Sample records for affect species richness

  1. Model uncertainties do not affect observed patterns of species richness in the Amazon.

    PubMed

    Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo; Loyola, Rafael

    2017-01-01

    Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale-patterns of species richness and species vulnerability to climate change-are affected by the inputs used to model and project species distribution. We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of variation, choosing the appropriate statistics

  2. Model uncertainties do not affect observed patterns of species richness in the Amazon

    PubMed Central

    Sales, Lilian Patrícia; Neves, Olívia Viana; De Marco, Paulo

    2017-01-01

    Background Climate change is arguably a major threat to biodiversity conservation and there are several methods to assess its impacts on species potential distribution. Yet the extent to which different approaches on species distribution modeling affect species richness patterns at biogeographical scale is however unaddressed in literature. In this paper, we verified if the expected responses to climate change in biogeographical scale—patterns of species richness and species vulnerability to climate change—are affected by the inputs used to model and project species distribution. Methods We modeled the distribution of 288 vertebrate species (amphibians, birds and mammals), all endemic to the Amazon basin, using different combinations of the following inputs known to affect the outcome of species distribution models (SDMs): 1) biological data type, 2) modeling methods, 3) greenhouse gas emission scenarios and 4) climate forecasts. We calculated uncertainty with a hierarchical ANOVA in which those different inputs were considered factors. Results The greatest source of variation was the modeling method. Model performance interacted with data type and modeling method. Absolute values of variation on suitable climate area were not equal among predictions, but some biological patterns were still consistent. All models predicted losses on the area that is climatically suitable for species, especially for amphibians and primates. All models also indicated a current East-western gradient on endemic species richness, from the Andes foot downstream the Amazon river. Again, all models predicted future movements of species upwards the Andes mountains and overall species richness losses. Conclusions From a methodological perspective, our work highlights that SDMs are a useful tool for assessing impacts of climate change on biodiversity. Uncertainty exists but biological patterns are still evident at large spatial scales. As modeling methods are the greatest source of

  3. Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    NASA Astrophysics Data System (ADS)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2016-01-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.

  4. Urban habitat complexity affects species richness but not environmental filtering of morphologically-diverse ants

    PubMed Central

    Nash, Michael A.; Christie, Fiona J.; Hahs, Amy K.; Livesley, Stephen J.

    2015-01-01

    Habitat complexity is a major determinant of structure and diversity of ant assemblages. Following the size-grain hypothesis, smaller ant species are likely to be advantaged in more complex habitats compared to larger species. Habitat complexity can act as an environmental filter based on species size and morphological traits, therefore affecting the overall structure and diversity of ant assemblages. In natural and semi-natural ecosystems, habitat complexity is principally regulated by ecological successions or disturbance such as fire and grazing. Urban ecosystems provide an opportunity to test relationships between habitat, ant assemblage structure and ant traits using novel combinations of habitat complexity generated and sustained by human management. We sampled ant assemblages in low-complexity and high-complexity parks, and high-complexity woodland remnants, hypothesizing that (i) ant abundance and species richness would be higher in high-complexity urban habitats, (ii) ant assemblages would differ between low- and high-complexity habitats and (iii) ants living in high-complexity habitats would be smaller than those living in low-complexity habitats. Contrary to our hypothesis, ant species richness was higher in low-complexity habitats compared to high-complexity habitats. Overall, ant assemblages were significantly different among the habitat complexity types investigated, although ant size and morphology remained the same. Habitat complexity appears to affect the structure of ant assemblages in urban ecosystems as previously observed in natural and semi-natural ecosystems. However, the habitat complexity filter does not seem to be linked to ant morphological traits related to body size. PMID:26528416

  5. Evaluating species richness: biased ecological inference results from spatial heterogeneity in species detection probabilities

    USGS Publications Warehouse

    McNew, Lance B.; Handel, Colleen M.

    2015-01-01

    Accurate estimates of species richness are necessary to test predictions of ecological theory and evaluate biodiversity for conservation purposes. However, species richness is difficult to measure in the field because some species will almost always be overlooked due to their cryptic nature or the observer's failure to perceive their cues. Common measures of species richness that assume consistent observability across species are inviting because they may require only single counts of species at survey sites. Single-visit estimation methods ignore spatial and temporal variation in species detection probabilities related to survey or site conditions that may confound estimates of species richness. We used simulated and empirical data to evaluate the bias and precision of raw species counts, the limiting forms of jackknife and Chao estimators, and multi-species occupancy models when estimating species richness to evaluate whether the choice of estimator can affect inferences about the relationships between environmental conditions and community size under variable detection processes. Four simulated scenarios with realistic and variable detection processes were considered. Results of simulations indicated that (1) raw species counts were always biased low, (2) single-visit jackknife and Chao estimators were significantly biased regardless of detection process, (3) multispecies occupancy models were more precise and generally less biased than the jackknife and Chao estimators, and (4) spatial heterogeneity resulting from the effects of a site covariate on species detection probabilities had significant impacts on the inferred relationships between species richness and a spatially explicit environmental condition. For a real dataset of bird observations in northwestern Alaska, the four estimation methods produced different estimates of local species richness, which severely affected inferences about the effects of shrubs on local avian richness. Overall, our results

  6. Plant species richness and functional traits affect community stability after a flood event.

    PubMed

    Fischer, Felícia M; Wright, Alexandra J; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W; Pillar, Valério D

    2016-05-19

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. © 2016 The Author(s).

  7. Plant species richness and functional traits affect community stability after a flood event

    PubMed Central

    Fischer, Felícia M.; Wright, Alexandra J.; Eisenhauer, Nico; Ebeling, Anne; Roscher, Christiane; Wagg, Cameron; Weigelt, Alexandra; Weisser, Wolfgang W.; Pillar, Valério D.

    2016-01-01

    Climate change is expected to increase the frequency and magnitude of extreme weather events. It is therefore of major importance to identify the community attributes that confer stability in ecological communities during such events. In June 2013, a flood event affected a plant diversity experiment in Central Europe (Jena, Germany). We assessed the effects of plant species richness, functional diversity, flooding intensity and community means of functional traits on different measures of stability (resistance, resilience and raw biomass changes from pre-flood conditions). Surprisingly, plant species richness reduced community resistance in response to the flood. This was mostly because more diverse communities grew more immediately following the flood. Raw biomass increased over the previous year; this resulted in decreased absolute value measures of resistance. There was no clear response pattern for resilience. We found that functional traits drove these changes in raw biomass: communities with a high proportion of late-season, short-statured plants with dense, shallow roots and small leaves grew more following the flood. Late-growing species probably avoided the flood, whereas greater root length density might have allowed species to better access soil resources brought from the flood, thus growing more in the aftermath. We conclude that resource inputs following mild floods may favour the importance of traits related to resource acquisition and be less associated with flooding tolerance. PMID:27114578

  8. Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe

    Treesearch

    Jens-Christian Svenning; Matthew C. Fitzpatrick; Signe Normand; Catherine H. Graham; Peter B. Pearman; Louis R. Iverson; Flemming Skov

    2010-01-01

    Environmental conditions and biotic interactions are generally thought to influence local species richness. However, immigration and the evolutionary and historical factors that shape regional species pools should also contribute to determining local species richness because local communities arise by assembly from regional species pools. Using the European tree flora...

  9. Landscape composition and habitat area affects butterfly species richness in semi-natural grasslands.

    PubMed

    Ockinger, Erik; Smith, Henrik G

    2006-09-01

    During the last 50 years, the distribution and abundance of many European butterfly species associated with semi-natural grasslands have declined. This may be the result of deteriorating habitat quality, but habitat loss, resulting in decreasing area and increasing isolation of remaining habitat, is also predicted to result in reduced species richness. To investigate the effects of habitat loss on species richness, we surveyed butterflies in semi-natural grasslands of similar quality and structure, but situated in landscapes of different habitat composition. Using spatially explicit habitat data, we selected one large (6-10 ha) and one small (0.5-2 ha) grassland site (pasture) in each of 24 non-overlapping 28.2 km(2) landscapes belonging to three categories differing in the proportion of the area that consisted of semi-natural grasslands. After controlling for local habitat quality, species richness was higher in grassland sites situated in landscapes consisting of a high proportion of grasslands. Species richness was also higher in larger grassland sites, and this effect was more pronounced for sedentary than for mobile species. However, the number of species for a given area did not differ between large and small grasslands. There was also a significant relationship between butterfly species richness and habitat quality in the form of vegetation height and abundance of flowers. In contrast, butterfly density was not related to landscape composition or grassland size. When species respond differently to habitat area or landscape composition this leads to effects on community structure, and nestedness analysis showed that depauperate communities were subsets of richer ones. Both grassland area and landscape composition may have contributed to this pattern, implying that small habitat fragments and landscapes with low proportions of habitat are both likely to mainly contain common generalist species. Based on these results, conservation efforts should aim at

  10. Tree species richness decreases while species evenness increases with disturbance frequency in a natural boreal forest landscape.

    PubMed

    Yeboah, Daniel; Chen, Han Y H; Kingston, Steve

    2016-02-01

    Understanding species diversity and disturbance relationships is important for biodiversity conservation in disturbance-driven boreal forests. Species richness and evenness may respond differently with stand development following fire. Furthermore, few studies have simultaneously accounted for the influences of climate and local site conditions on species diversity. Using forest inventory data, we examined the relationships between species richness, Shannon's index, evenness, and time since last stand-replacing fire (TSF) in a large landscape of disturbance-driven boreal forest. TSF has negative effect on species richness and Shannon's index, and a positive effect on species evenness. Path analysis revealed that the environmental variables affect richness and Shannon's index only through their effects on TSF while affecting evenness directly as well as through their effects on TSF. Synthesis and applications. Our results demonstrate that species richness and Shannon's index decrease while species evenness increases with TSF in a boreal forest landscape. Furthermore, we show that disturbance frequency, local site conditions, and climate simultaneously influence tree species diversity through complex direct and indirect effects in the studied boreal forest.

  11. Does species richness affect fine root biomass and production in young forest plantations?

    PubMed

    Domisch, Timo; Finér, Leena; Dawud, Seid Muhie; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-02-01

    Tree species diversity has been reported to increase forest ecosystem above-ground biomass and productivity, but little is known about below-ground biomass and production in diverse mixed forests compared to single-species forests. For testing whether species richness increases below-ground biomass and production and thus complementarity between forest tree species in young stands, we determined fine root biomass and production of trees and ground vegetation in two experimental plantations representing gradients in tree species richness. Additionally, we measured tree fine root length and determined species composition from fine root biomass samples with the near-infrared reflectance spectroscopy method. We did not observe higher biomass or production in mixed stands compared to monocultures. Neither did we observe any differences in tree root length or fine root turnover. One reason for this could be that these stands were still young, and canopy closure had not always taken place, i.e. a situation where above- or below-ground competition did not yet exist. Another reason could be that the rooting traits of the tree species did not differ sufficiently to support niche differentiation. Our results suggested that functional group identity (i.e. conifers vs. broadleaved species) can be more important for below-ground biomass and production than the species richness itself, as conifers seemed to be more competitive in colonising the soil volume, compared to broadleaved species.

  12. Sown species richness and realized diversity can influence functioning of plant communities differently.

    PubMed

    Rychtecká, Terezie; Lanta, Vojtěch; Weiterová, Iva; Lepš, Jan

    2014-08-01

    Biodiversity-ecosystem functioning experiments (BEF) typically manipulate sown species richness and composition of experimental communities to study ecosystem functioning as a response to changes in diversity. If sown species richness is taken as a measure of diversity and aboveground biomass production as a measure of community functioning, then this relationship is usually found to be positive. The sown species richness can be considered the equivalent of a local species pool in natural communities. However, in addition to species richness, realized diversity is also an important community diversity component. Realized diversity is affected by environmental filtering and biotic interactions operating within a community. As both sown species richness and the realized diversity in BEF studies (as well as local species pool vs observed realized richness in natural communities) can differ markedly, so can their effects on the community functioning. We tested this assumption using two data sets: data from a short-term pot experiment and data from the long-term Jena biodiversity plot experiment. We considered three possible predictors of community functioning (aboveground biomass production): sown species richness, realized diversity (defined as inverse of Simpson dominance index), and survivor species richness. Sown species richness affected biomass production positively in all cases. Realized diversity as well as survivor species richness had positive effects on biomass in approximately half of cases. When realized diversity or survivor species richness was tested together with sown species richness, their partial effects were none or negative. Our results suggest that we can expect positive diversity-productivity relationship when the local species pool size is the decisive factor determining realized observed diversity; in other cases, the shape of the diversity-functioning relationship may be quite opposite.

  13. The Global Distribution and Drivers of Alien Bird Species Richness

    PubMed Central

    Dyer, Ellie E.; Cassey, Phillip; Redding, David W.; Collen, Ben; Franks, Victoria; Gaston, Kevin J.; Jones, Kate E.; Kark, Salit; Orme, C. David L.; Blackburn, Tim M.

    2017-01-01

    Alien species are a major component of human-induced environmental change. Variation in the numbers of alien species found in different areas is likely to depend on a combination of anthropogenic and environmental factors, with anthropogenic factors affecting the number of species introduced to new locations, and when, and environmental factors influencing how many species are able to persist there. However, global spatial and temporal variation in the drivers of alien introduction and species richness remain poorly understood. Here, we analyse an extensive new database of alien birds to explore what determines the global distribution of alien species richness for an entire taxonomic class. We demonstrate that the locations of origin and introduction of alien birds, and their identities, were initially driven largely by European (mainly British) colonialism. However, recent introductions are a wider phenomenon, involving more species and countries, and driven in part by increasing economic activity. We find that, globally, alien bird species richness is currently highest at midlatitudes and is strongly determined by anthropogenic effects, most notably the number of species introduced (i.e., “colonisation pressure”). Nevertheless, environmental drivers are also important, with native and alien species richness being strongly and consistently positively associated. Our results demonstrate that colonisation pressure is key to understanding alien species richness, show that areas of high native species richness are not resistant to colonisation by alien species at the global scale, and emphasise the likely ongoing threats to global environments from introductions of species. PMID:28081142

  14. Context-dependent interactions and the regulation of species richness in freshwater fish.

    PubMed

    MacDougall, Andrew S; Harvey, Eric; McCune, Jenny L; Nilsson, Karin A; Bennett, Joseph; Firn, Jennifer; Bartley, Timothy; Grace, James B; Kelly, Jocelyn; Tunney, Tyler D; McMeans, Bailey; Matsuzaki, Shin-Ichiro S; Kadoya, Taku; Esch, Ellen; Cazelles, Kevin; Lester, Nigel; McCann, Kevin S

    2018-03-06

    Species richness is regulated by a complex network of scale-dependent processes. This complexity can obscure the influence of limiting species interactions, making it difficult to determine if abiotic or biotic drivers are more predominant regulators of richness. Using integrative modeling of freshwater fish richness from 721 lakes along an 11 o latitudinal gradient, we find negative interactions to be a relatively minor independent predictor of species richness in lakes despite the widespread presence of predators. Instead, interaction effects, when detectable among major functional groups and 231 species pairs, were strong, often positive, but contextually dependent on environment. These results are consistent with the idea that negative interactions internally structure lake communities but do not consistently 'scale-up' to regulate richness independently of the environment. The importance of environment for interaction outcomes and its role in the regulation of species richness highlights the potential sensitivity of fish communities to the environmental changes affecting lakes globally.

  15. Context-dependent interactions and the regulation of species richness in freshwater fish

    USGS Publications Warehouse

    MacDougall, Andrew S.; Harvey, Eric; McCune, Jenny L.; Nilsson, Karin A.; Bennett, Joseph; Firn, Jennifer; Bartley, Timothy; Grace, James B.; Kelly, Jocelyn; Tunney, Tyler D.; McMeans, Bailey; Matsuzaki, Shin-Ichiro S.; Kadoya, Taku; Esch, Ellen; Cazelles, Kevin; Lester, Nigel; McCann, Kevin S.

    2018-01-01

    Species richness is regulated by a complex network of scale-dependent processes. This complexity can obscure the influence of limiting species interactions, making it difficult to determine if abiotic or biotic drivers are more predominant regulators of richness. Using integrative modeling of freshwater fish richness from 721 lakes along an 11olatitudinal gradient, we find negative interactions to be a relatively minor independent predictor of species richness in lakes despite the widespread presence of predators. Instead, interaction effects, when detectable among major functional groups and 231 species pairs, were strong, often positive, but contextually dependent on environment. These results are consistent with the idea that negative interactions internally structure lake communities but do not consistently ‘scale-up’ to regulate richness independently of the environment. The importance of environment for interaction outcomes and its role in the regulation of species richness highlights the potential sensitivity of fish communities to the environmental changes affecting lakes globally.

  16. Global patterns and predictors of fish species richness in estuaries.

    PubMed

    Vasconcelos, Rita P; Henriques, Sofia; França, Susana; Pasquaud, Stéphanie; Cardoso, Inês; Laborde, Marina; Cabral, Henrique N

    2015-09-01

    1. Knowledge of global patterns of biodiversity and regulating variables is indispensable to develop predictive models. 2. The present study used predictive modelling approaches to investigate hypotheses that explain the variation in fish species richness between estuaries over a worldwide spatial extent. Ultimately, such models will allow assessment of future changes in ecosystem structure and function as a result of environmental changes. 3. A comprehensive worldwide data base was compiled of the fish assemblage composition and environmental characteristics of estuaries. Generalized Linear Models were used to quantify how variation in species richness among estuaries is related to historical events, energy dynamics and ecosystem characteristics, while controlling for sampling effects. 4. At the global extent, species richness differed among marine biogeographic realms and continents and increased with mean sea surface temperature, terrestrial net primary productivity and the stability of connectivity with a marine ecosystem (open vs. temporarily open estuaries). At a smaller extent (within a marine biogeographic realm or continent), other characteristics were also important in predicting variation in species richness, with species richness increasing with estuary area and continental shelf width. 5. The results suggest that species richness in an estuary is defined by predictors that are spatially hierarchical. Over the largest spatial extents, species richness is influenced by the broader distributions and habitat use patterns of marine and freshwater species that can colonize estuaries, which are in turn governed by history contingency, energy dynamics and productivity variables. Species richness is also influenced by more regional and local parameters that can further affect the process of community colonization in an estuary including the connectivity of the estuary with the adjacent marine habitat, and, over smaller spatial extents, the size of these

  17. Herbivores, tidal elevation, and species richness simultaneously mediate nitrate uptake by seaweed assemblages.

    PubMed

    Bracken, Matthew E S; Jones, Emily; Williams, Susan L

    2011-05-01

    In order for research into the consequences of biodiversity changes to be more applicable to real-world ecosystems, experiments must be conducted in the field, where a variety of factors other than diversity can affect the rates of key biogeochemical and physiological processes. Here, we experimentally evaluate the effects of two factors known to affect the diversity and composition of intertidal seaweed assemblages--tidal elevation and herbivory--on nitrate uptake by those assemblages. Based on surveys of community composition at the end of a 1.5-year press experiment, we found that both tide height and herbivores affected seaweed community structure. Not surprisingly, seaweed species richness was greater at lower tidal elevations. Herbivores did not affect richness, but they altered the types of species that were present; seaweed species characterized by higher rates of nitrate uptake were more abundant in herbivore-removal plots. Both tide height and herbivores affected nitrate uptake by seaweed assemblages. Individual seaweed species, as well as entire seaweed assemblages, living higher on the shore had greater rates of biomass-specific nitrate uptake, particularly at high ambient nitrate concentrations. Grazed seaweed assemblages exhibited reduced nitrate uptake, but only at low nitrate concentrations. We evaluated the effect of seaweed richness on nitrate uptake, both alone and after accounting for effects of tidal elevation and herbivores. When only richness was considered, we found no effect on uptake. However, when simultaneous effects of richness, tide height, and herbivores on uptake were evaluated, we found that all three had relatively large and comparable effects on nitrate uptake coefficients and that there was a negative relationship between seaweed richness and nitrate uptake. Particularly because effects of richness on uptake were not apparent unless the effects of tide height and herbivory were also considered, these results highlight the

  18. Species richness alters spatial nutrient heterogeneity effects on above-ground plant biomass.

    PubMed

    Xi, Nianxun; Zhang, Chunhui; Bloor, Juliette M G

    2017-12-01

    Previous studies have suggested that spatial nutrient heterogeneity promotes plant nutrient capture and growth. However, little is known about how spatial nutrient heterogeneity interacts with key community attributes to affect plant community production. We conducted a meta-analysis to investigate how nitrogen heterogeneity effects vary with species richness and plant density. Effect size was calculated using the natural log of the ratio in plant biomass between heterogeneous and homogeneous conditions. Effect sizes were significantly above zero, reflecting positive effects of spatial nutrient heterogeneity on community production. However, species richness decreased the magnitude of heterogeneity effects on above-ground biomass. The magnitude of heterogeneity effects on below-ground biomass did not vary with species richness. Moreover, we detected no modification in heterogeneity effects with plant density. Our results highlight the importance of species richness for ecosystem function. Asynchrony between above- and below-ground responses to spatial nutrient heterogeneity and species richness could have significant implications for biotic interactions and biogeochemical cycling in the long term. © 2017 The Author(s).

  19. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern

    USGS Publications Warehouse

    Maestre, F.T.; Castillo-Monroy, A. P.; Bowker, M.A.; Ochoa-Hueso, R.

    2012-01-01

    1. Recent studies have suggested that the simultaneous maintenance of multiple ecosystem functions (multifunctionality) is positively supported by species richness. However, little is known regarding the relative importance of other community attributes (e.g. spatial pattern, species evenness) as drivers of multifunctionality. 2. We conducted two microcosm experiments using model biological soil crust communities dominated by lichens to: (i) evaluate the joint effects and relative importance of changes in species composition, spatial pattern (clumped and random distribution of lichens), evenness (maximal and low evenness) and richness (from two to eight species) on soil functions related to nutrient cycling (β-glucosidase, urease and acid phosphatase enzymes, in situ N availability, total N, organic C, and N fixation), and (ii) assess how these community attributes affect multifunctionality. 3. Species richness, composition and spatial pattern affected multiple ecosystem functions (e.g. organic C, total N, N availability, β-glucosidase activity), albeit the magnitude and direction of their effects varied with the particular function, experiment and soil depth considered. Changes in species composition had effects on organic C, total N and the activity of β-glucosidase. Significant species richness × evenness and spatial pattern × evenness interactions were found when analysing functions such as organic C, total N and the activity of phosphatase. 4. The probability of sustaining multiple ecosystem functions increased with species richness, but this effect was largely modulated by attributes such as species evenness, composition and spatial pattern. Overall, we found that model communities with high species richness, random spatial pattern and low evenness increased multifunctionality. 5. Synthesis. Our results illustrate how different community attributes have a diverse impact on ecosystem functions related to nutrient cycling, and provide new

  20. Woody plant phylogenetic diversity mediates bottom-up control of arthropod biomass in species-rich forests.

    PubMed

    Schuldt, Andreas; Baruffol, Martin; Bruelheide, Helge; Chen, Simon; Chi, Xiulian; Wall, Marcus; Assmann, Thorsten

    2014-09-01

    Global change is predicted to cause non-random species loss in plant communities, with consequences for ecosystem functioning. However, beyond the simple effects of plant species richness, little is known about how plant diversity and its loss influence higher trophic levels, which are crucial to the functioning of many species-rich ecosystems. We analyzed to what extent woody plant phylogenetic diversity and species richness contribute to explaining the biomass and abundance of herbivorous and predatory arthropods in a species-rich forest in subtropical China. The biomass and abundance of leaf-chewing herbivores, and the biomass dispersion of herbivores within plots, increased with woody plant phylogenetic diversity. Woody plant species richness had much weaker effects on arthropods, but interacted with plant phylogenetic diversity to negatively affect the ratio of predator to herbivore biomass. Overall, our results point to a strong bottom-up control of functionally important herbivores mediated particularly by plant phylogenetic diversity, but do not support the general expectation that top-down predator effects increase with plant diversity. The observed effects appear to be driven primarily by increasing resource diversity rather than diversity-dependent primary productivity, as the latter did not affect arthropods. The strong effects of plant phylogenetic diversity and the overall weaker effects of plant species richness show that the diversity-dependence of ecosystem processes and interactions across trophic levels can depend fundamentally on non-random species associations. This has important implications for the regulation of ecosystem functions via trophic interaction pathways and for the way species loss may impact these pathways in species-rich forests.

  1. Historical and ecological drivers of the spatial pattern of Chondrichthyes species richness in the Mediterranean Sea.

    PubMed

    Meléndez, María José; Báez, José Carlos; Serna-Quintero, José Miguel; Camiñas, Juan Antonio; Fernández, Ignacio de Loyola; Real, Raimundo; Macías, David

    2017-01-01

    Chondrichthyes, which include Elasmobranchii (sharks and batoids) and Holocephali (chimaeras), are a relatively small group in the Mediterranean Sea (89 species) playing a key role in the ecosystems where they are found. At present, many species of this group are threatened as a result of anthropogenic effects, including fishing activity. Knowledge of the spatial distribution of these species is of great importance to understand their ecological role and for the efficient management of their populations, particularly if affected by fisheries. This study aims to analyze the spatial patterns of the distribution of Chondrichthyes species richness in the Mediterranean Sea. Information provided by the studied countries was used to model geographical and ecological variables affecting the Chondrichthyes species richness. The species were distributed in 16 Operational Geographical Units (OGUs), derived from the Geographical Sub-Areas (GSA) adopted by the General Fisheries Commission of the Mediterranean Sea (GFCM). Regression analyses with the species richness as a target variable were adjusted with a set of environmental and geographical variables, being the model that links richness of Chondrichthyes species with distance to the Strait of Gibraltar and number of taxonomic families of bony fishes the one that best explains it. This suggests that both historical and ecological factors affect the current distribution of Chondrichthyes within the Mediterranean Sea.

  2. Impact of greenspaces in city on avian species richness and abundance in Northern Africa.

    PubMed

    Aouissi, Hani Amir; Gasparini, Julien; Belabed, Adnène Ibrahim; Bouslama, Zihad

    2017-08-01

    Increasing urbanization is a major challenge in the context of global changes, because this environment is known to negatively impact biodiversity. It is therefore important to identify factors maintaining biodiversity in such areas. Here, we tested in 650 sites whether the greenspaces in urbanized area of Annaba (Algeria) has positive effects on avian species richness and abundances. Our results show that species detection (n=26) is more important during the breeding season as compared to the winter season, and that avian species richness is positively affected by the greenspaces. For most species, greenspaces impact positively their presence and abundances. Only the feral pigeon was less detected in greenspaces as compared to built-up areas. Our study therefore confirmed, for the first time in a Northern African city, that greenspaces significantly increase the species richness and abundances of birds, and shows that the season can profoundly affect such indicators. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  3. Species richness and trophic diversity increase decomposition in a co-evolved food web.

    PubMed

    Baiser, Benjamin; Ardeshiri, Roxanne S; Ellison, Aaron M

    2011-01-01

    Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.

  4. Species Richness and Trophic Diversity Increase Decomposition in a Co-Evolved Food Web

    PubMed Central

    Baiser, Benjamin; Ardeshiri, Roxanne S.; Ellison, Aaron M.

    2011-01-01

    Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators — larvae of the pitcher-plant mosquito — indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species. PMID:21673992

  5. Historical and ecological drivers of the spatial pattern of Chondrichthyes species richness in the Mediterranean Sea

    PubMed Central

    Serna-Quintero, José Miguel; Camiñas, Juan Antonio; Fernández, Ignacio de Loyola; Real, Raimundo; Macías, David

    2017-01-01

    Chondrichthyes, which include Elasmobranchii (sharks and batoids) and Holocephali (chimaeras), are a relatively small group in the Mediterranean Sea (89 species) playing a key role in the ecosystems where they are found. At present, many species of this group are threatened as a result of anthropogenic effects, including fishing activity. Knowledge of the spatial distribution of these species is of great importance to understand their ecological role and for the efficient management of their populations, particularly if affected by fisheries. This study aims to analyze the spatial patterns of the distribution of Chondrichthyes species richness in the Mediterranean Sea. Information provided by the studied countries was used to model geographical and ecological variables affecting the Chondrichthyes species richness. The species were distributed in 16 Operational Geographical Units (OGUs), derived from the Geographical Sub-Areas (GSA) adopted by the General Fisheries Commission of the Mediterranean Sea (GFCM). Regression analyses with the species richness as a target variable were adjusted with a set of environmental and geographical variables, being the model that links richness of Chondrichthyes species with distance to the Strait of Gibraltar and number of taxonomic families of bony fishes the one that best explains it. This suggests that both historical and ecological factors affect the current distribution of Chondrichthyes within the Mediterranean Sea. PMID:28406963

  6. Estimating species richness and accumulation by modeling species occurrence and detectability

    USGS Publications Warehouse

    Dorazio, R.M.; Royle, J. Andrew; Soderstrom, B.; Glimskarc, A.

    2006-01-01

    A statistical model is developed for estimating species richness and accumulation by formulating these community-level attributes as functions of model-based estimators of species occurrence while accounting for imperfect detection of individual species. The model requires a sampling protocol wherein repeated observations are made at a collection of sample locations selected to be representative of the community. This temporal replication provides the data needed to resolve the ambiguity between species absence and nondetection when species are unobserved at sample locations. Estimates of species richness and accumulation are computed for two communities, an avian community and a butterfly community. Our model-based estimates suggest that detection failures in many bird species were attributed to low rates of occurrence, as opposed to simply low rates of detection. We estimate that the avian community contains a substantial number of uncommon species and that species richness greatly exceeds the number of species actually observed in the sample. In fact, predictions of species accumulation suggest that even doubling the number of sample locations would not have revealed all of the species in the community. In contrast, our analysis of the butterfly community suggests that many species are relatively common and that the estimated richness of species in the community is nearly equal to the number of species actually detected in the sample. Our predictions of species accumulation suggest that the number of sample locations actually used in the butterfly survey could have been cut in half and the asymptotic richness of species still would have been attained. Our approach of developing occurrence-based summaries of communities while allowing for imperfect detection of species is broadly applicable and should prove useful in the design and analysis of surveys of biodiversity.

  7. Limited sampling hampers "big data" estimation of species richness in a tropical biodiversity hotspot.

    PubMed

    Engemann, Kristine; Enquist, Brian J; Sandel, Brody; Boyle, Brad; Jørgensen, Peter M; Morueta-Holme, Naia; Peet, Robert K; Violle, Cyrille; Svenning, Jens-Christian

    2015-02-01

    Macro-scale species richness studies often use museum specimens as their main source of information. However, such datasets are often strongly biased due to variation in sampling effort in space and time. These biases may strongly affect diversity estimates and may, thereby, obstruct solid inference on the underlying diversity drivers, as well as mislead conservation prioritization. In recent years, this has resulted in an increased focus on developing methods to correct for sampling bias. In this study, we use sample-size-correcting methods to examine patterns of tropical plant diversity in Ecuador, one of the most species-rich and climatically heterogeneous biodiversity hotspots. Species richness estimates were calculated based on 205,735 georeferenced specimens of 15,788 species using the Margalef diversity index, the Chao estimator, the second-order Jackknife and Bootstrapping resampling methods, and Hill numbers and rarefaction. Species richness was heavily correlated with sampling effort, and only rarefaction was able to remove this effect, and we recommend this method for estimation of species richness with "big data" collections.

  8. Epiphytes in wooded pastures: Isolation matters for lichen but not for bryophyte species richness

    PubMed Central

    Keller, Christine; Scheidegger, Christoph; Bergamini, Ariel

    2017-01-01

    Sylvo-pastoral systems are species-rich man-made landscapes that are currently often severely threatened by abandonment or management intensification. At low tree densities, single trees in these systems represent habitat islands for epiphytic cryptogams. Here, we focused on sycamore maple (Acer pseudoplatanus) wooded pastures in the northern European Alps. We assessed per tree species richness of bryophytes and lichens on 90 sycamore maple trees distributed across six study sites. We analysed the effects of a range of explanatory variables (tree characteristics, environmental variables and isolation measures) on the richness of epiphytic bryophytes and lichens and various functional subgroups (based on diaspore size, habitat preference and red list status). Furthermore, we estimated the effect of these variables on the occurrence of two specific bryophyte species (Tayloria rudolphiana, Orthotrichum rogeri) and one lichen species (Lobaria pulmonaria) of major conservation concern. Bryophytes and lichens, as well as their subgroups, were differently and sometimes contrastingly affected by the variables considered: tree diameter at breast height had no significant effect on bryophytes but negatively affected many lichen groups; tree phenological age positively affected red-listed lichens but not red-listed bryophytes; increasing isolation from neighbouring trees negatively affected lichens but not bryophytes. However, the high-priority bryophyte species T. rudolphiana was also negatively affected by increased isolation at small spatial scales. Orthotrichum rogeri was more frequent on young trees and L. pulmonaria was more frequent on trees with thin stems and large crowns. The results indicate that local dispersal is important for lichens, whereas long distance dispersal seems to be more important for colonisation by bryophytes. Furthermore, our study highlights that different conservation measures need to be taken depending on the taxonomic and functional species

  9. Do non-native plant species affect the shape of productivity-diversity relationships?

    USGS Publications Warehouse

    Drake, J.M.; Cleland, E.E.; Horner-Devine, M. C.; Fleishman, E.; Bowles, C.; Smith, M.D.; Carney, K.; Emery, S.; Gramling, J.; Vandermast, D.B.; Grace, J.B.

    2008-01-01

    The relationship between ecosystem processes and species richness is an active area of research and speculation. Both theoretical and experimental studies have been conducted in numerous ecosystems. One finding of these studies is that the shape of the relationship between productivity and species richness varies considerably among ecosystems and at different spatial scales, though little is known about the relative importance of physical and biological mechanisms causing this variation. Moreover, despite widespread concern about changes in species' global distributions, it remains unclear if and how such large-scale changes may affect this relationship. We present a new conceptual model of how invasive species might modulate relationships between primary production and species richness. We tested this model using long-term data on relationships between aboveground net primary production and species richness in six North American terrestrial ecosystems. We show that primary production and abundance of non-native species are both significant predictors of species richness, though we fail to detect effects of invasion extent on the shapes of the relationship between species richness and primary production.

  10. Program SimAssem: software for simulating species assemblages and estimating species richness

    Treesearch

    Gordon C. Reese; Kenneth R. Wilson; Curtis H. Flather

    2013-01-01

    1. Species richness, the number of species in a defined area, is the most frequently used biodiversity measure. Despite its intuitive appeal and conceptual simplicity, species richness is often difficult to quantify, even in well surveyed areas, because of sampling limitations such as survey effort and species detection probability....

  11. Geomorphic controls on elevational gradients of species richness.

    PubMed

    Bertuzzo, Enrico; Carrara, Francesco; Mari, Lorenzo; Altermatt, Florian; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2016-02-16

    Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity.

  12. Geomorphic controls on elevational gradients of species richness

    PubMed Central

    Bertuzzo, Enrico; Carrara, Francesco; Mari, Lorenzo; Altermatt, Florian; Rodriguez-Iturbe, Ignacio; Rinaldo, Andrea

    2016-01-01

    Elevational gradients of biodiversity have been widely investigated, and yet a clear interpretation of the biotic and abiotic factors that determine how species richness varies with elevation is still elusive. In mountainous landscapes, habitats at different elevations are characterized by different areal extent and connectivity properties, key drivers of biodiversity, as predicted by metacommunity theory. However, most previous studies directly correlated species richness to elevational gradients of potential drivers, thus neglecting the interplay between such gradients and the environmental matrix. Here, we investigate the role of geomorphology in shaping patterns of species richness. We develop a spatially explicit zero-sum metacommunity model where species have an elevation-dependent fitness and otherwise neutral traits. Results show that ecological dynamics over complex terrains lead to the null expectation of a hump-shaped elevational gradient of species richness, a pattern widely observed empirically. Local species richness is found to be related to the landscape elevational connectivity, as quantified by a newly proposed metric that applies tools of complex network theory to measure the closeness of a site to others with similar habitat. Our theoretical results suggest clear geomorphic controls on elevational gradients of species richness and support the use of the landscape elevational connectivity as a null model for the analysis of the distribution of biodiversity. PMID:26831107

  13. Beneath the veil: Plant growth form influences the strength of species richness-productivity relationships in forests

    USGS Publications Warehouse

    Oberle, B.; Grace, J.B.; Chase, J.M.

    2009-01-01

    Aim: Species richness has been observed to increase with productivity at large spatial scales, though the strength of this relationship varies among functional groups. In forests, canopy trees shade understorey plants, and for this reason we hypothesize that species richness of canopy trees will depend on macroclimate, while species richness of shorter growth forms will additionally be affected by shading from the canopy. In this study we test for differences in species richness-productivity relationships (SRPRs) among growth forms (canopy trees, shrubs, herbaceous species) in small forest plots. Location: We analysed 231 plots ranging from 34.0?? to 48.3?? N latitude and from 75.0?? to 124.2?? W longitude in the United States. Methods: We analysed data collected by the USDA Forest Inventory and Analysis program for plant species richness partitioned into different growth forms, in small plots. We used actual evapotranspiration as a macroclimatic estimate of regional productivity and calculated the area of light-blocking tissue in the immediate area surrounding plots for an estimate of the intensity of local shading. We estimated and compared SRPRs for different partitions of the species richness dataset using generalized linear models and we incorporated the possible indirect effects of shading using a structural equation model. Results: Canopy tree species richness increased strongly with regional productivity, while local shading primarily explained the variation in herbaceous plant richness. Shrub species richness was related to both regional productivity and local shading. Main conclusions: The relationship between total forest plant species richness and productivity at large scales belies strong effects of local interactions. Counter to the pattern for overall richness, we found that understorey herbaceous plant species richness does not respond to regional productivity gradients, and instead is strongly influenced by canopy density, while shrub species

  14. Limited sampling hampers “big data” estimation of species richness in a tropical biodiversity hotspot

    PubMed Central

    Engemann, Kristine; Enquist, Brian J; Sandel, Brody; Boyle, Brad; Jørgensen, Peter M; Morueta-Holme, Naia; Peet, Robert K; Violle, Cyrille; Svenning, Jens-Christian

    2015-01-01

    Macro-scale species richness studies often use museum specimens as their main source of information. However, such datasets are often strongly biased due to variation in sampling effort in space and time. These biases may strongly affect diversity estimates and may, thereby, obstruct solid inference on the underlying diversity drivers, as well as mislead conservation prioritization. In recent years, this has resulted in an increased focus on developing methods to correct for sampling bias. In this study, we use sample-size-correcting methods to examine patterns of tropical plant diversity in Ecuador, one of the most species-rich and climatically heterogeneous biodiversity hotspots. Species richness estimates were calculated based on 205,735 georeferenced specimens of 15,788 species using the Margalef diversity index, the Chao estimator, the second-order Jackknife and Bootstrapping resampling methods, and Hill numbers and rarefaction. Species richness was heavily correlated with sampling effort, and only rarefaction was able to remove this effect, and we recommend this method for estimation of species richness with “big data” collections. PMID:25692000

  15. The relationship between species richness and aboveground biomass in a primary Pinus kesiya forest of Yunnan, southwestern China.

    PubMed

    Li, Shuaifeng; Lang, Xuedong; Liu, Wande; Ou, Guanglong; Xu, Hui; Su, Jianrong

    2018-01-01

    The relationship between biodiversity and biomass is an essential element of the natural ecosystem functioning. Our research aims at assessing the effects of species richness on the aboveground biomass and the ecological driver of this relationship in a primary Pinus kesiya forest. We sampled 112 plots of the primary P. kesiya forests in Yunnan Province. The general linear model and the structural equation model were used to estimate relative effects of multivariate factors among aboveground biomass, species richness and the other explanatory variables, including climate moisture index, soil nutrient regime and stand age. We found a positive linear regression relationship between the species richness and aboveground biomass using ordinary least squares regressions. The species richness and soil nutrient regime had no direct significant effect on aboveground biomass. However, the climate moisture index and stand age had direct effects on aboveground biomass. The climate moisture index could be a better link to mediate the relationship between species richness and aboveground biomass. The species richness affected aboveground biomass which was mediated by the climate moisture index. Stand age had direct and indirect effects on aboveground biomass through the climate moisture index. Our results revealed that climate moisture index had a positive feedback in the relationship between species richness and aboveground biomass, which played an important role in a link between biodiversity maintenance and ecosystem functioning. Meanwhile, climate moisture index not only affected positively on aboveground biomass, but also indirectly through species richness. The information would be helpful in understanding the biodiversity-aboveground biomass relationship of a primary P. kesiya forest and for forest management.

