. Soil water dynamics are described by the Richards equation including effective approaches for preferential flow. Evapotranspiration is simulated using an approach based on the Penman-Monteith equation. The model simulates overland flow using the diffusion wave equation. Soil detachment is related to the attacking forces of rainfall and overland flow, and the erosion resistance of soil. Sediment transport capacity and sediment deposition are related to overland flow velocity using the equation of Engelund and Hansen and the sinking velocity of grain sizes respectively. We performed a study to analyse the erosion process on different virtual hillslopes, with varying slope gradient and slope form, using the CATFLOW-SED model. We explored the role of landform on erosion and sedimentation, particularly we look for forms that either maximise or minimise erosion. Results indicate the importance to performing the process implementation within physically meaningful limits and choose appropriate model parameters respectively.

  16. Snow and Frost Depths on North and South Slopes

    Treesearch

    Richard S. Sartz

    1973-01-01

    Aspect affects soil frost depth by influencing the amount of solar radiation received at the ground or snow surface. Depending on the conditions, frost can be of equal depth on north and south slopes, deeper on north slopes, or deeper on south slopes. Data illustrate all three conditions

  17. At similar angles, slope walking has a greater fall risk than stair walking.

    PubMed

    Sheehan, Riley C; Gottschall, Jinger S

    2012-05-01

    According to the CDC, falls are the leading cause of injury for all age groups with over half of the falls occurring during slope and stair walking. Consequently, the purpose of this study was to compare and contrast the different factors related to fall risk as they apply to these walking tasks. More specifically, we hypothesized that compared to level walking, slope and stair walking would have greater speed standard deviation, greater ankle dorsiflexion, and earlier peak activity of the tibialis anterior. Twelve healthy, young male participants completed level, slope, and stair trials on a 25-m walkway. Overall, during slope and stair walking, medial-lateral stability was less, anterior-posterior stability was less, and toe clearance was greater in comparison to level walking. In addition, there were fewer differences between level and stair walking than there were between level and slope walking, suggesting that at similar angles, slope walking has a greater fall risk than stair walking. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Spatial variability and its main controlling factors of the permafrost soil-moisture on the northern-slope of Bayan Har Mountains in Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    Cao, W.; Sheng, Y.

    2017-12-01

    The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions. It is very critical to protect the alpine ecology and hydrologic cycle in Qinghai-Tibet Plateau. Especially, it becomes one of the key problems to reveal the spatial-temporal variability of soil moisture movement and its main influence factors in earth system science. Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study. The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree (CART) is adopted to identify the main controlling factors influencing the soil moisture movement. And the relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis (CCA). The results show that: 1) the change of the soil moisture on the permafrost slope is divided into 4 stages, including the freezing stability phase, the rapid thawing phase, the thawing stability phase and the fast freezing phase; 2) this greatly enhances the horizontal flow in the freezing period due to the terrain slope and the freezing-thawing process. Vertical migration is the mainly form of the soil moisture movement. It leads to that the soil-moisture content in the up-slope is higher than that in the down-slope. On the contrary, the soil-moisture content in the up-slope is lower than that in the down-slope during the melting period; 3) the main environmental factors which affect the slope-permafrost soil-moisture are elevation, soil texture, soil temperature and vegetation coverage. But there are differences in the impact factors of the soil moisture in different

  19. The dependence of sea surface slope on atmospheric stability and swell conditions

    NASA Technical Reports Server (NTRS)

    Hwang, Paul A.; Shemdin, Omar H.

    1988-01-01

    A tower-mounted optical device is used to measure the two-orthogonal components of the sea surface slope. The results indicate that an unstable stratification at the air-sea interface tends to enhance the surface roughness. The presence of a long ocean swell system steers the primary direction of shortwave propagation away from wind direction, and may increase or reduce the mean square slope of the sea surface.

  20. Sediment Transport and Slope Stability of Ship Shoal Borrow Areas for Coastal Restoration of Louisiana

    NASA Astrophysics Data System (ADS)

    Liu, H.; Xu, K.; Bentley, S. J.; Li, C.; Miner, M. D.; Wilson, C.; Xue, Z.

    2017-12-01

    Sandy barrier islands along Louisiana coast are degrading rapidly due to both natural and anthropogenic factors. Ship Shoal is one of the largest offshore sand resources, and has been used as a borrow area for Caminada Headland Restoration Project. Our knowledge of sediment transport and infilling processes in this new sandy and dynamic borrow area is rather limited. High resolution sub-bottom seismic data, side scan sonar images, multi-beam bathymetry and laser sediment grain size data were used to study seafloor morphological evolution and pit wall stability in response to both physical and geological processes. The multi-beam bathymetry and seismic profiling inside the pit showed that disequilibrium conditions led to rapid infilling in the pits at the beginning, but this process slowed down after the pit slope became stable and topography became smooth. We hypothesize that the erosion of the adjacent seabed sediment by energetic waves and longshore currents, the supply of suspended sediment from the rivers, and the erodible materials produced by local mass wasting on pit walls are three main types of infilling sediments. Compared with mud-capped dredge pits, this sandy dredge pit seems to have more gentle slopes on pit walls, which might be controlled by the angle of repose. Infilling sediment seems to be dominantly sandy, with some mud patches on bathymetric depressions. This study helps us better understand the impacts of mining sediment for coastal restoration and improves sand resource management efforts.

  1. Desirable plant root traits for protecting unstable slopes against landslides

    NASA Astrophysics Data System (ADS)

    Stokes, A.; Atger, C.; Bengough, G.; Fourcaud, T.; Sidle, R. C.

    2009-04-01

    determine slope stability. Rooting depth is species dependent when soil conditions are not limiting and the number of horizontal lateral roots borne on the vertical roots usually changes with depth. Therefore, the number and orientation of roots that the shear surface intersects will change significantly with rooting depth for the same plant, even for magnitudes of only several cm. Similarly, depending on the geometry of the root system, the angle at which a root crosses the shear surface can also have an influence on its resistance to pullout and breakage. The angle at which a root emerges from the parent root is dependent on root type, depth and species (when soil conditions are not limiting). Due to the physiology of roots, a root branch can be initiated at any point along a parent root, but not necessarily emerge fully from the parent root. These traits, along with others including size, relative growth rate, regeneration strategies, wood structure and strength will be discussed with regard to their influence on slope stability. How each of these traits is influenced by soil conditions and plantation techniques is also of extreme importance to the landslide engineer. The presence of obstacles in the soil, as well as compaction, affects root length and branching pattern. Roots of many species of woody plants on shallow soils also tend to grow along fractures deep into the underlying bedrock which allows roots to locate supplies of nutrient and water rich pockets. Rooting depths of herbaceous species in water-limited environments are highly correlated with infiltration depth, but waterlogged soils can asphyxiate tree roots, resulting in shallow root systems. The need to understand and integrate each of these traits for a species is not easy. Therefore, we suggest a hierarchy whereby traits are considered in order of importance, along with how external factors influence their expression over time.

  2. Recent slope failures in the Dolomites (Northeastern Italian Alps) in a context of climate change

    NASA Astrophysics Data System (ADS)

    Chiarle, Marta; Paranunzio, Roberta; Laio, Francesco; Nigrelli, Guido; Guzzetti, Fausto

    2014-05-01

    Climate change in the Greater Alpine Region is seriously affecting permafrost distribution, with relevant consequences on slope stability. In the Italian Alps, the number of failures from rockwalls at high elevation markedly increased in the last 20-30 years: the consistent temperature increase, which warmed twice than the global average, may have seriously influenced slope stability, in terms of glaciers retreat and permafrost degradation. Moreover, the growing number of tourists and activities in alpine regions (in particular in the Dolomites) made these areas particularly critical in relation to natural hazards. In this light, an integrated short-term geomorphological and climatic analysis was performed, in order to better comprehend the impact of main climate elements (especially temperature and precipitation) on slope failures in high mountain areas. In this contribution, we focus on three recent slope failures occurred at high elevation sites in the Dolomites (Northeastern Italian Alps), declared a UNESCO World Heritage Site in August 2009. We describe here three important rock falls occurred in the autumn 2013: 1) the Sorapiss rock fall, on 30 September 2013; 2) the Monte Civetta rock fall, on 16 November 2013; 3) the Monte Antelao rock fall, on 22 November 2013. The Monte Civetta rock fall damaged some climbing routes, while the other two landslides did not cause any damage or injury. Despite the limited volume involved, these three events represent an important warning sign in the context of ongoing climate change. Geomorphological information about the rock fall sites were combined with the climatic data acquired from the meteorological stations surrounding the slope failure areas. A short-term climatic analysis was performed, with the aim of understanding the role of the main climatic elements in the triggering of natural instability events in this area and in the Alps in general.

  3. Slope Reinforcement with the Utilization of the Coal Waste Anthropogenic Material

    NASA Astrophysics Data System (ADS)

    Gwóźdź-Lasoń, Monika

    2017-10-01

    The protection of the environment, including waste management, is one of the pillars of the policy of the Europe. The application which is presented in that paper tries to show a trans-disciplinary way to design geotechnical constructions - slope stability analysis. The generally accepted principles that the author presents are numerous modelling patterns of earth retaining walls as slope stabilization system. The paper constitutes an attempt to summarise and generalise earlier researches which involved FEM numeric procedures and the Z_Soil package. The design of anthropogenic soil used as a material for reinforced earth retaining walls, are not only of commercial but of environmental importance as well and consistent with the concept of sustainable development and the need to redevelop brownfield. This paper tries to show conceptual and empirical modelling approaches to slope stability system used in anthropogenic soil formation such as heaps, resulting from mining, with a special focus on urban areas of South of Poland and perspectives of anthropogenic materials application in geotechnical engineering are discussed.

  4. Electrodynamic pressure modulation of protein stability in cosolvents.

    PubMed

    Damodaran, Srinivasan

    2013-11-19

    Cosolvents affect structural stability of proteins in aqueous solutions. A clear understanding of the mechanism by which cosolvents impact protein stability is critical to understanding protein folding in a biological milieu. In this study, we investigated the Lifshitz-van der Waals dispersion interaction of seven different solutes with nine globular proteins and report that in an aqueous medium the structure-stabilizing solutes exert a positive electrodynamic pressure, whereas the structure-destabilizing solutes exert a negative electrodynamic pressure on the proteins. The net increase in the thermal denaturation temperature (ΔTd) of a protein in 1 M solution of various solutes was linearly related to the electrodynamic pressure (PvdW) between the solutes and the protein. The slope of the PvdW versus ΔTd plots was protein-dependent. However, we find a positive linear relationship (r(2) = 0.79) between the slope (i.e., d(ΔTd)/dPvdW) and the adiabatic compressibility (βs) of the proteins. Together, these results clearly indicate that the Lifshitz's dispersion forces are inextricably involved in solute-induced stabilization/destabilization of globular proteins. The positive and/or negative electrodynamic pressure generated by the solute-protein interaction across the water medium seems to be the fundamental mechanism by which solutes affect protein stability. This is at variance with the existing preferential hydration concept. The implication of these results is significant in the sense that, in addition to the hydrophobic effect that drives protein folding, the electrodynamic forces between the proteins and solutes in the biological milieu also might play a role in the folding process as well as in the stability of the folded state.

  5. Slope stability improvement using low intensity field electrosmosis

    NASA Astrophysics Data System (ADS)

    Armillotta, Pasquale

    2014-05-01

    The electrosmosis technique has been introduced in the past for slope stabilization. However, its application to real cases has been scarce due to several drawbacks mostly related to the high intensity electric field needed (1.0 V/cm or higher): the rapid degradation of the electrodes, the high system management cost, the heating and cracking of the soil and the reduction of its colloidal fraction. Thanks to the introduction of new materials, the technique is currently applied to decrease the consolidation time of saturated clay soils (forcing the elimination of water), consequently improving its mechanical strength. In clay soils, the volume variation is influenced by the presence of smectites. The clay compressibility decreases with the increasing of electrolytes concentration. Soil containing smectites that have interacted with calcium showed a reduction or the absence of swelling during hydration with distilled water and a positive increase of their shear strength. The different values of pH between the anode (acid) and the cathode (basic), induced by the electrosmosis create the conditions for the precipitation of CaCO3 near the cathode. The injection of solutions containing calcium in soils and their diffusion induced by the electrosmosis, lead to calcium precipitation and consequential increase of the shear strength. The material technological advances and the laboratory experiences described in this paper, demonstrate that the use low electric field (0.1 V/cm or lower) intensity electrosmosis (LEFE in acronym) can be effective for soil dewatering and shear strength increase while reducing its adverse effect. The LEFE can be used to: reduce the potential for swelling of active clay minerals through the introduction of ions and the precipitation of hardening substances; induce the "dewatering" in cohesive soils. Several Lab activities were carried out, using custom made electrosmosis equipment. These activities can be divided in two phases: Phase 1

  6. Slope instability in complex 3D topography promoted by convergent 3D groundwater flow

    NASA Astrophysics Data System (ADS)

    Reid, M. E.; Brien, D. L.

    2012-12-01

    Slope instability in complex topography is generally controlled by the interaction between gravitationally induced stresses, 3D strengths, and 3D pore-fluid pressure fields produced by flowing groundwater. As an example of this complexity, coastal bluffs sculpted by landsliding commonly exhibit a progression of undulating headlands and re-entrants. In this landscape, stresses differ between headlands and re-entrants and 3D groundwater flow varies from vertical rainfall infiltration to lateral groundwater flow on lower permeability layers with subsequent discharge at the curved bluff faces. In plan view, groundwater flow converges in the re-entrant regions. To investigate relative slope instability induced by undulating topography, we couple the USGS 3D limit-equilibrium slope-stability model, SCOOPS, with the USGS 3D groundwater flow model, MODFLOW. By rapidly analyzing the stability of millions of potential failures, the SCOOPS model can determine relative slope stability throughout the 3D domain underlying a digital elevation model (DEM), and it can utilize both fully 3D distributions of pore-water pressure and material strength. The two models are linked by first computing a groundwater-flow field in MODFLOW, and then computing stability in SCOOPS using the pore-pressure field derived from groundwater flow. Using these two models, our analyses of 60m high coastal bluffs in Seattle, Washington showed augmented instability in topographic re-entrants given recharge from a rainy season. Here, increased recharge led to elevated perched water tables with enhanced effects in the re-entrants owing to convergence of groundwater flow. Stability in these areas was reduced about 80% compared to equivalent dry conditions. To further isolate these effects, we examined groundwater flow and stability in hypothetical landscapes composed of uniform and equally spaced, oscillating headlands and re-entrants with differing amplitudes. The landscapes had a constant slope for both

  7. Probabilistic analysis algorithm for UA slope software program.

    DOT National Transportation Integrated Search

    2013-12-01

    A reliability-based computational algorithm for using a single row and equally spaced drilled shafts to : stabilize an unstable slope has been developed in this research. The Monte-Carlo simulation (MCS) : technique was used in the previously develop...

  8. Evolution of strain localization in variable-width three-dimensional unsaturated laboratory-scale cut slopes

    USGS Publications Warehouse

    Morse, Michael S.; Lu, Ning; Wayllace, Alexandra; Godt, Jonathan W.

    2017-01-01

    To experimentally validate a recently developed theory for predicting the stability of cut slopes under unsaturated conditions, the authors measured increasing strain localization in unsaturated slope cuts prior to abrupt failure. Cut slope width and moisture content were controlled and varied in a laboratory, and a sliding door that extended the height of the free face of the slope was lowered until the cut slope failed. A particle image velocimetry tool was used to quantify soil displacement in the x-y">x-y (horizontal) and x-z">x-z (vertical) planes, and strain was calculated from the displacement. Areas of maximum strain localization prior to failure were shown to coincide with the location of the eventual failure plane. Experimental failure heights agreed with the recently developed stability theory for unsaturated cut slopes (within 14.3% relative error) for a range of saturation and cut slope widths. A theoretical threshold for sidewall influence on cut slope failures was also proposed to quantify the relationship between normalized sidewall width and critical height. The proposed relationship was consistent with the cut slope experiment results, and is intended for consideration in future geotechnical experiment design. The experimental data of evolution of strain localization presented herein provide a physical basis from which future numerical models of strain localization can be validated.

  9. Centrifuge Modeling of Rainfall Induced Slope Failure

    NASA Astrophysics Data System (ADS)

    Ling, H.; Wu, M.

    2006-12-01

    Rainfall induces slope failure and debris flow which are considered as one of the major natural disasters. The scope of such failure is very large and it cannot be studied easily in the laboratory. Traditionally, small scale model tests are used to study such problem. Knowing that the behavior of soil is affected by the stress level, centrifuge modeling technique has been used to simulate more realistically full scale earth structures. In this study, two series of tests were conducted on slopes under the centrifugal field with and without the presence of rainfall. The soil used was a mixture of sand and 15 percent fines. The slopes of angle 60 degrees were prepared at optimum water content in order to achieve the maximum density. In the first series of tests, three different slope heights of 10 cm, 15 cm and 20 cm were used. The gravity was increased gradually until slope failure in order to obtain the prototype failure height. The slope model was cut after the test in order to obtain the configuration of failure surface. It was found that the slope geometry normalized by the height at failure provided unique results. Knowing the slope height or gravity at failure, the second series of tests with rainfall were conducted slightly below the critical height. That is, after attaining the desired gravity, the rainfall was induced in the centrifuge. Special nozzles were used and calibrated against different levels of gravity in order to obtain desired rainfall intensity. Five different rainfall intensities were used on the 15-cm slopes at 80g and 60g, which corresponded to 12 m and 9 m slope height, respectively. The duration until failure for different rainfall intensities was obtained. Similar to the first series of tests, the slope model was cut and investigated after the test. The results showed that the failure surface was not significantly affected by the rainfall. That is, the excess pore pressure induced by rainfall generated slope failure. The prediction curves

  10. Bio-engineering for land stabilization : executive summary report.

    DOT National Transportation Integrated Search

    2010-06-30

    Soil-bioengineering, or simply : bioengineering, is the use of vegetation for : slope stabilization. Currently, a large : number of slopes near Ohio highways are : experiencing stability problems. These : failures usually begin as local erosion...

  11. Numerical slope stability simulations of chasma walls in Valles Marineris/Mars using a distinct element method (dem).

    NASA Astrophysics Data System (ADS)

    Imre, B.

    2003-04-01

    NUMERICAL SLOPE STABILITY SIMULATIONS OF CHASMA WALLS IN VALLES MARINERIS/MARS USING A DISTINCT ELEMENT METHOD (DEM). B. Imre (1) (1) German Aerospace Center, Berlin Adlershof, bernd.imre@gmx.net The 8- to 10-km depths of Valles Marineris (VM) offer excellent views into the upper Martian crust. Layering, fracturing, lithology, stratigraphy and the content of volatiles have influenced the evolution of the Valles Marineris wallslopes. But these parameters also reflect the development of VM and its wall slopes. The scope of this work is to gain understanding in these parameters by back-simulating the development of wall slopes. For that purpose, the two dimensional Particle Flow Code PFC2D has been chosen (ITASCA, version 2.00-103). PFC2D is a distinct element code for numerical modelling of movements and interactions of assemblies of arbitrarily sized circular particles. Particles may be bonded together to represent a solid material. Movements of particles are unlimited. That is of importance because results of open systems with numerous unknown variables are non-unique and therefore highly path dependent. This DEM allows the simulation of whole development paths of VM walls what makes confirmation of the model more complete (e.g. Oreskes et al., Science 263, 1994). To reduce the number of unknown variables a proper (that means as simple as possible) field-site had to be selected. The northern wall of eastern Candor Chasma has been chosen. This wall is up to 8-km high and represents a significant outcrop of the upper Martian crust. It is quite uncomplex, well-aligned and of simple morphology. Currently the work on the model is at the stage of performing the parameter study. Results will be presented via poster by the EGS-Meeting.

  12. Measuring acoustic emissions in an avalanche slope

    NASA Astrophysics Data System (ADS)

    Reiweger, Ingrid; Schweizer, Jürg

    2014-05-01

    Measurements of acoustic emissions are a common technique for monitoring damage and predicting imminent failure of a material. Within natural hazards it has already been used to successfully predict the break-off of a hanging glacier. To explore the applicability of the acoustic emission (AE) technique for avalanche prediction, we installed two acoustic sensors (with 30 kHz and 60 kHz resonance frequency) in an avalanche prone slope at the Mittelgrat in the Parsenn ski area above Davos, Switzerland. The slope is north-east facing, frequently wind loaded, and approximately 35° steep. The AE signals - in particular the event energy and waiting time distributions - were compared with slope stability. The latter was determined by observing avalanche activity. The results of two winter's measurements yielded that the exponent β of the inverse cumulative distribution of event energy showed a significant drop (from a value of 3.5 to roughly 2.5) at very unstable conditions, i.e. on the three days during our measurement periods when spontaneous avalanches released on our study slope.

  13. Significant effect of the posterior tibial slope and medial/lateral ligament balance on knee flexion in total knee arthroplasty.

    PubMed

    Fujimoto, Eisaku; Sasashige, Yoshiaki; Masuda, Yasuji; Hisatome, Takashi; Eguchi, Akio; Masuda, Tetsuo; Sawa, Mikiya; Nagata, Yoshinori

    2013-12-01

    The intra-operative femorotibial joint gap and ligament balance, the predictors affecting these gaps and their balances, as well as the postoperative knee flexion, were examined. These factors were assessed radiographically after a posterior cruciate-retaining total knee arthroplasty (TKA). The posterior condylar offset and posterior tibial slope have been reported as the most important intra-operative factors affecting cruciate-retaining-type TKAs. The joint gap and balance have not been investigated in assessments of the posterior condylar offset and the posterior tibial slope. The femorotibial gap and medial/lateral ligament balance were measured with an offset-type tensor. The femorotibial gaps were measured at 0°, 45°, 90° and 135° of knee flexion, and various gap changes were calculated at 0°-90° and 0°-135°. Cruciate-retaining-type arthroplasties were performed in 98 knees with varus osteoarthritis. The 0°-90° femorotibial gap change was strongly affected by the posterior condylar offset value (postoperative posterior condylar offset subtracted by the preoperative posterior condylar offset). The 0°-135° femorotibial gap change was significantly correlated with the posterior tibial slope and the 135° medial/lateral ligament balance. The postoperative flexion angle was positively correlated with the preoperative flexion angle, γ angle and the posterior tibial slope. Multiple-regression analysis demonstrated that the preoperative flexion angle, γ angle, posterior tibial slope and 90° medial/lateral ligament balance were significant independent factors for the postoperative knee flexion angle. The flexion angle change (postoperative flexion angle subtracted by the preoperative flexion angle) was also strongly correlated with the preoperative flexion angle, posterior tibial slope and 90° medial/lateral ligament balance. The postoperative flexion angle is affected by multiple factors, especially in cruciate-retaining-type TKAs. However, it is

  14. Antecedent topography and morphological controls on sediment accumulation and slope stability of the U.S. Atlantic margin

    NASA Astrophysics Data System (ADS)

    Hill, J. C.; Brothers, D. S.; Ten Brink, U. S.; Andrews, B. D.

    2017-12-01

    The U.S. Atlantic margin encompasses a wide variety of slope failure processes, ranging from small canyon-confined failures on the upper slope to large, open slope landslides originating in deeper water. Here we used a suite of high-resolution multibeam bathymetry and detailed multichannel seismic data coverage to investigate the relationship between modern seafloor morphology, pre-existing stratigraphy and sediment accumulation patterns. We suggest that a combination of sediment supply and antecedent margin physiography, whereby variations in margin evolution during the Miocene have influenced the modern seafloor morphology, controls both the location of slope sediment accumulation and the style of slope failure. Oversteepened margins with angular shelf breaks and steep upper slopes, referred to as oblique margins, are characterized by downslope mass transport and densely-spaced canyon formation. These margins are most likely the locus of canyon-confined failures and smaller lower slope fan-apron failures (e.g., much of the Mid-Atlantic). Sigmoidal margins with prograded slopes, a rounded shelf edge, and a low gradient slope morphology can support significant sediment accumulation across a broad area, with limited canyon development. These margins are often associated with high sediment supply and are prone to large, upper slope slab-style failures (e.g., the Hudson Apron, southwestern New England, the Currituck and Cape Fear Slide complexes). Areas with morphologies in between these two end members are characterized by limited shelf-edge accommodation space and large-scale lower slope accumulation and onlap, representing transitional stages of equilibrium slope adjustment. Large failures along these intermediate-type margins tend to develop lower on the slope where thick wedges of onlapping sediment are found (e.g., around Washington Canyon, Cape Lookout and southeastern New England). As antecedent topography and sediment loading appear to play an important role

  15. GB-InSAR monitoring of slope deformations in a mountainous area affected by debris flow events

    NASA Astrophysics Data System (ADS)

    Frodella, William; Salvatici, Teresa; Pazzi, Veronica; Morelli, Stefano; Fanti, Riccardo

    2017-10-01

    Diffuse and severe slope instabilities affected the whole Veneto region (north-eastern Italy) between 31 October and 2 November 2010, following a period of heavy and persistent rainfall. In this context, on 4 November 2010 a large detrital mass detached from the cover of the Mt. Rotolon deep-seated gravitational slope deformation (DSGSD), located in the upper Agno River valley, channelizing within the Rotolon Creek riverbed and evolving into a highly mobile debris flow. The latter phenomena damaged many hydraulic works, also threatening bridges, local roads, and the residents of the Maltaure, Turcati, and Parlati villages located along the creek banks and the town of Recoaro Terme. From the beginning of the emergency phase, the civil protection system was activated, involving the National Civil Protection Department, Veneto Region, and local administrations' personnel and technicians, as well as scientific institutions. On 8 December 2010 a local-scale monitoring system, based on a ground-based interferometric synthetic aperture radar (GB-InSAR), was implemented in order to evaluate the slope deformation pattern evolution in correspondence of the debris flow detachment sector, with the final aim of assessing the landslide residual risk and managing the emergency phase. This paper describes the results of a 2-year GB-InSAR monitoring campaign (December 2010-December 2012) and its application for monitoring, mapping, and emergency management activities in order to provide a rapid and easy communication of the results to the involved technicians and civil protection personnel, for a better understanding of the landslide phenomena and the decision-making process in a critical landslide scenario.

  16. Response mechanism of post-earthquake slopes under heavy rainfall

    NASA Astrophysics Data System (ADS)

    Qiu, Hong-zhi; Kong, Ji-ming; Wang, Ren-chao; Cui, Yun; Huang, Sen-wang

    2017-07-01

    This paper uses the catastrophic landslide that occurred in Zhongxing Town, Dujiangyan City, as an example to study the formation mechanism of landslides induced by heavy rainfall in the post-Wenchuan earthquake area. The deformation characteristics of a slope under seismic loading were investigated via a shaking table test. The results show that a large number of cracks formed in the slope due to the tensile and shear forces of the vibrations, and most of the cracks had angles of approximately 45° with respect to the horizontal. A series of flume tests were performed to show how the duration and intensity of rainfall influence the responses of the shaken and non-shaken slopes. Wetting fronts were recorded under different rainfall intensities, and the depth of rainfall infiltration was greater in the shaken slope than in the non-shaken slope because the former experienced a greater extreme rainfall intensity under the same early rainfall and rainfall duration conditions. At the beginning of the rainfall infiltration experiment, the pore water pressure in the slope was negative, and settling occurred at the top of the slope. With increasing rainfall, the pore water pressure changed from negative to positive, and cracks were observed on the back surface of the slope and the shear outlet of the landslide on the front of the slope. The shaken slope was more susceptible to crack formation than the non-shaken slope under the same rainfall conditions. A comparison of the responses of the shaken and non-shaken slopes under heavy rainfall revealed that cracks formed by earthquakes provided channels for infiltration. Soil particles in the cracks of slopes were washed away, and the pore water pressure increased rapidly, especially the transient pore water pressure in the slope caused by short-term concentrated rainfall which decreased rock strength and slope stability.

  17. Submarine slope failures in the Beaufort Sea; Influence of gas hydrate decomposition

    NASA Astrophysics Data System (ADS)

    Grozic, J. L.; Dallimore, S.

    2012-12-01

    The continental shelf of the Beaufort Sea is composed of complex of marine and non-marine sequences of clay, silt, and sand. In many areas of the shelf these sediments contain occurrences of ice-bonded permafrost and associated pressure and temperature conditions that are conducive to the occurrence of methane gas hydrates. This complex environment is undergoing dramatic warming, where changes in sea level, ocean bottom temperatures, and geothermal regimes are inducing permafrost thawing and gas hydrate decomposition. Decomposition is inferred to be occurring at the base and top of the gas hydrate stability zone, which will cause sediment weakening and the generation of excess water and free gas. In such settings, the overlying permafrost cap may act as a permeability barrier, which could result in significant excess pore pressures and reduction in sediment stability. The shelf to slope transition is thought to be an area of extensive regional instability with acoustic records indicating there is upwards of 500 km of slumps and glides extending over the entire Beaufort margin. Some of these slide regions are coincident with up-dip limit of the permafrost gas hydrate stability zone. In this paper, a two dimensional model of the Beaufort shelf was constructed to examine the influence of gas hydrate decomposition on slope stability. The model relies on available data on the Beaufort sediments generated from offshore hydrocarbon exploration in the 1980s and 90s, as well as knowledge available from multidisciplinary marine research programs conducted in the outer shelf area. The slope stability model investigates the influence of marine transgression and ocean bottom warming by coupling soil deformation with hydrate dissociation during undrained conditions. By combining mechanical and thermal loading of the sediment, a more accurate indication of slope stability was obtained. The stability analysis results indicate a relatively low factor of safety for the Beaufort

  18. Assessment of rock mechanical properties and seismic slope stability in variably weathered layered basalts

    NASA Astrophysics Data System (ADS)

    Greenwood, William; Clark, Marin; Zekkos, Dimitrios; Von Voigtlander, Jennifer; Bateman, Julie; Lowe, Katherine; Hirose, Mitsuhito; Anderson, Suzanne; Anderson, Robert; Lynch, Jerome

    2016-04-01

    A field and laboratory experimental study was conducted to assess the influence of weathering on the mechanical properties of basalts in the region of the Kohala volcano on the island of Hawaii. Through the systematic characterization of the weathering profiles developed in different precipitation regimes, we aim to explain the regional pattern of stability of slopes in layered basalts that were observed during the 2006 Mw 6.7 Kiholo Bay earthquake. While deeper weathering profiles on the wet side of the island might be expected to promote more and larger landslides, the distribution of landslides during the Kiholo Bay earthquake did not follow this anticipated trend. Landslide frequency (defined as number of landslides divided by total area) was similar on the steepest slopes (> 50-60) for both the dry and the wet side of the study area suggesting relatively strong ground materials irrespective of weathering. The study location is ideally suited to investigate the role of precipitation, and more broadly of climate, on the mechanical properties of the local rock units because the presence of the Kohala volcano produces a significant precipitation gradient on what are essentially identical basaltic flows. Mean annual precipitation (MAP) varies by more than an order of magnitude, from 200 mm/year on the western side of the volcano to 4000 mm/year in the eastern side. We will present results of measured shear wave velocities using a seismic surface wave methodology. These results were paired with laboratory testing on selected basalt specimens that document the sample-scale shear wave velocity and unconfined compressive strength of the basaltic rocks. Shear wave velocity and unconfined strength of the rocks are correlated and are both significantly lower in weathered rocks near the ground surface than at depth. This weathering-related reduction in shear wave velocity extends to greater depths in areas of high precipitation compared to areas of lower precipitation

  19. Application of dynamic programming to evaluate the slope stability of a vertical extension to a balefill.

    PubMed

    Kremen, Arie; Tsompanakis, Yiannis

    2010-04-01

    The slope-stability of a proposed vertical extension of a balefill was investigated in the present study, in an attempt to determine a geotechnically conservative design, compliant with New Jersey Department of Environmental Protection regulations, to maximize the utilization of unclaimed disposal capacity. Conventional geotechnical analytical methods are generally limited to well-defined failure modes, which may not occur in landfills or balefills due to the presence of preferential slip surfaces. In addition, these models assume an a priori stress distribution to solve essentially indeterminate problems. In this work, a different approach has been applied, which avoids several of the drawbacks of conventional methods. Specifically, the analysis was performed in a two-stage process: (a) calculation of stress distribution, and (b) application of an optimization technique to identify the most probable failure surface. The stress analysis was performed using a finite element formulation and the location of the failure surface was located by dynamic programming optimization method. A sensitivity analysis was performed to evaluate the effect of the various waste strength parameters of the underlying mathematical model on the results, namely the factor of safety of the landfill. Although this study focuses on the stability investigation of an expanded balefill, the methodology presented can easily be applied to general geotechnical investigations.

  20. Posterior tibial slope as a risk factor for anterior cruciate ligament rupture in soccer players.

    PubMed

    Senişik, Seçkin; Ozgürbüz, Cengizhan; Ergün, Metin; Yüksel, Oğuz; Taskiran, Emin; Işlegen, Cetin; Ertat, Ahmet

    2011-01-01

    Anterior cruciate ligament (ACL) is the primary stabilizer of the knee. An impairment of any of the dynamic or static stability providing factors can lead to overload on the other factors and ultimately to deterioration of knee stability. This can result in anterior tibial translation and rupture of the ACL. The purpose of this study was to examine the influence of tibial slope on ACL injury risk on soccer players. A total of 64 elite soccer players and 45 sedentary controls were included in this longitudinal and controlled study. The angle between the tibial mid-diaphysis line and the line between the anterior and posterior edges of the medial tibial plateau was measured as the tibial slope via lateral radiographs. Individual player exposure, and injuries sustained by the participants were prospectively recorded. Eleven ACL injuries were documented during the study period. Tibial slope was not different between soccer players and sedentary controls. Tibial slope in the dominant and non-dominant legs was greater for the injured players compared to the uninjured players. The difference reached a significant level only for the dominant legs (p < 0.001). While the tibial slopes of the dominant and non-dominant legs were not different on uninjured players (p > 0.05), a higher tibial slope was observed in dominant legs of injured players (p < 0.05). Higher tibial slope on injured soccer players compared to the uninjured ones supports the idea that the tibial slope degree might be an important risk factor for ACL injury. Key pointsDominant legs' tibial slopes of the injured players were significantly higher compared to the uninjured players (p < 0.001).Higher tibial slope was determined in dominant legs compared to the non-dominant side, for the injured players (p = 0.042). Different tibial slope measures in dominant and non-dominant legs might be the result of different loading and/or adaptation patterns in soccer.

  1. Impact of slope inclination on salt accumulation

    NASA Astrophysics Data System (ADS)

    Nachshon, Uri

    2017-04-01

    Field measurements indicated on high variability in salt accumulation along natural and cultivated slopes, even for relatively homogeneous soil conditions. It was hypothesised that slope inclination has an impact on the location of salt accumulation along the slope. A set of laboratory experiments and numerical models were used to explore the impact of slope inclination on salt accumulation. It was shown, experimentally, that for conditions of saline water source at the lower boundary of the slope - salt accumulates in low concentrations and homogeneously along the entire slope, for moderate slopes. However, as inclination increases high salt concentrations were observed at the upper parts of the slope, leaving the lower parts of the slope relatively free of salt. The traditional flow and transport models did not predict the experimental observations as they indicated also for the moderate slopes on salt accumulation in the elevated parts of the slope, away of the saline water source. Consequently - a conceptual model was raised to explain the laboratory observations. It was suggested that the interactions between slope angle, evaporation rates, hydraulic conductivity of the medium and distribution of wetness along the slope affect the saline water flow path through the medium. This lead to preferential flow path close to the soil-atmosphere interface for the steep slopes, which leads to constant wash of the salts from the evaporation front upward towards the slope upper parts, whereas for the moderate slopes, flow path is below the soil-atmosphere interface, therefore salt that accumulates at the evaporation front is not being transported upward. Understanding of salt dynamics along slopes is important for agricultural and natural environments, as well as for civil engineering purposes. Better understanding of the salt transport processes along slopes will improve our ability to minimize and to cope with soil salinization processes. The laboratory experiments and

  2. Slope Stability Analysis for Shallow Landslides using TRIGRS: A Case Study for Sta. Cruz, Zambales, Philippines

    NASA Astrophysics Data System (ADS)

    Mendoza, J. P. A.

    2016-12-01

    The Philippines, being located in the circum-Pacific, bounded by multiple subduction zones, open seas and ocean, is one of the most hazard-prone countries in the world (Benson, 1997). This widespread recurrence of natural hazards in the country requires much attention for disaster management (Aurelio, 2006). On the average, 21 typhoons enter the Philippine area of responsibility annually with 6-9 making a landfall. Several rainfall-induced landslide events are reported annually particularly during and after the inundation of major typhoons which imposes hazards to communities and causes destruction of properties due to the moving mass and possible flash floods it may induce. Shallow landslides are the most commonly observed failure involving soil-mantled slopes and are considered major geohazards, often causing property damage and other economic loss. Hence numerous studies on landslide susceptibility including numerical models based on infinite slope equation are used in order to identify slopes prone to occurrences of shallow landslides. The study aims to determine the relationships between the slope and elevation to the factor of safety for laterite-mantled topography by incorporating precipitation values in the determination of landslide susceptibility. Using a DEM, flow direction map and slope map of the Sta Cruz (Zambales, Philippines), the FORTRAN based program TRIGRS, was used to generate the values for the factors of safety in the study area. Overlays with a generated slope map and elevation map were used to determine relationships of the mentioned factors and the factors of safety. A slope in a topography mantled with lateritic soil will fail at a slope angle higher than 20 degrees. Generally, the factor of safety decreases as the slope angle increases; this increases the probability and risk of slope failure. Elevation has no bearing on the computation for the factor of safety. The factor of safety is heavily dependent on the slope angle. The value of

  3. Correction of broadband snow albedo measurements affected by unknown slope and sensor tilts

    NASA Astrophysics Data System (ADS)

    Weiser, Ursula; Olefs, Marc; Schöner, Wolfgang; Weyss, Gernot; Hynek, Bernhard

    2016-04-01

    Geometric effects induced by the underlying terrain slope or by tilt errors of the radiation sensors lead to an erroneous measurement of snow or ice albedo. Consequently, artificial diurnal albedo variations in the order of 1-20 % are observed. The present paper proposes a general method to correct tilt errors of albedo measurements in cases where tilts of both the sensors and the slopes are not accurately measured or known. We demonstrate that atmospheric parameters for this correction model can either be taken from a nearby well-maintained and horizontally levelled measurement of global radiation or alternatively from a solar radiation model. In a next step the model is fitted to the measured data to determine tilts and directions of sensors and the underlying terrain slope. This then allows us to correct the measured albedo, the radiative balance and the energy balance. Depending on the direction of the slope and the sensors a comparison between measured and corrected albedo values reveals obvious over- or underestimations of albedo. It is also demonstrated that differences between measured and corrected albedo are generally highest for large solar zenith angles.

  4. Design and Application of a Field Sensing System for Ground Anchors in Slopes

    PubMed Central

    Choi, Se Woon; Lee, Jihoon; Kim, Jong Moon; Park, Hyo Seon

    2013-01-01

    In a ground anchor system, cables or tendons connected to a bearing plate are used for stabilization of slopes. Then, the stability of a slope is dependent on maintaining the tension levels in the cables. So far, no research on a strain-based field sensing system for ground anchors has been reported. Therefore, in this study, a practical monitoring system for long-term sensing of tension levels in tendons for anchor-reinforced slopes is proposed. The system for anchor-reinforced slopes is composed of: (1) load cells based on vibrating wire strain gauges (VWSGs), (2) wireless sensor nodes which receive and process the signals from load cells and then transmit the result to a master node through local area communication, (3) master nodes which transmit the data sent from sensor nodes to the server through mobile communication, and (4) a server located at the base station. The system was applied to field sensing of ground anchors in the 62 m-long and 26 m-high slope at the side of the highway. Based on the long-term monitoring, the safety of the anchor-reinforced slope can be secured by the timely applications of re-tensioning processes in tendons. PMID:23507820

  5. Side slope stability of articulated-frame logging tractors

    Treesearch

    H.G. Gibson; K.C. Elliott; S.P.E. Persson

    1971-01-01

    Many log or pulpwood transporting machines have hinged or articulated frames for steering. The articulated frame offers advantages for these machines, but the design introduces some problems in stability. We formulated and analyzed a mathematical model simulating stability of a 4-wheel-drive, articulated frame logging tractor (wheeled skidder) at static or low constant...

  6. TRIGRS - A Fortran Program for Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis, Version 2.0

    USGS Publications Warehouse

    Baum, Rex L.; Savage, William Z.; Godt, Jonathan W.

    2008-01-01

    The Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Model (TRIGRS) is a Fortran program designed for modeling the timing and distribution of shallow, rainfall-induced landslides. The program computes transient pore-pressure changes, and attendant changes in the factor of safety, due to rainfall infiltration. The program models rainfall infiltration, resulting from storms that have durations ranging from hours to a few days, using analytical solutions for partial differential equations that represent one-dimensional, vertical flow in isotropic, homogeneous materials for either saturated or unsaturated conditions. Use of step-function series allows the program to represent variable rainfall input, and a simple runoff routing model allows the user to divert excess water from impervious areas onto more permeable downslope areas. The TRIGRS program uses a simple infinite-slope model to compute factor of safety on a cell-by-cell basis. An approximate formula for effective stress in unsaturated materials aids computation of the factor of safety in unsaturated soils. Horizontal heterogeneity is accounted for by allowing material properties, rainfall, and other input values to vary from cell to cell. This command-line program is used in conjunction with geographic information system (GIS) software to prepare input grids and visualize model results.

  7. Multiple calibrator measurements improve accuracy and stability estimates of automated assays.

    PubMed

    Akbas, Neval; Budd, Jeffrey R; Klee, George G

    2016-01-01

    The effects of combining multiple calibrations on assay accuracy (bias) and measurement of calibration stability were investigated for total triiodothyronine (TT3), vitamin B12 and luteinizing hormone (LH) using Beckman Coulter's Access 2 analyzer. Three calibration procedures (CC1, CC2 and CC3) combined 12, 34 and 56 calibrator measurements over 1, 2, and 3 days. Bias was calculated between target values and average measured value over 3 consecutive days after calibration. Using regression analysis of calibrator measurements versus measurement date, calibration stability was determined as the maximum number of days before a calibrator measurement exceeded 5% tolerance limits. Competitive assays (TT3, vitamin B12) had positive time regression slopes, while sandwich assay (LH) had a negative slope. Bias values for TT3 were -2.49%, 1.49%, and -0.50% using CC1, CC2 and CC3 respectively, with calibrator stability of 32, 20, and 30 days. Bias values for vitamin B12 were 2.44%, 0.91%, and -0.50%, with calibrator stability of 4, 9, and 12 days. Bias values for LH were 2.26%, 1.44% and -0.29% with calibrator stability of >43, 39 and 36 days. Measured stability was more consistent across calibration procedures using percent change rather than difference from target: 26 days for TT3, 12 days for B12 and 31 days for LH. Averaging over multiple calibrations produced smaller bias, consistent with improved accuracy. Time regression slopes in percent change were unaffected by number of calibration measurements but calibrator stability measured from the target value was highly affected by the calibrator value at time zero.

  8. Network-scale dynamics of sediment mixtures: how do tectonics affect surface bed texture and channel slope?

    NASA Astrophysics Data System (ADS)

    Gasparini, N. M.; Bras, R. L.; Tucker, G. E.

    2003-04-01

    An alluvial channel's slope and bed texture are intimately linked. Along with fluvial discharge, these variables are the key players in setting alluvial transport rates. We know that both channel slope and mean grain size usually decrease downstream, but how sensitive are these variables to tectonic changes? Are basin concavity and downstream fining drastically disrupted during transitions from one tectonic regime to another? We explore these questions using the CHILD numerical landscape evolution model to generate alluvial networks composed of a sand and gravel mixture. The steady-state and transient patterns of both channel slope and sediment texture are investigated. The steady-state patterns in slope and sediment texture are verified independently by solving the erosion equations under equilibrium conditions, i.e. the case when the erosion rate is equal to the uplift rate across the entire landscape. The inclusion of surface texture as a free parameter (as opposed to just channel slope) leads to some surprising results. In all cases, an increase in uplift rate results in channel beds which are finer at equilibrium (for a given drainage area). Higher uplift rates imply larger equilibrium transport rates; this leads to finer channels that have a smaller critical shear stress to entrain material, and therefore more material can be transported for a given discharge (and channel slope). Changes in equilibrium slopes are less intuitive. An increase in uplift rates can cause channel slopes to increase, remain the same, or decrease, depending on model parameter values. In the surprising case in which equilibrium channel slopes decrease with increasing uplift rates, we suggest that surface texture changes more than compensate for the required increase in transport rates, causing channel slopes to decrease. These results highlight the important role of sediment grain size in determining transport rates and caution us against ignoring this important variable in fluvial

  9. Zonation of Landslide-Prone Using Microseismic Method and Slope Analysis in Margoyoso, Magelang

    NASA Astrophysics Data System (ADS)

    Aditya, Muchamad Reza; Fauqi Romadlon, Arriqo’; Agra Medika, Reymon; Alfontius, Yosua; Delva Jannet, Zukhruf; Hartantyo, Eddy

    2018-04-01

    Margoyoso Village, Salaman Sub-district, Magelang Regency, Central Java is one of the villages that were included in landslide prone areas. The steep slopes and land use in this village were quite apprehensive. There were fractures with 5 cm in width and a length of 50 m. Moreover, these fractures appeared in the home residents. Although the local government has established a disaster response organization, this village is still not getting adequate information about the landslide prone areas. Based on the description before, we conducted research with geophysical methods and geotechnical analysis to minimize the danger of landslides. The geophysical method used in this research was microseismic method and geotechnical analysis. The microseismic measurement and slope stability analysis at Margoyoso village was a step in analysing the landslide-prone zone boundary. The results of this research indicated that landslide potential areas had a low peak ground acceleration values with a range from 36 gal to 46 gal. Measurement of slope stability indicated that a slope angle values between 55°-78° are a potential landslide slope because the soil in this village has very loose properties so it is very easy to move.

  10. A model for predicting embankment slope failures in clay-rich soils; A Louisiana example

    NASA Astrophysics Data System (ADS)

    Burns, S. F.