  16. Species richness inside and outside long-term exclosures

    Treesearch

    W. A. Laycock; D. L. Bartos; K. D. Klement

    2004-01-01

    Recent environmental literature contains claims that livestock grazing has caused reduction in species diversity on Western rangelands. Data of species richness (number of species) is presented from inside and outside 24 long-term exclosures in Montana, Utah, and Wyoming. For the average of all exclosures there was no difference between species richness inside and...

  17. Reef flattening effects on total richness and species responses in the Caribbean.

    PubMed

    Newman, Steven P; Meesters, Erik H; Dryden, Charlie S; Williams, Stacey M; Sanchez, Cristina; Mumby, Peter J; Polunin, Nicholas V C

    2015-11-01

    . maculipinna, Malacoctenus triangulatus and Stegastes partitus) more common at lower reef complexity levels. A significant interaction between country and reef complexity revealed a non-additive decline in species richness in areas of low complexity and the reserve in Puerto Rico. Flattening of Caribbean coral reefs will result in substantial species losses, with few winners. Individual structural components have considerable value to different species, and their loss may have profound impacts on population responses of coral and fish due to identity effects of key species, which underpin population richness and resilience and may affect essential ecosystem processes and services. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  18. Evaluating effects of habitat loss and land-use continuity on ant species richness in seminatural grassland remnants.

    PubMed

    Dauber, Jens; Bengtsson, Jan; Lenoir, Lisette

    2006-08-01

    Seminatural grasslands in Europe are susceptible to habitat destruction and fragmentation that result in negative effects on biodiversity because of increased isolation and area effects on extinction rate. However even small habitatpatches of seminatural grasslands might be of value for conservation and restoration of species richness in a landscape with a long history of management, which has been argued to lead to high species richness. We tested whether ant communities have been negatively affected by habitat loss and increased isolation of seminatural grasslands during the twentieth century. We examined species richness and community composition in seminatural grasslands of different size in a mosaic landscape in Central Sweden. Grasslands managed continuously over centuries harbored species-rich and ecologically diverse ant communities. Grassland remnant size had no effect on ant species richness. Small grassland remnants did not harbor a nested subset of the ant species of larger habitats. Community composition of ants was mainly affected by habitat conditions. Our results suggest that the abandonment of traditional land use and the encroachment of trees, rather than the effects of fragmentation, are important for species composition in seminatural grasslands. Our results highlight the importance of considering land-use continuity and dispersal ability of thefocal organisms when examining the effects of habitat loss and fragmentation on biodiversity. Landscape history should be considered in conservation programs focusing on effects of land-use change.

  19. Herbivore species richness, composition and community structure mediate predator richness effects and top-down control of herbivore biomass.

    PubMed

    Wilby, Andrew; Orwin, Kate H

    2013-08-01

    Changes in predator species richness can have important consequences for ecosystem functioning at multiple trophic levels, but these effects are variable and depend on the ecological context in addition to the properties of predators themselves. Here, we report an experimental study to test how species identity, community attributes, and community structure at the herbivore level moderate the effects of predator richness on ecosystem functioning. Using mesocosms containing predatory insects and aphid prey, we independently manipulated species richness at both predator and herbivore trophic levels. Community structure was also manipulated by changing the distribution of herbivore species across two plant species. Predator species richness and herbivore species richness were found to negatively interact to influence predator biomass accumulation, an effect which is hypothesised to be due to the breakdown of functional complementarity among predators in species-rich herbivore assemblages. The strength of predator suppression of herbivore biomass decreased as herbivore species richness and distribution across host plants increased, and positive predator richness effects on herbivore biomass suppression were only observed in herbivore assemblages of relatively low productivity. In summary, the study shows that the species richness, productivity and host plant distribution of prey communities can all moderate the general influence of predators and the emergence of predator species richness effects on ecosystem functioning.

  20. Planting richness affects the recovery of vegetation and soil processes in constructed wetlands following disturbance

    USGS Publications Warehouse

    Means, Mary M.; Ahn, Changwoo; Noe, Gregory

    2017-01-01

    The resilience of constructed wetland ecosystems to severe disturbance, such as a mass herbivory eat-out or soil disturbance, remains poorly understood. In this study, we use a controlled mesocosm experiment to examine how original planting diversity affects the ability of constructed freshwater wetlands to recover structurally and functionally after a disturbance (i.e., aboveground harvesting and soil coring). We assessed if the planting richness of macrophyte species influences recovery of constructed wetlands one year after a disturbance. Mesocosms were planted in richness groups with various combinations of either 1, 2, 3, or 4 species (RG 1–4) to create a gradient of richness. Structural wetland traits measured include morphological regrowth of macrophytes, soil bulk density, soil moisture, soil %C, and soil %N. Functional wetland traits measured include above ground biomass production, soil potential denitrification, and soil potential microbial respiration. Total mesocosm cover increased along the gradient of plant richness (43.5% in RG 1 to 84.5% in RG 4) in the growing season after the disturbance, although not all planted individuals recovered. This was largely attributed to the dominance of the obligate annual species. The morphology of each species was affected negatively by the disturbance, producing shorter, and fewer stems than in the years prior to the disturbance, suggesting that the communities had not fully recovered one year after the disturbance. Soil characteristics were almost uniform across the planting richness gradient, but for a few exceptions (%C, C:N, and non-growing season soil moisture were higher slightly in RG 2). Denitrification potential (DEA) increased with increasing planting richness and was influenced by the abundance and quality of soil C. Increased open space in unplanted mesocosms and mesocosms with lower species richness increased labile C, leading to higher C mineralization rates.

  1. Differences in species richness patterns between unicellular and multicellular organisms.

    PubMed

    Hillebrand, Helmut; Watermann, Frank; Karez, Rolf; Berninger, Ulrike-G

    2001-01-01

    For unicellular organisms, a lack of effects of local species richness on ecosystem function has been proposed due to their locally high species richness and their ubiquitous distribution. High dispersal ability and high individual numbers may enable unicellular taxa to occur everywhere. Using our own and published data sets on uni- and multicellular organisms, we conducted thorough statistical analyses to test whether (1) unicellular taxa show higher relative local species richness compared to multicellular taxa, (2) unicellular taxa show lower slopes of the species:area relationships and species:individuals relationships, and (3) the species composition of unicellular taxa is less influenced by geographic distance compared to multicellular taxa. We found higher local species richness compared to the global species pool for unicellular organisms than for metazoan taxa. The difference was significant if global species richness was conservatively estimated but not if extrapolated, and therefore higher richness estimates were used. Both microalgae and protozoans showed lower slopes between species richness and sample size (area or individuals) compared to macrozoobenthos, also indicating higher local species richness for unicellular taxa. The similarity of species composition of both benthic diatoms and ciliates decreased with increasing geographic distance. This indicated restricted dispersal ability of protists and the absence of ubiquity. However, a steeper slope between similarity and distance was found for polychaetes and corals, suggesting a stronger effect of distance on the dispersal of metazoans compared to unicellular taxa. In conclusion, we found partly different species richness patterns among uni- and multicellular eukaryotes, but no strict ubiquity of unicellular taxa. Therefore, the effect of local unicellular species richness on ecosystem function has to be reanalyzed. Macroecological patterns suggested for multicellular organisms may differ in

  2. Grassland invader responses to realistic changes in native species richness.

    PubMed

    Rinella, Matthew J; Pokorny, Monica L; Rekaya, Romdhane

    2007-09-01

    The importance of species richness for repelling exotic plant invasions varies from ecosystem to ecosystem. Thus, in order to prioritize conservation objectives, it is critical to identify those ecosystems where decreasing richness will most greatly magnify invasion risks. Our goal was to determine if invasion risks greatly increase in response to common reductions in grassland species richness. We imposed treatments that mimic management-induced reductions in grassland species richness (i.e., removal of shallow- and/or deep-rooted forbs and/or grasses and/or cryptogam layers). Then we introduced and monitored the performance of a notorious invasive species (i.e., Centaurea maculosa). We found that, on a per-gram-of-biomass basis, each resident plant group similarly suppressed invader growth. Hence, with respect to preventing C. maculosa invasions, maintaining overall productivity is probably more important than maintaining the productivity of particular plant groups or species. But at the sites we studied, all plant groups may be needed to maintain overall productivity because removing forbs decreased overall productivity in two of three years. Alternatively, removing forbs increased productivity in another year, and this led us to posit that removing forbs may inflate the temporal productivity variance as opposed to greatly affecting time-averaged productivity. In either case, overall productivity responses to single plant group removals were inconsistent and fairly modest, and only when all plant groups were removed did C. maculosa growth increase substantially over a no-removal treatment. As such, it seems that intense disturbances (e.g., prolonged drought, overgrazing) that deplete multiple plant groups may often be a prerequisite for C. maculosa invasion.

  3. Species richness of arbuscular mycorrhizal fungi: associations with grassland plant richness and biomass.

    PubMed

    Hiiesalu, Inga; Pärtel, Meelis; Davison, John; Gerhold, Pille; Metsis, Madis; Moora, Mari; Öpik, Maarja; Vasar, Martti; Zobel, Martin; Wilson, Scott D

    2014-07-01

    Although experiments show a positive association between vascular plant and arbuscular mycorrhizal fungal (AMF) species richness, evidence from natural ecosystems is scarce. Furthermore, there is little knowledge about how AMF richness varies with belowground plant richness and biomass. We examined relationships among AMF richness, above- and belowground plant richness, and plant root and shoot biomass in a native North American grassland. Root-colonizing AMF richness and belowground plant richness were detected from the same bulk root samples by 454-sequencing of the AMF SSU rRNA and plant trnL genes. In total we detected 63 AMF taxa. Plant richness was 1.5 times greater belowground than aboveground. AMF richness was significantly positively correlated with plant species richness, and more strongly with below- than aboveground plant richness. Belowground plant richness was positively correlated with belowground plant biomass and total plant biomass, whereas aboveground plant richness was positively correlated only with belowground plant biomass. By contrast, AMF richness was negatively correlated with belowground and total plant biomass. Our results indicate that AMF richness and plant belowground richness are more strongly related with each other and with plant community biomass than with the plant aboveground richness measures that have been almost exclusively considered to date. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Vascular plant species richness along environmental gradients in a cool temperate to sub-alpine mountainous zone in central Japan.

    PubMed

    Tsujino, Riyou; Yumoto, Takakazu

    2013-03-01

    In order to clarify how vegetation types change along the environmental gradients in a cool temperate to sub-alpine mountainous zone and the determinant factors that define plant species richness, we established 360 plots (each 4 × 10 m) within which the vegetation type, species richness, elevation, topographic position index (TPI), slope inclination, and ground light index (GLI) of the natural vegetation were surveyed. Mean elevation, TPI, slope inclination, and GLI differed across vegetation types. Tree species richness was negatively correlated with elevation, whereas fern and herb species richness were positively correlated. Tree species richness was greater in the upper slope area than the lower slope area, whereas fern and herb species richness were greater in the lower slope area. Ferns and trees species richness were smaller in the open canopy, whereas herb species richness was greater in the open canopy. Vegetation types were determined firstly by elevation and secondary by topographic configurations, such as topographic position, and slope inclination. Elevation and topography were the most important factors affecting plant richness, but the most influential variables differed among plant life-form groups. Moreover, the species richness responses to these environmental gradients greatly differed among ferns, herbs, and trees.

  5. Shifts of community composition and population density substantially affect ecosystem function despite invariant richness.

    PubMed

    Spaak, Jurg W; Baert, Jan M; Baird, Donald J; Eisenhauer, Nico; Maltby, Lorraine; Pomati, Francesco; Radchuk, Viktoriia; Rohr, Jason R; Van den Brink, Paul J; De Laender, Frederik

    2017-10-01

    There has been considerable focus on the impacts of environmental change on ecosystem function arising from changes in species richness. However, environmental change may affect ecosystem function without affecting richness, most notably by affecting population densities and community composition. Using a theoretical model, we find that, despite invariant richness, (1) small environmental effects may already lead to a collapse of function; (2) competitive strength may be a less important determinant of ecosystem function change than the selectivity of the environmental change driver and (3) effects on ecosystem function increase when effects on composition are larger. We also present a complementary statistical analysis of 13 data sets of phytoplankton and periphyton communities exposed to chemical stressors and show that effects on primary production under invariant richness ranged from -75% to +10%. We conclude that environmental protection goals relying on measures of richness could underestimate ecological impacts of environmental change. © 2017 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.

  6. Patterns and multi-scale drivers of phytoplankton species richness in temperate peri-urban lakes.

    PubMed

    Catherine, Arnaud; Selma, Maloufi; Mouillot, David; Troussellier, Marc; Bernard, Cécile

    2016-07-15

    Local species richness (SR) is a key characteristic affecting ecosystem functioning. Yet, the mechanisms regulating phytoplankton diversity in freshwater ecosystems are not fully understood, especially in peri-urban environments where anthropogenic pressures strongly impact the quality of aquatic ecosystems. To address this issue, we sampled the phytoplankton communities of 50 lakes in the Paris area (France) characterized by a large gradient of physico-chemical and catchment-scale characteristics. We used large phytoplankton datasets to describe phytoplankton diversity patterns and applied a machine-learning algorithm to test the degree to which species richness patterns are potentially controlled by environmental factors. Selected environmental factors were studied at two scales: the lake-scale (e.g. nutrients concentrations, water temperature, lake depth) and the catchment-scale (e.g. catchment, landscape and climate variables). Then, we used a variance partitioning approach to evaluate the interaction between lake-scale and catchment-scale variables in explaining local species richness. Finally, we analysed the residuals of predictive models to identify potential vectors of improvement of phytoplankton species richness predictive models. Lake-scale and catchment-scale drivers provided similar predictive accuracy of local species richness (R(2)=0.458 and 0.424, respectively). Both models suggested that seasonal temperature variations and nutrient supply strongly modulate local species richness. Integrating lake- and catchment-scale predictors in a single predictive model did not provide increased predictive accuracy; therefore suggesting that the catchment-scale model probably explains observed species richness variations through the impact of catchment-scale variables on in-lake water quality characteristics. Models based on catchment characteristics, which include simple and easy to obtain variables, provide a meaningful way of predicting phytoplankton species

  7. The relationship between species richness and aboveground biomass in a primary Pinus kesiya forest of Yunnan, southwestern China

    PubMed Central

    Li, Shuaifeng; Lang, Xuedong; Liu, Wande; Ou, Guanglong; Xu, Hui

    2018-01-01

    The relationship between biodiversity and biomass is an essential element of the natural ecosystem functioning. Our research aims at assessing the effects of species richness on the aboveground biomass and the ecological driver of this relationship in a primary Pinus kesiya forest. We sampled 112 plots of the primary P. kesiya forests in Yunnan Province. The general linear model and the structural equation model were used to estimate relative effects of multivariate factors among aboveground biomass, species richness and the other explanatory variables, including climate moisture index, soil nutrient regime and stand age. We found a positive linear regression relationship between the species richness and aboveground biomass using ordinary least squares regressions. The species richness and soil nutrient regime had no direct significant effect on aboveground biomass. However, the climate moisture index and stand age had direct effects on aboveground biomass. The climate moisture index could be a better link to mediate the relationship between species richness and aboveground biomass. The species richness affected aboveground biomass which was mediated by the climate moisture index. Stand age had direct and indirect effects on aboveground biomass through the climate moisture index. Our results revealed that climate moisture index had a positive feedback in the relationship between species richness and aboveground biomass, which played an important role in a link between biodiversity maintenance and ecosystem functioning. Meanwhile, climate moisture index not only affected positively on aboveground biomass, but also indirectly through species richness. The information would be helpful in understanding the biodiversity-aboveground biomass relationship of a primary P. kesiya forest and for forest management. PMID:29324901

  8. Estimating tree species richness from forest inventory plot data

    Treesearch

    Ronald E. McRoberts; Dacia M. Meneguzzo

    2007-01-01

    Montreal Process Criterion 1, Conservation of Biological Diversity, expresses species diversity in terms of number of forest dependent species. Species richness, defined as the total number of species present, is a common metric for analyzing species diversity. A crucial difficulty in estimating species richness from sample data obtained from sources such as inventory...

  9. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in Europe.

    PubMed

    Paillet, Yoan; Bergès, Laurent; Hjältén, Joakim; Odor, Péter; Avon, Catherine; Bernhardt-Römermann, Markus; Bijlsma, Rienk-Jan; De Bruyn, Luc; Fuhr, Marc; Grandin, Ulf; Kanka, Robert; Lundin, Lars; Luque, Sandra; Magura, Tibor; Matesanz, Silvia; Mészáros, Ilona; Sebastià, M-Teresa; Schmidt, Wolfgang; Standovár, Tibor; Tóthmérész, Béla; Uotila, Anneli; Valladares, Fernando; Vellak, Kai; Virtanen, Risto

    2010-02-01

    Past and present pressures on forest resources have led to a drastic decrease in the surface area of unmanaged forests in Europe. Changes in forest structure, composition, and dynamics inevitably lead to changes in the biodiversity of forest-dwelling species. The possible biodiversity gains and losses due to forest management (i.e., anthropogenic pressures related to direct forest resource use), however, have never been assessed at a pan-European scale. We used meta-analysis to review 49 published papers containing 120 individual comparisons of species richness between unmanaged and managed forests throughout Europe. We explored the response of different taxonomic groups and the variability of their response with respect to time since abandonment and intensity of forest management. Species richness was slightly higher in unmanaged than in managed forests. Species dependent on forest cover continuity, deadwood, and large trees (bryophytes, lichens, fungi, saproxylic beetles) and carabids were negatively affected by forest management. In contrast, vascular plant species were favored. The response for birds was heterogeneous and probably depended more on factors such as landscape patterns. The global difference in species richness between unmanaged and managed forests increased with time since abandonment and indicated a gradual recovery of biodiversity. Clearcut forests in which the composition of tree species changed had the strongest effect on species richness, but the effects of different types of management on taxa could not be assessed in a robust way because of low numbers of replications in the management-intensity classes. Our results show that some taxa are more affected by forestry than others, but there is a need for research into poorly studied species groups in Europe and in particular locations. Our meta-analysis supports the need for a coordinated European research network to study and monitor the biodiversity of different taxa in managed and unmanaged

  10. Temporal-spatial dynamics in orthoptera in relation to nutrient availability and plant species richness.

    PubMed

    Hendriks, Rob J J; Carvalheiro, Luisa G; Kleukers, Roy M J C; Biesmeijer, Jacobus C

    2013-01-01

    Nutrient availability in ecosystems has increased dramatically over the last century. Excess reactive nitrogen deposition is known to negatively impact plant communities, e.g. by changing species composition, biomass and vegetation structure. In contrast, little is known on how such impacts propagate to higher trophic levels. To evaluate how nitrogen deposition affects plants and herbivore communities through time, we used extensive databases of spatially explicit historical records of Dutch plant species and Orthoptera (grasshoppers and crickets), a group of animals that are particularly susceptible to changes in the C:N ratio of their resources. We use robust methods that deal with the unstandardized nature of historical databases to test whether nitrogen deposition levels and plant richness changes influence the patterns of richness change of Orthoptera, taking into account Orthoptera species functional traits. Our findings show that effects indeed also propagate to higher trophic levels. Differences in functional traits affected the temporal-spatial dynamics of assemblages of Orthoptera. While nitrogen deposition affected plant diversity, contrary to our expectations, we could not find a strong significant effect of food related traits. However we found that species with low habitat specificity, limited dispersal capacity and egg deposition in the soil were more negativly affected by nitrogen deposition levels. Despite the lack of significant effect of plant richness or food related traits on Orthoptera, the negative effects of nitrogen detected within certain trait groups (e.g. groups with limited disperse ability) could be related to subtle changes in plant abundance and plant quality. Our results, however, suggest that the changes in soil conditions (where many Orthoptera species lay their eggs) or other habitat changes driven by nitrogen have a stronger influence than food related traits. To fully evaluate the negative effects of nitrogen deposition on

  11. Partitioning sources of variation in vertebrate species richness

    USGS Publications Warehouse

    Boone, R.B.; Krohn, W.B.

    2000-01-01

    Aim: To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location: Maine, USA. Methods: We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad-scale (spatially autocorrelated) and fine-scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that Could be explained by the relative contribution of each environmental variable. Results: In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84-82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions: Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species

  12. Productivity is a poor predictor of plant species richness

    USDA-ARS?s Scientific Manuscript database

    For 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating fine-scale species richness. The true relationship was thought to be hump-shaped, with richness peaking at intermediate levels of productivity, ...

  13. [Geographic patterns and ecological factors correlates of snake species richness in China].

    PubMed

    Cai, Bo; Huang, Yong; Chen, Yue-Ying; Hu, Jun-Hua; Guo, Xian-Guang; Wang, Yue-Zhao

    2012-08-01

    Understanding large-scale geographic patterns of species richness as well its underlying mechanisms are among the most significant objectives of macroecology and biogeography. The ecological hypothesis is one of the most accepted explanations of this mechanism. Here, we studied the geographic patterns of snakes and investigated the relationships between species richness and ecological factors in China at a spatial resolution of 100 km×100 km. We obtained the eigenvector-based spatial filters by Principal Coordinates Neighbor Matrices, and then analyzed ecological factors by multiple regression analysis. The results indicated several things: (1) species richness of snakes showed multi-peak patterns along both the latitudinal and longitudinal gradient. The areas of highest richness of snake are tropics and subtropical areas of Oriental realm in China while the areas of lowest richness are Qinghai-Tibet Plateau, the grasslands and deserts in northern China, Yangtze-Huai Plain, Two-lake Plain, and the Poyang-lake Plain; (2) results of multiple regression analysis explained a total of 56.5% variance in snake richness. Among ecological factors used to explore the species richness patterns, we found the best factors were the normalized difference vegetation index, precipitation in the coldest quarter and temperature annual range ; (3) our results indicated that the model based on the significant variables that (P<0.05) uses a combination of precipitation of coldest quarter, normalized difference vegetation index and temperature annual range is the most parsimonious model for explaining the mechanism of snake richness in China. This finding demonstrates that different ecological factors work together to affect the geographic distribution of snakes in China. Studying the mechanisms that underlie these geographic patterns are complex, so we must carefully consider the choice of impact-factors and the influence of human activities.

  14. Regional and local species richness in an insular environment: Serpentine plants in California

    USGS Publications Warehouse

    Harrison, S.; Safford, H.D.; Grace, J.B.; Viers, J.H.; Davies, K.F.

    2006-01-01

    We asked how the richness of the specialized (endemic) flora of serpentine rock outcrops in California varies at both the regional and local scales. Our study had two goals: first, to test whether endemic richness is affected by spatial habitat structure (e.g., regional serpentine area, local serpentine outcrop area, regional and local measures of outcrop isolation), and second, to conduct this test in the context of a broader assessment of environmental influences (e.g., climate, soils, vegetation, disturbance) and historical influences (e.g., geologic age, geographic province) on local and regional species richness. We measured endemic and total richness and environmental variables in 109 serpentine sites (1000-m2 paired plots) in 78 serpentine-containing regions of the state. We used structural equation modeling (SEM) to simultaneously relate regional richness to regionalscale predictors, and local richness to both local-scale and regional-scale predictors. Our model for serpentine endemics explained 66% of the variation in local endemic richness based on local environment (vegetation, soils, rock cover) and on regional endemic richness. It explained 73% of the variation in regional endemic richness based on regional environment (climate and productivity), historical factors (geologic age and geographic province), and spatial structure (regional total area of serpentine, the only significant spatial variable in our analysis). We did not find a strong influence of spatial structure on species richness. However, we were able to distinguish local vs. regional influences on species richness to a novel extent, despite the existence of correlations between local and regional conditions. ?? 2006 by the Ecological Society of America.

  15. Habitat size modulates the influence of heterogeneity on species richness patterns in a model zooplankton community.

    PubMed

    Schuler, Matthew S; Chase, Jonathan M; Knight, Tiffany M

    2017-06-01

    Habitat heterogeneity is a primary mechanism influencing species richness. Despite the general expectation that increased heterogeneity should increase species richness, there is considerable variation in the observed relationship, including many studies that show negative effects of heterogeneity on species richness. One mechanism that can create such disparate results is the predicted trade-off between habitat area and heterogeneity, sometimes called the area-heterogeneity-trade-off (AHTO) hypothesis. The AHTO hypothesis predicts positive effects of heterogeneity on species richness in large habitats, but negative effects in small habitats. We examined the interplay between habitat size and habitat heterogeneity in experimental mesocosms that mimic freshwater ponds, and measured responses in a species-rich zooplankton community. We used the AHTO hypothesis and related mechanisms to make predictions about how heterogeneity would affect species richness and diversity in large compared to small habitats. We found that heterogeneity had a positive influence on species richness in large, but not small habitats, and that this likely resulted because habitat specialists were able to persist only when habitat size was sufficiently large, consistent with the predictions of the AHTO hypothesis. Our results emphasize the importance of considering context (e.g., habitat size in this case) when investigating the relative importance of ecological drivers of diversity, like heterogeneity. © 2017 by the Ecological Society of America.

  16. Climate-induced lake drying causes heterogeneous reductions in waterfowl species richness

    USGS Publications Warehouse

    Roach, Jennifer K.; Griffith, Dennis B.

    2015-01-01

    ContextLake size has declined on breeding grounds for international populations of waterfowl.ObjectivesOur objectives were to (1) model the relationship between waterfowl species richness and lake size; (2) use the model and trends in lake size to project historical, contemporary, and future richness at 2500+ lakes; (3) evaluate mechanisms for the species–area relationship (SAR); and (4) identify species most vulnerable to shrinking lakes.MethodsMonte Carlo simulations of the richness model were used to generate projections. Correlations between richness and both lake size and habitat diversity were compared to identify mechanisms for the SAR. Patterns of nestedness were used to identify vulnerable species.ResultsSpecies richness was greatest at lakes that were larger, closer to rivers, had more wetlands along their perimeters and were within 5 km of a large lake. Average richness per lake was projected to decline by 11 % from 1986 to 2050 but was heterogeneous across sub-regions and lakes. Richness in sub-regions with species-rich lakes was projected to remain stable, while richness in the sub-region with species-poor lakes was projected to decline. Lake size had a greater effect on richness than did habitat diversity, suggesting that large lakes have more species because they provide more habitat but not more habitat types. The vulnerability of species to shrinking lakes was related to species rarity rather than foraging guild.ConclusionsOur maps of projected changes in species richness and rank-ordered list of species most vulnerable to shrinking lakes can be used to identify targets for conservation or monitoring.

  17. Species richness alone does not predict cultural ecosystem service value

    PubMed Central

    Graves, Rose A.; Pearson, Scott M.; Turner, Monica G.

    2017-01-01

    Many biodiversity-ecosystem services studies omit cultural ecosystem services (CES) or use species richness as a proxy and assume that more species confer greater CES value. We studied wildflower viewing, a key biodiversity-based CES in amenity-based landscapes, in Southern Appalachian Mountain forests and asked (i) How do aesthetic preferences for wildflower communities vary with components of biodiversity, including species richness?; (ii) How do aesthetic preferences for wildflower communities vary across psychographic groups?; and (iii) How well does species richness perform as an indicator of CES value compared with revealed social preferences for wildflower communities? Public forest visitors (n = 293) were surveyed during the summer of 2015 and asked to choose among images of wildflower communities in which flower species richness, flower abundance, species evenness, color diversity, and presence of charismatic species had been digitally manipulated. Aesthetic preferences among images were unrelated to species richness but increased with more abundant flowers, greater species evenness, and greater color diversity. Aesthetic preferences were consistent across psychographic groups and unaffected by knowledge of local flora or value placed on wildflower viewing. When actual wildflower communities (n = 54) were ranked based on empirically measured flower species richness or wildflower viewing utility based on multinomial logit models of revealed preferences, rankings were broadly similar. However, designation of hotspots (CES values above the median) based on species richness alone missed 27% of wildflower viewing utility hotspots. Thus, conservation priorities for sustaining CES should incorporate social preferences and consider multiple dimensions of biodiversity that underpin CES supply. PMID:28320953

  18. Species richness alone does not predict cultural ecosystem service value.

    PubMed

    Graves, Rose A; Pearson, Scott M; Turner, Monica G

    2017-04-04

    Many biodiversity-ecosystem services studies omit cultural ecosystem services (CES) or use species richness as a proxy and assume that more species confer greater CES value. We studied wildflower viewing, a key biodiversity-based CES in amenity-based landscapes, in Southern Appalachian Mountain forests and asked ( i ) How do aesthetic preferences for wildflower communities vary with components of biodiversity, including species richness?; ( ii ) How do aesthetic preferences for wildflower communities vary across psychographic groups?; and ( iii ) How well does species richness perform as an indicator of CES value compared with revealed social preferences for wildflower communities? Public forest visitors ( n = 293) were surveyed during the summer of 2015 and asked to choose among images of wildflower communities in which flower species richness, flower abundance, species evenness, color diversity, and presence of charismatic species had been digitally manipulated. Aesthetic preferences among images were unrelated to species richness but increased with more abundant flowers, greater species evenness, and greater color diversity. Aesthetic preferences were consistent across psychographic groups and unaffected by knowledge of local flora or value placed on wildflower viewing. When actual wildflower communities ( n = 54) were ranked based on empirically measured flower species richness or wildflower viewing utility based on multinomial logit models of revealed preferences, rankings were broadly similar. However, designation of hotspots (CES values above the median) based on species richness alone missed 27% of wildflower viewing utility hotspots. Thus, conservation priorities for sustaining CES should incorporate social preferences and consider multiple dimensions of biodiversity that underpin CES supply.

  19. Processes at multiple scales affect richness and similarity of non-native plant species in mountains around the world

    Treesearch

    Tim Seipel; Christoph Kueffer; Lisa J. Rew; Curtis C. Daehler; Aníbal Pauchard; Bridgett J. Naylor; Jake M. Alexander; Peter J. Edwards; Catherine G. Parks; Jose Ramon Arevalo; Lohengrin A. Cavieres; Hansjorg Dietz; Gabi Jakobs; Keith McDougall; Rudiger Otto; Neville. Walsh

    2012-01-01

    We compared the distribution of non-native plant species along roads in eight mountainous regions. Within each region, abundance of plant species was recorded at 41-84 sites along elevational gradients using 100-m2 plots located 0, 25 and 75 m from roadsides. We used mixed-effects models to examine how local variation in species richness and...

  20. The relative importance of pollinator abundance and species richness for the temporal variance of pollination services.

    PubMed

    Genung, Mark A; Fox, Jeremy; Williams, Neal M; Kremen, Claire; Ascher, John; Gibbs, Jason; Winfree, Rachael

    2017-07-01

    The relationship between biodiversity and the stability of ecosystem function is a fundamental question in community ecology, and hundreds of experiments have shown a positive relationship between species richness and the stability of ecosystem function. However, these experiments have rarely accounted for common ecological patterns, most notably skewed species abundance distributions and non-random extinction risks, making it difficult to know whether experimental results can be scaled up to larger, less manipulated systems. In contrast with the prolific body of experimental research, few studies have examined how species richness affects the stability of ecosystem services at more realistic, landscape scales. The paucity of these studies is due in part to a lack of analytical methods that are suitable for the correlative structure of ecological data. A recently developed method, based on the Price equation from evolutionary biology, helps resolve this knowledge gap by partitioning the effect of biodiversity into three components: richness, composition, and abundance. Here, we build on previous work and present the first derivation of the Price equation suitable for analyzing temporal variance of ecosystem services. We applied our new derivation to understand the temporal variance of crop pollination services in two study systems (watermelon and blueberry) in the mid-Atlantic United States. In both systems, but especially in the watermelon system, the stronger driver of temporal variance of ecosystem services was fluctuations in the abundance of common bee species, which were present at nearly all sites regardless of species richness. In contrast, temporal variance of ecosystem services was less affected by differences in species richness, because lost and gained species were rare. Thus, the findings from our more realistic landscapes differ qualitatively from the findings of biodiversity-stability experiments. © 2017 by the Ecological Society of America.

  1. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service.

    PubMed

    Winfree, Rachael; Fox, Jeremy W; Williams, Neal M; Reilly, James R; Cariveau, Daniel P

    2015-07-01

    Biodiversity-ecosystem functioning experiments have established that species richness and composition are both important determinants of ecosystem function in an experimental context. Determining whether this result holds for real-world ecosystem services has remained elusive, however, largely due to the lack of analytical methods appropriate for large-scale, associational data. Here, we use a novel analytical approach, the Price equation, to partition the contribution to ecosystem services made by species richness, composition and abundance in four large-scale data sets on crop pollination by native bees. We found that abundance fluctuations of dominant species drove ecosystem service delivery, whereas richness changes were relatively unimportant because they primarily involved rare species that contributed little to function. Thus, the mechanism behind our results was the skewed species-abundance distribution. Our finding that a few common species, not species richness, drive ecosystem service delivery could have broad generality given the ubiquity of skewed species-abundance distributions in nature. © 2015 John Wiley & Sons Ltd/CNRS.

  2. Drivers of Bird Species Richness within Moist High-Altitude Grasslands in Eastern South Africa

    PubMed Central

    Smit-Robinson, Hanneline; Underhill, Les G.; Altwegg, Res

    2016-01-01

    Moist high-altitude grasslands in South Africa are renowned for high avifaunal diversity and are priority areas for conservation. Conservation management of these areas conflicts with management for other uses, such as intensive livestock agriculture, which requires annual burning and leads to heavy grazing. Recently the area has become target for water storage schemes and renewable electricity energy projects. There is therefore an urgent need to investigate environmental factors and habitat factors that affect bird species richness in order to optimise management of those areas set aside for conservation. A particularly good opportunity to study these issues arose at Ingula in the eastern South African high-altitude grasslands. An area that had been subject to intense grazing was bought by the national power utility that constructed a pumped storage scheme on part of the land and set aside the rest for bird conservation. Since the new management took over in 2005 the area has been mostly annually burned with relatively little grazing. The new management seeks scientific advice on how to maintain avian species richness of the study area. We collected bird occurrence and vegetation data along random transects between 2006 and 2010 to monitor the impact of the new management, and to study the effect of the habitat changes on bird species richness. To achieve these, we convert bird transect data to presence only data to investigate how bird species richness were related to key transect vegetation attributes under this new grassland management. First we used generalised linear mixed models, to examine changes in vegetation grass height and cover and between burned and unburned habitats. Secondly, we examined how total bird species richness varied across seasons and years. And finally we investigated which habitat vegetation attributes were correlated with species richness of a group of grassland depended bird species only. Transects that were burned showed a larger

  3. Drivers of Bird Species Richness within Moist High-Altitude Grasslands in Eastern South Africa.

    PubMed

    Maphisa, David H; Smit-Robinson, Hanneline; Underhill, Les G; Altwegg, Res

    2016-01-01

    Moist high-altitude grasslands in South Africa are renowned for high avifaunal diversity and are priority areas for conservation. Conservation management of these areas conflicts with management for other uses, such as intensive livestock agriculture, which requires annual burning and leads to heavy grazing. Recently the area has become target for water storage schemes and renewable electricity energy projects. There is therefore an urgent need to investigate environmental factors and habitat factors that affect bird species richness in order to optimise management of those areas set aside for conservation. A particularly good opportunity to study these issues arose at Ingula in the eastern South African high-altitude grasslands. An area that had been subject to intense grazing was bought by the national power utility that constructed a pumped storage scheme on part of the land and set aside the rest for bird conservation. Since the new management took over in 2005 the area has been mostly annually burned with relatively little grazing. The new management seeks scientific advice on how to maintain avian species richness of the study area. We collected bird occurrence and vegetation data along random transects between 2006 and 2010 to monitor the impact of the new management, and to study the effect of the habitat changes on bird species richness. To achieve these, we convert bird transect data to presence only data to investigate how bird species richness were related to key transect vegetation attributes under this new grassland management. First we used generalised linear mixed models, to examine changes in vegetation grass height and cover and between burned and unburned habitats. Secondly, we examined how total bird species richness varied across seasons and years. And finally we investigated which habitat vegetation attributes were correlated with species richness of a group of grassland depended bird species only. Transects that were burned showed a larger

  4. Relations of Environmental Factors with Mussel-Species Richness in the Neversink River, New York

    USGS Publications Warehouse

    Baldigo, Barry P.; Ernst, Anne G.; Schuler, George E.; Apse, Colin D.

    2007-01-01

    the Neversink Reservoir that mimic the river?s original flow patterns have recently been proposed by TNC and could benefit the established mussel populations and aquatic communities. The ability to protect mussel populations and the potential to increase mussel richness in the Neversink River is unknown, however, because the environmental factors that affect the seven mussel species are poorly defined, and the distribution of mussel beds is patchy and thus difficult to quantify. In 1997, the U.S. Geological Survey, in cooperation with TNC, began a 6-year study along the Neversink River and its tributaries to (1) document the current distribution of each mussel species, (2) assess environmental factors in relation to mussel-species richness and distribution, and (3) identify the factors that most strongly affect mussel populations and develop an equation that relates environmental factors to mussel-species richness. This report (a) summarizes the methods used to quantify or qualify environmental factors and mussel-species distribution and abundance, (b) presents a list of environmental factors that were correlated with mussel-species richness, and (c) offers an empirical model to predict richness of mussel species in benthic communities throughout the basin.

  5. No universal scale-dependent impacts of invasive species on native plant species richness.

    PubMed

    Stohlgren, Thomas J; Rejmánek, Marcel

    2014-01-01

    A growing number of studies seeking generalizations about the impact of plant invasions compare heavily invaded sites to uninvaded sites. But does this approach warrant any generalizations? Using two large datasets from forests, grasslands and desert ecosystems across the conterminous United States, we show that (i) a continuum of invasion impacts exists in many biomes and (ii) many possible species-area relationships may emerge reflecting a wide range of patterns of co-occurrence of native and alien plant species. Our results contradict a smaller recent study by Powell et al. 2013 (Science 339, 316-318. (doi:10.1126/science.1226817)), who compared heavily invaded and uninvaded sites in three biomes and concluded that plant communities invaded by non-native plant species generally have lower local richness (intercepts of log species richness-log area regression lines) but steeper species accumulation with increasing area (slopes of the regression lines) than do uninvaded communities. We conclude that the impacts of plant invasions on plant species richness are not universal.

  6. Species richness, equitability, and abundance of ants in disturbed landscapes

    USGS Publications Warehouse

    Graham, J.H.; Krzysik, A.J.; Kovacic, D.A.; Duda, J.J.; Freeman, D.C.; Emlen, J.M.; Zak, J.C.; Long, W.R.; Wallace, M.P.; Chamberlin-Graham, C.; Nutter, J.P.; Balbach, H.E.

    2009-01-01

    Ants are used as indicators of environmental change in disturbed landscapes, often without adequate understanding of their response to disturbance. Ant communities in the southeastern United States displayed a hump-backed species richness curve against an index of landscape disturbance. Forty sites at Fort Benning, in west-central Georgia, covered a spectrum of habitat disturbance (military training and fire) in upland forest. Sites disturbed by military training had fewer trees, less canopy cover, more bare ground, and warmer, more compact soils with shallower A-horizons. We sampled ground-dwelling ants with pitfall traps, and measured 15 habitat variables related to vegetation and soil. Ant species richness was greatest with a relative disturbance of 43%, but equitability was greatest with no disturbance. Ant abundance was greatest with a relative disturbance of 85%. High species richness at intermediate disturbance was associated with greater within-site spatial heterogeneity. Species richness was also associated with intermediate values of the normalized difference vegetation index (NDVI), a correlate of net primary productivity (NPP). Available NPP (the product of NDVI and the fraction of days that soil temperature exceeded 25 ??C), however, was positively correlated with species richness, though not with ant abundance. Species richness was unrelated to soil texture, total ground cover, and fire frequency. Ant species richness and equitability are potential state indicators of the soil arthropod community. Moreover, equitability can be used to monitor ecosystem change. ?? 2008 Elsevier Ltd.

  7. Upscaling species richness and abundances in tropical forests

    PubMed Central

    Tovo, Anna; Suweis, Samir; Formentin, Marco; Favretti, Marco; Volkov, Igor; Banavar, Jayanth R.; Azaele, Sandro; Maritan, Amos

    2017-01-01

    The quantification of tropical tree biodiversity worldwide remains an open and challenging problem. More than two-fifths of the number of worldwide trees can be found either in tropical or in subtropical forests, but only ≈0.000067% of species identities are known. We introduce an analytical framework that provides robust and accurate estimates of species richness and abundances in biodiversity-rich ecosystems, as confirmed by tests performed on both in silico–generated and real forests. Our analysis shows that the approach outperforms other methods. In particular, we find that upscaling methods based on the log-series species distribution systematically overestimate the number of species and abundances of the rare species. We finally apply our new framework on 15 empirical tropical forest plots and quantify the minimum percentage cover that should be sampled to achieve a given average confidence interval in the upscaled estimate of biodiversity. Our theoretical framework confirms that the forests studied are comprised of a large number of rare or hyper-rare species. This is a signature of critical-like behavior of species-rich ecosystems and can provide a buffer against extinction. PMID:29057324

  8. No consistent effect of plant species richness on resistance to simulated climate change for above- or below-ground processes in managed grasslands.