    2015-12-01

    A model for predicting embankment slope failures in clay-rich soils; A Louisiana example It is well known that smectite-rich soils significantly reduce the stability of slopes. The question is how much smectite in the soil causes slope failures. A study of over 100 sites in north and south Louisiana, USA, compared slopes that failed during a major El Nino winter (heavy rainfall) in 1982-1983 to similar slopes that did not fail. Soils in the slopes were tested for per cent clay, liquid limits, plasticity indices and semi-quantitative clay mineralogy. Slopes with the High Risk for failure (85-90% chance of failure in 8-15 years after construction) contained soils with a liquid limit > 54%, a plasticity index over 29%, and clay contents > 47%. Slopes with an Intermediate Risk (55-50% chance of failure in 8-15 years) contained soils with a liquid limit between 36-54%, plasticity index between 16-19%, and clay content between 32-47%. Slopes with a Low Risk chance of failure (< 5% chance of failure in 8-15 years after construction) contained soils with a liquid limit < 36%, a plasticity index < 16%, and a clay content < 32%. These data show that if one is constructing embankments and one wants to prevent slope failure of the 3:1 slopes, check the above soil characteristics before construction. If the soils fall into the Low Risk classification, construct the embankment normally. If the soils fall into the High Risk classification, one will need to use lime stabilization or heat treatments to prevent failures. Soils in the Intermediate Risk class will have to be evaluated on a case by case basis.

  11. Agricultural terraces and slope instability at Cinque Terre (NW Italy)

    NASA Astrophysics Data System (ADS)

    Brandolini, Pierluigi; Cevasco, Andrea

    2015-04-01

    Cinque Terre, located in the eastern Liguria, are one of the most representative examples of terraced coastal landscape within the Mediterranean region. They are the result of a century-old agricultural practice and constitute an outstanding example of human integration with the natural landscape. For this highly unusual man-made coastal landscape, the Cinque Terre have been recognized as a World Heritage Site by UNESCO since 1997 and became National Park in 1999. The complex network of retaining dry stone walls and drainage networks ensured through times the control of shallow water erosion and therefore, indirectly, favoured debris cover stability. The lack of maintenance of terracing due to farmer abandonment since the 1950s led to widespread slope erosion phenomena. The effects of such phenomena culminated during the 25 October 2011 storm rainfall event, when slope debris materials charged by streams gave rise to debris floods affecting both Monterosso and Vernazza villages. As the analysis of the relationships between geo-hydrological processes and land use in the Vernazza catchment highlighted, abandoned and not well maintained terraces were the most susceptible areas to shallow landsliding and erosion triggered by intense rainfall. As a consequence, the thousands of kilometres of dry stone walls retaining millions of cubic metres of debris cover at Cinque Terre currently constitute a potential menace for both villages, that are mainly located at the floor of deep cut valleys, and tourists. Given the increasing human pressure due to tourist activities, geo-hydrological risk mitigation measures are urgently needed. At the same time, restoration policies are necessary to preserve this extraordinary example of terraced coastal landscape. In this framework, the detailed knowledge of the response of terraced areas to intense rainfall in terms of slope instability is a topic issue in order to identify adequate land planning strategies as well as the areas where

  12. Multiple slope failures shaped the lower continental slope offshore NW Svalbard in the Fram Strait

    NASA Astrophysics Data System (ADS)

    Osti, Giacomo; Mienert, Jürgen; Forwick, Matthias; Sverre Laberg, Jan

    2016-04-01

    Bathymetry data show that the lower slope (between 1300 m and 3000 m water depth) of the NW-Svalbard passive margin has been affected by multiple slope failure events. The single events differ in terms of extension, volume of mobilized sediments, morphology of the slide scar, run-out distance and age. As for several mega-scale and minor Arctic slides, the trigger mechanism is still speculative and may include high sedimentation rates, dissociation of gas hydrates, excess pore pressure, or earthquakes caused by isostatic rebound. In this study, we discuss the potential trigger mechanisms that have led to the multiple slope failure events within what we suggest to be named the Fram Strait Slide Complex. The slide complex lies in proximity to the tectonically active Spitsbergen Fracture Zone where earthquakes events, occurrences of potential weak layers in the sediment column, low sedimentation rates, and extended gas hydrate-bearing sediments may all have contributed to the causes leading to multiple slope failures. Preliminary results obtained from 14C dating on N. pachyderma sin. from sediment cores from the Spitsbergen Fracture Zone slides (SFZS 1 and 2), coupled with sub-bottom profiler data (frequency 9 to 15 KHz) show that the two shallowest glide planes within one of the observed slide scars failed ~100,000 and ~115,000 yr BP. Whilst SFZS 1 affected an area of 750 km2 mobilizing a total sediment volume of 40 km3, SFZS 2 moved an area of 230 km2 with a sediment volume of 4.5 km3.

  13. Factors affecting the stability of reverse shoulder arthroplasty: a biomechanical study.

    PubMed

    Clouthier, Allison L; Hetzler, Markus A; Fedorak, Graham; Bryant, J Tim; Deluzio, Kevin J; Bicknell, Ryan T

    2013-04-01

    Despite the success of reverse shoulder arthroplasty (RSA) in treating patients with painful pseudoparalytic shoulders, instability is a common complication and currently the factors affecting stability are not well understood. The objective of this study was to investigate a number of factors as well as the interactions between factors to determine how they affect the stability of the prosthesis. These factors included: active arm posture (abduction and abduction plane angles), loading direction, glenosphere diameter and eccentricity, and humeral socket constraint. Force required to dislocate the joint, determined using a biomechanical shoulder simulator, was used as a measure of stability. A factorial design experiment was implemented to examine the factors and interactions. Actively increasing the abduction angle by 15° leads to a 30% increase in stability and use of an inferior-offset rather than a centered glenosphere improved stability by 17%. Use of a more constrained humeral socket also increased stability; but the effect was dependent on loading direction, with a 88% improvement for superior loading, 66% for posterior, 36% for anterior, and no change for inferior loading. Abduction plane angle and glenosphere diameter had no effect on stability. Increased glenohumeral abduction and the use of an inferior-offset glenosphere were found to increase the stability of RSA. Additionally, use of a more constrained humeral socket increased stability for anterior, posterior, and superior loading. These identified factor effects have the potential to decrease the risk of dislocation following RSA. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  14. Large-scale Mass Transport Deposits in the Valencia Basin (Western Mediterranean): slope instability induced by rapid sea-level drawdown?

    NASA Astrophysics Data System (ADS)

    Cameselle, Alejandra L.; Urgeles, Roger; Llopart, Jaume

    2014-05-01

    The Messinian Salinity Crisis (MSC) strongly affected the physiography of the Mediterranean margins at the end of the Miocene. The sharp sea-level fall gave a new configuration to the Mediterranean basin and created dramatic morphological and sedimentological changes: margins have been largely eroded whereas the deep basins accumulated thick evaporitic and detrital units. Amongst these detrital units, there are evidences on seismic reflection data for major large-scale slope failure of the Mediterranean continental margins. About 2700 km of seismic reflection profiles in the southwestern part of the Valencia Basin (Western Mediterranean) have enabled us the detailed mapping of distinctive Messinian erosional surfaces, evaporites and deep detrital deposits. The detrital deposits occur in a distinct unit that is made of chaotic, roughly-bedded or transparent seismic bodies, which have been mainly mapped in the basin domain. Locally, the seismic unit shows discontinuous high-amplitude reflections and/or an imbricate internal structure. This unit is interpreted to be formed by a series of Mass Transport Deposits (MTDs). Rapid drawdown has long been recognized as one of the most severe loadings conditions that a slope can be subjected to. Several large historical slope failures have been documented to occur due to rapid drawdown in dams, riverbanks and slopes. During drawdown, the stabilizing effect of the water on the upstream face is lost, but the pore-water pressures within the slope may remain high. The dissipation of these pore pressures in the slope is controlled by the permeability and the storage characteristics of the slope sediments. We hypothesize that the MTDs observed in our data formed under similar conditions and represent a large-scale equivalent of this phenomenon. Therefore, these MTDs can be used to put some constraints on the duration of the drawdown phase of the MSC. We have performed a series of slope stability analysis under rapid Messinian sea

  15. Non-linear vibrating systems excited by a nonideal energy source with a large slope characteristic

    NASA Astrophysics Data System (ADS)

    González-Carbajal, Javier; Domínguez, Jaime

    2017-11-01

    This paper revisits the problem of an unbalanced motor attached to a fixed frame by means of a nonlinear spring and a linear damper. The excitation provided by the motor is, in general, nonideal, which means it is affected by the vibratory response. Since the system behaviour is highly dependent on the order of magnitude of the motor characteristic slope, the case of large slope is considered herein. Some Perturbation Methods are applied to the system of equations, which allows transforming the original 4D system into a much simpler 2D system. The fixed points of this reduced system and their stability are carefully studied. We find the existence of a Hopf bifurcation which, to the authors' knowledge, has not been addressed before in the literature. These analytical results are supported by numerical simulations. We also compare our approach and results with those published by other authors.

  16. Proportioning the airplane for lateral stability

    NASA Technical Reports Server (NTRS)

    Donlan, C. J.

    1976-01-01

    Proportioning for lateral aircraft control included: (1) directional stability (slope of curve of yawing moment coefficient against sideslip), and (2) effective dihedral factor (slope of curve of rolling moment coefficient against sideslip). Basic forces influencing the directional stability of aircraft are indicated. Propeller side force, basic fuselage yaw, and vertical tail side force contributed to yaw moment about center of gravity.

  17. Mechanical Stability of Stratified Sediments along the upper continental Slope off Vesterålen, northern Norway - Insights from in situ CPTU Tests

    NASA Astrophysics Data System (ADS)

    Voelker, D.; Stegmann, S.; Kreiter, S.; L'Heureux, J. S.; Vanneste, M. W. B.; Baeten, N. J.; Knudsen, S.; Rise, L.; Longva, O.; Brendryen, J.; Haflidason, H.; Chand, S.; Mörz, T.; Kopf, A.

    2015-12-01

    High-resolution single channel-seismic data (3.5 kHz) reveal small-scale submarine landslide structures and superficial deformation features (e.g. tension cracks) along the gently dipping (3°) upper continental slope west of the Vesterålen Archipelago off northern Norway. Previous laboratory-based geotechnical studies attest that the slope is per sestable and that seismic events in an order of magnitude M5.7 may have triggered the slope sediments to fail. Here we present geotechnical in situ data (sedimentary strength, pore pressure), which were obtained with RV Poseidon in summer 2014 using the static CPTU system GOST. The CPTU system provided high-resolution geotechnical profiles of the uppermost sediments to a maximum penetration depth of ~ 20 m at six sites within the landslide features and beside them in undisturbed slope sediments as reference. The CPTU data reveal the occurrence of mechanically weaker zones (MWZ) by the drop of sedimentary strength. These zones are interbedded by coarser, more competent layers. The occurrence of sensitive fine-grained material may be responsible for the loss of strength in the deeper portion (appx. 12 to 18 m below seafloor). An 1D infinite pseudo-static stability analysis attests that the mechanically weaker zones (MWZ) correlate well with portions, where the Factor of Safety (FoS) ≤ 1 (meta-stable to unstable) indicates permanent deformation or failure in case additional dynamic load is induced by an earthquake. Thus, the mechanically weak layers can be considered as one important pre-condition for landslide activity. In conclusion, the integration of in situ CPTU data with geophysical data improves soil characterization and hence foster a better understanding of the pre-conditioning factors for slope instability at the upper continental slope off Vesterålen. Risk assessment for the present-day slope off Vesterålen is particularly crucial, because the opening of the region for offshore oil and gas exploration is

  18. Geotechnical approach for occupational safety risk analysis of critical slope in open pit mining as implication for earthquake hazard

    NASA Astrophysics Data System (ADS)

    Munirwansyah; Irsyam, Masyhur; Munirwan, Reza P.; Yunita, Halida; Zulfan Usrina, M.

    2018-05-01

    Occupational safety and health (OSH) is a planned effort to prevent accidents and diseases caused by work. In conducting mining activities often occur work accidents caused by unsafe field conditions. In open mine area, there is often a slump due to unstable slopes, which can disrupt the activities and productivity of mining companies. Based on research on stability of open pit slopes conducted by Febrianti [8], the Meureubo coal mine located in Aceh Barat district, on the slope of mine was indicated unsafe slope conditions, it will be continued research on OSH for landslide which is to understand the stability of the excavation slope and the shape of the slope collapse. Plaxis software was used for this research. After analyzing the slope stability and the effect of landslide on OSH with Job Safety Analysis (JSA) method, to identify the hazard to work safety, risk management analysis will be conducted to classified hazard level and its handling technique. This research aim is to know the level of risk of work accident at the company and its prevention effort. The result of risk analysis research is very high-risk value that is > 350 then the activity must be stopped until the risk can be reduced to reach the risk value limit < 20 which is allowed or accepted.

  19. Cost estimation for slope stability improvement in Muara Enim

    NASA Astrophysics Data System (ADS)

    Juliantina, Ika; Sutejo, Yulindasari; Adhitya, Bimo Brata; Sari, Nurul Permata; Kurniawan, Reffanda

    2017-11-01

    Case study area of SP. Sugihwaras-Baturaja is typologically specified in the C-zone type because the area is included in the foot of the mountain with a slope of 0 % to 20 %. Generally, the factors that cause landslide in Muara Enim Regency due to the influence of soil/rock, water factor, geological factors, and human activities. Slope improvement on KM.273 + 642-KM.273 + 774 along 132 m using soil nailing with 19 mm diameter tendon iron and an angle of 20o and a 75 mm shotcrete thickness, a K-250 concrete grouting material. Cost modeling (y) soil nailing based on 4 variables are X1 = length, X2 = horizontal distance, X3 = safety factor (SF), and X4 = time. Nine variations were used as multiple linear regression equations and analyzed with SPSS.16.0 program. Based on the SPSS output, then attempt the classical assumption and feasibility test model which produced the model that is Cost = (1,512,062 + 194,354 length-1,649,135 distance + 187,831 SF + 54,864 time) million Rupiah. The budget plan includes preparatory work, drainage system, soil nailing, and shotcrete. An efficient cost estimate of 8 m length nail, 1.5 m installation distance, safety factor (SF) = 1.742 and a 30 day processing time resulted in a fee of Rp. 2,566,313,000.00 (Two billion five hundred sixty six million three hundred thirteen thousand rupiah).

  20. Does Tibial Slope Affect Perception of Coronal Alignment on a Standing Anteroposterior Radiograph?

    PubMed

    Schwartz, Adam J; Ravi, Bheeshma; Kransdorf, Mark J; Clarke, Henry D

    2017-07-01

    A standing anteroposterior (AP) radiograph is commonly used to evaluate coronal alignment following total knee arthroplasty (TKA). The impact of coronal alignment on TKA outcomes is controversial, perhaps due to variability in imaging and/or measurement technique. We sought to quantify the effect of image rotation and tibial slope on coronal alignment. Using a standard extramedullary tibial alignment guide, 3 cadaver legs were cut to accept a tibial tray at 0°, 3°, and 7° of slope. A computed tomography scan of the entire tibia was obtained for each specimen to confirm neutral coronal alignment. Images were then obtained at progressive 10° intervals of internal and external rotation up to 40° maximum in each direction. Images were then randomized and 5 blinded TKA surgeons were asked to determine coronal alignment. Continuous data values were transformed to categorical data (neutral [0], valgus [L], and varus [R]). Each 10° interval of external rotation of a 7° sloped tibial cut (or relative internal rotation of a tibial component viewed in the AP plane) resulted in perception of an additional 0.75° of varus. The slope of the proximal tibia bone cut should be taken into account when measuring coronal alignment on a standing AP radiograph. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Deterministic estimation of hydrological thresholds for shallow landslide initiation and slope stability models: case study from the Somma-Vesuvius area of southern Italy

    USGS Publications Warehouse

    Baum, Rex L.; Godt, Jonathan W.; De Vita, P.; Napolitano, E.

    2012-01-01

    Rainfall-induced debris flows involving ash-fall pyroclastic deposits that cover steep mountain slopes surrounding the Somma-Vesuvius volcano are natural events and a source of risk for urban settlements located at footslopes in the area. This paper describes experimental methods and modelling results of shallow landslides that occurred on 5–6 May 1998 in selected areas of the Sarno Mountain Range. Stratigraphical surveys carried out in initiation areas show that ash-fall pyroclastic deposits are discontinuously distributed along slopes, with total thicknesses that vary from a maximum value on slopes inclined less than 30° to near zero thickness on slopes inclined greater than 50°. This distribution of cover thickness influences the stratigraphical setting and leads to downward thinning and the pinching out of pyroclastic horizons. Three engineering geological settings were identified, in which most of the initial landslides that triggered debris flows occurred in May 1998 can be classified as (1) knickpoints, characterised by a downward progressive thinning of the pyroclastic mantle; (2) rocky scarps that abruptly interrupt the pyroclastic mantle; and (3) road cuts in the pyroclastic mantle that occur in a critical range of slope angle. Detailed topographic and stratigraphical surveys coupled with field and laboratory tests were conducted to define geometric, hydraulic and mechanical features of pyroclastic soil horizons in the source areas and to carry out hydrological numerical modelling of hillslopes under different rainfall conditions. The slope stability for three representative cases was calculated considering the real sliding surface of the initial landslides and the pore pressures during the infiltration process. The hydrological modelling of hillslopes demonstrated localised increase of pore pressure, up to saturation, where pyroclastic horizons with higher hydraulic conductivity pinch out and the thickness of pyroclastic mantle reduces or is

  2. Estimation of mountain slope stability depending on ground consistency and slip-slide resistance changes on impact of dynamic forces

    NASA Astrophysics Data System (ADS)

    Hayroyan, H. S.; Hayroyan, S. H.; Karapetyan, K. A.

    2018-04-01

    In this paper, three types of clayish soils with different consistency and humidity properties and slip-slide resistance indexes are considered on impact of different cyclic shear stresses. The side-surface deformation charts are constructed on the basis of experimental data obtained testing cylindrical soil samples. It is shown that the fluctuation amplitude depends on time and the consistency index depends on the humidity condition in the soil inner contact and the connectivity coefficients. Consequently, each experiment is interpreted. The main result of this research is that it is necessary to make corrections in the currently active schemes of slip-hazardous slopes stability estimation, which is a crucial problem requiring ASAP solution.

  3. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability

    NASA Astrophysics Data System (ADS)

    Finn, Carol A.; Deszcz-Pan, Maryla; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.

    2018-05-01

    Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper 300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest ( 0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.

  4. Three-dimensional geophysical mapping of shallow water saturated altered rocks at Mount Baker, Washington: Implications for slope stability

    USGS Publications Warehouse

    Finn, Carol A.; Deszcz-Pan, Maria; Ball, Jessica L.; Bloss, Benjamin J.; Minsley, Burke J.

    2018-01-01

    Water-saturated hydrothermal alteration reduces the strength of volcanic edifices, increasing the potential for catastrophic sector collapses that can lead to far traveled and destructive debris flows. Intense hydrothermal alteration significantly lowers the resistivity and magnetization of volcanic rock and therefore hydrothermally altered rocks can be identified with helicopter electromagnetic and magnetic measurements. Geophysical models constrained by rock properties and geologic mapping show that intensely altered rock is restricted to two small (500 m diameter), >150 m thick regions around Sherman Crater and Dorr Fumarole Field at Mount Baker, Washington. This distribution of alteration contrasts with much thicker and widespread alteration encompassing the summits of Mounts Adams and Rainier prior to the 5600 year old Osceola collapse, which is most likely due to extreme erosion and the limited duration of summit magmatism at Mount Baker. In addition, the models suggest that the upper ~300 m of rock contains water which could help to lubricate potential debris flows. Slope stability modeling incorporating the geophysically modeled distribution of alteration and water indicates that the most likely and largest (~0.1 km3) collapses are from the east side of Sherman Crater. Alteration at Dorr Fumarole Field raises the collapse hazard there, but not significantly because of its lower slope angles. Geochemistry and analogs from other volcanoes suggest a model for the edifice hydrothermal system.

  5. Slope stability susceptibility evaluation parameter (SSEP) rating scheme - An approach for landslide hazard zonation

    NASA Astrophysics Data System (ADS)

    Raghuvanshi, Tarun Kumar; Ibrahim, Jemal; Ayalew, Dereje

    2014-11-01

    In this paper a new slope susceptibility evaluation parameter (SSEP) rating scheme is presented which is developed as an expert evaluation approach for landslide hazard zonation. The SSEP rating scheme is developed by considering intrinsic and external triggering parameters that are responsible for slope instability. The intrinsic parameters which are considered are; slope geometry, slope material (rock or soil type), structural discontinuities, landuse and landcover and groundwater. Besides, external triggering parameters such as, seismicity, rainfall and manmade activities are also considered. For SSEP empirical technique numerical ratings are assigned to each of the intrinsic and triggering parameters on the basis of logical judgments acquired from experience of studies of intrinsic and external triggering factors and their relative impact in inducing instability to the slope. Further, the distribution of maximum SSEP ratings is based on their relative order of importance in contributing instability to the slope. Finally, summation of all ratings for intrinsic and triggering parameter based on actual observation will provide the expected degree of landslide in a given land unit. This information may be utilized to develop a landslide hazard zonation map. The SSEP technique was applied in the area around Wurgessa Kebelle of North Wollo Zonal Administration, Amhara National Regional State in northern Ethiopia, some 490 km from Addis Ababa. The results obtained indicates that 8.33% of the area fall under Moderately hazard and 83.33% fall within High hazard whereas 8.34% of the area fall under Very high hazard. Further, in order to validate the LHZ map prepared during the study, active landslide activities and potential instability areas, delineated through inventory mapping was overlain on it. All active landslide activities and potential instability areas fall within very high and high hazard zone. Thus, the satisfactory agreement confirms the rationality of

  6. Fracture and slope stability monitoring at Puigcercós landslide (Catalonia, Spain)

    NASA Astrophysics Data System (ADS)

    Khazaradze, Giorgi; Vasquez, Sebastian; López, Robert; Guinau, Guinau; Calvet, Jaume; Vilaplana, Joan Manuel; Blanch, Xabier; Tapia, Mar; Roig, Pere; Suriñach, Emma

    2017-04-01

    The village of Puigcercós ( 50 inhabitants) is located in the region of Pallars Jussà (Lleida) in Catalonia, several km south of the town of Tremp. In 1881 the entire village had to be moved from its historical location on top of the hill to its current location. This was caused by a series of landslides caused by continuing rainfall. The most important landslide occurred on January 13th 1881, which displaced more than 5 million cubic meters of sediments and rocks and created an impressive rock scar of approximately 25 m height and 150 m width. The area where the sediments were accumulated is extensive, reaching 8 hectares. During the last years, our group has chosen the site of Puigcercós to conduct pilot studies of landslides and rockfalls using multidisciplinary approach, involving Terrestrial Laser Scanner, Total Station, DGPS, seismic monitoring and geophysical techniques. The geophysical surveys of the zone of the sediment accumulation, can help determine the internal structure of the displaced sediments. The work presented here mainly concerns the deformation monitoring at the site using geodetic techniques. In July 2015, a network of 11 new geodetic points has been established and measured with GPS. The location of these points was chosen with the purpose of answering two important questions in the studies of the stability and geomorphological activity of the Puigcercós landslide: 1) As a result of combined analysis of the tape-meter, total station and GPS measurements, we hope to obtain absolute values of deformation in the upper part of the escarpment, controlling the stability of the escarpment front and the associated fractures near the coronation. For this purpose, two geodetic control points have been established at the hilltop, some 5 meters away from the escarpment itself. 2) Determine the slope stability of the depositional area, where we established nine geodetic points. As of today, these points have been measured twice, in 2015 and 2016

  7. Nitrous oxide emissions affected by biochar and nitrogen stabilizers

    USDA-ARS?s Scientific Manuscript database

    Both biochar and N fertilizer stabilizers (N transformation inhibitors) are potential strategies to reduce nitrous oxide (N2O) emissions from fertilization, but the mechanisms and/or N transformation processes affecting the N dynamics are not fully understood. This research investigated N2O emission...

  8. Long-term Stabilization of Disturbed Slopes Resulting from Construction Operations

    DOT National Transportation Integrated Search

    2018-01-01

    Highway construction disturbs soil, which must be stabilized to prevent migration of soil particles into water bodies. Stabilization is enforced by law, regulation, and a permit system. Stabilization is most efficiently attained by reestablishment of...

  9. Rainfall-Runoff and Slope Failure in a Steep, Tropical Landscape

    NASA Astrophysics Data System (ADS)

    Deane, J.; Freyberg, D. L.

    2016-12-01

    Tropical forests are often located on short, steep slopes with pronounced heterogeneity in vegetation over small distances. Further, they are distinguished from their temperate counterparts by a thinner organic horizon, and large interannual and subseasonal variability in precipitation. However, hydrologic processes in tropical watersheds are difficult to quantify and study because of data scarcity, accessibility difficulties and complex topography. As a result, there has been little work on disentangling the effects of spatial and temporal heterogeneity on flow generation and slope failure on tropical hillslopes. In this work we analyze the connections between terrain properties, subsurface formation, land cover, and precipitation variability in changing water table dynamics at the interface between a thin soil mantle and underlying bedrock. We have developed a fully distributed integrated hydrologic model at two different scales: 1) a 100 m idealized hillslope (1 m model grid size) representative of physiographic regions on tropical islands and 2) a 48 sq. km tropical island watershed in Trinidad and Tobago (30 m model grid size) using ParFlow.CLM. Additionally, we couple Parflow to an infinite slope stability module to investigate the initiation of rainfall induced landslides under different precipitation scenarios. The characteristic hillslopes are used to used to generalize the near subsurface response of a soil-saprolite aquifer to a range of landscape properties. In particular, we investigate the role of mean slope, soil properties and road cuts in altering the partitioning of runoff and infiltration, and increasing slope stability. Moving from the idealized models to the steep tropical watershed, we evaluate the effects of different land cover and precipitation scenarios—consistent with climate change projections—on flooding and hillslope failure incidence.

  10. Mapping on Slope Seepage Problem using Electrical Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Hazreek, Z. A. M.; Nizam, Z. M.; Aziman, M.; Dan, M. F. Md; Shaylinda, M. Z. N.; Faizal, T. B. M.; Aishah, M. A. N.; Ambak, K.; Rosli, S.; Rais, Y.; Ashraf, M. I. M.; Alel, M. N. A.

    2018-04-01

    The stability of slope may influenced by several factors such as its geomaterial properties, geometry and environmental factors. Problematic slope due to seepage phenomenon will influenced the slope strength thus promoting to its failure. In the past, slope seepage mapping suffer from several limitation due to cost, time and data coverage. Conventional engineering tools to detect or mapped the seepage on slope experienced those problems involving large and high elevation of slope design. As a result, this study introduced geophysical tools for slope seepage mapping based on electrical resistivity method. Two spread lines of electrical resistivity imaging were performed on the slope crest using ABEM SAS 4000 equipment. Data acquisition configuration was based on long and short arrangement, schlumberger array and 2.5 m of equal electrode spacing interval. Raw data obtained from data acquisition was analyzed using RES2DINV software. Both of the resistivity results show that the slope studied consists of three different anomalies representing top soil (200 – 1000 Ωm), perched water (10 – 100 Ωm) and hard/dry layer (> 200 Ωm). It was found that seepage problem on slope studied was derived from perched water zones with electrical resistivity value of 10 – 100 Ωm. Perched water zone has been detected at 6 m depth from the ground level with varying thickness at 5 m and over. Resistivity results have shown some good similarity output with reference to borehole data, geological map and site observation thus verified the resistivity results interpretation. Hence, this study has shown that the electrical resistivity imaging was applicable in slope seepage mapping which consider efficient in term of cost, time, data coverage and sustainability.

  11. Mars Exploration Rover Landing Site Hectometer Slopes

    NASA Astrophysics Data System (ADS)

    Haldemann, A. F.; Anderson, F. S.

    2002-12-01

    The Mars Exploration Rover (MER) airbag landing system imposes a maximum slope of 5 degrees over 100 m length-scales. This limit avoids dangerous changes in elevation over the horizontal travel distance of the lander on its parachute between the time of the last radar altimeter detection of the surface and the time the retro-rockets fire and the bridle to the airbags is cut. Stereo imagery from the MGS MOC can provide information at this length scale, but MOC stereo coverage is sparse, even when targeted to MER landing sites. Additionally, MGS spacecraft stability issues affect the DEMs at precisely the hectometric length-scale1. The MOLA instrument provides global coverage pulse-width measurements2 over a single MOLA-pulse footprint, which is about 100 m in diameter. However, the pulse spread only provides an upper bound on the 100 m slope. We chose another approach. We sample the inter-pulse root-mean-square (RMS) height deviations for MOLA track segments restricted to pixels of 0.1 deg latitude by 0.1 deg longitude. Then, under the assumption of self-affine topography, we determine the scale-dependence of the RMS deviations and extrapolate that behavior over the range of 300 m to 1.2 km downward to the 100 m scale. Shepard et al.3 clearly summarize the statistical properties of the RMS deviation (noting that it also goes by the name structure function, variogram or Allan deviation), and we follow their nomenclature. The RMS deviation is a useful measure in that it can be directly converted to RMS-slope for a given length-scale. We map the results of this self-affine extrapolation method for each of the proposed MER landing sites as well as Viking Lander 1 (VL1) and Pathfiner (MPF). In order of decreasing average hectometer RMS-slopes, Melas (about 4.5 degrees) > Elysium EP80 > Gusev > MPF > Elysium EP78 > VL1 > Athabasca > Isidis > Hematite (about 1 degree). We also map the scaling parameter (Hurst exponent); its behavior in the MER landing site regions is

  12. Karstic slope "breathing": morpho-structural influence and hazard implications

    NASA Astrophysics Data System (ADS)

    Devoti, Roberto; Falcucci, Emanuela; Gori, Stefano; Eliana Poli, Maria; Zanferrari, Adriano; Braitenberg, Carla; Fabris, Paolo; Grillo, Barbara; Zuliani, David

    2016-04-01

    The study refers to the active slope deformation detected by GPS and tiltmeter stations in the Cansiglio karstic plateau located in the western Carnic Prealps (NE Italy). The observed transient deformation clearly correlates with the rainfall, so that the southernmost border of the Plateau reacts instantly to heavy rains displaying a "back and forth" deformation up to a few centimeters wide, with different time constants, demonstrating a response to different catchment volumes. We carried out a field survey along the southern Cansiglio slope, to achieve structural characterization of the relief and to verify the possible relation between structural features and the peculiar geomorphological setting dominated by widespread karstic features. The Cansiglio plateau develops on the frontal ramp anticline of the Cansiglio thrust, an about ENE-WSW trending, SSE-verging, low angle thrust, belonging to the Neogene-Quaternary front of the eastern Southern Alps. The Cansiglio thrust outcrops at the base of the Cansiglio plateau, where it overlaps the Mesozoic carbonates on the Miocene-Quaternary terrigenous succession. All along its length cataclastic limestone largely outcrop. The Cansiglio thrust is bordered by two transfer zones probably inherited from the Mesozoic paleogeography: the Caneva fault in the west and the Col Longone fault in the east. The carbonatic massif is also characterized by a series of about northward steeply dipping reverse minor faults and a set of subvertical joints parallel to the axes of the Cansiglio anticline. Other NNW-SSE and NNE-SSW conjugate faults and fractures perpendicular to the Cansiglio southern slope are also identified. This structural setting affect pervasively the whole slope and may determine centimetre- to metre-scale rock prisms. Interestingly, along the topmost portion of the slope, some dolines and swallow holes show an incipient coalescence, that trends parallel to the massif front and to the deformation zones related to the

  13. Mycorrhizal aspects in slope stabilisation

    NASA Astrophysics Data System (ADS)

    Graf, Frank

    2016-04-01

    In order to re-colonise and stabilise slopes affected by superficial soil failure with plants essential requirements have to be met: the plants must grow the plants must survive sustainably plant succession must start and continuously develop These requirements, however, are anything but easy given, particularly under the often hostile environmental conditions dominating on bare and steep slopes. Mycorrhizal fungi, the symbiotic partners of almost all plants used in eco-engineering, are said to improve the plants' ability to overcome periods governed by strongly (growth) limiting factors. Subsequently, results of investigations are presented of mycorrhizal effects on different plant and soil functions related to eco-engineering in general and soil and slope stabilisation in particular. Generally, inoculation yielded higher biomass of the host plants above as well as below ground. Furthermore, the survival rate was higher for mycorrhized compared to non-mycorrhized plants, particularly under extreme environmental conditions. However, the scale of the mycorrhizal impact may be species specific of both the plant host as well as the fungal partner(s) and often becomes evident only after a certain time lag. Depending on the plant-fungus combination the root length per soil volume was found to be between 0 and 2.5 times higher for inoculated compared to non-inoculated specimens. On an alpine graded ski slope the survival of inoculated compared to non-treated Salix herbacea cuttings was significant after one vegetation period only for one of the three added mycorrhizal fungus species. However, after three years all of the inoculated plantlets performed significantly better than the non-inoculated controls. The analysis of the potential for producing and stabilising soil aggregates of five different ectomycorrhizal fungi showed high variation and, for the species Inocybe lacera, no significant difference compared to untreated soil. Furthermore, inoculation of Salix

  14. Protein substitution affects glass transition temperature and thermal stability.

    PubMed

    Budhavaram, Naresh K; Miller, Jonathan A; Shen, Ying; Barone, Justin R

    2010-09-08

    When proteins are removed from their native state they suffer from two deficiencies: (1) glassy behavior with glass transition temperatures (Tg) well above room temperature and (2) thermal instability. The glassy behavior originates in multiple hydrogen bonds between amino acids on adjacent protein molecules. Proteins, like most biopolymers, are thermally unstable. Substituting ovalbumin with linear and cyclic substituents using a facile nucleophilic addition reaction can affect Tg and thermal stability. More hydrophobic linear substituents lowered Tg by interrupting intermolecular interactions and increasing free volume. More hydrophilic and cyclic substituents increased thermal stability by increasing intermolecular interactions. In some cases, substituents instituted cross-linking between protein chains that enhanced thermal stability. Internal plasticization using covalent substitution and external plasticization using low molecular weight polar liquids show the same protein structural changes and a signature of plasticization is identified.

  15. Use of MSE technology to stabilize highway embankments and slopes in Oklahoma.

    DOT National Transportation Integrated Search

    2009-09-30

    Departments of transportation across the U.S., including ODOT, are invariably faced with a persistent problem of landslides and slope failures along highways. Repairs and maintenance work associated with these failures cost these agencies millions of...

  16. Effects of polyacrylamide on soil erosion and nutrient losses from substrate material in steep rocky slope stabilization projects.

    PubMed

    Chen, Zhang; Chen, Wenlu; Li, Chengjun; Pu, Yanpin; Sun, Haifeng

    2016-06-01

    Erosion of denuded steep rocky slopes causes increasing losses of nitrogen and phosphorus, which is a severe problem in rocky slope protection. Thus, it is important to determine the appropriate materials that can reduce the erodibility and losses of nitrogen and phosphorus of the soil. In this paper, twenty-seven simulated rainfall events were carried out in a greenhouse, in which the substrate material was artificial soil; nine types of anionic polyacrylamide (PAM) were studied, which consisted of three molecular weight (6, 12, and 18 Mg mol(-1)) and three charge density (10, 20, and 30%) formulations in a 3 by 3 factorial design. The results showed that: (1) Polyacrylamide application reduced total nitrogen losses by 35.3% to 50.0% and total phosphorus losses by 34.9% to 48.0% relative to the control group. (2) The losses of total nitrogen and total phosphorus had significant correlation with the molecular weight. Besides, the losses of total phosphorus, particulate-bound phosphorus and inorganic nitrogen (NH4-N) were significantly correlated with their molecular weight and charge density. However, the losses of dissolved organic nitrogen, inorganic nitrogen (NO3-N), dissolved organic phosphorus, inorganic phosphorus (PO4-P) were non-significantly correlated with molecular weight and charge density. (3) Particulate-bound nitrogen and phosphorus were responsible for the losses of nitrogen and phosphorus during runoff events, where particulate-bound nitrogen made up 71.7% to 73.2% of total nitrogen losses, and particulate-bound phosphorus made up 82.3% to 85.2% of total phosphorus losses. (4) Polyacrylamide treatments increased water-stable aggregates content by 32.3% to 59.1%, total porosity by 11.3% to 49.0%, final infiltrative rate by 41.3% to 72.5%, and reduced soil erosion by 18.9% to 39.8% compared with the control group. Overall, the results of this study indicated that polyacrylamide application in the steep rocky slope stabilization projects could

  17. Factors Affecting Impact Toughness in Stabilized Intermediate Purity 21Cr Ferritic Stainless Steels and Their Simulated Heat-Affected Zones

    NASA Astrophysics Data System (ADS)

    Anttila, Severi; Alatarvas, Tuomas; Porter, David A.

    2017-12-01

    The correlation between simulated weld heat-affected zone microstructures and toughness parameters has been investigated in four intermediate purity 21Cr ferritic stainless steels stabilized with titanium and niobium either separately or in combination. Extensive Charpy V impact toughness testing was carried out followed by metallography including particle analysis using electron microscopy. The results confirmed that the grain size and the number density of particle clusters rich in titanium nitride and carbide with an equivalent circular diameter of 2 µm or more are statistically the most critical factors influencing the ductile-to-brittle transition temperature. Other inclusions and particle clusters, as well as grain boundary precipitates, are shown to be relatively harmless. Stabilization with niobium avoids large titanium-rich inclusions and also suppresses excessive grain growth in the heat-affected zone when reasonable heat inputs are used. Thus, in order to maximize the limited heat-affected zone impact toughness of 21Cr ferritic stainless steels containing 380 to 450 mass ppm of interstitials, the stabilization should be either titanium free or the levels of titanium and nitrogen should be moderated.

  18. Hydrologic behavior of model slopes with synthetic water repellent soils

    NASA Astrophysics Data System (ADS)

    Zheng, Shuang; Lourenço, Sérgio D. N.; Cleall, Peter J.; Chui, Ting Fong May; Ng, Angel K. Y.; Millis, Stuart W.

    2017-11-01

    In the natural environment, soil water repellency decreases infiltration, increases runoff, and increases erosion in slopes. In the built environment, soil water repellency offers the opportunity to develop granular materials with controllable wettability for slope stabilization. In this paper, the influence of soil water repellency on the hydrological response of slopes is investigated. Twenty-four flume tests were carried out in model slopes under artificial rainfall; soils with various wettability levels were tested, including wettable (Contact Angle, CA < 90°), subcritical water repellent (CA ∼ 90°) and water repellent (CA > 90°). Various rainfall intensities (30 mm/h and 70 mm/h), slope angles (20° and 40°) and relative compactions (70% and 90%) were applied to model the response of natural and man-made slopes to rainfall. To quantitatively assess the hydrological response, a number of measurements were made: runoff rate, effective rainfall rate, time to ponding, time to steady state, runoff acceleration, total water storage and wetting front rate. Overall, an increase in soil water repellency reduces infiltration and shortens the time for runoff generation, with the effects amplified for high rainfall intensity. Comparatively, the slope angle and relative compaction had only a minor contribution to the slope hydrology. The subcritical water repellent soils sustained infiltration for longer than both the wettable and water repellent soils, which presents an added advantage if they are to be used in the built environment as barriers. This study revealed substantial impacts of man-made or synthetically induced soil water repellency on the hydrological behavior of model slopes in controlled conditions. The results shed light on our understanding of hydrological processes in environments where the occurrence of natural soil water repellency is likely, such as slopes subjected to wildfires and in agricultural and forested slopes.

  19. Reinforcing mechanism of anchors in slopes: a numerical comparison of results of LEM and FEM

    NASA Astrophysics Data System (ADS)

    Cai, Fei; Ugai, Keizo

    2003-06-01

    This paper reports the limitation of the conventional Bishop's simplified method to calculate the safety factor of slopes stabilized with anchors, and proposes a new approach to considering the reinforcing effect of anchors on the safety factor. The reinforcing effect of anchors can be explained using an additional shearing resistance on the slip surface. A three-dimensional shear strength reduction finite element method (SSRFEM), where soil-anchor interactions were simulated by three-dimensional zero-thickness elasto-plastic interface elements, was used to calculate the safety factor of slopes stabilized with anchors to verify the reinforcing mechanism of anchors. The results of SSRFEM were compared with those of the conventional and proposed approaches for Bishop's simplified method for various orientations, positions, and spacings of anchors, and shear strengths of soil-grouted body interfaces. For the safety factor, the proposed approach compared better with SSRFEM than the conventional approach. The additional shearing resistance can explain the influence of the orientation, position, and spacing of anchors, and the shear strength of soil-grouted body interfaces on the safety factor of slopes stabilized with anchors.

  20. A numerical study of slope and fuel structure effects on coupled wildfire behaviour

    Treesearch

    Rodman R. Linn; Judith L. Winterkamp; David R. Weise; Carleton Edminster

    2010-01-01

    Slope and fuel structure are commonly accepted as major factors affecting theway wildfires behave. However, it is possible that slope affects fire differently depending on the fuel bed. Six FIRETEC simulations using three different fuel beds on flat and upslope topography were used to examine this possibility. Fuel beds resembling grass, chaparral, and ponderosa pine...

  1. Slope efficiency over 30% single-frequency ytterbium-doped fiber laser based on Sagnac loop mirror filter.

    PubMed

    Yin, Mojuan; Huang, Shenghong; Lu, Baole; Chen, Haowei; Ren, Zhaoyu; Bai, Jintao

    2013-09-20

    A high-slope-efficiency single-frequency (SF) ytterbium-doped fiber laser, based on a Sagnac loop mirror filter (LMF), was demonstrated. It combined a simple linear cavity with a Sagnac LMF that acted as a narrow-bandwidth filter to select the longitudinal modes. And we introduced a polarization controller to restrain the spatial hole burning effect in the linear cavity. The system could operate at a stable SF oscillating at 1064 nm with the obtained maximum output power of 32 mW. The slope efficiency was found to be primarily dependent on the reflectivity of the fiber Bragg grating. The slope efficiency of multi-longitudinal modes was higher than 45%, and the highest slope efficiency of the single longitudinal mode we achieved was 33.8%. The power stability and spectrum stability were <2% and <0.1%, respectively, and the signal-to-noise ratio measured was around 60 dB.

  2. Effects of slope smoothing in river channel modeling

    NASA Astrophysics Data System (ADS)

    Kim, Kyungmin; Liu, Frank; Hodges, Ben R.

    2017-04-01

    In extending dynamic river modeling with the 1D Saint-Venant equations from a single reach to a large watershed there are critical questions as to how much bathymetric knowledge is necessary and how it should be represented parsimoniously. The ideal model will include the detail necessary to provide realism, but not include extraneous detail that should not exert a control on a 1D (cross-section averaged) solution. In a Saint-Venant model, the overall complexity of the river channel morphometry is typically abstracted into metrics for the channel slope, cross-sectional area, hydraulic radius, and roughness. In stream segments where cross-section surveys are closely spaced, it is not uncommon to have sharp changes in slope or even negative values (where a positive slope is the downstream direction). However, solving river flow with the Saint-Venant equations requires a degree of smoothness in the equation parameters or the equation set with the directly measured channel slopes may not be Lipschitz continuous. The results of non-smoothness are typically extended computational time to converge solutions (or complete failure to converge) and/or numerical instabilities under transient conditions. We have investigated using cubic splines to smooth the bottom slope and ensure always positive reference slopes within a 1D model. This method has been implemented in the Simulation Program for River Networks (SPRNT) and is compared to the standard HEC-RAS river solver. It is shown that the reformulation of the reference slope is both in keeping with the underlying derivation of the Saint-Venant equations and provides practical numerical stability without altering the realism of the simulation. This research was supported in part by the National Science Foundation under grant number CCF-1331610.

  3. Ground reaction force adaptations during cross-slope walking and running.

    PubMed

    Damavandi, Mohsen; Dixon, Philippe C; Pearsall, David J

    2012-02-01

    Though transversely inclined (cross-sloped) surfaces are prevalent, our understanding of the biomechanical adaptations required for cross-slope locomotion is limited. The purpose of this study was to examine ground reaction forces (GRF) in cross-sloped and level walking and running. Nine young adult males walked and ran barefoot along an inclinable walkway in both level (0°) and cross-slope (10°) configurations. The magnitude and time of occurrence of selected features of the GRF were extracted from the force plate data. GRF data were collected in level walking and running (LW and LR), inclined walking and running up-slope (IWU and IRU), and down-slope (IWD and IRD), respectively. The GRF data were then analyzed using repeated measures MANOVA. In the anteroposterior direction, the timing of the peak force values differed across conditions during walking (p=.041), while the magnitude of forces were modified across conditions for running (p=.047). Most significant differences were observed in the mediolateral direction, where generally force values were up to 390% and 530% (p<.001) larger during the cross-slope conditions compared to level for walking and running, respectively. The maximum force peak during running occurred earlier at IRU compared to the other conditions (p≤.031). For the normal axis a significant difference was observed in the first maximum force peak during walking (p=.049). The findings of this study showed that compared to level surfaces, functional adaptations are required to maintain forward progression and dynamic stability in stance during cross-slope walking and running. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. A study on difference and importance of sacral slope and pelvic sacral angle that affect lumbar curvature.

    PubMed

    Choi, Seyoung; Lee, Minsun; Kwon, Byongan

    2014-01-01

    Individual pelvic sacral angle was measured, compared and analyzed for the 6 male and female adults who were diagnosed with lumbar spinal stenosis, foraminal stenosis and mild spondylolisthesis in accordance with spinal parameters, pelvic parameters and occlusion state of sacroiliac joint presented by the author of this thesis based on the fact that the degree of lumbar excessive lordosis that was one of the causes for lumbar pain was determined by sacral slope. The measured values were compared with the standard values of the average normal range from 20 s to 40 s of normal Koreans stated in the study on the change in lumbar lordosis angle, lumbosacral angle and sacral slope in accordance with the age by Oh et al. [5] and sacral slope and pelvic sacral slope of each individual of the subjects for measurement were compared. Comparing the difference between the two tilt angles possessed by an individual is a comparison to determine how much the sacroiliac joint connecting pelvis and sacral vertebrae compensated and corrected the sacral vertebrae slope by pelvic tilt under the condition of synarthrodial joint.Under the condition that the location conforming to the line in which the sagittal line of gravity connects with pelvic ASIS and pubic pubic tuberele is the neutral location of pelvic tilt, sacral slope being greater than pelvic sacral slope means pelvic anterior tilting, whereas sacral slope being smaller than pelvic sacral slope means pelvic posterior tilting. On that account, male B, female A and female C had a pelvic posterior tilting of 16 degrees, 1 degree and 5 degrees respectively, whereas male A, male C and female B had a pelvic anterior tilting of 3 degrees, 9 degrees and 4 degrees respectively. In addition, the 6 patients the values of lumbar lordosis angle, lumbosacral angle and sacral slope that were almost twice as much as the normal standard values of Koreans. It is believed that this is because the pelvic sacral slope maintaining an angle that is

  5. Infiltration on mountain slopes: a comparison of three environments.

    Treesearch

    Carol P. Harden*; P. Delmas Scruggs

    2003-01-01

    Water is well established as a major driver of the geomorphic change that eventually reduces mountains to lower relief landscapes. Nonetheless, within the altitudinal limits of continuous vegetation in humid climates, water is also an essential factor in slope stability. In this paper, we present results from field experiments to determine infiltration rates at...

  6. Slope instability caused by small variations in hydraulic conductivity

    USGS Publications Warehouse

    Reid, M.E.

    1997-01-01

    Variations in hydraulic conductivity can greatly modify hillslope ground-water flow fields, effective-stress fields, and slope stability. In materials with uniform texture, hydraulic conductivities can vary over one to two orders of magnitude, yet small variations can be difficult to determine. The destabilizing effects caused by small (one order of magnitude or less) hydraulic conductivity variations using ground-water flow modeling, finite-element deformation analysis, and limit-equilibrium analysis are examined here. Low hydraulic conductivity materials that impede downslope ground-water flow can create unstable areas with locally elevated pore-water pressures. The destabilizing effects of small hydraulic heterogeneities can be as great as those induced by typical variations in the frictional strength (approximately 4??-8??) of texturally similar materials. Common "worst-case" assumptions about ground-water flow, such as a completely saturated "hydrostatic" pore-pressure distribution, do not account for locally elevated pore-water pressures and may not provide a conservative slope stability analysis. In site characterization, special attention should be paid to any materials that might impede downslope ground-water flow and create unstable regions.

  7. The Three-Dimensional (3D) Numerical Stability Analysis of Hyttemalmen Open-Pit

    NASA Astrophysics Data System (ADS)

    Cała, Marek; Kowalski, Michał; Stopkowicz, Agnieszka

    2014-10-01

    The purpose of this paper was to perform the 3D numerical calculations allowing slope stability analysis of Hyttemalmen open pit (location Kirkenes, Finnmark Province, Norway). After a ramp rock slide, which took place in December 2010, as well as some other small-scale rock slope stability problems, it proved necessary to perform a serious stability analyses. The Hyttemalmen open pit was designed with a depth up to 100 m, a bench height of 24 m and a ramp width of 10 m. The rock formation in the iron mining district of Kirkenes is called the Bjornevaten Group. This is the most structurally complicated area connected with tectonic process such as folding, faults and metamorphosis. The Bjornevaten Group is a volcano-sedimentary sequence. Rock slope stability depends on the mechanical properties of the rock, hydro-geological conditions, slope topography, joint set systems and seismic activity. However, rock slope stability is mainly connected with joint sets. Joints, or general discontinuities, are regarded as weak planes within rock which have strength reducing consequences with regard to rock strength. Discontinuities within the rock mass lead to very low tensile strength. Several simulations were performed utilising the RocLab (2007) software to estimate the gneiss cohesion for slopes of different height. The RocLab code is dedicated to estimate rock mass strength using the Hoek-Brown failure criterion. Utilising both the GSI index and the Hoek-Brown strength criterion the equivalent Mohr-Coulomb parameters (cohesion and angle of internal friction) can be calculated. The results of 3D numerical calculations (with FLA3D code) show that it is necessary to redesign the slope-bench system in the Hyttemalmen open pit. Changing slope inclination for lower stages is recommended. The minimum factor of safety should be equal 1.3. At the final planned stage of excavation, the factor of safety drops to 1.06 with failure surface ranging through all of the slopes. In the case

  8. INFILTRATION ON MOUNTAIN SLOPES: A COMPARISON OF THREE ENVIRONMENTS. (R825157)

    EPA Science Inventory

    Water is well established as a major driver of the geomorphic change that eventually reduces mountains to lower relief landscapes. Nonetheless, within the altitudinal limits of continuous vegetation in humid climates, water is also an essential factor in slope stability. In th...

  9. Influence of Weathering Depth and Fracture Intensity to Cut-slope Movements

    NASA Astrophysics Data System (ADS)

    Yoon, W. S.; Choi, J. W.; Jeong, U.; Kim, J. H.

    2003-04-01

    Generally, Failure modes in cut slopes are triggered by combination of various failure factors which have different effects on failure modes according to ground condition. It is, therefore, important to identify the behavioural characteristic of cut slope in that they reflect the failure mechanism. From the careful field investigation for 373 road cuts along the national highway in Korea, we analysed various types of failure modes for different ground conditions. The ground conditions which control failure modes of cut slopes and their related failure factors are dependent on weathering (or soil) depth and intensity of discontinuities in cut slopes. Firstly, the ratio of the soil depth and slope height (soil depth ratio; SR) is important parameter to classify ground conditions into soil-like masses and rock masses. When a SR value is greater than 0.4, sliding failures on discontinuities do not occur. In this case, weathering condition, slope gradient and external rainfall play a key role on failure factors of cut-slope. The proposed 0.4, therefore, is the critical SR value to identify the soil-like masses and rock masses. Secondly, Intensity of discontinuities is expressed by block size ratio (BR), which is defined by the ratio of block size index (Ib; ISRM (1978)) and slope height. For a rock slope (SR<0.4), when BR is greater than 0.01, key failure modes in a cut slope are wedge sliding, fall and topple. In this case, attitudes and shear strength of discontinuities play an important role on behaviour of cut-slope. When BR is less than 0.01, however, behaviour of cut slope shows circular sliding and surface failure like soil-like mass. To sum up, we could divide the ground conditions in cut-slope into 3 classes on the basis of SR (soil depth ratio) and BR (block size ratio); JRM (joint rock mass), HRM (highly fractured rock mass) and SLM (soil-like mass). Moreover, to evaluate the stability of cut-slope reasonably, it needs new evaluating categories having

  10. Evaluation of TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis)'s predictive skill for hurricane-triggered landslides: A case study in Macon County, North Carolina

    USGS Publications Warehouse

    Liao, Z.; Hong, Y.; Kirschbaum, D.; Adler, R.F.; Gourley, J.J.; Wooten, R.

    2011-01-01

    The key to advancing the predictability of rainfall-triggered landslides is to use physically based slope-stability models that simulate the transient dynamical response of the subsurface moisture to spatiotemporal variability of rainfall in complex terrains. TRIGRS (transient rainfall infiltration and grid-based regional slope-stability analysis) is a USGS landslide prediction model, coded in Fortran, that accounts for the influences of hydrology, topography, and soil physics on slope stability. In this study, we quantitatively evaluate the spatiotemporal predictability of a Matlab version of TRIGRS (MaTRIGRS) in the Blue Ridge Mountains of Macon County, North Carolina where Hurricanes Ivan triggered widespread landslides in the 2004 hurricane season. High resolution digital elevation model (DEM) data (6-m LiDAR), USGS STATSGO soil database, and NOAA/NWS combined radar and gauge precipitation are used as inputs to the model. A local landslide inventory database from North Carolina Geological Survey is used to evaluate the MaTRIGRS' predictive skill for the landslide locations and timing, identifying predictions within a 120-m radius of observed landslides over the 30-h period of Hurricane Ivan's passage in September 2004. Results show that within a radius of 24 m from the landslide location about 67% of the landslide, observations could be successfully predicted but with a high false alarm ratio (90%). If the radius of observation is extended to 120 m, 98% of the landslides are detected with an 18% false alarm ratio. This study shows that MaTRIGRS demonstrates acceptable spatiotemporal predictive skill for landslide occurrences within a 120-m radius in space and a hurricane-event-duration (h) in time, offering the potential to serve as a landslide warning system in areas where accurate rainfall forecasts and detailed field data are available. The validation can be further improved with additional landslide information including the exact time of failure for each

  11. Thermo-hydro-mechanical stresses during repeat glacial cycles as preparatory factors for paraglacial rock slope instabilities

    NASA Astrophysics Data System (ADS)

    Grämiger, Lorenz; Moore, Jeffrey R.; Gischig, Valentin; Loew, Simon

    2015-04-01

    Glaciation and deglaciation contribute to stress redistribution in alpine valley rock slopes, generating rock mass damage. However, the physical processes contributing to slope instability during glacial cycles are not well understood, and the mechanical reasoning remains vague. In addition to glacier loading and unloading, thermal strains affect newly exposed bedrock while changes in hillslope hydrology modify effective stresses. Together these can generate damage and reduce rock slope stability over time. Here we explore the role of coupled thermo-hydro-mechanical (THM) stress changes in driving long-term progressive damage and conditioning paraglacial rock slope failure in the Aletsch glacier region of Switzerland. We develop a 2D numerical model using the distinct element code UDEC, creating a fractured rock slope containing rock mass elements of intact rock, discontinuities, and fault zones. Topography, rock properties and glacier history are all loosely based on real conditions in the Aletsch valley. In-situ stresses representing pre-LGM conditions with inherent rock mass damage are initialized. We model stress changes through multiple glacier cycles during the Lateglacial and Holocene; stress redistribution is not only induced by glacier loading, but also by changes in bedrock temperatures and transient hillslope hydrology. Each THM response mechanism is tied to the changing ice extents, therefore stress changes and resulting rock mass damage can be explored in both space and time. We analyze cyclic THM stresses and resulting damage during repeat glacial cycles, and compare spatiotemporal outputs with the mapped landslide distribution in the Aletsch region. Our results extend the concept of glacial debuttressing, lead to improved understanding of the rock mass response to glacial cycles, and clarify coupled interactions driving paraglacial rock mass damage.

  12. Database on unstable rock slopes in Norway

    NASA Astrophysics Data System (ADS)

    Oppikofer, Thierry; Nordahl, Bo; Bunkholt, Halvor; Nicolaisen, Magnus; Hermanns, Reginald L.; Böhme, Martina; Yugsi Molina, Freddy X.

    2014-05-01

    Several large rockslides have occurred in historic times in Norway causing many casualties. Most of these casualties are due to displacement waves triggered by a rock avalanche and affecting coast lines of entire lakes and fjords. The Geological Survey of Norway performs systematic mapping of unstable rock slopes in Norway and has detected up to now more than 230 unstable slopes with significant postglacial deformation. This systematic mapping aims to detect future rock avalanches before they occur. The registered unstable rock slopes are stored in a database on unstable rock slopes developed and maintained by the Geological Survey of Norway. The main aims of this database are (1) to serve as a national archive for unstable rock slopes in Norway; (2) to serve for data collection and storage during field mapping; (3) to provide decision-makers with hazard zones and other necessary information on unstable rock slopes for land-use planning and mitigation; and (4) to inform the public through an online map service. The database is organized hierarchically with a main point for each unstable rock slope to which several feature classes and tables are linked. This main point feature class includes several general attributes of the unstable rock slopes, such as site name, general and geological descriptions, executed works, recommendations, technical parameters (volume, lithology, mechanism and others), displacement rates, possible consequences, hazard and risk classification and so on. Feature classes and tables linked to the main feature class include the run-out area, the area effected by secondary effects, the hazard and risk classification, subareas and scenarios of an unstable rock slope, field observation points, displacement measurement stations, URL links for further documentation and references. The database on unstable rock slopes in Norway will be publicly consultable through the online map service on www.skrednett.no in 2014. Only publicly relevant parts of

  13. Mountain permafrost, glacier thinning, and slope stability - a perspective from British Columbia (and Alaska)

    NASA Astrophysics Data System (ADS)

    Geertsema, Marten

    2016-04-01

    The association of landslides with thinning glaciers and mapped, or measured, mountain permafrost is increasing. Glacier thinning debuttresses slopes and promotes joint expansion. It is relatively easy to map. Permafrost, a thermal condition, is generally not visually detectible, and is difficult to map. Much mountain permafrost may have been overlooked in hazard analysis. Identifying, and characterizing mountain permafrost, and its influence on slope instability is crucial for hazard and risk analysis in mountainous terrain. Rock falls in mountains can be the initial event in process chains. They can transform into rock avalanches, debris flows or dam burst floods, travelling many kilometres, placing infrastructure and settlements at risk.

  14. Ancient and modern slopes in the Tharsis region of Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, P. J.; Zisk, S. H.; Downs, G. S.

    1982-01-01

    Ancient slope directions in the Martian Tharsis region are compared with new earth-based radar observations in an effort to detect tectonic deformations. Data were taken from 20-150 pixel/m Viking Orbiter images and from 200 m orthophotomosaics prepared by the U.S. Geological Survey. The positions of 475 lava flows were determined, covering widths between 5-10 km on higher slopes and 15-35 km on lower slopes. Most of the flows originated from four volcanos, although none issued from Olympus Mons, which makes up the central portion of the Plateau. Further radar-derived topography was made of, Arsia Mons and Syria Planum in latitudes 14-21 deg S to find differences in regional gradients and the lava flow directions, to determine if deformations occurred after the lava flows. A lithospheric stability is concluded, indicating no tectonic upheavals since the days of Tharsis Plateau volcanic activity.

  15. Mapping basin-wide subaquatic slope failure susceptibility as a tool to assess regional seismic and tsunami hazards

    NASA Astrophysics Data System (ADS)

    Strasser, Michael; Hilbe, Michael; Anselmetti, Flavio S.

    2010-05-01

    With increasing awareness of oceanic geohazards, submarine landslides are gaining wide attention because of their catastrophic impacts on both offshore infrastructures (e.g. pipelines, cables and platforms) and coastal areas (e.g. landslide-induced tsunamis). They also are of great interest because they can be directly related to primary trigger mechanisms including earthquakes, rapid sedimentation, gas release, glacial and tidal loading, wave action, or clathrate dissociation, many of which represent potential geohazards themselves. In active tectonic environments, for instance, subaquatic landslide deposits can be used to make inferences regarding the hazard derived from seismic activity. Enormous scientific and economic efforts are thus being undertaken to better determine and quantify causes and effects of natural hazards related to subaquatic landslides. In order to achieve this fundamental goal, the detailed study of past events, the assessment of their recurrence intervals and the quantitative reconstruction of magnitudes and intensities of both causal and subsequent processes and impacts are key requirements. Here we present data and results from a study using fjord-type Lake Lucerne in central Switzerland as a "model ocean" to test a new concept for the assessment of regional seismic and tsunami hazard by basin-wide mapping of critical slope stability conditions for subaquatic landslide initiation. Previously acquired high-resolution bathymetry and reflection seismic data as well as sedimentological and in situ geotechnical data, provide a comprehensive data base to investigate subaquatic landslides and related geohazards. Available data are implemented into a basin-wide slope model. In a Geographic Information System (GIS)-framework, a pseudo-static limit equilibrium infinite slope stability equation is solved for each model point representing reconstructed slope conditions at different times in the past, during which earthquake-triggered landslides

  16. Posterior slope of the tibial implant and the outcome of unicompartmental knee arthroplasty.

    PubMed

    Hernigou, Philippe; Deschamps, Gerard

    2004-03-01

    Laboratory studies have suggested that the sagittal displacements permitted by a knee replacement are influenced by the posterior slope of the tibial implant. The effect of the posterior slope of the tibial implant on the outcome of unicompartmental arthroplasty is not well known. The purpose of the present study was to assess the effect of the posterior slope on the long-term outcome of unicompartmental arthroplasty in knees with intact and deficient anterior cruciate ligaments. We retrospectively reviewed the results of ninety-nine unicompartmental arthroplasties after a mean duration of follow-up of sixteen years. At the time of the arthroplasty, the anterior cruciate ligament was considered to be normal in fifty knees, damaged in thirty-one, and absent in eighteen. At the most recent follow-up, we measured the posterior tibial slope and the anterior tibial translation on standing lateral radiographs. The anteroposterior stability of seventy-seven knees that had not been revised by the time of the most recent follow-up was evaluated clinically. In the group of seventy-seven knees that had not been revised by the time of the most recent follow-up, there was a significant linear relationship between anterior tibial translation (mean, 3.7 mm) and posterior tibial slope (mean, 4.3 degrees ) (p < 0.01). The mean posterior slope of the tibial implant was significantly less in the group of seventy-seven knees without loosening of the implant than it was in the group of seventeen knees with loosening of the implant (p < 0.05). Five ruptures of the anterior cruciate ligament occurred in knees in which the ligament had been considered to be normal at the time of implantation; the posterior tibial slope in these five knees was > or = 13 degrees. Clinical evaluation revealed normal or nearly normal anteroposterior stability at the time of the most recent follow-up in all sixty-six unrevised knees in which the anterior cruciate ligament had been present at the time of

  17. Assessing slope stability by ground based and remote techniques - a case study of 2015 Tbilisi disaster

    NASA Astrophysics Data System (ADS)

    Akhalaia, G.; Cakir, Z.; Tsiskarishvili, L.; Otinashvili, M.; Sukhishvili, L.; Merebashvili, G.; Tserodze, M.; Akubardia, D.; Managadze, M.

    2016-12-01

    At the night of 13th of June 2015 complex-type landslide was triggered by heavy rainfall in the river Vere basin, 10 km to the west of Georgian capital Tbilisi. Flashflood flow transported the landslide body to the center of Tbilisi. As a result 20 people are dead and 2 still missing, direct infrastructure damage is about 50 mln USD. The landslide is located at Mtatsminda anticline, its length is 3600 meters and sliding surface area estimates 315 000 km2. Bedrock dips varies 20-800 and surface inclination is almost the same. Our group used geodetic, geophysical and UAV survey approaches to estimate total volume of landslide body. As a result of the investigation we calculated that 1 300 000 m3 was transported but about 25% of total amount is still on sliding surface. As the whole area is prone to landslide, different approaches were applied to assess slope stability and indentifing ongoing deformation areas. Two most challenging factors were steep terrain and forest cover, so we used InSAR techniques, optical remote sensing, RTK measurements and geophysical methods. The detection and assessment pre and post-failure deformation, represent important task to understand the failure mechanism and geometry of the landslide, an ultimately purpose is to evaluate its stability. Interferometric Synthetic Aperture Radar data from ENVISAT sensor was utilized in the analysis of the pre-/ post-event deformation. Also, Network of GNSS (Continuously Operating Reference Stations) was used for RTK, to provide centimeter precise measurements. After comparing results derived from these different approaches, proper methods were selected to identify the most unstable areas within the landslide zone.

  18. Geotechnical Characteristics and Stability Analysis of Rock-Soil Aggregate Slope at the Gushui Hydropower Station, Southwest China

    PubMed Central

    Shi, Chong; Xu, Fu-gang

    2013-01-01

    Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope. PMID:24082854

  19. Geotechnical characteristics and stability analysis of rock-soil aggregate slope at the Gushui Hydropower Station, southwest China.

    PubMed

    Zhou, Jia-wen; Shi, Chong; Xu, Fu-gang

    2013-01-01

    Two important features of the high slopes at Gushui Hydropower Station are layered accumulations (rock-soil aggregate) and multilevel toppling failures of plate rock masses; the Gendakan slope is selected for case study in this paper. Geological processes of the layered accumulation of rock and soil particles are carried out by the movement of water flow; the main reasons for the toppling failure of plate rock masses are the increasing weight of the upper rock-soil aggregate and mountain erosion by river water. Indoor triaxial compression test results show that, the cohesion and friction angle of the rock-soil aggregate decreased with the increasing water content; the cohesion and the friction angle for natural rock-soil aggregate are 57.7 kPa and 31.3° and 26.1 kPa and 29.1° for saturated rock-soil aggregate, respectively. The deformation and failure mechanism of the rock-soil aggregate slope is a progressive process, and local landslides will occur step by step. Three-dimensional limit equilibrium analysis results show that the minimum safety factor of Gendakan slope is 0.953 when the rock-soil aggregate is saturated, and small scale of landslide will happen at the lower slope.

  20. Nitrous Oxide Emissions Affected by Biochar and Nitrogen Stabilizers

    NASA Astrophysics Data System (ADS)

    Gao, S.; Cai, Z.; Xu, M.

    2016-12-01

    Both biochar and N fertilizer stabilizers (N transformation inhibitors) are potential strategies to reduce nitrous oxide (N2O) emissions from fertilization, but the mechanisms and/or N transformation processes affecting the N dynamics are not fully understood. This research investigated N2O emissions and N transformations in soil amended with biochar and N transformation inhibitors. The soil was a sandy loam soil and adjusted to 10% soil water content and incubated at 25oC. Biochar amendment at 1% (w/w), Agrotain® Ultra (urease inhibitor), Agrotain® Plus (urease and nitrification inhibitor), and N-Serve® 24 (nitrification inhibitor) as well as another potential nitrification inhibitor, potassium thiosulfate (KTS), at 0.25-1:1 K2O/N ratios (w/w) were tested. Emissions of N2O, soil mineral N species change, and soil pH were determined for 35 days after fertilizers were applied. Biochar, Agrotain® Ultra or Plus, or N-Serve® 24 all effectively reduced N2O emissions by more than 60% as compared to no amendment control. The KTS, however, was only effective in reducing N2O emissions at a high ratio (1:1 K2O/N, w/w). There was a strong correlation between N2O emission and the concentration of nitrite (NO2-) in soil but not other mineral species. All the amendments showed that their effects on N transformation and N2O emissions were completed within a few weeks after application. Laboratory analysis indicated that biochar affected the N dynamics most likely via adsorption of ammonium (NH4+) and the inhibitors by affecting N transformation rate. This research has gained further understanding on how biochar and N stabilizers affect N2O emissions and the knowledge can assist in developing mitigation strategies.

  1. Stage structure alters how complexity affects stability of ecological networks

    USGS Publications Warehouse

    Rudolf, V.H.W.; Lafferty, Kevin D.

    2011-01-01

    Resolving how complexity affects stability of natural communities is of key importance for predicting the consequences of biodiversity loss. Central to previous stability analysis has been the assumption that the resources of a consumer are substitutable. However, during their development, most species change diets; for instance, adults often use different resources than larvae or juveniles. Here, we show that such ontogenetic niche shifts are common in real ecological networks and that consideration of these shifts can alter which species are predicted to be at risk of extinction. Furthermore, niche shifts reduce and can even reverse the otherwise stabilizing effect of complexity. This pattern arises because species with several specialized life stages appear to be generalists at the species level but act as sequential specialists that are hypersensitive to resource loss. These results suggest that natural communities are more vulnerable to biodiversity loss than indicated by previous analyses.

  2. Tibial slope correction combined with second revision ACL produces good knee stability and prevents graft rupture.

    PubMed

    Dejour, David; Saffarini, Mo; Demey, Guillaume; Baverel, Laurent

    2015-10-01

    Revision ACL reconstruction requires careful analysis of failure causes particularly in cases of two previous graft ruptures. Intrinsic factors as excessive tibial slope or narrow femoral notch increase failure risks but are rarely addressed in revision surgery. The authors report outcomes, at minimum follow-up of 2 years, for second revision ACL reconstructions combined with tibial deflexion osteotomy for correction of excessive slope (>12°). Nine patients that underwent second revision ACL reconstruction combined with tibial deflexion osteotomy were retrospectively studied. The mean age was 30.3 ± 4.4 years (median 28; range 26-37), and mean follow-up was 4.0 ± 2.0 years (median 3.6; range 2.0-7.6). Autografts were harvested from the quadriceps tendon (n = 8) or hamstrings (n = 1), and tibial osteotomy was done by anterior closing wedge, without detachment of the patellar tendon, to obtain a slope of 3° to 5°. All patients had fused osteotomies, stable knees, and there were no intraoperative or postoperative complications. The mean posterior tibial slope decreased from 13.2° ± 2.6° (median 13°; range 12°-18°) preoperatively to 4.4° ± 2.3° (median 4°; range 2°-8°) postoperatively. The mean Lysholm score was 73.8 ± 5.8 (median 74; range 65-82), and the IKDC-SKF was 71.6 ± 6.1 (median 72.8; range 62.2-78.5). The satisfactory results of second revision ACL reconstruction combined with tibial deflexion osteotomy at minimum follow-up of 2 years suggest that tibia slope correction protects reconstructed ACL from fatigue failure in this study. The authors stress the importance of careful analysis failure causes prior to revision ACL reconstruction, and recommend correction of tibial slope if it exceeds 12°, to reduce the risks of graft retear. III.

  3. Rockfall risk assessment for a road along the coastal rocky slope of Maratea (Basilicata Region, Italy)

    NASA Astrophysics Data System (ADS)

    Pellicani, R.; Spilotro, G.; Colangelo, G.; Petraglia, A.; Pizzo, V.

    2012-04-01

    The rockfall risk has been evaluated for the Tirrena Inferiore State Road SS18 between 220+600 and 243+670 Kilometers in the coastal area of Maratea (Basilicata, Italy) through a specific multilayer technique. These results are particularly significant as validated in field through the occurrence of rockfall events after the study. The study part of "Tirrena Inferiore" SS18 road is often affected by rockfalls, which periodically (coinciding with abundant rainfalls, earthquakes and temperature lowering) cause large amount of damage and traffic interruptions. In order to assess the rockfall risk and define the countermeasure needed to mitigate the risk, an integrated index-based and physically-based approach was implemented. The roadway is subject to slopes with steep rocky vertical or sub-vertical faces affected by different systems of discontinuities, that show a widespread fracturing. The superficial parts of slopes are characterized by gaping fracturing, often karstified. Several historical rockfall events were recognized in the area and numerous geomechanical analyses, finalized to the stability analysis of rock walls, were carried out. The localization of the potentially unstable areas and the quantification of relative rockfall risk were evaluated through three successive phases of analysis. First, a map based on SMR (Slope Mass Rating) Index of Romana (1985) was produced, through a spatial analysis of both geomechanical parameters, such as the RMR Index of Bieniawski, and the distribution of the discontinuities. This approach therefore allowed the estimation of the potentially unstable zones and their classification on the basis of the resulting stability degree. Subsequently, an analysis of the rockfall trajectories in correspondence to the most unstable zones of slope was carried out by using ROTOMAP, a 3-dimensional rock-fall simulation software. The input data for computing the rockfall trajectories are the following: (1) digital terrain model (DTM), (2

  4. Automated Measurement of Patient-Specific Tibial Slopes from MRI

    PubMed Central

    Amerinatanzi, Amirhesam; Summers, Rodney K.; Ahmadi, Kaveh; Goel, Vijay K.; Hewett, Timothy E.; Nyman, Edward

    2017-01-01

    Background: Multi-planar proximal tibial slopes may be associated with increased likelihood of osteoarthritis and anterior cruciate ligament injury, due in part to their role in checking the anterior-posterior stability of the knee. Established methods suffer repeatability limitations and lack computational efficiency for intuitive clinical adoption. The aims of this study were to develop a novel automated approach and to compare the repeatability and computational efficiency of the approach against previously established methods. Methods: Tibial slope geometries were obtained via MRI and measured using an automated Matlab-based approach. Data were compared for repeatability and evaluated for computational efficiency. Results: Mean lateral tibial slope (LTS) for females (7.2°) was greater than for males (1.66°). Mean LTS in the lateral concavity zone was greater for females (7.8° for females, 4.2° for males). Mean medial tibial slope (MTS) for females was greater (9.3° vs. 4.6°). Along the medial concavity zone, female subjects demonstrated greater MTS. Conclusion: The automated method was more repeatable and computationally efficient than previously identified methods and may aid in the clinical assessment of knee injury risk, inform surgical planning, and implant design efforts. PMID:28952547

  5. Characterization of Unstable Rock Slopes Through Passive Seismic Measurements

    NASA Astrophysics Data System (ADS)

    Kleinbrod, U.; Burjanek, J.; Fäh, D.

    2014-12-01

    Catastrophic rock slope failures have high social impact, causing significant damage to infrastructure and many casualties throughout the world each year. Both detection and characterization of rock instabilities are therefore of key importance. An analysis of ambient vibrations of unstable rock slopes might be a new alternative to the already existing methods, e.g. geotechnical displacement measurements. Systematic measurements have been performed recently in Switzerland to study the seismic response of potential rockslides concerning a broad class of slope failure mechanisms and material conditions. Small aperture seismic arrays were deployed at sites of interest for a short period of time (several hours) in order to record ambient vibrations. Each measurement setup included a reference station, which was installed on a stable part close to the instability. Recorded ground motion is highly directional in the unstable parts of the rock slope, and significantly amplified with respect to stable areas. These effects are strongest at certain frequencies, which were identified as eigenfrequencies of the unstable rock mass. In most cases the directions of maximum amplification are perpendicular to open cracks and in good agreement with the deformation directions obtained by geodetic measurements. Such unique signatures might improve our understanding of slope structure and stability. Thus we link observed vibration characteristics with available results of detailed geological characterization. This is supported by numerical modeling of seismic wave propagation in fractured media with complex topography.For example, a potential relation between eigenfrequencies and unstable rock mass volume is investigated.

  6. Simulation of a slope adapting ankle prosthesis provided by semi-active damping.

    PubMed

    LaPrè, Andrew K; Sup, Frank

    2011-01-01

    Modern passive prosthetic foot/ankles cannot adapt to variations in ground slope. The lack of active adaptation significantly compromises an amputee's balance and stability on uneven terrains. To address this deficit, this paper proposes an ankle prosthesis that uses semi-active damping as a mechanism to provide active slope adaptation. The conceptual ankle prosthesis consists of a modulated damper in series with a spring foot that allows the foot to conform to the angle of the surface in the sagittal plane. In support of this approach, biomechanics data is presented showing unilateral transtibial amputees stepping on a wedge with their daily-use passive prosthesis. Based on this data, a simulation of the ankle prosthesis with semi-active damping is developed. The model shows the kinematic adaptation of the prosthesis to sudden changes in ground slope. The results show the potential of an ankle prosthesis with semi-active damping to actively adapt to the ground slope at each step.

  7. Lava delta deformation as a proxy for submarine slope instability

    NASA Astrophysics Data System (ADS)

    Di Traglia, Federico; Nolesini, Teresa; Solari, Lorenzo; Ciampalini, Andrea; Frodella, William; Steri, Damiano; Allotta, Benedetto; Rindi, Andrea; Marini, Lorenzo; Monni, Niccolò; Galardi, Emanuele; Casagli, Nicola

    2018-04-01

    The instability of lava deltas is a recurrent phenomenon affecting volcanic islands, which can potentially cause secondary events such as littoral explosions (due to interactions between hot lava and seawater) and tsunamis. It has been shown that Interferometric Synthetic Aperture Radar (InSAR) is a powerful technique to forecast the collapse of newly emplaced lava deltas. This work goes further, demonstrating that the monitoring of lava deltas is a successful strategy by which to observe the long-term deformation of subaerial-submarine landslide systems on unstable volcanic flanks. In this paper, displacement measurements derived from Synthetic Aperture Radar (SAR) imagery were used to detect lava delta instability at Stromboli volcano (Italy). Recent flank eruptions (2002-2003, 2007 and 2014) affected the Sciara del Fuoco (SdF) depression, created a "stacked" lava delta, which overlies a pre-existing scar produced by a submarine-subaerial tsunamigenic landslide that occurred on 30 December 2002. Space-borne X-band COSMO-SkyMED (CSK) and C-band SENTINEL-1A (SNT) SAR data collected between February 2010 and October 2016 were processed using the SqueeSAR algorithm. The obtained ground displacement maps revealed the differential ground motion of the lava delta in both CSK and SNT datasets, identifying a stable area (characterized by less than 2 mm/y in both datasets) within the northern sector of the SdF and an unstable area (characterized by velocity fields on the order of 30 mm/y and 160 mm/y in the CSK and SNT datasets, respectively) in the central sector of the SdF. The slope stability of the offshore part of the SdF, as reconstructed based on a recently performed multibeam bathymetric survey, was evaluated using a 3D Limit Equilibrium Method (LEM). In all the simulations, Factor of Safety (F) values between 0.9 and 1.1 always characterized the submarine slope between the coastline and -250 m a.s.l. The critical surfaces for all the search volumes corresponded to

  8. Geomorphology and Sediment Stability of a Segment of the U.S. Continental Slope off New Jersey.

    PubMed

    Robb, J M; Hampson, J C; Twichell, D C

    1981-02-27

    The morphology of complex deposits of Pleistocene sediments covering the upper continental slope between Lindenkohl Canyon and South Toms Canyon results from both depositional and erosional processes. Small slump or slide features were detected primarily on the flanks of canyons or valleys and were observed to occur only within Pleistocene-aged sediments. Eocene to Miocene sediments are exposed over much of the mid- and lower slope in this area.

  9. Snowpack spatial variability: Towards understanding its effect on remote sensing measurements and snow slope stability

    NASA Astrophysics Data System (ADS)

    Marshall, Hans-Peter

    on a slope. The ability to accurately characterize snowpack properties at much higher resolutions and spatial extent than previously possible will hopefully help lead to a more complete understanding of spatial variability, its effect on remote sensing measurements and snow slope stability, and result in improvements in avalanche prediction and accuracy of SWE estimates from space.

  10. Modern Instrumentation of a Historical Landslide to Understand Dynamic Processes Governing Slope Movement in a Hostile Environment.

    NASA Astrophysics Data System (ADS)

    Johnson, K. A.

    2017-12-01

    The Milepost 6.2 Landslide on Many Glacier Road in Glacier National Park, Montana, has been moving since construction of the roadway in the early 1900's. Movement of the slide has a direct impact on Park operations and requires regrading and reconstruction of the road on a nearly annual basis. Prior attempts to stabilize the slope were not effective. Despite the history of this slide, very little quality data was available to delineate the depth and shape of the slide or the groundwater pressures that influence slope stability due to only seasonal data collection and a hostile winter environment. Landslide dynamics are further complicated where the toe of the slide becomes submerged seasonally by Lake Sherburne. In addition, due to irrigation use the lake levels fluctuate rapidly with seasonal rise and drops commonly greater than 30 feet in elevation. Five Shape Accelerometer Array inclinometers (SAAs) were installed to depths between 60 and 200 feet, along with 10 vibrating wire piezometers, one tipping bucket rain gauge, and onsite data acquisition system with a real-time satellite communication link enabling year-round data collection. Measurements of groundwater pressures and slide dynamics were used to develop a well constrained 2-D dynamic model of slide movement. Movement is controlled by clayey zones in glacial till deposits that mantle the valley slopes, along with water pressures from groundwater in the slope and fluctuating lake levels at the toe of the slope. The SAAs document slide plane locations and rates of slide movement as it changes through the year in response to the dynamic hydrologic setting. SAAs document sliding of over 3 feet and continue to operate and generate additional data. The data collected enabled the design of an extensive horizontal drain system to lower the groundwater pressures and stabilize the slope. Continuous year-round monitoring allowed comparison of slope movement in response to changes in lake elevation and precipitation

  11. Numerical modelling of hydrologically-driven slope instability by means of porous media mechanics

    NASA Astrophysics Data System (ADS)

    Kakogiannou, Evanthia; Sanavia, Lorenzo; Lora, Marco; Schrefler, Bernhard

    2015-04-01

    Heavy rainfall can trigger slope failure which generally involves shallow soil deposit of different grading and origin usually in a state of partial saturation. In this case of slope instability, the behaviour of the soil slope is closely related not only to the distribution of pore-water pressure but also to the stress state during rainfall infiltration involving both mechanical and hydrological processes. In order to understand better these physical key processes, in this research work, the modelling of rainfall induced slope failure is considered as a coupled variably saturated hydro-mechanical problem. Therefore, the geometrically linear finite element code Comes-Geo for non-isothermal elasto-plastic multiphase solid porous materials is used, as developed by B.A. Schrefler and his co-workers. In this context, a detailed numerical analysis of an experimental slope stability test due to rainfall infiltration is presented. The main goals of this work are to understand the triggering mechanisms during the progressive failure, the effect of using different constitutive models of the mechanical soil behavior on the numerical results and the use of the second order work criterion on the detection of slope instability.

  12. Sarma-based key-group method for rock slope reliability analyses

    NASA Astrophysics Data System (ADS)

    Yarahmadi Bafghi, A. R.; Verdel, T.

    2005-08-01

    The methods used in conducting static stability analyses have remained pertinent to this day for reasons of both simplicity and speed of execution. The most well-known of these methods for purposes of stability analysis of fractured rock masses is the key-block method (KBM).This paper proposes an extension to the KBM, called the key-group method (KGM), which combines not only individual key-blocks but also groups of collapsable blocks into an iterative and progressive analysis of the stability of discontinuous rock slopes. To take intra-group forces into account, the Sarma method has been implemented within the KGM in order to generate a Sarma-based KGM, abbreviated SKGM. We will discuss herein the hypothesis behind this new method, details regarding its implementation, and validation through comparison with results obtained from the distinct element method.Furthermore, as an alternative to deterministic methods, reliability analyses or probabilistic analyses have been proposed to take account of the uncertainty in analytical parameters and models. The FOSM and ASM probabilistic methods could be implemented within the KGM and SKGM framework in order to take account of the uncertainty due to physical and mechanical data (density, cohesion and angle of friction). We will then show how such reliability analyses can be introduced into SKGM to give rise to the probabilistic SKGM (PSKGM) and how it can be used for rock slope reliability analyses. Copyright

  13. North Slope (Wahluke Slope) expedited response action cleanup plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part ofmore » the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.« less

  14. Item Strength Influences Source Confidence and Alters Source Memory zROC Slopes

    ERIC Educational Resources Information Center

    Starns, Jeffrey J.; Ksander, John C.

    2016-01-01

    Increasing the number of study trials creates a crossover pattern in source memory zROC slopes; that is, the slope is either below or above 1 depending on which source receives stronger learning. This pattern can be produced if additional learning affects memory processes such as the relative contribution of recollection and familiarity to source…

  15. Origin of Slope Failure in the Ursa Region, Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Stigall, J.; Dugan, B.

    2008-12-01

    We use one-dimensional fluid flow and stability models to predict the evolution of overpressure and stability conditions of IODP Expedition Sites U1322 and U1324 in the Ursa region, northern Gulf of Mexico. Simulations of homogenous mud deposited at 3 and 12 mm/yr for Sites U1322 and U1324, with permeability (k) on the order of 10-17m2 and bulk compressibility of .4 /MPa, predict overpressures up to .45MPa and 1MPa in shallow sediments (<200m below sea floor). With limit equilibrium calculations for an infinite slope, these overpressures equate to a factor of safety (FS) greater than 10 and 4.5 for a internal friction angle of 26° and a seafloor slope of 2°. This implies stability throughout the last 50,000 years. Seismic and core observations, however, document major slope failures that span the entire Ursa region. Permeability in this region is well constrained by laboratory experiments, so we investigate how pulsed (high-to-low) sedimentation rates could have created unstable conditions, FS <1. Models with periods of high sedimentation generate overpressure that create unstable conditions while maintaining the time-averaged sedimentation rates. Other factors which are not possible to simulate in one dimension, such as a complex basin geometry, also influence the conditions that caused the past failures. A two-dimensional model linking lateral flow between the sites with the interpreted geometry from seismic stratigraphy gives a better picture of the flow field and instability within the basin. Asymmetrical loading of permeable sediments could have created a lateral difference in pore pressures which would have driven lateral flow from Site U1324 to Site U1322 where overpressures are higher than our one-dimensional models suggest. We anticipate that two-dimensional models with transient sedimentation patterns will enhance our understanding of flow in marginally stable environments and triggers of slope failures in passive margin systems.

  16. Slope Failure Prediction and Early Warning Awareness Education for Reducing Landslides Casualty in Malaysia

    NASA Astrophysics Data System (ADS)

    Koay, S. P.; Tay, L. T.; Fukuoka, H.; Koyama, T.; Sakai, N.; Jamaludin, S. B.; Lateh, H.

    2015-12-01

    Northeast monsoon causes heavy rain in east coast of Peninsular Malaysia from November to March, every year. During this monsoon period, besides the happening of flood along east coast, landslides also causes millions of Malaysian Ringgit economical losses. Hence, it is essential to study the prediction of slope failure to prevent the casualty of landslides happening. In our study, we introduce prediction method of the accumulated rainfall affecting the stability of the slope. If the curve, in the graph, which is presented by rainfall intensity versus accumulated rainfall, crosses over the critical line, the condition of the slope is considered in high risk where the data are calculated and sent from rain gauge in the site via internet. If the possibility of slope failure is going high, the alert message will be sent out to the authorities for decision making on road block or setting the warning light at the road side. Besides road block and warning light, we propose to disseminate short message, to pre-registered mobile phone user, to notify the public for easing the traffic jam and avoiding unnecessary public panic. Prediction is not enough to prevent the casualty. Early warning awareness of the public is very important to reduce the casualty of landslides happening. IT technology does not only play a main role in disseminating information, early warning awareness education, by using IT technology, should be conducted, in schools, to give early warning awareness on natural hazard since childhood. Knowing the pass history on landslides occurrence will gain experience on the landslides happening. Landslides historical events with coordinate information are stored in database. The public can browse these historical events via internet. By referring to such historical landslides events, the public may know where did landslides happen before and the possibility of slope failure occurrence again is considered high. Simulation of rainfall induced slope failure mechanism

  17. A Tensile Strength of Bermuda Grass and Vetiver Grass in Terms of Root Reinforcement Ability Toward Soil Slope Stabilization

    NASA Astrophysics Data System (ADS)

    Noorasyikin, M. N.; Zainab, M.

    2016-07-01

    An examination on root characteristics and root properties has been implemented in this study. Two types of bioengineering were chose which are Vetiver grass and Bermuda grass as these grasses were widely applied for slope stabilization. The root samples were taken to the laboratory to investigate its classification, characteristics and strength. The root of both grasses was found grow with fibrous root matrix system. In terms of root anchorage, the root matrix system of Vetiver grass was exhibits more strengthen than the Bermuda grass. However, observation on root image from Scanning Electron Microscope test reveals that the root of Vetiver grass becomes non-porous as the moisture content reduced. Meanwhile, the root tensile strength of Bermuda grass was obtained acquired low value with higher percentage of moisture content, root morphology and bonding strength. The results indicated that the root tensile strength is mainly influence by percentage of moisture content and root morphology.

  18. An artificial bee colony algorithm for locating the critical slip surface in slope stability analysis

    NASA Astrophysics Data System (ADS)

    Kang, Fei; Li, Junjie; Ma, Zhenyue

    2013-02-01

    Determination of the critical slip surface with the minimum factor of safety of a slope is a difficult constrained global optimization problem. In this article, an artificial bee colony algorithm with a multi-slice adjustment method is proposed for locating the critical slip surfaces of soil slopes, and the Spencer method is employed to calculate the factor of safety. Six benchmark examples are presented to illustrate the reliability and efficiency of the proposed technique, and it is also compared with some well-known or recent algorithms for the problem. The results show that the new algorithm is promising in terms of accuracy and efficiency.

  19. [Analysis of related factors of slope plant hyperspectral remote sensing].

    PubMed

    Sun, Wei-Qi; Zhao, Yun-Sheng; Tu, Lin-Ling

    2014-09-01

    In the present paper, the slope gradient, aspect, detection zenith angle and plant types were analyzed. In order to strengthen the theoretical discussion, the research was under laboratory condition, and modeled uniform slope for slope plant. Through experiments we found that these factors indeed have influence on plant hyperspectral remote sensing. When choosing slope gradient as the variate, the blade reflection first increases and then decreases as the slope gradient changes from 0° to 36°; When keeping other factors constant, and only detection zenith angle increasing from 0° to 60°, the spectral characteristic of slope plants do not change significantly in visible light band, but decreases gradually in near infrared band; With only slope aspect changing, when the dome meets the light direction, the blade reflectance gets maximum, and when the dome meets the backlit direction, the blade reflectance gets minimum, furthermore, setting the line of vertical intersection of incidence plane and the dome as an axis, the reflectance on the axis's both sides shows symmetric distribution; In addition, spectral curves of different plant types have a lot differences between each other, which means that the plant types also affect hyperspectral remote sensing results of slope plants. This research breaks through the limitations of the traditional vertical remote sensing data collection and uses the multi-angle and hyperspectral information to analyze spectral characteristics of slope plants. So this research has theoretical significance to the development of quantitative remote sensing, and has application value to the plant remote sensing monitoring.

  20. Stability model and risk assessment for the Montescaglioso Landslide (Southern Italy)

    NASA Astrophysics Data System (ADS)

    Amanti, Marco; Chiessi, Vittorio; Guarino, Paolo Maria; Spizzichino, Daniele; Troccoli, Alessandro; Vizzini, Giorgio

    2015-04-01

    In this paper, we present the final results of a landslide risk assessment evaluation implemented for the recent Montescaglioso landslide emergency occurred on 3rd December 2013 when a large and rapid slope failure, triggered by prolonged and intense rainfall, affected a big portion of the SW slope of the village. The slope failure damaged a main road, private homes and commercial buildings. The Montescaglioso village (Basilicata Region, Italy) is located on the top of a conglomerate hill overlying a gentle slope constituted by Plio-Pleistocene clays. The area has been affected since ancient time by different landslide typologies and mechanism, as determined by a direct geomorphological survey and from mapping and available technical literature. Phenomena such as rock-falls and rock lateral spreading in the upper part of the hill, and rotational/translational slides and earth flows can be recognized in the area. Landslides are mainly promoted by the geological and structural setting of the area as well as by very low mechanical characteristics of sediments outcropping in the area. After the emergency phase, a detailed program of field survey and laboratory campaign has been implemented during the last year. A detailed topographical analysis has been developed by using the LIDAR survey in order to define morphometric conditions and geometry modifications of the slope affected by the landslide. Based on the studies carried out in the area, the research has been aimed to assessing the stability conditions (residual landslide risk) of the SW slope of the hill trough an extended geological, geomorphological and geotechnical campaign linked with numerical study of present instability mechanism. The geological and geotechnical model of the slope has been defined trough the analysis of the past and recent logs obtained from several boreholes and also through the results of many mechanical test performed on samples taken in the area. The numerical study has been carried out

  1. Water related triggering mechanisms of shallow landslides: Numerical modelling of hydraulic flows in slopes verified with field experiments

    NASA Astrophysics Data System (ADS)

    Broennimann, C.; Tacher, L.