    PubMed

    Dormann, Carsten F; von Riedmatten, Lars; Scherer-Lorenzen, Michael

    2017-06-17

    Species richness affects processes and functions in many ecosystems. Since management of temperate grasslands is directly affecting species composition and richness, it can indirectly govern how systems respond to fluctuations in environmental conditions. Our aim in this study was to investigate whether species richness in managed grasslands can buffer the effects of drought and warming manipulations and hence increase the resistance to climate change. We established 45 plots in three regions across Germany, each with three different management regimes (pasture, meadow and mown pasture). We manipulated spring warming using open-top chambers and summer drought using rain-out shelters for 4 weeks. Measurements of species richness, above- and below-ground biomass and soil carbon and nitrogen concentrations showed significant but inconsistent differences among regions, managements and manipulations. We detected a three-way interaction between species richness, management and region, indicating that our study design was sensitive enough to detect even intricate effects. We could not detect a pervasive effect of species richness on biomass differences between treatments and controls, indicating that a combination of spring warming and summer drought effects on grassland systems are not consistently moderated by species richness. We attribute this to the relatively high number of species even at low richness levels, which already provides the complementarity required for positive biodiversity-ecosystem functioning relationships. A review of the literature also indicates that climate manipulations largely fail to show richness-buffering, while natural experiments do, suggesting that such manipulations are milder than reality or incur treatment artefacts.

  9. Consistency of effects of tropical-forest disturbance on species composition and richness relative to use of indicator taxa.

    PubMed

    Stork, N E; Srivastava, D S; Eggleton, P; Hodda, M; Lawson, G; Leakey, R R B; Watt, A D

    2017-08-01

    Lawton et al. (1998) found, in a highly cited study, that the species richness of 8 taxa each responds differently to anthropogenic disturbance in Cameroon forests. Recent developments in conservation science suggest that net number of species is an insensitive measure of change and that understanding which species are affected by disturbance is more important. It is also recognized that all disturbance types are not equal in their effect on species and that grouping species according to function rather than taxonomy is more informative of responses of biodiversity to change. In a reanalysis of most of the original Cameroon data set (canopy and ground ants, termites, canopy beetles, nematodes, and butterflies), we focused on changes in species and functional composition rather than richness and used a more inclusive measure of forest disturbance based on 4 component drivers of change: years since disturbance, tree cover, soil compaction, and degree of tree removal. Effects of disturbance on compositional change were largely concordant between taxa. Contrary to Lawton et al.'s findings, species richness for most groups did not decline with disturbance level, providing support for the view that trends in species richness at local scales do not reflect the resilience of ecosystems to disturbance. Disturbance affected species composition more strongly than species richness for butterflies, canopy beetles, and litter ants. For these groups, disturbance caused species replacements rather than just species loss. Only termites showed effects of disturbance on species richness but not composition, indicating species loss without replacement. Although disturbance generally caused changes in composition, the strength of this relationship depended on the disturbance driver. Butterflies, litter ants, and nematodes were correlated with amount of tree cover, canopy beetles were most strongly correlated with time since disturbance, and termites were most strongly correlated with

  10. Main predictors of periphyton species richness depend on adherence strategy and cell size

    PubMed Central

    Siqueira, Tadeu; Landeiro, Victor Lemes; Rodrigues, Liliana; Bonecker, Claudia Costa; Rodrigues, Luzia Cleide; Santana, Natália Fernanda; Thomaz, Sidinei Magela; Bini, Luis Mauricio

    2017-01-01

    Periphytic algae are important components of aquatic ecosystems. However, the factors driving periphyton species richness variation remain largely unexplored. Here, we used data from a subtropical floodplain (Upper Paraná River floodplain, Brazil) to quantify the influence of environmental variables (total suspended matter, temperature, conductivity, nutrient concentrations, hydrology, phytoplankton biomass, phytoplankton species richness, aquatic macrophyte species richness and zooplankton density) on overall periphytic algal species richness and on the richness of different algal groups defined by morphological traits (cell size and adherence strategy). We expected that the coefficients of determination of the models estimated for different trait-based groups would be higher than the model coefficient of determination of the entire algal community. We also expected that the relative importance of explanatory variables in predicting species richness would differ among algal groups. The coefficient of determination for the model used to predict overall periphytic algal species richness was higher than the ones obtained for models used to predict the species richness of the different groups. Thus, our first prediction was not supported. Species richness of aquatic macrophytes was the main predictor of periphyton species richness of the entire community and a significant predictor of the species richness of small mobile, large mobile and small-loosely attached algae. Abiotic variables, phytoplankton species richness, chlorophyll-a concentration, and hydrology were also significant predictors, depending on the group. These results suggest that habitat heterogeneity (as proxied by aquatic macrophytes richness) is important for maintaining periphyton species richness in floodplain environments. However, other factors played a role, suggesting that the analysis of species richness of different trait-based groups unveils relationships that were not detectable when the

  11. Human population, grasshopper and plant species richness in European countries

    NASA Astrophysics Data System (ADS)

    Steck, Claude E.; Pautasso, Marco

    2008-11-01

    Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species-people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population-biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.

  12. Vascular plant and vertebrate species richness in national parks of the eastern United States

    USGS Publications Warehouse

    Hatfield, Jeffrey S.; Myrick, Kaci E.; Huston, Michael A.; Weckerly, Floyd W.; Green, M. Clay

    2013-01-01

    Given the estimates that species diversity is diminishing at 50-100 times the normal rate, it is critical that we be able to evaluate changes in species richness in order to make informed decisions for conserving species diversity. In this study, we examined the potential of vascular plant species richness to be used as a surrogate for vertebrate species richness in the classes of amphibians, reptiles, birds, and mammals. Vascular plants, as primary producers, represent the biotic starting point for ecological community structure and are the logical place to start for understanding vertebrate species associations. We used data collected by the United States (US) National Park Service (NPS) on species presence within parks in the eastern US to estimate simple linear regressions between plant species richness and vertebrate richness. Because environmental factors may also influence species diversity, we performed simple linear regressions of species richness versus natural logarithm of park area, park latitude, mean annual precipitation, mean annual temperature, and human population density surrounding the parks. We then combined plant species richness and environmental variables in multiple regressions to determine the variables that remained as significant predictors of vertebrate species richness. As expected, we detected significant relationships between plant species richness and amphibian, bird, and mammal species richness. In some cases, plant species richness was predicted by park area alone. Species richness of mammals was only related to plant species richness. Reptile species richness, on the other hand, was related to plant species richness, park latitude and annual precipitation, while amphibian species richness was related to park latitude, park area, and plant species richness. Thus, plant species richness predicted species richness of different vertebrate groups to varying degrees and should not be used exclusively as a surrogate for vertebrate

  13. Sexual selection predicts species richness across the animal kingdom.

    PubMed

    Janicke, Tim; Ritchie, Michael G; Morrow, Edward H; Marie-Orleach, Lucas

    2018-05-16

    Our improving knowledge of the animal tree of life consistently demonstrates that some taxa diversify more rapidly than others, but what contributes to this variation remains poorly understood. An influential hypothesis proposes that selection arising from competition for mating partners plays a key role in promoting speciation. However, empirical evidence showing a link between proxies of this sexual selection and species richness is equivocal. Here, we collected standardized metrics of sexual selection for a broad range of animal taxa, and found that taxonomic families characterized by stronger sexual selection on males show relatively higher species richness. Thus, our data support the hypothesis that sexual selection elevates species richness. This could occur either by promoting speciation and/or by protecting species against extinction. © 2018 The Author(s).

  14. Inference methods for spatial variation in species richness and community composition when not all species are detected

    USGS Publications Warehouse

    Nichols, J.D.; Boulinier, T.; Hines, J.E.; Pollock, K.H.; Sauer, J.R.

    1998-01-01

    Inferences about spatial variation in species richness and community composition are important both to ecological hypotheses about the structure and function of communities and to community-level conservation and management. Few sampling programs for animal communities provide censuses, and usually some species present. We present estimators useful for drawing inferences about comparative species richness and composition between different sampling locations when not all species are detected in sampling efforts. Based on capture-recapture models using the robust design, our methods estimate relative species richness, proportion of species in one location that are also found in another, and number of species found in one location but not in another. The methods use data on the presence or absence of each species at different sampling occasions (or locations) to estimate the number of species not detected at any occasions (or locations). This approach permits estimation of the number of species in the sampled community and in subsets of the community useful for estimating the fraction of species shared by two communities. We provide an illustration of our estimation methods by comparing bird species richness and composition in two locations sampled by routes of the North American Breeding Bird Survey. In this example analysis, the two locations (an associated bird communities) represented different levels of urbanization. Estimates of relative richness, proportion of shared species, and number of species present on one route but not the other indicated that the route with the smaller fraction of urban area had greater richness and a larer number of species that were not found on the more urban route than vice versa. We developed a software package, COMDYN, for computing estimates based on the methods. Because these estimation methods explicitly deal with sampling in which not all species are detected, we recommend their use for addressing questions about species

  15. Global hotspots and correlates of alien species richness across taxonomic groups

    USGS Publications Warehouse

    Dawson, Wayne; Moser, Dietmar; van Kleunen, Mark; Kreft, Holger; Pergl, Jan; Pysek, Petr; Weigelt, Patrick; Winter, Marten; Lenzner, Bernd; Blackburn, Tim M.; Dyer, Ellie; Cassey, Phillip; Scrivens, Sally-Louise; Economo, Evan P.; Guenard, Benoit; Capinha, Cesar; Seebens, Hanno; Garcia-Diaz, Pablo; Nentwig, Wolfgang; Garcia-Berthou, Emili; Casal, Christine; Mandrak, Nicholas E.; Fuller, Pam; Meyer, Carsten; Essl, Franz

    2017-01-01

    Human-mediated transport beyond biogeographic barriers has led to the introduction and establishment of alien species in new regions worldwide. However, we lack a global picture of established alien species richness for multiple taxonomic groups. Here, we assess global patterns and potential drivers of established alien species richness across eight taxonomic groups (amphibians, ants, birds, freshwater fishes, mammals, vascular plants, reptiles and spiders) for 186 islands and 423 mainland regions. Hotspots of established alien species richness are predominantly island and coastal mainland regions. Regions with greater gross domestic product per capita, human population density, and area have higher established alien richness, with strongest effects emerging for islands. Ants and reptiles, birds and mammals, and vascular plants and spiders form pairs of taxonomic groups with the highest spatial congruence in established alien richness, but drivers explaining richness differ between the taxa in each pair. Across all taxonomic groups, our results highlight the need to prioritize prevention of further alien species introductions to island and coastal mainland regions globally.

  16. Sampling effort and estimates of species richness based on prepositioned area electrofisher samples

    USGS Publications Warehouse

    Bowen, Z.H.; Freeman, Mary C.

    1998-01-01

    Estimates of species richness based on electrofishing data are commonly used to describe the structure of fish communities. One electrofishing method for sampling riverine fishes that has become popular in the last decade is the prepositioned area electrofisher (PAE). We investigated the relationship between sampling effort and fish species richness at seven sites in the Tallapoosa River system, USA based on 1,400 PAE samples collected during 1994 and 1995. First, we estimated species richness at each site using the first-order jackknife and compared observed values for species richness and jackknife estimates of species richness to estimates based on historical collection data. Second, we used a permutation procedure and nonlinear regression to examine rates of species accumulation. Third, we used regression to predict the number of PAE samples required to collect the jackknife estimate of species richness at each site during 1994 and 1995. We found that jackknife estimates of species richness generally were less than or equal to estimates based on historical collection data. The relationship between PAE electrofishing effort and species richness in the Tallapoosa River was described by a positive asymptotic curve as found in other studies using different electrofishing gears in wadable streams. Results from nonlinear regression analyses indicted that rates of species accumulation were variable among sites and between years. Across sites and years, predictions of sampling effort required to collect jackknife estimates of species richness suggested that doubling sampling effort (to 200 PAEs) would typically increase observed species richness by not more than six species. However, sampling effort beyond about 60 PAE samples typically increased observed species richness by < 10%. We recommend using historical collection data in conjunction with a preliminary sample size of at least 70 PAE samples to evaluate estimates of species richness in medium-sized rivers

  17. Climate modifies response of non-native and native species richness to nutrient enrichment.

    PubMed

    Flores-Moreno, Habacuc; Reich, Peter B; Lind, Eric M; Sullivan, Lauren L; Seabloom, Eric W; Yahdjian, Laura; MacDougall, Andrew S; Reichmann, Lara G; Alberti, Juan; Báez, Selene; Bakker, Jonathan D; Cadotte, Marc W; Caldeira, Maria C; Chaneton, Enrique J; D'Antonio, Carla M; Fay, Philip A; Firn, Jennifer; Hagenah, Nicole; Harpole, W Stanley; Iribarne, Oscar; Kirkman, Kevin P; Knops, Johannes M H; La Pierre, Kimberly J; Laungani, Ramesh; Leakey, Andrew D B; McCulley, Rebecca L; Moore, Joslin L; Pascual, Jesus; Borer, Elizabeth T

    2016-05-19

    Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change. © 2016 The Author(s).

  18. Climate modifies response of non-native and native species richness to nutrient enrichment

    PubMed Central

    Flores-Moreno, Habacuc; Reich, Peter B.; Lind, Eric M.; Sullivan, Lauren L.; Seabloom, Eric W.; Yahdjian, Laura; MacDougall, Andrew S.; Reichmann, Lara G.; Alberti, Juan; Báez, Selene; Bakker, Jonathan D.; Cadotte, Marc W.; Caldeira, Maria C.; Chaneton, Enrique J.; D'Antonio, Carla M.; Fay, Philip A.; Firn, Jennifer; Hagenah, Nicole; Harpole, W. Stanley; Iribarne, Oscar; Kirkman, Kevin P.; Knops, Johannes M. H.; La Pierre, Kimberly J.; Laungani, Ramesh; Leakey, Andrew D. B.; McCulley, Rebecca L.; Moore, Joslin L.; Pascual, Jesus; Borer, Elizabeth T.

    2016-01-01

    Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change. PMID:27114575

  19. Diversification rates and species richness across the Tree of Life

    PubMed Central

    Scholl, Joshua P.

    2016-01-01

    Species richness varies dramatically among clades across the Tree of Life, by over a million-fold in some cases (e.g. placozoans versus arthropods). Two major explanations for differences in richness among clades are the clade-age hypothesis (i.e. species-rich clades are older) and the diversification-rate hypothesis (i.e. species-rich clades diversify more rapidly, where diversification rate is the net balance of speciation and extinction over time). Here, we examine patterns of variation in diversification rates across the Tree of Life. We address how rates vary across higher taxa, whether rates within higher taxa are related to the subclades within them, and how diversification rates of clades are related to their species richness. We find substantial variation in diversification rates, with rates in plants nearly twice as high as in animals, and rates in some eukaryotes approximately 10-fold faster than prokaryotes. Rates for each kingdom-level clade are then significantly related to the subclades within them. Although caution is needed when interpreting relationships between diversification rates and richness, a positive relationship between the two is not inevitable. We find that variation in diversification rates seems to explain most variation in richness among clades across the Tree of Life, in contrast to the conclusions of previous studies. PMID:27605507

  20. Hydro-edaphic conditions defining richness and species composition in savanna areas of the northern Brazilian Amazonia.

    PubMed

    Araújo, Maria Aparecida de Moura; da Rocha, Antônio Elielson Sousa; Miranda, Izildinha de Souza; Barbosa, Reinaldo Imbrozio

    2017-01-01

    Studies on plant communities in the Amazon have reported that different hydro-edaphic conditions can affect the richness and the species composition of different ecosystems. However, this aspect is poorly known in the different savanna habitats. Understanding how populations and plant communities are distributed in these open vegetation areas is important to improve the knowledge about which environmental variables influence the occurrence and diversity of plants in this type of regional ecosystem. Thus, this study investigated the richness and composition of plant species in two savanna areas of the northern Brazilian Amazonia, using the coverage (%) of the different life forms observed under different hydro-edaphic conditions as a structural reference. We report 128 plant species classified in 34 botanical families distributed in three savanna habitats with different levels of hydro-edaphic restrictions. In this study, the habitats are conceptually presented and they integrate environmental information (edaphic factors and drainage type), which determines differences between floristic composition, species richness and coverage (%) of plant life forms.

  1. Interactions between micro- and macroparasites predict microparasite species richness across primates.

    PubMed

    Nunn, Charles L; Brezine, Carrie; Jolles, Anna E; Ezenwa, Vanessa O

    2014-04-01

    Most wild animals face concurrent challenges by multiple infectious organisms, and immunological responses triggered by some parasites may increase susceptibility to other infectious agents. Immune-mediated interactions among parasites have been investigated among individuals in a population, but less is known about broader comparative patterns. We investigated the "macro-micro facilitation hypothesis" that higher helminth prevalence in a host species provides greater opportunities for intracellular parasites to invade, resulting in higher richness of intracellular microparasites. We obtained data on average helminth prevalence for 70 primate hosts, along with data on richness of intra- and extracellular infectious organisms. Using Bayesian phylogenetic methods, we found that primate species with higher overall helminth prevalence harbored more species of intracellular microparasites, while the positive association between helminth prevalence and extracellular microparasite species richness was weaker. The relationships held after controlling for potentially confounding variables, but associations were not found in focused tests of prevalence for six genera of well-studied helminths. The magnitude of support and effect sizes for overall helminth prevalence on intracellular microparasite species richness was similar to support for other well recognized ecological and life-history drivers of parasite species richness. Our findings therefore suggest that intrahost parasite interactions are as important as some ecological characteristics of hosts in accounting for parasite richness across host species.

  2. Orchid Species Richness along Elevational and Environmental Gradients in Yunnan, China

    PubMed Central

    Zhang, Shi-Bao; Chen, Wen-Yun; Huang, Jia-Lin; Bi, Ying-Feng; Yang, Xue-Fei

    2015-01-01

    The family Orchidaceae is not only one of the most diverse families of flowering plants, but also one of the most endangered plant taxa. Therefore, understanding how its species richness varies along geographical and environmental gradients is essential for conservation efforts. However, such knowledge is rarely available, especially on a large scale. We used a database extracted from herbarium records to investigate the relationships between orchid species richness and elevation, and to examine how elevational diversity in Yunnan Province, China, might be explained by mid-domain effect (MDE), species–area relationship (SAR), water–energy dynamics (WED), Rapoport’s Rule, and climatic variables. This particular location was selected because it is one of the primary centers of distribution for orchids. We recorded 691 species that span 127 genera and account for 88.59% of all confirmed orchid species in Yunnan. Species richness, estimated at 200-m intervals along a slope, was closely correlated with elevation, peaking at 1395 to 1723 m. The elevational pattern of orchid richness was considerably shaped by MDE, SAR, WED, and climate. Among those four predictors, climate was the strongest while MDE was the weakest for predicting the elevational pattern of orchid richness. Species richness showed parabolic responses to mean annual temperature (MAT) and mean annual precipitation (MAP), with maximum richness values recorded at 13.7 to 17.7°C for MAT and 1237 to 1414 mm for MAP. Rapoport’s Rule also helped to explain the elevational pattern of species richness in Yunnan, but those influences were not entirely uniform across all methods. These results suggested that the elevational pattern of orchid species richness in Yunnan is collectively shaped by several mechanisms related to geometric constraints, size of the land area, and environments. Because of the dominant role of climate in determining orchid richness, our findings may contribute to a better

  3. Testing the Relationships between Diversification, Species Richness, and Trait Evolution.

    PubMed

    Kozak, Kenneth H; Wiens, John J

    2016-11-01

    Understanding which traits drive species diversification is essential for macroevolutionary studies and to understand patterns of species richness among clades. An important tool for testing if traits influence diversification is to estimate rates of net diversification for each clade, and then test for a relationship between traits and diversification rates among clades. However, this general approach has become very controversial. Numerous papers have now stated that it is inappropriate to analyze net diversification rates in groups in which clade richness is not positively correlated with clade age. Similarly, some have stated that variation in net diversification rates does not explain variation in species richness patterns among clades across the Tree of Life. Some authors have also suggested that strong correlations between richness and diversification rates are a statistical artifact and effectively inevitable. If this latter point is true, then correlations between richness and diversification rates would be uninformative (or even misleading) for identifying how much variation in species richness among clades is explained by variation in net diversification rates. Here, we use simulations (based on empirical data for plethodontid salamanders) to address three main questions. First, how is variation in net diversification rates among clades related to the relationship between clade age and species richness? Second, how accurate are these net diversification rate estimators, and does the age-richness relationship have any relevance to their accuracy? Third, is a relationship between species richness and diversification rates an inevitable, statistical artifact? Our simulations show that strong, positive age-richness relationships arise when diversification rates are invariant among clades, whereas realistic variation in diversification rates among clades frequently disrupts this relationship. Thus, a significant age-richness relationship should not be a

  4. Species richness and morphological diversity of passerine birds

    PubMed Central

    Ricklefs, Robert E.

    2012-01-01

    The relationship between species richness and the occupation of niche space can provide insight into the processes that shape patterns of biodiversity. For example, if species interactions constrained coexistence, one might expect tendencies toward even spacing within niche space and positive relationships between diversity and total niche volume. I use morphological diversity of passerine birds as a proxy for diet, foraging maneuvers, and foraging substrates and examine the morphological space occupied by regional and local passerine avifaunas. Although independently diversified regional faunas exhibit convergent morphology, species are clustered rather than evenly distributed, the volume of the morphological space is weakly related to number of species per taxonomic family, and morphological volume is unrelated to number of species within both regional avifaunas and local assemblages. These results seemingly contradict patterns expected when species interactions constrain regional or local diversity, and they suggest a larger role for diversification, extinction, and dispersal limitation in shaping species richness. PMID:22908271

  5. Species richness and distributions of boreal waterbirds in relation to nesting and brood-rearing habitats

    USGS Publications Warehouse

    Lewis, Tyler L.; Lindberg, Mark S.; Schmutz, Joel A.; Bertram, Mark R.; Dubour, Adam J.

    2015-01-01

    Identification of ecological factors that drive animal distributions allows us to understand why distributions vary temporally and spatially, and to develop models to predict future changes to populations–vital tools for effective wildlife management and conservation. For waterbird broods in the boreal forest, distributions are likely driven by factors affecting quality of nesting and brood-rearing habitats, and the influence of these factors may extend beyond singles species, affecting the entire waterbird community. We used occupancy models to assess factors influencing species richness of waterbird broods on 72 boreal lakes, along with brood distributions of 3 species of conservation concern: lesser scaup (Aythya affinis), white-winged scoters (Melanitta fusca), and horned grebe (Podiceps auritus). Factors examined included abundance of invertebrate foods (Amphipoda, Diptera, Gastropoda, Hemiptera, Odonata), physical lake attributes (lake area, emergent vegetation), water chemistry (nitrogen, phosphorus, chlorophyll a concentrations), and nesting habitats (water edge, non-forest cover). Of the 5 invertebrates, only amphipod density was related to richness and occupancy, consistently having a large and positive relationship. Despite this importance to waterbirds, amphipods were the most patchily distributed invertebrate, with 17% of the study lakes containing 70% of collected amphipods. Lake area was the only other covariate that strongly and positively influenced species richness and occupancy of scaup, scoters, and grebes. All 3 water chemistry covariates, which provided alternative measures of lake productivity, were positively related to species richness but had little effect on scaup, scoter, and grebe occupancy. Conversely, emergent vegetation was negatively related to richness, reflecting avoidance of overgrown lakes by broods. Finally, nesting habitats had no influence on richness and occupancy, indicating that, at a broad spatial scale, brood

  6. Plants are less negatively affected by flooding when growing in species-rich plant communities.

    PubMed

    Wright, Alexandra J; de Kroon, Hans; Visser, Eric J W; Buchmann, Tina; Ebeling, Anne; Eisenhauer, Nico; Fischer, Christine; Hildebrandt, Anke; Ravenek, Janneke; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang; Voesenek, Laurentius A C J; Mommer, Liesje

    2017-01-01

    Flooding is expected to increase in frequency and severity in the future. The ecological consequences of flooding are the combined result of species-specific plant traits and ecological context. However, the majority of past flooding research has focused on individual model species under highly controlled conditions. An early summer flooding event in a grassland biodiversity experiment in Jena, Germany, provided the opportunity to assess flooding responses of 60 grassland species in monocultures and 16-species mixtures. We examined plant biomass, species-specific traits (plant height, specific leaf area (SLA), root aerenchyma, starch content) and soil porosity. We found that, on average, plant species were less negatively affected by the flood when grown in higher-diversity plots in July 2013. By September 2013, grasses were unaffected by the flood regardless of plant diversity, and legumes were severely negatively affected regardless of plant diversity. Plants with greater SLA and more root aerenchyma performed better in September. Soil porosity was higher in higher-diversity plots and had a positive effect on plant performance. As floods become more frequent and severe in the future, growing flood-sensitive plants in higher-diversity communities and in soil with greater soil aeration may attenuate the most negative effects of flooding. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Dispersal capacity predicts both population genetic structure and species richness in reef fishes.

    PubMed

    Riginos, Cynthia; Buckley, Yvonne M; Blomberg, Simon P; Treml, Eric A

    2014-07-01

    Dispersal is a fundamental species characteristic that should directly affect both rates of gene flow among spatially distributed populations and opportunities for speciation. Yet no single trait associated with dispersal has been demonstrated to affect both micro- and macroevolutionary patterns of diversity across a diverse biological assemblage. Here, we examine patterns of genetic differentiation and species richness in reef fishes, an assemblage of over 7,000 species comprising approximately one-third of the extant bony fishes and over one-tenth of living vertebrates. In reef fishes, dispersal occurs primarily during a planktonic larval stage. There are two major reproductive and parental investment syndromes among reef fishes, and the differences between them have implications for dispersal: (1) benthic guarding fishes lay negatively buoyant eggs, typically guarded by the male parent, and from these eggs hatch large, strongly swimming larvae; in contrast, (2) pelagic spawning fishes release small floating eggs directly into the water column, which drift unprotected before small weakly swimming larvae hatch. Using phylogenetic comparative methods, we show that benthic guarders have significantly greater population structure than pelagic spawners and additionally that taxonomic families of benthic guarders are more species rich than families of pelagic spawners. Our findings provide a compelling case for the continuity between micro- and macroevolutionary processes of biological diversification and underscore the importance of dispersal-related traits in influencing the mode and tempo of evolution.

  8. The relative influence of climate, environmental heterogeneity, and human population on the distribution of vertebrate species richness in south-eastern Spain

    NASA Astrophysics Data System (ADS)

    Moreno-Rueda, Gregorio; Pizarro, Manuel

    2007-07-01

    In view of the many factors affect species richness, this study examines the relative influence of environmental heterogeneity, climate, human disturbance and spatial structure with respect to the species-richness distribution of terrestrial vertebrates in an area of south-eastern Spain with a Mediterranean climate. We show that environmental heterogeneity was the primary factor determining species richness (20.3% of variance), with the effect of temperature and precipitation being lower (11.6%). Climate had greater importance in determining the species richness of ectotherms (amphibians and reptiles) than of endotherms (mammals and birds). Species richness had less spatial autocorrelation in mammals and birds than in ectotherms. Also, a positive correlation was found between species richness and human population density, especially in reptiles and mammals. Orders and families more sensitive to human presence, such as snakes, raptors, ungulates, and carnivores, showed no relationship (or a negative one) with the human population. This study highlights the importance of environmental heterogeneity (topographic heterogeneity and habitat diversity) for vertebrate conservation in zones with a Mediterranean climate.

  9. What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts.

    PubMed

    Kamiya, Tsukushi; O'Dwyer, Katie; Nakagawa, Shinichi; Poulin, Robert

    2014-02-01

    Although a small set of external factors account for much of the spatial variation in plant and animal diversity, the search continues for general drivers of variation in parasite species richness among host species. Qualitative reviews of existing evidence suggest idiosyncrasies and inconsistent predictive power for all proposed determinants of parasite richness. Here, we provide the first quantitative synthesis of the evidence using a meta-analysis of 62 original studies testing the relationship between parasite richness across animal, plant and fungal hosts, and each of its four most widely used presumed predictors: host body size, host geographical range size, host population density, and latitude. We uncover three universal predictors of parasite richness across host species, namely host body size, geographical range size and population density, applicable regardless of the taxa considered and independently of most aspects of study design. A proper match in the primary studies between the focal predictor and both the spatial scale of study and the level at which parasite species richness was quantified (i.e. within host populations or tallied across a host species' entire range) also affected the magnitude of effect sizes. By contrast, except for a couple of indicative trends in subsets of the full dataset, there was no strong evidence for an effect of latitude on parasite species richness; where found, this effect ran counter to the general latitude gradient in diversity, with parasite species richness tending to be higher further from the equator. Finally, the meta-analysis also revealed a negative relationship between the magnitude of effect sizes and the year of publication of original studies (i.e. a time-lag bias). This temporal bias may be due to the increasing use of phylogenetic correction in comparative analyses of parasite richness over time, as this correction yields more conservative effect sizes. Overall, these findings point to common underlying

  10. Diversification rates and species richness across the Tree of Life.

    PubMed

    Scholl, Joshua P; Wiens, John J

    2016-09-14

    Species richness varies dramatically among clades across the Tree of Life, by over a million-fold in some cases (e.g. placozoans versus arthropods). Two major explanations for differences in richness among clades are the clade-age hypothesis (i.e. species-rich clades are older) and the diversification-rate hypothesis (i.e. species-rich clades diversify more rapidly, where diversification rate is the net balance of speciation and extinction over time). Here, we examine patterns of variation in diversification rates across the Tree of Life. We address how rates vary across higher taxa, whether rates within higher taxa are related to the subclades within them, and how diversification rates of clades are related to their species richness. We find substantial variation in diversification rates, with rates in plants nearly twice as high as in animals, and rates in some eukaryotes approximately 10-fold faster than prokaryotes. Rates for each kingdom-level clade are then significantly related to the subclades within them. Although caution is needed when interpreting relationships between diversification rates and richness, a positive relationship between the two is not inevitable. We find that variation in diversification rates seems to explain most variation in richness among clades across the Tree of Life, in contrast to the conclusions of previous studies. © 2016 The Author(s).

  11. Frog species richness, composition and beta-diversity in coastal Brazilian restinga habitats.

    PubMed

    Rocha, C F D; Hatano, F H; Vrcibradic, D; Van Sluys, M

    2008-02-01

    We studied the species richness and composition of frogs in 10 restinga habitats (sand dune environments dominated by herbaceous and shrubby vegetation) along approximately 1500 km of coastal areas of three Brazilian States: Rio de Janeiro (Grumari, Maricá, Massambaba, Jurubatiba and Grussaí), Espírito Santo (Praia das Neves and Setiba) and Bahia (Prado and Trancoso). We estimated beta-diversity and similarity among areas and related these parameters to geographic distance between areas. All areas were surveyed with a similar sampling procedure. We found 28 frog species belonging to the families Hylidae, Microhylidae, Leptodactylidae and Bufonidae. Frogs in restingas were in general nocturnal with no strictly diurnal species. The richest restinga was Praia das Neves (13 species), followed by Grussaí and Trancoso (eight species in each). The commonest species in the restingas was Scinax alter (found in eight restingas), followed by Aparasphenodon brunoi (seven areas). Our data shows that richness and composition of frog communities vary consistently along the eastern Brazilian coast and, in part, the rate of species turnover is affected by the distance among areas. Geographic distance explained approximately 12% of species turnover in restingas and about 9.5% of similarity among frog assemblages. Although geographic distance somewhat affects frog assemblages, other factors (e.g. historical factors, disturbances) seem to be also involved in explaining present frog assemblage composition in each area and species turnover among areas. The frog fauna along restinga habitats was significantly nested (matrix community temperature = 26.13 degrees; p = 0.007). Our data also showed that the most hospitable restinga was Praia das Neves and indicated that this area should be protected as a conservation unit. Frog assemblage of each area seems to partially represent a nested subset of the original assemblage, although we should not ignore the importance of historical

  12. Spatio-temporal dynamics of species richness in coastal fish communities

    USGS Publications Warehouse

    Lekve, K.; Boulinier, T.; Stenseth, N.C.; Gjøsaeter, J.; Fromentin, J-M.; Hines, J.E.; Nichols, J.D.

    2002-01-01

    Determining patterns of change in species richness and the processes underlying the dynamics of biodiversity are of key interest within the field of ecology, but few studies have investigated the dynamics of vertebrate communities at a decadal temporal scale. Here, we report findings on the spado-temporal variability in the richness and composition of fish communities along the Norwegian Skagerrak coast having been surveyed for more than half a century. Using statistical models incorporating non-detection and associated sampling variance, we estimate local species richness and changes in species composition allowing us to compute temporal variability in species richness. We tested whether temporal variation could be related to distance to the open sea and to local levels of pollution. Clear differences in mean species richness and temporal variability are observed between fjords that were and were not exposed to the effects of pollution. Altogether this indicates that the fjord is an appropriate scale for studying changes in coastal fish communities in space and time. The year-to-year rates of local extinction and turnover were found to be smaller than spatial differences in community composition. At the regional level, exposure to the open sea plays a homogenizing role, possibly due to coastal currents and advection.

  13. Factors associated with plant species richness in a coastal tall-grass prairie

    USGS Publications Warehouse

    Grace, James B.; Allain, Larry K.; Allen, Charles

    2000-01-01

    In this study we examine the factors associated with variations in species richness within a remnant tall-grass prairie in order to gain insight into the relative importance of controlling variables. The study area was a small, isolated prairie surrounded by wetlands and located within the coastal prairie region, which occurs along the northwestern Gulf of Mexico coastal plain. Samples were taken along three transects that spanned the prairie. Parameters measured included micro-elevation, soil characteristics, indications of recent disturbance, above-ground biomass (including litter), light penetration through the plant canopy, and species richness. Species richness was found to correlate with micro-elevation, certain soil parameters, and light penetration through the canopy, but not with above-ground biomass. Structural equation analysis was used to assess the direct and indirect effects of micro-elevation, soil properties, disturbance, and indicators of plant abundance on species richness. The results of this analysis showed that observed variations in species richness were primarily associated with variations in environmental effects (from soil and microtopography) and were largely unrelated to variations in measures of plant abundance (biomass and light penetration). These findings suggest that observed variations in species richness in this system primarily resulted from environmental effects on the species pool. These results fit with a growing body of information that suggests that environmental effects on species richness are of widespread importance.

  14. Is There a Relationship between Fish Cannibalism and Latitude or Species Richness?

    PubMed

    Pereira, Larissa Strictar; Keppeler, Friedrich Wolfgang; Agostinho, Angelo Antonio; Winemiller, Kirk O

    2017-01-01

    Cannibalism has been commonly observed in fish from northern and alpine regions and less frequently reported for subtropical and tropical fish in more diverse communities. Assuming all else being equal, cannibalism should be more common in communities with lower species richness because the probability of encountering conspecific versus heterospecific prey would be higher. A global dataset was compiled to determine if cannibalism occurrence is associated with species richness and latitude. Cannibalism occurrence, local species richness and latitude were recorded for 4,100 populations of 2,314 teleost fish species. Relationships between cannibalism, species richness and latitude were evaluated using generalized linear mixed models. Species richness was an important predictor of cannibalism, with occurrences more frequently reported for assemblages containing fewer species. Cannibalism was positively related with latitude for both marine and freshwater ecosystems in the Northern Hemisphere, but not in the Southern Hemisphere. The regression slope for the relationship was steeper for freshwater than marine fishes. In general, cannibalism is more frequent in communities with lower species richness, and the relationship between cannibalism and latitude is stronger in the Northern Hemisphere. In the Southern Hemisphere, weaker latitudinal gradients of fish species richness may account for the weak relationship between cannibalism and latitude. Cannibalism may be more common in freshwater than marine systems because freshwater habitats tend to be smaller and more closed to dispersal. Cannibalism should have greatest potential to influence fish population dynamics in freshwater systems at high northern latitudes.

  15. Is There a Relationship between Fish Cannibalism and Latitude or Species Richness?

    PubMed Central

    Keppeler, Friedrich Wolfgang; Agostinho, Angelo Antonio; Winemiller, Kirk O.

    2017-01-01

    Cannibalism has been commonly observed in fish from northern and alpine regions and less frequently reported for subtropical and tropical fish in more diverse communities. Assuming all else being equal, cannibalism should be more common in communities with lower species richness because the probability of encountering conspecific versus heterospecific prey would be higher. A global dataset was compiled to determine if cannibalism occurrence is associated with species richness and latitude. Cannibalism occurrence, local species richness and latitude were recorded for 4,100 populations of 2,314 teleost fish species. Relationships between cannibalism, species richness and latitude were evaluated using generalized linear mixed models. Species richness was an important predictor of cannibalism, with occurrences more frequently reported for assemblages containing fewer species. Cannibalism was positively related with latitude for both marine and freshwater ecosystems in the Northern Hemisphere, but not in the Southern Hemisphere. The regression slope for the relationship was steeper for freshwater than marine fishes. In general, cannibalism is more frequent in communities with lower species richness, and the relationship between cannibalism and latitude is stronger in the Northern Hemisphere. In the Southern Hemisphere, weaker latitudinal gradients of fish species richness may account for the weak relationship between cannibalism and latitude. Cannibalism may be more common in freshwater than marine systems because freshwater habitats tend to be smaller and more closed to dispersal. Cannibalism should have greatest potential to influence fish population dynamics in freshwater systems at high northern latitudes. PMID:28122040

  16. Plant species richness and ecosystem multifunctionality in global drylands

    USGS Publications Warehouse

    Maestre, Fernando T.; Quero, Jose L.; Gotelli, Nicholas J.; Escudero, Adrian; Ochoa, Victoria; Delgado-Baquerizo, Manuel; Garcia-Gomez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; Garcia-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceicao, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitan, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gomez-Gonzalez, Susana; Gutie, Julio R.; Hernandez, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Anibal; Pucheta, Eduardo; Ramirez-Collantes, David A.; Romao, Roberto; Tighe, Matthew; Torres-Diaz, Cristian; Val, James; Veiga, Jose P.; Wang, Deli; Zaady, Eli

    2012-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and the buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report here on a global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth's land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality and always included species richness as a predictor variable. Our results suggest that the preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands.