    2009-04-01

    To assess hill slope stability and landslide triggering mechanisms, it is essential to understand the hydrogeological regime in slopes. In this work finite element models are elaborated and field experiments are carried out to study particularly shallow landslides with thickness of a few meters. The basis hypothesis of the presented research assumes that even for shallow landslides the hydrogeological role of the substratum, mostly bedrock, is determinant for the slopes behaviour, either it is draining or feeding the overlaying unstable mass. The investigated area of about 1 square kilometre is situated next to the villages Buchberg and Rüdlingen (canton Schaffhausen, Switzerland) at the border of the river Rhine. The lithology in this region is characterized mainly by horizontally layered sandstones intersected by marls from the upper seawater and the lower freshwater molasse, overlaid by soil and weathered bedrock of about 1 to 4 m thickness, both classified as silty sands. With a slope inclination of locally up to 40° the area is rather steep and characterized by continuous regressive erosion processes. During heavy rainfall events, such as the one from May 2002, shallow landslides occurred in the area affecting afforested soils as well as woodless areas. Geological field observations, infiltration and tracer tests show a fairly complicated hydrogeological character of the region. Along the slope, in the first few meters of depth, no groundwater table was found. However, seasonally controlled sources can be observed in-between outcropping bedrock. Within the sandstone, vertical faults in decametre scale oriented parallel to the Rhine that most likely opened during decompression due to the cutting of the river affect locally the hydrogeological regime by draining the slope. This implies a high grade of heterogeneity in the water flows in a local scale. Based on these conceptual hydrological and geological models, a numerical flow model was obtained using finite

  2. Positive affect and cognitive control: approach-motivation intensity influences the balance between cognitive flexibility and stability.

    PubMed

    Liu, Ya; Wang, Zhenhong

    2014-05-01

    In most prior research, positive affect has been consistently found to promote cognitive flexibility. However, the motivational dimensional model of affect assumes that the influence of positive affect on cognitive processes is modulated by approach-motivation intensity. In the present study, we extended the motivational dimensional model to the domain of cognitive control by examining the effect of low- versus high-approach-motivated positive affect on the balance between cognitive flexibility and stability in an attentional-set-shifting paradigm. Results showed that low-approach-motivated positive affect promoted cognitive flexibility but also caused higher distractibility, whereas high-approach-motivated positive affect enhanced perseverance but simultaneously reduced distractibility. These results suggest that the balance between cognitive flexibility and stability is modulated by the approach-motivation intensity of positive affective states. Therefore, it is essential to incorporate motivational intensity into studies on the influence of affect on cognitive control.

  3. Testing the suitability of some endemic and exotic species for eco-engineering applications to control slope processes

    NASA Astrophysics Data System (ADS)

    Cammeraat, L. H.; van Beek, L. P. H.

    2009-04-01

    Eco-engineering is a growing, but still under rated field at the interface of landscape ecology and civil engineering. Although the principles are already known for a long period, the attention for green remediation techniques is increasing, especially in slope stabilizing projects as well as in soil erosion protection. This study discusses tests carried out on the effectiveness of plants to stabilize steep slopes. Four different treatments were compared: A naturally vegetated terrace slope (Brachyopodum retusem grass dominated), a slope completely stripped from vegetation, a slope planted with Arrundo donax (Spanish cane) and a slope with vetiver grass (Vetiver zizanioides), the last one being an often successfully applied, but exotic tropical species for erosion and slope protection. The tests were carried out in double, on unarmored steep bench terrace slopes (30-60° slope angle) on homogeneous marl in E Spain (Rio Serpis Basin). Vegetation was planted in summer and irrigated during the first summer period. Precipitation and soil temperature were measured and runoff and erosion was measured at the installed ‘Gerlach troughs'. Soil physical properties were determined such as bulk density and shear strength. The uprooting resistance of the vetiver grass was also determined as well as root density, root depth and other root parameters. Above ground plant characteristic such as plant height and base diameter were also measured. Results showed that within one year the bare slope was completely covered again with natural Brachiopodum grass dominated vegetation and that the planted vetiver and Spanish cane vegetation seemed to develop successfully. However, investigations showed that especially the roots of the vetiver grasses were not as well and deeply developed as could be expected from literature, although their surface cover and above ground biomass were good. All tested species worked well with respect to retaining soil material under overland flow conditions

  4. Rock slope instabilities in Norway: First systematic hazard and risk classification of 22 unstable rock slopes

    NASA Astrophysics Data System (ADS)

    Böhme, Martina; Hermanns, Reginald L.; Oppikofer, Thierry; Penna, Ivanna

    2016-04-01

    average displacement rates of up to 6 cm are measured with differential GNSS and InSAR. Cosmogenic nuclide dating suggests an acceleration of the present displacement compared to the average displacement since the initiation of the gravitational movement approximately 7000 years ago. Furthermore, there exists a pre-historic rock avalanche 3 km north along the same slope. These characteristics result in a very high hazard for the Gamanjunni unstable rock slope. The consequence analyses focus on the possibility of life loss only. For this the number of persons in the area that can be affected by either the rock slope failure itself and/or its secondary consequence of a displacement wave in case that a rock slope failure would hit a water body is estimated. For Gamanjunni the direct consequences are approximately 40 casualties, representing medium consequences. A total of 48 scenarios were finally analyzed for hazard, consequences and risk. The results are plotted in a risk matrix with 5 hazard and 5 consequence classes, leading to 4 risk classes. One unstable rock slope was classified as very high hazard, 9 scenarios as high hazard, 25 as medium hazard and 13 as low hazard, while none were classified as very low hazard. The consequence analyses for those scenarios resulted in 5 scenarios with very high consequences (>1000 potential casualties), 13 scenarios with high consequences (100-1000 casualties), 9 scenarios with medium consequences (10-100 casualties), 6 scenarios with low consequences (1-10 casualties) and 15 scenarios with very low consequences (0-1 casualties). This resulted in a high risk for 6 scenarios, medium to high risk for 16 scenarios, medium risk for 7 scenarios and low risk for 19 scenarios. These results allow determining which unstable rock slopes do not require further follow-up and on which further investigations and/or mitigation measures should be considered.

  5. [Effects of slope gradient on slope runoff and sediment yield under different single rainfall conditions].

    PubMed

    He, Ji-Jun; Cai, Qiang-Guo; Liu, Song-Bo

    2012-05-01

    Based on the field observation data of runoff and sediment yield produced by single rainfall events in runoff plots, this paper analyzed the variation patterns of runoff and sediment yield on the slopes with different gradients under different single rainfall conditions. The differences in the rainfall conditions had little effects on the variation patterns of slope runoff with the gradient. Under the conditions of six different rainfall events in the study area, the variation patterns of slope runoff with the gradient were basically the same, i. e., the runoff increased with increasing gradient, but the increment of the runoff decreased slightly with increasing gradient, which was mainly determined by the infiltration flux of atmospheric precipitation. Rainfall condition played an important role on the slope sediment yield. Generally, there existed a critical slope gradient for slope erosion, but the critical gradient was not a fixed value, which varied with rainfall condition. The critical slope gradient for slope erosion increased with increasing slope gradient. When the critical slope gradient was greater, the variation of slope sediment yield with slope gradient always became larger.

  6. Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides.

    PubMed

    Puzrin, Alexander M; Gray, Thomas E; Hill, Andrew J

    2015-03-08

    A simple approach to slope stability analysis of naturally occurring, mild nonlinear slopes is proposed through extension of shear band propagation (SBP) theory. An initial weak zone appears in the steepest part of the slope where the combined action of gravity and seismic loads overcomes the degraded peak shear resistance of the soil. If the length of this steepest part is larger than the critical length, the shear band will propagate into the quasi-stable parts of the slope, where the gravitational and seismically induced shear stresses are smaller than the peak but larger than the residual shear strength of the soil. Growth of a shear band is strongly dependent on the shape of the slope, seismic parameters and the strength of soil and less dependent on the slope inclination and the sensitivity of clay. For the slope surface with faster changing inclination, the criterion is more sensitive to the changes of the parameters. Accounting for the actual nonlinear slope geometry eliminates the main challenge of the SBP approach-determination of the length of the initial weak zone, because the slope geometry can be readily obtained from submarine site investigations. It also helps to identify conditions for the early arrest of the shear band, before failure in the sliding layer or a change in loading or excess pore water pressures occurs. The difference in the size of a landslide predicted by limiting equilibrium and SBP approaches can reach orders of magnitude, potentially providing an explanation for the immense dimensions of many observed submarine landslides that may be caused by local factors acting over a limited portion of the slope.

  7. Significance of the actual nonlinear slope geometry for catastrophic failure in submarine landslides

    PubMed Central

    Puzrin, Alexander M.; Gray, Thomas E.; Hill, Andrew J.

    2015-01-01

    A simple approach to slope stability analysis of naturally occurring, mild nonlinear slopes is proposed through extension of shear band propagation (SBP) theory. An initial weak zone appears in the steepest part of the slope where the combined action of gravity and seismic loads overcomes the degraded peak shear resistance of the soil. If the length of this steepest part is larger than the critical length, the shear band will propagate into the quasi-stable parts of the slope, where the gravitational and seismically induced shear stresses are smaller than the peak but larger than the residual shear strength of the soil. Growth of a shear band is strongly dependent on the shape of the slope, seismic parameters and the strength of soil and less dependent on the slope inclination and the sensitivity of clay. For the slope surface with faster changing inclination, the criterion is more sensitive to the changes of the parameters. Accounting for the actual nonlinear slope geometry eliminates the main challenge of the SBP approach—determination of the length of the initial weak zone, because the slope geometry can be readily obtained from submarine site investigations. It also helps to identify conditions for the early arrest of the shear band, before failure in the sliding layer or a change in loading or excess pore water pressures occurs. The difference in the size of a landslide predicted by limiting equilibrium and SBP approaches can reach orders of magnitude, potentially providing an explanation for the immense dimensions of many observed submarine landslides that may be caused by local factors acting over a limited portion of the slope. PMID:25792958

  8. The role of large-scale eddies in the climate equilibrium. Part 2: Variable static stability

    NASA Technical Reports Server (NTRS)

    Zhou, Shuntai; Stone, Peter H.

    1993-01-01

    Lorenz's two-level model on a sphere is used to investigate how the results of Part 1 are modified when the interaction of the vertical eddy heat flux and static stability is included. In general, the climate state does not depend very much on whether or not this interaction is included, because the poleward eddy heat transport dominates the eddy forcing of mean temperature and wind fields. However, the climatic sensitivity is significantly affected. Compared to two-level model results with fixed static stability, the poleward eddy heat flux is less sensitive to the meridional temperature gradient and the gradient is more sensitive to the forcing. For example, the logarithmic derivative of the eddy flux with respect to the gradient has a slope that is reduced from approximately 15 on a beta-plane with fixed static stability and approximately 6 on a sphere with fixed static stability, to approximately 3 to 4 in the present model. This last result is more in line with analyses from observations. The present model also has a stronger baroclinic adjustment than that in Part 1, more like that in two-level beta-plane models with fixed static stability, that is, the midlatitude isentropic slope is very insensitive to the forcing, the diabatic heating, and the friction, unless the forcing is very weak.

  9. The coupled response to slope-dependent basal melting

    NASA Astrophysics Data System (ADS)

    Little, C. M.; Goldberg, D. N.; Sergienko, O. V.; Gnanadesikan, A.

    2009-12-01

    Ice shelf basal melting is likely to be strongly controlled by basal slope. If ice shelves steepen in response to intensified melting, it suggests instability in the coupled ice-ocean system. The dynamic response of ice shelves governs what stable morphologies are possible, and thus the influence of melting on buttressing and grounding line migration. Simulations performed using a 3-D ocean model indicate that a simple form of slope-dependent melting is robust under more complex oceanographic conditions. Here we utilize this parameterization to investigate the shape and grounding line evolution of ice shelves, using a shallow-shelf approximation-based model that includes lateral drag. The distribution of melting substantially affects the shape and aspect ratio of unbuttressed ice shelves. Slope-dependent melting thins the ice shelf near the grounding line, reducing velocities throughout the shelf. Sharp ice thickness gradients evolve at high melting rates, yet grounding lines remain static. In foredeepened, buttressed ice shelves, changes in grounding line flux allow two additional options: stable or unstable retreat. Under some conditions, slope-dependent melting results in stable configurations even at high melt rates.

  10. Factors Affecting Lateral Stability and Controllability

    NASA Technical Reports Server (NTRS)

    Campbell, John P; Toll, Thomas A

    1948-01-01

    The effects on dynamic lateral stability and controllability of some of the important aerodynamic and mass characteristics are discussed and methods are presented for estimating the various stability parameters to be used in the calculation of the dynamic lateral stability of airplanes with swept and low-aspect-ratio wings.

  11. Can the tibial slope be measured on lateral knee radiographs?

    PubMed

    Faschingbauer, M; Sgroi, M; Juchems, M; Reichel, H; Kappe, T

    2014-12-01

    The posterior tibial slope influences both the natural knee stability as well as the stability and kinematics after total knee arthroplasty (TKA). Exact definition of the posterior tibial slope (PTS) requires lateral radiographs of the lower limb. Only lateral knee radiographs are routinely obtained after TKA, however. The purpose of the present study therefore was to analyse the relationship between PTS measurement results on short and expanded lateral knee radiographs. The PTS was measured on 100 consecutive lateral radiographs of the lower limb using the mechanical and three diaphyseal axes with various distances below the tibial plateau. Significant differences between PTS results were found for all three diaphyseal axes, with the smallest differences and the strongest correlation for a diaphyseal axis at 16 and 20 cm below the tibial plateau. Using short distances below the tibial plateau (6 and 10 cm) resulted in an overestimation of the PTS of 3°, on average. The PTS measurements in long lateral knee radiographs are more accurate compared to short radiographs. On short lateral knee radiographs, only a estimation of the PTS can be carried out. Diagnostic study, Level II.

  12. Interesting insights into instability of slopes and rock fall in the morphodynamic Himalayan terrane

    NASA Astrophysics Data System (ADS)

    Singh, T. N.; Vishal, V.; Pradhan, S. P.

    2015-12-01

    Himalayan mountain ranges are tectonically and seismically very active and experience many disastrous events with time due to slope failure. Frequent failures of rock cut slopes cause obstruction in traffic and often lead to fatalities. In recent years, the number of tragedies has increased when associated with regional phenomena such at the Kedarnath tragedy of 2013 and the Gorkha earthquake of 2015. The influence of such phenomena on the stability of slopes along important national highways and key settlement areas only raise the risk to lives and property. We conducted a multi-approach investigation for some key slopes along the National Highway 58 in Uttarakhand Himalaya, India. A very detailed field work was conducted to identify the unstable slopes and those with some history of failure. The pertinent geomechanical characteristics of the representative rock samples were determined in the laboratory. Based on the structural data, kinematic analysis was carried out. Finally the slopes were simulated using FDM based simulator, Flac/Slope for analysing the health of the slopes and Rockfall 4.0 to investigate the phenomenon of rockfall along the Highway. It was found that few slopes were weak due to the inherent weak rock materials while few slopes made up of high strength rocks were effectively weak due to prone-to-failure orientation of the joints. Quantification of bounce-height of rock blocks during fall, their energy, velocity and displacement along the slope was also done. Using 3-D simulations, few critically-stable slopes that appear to be stable, were identified. Little ground movement could be capable of triggering a large scale failure in the area. Slopes in the studied region are under threat to failure and need immediate proper planning using the suggested remedial measures.

  13. Mechanics-Based Definition of Safety Factors Against Flow Failure in Unsaturated Shallow Slopes

    NASA Astrophysics Data System (ADS)

    Buscarnera, G.; Lizarraga-Barrera, J.

    2014-12-01

    Physical models for landslide forecasting rely on the combination of hydrologic models for water infiltration and stability criteria based on infinite slope mechanics. Such concepts can be used to derive safety factors for shallow landsliding, in which the mobilization of the soil cover is associated with the attainment of critical values of pore water pressures expressed as a function of the frictional strength. While such models capture the role of important geomorphic features and geotechnical properties, their performance depends on the validity of the postulate of frictional failure. As a result, the safety factors do not to consider a broader range of solid-fluid interactions promoting different slope failure mechanisms, such as flow slides. This work combines principles of soil stability, unsaturated soil mechanics and plasticity theory to derive an alternative set of safety factors. While frictional slips are included in the study as a particular case, the proposed analytical methodology can also be applied to cases in which an increase in degree of saturation promotes liquefaction instabilities, i.e. possible transitions from solid- to fluid-like response. The study shows that the incorporation of principles of unsaturated soil mechanics into slope stability analyses generates suction-dependent coefficients that alter the value of the safety factors. As a result, while the proposed approach can still be combined with standard hydrologic models simulating the evolution of pore pressures in the near-surface, it can also provide a spatially distributed assessment of evolving safety conditions in landscapes susceptible to landslides of the flow type.

  14. Design guidelines for horizontal drains used for slope stabilization.

    DOT National Transportation Integrated Search

    2013-03-01

    The presence of water is one of the most critical factors contributing to the instability of hillslopes. A common : solution to stabilize hillslopes is installation of horizontal drains to decrease the elevation of the water table : surface. Lowering...

  15. Effects of erosion in the fate of soil organic carbon and soil aggregation in a burned Mediterranean hill-slope

    NASA Astrophysics Data System (ADS)

    Campo, Julian; Cammeraat, Erik; Gimeno-García, Eugenia; Andreu, Vicente

    2016-04-01

    The Intergovernmental Panel on Climate Change indicated a higher degree of confidence that meteorological conditions associated to climate change will be propitious to increasing extreme events manifested, among others, in bigger and more frequent wildfires (IPCC, 2014). Wildfires contribute to shaping the landscape, and also the geomorphological and hydrological processes that operate on soil are affected (Bento-Gonçalves et al., 2012). Whereas, it is well documented that wildfires produce significant changes on erosion processes, the associated fate of soil organic carbon (SOC) has received less attention. This research assesses this gap by studying the loss, redistribution, and stabilization of SOC in a Mediterranean forest hill-slope burned the 28-08-2014, with high severity fire, at the Natural Park of Sierra de Espadán, Spain (39°50'45.11"N, 0°22'20.52"W). To this end, soil was sampled (19-9-2014) in the foot's slope (depositional), middle part (transport) and top (eroding) at two depths (<2 cm, 2-5 cm), and in two environments (under canopy soil: UC; bare soil: BS). Sediments were collected from four sediment fences constructed at the foot's slope, and together with soil samples, analysed with regard to SOC content and aggregate stability (AS). The main objective is to increase the understanding on the fate of SOC in Mediterranean burned areas experiencing soil erosion, transport and deposition, with special attention to the role of aggregation and disaggregation in redistribution processes. Immediately after the fire, SOC content was high (≈50 gC kg-1) as well as the AS (water drop test>146 drops). Significant differences (ANOVA, p<0.05) in SOC contents were observed between environments (UC>BS) and soil depths (topsoil>subsoil). However, no significant differences were observed among eroding (58.8+20.8 gC kg-1), transport (67.3+34.4 gC kg-1), and depositional zones (62.0+31.3 gC kg-1), which is not in agreement with other SOC redistribution studies

  16. Factors affecting fixation of heavy metals in solidified/stabilized matrix: a review.

    PubMed

    Malviya, Rachana; Chaudhary, Rubina

    2010-07-01

    In this paper, an effort has been made to understand the factors, which affect fixation of heavy metals in solidified/stabilized matrix. Various aspects related to the solidification/stabilization of different heavy metals (Ar, Ba, Cu, Cr, Pb, Zn, Hg) are reviewed. A comparative study of different binders for the fixation of each metal has also been carried out to suggest the most suitable binder, pretreatment required for the metal. Valence, speciation, pH and other factors are also considered while reviewing metal retention capacity of different matrix.

  17. Historic bluff retreat and stabilization at Flag Harbor, Chesapeake Bay, Maryland

    USGS Publications Warehouse

    Clark, Inga; Larsen, Curtis E.; McRae, Michele

    2002-01-01

    Studies of bluff erosion and slope stability along the western shore of Chesapeake Bay suggest relative evolution from steep, eroding coastal bluffs to stable slopes at angles of repose ca. 35 degrees over decades. Because of the dating methods in those studies, it was impossible to precisely define rates of change. The present study provides historic age control. A pair of small harbor structures were constructed in the early 1950's at Chesapeake Beach, MD to maintain a dredged channel to a small marina occupying a ravine in the Calvert Cliffs. Prior to construction, this section of shoreline was comprised of eroding steep bluffs cut into Miocene-age sediments. Downdrift erosion is now apparent south of the structures as is updrift deposition behind the northern jetty. Since construction the updrift sand body has prograded northward and progressively deposited protective beaches along the toes of the bluffs. Former eroding bluffs nearest the harbor are now stable, vegetated slopes at angles near 35 degrees. Slope angles widen to the north and to the northern limit of the sand body. Beyond this are eroding bluffs standing at angles of 70-80 degrees. The relative time required for eroding bluffs to reach stability is estimated by interpolating the distance and time for the sand body to prograde northward since harbor construction. We measured slope angles at intervals northward from the updrift structure for a distance of 2000 feet. A least squares regression of slope angle vs distance showed progressive decrease in angle from north to south. Actively eroding 70-80 degree bluffs gave way to vegetated, but slumping slopes, and finally to stable 35-degree slopes at the harbor. A relationship between time and distance along the shore allowed us to estimate a stabilization time for this location of 35-40 years. The shortness of this time scale allows us to suggest that attempts to artificially stabilize eroding bluffs along this coast is not a simple task of protecting

  18. Effect of Angle of Attack on Slope Climbing Performance

    NASA Technical Reports Server (NTRS)

    Creager, Colin M.; Jones, Lucas; Smith, Lauren M.

    2017-01-01

    Ascending steep slopes is often a very difficult challenge for off-road vehicles, whether on Earth or on extraterrestrial bodies. This challenge is even greater if the surface consists of loose granular soil that does not provide much shear strength. This study investigated how the path at which a vehicle traverses a slope, specifically the angle that it is commanded to drive relative to the base of the hill (the angle of attack), can affect its performance. A vehicle was driven in loose sand at slope angles up to 15 degrees and angles of attack ranging from 10 to 90 degrees. A novel photogrammetry technique was implemented to both track vehicle motion and create a three-dimensional profile of the terrain. This allowed for true wheel sinkage measurements. The study showed that though low angles of attack result in lower wheel slip and sinkage, the efficiency of the vehicles uphill motion increased at higher angles of attack. For slopes up to 15 degrees, a 90 degree angle of attack provided the greatest likelihood of successful ascent.

  19. Revegetation of Acid Rock Drainage (ARD) Producing Slope Surface Using Phosphate Microencapsulation and Artificial Soil

    NASA Astrophysics Data System (ADS)

    Kim, Jae Gon

    2017-04-01

    Oxidation of sulfides produces acid rock drainage (ARD) upon their exposure to oxidation environment by construction and mining activities. The ARD causes the acidification and metal contamination of soil, surface water and groundwater, the damage of plant, the deterioration of landscape and the reduction of slope stability. The revegetation of slope surface is one of commonly adopted strategies to reduce erosion and to increase slope stability. However, the revegetation of the ARD producing slope surface is frequently failed due to its high acidity and toxic metal content. We developed a revegetation method consisting of microencapsualtion and artificial soil in the laboratory. The revegetation method was applied on the ARD producing slope on which the revegetation using soil coverage and seeding was failed and monitored the plant growth for one year. The phosphate solution was applied on sulfide containing rock to form stable Fe-phosphate mineral on the surface of sulfide, which worked as a physical barrier to prevent contacting oxidants such as oxygen and Fe3+ ion to the sulfide surface. After the microencapsulation, two artificial soil layers were constructed. The first layer containing organic matter, dolomite powder and soil was constructed at 2 cm thickness to neutralize the rising acidic capillary water from the subsurface and to remove the dissolved oxygen from the percolating rain water. Finally, the second layer containing seeds, organic matter, nutrients and soil was constructed at 3 cm thickness on the top. After application of the method, the pH of the soil below the artificial soil layer increased and the ARD production from the rock fragments reduced. The plant growth showed an ordinary state while the plant died two month after germination for the previous revegetation trial. No soil erosion occurred from the slope during the one year field test.

  20. Slope movements triggered by heavy rainfall, November 3–5, 1985, in Virginia and West Virginia, U.S.A.

    USGS Publications Warehouse

    Jacobson, Robert B.; Cron, Elizabeth D.; McGeehin, John P.

    1989-01-01

    Study of slope movements triggered by the storm of November 3–5, 1985, in the central Appalachian Mountains, U.S.A., has helped to define the meteorologic conditions leading to slope movements and the relative importance of land cover, bedrock, surficial geology, and geomorphology in slope movement location. This long-duration rainfall at moderate intensities triggered more than 1,000 slope movements in a 1,040-km2 study area. Most were shallow slips and slip-flows in thin colluvium and residuum on shale slopes. Locations of these failures were sensitive to land cover and slope aspect but were relatively insensitive to topographic setting. A few shallow slope movements were triggered by the same rainfall on interbedded limestone, shale, and sandstone. Several large debris slide-avalanches were triggered in sandstone regolith high on ridges in areas of the highest measured rainfall. Most of these sites were on slopes that dip 30 to 35° and lie parallel to bedding planes, presumably the sites of least stability.

  1. A qualitative comparison of fire spread models incorporating wind and slope effects

    Treesearch

    David R. Weise; Gregory S. Biging

    1997-01-01

    Wind velocity and slope are two critical variables that affect wildland fire rate of spread. The effects of these variables on rate of spread are often combined in rate-of-spread models using vector addition. The various methods used to combine wind and slope effects have seldom been validated or compared due to differences in the models or to lack of data. In this...

  2. Effect of Soil Roughness on Overland Flow Connectivity at Different Slope Scenarios

    NASA Astrophysics Data System (ADS)

    Penuela Fernandez, A.; Javaux, M.; Bielders, C.

    2013-12-01

    Runoff generation, which involves the gradual depression filling and connection of overflowing depressions, is affected by surface roughness and slope. Therefore, quantifying and understanding the effects of surface roughness and slope on overland flow connectivity at the sub-grid scale can potentially improve current hydrological modeling and runoff prediction. However, little work has been conducted on quantifying these effects. This study examines the role of surface roughness on overland flow connectivity at the plot scale at different slopes. For this purpose, standard multi-Gaussian synthetic fields (6 × 6 m) with contrasting surface roughnesses, as defined by the parameters of the variogram (sill and range) of surface elevation, were used. In order to quantify the effects of soil roughness and slope on overland flow connectivity a functional connectivity indicator, so-called the Relative Surface Connection function (Antoine et al., 2009), was applied. This indicator, that represents the ratio of area connected to the outflow boundary (C) in function of the depression storage (DS), is able to capture runoff-relevant connectivity properties. Three parameters characterizing the connectivity function were used to quantify the effects of roughness and slope. These parameters are: C at DS = 0 (CDS=0), connectivity threshold (CT) and maximum depression storage (MDS). Results showed that variations on soil roughness and slope greatly affect the three parameters showing in some cases a clear relationship between structural connectivity and functional connectivity, such as between the ratio sill/range and MDS and between CDS=0 and range. This relationship, described by mathematical expressions, not only allows the quantification and comparison of the effects of soil roughness and slope in overland flow connectivity but also the prediction of these effects by the study of the variogram.

  3. Slope Streaks or RSL?

    NASA Image and Video Library

    2016-12-14

    The image shows a region we see many slope streaks, typically dark features on slopes in the equatorial regions on Mars. They may extend for tens of meters in length and gradually fade away with time as new ones form. The most common hypothesis is that they are generated by dust avalanches that regularly occur on steep slopes exposing fresh dark materials from underneath the brighter dust. There are many types of slope streaks but one of the most recent and significant findings using HiRISE was the discovery of a new type called "recurring slope lineae," or RSL for short. Recent studies suggest that RSL may form through the flow of briny (extremely salty) liquid water that can be stable on the surface of Mars even under current climatic conditions for a limited time in summer when it is relatively warm. How can we distinguish between conventional slope streaks like the ones we see here and RSL? There are many criteria. For instance, RSL are usually smaller in size than regular slope streaks. However, one of the most important conditions is seasonal behavior, since RSL appear to be active only in summer while regular slope streaks can be active anytime of the year. This site is monitored regularly by HiRISE scientists because of the high density of slope streaks and their different sizes and orientations. If we look at a time-lapse sequence, we will see that a new slope streak has indeed formed in the period since April 2016 (and we can note how dark it is in comparison to the others indicating its freshness). However, this period corresponds mainly to the autumn season in this part of Mars, whereas we do not see any major changes in the summer season. This suggests that the feature that developed is a regular slope streak just like all the others in the area. http://photojournal.jpl.nasa.gov/catalog/PIA21272

  4. [Community structure of soil fauna in Eucalyptus grandis plantations at different slope locations].

    PubMed

    Zhao, Yu; Zhong, Yu; Zhang, Jian; Yang, Wan-qin

    2010-09-01

    To understand the effects of slope location on the community structure of soil fauna in Eucalyptus grandis plantation, an investigation was made on the soil fauna in 3 E. grandis plantations at different slope locations in the hilly area of Sichuan Province from January to October 2009. A total of 39,2762 individuals were observed, belonging to 146 groups, 7 phyla, 16 classes, and 31 orders. The community composition, trophic group, diversity, and seasonal dynamics of soil fauna in the plantations all varied with slope. The abundance of macro-fauna, xeric meso- and micro-fauna, saprophagous macro-fauna, and omnivorous xeric meso- and micro-fauna increased with the decrease of slope, indicating that soil fauna had sensitive responses to the soil environmental factors affected by slope. Significant differences in the diversity of soil saprophagous macro-fauna and hygrophilous meso- and micro-fauna were observed at different slope locations, suggesting that these two faunal groups could be used as the indicators of the habitat heterogeneity of E. grandis plantations at different slope. Overall, slope location had definite effects on the community structure and distribution of soil fauna in the E. grandis plantations, but the effects were not statistically significant.

  5. Geomorphological control on variably saturated hillslope hydrology and slope instability

    USGS Publications Warehouse

    Giuseppe, Formetta; Simoni, Silvia; Godt, Jonathan W.; Lu, Ning; Rigon, Riccardo

    2016-01-01

    In steep topography, the processes governing variably saturated subsurface hydrologic response and the interparticle stresses leading to shallow landslide initiation are physically linked. However, these processes are usually analyzed separately. Here, we take a combined approach, simultaneously analyzing the influence of topography on both hillslope hydrology and the effective stress fields within the hillslope itself. Clearly, runoff and saturated groundwater flow are dominated by gravity and, ultimately, by topography. Less clear is how landscape morphology influences flows in the vadose zone, where transient fluxes are usually taken to be vertical. We aim to assess and quantify the impact of topography on both saturated and unsaturated hillslope hydrology and its effects on shallow slope stability. Three real hillslope morphologies (concave, convex, and planar) are analyzed using a 3-D, physically based, distributed model coupled with a module for computation of the probability of failure, based on the infinite slope assumption. The results of the analyses, which included parameter uncertainty analysis of the results themselves, show that convex and planar slopes are more stable than concave slopes. Specifically, under the same initial, boundary, and infiltration conditions, the percentage of unstable areas ranges from 1.3% for the planar hillslope, 21% for convex, to a maximum value of 33% for the concave morphology. The results are supported by a sensitivity analysis carried out to examine the effect of initial conditions and rainfall intensity.

  6. Model slope infiltration experiments for shallow landslides early warning

    NASA Astrophysics Data System (ADS)

    Damiano, E.; Greco, R.; Guida, A.; Olivares, L.; Picarelli, L.

    2009-04-01

    Occurrence of fast landslides has become more and more dangerous during the last decades, due to the increased density of settlements, industrial plants and infrastructures. Such problem is particularly worrying in Campania (Southern Italy), where the fast population growth led a diffuse building activity without planning: indeed, recent flowslides caused hundreds of victims and heavy damages to buildings, roads and other infrastructures. Large mountainous areas in Campania are mantled by loose pyroclastic granular soils up to a depth of a few meters from top soil surface. These soils have usually a grain size that falls in the domain of silty sands, including pumice interbeds (gravelly sands), with saturated hydraulic conductivities up to the order of 10-1 cm/min. Such deposits often cover steep slopes, which stability is guaranteed by the apparent cohesion due to suction under unsaturated conditions, that are the most common conditions for these slopes [Olivares and Picarelli, 2001]. Whereas rainfall infiltration causes soil to approach saturation, suction vanishes and slope failure may occur. Besides soil physical properties, landslide triggering is influenced by several factors, such as rainfall intensity, soil initial moisture and suction, slope inclination, boundary conditions. Whereas slope failure occurs with soil close to being saturated, landslide may develop in form of fast and destructive flowslide. Calibration of reliable mathematical models of such a complex phenomenon requires availability of experimental observations of the major variables of interest, such as soil moisture and suction, soil deformation and displacements, pore water pressure, during the entire process of infiltration until slope failure. Due to the sudden trigger and extremely rapid propagation of such type of landslides, such data sets are rarely available for natural slopes where flowslides occurred. As a consequence landslide risk assessment and early warning in Campania rely on

  7. A New Methodology for Open Pit Slope Design in Karst-Prone Ground Conditions Based on Integrated Stochastic-Limit Equilibrium Analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Cao, Ping; Ma, Guowei; Fan, Wenchen; Meng, Jingjing; Li, Kaihui

    2016-07-01

    Using the Chengmenshan Copper Mine as a case study, a new methodology for open pit slope design in karst-prone ground conditions is presented based on integrated stochastic-limit equilibrium analysis. The numerical modeling and optimization design procedure contain a collection of drill core data, karst cave stochastic model generation, SLIDE simulation and bisection method optimization. Borehole investigations are performed, and the statistical result shows that the length of the karst cave fits a negative exponential distribution model, but the length of carbonatite does not exactly follow any standard distribution. The inverse transform method and acceptance-rejection method are used to reproduce the length of the karst cave and carbonatite, respectively. A code for karst cave stochastic model generation, named KCSMG, is developed. The stability of the rock slope with the karst cave stochastic model is analyzed by combining the KCSMG code and the SLIDE program. This approach is then applied to study the effect of the karst cave on the stability of the open pit slope, and a procedure to optimize the open pit slope angle is presented.

  8. Static Longitudinal Stability of a Rocket Vehicle Having a Rear-Facing Step Ahead of the Stabilizing Fins

    NASA Technical Reports Server (NTRS)

    Keynton, Robert J.

    1961-01-01

    Tests were conducted at Mach numbers of 3.96 and 4.65 in the Langley Unitary Plan wind tunnel to determine the static longitudinal stability characteristics of a fin-stabilized rocket-vehicle configuration which had a rearward facing step located upstream of the fins. Two fin sizes and planforms, a delta and a clipped delta, were tested. The angle of attack was varied from 6 deg to -6 deg and the Reynolds number based on model 6 length was about 10 x 10. The configuration with the larger fins (clipped delta) had a center of pressure slightly rearward of and an initial normal-force-curve slope slightly higher than that of the configuration with the smaller fins (delta) as would be expected. Calculations of the stability parameters gave a slightly lower initial slope of the normal-force curve than measured data, probably because of boundary-layer separation ahead of the step. The calculated center of pressure agreed well with the measured data. Measured and calculated increments in the initial slope of the normal-force curve and in the center of pressure, due to changing fins, were in excellent agreement indicating that separated flow downstream of the step did not influence flow over the fins. This result was consistent with data from schlieren photographs.

  9. Subsurface temperatures and geothermal gradients on the north slope of Alaska

    USGS Publications Warehouse

    Collett, T.S.; Bird, K.J.; Magoon, L.B.

    1993-01-01

    On the North Slope of Alaska, geothermal gradient data are available from high-resolution, equilibrated well-bore surveys and from estimates based on well-log identification of the base of ice-bearing permafrost. A total of 46 North Slope wells, considered to be in or near thermal equilibrium, have been surveyed with high-resolution temperatures devices and geothermal gradients can be interpreted directly from these recorded temperature profiles. To augment the limited North Slope temperature data base, a new method of evaluating local geothermal gradients has been developed. In this method, a series of well-log picks for the base of the ice-bearing permafrost from 102 wells have been used, along with regional temperature constants derived from the high-resolution stabilized well-bore temperature surveys, to project geothermal gradients. Geothermal gradients calculated from the high-resolution temperature surveys generally agree with those projected from known ice-bearing permafrost depths over most of the North Slope. Values in the ice-bearing permafrost range from ??? 1.5??C 100 m in the Prudhoe Bay area to ??? 4.5??C 100 m in the east-central portion of the National Petroleum Reserve in Alaska. Geothermal gradients below the ice-bearing permafrost sequence range from ??? 1.6??C 100 m to ??? 5.2??C 100 m. ?? 1993.

  10. Field instrumentation, monitoring of drilled shafts for landslide stabilization and development of pertinent design method : executive summary report.

    DOT National Transportation Integrated Search

    2010-11-01

    The use of a row of spaced drilled shafts to stabilize unstable slopes along the highways offers many advantages compared to other slope stabilization techniques. Some of these advantages may include: (1) various construction techniques are available...

  11. Change Analysis of Laser Scans of Laboratory Rock Slopes Subject to Wave Attack Testing

    NASA Astrophysics Data System (ADS)

    Shen, Y.; Lindenbergh, R.; Hofland, B.; Kramer, R.

    2017-09-01

    For better understanding how coastal structures with gentle slopes behave during high energy events, a wave attack experiment representing a storm of 3000 waves was performed in a flume facility. Two setups with different steepness of slope were compared under the same conditions. In order to quantify changes in the rock slopes after the wave attack, a terrestrial laser scanner was used to obtain 3D coordinates of the rock surface before and after each experiment. Next, through a series of processing steps, the point clouds were converted to a suitable 2D raster for change analysis. This allowed to estimate detailed and quantitative change information. The results indicate that the area around the artificial coast line, defined as the intersection between sloped surface and wave surface, is most strongly affected by wave attacks. As the distances from the sloped surface to the waves are shorter, changes for the mildly sloped surface, slope 1 (1 : 10), are distributed over a larger area compared to the changes for the more steeply sloped surface, slope 2 (1 : 5). The results of this experiment show that terrestrial laser scanning is an effective and feasible method for change analysis of rock slopes in a laboratory setting. Most striking results from a process point of view is that the transport direction of the rocks change between the two different slopes: from seaward transport for the steeper slope to landward transport for the milder slope.

  12. 14 CFR 29.177 - Static directional stability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static directional stability. 29.177... Static directional stability. (a) The directional controls must operate in such a manner that the sense... versus directional control position curve may have a negative slope within a small range of angles around...

  13. 14 CFR 27.173 - Static longitudinal stability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static longitudinal stability. 27.173... longitudinal stability. (a) The longitudinal control must be designed so that a rearward movement of the... the maneuvers specified in § 27.175(a) through (d), the slope of the control position versus airspeed...

  14. 14 CFR 29.173 - Static longitudinal stability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static longitudinal stability. 29.173... Static longitudinal stability. (a) The longitudinal control must be designed so that a rearward movement... constant during the maneuvers specified in § 29.175(a) through (d), the slope of the control position...

  15. 14 CFR 27.177 - Static directional stability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Static directional stability. 27.177... directional stability. (a) The directional controls must operate in such a manner that the sense and direction... sideslip angle versus directional control position curve may have a negative slope within a small range of...

  16. The slope and incision length of affected local cross abrasion and accretion using ASTER GDEM image analysis

    NASA Astrophysics Data System (ADS)

    Anugrahadi, A.

    2018-01-01

    Remote sensing technology is to support the identification and assessment of resources and disasters in coastal areas and oceans, because it has the advantage of covering large areas and the highest of the spatial and temporal resolution. Aster GDEM image is used to determine the slope and the length of cross the incision on exposed area abrasion and accretion. Western coastal of Banten Province has experienced abrasion with the furthest distance of 125.05 m to 274.73 m. and experienced accretion with the furthest distance of 31.65 m to 111, 58 m. ASTER GDEM results of image analysis in areas of abrasion has a slope about 1.4° to 3.3° and cross the incision length is approximately 350.52 meters to 506.57 meters. At the accretion region has a slope about 2.0° to 3.1° and cross the incision length about 306.62 m to 562.05 m.

  17. Origin of negative resistivity slope in U-based ferromagnets

    NASA Astrophysics Data System (ADS)

    Havela, L.; Paukov, M.; Buturlim, V.; Tkach, I.; Mašková, S.; Dopita, M.

    2018-05-01

    Ultra-nanocrystalline UH3-based ferromagnets with TC ≈ 200 K exhibit a flat temperature dependence of electrical resistivity with a negative slope both in the ferromagnetic and paramagnetic range. The ordered state with randomness on atomic scale, equivalent to a non-collinear ferromagnetism, can be affected by magnetic field, supressing the static magnetic disorder, which reduces the resistivity and removes the negative slope. It is deduced that the dynamic magnetic disorder in the paramagnetic state can be conceived as continuation of the static disorder in the ordered state. The experiments, performed for (UH3)0.78Mo0.12Ti0.10, demonstrate that the negative resistivity slope, observed for numerous U-based intermetallics in the paramagnetic state, can be due to the strong disorder effect on resistivity. The resulting weak localization, as a quantum interference effect which increases resistivity, is gradually suppressed by enhanced temperature, contributing by electron-phonon scattering, inelastic in nature and removing the quantum coherence.

  18. Rock Mass Classification of Karstic Terrain in the Reservoir Slopes of Tekeze Hydropower Project

    NASA Astrophysics Data System (ADS)

    Hailemariam Gugsa, Trufat; Schneider, Jean Friedrich

    2010-05-01

    Hydropower reservoirs in deep gorges usually experience slope failures and mass movements. History also showed that some of these projects suffered severe landslides, which left lots of victims and enormous economic loss. Thus, it became vital to make substantial slope stability studies in such reservoirs to ensure safe project development. This study also presents a regional scale instability assessment of the Tekeze Hydropower reservoir slopes. Tekeze hydropower project is a newly constructed double arch dam that completed in August 2009. It is developed on Tekeze River, tributary of Blue Nile River that runs across the northern highlands of Ethiopia. It cuts a savage gorge 2000m deep, the deepest canyon in Africa. The dam is the highest dam in Ethiopia at 188m, 10 m higher than China's Three Gorges Dam. It is being developed by Chinese company at a cost of US350M. The reservoir is designed at 1140 m elevation, as retention level to store more than 9000 million m3 volume of water that covers an area of 150 km2, mainly in channel filling form. In this study, generation of digital elevation model from ASTER satellite imagery and surface field investigation is initially considered for further image processing and terrain parameters' analyses. Digitally processed multi spectral ASTER ortho-images drape over the DEM are used to have different three dimensional perspective views in interpreting lithological, structural and geomorphological features, which are later verified by field mapping. Terrain slopes are also delineated from the relief scene. A GIS database is ultimately developed to facilitate the delineation of geotechnical units for slope rock mass classification. Accordingly, 83 geotechnical units are delineated and, within them, 240 measurement points are established to quantify in-situ geotechnical parameters. Due to geotechnical uncertainties, four classification systems; namely geomorphic rock mass strength classification (RMS), slope mass rating (SMR

  19. Combined effects of climate, restoration measures and slope position in change in soil chemical properties and nutrient loss across lands affected by the Wenchuan Earthquake in China.

    PubMed

    Lin, Yongming; Deng, Haojun; Du, Kun; Rafay, Loretta; Zhang, Guang-Shuai; Li, Jian; Chen, Can; Wu, Chengzhen; Lin, Han; Yu, Wei; Fan, Hailan; Ge, Yonggang

    2017-10-15

    change in soil properties were affected by climate types and treatments, but not slope positions. Our results provide useful information for the selection of restoration countermeasures in different climate types to facilitate ecological restoration and reconstruction strategies in earthquake-affected areas. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Simulating bank erosion over an extended natural sinuous river reach using a universal slope stability algorithm coupled with a morphodynamic model

    NASA Astrophysics Data System (ADS)

    Rousseau, Yannick Y.; Van de Wiel, Marco J.; Biron, Pascale M.

    2017-10-01

    Meandering river channels are often associated with cohesive banks. Yet only a few river modelling packages include geotechnical and plant effects. Existing packages are solely compatible with single-threaded channels, require a specific mesh structure, derive lateral migration rates from hydraulic properties, determine stability based on friction angle, rely on nonphysical assumptions to describe cutoffs, or exclude floodplain processes and vegetation. In this paper, we evaluate the accuracy of a new geotechnical module that was developed and coupled with Telemac-Mascaret to address these limitations. Innovatively, the newly developed module relies on a fully configurable, universal genetic algorithm with tournament selection that permits it (1) to assess geotechnical stability along potentially unstable slope profiles intersecting liquid-solid boundaries, and (2) to predict the shape and extent of slump blocks while considering mechanical plant effects, bank hydrology, and the hydrostatic pressure caused by flow. The profiles of unstable banks are altered while ensuring mass conservation. Importantly, the new stability module is independent of mesh structure and can operate efficiently along multithreaded channels, cutoffs, and islands. Data collected along a 1.5-km-long reach of the semialluvial Medway Creek, Canada, over a period of 3.5 years are used to evaluate the capacity of the coupled model to accurately predict bank retreat in meandering river channels and to evaluate the extent to which the new model can be applied to a natural river reach located in a complex environment. Our results indicate that key geotechnical parameters can indeed be adjusted to fit observations, even with a minimal calibration effort, and that the model correctly identifies the location of the most severely eroded bank regions. The combined use of genetic and spatial analysis algorithms, in particular for the evaluation of geotechnical stability independently of the hydrodynamic

  1. Minimal feedback to a rhythm generator improves the robustness to slope variations of a compass biped.

    PubMed

    Spitz, Jonathan; Evstrachin, Alexandrina; Zacksenhouse, Miriam

    2015-08-20

    In recent years there has been a growing interest in the field of dynamic walking and bio-inspired robots. However, while walking and running on a flat surface have been studied extensively, walking dynamically over terrains with varying slope remains a challenge. Previously we developed an open loop controller based on a central pattern generator (CPG). The controller applied predefined torque patterns to a compass-gait biped, and achieved stable gaits over a limited range of slopes. In this work, this range is greatly extended by applying a once per cycle feedback to the CPG controller. The terrain's slope is measured and used to modify both the CPG frequency and the torque amplitude once per step. A multi-objective optimization algorithm was used to tune the controller parameters for a simulated CB model. The resulting controller successfully traverses terrains with slopes ranging from +7° to -8°, comparable to most slopes found in human constructed environments. Gait stability was verified by computing the linearized Poincaré Map both numerically and analytically.

  2. A stability theorem for energy-balance climate models

    NASA Technical Reports Server (NTRS)

    Cahalan, R. F.; North, G. R.