  17. Plant species richness and ecosystem multifunctionality in global drylands

    PubMed Central

    Maestre, Fernando T.; Quero, José L.; Gotelli, Nicholas J.; Escudero, Adriá; Ochoa, Victoria; Delgado-Baquerizo, Manuel; García-Gómez, Miguel; Bowker, Matthew A.; Soliveres, Santiago; Escolar, Cristina; García-Palacios, Pablo; Berdugo, Miguel; Valencia, Enrique; Gozalo, Beatriz; Gallardo, Antonio; Aguilera, Lorgio; Arredondo, Tulio; Blones, Julio; Boeken, Bertrand; Bran, Donaldo; Conceição, Abel A.; Cabrera, Omar; Chaieb, Mohamed; Derak, Mchich; Eldridge, David J.; Espinosa, Carlos I.; Florentino, Adriana; Gaitán, Juan; Gatica, M. Gabriel; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R.; Hernández, Rosa M.; Huang, Xuewen; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Miriti, Maria; Monerris, Jorge; Mau, Rebecca L.; Morici, Ernesto; Naseri, Kamal; Ospina, Abelardo; Polo, Vicente; Prina, Aníbal; Pucheta, Eduardo; Ramírez-Collantes, David A.; Romão, Roberto; Tighe, Matthew; Torres-Díaz, Cristian; Val, James; Veiga, José P.; Wang, Deli; Zaady, Eli

    2013-01-01

    Experiments suggest that biodiversity enhances the ability of ecosystems to maintain multiple functions, such as carbon storage, productivity, and buildup of nutrient pools (multifunctionality). However, the relationship between biodiversity and multifunctionality has never been assessed globally in natural ecosystems. We report on the first global empirical study relating plant species richness and abiotic factors to multifunctionality in drylands, which collectively cover 41% of Earth’s land surface and support over 38% of the human population. Multifunctionality was positively and significantly related to species richness. The best-fitting models accounted for over 55% of the variation in multifunctionality, and always included species richness as a predictor variable. Our results suggest that preservation of plant biodiversity is crucial to buffer negative effects of climate change and desertification in drylands. PMID:22246775

  18. Combining geodiversity with climate and topography to account for threatened species richness.

    PubMed

    Tukiainen, Helena; Bailey, Joseph J; Field, Richard; Kangas, Katja; Hjort, Jan

    2017-04-01

    Understanding threatened species diversity is important for long-term conservation planning. Geodiversity-the diversity of Earth surface materials, forms, and processes-may be a useful biodiversity surrogate for conservation and have conservation value itself. Geodiversity and species richness relationships have been demonstrated; establishing whether geodiversity relates to threatened species' diversity and distribution pattern is a logical next step for conservation. We used 4 geodiversity variables (rock-type and soil-type richness, geomorphological diversity, and hydrological feature diversity) and 4 climatic and topographic variables to model threatened species diversity across 31 of Finland's national parks. We also analyzed rarity-weighted richness (a measure of site complementarity) of threatened vascular plants, fungi, bryophytes, and all species combined. Our 1-km 2 resolution data set included 271 threatened species from 16 major taxa. We modeled threatened species richness (raw and rarity weighted) with boosted regression trees. Climatic variables, especially the annual temperature sum above 5 °C, dominated our models, which is consistent with the critical role of temperature in this boreal environment. Geodiversity added significant explanatory power. High geodiversity values were consistently associated with high threatened species richness across taxa. The combined effect of geodiversity variables was even more pronounced in the rarity-weighted richness analyses (except for fungi) than in those for species richness. Geodiversity measures correlated most strongly with species richness (raw and rarity weighted) of threatened vascular plants and bryophytes and were weakest for molluscs, lichens, and mammals. Although simple measures of topography improve biodiversity modeling, our results suggest that geodiversity data relating to geology, landforms, and hydrology are also worth including. This reinforces recent arguments that conserving nature's stage

  19. Hierarchical Bayes estimation of species richness and occupancy in spatially replicated surveys

    USGS Publications Warehouse

    Kery, M.; Royle, J. Andrew

    2008-01-01

    1. Species richness is the most widely used biodiversity metric, but cannot be observed directly as, typically, some species are overlooked. Imperfect detectability must therefore be accounted for to obtain unbiased species-richness estimates. When richness is assessed at multiple sites, two approaches can be used to estimate species richness: either estimating for each site separately, or pooling all samples. The first approach produces imprecise estimates, while the second loses site-specific information. 2. In contrast, a hierarchical Bayes (HB) multispecies site-occupancy model benefits from the combination of information across sites without losing site-specific information and also yields occupancy estimates for each species. The heart of the model is an estimate of the incompletely observed presence-absence matrix, a centrepiece of biogeography and monitoring studies. We illustrate the model using Swiss breeding bird survey data, and compare its estimates with the widely used jackknife species-richness estimator and raw species counts. 3. Two independent observers each conducted three surveys in 26 1-km(2) quadrats, and detected 27-56 (total 103) species. The average estimated proportion of species detected after three surveys was 0.87 under the HB model. Jackknife estimates were less precise (less repeatable between observers) than raw counts, but HB estimates were as repeatable as raw counts. The combination of information in the HB model thus resulted in species-richness estimates presumably at least as unbiased as previous approaches that correct for detectability, but without costs in precision relative to uncorrected, biased species counts. 4. Total species richness in the entire region sampled was estimated at 113.1 (CI 106-123); species detectability ranged from 0.08 to 0.99, illustrating very heterogeneous species detectability; and species occupancy was 0.06-0.96. Even after six surveys, absolute bias in observed occupancy was estimated at up to 0

  20. A unified model of avian species richness on islands and continents.

    PubMed

    Kalmar, Attila; Currie, David J

    2007-05-01

    How many species in a given taxon should be found in a delimited area in a specified place in the world? Some recent literature suggests that the answer to this question depends strongly on the geographical, evolutionary, and ecological context. For example, current theory suggests that species accumulate as a function of area differently on continents and islands. Species richness-climate relationships have been examined separately on continents and on islands. This study tests the hypotheses that (1) the functional relationship between richness and climate is the same on continents and islands; (2) the species-area slope depends on distance-based isolation; (3) species-area relationships differ among land bridge islands, oceanic islands, and continents; (4) richness differs among biogeographic regions independently of climate and isolation. We related bird species numbers in a worldwide sample of 240 continental parcels and 346 islands to several environmental variables. We found that breeding bird richness varies similarly on islands and on continents as a function of mean annual temperature, an area x precipitation interaction, and the distance separating insular samples from the nearest continent (R2 = 0.86). Most studies to date have postulated that the slope of the species-area relationship depends upon isolation. In contrast, we found no such interaction. A richness-environment relationship derived using Old World sites accurately predicts patterns of richness in the New World and vice versa (R2 = 0.85). Our results suggest that most of the global variation in richness is not strongly context-specific; rather, it reflects a small number of general environmental constraints operating on both continents and islands.

  1. Hydro-edaphic conditions defining richness and species composition in savanna areas of the northern Brazilian Amazonia

    PubMed Central

    Araújo, Maria Aparecida de Moura; da Rocha, Antônio Elielson Sousa; Miranda, Izildinha de Souza

    2017-01-01

    Abstract Background Studies on plant communities in the Amazon have reported that different hydro-edaphic conditions can affect the richness and the species composition of different ecosystems. However, this aspect is poorly known in the different savanna habitats. Understanding how populations and plant communities are distributed in these open vegetation areas is important to improve the knowledge about which environmental variables influence the occurrence and diversity of plants in this type of regional ecosystem. Thus, this study investigated the richness and composition of plant species in two savanna areas of the northern Brazilian Amazonia, using the coverage (%) of the different life forms observed under different hydro-edaphic conditions as a structural reference. New information We report 128 plant species classified in 34 botanical families distributed in three savanna habitats with different levels of hydro-edaphic restrictions. In this study, the habitats are conceptually presented and they integrate environmental information (edaphic factors and drainage type), which determines differences between floristic composition, species richness and coverage (%) of plant life forms. PMID:28848372

  2. The humpbacked species richness-curve: A contingent rule for community ecology

    USGS Publications Warehouse

    Graham, John H.; Duda, Jeffrey J.

    2011-01-01

    Functional relationships involving species richness may be unimodal, monotonically increasing, monotonically decreasing, bimodal, multimodal, U-shaped, or with no discernable pattern. The unimodal relationships are the most interesting because they suggest dynamic, nonequilibrium community processes. For that reason, they are also contentious. In this paper, we provide a wide-ranging review of the literature on unimodal (humpbacked) species richness-relationships. Though not as widespread as previously thought, unimodal patterns of species richness are often associated with disturbance, predation and herbivory, productivity, spatial heterogeneity, environmental gradients, time, and latitude. These unimodal patterns are contingent on organism and environment; we examine unimodal species richness-curves involving plants, invertebrates, vertebrates, plankton, and microbes in marine, lacustrine, and terrestrial habitats. A goal of future research is to understand the contingent patterns and the complex, interacting processes that generate them.

  3. Determinants of Mammal and Bird Species Richness in China Based on Habitat Groups

    PubMed Central

    Xu, Haigen; Cao, Mingchang; Wu, Jun; Cai, Lei; Ding, Hui; Lei, Juncheng; Wu, Yi; Cui, Peng; Chen, Lian; Le, Zhifang; Cao, Yun

    2015-01-01

    Understanding the spatial patterns in species richness is a central issue in macroecology and biogeography. Analyses that have traditionally focused on overall species richness limit the generality and depth of inference. Spatial patterns of species richness and the mechanisms that underpin them in China remain poorly documented. We created a database of the distribution of 580 mammal species and 849 resident bird species from 2376 counties in China and established spatial linear models to identify the determinants of species richness and test the roles of five hypotheses for overall mammals and resident birds and the 11 habitat groups among the two taxa. Our result showed that elevation variability was the most important determinant of species richness of overall mammal and bird species. It is indicated that the most prominent predictors of species richness varied among different habitat groups: elevation variability for forest and shrub mammals and birds, temperature annual range for grassland and desert mammals and wetland birds, net primary productivity for farmland mammals, maximum temperature of the warmest month for cave mammals, and precipitation of the driest quarter for grassland and desert birds. Noteworthily, main land cover type was also found to obviously influence mammal and bird species richness in forests, shrubs and wetlands under the disturbance of intensified human activities. Our findings revealed a substantial divergence in the species richness patterns among different habitat groups and highlighted the group-specific and disparate environmental associations that underpin them. As we demonstrate, a focus on overall species richness alone might lead to incomplete or misguided understanding of spatial patterns. Conservation priorities that consider a broad spectrum of habitat groups will be more successful in safeguarding the multiple services of biodiversity. PMID:26629903

  4. Life history correlates of fecal bacterial species richness in a wild population of the blue tit Cyanistes caeruleus

    PubMed Central

    Benskin, Clare McW H; Rhodes, Glenn; Pickup, Roger W; Mainwaring, Mark C; Wilson, Kenneth; Hartley, Ian R

    2015-01-01

    Very little is known about the normal gastrointestinal flora of wild birds, or how it might affect or reflect the host's life-history traits. The aim of this study was to survey the species richness of bacteria in the feces of a wild population of blue tits Cyanistes caeruleus and to explore the relationships between bacterial species richness and various life-history traits, such as age, sex, and reproductive success. Using PCR-TGGE, 55 operational taxonomic units (OTUs) were identified in blue tit feces. DNA sequencing revealed that the 16S rRNA gene was amplified from a diverse range of bacteria, including those that shared closest homology with Bacillus licheniformis, Campylobacter lari, Pseudomonas spp., and Salmonella spp. For adults, there was a significant negative relationship between bacterial species richness and the likelihood of being detected alive the following breeding season; bacterial richness was consistent across years but declined through the breeding season; and breeding pairs had significantly more similar bacterial richness than expected by chance alone. Reduced adult survival was correlated with the presence of an OTU most closely resembling C. lari; enhanced adult survival was associated with an OTU most similar to Arthrobacter spp. For nestlings, there was no significant change in bacterial species richness between the first and second week after hatching, and nestlings sharing the same nest had significantly more similar bacterial richness. Collectively, these results provide compelling evidence that bacterial species richness was associated with several aspects of the life history of their hosts. PMID:25750710

  5. Nematode distributions as spatial null models for macroinvertebrate species richness across environmental gradients: A case from mountain lakes.

    PubMed

    de Mendoza, Guillermo; Traunspurger, Walter; Palomo, Alejandro; Catalan, Jordi

    2017-05-01

    Nematode species are widely tolerant of environmental conditions and disperse passively. Therefore, the species richness distribution in this group might largely depend on the topological distribution of the habitats and main aerial and aquatic dispersal pathways connecting them. If so, the nematode species richness distributions may serve as null models for evaluating that of other groups more affected by environmental gradients. We investigated this hypothesis in lakes across an altitudinal gradient in the Pyrenees. We compared the altitudinal distribution, environmental tolerance, and species richness, of nematodes with that of three other invertebrate groups collected during the same sampling: oligochaetes, chironomids, and nonchironomid insects. We tested the altitudinal bias in distributions with t -tests and the significance of narrow-ranging altitudinal distributions with randomizations. We compared results between groups with Fisher's exact tests. We then explored the influence of environmental factors on species assemblages in all groups with redundancy analysis (RDA), using 28 environmental variables. And, finally, we analyzed species richness patterns across altitude with simple linear and quadratic regressions. Nematode species were rarely biased from random distributions (5% of species) in contrast with other groups (35%, 47%, and 50%, respectively). The altitudinal bias most often shifted toward low altitudes (85% of biased species). Nematodes showed a lower portion of narrow-ranging species than any other group, and differed significantly from nonchironomid insects (10% and 43%, respectively). Environmental variables barely explained nematode assemblages (RDA adjusted R 2  = 0.02), in contrast with other groups (0.13, 0.19 and 0.24). Despite these substantial differences in the response to environmental factors, species richness across altitude was unimodal, peaking at mid elevations, in all groups. This similarity indicates that the spatial

  6. Does avian species richness in natural patch mosaics follow the forest fragmentation paradigm?

    USGS Publications Warehouse

    Pavlacky, D.C.; Anderson, S.H.

    2007-01-01

    As one approaches the north-eastern limit of pinyon (Pinus spp.) juniper (Juniperus spp.) vegetation on the Colorado Plateau, USA, woodland patches become increasingly disjunct, grading into sagebrush (Artemisia spp.)-dominated landscapes. Patterns of avian species richness in naturally heterogeneous forests may or may not respond to patch discontinuity in the same manner as bird assemblages in fragmented agricultural systems. We used observational data from naturally patchy woodlands and predictions derived from studies of human-modified agricultural forests to estimate the effects of patch area, shape, isolation and distance to contiguous woodland on avian species richness. We predicted that patterns of species richness in naturally patchy juniper woodlands would differ from those observed in fragmented agricultural systems. Our objectives were to (1) estimate the effect of naturally occurring patch structure on avian species richness with respect to habitat affinity and migratory strategy and (2) assess the concordance of the effects to predictions from agricultural forest systems. We used the analogy between populations and communities to estimate species richness, where species are treated as individuals in the application of traditional capture-recapture theory. Information-theoretic model selection showed that overall species richness was explained primarily by the species area relationship. There was some support for a model with greater complexity than the equilibrium theory of island biogeography where the isolation of large patches resulted in greater species richness. Species richness of woodland-dwelling birds was best explained by the equilibrium hypothesis with partial landscape complementation by open-country species in isolated patches. Species richness within specific migratory strategies showed concomitant increases and no shifts in species composition along the patch area gradient. Our results indicate that many patterns of species richness

  7. Clade age and species richness are decoupled across the eukaryotic tree of life.

    PubMed

    Rabosky, Daniel L; Slater, Graham J; Alfaro, Michael E

    2012-08-01

    Explaining the dramatic variation in species richness across the tree of life remains a key challenge in evolutionary biology. At the largest phylogenetic scales, the extreme heterogeneity in species richness observed among different groups of organisms is almost certainly a function of many complex and interdependent factors. However, the most fundamental expectation in macroevolutionary studies is simply that species richness in extant clades should be correlated with clade age: all things being equal, older clades will have had more time for diversity to accumulate than younger clades. Here, we test the relationship between stem clade age and species richness across 1,397 major clades of multicellular eukaryotes that collectively account for more than 1.2 million described species. We find no evidence that clade age predicts species richness at this scale. We demonstrate that this decoupling of age and richness is unlikely to result from variation in net diversification rates among clades. At the largest phylogenetic scales, contemporary patterns of species richness are inconsistent with unbounded diversity increase through time. These results imply that a fundamentally different interpretative paradigm may be needed in the study of phylogenetic diversity patterns in many groups of organisms.

  8. Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling

    USGS Publications Warehouse

    Zipkin, Elise F.; DeWan, Amielle; Royle, J. Andrew

    2009-01-01

    1. Species richness is often used as a tool for prioritizing conservation action. One method for predicting richness and other summaries of community structure is to develop species-specific models of occurrence probability based on habitat or landscape characteristics. However, this approach can be challenging for rare or elusive species for which survey data are often sparse. 2. Recent developments have allowed for improved inference about community structure based on species-specific models of occurrence probability, integrated within a hierarchical modelling framework. This framework offers advantages to inference about species richness over typical approaches by accounting for both species-level effects and the aggregated effects of landscape composition on a community as a whole, thus leading to increased precision in estimates of species richness by improving occupancy estimates for all species, including those that were observed infrequently. 3. We developed a hierarchical model to assess the community response of breeding birds in the Hudson River Valley, New York, to habitat fragmentation and analysed the model using a Bayesian approach. 4. The model was designed to estimate species-specific occurrence and the effects of fragment area and edge (as measured through the perimeter and the perimeter/area ratio, P/A), while accounting for imperfect detection of species. 5. We used the fitted model to make predictions of species richness within forest fragments of variable morphology. The model revealed that species richness of the observed bird community was maximized in small forest fragments with a high P/A. However, the number of forest interior species, a subset of the community with high conservation value, was maximized in large fragments with low P/A. 6. Synthesis and applications. Our results demonstrate the importance of understanding the responses of both individual, and groups of species, to environmental heterogeneity while illustrating the utility

  9. Flea (Siphonaptera) species richness in the Great Basin Desert and island biogeography theory.

    PubMed

    Bossard, Robert L

    2014-06-01

    Numbers of flea (Siphonaptera) species (flea species richness) on individual mammals should be higher on large mammals, mammals with dense populations, and mammals with large geographic ranges, if mammals are islands for fleas. I tested the first two predictions with regressions of H. J. Egoscue's trapping data on flea species richness collected from individual mammals against mammal size and population density from the literature. Mammal size and population density did not correlate with flea species richness. Mammal geographic range did, in earlier studies. The intermediate-sized (31 g), moderately dense (0.004 individuals/m(2)) Peromyscus truei (Shufeldt) had the highest richness with eight flea species on one individual. Overall, island biogeography theory does not describe the distribution of flea species on mammals in the Great Basin Desert, based on H. J. Egoscue's collections. Alternatively, epidemiological or metapopulation theories may explain flea species richness. © 2014 The Society for Vector Ecology.

  10. Local versus landscape-scale effects of anthropogenic land-use on forest species richness

    NASA Astrophysics Data System (ADS)

    Buffa, G.; Del Vecchio, S.; Fantinato, E.; Milano, V.

    2018-01-01

    The study investigated the effects of human-induced landscape patterns on species richness in forests. For 80 plots of fixed size, we measured human disturbance (categorized as urban/industrial and agricultural land areas), at 'local' and 'landscape' scale (500 m and 2500 m radius from each plot, respectively), the distance from the forest edge, and the size and shape of the woody patch. By using GLM, we analyzed the effects of disturbance and patch-based measures on both total species richness and the richness of a group of specialist species (i.e. the 'ancient forest species'), representing more specific forest features. Patterns of local species richness were sensitive to the structure and composition of the surrounding landscape. Among the landscape components taken into account, urban/industrial land areas turned out as the most threatening factor for both total species richness and the richness of the ancient forest species. However, the best models evidenced a different intensity of the response to the same disturbance category as well as a different pool of significant variables for the two groups of species. The use of groups of species, such as the ancient forest species pool, that are functionally related and have similar ecological requirements, may represent an effective solution for monitoring forest dynamics under the effects of external factors. The approach of relating local assessment of species richness, and in particular of the ancient forest species pool, to land-use patterns may play an important role for the science-policy interface by supporting and strengthening conservation and regional planning decision making.

  11. The relationship between species richness and ecosystem variability is shaped by the mechanism of coexistence.

    PubMed

    Tredennick, Andrew T; Adler, Peter B; Adler, Frederick R

    2017-08-01

    Theory relating species richness to ecosystem variability typically ignores the potential for environmental variability to promote species coexistence. Failure to account for fluctuation-dependent coexistence may explain deviations from the expected negative diversity-ecosystem variability relationship, and limits our ability to predict the consequences of increases in environmental variability. We use a consumer-resource model to explore how coexistence via the temporal storage effect and relative nonlinearity affects ecosystem variability. We show that a positive, rather than negative, diversity-ecosystem variability relationship is possible when ecosystem function is sampled across a natural gradient in environmental variability and diversity. We also show how fluctuation-dependent coexistence can buffer ecosystem functioning against increasing environmental variability by promoting species richness and portfolio effects. Our work provides a general explanation for variation in observed diversity-ecosystem variability relationships and highlights the importance of conserving regional species pools to help buffer ecosystems against predicted increases in environmental variability. © 2017 John Wiley & Sons Ltd/CNRS.

  12. Climate variability decreases species richness and community stability in a temperate grassland.

    PubMed

    Zhang, Yunhai; Loreau, Michel; He, Nianpeng; Wang, Junbang; Pan, Qingmin; Bai, Yongfei; Han, Xingguo

    2018-06-26

    Climate change involves modifications in both the mean and the variability of temperature and precipitation. According to global warming projections, both the magnitude and the frequency of extreme weather events are increasing, thereby increasing climate variability. The previous studies have reported that climate warming tends to decrease biodiversity and the temporal stability of community primary productivity (i.e., community stability), but the effects of the variability of temperature and precipitation on biodiversity, community stability, and their relationship have not been clearly explored. We used a long-term (from 1982 to 2014) field data set from a temperate grassland in northern China to explore the effects of the variability of mean temperature and total precipitation on species richness, community stability, and their relationship. Results showed that species richness promoted community stability through increases in asynchronous dynamics across species (i.e., species asynchrony). Both species richness and species asynchrony were positively associated with the residuals of community stability after controlling for its dependence on the variability of mean temperature and total precipitation. Furthermore, the variability of mean temperature reduced species richness, while the variability of total precipitation decreased species asynchrony and community stability. Overall, the present study revealed that species richness and species asynchrony promoted community stability, but increased climate variability may erode these positive effects and thereby threaten community stability.

  13. Species richness in soil bacterial communities: a proposed approach to overcome sample size bias.

    PubMed

    Youssef, Noha H; Elshahed, Mostafa S

    2008-09-01

    Estimates of species richness based on 16S rRNA gene clone libraries are increasingly utilized to gauge the level of bacterial diversity within various ecosystems. However, previous studies have indicated that regardless of the utilized approach, species richness estimates obtained are dependent on the size of the analyzed clone libraries. We here propose an approach to overcome sample size bias in species richness estimates in complex microbial communities. Parametric (Maximum likelihood-based and rarefaction curve-based) and non-parametric approaches were used to estimate species richness in a library of 13,001 near full-length 16S rRNA clones derived from soil, as well as in multiple subsets of the original library. Species richness estimates obtained increased with the increase in library size. To obtain a sample size-unbiased estimate of species richness, we calculated the theoretical clone library sizes required to encounter the estimated species richness at various clone library sizes, used curve fitting to determine the theoretical clone library size required to encounter the "true" species richness, and subsequently determined the corresponding sample size-unbiased species richness value. Using this approach, sample size-unbiased estimates of 17,230, 15,571, and 33,912 were obtained for the ML-based, rarefaction curve-based, and ACE-1 estimators, respectively, compared to bias-uncorrected values of 15,009, 11,913, and 20,909.

  14. Species richness of motile cryptofauna across a gradient of reef framework erosion

    NASA Astrophysics Data System (ADS)

    Enochs, I. C.; Manzello, D. P.

    2012-09-01

    Coral reef ecosystems contain exceptionally high concentrations of marine biodiversity, potentially encompassing millions of species. Similar to tropical rainforests and their insects, the majority of reef animal species are small and cryptic, living in the cracks and crevices of structural taxa (trees and corals). Although the cryptofauna make up the majority of a reef's metazoan biodiversity, we know little about their basic ecology. We sampled motile cryptofaunal communities from both live corals and dead carbonate reef framework across a gradient of increasing erosion on a reef in Pacific Panamá. A total of 289 Operational Taxonomic Units (OTUs) from six phyla were identified. We used species-accumulation models fitted to individual- and sample-based rarefaction curves, as well as seven nonparametric richness estimators to estimate species richness among the different framework types. All procedures predicted the same trends in species richness across the differing framework types. Estimated species richness was higher in dead framework (261-370 OTUs) than in live coral substrates (112-219 OTUs). Surprisingly, richness increased as framework structure was eroded: coral rubble contained the greatest number of species (227-320 OTUs) and the lowest estimated richness of 47-115 OTUs was found in the zone where the reef framework had the greatest vertical relief. This contradicts the paradigm that abundant live coral indicates the apex of reef diversity.

  15. Plant species richness enhances nitrogen retention in green roof plots.

    PubMed

    Johnson, Catherine; Schweinhart, Shelbye; Buffam, Ishi

    2016-10-01

    Vegetated (green) roofs have become common in many cities and are projected to continue to increase in coverage, but little is known about the ecological properties of these engineered ecosystems. In this study, we tested the biodiversity-ecosystem function hypothesis using commercially available green roof trays as replicated plots with varying levels of plant species richness (0, 1, 3, or 6 common green roof species per plot, using plants with different functional characteristics). We estimated accumulated plant biomass near the peak of the first full growing season (July 2013) and measured runoff volume after nearly every rain event from September 2012 to September 2013 (33 events) and runoff fluxes of inorganic nutrients ammonium, nitrate, and phosphate from a subset of 10 events. We found that (1) total plant biomass increased with increasing species richness, (2) green roof plots were effective at reducing storm runoff, with vegetation increasing water retention more than soil-like substrate alone, but there was no significant effect of plant species identity or richness on runoff volume, (3) green roof substrate was a significant source of phosphate, regardless of presence/absence of plants, and (4) dissolved inorganic nitrogen (DIN = nitrate + ammonium) runoff fluxes were different among plant species and decreased significantly with increasing plant species richness. The variation in N retention was positively related to variation in plant biomass. Notably, the increased biomass and N retention with species richness in this engineered ecosystem are similar to patterns observed in published studies from grasslands and other well-studied ecosystems. We suggest that more diverse plantings on vegetated roofs may enhance the retention capacity for reactive nitrogen. This is of importance for the sustained health of vegetated roof ecosystems, which over time often experience nitrogen limitation, and is also relevant for water quality in receiving waters

  16. Patterns of plant species richness, rarity, endemism, and uniqueness in an arid landscape

    USGS Publications Warehouse

    Stohlgren, T.J.; Guenther, D.A.; Evangelista, P.H.; Alley, N.

    2005-01-01

    Most current conservation literature focuses on the preservation of hotspots of species diversity and endemism, as if the two were geographically synonymous. At landscape scales this may not be the case. We collected data from 367 1000-m2 plots in the Grand Staircase–Escalante National Monument, Utah, USA, to show that: (1) the vast majority of plant species are locally rare; (2) species-rich areas are generally in rare, mesic, or high-elevation habitats such as aspen stands or riparian zones high in soil N and P; (3) endemic species (to the Colorado Plateau and the Monument) were generally found in relatively species-rich, but low-elevation, xeric vegetation type areas low in soil P; (4) unique species assemblages were found in areas moderately high in endemism and species richness; and (5) nonnative plant species were widely distributed, but more prevalent in species-rich, mesic sites high in soil fertility or disturbed sites, and significantly less prevalent in plots with endemic species. We show that primary hotspots of species richness, high endemism, and unique species assemblages are not co-located on the landscape. Hence, conservation strategies may have to consider a much broader concept of “hotspots” to adequately preserve native plant species and the processes that foster persistence.

  17. Relative species richness and community completeness: avian communities and urbanization in the mid-Atlantic states

    USGS Publications Warehouse

    Cam, E.; Nichols, J.D.; Sauer, J.R.; Hines, J.E.; Flather, C.H.

    2000-01-01

    The idea that local factors govern local richness has been dominant for years, but recent theoretical and empirical studies have stressed the influence of regional factors on local richness. Fewer species at a site could reflect not only the influence of local factors, but also a smaller regional pool. The possible dependency of local richness on the regional pool should be taken into account when addressing the influence of local factors on local richness. It is possible to account for this potential dependency by comparing relative species richness among sites, rather than species richness per se. We consider estimation of a metric permitting assessment of relative species richness in a typical situation in which not all species are detected during sampling sessions. In this situation, estimates of absolute or relative species richness need to account for variation in species detection probability if they are to be unbiased. We present a method to estimate relative species richness based on capture-recapture models. This approach involves definition of a species list from regional data, and estimation of the number of species in that list that are present at a site-year of interest. We use this approach to address the influence of urbanization on relative richness of avian communities in the Mid-Atlantic region of the United States. There is a negative relationship between relative richness and landscape variables describing the level of urban development. We believe that this metric should prove very useful for conservation and management purposes because it is based on an estimator of species richness that both accounts for potential variation in species detection probability and allows flexibility in the specification of a 'reference community.' This metric can be used to assess ecological integrity, the richness of the community of interest relative to that of the 'original' community, or to assess change since some previous time in a community.

  18. The Impact of Land Abandonment on Species Richness and Abundance in the Mediterranean Basin: A Meta-Analysis

    PubMed Central

    Plieninger, Tobias; Hui, Cang; Gaertner, Mirijam; Huntsinger, Lynn

    2014-01-01

    Land abandonment is common in the Mediterranean Basin, a global biodiversity hotspot, but little is known about its impacts on biodiversity. To upscale existing case-study insights to the Pan-Mediterranean level, we conducted a meta-analysis of the effects of land abandonment on plant and animal species richness and abundance in agroforestry, arable land, pastures, and permanent crops of the Mediterranean Basin. In particular, we investigated (1) which taxonomic groups (arthropods, birds, lichen, vascular plants) are more affected by land abandonment; (2) at which spatial and temporal scales the effect of land abandonment on species richness and abundance is pronounced; (3) whether previous land use and current protected area status affect the magnitude of changes in the number and abundance of species; and (4) how prevailing landforms and climate modify the impacts of land abandonment. After identifying 1240 potential studies, 154 cases from 51 studies that offered comparisons of species richness and abundance and had results relevant to our four areas of investigation were selected for meta-analysis. Results are that land abandonment showed slightly increased (effect size  = 0.2109, P<0.0001) plant and animal species richness and abundance overall, though results were heterogeneous, with differences in effect size between taxa, spatial-temporal scales, land uses, landforms, and climate. In conclusion, there is no “one-size-fits-all” conservation approach that applies to the diverse contexts of land abandonment in the Mediterranean Basin. Instead, conservation policies should strive to increase awareness of this heterogeneity and the potential trade-offs after abandonment. The strong role of factors at the farm and landscape scales that was revealed by the analysis indicates that purposeful management at these scales can have a powerful impact on biodiversity. PMID:24865979

  19. Cross-Cordillera exchange mediated by the Panama Canal increased the species richness of local freshwater fish assemblages.

    PubMed Central

    Smith, Scott A.; Bell, Graham; Bermingham, Eldredge

    2004-01-01

    Completion of the Panama Canal in 1914 breached the continental divide and set into motion a natural experiment of unprecedented magnitude by bringing previously isolated freshwater fish communities into contact. The construction of a freshwater corridor connecting evolutionarily isolated communities in Pacific and Caribbean watersheds dramatically increased the rate of dispersal, without directly affecting species interactions. Here, we report that a large fraction of species have been able to establish themselves on the other side of the continental divide, whereas no species have become extinct, leading to a local increase in species richness. Our results suggest that communities are not saturated and that competitive exclusion does not occur over the time-scale previously envisioned. Moreover, the results of this unintentional experiment demonstrate that community composition and species richness were regulated by the regional process of dispersal, rather than by local processes such as competition and predation. PMID:15347510

  20. Species richness patterns and water-energy dynamics in the drylands of Northwest China.

    PubMed

    Li, Liping; Wang, Zhiheng; Zerbe, Stefan; Abdusalih, Nurbay; Tang, Zhiyao; Ma, Ming; Yin, Linke; Mohammat, Anwar; Han, Wenxuan; Fang, Jingyun

    2013-01-01

    Dryland ecosystems are highly vulnerable to climatic and land-use changes, while the mechanisms underlying patterns of dryland species richness are still elusive. With distributions of 3637 native vascular plants, 154 mammals, and 425 birds in Xinjiang, China, we tested the water-energy dynamics hypothesis for species richness patterns in Central Asian drylands. Our results supported the water-energy dynamics hypothesis. We found that species richness of all three groups was a hump-shaped function of energy availability, but a linear function of water availability. We further found that water availability had stronger effects on plant richness, but weaker effects on vertebrate richness than energy availability. We conducted piecewise linear regressions to detect the breakpoints in the relationship between species richness and potential evapotranspiration which divided Xinjiang into low and high energy regions. The concordance between mammal and plant richness was stronger in high than in low energy regions, which was opposite to that between birds and plants. Plant richness had stronger effects than climate on mammal richness regardless of energy levels, but on bird richness only in high energy regions. The changes in the concordance between vertebrate and plant richness along the climatic gradient suggest that cautions are needed when using concordance between taxa in conservation planning.

  1. Species Richness Patterns and Water-Energy Dynamics in the Drylands of Northwest China

    PubMed Central

    Zerbe, Stefan; Abdusalih, Nurbay; Tang, Zhiyao; Ma, Ming; Yin, Linke; Mohammat, Anwar; Han, Wenxuan; Fang, Jingyun

    2013-01-01

    Dryland ecosystems are highly vulnerable to climatic and land-use changes, while the mechanisms underlying patterns of dryland species richness are still elusive. With distributions of 3637 native vascular plants, 154 mammals, and 425 birds in Xinjiang, China, we tested the water-energy dynamics hypothesis for species richness patterns in Central Asian drylands. Our results supported the water-energy dynamics hypothesis. We found that species richness of all three groups was a hump-shaped function of energy availability, but a linear function of water availability. We further found that water availability had stronger effects on plant richness, but weaker effects on vertebrate richness than energy availability. We conducted piecewise linear regressions to detect the breakpoints in the relationship between species richness and potential evapotranspiration which divided Xinjiang into low and high energy regions. The concordance between mammal and plant richness was stronger in high than in low energy regions, which was opposite to that between birds and plants. Plant richness had stronger effects than climate on mammal richness regardless of energy levels, but on bird richness only in high energy regions. The changes in the concordance between vertebrate and plant richness along the climatic gradient suggest that cautions are needed when using concordance between taxa in conservation planning. PMID:23840472

  2. Using Wildlife Species Richness to Identify Land Protection Priorities in California's Hardwood Woodlands

    Treesearch

    Robert S. Motroni; Daniel A. Airola; Robin K. Ma rose; Nancy D. Tosta

    1991-01-01

    A geographic information system was used to assess wildlife species richness (number of species) in valley-foothill hardwood habitats throughout California to set priorities for conservation attention. Species richness values were assessed and compared using three methods: one that included all species without considering canopy cover conditions and species preferences...

  3. Bioengineer effects on understory species richness, diversity, and composition change along an environmental stress gradient: Experimental and mensurative evidence

    NASA Astrophysics Data System (ADS)

    Watt, Cortney A.; Scrosati, Ricardo A.

    2013-05-01

    Canopy-forming bioengineer species are commonly assumed to increase local species richness and diversity. We tested this notion by investigating the effects of fucoid seaweed canopies on understory communities along rocky intertidal elevation gradients in Atlantic Canada. Such gradients exhibit increasing thermal extremes and variation from low to high elevations, and are broadly used in stress gradient studies. A manipulative experiment created canopy and no-canopy treatments at the low, middle, and high intertidal zones, eliminating all species (except fucoid canopies) from replicate quadrats. After recolonization, overall richness and diversity (considering all primary producers and consumers) were higher under canopies than uncovered by canopies at the high and middle zones, but no effects occurred at the low zone. Similarly, species composition was affected by canopies at the high and middle zones, but not at the low zone. A mensurative study that surveyed the full range of canopy cover (0-100%) using nearly five times more quadrats from pristine areas yielded the same results: richness and diversity increased with canopy cover at the high and middle zones (approaching stabilization toward high cover values), but no effects occurred at the low zone. Lack of canopy effects at low elevations is related to mild habitat conditions, which canopies are unable to modify, while positive effects at higher elevations relate to the capacity of canopies to ameliorate harsh conditions. This is the first time that a combined experimental and mensurative approach shows that the same bioengineer species affect overall species richness, diversity, and composition differently along a stress gradient. Overall, protecting canopy-forming bioengineers to preserve local biodiversity should be most effective in stressful environments.

  4. Kleptoparasitic behavior and species richness at Mt. Graham red squirrel middens

    Treesearch

    Andrew J. Edelman; John L. Koprowski; Jennifer L. Edelman

    2005-01-01

    We used remote photography to assess the frequency of inter- and intra-specific kleptoparasitism and species richness at Mt. Graham red squirrel (Tamiasciurus hudsonicus grahamensis) middens. Remote cameras and conifer cones were placed at occupied and unoccupied middens, and random sites. Species richness of small mammals was higher at red squirrel...

  5. Species associations in a species-rich subtropical forest were not well-explained by stochastic geometry of biodiversity.

    PubMed

    Wang, Qinggang; Bao, Dachuan; Guo, Yili; Lu, Junmeng; Lu, Zhijun; Xu, Yaozhan; Zhang, Kuihan; Liu, Haibo; Meng, Hongjie; Jiang, Mingxi; Qiao, Xiujuan; Huang, Handong

    2014-01-01

    The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1) the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2) The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3) Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47%) of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4) We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66%) than shrub species (18%). We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure.

  6. Species Associations in a Species-Rich Subtropical Forest Were Not Well-Explained by Stochastic Geometry of Biodiversity

    PubMed Central

    Wang, Qinggang; Bao, Dachuan; Guo, Yili; Lu, Junmeng; Lu, Zhijun; Xu, Yaozhan; Zhang, Kuihan; Liu, Haibo; Meng, Hongjie; Jiang, Mingxi; Qiao, Xiujuan; Huang, Handong

    2014-01-01

    The stochastic dilution hypothesis has been proposed to explain species coexistence in species-rich communities. The relative importance of the stochastic dilution effects with respect to other effects such as competition and habitat filtering required to be tested. In this study, using data from a 25-ha species-rich subtropical forest plot with a strong topographic structure at Badagongshan in central China, we analyzed overall species associations and fine-scale species interactions between 2,550 species pairs. The result showed that: (1) the proportion of segregation in overall species association analysis at 2 m neighborhood in this plot followed the prediction of the stochastic dilution hypothesis that segregations should decrease with species richness but that at 10 m neighborhood was higher than the prediction. (2) The proportion of no association type was lower than the expectation of stochastic dilution hypothesis. (3) Fine-scale species interaction analyses using Heterogeneous Poisson processes as null models revealed a high proportion (47%) of significant species effects. However, the assumption of separation of scale of this method was not fully met in this plot with a strong fine-scale topographic structure. We also found that for species within the same families, fine-scale positive species interactions occurred more frequently and negative ones occurred less frequently than expected by chance. These results suggested effects of environmental filtering other than species interaction in this forest. (4) We also found that arbor species showed a much higher proportion of significant fine-scale species interactions (66%) than shrub species (18%). We concluded that the stochastic dilution hypothesis only be partly supported and environmental filtering left discernible spatial signals in the spatial associations between species in this species-rich subtropical forest with a strong topographic structure. PMID:24824996

  7. Estimating the Spatial and Temporal Distribution of Species Richness within Sequoia and Kings Canyon National Parks

    PubMed Central

    Wathen, Steve; Thorne, James H.; Holguin, Andrew; Schwartz, Mark W.

    2014-01-01

    Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians), and plants) within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness) or declined consistently with increasing elevation (herpetofauna and birds). Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations. PMID:25469873

  8. Estimating the spatial and temporal distribution of species richness within Sequoia and Kings Canyon National Parks.

    PubMed

    Wathen, Steve; Thorne, James H; Holguin, Andrew; Schwartz, Mark W

    2014-01-01

    Evidence for significant losses of species richness or biodiversity, even within protected natural areas, is mounting. Managers are increasingly being asked to monitor biodiversity, yet estimating biodiversity is often prohibitively expensive. As a cost-effective option, we estimated the spatial and temporal distribution of species richness for four taxonomic groups (birds, mammals, herpetofauna (reptiles and amphibians), and plants) within Sequoia and Kings Canyon National Parks using only existing biological studies undertaken within the Parks and the Parks' long-term wildlife observation database. We used a rarefaction approach to model species richness for the four taxonomic groups and analyzed those groups by habitat type, elevation zone, and time period. We then mapped the spatial distributions of species richness values for the four taxonomic groups, as well as total species richness, for the Parks. We also estimated changes in species richness for birds, mammals, and herpetofauna since 1980. The modeled patterns of species richness either peaked at mid elevations (mammals, plants, and total species richness) or declined consistently with increasing elevation (herpetofauna and birds). Plants reached maximum species richness values at much higher elevations than did vertebrate taxa, and non-flying mammals reached maximum species richness values at higher elevations than did birds. Alpine plant communities, including sagebrush, had higher species richness values than did subalpine plant communities located below them in elevation. These results are supported by other papers published in the scientific literature. Perhaps reflecting climate change: birds and herpetofauna displayed declines in species richness since 1980 at low and middle elevations and mammals displayed declines in species richness since 1980 at all elevations.

  9. Assessing the natural and anthropogenic influences on basin-wide fish species richness.

    PubMed

    Cheng, Su-Ting; Herricks, Edwin E; Tsai, Wen-Ping; Chang, Fi-John

    2016-12-01

    Theory predicts that the number of fish species increases with river size in natural free-flowing rivers, but the relationship is lost under intensive exploitation of water resources associated with dams and/or landscape developments. In this paper, we aim to identify orthomorphic issues that disrupt theoretical species patterns based on a multi-year, basin-wide assessment in the Danshuei River Watershed of Taiwan. We hypothesize that multiple human-induced modifications fragment habitat areas leading to decreases of local fish species richness. We integrally relate natural and anthropogenic influences on fish species richness by a multiple linear regression model that is driven by a combination of factors including river network structure controls, water quality alterations of habitat, and disruption of channel connectivity with major discontinuities in habitat caused by dams. We found that stream order is a major forcing factor representing natural influence on fish species richness. In addition to stream order, we identified dams, dissolved oxygen deficiency (DO), and excessive total phosphorus (TP) as major anthropogenic influences on the richness of fish species. Our results showed that anthropogenic influences were operating at various spatial scales that inherently regulate the physical, chemical, and biological condition of fish habitats. Moreover, our probability-based risk assessment revealed causes of species richness reduction and opportunities for mitigation. Risks of species richness reduction caused by dams were determined by the position of dams and the contribution of tributaries in the drainage network. Risks associated with TP and DO were higher in human-activity-intensified downstream reaches. Our methodology provides a structural framework for assessing changes in basin-wide fish species richness under the mixed natural and human-modified river network and habitat conditions. Based on our analysis results, we recommend that a focus on landscape

  10. Resource stoichiometry and availability modulate species richness and biomass of tropical litter macro-invertebrates.

    PubMed

    Jochum, Malte; Barnes, Andrew D; Weigelt, Patrick; Ott, David; Rembold, Katja; Farajallah, Achmad; Brose, Ulrich

    2017-09-01

    High biodiversity and biomass of soil communities are crucial for litter decomposition in terrestrial ecosystems such as tropical forests. However, the leaf litter that these communities consume is of particularly poor quality as indicated by elemental stoichiometry. The impact of resource quantity, quality and other habitat parameters on species richness and biomass of consumer communities is often studied in isolation, although much can be learned from simultaneously studying both community characteristics. Using a dataset of 780 macro-invertebrate consumer species across 32 sites in tropical lowland rain forest and agricultural systems on Sumatra, Indonesia, we investigated the effects of basal resource stoichiometry (C:X ratios of N, P, K, Ca, Mg, Na, S in local leaf litter), litter mass (basal resource quantity and habitat space), plant species richness (surrogate for litter habitat heterogeneity), and soil pH (acidity) on consumer species richness and biomass across different consumer groups (i.e. 3 feeding guilds and 10 selected taxonomic groups). In order to distinguish the most important predictors of consumer species richness and biomass, we applied a standardised model averaging approach investigating the effects of basal resource stoichiometry, litter mass, plant species richness and soil pH on both consumer community characteristics. This standardised approach enabled us to identify differences and similarities in the magnitude and importance of such effects on consumer species richness and biomass. Across consumer groups, we found litter mass to be the most important predictor of both species richness and biomass. Resource stoichiometry had a more pronounced impact on consumer species richness than on their biomass. As expected, taxonomic groups differed in which resource and habitat parameters (basal resource stoichiometry, litter mass, plant species richness and pH) were most important for modulating their community characteristics. The importance

  11. Environmental heterogeneity predicts species richness of freshwater mollusks in sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Hauffe, T.; Schultheiß, R.; Van Bocxlaer, B.; Prömmel, K.; Albrecht, C.

    2016-09-01

    Species diversity and how it is structured on a continental scale is influenced by stochastic, ecological, and evolutionary driving forces, but hypotheses on determining factors have been mainly examined for terrestrial and marine organisms. The extant diversity of African freshwater mollusks is in general well assessed to facilitate conservation strategies and because of the medical importance of several taxa as intermediate hosts for tropical parasites. This historical accumulation of knowledge has, however, not resulted in substantial macroecological studies on the spatial distribution of freshwater mollusks. Here, we use continental distribution data and a recently developed method of random and cohesive allocation of species distribution ranges to test the relative importance of various factors in shaping species richness of Bivalvia and Gastropoda. We show that the mid-domain effect, that is, a hump-shaped richness gradient in a geographically bounded system despite the absence of environmental gradients, plays a minor role in determining species richness of freshwater mollusks in sub-Saharan Africa. The western branch of the East African Rift System was included as dispersal barrier in richness models, but these simulation results did not fit observed diversity patterns significantly better than models where this effect was not included, which suggests that the rift has played a more complex role in generating diversity patterns. Present-day precipitation and temperature explain richness patterns better than Eemian climatic condition. Therefore, the availability of water and energy for primary productivity during the past does not influence current species richness patterns much, and observed diversity patterns appear to be in equilibrium with contemporary climate. The availability of surface waters was the best predictor of bivalve and gastropod richness. Our data indicate that habitat diversity causes the observed species-area relationship, and hence, that

  12. Plant species richness at different scales in native and exotic grasslands in Southeastern Arizona

    USGS Publications Warehouse

    McLaughlin, S.P.; Bowers, Janice E.

    2006-01-01

    Species richness in Madrean mixed-grass prairies dominated by native or exotic species in southeastern Arizona was characterized at the community and point scales using ten 1-m2 quadrats nested within each of eight 1000-m2 plots. In the 1000-m2 plots average richness was significantly higher in oak savanna (OS, 121.0 species) than in exotic grassland on mesa tops (EMT, 52.0 species), whereas native grassland on mesa slopes (NMS, 92.5 species) and native grassland on mesa tops (NMT, 77.0 species) did not differ significantly in richness from OS or EMT When richness was partitioned by life form, EMT was notably poorer than other community types in species of perennial grasses, perennial herbs, and summer annuals. In the 1-m2 quadrats, OS (21.2 species), NMS (20.9 species), and NMT (20.7 species) were significantly richer than EMT (5.9 species). Cover in 1-m2 plots was significantly higher in EMT than in NMT, NMS, or OS. Species richness at the point scale showed a unimodal relation to canopy cover, with cover accounting for 30% of the variation in number of species in 1-m2 quadrats. Competitive exclusion and allelopathy have perhaps limited species richness at the point scale in exotic grassland. There was no evidence of a species-pool effect between point and community scales, but such an effect between community and landscape scales was supported. Madrean mixed-grass prairies are landscapes with high species richness in comparison to other grassland types in North America, providing a large pool of potential colonizing species at the community scale. Beta-diversity (between communities) within the landscape of the Appleton-Whittell Research Ranch was consequently high despite a relative lack of habitat diversity.

  13. Grassland Resistance and Resilience after Drought Depends on Management Intensity and Species Richness

    PubMed Central

    Vogel, Anja; Scherer-Lorenzen, Michael; Weigelt, Alexandra

    2012-01-01

    The degree to which biodiversity may promote the stability of grasslands in the light of climatic variability, such as prolonged summer drought, has attracted considerable interest. Studies so far yielded inconsistent results and in addition, the effect of different grassland management practices on their response to drought remains an open question. We experimentally combined the manipulation of prolonged summer drought (sheltered vs. unsheltered sites), plant species loss (6 levels of 60 down to 1 species) and management intensity (4 levels varying in mowing frequency and amount of fertilizer application). Stability was measured as resistance and resilience of aboveground biomass production in grasslands against decreased summer precipitation, where resistance is the difference between drought treatments directly after drought induction and resilience is the difference between drought treatments in spring of the following year. We hypothesized that (i) management intensification amplifies biomass decrease under drought, (ii) resistance decreases with increasing species richness and with management intensification and (iii) resilience increases with increasing species richness and with management intensification. We found that resistance and resilience of grasslands to summer drought are highly dependent on management intensity and partly on species richness. Frequent mowing reduced the resistance of grasslands against drought and increasing species richness decreased resistance in one of our two study years. Resilience was positively related to species richness only under the highest management treatment. We conclude that low mowing frequency is more important for high resistance against drought than species richness. Nevertheless, species richness increased aboveground productivity in all management treatments both under drought and ambient conditions and should therefore be maintained under future climates. PMID:22615865

  14. Is Variety the Spice of Life? An Experimental Investigation into the Effects of Species Richness on Self-Reported Mental Well-Being

    PubMed Central

    zu Ermgassen, Sophus; Balmford, Andrew; White, Mathew; Weinstein, Netta

    2017-01-01

    Losses in biodiversity and trends toward urbanisation have reduced people’s contact with biodiverse nature, yet the consequences for mental well-being are not well understood. Here, we demonstrate that greater plant and animal species richness in isolation causes an improvement in mental well-being. To do so, the present research experimentally manipulated species richness and assessed widely-used indicators of mental well-being. Participants viewed short videos of either high or low tree (Study 1) or bird (Study 2) species richness and reported on positive (i.e., vitality, positive affect) and negative (i.e., anxiety) indicators of mental well-being. Building on Study 1, Study 2 included an urban environment as a reference treatment and explored the role of giving participants information on the presented environment. We find that, in line with expectations, watching videos containing greater species richness consistently leads to higher mental well-being. We discuss findings in light of the importance of connecting people to biodiverse environments. PMID:28107417

  15. Is Variety the Spice of Life? An Experimental Investigation into the Effects of Species Richness on Self-Reported Mental Well-Being.

    PubMed

    Wolf, Lukas J; Zu Ermgassen, Sophus; Balmford, Andrew; White, Mathew; Weinstein, Netta

    2017-01-01

    Losses in biodiversity and trends toward urbanisation have reduced people's contact with biodiverse nature, yet the consequences for mental well-being are not well understood. Here, we demonstrate that greater plant and animal species richness in isolation causes an improvement in mental well-being. To do so, the present research experimentally manipulated species richness and assessed widely-used indicators of mental well-being. Participants viewed short videos of either high or low tree (Study 1) or bird (Study 2) species richness and reported on positive (i.e., vitality, positive affect) and negative (i.e., anxiety) indicators of mental well-being. Building on Study 1, Study 2 included an urban environment as a reference treatment and explored the role of giving participants information on the presented environment. We find that, in line with expectations, watching videos containing greater species richness consistently leads to higher mental well-being. We discuss findings in light of the importance of connecting people to biodiverse environments.

  16. Image Texture Predicts Avian Density and Species Richness

    PubMed Central

    Wood, Eric M.; Pidgeon, Anna M.; Radeloff, Volker C.; Keuler, Nicholas S.

    2013-01-01

    For decades, ecologists have measured habitat attributes in the field to understand and predict patterns of animal distribution and abundance. However, the scale of inference possible from field measured data is typically limited because large-scale data collection is rarely feasible. This is problematic given that conservation and management typical require data that are fine grained yet broad in extent. Recent advances in remote sensing methodology offer alternative tools for efficiently characterizing wildlife habitat across broad areas. We explored the use of remotely sensed image texture, which is a surrogate for vegetation structure, calculated from both an air photo and from a Landsat TM satellite image, compared with field-measured vegetation structure, characterized by foliage-height diversity and horizontal vegetation structure, to predict avian density and species richness within grassland, savanna, and woodland habitats at Fort McCoy Military Installation, Wisconsin, USA. Image texture calculated from the air photo best predicted density of a grassland associated species, grasshopper sparrow (Ammodramus savannarum), within grassland habitat (R2 = 0.52, p-value <0.001), and avian species richness among habitats (R2 = 0.54, p-value <0.001). Density of field sparrow (Spizella pusilla), a savanna associated species, was not particularly well captured by either field-measured or remotely sensed vegetation structure variables, but was best predicted by air photo image texture (R2 = 0.13, p-value = 0.002). Density of ovenbird (Seiurus aurocapillus), a woodland associated species, was best predicted by pixel-level satellite data (mean NDVI, R2 = 0.54, p-value <0.001). Surprisingly and interestingly, remotely sensed vegetation structure measures (i.e., image texture) were often better predictors of avian density and species richness than field-measured vegetation structure, and thus show promise as a valuable tool for mapping habitat quality

  17. Butterfly Species Richness and Diversity in the Trishna Wildlife Sanctuary in South Asia

    PubMed Central

    Majumder, Joydeb; Lodh, Rahul; Agarwala, B. K.

    2013-01-01

    Several wildlife sanctuaries in the world are home to the surviving populations of many endemic species. Trishna wildlife sanctuary in northeast India is protected by law, and is home to the last surviving populations of Asian bison (Bos gorus Smith), spectacle monkey (Trachypithecus phayrie Blyth), capped langur (Trachypithecus pileatus Blyth), slow loris (Nycticebus coucang Boddaert), wild cat (Felis chaus Schreber), and wild boars (Sus scrofa L.), among many other animals and plants. The sanctuary was explored for species richness and diversity of butterflies. A six-month-long study revealed the occurrence of 59 butterfly species that included 21 unique species and 9 species listed in the threatened category. The mixed moist deciduous mature forest of the sanctuary harbored greater species richness and species diversity (39 species under 31 genera) than other parts of the sanctuary, which is comprised of regenerated secondary mixed deciduous forest (37 species under 32 genera), degraded forests (32 species under 28 genera), and open grassland with patches of plantations and artificial lakes (24 species under 17 genera). The majority of these species showed a distribution range throughout the Indo-Malayan region and Australasia tropics, and eight species were distributed in the eastern parts of South Asia, including one species, Labadea martha (F.), which is distributed in the eastern Himalayas alone. Estimator Chao 2 provided the best-predicted value of species richness. The steep slope of the species accumulation curve suggested the occurrence of a large number of rare species, and a prolonged gentle slope suggested a higher species richness at a higher sample abundance. The species composition of vegetation-rich habitats showed high similarity in comparison to vegetation-poor habitats. PMID:24219624

  18. Butterfly species richness and diversity in the Trishna Wildlife Sanctuary in South Asia.

    PubMed

    Majumder, Joydeb; Lodh, Rahul; Agarwala, B K

    2013-01-01

    Several wildlife sanctuaries in the world are home to the surviving populations of many endemic species. Trishna wildlife sanctuary in northeast India is protected by law, and is home to the last surviving populations of Asian bison (Bos gorus Smith), spectacle monkey (Trachypithecus phayrie Blyth), capped langur (Trachypithecus pileatus Blyth), slow loris (Nycticebus coucang Boddaert), wild cat (Felis chaus Schreber), and wild boars (Sus scrofa L.), among many other animals and plants. The sanctuary was explored for species richness and diversity of butterflies. A six-month-long study revealed the occurrence of 59 butterfly species that included 21 unique species and 9 species listed in the threatened category. The mixed moist deciduous mature forest of the sanctuary harbored greater species richness and species diversity (39 species under 31 genera) than other parts of the sanctuary, which is comprised of regenerated secondary mixed deciduous forest (37 species under 32 genera), degraded forests (32 species under 28 genera), and open grassland with patches of plantations and artificial lakes (24 species under 17 genera). The majority of these species showed a distribution range throughout the Indo-Malayan region and Australasia tropics, and eight species were distributed in the eastern parts of South Asia, including one species, Labadea martha (F.), which is distributed in the eastern Himalayas alone. Estimator Chao 2 provided the best-predicted value of species richness. The steep slope of the species accumulation curve suggested the occurrence of a large number of rare species, and a prolonged gentle slope suggested a higher species richness at a higher sample abundance. The species composition of vegetation-rich habitats showed high similarity in comparison to vegetation-poor habitats.

  19. Plant species richness sustains higher trophic levels of soil nematode communities after consecutive environmental perturbations.

    PubMed

    Cesarz, Simone; Ciobanu, Marcel; Wright, Alexandra J; Ebeling, Anne; Vogel, Anja; Weisser, Wolfgang W; Eisenhauer, Nico

    2017-07-01

    The magnitude and frequency of extreme weather events are predicted to increase in the future due to ongoing climate change. In particular, floods and droughts resulting from climate change are thought to alter the ecosystem functions and stability. However, knowledge of the effects of these weather events on soil fauna is scarce, although they are key towards functioning of terrestrial ecosystems. Plant species richness has been shown to affect the stability of ecosystem functions and food webs. Here, we used the occurrence of a natural flood in a biodiversity grassland experiment that was followed by a simulated summer drought experiment, to investigate the interactive effects of plant species richness, a natural flood, and a subsequent summer drought on nematode communities. Three and five months after the natural flooding, effects of flooding severity were still detectable in the belowground system. We found that flooding severity decreased soil nematode food-web structure (loss of K-strategists) and the abundance of plant feeding nematodes. However, high plant species richness maintained higher diversity and abundance of higher trophic levels compared to monocultures throughout the flood. The subsequent summer drought seemed to be of lower importance but reversed negative flooding effects in some cases. This probably occurred because the studied grassland system is well adapted to drought, or because drought conditions alleviated the negative impact of long-term soil waterlogging. Using soil nematodes as indicator taxa, this study suggests that high plant species richness can maintain soil food web complexity after consecutive environmental perturbations.

  20. Productivity is a poor predictor of plant species richness

    Treesearch

    P.B. Adler; E.T. Borer; H. Hillebrand; Y. Hautier; A. Hector; S. Harpole; L.R. O’Halloran; J.B. Grace; M. Anderson; J.D. Bakker; L.A. Biederman; C.S. Brown; Y.M. Buckley; L.B. Calabrese; C.-J. Chu; E.E. Cleland; S.L. Collins; K.L. Cottingham; M.J. Crawley; E.I. Damschen; K.W. Davies; N.M. DeCrappeo; P.A. Fay; J. Firn; P. Frater; E.I. Gasarch; D.S. Gruner; N. Hagenah; J. Hille Ris Lambers

    2011-01-01

    For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent...

  1. Species richness and occupancy estimation in communities subject to temporary emigration

    USGS Publications Warehouse

    Kery, M.; Royle, J. Andrew; Plattner, M.; Dorazio, R.M.

    2009-01-01

    Species richness is the most common biodiversity metric, although typically some species remain unobserved. Therefore, estimates of species richness and related quantities should account for imperfect detectability. Community dynamics can often be represented as superposition of species-specific phenologies (e. g., in taxa with well-defined flight [insects], activity [rodents], or vegetation periods [plants]). We develop a model for such predictably open communities wherein species richness is expressed as the sum over observed and unobserved species of estimated species-specific and site-specific occurrence indicators and where seasonal occurrence is modeled as a species-specific function of time. Our model is a multispecies extension of a multistate model with one unobservable state and represents a parsimonious way of dealing with a widespread form of 'temporary emigration.'' For illustration we use Swiss butterfly monitoring data collected under a robust design (RD); species were recorded on 13 transects during two secondary periods within <= 7 primary sampling periods. We compare estimates with those under a variation of the model applied to standard data, where secondary samples are pooled. The latter model yielded unrealistically high estimates of total community size of 274 species. In contrast, estimates were similar under models applied to RD data with constant (122) or seasonally varying (126) detectability for each species, but the former was more parsimonious and therefore used for inference. Per transect, 6 44 (mean 21.1) species were detected. Species richness estimates averaged 29.3; therefore only 71% (range 32-92%) of all species present were ever detected. In any primary period, 0.4-5.6 species present were overlooked. Detectability varied by species and averaged 0.88 per primary sampling period. Our modeling framework is extremely flexible; extensions such as covariates for the occurrence or detectability of individual species are easy. It

  2. Spatial variation in fish species richness of the upper Mississippi River system

    USGS Publications Warehouse

    Koel, T.M.

    2004-01-01

    Important natural environmental gradients, including the connectivity of off-channel aquatic habitats to the main-stem river, have been lost in many reaches of the upper Mississippi River system, and an understanding of the consequences of this isolation is lacking in regard to native fish communities. The objectives of this study were to describe patterns of fish species richness, evenness, and diversity among representative habitats and river reaches and to examine the relationship between fish species richness and habitat diversity. Each year (1994-1999) fish communities of main-channel borders (MCB), side channel borders (SCB), and contiguous backwater shorelines (BWS) were sampled using boat-mounted electrofishing, mini-fyke-nets, tyke nets, hoop nets, and seines at a standardized number of sites. A total of 0.65 million fish were collected, representing 106 species from upper Mississippi River Pools 4, 8, 13, and 26; the open (unimpounded) river reach; and the La Grange Reach of the Illinois River. Within pools, species richness based on rarefaction differed significantly among habitats and was highest in BWS and lowest in MCB (P < 0.0001). At the reach scale, Pools 4, 8, and 13 consistently had the highest species richness and Pool 26, the open-river reach, and the La Grange Reach were significantly lower (P < 0.0001). Species evenness and diversity indices showed similar trends. The relationship between native fish species richness and habitat diversity was highly significant (r(2) = 0.85; P = 0.0091). These results support efforts aimed at the conservation and enhancement of connected side channels and backwaters. Although constrained by dams, pools with high native species richness could serve as a relative reference. The remnants of natural riverine dynamics that remain in these reaches should be preserved and enhanced; conditions could be used to guide restoration activities in more degraded reaches.

  3. Helminth species richness of introduced and native grey mullets (Teleostei: Mugilidae).

    PubMed

    Sarabeev, Volodimir

    2015-08-01

    Quantitative complex analyses of parasite communities of invaders across different native and introduced populations are largely lacking. The present study provides a comparative analysis of species richness of helminth parasites in native and invasive populations of grey mullets. The local species richness differed between regions and host species, but did not differ when compared with invasive and native hosts. The size of parasite assemblages of endohelminths was higher in the Mediterranean and Azov-Black Seas, while monogeneans were the most diverse in the Sea of Japan. The helminth diversity was apparently higher in the introduced population of Liza haematocheilus than that in their native habitat, but this trend could not be confirmed when the size of geographic range and sampling efforts were controlled for. The parasite species richness at the infracommunity level of the invasive host population is significantly lower compared with that of the native host populations that lends support to the enemy release hypothesis. A distribution pattern of the infracommunity richness of acquired parasites by the invasive host can be characterized as aggregated and it is random in native host populations. Heterogeneity in the host susceptibility and vulnerability to acquired helminth species was assumed to be a reason of the aggregation of species numbers in the population of the invasive host. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Phenotypic differentiation within a foundation grass species correlates with species richness in a subalpine community.

    PubMed

    Al Hayek, Patrick; Touzard, Blaise; Le Bagousse-Pinguet, Yoann; Michalet, Richard

    2014-10-01

    Few studies have examined consequences of ecotypic differentiation within alpine foundation species for community diversity and their feedbacks for the foundation species' fitness. Additionally, no study has quantified ecotypic differences in competitive effects in the field and in controlled conditions to disentangle genetic from plasticity effects in foundation/subordinate species interactions. We focused on a subalpine community of the French Pyrenees including two phenotypes of a cushion-forming species, Festuca gautieri: tight cushions in dry convex outcrops, and loose cushions (exhibiting high subordinate species richness) in wet concave slopes. We assessed, with field and shadehouse experiments, the genetic vs. plasticity basis of differences in: (1) cushion traits and (2) competitive effects on subordinates, and (3) quantified community feedbacks on foundation species' fitness. We found that trait differences across habitats had both genetic and plasticity bases, with stronger contribution of the latter. Field results showed higher competition within loose than tight phenotypes. In contrast, shadehouse results showed higher competitive ability for tight phenotypes. However, as changes in interactions across habitats were due to environmental effects without changes in cushion effects, we argue that heritable and plastic changes in competitive effects maintain high subordinate species diversity through decreasing competition. We showed high reproduction cost for loose cushions when hosting subordinates highlighting the occurrence of community feedbacks. These results suggest that phenotypic differentiation within foundation species may cascade on subordinate species diversity through heritable and plastic changes in the foundation species' competitive effects, and that community feedbacks may affect foundation species' fitness.

  5. Species richness in natural and disturbed habitats: Asteraceae and Flower-head insects (Tephritidae: Diptera).

    PubMed

    Diniz, Soraia; Prado, Paulo I; Lewinsohn, Thomas M

    2010-01-01

    Anthropogenic changes in the landscape result in an environmental mosaic with serious consequences for biodiversity. The aim of the present study was to assess the effects of the anthropogenic changes on Asteraceae richness and abundance, and to evaluate the consequences for the richness of Tephritidae assemblages in five sampling sites, with three sampled habitats in each: cerrado (Brazilian savanna), eucalyptus stands and pasture. Sampling was carried out in 15 random transects (cerrados and one pasture) and in 30 transects (eucalyptus stands and the remaining pastures). Composition, species richness and insect abundance in each habitat type was estimated by sampling the flower heads for each species of host plant, collected by four people for 1h. Differences in mean abundance of plant population between habitats and sites were tested by two-way ANOVA. Differences in plant species richness between habitats and sites and effects of habitat, site and host plant richness on insect richness were tested using a generalized linear model with Poisson errors. Within each sampling site, cerrados showed higher species richness of Asteraceae than pastures and eucalyptus stands. There were also significant differences in plant richness among sites. Mean population abundance values were significantly different among habitats, but not among sites. Increased host plant richness led to significant insect species richness. There were no additional significant effects of habitat on insect richness. Therefore, anthropogenic alterations in landscape determined the impoverishment of plant assemblages and therefore of insect assemblages, because of the positive relationship between host plant richness and insect richness.

  6. Effects of spatial heterogeneity on butterfly species richness in Rocky Mountain National Park, CO, USA

    USGS Publications Warehouse

    Kumar, S.; Simonson, S.E.; Stohlgren, T.J.

    2009-01-01

    We investigated butterfly responses to plot-level characteristics (plant species richness, vegetation height, and range in NDVI [normalized difference vegetation index]) and spatial heterogeneity in topography and landscape patterns (composition and configuration) at multiple spatial scales. Stratified random sampling was used to collect data on butterfly species richness from seventy-six 20 ?? 50 m plots. The plant species richness and average vegetation height data were collected from 76 modified-Whittaker plots overlaid on 76 butterfly plots. Spatial heterogeneity around sample plots was quantified by measuring topographic variables and landscape metrics at eight spatial extents (radii of 300, 600 to 2,400 m). The number of butterfly species recorded was strongly positively correlated with plant species richness, proportion of shrubland and mean patch size of shrubland. Patterns in butterfly species richness were negatively correlated with other variables including mean patch size, average vegetation height, elevation, and range in NDVI. The best predictive model selected using Akaike's Information Criterion corrected for small sample size (AICc), explained 62% of the variation in butterfly species richness at the 2,100 m spatial extent. Average vegetation height and mean patch size were among the best predictors of butterfly species richness. The models that included plot-level information and topographic variables explained relatively less variation in butterfly species richness, and were improved significantly after including landscape metrics. Our results suggest that spatial heterogeneity greatly influences patterns in butterfly species richness, and that it should be explicitly considered in conservation and management actions. ?? 2008 Springer Science+Business Media B.V.

  7. Fish composition and species richness in eastern South American coastal lagoons: additional support for the freshwater ecoregions of the world.

    PubMed

    Petry, A C; Guimarães, T F R; Vasconcellos, F M; Hartz, S M; Becker, F G; Rosa, R S; Goyenola, G; Caramaschi, E P; Díaz de Astarloa, J M; Sarmento-Soares, L M; Vieira, J P; Garcia, A M; Teixeira de Mello, F; de Melo, F A G; Meerhoff, M; Attayde, J L; Menezes, R F; Mazzeo, N; Di Dario, F

    2016-07-01

    The relationships between fish composition, connectivity and morphometry of 103 lagoons in nine freshwater ecoregions (FEOW) between 2·83° S and 37·64° S were evaluated in order to detect possible congruence between the gradient of species richness and similarities of assemblage composition. Most lagoons included in the study were <2 km(2) , with a maximum of 3975 km(2) in surface area. Combined surface area of all lagoons included in the study was 5411 km(2) . Number of species varied locally from one to 76. A multiple regression revealed that latitude, attributes of morphometry and connectivity, and sampling effort explained a large amount of variability in species richness. Lagoon area was a good predictor of species richness except in low latitude ecoregions, where lagoons are typically small-sized and not affected by marine immigrants, and where non-native fish species accounted for a significant portion of species richness. Relationships between species and area in small-sized lagoons (<2 km(2) ) is highly similar to the expected number in each ecoregion, with systems located between 18·27° S and 30·15° S attaining higher levels of species richness. Similarities in species composition within the primary, secondary and peripheral or marine divisions revealed strong continental biogeographic patterns only for species less tolerant or intolerant to salinity. Further support for the FEOW scheme in the eastern border of South America is therefore provided, and now includes ecotonal systems inhabited simultaneously by freshwater and marine species of fishes. © 2016 The Fisheries Society of the British Isles.

  8. Integrative modelling reveals mechanisms linking productivity and plant species richness

    USDA-ARS?s Scientific Manuscript database

    For 40 years ecologists have sought a canonical productivity-species richness relationship 48 (PRR) for ecosystems, despite continuing disagreements about expected form and 49 interpretation. Using a large global dataset of terrestrial grasslands, we consider how 50 productivity and richness relate ...

  9. Patterns of reptile and amphibian species richness along elevational gradients in Mt. Kenya

    PubMed Central

    MALONZA, Patrick Kinyatta

    2015-01-01

    Faunal species richness is traditionally assumed to decrease with increasing elevation and decreasing primary productivity. Species richness is reported to peak at mid-elevation. This survey examines the herpetofaunal diversity and distribution in Mt. Kenya (central Kenya) by testing the hypothesis that changes in species richness with elevation relate to elevation-dependent changes in climate. Sampling along transects from an elevation of approximately 1 700 m in Chogoria forest block (wind-ward side) and approximately 2 600 m in Sirimon block (rain shadow zone) upwards in March 2009. This starts from the forest to montane alpine zones. Sampling of reptiles and amphibians uses pitfall traps associated with drift fences, time-limited searches and visual encounter surveys. The results show that herpetofaunal richness differs among three vegetation zones along the elevation gradient. Chogoria has higher biodiversity than Sirimon. More species occur at low and middle elevations and few exist at high elevations. The trends are consistent with expected optimum water and energy variables. The lower alpine montane zone has high species richness but low diversity due to dominance of some high elevations species. Unambiguous data do not support a mid-domain effect (mid-elevation peak) because the observed trend better fits a model in which climatic variables (rainfall and temperature) control species richness, which indirectly measures productivity. It is important to continue protection of all indigenous forests, especially at low to mid elevations. These areas are vulnerable to human destruction yet are home to some endemic species. Firebreaks can limit the spread of the perennial wildfires, especially on the moorlands. PMID:26646571

  10. Multivariate control of plant species richness and community biomass in blackland prairie

    USGS Publications Warehouse

    Weiher, E.; Forbes, S.; Schauwecker, T.; Grace, J.B.

    2004-01-01

    Recent studies have shown that patterns of plant species richness and community biomass are best understood in a multivariate context. The objective of this study was to develop and evaluate a multivariate hypothesis about how herbaceous biomass and richness relate to gradients in soil conditions and woody plant cover in blackland prairies. Structural equation modeling was used to investigate how soil characteristics and shade by scattered Juniperus virginiana trees relate to standing biomass and species richness in 99 0.25 m2 quadrats collected in eastern Mississippi, USA. Analysis proceeded in two stages. In the first stage, we evaluated the hypothesis that correlations among soil parameters could be represented by two underlying (latent) soil factors, mineral content and organic content. In the second stage, we evaluated the hypothesis that richness and biomass were related to (1) soil properties, (2) tree canopy extent, and (3) each other (i.e. reciprocal effects between richness and biomass). With some modification to the details of the original model, it was found that soil properties could be represented as two latent variables. In the overall model, 51% and 53% of the observed variation in richness and biomass were explained. The order of importance for variables explaining variations in richness was (1) soil organic content, (2) soil mineral content, (3) community biomass, and (4) tree canopy extent. The order of importance for variables explaining biomass was (1) tree canopy and (2) soil organic content, with neither soil mineral content nor species richness explaining significant variation in biomass. Based on these findings, we conclude that variations in richness are uniquely related to both variations in soil conditions and variations in herbaceous biomass. We further conclude that there is no evidence in these data for effects of species richness on biomass.

  11. Midpoint attractors and species richness: Modelling the interaction between environmental drivers and geometric constraints.

    PubMed

    Colwell, Robert K; Gotelli, Nicholas J; Ashton, Louise A; Beck, Jan; Brehm, Gunnar; Fayle, Tom M; Fiedler, Konrad; Forister, Matthew L; Kessler, Michael; Kitching, Roger L; Klimes, Petr; Kluge, Jürgen; Longino, John T; Maunsell, Sarah C; McCain, Christy M; Moses, Jimmy; Noben, Sarah; Sam, Katerina; Sam, Legi; Shapiro, Arthur M; Wang, Xiangping; Novotny, Vojtech

    2016-09-01

    We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns of species richness on mountainsides. We conjectured that elevational range midpoints of species may be drawn towards a single midpoint attractor - a unimodal gradient of environmental favourability. The midpoint attractor interacts with geometric constraints imposed by sea level and the mountaintop to produce taxon-specific patterns of species richness. We developed a Bayesian simulation model to estimate the location and strength of the midpoint attractor from species occurrence data sampled along mountainsides. We also constructed midpoint predictor models to test whether environmental variables could directly account for the observed patterns of species range midpoints. We challenged these models with 16 elevational data sets, comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models generally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients of environmental favourability, subject to geometric constraints, may parsimoniously account for elevational and other patterns of species richness. © 2016 John Wiley & Sons Ltd/CNRS.

  12. Carrying capacity for species richness as context for conservation: a case study of North American birds

    Treesearch

    Andrew J. Hansen; Linda Bowers Phillips; Curtis H. Flather; Jim Robinson-Cox

    2011-01-01

    We evaluated the leading hypotheses on biophysical factors affecting species richness for Breeding Bird Survey routes from areas with little influence of human activities.We then derived a best model based on information theory, and used this model to extrapolate SK across North America based on the biophysical predictor variables. The predictor variables included the...

  13. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales

    PubMed Central

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-01-01

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness. PMID:26902418

  14. Disentangling the determinants of species richness of vascular plants and mammals from national to regional scales

    NASA Astrophysics Data System (ADS)

    Xu, Haigen; Cao, Mingchang; Wu, Yi; Cai, Lei; Cao, Yun; Wu, Jun; Lei, Juncheng; Le, Zhifang; Ding, Hui; Cui, Peng

    2016-02-01

    Understanding the spatial patterns in species richness gets new implication for biodiversity conservation in the context of climate change and intensified human intervention. Here, we created a database of the geographical distribution of 30,519 vascular plant species and 565 mammal species from 2,376 counties across China and disentangled the determinants that explain species richness patterns both at national and regional scales using spatial linear models. We found that the determinants of species richness patterns varied among regions: elevational range was the most powerful predictor for the species richness of plants and mammals across China. However, species richness patterns in the Qinghai-Tibetan Plateau Region (QTR) are quite unique, where net primary productivity was the most important predictor. We also detected that elevational range was positively related to plant species richness when it is less than 1,900 m, whereas the relationship was not significant when elevational range is larger than 1,900 m. It indicated that elevational range often emerges as the predominant controlling factor within the regions where energy is sufficient. The effects of land use on mammal species richness should attract special attention. Our study suggests that region-specific conservation policies should be developed based on the regional features of species richness.

  15. The Distribution and Abundance of Bird Species: Towards a Satellite, Data Driven Avian Energetics and Species Richness Model

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    2003-01-01

    This paper addresses the fundamental question of why birds occur where and when they do, i.e., what are the causative factors that determine the spatio-temporal distributions, abundance, or richness of bird species? In this paper we outline the first steps toward building a satellite, data-driven model of avian energetics and species richness based on individual bird physiology, morphology, and interaction with the spatio-temporal habitat. To evaluate our model, we will use the North American Breeding Bird Survey and Christmas Bird Count data for species richness, wintering and breeding range. Long term and current satellite data series include AVHRR, Landsat, and MODIS.

  16. Inferring Species Richness and Turnover by Statistical Multiresolution Texture Analysis of Satellite Imagery

    PubMed Central

    Convertino, Matteo; Mangoubi, Rami S.; Linkov, Igor; Lowry, Nathan C.; Desai, Mukund

    2012-01-01

    Background The quantification of species-richness and species-turnover is essential to effective monitoring of ecosystems. Wetland ecosystems are particularly in need of such monitoring due to their sensitivity to rainfall, water management and other external factors that affect hydrology, soil, and species patterns. A key challenge for environmental scientists is determining the linkage between natural and human stressors, and the effect of that linkage at the species level in space and time. We propose pixel intensity based Shannon entropy for estimating species-richness, and introduce a method based on statistical wavelet multiresolution texture analysis to quantitatively assess interseasonal and interannual species turnover. Methodology/Principal Findings We model satellite images of regions of interest as textures. We define a texture in an image as a spatial domain where the variations in pixel intensity across the image are both stochastic and multiscale. To compare two textures quantitatively, we first obtain a multiresolution wavelet decomposition of each. Either an appropriate probability density function (pdf) model for the coefficients at each subband is selected, and its parameters estimated, or, a non-parametric approach using histograms is adopted. We choose the former, where the wavelet coefficients of the multiresolution decomposition at each subband are modeled as samples from the generalized Gaussian pdf. We then obtain the joint pdf for the coefficients for all subbands, assuming independence across subbands; an approximation that simplifies the computational burden significantly without sacrificing the ability to statistically distinguish textures. We measure the difference between two textures' representative pdf's via the Kullback-Leibler divergence (KL). Species turnover, or diversity, is estimated using both this KL divergence and the difference in Shannon entropy. Additionally, we predict species richness, or diversity, based on the

  17. Electrofishing effort requirements for estimating species richness in the Kootenai River, Idaho

    USGS Publications Warehouse

    Watkins, Carson J.; Quist, Michael C.; Shepard, Bradley B.; Ireland, Susan C.

    2016-01-01

    This study was conducted on the Kootenai River, Idaho to provide insight on sampling requirements to optimize future monitoring effort associated with the response of fish assemblages to habitat rehabilitation. Our objective was to define the electrofishing effort (m) needed to have a 95% probability of sampling 50, 75, and 100% of the observed species richness and to evaluate the relative influence of depth, velocity, and instream woody cover on sample size requirements. Sidechannel habitats required more sampling effort to achieve 75 and 100% of the total species richness than main-channel habitats. The sampling effort required to have a 95% probability of sampling 100% of the species richness was 1100 m for main-channel sites and 1400 m for side-channel sites. We hypothesized that the difference in sampling requirements between main- and side-channel habitats was largely due to differences in habitat characteristics and species richness between main- and side-channel habitats. In general, main-channel habitats had lower species richness than side-channel habitats. Habitat characteristics (i.e., depth, current velocity, and woody instream cover) were not related to sample size requirements. Our guidelines will improve sampling efficiency during monitoring effort in the Kootenai River and provide insight on sampling designs for other large western river systems where electrofishing is used to assess fish assemblages.

  18. Reversal in the relationship between species richness and turnover in a phytoplankton community.

    PubMed

    Matthews, Blake; Pomati, Francesco

    2012-11-01

    Negative relationships between species richness and the rate of compositional turnover are common, suggesting that diverse communities have greater stability than depauperate ones; however, the mechanistic basis for this pattern is still widely debated. Species richness and turnover can covary either because they are mechanistically linked or because they share common environmental drivers. Few empirical studies have combined long-term changes in community composition with multiple drivers of environmental change, and so little is known about how the underlying mechanisms of species coexistence interact with changes in the mean and variability of environmental conditions. Here, we use a 33 year long time series (1976-2008) of phytoplankton community composition from Lake Zurich, to examine how environmental variation influences the relationship between richness and annual turnover. We find that the relationship between richness and annual turnover reverses midway through the time series (1992-1993), leading to a hump-shaped relationship between species richness and annual turnover. Using structural equation modeling we show that annual turnover and diversity are independently associated with different drivers of environmental change. Furthermore, we find that the observed annual sequences of community assembly give rise to rates of species accumulation that are more heterogeneous through time than expected by chance, likely owing to a high proportion of species showing significant autocorrelation and to strong positive covariation in the occurrences of species.

  19. Species richness at the guild level: effects of species pool and local environmental conditions on stream macroinvertebrate communities.

    PubMed

    Grönroos, Mira; Heino, Jani

    2012-05-01

    1. A fundamental question in ecology is which factors determine species richness. Here, we studied the relative importance of regional species pool and local environmental characteristics in determining local species richness (LSR). Typically, this question has been studied using whole communities or a certain taxonomic group, although including species with widely varying biological traits in the same analysis may hinder the detection of ecologically meaningful patterns. 2. We studied the question above for whole stream macroinvertebrate community and within functional feeding guilds. We defined the local scale as a riffle site and the regional scale (i.e. representing the regional species pool) as a stream. Such intermediate-sized regional scale is rarely studied in this context. 3. We sampled altogether 100 sites, ten riffles (local scale) in each of ten streams (regional scale). We used the local-regional richness regression plots to study the overall effect of regional species pool on LSR. Variation partitioning was used to determine the relative importance of regional species pool and local environmental conditions for species richness. 4. The local-regional richness relationship was mainly linear, suggesting strong species pool effects. Only one guild showed some signs of curvilinearity. However, variation partitioning showed that local environmental characteristics accounted for a larger fraction of variance in LSR than regional species pool. Also, the relative importance of the fractions differed between the whole community and guilds, as well as among guilds. 5. This study indicates that the importance of the local and regional processes may vary depending on feeding guild and trophic level. We conclude that both the size of the regional species pool and local habitat characteristics are important in determining LSR of stream macroinvertebrates. Our results are in agreement with recent large-scale studies conducted in highly different study

  20. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    PubMed

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high

  1. Climate and landscape explain richness patterns depending on the type of species' distribution data

    NASA Astrophysics Data System (ADS)

    Tsianou, Mariana A.; Koutsias, Nikolaos; Mazaris, Antonios D.; Kallimanis, Athanasios S.