    1979-01-01

    The paper treats the stability of steady-state solutions of some simple, latitude-dependent, energy-balance climate models. For north-south symmetric solutions of models with an ice-cap-type albedo feedback, and for the sum of horizontal transport and infrared radiation given by a linear operator, it is possible to prove a 'slope stability' theorem, i.e., if the local slope of the steady-state iceline latitude versus solar constant curve is positive (negative) the steady-state solution is stable (unstable). Certain rather weak restrictions on the albedo function and on the heat transport are required for the proof, and their physical basis is discussed.

  3. Gravity-induced stresses in finite slopes

    USGS Publications Warehouse

    Savage, W.Z.

    1994-01-01

    An exact solution for gravity-induced stresses in finite elastic slopes is presented. This solution, which is applied for gravity-induced stresses in 15, 30, 45 and 90?? finite slopes, has application in pit-slope design, compares favorably with published finite element results for this problem and satisfies the conditions that shear and normal stresses vanish on the ground surface. The solution predicts that horizontal stresses are compressive along the top of the slopes (zero in the case of the 90?? slope) and tensile away from the bottom of the slopes, effects which are caused by downward movement and near-surface horizontal extension in front of the slope in response to gravity loading caused by the additional material associated with the finite slope. ?? 1994.

  4. The Effects on Muscle Activation of Flatfoot during Gait According to the Velocity on an Ascending Slope.

    PubMed

    Lee, Chang-Ryeol; Kim, Myoung-Kwon

    2014-05-01

    [Purpose] This study determined the difference between flatfeet and normal feet in humans on an ascending slope using electromyography (EMG). [Subjects] This study was conducted on 30 adults having normal feet (n=15) and flatfeet (n=15), all of whom were 21 to 30 years old. [Methods] A treadmill (AC5000M, SCIFIT,) was used to analyze kinematic features during gait. These features were analyzed at slow, normal, and fast gait velocities on an ascending slope. A surface electromyogram (TeleMyo 2400T, Noraxon Co., USA) was used to measure muscle activity changes. [Results] The activities of most muscles in the subjects with flatfeet were significantly different from the muscle activities in the subjects with normal feet at different gait velocities on an ascending slope. There were significant differences in the vastus medialis and abductor hallucis muscles. [Conclusion] Because muscle activation of the vastus medialis in relation to stability of the lower extremity has a tendency to increase with an increase in gait velocity on an ascending slope, we hypothesized that higher impact transfer to the knee joints occurs in subjects with flatfeet due to the lack of a medial longitudinal arch and that the abductor halluces muscles, which provide dynamic stability to the medial longitudinal arches, do not activate well when they are needed in subjects with flatfeet.

  5. Standing stability enhancement with an intelligent powered transfemoral prosthesis.

    PubMed

    Lawson, Brian Edward; Varol, Huseyin Atakan; Goldfarb, Michael

    2011-09-01

    The authors have developed a ground-adaptive standing controller for a powered knee and ankle prosthesis which is intended to enhance the standing stability of transfemoral amputees. The finite-state-based controller includes a ground-searching phase, a slope estimation phase, and a joint impedance modulation phase, which together enable the prosthesis to quickly conform to the ground and provide stabilizing assistance to the user. In order to assess the efficacy of the ground-adaptive standing controller, the control approach was implemented on a powered knee and ankle prosthesis, and experimental data were collected on an amputee subject for a variety of standing conditions. Results indicate that the controller can estimate the ground slope within ±1° over a range of ±15°, and that it can provide appropriate joint impedances for standing on slopes within this range.

  6. Attentional bias to negative affect moderates negative affect's relationship with smoking abstinence.

    PubMed

    Etcheverry, Paul E; Waters, Andrew J; Lam, Cho; Correa-Fernandez, Virmarie; Vidrine, Jennifer Irvin; Cinciripini, Paul M; Wetter, David W

    2016-08-01

    To examine whether initial orienting (IO) and inability to disengage (ITD) attention from negative affective stimuli moderate the association of negative affect with smoking abstinence during a quit attempt. Data were from a longitudinal cohort study of smoking cessation (N = 424). A negative affect modified Stroop task was administered 1 week before and on quit day to measure IO and ITD. Ecological Momentary Assessments were used to create negative affect intercepts and linear slopes for the week before quitting and on quit day. Quit day and long-term abstinence measures were collected. Continuation ratio logit model analyses found significant interactions for prequit negative affect slope with prequit ITD, odds ratio (OR) = 0.738 (0.57, 0.96), p = .02, and for quit day negative affect intercept with quit day ITD, OR = 0.62 (0.41, 950), p = .03, predicting abstinence. The Prequit Negative Affect Intercept × Prequit IO interaction predicting quit day abstinence was significant, OR = 1.42 (1.06, 1.90), p = .02, as was the Quit Day Negative Affect Slope × Quit Day IO interaction predicting long-term abstinence, OR = 1.45 (1.02, 2.08), p = .04. The hypothesis that the association of negative affect with smoking abstinence would be moderated by ITD was generally supported. Among individuals with high ITD, negative affect was inversely related to abstinence, but unrelated to abstinence among individuals with lower levels of ITD. Unexpectedly, among individuals with low IO, negative affect was inversely related to abstinence, but unrelated to abstinence among individuals with higher levels of ITD. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Geotechnical properties of cemented sands in steep slopes

    USGS Publications Warehouse

    Collins, B.D.; Sitar, N.

    2009-01-01

    An investigation into the geotechnical properties specific to assessing the stability of weakly and moderately cemented sand cliffs is presented. A case study from eroding coastal cliffs located in central California provides both the data and impetus for this study. Herein, weakly cemented sand is defined as having an unconfined compressive strength (UCS) of less than 100 kPa, and moderately cemented sand is defined as having UCS between 100 and 400 kPa. Testing shows that both materials fail in a brittle fashion and can be modeled effectively using linear Mohr-Coulomb strength parameters, although for weakly cemented sands, curvature of the failure envelope is more evident with decreasing friction and increasing cohesion at higher confinement. Triaxial tests performed to simulate the evolving stress state of an eroding cliff, using a reduction in confinement-type stress path, result in an order of magnitude decrease in strain at failure and a more brittle response. Tests aimed at examining the influence of wetting on steep slopes show that a 60% decrease in UCS, a 50% drop in cohesion, and 80% decrease in the tensile strength occurs in moderately cemented sand upon introduction to water. In weakly cemented sands, all compressive, cohesive, and tensile strength is lost upon wetting and saturation. The results indicate that particular attention must be given to the relative level of cementation, the effects of groundwater or surficial seepage, and the small-scale strain response when performing geotechnical slope stability analyses on these materials. ?? 2009 ASCE.

  8. Frosty Slopes in Late Spring

    NASA Image and Video Library

    2014-12-18

    This image from NASA Mars Reconnaissance Orbiter shows frosted gullies on a south-facing slope within a crater. At this time of year only south-facing slopes retain the frost, while the north-facing slopes have melted.

  9. Mechanics of rainfall-induced flow failure in unsaturated shallow slopes (Invited)

    NASA Astrophysics Data System (ADS)

    Buscarnera, G.

    2013-12-01

    The increase in pore water pressure due to rain infiltration can be a dominant component in the activation of slope instabilities. This work shows an application of the theory of material stability to the triggering analysis of this important class of natural hazards. The goal is to identify the mechanisms through which the process of rain infiltration promotes instabilities of the flow-type in the soil covers. The interplay between increase in pore water pressure and failure mechanisms is investigated at material point level. To account for multiple failure mechanisms, the second-order energy input is linked to the controllability theory and used to define different types of stability indices, each associated with a specific mode of slope failure. It is shown that the theory can be used to assess both shear failure and static liquefaction in saturated and unsaturated soil covers. In particular, it is shown that these instability modes are regulated by the hydro-mechanical characteristics of the soil covers, as well as by their mutual coupling. This finding discloses the importance of the constitutive functions that simulate the interaction between the response of the solid skeleton and the fluid-retention characteristics of the soil. As a consequence, they suggest that even material properties that are not be to directly associated with the shearing resistance (e.g., the potential for wetting compaction) may play a role in the initiation of catastrophic slope failures. According to the proposed interpretation, the process of pore pressure increase can be seen as the trigger of uncontrolled strains, which can anticipate the onset of frictional failure and promote a solid-to-fluid transition.

  10. Factors affecting hazardous waste solidification/stabilization: a review.

    PubMed

    Malviya, Rachana; Chaudhary, Rubina

    2006-09-01

    Solidification/stabilization is accepted as a well-established disposal technique for hazardous waste. As a result many different types of hazardous wastes are treated with different binders. The S/S products have different property from waste and binders individually. The effectiveness of S/S process is studied by physical, chemical and microstructural methods. This paper summarizes the effect of different waste stream such as heavy metals bearing sludge, filter cake, fly ash, and slag on the properties of cement and other binders. The factors affecting strength development is studied using mix designs, including metal bearing waste alters the hydration and setting time of binders. Pore structure depends on relative quantity of the constituents, cement hydration products and their reaction products with admixtures. Carbonation and additives can lead to strength improvement in waste-binder matrix.

  11. An Investigation of the Effects of Internal Waves on Sound Propagation in a Stratified Medium with a Sloping Bed

    NASA Astrophysics Data System (ADS)

    Deldar, H.; Bidokhti, A. A.; Chegini, V.

    2018-01-01

    Internal waves usually cause temporal and spatial changes of density and consequently affect the acoustic wave propagation in the ocean. The purpose of this study is a laboratory investigation of the effects of internal waves generated by oscillation of a cylinder in a large stratified glass tank with a sloping bed on the sound waves propagation. Results showed that sound waves are affected by internal waves that depend on the slope angle to the direction of internal wave propagation angle ratio. When the ratio is subcritical or supercritical, the acoustic signal is much reduced as compared to the case with no sloped bottom. This can be explained in terms of the internal waves energy reaching the sloped bed and their reflections.

  12. Eco-geomorphic controls on slope stability

    NASA Astrophysics Data System (ADS)

    Hales, T.; Ford, C.; Hwang, T.; Vose, J.; Band, L.

    2009-04-01

    Vegetation controls soil-mantled landscape evolution primarily through growth of roots into soil and rock. Root-soil interactions affect the spatial distribution and rate of shallow landsliding and other hillslope processes. Yet the distribution and tensile strength of roots depends on a number of geomorphically-influenced parameters, including soil moisture. Our field-based study investigated the effects of topography on root distributions, tensile strengths, and cohesion. Systematic differences in plant species distribution and soil properties are found in the hollow-nose topography of soil-mantled landscapes; with hollows containing thick colluvial soils and mesic tree species and noses containing thinner, more differentiated soils and more xeric species. We investigated whether these topographic variations in geomorphic and ecologic properties affected the spatial distribution of root cohesion by measuring the distribution and tensile strength of roots from soil pits dug downslope of fifteen individual trees in the Coweeta Hydrologic Laboratory, North Carolina. Our soil pits were located to capture variance in plant species (10 species total), topographic positions (nose, hollow), and sizes (a range of DBH between 5 cm and 60 cm). Root tensile strengths showed little variance with different species, but showed strong differences as a function of topography, with nose roots stronger than hollow roots. Similarly, within species, root cellulose content was systematically greater in trees on nose positions compared to those in hollows. For all species, roots were concentrated close to the soil surface (at least 70% of biomass occurred within 50 cm of the surface) and variations in this pattern were primarily a function of topographic position. Hollow roots were more evenly distributed in the soil column than those on noses, yet trees located on noses had higher mean root cohesion than those in hollows because of a higher root tensile force. These data provide an

  13. Influence of slope steepness, foot position and turn phase on plantar pressure distribution during giant slalom alpine ski racing

    PubMed Central

    Falda-Buscaiot, Thomas; Hintzy, Frédérique; Rougier, Patrice; Lacouture, Patrick; Coulmy, Nicolas

    2017-01-01

    The purpose of this study was to investigate the evolution of ground reaction force during alpine skiing turns. Specifically, this study investigated how turn phases and slope steepness affected the whole foot normal GRF pattern while performing giant slalom turns in a race-like setting. Moreover, the outside foot was divided into different plantar regions to see whether those parameters affected the plantar pressure distribution. Eleven skiers performed one giant slalom course at race intensity. Runs were recorded synchronously using a video camera in the frontal plane and pressure insoles under both feet’s plantar surface. Turns were divided according to kinematic criteria into four consecutive phases: initiation, steering1, steering2 and completion; both steering phases being separated by the gate passage. Component of the averaged Ground Reaction Force normal to the ski’s surface(nGRF¯, /BW), and Pressure Time Integral relative to the entire foot surface (relPTI, %) parameters were calculated for each turn phases based on plantar pressure data. Results indicated that nGRF¯ under the total foot surface differed significantly depending on the slope (higher in steep sections vs. flat sections), and the turn phase (higher during steering2 vs. three other phases), although such modifications were observable only on the outside foot. Moreover, nGRF¯ under the outside foot was significantly greater than under the inside foot.RelPTI under different foot regions of the outside foot revealed a global shift from forefoot loading during initiation phase, toward heel loading during steering2 phase, but this was dependent on the slope studied. These results suggest a differentiated role played by each foot in alpine skiing turns: the outside foot has an active role in the turning process, while the inside foot may only play a role in stability. PMID:28472092

  14. Influence of slope steepness, foot position and turn phase on plantar pressure distribution during giant slalom alpine ski racing.

    PubMed

    Falda-Buscaiot, Thomas; Hintzy, Frédérique; Rougier, Patrice; Lacouture, Patrick; Coulmy, Nicolas

    2017-01-01

    The purpose of this study was to investigate the evolution of ground reaction force during alpine skiing turns. Specifically, this study investigated how turn phases and slope steepness affected the whole foot normal GRF pattern while performing giant slalom turns in a race-like setting. Moreover, the outside foot was divided into different plantar regions to see whether those parameters affected the plantar pressure distribution. Eleven skiers performed one giant slalom course at race intensity. Runs were recorded synchronously using a video camera in the frontal plane and pressure insoles under both feet's plantar surface. Turns were divided according to kinematic criteria into four consecutive phases: initiation, steering1, steering2 and completion; both steering phases being separated by the gate passage. Component of the averaged Ground Reaction Force normal to the ski's surface([Formula: see text], /BW), and Pressure Time Integral relative to the entire foot surface (relPTI, %) parameters were calculated for each turn phases based on plantar pressure data. Results indicated that [Formula: see text] under the total foot surface differed significantly depending on the slope (higher in steep sections vs. flat sections), and the turn phase (higher during steering2 vs. three other phases), although such modifications were observable only on the outside foot. Moreover, [Formula: see text] under the outside foot was significantly greater than under the inside foot.RelPTI under different foot regions of the outside foot revealed a global shift from forefoot loading during initiation phase, toward heel loading during steering2 phase, but this was dependent on the slope studied. These results suggest a differentiated role played by each foot in alpine skiing turns: the outside foot has an active role in the turning process, while the inside foot may only play a role in stability.

  15. Evaluation of Elevation, Slope and Stream Network Quality of SPOT Dems

    NASA Astrophysics Data System (ADS)

    El Hage, M.; Simonetto, E.; Faour, G.; Polidori, L.

    2012-07-01

    Digital elevation models are considered the most useful data for dealing with geomorphology. The quality of these models is an important issue for users. This quality concerns position and shape. Vertical accuracy is the most assessed in many studies and shape quality is often neglected. However, both of them have an impact on the quality of the final results for a particular application. For instance, the elevation accuracy is required for orthorectification and the shape quality for geomorphology and hydrology. In this study, we deal with photogrammetric DEMs and show the importance of the quality assessment of both elevation and shape. For this purpose, we produce several SPOT HRV DEMs with the same dataset but with different template size, that is one of the production parameters from optical images. Then, we evaluate both elevation and shape quality. The shape quality is assessed with in situ measurements and analysis of slopes as an elementary shape and stream networks as a complex shape. We use the fractal dimension and sinuosity to evaluate the stream network shape. The results show that the elevation accuracy as well as the slope accuracy are affected by the template size. Indeed, an improvement of 1 m in the elevation accuracy and of 5 degrees in the slope accuracy has been obtained while changing this parameter. The elevation RMSE ranges from 7.6 to 8.6 m, which is smaller than the pixel size (10 m). For slope, the RMSE depends on the sampling distance. With a distance of 10 m, the minimum slope RMSE is 11.4 degrees. The stream networks extracted from these DEMs present a higher fractal dimension than the reference river. Moreover, the fractal dimension of the extracted networks has a negligible change according to the template size. Finally, the sinuosity of the stream networks is slightly affected by the change of the template size.

  16. Stability Analysis of Landslide on the R1 Expressway by Limit Equilibrium and Finite Element Methods

    NASA Astrophysics Data System (ADS)

    Janták, Viktor

    2017-12-01

    The most difficult problem by designing the superior infrastructure is tracing the expressways and higways in an environment of Quaternary and Neogene complexes of finegrained cohesive and non-cohesive soils. At the last time the typical examples are stability problems on the R1 Nitra - Tekovské Nemce Expressway. The article is focused on the description of reasons of stability loss in the deep earth cut in the 79,000 km of expressway R1, the course of the landslide, slide correction and especially slope-stability assessment before and after the occurrence of slope failures by limit equilibrium and finite elements methods by comparing the behaviour of the slope in the various model situations.

  17. Along - Strike Analysis of Contemporary Ocean Temperature Change on the Cascadia Margin and Implications to Upper Slope Hydrate Instability

    NASA Astrophysics Data System (ADS)

    Phrampus, B.; Harris, R. N.; Trehu, A. M.; Embley, R. W.; Merle, S. G.

    2017-12-01

    Gas hydrates are found globally on continental margins and due to the large amount of sequestered carbon in hydrate reservoirs, whether these deposits are dynamic or stable has significant implications for slope stability, ocean/atmosphere carbon budget, and deep-water energy exploration. Recent studies indicate that upper slope hydrate degradation may be relatively widespread on passive margins due to recent ocean temperature warming between 0.012 and 0.033 °C/yr (e.g. Svalbard, North Alaska, and US Atlantic margin). However, the potential and breadth of warming induced hydrate instability remains contentious based on multiple observations including: 1) seep locations not consistent with locations of hydrate dissociation, 2) a lack of hydrate in regions of warming, and 3) evidence for long-lived seepage in regions associated with contemporary warming-induced hydrate dissociation. At the Cascadia margin, a recent study suggests that contemporary warming of intermediate water intersects the hydrate stability zone leading to hydrate dissociation that feeds upper slope seeps. Here, we provide a systematic analysis of along-strike variations in hydrate distribution along the Cascadia margin combined with a multivariable regression of ocean temperatures to characterize the potential of upper slope hydrate instability. Preliminary seep locations reveal upper slope seeps and observed regions of hydrate are correlated spatially between 42.5 and 48.0 °N, outside this region there is a dearth of identified upper slope hydrate and seeps. Between 44.5 and 48.0 °N a contemporary warming trend is as large as 0.006 °C/yr and is collocated with upper slope hydrate and gas seepage. This warming rate is relatively small, 2-5x smaller than warming trends identified in the Arctic where temperature induced hydrate instability remains uncertain. Additionally, we identify a region between 42.5 and 44.5 °N with collocated upper slope seepage and hydrate but no evidence of ocean

  18. The importance of inherited structures in slope evolution: the Ridnaun Valley case, Italy

    NASA Astrophysics Data System (ADS)

    Zorzi, L.; Flaim, L.; Massironi, M.; Genevois, R.; Stead, D.

    2013-12-01

    The south facing slope of the Ridnaun Valley (South Tyrol, Italy) comprises the crystalline units belonging to the Austoalpine Nappe of the Alpine orogenic wedge and shows evidence of quaternary gravitational evolution which is highly dependent on the interaction between the slope trend and the brittle/ductile structural setting. The slope valley is incised within the paragneiss rocks of the Oetztal - Stubei Unit and the micaschists of the Schneeberg Unit. These two units are separated by a NNW gentle dipping tectonic contact, which obliquely intersects the E-W slope, and is characterized by multiple ultracataclasitic layers that follow the regional low angle north-dipping schistosity. Folds with sub-horizontal E-trending axes induce a change in the dip direction of the regional schistosity from N dipping (unfavorable to the slip) to SE dipping (favorable to the slip). NNE-SSW and N-S trending faults, having a mean thickness of incoherent fault breccias of 1 m, affect the entire slope. These along with the folds and the ultracataclastic layers, have significant influence on rock mass mechanical properties and on mechanisms and timing of the observed gravitational phenomena. Field work and ALS-HRDEM analysis has revealed different gravitational movements along the slope. A fully evolved gravitational collapse, having the features of a Rock Avalanche (RA), characterizes the central part covering an area of about 2.4 km2; whereas to the east and west of the RA, deep seated gravitational slope deformations (DSGSDs) still affect the slope. An ongoing gravitational deformation is apparent in the uphill sections of the slope, next to the crown area of the RA. PS and DS - SAR interferometry data (provided by the Geological Survey of the Autonomous Province of Bolzano, Italy), testify an ongoing movement on both the DSGSDs bordering the RA, highlighting a most unstable area at the western sector. The heterogeneous behavior of the slope is most likely controlled by the

  19. Surgical options for lumbosacral fusion: biomechanical stability, advantage, disadvantage and affecting factors in selecting options.

    PubMed

    Yoshihara, Hiroyuki

    2014-07-01

    Numerous surgical procedures and instrumentation techniques for lumbosacral fusion (LSF) have been developed. This is probably because of its high mechanical demand and unique anatomy. Surgical options include anterior column support (ACS) and posterior stabilization procedures. Biomechanical studies have been performed to verify the stability of those options. The options have their own advantage but also disadvantage aspects. This review article reports the surgical options for lumbosacral fusion, their biomechanical stability, advantages/disadvantages, and affecting factors in option selection. Review of literature. LSF has lots of options both for ACS and posterior stabilization procedures. Combination of posterior stabilization procedures is an option. Furthermore, combinations of ACS and posterior stabilization procedures are other options. It is difficult to make a recommendation or treatment algorithm of LSF from the current literature. However, it is important to know all aspects of the options and decision-making of surgical options for LSF needs to be tailored for each patient, considering factors such as biomechanical stress and osteoporosis.

  20. On the impact of atmospheric thermal stability on the characteristics of nocturnal downslope flows

    NASA Astrophysics Data System (ADS)

    Ye, Z. J.; Garratt, J. R.; Segal, M.; Pielke, R. A.

    1990-04-01

    The impacts of background (or ambient) and local atmospheric thermal stabilities, and slope steepness, on nighttime thermally induced downslope flow in meso-β domains (i.e., 20 200 km horizontal extent) have been investigated using analytical and numerical model approaches. Good agreement between the analytical and numerical evaluations was found. It was concluded that: (i) as anticipated, the intensity of the downslope flow increases with increased slope steepness, although the depth of the downslope flow was found to be insensitive to slope steepness in the studied situations; (ii) the intensity of the downslope flow is generally independent of background atmospheric thermal stability; (iii) for given integrated nighttime cooling across the nocturnal boundary layer (NBL), Q s the local atmospheric thermal stability exerts a strong influence on downslope flow behavior: the downslope flow intensity increases when local atmospheric thermal stability increases; and (iv) the downslope flow intensity is proportional to Q s 1/2.

  1. Stability and instability of axisymmetric droplets in thermocapillary-driven thin films

    NASA Astrophysics Data System (ADS)

    Nicolaou, Zachary G.

    2018-03-01

    The stability of compactly supported, axisymmetric droplet states is considered for driven thin viscous films evolving on two-dimensional surfaces. Stability is assessed using Lyapunov energy methods afforded by the Cahn-Hilliard variational form of the governing equation. For general driving forces, a criterion on the gradient of profiles at the boundary of their support (their contact slope) is shown to be a necessary condition for stability. Additional necessary and sufficient conditions for stability are established for a specific driving force corresponding to a thermocapillary-driven film. It is found that only droplets of sufficiently short height that satisfy the contact slope criterion are stable. This destabilization of droplets with increasing height is characterized as a saddle-node bifurcation between a branch of tall, unstable droplets and a branch of short, stable droplets.

  2. Tibial Slope Strongly Influences Knee Stability After Posterior Cruciate Ligament Reconstruction: A Prospective 5- to 15-Year Follow-up.

    PubMed

    Gwinner, Clemens; Weiler, Andreas; Roider, Manoussos; Schaefer, Frederik M; Jung, Tobias M

    2017-02-01

    The reported failure rate after posterior cruciate ligament (PCL) reconstruction remains high. Previous studies have shown that the tibial slope (TS) influences sagittal plane laxity. Consequently, alterations of TS might have an effect on postoperative knee stability after PCL reconstruction. We hypothesized that flattening of TS is associated with increased posterior laxity after PCL reconstruction. Cohort study; Level of evidence 3. This study consisted of 48 patients who underwent PCL reconstruction in a single-surgeon series. Eight patients underwent an isolated PCL reconstruction, 27 patients underwent an additional posterolateral corner reconstruction, and 13 patients underwent a combined reconstruction of the PCL, anterior cruciate ligament, and posterolateral corner. Three blinded observers measured TS and the side-to-side difference (SSD) of posterior tibial translation (PTT) before and after PCL reconstruction using standardized stress radiographs. The minimum follow-up was 5 years. At a mean follow-up of 103 months (range, 65-187), the mean SSD of PTT was significantly reduced (10.9 ± 2.9 vs 4.9 ± 4.3 mm; P < .0001). The mean TS was 8.0° ± 3.7° (range, 1°-14.3°) for the operated knee and 7.9° ± 3.2° (range, 2°-15.3°) for the contralateral knee. There was a statistically significant correlation between TS and PTT ( r = -0.77 and R 2 = 0.59; P < .0001). In addition, there was a significant correlation between TS and the postoperative reduction of PTT ( r = 0.74 and R 2 = 0.55; P < .0001). Subgrouping according to the number of operated ligaments showed no significant differences regarding TS or the mean reduction of PTT. Flattening of TS is associated with a significantly higher remaining PTT as well as a lower reduction of PTT. Notably, these results are irrespective of sex and number of ligaments addressed. Thus, isolated soft tissue procedures in PCL deficiency may only incompletely address posterior knee instability in patients with

  3. Straightforward and accurate technique for post-coupler stabilization in drift tube linac structures

    NASA Astrophysics Data System (ADS)

    Khalvati, Mohammad Reza; Ramberger, Suitbert

    2016-04-01

    The axial electric field of Alvarez drift tube linacs (DTLs) is known to be susceptible to variations due to static and dynamic effects like manufacturing tolerances and beam loading. Post-couplers are used to stabilize the accelerating fields of DTLs against tuning errors. Tilt sensitivity and its slope have been introduced as measures for the stability right from the invention of post-couplers but since then the actual stabilization has mostly been done by tedious iteration. In the present article, the local tilt-sensitivity slope TSn' is established as the principal measure for stabilization instead of tilt sensitivity or some visual slope, and its significance is developed on the basis of an equivalent-circuit diagram of the DTL. Experimental and 3D simulation results are used to analyze its behavior and to define a technique for stabilization that allows finding the best post-coupler settings with just four tilt-sensitivity measurements. CERN's Linac4 DTL Tank 2 and Tank 3 have been stabilized successfully using this technique. The final tilt-sensitivity error has been reduced from ±100 %/MHz down to ±3 %/MHz for Tank 2 and down to ±1 %/MHz for Tank 3. Finally, an accurate procedure for tuning the structure using slug tuners is discussed.

  4. Drainage effects on the transient, near-surface hydrologic response of a steep hillslope to rainfall: Implications for slope stability, Edmonds, Washington, USA

    USGS Publications Warehouse

    Biavati, G.; Godt, J.W.; McKenna, J.P.

    2006-01-01

    Shallow landslides on steep (>25??) hillsides along Puget Sound have resulted in occasional loss of life and costly damage to property during intense or prolonged rainfall. As part of a larger project to assess landslide hazards in the Seattle area, the U.S. Geological Survey instrumented two coastal bluff sites in 2001 to observe the subsurface hydrologic response to rainfall. The instrumentation at one of these sites, near Edmonds, Washington, consists of two rain gauges, two water-content probes that measure volumetric water content at eight depths between 0.2 and 2.0 m, and two tensiometer nests that measure soil-water suction at six depths ranging from 0.2 to 1.5m. Measurements from these instruments are used to test one- and two-dimensional numerical models of infiltration and groundwater flow. Capillary-rise tests, performed in the laboratory on soil sample from the Edmonds site, are used to define the soil hydraulic properties for the wetting process. The field observations of water content and suction show an apparent effect of porosity variation with depth on the hydraulic response to rainfall. Using a range of physical properties consistent with our laboratory and field measurements, we perform sensitivity analyses to investigate the effects of variation in physical and hydraulic properties of the soil on rainfall infiltration, pore-pressure response, and, hence, slope stability. For a two-layer-system in which the hydraulic conductivity of the upper layer is at least 10 times greater than the conductivity of the lower layer, and the infiltration rate is greater than the conductivity of the lower layer, a perched water table forms above the layer boundary potentially destabilizing the upper layer of soil. Two-dimensional modeling results indicate that the addition of a simple trench drain to the same two-layer slope has differing effects on the hydraulic response depending on the initial pressure head conditions. For slope-parallel flow conditions

  5. Soil organic carbon dynamics as affected by topography in southern California hillslopes systems

    NASA Astrophysics Data System (ADS)

    Fissore, C.; Dalzell, B. J.; Berhe, A. A.; Evans, M.; Voegtle, M.; Wu, A. M.

    2015-12-01

    Active topography is a predominant feature of Southern California's landscapes where intense erosion and depositional processes can influence SOC translocation and accumulation and where changes in chemical, physical, and topographic conditions may affect long-term stability of SOC. Considering the large variability in SOC content across areas with active topography, it is necessary to develop landscape-scale stratifications of sampling that capture SOC variability due to erosion and deposition processes at different topographic locations. To achieve this goal, landscape SOC needs to be assessed based on more than just slope position by taking into account specific topographic indices, such as slope class, curvature, and catchment area. In this work, we used a series of analytical approaches, including total and water extractable C fractions, ultraviolet absorbance, infrared spectroscopy and a radio-isotope tracer (137Cs) in combination with GIS and digital terrain attributes analyses to investigate the quality and distribution of SOC along the sloping landscape of Puente Hills Preserve, in Whittier, CA. The complex interaction of terrain attributes on erosion and depositional processes was evident from 137Cs analysis, which allowed us to identify depositional and eroding areas. Our findings indicate that greater SOC accumulation is associated with concave profile and plane curvature, when combined with low slope class. Slope appears to be the terrain attribute that most affects SOC content and slope effects persist at depth. Ultraviolet absorbance of water extractable OC and infrared spectroscopy of SOC allowed the identification of different levels of aromaticity and distribution of SOC moieties that have been correlated to rates of mineralization. Southern California, like other Mediterranean regions around the world, is expected to experience increasingly severe droughts, more intense erosion and more frequent fire perturbation - which can exacerbate erosion

  6. Geophysical investigation and dynamic modelling of unstable slopes: case-study of Kainama (Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Danneels, G.; Bourdeau, C.; Torgoev, I.; Havenith, H.-B.

    2008-10-01

    The presence of massive Quaternary loess units at the eastern border of the Fergana Basin (Kyrgyzstan, Central Asia) makes this area particularly prone to the development of catastrophic loess earthflows, causing damages and injuries almost every year. Efficient disaster management requires a good understanding of the main causes of these mass movements, that is, increased groundwater pressure and seismic shaking. This paper focuses on the Kainama earthflow, mainly composed of loess, which occurred in 2004 April. Its high velocity and the long run-out zone caused the destruction of 12 houses and the death of 33 people. In summer 2005, a field survey consisting of geophysical and seismological measurements was carried out along the adjacent slope. By combination and geostatistical analysis of these data, a reliable 3-D model of the geometry and properties of the subsurface layers, as shown in the first part of the paper, was created. The analysis of the seismological data allowed us to point out a correlation between the thickness of the loess cover and the measured resonance frequencies and associated amplification potential. The second part of this paper is focused on the study of the seismic response of the slope by numerical simulations, using a 2-D finite difference code named FLAC. Modelling of the seismic amplification potential along the slope confirmed the results obtained from the seismological survey-strong amplifications at the crest and bottom of the slope where there is a thick loess cover and almost no amplification in the middle part of the slope. Furthermore, dynamic slope stability analyses were conducted to assess the influence of local amplifications and increased groundwater pressures on the slope failure. The results of the dynamic modelling, although preliminary, show that a combination of seismic and hydrologic origin (pore pressure build-up during the seismic shaking) is the most probable scenario responsible for the 2004 failure.

  7. Determination of strength behaviour of slope supported by vegetated crib walls using centrifuge model testing

    NASA Astrophysics Data System (ADS)

    Sudan Acharya, Madhu

    2010-05-01

    The crib retaining structures made of wooden/bamboo logs with live plants inside are called vegetative crib walls which are now becoming popular due to their advantages over conventional civil engineering walls. Conventionally, wooden crib walls were dimensioned based on past experiences. At present, there are several guidelines and design standards for machine finished wooden crib walls, but only few guidelines for the design and construction of vegetative log crib walls are available which are generally not sufficient for an economic engineering design of such walls. Analytical methods are generally used to determine the strength of vegetated crib retaining walls. The crib construction is analysed statically by satisfying the condition of static equilibrium with acceptable level of safety. The crib wall system is checked for internal and external stability using conventional monolithic and silo theories. Due to limitations of available theories, the exact calculation of the strength of vegetated wooden/bamboo crib wall cannot be made in static calculation. Therefore, experimental measurements are generally done to verify the static analysis. In this work, a model crib construction (1:20) made of bamboo elements is tested in the centrifuge machine to determine the strength behaviour of the slope supported by vegetated crib retaining wall. A geotechnical centrifuge is used to conduct model tests to study geotechnical problems such as the strength, stiffness and bearing capacity of different structures, settlement of embankments, stability of slopes, earth retaining structures etc. Centrifuge model testing is particularly well suited to modelling geotechnical events because the increase in gravitational force creates stresses in the model that are equivalent to the much larger prototype and hence ensures that the mechanisms of ground movements observed in the tests are realistic. Centrifuge model testing provides data to improve our understanding of basic mechanisms

  8. A landslide susceptibility prediction on a sample slope in Kathmandu Nepal associated with the 2015's Gorkha Earthquake

    NASA Astrophysics Data System (ADS)

    Kubota, Tetsuya; Prasad Paudel, Prem

    2016-04-01

    In 2013, some landslides induced by heavy rainfalls occurred in southern part of Kathmandu, Nepal which is located southern suburb of Kathmandu, the capital. These landslide slopes hit by the strong Gorkha Earthquake in April 2015 and seemed to destabilize again. Hereby, to clarify their susceptibility of landslide in the earthquake, one of these landslide slopes was analyzed its slope stability by CSSDP (Critical Slip Surface analysis by Dynamic Programming based on limit equilibrium method, especially Janbu method) against slope failure with various seismic acceleration observed around Kathmandu in the Gorkha Earthquake. The CSSDP can detect the landslide slip surface which has minimum Fs (factor of safety) automatically using dynamic programming theory. The geology in this area mainly consists of fragile schist and it is prone to landslide occurrence. Field survey was conducted to obtain topological data such as ground surface and slip surface cross section. Soil parameters obtained by geotechnical tests with field sampling were applied. Consequently, the slope has distinctive characteristics followings in terms of slope stability: (1) With heavy rainfall, it collapsed and had a factor of safety Fs <1.0 (0.654 or more). (2) With seismic acceleration of 0.15G (147gal) observed around Kathmandu, it has Fs=1.34. (3) With possible local seismic acceleration of 0.35G (343gal) estimated at Kathmandu, it has Fs=0.989. If it were very shallow landslide and covered with cedars, it could have Fs =1.055 due to root reinforcement effect to the soil strength. (4) Without seismic acceleration and with no rainfall condition, it has Fs=1.75. These results can explain the real landslide occurrence in this area with the maximum seismic acceleration estimated as 0.15G in the vicinity of Kathmandu by the Gorkha Earthquake. Therefore, these results indicate landslide susceptibility of the slopes in this area with strong earthquake. In this situation, it is possible to predict

  9. Sedimentary processes on the Atlantic Continental Slope of the United States

    USGS Publications Warehouse

    Knebel, H.J.

    1984-01-01

    Until recently, the sedimentary processes on the United States Atlantic Continental Slope were inferred mainly from descriptive studies based on the bathymetry and on widely spaced grab samples, bottom photographs, and seismic-reflection profiles. Over the past 6 years, however, much additional information has been collected on the bottom morphology, characteristics of shallow-subbottom strata, velocity of bottom currents, and transport of suspended and bottom sediments. A review of these new data provides a much clearer understanding of the kinds and relative importance of gravitational and hydrodynamic processes that affect the surface sediments. On the rugged slope between Georges Bank and Cape Lookout, N.C., these processes include: (1) small scale mass wasting within submarine canyons and peripheral gullies; (2) density flows within some submarine valleys; (3) sand spillover near the shelf break; (4) sediment creep on the upper slope; and (5) hemipelagic sedimentation on the middle and lower slope. The area between Georges Bank and Hudson Canyon is further distinguished by the relative abundance of large-scale slump scars and deposits on the open slope, the presence of ice-rafted debris, and the transport of sand within the heads of some submarine canyons. Between Cape Lookout and southern Florida, the slope divides into two physiographic units, and the topography is smooth and featureless. On the Florida-Hatteras Slope, offshelf sand spillover and sediment winnowing, related to Gulf Stream flow and possibly to storm-driven currents, are the major processes, whereas hemipelagic sedimentation is dominant over the offshore slope along the seaward edge of the Blake Plateau north of the Blake Spur. Slumping generally is absent south of Cape Lookout, although one large slump scarp (related to uplift over salt diapirs) has been identified east of Cape Romain. Future studies concerning sedimentary processes on the Atlantic slope need to resolve: (1) the ages and

  10. Milk protein composition and stability changes affected by iron in water sources.

    PubMed

    Wang, Aili; Duncan, Susan E; Knowlton, Katharine F; Ray, William K; Dietrich, Andrea M

    2016-06-01

    Water makes up more than 80% of the total weight of milk. However, the influence of water chemistry on the milk proteome has not been extensively studied. The objective was to evaluate interaction of water-sourced iron (low, medium, and high levels) on milk proteome and implications on milk oxidative state and mineral content. Protein composition, oxidative stability, and mineral composition of milk were investigated under conditions of iron ingestion through bovine drinking water (infused) as well as direct iron addition to commercial milk in 2 studies. Four ruminally cannulated cows each received aqueous infusions (based on water consumption of 100L) of 0, 2, 5, and 12.5mg/L Fe(2+) as ferrous lactate, resulting in doses of 0, 200, 500 or 1,250mg of Fe/d, in a 4×4Latin square design for a 14-d period. For comparison, ferrous sulfate solution was directly added into commercial retail milk at the same concentrations: control (0mg of Fe/L), low (2mg of Fe/L), medium (5mg of Fe/L), and high (12.5mg of Fe/L). Two-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) high-resolution tandem mass spectrometry analysis was applied to characterize milk protein composition. Oxidative stability of milk was evaluated by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde, and mineral content was measured by inductively coupled plasma mass spectrometry. For milk from both abomasal infusion of ferrous lactate and direct addition of ferrous sulfate, an iron concentration as low as 2mg of Fe/L was able to cause oxidative stress in dairy cattle and infused milk, respectively. Abomasal infusion affected both caseins and whey proteins in the milk, whereas direct addition mainly influenced caseins. Although abomasal iron infusion did not significantly affect oxidation state and mineral balance (except iron), it induced oxidized off-flavor and partial degradation of whey proteins. Direct

  11. Comparison between monitored and modeled pore water pressure and safety factor in a slope susceptible to shallow landslides

    NASA Astrophysics Data System (ADS)

    Bordoni, Massimiliano; Meisina, Claudia; Zizioli, Davide; Valentino, Roberto; Bittelli, Marco; Chersich, Silvia

    2014-05-01

    Shallow landslides can be defined as slope movements affecting superficial deposits of small thicknesses which are usually triggered due to extreme rainfall events, also very concentrated in time. Shallow landslides are hazardous phenomena: in particular, if they happen close to urbanized areas they could cause significant damages to cultivations, structures, infrastructures and, sometimes, human losses. The triggering mechanism of rainfall-induced shallow landslides is strictly linked with the hydrological and mechanical responses of usually unsaturated soils to rainfall events. For this reason, it is fundamental knowing the intrinsic hydro-mechanical properties of the soils in order to assess both susceptibility and hazard of shallow landslide and to develop early-warning systems at large scale. The hydrological data collected by a 20 months monitoring on a slope susceptible to shallow landslides in an area of the North -Eastern Oltrepo Pavese (Northern Apennines, Italy) were used to identify the hydrological behaviors of the investigated soils towards rainfall events. Field conditions under different rainfall trends have also been modeled by using both hydrological and physically-based stability models for the evaluation of the slope safety factor . The main objectives of this research are: (a) to compare the field measured pore water pressures at different depths with results of hydrological models, in order to evaluate the efficiency of the tested models and to determine how precipitations affect pore pressure development; (b) to compare the time trends of the safety factor that have been obtained by applying different stability models; (c) to evaluate, through a sensitivity analysis, the effects of soil hydrological properties on modeling pore water pressure and safety factor. The test site slope where field measurements were acquired is representative of other sites in Northern Apennines affected by shallow landslides and is characterized by medium

  12. Plant Functional Type Shifts in Big Sagebrush Ecosystems: Impacts on Dryland Ecosystem Water Balance

    NASA Astrophysics Data System (ADS)

    Bogenschuetz, N. M.; Bearup, L. A.; Maxwell, R. M.; Santi, P. M.

    2014-12-01

    The mountain pine beetle (MPB), Dendroctonus ponderosae, has caused significant tree mortality within North America. Specifically, the MPB affects ponderosa pine and lodgepole pine forests within the Rocky Mountains with approximately 3.4 million acres of forest impacted over the past 20 years. The full impacts of such unprecedented tree mortality on hydrology and slope stability is not well understood. This work studies the affects of MPB infestation on slope instability. A large-scale statistical analysis of MPB and slope stability is combined with a more in-depth analysis of the factors that contribute to slope stability. These factors include: slope aspect, slope angle, root decay, regrowth and hydrologic properties, such as water table depth and soil moisture. Preliminary results show that MPB may affect a greater number of north- and east-facing slopes. This is in accordance with more water availability and a higher MPB impacted tree density on north-facing slopes which, in turn, could potentially increase the probability of slope failure. Root strength is predicted to decrease as the roots stop transpiring 3-4 years proceeding infestation. However, this effect on the hillslope is likely being counterbalanced by the regrowth of grasses, forbs, shrubs, and trees. In addition, the increase in water table height from the lack of transpiring trees is adding a driving force to the slopes. The combination of all these factors will be used in order to assess the effects of MPB tree mortality on slope stability.

  13. A Different Pitch to Slope

    ERIC Educational Resources Information Center

    Wolbert, William

    2017-01-01

    The query "When are we ever going to use this?" is easily answered when discussing the slope of a line. The pitch of a roof, the grade of a road, and stair stringers are three applications of slope that are used extensively. The concept of slope, which is introduced fairly early in the mathematics curriculum has hands-on applications…

  14. Stabilization process of human population: a descriptive approach.

    PubMed

    Kayani, A K; Krotki, K J

    1981-01-01

    An attempt is made to inquire into the process of stabilization of a human population. The same age distribution distorted by past variations in fertility is subjected to several fixed schedules of fertility. The schedules are different from each other monotonically over a narrow range. The primary concern is with the process, almost year by year, through which the populations become stable. There is particular interest in the differential impact in the same original age distribution of the narrowly different fixed fertility schedules. The exercise is prepared in 3 stages: general background of the process of stabilization; methodology and data used; and analysis and discussion of the stabilization process. Among the several approaches through which the analysis of stable population is possible, 2 are popular: the integral equation and the projection matrix. In this presentation the interest is in evaluating the effects of fertility on the stabilization process of a population. Therefore, only 1 initial age distribution and only 1 life table but a variety of narrowly different schedules of fertility have been used. Specifically, the U.S. 1963 female population is treated as the initial population. The process of stabilization is viewed in the light of the changes in the slopes between 2 successive age groups of an age distribution. A high fertility schedule with the given initial age distribution and mortality level overcomes the oscillations more quickly than the low fertility schedule. Simulation confirms the intuitively expected positive relationship between the mean of the slope and the level of fertility. The variance of the slope distribution is an indicator of the aging of the distribution.

  15. Seasonal electrical resistivity surveys of a coastal bluff, Barter Island, North Slope Alaska

    USGS Publications Warehouse

    Swarzenski, Peter W.; Johnson, Cordell; Lorenson, Thomas; Conaway, Christopher H.; Gibbs, Ann E.; Erikson, Li; Richmond, Bruce M.; Waldrop, Mark P.

    2016-01-01

    Select coastal regions of the North Slope of Alaska are experiencing high erosion rates that can be attributed in part to recent warming trends and associated increased storm intensity and frequency. The upper sediment column of the coastal North Slope of Alaska can be described as continuous permafrost underlying a thin (typically less than 1–2 m) active layer that responds variably to seasonal thaw cycles. Assessing the temporal and spatial variability of the active layer and underlying permafrost is essential to better constrain how heightened erosion may impact material fluxes to the atmosphere and the coastal ocean, and how enhanced thaw cycles may impact the stability of the coastal bluffs. In this study, multi-channel electrical resistivity tomography (ERT) was used to image shallow subsurface features of a coastal bluff west of Kaktovik, on Barter Island, northeast Alaska. A comparison of a suite of paired resistivity surveys conducted in early and late summer 2014 provided detailed information on how the active layer and permafrost are impacted during the short Arctic summer. Such results are useful in the development of coastal resilience models that tie together fluvial, terrestrial, climatic, geologic, and oceanographic forcings on shoreline stability.

  16. Long-Term Drainage from the Riprap Side Slope of a Surface Barrier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Zhuanfang

    Surface barriers designed to isolate underground nuclear waste in place are expected to function for at least 1000 years. To achieve this long design life, such barriers need to be protected with side slopes against wind- and water-induced erosion and damage by natural or human activities. However, the side slopes are usually constructed with materials coarser than the barrier. Their hydrological characteristics must be understood so that any drainage from them is considered in the barrier design and will not compromise the barrier function. The Prototype Hanford Barrier, an evapotranspiration-capillary (ETC) barrier, was constructed in 1994 at the Hanford Sitemore » in southeastern Washington state, with a gravel side slope and a riprap side slope. The soil water content in the gravel side slope and drainage from both side slopes have been monitored since the completion of construction. The monitoring results show that under natural precipitation the annual drainage rates from the two types of side slopes were very similar and about 5 times the typical recharge from local soil with natural vegetation and 40 times the barrier design criterion. The higher recharge from the side slopes results in some of the drainage migrating laterally to the region beneath the ETC barrier. This edge effect of the enhanced drainage was evaluated for a period of 1000 years by numerical simulation. The edge effect was quantified by the amount of water across the barrier edges and the affecting distance of the barrier edges. These results indicate that design features can be adjusted to reduce the edge effect when necessary.« less

  17. Potential geologic hazards on the eastern Gulf of Cadiz slope (SW Spain)

    USGS Publications Warehouse

    Baraza, J.; Ercilla, G.; Nelson, C.H.

    1999-01-01

    Geologic hazards resulting from sedimentary, oceanographic and tectonic processes affect more than one third of the offshore Gulf of Cadiz, and are identified by interpreting high-resolution seismic profiles and sonographs. Hazards of sedimentary origin include the occurrence of slope instability processes in the form of single or multiple slumps occupying up to 147 km2 mainly concentrated in the steeper, upper slope area. Besides the presence of steep slopes, the triggering of submarine landslides is probably due to seismic activity and favoured by the presence of biogenic gas within the sediment. Gassy sediments and associated seafloor pockmarks cover more than 240 km2 in the upper slope. Hazards from oceanographic processes result from the complex system of bottom currents created by the interaction of the strong Mediterranean Undercurrent and the rough seafloor physiography. The local intensification of bottom currents is responsible for erosive processes along more than 1900 km2 in the upper slope and in the canyons eroded in the central area of the slope, undermining slopes and causing instability. The strong bottom currents also create a mobile seafloor containing bedforms in an area of the Gulf that extends more than 2500 km2, mostly in the continental slope terraces. Hazards of tectonic origin are important because the Gulf of Cadiz straddles two major tectonic regions, the Azores-Gibraltar fracture zone and the Betic range, which results in diapir uplift over an area of more than 1000 km2, and in active seismicity with earthquakes of moderate magnitude. Also, tsunamis produced by strong earthquakes occur in the Gulf of Cadiz, and are related to the tectonic activity along the Azores-Gibraltar fracture zone.

  18. Slope stability problems associated with timber harvesting in mountainous regions of the western United States.

    Treesearch

    D.N. Swanston

    1974-01-01

    Natural soil-mass-movements on forested slopes in the Western United States can be divided into two major groups of closely related landslide types. These include, in order of decreasing importance and regional frequency of occurrence: (1) debris slides, debris avalanches, debris flows, and debris torrents; and (2) creep, slumps, and earth flows. Each type requires the...

  19. The temporal stability and predictive validity of affect-based and cognition-based intentions.

    PubMed

    Keer, Mario; Conner, Mark; Van den Putte, Bas; Neijens, Peter

    2014-06-01

    Recent research has revealed individual differences in the extent to which people base their intentions on affect and cognition. Two studies are presented that assess whether such differences predict the strength of individuals' intention-behaviour relationships. Participants completed measures of affect, cognition, intention, and behaviour regarding a range of health behaviours. Study 1 (N = 300) found that the strength of the intention-behaviour relationship was significantly related to the extent to which individuals based their intentions on affect, but not to the extent they based them on cognition. Study 2 (N = 387) replicated the findings of the first study. In addition, Study 2 revealed that intention stability mediated the relationship between the degree people based their intentions on affect and the strength of the intention-behaviour relationship. Thus, individuals who base their intentions strongly on affect have more stable intentions, and are therefore more likely to enact them. © 2013 The British Psychological Society.

  20. Analysis of Infiltration-Suction Response in Unsaturated Residual Soil Slope in Gelugor, Penang

    NASA Astrophysics Data System (ADS)

    Ashraf Mohamad Ismail, Mohd; Hasliza Hamzah, Nur; Min, Ng Soon; Hazreek Zainal Abidin, Mohd; Tajudin, Saiful Azhar Ahmad; Madun, Aziman

    2018-04-01

    Rainfall infiltration on residual soil slope may impair slope stability by altering the pore-water pressure in the soil. A study has been carried out on unsaturated residual soil slope in Gelugor, Penang to determine the changes in matric suction of residual soils at different depth due to rainwater infiltration. The sequence of this study includes the site investigation, field instrumentation, laboratory experiment and numerical modeling. Void ratio and porosity of soil were found to be decreasing with depth while the bulk density and dry density of soil increased due to lower porosity of soil at greater depth. Soil infiltration rate and matric suction of all depths decrease with the increase of volumetric water content as well as the degree of saturation. Numerical modeling was used to verify and predict the relationship between infiltration-suction response and degree of saturation. Numerical models can be used to integrate the rainfall scenarios into quantitative landslide hazard assessments. Thus, development plans and mitigation measures can be designed for estimated impacts from hazard assessments based on collected data.

  1. Forecasting slope failures from space-based synthetic aperture radar (SAR) measurements

    NASA Astrophysics Data System (ADS)

    Wasowski, J.; Bovenga, F.; Nutricato, R.; Nitti, D. O.; Chiaradia, M. T.; Tijani, K.; Morea, A.

    2017-12-01

    New space-borne radar sensors enable multi-scale monitoring of potentially unstable slopes thanks to wide-area coverage (tens of thousands km2), regular long-term image acquisition schedule with increasing re-visit frequency (weekly to daily), and high measurement precision (mm). In particular, the recent radar satellite missions e.g., COSMO-SkyMed (CSK), Sentinel-1 (S-1) and improved multi-temporal interferometry (MTI) processing techniques allow timely delivery of information on slow ground surface displacements. Here we use two case study examples to show that it is possible to capture pre-failure slope strains through long-term MTI-based monitoring. The first case is a retrospective investigation of a huge 500ML m3 landslide, which occurred in Sept. 2016 in a large, active open-cast coal mine in central Europe. We processed over 100 S-1 images acquired since Fall 2014. The MTI results showed that the slope that failed had been unstable at least since 2014. Importantly, we detected consistent displacement trends and trend changes, which can be used for slope failure forecasting. Specifically, we documented significant acceleration in slope surface displacement in the two months preceding the catastrophic failure. The second case of retrospectively captured pre-failure slope strains regards our earlier study of a small 50 m long landslide, which occurred on Jan. 2014 and caused the derailment of a train on the railway line connecting NW Italy to France. We processed 56 CSK images acquired from Fall 2008 to Spring 2014. The MTI results revealed pre-failure displacements of the engineering structures on the slope subsequently affected by the 2014 slide. The analysis of the MTI time series further showed that the displacements had been occurring since 2009. This information could have been used to forewarn the railway authority about the slope instability hazard. The above examples indicate that more frequent and consistent image acquisitions by the new radar

  2. Rheological model analysis on depth of toppling deformation in the anti-dip rock slope

    NASA Astrophysics Data System (ADS)

    Zheng, Da

    2017-04-01

    The failure of the toppling deformation occurred in the layered rock mass, it is a kind of mode of deformation and failure, which is bent towards free direction and gradually develops into the slope under the combined forces of in-situ stress, gravity, and groundwater dynamic (hydrostatic) pressure and so on. The most common toppling deformation is the toppling of ductile bending. Obtaining the developmental depth of bending deformation is of great significance for judging the development scale of the plasmodium and the stability of the slope. At present, the developmental depth of toppling deformation mainly depends on the survey and statistic of the exploration adit, or the simulation of the deformation and failure process through the numerical simulation method, there is little research on the developmental depth of toppling deformation from mechanics point of view. In this paper, with the consideration of the time-sensitive characteristics of developmental process of the toppling deformation, the anti-dip layered slope can be considered as a multi-layer superposition cantilever with fixed end and free end, bending under self-weight and inter-layer stress. Under the premise of the initial stage of rheology of the rock slopes, which is considered to be the limit position of the toppling deformation and development, the Kelvin rheological model, which is usually used to describe the decay creep, is chosen to describe the time-sensitive process of rock slopes. The stress-strain analysis calculation is used to obtain the time-varying expression of a certain point on the rock beam. Furthermore, taking the time to infinity, the depth of the layered rock slopes is calculated as x=4Ccosβ/[2γcosαcosβ - γ2(cos (α + β)+2sin(α + β)tanφ)*((1+n) /2+(1-n) cos2α/ 2)] , which is obtained by using the strain reaches zero as the criterion of the depth at toppling deformation development limit position, combining the time-varying expression of a certain point on the beam

  3. Factors affecting the stability of viral vaccines.

    PubMed

    Peetermans, J

    1996-01-01

    The stability of viral vaccines is determined by the rate of loss of "integrity" of the viral antigen during storage. For live vaccines, such as measles, mumps, rubella, canine distemper, stability is equivalent to the preservation of the infectious titres. For inactivated and subunit vaccines, the preservation of the antigenic structure and the correct steric presentation of the relevant epitopes are the parameters which determine their stability. In general, the following factors may have a negative effect on stability: temperature, pH outside the physiological limits, organic solvents, repeated freezing and thawing, some antiseptics and inactivating agents, and light. However their negative effect is in most cases specific for the individual viruses. Approaches to stabilisation of most vaccines are based on the elimination or neutralisation of the negative factors. Practical examples for the most relevant existing vaccines are described.

  4. Increasing prosthetic foot energy return affects whole-body mechanics during walking on level ground and slopes.

    PubMed

    Childers, W Lee; Takahashi, Kota Z

    2018-03-29

    Prosthetic feet are designed to store energy during early stance and then release a portion of that energy during late stance. The usefulness of providing more energy return depends on whether or not that energy transfers up the lower limb to aid in whole body propulsion. This research examined how increasing prosthetic foot energy return affected walking mechanics across various slopes. Five people with a uni-lateral transtibial amputation walked on an instrumented treadmill at 1.1 m/s for three conditions (level ground, +7.5°, -7.5°) while wearing a prosthetic foot with a novel linkage system and a traditional energy storage and return foot. The novel foot demonstrated greater range of motion (p = 0.0012), and returned more energy (p = 0.023) compared to the traditional foot. The increased energy correlated with an increase in center of mass (CoM) energy change during propulsion from the prosthetic limb (p = 0.012), and the increased prosthetic limb propulsion correlated to a decrease in CoM energy change (i.e., collision) on the sound limb (p < 0.001). These data indicate that this novel foot was able to return more energy than a traditional prosthetic foot and that this additional energy was used to increase whole body propulsion.

  5. Stratigraphy and Facies of Cretaceous Schrader Bluff and Prince Creek Formations in Colville River Bluffs, North Slope, Alaska

    USGS Publications Warehouse

    Flores, Romeo M.; Myers, Mark D.; Houseknecht, David W.; Stricker, Gary D.; Brizzolara, Donald W.; Ryherd, Timothy J.; Takahashi, Kenneth I.

    2007-01-01

    Stratigraphic and sedimentologic studies of facies of the Upper Cretaceous rocks along the Colville River Bluffs in the west-central North Slope of Alaska identified barrier shoreface deposits consisting of vertically stacked, coarsening-upward parasequences in the Schrader Bluff Formation. This vertical stack of parasequence deposits represents progradational sequences that were affected by shoaling and deepening cycles caused by fluctuations of sea level. Further, the vertical stack may have served to stabilize accumulation of voluminous coal deposits in the Prince Creek Formation, which formed braided, high-sinuosity meandering, anastomosed, and low-sinuosity meandering fluvial channels and related flood plain deposits. The erosional contact at the top of the uppermost coarsening-upward sequence, however, suggests a significant drop of base level (relative sea level) that permitted a semiregional subaerial unconformity to develop at the contact between the Schrader Bluff and Prince Creek Formations. This drop of relative sea level may have been followed by a relative sea-level rise to accommodate coal deposition directly above the unconformity. This rise was followed by a second drop of relative sea level, with formation of incised valley topography as much as 75 ft deep and an equivalent surface of a major marine erosion or mass wasting, or both, either of which can be traced from the Colville River Bluffs basinward to the subsurface in the west-central North Slope. The Prince Creek fluvial deposits represent late Campanian to late Maastrichtian depositional environments that were affected by these base level changes influenced by tectonism, basin subsidence, and sea-level fluctuations.

  6. Slope maps of the San Francisco Bay region, California a digital database

    USGS Publications Warehouse

    Graham, Scott E.; Pike, Richard J.

    1998-01-01

    PREFACE: Topography, the configuration of the land surface, plays a major role in various natural processes that have helped shape the ten-county San Francisco Bay region and continue to affect its development. Such processes include a dangerous type of landslide, the debris flow (Ellen and others, 1997) as well as other modes of slope failure that damage property but rarely threaten life directly?slumping, translational sliding, and earthflow (Wentworth and others, 1997). Different types of topographic information at both local and regional scales are helpful in assessing the likelihood of slope failure and the mapping the extent of its past activity, as well as addressing other issues in hazard mitigation and land-use policy. The most useful information is quantitative. This report provides detailed digital data and plottable map files that depict in detail the most important single measure of ground-surface form for the Bay region, slope angle. We computed slope data for the entire region and each of its constituent counties from a new set of 35,000,000 digital elevations assembled from 200 local contour maps.

  7. Enhanced stability of steep channel beds to mass failure and debris flow initiation

    NASA Astrophysics Data System (ADS)

    Prancevic, J.; Lamb, M. P.; Ayoub, F.; Venditti, J. G.

    2015-12-01

    Debris flows dominate bedrock erosion and sediment transport in very steep mountain channels, and are often initiated from failure of channel-bed alluvium during storms. While several theoretical models exist to predict mass failures, few have been tested because observations of in-channel bed failures are extremely limited. To fill this gap in our understanding, we performed laboratory flume experiments to identify the conditions necessary to initiate bed failures in non-cohesive sediment of different sizes (D = 0.7 mm to 15 mm) on steep channel-bed slopes (S = 0.45 to 0.93) and in the presence of water flow. In beds composed of sand, failures occurred under sub-saturated conditions on steep bed slopes (S > 0.5) and under super-saturated conditions at lower slopes. In beds of gravel, however, failures occurred only under super-saturated conditions at all tested slopes, even those approaching the dry angle of repose. Consistent with theoretical models, mass failures under super-saturated conditions initiated along a failure plane approximately one grain-diameter below the bed surface, whereas the failure plane was located near the base of the bed under sub-saturated conditions. However, all experimental beds were more stable than predicted by 1-D infinite-slope stability models. In partially saturated sand, enhanced stability appears to result from suction stress. Enhanced stability in gravel may result from turbulent energy losses in pores or increased granular friction for failures that are shallow with respect to grain size. These grain-size dependent effects are not currently included in stability models for non-cohesive sediment, and they may help to explain better the timing and location of debris flow occurrence.

  8. Deep Percolation in Arid Piedmont Slopes: Multiple Lines of Evidence Show How Land Use Change and Ecohydrological Properties Affect Groundwater Recharge

    NASA Astrophysics Data System (ADS)

    Schreiner-McGraw, A.; Vivoni, E. R.; Browning, D. M.

    2017-12-01

    A critical hydrologic process in arid regions is the contribution of episodic streamflow in ephemeral channels to groundwater recharge. This process has traditionally been studied in channels that drain large watersheds (10s to 100s km2). In this study, we aim to characterize the provision of the ecosystem services of surface and groundwater supply in a first-order watershed (4.6 ha) in an arid piedmont slope of the Jornada Experimental Range (JER). We use an observational and modeling approach to estimate deep percolation. During a 6 year study period, we observed 428 mm of percolation (P) and 39 mm of runoff (Q); ratios of P to rainfall (R) of P/R = 0.27 and Q/R = 0.02. Utilizing an instrument network and site measurements, we determine that percolation occurs primarily inside channel reaches when these receive runoff from upland hillslopes and find that a monthly rainfall threshold of 62 mm is needed for significant percolation to be generated. In order to quantify the mechanisms leading to this threshold response, we develop a channel transmission loss module for the TIN-based Real-time Integrated Basin Simulator (tRIBS) and test the model thoroughly against the available observations over the study period. For these purposes, we make use of image classifications from Unmanned Aerial Vehicle flights, a ground-based phenocam, and species-level measurements to parameterize vegetation processes in the model. We then conduct an extensive set of sensitivity experiments to determine the relative roles of channel, soil, and vegetation properties on modifying the relation between monthly rainfall and percolation. Additionally, we test how the observed vegetation transitions in the JER over the last 150 years affect the deep percolation and runoff estimates. By quantifying mechanisms through which vegetation changes affect water resource provision, this work provides new insights on the ecohydrological controls on the water yield of arid piedmont slopes.

  9. Cross-slope Movement Patterns in Landslides

    NASA Astrophysics Data System (ADS)

    Petley, D.; Murphy, W.; Bulmer, M. H.; Keefer, D.

    2002-12-01

    There is growing evidence that there is a significant element of cross-slope movement in many large landslide systems. These movements may result in changing states of stress between landslide blocks that can establish complex displacement patterns. Such motions, which are not considered in traditional two-dimensional limit-equilibrium analyses, are important in the investigation of a variety of landslide types, such as those triggered by earthquakes. In addition, these movements may introduce considerable errors into the interpretation of strain patterns as derived from InSAR studies. Finally, even traditional interpretation techniques may lead to the amount of total displacement being underestimated. These observations suggest that a three dimensional form of analysis may be more appropriate for large landslide complexes. The significance of such cross-slope movements are being investigated using a detailed investigation of the Lishan landslide complex in Central Taiwan. This landslide system, which was reactivated in 1990 related to the construction of a hotel. The total recorded movements have been approximately 1.5 m over an area of sliding that is estimated to be 450 m wide and 200 m long. Extensive damage has been caused to roads and buildings within the town. Remediation work has resulted largely in the stabilization of the landslide complex. Detailed geomorphological mapping has revealed that the landslide complex is composed of two main components. The first, immediately upslope of the hotel construction site, is a relatively shallow earthflow. The second, which has formed a large headscarp upslope from the main road in the centre of the town, is a deeper translational slide. Both appear to have been reactivations of previous failures. While the displacement patterns of the earthflow indicate a relatively simple downslope movement, the vectors derived from kinematic analysis of surface features have indicated that the movement of the deeper

  10. Effect of gas hydrates melting on seafloor slope stability

    NASA Astrophysics Data System (ADS)

    Sultan, N.; Cochonat, P.; Foucher, J. P.; Mienert, J.; Haflidason, H.; Sejrup, H. P.

    2003-04-01

    Henriet, J.-P.; Mienert, J. (Ed.): Gas hydrates: relevance to world margin stability and climate change. Geological Society Special Publication, 137. The Geological Society: London, UK, p. 267-274. Handa,Y.P., 1989. Effect of Hydrostatic Pressure and Salinity on the Stability of Gas Hydrates. J.Phys.Chem., Vol.94, p.2652-2657. Henry, P., Thomas, M.; Clennell, M.B., 1999. Formation of Natural Gas Hydrates in Marine Sediments 2. Thermodynamic Calculations of Stability Conditions in Porous Sediments,” J. Geophys. Res., 104, p. 23005. Sloan, E.D. Jr., 1998. Clathrate hydrates of natural gases. Marcel Dekker Inc., 2nd edition, New York, pp. 705. Soave G, 1972. Equilibrium

  11. Diabetes may affect intracranial aneurysm stabilization in older patients: Analysis based on intraoperative findings

    PubMed Central

    Song, Jihye; Shin, Yong Sam

    2016-01-01

    Background: Only a small proportion of aneurysms progress to rupture. Previous studies have focused on predicting the rupture risk of intracranial aneurysms. Atherosclerotic aneurysm wall appears resistant to rupture. The purpose of this study was to evaluate clinical and morphological factors affecting atherosclerosis of an aneurysm and identify the parameters that predict aneurysm stabilization. Methods: We conducted a retrospective analysis of 253 consecutive patients with 291 unruptured aneurysms who underwent clipping surgery in a single institution between January 2012 and October 2013. Aneurysms were categorized based on intraoperative video findings and assessed morphologic and demographic data. Aneurysms which had the atherosclerotic wall without any super thin and transparent portion were defined as stabilized group and the others as a not-stabilized group. Results: Of the 207 aneurysms, 176 (85.0%) were assigned to the not-stabilized group and 31 (15.0%) to the stabilized group. The relative proportion of stabilized aneurysms increased significantly as the age increased (P < 0.001). Univariate logistic analysis showed that age ≥65 years (P < 0.001), hypertension (P = 0.012), diabetes (P = 0.007), and height ≥3 mm (P = 0.007) were correlated with stabilized aneurysms. Multivariate logistic analysis showed that age ≥65 years (P = 0.009) and hypertension (P = 0.041) were strongly correlated with stable aneurysms. In older patients (≥65 years of age), multivariate logistic regression revealed that only diabetes was associated with stabilized aneurysms (P = 0.027). Conclusions: In patients ≥65 years of age, diabetes mellitus may highly predict the stabilized aneurysms. These results provide useful information in determining treatment and follow-up strategies, especially in older patients. PMID:27313965

  12. Posterior tibial slope in medial opening-wedge high tibial osteotomy: 2-D versus 3-D navigation.

    PubMed

    Yim, Ji Hyeon; Seon, Jong Keun; Song, Eun Kyoo

    2012-10-01

    Although opening-wedge high tibial osteotomy (HTO) is used to correct deformities, it can simultaneously alter tibial slope in the sagittal plane because of the triangular configuration of the proximal tibia, and this undesired change in tibial slope can influence knee kinematics, stability, and joint contact pressure. Therefore, medial opening-wedge HTO is a technically demanding procedure despite the use of 2-dimensional (2-D) navigation. The authors evaluated the posterior tibial slope pre- and postoperatively in patients who underwent navigation-assisted opening-wedge HTO and compared posterior slope changes for 2-D and 3-dimensional (3-D) navigation versions. Patients were randomly divided into 2 groups based on the navigation system used: group A (2-D guidance for coronal alignment; 17 patients) and group B (3-D guidance for coronal and sagittal alignments; 17 patients). Postoperatively, the mechanical axis was corrected to a mean valgus of 2.81° (range, 1°-5.4°) in group A and 3.15° (range, 1.5°-5.6°) in group B. A significant intergroup difference existed for the amount of posterior tibial slope change (Δ slope) pre- and postoperatively (P=.04).Opening-wedge HTO using navigation offers accurate alignment of the lower limb. In particular, the use of 3-D navigation results in significantly less change in the posterior tibial slope postoperatively than does the use of 2-D navigation. Accordingly, the authors recommend the use of 3-D navigation systems because they provide real-time intraoperative information about coronal, sagittal, and transverse axes and guide the maintenance of the native posterior tibial slope. Copyright 2012, SLACK Incorporated.

  13. Effects of Goal Line Feedback on Level, Slope, and Stability of Performance within Curriculum-Based Measurement.

    ERIC Educational Resources Information Center

    Fuchs, Lynn S.; And Others

    1991-01-01

    Nineteen special educators implemented Curriculum-Based Measurement with a total of 36 learning-disabled math pupils in grades 2-8 to examine the effects of goal line feedback. Results indicated comparable levels and slopes of student performance across treatment conditions, although goal line feedback was associated with greater performance…

  14. How ligands improve the hydrothermal stability and affect the adsorption in the IRMOF family.

    PubMed

    Bellarosa, Luca; Gutiérrez-Sevillano, Juan J; Calero, Sofía; López, Núria

    2013-10-28

    Metal-Organic Frameworks are considered to be the next generation of sorbents both because of their synthetic versatility and high selectivity potential. In the first generation (IRMOF), the main drawback for commercial implementation is the lack of hydrothermal stability. Even if several studies have been conducted to elucidate the reasons behind their structural weakness in humid environments, how apparently small changes in the stoichiometry of the building units affect the stability of the lattice is still poorly understood. Using density functional theory and ab initio molecular dynamics we investigated the reason behind the different behaviour of several substituted IRMOF-1 structures. We show that hydrophilic variations in the organic linkers work as new basins of attraction for the incoming water molecules, thus depleting the water content at the metal center. To confirm this, we performed Monte Carlo simulations to provide insights into the adsorption energies and check the effectiveness of the adsorption sites in the substituted structures for a variety of polar and non-polar molecules. The results show that linker modification affects molecular adsorption and can improve the overall stability of the lattice redirecting water to the new sites in the case of hydrophilic units. Three key parameters have been singled out to rationalize this behaviour, and used to predict the favoured adsorption sites in the case of gas mixtures.

  15. Slope-scale dynamic states of rockfalls

    NASA Astrophysics Data System (ADS)

    Agliardi, F.; Crosta, G. B.

    2009-04-01

    Rockfalls are common earth surface phenomena characterised by complex dynamics at the slope scale, depending on local block kinematics and slope geometry. We investigated the nature of this slope-scale dynamics by parametric 3D numerical modelling of rockfalls over synthetic slopes with different inclination, roughness and spatial resolution. Simulations were performed through an original code specifically designed for rockfall modeling, incorporating kinematic and hybrid algorithms with different damping functions available to model local energy loss by impact and pure rolling. Modelling results in terms of average velocity profiles suggest that three dynamic regimes (i.e. decelerating, steady-state and accelerating), previously recognized in the literature through laboratory experiments on granular flows, can set up at the slope scale depending on slope average inclination and roughness. Sharp changes in rock fall kinematics, including motion type and lateral dispersion of trajectories, are associated to the transition among different regimes. Associated threshold conditions, portrayed in "phase diagrams" as slope-roughness critical lines, were analysed depending on block size, impact/rebound angles, velocity and energy, and model spatial resolution. Motion in regime B (i.e. steady state) is governed by a slope-scale "viscous friction" with average velocity linearly related to the sine of slope inclination. This suggest an analogy between rockfall motion in regime B and newtonian flow, whereas in regime C (i.e. accelerating) an analogy with a dilatant flow was observed. Thus, although local behavior of single falling blocks is well described by rigid body dynamics, the slope scale dynamics of rockfalls seem to statistically approach that of granular media. Possible outcomes of these findings include a discussion of the transition from rockfall to granular flow, the evaluation of the reliability of predictive models, and the implementation of criteria for a

  16. Reply: Comparison of slope instability screening tools following a large storm event and application to forest management and policy

    NASA Astrophysics Data System (ADS)

    Whittaker, Kara A.; McShane, Dan

    2013-02-01

    A large storm event in southwest Washington State triggered over 2500 landslides and provided an opportunity to assess two slope stability screening tools. The statistical analysis conducted demonstrated that both screening tools are effective at predicting where landslides were likely to take place (Whittaker and McShane, 2012). Here we reply to two discussions of this article related to the development of the slope stability screening tools and the accuracy and scale of the spatial data used. Neither of the discussions address our statistical analysis or results. We provide greater detail on our sampling criteria and also elaborate on the policy and management implications of our findings and how they complement those of a separate investigation of landslides resulting from the same storm. The conclusions made in Whittaker and McShane (2012) stand as originally published unless future analysis indicates otherwise.

  17. Transient Infiltration Analysis for Infinite Slopes using the Modified Function of Unsaturated Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Oh, Seboong; Achmad Zaky, Fauzi; Mog Park, Young

    2016-04-01

    The hydraulic behaviors in the soil layer are crucial to the transient infiltration analysis into natural slopes, in which unsaturated hydraulic conductivity (HC) can be evaluated theoretically from soil water retention curves (SWRC) by Mualem's equation. In the nonlinear infiltration analysis, the solution by some of smooth SWRCs is not converge for heavy rainfall condition, since the gradient of HCs is extremely steep near saturation. The van Genuchten's SWRC model has been modified near saturation and subsequently an analytical HC function was proposed to improve the van Genuchten-Mualem HC. Using the examples on 1-D infiltration analysis by the modified HC model, it is validated that any solutions can be converged for various rainfall conditions to keep numerical stability. Stability analysis based on unsaturated effective stress could simulate the infinite slope failure by the proposed HC model. The pore water pressure and the ratio of saturation increased from the surface to shallow depth (˜1m) and the factor of safety decreased gradually due to infiltration. Acknowledgements This research is supported by grants from Korean NRF (2012M3A2A1050974 and 2015R1A2A2A01), which are greatly appreciated.

  18. Root tensile strength assessment of Dryas octopetala L. and implications for its engineering mechanism on lateral moraine slopes (Turtmann Valley, Switzerland)

    NASA Astrophysics Data System (ADS)

    Eibisch, Katharina; Eichel, Jana; Dikau, Richard

    2015-04-01

    Geomorphic processes and properties are influenced by vegetation. It has been shown that vegetation cover intercepts precipitation, enhances surface detention and storage, traps sediment and provides additional surface roughness. Plant roots impact the soil in a mechanical and hydrological manner and affect shear strength, infiltration capacity and moisture content. Simultaneously, geomorphic processes disturb the vegetation development. This strong coupling of the geomorphic and ecologic system is investigated in Biogeomorphology. Lateral moraine slopes are characterized by a variety of geomorphic processes, e. g. sheet wash, solifluction and linear erosion. However, some plant species, termed engineer species, possess specific functional traits which allow them to grow under these conditions and also enable them to influence the frequency, magnitude and even nature of geomorphic processes. For lateral moraine slopes, Dryas octopetala L., an alpine dwarf shrub, was identified as a potential engineer species. The engineering mechanism of D. octopetala, based on its morphological (e.g., growth form) and biomechanical (e.g., root strength) traits, yet remains unclear and only little research has been conducted on alpine plant species. The objectives of this study are to fill this gap by (A) quantifying D. octopetala root tensile strength as an important trait considering anchorage in and stabilization of the slope and (B) linking plant traits to the geomorphic process they influence on lateral moraine slopes. D. octopetala traits were studied on a lateral moraine slope in Turtmann glacier forefield, Switzerland. (A) Root strength of single root threads of Dryas octopetala L. were tested using the spring scale method (Schmidt et al., 2001; Hales et al., 2013). Measurement equipment was modified to enable field measurements of roots shortly after excavation. Tensile strength of individual root threads was calculated and statistically analyzed. First results show that

  19. The Effect of Uphill and Downhill Slopes on Weight Transfer, Alignment and Shot Outcome in Golf.

    PubMed

    Blenkinsop, Glen M; Liang, Ying; Gallimore, Nicholas J; Hiley, Michael J

    2018-04-13

    The aim of the study was to examine changes in weight transfer, alignment and shot outcome during golf shots from flat, uphill, and downhill slopes. Twelve elite male golfers hit 30 shots with a six-iron from a computer assisted rehabilitation environment (CAREN) used to create 5° slopes while collecting 3D kinematics and kinetics of the swing. A launch monitor measured performance outcomes. A shift in the centre of pressure was found throughout the swing when performed on a slope, with the mean position moving approximately 9% closer to the lower foot. The golfers attempted to remain perpendicular to the slope, resulting in the weight transfer towards the lower foot. The golfers adopted a wider stance in the sloped conditions and moved the ball towards the higher foot at address. Ball speed was not significantly affected by the slope, but launch angle and ball spin were. As predicted by the coaching literature, golfers were more likely to hit shots to the left from an uphill slope and to the right for a downhill slope. No consistent compensatory adjustments in alignment at address or azimuth were found, with the change in final shot dispersion due to the lateral spin of the ball.

  20. Coupling photogrammetric data with DFN-DEM model for rock slope hazard assessment

    NASA Astrophysics Data System (ADS)

    Donze, Frederic; Scholtes, Luc; Bonilla-Sierra, Viviana; Elmouttie, Marc

    2013-04-01

    Structural and mechanical analyses of rock mass are key components for rock slope stability assessment. The complementary use of photogrammetric techniques [Poropat, 2001] and coupled DFN-DEM models [Harthong et al., 2012] provides a methodology that can be applied to complex 3D configurations. DFN-DEM formulation [Scholtès & Donzé, 2012a,b] has been chosen for modeling since it can explicitly take into account the fracture sets. Analyses conducted in 3D can produce very complex and unintuitive failure mechanisms. Therefore, a modeling strategy must be established in order to identify the key features which control the stability. For this purpose, a realistic case is presented to show the overall methodology from the photogrammetry acquisition to the mechanical modeling. By combining Sirovision and YADE Open DEM [Kozicki & Donzé, 2008, 2009], it can be shown that even for large camera to rock slope ranges (tested about one kilometer), the accuracy of the data are sufficient to assess the role of the structures on the stability of a jointed rock slope. In this case, on site stereo pairs of 2D images were taken to create 3D surface models. Then, digital identification of structural features on the unstable block zone was processed with Sirojoint software [Sirovision, 2010]. After acquiring the numerical topography, the 3D digitalized and meshed surface was imported into the YADE Open DEM platform to define the studied rock mass as a closed (manifold) volume to define the bounding volume for numerical modeling. The discontinuities were then imported as meshed planar elliptic surfaces into the model. The model was then submitted to gravity loading. During this step, high values of cohesion were assigned to the discontinuities in order to avoid failure or block displacements triggered by inertial effects. To assess the respective role of the pre-existing discontinuities in the block stability, different configurations have been tested as well as different degree of

  1. In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency.

    PubMed

    Loiko, Pavel; Serres, Josep Maria; Mateos, Xavier; Yumashev, Konstantin; Kuleshov, Nikolai; Petrov, Valentin; Griebner, Uwe; Aguiló, Magdalena; Díaz, Francesc

    2015-02-01

    We report on a continuous-wave Ho:KLu(WO4)2 (KLuW) microchip laser with a record slope efficiency of 84%, the highest value among the holmium inband-pumped lasers, delivering 201 mW output power at 2105 nm. The Ho laser operating at room temperature on the (5)I8→(5)I7 transition is in-band-pumped by a diode-pumped Tm:KLuW microchip laser at 1946 nm. Ho:KLuW laser operation at 2061 and 2079 nm is also demonstrated with a maximum slope efficiency of 79%. The microchip laser generates an almost diffraction-limited output beam with a Gaussian profile and a M2<1.1. The laser performance of the Ng-cut Ho:KLuW crystal is very similar for pump light polarizations ‖Nm and Np. The positive thermal lens plays a key role in the laser mode stabilization and proper mode-matching. The latter, together with the low quantum defect under in-band-pumping (∼0.08), is responsible for the extraordinary high slope efficiency.

  2. The preparation of new perfluoroether fluids exhibiting excellent thermal-oxidative stabilities

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Bierschenk, T. R.; Juhlke, T. J.; Kawa, H.; Lagow, R. J.

    1986-01-01

    A series of low molecular weight perfluoroalkylethers (PFAE) were synthesized by direct fluorination. Viscosity-temperature properties and oxidation stabilities were determined. Viscosity-temperature correlations indicated that increases in branching and increases in the size of the branching substituent caused a deterioration in viscometric properties (i.e., an increase in ASTM slope). In addition, increasing the ratio of carbon to oxygen in these compounds also increased the ASTM slope. Preliminary oxidation stability tests indicated that highly branched PFAE fluids. (i.e., those containing quaternary carbons) may be less stable than either those containing a single trifluoromethyl pendant group or those containing no branching at all.

  3. Tiltmeter Indicates Sense of Slope

    NASA Technical Reports Server (NTRS)

    Lonborg, J. O.

    1985-01-01

    Tiltmeter indicates sense and magnitude of slope used in locations where incline not visible to operator. Use of direct rather than alternating current greatly simplifies design of instrument capable of indicating sense of slope.

  4. On the tree stability risk

    NASA Astrophysics Data System (ADS)

    Giambastiani, Yamuna; Preti, Federico; Errico, Alessandro; Penna, Daniele

    2017-04-01

    There is growing interest in developing models for predicting how root anchorage and tree bracing could influence tree stability. This work presents the results of different experiments aimed at evaluating the mechanical response of plate roots to pulling tests. Pulling tests have been executed with increasing soil water content and soil of different texture. Different types of tree bracing have been examined for evaluating its impact on plant stiffness. Root plate was anchored with different systems for evaluating the change in overturning resistance. The first results indicate that soil water content contributed to modify both the soil cohesion and the stabilizing forces. Wind effect, slope stability and root reinforcement could be better quantified by means of such a results.

  5. Linear chirped slope profile for spatial calibration in slope measuring deflectometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siewert, F., E-mail: frank.siewert@helmholtz-berlin.de; Zeschke, T.; Arnold, T.

    2016-05-15

    Slope measuring deflectometry is commonly used by the X-ray optics community to measure the long-spatial-wavelength surface figure error of optical components dedicated to guide and focus X-rays under grazing incidence condition at synchrotron and free electron laser beamlines. The best performing instruments of this kind are capable of absolute accuracy on the level of 30-50 nrad. However, the exact bandwidth of the measurements, determined at the higher spatial frequencies by the instrument’s spatial resolution, or more generally by the instrument’s modulation transfer function (MTF) is hard to determine. An MTF calibration method based on application of a test surface withmore » a one-dimensional (1D) chirped height profile of constant amplitude was suggested in the past. In this work, we propose a new approach to designing the test surfaces with a 2D-chirped topography, specially optimized for MTF characterization of slope measuring instruments. The design of the developed MTF test samples based on the proposed linear chirped slope profiles (LCSPs) is free of the major drawback of the 1D chirped height profiles, where in the slope domain, the amplitude strongly increases with the local spatial frequency of the profile. We provide the details of fabrication of the LCSP samples. The results of first application of the developed test samples to measure the spatial resolution of the BESSY-NOM at different experimental arrangements are also presented and discussed.« less

  6. Phosphorus runoff from sewage sludge applied to different slopes of lateritic soil.

    PubMed

    Chen, Yan Hui; Wang, Ming Kuang; Wang, Guo; Chen, Ming Hua; Luo, Dan; Ding, Feng Hua; Li, Rong

    2011-01-01

    Sewage sludge (SS) applied to sloping fields at rates that exceed annual forest nutrient requirements can be a source of phosphorus (P) in runoff. This study investigates the effects of different slopes (18, 27, 36, and 45%) on P in runoff from plots amended with SS (120 Mg ha). Lateritic soil (pH 5.2) was exposed to five simulated rainfalls (90 mm h) on outdoor plots. When sludge was broadcast and mixed with surface soils, the concentrations and loss in runoff of total P in the mixed sample (MTP), total P in the settled sample (STP), total particulate P (TPP), total suspended P (TSP), and total dissolved P (TDP) were highest at 1 or 18 d after application. Initially, pollution risks to surface waters generally increased to different degrees with steeper slopes, and then diminished gradually with dwindling differences between the slopes. The runoff losses coefficient of MTP increased in the order 36 > 45 > 27 > 18%. The initial event (1 and 18 d) accounted for 67.0 to 83.6% of total runoff P losses. Particulate fraction were dominant carriers for P losses, while with the lower slopes there was higher content of P per unit particulate fraction in runoff. Phosphorus losses were greatly affected by the interaction of sludge-soil-runoff and the modification of soil properties induced by sludge amendment. It is recommended to choose lower slopes (<27%) to reduce risk of P losses. Thus, the risk of application sludge to sloping fields in acid soils should be studied further in the field under a wider diversity of conditions. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. A theoretical analysis of airplane longitudinal stability and control as affected by wind shear

    NASA Technical Reports Server (NTRS)

    Sherman, W. L.

    1977-01-01

    The longitudinal equations of motion with wind shear terms were used to analyze the stability and motions of a jet transport. A positive wind shear gives a decreasing head wind or changes a head wind into a tail wind. A negative wind shear gives a decreasing tail wind or changes a tail wind into a head wind. It was found that wind shear had very little effect on the short period mode and that negative wind shear, although it affected the phugoid, did not cause stability problems. On the other hand, it was found that positive wind shear can cause the phugoid to become aperiodic and unstable. In this case, a stability boundary for the phugoid was found that is valid for most aircraft at all flight speeds. Calculations of aircraft motions confirmed the results of the stability analysis. It was found that a flight path control automatic pilot and an airspeed control system provide good control in all types of wind shear. Appendixes give equations of motion that include the effects of downdrafts and updrafts and extend the longitudinal equations of motion for shear to six degrees of freedom.

  8. Evidence of slope failure in the Sines Contourite Drift area (SW Portuguese Continental Margin) - preliminary results

    NASA Astrophysics Data System (ADS)

    Teixeira, Manuel; Roque, Cristina; Terrinha, Pedro; Rodrigues, Sara; Ercilla, Gemma; Casas, David

    2017-04-01

    Slope instability, expressed by landslide activity, is an important natural hazard both onshore as well as offshore. Offshore processes create great concern on coastal areas constituting one of the major and most prominent hazards, directly by the damages they generate and indirectly by the possibility of generating tsunamis, which may affect the coast line. The Southwest Portuguese Continental Margin has been identified as an area where several mass movements occurred from Late Pleistocene to Present. Recently, an area of 52 km long by 34 km wide, affected by slope failure has been recognized in the Sines contourite drift located off the Alentejo. SWIM and CONDRIBER multibeam swath bathymetry has been used for the geomorphologic analysis and for recognition of mass movement scars on the seabed. Scars' areas and volumes were calculated by reconstructing paleo-bathymetry. The net gain and net loss were calculated using both paleo and present day bathymetry. Geomorphologically, the study area presents 4 morphologic domains with landslide scars: I) Shelf and upper slope display an irregular boundary with domain II with a sharp step ( 150m - 600m); II) Smooth area with gentle slope angles making the transition from smoother area to the continental slope (scarp), with large scars, suggesting slow rate and distributed mass wasting processes over this area ( 600 - 1200m); III) Scarp with high rates of retrograding instability, where faster processes are verified and a great number of gullies is feeding downslope area (1200m - 3200m); IV) Lebre Basin where mass movements deposits accumulate (> 3200m). A total of 51 landslide scars were identified with a total affected area of 137.67 km2, with 80.9 km2 being located in the continental slope with about 59% of the disrupted area, between 1200 and 3200m, and 41% (56.6 km2) lies in the continental shelf and upper slope, on a range of depths between 150 and 800m. The mean scar area is 2.7 km2 and the maximum area recorded on a

  9. [Effects and mechanisms of plant roots on slope reinforcement and soil erosion resistance: a research review].

    PubMed

    Xiong, Yan-Mei; Xia, Han-Ping; Li, Zhi-An; Cai, Xi-An

    2007-04-01

    Plant roots play an important role in resisting the shallow landslip and topsoil erosion of slopes by raising soil shear strength. Among the models in interpreting the mechanisms of slope reinforcement by plant roots, Wu-Waldron model is a widely accepted one. In this model, the reinforced soil strength by plant roots is positively proportional to average root tensile strength and root area ratio, the two most important factors in evaluating slope reinforcement effect of plant roots. It was found that soil erosion resistance increased with the number of plant roots, though no consistent quantitative functional relationship was observed between them. The increase of soil erosion resistance by plant roots was mainly through the actions of fiber roots less than 1 mm in diameter, while fiber roots enhanced the soil stability to resist water dispersion via increasing the number and diameter of soil water-stable aggregates. Fine roots could also improve soil permeability effectively to decrease runoff and weaken soil erosion.

  10. The perception of emotion and focus prosody with varying acoustic cues in cochlear implant simulations with varying filter slopes

    PubMed Central

    van de Velde, Daan J.; Schiller, Niels O.; van Heuven, Vincent J.; Levelt, Claartje C.; van Ginkel, Joost; Beers, Mieke; Briaire, Jeroen J.; Frijns, Johan H. M.

    2017-01-01

    This study aimed to find the optimal filter slope for cochlear implant simulations (vocoding) by testing the effect of a wide range of slopes on the discrimination of emotional and linguistic (focus) prosody, with varying availability of F0 and duration cues. Forty normally hearing participants judged if (non-)vocoded sentences were pronounced with happy or sad emotion, or with adjectival or nominal focus. Sentences were recorded as natural stimuli and manipulated to contain only emotion- or focus-relevant segmental duration or F0 information or both, and then noise-vocoded with 5, 20, 80, 120, and 160 dB/octave filter slopes. Performance increased with steeper slopes, but only up to 120 dB/octave, with bigger effects for emotion than for focus perception. For emotion, results with both cues most closely resembled results with F0, while for focus results with both cues most closely resembled those with duration, showing emotion perception relies primarily on F0, and focus perception on duration. This suggests that filter slopes affect focus perception less than emotion perception because for emotion, F0 is both more informative and more affected. The performance increase until extreme filter slope values suggests that much performance improvement in prosody perception is still to be gained for CI users. PMID:28599540

  11. Field instrumentation, monitoring of drilled shafts for landslide stabilization and development of pertinent design method.

    DOT National Transportation Integrated Search

    2010-11-01

    The design method for using a single row, spaced drilled shafts, socketed into a firm rock strata, to stabilize : an unstable slope has been developed in this research. The soil arching due to the presence of spaced : drilled shafts in a slope was ob...

  12. Linking the soil moisture distribution pattern to dynamic processes along slope transects in the Loess Plateau, China.

    PubMed

    Wang, Shuai; Fu, Bojie; Gao, Guangyao; Zhou, Ji; Jiao, Lei; Liu, Jianbo

    2015-12-01

    Soil moisture pulses are a prerequisite for other land surface pulses at various spatiotemporal scales in arid and semi-arid areas. The temporal dynamics and profile variability of soil moisture in relation to land cover combinations were studied along five slopes transect on the Loess Plateau during the rainy season of 2011. Within the 3 months of the growing season coupled with the rainy season, all of the soil moisture was replenished in the area, proving that a type stability exists between different land cover soil moisture levels. Land cover combinations disturbed the trend determined by topography and increased soil moisture variability in space and time. The stability of soil moisture resulting from the dynamic processes could produce stable patterns on the slopes. The relationships between the mean soil moisture and vertical standard deviation (SD) and coefficient of variation (CV) were more complex, largely due to the fact that different land cover types had distinctive vertical patterns of soil moisture. The spatial SD of each layer had a positive correlation and the spatial CV exhibited a negative correlation with the increase in mean soil moisture. The soil moisture stability implies that sampling comparisons in this area can be conducted at different times to accurately compare different land use types.

  13. Multi-temporal analysis of slope movements in the Southern Apennines of Italy

    NASA Astrophysics Data System (ADS)

    Parise, M.