    2016-07-01

    Understanding the patterns of species richness and their environmental drivers, remains a central theme in ecological research and especially in the continental scales where many conservation decisions are made. Here, we analyzed the patterns of species richness from amphibians, reptiles and mammals at the EU level. We used two different data sources for each taxon: expert-drawn species range maps, and presence/absence atlases. As environmental drivers, we considered climate and land cover. Land cover is increasingly the focus of research, but there still is no consensus on how to classify land cover to distinct habitat classes, so we analyzed the CORINE land cover data with three different levels of thematic resolution (resolution of classification scheme ˗ less to more detailed). We found that the two types of species richness data explored in this study yielded different richness maps. Although, we expected expert-drawn range based estimates of species richness to exceed those from atlas data (due to the assumption that species are present in all locations throughout their region), we found that in many cases the opposite is true (the extreme case is the reptiles where more than half of the atlas based estimates were greater than the expert-drawn range based estimates). Also, we detected contrasting information on the richness drivers of biodiversity patterns depending on the dataset used. For atlas based richness estimates, landscape attributes played more important role than climate while for expert-drawn range based richness estimates climatic variables were more important (for the ectothermic amphibians and reptiles). Finally we found that the thematic resolution of the land cover classification scheme, also played a role in quantifying the effect of land cover diversity, with more detailed thematic resolution increasing the relative contribution of landscape attributes in predicting species richness.

  2. Climate patterns as predictors of amphibians species richness and indicators of potential stress

    USGS Publications Warehouse

    Battaglin, W.; Hay, L.; McCabe, G.; Nanjappa, P.; Gallant, Alisa L.

    2005-01-01

    Amphibians occupy a range of habitats throughout the world, but species richness is greatest in regions with moist, warm climates. We modeled the statistical relations of anuran and urodele species richness with mean annual climate for the conterminous United States, and compared the strength of these relations at national and regional levels. Model variables were calculated for county and subcounty mapping units, and included 40-year (1960-1999) annual mean and mean annual climate statistics, mapping unit average elevation, mapping unit land area, and estimates of anuran and urodele species richness. Climate data were derived from more than 7,500 first-order and cooperative meteorological stations and were interpolated to the mapping units using multiple linear regression models. Anuran and urodele species richness were calculated from the United States Geological Survey's Amphibian Research and Monitoring Initiative (ARMI) National Atlas for Amphibian Distributions. The national multivariate linear regression (MLR) model of anuran species richness had an adjusted coefficient of determination (R2) value of 0.64 and the national MLR model for urodele species richness had an R2 value of 0.45. Stratifying the United States by coarse-resolution ecological regions provided models for anUrans that ranged in R2 values from 0.15 to 0.78. Regional models for urodeles had R2 values. ranging from 0.27 to 0.74. In general, regional models for anurans were more strongly influenced by temperature variables, whereas precipitation variables had a larger influence on urodele models.

  3. Species richness and relative species abundance of Nymphalidae (Lepidoptera) in three forests with different perturbations in the North-Central Caribbean of Costa Rica.

    PubMed

    Stephen, Carolyn; Sánchez, Ragde

    2014-09-01

    Measurements of species richness and species abundance can have important implications for regulations and conservation. This study investigated species richness and abundance of butterflies in the family Nymphalidae at undisturbed, and disturbed habitats in Tirimbina Biological Reserve and Nogal Private Reserve, Sarapiquí, Costa Rica. Traps baited with rotten banana were placed in the canopy and the understory of three habitats: within mature forest, at a river/forest border, and at a banana plantation/forest border. In total, 71 species and 487 individuals were caught and identified during May and June 2011 and May 2013. Species richness and species abundance were found to increase significantly at perturbed habitats (p < 0.0001, p < 0.0001, respectively). The edge effect, in which species richness and abundance increase due to greater complementary resources from different habitats, could be one possible explanation for increased species richness and abundance.

  4. Palaeo-precipitation is a major determinant of palm species richness patterns across Madagascar: a tropical biodiversity hotspot

    PubMed Central

    Rakotoarinivo, Mijoro; Blach-Overgaard, Anne; Baker, William J.; Dransfield, John; Moat, Justin; Svenning, Jens-Christian

    2013-01-01

    The distribution of rainforest in many regions across the Earth was strongly affected by Pleistocene ice ages. However, the extent to which these dynamics are still important for modern-day biodiversity patterns within tropical biodiversity hotspots has not been assessed. We employ a comprehensive dataset of Madagascan palms (Arecaceae) and climate reconstructions from the last glacial maximum (LGM; 21 000 years ago) to assess the relative role of modern environment and LGM climate in explaining geographical species richness patterns in this major tropical biodiversity hotspot. We found that palaeoclimate exerted a strong influence on palm species richness patterns, with richness peaking in areas with higher LGM precipitation relative to present-day even after controlling for modern environment, in particular in northeastern Madagascar, consistent with the persistence of tropical rainforest during the LGM primarily in this region. Our results provide evidence that diversity patterns in the World's most biodiverse regions may be shaped by long-term climate history as well as contemporary environment. PMID:23427173

  5. Comparative tests of ectoparasite species richness in seabirds

    PubMed Central

    Hughes, Joseph; Page, Roderic DM

    2007-01-01

    Background The diversity of parasites attacking a host varies substantially among different host species. Understanding the factors that explain these patterns of parasite diversity is critical to identifying the ecological principles underlying biodiversity. Seabirds (Charadriiformes, Pelecaniformes and Procellariiformes) and their ectoparasitic lice (Insecta: Phthiraptera) are ideal model groups in which to study correlates of parasite species richness. We evaluated the relative importance of morphological (body size, body weight, wingspan, bill length), life-history (longevity, clutch size), ecological (population size, geographical range) and behavioural (diving versus non-diving) variables as predictors of louse diversity on 413 seabird hosts species. Diversity was measured at the level of louse suborder, genus, and species, and uneven sampling of hosts was controlled for using literature citations as a proxy for sampling effort. Results The only variable consistently correlated with louse diversity was host population size and to a lesser extent geographic range. Other variables such as clutch size, longevity, morphological and behavioural variables including body mass showed inconsistent patterns dependent on the method of analysis. Conclusion The comparative analysis presented herein is (to our knowledge) the first to test correlates of parasite species richness in seabirds. We believe that the comparative data and phylogeny provide a valuable framework for testing future evolutionary hypotheses relating to the diversity and distribution of parasites on seabirds. PMID:18005412

  6. Polyphenol-rich sorghum brans alter colon microbiota and impact species diversity and species richness after multiple bouts of dextran sodium sulfate-induced colitis.

    PubMed

    Ritchie, Lauren E; Sturino, Joseph M; Carroll, Raymond J; Rooney, Lloyd W; Azcarate-Peril, M Andrea; Turner, Nancy D

    2015-03-01

    The microbiota affects host health, and dysbiosis is involved in colitis. Sorghum bran influences butyrate concentrations during dextran sodium sulfate (DSS) colitis, suggesting microbiota changes. We aimed to characterize the microbiota during colitis, and ascertain if polyphenol-rich sorghum bran diets mitigate these effects. Rats (n = 80) were fed diets containing 6% fiber from cellulose, or Black (3-deoxyanthocyanins), Sumac (condensed tannins), or Hi Tannin black (both) sorghum bran. Inflammation was induced three times using 3% DSS for 48 h (40 rats, 2 week separation), and the microbiota characterized by pyrosequencing. The Firmicutes/Bacteroidetes ratio was higher in Cellulose DSS rats. Colonic injury negatively correlated with Firmicutes, Actinobacteria, Lactobacillales and Lactobacillus, and positively correlated with Unknown/Unclassified. Post DSS#2, richness was significantly lower in Sumac and Hi Tannin black. Post DSS#3 Bacteroidales, Bacteroides, Clostridiales, Lactobacillales and Lactobacillus were reduced, with no Clostridium identified. Diet significantly affected Bacteroidales, Bacteroides, Clostridiales and Lactobacillus post DSS#2 and #3. Post DSS#3 diet significantly affected all genus, including Bacteroides and Lactobacillus, and diversity and richness increased. Sumac and Hi Tannin black DSS had significantly higher richness compared to controls. Thus, these sorghum brans may protect against alterations observed during colitis including reduced microbial diversity and richness, and dysbiosis of Firmicutes/Bacteroidetes. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Wildlife species richness in shelterbelts: test of a habitat model

    USGS Publications Warehouse

    Schroeder, Richard L.; Cable, Ted T.; Haire, Sandra L.

    1992-01-01

    Shelterbelts are human-made habitats consisting of rows of shrubs and trees planted either in fields or on the windward side of farmstead dwellings. Shelterbelts provide wooded habitat for a large variety of birds and other wildlife. A model to predict wildlife species richness in shelterbelts (Schroeder 1986) was published as part of the U.S. Fish and Wildlife Service Habitat Suitability Index (HSI) model series (Schamberger et al. 1982). HSI models have been used extensively by wildlife managers and land use planners to assess habitat quality. Several HSI models have become the focus of a test program that includes analysis of field data for corroboration, refutation, or modification of model hypotheses. Previous tests of HSI models focused either on single species (e.g., Cook and Irwin 1985, Morton et al. 1989, Schroeder 1990) or examined portions of HSI models, such as the relationship between cavity abundance and tree diameter (Allen and Corn 1990). The shelterbelt model, however, assesses habitat value at the community level. The effects of habitat characteristics, area, and perimeter on diversity and abundance of bird and mammal species in shelterbelts were first studied by Yahner (1983a, b). Johnson and Beck (1988) confirmed the importance of shelterbelts to wildlife and identified area, perimeter, and diversity and complexity of vegetation as key measurements of habitat quality. The shelterbelt model incorporates both specific habitat variables and larger scale parameters, such as area and configuration, to predict wildlife species richness. This shift in perspective comes at a time of increasing interest in conservation and planning beyond the species levels (e.g., Graul and Miller 1984, Hutto et al. 1987, Schroeder 1987: 26).We report results of a 3-year study of spatial and vegetative parameters and their relationship to breeding bird species richness (BSR) in 34 Kansas shelterbelts. Our objectives were to test the hypothesis presented in the original

  8. Using remote underwater video to estimate freshwater fish species richness.

    PubMed

    Ebner, B C; Morgan, D L

    2013-05-01

    Species richness records from replicated deployments of baited remote underwater video stations (BRUVS) and unbaited remote underwater video stations (UBRUVS) in shallow (<1 m) and deep (>1 m) water were compared with those obtained from using fyke nets, gillnets and beach seines. Maximum species richness (14 species) was achieved through a combination of conventional netting and camera-based techniques. Chanos chanos was the only species not recorded on camera, whereas Lutjanus argentimaculatus, Selenotoca multifasciata and Gerres filamentosus were recorded on camera in all three waterholes but were not detected by netting. BRUVSs and UBRUVSs provided versatile techniques that were effective at a range of depths and microhabitats. It is concluded that cameras warrant application in aquatic areas of high conservation value with high visibility. Non-extractive video methods are particularly desirable where threatened species are a focus of monitoring or might be encountered as by-catch in net meshes. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  9. The more-individuals hypothesis revisited: the role of community abundance in species richness regulation and the productivity-diversity relationship.

    PubMed

    Storch, David; Bohdalková, Eliška; Okie, Jordan

    2018-06-01

    Species richness increases with energy availability, yet there is little consensus as to the exact processes driving this species-energy relationship. The most straightforward explanation is the more-individuals hypothesis (MIH). It states that higher energy availability promotes a higher total number of individuals in a community, which consequently increases species richness by allowing for a greater number of species with viable populations. Empirical support for the MIH is mixed, partially due to the lack of proper formalisation of the MIH and consequent confusion as to its exact predictions. Here, we review the evidence of the MIH and evaluate the reliability of various predictions that have been tested. There is only limited evidence that spatial variation in species richness is driven by variation in the total number of individuals. There are also problems with measures of energy availability, with scale-dependence, and with the direction of causality, as the total number of individuals may sometimes itself be driven by the number of species. However, even in such a case the total number of individuals may be involved in diversity regulation. We propose a formal theory that encompasses these processes, clarifying how the different factors affecting diversity dynamics can be disentangled. © 2018 John Wiley & Sons Ltd/CNRS.

  10. Autoregressive modelling of species richness in the Brazilian Cerrado.

    PubMed

    Vieira, C M; Blamires, D; Diniz-Filho, J A F; Bini, L M; Rangel, T F L V B

    2008-05-01

    Spatial autocorrelation is the lack of independence between pairs of observations at given distances within a geographical space, a phenomenon commonly found in ecological data. Taking into account spatial autocorrelation when evaluating problems in geographical ecology, including gradients in species richness, is important to describe both the spatial structure in data and to correct the bias in Type I errors of standard statistical analyses. However, to effectively solve these problems it is necessary to establish the best way to incorporate the spatial structure to be used in the models. In this paper, we applied autoregressive models based on different types of connections and distances between 181 cells covering the Cerrado region of Central Brazil to study the spatial variation in mammal and bird species richness across the biome. Spatial structure was stronger for birds than for mammals, with R(2) values ranging from 0.77 to 0.94 for mammals and from 0.77 to 0.97 for birds, for models based on different definitions of spatial structures. According to the Akaike Information Criterion (AIC), the best autoregressive model was obtained by using the rook connection. In general, these results furnish guidelines for future modelling of species richness patterns in relation to environmental predictors and other variables expressing human occupation in the biome.

  11. Topographic heterogeneity and temperature amplitude explain species richness patterns of birds in the Qinghai-Tibetan Plateau.

    PubMed

    Zhang, Chunlan; Quan, Qing; Wu, Yongjie; Chen, Youhua; He, Peng; Qu, Yanhua; Lei, Fumin

    2017-04-01

    Large-scale patterns of species richness have gained much attention in recent years; however, the factors that drive high species richness are still controversial in local regions, especially in highly diversified montane regions. The Qinghai-Tibetan Plateau (QTP) and the surrounding mountains are biodiversity hot spots due to a high number of endemic montane species. Here, we explored the factors underlying this high level of diversity by studying the relationship between species richness and environmental variables. The richness patterns of 758 resident bird species were summarized at the scale of 1°×1° grid cell at different taxonomic levels (order, family, genus, and species) and in different taxonomic groups (Passeriformes, Galliformes, Falconiformes, and Columbiformes). These richness patterns were subsequently analyzed against habitat heterogeneity (topographical heterogeneity and land cover), temperature amplitude (annual temperature, annual precipitation, precipitation seasonality, and temperature seasonality) and a vegetation index (net primary productivity). Our results showed that the highest richness was found in the southeastern part of the QTP, the eastern Himalayas. The lowest richness was observed in the central plateau of the QTP. Topographical heterogeneity and temperature amplitude are the primary factors that explain overall patterns of species richness in the QTP, although the specific effect of each environmental variable varies between the different taxonomic groups depending on their own evolutionary histories and ecological requirements. High species richness in the southeastern QTP is mostly due to highly diversified habitat types and temperature zones along elevation gradients, whereas the low species richness in the central plateau of the QTP may be due to environmental and energetic constraints, as the central plateau is harsh environment.

  12. Shrubs as ecosystem engineers across an environmental gradient: effects on species richness and exotic plant invasion.

    PubMed

    Kleinhesselink, Andrew R; Magnoli, Susan M; Cushman, J Hall

    2014-08-01

    Ecosystem-engineering plants modify the physical environment and can increase species diversity and exotic species invasion. At the individual level, the effects of ecosystem engineers on other plants often become more positive in stressful environments. In this study, we investigated whether the community-level effects of ecosystem engineers also become stronger in more stressful environments. Using comparative and experimental approaches, we assessed the ability of a native shrub (Ericameria ericoides) to act as an ecosystem engineer across a stress gradient in a coastal dune in northern California, USA. We found increased coarse organic matter and lower wind speeds within shrub patches. Growth of a dominant invasive grass (Bromus diandrus) was facilitated both by aboveground shrub biomass and by growing in soil taken from shrub patches. Experimental removal of shrubs negatively affected species most associated with shrubs and positively affected species most often found outside of shrubs. Counter to the stress-gradient hypothesis, the effects of shrubs on the physical environment and individual plant growth did not increase across the established stress gradient at this site. At the community level, shrub patches increased beta diversity, and contained greater rarified richness and exotic plant cover than shrub-free patches. Shrub effects on rarified richness increased with environmental stress, but effects on exotic cover and beta diversity did not. Our study provides evidence for the community-level effects of shrubs as ecosystem engineers in this system, but shows that these effects do not necessarily become stronger in more stressful environments.

  13. Warming climate may negatively affect native forest understory plant richness and composition by increasing invasions of non-native plants

    NASA Astrophysics Data System (ADS)

    Dovciak, M.; Wason, J. W., III; Frair, J.; Lesser, M.; Hurst, J.

    2016-12-01

    Warming climate is often expected to cause poleward and upslope migrations of native plant species and facilitate the spread of non-native plants, and thus affect the composition and diversity of forest understory plant communities. However, changing climate can often interact with other components of global environmental change, and especially so with land use, which often varies along extant climatic gradients making it more difficult to predict species and biodiversity responses to changing climate. We used large national databases (USDA FIA, NLCD, and PRISM) within GLM and NMDS analytical frameworks to study the effects of climate (temperature and precipitation), and land management (type, fragmentation, time since disturbance) on the diversity and composition of native and non-native plant species in forest understories across large geographical (environmental) gradients of the northeastern United States. We tested how non-native and native species diversity and composition responded to existing climate gradients and land-use drivers, and we approximated how changing climate may affect both native and non-native species composition and richness under different climate change scenarios (+1.5, 2, and 4.8 degrees C). Many understory forest plant communities already contain large proportions of non-native plants, particularly so in relatively warmer and drier areas, at lower elevations, and in areas with more substantial land-use histories. On the other hand, cooler and moister areas, higher elevations, and areas used predominantly for forestry or nature conservation (i.e., large contiguous forest cover) were characterized by a low proportion of non-native plant species in terms of both species cover and richness. In contrast to native plants, non-native plant richness was related positively to mean annual temperature and negatively to precipitation. Mountain areas appeared to serve as refugia for native forest understory species under the current climate, but

  14. Patterns of Freshwater Species Richness, Endemism, and Vulnerability in California

    PubMed Central

    Furnish, Joseph; Gardali, Thomas; Grantham, Ted; Katz, Jacob V. E.; Kupferberg, Sarah; McIntyre, Patrick; Moyle, Peter B.; Ode, Peter R.; Peek, Ryan; Quiñones, Rebecca M.; Rehn, Andrew C.; Santos, Nick; Schoenig, Steve; Serpa, Larry; Shedd, Jackson D.; Slusark, Joe; Viers, Joshua H.; Wright, Amber; Morrison, Scott A.

    2015-01-01

    The ranges and abundances of species that depend on freshwater habitats are declining worldwide. Efforts to counteract those trends are often hampered by a lack of information about species distribution and conservation status and are often strongly biased toward a few well-studied groups. We identified the 3,906 vascular plants, macroinvertebrates, and vertebrates native to California, USA, that depend on fresh water for at least one stage of their life history. We evaluated the conservation status for these taxa using existing government and non-governmental organization assessments (e.g., endangered species act, NatureServe), created a spatial database of locality observations or distribution information from ~400 data sources, and mapped patterns of richness, endemism, and vulnerability. Although nearly half of all taxa with conservation status (n = 1,939) are vulnerable to extinction, only 114 (6%) of those vulnerable taxa have a legal mandate for protection in the form of formal inclusion on a state or federal endangered species list. Endemic taxa are at greater risk than non-endemics, with 90% of the 927 endemic taxa vulnerable to extinction. Records with spatial data were available for a total of 2,276 species (61%). The patterns of species richness differ depending on the taxonomic group analyzed, but are similar across taxonomic level. No particular taxonomic group represents an umbrella for all species, but hotspots of high richness for listed species cover 40% of the hotspots for all other species and 58% of the hotspots for vulnerable freshwater species. By mapping freshwater species hotspots we show locations that represent the top priority for conservation action in the state. This study identifies opportunities to fill gaps in the evaluation of conservation status for freshwater taxa in California, to address the lack of occurrence information for nearly 40% of freshwater taxa and nearly 40% of watersheds in the state, and to implement adequate

  15. Elevational pattern of bird species richness and its causes along a central Himalaya gradient, China

    PubMed Central

    Pan, Xinyuan; Ding, Zhifeng; Hu, Yiming; Liang, Jianchao; Wu, Yongjie; Si, Xingfeng; Guo, Mingfang

    2016-01-01

    This study examines the relative importance of six variables: area, the mid-domain effect, temperature, precipitation, productivity, and habitat heterogeneity on elevational patterns of species richness for breeding birds along a central Himalaya gradient in the Gyirong Valley, the longest of five canyons in the Mount Qomolangma National Nature Reserve. We conducted field surveys in each of twelve elevational bands of 300 m between 1,800 and 5,400 m asl four times throughout the entire wet season. A total of 169 breeding bird species were recorded and most of the species (74%) were small-ranged. The species richness patterns of overall, large-ranged and small-ranged birds were all hump-shaped, but with peaks at different elevations. Large-ranged species and small-ranged species contributed equally to the overall richness pattern. Based on the bivariate and multiple regression analyses, area and precipitation were not crucial factors in determining the species richness along this gradient. The mid-domain effect played an important role in shaping the richness pattern of large-ranged species. Temperature was negatively correlated with overall and large-ranged species but positively correlated with small-ranged species. Productivity was a strong explanatory factor among all the bird groups, and habitat heterogeneity played an important role in shaping the elevational richness patterns of overall and small-ranged species. Our results highlight the need to conserve primary forest and intact habitat in this area. Furthermore, we need to increase conservation efforts in this montane biodiversity hotspot in light of increasing anthropogenic activities and land use pressure. PMID:27833806

  16. Elevational pattern of bird species richness and its causes along a central Himalaya gradient, China.

    PubMed

    Pan, Xinyuan; Ding, Zhifeng; Hu, Yiming; Liang, Jianchao; Wu, Yongjie; Si, Xingfeng; Guo, Mingfang; Hu, Huijian; Jin, Kun

    2016-01-01

    This study examines the relative importance of six variables: area, the mid-domain effect, temperature, precipitation, productivity, and habitat heterogeneity on elevational patterns of species richness for breeding birds along a central Himalaya gradient in the Gyirong Valley, the longest of five canyons in the Mount Qomolangma National Nature Reserve. We conducted field surveys in each of twelve elevational bands of 300 m between 1,800 and 5,400 m asl four times throughout the entire wet season. A total of 169 breeding bird species were recorded and most of the species (74%) were small-ranged. The species richness patterns of overall, large-ranged and small-ranged birds were all hump-shaped, but with peaks at different elevations. Large-ranged species and small-ranged species contributed equally to the overall richness pattern. Based on the bivariate and multiple regression analyses, area and precipitation were not crucial factors in determining the species richness along this gradient. The mid-domain effect played an important role in shaping the richness pattern of large-ranged species. Temperature was negatively correlated with overall and large-ranged species but positively correlated with small-ranged species. Productivity was a strong explanatory factor among all the bird groups, and habitat heterogeneity played an important role in shaping the elevational richness patterns of overall and small-ranged species. Our results highlight the need to conserve primary forest and intact habitat in this area. Furthermore, we need to increase conservation efforts in this montane biodiversity hotspot in light of increasing anthropogenic activities and land use pressure.

  17. Primary controls on species richness in higher taxa.

    PubMed

    Rabosky, Daniel L

    2010-12-01

    The disparity in species richness across the tree of life is one of the most striking and pervasive features of biological diversity. Some groups are exceptionally diverse, whereas many other groups are species poor. Differences in diversity among groups are frequently assumed to result from primary control by differential rates of net diversification. However, a major alternative explanation is that ecological and other factors exert primary control on clade diversity, such that apparent variation in net diversification rates is a secondary consequence of ecological limits on clade growth. Here, I consider a likelihood framework for distinguishing between these competing hypotheses. I incorporate hierarchical modeling to explicitly relax assumptions about the constancy of diversification rates across clades, and I propose several statistics for a posteriori evaluation of model adequacy. I apply the framework to a recent dated phylogeny of ants. My results reject the hypothesis that net diversification rates exert primary control on species richness in this group and demonstrate that clade diversity is better explained by total time-integrated speciation. These results further suggest that it may not possible to estimate meaningful speciation and extinction rates from higher-level phylogenies of extant taxa only.

  18. Influence of current climate, historical climate stability and topography on species richness and endemism in Mesoamerican geophyte plants

    PubMed Central

    2017-01-01

    elevated in the southern regions of the Sierra Madre Oriental and Occidental mountain ranges, and in the Tehuacán Valley. Some areas of the Sierra Madre del Sur and Sierra Madre Oriental had high levels of WE, though they are not the areas with the highest SR. The spatial regressions suggest that SR is mostly influenced by current climate, whereas endemism is mainly affected by topography and precipitation stability. Conclusions Both methods (direct occurrence data and ecological niche modeling) used to estimate SR and WE in this study yielded similar results and detected a key area that should be considered in plant conservation strategies: the central region of the Trans-Mexican Volcanic Belt. Our results also corroborated that species richness is more closely correlated with current climate factors while endemism is related to differences in topography and to changes in precipitation levels compared to the LGM climatic conditions. PMID:29062605

  19. Macroparasite community of the Eurasian red squirrel (Sciurus vulgaris): poor species richness and diversity.

    PubMed

    Romeo, Claudia; Pisanu, Benoît; Ferrari, Nicola; Basset, Franck; Tillon, Laurent; Wauters, Lucas A; Martinoli, Adriano; Saino, Nicola; Chapuis, Jean-Louis

    2013-10-01

    The Eurasian red squirrel (Sciurus vulgaris) is the only naturally occurring tree squirrel throughout its range. We aim at improving current knowledge on its macroparasite fauna, expecting that it will have a poor parasite diversity because in species that have no sympatric congeners parasite richness should be lower than in hosts sharing their range with several closely related species, where host-switching events and lateral transmission are promoted. We examined gastro-intestinal helminth and ectoparasite communities (excluding mites) of, respectively, 147 and 311 red squirrel roadkills collected in four biogeographic regions in Italy and France. As expected, the macroparasite fauna was poor: we found five species of nematodes and some unidentified cestodes, three fleas, two sucking lice and two hard ticks. The helminth community was dominated by a single species, the oxyurid Trypanoxyuris (Rodentoxyuris) sciuri (prevalence, 87%; mean abundance, 373 ± 65 worms/host). Its abundance varied among seasons and biogeographic regions and increased with body mass in male hosts while decreased in females. The most prevalent ectoparasites were the flea Ceratophyllus (Monopsyllus) sciurorum (28%), whose presence was affected by season, and the generalist tick Ixodes (Ixodes) ricinus that was found only in France (34%). All the other helminths and arthropod species were rare, with prevalence below 10%. However, the first record of Strongyloides robustus, a common nematode of North American Eastern grey squirrels (S. carolinensis), in two red squirrels living in areas where this alien species co-inhabits, deserves further attention, since low parasite richness could result in native red squirrels being particularly vulnerable to parasite spillover.

  20. Species richness and soil properties in Pinus ponderosa forests: A structural equation modeling analysis

    USGS Publications Warehouse

    Laughlin, D.C.; Abella, S.R.; Covington, W.W.; Grace, J.B.

    2007-01-01

    Question: How are the effects of mineral soil properties on understory plant species richness propagated through a network of processes involving the forest overstory, soil organic matter, soil nitrogen, and understory plant abundance? Location: North-central Arizona, USA. Methods: We sampled 75 0.05-ha plots across a broad soil gradient in a Pinus ponderosa (ponderosa pine) forest ecosystem. We evaluated multivariate models of plant species richness using structural equation modeling. Results: Richness was highest at intermediate levels of understory plant cover, suggesting that both colonization success and competitive exclusion can limit richness in this system. We did not detect a reciprocal positive effect of richness on plant cover. Richness was strongly related to soil nitrogen in the model, with evidence for both a direct negative effect and an indirect non-linear relationship mediated through understory plant cover. Soil organic matter appeared to have a positive influence on understory richness that was independent of soil nitrogen. Richness was lowest where the forest overstory was densest, which can be explained through indirect effects on soil organic matter, soil nitrogen and understory cover. Finally, model results suggest a variety of direct and indirect processes whereby mineral soil properties can influence richness. Conclusions: Understory plant species richness and plant cover in P. ponderosa forests appear to be significantly influenced by soil organic matter and nitrogen, which are, in turn, related to overstory density and composition and mineral soil properties. Thus, soil properties can impose direct and indirect constraints on local species diversity in ponderosa pine forests. ?? IAVS; Opulus Press.

  1. Testing the influence of environmental heterogeneity on fish species richness in two biogeographic provinces.

    PubMed

    Massicotte, Philippe; Proulx, Raphaël; Cabana, Gilbert; Rodríguez, Marco A

    2015-01-01

    Environmental homogenization in coastal ecosystems impacted by human activities may be an important factor explaining the observed decline in fish species richness. We used fish community data (>200 species) from extensive surveys conducted in two biogeographic provinces (extent >1,000 km) in North America to quantify the relationship between fish species richness and local (grain <10 km(2)) environmental heterogeneity. Our analyses are based on samples collected at nearly 800 stations over a period of five years. We demonstrate that fish species richness in coastal ecosystems is associated locally with the spatial heterogeneity of environmental variables but not with their magnitude. The observed effect of heterogeneity on species richness was substantially greater than that generated by simulations from a random placement model of community assembly, indicating that the observed relationship is unlikely to arise from veil or sampling effects. Our results suggest that restoring or actively protecting areas of high habitat heterogeneity may be of great importance for slowing current trends of decreasing biodiversity in coastal ecosystems.

  2. Parasite and viral species richness of Southeast Asian bats: Fragmentation of area distribution matters

    PubMed Central

    Gay, Noellie; Olival, Kevin J.; Bumrungsri, Sara; Siriaroonrat, Boripat; Bourgarel, Mathieu; Morand, Serge

    2014-01-01

    Interest in bat-borne diseases and parasites has grown in the past decade over concerns for human health. However, the drivers of parasite diversity among bat host species are understudied as are the links between parasite richness and emerging risks. Thus, we aimed at exploring factors that explain macro and microparasite species richness in bats from Southeast Asia, a hotspot of emerging infectious diseases. First, we identified bat species that need increased sampling effort for pathogen discovery. Our approach highlights pathogen investigation disparities among species within the same genus, such as Rhinolophus and Pteropus. Secondly, comparative analysis using independent contrasts method allowed the identification of likely factors explaining parasite and viral diversity of bats. Our results showed a key role of bat distribution shape, an index of the fragmentation of bat distribution, on parasite diversity, linked to a decrease for both viral and endoparasite species richness. We discuss how our study may contribute to a better understanding of the link between parasite species richness and emergence. PMID:25161915

  3. Mountaintop island age determines species richness of boreal mammals in the American Southwest

    USGS Publications Warehouse

    Frey, J.K.; Bogan, M.A.; Yates, Terry L.

    2007-01-01

    Models that describe the mechanisms responsible for insular patterns of species richness include the equilibrium theory of island biogeography and the nonequilibrium vicariance model. The relative importance of dispersal or vicariance in structuring insular distribution patterns can be inferred from these models. Predictions of the alternative models were tested for boreal mammals in the American Southwest. Age of mountaintop islands of boreal habitat was determined by constructing a geographic cladogram based on characteristics of intervening valley barriers. Other independent variables included area and isolation of mountaintop islands. Island age was the most important predictor of species richness. In contrast with previous studies of species richness patterns in this system, these results supported the nonequilibrium vicariance model, which indicates that vicariance has been the primary determinant of species distribution patterns in this system.

  4. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China.

    PubMed

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.

  5. Host preference and species richness of wood-inhabiting aphyllophoraceous fungi in a cool temperate area of Japan.

    PubMed

    Yamashita, Satoshi; Hattori, Tsutomu; Abe, Hisashi

    2010-01-01

    We examined the species richness and host utilization patterns of wood-inhabiting aphyllophoraceous fungi (polypores and related fungi) in an old-growth beech and oak forest in a cool, temperate area of Japan. Coarse woody debris (CWD) > or = 20 cm diam within a 6 ha plot was surveyed in Sep 2002. Tree genus, diameter, decay class and tree part of CWD samples were recorded. Fruiting bodies of aphyllophoraceous fungi that arose from the CWD were surveyed three times and identified to species. In total 256 CWD samples from 12 tree genera were surveyed with Quercus being the most frequent followed by Castanea and Fagus. From 196 CWD samples we recorded 436 wood-inhabiting fungi belonging to 63 species. Fifteen fungal species had at least 10 records, with Hymenochaete rubiginosa, Daedalea dickinsii, Xylobolus frustulatus, Rigidoporus cinereus and the small form of Fomes fomentarius being the most frequent. The number of fungal species that appeared on Fagus was significantly larger than that on Castanea, when the number of fruiting bodies collected was at least 50. The occurrences of the 15 dominant fungal species, except Trametes versicolor, were related to traits of the CWD. Tree genus was a predictor variable that affected the appearance of 11 of the 15 species of wood-inhabiting fungi. Only the tree part was selected for the models of Rigidoporus eminens, Schizopora flavipora and Stereum ostrea. Our results suggest that tree genus and tree part are important factors determining fungal community structure because these were selected as complementary predictor variables. Both oak and beech appear to be the most important tree genera for maintaining wood-inhabiting fungal species richness because the fungal flora formed on oak CWD is nearly complementary to those on chestnut, with low fungal species richness.

  6. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests.

    PubMed

    Joly, François-Xavier; Milcu, Alexandru; Scherer-Lorenzen, Michael; Jean, Loreline-Katia; Bussotti, Filippo; Dawud, Seid Muhie; Müller, Sandra; Pollastrini, Martina; Raulund-Rasmussen, Karsten; Vesterdal, Lars; Hättenschwiler, Stephan

    2017-05-01

    Different tree species influence litter decomposition directly through species-specific litter traits, and indirectly through distinct modifications of the local decomposition environment. Whether these indirect effects on decomposition are influenced by tree species diversity is presently not clear. We addressed this question by studying the decomposition of two common substrates, cellulose paper and wood sticks, in a total of 209 forest stands of varying tree species diversity across six major forest types at the scale of Europe. Tree species richness showed a weak but positive correlation with the decomposition of cellulose but not with that of wood. Surprisingly, macroclimate had only a minor effect on cellulose decomposition and no effect on wood decomposition despite the wide range in climatic conditions among sites from Mediterranean to boreal forests. Instead, forest canopy density and stand-specific litter traits affected the decomposition of both substrates, with a particularly clear negative effect of the proportion of evergreen tree litter. Our study suggests that species richness and composition of tree canopies modify decomposition indirectly through changes in microenvironmental conditions. These canopy-induced differences in the local decomposition environment control decomposition to a greater extent than continental-scale differences in macroclimatic conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  7. Estimation of species richness and parameters reflecting community dynamics using data from ecological monitoring programs

    USGS Publications Warehouse

    Nichols, J.D.; Sauer, J.R.; Hines, J.E.; Boulinier, T.; Pollock, K.H.; Therres, Glenn D.

    2001-01-01

    Although many ecological monitoring programs are now in place, the use of resulting data to draw inferences about changes in biodiversity is problematic. The difficulty arises because of the inability to count all animals present in any sampled area. This inability results not only in underestimation of species richness but also in potentially misleading comparisons of species richness over time and space. We recommend the use of probabilistic estimators for estimating species richness and related parameters (e.g., rate of change in species richness, local extinction probability, local turnover, local colonization) when animal detection probabilities are <1. We illustrate these methods using data from the North American Breeding Bird Survey obtained along survey routes in Maryland. We also introduce software to implement these estimation methods.

  8. Inference about species richness and community structure using species-specific occupancy models in the National Swiss Breeding Bird Survey MUB

    USGS Publications Warehouse

    Kery, M.; Royle, J. Andrew; Thomson, David L.; Cooch, Evan G.; Conroy, Michael J.

    2009-01-01

    Species richness is the most widely used biodiversity measure. Virtually always, it cannot be observed but needs to be estimated because some species may be present but remain undetected. This fact is commonly ignored in ecology and management, although it will bias estimates of species richness and related parameters such as occupancy, turnover or extinction rates. We describe a species community modeling strategy based on species-specific models of occurrence, from which estimates of important summaries of community structure, e.g., species richness, occupancy, or measures of similarity among species or sites, are derived by aggregating indicators of occurrence for all species observed in the sample, and for the estimated complement of unobserved species. We use data augmentation for an efficient Bayesian approach to estimation and prediction under this model based on MCMC in WinBUGS. For illustration, we use the Swiss breeding bird survey (MHB) that conducts 2?3 territory-mapping surveys in a systematic sample of 267 1 km2 units on quadrat-specific routes averaging 5.1 km to obtain species-specific estimates of occupancy, and estimates of species richness of all diurnal species free of distorting effects of imperfect detectability. We introduce into our model species-specific covariates relevant to occupancy (elevation, forest cover, route length) and sampling (season, effort). From 1995 to 2004, 185 diurnal breeding bird species were known in Switzerland, and an additional 13 bred 1?3 times since 1900. 134 species were observed during MHB surveys in 254 quadrats surveyed in 2001, and our estimate of 169.9 (95% CI 151?195) therefore appeared sensible. The observed number of species ranged from 4 to 58 (mean 32.8), but with an estimated 0.7?11.2 (mean 2.6) further, unobserved species, the estimated proportion of detected species was 0.48?0.98 (mean 0.91). As is well known, species richness declined at higher elevation and fell above the timberline, and most

  9. Preliminary assessment of species richness and avian community dynamics in the Madrean Sky Islands, Arizona

    Treesearch

    Jamie S. Sanderlin; William M. Block; Joseph L. Ganey; Jose M. Iniguez

    2013-01-01

    The Sky Island mountain ranges of southeastern Arizona contain a unique and rich avifaunal community, including many Neotropical migratory species whose northern breeding range extends to these mountains along with many species typical of similar habitats throughout western North America. Understanding ecological factors that influence species richness and biological...

  10. Urbanization Level and Woodland Size Are Major Drivers of Woodpecker Species Richness and Abundance

    PubMed Central

    Myczko, Łukasz; Rosin, Zuzanna M.; Skórka, Piotr; Tryjanowski, Piotr

    2014-01-01

    Urbanization is a process globally responsible for loss of biodiversity and for biological homogenization. Urbanization may have a direct negative impact on species behaviour and indirect effects on species populations through alterations of their habitats, for example patch size and habitat quality. Woodpeckers are species potentially susceptible to urbanization. These birds are mostly forest specialists and the development of urban areas in former forests may be an important factor influencing their richness and abundance, but documented examples are rare. In this study we investigated how woodpeckers responded to changes in forest habitats as a consequence of urbanization, namely size and isolation of habitat patches, and other within-patch characteristics. We selected 42 woodland patches in a gradient from a semi-natural rural landscape to the city centre of Poznań (Western Poland) in spring 2010. Both species richness and abundance of woodpeckers correlated positively to woodland patch area and negatively to increasing urbanization. Abundance of woodpeckers was also positively correlated with shrub cover and percentage of deciduous tree species. Furthermore, species richness and abundance of woodpeckers were highest at moderate values of canopy openness. Ordination analyses confirmed that urbanization level and woodland patch area were variables contributing most to species abundance in the woodpecker community. Similar results were obtained in presence-absence models for particular species. Thus, to sustain woodpecker species within cities it is important to keep woodland patches large, multi-layered and rich in deciduous tree species. PMID:24740155

  11. Urbanization level and woodland size are major drivers of woodpecker species richness and abundance.

    PubMed

    Myczko, Lukasz; Rosin, Zuzanna M; Skórka, Piotr; Tryjanowski, Piotr

    2014-01-01

    Urbanization is a process globally responsible for loss of biodiversity and for biological homogenization. Urbanization may have a direct negative impact on species behaviour and indirect effects on species populations through alterations of their habitats, for example patch size and habitat quality. Woodpeckers are species potentially susceptible to urbanization. These birds are mostly forest specialists and the development of urban areas in former forests may be an important factor influencing their richness and abundance, but documented examples are rare. In this study we investigated how woodpeckers responded to changes in forest habitats as a consequence of urbanization, namely size and isolation of habitat patches, and other within-patch characteristics. We selected 42 woodland patches in a gradient from a semi-natural rural landscape to the city centre of Poznań (Western Poland) in spring 2010. Both species richness and abundance of woodpeckers correlated positively to woodland patch area and negatively to increasing urbanization. Abundance of woodpeckers was also positively correlated with shrub cover and percentage of deciduous tree species. Furthermore, species richness and abundance of woodpeckers were highest at moderate values of canopy openness. Ordination analyses confirmed that urbanization level and woodland patch area were variables contributing most to species abundance in the woodpecker community. Similar results were obtained in presence-absence models for particular species. Thus, to sustain woodpecker species within cities it is important to keep woodland patches large, multi-layered and rich in deciduous tree species.