    2012-04-01

    Many types of thematic maps dealing with slope movements have been proposed in the scientific literature to describe the features and activity of landslides. One of the most common is the classical landslide inventory map: this can be defined as a photograph of the landscape at a given time, that is the moment of the field surveys, or the date of the air photographs and/or satellite images used for mapping. Unless further data (such as dates of occurrence of the landslides, frequency of movement, etc.) are not added, it does nothing more than depicting the instability situation at that given time. In order to reach more insights into the history and evolution of unstable slopes, a multi-time approach must be performed. This can be carried out through a multi-temporal analysis, based upon aerial photo interpretation of different years, possibly integrated by field surveys. Production of landslide inventory map for each available set of air photos results in the final output of landslide activity maps (LAMs), deriving from comparison of the individual inventory map. LAMs provide insights into the evolution of the landslide process, allowing to reconstruct a relative history of the mass movement, and to highlight the most active sectors in time. All these information may result extremely useful to correlate likely movements to anthropogenic activity or specific triggering factors, such as a seismic event or a rainstorm. In addition, LAMs can also be of effective use in evaluating the efficiency of remediation works. The Southern Apennines of Italy are intensely affected by a variety of slope movements, that interest very different settings and are at the origin of severe damage to the built-up environments, claiming every year a high number of casualties. Notwithstanding the availability of landslide maps for the whole Italian territory, with very good detail at local sites of interest, what is often lacking over the country is a thorough knowledge of the overall

  14. Precipitation measurements on wind-swept slopes

    Treesearch

    Austin E. Helmers

    1954-01-01

    Precipitation catch for three calendar years is compared for four types of gage installation on a wind-swept south-facing slope with a 22° gradient at elevation 5500 ft. The 1950 precipitation catch by (1) weighing-recording gage with the orifice and an Alter type wind shield sloped parallel to the ground surface, (2) unshielded nonrecording gage with orifice sloped...

  15. Accounting for pore water pressure and confined aquifers in assessing the stability of slopes: a Limit Equilibrium analysis carried out through the Minimum Lithostatic Deviation method

    NASA Astrophysics Data System (ADS)

    Ausilia Paparo, Maria; Tinti, Stefano

    2015-04-01

    The model we introduce is an implementation of the Minimum Lithostatic Deviation (MLD) method, developed by Tinti and Manucci (Tinti and Manucci 2006; 2008), that makes use of the limit equilibrium (LE) theory to estimate the stability of a slope. The main purpose here is to analyse the role of a confined aquifer on the value of the Safety Factor (F), the parameter that in the LE is used to determine if a slope is stable or unstable. The classical LE methods treat unconfined aquifers by including the water pore pressure in the Mohr-Coulomb failure formula: since the water decreases the friction shear strength, the soil above the sliding surface turns out to be more prone to instability. In case of a confined aquifer, however, due to a presence of impermeable layers, the water is not free to flow into the matrix of the overlying soil. We consider here the assumption of a permeable soil sliding over an impermeable layer, which is an occurrence that is found in several known landslide cases (e.g. Person, 2008; Strout and Tjeltja, 2008; Morgan et al., 2010 for offshore slides; and Palladino and Peck, 1972; Miller and Sias, 1998; Jiao et al. 2005; Paparo et al., 2013 for slopes in proximity of artificial or natural water basins) where clay beds form the potential sliding surface: the water, confined below, pushes along these layers and acts on the sliding body as an external bottom load. We modify the MLD method equations in order to take into account the load due to a confined aquifer and apply the new model to the Vajont case, where many have hypothesised the contribution of a confined aquifer to the failure. Our calculations show that the rain load i) infiltrating directly into the soil body and ii) penetrating into the confined aquifer below the clay layers, in addition with the lowering of the reservoir level, were key factors of destabilization of the Mt Toc flank and caused the disastrous landslide.

  16. Rill erosion of mudstone slope-a case study of southern Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, Ci-Jian; Lin, Jiun-chuan; Cheng, Yuan-Chang

    2014-05-01

    Soil erosion has been studied by many scientists for decades (Zingg, 1940; Meyer & Wischmeier, 1969; Foster, 1982; Luk, 1988) and many soil erosion prediction equations have already been developed, such as USLE, RUSLE. In spite of WEEP is based on hydrological physical model, all of the above models are restricted to predict concentrate flow. On the other hand, rill erosion is not understood completely. The amounts of rill erosion are always underestimated. Rill Erosion correlate closely to gradient (Cerda & Garcia-Fayos, 1997; Fox & Bryan, 1999; Fu,et al., 2011; Clarke & Rendell, 2006), slope length (Gabriel, 1999; Yair, 2004), particle distribution (Gabriel, 1999), proportion of clay (Luk,1977; Bryan2000), rainfall intensity (Römkens et al. 2001), and land use (Dotterweich, 2008). However, the effect of micromorphology of mud rock surface, such as mud-cracks, could be studied in more details. This research aims to simulate rill development by hydraulic flume to observe the morphological change caused by rill/erosion process. Mudstone specimens sampled from the mudstone area of Long-Chi, southern Taiwan. The results show that: (1) The erosion pattern of mudstone slope can be divided into four steps: (a) inter-rill erosion, ( b) rill erosion, (c) rill development, (d) slope failure. (2) Slopes with mud-cracks caused 125% soil loss than smooth slopes. (3) Mud-cracks affect spatial distribution of rill development (4) The sediment concentration decreased sharply in the beginning of experiments, however increased due to rill development. This paper demonstrated such a rill development. 1: Department of Geography, National Taiwan University. E-mail:maxpossibilism0929@gmail.com

  17. The preparation of new perfluoro ether fluids exhibiting excellent thermal-oxidative stabilities

    NASA Technical Reports Server (NTRS)

    Jones, William R., Jr.; Bierschenk, Thomas R.; Juhlke, Timothy J.; Kawa, Hajima; Lagow, Richard J.

    1988-01-01

    A series of low molecular weight perfluoroalkyl ethers (PFAEs) were synthesized by direct fluorination. Viscosity-temperature properties and oxidation stabilities were determined. Viscosity-temperature correlations indicated that increases in branching and increases in the size of the branching substituent caused a deterioration in viscometric properties (i.e., an increase in ASTM slope). In addition, increasing the ratio of carbon to oxygen in these compounds also increased the ASTM slope. Preliminary oxidation stability measurements indicated that highly branched PFAE fluids (i.e., those containing quaternary carbons) may be less stable than either those containing a single trifluoromethyl pendant group or those containing no branching at all.

  18. A conceptual approach to approximate tree root architecture in infinite slope models

    NASA Astrophysics Data System (ADS)

    Schmaltz, Elmar; Glade, Thomas

    2016-04-01

    Vegetation-related properties - particularly tree root distribution and coherent hydrologic and mechanical effects on the underlying soil mantle - are commonly not considered in infinite slope models. Indeed, from a geotechnical point of view, these effects appear to be difficult to be reproduced reliably in a physically-based modelling approach. The growth of a tree and the expansion of its root architecture are directly connected with both intrinsic properties such as species and age, and extrinsic factors like topography, availability of nutrients, climate and soil type. These parameters control four main issues of the tree root architecture: 1) Type of rooting; 2) maximum growing distance to the tree stem (radius r); 3) maximum growing depth (height h); and 4) potential deformation of the root system. Geometric solids are able to approximate the distribution of a tree root system. The objective of this paper is to investigate whether it is possible to implement root systems and the connected hydrological and mechanical attributes sufficiently in a 3-dimensional slope stability model. Hereby, a spatio-dynamic vegetation module should cope with the demands of performance, computation time and significance. However, in this presentation, we focus only on the distribution of roots. The assumption is that the horizontal root distribution around a tree stem on a 2-dimensional plane can be described by a circle with the stem located at the centroid and a distinct radius r that is dependent on age and species. We classified three main types of tree root systems and reproduced the species-age-related root distribution with three respective mathematical solids in a synthetic 3-dimensional hillslope ambience. Thus, two solids in an Euclidian space were distinguished to represent the three root systems: i) cylinders with radius r and height h, whilst the dimension of latter defines the shape of a taproot-system or a shallow-root-system respectively; ii) elliptic

  19. Effects of slope aspect and site elevation on seasonal soil carbon dynamics in a forest catchment in the Austrian Limestone Alps

    NASA Astrophysics Data System (ADS)

    Kobler, Johannes; Zehetgruber, Bernhard; Jandl, Robert; Dirnböck, Thomas; Schindlbacher, Andreas

    2017-04-01

    Own to the complexity of landscape morphology, mountainous landscapes are characterized by substantial changes of site parameters (i.e. elevation, slope, aspect) within short distances. As these site parameters affect the spatial-temporal dynamics of landscape climate and therefore the spatial patterns of forest carbon (C) distribution, they pose a substantial impact on landscape-related soil C dynamics. Aspect and elevation form natural temperature gradients and thereby can be used as a surrogate to infer to potential climate change effects on forest C. We aimed at studying how slope aspect affected soil respiration, soil C stocks, tree increment and litter production along two elevation gradients in the Zöbelboden catchment, northern limestone Alps, Austria during 2015 and 2016. A preliminary assessment showed that soil respiration was significantly higher at the west facing slope across all elevations. Soil temperature was only slightly higher at the west facing slope, and warmer soil only partly explained the large difference in soil respiration between east and west facing slopes. Aspect had no clear effect on soil moisture, which seemed to be strongly affected by stocking density at the different forest sites. The dense grassy ground vegetation at some of the sites further seems to play a key role in determining soil respiration rates and litter input. A detailed analysis and C-budgets along the elevation gradients will be presented at the conference.

  20. Caanyon Mediated Cross-Slope Transport

    NASA Astrophysics Data System (ADS)

    Mihaly, S. F.; Cabrera De Leo, F.; Sastri, A. R.; Matabos, M.; Heesemann, M.; Ogata, B.

    2017-12-01

    Three current meter and water property stations along the west coast of Vancouver Island along with video and acoustic backscatter observations are used to gain insight into mechanisms of cross-slope transport. The setting is an eastern boundary current region with a active poleward flowing countercurrent. The significant effects of these currents flowing over a strongly incised continental slope along with cross-slope density flows are contrasted with the seasonally varying upwelling and downwelling regime. The video and acoustic backscatter enabled by Ocean Networks Canada's NEPTUNE observatory provide a view on the materials being transported between the abyssal plain and the continental shelf.

  1. Slope Stability Analysis and Event Reconstruction of the Karrat Fjord (W Greenland) Rock Avalanche from June 2017 using Sentinel-1 and Sentinel-2 data

    NASA Astrophysics Data System (ADS)

    Langley, K.; Caduff, R.; Wiesmann, A.; Mätzler, E.

    2017-12-01

    A massive rock slope failure that led to a rock avalanche in the Karrat Fjord, Western Greenland, caused a tsunami on 17 June 2017. The tsunami reached local villages and resulted in loss of life and damage to infrastructure. The length of the rock avalanche detachment zone is on the order of 800 m. It is located at an elevation of 1'000 m above the fjord with a slant distance of 2'000 m to the shore line. Since very little information was available on the state of the originating mountain slope, satellite based information was gathered immediately after the event in order to assess the processes on the slope. Thanks to the quick data distribution through Copernicus, we could process the entire available datasets of the Synthetic Aperture Radar (SAR) sensors Sentinel-1A/B and the optical sensor Sentinel-2. The pre-, syn, and post-event history could be reconstructed using ascending orbit Sentinel-1 data, available from October 2014 in 12 and from early 2017 on in 6d interval. We looked at the differential interferograms to detect coherent surface displacements in line-of-sight (LOS). Coherent interferograms after the snow-melt in May 2017 revealed surface displacements of 10-15 cm/year with accelerating trend in the later detachment zone. The known limitation for interferometry in wet-snow condition hinders the determination of areas undergoing surface deformation. However, a detailed coherence analysis showed that during the previous winter, a large avalanche type process must have happened in the later detachment zone. A radar backscatter analysis showed, that significant changes in the corridor of 500 m of the area affected by the rock avalanche can be dated between 5 and 11 November 2016. The traces of the event could be verified with optical imagery from Sentinel-2 dating from 23 May 2017. An overall analysis on the mountain side revealed the presence of a number of active zones. An inventory of the outlines of the moving areas containing information on the

  2. Characterization of hydrocarbon gas within the stratigraphic interval of gas-hydrate stability on the North Slope of Alaska, U.S.A.

    USGS Publications Warehouse

    Collett, T.S.; Kvenvolden, K.A.; Magoon, L.B.

    1990-01-01

    In the Kuparuk River Unit 2D-15 well, on the North Slope of Alaska, a 60 m-thick stratigraphic interval that lies within the theoretical pressure-temperature field of gas-hydrate stability is inferred to contain methane hydrates. This inference is based on interpretations from well logs: (1) release of methane during drilling, as indicated by the mud log, (2) an increase in acoustic velocity on the sonic log, and (3) an increase of electrical resistivity on the electric logs. Our objective was to determine the composition and source of the gas within the shallow gas-hydrate-bearing interval based on analyses of cutting gas. Headspace gas from canned drill cuttings collected from within the gas-hydrate-bearing interval of this well has an average methane to ethane plus propane [C1/(C2 + C3)] ratio of about 7000 and an average methane ??13C value of -46% (relative to the PDB standard). These compositions are compared with those obtained at one well located to the north of 2D-15 along depositional strike and one down-dip well to the northeast. In the well located on depositional strike (Kuparuk River Unit 3K-9), gas compositions are similar to those found at 2D-15. At the down-dip well (Prudhoe Bay Unit R-1), the C1/(C2 + C3) ratios are lower (700) and the methane ??13C is heavier (-33%). We conclude that the methane within the stratigraphic interval of gas hydrate stability comes from two sources-in situ microbial gas and migrated thermogenic gas. The thermal component is greatest at Prudhoe Bay. Up-dip to the west, the thermogenic component decreases, and microbial gas assumes more importance. ?? 1990.

  3. Landslide stability analysis on basis of LIDAR data extraction

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Fernandez-Steeger, Tomas M.; Dong, Mei; Azzam, Rafig

    2010-05-01

    Currently, existing contradictory between remediation and acquisition from natural resource induces a series of divergences. With regard to open pit mining, legal regulation requires human to fill back the open pit area with water or recreate new landscape by other materials; on the other hand, human can not help excavating the mining area due to the shortage of power resource. However, to engineering geologists, one coincident problem which takes place not only in filling but also in mining operation should be paid more attention to, i.e. the slope stability analysis within these areas. There are a number of construction activities during remediation or mining process which can directly or indirectly cause slope failure. Lives can be endangered since local failure either while or after remediation; for mining process, slope failure in a bench, which carries a main haul road or is adjacent to human activity area, would be significant catastrophe to the whole mining program. The stability of an individual bench or slope is controlled by several factors, which are geological condition, morphology, climate, excavation techniques and transportation approach. The task which takes the longest time is to collect the morphological data. Consequently, it is one of the most dangerous tasks due to the time consuming in mining field. LIDAR scanning for morphological data collecting can help to skip this obstacle since advantages of LIDAR techniques as follows: • Dynamic range available on the market: from 3 m to beyond 1 km, • Ruggedly designed for demanding field applications, • Compact, easily hand-carried and deployed by a single operator. In 2009, scanning campaigns for 2 open pit quarry have been carried out. The aim for these LIDAR detections is to construct a detailed 3D quarry model and analyze the bench stability to support the filling planning. The 3D quarry surface was built up by using PolyWorks 10.1 on basis of LIDAR data. LIDAR data refining takes an

  4. Stability of ice on the Moon with rough topography

    NASA Astrophysics Data System (ADS)

    Rubanenko, Lior; Aharonson, Oded

    2017-11-01

    The heat flux incident upon the surface of an airless planetary body is dominated by solar radiation during the day, and by thermal emission from topography at night. Motivated by the close relationship between this heat flux, the surface temperatures, and the stability of volatiles, we consider the effect of the slope distribution on the temperature distribution and hence prevalence of cold-traps, where volatiles may accumulate over geologic time. We develop a thermophysical model accounting for insolation, reflected and emitted radiation, and subsurface conduction, and use it to examine several idealized representations of rough topography. We show how subsurface conduction alters the temperature distribution of bowl-shaped craters compared to predictions given by past analytic models. We model the dependence of cold-traps on crater geometry and quantify the effect that while deeper depressions cast more persistent shadows, they are often too warm to trap water ice due to the smaller sky fraction and increased reflected and reemitted radiation from the walls. In order to calculate the temperature distribution outside craters, we consider rough random surfaces with a Gaussian slope distribution. Using their derived temperatures and additional volatile stability models, we estimate the potential area fraction of stable water ice on Earth's Moon. For example, surfaces with slope RMS ∼15° (corresponding to length-scales ∼10 m on the lunar surface) located near the poles are found to have a ∼10% exposed cold-trap area fraction. In the subsurface, the diffusion barrier created by the overlaying regolith increases this area fraction to ∼40%. Additionally, some buried water ice is shown to remain stable even beneath temporarily illuminated slopes, making it more readily accessible to future lunar excavation missions. Finally, due to the exponential dependence of stability of ice on temperature, we are able to constrain the maximum thickness of the unstable layer

  5. Individualistic weight perception from motion on a slope

    PubMed Central

    Zintus-art, K.; Shin, D.; Kambara, H.; Yoshimura, N.; Koike, Y.

    2016-01-01

    Perception of an object’s weight is linked to its form and motion. Studies have shown the relationship between weight perception and motion in horizontal and vertical environments to be universally identical across subjects during passive observation. Here we show a contradicting finding in that not all humans share the same motion-weight pairing. A virtual environment where participants control the steepness of a slope was used to investigate the relationship between sliding motion and weight perception. Our findings showed that distinct, albeit subjective, motion-weight relationships in perception could be identified for slope environments. These individualistic perceptions were found when changes in environmental parameters governing motion were introduced, specifically inclination and surface texture. Differences in environmental parameters, combined with individual factors such as experience, affected participants’ weight perception. This phenomenon may offer evidence of the central nervous system’s ability to choose and combine internal models based on information from the sensory system. The results also point toward the possibility of controlling human perception by presenting strong sensory cues to manipulate the mechanisms managing internal models. PMID:27174036

  6. A Mechanism of Land Degradation in Turf-Mantled Slopes of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Okin, Gregory S.; D'Odorico, Paolo; Liu, Jianquan

    2018-05-01

    Kobresia pygmaea meadows are typical of Tibetan Plateau landscapes in the 3,000 to 5,500 m elevation range and constitute the most extensive alpine ecosystem in the world. Kobresia pygmaea forms turf mats that stabilize the surface and shelter the underlying soils from water erosion. Large tracts of the Plateau, however, exhibit signs of ongoing degradation of the turf and erosion of the underlying soil. Despite the crucial role played by K. pygmaea turf mats in the stabilization of the headwaters of major Asian rivers, the mechanisms responsible for their degradation remain poorly investigated. Here we develop a process-based model of land degradation of Tibetan Plateau slopes, which accounts for (i) turf cracking, (ii) water flow concentration in the cracks, (iii) crack widening by scouring, and (iv) sheet-flow erosion. As expected, soil erosion increases with the slope and drainage area (hence the observation of stronger erosion in relatively steep downhill sites). Model simulations indicate that with a sensible set of parameters representative of soil and hydrologic conditions in the region, Tibetan Plateau landscapes are vulnerable to turf mat degradation and soil erosion. As soon as polygonal cracks develop, water flow widens them until the landscape is completely barren. At this point sheet flow eventually erodes the mineral soil leaving behind a highly degraded landscape.

  7. Subtidal currents over the central California slope: Evidence for offshore veering of the undercurrent and for direct, wind-driven slope currents

    USGS Publications Warehouse

    Noble, M.A.; Ramp, S.R.

    2000-01-01

    In February 1991, an array of six current-meter moorings was deployed for one year across the central California outer shelf and slope. The main line of the array extended 30 km offshore of the shelf break, out to water depths of 1400 m. A more sparsely-instrumented line, displaced 30 km to the northwest, extended 14 km offshore. Though shorter, the northern line spanned similar water depths because the gradient of the topography steepened in the northern region. A poleward flow pattern, typical of the California undercurrent, was seen across both lines in the array over most of the year. The poleward flow was surface intensified. In general, the portion of the undercurrent that crossed the southern line had larger amplitudes and penetrated more deeply into the water column than the portion that crossed the northern line. Transport over the year ranged from 0 to 2.5 Sverdrups (Sv) poleward across the southern line; 0 to 1 Sv poleward across the northern line. We suggest the difference in transport was caused by topographic constraints, which tended to force the poleward flow offshore of the northern measurement sites. The slope of the topography steepened too abruptly to allow the poleward flow to follow isobaths when currents were strong. When current velocities lessened, a more coherent flow pattern was seen across both lines in the array. In general, the poleward flow patterns in the undercurrent were not affected by local winds or by the local alongshore pressure gradient. Nor was a strong seasonal pattern evident. Rather unexpectedly, a small but statistically significant fraction of the current variance over the mid- and outer slope was driven by the surface wind stress. An alongshelf wind stress caused currents to flow along the slope, parallel to the wind field, down to depths of 400 m below the surface and out to distances of 2 Rossby radii past the shelf break. The transfer functions were weak, 3-4 cm/s per dyn cm-2, but comparable to wind-driven current

  8. Distribution of Lepidopteran Larvae on Norway Spruce: Effects of Slope and Crown Aspect.

    PubMed

    Kulfan, Ján; Dvořáčková, Katarína; Zach, Peter; Parák, Michal; Svitok, Marek

    2016-04-01

    Lepidoptera associated with Norway spruce, Picea abies (L.) Karsten, play important roles in ecosystem processes, acting as plant pests, prey for predators, and hosts for parasites and parasitoids. Their distribution patterns in spruce crowns and forests are only poorly understood. We examined how slope and crown aspect affect the occurrence and abundance of moth larvae on solitary spruce trees in a montane region in Central Europe. Moth larvae were collected from southern and northern crowns of trees growing on south- and north-facing slopes (four treatments) using emergence boxes at the end of winter and by the beating method during the growing season. Species responses to slope and crown aspect were not uniform. Treatment effects on moth larvae were stronger in the winter than during the growing season. In winter, the abundance of bud-boring larvae was significantly higher in northern than in southern crowns regardless of the slope aspect, while both slope and aspect had marginally significant effects on abundance of miners. During the growing season, the occurrence of free-living larvae was similar among treatments. Emergence boxes and beating spruce branches are complementary techniques providing valuable insights into the assemblage structure of moth larvae on Norway spruce. Due to the uneven distribution of larvae detected in this study, we recommend adoption of a protocol that explicitly includes sampling of trees from contrasting slopes and branches from contrasting crown aspect in all seasons. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Root tensile strength of grey alder and mountain maple grown on a coarse grained eco-engineered slope in the Swiss Alps related to wood anatomical features

    NASA Astrophysics Data System (ADS)

    Kink, Dimitri; Bast, Alexander; Meyer, Christine; Meier, Wolfgang; Egli, Markus; Gärtner, Holger

    2014-05-01

    Steep, vegetation free slopes are a common feature in alpine areas. The material covering these slopes is prone to all kind of erosional processes, resulting in a high risk potential for population and infrastructure. This risk potential is likely to increase with the predicted change in the spatiotemporal distribution of precipitation events. A potential increase in extreme precipitation events will also result in a higher magnitude and frequency of erosional processes. In the Swiss Alps as in many other mountainous areas, there is a need to stabilize these slopes to reduce their direct or indirect hazard potential. In this regard, eco-engineering is a very promising and sustainable approach for slope stabilization. Planting trees and shrubs is a central task in eco-engineering. A developing vegetation cover will on one hand reduce the mechanical effects of rainfall by an increased interception, on the other hand, the root systems cause modifications of soil properties. Roots not only provide anchorage for the plants, they also promote soil aggregation and are able to penetrate possible shear horizons. Overall, anchorage of plants is at the same extend also stabilizing the near subsurface. When rainfall occurs, the saturated soil exerts downhill pressure to a tree or shrub. As long as the root distribution supports anchorage, the respective slope area remains stable. At this point, the tensile strength of the roots is a critical measure, because it is more likely that the supporting roots break than the entire root system being pulled out of the soil completely. As a consequence, root tensile strength is an important parameter in characterizing the soil stabilization potential of trees and shrubs. It is known that tree roots show a high variability in their anatomical structure depending on their depth below soil surface as well as their distance to the main stem. Therefore, we assume that these structural changes affect the tensile strength of every single root

  10. Functional Stability of HIV-1 Envelope Trimer Affects Accessibility to Broadly Neutralizing Antibodies at Its Apex.

    PubMed

    Gift, Syna Kuriakose; Leaman, Daniel P; Zhang, Lei; Kim, Arthur S; Zwick, Michael B

    2017-12-15

    The trimeric envelope glycoprotein spike (Env) of HIV-1 is the target of vaccine development to elicit broadly neutralizing antibodies (bnAbs). Env trimer instability and heterogeneity in principle make subunit interfaces inconsistent targets for the immune response. Here, we investigate how functional stability of Env relates to neutralization sensitivity to V2 bnAbs and V3 crown antibodies that engage subunit interfaces upon binding to unliganded Env. Env heterogeneity was inferred when antibodies neutralized a mutant Env with a plateau of less than 100% neutralization. A statistically significant correlation was found between the stability of mutant Envs and the MPN of V2 bnAb, PG9, as well as an inverse correlation between stability of Env and neutralization by V3 crown antibody, 447-52D. A number of Env-stabilizing mutations and V2 bnAb-enhancing mutations were identified in Env, but they did not always overlap, indicating distinct requirements of functional stabilization versus antibody recognition. Blocking complex glycosylation of Env affected V2 bnAb recognition, as previously described, but also notably increased functional stability of Env. This study shows how instability and heterogeneity affect antibody sensitivity of HIV-1 Env, which is relevant to vaccine design involving its dynamic apex. IMPORTANCE The Env trimer is the only viral protein on the surface of HIV-1 and is the target of neutralizing antibodies that reduce viral infectivity. Quaternary epitopes at the apex of the spike are recognized by some of the most potent and broadly neutralizing antibodies to date. Being that their glycan-protein hybrid epitopes are at subunit interfaces, the resulting heterogeneity can lead to partial neutralization. Here, we screened for mutations in Env that allowed for complete neutralization by the bnAbs. We found that when mutations outside V2 increased V2 bnAb recognition, they often also increased Env stability-of-function and decreased binding by

  11. Functional Stability of HIV-1 Envelope Trimer Affects Accessibility to Broadly Neutralizing Antibodies at Its Apex

    PubMed Central

    Gift, Syna Kuriakose; Leaman, Daniel P.; Zhang, Lei; Kim, Arthur S.

    2017-01-01

    ABSTRACT The trimeric envelope glycoprotein spike (Env) of HIV-1 is the target of vaccine development to elicit broadly neutralizing antibodies (bnAbs). Env trimer instability and heterogeneity in principle make subunit interfaces inconsistent targets for the immune response. Here, we investigate how functional stability of Env relates to neutralization sensitivity to V2 bnAbs and V3 crown antibodies that engage subunit interfaces upon binding to unliganded Env. Env heterogeneity was inferred when antibodies neutralized a mutant Env with a plateau of less than 100% neutralization. A statistically significant correlation was found between the stability of mutant Envs and the MPN of V2 bnAb, PG9, as well as an inverse correlation between stability of Env and neutralization by V3 crown antibody, 447-52D. A number of Env-stabilizing mutations and V2 bnAb-enhancing mutations were identified in Env, but they did not always overlap, indicating distinct requirements of functional stabilization versus antibody recognition. Blocking complex glycosylation of Env affected V2 bnAb recognition, as previously described, but also notably increased functional stability of Env. This study shows how instability and heterogeneity affect antibody sensitivity of HIV-1 Env, which is relevant to vaccine design involving its dynamic apex. IMPORTANCE The Env trimer is the only viral protein on the surface of HIV-1 and is the target of neutralizing antibodies that reduce viral infectivity. Quaternary epitopes at the apex of the spike are recognized by some of the most potent and broadly neutralizing antibodies to date. Being that their glycan-protein hybrid epitopes are at subunit interfaces, the resulting heterogeneity can lead to partial neutralization. Here, we screened for mutations in Env that allowed for complete neutralization by the bnAbs. We found that when mutations outside V2 increased V2 bnAb recognition, they often also increased Env stability-of-function and decreased binding

  12. Analytical Study of the Mechanical Behavior of Fully Grouted Bolts in Bedding Rock Slopes

    NASA Astrophysics Data System (ADS)

    Liu, C. H.; Li, Y. Z.

    2017-09-01

    Bolting is widely used as a reinforcement means for rock slopes. The support force of a fully grouted bolt is often provided by the combination of the axial and shear forces acting at the cross section of the bolt, especially for bedding rock slopes. In this paper, load distribution and deformation behavior of the deflecting section of a fully grouted bolt were analyzed, and a structural mechanical model was established. Based on force method equations and deformation compatibility relationships, an analytical approach, describing the contribution of the axial and shear forces acting at the intersection between the bolt and the joint plane to the stability of a rock slope, was developed. Influence of the inclination of the bolt to the joint plane was discussed. Laboratory tests were conducted with different inclinations of the bolt to the joint plane. Comparisons between the proposed approach, the experimental data and a code method were made. The calculation results are in good agreement with the test data. It is shown that transverse shear resistance plays a significant role to the bolting contribution and that the bigger the dip of the bolt to the joint plane, the more significant the dowel effect. It is also shown that the design method suggested in the code overestimates the resistance of the bolt. The proposed model considering dowel effect provides a more precise description on bolting properties of bedding rock slopes than the code method and will be helpful to improve bolting design methods.

  13. The Problem of Alluvial Fan Slopes

    NASA Astrophysics Data System (ADS)

    Stock, J. D.; Schmidt, K.

    2005-12-01

    Water and debris flows exiting confined valleys have a tendency to deposit sediment on steep fans. On alluvial fans, where water transport predominates, channel slopes tend to decrease downfan from ~0.08 to ~0.01 across wide ranges of climate and tectonism. Some have argued that this pattern reflects downfan grainsize fining so that higher slopes are required just to entrain coarser particles in the waters of the upper fan, while entrainment of finer grains downfan requires lower slopes (threshold hypothesis). An older hypothesis is that slope is adjusted to transport the supplied sediment load, which decreases downfan as deposition occurs (transport hypothesis). We have begun to test these hypotheses using detailed field measurements of hydraulic and sediment variables in sediment transport models. On some fans in the western U.S. we find that alluvial fan channel bankfull depths are largely 0.5-1.5 m at fan heads, decreasing to 0.1-0.2 m at distal margins. Contrary to many previous studies, we find that median gravel diameter does not change systematically along the upper 60- 80% of active fan channels. So downstream gravel fining cannot explain most of the observed channel slope reduction. However, as slope declines, surface sand cover increases systematically downfan from values of <20% above fan heads to distal fan values in excess of 70%. As a result, the threshold for sediment motion might decrease systematically downfan, leading to lower slopes. However, current models of this effect alone tend to underpredict downfan slope changes. This is likely due to off- channel gravel deposition. Calculations that match observed fan long-profiles require an exponential decline in gravel transport rate, so that on some fans approximately half of the load must be deposited off-channel every ~0.25-1.25 km downfan. This leads us to hypothesize that alluvial fan long- profiles are largely statements about the rate of deposition downfan. If so, there may be climatic and

  14. Investigating talus slope geomorphology as impacted by permafrost thaw (Valais, Switzerland): stipulating a research framework

    NASA Astrophysics Data System (ADS)

    Hendrickx, Hanne; Delaloye, Reynald; Nyssen, Jan; Frankl, Amaury

    2017-04-01

    Climate change is altering temperature regimes and precipitation patterns worldwide. In the European Alps, atmospheric temperatures have risen twice as fast as the global average since 1900, while precipitation regimes are changing as well. Snow cover duration and extent has significantly decreased in the Swiss Alps, mainly due to earlier spring melt and rise in winter temperatures. Moreover, future projections predict a continuation of these trends. Spatial distribution and thermal properties of permafrost are highly influenced by ground surface conditions (snow and vegetation) and air temperature. Climate induced permafrost degradation is, therefore, expected. While alpine permafrost research has mainly focused on rock glaciers, less attention has been given to talus slopes. The latter are subjected to different kinds of slope processes such as debris flows, solifluction, permafrost creep, avalanches and rock fall. These processes are especially effective under a changing periglacial climate. Therefore, it is important to study permafrost distribution in these talus slopes, since it is believed to have large influence on slope stability. In this study, permafrost distribution will be mapped on several talus slope segments (10 - 40 ha) using geomorphological evidence, temperature data and measuring electrical resistivity tomography (ERT) profiles in addition to already existing data. The current dynamics of the study area will be studied by constructing detailed 3D models, using ground based and aerial photography (Unmanned Aerial Vehicles, UAV) and the Structure-from-Motion method (SfM). The resulting Digital Elevation Models (DEM) will be used to quantify and understand the current geomorphological processes acting on these talus slopes. Historical aerial and terrestrial photographs will be used to give an idea about the magnitude and frequency of past geomorphic processes (e.g. debris flows). Historical and current dynamics can then be compared and contrasted

  15. `Surface-Layer' momentum fluxes in nocturnal slope flows over steep terrain

    NASA Astrophysics Data System (ADS)

    Oldroyd, H. J.; Pardyjak, E.; Higgins, C. W.; Parlange, M. B.

    2017-12-01

    A common working definition for the `surface layer' is the lowest 10% of the atmospheric boundary layer (ABL) where the turbulent fluxes are essentially constant. The latter part of this definition is a critical assumption that must hold for accurate flux estimations from land-surface models, wall models, similarity theory, flux-gradient relations and bulk transfer methods. We present cases from observed momentum fluxes in nocturnal slope flows over steep (35.5 degree), alpine terrain in Val Ferret, Switzerland that satisfy the classical definitions of the surface layer and other cases where no traditional surface layer is observed. These cases broadly fall into two distinct flow regimes occurring under clear-sky conditions: (1) buoyancy-driven, `katabatic flow', characterized by an elevated velocity maximum (katabatic jet peak) and (2) `downslope winds', for which larger-scale forcing prevents formation of a katabatic jet. Velocity profiles in downslope wind cases are quite similar to logarithmic profiles typically observed over horizontal and homogeneous terrain, and the corresponding momentum fluxes roughly resemble a constant-flux surface-layer. Contrastingly, velocity profiles in the katabatic regime exhibit a jet-like shape. This jet strongly modulates the corresponding momentum fluxes, which exhibit strong gradients over the shallow katabatic layer and usually change sign near the jet peak, where the velocity gradients also change sign. However, a counter-gradient momentum flux is frequently observed near the jet peak (and sometimes at higher levels), suggesting strong non-local turbulent transport within the katabatic jet layer. We compare our observations with katabatic flow theories and observational studies over shallow-angle slopes and use co-spectral analyses to better identify and understand the non-local transport dynamics. Finally, we show that because of the counter-gradient momentum fluxes, surface layer stability and even local stability can be

  16. A Laboratory Study of Slope Flows Dynamics

    NASA Astrophysics Data System (ADS)

    Capriati, Andrea; Cenedese, Antonio; Monti, Paolo

    2003-11-01

    Slope flows currents can contribute significantly in the diurnal circulation and air quality of complex terrain regions (mountains, valleys, etc.). During the daytime, solar heating warms the valley sides, causing up-slope (or anabatic) winds. In contrast, radiative cooling of the valley sides results in cold down-slope (drainage or katabatic) flows, characterized by small vertical extensions (usually 10-200 m) and with the typical features of dense gravity currents. In this paper, some preliminary results on slope flows obtained by means of a series of experiments conducted in the laboratory using a temperature controlled water tank are shown. Rakes of thermocouples are used to determine the temperature structure and particle tracking velocimetry is used for the velocity measurements. A simple slope consisting of a plate in which the temperature is forced via a set of Peltier Cells is used. The analysis is performed considering different slope angles, background thermal stratifications and surface heat fluxes as well. Comparisons with theoretical and empirical laws found in literature are reported.

  17. Meniscal material properties are minimally affected by matrix stabilization using glutaraldehyde and glycation with ribose.

    PubMed

    Hunter, Shawn A; Noyes, Frank R; Haridas, Balakrishna; Levy, Martin S; Butler, David L

    2005-05-01

    Knee meniscus replacement holds promise, but current allografts are susceptible to biodegradation. Matrix stabilization with glutaraldehyde, a crosslinking agent used clinically to fabricate cardiovascular bioprostheses, or with glycation, a process of crosslinking collagen with sugars such as ribose, is a potential means of rendering tissue resistant to such degradation. However, stabilization should not significantly alter meniscal material properties, which could disturb normal function in the knee. Our objective was to evaluate the effects of glutaraldehyde- and glycation-induced matrix stabilization on the material properties of porcine meniscus. Normal untreated meniscus specimens were tested in confined compression at one of three applied stresses (0.069, 0.208, 0.347 MPa), subjected to either a glutaraldehyde or glycation stabilization treatment, and then re-tested to measure changes in tissue aggregate modulus, permeability, and compressive strain at equilibrium. Changes in these properties significantly increased with glutaraldehyde concentration and exposure time to ribose. One glutaraldehyde and three glycation treatments did not alter aggregate modulus or compressive strain at equilibrium compared to controls (p > 0.10). However, all treatments increased permeability by at least 108% compared to controls (p < 0.001). This study reveals a dose-dependent relationship between meniscal material properties and certain stabilization conditions and identifies treatments that minimally affect these properties. Further research is necessary to determine whether these treatments prevent enzymatic degradation before and after surgical implantation in the knee.

  18. Jointly reconstructing ground motion and resistivity for ERT-based slope stability monitoring

    NASA Astrophysics Data System (ADS)

    Boyle, Alistair; Wilkinson, Paul B.; Chambers, Jonathan E.; Meldrum, Philip I.; Uhlemann, Sebastian; Adler, Andy

    2018-02-01

    Electrical resistivity tomography (ERT) is increasingly being used to investigate unstable slopes and monitor the hydrogeological processes within. But movement of electrodes or incorrect placement of electrodes with respect to an assumed model can introduce significant resistivity artefacts into the reconstruction. In this work, we demonstrate a joint resistivity and electrode movement reconstruction algorithm within an iterative Gauss-Newton framework. We apply this to ERT monitoring data from an active slow-moving landslide in the UK. Results show fewer resistivity artefacts and suggest that electrode movement and resistivity can be reconstructed at the same time under certain conditions. A new 2.5-D formulation for the electrode position Jacobian is developed and is shown to give accurate numerical solutions when compared to the adjoint method on 3-D models. On large finite element meshes, the calculation time of the newly developed approach was also proven to be orders of magnitude faster than the 3-D adjoint method and addressed modelling errors in the 2-D perturbation and adjoint electrode position Jacobian.

  19. Analytical determination of the effect of structural elasticity on landing stability of a version of the Viking Lander

    NASA Technical Reports Server (NTRS)

    Laurenson, R. M.

    1972-01-01

    A limited analytical investigation was conducted to assess the effects of structural elasticity on the landing stability of a version of the Viking Lander. Two landing conditions and two lander mass and inertia distributions were considered. The results of this investigation show that the stability-critical surface slopes were lower for an uphill landing than for a downhill landing. In addition, the heavy footpad mass with its corresponding inertia distribution resulted in lower stability-critical ground slopes than were obtained for the light footpad mass and its corresponding inertia distribution. Structural elasticity was observed to have a large effect on the downhill landing stability of the light footpad mass configuration but had a negligible effect on the stability of the other configuration examined. Because of the limited nature of this study, care must be exercised in drawing conclusions from these results relative to the overall stability characteristics of the Viking Lander.

  20. Damage-Based Time-Dependent Modeling of Paraglacial to Postglacial Progressive Failure of Large Rock Slopes

    NASA Astrophysics Data System (ADS)

    Riva, Federico; Agliardi, Federico; Amitrano, David; Crosta, Giovanni B.

    2018-01-01

    Large alpine rock slopes undergo long-term evolution in paraglacial to postglacial environments. Rock mass weakening and increased permeability associated with the progressive failure of deglaciated slopes promote the development of potentially catastrophic rockslides. We captured the entire life cycle of alpine slopes in one damage-based, time-dependent 2-D model of brittle creep, including deglaciation, damage-dependent fluid occurrence, and rock mass property upscaling. We applied the model to the Spriana rock slope (Central Alps), affected by long-term instability after Last Glacial Maximum and representing an active threat. We simulated the evolution of the slope from glaciated conditions to present day and calibrated the model using site investigation data and available temporal constraints. The model tracks the entire progressive failure path of the slope from deglaciation to rockslide development, without a priori assumptions on shear zone geometry and hydraulic conditions. Complete rockslide differentiation occurs through the transition from dilatant damage to a compacting basal shear zone, accounting for observed hydraulic barrier effects and perched aquifer formation. Our model investigates the mechanical role of deglaciation and damage-controlled fluid distribution in the development of alpine rockslides. The absolute simulated timing of rock slope instability development supports a very long "paraglacial" period of subcritical rock mass damage. After initial damage localization during the Lateglacial, rockslide nucleation initiates soon after the onset of Holocene, whereas full mechanical and hydraulic rockslide differentiation occurs during Mid-Holocene, supporting a key role of long-term damage in the reported occurrence of widespread rockslide clusters of these ages.

  1. From plot to regional scales: Interactions of slope and catchment hydrological and geomorphic processes in the Spanish Pyrenees

    NASA Astrophysics Data System (ADS)

    García-Ruiz, José M.; Lana-Renault, Noemí; Beguería, Santiago; Lasanta, Teodoro; Regüés, David; Nadal-Romero, Estela; Serrano-Muela, Pilar; López-Moreno, Juan I.; Alvera, Bernardo; Martí-Bono, Carlos; Alatorre, Luis C.

    2010-08-01

    The hydrological and geomorphic effects of land use/land cover changes, particularly those associated with vegetation regrowth after farmland abandonment were investigated in the Central Spanish Pyrenees. The main focus was to assess the interactions among slope, catchment, basin, and fluvial channel processes over a range of spatial scales. In recent centuries most Mediterranean mountain areas have been subjected to significant human pressure through deforestation, cultivation of steep slopes, fires, and overgrazing. Depopulation commencing at the beginning of the 20th century, and particularly since the 1960s, has resulted in farmland abandonment and a reduction in livestock numbers, and this has led to an expansion of shrubs and forests. Studies in the Central Spanish Pyrenees, based on experimental plots and catchments, in large basins and fluvial channels, have confirmed that these land use changes have had hydrological and geomorphic consequences regardless of the spatial scale considered, and that processes occurring at any particular scale can be explained by such processes acting on other scales. Studies using experimental plots have demonstrated that during the period of greatest human pressure (mainly the 18th and 19th centuries), cultivation of steep slopes caused high runoff rates and extreme soil loss. Large parts of the small catchments behaved as runoff and sediment source areas, whereas the fluvial channels of large basins showed signs of high torrentiality (braided morphology, bare sedimentary bars, instability, and prevalence of bedload transport). Depopulation has concentrated most human pressure on the valley bottoms and specific locations such as resorts, whereas the remainder of the area has been affected by an almost generalized abandonment. Subsequent plant recolonization has resulted in a reduction of overland flow and declining soil erosion. At a catchment scale this has caused a reduction in sediment sources, and channel incision in the

  2. Stability of the Stevia-Derived Sweetener Rebaudioside A in Solution as Affected by Ultraviolet Light Exposure.

    PubMed

    Zhang, Jiewen; Bell, Leonard N

    2017-04-01

    Rebaudioside A is a natural noncaloric high-potency sweetener extracted from the leaves of Stevia rebaudiana. With rebaudioside A use increasing in foods, understanding the factors affecting its stability is necessary. This project evaluated the degradation rate constants of rebaudioside A in water, 0.1 M phosphate buffer, and 0.1 M citrate buffer at pH 3 and 7 as a function of ultraviolet (UV) light intensity (365 nm, 0 μW/cm 2 for dark conditions, 27 μW/cm 2 for low intensity, and 190 μW/cm 2 for high intensity) at 32.5 °C. Rebaudioside A stability was adversely affected by light exposure. The pseudo-1st-order degradation rate constants increased significantly (P < 0.05) with increasing light intensity in all solutions. Under dark conditions, rebaudioside A in phosphate buffers was more susceptible to breakdown than in water and citrate buffers at both pH levels. However, exposure to UV light resulted in rebaudioside A degradation occurring approximately 10 times faster in citrate than in phosphate buffers at both pH levels. The sensitivity of rebaudioside A to UV light was greater in citrate buffers than in water or phosphate buffers. The use of light-protective packaging for beverages containing rebaudioside A will improve its stability. © 2017 Institute of Food Technologists®.

  3. Seat surface inclination may affect postural stability during Boccia ball throwing in children with cerebral palsy.

    PubMed

    Tsai, Yung-Shen; Yu, Yi-Chen; Huang, Po-Chang; Cheng, Hsin-Yi Kathy

    2014-12-01

    The aim of the study was to examine how seat surface inclination affects Boccia ball throwing movement and postural stability among children with cerebral palsy (CP). Twelve children with bilateral spastic CP (3 with gross motor function classification system Level I, 5 with Level II, and 4 with Level III) participated in this study. All participants underwent pediatric reach tests and ball throwing performance analyses while seated on 15° anterior- or posterior-inclined, and horizontal surfaces. An electromagnetic motion analysis system was synchronized with a force plate to assess throwing motion and postural stability. The results of the pediatric reach test (p = 0.026), the amplitude of elbow movement (p = 0.036), peak vertical ground reaction force (PVGRF) (p < 0.001), and movement range of the center of pressure (COP) (p < 0.020) were significantly affected by seat inclination during throwing. Post hoc comparisons showed that anterior inclination allowed greater amplitude of elbow movement and PVGRF, and less COP movement range compared with the other inclines. Posterior inclination yielded less reaching distance and PVGRF, and greater COP movement range compared with the other inclines. The anterior-inclined seat yielded superior postural stability for throwing Boccia balls among children with bilateral spastic CP, whereas the posterior-inclined seat caused difficulty. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Hues in a Crater Slope

    NASA Image and Video Library

    2017-01-02

    Impact craters expose the subsurface materials on steep slopes. However, these slopes often experience rockfalls and debris avalanches that keep the surface clean of dust, revealing a variety of hues, like in this enhanced-color image, representing different rock types. The bright reddish material at the top of the crater rim is from a coating of the Martian dust. The long streamers of material are from downslope movements. Also revealed in this slope are a variety of bedrock textures, with a mix of layered and jumbled deposits. This sample is typical of the Martian highlands, with lava flows and water-lain materials depositing layers, then broken up and jumbled by many impact events. http://photojournal.jpl.nasa.gov/catalog/PIA14454

  5. The great slippery-slope argument.

    PubMed

    Burgess, J A

    1993-09-01

    Whenever some form of beneficent killing--for example, voluntary euthanasia--is advocated, the proposal is greeted with a flood of slippery-slope arguments warning of the dangers of a Nazi-style slide into genocide. This paper is an attempt systematically to evaluate arguments of this kind. Although there are slippery-slope arguments that are sound and convincing, typical formulations of the Nazi-invoking argument are found to be seriously deficient both in logical rigour and in the social history and psychology required as a scholarly underpinning. As an antidote, an attempt is made both to identify some of the likely causes of genocide and to isolate some of the more modest but legitimate fears that lie behind slippery-slope arguments of this kind.