  12. Does tree species richness attenuate the effect of experimental irrigation and drought on decomposition rate in young plantation forests?

    NASA Astrophysics Data System (ADS)

    Masudur Rahman, Md; Verheyen, Kris; Castagneyrol, Bastien; Jactel, Hervé; Carnol, Monique

    2017-04-01

    Expected changes in precipitation in Europe due to climate change are likely to affect soil organic matter (OM) transformation. In forests, increasing tree species diversity might modulate the effect of changed precipitation. We evaluated the effect of tree species richness on the decomposition and stabilization rate in combination with reduced precipitation (FORBIO, Belgium) and irrigation treatment (ORPHEE, southern France) in young (6-8 yr.) experimental plantations. The species richness were one to four in FORBIO and one to five in ORPHEE. Twenty four rainout shelters of 3 m × 3 m were built around oak and beech trees in FORBIO plantation to impose a reduced precipitation treatment, whereas four of the eight blocks (175 m×100 m) in ORPHEE plantation was subjected to irrigation treatment. These treatments resulted in about 4% less soil moisture in FORBIO and about 7% higher soil moisture in ORPHEE compared to control. Commercially available green and rooibos tea bags were buried in the soil at 5-7 cm depth to measure two decomposition indices, known as 'tea bag index' (TBI). These TBI are (i) decomposition rate (k) and (ii) stabilization rate (S). The results showed no species richness effect on TBI indices in both reduced precipitation and irrigation treatment. In FORBIO, reduced precipitation resulted in decreased k and increased S compared to control around the beech trees only. In ORPHEE, both k and S were higher in the irrigation treatment compared to control. Overall, TBI indices were higher in FORBIO than ORPHEE and this might be explained by the sandy soils and poor nutrient content at the ORPHEE site. These results suggest that OM decomposition rate may be slower in drier condition and OM stabilization rate may be slower or faster in drier condition, depending on the site quality. The absence of tree species effects on OM transformation indicates that tree species richness would not be able to modulate the effects of changed precipitation patterns in

  13. Response of Plant Height, Species Richness and Aboveground Biomass to Flooding Gradient along Vegetation Zones in Floodplain Wetlands, Northeast China

    PubMed Central

    Lou, Yanjing; Pan, Yanwen; Gao, Chuanyu; Jiang, Ming; Lu, Xianguo; Xu, Y. Jun

    2016-01-01

    Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region. PMID:27097325

  14. ESTIMATING REGIONAL SPECIES RICHNESS USING A LIMITED NUMBER OF SURVEY UNITS

    EPA Science Inventory

    The accurate and precise estimation of species richness at large spatial scales using a limited number of survey units is of great significance for ecology and biodiversity conservation. We used the distribution data of native fish and resident breeding bird species compiled for ...

  15. The challenge of accurately documenting bee species richness in agroecosystems: bee diversity in eastern apple orchards

    PubMed Central

    Russo, Laura; Park, Mia; Gibbs, Jason; Danforth, Bryan

    2015-01-01

    Bees are important pollinators of agricultural crops, and bee diversity has been shown to be closely associated with pollination, a valuable ecosystem service. Higher functional diversity and species richness of bees have been shown to lead to higher crop yield. Bees simultaneously represent a mega-diverse taxon that is extremely challenging to sample thoroughly and an important group to understand because of pollination services. We sampled bees visiting apple blossoms in 28 orchards over 6 years. We used species rarefaction analyses to test for the completeness of sampling and the relationship between species richness and sampling effort, orchard size, and percent agriculture in the surrounding landscape. We performed more than 190 h of sampling, collecting 11,219 specimens representing 104 species. Despite the sampling intensity, we captured <75% of expected species richness at more than half of the sites. For most of these, the variation in bee community composition between years was greater than among sites. Species richness was influenced by percent agriculture, orchard size, and sampling effort, but we found no factors explaining the difference between observed and expected species richness. Competition between honeybees and wild bees did not appear to be a factor, as we found no correlation between honeybee and wild bee abundance. Our study shows that the pollinator fauna of agroecosystems can be diverse and challenging to thoroughly sample. We demonstrate that there is high temporal variation in community composition and that sites vary widely in the sampling effort required to fully describe their diversity. In order to maximize pollination services provided by wild bee species, we must first accurately estimate species richness. For researchers interested in providing this estimate, we recommend multiyear studies and rarefaction analyses to quantify the gap between observed and expected species richness. PMID:26380684

  16. Effects of crop species richness on pest-natural enemy systems based on an experimental model system using a microlandscape.

    PubMed

    Zhao, ZiHua; Shi, PeiJian; Men, XingYuan; Ouyang, Fang; Ge, Feng

    2013-08-01

    The relationship between crop richness and predator-prey interactions as they relate to pest-natural enemy systems is a very important topic in ecology and greatly affects biological control services. The effects of crop arrangement on predator-prey interactions have received much attention as the basis for pest population management. To explore the internal mechanisms and factors driving the relationship between crop richness and pest population management, we designed an experimental model system of a microlandscape that included 50 plots and five treatments. Each treatment had 10 repetitions in each year from 2007 to 2010. The results showed that the biomass of pests and their natural enemies increased with increasing crop biomass and decreased with decreasing crop biomass; however, the effects of plant biomass on the pest and natural enemy biomass were not significant. The relationship between adjacent trophic levels was significant (such as pests and their natural enemies or crops and pests), whereas non-adjacent trophic levels (crops and natural enemies) did not significantly interact with each other. The ratio of natural enemy/pest biomass was the highest in the areas of four crop species that had the best biological control service. Having either low or high crop species richness did not enhance the pest population management service and lead to loss of biological control. Although the resource concentration hypothesis was not well supported by our results, high crop species richness could suppress the pest population, indicating that crop species richness could enhance biological control services. These results could be applied in habitat management aimed at biological control, provide the theoretical basis for agricultural landscape design, and also suggest new methods for integrated pest management.

  17. Avian Species Richness in Relation to Intensive Forest Management Practices in Early Seral Tree Plantations

    PubMed Central

    Jones, Jay E.; Kroll, Andrew J.; Giovanini, Jack; Duke, Steven D.; Ellis, Tana M.; Betts, Matthew G.

    2012-01-01

    Background Managers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. Individual species and communities may be threatened if management practices truncate or simplify forest age classes that are essential for reproduction and survival. For instance, the degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations. Methodology and Principal Findings We used a Bayesian hierarchical model to evaluate relationships between avian species richness and vegetation variables that reflect stand management intensity (primarily via herbicide application) on 212 tree plantations in the Coast Range, Oregon, USA. Specifically, we estimated the influence of broadleaf hardwood vegetation cover, which is reduced through herbicide applications, on bird species richness and individual species occupancy. Our model accounted for imperfect detection. We used average predictive comparisons to quantify the degree of association between vegetation variables and species richness. Both conifer and hardwood cover were positively associated with total species richness, suggesting that these components of forest stand composition may be important predictors of alpha diversity. Estimates of species richness were 35–80% lower when imperfect detection was ignored (depending on covariate values), a result that has critical implications for previous efforts that have examined relationships between forest composition and species richness. Conclusion and Significance Our results revealed that individual and community responses were positively associated with both conifer and hardwood cover. In our

  18. Avian species richness in relation to intensive forest management practices in early seral tree plantations.

    PubMed

    Jones, Jay E; Kroll, Andrew J; Giovanini, Jack; Duke, Steven D; Ellis, Tana M; Betts, Matthew G

    2012-01-01

    Managers of landscapes dedicated to forest commodity production require information about how practices influence biological diversity. Individual species and communities may be threatened if management practices truncate or simplify forest age classes that are essential for reproduction and survival. For instance, the degradation and loss of complex diverse forest in young age classes have been associated with declines in forest-associated Neotropical migrant bird populations in the Pacific Northwest, USA. These declines may be exacerbated by intensive forest management practices that reduce hardwood and broadleaf shrub cover in order to promote growth of economically valuable tree species in plantations. We used a Bayesian hierarchical model to evaluate relationships between avian species richness and vegetation variables that reflect stand management intensity (primarily via herbicide application) on 212 tree plantations in the Coast Range, Oregon, USA. Specifically, we estimated the influence of broadleaf hardwood vegetation cover, which is reduced through herbicide applications, on bird species richness and individual species occupancy. Our model accounted for imperfect detection. We used average predictive comparisons to quantify the degree of association between vegetation variables and species richness. Both conifer and hardwood cover were positively associated with total species richness, suggesting that these components of forest stand composition may be important predictors of alpha diversity. Estimates of species richness were 35-80% lower when imperfect detection was ignored (depending on covariate values), a result that has critical implications for previous efforts that have examined relationships between forest composition and species richness. Our results revealed that individual and community responses were positively associated with both conifer and hardwood cover. In our system, patterns of bird community assembly appear to be associated with

  19. Comparison of species composition and richness of fish assemblages in altered and unaltered littoral habitats

    USGS Publications Warehouse

    Poe, T.P.; Hatcher, C.O.; Brown, C.L.; Schloesser, D.W.

    1986-01-01

    Species composition and richness of fish assemblages in altered and unaltered littoral habitats in Lake St. Clair, Michigan, differed between areas. A percid-cyprinid-cyprinodontid assemblage dominated in the unaltered area, Muscamoot Bay, which has a natural shoreline (with almost no alteration due to dredging or bulkheading), high water quality, and high species richness of aquatic macrophytes. A centrarchid assemblage dominated in the altered area, Belvidere Bay, which has a bulkheaded shoreline, many dredged areas, reduced water quality due to inputs of nutrients from a nearby river, and relatively low species richness of aquatic macrophytes. Habitat factors, species richness and abundance of aquatic macrophytes, had the most influence on fish community structure in both areas. The percid-cyprinid-cyprinodontid assemblage was significantly correlated with six species of macrophytes whereas the centrarchid assemblage was significantly correlated with only four. These patterns suggest that preference for diverse habitats was higher, and tolerance to habitat alteration lower, in percid-cyprinid-cyprinodontid assemblages than in centrarchid assemblages.

  20. Improved fatty acid analysis of conjugated linoleic acid rich egg yolk triacylglycerols and phospholipid species.

    PubMed

    Shinn, Sara; Liyanage, Rohana; Lay, Jack; Proctor, Andrew

    2014-07-16

    Reports from chicken conjugated linoleic acid (CLA) feeding trials are limited to yolk total fatty acid composition, which consistently described increased saturated fatty acids and decreased monounsaturated fatty acids. However, information on CLA triacylglycerol (TAG) and phospholipid (PL) species is limited. This study determined the fatty acid composition of total lipids in CLA-rich egg yolk produced with CLA-rich soy oil, relative to control yolks using gas chromatography with flame ionization detection (GC-FID), determined TAG and PL fatty acid compositions by thin-layer chromatography-GC-FID (TLC-GC-FID), identified intact PL and TAG species by TLC-matrix-assisted laser desorption/ionization mass spectrometry (TLC-MALDI-MS), and determined the composition of TAG and PL species in CLA and control yolks by direct flow infusion electrospray ionization MS (DFI ESI-MS). In total, 2 lyso-phosphatidyl choline (LPC) species, 1 sphingomyelin species, 17 phosphatidyl choline species, 19 TAG species, and 9 phosphatidyl ethanolamine species were identified. Fifty percent of CLA was found in TAG, occurring predominantly in C52:5 and C52:4 TAG species. CLA-rich yolks contained significantly more LPC than did control eggs. Comprehensive lipid profiling may provide insight on relationships between lipid composition and the functional properties of CLA-rich eggs.

  1. A multi-scale spatial analysis of native and exotic plant species richness within a mixed-disturbance oak savanna landscape.

    PubMed

    Schetter, Timothy A; Walters, Timothy L; Root, Karen V

    2013-09-01

    Impacts of human land use pose an increasing threat to global biodiversity. Resource managers must respond rapidly to this threat by assessing existing natural areas and prioritizing conservation actions across multiple spatial scales. Plant species richness is a useful measure of biodiversity but typically can only be evaluated on small portions of a given landscape. Modeling relationships between spatial heterogeneity and species richness may allow conservation planners to make predictions of species richness patterns within unsampled areas. We utilized a combination of field data, remotely sensed data, and landscape pattern metrics to develop models of native and exotic plant species richness at two spatial extents (60- and 120-m windows) and at four ecological levels for northwestern Ohio's Oak Openings region. Multiple regression models explained 37-77 % of the variation in plant species richness. These models consistently explained more variation in exotic richness than in native richness. Exotic richness was better explained at the 120-m extent while native richness was better explained at the 60-m extent. Land cover composition of the surrounding landscape was an important component of all models. We found that percentage of human-modified land cover (negatively correlated with native richness and positively correlated with exotic richness) was a particularly useful predictor of plant species richness and that human-caused disturbances exert a strong influence on species richness patterns within a mixed-disturbance oak savanna landscape. Our results emphasize the importance of using a multi-scale approach to examine the complex relationships between spatial heterogeneity and plant species richness.

  2. Genetic identity affects performance of species in grasslands of different plant diversity: an experiment with Lolium perenne cultivars.

    PubMed

    Roscher, Christiane; Schumacher, Jens; Weisser, Wolfgang W; Schulze, Ernst-Detlef

    2008-07-01

    Recent biodiversity research has focused on ecosystem processes, but less is known about responses of populations of individual plant species to changing community diversity and implications of genetic variation within species. To address these issues, effects of plant community diversity on the performance of different cultivars of Lolium perenne were analysed. Populations of 15 genetic cultivars of Lolium perenne were established in experimental grasslands varying in richness of species (from 1 to 60) and functional groups (from 1 to 4). Population sizes, mean size of individual plants, biomass of individual shoots and seed production were measured in the first and second growing season after establishment. Population sizes of all cultivars decreased with increasing community species richness. Plant individuals formed fewer shoots with a lower shoot mass in more species-rich plant communities. A large proportion of variation in plant size and relative population growth was attributable to effects of community species and functional group richness, but the inclusion of cultivar identity explained additional 4-7 % of variation. Cultivar identity explained most variation (28-51 %) at the shoot level (biomass of individual tillers and reproductive shoots, seed production, heading stage). Coefficients of variation of the measured variables across plant communities were larger in cultivars with a lower average performance, indicating that this variation was predominantly due to passive growth reductions and not a consequence of larger adaptive plastic responses. No single cultivar performed best in all communities. The decreasing performance of Lolium perenne in plant communities of increasing species richness suggests a regulation of competitive interactions by species diversity. Genetic variation within species provides a base for larger phenotypic variation and may affect competitive ability. However, heterogeneous biotic environments (= plant communities of

  3. Energy and speleogenesis: Key determinants of terrestrial species richness in caves.

    PubMed

    Jiménez-Valverde, Alberto; Sendra, Alberto; Garay, Policarp; Reboleira, Ana Sofia P S

    2017-12-01

    The aim of this study was to unravel the relative role played by speleogenesis (i.e., the process in which a cave is formed), landscape-scale variables, and geophysical factors in the determination of species richness in caves. Biological inventories from 21 caves located in the southeastern Iberian Peninsula along with partial least square (PLS) regression analysis were used to assess the relative importance of the different explanatory variables. The caves were grouped according to the similarity in their species composition; the effect that spatial distance could have on similarity was also studied using correlation between matrices. The energy and speleogenesis of caves accounted for 44.3% of the variation in species richness. The trophic level of each cave was the most significant factor in PLS regression analysis, and epigenic caves (i.e., those formed by the action of percolating water) had significantly more species than hypogenic ones (i.e., those formed by the action of upward flows in confined aquifers). Dissimilarity among the caves was very high (multiple-site β sim  = 0.92). Two main groups of caves were revealed through the cluster analysis, one formed by the western caves and the other by the eastern ones. The significant-but low-correlation found between faunistic dissimilarity and geographical distance ( r  =   .16) disappeared once the caves were split into the two groups. The extreme beta-diversity suggests a very low connection among the caves and/or a very low dispersal capacity of the species. In the region under study, two main factors are intimately related to the richness of terrestrial subterranean species in caves: the amount of organic material (trophic level) and the formation process (genesis). This is the first time that the history of a cave genesis has been quantitatively considered to assess its importance in explaining richness patterns in comparison with other factors more widely recognized.

  4. Species-richness patterns of the living collections of the world's botanic gardens: a matter of socio-economics?

    PubMed

    Golding, Janice; Güsewell, Sabine; Kreft, Holger; Kuzevanov, Victor Y; Lehvävirta, Susanna; Parmentier, Ingrid; Pautasso, Marco

    2010-05-01

    The botanic gardens of the world are now unmatched ex situ collections of plant biodiversity. They mirror two biogeographical patterns (positive diversity-area and diversity-age relationships) but differ from nature with a positive latitudinal gradient in their richness. Whether these relationships can be explained by socio-economic factors is unknown. Species and taxa richness of a comprehensive sample of botanic gardens were analysed as a function of key ecological and socio-economic factors using (a) multivariate models controlling for spatial autocorrelation and (b) structural equation modelling. The number of plant species in botanic gardens increases with town human population size and country Gross Domestic Product (GDP) per person. The country flora richness is not related to the species richness of botanic gardens. Botanic gardens in more populous towns tend to have a larger area and can thus host richer living collections. Botanic gardens in richer countries have more species, and this explains the positive latitudinal gradient in botanic gardens' species richness. Socio-economic factors contribute to shaping patterns in the species richness of the living collections of the world's botanic gardens.

  5. Intransitive competition is widespread in plant communities and maintains their species richness.

    PubMed

    Soliveres, Santiago; Maestre, Fernando T; Ulrich, Werner; Manning, Peter; Boch, Steffen; Bowker, Matthew A; Prati, Daniel; Delgado-Baquerizo, Manuel; Quero, José L; Schöning, Ingo; Gallardo, Antonio; Weisser, Wolfgang; Müller, Jörg; Socher, Stephanie A; García-Gómez, Miguel; Ochoa, Victoria; Schulze, Ernst-Detlef; Fischer, Markus; Allan, Eric

    2015-08-01

    Intransitive competition networks, those in which there is no single best competitor, may ensure species coexistence. However, their frequency and importance in maintaining diversity in real-world ecosystems remain unclear. We used two large data sets from drylands and agricultural grasslands to assess: (1) the generality of intransitive competition, (2) intransitivity-richness relationships and (3) effects of two major drivers of biodiversity loss (aridity and land-use intensification) on intransitivity and species richness. Intransitive competition occurred in > 65% of sites and was associated with higher species richness. Intransitivity increased with aridity, partly buffering its negative effects on diversity, but was decreased by intensive land use, enhancing its negative effects on diversity. These contrasting responses likely arise because intransitivity is promoted by temporal heterogeneity, which is enhanced by aridity but may decline with land-use intensity. We show that intransitivity is widespread in nature and increases diversity, but it can be lost with environmental homogenisation. © 2015 John Wiley & Sons Ltd/CNRS.

  6. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients

    USGS Publications Warehouse

    Spasojevic, Marko J.; Grace, James B.; Harrison, Susan; Damschen, Ellen Ingman

    2013-01-01

    1. The physiological tolerance hypothesis proposes that plant species richness is highest in warm and/or wet climates because a wider range of functional strategies can persist under such conditions. Functional diversity metrics, combined with statistical modeling, offer new ways to test whether diversity-environment relationships are consistent with this hypothesis. 2. In a classic study by R. H. Whittaker (1960), herb species richness declined from mesic (cool, moist, northerly) slopes to xeric (hot, dry, southerly) slopes. Building on this dataset, we measured four plant functional traits (plant height, specific leaf area, leaf water content and foliar C:N) and used them to calculate three functional diversity metrics (functional richness, evenness, and dispersion). We then used a structural equation model to ask if ‘functional diversity’ (modeled as the joint responses of richness, evenness, and dispersion) could explain the observed relationship of topographic climate gradients to species richness. We then repeated our model examining the functional diversity of each of the four traits individually. 3. Consistent with the physiological tolerance hypothesis, we found that functional diversity was higher in more favorable climatic conditions (mesic slopes), and that multivariate functional diversity mediated the relationship of the topographic climate gradient to plant species richness. We found similar patterns for models focusing on individual trait functional diversity of leaf water content and foliar C:N. 4. Synthesis. Our results provide trait-based support for the physiological tolerance hypothesis, suggesting that benign climates support more species because they allow for a wider range of functional strategies.

  7. Phylogenetic diversity of plants alters the effect of species richness on invertebrate herbivory

    PubMed Central

    2013-01-01

    Long-standing ecological theory proposes that diverse communities of plants should experience a decrease in herbivory. Yet previous empirical examinations of this hypothesis have revealed that plant species richness increases herbivory in just as many systems as it decreases it. In this study, I ask whether more insight into the role of plant diversity in promoting or suppressing herbivory can be gained by incorporating information about the evolutionary history of species in a community. In an old field system in southern Ontario, I surveyed communities of plants and measured levels of leaf damage on 27 species in 38 plots. I calculated a measure of phylogenetic diversity (PSE) that encapsulates information about the amount of evolutionary history represented in each of the plots and looked for a relationship between levels of herbivory and both species richness and phylogenetic diversity using a generalized linear mixed model (GLMM) that could account for variation in herbivory levels between species. I found that species richness was positively associated with herbivore damage at the plot-level, in keeping with the results from several other recent studies on this question. On the other hand, phylogenetic diversity was associated with decreased herbivory. Importantly, there was also an interaction between species richness and phylogenetic diversity, such that plots with the highest levels of herbivory were plots which had many species but only if those species tended to be closely related to one another. I propose that these results are the consequence of interactions with herbivores whose diets are phylogenetically specialized (for which I introduce the term cladophage), and how phylogenetic diversity may alter their realized host ranges. These results suggest that incorporating a phylogenetic perspective can add valuable additional insight into the role of plant diversity in explaining or predicting levels of herbivory at a whole-community scale. PMID:23825795

  8. Ungulates increase forest plant species richness to the benefit of non-forest specialists.

    PubMed

    Boulanger, Vincent; Dupouey, Jean-Luc; Archaux, Frédéric; Badeau, Vincent; Baltzinger, Christophe; Chevalier, Richard; Corcket, Emmanuel; Dumas, Yann; Forgeard, Françoise; Mårell, Anders; Montpied, Pierre; Paillet, Yoan; Picard, Jean-François; Saïd, Sonia; Ulrich, Erwin

    2018-02-01

    Large wild ungulates are a major biotic factor shaping plant communities. They influence species abundance and occurrence directly by herbivory and plant dispersal, or indirectly by modifying plant-plant interactions and through soil disturbance. In forest ecosystems, researchers' attention has been mainly focused on deer overabundance. Far less is known about the effects on understory plant dynamics and diversity of wild ungulates where their abundance is maintained at lower levels to mitigate impacts on tree regeneration. We used vegetation data collected over 10 years on 82 pairs of exclosure (excluding ungulates) and control plots located in a nation-wide forest monitoring network (Renecofor). We report the effects of ungulate exclusion on (i) plant species richness and ecological characteristics, (ii) and cover percentage of herbaceous and shrub layers. We also analyzed the response of these variables along gradients of ungulate abundance, based on hunting statistics, for wild boar (Sus scrofa), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Outside the exclosures, forest ungulates maintained higher species richness in the herbaceous layer (+15%), while the shrub layer was 17% less rich, and the plant communities became more light-demanding. Inside the exclosures, shrub cover increased, often to the benefit of bramble (Rubus fruticosus agg.). Ungulates tend to favour ruderal, hemerobic, epizoochorous and non-forest species. Among plots, the magnitude of vegetation changes was proportional to deer abundance. We conclude that ungulates, through the control of the shrub layer, indirectly increase herbaceous plant species richness by increasing light reaching the ground. However, this increase is detrimental to the peculiarity of forest plant communities and contributes to a landscape-level biotic homogenization. Even at population density levels considered to be harmless for overall plant species richness, ungulates remain a conservation issue

  9. Productivity is a poor predictor of plant species richness

    USGS Publications Warehouse

    Adler, Peter B.; Seabloom, Eric W.; Borer, Elizabeth T.; Hillebrand, Helmut; Hautier, Yann; Hector, Andy; Harpole, W. Stanley; O'Halloran, Lydia R.; Grace, James B.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Brown, Cynthia S.; Buckley, Yvonne M.; Calabrese, Laura B.; Chu, Cheng-Jin; Cleland, Elsa E.; Collins, Scott L.; Cottingham, Kathryn L.; Crawley, Michael J.; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Fay, Philip A.; Firn, Jennifer; Frater, Paul; Gasarch, Eve I.; Gruner, Daneil S.; Hagenah, Nicole; Lambers, Janneke Hille Ris; Humphries, Hope; Jin, Virginia L.; Kay, Adam D.; Kirkman, Kevin P.; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Lambrinos, John G.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John W.; Mortensen, Brent; Orrock, John L.; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Wang, Gang; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2011-01-01

    For more than 30 years, the relationship between net primary productivity and species richness has generated intense debate in ecology about the processes regulating local diversity. The original view, which is still widely accepted, holds that the relationship is hump-shaped, with richness first rising and then declining with increasing productivity. Although recent meta-analyses questioned the generality of hump-shaped patterns, these syntheses have been criticized for failing to account for methodological differences among studies. We addressed such concerns by conducting standardized sampling in 48 herbaceous-dominated plant communities on five continents. We found no clear relationship between productivity and fine-scale (meters-2) richness within sites, within regions, or across the globe. Ecologists should focus on fresh, mechanistic approaches to understanding the multivariate links between productivity an

  10. Decreased competitive interactions drive a reverse species richness latitudinal gradient in subarctic forests.

    PubMed

    Marshall, Katie E; Baltzer, Jennifer L

    2015-02-01

    The tendency for species richness to decrease toward the poles is one of the best-characterized patterns in biogeography. The mechanisms behind this pattern have received much attention, yet very few studies have investigated very high-latitude communities. Here, using data from 134 permanent sample plots from 60 degrees to 68 degrees N, we show that boreal forest plant communities in northwestern Canada increase in richness toward the poles, despite a strong increase in climatic harshness. We hypothesized three possible explanations for this pattern: (1) historical biogeography, (2) reduced competition for light at high latitudes (biotic interactions), and (3) changes in soil characteristics with latitude. We used multidimensional scaling to investigate the community composition at each site and found no clustering of communities by latitude, suggesting that historical biogeography was not constraining site diversity. We then investigated the mechanisms behind this gradient using both abiotic (climate and soil) and biotic (tree stand characteristics) variables in a multiple factor analysis. We found that the best predictor of species richness is an environmental gradient that describes an inverse relationship between temperature and tree-stand density, suggesting that reduced competition for light due to reduced tree growth at low temperatures at higher latitudes allows greater species richness. This study shows that low energy availability and climatic harshness may not be limiting species richness toward the poles, rather, abiotic effects act instead on the strength of biotic interactions.

  11. Stabilizing effects in temporal fluctuations: management, traits, and species richness in high-diversity communities.

    PubMed

    Lepš, Jan; Májeková, Maria; Vítová, Alena; Doležal, Jiří; de Bello, Francesco

    2018-02-01

    The loss of biodiversity is thought to have adverse effects on multiple ecosystem functions, including the decline of community stability. Decreased diversity reduces the strength of the portfolio effect, a mechanism stabilizing community temporal fluctuations. Community stability is also expected to decrease with greater variability in individual species populations and with synchrony of their fluctuations. In semi-natural meadows, eutrophication is one of the most important drivers of diversity decline; it is expected to increase species fluctuations and synchrony among them, all effects leading to lower community stability. With a 16-year time series of biomass data from a temperate species-rich meadow with fertilization and removal of the dominant species, we assessed population biomass temporal (co)variation under different management types and competition intensity, and in relation to species functional traits and to species diversity. Whereas the effect of dominant removal was relatively small (with a tendency toward lower stability), fertilization markedly decreased community stability (i.e., increased coefficient of variation in the total biomass) and species diversity. On average, the fluctuations of individual populations were mutually independent, with a slight tendency toward synchrony in unfertilized plots, and a tendency toward compensatory dynamics in fertilized plots and no effects of removal. The marked decrease of synchrony with fertilization, contrary to the majority of the results reported previously, follows the predictions of increased compensatory dynamics with increased asymmetric competition for light in a more productive environment. Synchrony increased also with species functional similarity stressing the importance of shared ecological strategies in driving similar species responses to weather fluctuations. As expected, the decrease of temporal stability of total biomass was mainly related to the decrease of species richness, with its

  12. Effects of urbanization on carnivore species distribution and richness

    USGS Publications Warehouse

    Ordenana, Miguel A.; Crooks, Kevin R.; Boydston, Erin E.; Fisher, Robert N.; Lyren, Lisa M.; Siudyla, Shalene; Haas, Christopher D.; Harris, Sierra; Hathaway, Stacie A.; Turschak, Greta M.; Miles, A. Keith; Van Vuren, Dirk H.

    2010-01-01

    Urban development can have multiple effects on mammalian carnivore communities. We conducted a meta-analysis of 7,929 photographs from 217 localities in 11 camera-trap studies across coastal southern California to describe habitat use and determine the effects of urban proximity (distance to urban edge) and intensity (percentage of area urbanized) on carnivore occurrence and species richness in natural habitats close to the urban boundary. Coyotes (Canis latrans) and bobcats (Lynx rufus) were distributed widely across the region. Domestic dogs (Canis lupus familiaris), striped skunks (Mephitis mephitis), raccoons (Procyon lotor), gray foxes (Urocyon cinereoargenteus), mountain lions (Puma concolor), and Virginia opossums (Didelphis virginiana) were detected less frequently, and long-tailed weasels (Mustela frenata), American badgers (Taxidea taxus), western spotted skunks (Spilogale gracilis), and domestic cats (Felis catus) were detected rarely. Habitat use generally reflected availability for most species. Coyote and raccoon occurrence increased with both proximity to and intensity of urbanization, whereas bobcat, gray fox, and mountain lion occurrence decreased with urban proximity and intensity. Domestic dogs and Virginia opossums exhibited positive and weak negative relationships, respectively, with urban intensity but were unaffected by urban proximity. Striped skunk occurrence increased with urban proximity but decreased with urban intensity. Native species richness was negatively associated with urban intensity but not urban proximity, probably because of the stronger negative response of individual species to urban intensity.

  13. Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity.

    PubMed

    Dassen, Sigrid; Cortois, Roeland; Martens, Henk; de Hollander, Mattias; Kowalchuk, George A; van der Putten, Wim H; De Deyn, Gerlinde B

    2017-08-01

    Plants are known to influence belowground microbial community structure along their roots, but the impacts of plant species richness and plant functional group (FG) identity on microbial communities in the bulk soil are still not well understood. Here, we used 454-pyrosequencing to analyse the soil microbial community composition in a long-term biodiversity experiment at Jena, Germany. We examined responses of bacteria, fungi, archaea, and protists to plant species richness (communities varying from 1 to 60 sown species) and plant FG identity (grasses, legumes, small herbs, tall herbs) in bulk soil. We hypothesized that plant species richness and FG identity would alter microbial community composition and have a positive impact on microbial species richness. Plant species richness had a marginal positive effect on the richness of fungi, but we observed no such effect on bacteria, archaea and protists. Plant species richness also did not have a large impact on microbial community composition. Rather, abiotic soil properties partially explained the community composition of bacteria, fungi, arbuscular mycorrhizal fungi (AMF), archaea and protists. Plant FG richness did not impact microbial community composition; however, plant FG identity was more effective. Bacterial richness was highest in legume plots and lowest in small herb plots, and AMF and archaeal community composition in legume plant communities was distinct from that in communities composed of other plant FGs. We conclude that soil microbial community composition in bulk soil is influenced more by changes in plant FG composition and abiotic soil properties, than by changes in plant species richness per se. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  14. Species-richness patterns of the living collections of the world's botanic gardens: a matter of socio-economics?

    PubMed Central

    Golding, Janice; Güsewell, Sabine; Kreft, Holger; Kuzevanov, Victor Y.; Lehvävirta, Susanna; Parmentier, Ingrid; Pautasso, Marco

    2010-01-01

    Background and Aims The botanic gardens of the world are now unmatched ex situ collections of plant biodiversity. They mirror two biogeographical patterns (positive diversity–area and diversity–age relationships) but differ from nature with a positive latitudinal gradient in their richness. Whether these relationships can be explained by socio-economic factors is unknown. Methods Species and taxa richness of a comprehensive sample of botanic gardens were analysed as a function of key ecological and socio-economic factors using (a) multivariate models controlling for spatial autocorrelation and (b) structural equation modelling. Key Results The number of plant species in botanic gardens increases with town human population size and country Gross Domestic Product (GDP) per person. The country flora richness is not related to the species richness of botanic gardens. Botanic gardens in more populous towns tend to have a larger area and can thus host richer living collections. Botanic gardens in richer countries have more species, and this explains the positive latitudinal gradient in botanic gardens' species richness. Conclusions Socio-economic factors contribute to shaping patterns in the species richness of the living collections of the world's botanic gardens. PMID:20237117

  15. Effects of plant species richness on 13C assimilate partitioning in artificial grasslands of different established ages

    PubMed Central

    Xu, Longhua; Yao, Buqing; Wang, Wenying; Wang, Fangping; Zhou, Huakun; Shi, Jianjun; Zhao, Xinquan

    2017-01-01

    Artificial grasslands play a role in carbon storage on the Qinghai–Tibetan Plateau. The artificial grasslands exhibit decreased proportions of graminate and increased species richness with age. However, the effect of the graminate proportions and species richness on ecosystem C stocks in artificial grasslands have not been elucidated. We conducted an in situ13C pulse-labeling experiment in August 2012 using artificial grasslands that had been established for two years (2Y), five years (5Y), and twelve years (12Y). Each region was plowed fallow from severely degraded alpine meadow in the Qinghai-Tibetan Plateau. The 12Y grassland had moderate proportions of graminate and the highest species richness. This region showed more recovered 13C in soil and a longer mean residence time, which suggests species richness controls the ecosystem C stock. The loss rate of leaf-assimilated C of the graminate-dominant plant species Elymus nutans in artificial grasslands of different ages was lowest in the 12Y grassland, which also had the highest species richness. Thus the lower loss rate of leaf-assimilated C can be partially responsible for the larger ecosystem carbon stocks in the 12Y grassland. This finding is a novel mechanism for the effects of species richness on the increase in ecosystem functioning. PMID:28067300

  16. Remnant trees affect species composition but not structure of tropical second-growth forest.

    PubMed

    Sandor, Manette E; Chazdon, Robin L

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2-3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests ("control plots"). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields.

  17. Small-scale variation in ecosystem CO2 fluxes in an alpine meadow depends on plant biomass and species richness.

    PubMed

    Hirota, Mitsuru; Zhang, Pengcheng; Gu, Song; Shen, Haihua; Kuriyama, Takeo; Li, Yingnian; Tang, Yanhong

    2010-07-01

    Characterizing the spatial variation in the CO2 flux at both large and small scales is essential for precise estimation of an ecosystem's CO2 sink strength. However, little is known about small-scale CO2 flux variations in an ecosystem. We explored these variations in a Kobresia meadow ecosystem on the Qinghai-Tibetan plateau in relation to spatial variability in species composition and biomass. We established 14 points and measured net ecosystem production (NEP), gross primary production (GPP), and ecosystem respiration (Re) in relation to vegetation biomass, species richness, and environmental variables at each point, using an automated chamber system during the 2005 growing season. Mean light-saturated NEP and GPP were 30.3 and 40.5 micromol CO2 m(-2) s(-1) [coefficient of variation (CV), 42.7 and 29.4], respectively. Mean Re at 20 degrees C soil temperature, Re(20), was -10.9 micromol CO2 m(-2) s(-1) (CV, 27.3). Re(20) was positively correlated with vegetation biomass. GPP(max) was positively correlated with species richness, but 2 of the 14 points were outliers. Vegetation biomass was the main determinant of spatial variation of Re, whereas species richness mainly affected that of GPP, probably reflecting the complexity of canopy structure and light partitioning in this small grassland patch.

  18. Unimodal Latitudinal Pattern of Land-Snail Species Richness across Northern Eurasian Lowlands

    PubMed Central

    Horsák, Michal; Chytrý, Milan

    2014-01-01

    Large-scale patterns of species richness and their causes are still poorly understood for most terrestrial invertebrates, although invertebrates can add important insights into the mechanisms that generate regional and global biodiversity patterns. Here we explore the general plausibility of the climate-based “water-energy dynamics” hypothesis using the latitudinal pattern of land-snail species richness across extensive topographically homogeneous lowlands of northern Eurasia. We established a 1480-km long latitudinal transect across the Western Siberian Plain (Russia) from the Russia-Kazakhstan border (54.5°N) to the Arctic Ocean (67.5°N), crossing eight latitudinal vegetation zones: steppe, forest-steppe, subtaiga, southern, middle and northern taiga, forest-tundra, and tundra. We sampled snails in forests and open habitats each half-degree of latitude and used generalized linear models to relate snail species richness to climatic variables and soil calcium content measured in situ. Contrary to the classical prediction of latitudinal biodiversity decrease, we found a striking unimodal pattern of snail species richness peaking in the subtaiga and southern-taiga zones between 57 and 59°N. The main south-to-north interchange of the two principal diversity constraints, i.e. drought stress vs. cold stress, explained most of the variance in the latitudinal diversity pattern. Water balance, calculated as annual precipitation minus potential evapotranspiration, was a single variable that could explain 81.7% of the variance in species richness. Our data suggest that the “water-energy dynamics” hypothesis can apply not only at the global scale but also at subcontinental scales of higher latitudes, as water availability was found to be the primary limiting factor also in this extratropical region with summer-warm and dry climate. A narrow zone with a sharp south-to-north switch in the two main diversity constraints seems to constitute the dominant and general

  19. Effects of landscape composition and wetland fragmentation on frog and toad abundance and species richness in Iowa and Wisconsin, USA [abstract

    USGS Publications Warehouse

    Knutson, M.G.; Sauer, J.R.; Olsen, D.A.; Mossman, M.J.; Hemesath, L.M.; Lannoo, M.J.

    1998-01-01

    We examined the relationships between anuran diversity and landscape features in the Upper Midwestern United States. Anuran relative abundance and species richness were measured using data collected by Wisconsin and Iowa state calling surveys conducted from 1990-1995. Landscape features surrounding survey points were determined using National Wetland Inventory and Wisconsin Wetland Inventory maps. We tested several hypotheses suggested by the literature. We hypothesized that the relative abundance and species richness of anurans that breed in ephemeral wetlands is positively correlated with the surrounding area of temporary wetlands and emergent wetlands. We hypothesized that the relative abundance and species richness of anurans is positively correlated with patch diversity and wetland edges, in the absence of local fragmentation effects. We hypothesized that the relative abundance and species richness of anurans is positively associated with forests but negatively associated with agriculture and urban areas. Our results show that the interspersion of different wetland types and the concomitant increase in wetland edge habitats were generally positive for frogs and toads and anuran abundance and diversity were generally higher in association with forests, especially forested wetlands. The presence of agriculture did not always depress frog and toad populations or diversity; some species were associated with agricultural landscapes. The two states differed in how anurans were associated with landscape features like lakes and permanent wetlands. We found that frog and toad relative abundance and diversity were lower when urban areas were present. Managers can use models like ours, generated from landscape analyses, along with range maps and population trend analyses to get a comprehensive picture of the health of individual species and groups of species. Our models could be applied to the landscape as a whole, and used to predict species relative abundance and

  20. Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness"

    USGS Publications Warehouse

    Tredennick, Andrew T.; Adler, Peter B.; Grace, James B.; Harpole, W Stanley; Borer, Elizabeth T.; Seabloom, Eric W.; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori A.; Brown, Cynthia S.; Buckley, Yvonne M.; Chu, Cheng-Jin; Collins, Scott L.; Crawley, Michael J.; Fay, Philip A.; Firn, Jennifer; Gruner, Daniel S.; Hagenah, Nicole; Hautier, Yann; Hector, Andy; Hillebrand, Helmut; Kirkman, Kevin P.; Knops, Johannes M. H.; Laungani, Ramesh; Lind, Eric M.; MacDougall, Andrew S.; McCulley, Rebecca L.; Mitchell, Charles E.; Moore, Joslin L.; Morgan, John W.; Orrock, John L.; Peri, Pablo L.; Prober, Suzanne M.; Risch, Anita C.; Schuetz, Martin; Speziale, Karina L.; Standish, Rachel J.; Sullivan, Lauren L.; Wardle, Glenda M.; Williams, Ryan J.; Yang, Louie H.