  6. The great slippery-slope argument.

    PubMed Central

    Burgess, J A

    1993-01-01

    Whenever some form of beneficent killing--for example, voluntary euthanasia--is advocated, the proposal is greeted with a flood of slippery-slope arguments warning of the dangers of a Nazi-style slide into genocide. This paper is an attempt systematically to evaluate arguments of this kind. Although there are slippery-slope arguments that are sound and convincing, typical formulations of the Nazi-invoking argument are found to be seriously deficient both in logical rigour and in the social history and psychology required as a scholarly underpinning. As an antidote, an attempt is made both to identify some of the likely causes of genocide and to isolate some of the more modest but legitimate fears that lie behind slippery-slope arguments of this kind. PMID:8230150

  7. Slope activity in Gale crater, Mars

    USGS Publications Warehouse

    Dundas, Colin M.; McEwen, Alfred S.

    2015-01-01

    High-resolution repeat imaging of Aeolis Mons, the central mound in Gale crater, reveals active slope processes within tens of kilometers of the Curiosity rover. At one location near the base of northeastern Aeolis Mons, dozens of transient narrow lineae were observed, resembling features (Recurring Slope Lineae) that are potentially due to liquid water. However, the lineae faded and have not recurred in subsequent Mars years. Other small-scale slope activity is common, but has different spatial and temporal characteristics. We have not identified confirmed RSL, which Rummel et al. (Rummel, J.D. et al. [2014]. Astrobiology 14, 887–968) recommended be treated as potential special regions for planetary protection. Repeat images acquired as Curiosity approaches the base of Aeolis Mons could detect changes due to active slope processes, which could enable the rover to examine recently exposed material.

  8. Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy)

    USGS Publications Warehouse

    Napolitano, E.; Fusco, F; Baum, Rex L.; Godt, Jonathan W.; De Vita, P.

    2016-01-01

    Mountainous areas surrounding the Campanian Plain and the Somma-Vesuvius volcano (southern Italy) are among the most risky areas of Italy due to the repeated occurrence of rainfallinduced debris flows along ash-fall pyroclastic soil-mantled slopes. In this geomorphological framework, rainfall patterns, hydrological processes taking place within multi-layered ash-fall pyroclastic deposits and soil antecedent moisture status are the principal factors to be taken into account to assess triggering rainfall conditions and the related hazard. This paper presents the outcomes of an experimental study based on integrated analyses consisting of the reconstruction of physical models of landslides, in situ hydrological monitoring, and hydrological and slope stability modeling, carried out on four representative source areas of debris flows that occurred in May 1998 in the Sarno Mountain Range. The hydrological monitoring was carried out during 2011 using nests of tensiometers and Watermark pressure head sensors and also through a rainfall and air temperature recording station. Time series of measured pressure head were used to calibrate a hydrological numerical model of the pyroclastic soil mantle for 2011, which was re-run for a 12-year period beginning in 2000, given the availability of rainfall and air temperature monitoring data. Such an approach allowed us to reconstruct the regime of pressure head at a daily time scale for a long period, which is representative of about 11 hydrologic years with different meteorological conditions. Based on this simulated time series, average winter and summer hydrological conditions were chosen to carry out hydrological and stability modeling of sample slopes and to identify Intensity- Duration rainfall thresholds by a deterministic approach. Among principal results, the opposing winter and summer antecedent pressure head (soil moisture) conditions were found to exert a significant control on intensity and duration of rainfall

  9. Stability of a flow down an incline with respect to two-dimensional and three-dimensional disturbances for Newtonian and non-Newtonian fluids.

    PubMed

    Allouche, M H; Millet, S; Botton, V; Henry, D; Ben Hadid, H; Rousset, F

    2015-12-01

    Squire's theorem, which states that the two-dimensional instabilities are more dangerous than the three-dimensional instabilities, is revisited here for a flow down an incline, making use of numerical stability analysis and Squire relationships when available. For flows down inclined planes, one of these Squire relationships involves the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. Physically speaking, this prevents the possibility to directly compare the thresholds at a given slope. The goal of the paper is then to reach a conclusion about the predominance or not of two-dimensional instabilities at a given slope, which is of practical interest for industrial or environmental applications. For a Newtonian fluid, it is shown that, for a given slope, oblique wave instabilities are never the dominant instabilities. Both the Squire relationships and the particular variations of the two-dimensional wave critical curve with regard to the inclination angle are involved in the proof of this result. For a generalized Newtonian fluid, a similar result can only be obtained for a reduced stability problem where some term connected to the perturbation of viscosity is neglected. For the general stability problem, however, no Squire relationships can be derived and the numerical stability results show that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves at a given slope, particularly for large obliquity angles and strong shear-thinning behaviors. The conclusion is then completely different in that case: the dominant instability for a generalized Newtonian fluid flowing down an inclined plane with a given slope can be three dimensional.

  10. A hazard and risk classification system for catastrophic rock slope failures in Norway

    NASA Astrophysics Data System (ADS)

    Hermanns, R.; Oppikofer, T.; Anda, E.; Blikra, L. H.; Böhme, M.; Bunkholt, H.; Dahle, H.; Devoli, G.; Eikenæs, O.; Fischer, L.; Harbitz, C. B.; Jaboyedoff, M.; Loew, S.; Yugsi Molina, F. X.

    2012-04-01

    outburst floods. It became obvious that large rock slope failures cannot be evaluated on a slope scale with frequency analyses of historical and prehistorical events only, as multiple rockslides have occurred within one century on a single slope that prior to the recent failures had been inactive for several thousand years. In addition, a systematic analysis on temporal distribution indicates that rockslide activity following deglaciation after the Last Glacial Maximum has been much higher than throughout the Holocene. Therefore the classification system has to be based primarily on the geological conditions on the deforming slope and on the deformation rates and only to a lesser weight on a frequency analyses. Our hazard classification therefore is primarily based on several criteria: 1) Development of the back-scarp, 2) development of the lateral release surfaces, 3) development of the potential basal sliding surface, 4) morphologic expression of the basal sliding surface, 5) kinematic feasibility tests for different displacement mechanisms, 6) landslide displacement rates, 7) change of displacement rates (acceleration), 8) increase of rockfall activity on the unstable rock slope, 9) Presence post-glacial events of similar size along the affected slope and its vicinity. For each of these criteria several conditions are possible to choose from (e.g. different velocity classes for the displacement rate criterion). A score is assigned to each condition and the sum of all scores gives the total susceptibility score. Since many of these observations are somewhat uncertain, the classification system is organized in a decision tree where probabilities can be assigned to each condition. All possibilities in the decision tree are computed and the individual probabilities giving the same total score are summed. Basic statistics show the minimum and maximum total scores of a scenario, as well as the mean and modal value. The final output is a cumulative frequency distribution of

  11. Storm-Induced Slope Failure Susceptibility Mapping

    DOT National Transportation Integrated Search

    2018-01-01

    A pilot study was conducted to characterize and map the areas susceptible to slope failure using state-wide available data. The objective was to determine whether it would be possible to provide slope-failure susceptibility mapping that could be used...

  12. Analysis of rainfall-induced slope instability using a field of local factor of safety

    USGS Publications Warehouse

    Lu, Ning; Şener-Kaya, Başak; Wayllace, Alexandra; Godt, Jonathan W.

    2012-01-01

    Slope-stability analyses are mostly conducted by identifying or assuming a potential failure surface and assessing the factor of safety (FS) of that surface. This approach of assigning a single FS to a potentially unstable slope provides little insight on where the failure initiates or the ultimate geometry and location of a landslide rupture surface. We describe a method to quantify a scalar field of FS based on the concept of the Coulomb stress and the shift in the state of stress toward failure that results from rainfall infiltration. The FS at each point within a hillslope is called the local factor of safety (LFS) and is defined as the ratio of the Coulomb stress at the current state of stress to the Coulomb stress of the potential failure state under the Mohr-Coulomb criterion. Comparative assessment with limit-equilibrium and hybrid finite element limit-equilibrium methods show that the proposed LFS is consistent with these approaches and yields additional insight into the geometry and location of the potential failure surface and how instability may initiate and evolve with changes in pore water conditions. Quantitative assessments applying the new LFS field method to slopes under infiltration conditions demonstrate that the LFS has the potential to overcome several major limitations in the classical FS methodologies such as the shape of the failure surface and the inherent underestimation of slope instability. Comparison with infinite-slope methods, including a recent extension to variably saturated conditions, shows further enhancement in assessing shallow landslide occurrence using the LFS methodology. Although we use only a linear elastic solution for the state of stress with no post-failure analysis that require more sophisticated elastoplastic or other theories, the LFS provides a new means to quantify the potential instability zones in hillslopes under variably saturated conditions using stress-field based methods.

  13. Characterization and monitoring of the Séchilienne rock slope using 3D imaging methods (Isère, France)

    NASA Astrophysics Data System (ADS)

    Vulliez, Cindy; Guerin, Antoine; Abellán, Antonio; Derron, Marc-Henri; Jaboyedoff, Michel; Chanut, Marie-Aurélie; Dubois, Laurent; Duranthon, Jean-Paul

    2016-04-01

    detected, allowing us to estimate the susceptibility of the slope to three main failure mechanisms: planar sliding, wedge sliding and flexural toppling. Moreover, we carried out the 3D tracking of several homogenous rock compartments using the roto-translation matrix technique (Oppikofer et al., 2009) in order to quantify separately the translational and rotational components of displacements. Large-scale movements (from several dm to more than 10 m) were observed in the active area with a coupling between subsidence and toppling oriented towards the valley. Lateral structures that cut the rear active part also seem to be affected by a clockwise rotation around the topple axis. The acquisition of dense and accurate terrain information using LiDAR and SfM for studying the Séchilienne landslide has been useful for quantifying the 3D displacements and clarifying the failure mechanisms involved in the complex dynamic of the active part of the slope. Chanut, M-A., Dubois, L., Duranthon, J.P. (2014) Analyse de l'évolution du mouvement de terrain de Séchilienne à partir de données LiDAR. Journées Nationales de Géotechnique et de Géologie de l'Ingénieur JNGG2014 - Bauvais. Duranthon, J. P., & Effendiantz, L. (2004). Le versant instable des «Ruines» de Séchilienne. Bulletin des laboratoires des Ponts et Chaussées, 252, 253. Jaboyedoff, M., Metzger, R., Oppikofer, T., Couture, R., Derron, M. H., Locat, J., & Turmel, D. (2007). New insight techniques to analyze rock-slope relief using DEM and 3D-imaging cloud points: COLTOP-3D software, in: Rock mechanics: Meeting Society's Challenges and demands (Vol. 1, pp. 61-68). Kasperski, J., Potherat, P., & Duranthon, J. P. (2010). Le mouvement de versant de Séchilienne: point sur l'activité du phénomène, in: Rock Slope Stability (p. 13p). Oppikofer, T., Jaboyedoff, M., Blikra, L., Derron, M. H., & Metzger, R. (2009). Characterization and monitoring of the Åknes rockslide using terrestrial laser scanning, in: Natural Hazards

  14. Poro-mechanical coupling influences on potential for rainfall-induced shallow landslides in unsaturated soils

    NASA Astrophysics Data System (ADS)

    Wu, L. Z.; Selvadurai, A. P. S.; Zhang, L. M.; Huang, R. Q.; Huang, Jinsong

    2016-12-01

    Rainfall-induced landslides are a common occurrence in terrain with steep topography and soils that have degradable strength. Rainfall infiltration into a partially saturated slope of infinite extent can lead to either a decrease or complete elimination of soil suction, compromising the slopes' stability. In this research the rainfall infiltration coupled with deformation of a partially saturated soil slope during rainfall infiltration is analyzed. The limit equilibrium conditions and the shear strength relationship of a partially saturated soil are employed to develop an analytical solution for calculating the stability of an infinite partially saturated slope due to rainfall infiltration. The analytical solutions are able to consider the influence of the coupled effects on the stability of the slope. The factors that affect the safety of a partially saturated slope of infinite extent are discussed. The results indicate that the poro-mechanical coupling of water infiltration and deformation has an important effect on the stability of the infinite unsaturated slope.

  15. [Effects of gravel mulch technology on soil erosion resistance and plant growth of river flinty slope].

    PubMed

    Zhu, Wei; Xie, San-Tao; Ruan, Ai-Dong; Bian, Xun-Wen

    2008-03-01

    Aiming at the technical difficulties such as the stability and water balance in the ecological rehabilitation of river flinty slope, a gravel mulch technology was proposed, with the effects of different gravel mulch treatments on the soil anti-erosion capacity, soil water retention property, and plant growth investigated by anti-erosion and pot experiments. The results showed that mulching with the gravels 1.5-2 cm in size could obviously enhance the soil anti-erosion capacity, soil water retention property and plant biomass, but no obvious differences were observed between the mulch thickness of 5 cm and 8 cm. It was indicated that mulching with the gravels 1.5-2 cm in size and 5 cm in thickness was an effective and economical technology for the ecological rehabilitation of river flinty slope.

  16. Slope Estimation in Noisy Piecewise Linear Functions✩

    PubMed Central

    Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy

    2014-01-01

    This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure. PMID:25419020

  17. Slope Estimation in Noisy Piecewise Linear Functions.

    PubMed

    Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy

    2015-03-01

    This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure.

  18. Hydrology of two slopes in subarctic Yukon, Canada

    NASA Astrophysics Data System (ADS)

    Carey, Sean K.; Woo, Ming-Ko

    1999-11-01

    Two subarctic forested slopes in central Wolf Creek basin, Yukon, were studied in 1996-1997 to determine the seasonal pattern of the hydrologic processes. A south-facing slope has a dense aspen forest on silty soils with seasonal frost only and a north-facing slope has open stands of black spruce and an organic layer on top of clay sediments with permafrost. Snowmelt is advanced by approximately one month on the south-facing slope due to greater radiation receipt. Meltwater infiltrates its seasonally frozen soil with low ice content, recharging the soil moisture reservoir but yielding no lateral surface or subsurface flow. Summer evaporation depletes this recharged moisture and any additional rainfall input, at the expense of surface or subsurface flow. The north-facing slope with an ice rich substrate hinders deep percolation. Snow meltwater is impounded within the organic layer to produce surface runoff in rills and gullies, and subsurface flow along pipes and within the matrix of the organic soil. During the summer, most subsurface flows are confined to the organic layer which has hydraulic conductivities orders of magnitudes larger than the underlying boulder-clay. Evaporation on the north-facing slope declines as both the frost table and the water table descend in the summer. A water balance of the two slopes demonstrates that vertical processes of infiltration and evaporation dominate moisture exchanges on the south-facing slope, whereas the retardation of deep drainage by frost and by clayey soil on the permafrost slope promotes a strong lateral flow component, principally within the organic layer. These results have the important implication that permafrost slopes and organic horizons are the principal controls on streamflow generation in subarctic catchments.

  19. Recurring slope lineae in equatorial regions of Mars

    USGS Publications Warehouse

    McEwen, Alfred S.; Dundas, Colin M.; Mattson, Sarah S.; Toigo, Anthony D.; Ojha, Lujendra; Wray, James J.; Chojnacki, Matthew; Byrne, Shane; Murchie, Scott L.; Thomas, Nicolas

    2014-01-01

    The presence of liquid water is a requirement of habitability on a planet. Possible indicators of liquid surface water on Mars include intermittent flow-like features observed on sloping terrains. These recurring slope lineae are narrow, dark markings on steep slopes that appear and incrementally lengthen during warm seasons on low-albedo surfaces. The lineae fade in cooler seasons and recur over multiple Mars years. Recurring slope lineae were initially reported to appear and lengthen at mid-latitudes in the late southern spring and summer and are more common on equator-facing slopes where and when the peak surface temperatures are higher. Here we report extensive activity of recurring slope lineae in equatorial regions of Mars, particularly in the deep canyons of Valles Marineris, from analysis of data acquired by the Mars Reconnaissance Orbiter. We observe the lineae to be most active in seasons when the slopes often face the sun. Expected peak temperatures suggest that activity may not depend solely on temperature. Although the origin of the recurring slope lineae remains an open question, our observations are consistent with intermittent flow of briny water. Such an origin suggests surprisingly abundant liquid water in some near-surface equatorial regions of Mars.

  20. Oxidative stability of soybean oil in oleosomes as affected by pH and iron.

    PubMed

    Kapchie, Virginie N; Yao, Linxing; Hauck, Catherine C; Wang, Tong; Murphy, Patricia A

    2013-12-01

    The oxidative stability of oil in soybean oleosomes, isolated using the Enzyme-Assisted Aqueous Extraction Process (EAEP), was evaluated. The effects of ferric chloride, at two concentration levels (100 and 500 μM), on lipid oxidation, was examined under pH 2 and 7. The peroxide value (PV) and thiobarbituric acid-reactive substance (TBARS) value of oil, in oleosome suspensions stored at 60 °C, were measured over a 12 day period. The presence of ferric chloride significantly (P<0.05) affected the oxidative stability of oil in the isolated oleosome, as measured by the PV and TBARS. Greater lipid oxidation occurred under an acidic pH. In the pH 7 samples, the positively charged transition metals were strongly attracted to the negatively charged droplets. However, the low ζ-potential and the high creaming rate at this pH, may have limited the oxidation. Freezing, freeze-drying or heating of oleosomes have an insignificant impact on the oxidative stability of oil in isolated soybean oleosomes. Manufacturers should be cautious when adding oleosomes as ingredients in food systems containing transition metal ions. Published by Elsevier Ltd.

  1. Large slope instabilities in Northern Chile and Southern Peru

    NASA Astrophysics Data System (ADS)

    Crosta, Giovanni B.; Hermanns, Reginald L.; Valbuzzi, Elena; Frattini, Paolo; Valagussa, Andrea

    2014-05-01

    Deep canyon incision into Tertiary paleosurfaces and large slope instabilities along the canyon flanks characterize the landscape of western slope of the Andes of northern Chile and South Peru. This area belongs to the Coastal Escarpment and Precordillera and is formed by coarse-grained clastic and volcanoclastic formations. The area is characterized by intense seismicity and long-term hyperaridity (Atacama Desert). Landslides along the canyon flanks affect volumes generally up to 1 km3 and locally evolved in large rock avalanches. We prepared a landslide inventory covering an area of about 30,000 km2, extending from Iquique (Chile) to the South and Tacna (Peru) to the North. A total of 606 landslides have been mapped in the area by use of satellite images and direct field surveys, prevalently including large phenomena. The landslides range from 1 10-3 km2 to 464 km2 (Lluta landslide). The total landslide area, inclusive of the landslide scarp and of the deposit, amounts to about 2,130 km2 (about 7% of the area). The mega landslides can be classified as large block slides that can evolve in large rock avalanches (e.g. Minimini landslide). Their initiation seems to be strongly associated to the presence of secondary faults and large fractures transversal to the slope. These landslides show evidence suggesting a re-incision by the main canyon network. This seems particularly true for the Lluta collapse where the main 'landslide' mass is masked or deleted by the successive erosion. Other landslides have been mapped along the Coastal Escarpment and some of the major tectonic escarpments with an E-W trend. We examined area-frequency distributions of landslides by developing logarithmically binned, non-cumulative size frequency distributions that report frequency density as a function of landslide planar area A. The size frequency distribution presents a strong undersampling for smaller landslides, due to the extremely old age of the inventory. For landslides larger than

  2. Evaluation of Sloped Bottom Tuned Liquid Damper for Reduction of Seismic Response of Tall Buildings

    NASA Astrophysics Data System (ADS)

    Patil, G. R.; Singh, K. D.

    2016-12-01

    Due to migration of people to urban area, high land costs and use of light weight materials modern buildings tend to be taller, lighter and flexible. These buildings possess low damping. This increases the possibility of failure during earthquake ground motion and also affect the serviceability during wind vibrations. Out of many available techniques today, to reduce the response of structure under dynamic loading, Tuned Liquid Damper (TLD) is a recent technique to mitigate seismic response. However TLD has been used to mitigate the wind induced structural vibrations. Flat bottom TLD gives energy back to the structure after event of dynamic loading and it is termed as beating. Beating affects the performance of TLD. Study attempts to analyze the effectiveness of sloped bottom TLD for reducing seismic vibrations of structure. Concept of equivalent flat bottom LD has been used to analyze sloped bottom TLD. Finite element method (EM) is used to model the structure and the liquid in the TLD. MATLAB code is developed to study the response of structure, the liquid sloshing in the tank and the coupled fluid-structure interaction. A ten storey two bay RC frame is analyzed for few inputs of ground motion. A sinusoidal ground motion corresponding to resonance condition with fundamental frequency of frame is analyzed. In the analysis the inherent damping of structure is not considered. Observations from the study shows that sloped bottom TLD uses less amount of liquid than flat bottom TLD. Also observed that efficiency of sloped bottom TLD can be improved if it is properly tuned.

  3. Stability and predictors of change in salivary cortisol measures over six years: MESA.

    PubMed

    Wang, Xu; Sánchez, Brisa N; Golden, Sherita Hill; Shrager, Sandi; Kirschbaum, Clemens; Karlamangla, Arun S; Seeman, Teresa E; Roux, Ana V Diez

    2014-11-01

    A major challenge in characterizing features of the daily cortisol curve is variability in features over time. Few studies have examined the stability of daily features of the cortisol curve over long periods or the predictors of long term changes. Repeated salivary cortisol measures on 580 adults from the MESA Stress study were used to examine the stability of various features of the daily cortisol curve (wakeup value, the cortisol awakening response (CAR), the early and late decline slope and the area under the curve (AUC)), over short periods (several days) and long periods (approximately 6-years) and to investigate the association of demographic factors with the changes. Intraclass correlation coefficients (ICCs) were used to estimate the short and long term stability. Piecewise linear mixed models were used to assess factors associated with changes in features over time. For most features, short term stability (ICCs: 0.17-0.74) was higher than long term stability (ICCs: 0.05-0.42), and long term stability was highest when several days were averaged for each time point. The decline over the day showed the highest long term stability: when several days for each wave were averaged the stability of the daily decline slope across 6 years was similar (or higher) than the stability across short periods. AUC had high stability over short periods (ICCs: 0.65-0.74) but much lower stability across long periods (ICC: 0.05). All features of daily cortisol curve investigated changed significantly over the approximately 6 year follow-up period. The wakeup cortisol became higher; the CAR became smaller; both the early and late decline became flatter; and the AUC became larger. Hispanics experienced significantly larger increases in the wakeup value; and African-Americans and Hispanics showed less flattening over time of the early decline slope than Non-Hispanic Whites. Our findings have implications for characterization of features in studies linking cortisol to health

  4. Abduction of Toe-excavation Induced Failure Process from LEM and FDM for a Dip Slope with Rock Anchorage in Taiwan

    NASA Astrophysics Data System (ADS)

    Huang, W.-S.; Lin, M.-L.; Liu, H.-C.; Lin, H.-H.

    2012-04-01

    On April 25, 2010, without rainfall and earthquake triggering a massive landslide (200000 m3) covered a 200m stretch of Taiwan's National Freeway No. 3, killing 4 people, burying three cars and destroying a bridge. The failure mode appears to be a dip-slope type failure occurred on a rock anchorage cut slope. The strike of Tertiary sedimentary strata is northeast-southwest and dip 15˚ toward southeast. Based on the investigations of Taiwan Geotechnical Society, there are three possible factors contributing to the failure mechanism as follow:(1) By toe-excavation during construction in 1998, the daylight of the sliding layer had induced the strength reduction in the sliding layer. It also caused the loadings of anchors increased rapidly and approached to their ultimate capacity; (2) Although the excavated area had stabilized soon with rock anchors and backfills, the weathering and groundwater infiltration caused the strength reduction of overlying rock mass; (3) The possible corrosion and age of the ground anchors deteriorate the loading capacity of rock anchors. Considering the strength of sliding layer had reduced from peak to residual strength which was caused by the disturbance of excavation, the limit equilibrium method (LEM) analysis was utilized in the back analysis at first. The results showed the stability condition of slope approached the critical state (F.S.≈1). The efficiency reduction of rock anchors and strength reduction of overlying stratum (sandstone) had been considered in following analysis. The results showed the unstable condition (F.S. <1). This research also utilized the result of laboratory test, geological strength index(GSI) and finite difference method (FDM, FLAC 5.0) to discuss the failure process with the interaction of disturbance of toe-excavation, weathering of rock mass, groundwater infiltration and efficiency reduction of rock anchors on the stability of slope. The analysis indicated that the incremental load of anchors have

  5. Effect of water content on stability of landslides triggered by earthquakes

    NASA Astrophysics Data System (ADS)

    Beyabanaki, S.; Bagtzoglou, A. C.; Anagnostou, E. N.

    2013-12-01

    Earthquake- triggered landslides are one of the most important natural hazards that often result in serious structural damage and loss of life. They are widely studied by several researchers. However, less attention has been focused on soil water content. Although the effect of water content has been widely studied for rainfall- triggered landslides [1], much less attention has been given to it for stability analysis of earthquake- triggered landslides. We developed a combined hydrology and stability model to investigate effect of soil water content on earthquake-triggered landslides. For this purpose, Bishop's method is used to do the slope stability analysis and Richard's equation is employed to model infiltration. Bishop's method is one the most widely methods used for analyzing stability of slopes [2]. Earthquake acceleration coefficient (EAC) is also considered in the model to analyze the effect of earthquake on slope stability. Also, this model is able to automatically determine geometry of the potential landslide. In this study, slopes with different initial water contents are simulated. First, the simulation is performed in the case of earthquake only with different EACs and water contents. As shown in Fig. 1, initial water content has a significant effect on factor of safety (FS). Greater initial water contents lead to less FS. This impact is more significant when EAC is small. Also, when initial water content is high, landslides can happen even with small earthquake accelerations. Moreover, in this study, effect of water content on geometry of landslides is investigated. For this purpose, different cases of landslides triggered by earthquakes only and both rainfall and earthquake for different initial water contents are simulated. The results show that water content has more significant effect on geometry of landslides triggered by rainfall than those triggered by an earthquake. Finally, effect of water content on landslides triggered by earthquakes

  6. Stability in the metamemory realism of eyewitness confidence judgments.

    PubMed

    Buratti, Sandra; Allwood, Carl Martin; Johansson, Marcus

    2014-02-01

    The stability of eyewitness confidence judgments over time in regard to their reported memory and accuracy of these judgments is of interest in forensic contexts because witnesses are often interviewed many times. The present study investigated the stability of the confidence judgments of memory reports of a witnessed event and of the accuracy of these judgments over three occasions, each separated by 1 week. Three age groups were studied: younger children (8-9 years), older children (10-11 years), and adults (19-31 years). A total of 93 participants viewed a short film clip and were asked to answer directed two-alternative forced-choice questions about the film clip and to confidence judge each answer. Different questions about details in the film clip were used on each of the three test occasions. Confidence as such did not exhibit stability over time on an individual basis. However, the difference between confidence and proportion correct did exhibit stability across time, in terms of both over/underconfidence and calibration. With respect to age, the adults and older children exhibited more stability than the younger children for calibration. Furthermore, some support for instability was found with respect to the difference between the average confidence level for correct and incorrect answers (slope). Unexpectedly, however, the younger children's slope was found to be more stable than the adults. Compared to the previous research, the present study's use of more advanced statistical methods provides a more nuanced understanding of the stability of confidence judgments in the eyewitness reports of children and adults.

  7. Gravity-driven groundwater flow and slope failure potential: 1. Elastic effective-stress model

    USGS Publications Warehouse

    Iverson, Richard M.; Reid, Mark E.

    1992-01-01

    Hilly or mountainous topography influences gravity-driven groundwater flow and the consequent distribution of effective stress in shallow subsurface environments. Effective stress, in turn, influences the potential for slope failure. To evaluate these influences, we formulate a two-dimensional, steady state, poroelastic model. The governing equations incorporate groundwater effects as body forces, and they demonstrate that spatially uniform pore pressure changes do not influence effective stresses. We implement the model using two finite element codes. As an illustrative case, we calculate the groundwater flow field, total body force field, and effective stress field in a straight, homogeneous hillslope. The total body force and effective stress fields show that groundwater flow can influence shear stresses as well as effective normal stresses. In most parts of the hillslope, groundwater flow significantly increases the Coulomb failure potential Φ, which we define as the ratio of maximum shear stress to mean effective normal stress. Groundwater flow also shifts the locus of greatest failure potential toward the slope toe. However, the effects of groundwater flow on failure potential are less pronounced than might be anticipated on the basis of a simpler, one-dimensional, limit equilibrium analysis. This is a consequence of continuity, compatibility, and boundary constraints on the two-dimensional flow and stress fields, and it points to important differences between our elastic continuum model and limit equilibrium models commonly used to assess slope stability.

  8. Modeling and simulation of driver's anticipation effect in a two lane system on curved road with slope

    NASA Astrophysics Data System (ADS)

    Kaur, Ramanpreet; Sharma, Sapna

    2018-06-01

    The complexity of traffic flow phenomena on curved road with slope is investigated and a new lattice model is presented with the addition of driver's anticipation effect for two lane system. The condition under which the free flow turns into the jammed one, is obtained theoretically by using stability analysis. The results obtained through linear analysis indicates that the stable region increases (decreases) corresponding to uphill (downhill) case due to increasing slope angle for fixed anticipation parameter. It is found that when the vehicular density becomes higher than a critical value, traffic jam appears in the form of kink antikink density waves. Analytically, the kink antikink density waves are described by the solution of mKdV equation obtained from non linear analysis. In addition, the theoretical results has been verified through numerical simulation, which confirm that the slope on a curved highway significantly influence the traffic dynamics and traffic jam can be suppressed efficiently by considering the anticipation parameter in a two lane lattice model when lane changing is allowed.

  9. Relationships of elevation, channel slope, and stream width to occurrences of native fishes at the Great Plains-Rocky Mountains interface

    USGS Publications Warehouse

    Brunger, Lipsey T.S.; Hubert, W.A.; Rahel, F.J.

    2005-01-01

    Environmental gradients occur with upstream progression from plains to mountains and affect the occurrence of native warmwater fish species, but the relative importance of various environmental gradients are not defined. We assessed the relative influences of elevation, channel slope, and stream width on the occurrences of 15 native warmwater fish species among 152 reaches scattered across the North Platte River drainage of Wyoming at the interface of the Great Plains and Rocky Mountains. Most species were collected in reaches that were lower in elevation, had lower channel slopes, and were wider than the medians of the 152 sampled reaches. Several species occurred over a relatively narrow range of elevation, channel slope, or stream width among the sampled reaches, but the distributions of some species appeared to extend beyond the ranges of the sampled reaches. We identified competing logistic-regression models that accounted for the occurrence of individual species using the information-theoretic approach. Linear logistic-regression models accounted for patterns in the data better than curvilinear models for all species. The highest ranked models included channel slope for seven species, elevation for six species, stream width for one species, and both channel slope and stream width for one species. Our results suggest that different environmental gradients may affect upstream boundaries of different fish species at the interface of the Great Plains and Rocky Mountains in Wyoming.

  10. Soil erosion increases soil microbial activity at the depositional position of eroding slopes

    NASA Astrophysics Data System (ADS)

    Meng, Xu; Cardenas, Laura M.; Donovan, Neil; Zhang, Junling; Murray, Phil; Zhang, Fusuo; Dungait, Jennifer A. J.

    2016-04-01

    Soil erosion is the most widespread form of soil degradation. Estimation of the impact of agricultural soil erosion on global carbon cycle is a topic of scientific debate, with opposing yet similar magnitude estimates of erosion as a net source or sink of atmospheric carbon. The transport and deposition of eroded agricultural soils affects not only the carbon cycle but other nutrient cycles as well. It has been estimated that erosion-induced lateral fluxes of nitrogen (N) and phosphorus (P) could be similar in magnitude to those from fertilizer application and crop removal (Quinton et al., 2010). In particular, the dynamics of soil N in eroding slopes need to be considered because the management of soil N has profound influences on the functioning of soil microorganisms, which are generally considered as the main biotic driver of soil C efflux. Carbon dioxide (CO2) emissions tend to increase in deposition positions of eroded slopes, diminishing the sink potential of eroded soils C (. As the global warming potential of nitrous oxide (N2O) is 310 times relative to that of CO2, the sink potential of agricultural erosion could easily be negated with a small increase in N2O emissions. Therefore, an investigation of the potential emissions of greenhouse gases, and especially N2O from soils affected by agricultural erosion, are required. In the present study, a field experiment was established with contrasting cultivation techniques of a C4 crop (Zea mays; δ13C = -12.2‰) to introduce 13C-enriched SOC to a soil previously cropped with C3 plants (δ13C = -29.3‰). Soils sampled from the top, middle, bottom and foot slope positions along a distinct erosion pathway were analyzed using 13C-phospholipid fatty acid (PLFA) analysis and incubated to investigate the responses of microorganisms and associated potential emissions of greenhouse gases (GHG). The total C and N contents were greatest in soils at the top slope position, whereas soil mineral N (NO3--N and NH4+-N

  11. Database and online map service on unstable rock slopes in Norway - From data perpetuation to public information

    NASA Astrophysics Data System (ADS)

    Oppikofer, Thierry; Nordahl, Bobo; Bunkholt, Halvor; Nicolaisen, Magnus; Jarna, Alexandra; Iversen, Sverre; Hermanns, Reginald L.; Böhme, Martina; Yugsi Molina, Freddy X.

    2015-11-01

    The unstable rock slope database is developed and maintained by the Geological Survey of Norway as part of the systematic mapping of unstable rock slopes in Norway. This mapping aims to detect catastrophic rock slope failures before they occur. More than 250 unstable slopes with post-glacial deformation are detected up to now. The main aims of the unstable rock slope database are (1) to serve as a national archive for unstable rock slopes in Norway; (2) to serve for data collection and storage during field mapping; (3) to provide decision-makers with hazard zones and other necessary information on unstable rock slopes for land-use planning and mitigation; and (4) to inform the public through an online map service. The database is organized hierarchically with a main point for each unstable rock slope to which several feature classes and tables are linked. This main point feature class includes several general attributes of the unstable rock slopes, such as site name, general and geological descriptions, executed works, recommendations, technical parameters (volume, lithology, mechanism and others), displacement rates, possible consequences, as well as hazard and risk classification. Feature classes and tables linked to the main feature class include different scenarios of an unstable rock slope, field observation points, sampling points for dating, displacement measurement stations, lineaments, unstable areas, run-out areas, areas affected by secondary effects, along with tables for hazard and risk classification and URL links to further documentation and references. The database on unstable rock slopes in Norway will be publicly consultable through an online map service. Factsheets with key information on unstable rock slopes can be automatically generated and downloaded for each site. Areas of possible rock avalanche run-out and their secondary effects displayed in the online map service, along with hazard and risk assessments, will become important tools for

  12. Soil Aggregate Stability and Grassland Productivity Associations in a Northern Mixed-Grass Prairie

    PubMed Central

    Reinhart, Kurt O.; Vermeire, Lance T.

    2016-01-01

    Soil aggregate stability data are often predicted to be positively associated with measures of plant productivity, rangeland health, and ecosystem functioning. Here we revisit the hypothesis that soil aggregate stability is positively associated with plant productivity. We measured local (plot-to-plot) variation in grassland community composition, plant (aboveground) biomass, root biomass, % water-stable soil aggregates, and topography. After accounting for spatial autocorrelation, we observed a negative association between % water-stable soil aggregates (0.25–1 and 1–2 mm size classes of macroaggregates) and dominant graminoid biomass, and negative associations between the % water-stable aggregates and the root biomass of a dominant sedge (Carex filifolia). However, variation in total root biomass (0–10 or 0–30 cm depths) was either negatively or not appreciably associated with soil aggregate stabilities. Overall, regression slope coefficients were consistently negative thereby indicating the general absence of a positive association between measures of plant productivity and soil aggregate stability for the study area. The predicted positive association between factors was likely confounded by variation in plant species composition. Specifically, sampling spanned a local gradient in plant community composition which was likely driven by niche partitioning along a subtle gradient in elevation. Our results suggest an apparent trade-off between some measures of plant biomass production and soil aggregate stability, both known to affect the land’s capacity to resist erosion. These findings further highlight the uncertainty of plant biomass-soil stability associations. PMID:27467598

  13. Soil Aggregate Stability and Grassland Productivity Associations in a Northern Mixed-Grass Prairie.

    PubMed

    Reinhart, Kurt O; Vermeire, Lance T

    2016-01-01

    Soil aggregate stability data are often predicted to be positively associated with measures of plant productivity, rangeland health, and ecosystem functioning. Here we revisit the hypothesis that soil aggregate stability is positively associated with plant productivity. We measured local (plot-to-plot) variation in grassland community composition, plant (aboveground) biomass, root biomass, % water-stable soil aggregates, and topography. After accounting for spatial autocorrelation, we observed a negative association between % water-stable soil aggregates (0.25-1 and 1-2 mm size classes of macroaggregates) and dominant graminoid biomass, and negative associations between the % water-stable aggregates and the root biomass of a dominant sedge (Carex filifolia). However, variation in total root biomass (0-10 or 0-30 cm depths) was either negatively or not appreciably associated with soil aggregate stabilities. Overall, regression slope coefficients were consistently negative thereby indicating the general absence of a positive association between measures of plant productivity and soil aggregate stability for the study area. The predicted positive association between factors was likely confounded by variation in plant species composition. Specifically, sampling spanned a local gradient in plant community composition which was likely driven by niche partitioning along a subtle gradient in elevation. Our results suggest an apparent trade-off between some measures of plant biomass production and soil aggregate stability, both known to affect the land's capacity to resist erosion. These findings further highlight the uncertainty of plant biomass-soil stability associations.

  14. Posterior tibial slope and femoral sizing affect posterior cruciate ligament tension in posterior cruciate-retaining total knee arthroplasty.

    PubMed

    Kuriyama, Shinichi; Ishikawa, Masahiro; Nakamura, Shinichiro; Furu, Moritoshi; Ito, Hiromu; Matsuda, Shuichi

    2015-08-01

    During cruciate-retaining total knee arthroplasty, surgeons sometimes encounter increased tension of the posterior cruciate ligament. This study investigated the effects of femoral size, posterior tibial slope, and rotational alignment of the femoral and tibial components on forces at the posterior cruciate ligament in cruciate-retaining total knee arthroplasty using a musculoskeletal computer simulation. Forces at the posterior cruciate ligament were assessed with the standard femoral component, as well as with 2-mm upsizing and 2-mm downsizing in the anterior-posterior dimension. These forces were also determined with posterior tibial slope angles of 5°, 7°, and 9°, and lastly, were measured in 5° increments when the femoral (tibial) components were positioned from 5° (15°) of internal rotation to 5° (15°) of external rotation. Forces at the posterior cruciate ligament increased by up to 718N with the standard procedure during squatting. The 2-mm downsizing of the femoral component decreased the force at the posterior cruciate ligament by up to 47%. The 2° increment in posterior tibial slope decreased the force at the posterior cruciate ligament by up to 41%. In addition, posterior cruciate ligament tension increased by 11% during internal rotation of the femoral component, and increased by 18% during external rotation of the tibial component. These findings suggest that accurate sizing and bone preparation are very important to maintain posterior cruciate ligament forces in cruciate-retaining total knee arthroplasty. Care should also be taken regarding malrotation of the femoral and tibial components because this increases posterior cruciate ligament tension. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. A method for determining average beach slope and beach slope variability for U.S. sandy coastlines

    USGS Publications Warehouse

    Doran, Kara S.; Long, Joseph W.; Overbeck, Jacquelyn R.

    2015-01-01

    The U.S. Geological Survey (USGS) National Assessment of Hurricane-Induced Coastal Erosion Hazards compares measurements of beach morphology with storm-induced total water levels to produce forecasts of coastal change for storms impacting the Gulf of Mexico and Atlantic coastlines of the United States. The wave-induced water level component (wave setup and swash) is estimated by using modeled offshore wave height and period and measured beach slope (from dune toe to shoreline) through the empirical parameterization of Stockdon and others (2006). Spatial and temporal variability in beach slope leads to corresponding variability in predicted wave setup and swash. For instance, seasonal and storm-induced changes in beach slope can lead to differences on the order of 1 meter (m) in wave-induced water level elevation, making accurate specification of this parameter and its associated uncertainty essential to skillful forecasts of coastal change. A method for calculating spatially and temporally averaged beach slopes is presented here along with a method for determining total uncertainty for each 200-m alongshore section of coastline.

  16. Up by upwest: Is slope like north?

    PubMed

    Weisberg, Steven M; Nardi, Daniele; Newcombe, Nora S; Shipley, Thomas F

    2014-10-01

    Terrain slope can be used to encode the location of a goal. However, this directional information may be encoded using a conceptual north (i.e., invariantly with respect to the environment), or in an observer-relative fashion (i.e., varying depending on the direction one faces when learning the goal). This study examines which representation is used, whether the sensory modality in which slope is encoded (visual, kinaesthetic, or both) influences representations, and whether use of slope varies for men and women. In a square room, with a sloped floor explicitly pointed out as the only useful cue, participants encoded the corner in which a goal was hidden. Without direct sensory access to slope cues, participants used a dial to point to the goal. For each trial, the goal was hidden uphill or downhill, and the participants were informed whether they faced uphill or downhill when pointing. In support of observer-relative representations, participants pointed more accurately and quickly when facing concordantly with the hiding position. There was no effect of sensory modality, providing support for functional equivalence. Sex did not interact with the findings on modality or reference frame, but spatial measures correlated with success on the slope task differently for each sex.

  17. Automatic approach to deriving fuzzy slope positions

    NASA Astrophysics Data System (ADS)

    Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi

    2018-03-01

    Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.

  18. Friction of hard surfaces and its application in earthquakes and rock slope stability

    NASA Astrophysics Data System (ADS)

    Sinha, Nitish; Singh, Arun K.; Singh, Trilok N.

    2018-05-01

    In this article, we discuss the friction models for hard surfaces and their applications in earth sciences. The rate and state friction (RSF) model, which is basically modified form of the classical Amontons-Coulomb friction laws, is widely used for explaining the crustal earthquakes and the rock slope failures. Yet the RSF model has further been modified by considering the role of temperature at the sliding interface known as the rate, state and temperature friction (RSTF) model. Further, if the pore pressure is also taken into account then it is stated as the rate, state, temperature and pore pressure friction (RSTPF) model. All the RSF models predict a critical stiffness as well as a critical velocity at which sliding behavior becomes stable/unstable. The friction models are also used for predicting time of failure of the rock mass on an inclined plane. Finally, the limitation and possibilities of the proposed friction models are also highlighted.

  19. Emotional modulation of control dilemmas: the role of positive affect, reward, and dopamine in cognitive stability and flexibility.

    PubMed

    Goschke, Thomas; Bolte, Annette

    2014-09-01

    Goal-directed action in changing environments requires a dynamic balance between complementary control modes, which serve antagonistic adaptive functions (e.g., to shield goals from competing responses and distracting information vs. to flexibly switch between goals and behavioral dispositions in response to significant changes). Too rigid goal shielding promotes stability but incurs a cost in terms of perseveration and reduced flexibility, whereas too weak goal shielding promotes flexibility but incurs a cost in terms of increased distractibility. While research on cognitive control has long been conducted relatively independently from the study of emotion and motivation, it is becoming increasingly clear that positive affect and reward play a central role in modulating cognitive control. In particular, evidence from the past decade suggests that positive affect not only influences the contents of cognitive processes, but also modulates the balance between complementary modes of cognitive control. In this article we review studies from the past decade that examined effects of induced positive affect on the balance between cognitive stability and flexibility with a focus on set switching and working memory maintenance and updating. Moreover, we review recent evidence indicating that task-irrelevant positive affect and performance-contingent rewards exert different and sometimes opposite effects on cognitive control modes, suggesting dissociations between emotional and motivational effects of positive affect. Finally, we critically review evidence for the popular hypothesis that effects of positive affect may be mediated by dopaminergic modulations of neural processing in prefrontal and striatal brain circuits, and we refine this "dopamine hypothesis of positive affect" by specifying distinct mechanisms by which dopamine may mediate effects of positive affect and reward on cognitive control. We conclude with a discussion of limitations of current research, point to

  20. Soil properties in high-elevation ski slopes

    NASA Astrophysics Data System (ADS)

    Filippa, Gianluca; Freppaz, Michele; Letey, Stéphanie; Corti, Giuseppe; Cocco, Stefania; Zanini, Ermanno

    2010-05-01

    The development of winter sports determines an increasing impact on the high altitude ecosystems, as a consequence of increased participation and an increasing demand of high quality standards for skiable areas. The construction of a ski slope is associated with a certain impact on soil, which varies as a function of the degree of human-induced disturbance to the native substrata. In this work, we provide a description of the characteristics of alpine tundra ski-slope soils and their nutrient status, contrasted with undisturbed areas. The study site is located in the Monterosaski Resort, Aosta Valley, NW Italy (45°51' N; 7°48' E). We chose 5 sites along an altitudinal gradient between 2700 and 2200 m a.s.l.. Per each site, one plot was established on the ski slope, while a control plot was chosen under comparable topographic conditions a few meters apart. Soils were described and samples were collected and analysed for main chemical-physical properties. In addition an evaluation of N forms, organic matter fractionation and microbial biomass was carried out. Soil depth ranged between 10 to more than 70 cm, both on the ski slope and in the undisturbed areas. A true organo-mineral (A) horizon was firstly identified at 2500 m a.s.l., while a weathering horizon (Bw) was detected at 2400 m a.s.l.. However, a Bw horizon thick enough to be recognised as diagnostic for shifting soil classification order from Entisols to Inceptisols (USDA-Soil Taxonomy) was detected only below 2400 m a.s.l.. Lithic Cryorthents were predominant in the upper part of the sequence (above 2500 m a.s.l.), both in the ski slope and the undisturbed areas; Typic Cryorthents were identified between 2500 and 2400 m a.s.l., while Inceptisols were predominant between 2400 and 2200 m a.s.l.. Chemical-physical properties will be discussed focusing on the main differences between ski slope and undisturbed soils, as determined by the ski slope construction. Pedogenetic processes at high altitude are