    2016-01-01

    Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show clearly and consistently that productivity is a poor predictor of local species richness.

  1. Lower richness of small wild mammal species and chagas disease risk.

    PubMed

    Xavier, Samanta Cristina das Chagas; Roque, André Luiz Rodrigues; Lima, Valdirene dos Santos; Monteiro, Kerla Joeline Lima; Otaviano, Joel Carlos Rodrigues; Ferreira da Silva, Luiz Felipe Coutinho; Jansen, Ana Maria

    2012-01-01

    A new epidemiological scenario involving the oral transmission of Chagas disease, mainly in the Amazon basin, requires innovative control measures. Geospatial analyses of the Trypanosoma cruzi transmission cycle in the wild mammals have been scarce. We applied interpolation and map algebra methods to evaluate mammalian fauna variables related to small wild mammals and the T. cruzi infection pattern in dogs to identify hotspot areas of transmission. We also evaluated the use of dogs as sentinels of epidemiological risk of Chagas disease. Dogs (n = 649) were examined by two parasitological and three distinct serological assays. kDNA amplification was performed in patent infections, although the infection was mainly sub-patent in dogs. The distribution of T. cruzi infection in dogs was not homogeneous, ranging from 11-89% in different localities. The interpolation method and map algebra were employed to test the associations between the lower richness in mammal species and the risk of exposure of dogs to T. cruzi infection. Geospatial analysis indicated that the reduction of the mammal fauna (richness and abundance) was associated with higher parasitemia in small wild mammals and higher exposure of dogs to infection. A Generalized Linear Model (GLM) demonstrated that species richness and positive hemocultures in wild mammals were associated with T. cruzi infection in dogs. Domestic canine infection rates differed significantly between areas with and without Chagas disease outbreaks (Chi-squared test). Geospatial analysis by interpolation and map algebra methods proved to be a powerful tool in the evaluation of areas of T. cruzi transmission. Dog infection was shown to not only be an efficient indicator of reduction of wild mammalian fauna richness but to also act as a signal for the presence of small wild mammals with high parasitemia. The lower richness of small mammal species is discussed as a risk factor for the re-emergence of Chagas disease.

  2. Species composition, richness and nestedness of lizard assemblages from Restinga habitats along the brazilian coast.

    PubMed

    Rocha, C F D; Vrcibradic, D; Kiefer, M C; Menezes, V A; Fontes, A F; Hatano, F H; Galdino, C A B; Bergallo, H G; Van Sluys, M

    2014-05-01

    Habitat fragmentation is well known to adversely affect species living in the remaining, relatively isolated, habitat patches, especially for those having small range size and low density. This negative effect has been critical in coastal resting habitats. We analysed the lizard composition and richness of restinga habitats in 16 restinga habitats encompassing three Brazilian states (Rio de Janeiro, Espírito Santo and Bahia) and more than 1500km of the Brazilian coast in order to evaluate if the loss of lizard species following habitat reduction occur in a nested pattern or at random, using the "Nestedness Temperature Calculator" to analyse the distribution pattern of lizard species among the restingas studied. We also estimated the potential capacity that each restinga has to maintain lizard species. Eleven lizard species were recorded in the restingas, although not all species occurred in all areas. The restinga with the richest lizard fauna was Guriri (eight species) whereas the restinga with the lowest richness was Praia do Sul (located at Ilha Grande, a large coastal island). Among the restingas analysed, Jurubatiba, Guriri, Maricá and Praia das Neves, were the most hospitable for lizards. The matrix community temperature of the lizard assemblages was 20.49° (= P <0.00001; 5000 randomisations; randomisation temperature = 51.45° ± 7.18° SD), indicating that lizard assemblages in the coastal restingas exhibited a considerable nested structure. The degree in which an area is hospitable for different assemblages could be used to suggest those with greater value of conservation. We concluded that lizard assemblages in coastal restingas occur at a considerable level of ordination in restinga habitats and that some restinga areas such as Jurubatiba, Guriri, Maricá and Praia das Neves are quite important to preserve lizard diversity of restinga environments.

  3. Deriving the species richness distribution of Geotrupinae (Coleoptera: Scarabaeoidea) in Mexico from the overlap of individual model predictions.

    PubMed

    Trotta-Moreu, Nuria; Lobo, Jorge M

    2010-02-01

    Predictions from individual distribution models for Mexican Geotrupinae species were overlaid to obtain a total species richness map for this group. A database (GEOMEX) that compiles available information from the literature and from several entomological collections was used. A Maximum Entropy method (MaxEnt) was applied to estimate the distribution of each species, taking into account 19 climatic variables as predictors. For each species, suitability values ranging from 0 to 100 were calculated for each grid cell on the map, and 21 different thresholds were used to convert these continuous suitability values into binary ones (presence-absence). By summing all of the individual binary maps, we generated a species richness prediction for each of the considered thresholds. The number of species and faunal composition thus predicted for each Mexican state were subsequently compared with those observed in a preselected set of well-surveyed states. Our results indicate that the sum of individual predictions tends to overestimate species richness but that the selection of an appropriate threshold can reduce this bias. Even under the most optimistic prediction threshold, the mean species richness error is 61% of the observed species richness, with commission errors being significantly more common than omission errors (71 +/- 29 versus 18 +/- 10%). The estimated distribution of Geotrupinae species richness in Mexico in discussed, although our conclusions are preliminary and contingent on the scarce and probably biased available data.

  4. Use of fish parasite species richness indices in analyzing anthropogenically impacted coastal marine ecosystems

    NASA Astrophysics Data System (ADS)

    Dzikowski, R.; Paperna, I.; Diamant, A.

    2003-10-01

    The diversity of fish parasite life history strategies makes these species sensitive bioindicators of aquatic ecosystem health. While monoxenous (single-host) species may persist in highly perturbed, extreme environments, this is not necessarily true for heteroxenous (multiple-host) species. As many parasites possess complex life cycles and are transmitted through a chain of host species, their dependency on the latter to complete their life cycles renders them sensitive to perturbed environments. In the present study, parasite communities of grey mullet Liza aurata and Liza ramada (Mugilidae) were investigated at two Mediterranean coastal sites in northern Israel: the highly polluted Kishon Harbor (KH) and the relatively unspoiled reference site, Ma'agan Michael (MM). Both are estuarine sites in which grey mullet are one of the most common fish species. The results indicate that fish at the polluted site had significantly less trematode metacercariae than fish at the reference site. Heteroxenous gut helminths were completely absent at the polluted sampling site. Consequently, KH fish displayed lower mean parasite species richness. At the same time, KH fish mean monoxenous parasite richness was higher, although the prevalence of different monoxenous taxa was variable. Copepods had an increased prevalence while monogenean prevalence was significantly reduced at the polluted site. This variability may be attributed to the differential susceptibility of the parasites to the toxicity of different pollutants, their concentration, the exposure time and possible synergistic effects. In this study, we used the cumulative species curve model that extrapolates "true" species richness of a given habitat as a function of increasing sample size. We considered the heteroxenous and monoxenous species separately for each site, and comparison of curves yielded significant results. It is proposed to employ this approach, originally developed for estimating the "true" parasite

  5. Are parasite richness and abundance linked to prey species richness and individual feeding preferences in fish hosts?

    PubMed

    Cirtwill, Alyssa R; Stouffer, Daniel B; Poulin, Robert; Lagrue, Clément

    2016-01-01

    Variations in levels of parasitism among individuals in a population of hosts underpin the importance of parasites as an evolutionary or ecological force. Factors influencing parasite richness (number of parasite species) and load (abundance and biomass) at the individual host level ultimately form the basis of parasite infection patterns. In fish, diet range (number of prey taxa consumed) and prey selectivity (proportion of a particular prey taxon in the diet) have been shown to influence parasite infection levels. However, fish diet is most often characterized at the species or fish population level, thus ignoring variation among conspecific individuals and its potential effects on infection patterns among individuals. Here, we examined parasite infections and stomach contents of New Zealand freshwater fish at the individual level. We tested for potential links between the richness, abundance and biomass of helminth parasites and the diet range and prey selectivity of individual fish hosts. There was no obvious link between individual fish host diet and helminth infection levels. Our results were consistent across multiple fish host and parasite species and contrast with those of earlier studies in which fish diet and parasite infection were linked, hinting at a true disconnect between host diet and measures of parasite infections in our study systems. This absence of relationship between host diet and infection levels may be due to the relatively low richness of freshwater helminth parasites in New Zealand and high host-parasite specificity.

  6. Spatial congruence in language and species richness but not threat in the world's top linguistic hotspot.

    PubMed

    Turvey, Samuel T; Pettorelli, Nathalie

    2014-12-07

    Languages share key evolutionary properties with biological species, and global-level spatial congruence in richness and threat is documented between languages and several taxonomic groups. However, there is little understanding of the functional connection between diversification or extinction in languages and species, or the relationship between linguistic and species richness across different spatial scales. New Guinea is the world's most linguistically rich region and contains extremely high biological diversity. We demonstrate significant positive relationships between language and mammal richness in New Guinea across multiple spatial scales, revealing a likely functional relationship over scales at which infra-island diversification may occur. However, correlations are driven by spatial congruence between low levels of language and species richness. Regional biocultural richness may have showed closer congruence before New Guinea's linguistic landscape was altered by Holocene demographic events. In contrast to global studies, we demonstrate a significant negative correlation across New Guinea between areas with high levels of threatened languages and threatened mammals, indicating that landscape-scale threats differ between these groups. Spatial resource prioritization to conserve biodiversity may not benefit threatened languages, and conservation policy must adopt a multi-faceted approach to protect biocultural diversity as a whole.

  7. Specialization in Plant-Hummingbird Networks Is Associated with Species Richness, Contemporary Precipitation and Quaternary Climate-Change Velocity

    PubMed Central

    Dalsgaard, Bo; Magård, Else; Fjeldså, Jon; Martín González, Ana M.; Rahbek, Carsten; Olesen, Jens M.; Ollerton, Jeff; Alarcón, Ruben; Cardoso Araujo, Andrea; Cotton, Peter A.; Lara, Carlos; Machado, Caio Graco; Sazima, Ivan; Sazima, Marlies; Timmermann, Allan; Watts, Stella; Sandel, Brody; Sutherland, William J.; Svenning, Jens-Christian

    2011-01-01

    Large-scale geographical patterns of biotic specialization and the underlying drivers are poorly understood, but it is widely believed that climate plays an important role in determining specialization. As climate-driven range dynamics should diminish local adaptations and favor generalization, one hypothesis is that contemporary biotic specialization is determined by the degree of past climatic instability, primarily Quaternary climate-change velocity. Other prominent hypotheses predict that either contemporary climate or species richness affect biotic specialization. To gain insight into geographical patterns of contemporary biotic specialization and its drivers, we use network analysis to determine the degree of specialization in plant-hummingbird mutualistic networks sampled at 31 localities, spanning a wide range of climate regimes across the Americas. We found greater biotic specialization at lower latitudes, with latitude explaining 20–22% of the spatial variation in plant-hummingbird specialization. Potential drivers of specialization - contemporary climate, Quaternary climate-change velocity, and species richness - had superior explanatory power, together explaining 53–64% of the variation in specialization. Notably, our data provides empirical evidence for the hypothesized roles of species richness, contemporary precipitation and Quaternary climate-change velocity as key predictors of biotic specialization, whereas contemporary temperature and seasonality seem unimportant in determining specialization. These results suggest that both ecological and evolutionary processes at Quaternary time scales can be important in driving large-scale geographical patterns of contemporary biotic specialization, at least for co-evolved systems such as plant-hummingbird networks. PMID:21998716

  8. Environmental gradients explain species richness and community composition of coastal breeding birds in the Baltic Sea.

    PubMed

    Nord, Maria; Forslund, Pär

    2015-01-01

    Scientifically-based systematic conservation planning for reserve design requires knowledge of species richness patterns and how these are related to environmental gradients. In this study, we explore a large inventory of coastal breeding birds, in total 48 species, sampled in 4646 1 km2 squares which covered a large archipelago in the Baltic Sea on the east coast of Sweden. We analysed how species richness (α diversity) and community composition (β diversity) of two groups of coastal breeding birds (specialists, i.e. obligate coastal breeders; generalists, i.e. facultative coastal breeders) were affected by distance to open sea, land area, shoreline length and archipelago width. The total number of species per square increased with increasing shoreline length, but increasing land area counteracted this effect in specialists. The number of specialist bird species per square increased with decreasing distance to open sea, while the opposite was true for the generalists. Differences in community composition between squares were associated with differences in land area and distance to open sea, both when considering all species pooled and each group separately. Fourteen species were nationally red-listed, and showed similar relationships to the environmental gradients as did all species, specialists and generalists. We suggest that availability of suitable breeding habitats, and probably also proximity to feeding areas, explain much of the observed spatial distributions of coastal birds in this study. Our findings have important implications for systematic conservation planning of coastal breeding birds. In particular, we provide information on where coastal breeding birds occur and which environments they seem to prefer. Small land areas with long shorelines are highly valuable both in general and for red-listed species. Thus, such areas should be prioritized for protection against human disturbance and used by management in reserve selection.

  9. Environmental Gradients Explain Species Richness and Community Composition of Coastal Breeding Birds in the Baltic Sea

    PubMed Central

    Nord, Maria; Forslund, Pär

    2015-01-01

    Scientifically-based systematic conservation planning for reserve design requires knowledge of species richness patterns and how these are related to environmental gradients. In this study, we explore a large inventory of coastal breeding birds, in total 48 species, sampled in 4646 1 km2 squares which covered a large archipelago in the Baltic Sea on the east coast of Sweden. We analysed how species richness (α diversity) and community composition (β diversity) of two groups of coastal breeding birds (specialists, i.e. obligate coastal breeders; generalists, i.e. facultative coastal breeders) were affected by distance to open sea, land area, shoreline length and archipelago width. The total number of species per square increased with increasing shoreline length, but increasing land area counteracted this effect in specialists. The number of specialist bird species per square increased with decreasing distance to open sea, while the opposite was true for the generalists. Differences in community composition between squares were associated with differences in land area and distance to open sea, both when considering all species pooled and each group separately. Fourteen species were nationally red-listed, and showed similar relationships to the environmental gradients as did all species, specialists and generalists. We suggest that availability of suitable breeding habitats, and probably also proximity to feeding areas, explain much of the observed spatial distributions of coastal birds in this study. Our findings have important implications for systematic conservation planning of coastal breeding birds. In particular, we provide information on where coastal breeding birds occur and which environments they seem to prefer. Small land areas with long shorelines are highly valuable both in general and for red-listed species. Thus, such areas should be prioritized for protection against human disturbance and used by management in reserve selection. PMID:25714432

  10. Pattern or process? Evaluating the peninsula effect as a determinant of species richness in coastal dune forests

    PubMed Central

    Olivier, Pieter I.; van Aarde, Rudi J.

    2017-01-01

    The peninsula effect predicts that the number of species should decline from the base of a peninsula to the tip. However, evidence for the peninsula effect is ambiguous, as different analytical methods, study taxa, and variations in local habitat or regional climatic conditions influence conclusions on its presence. We address this uncertainty by using two analytical methods to investigate the peninsula effect in three taxa that occupy different trophic levels: trees, millipedes, and birds. We surveyed 81 tree quadrants, 102 millipede transects, and 152 bird points within 150 km of coastal dune forest that resemble a habitat peninsula along the northeast coast of South Africa. We then used spatial (trend surface analyses) and non-spatial regressions (generalized linear mixed models) to test for the presence of the peninsula effect in each of the three taxa. We also used linear mixed models to test if climate (temperature and precipitation) and/or local habitat conditions (water availability associated with topography and landscape structural variables) could explain gradients in species richness. Non-spatial models suggest that the peninsula effect was present in all three taxa. However, spatial models indicated that only bird species richness declined from the peninsula base to the peninsula tip. Millipede species richness increased near the centre of the peninsula, while tree species richness increased near the tip. Local habitat conditions explained species richness patterns of birds and trees, but not of millipedes, regardless of model type. Our study highlights the idiosyncrasies associated with the peninsula effect—conclusions on the presence of the peninsula effect depend on the analytical methods used and the taxon studied. The peninsula effect might therefore be better suited to describe a species richness pattern where the number of species decline from a broader habitat base to a narrow tip, rather than a process that drives species richness. PMID

  11. Testing the Effectiveness of Environmental Variables to Explain European Terrestrial Vertebrate Species Richness across Biogeographical Scales

    PubMed Central

    Mouchet, Maud; Levers, Christian; Zupan, Laure; Kuemmerle, Tobias; Plutzar, Christoph; Erb, Karlheinz; Lavorel, Sandra; Thuiller, Wilfried; Haberl, Helmut

    2015-01-01

    We compared the effectiveness of environmental variables, and in particular of land-use indicators, to explain species richness patterns across taxonomic groups and biogeographical scales (i.e. overall pan-Europe and ecoregions within pan-Europe). Using boosted regression trees that handle non-linear relationships, we compared the relative influence (as a measure of effectiveness) of environmental variables related to climate, landscape (or habitat heterogeneity), land-use intensity or energy availability to explain European vertebrate species richness (birds, amphibians, and mammals) at the continental and ecoregion scales. We found that dominant land cover and actual evapotranspiration that relate to energy availability were the main correlates of vertebrate species richness over Europe. At the ecoregion scale, we identified four distinct groups of ecoregions where species richness was essentially associated to (i) seasonality of temperature, (ii) actual evapotranspiration and/or mean annual temperature, (iii) seasonality of precipitation, actual evapotranspiration and land cover) and (iv) and an even combination of the environmental variables. This typology of ecoregions remained valid for total vertebrate richness and the three vertebrate groups taken separately. Despite the overwhelming influence of land cover and actual evapotranspiration to explain vertebrate species richness patterns at European scale, the ranking of the main correlates of species richness varied between regions. Interestingly, landscape and land-use indicators did not stand out at the continental scale but their influence greatly increased in southern ecoregions, revealing the long-lasting human footprint on land-use–land-cover changes. Our study provides one of the first multi-scale descriptions of the variability in the ranking of correlates across several taxa. PMID:26161981

  12. Disturbance influences oyster community richness and evenness, but not diversity.

    PubMed

    Kimbro, David L; Grosholz, Edwin D

    2006-09-01

    Foundation species in space-limited systems can increase diversity by creating habitat, but they may also reduce diversity by excluding primary space competitors. These contrasting forces of increasing associate diversity and suppressing competitor diversity have rarely been examined experimentally with respect to disturbance. In a benthic marine community in central California, where native oysters are a foundation species, we tested how disturbance influenced overall species richness, evenness, and diversity. Surprisingly, overall diversity did not peak across a disturbance gradient because, as disturbance decreased, decreases in overall species evenness opposed increases in overall species richness. Decreasing disturbance intensity (high oyster abundance) led to increasing species richness of sessile and mobile species combined. This increase was due to the facilitation of secondary sessile and mobile species in the presence of oysters. In contrast, decreasing disturbance intensity and high oyster abundance decreased the evenness of sessile and mobile species. Three factors likely contributed to this decreased evenness: oysters reduced abundances of primary sessile species due to space competition; oysters supported more rare mobile species; and oysters disproportionately increased the relative abundance of a few common mobile species. Our results highlight the need for further studies on how disturbance can differentially affect the evenness and richness of different functional groups, and ultimately how these differences affect the relationship between overall diversity and ecosystem function.

  13. Changes in Species Richness and Composition of Tiger Moths (Lepidoptera: Erebidae: Arctiinae) among Three Neotropical Ecoregions.

    PubMed

    Beccacece, Hernán Mario; Zeballos, Sebastián Rodolfo; Zapata, Adriana Inés

    Paraná, Yungas and Chaco Serrano ecoregions are among the most species-rich terrestrial habitats at higher latitude. However, the information for tiger moths, one of the most speciose groups of moths, is unknown in these ecoregions. In this study, we assess their species richness and composition in all three of these ecoregions. Also we investigated whether the species composition of tiger moths is influenced by climatic factors and altitude. Tiger moth species were obtained with samples from 71 sites using standardized protocols (21 sites were in Yungas, 19 in Paraná and 31 in Chaco Serrano). Rarefaction-extrapolation curves, non-parametric estimators for incidence and sample coverage indices were performed to assess species richness in the ecoregions studied. Non metric multidimensional scaling and adonis tests were performed to compare the species composition of tiger moths among ecoregions. Permutest analysis and Pearson correlation were used to evaluate the relationship among species composition and annual mean temperature, annual temperature range, annual precipitation, precipitation seasonality and altitude. Among ecoregions Paraná was the richest with 125 species, followed by Yungas with 63 species and Chaco Serrano with 24 species. Species composition differed among these ecoregions, although Yungas and Chaco Serrano were more similar than Paraná. Species composition was significantly influenced by climatic factors and altitude. This study showed that species richness and species composition of tiger moths differed among the three ecoregions assessed. Furthermore, not only climatic factors and altitude influence the species composition of tiger moths among ecoregions, but also climatic seasonality at higher latitude in Neotropical South America becomes an important factor.

  14. Responses of predatory invertebrates to seeding density and plant species richness in experimental tallgrass prairie restorations

    USGS Publications Warehouse

    Nemec, Kristine T.; Allen, Craig R.; Danielson, Stephen D.; Helzer, Christopher J.

    2014-01-01

    In recent decades, agricultural producers and non-governmental organizations have restored thousands of hectares of former cropland in the central United States with native grasses and forbs. However, the ability of these grassland restorations to attract predatory invertebrates has not been well documented, even though predators provide an important ecosystem service to agricultural producers by naturally regulating herbivores. This study assessed the effects of plant richness and seeding density on the richness and abundance of surface-dwelling (ants, ground beetles, and spiders) and aboveground (ladybird beetles) predatory invertebrates. In the spring of 2006, twenty-four 55 m × 55 m-plots were planted to six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Natural Resources Conservation Service Conservation Reserve Program mix, CP25), at low and high seeding densities. Ants, ground beetles, and spiders were sampled using pitfall traps and ladybird beetles were sampled using sweep netting in 2007–2009. The abundance of ants, ground beetles, and spiders showed no response to seed mix richness or seeding density but there was a significant positive effect of richness on ladybird beetle abundance. Seeding density had a significant positive effect on ground beetle and spider species richness and Shannon–Weaver diversity. These results may be related to differences in the plant species composition and relative amount of grass basal cover among the treatments rather than richness.

  15. Remnant Trees Affect Species Composition but Not Structure of Tropical Second-Growth Forest

    PubMed Central

    Sandor, Manette E.; Chazdon, Robin L.

    2014-01-01

    Remnant trees, spared from cutting when tropical forests are cleared for agriculture or grazing, act as nuclei of forest regeneration following field abandonment. Previous studies on remnant trees were primarily conducted in active pasture or old fields abandoned in the previous 2–3 years, and focused on structure and species richness of regenerating forest, but not species composition. Our study is among the first to investigate the effects of remnant trees on neighborhood forest structure, biodiversity, and species composition 20 years post-abandonment. We compared the woody vegetation around individual remnant trees to nearby plots without remnant trees in the same second-growth forests (“control plots”). Forest structure beneath remnant trees did not differ significantly from control plots. Species richness and species diversity were significantly higher around remnant trees. The species composition around remnant trees differed significantly from control plots and more closely resembled the species composition of nearby old-growth forest. The proportion of old-growth specialists and generalists around remnant trees was significantly greater than in control plots. Although previous studies show that remnant trees may initially accelerate secondary forest growth, we found no evidence that they locally affect stem density, basal area, and seedling density at later stages of regrowth. Remnant trees do, however, have a clear effect on the species diversity, composition, and ecological groups of the surrounding woody vegetation, even after 20 years of forest regeneration. To accelerate the return of diversity and old-growth forest species into regrowing forest on abandoned land, landowners should be encouraged to retain remnant trees in agricultural or pastoral fields. PMID:24454700

  16. Leafy spurge effects on patterns of plant species richness

    Treesearch

    Jack L. Butler; Daniel R. Cogan

    2004-01-01

    The objective of this study was to simultaneously evaluate the impact of leafy spurge (Euphorbia esula L.) on plant species richness within and among a wide variety of vegetation types typical of the region. The study was conducted in Theodore Roosevelt National Park in southwestern North Dakota where 11 plant associations were identified as being...

  17. Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness".

    PubMed

    Tredennick, Andrew T; Adler, Peter B; Grace, James B; Harpole, W Stanley; Borer, Elizabeth T; Seabloom, Eric W; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori A; Brown, Cynthia S; Buckley, Yvonne M; Chu, Chengjin; Collins, Scott L; Crawley, Michael J; Fay, Philip A; Firn, Jennifer; Gruner, Daniel S; Hagenah, Nicole; Hautier, Yann; Hector, Andy; Hillebrand, Helmut; Kirkman, Kevin; Knops, Johannes M H; Laungani, Ramesh; Lind, Eric M; MacDougall, Andrew S; McCulley, Rebecca L; Mitchell, Charles E; Moore, Joslin L; Morgan, John W; Orrock, John L; Peri, Pablo L; Prober, Suzanne M; Risch, Anita C; Schütz, Martin; Speziale, Karina L; Standish, Rachel J; Sullivan, Lauren L; Wardle, Glenda M; Williams, Ryan J; Yang, Louie H

    2016-01-29

    Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show clearly and consistently that productivity is a poor predictor of local species richness. Copyright © 2016, American Association for the Advancement of Science.

  18. Plant biodiversity effects in reducing fluvial erosion are limited to low species richness.

    PubMed

    Allen, Daniel C; Cardinale, Bradley J; Wynn-Thompson, Theresa

    2016-01-01

    It has been proposed that plant biodiversity may increase the erosion resistance of soils, yet direct evidence for any such relationship is lacking. We conducted a mesocosm experiment with eight species of riparian herbaceous plants, and found evidence that plant biodiversity significantly reduced fluvial erosion rates, with the eight-species polyculture decreasing erosion by 23% relative to monocultures. Species richness effects were largest at low levels of species richness, with little increase between four and eight species. Our results suggest that plant biodiversity reduced erosion rates indirectly through positive effects on root length and number of root tips, and that interactions between legumes and non-legumes were particularly important in producing biodiversity effects. Presumably, legumes increased root production of non-legumes by increasing soil nitrogen availability due to their ability to fix atmospheric nitrogen. Our data suggest that a restoration project using species from different functional groups might provide the best insurance to maintain long-term erosion resistance.

  19. Evaluating changes in stream fish species richness over a 50-year time-period within a landscape context

    USGS Publications Warehouse

    Midway, Stephen R.; Wagner, Tyler; Tracy, Bryn H.; Hogue, Gabriela M.; Starnes, Wayne C.

    2015-01-01

    Worldwide, streams and rivers are facing a suite of pressures that alter water quality and degrade physical habitat, both of which can lead to changes in the composition and richness of fish populations. These potential changes are of particular importance in the Southeast USA, home to one of the richest stream fish assemblages in North America. Using data from 83 stream sites in North Carolina sampled in the 1960’s and the past decade, we used hierarchical Bayesian models to evaluate relationships between species richness and catchment land use and land cover (e.g., agriculture and forest cover). In addition, we examined how the rate of change in species richness over 50 years was related to catchment land use and land cover. We found a negative and positive correlation between forest land cover and agricultural land use and average species richness, respectively. After controlling for introduced species, most (66 %) stream sites showed an increase in native fish species richness, and the magnitude of the rate of increase was positively correlated to the amount of forested land cover in the catchment. Site-specific trends in species richness were not positive, on average, until the percentage forest cover in the network catchment exceeded about 55 %. These results suggest that streams with catchments that have moderate to high (>55 %) levels of forested land in upstream network catchments may be better able to increase the number of native species at a faster rate compared to less-forested catchments.

  20. Species richness and patterns of invasion in plants, birds, and fishes in the United States

    USGS Publications Warehouse

    Stohlgren, Thomas J.; Barnett, David; Flather, Curtis; Fuller, Pamela L.; Peterjohn, Bruce G.; Kartesz, John; Master, Lawrence L.

    2006-01-01

    We quantified broad-scale patterns of species richness and species density (mean # species/km2) for native and non-indigenous plants, birds, and fishes in the continental USA and Hawaii. We hypothesized that the species density of native and non-indigenous taxa would generally decrease in northern latitudes and higher elevations following declines in potential evapotranspiration, mean temperature, and precipitation. County data on plants (n = 3004 counties) and birds (n=3074 counties), and drainage (6 HUC) data on fishes (n = 328 drainages) showed that the densities of native and non-indigenous species were strongly positively correlated for plant species (r = 0.86, P < 0.0001), bird species (r = 0.93, P<0.0001), and fish species (r = 0.41, P<0.0001). Multiple regression models showed that the densities of native plant and bird species could be strongly predicted (adj. R2 = 0.66 in both models) at county levels, but fish species densities were less predictable at drainage levels (adj. R2 = 0.31,P<0.0001). Similarly, non-indigenous plant and bird species densities were strongly predictable (adj. R2 = 0.84 and 0.91 respectively), but non-indigenous fish species density was less predictable (adj. R2 = 0.38). County level hotspots of native and non-indigenous plants, birds, and fishes were located in low elevation areas close to the coast with high precipitation and productivity (vegetation carbon). We show that (1) native species richness can be moderately well predicted with abiotic factors; (2) human populations have tended to settle in areas rich in native species; and (3) the richness and density of non-indigenous plant, bird, and fish species can be accurately predicted from biotic and abiotic factors largely because they are positively correlated to native species densities. We conclude that while humans facilitate the initial establishment, invasions of non-indigenous species, the spread and subsequent distributions of non-indigenous species may be controlled

  1. Marine benthic ecological functioning over decreasing taxonomic richness

    NASA Astrophysics Data System (ADS)

    Törnroos, Anna; Bonsdorff, Erik; Bremner, Julie; Blomqvist, Mats; Josefson, Alf B.; Garcia, Clement; Warzocha, Jan

    2015-04-01

    Alterations to ecosystem function due to reductions in species richness are predicted to increase as humans continue to affect the marine environment, especially in coastal areas, which serve as the interface between land and sea. The potential functional consequences due to reductions in species diversity have attracted considerable attention recently but little is known about the consequence of such loss in natural communities. We examined how the potential for function is affected by natural reductions in taxon richness using empirical (non-simulated) coastal marine benthic macrofaunal data from the Skagerrak-Baltic Sea region (N. Europe), where taxon richness decreases 25-fold, from 151 to 6 taxa. To estimate functional changes we defined multiple traits (10 traits and 51 categories) on which trait category richness, functional diversity (FD) and number of taxa per trait category were calculated. Our results show that decrease in taxon richness leads to an overall reduction in function but functional richness remains comparatively high even at the lowest level of taxon richness. Although the taxonomic reduction was sharp, up to 96% of total taxon richness, we identified both potential thresholds in functioning and subtler changes where function was maintained along the gradient. The functional changes were not only caused by reductions in taxa per trait category, some categories were maintained or even increased. Primarily, the reduction in species richness altered trait categories related to feeding, living and movement and thus potentially could have an effect on various ecosystem processes. This highlights the importance of recognising ecosystem multifunctionality, especially at low taxonomic richness. We also found that in this system rare species (singletons) did not stand for the functional complexities and changes. Our findings were consistent with theoretical and experimental predictions and suggest that a large proportion of the information about

  2. The relationship between the spectral diversity of satellite imagery, habitat heterogeneity, and plant species richness

    Treesearch

    Steven D. Warren; Martin Alt; Keith D. Olson; Severin D. H. Irl; Manuel J. Steinbauer; Anke Jentsch

    2014-01-01

    Assessment of habitat heterogeneity and plant species richness at the landscape scale is often based on intensive and extensive fieldwork at great cost of time and money. We evaluated the use of satellite imagery as a quantitativemeasure of the relationship between the spectral diversity of satellite imagery, habitat heterogeneity, and plant species richness. A 16 km2...

  3. A test of multiple hypotheses for the species richness gradient of South American owls.

    PubMed

    Diniz-Filho, José Alexandre Felizola; Rangel, Thiago F L V B; Hawkins, Bradford A

    2004-08-01

    Many mechanisms have been proposed to explain broad scale spatial patterns in species richness. In this paper, we evaluate five explanations for geographic gradients in species richness, using South American owls as a model. We compared the explanatory power of contemporary climate, landcover diversity, spatial climatic heterogeneity, evolutionary history, and area. An important aspect of our analyses is that very different hypotheses, such as history and area, can be quantified at the same observation scale and, consequently can be incorporated into a single analytical framework. Both area effects and owl phylogenetic history were poorly associated with richness, whereas contemporary climate, climatic heterogeneity at the mesoscale and landcover diversity explained ca. 53% of the variation in species richness. We conclude that both climate and environmental heterogeneity should be retained as plausible explanations for the diversity gradient. Turnover rates and scaling effects, on the other hand, although perhaps useful for detecting faunal changes and beta diversity at local and regional scales, are not strong explanations for the owl diversity gradient.

  4. The effect of peatland drainage and restoration on Odonata species richness and abundance.

    PubMed

    Elo, Merja; Penttinen, Jouni; Kotiaho, Janne S

    2015-04-09

    Restoration aims at reversing the trend of habitat degradation, the major threat to biodiversity. In Finland, more than half of the original peatland area has been drained, and during recent years, restoration of some of the drained peatlands has been accomplished. Short-term effects of the restoration on peatland hydrology, chemistry and vegetation are promising but little is known about how other species groups apart from vascular plants and bryophytes respond to restoration efforts. Here, we studied how abundance and species richness of Odonata (dragonflies and damselflies) respond to restoration. We sampled larvae in three sites (restored, drained, pristine) on each of 12 different study areas. We sampled Odonata larvae before restoration (n = 12), during the first (n = 10) and the third (n = 7) year after restoration and used generalized linear mixed models to analyze the effect of restoration. Drained sites had lower abundance and species richness than pristine sites. During the third year after restoration both abundance and species richness had risen in restored sites. Our results show that Odonata suffer from drainage, but seem to benefit from peatland restoration and are able to colonize newly formed water pools already within three years after restoration.

  5. Political Systems Affect Mobile and Sessile Species Diversity – A Legacy from the Post-WWII Period

    PubMed Central

    Cousins, Sara A. O.; Kaligarič, Mitja; Bakan, Branko; Lindborg, Regina

    2014-01-01

    Political ideologies, policies and economy affect land use which in turn may affect biodiversity patterns and future conservation targets. However, few studies have investigated biodiversity in landscapes with similar physical properties but governed by different political systems. Here we investigate land use and biodiversity patterns, and number and composition of birds and plants, in the borderland of Austria, Slovenia and Hungary. It is a physically uniform landscape but managed differently during the last 70 years as a consequence of the political “map” of Europe after World War I and II. We used a historical map from 1910 and satellite data to delineate land use within three 10-kilometre transects starting from the point where the three countries meet. There was a clear difference between countries detectable in current biodiversity patterns, which relates to land use history. Mobile species richness was associated with current land use whereas diversity of sessile species was more associated with past land use. Heterogeneous landscapes were positively and forest cover was negatively correlated to bird species richness. Our results provide insights into why landscape history is important to understand present and future biodiversity patterns, which is crucial for designing policies and conservation strategies across the world. PMID:25084154

  6. Shifts in Plant Assemblages Reduce the Richness of Galling Insects Across Edge-Affected Habitats in the Atlantic Forest.

    PubMed

    Souza, Danielle G; Santos, Jean C; Oliveira, Marcondes A; Tabarelli, Marcelo

    2016-10-01

    Impacts of habitat loss and fragmentation on specialist herbivores have been rarely addressed. Here we examine the structure of plant and galling insect assemblages in a fragmented landscape of the Atlantic forest to verify a potential impoverishment of these assemblages mediated by edge effects. Saplings and galling insects were recorded once within a 0.1-ha area at habitat level, covering forest interior stands, forest edges, and small fragments. A total of 1,769 saplings from 219 tree species were recorded across all three habitats, with differences in terms of sapling abundance and species richness. Additionally, edge-affected habitats exhibited reduced richness of both host-plant and galling insects at plot and habitat spatial scale. Attack levels also differed among forest types at habitat spatial scale (21.1% of attacked stems in forest interior, 12.4% in small fragments but only 8.5% in forest edges). Plot ordination resulted in three clearly segregated clusters: one formed by forest interior, one by small fragments, and another formed by edge plots. Finally, the indicator species analysis identified seven and one indicator plant species in forest interior and edge-affected habitats, respectively. Consequently, edge effects lead to formation of distinct taxonomic groups and also an impoverished assemblage of plants and galling insects at multiple spatial scales. The results of the present study indicate that fragmentation-related changes in plant assemblages can have a cascade effects on specialist herbivores. Accordingly, hyperfragmented landscapes may not be able to retain an expressive portion of tropical biodiversity. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Changes in Species Richness and Composition of Tiger Moths (Lepidoptera: Erebidae: Arctiinae) among Three Neotropical Ecoregions

    PubMed Central

    Beccacece, Hernán Mario; Zeballos, Sebastián Rodolfo; Zapata, Adriana Inés

    2016-01-01

    Paraná, Yungas and Chaco Serrano ecoregions are among the most species-rich terrestrial habitats at higher latitude. However, the information for tiger moths, one of the most speciose groups of moths, is unknown in these ecoregions. In this study, we assess their species richness and composition in all three of these ecoregions. Also we investigated whether the species composition of tiger moths is influenced by climatic factors and altitude. Tiger moth species were obtained with samples from 71 sites using standardized protocols (21 sites were in Yungas, 19 in Paraná and 31 in Chaco Serrano). Rarefaction-extrapolation curves, non-parametric estimators for incidence and sample coverage indices were performed to assess species richness in the ecoregions studied. Non metric multidimensional scaling and adonis tests were performed to compare the species composition of tiger moths among ecoregions. Permutest analysis and Pearson correlation were used to evaluate the relationship among species composition and annual mean temperature, annual temperature range, annual precipitation, precipitation seasonality and altitude. Among ecoregions Paraná was the richest with 125 species, followed by Yungas with 63 species and Chaco Serrano with 24 species. Species composition differed among these ecoregions, although Yungas and Chaco Serrano were more similar than Paraná. Species composition was significantly influenced by climatic factors and altitude. This study showed that species richness and species composition of tiger moths differed among the three ecoregions assessed. Furthermore, not only climatic factors and altitude influence the species composition of tiger moths among ecoregions, but also climatic seasonality at higher latitude in Neotropical South America becomes an important factor. PMID:27681478

  8. Skipper Richness (Hesperiidae) Along Elevational Gradients in Brazilian Atlantic Forest.

    PubMed

    Carneiro, E; Mielke, O H H; Casagrande, M M; Fiedler, K

    2014-02-01

    Hesperiidae are claimed to be a group of elusive butterflies that need major effort for sampling, thus being frequently omitted from tropical butterfly surveys. As no studies have associated species richness patterns of butterflies with environmental gradients of high altitudes in Brazil, we surveyed Hesperiidae ensembles in Serra do Mar along elevational transects (900-1,800 m above sea level) on three mountains. Transects were sampled 11-12 times on each mountain to evaluate how local species richness is influenced by mountain region, vegetation type, and elevational zones. Patterns were also analyzed for the subfamilies, and after disregarding species that exhibit hilltopping behavior. Species richness was evaluated by the observed richness, Jacknife2 estimator and Chao 1 estimator standardized by sample coverage. Overall, 155 species were collected, but extrapolation algorithms suggest a regional richness of about 220 species. Species richness was far higher in forest than in early successional vegetation or grassland. Richness decreased with elevation, and was higher on Anhangava mountain compared with the two others. Patterns were similar between observed and extrapolated Jacknife2 richness, but vegetation type and mountain richness became altered using sample coverage standardization. Hilltopping species were more easily detected than species that do not show this behavior; however, their inclusion did neither affect estimated richness nor modify the shape of the species accumulation curve. This is the first contribution to systematically study highland butterflies in southern Brazil where all records above 1,200 m are altitudinal extensions of the known geographical ranges of skipper species in the region.

  9. Sample size and the detection of a hump-shaped relationship between biomass and species richness in Mediterranean wetlands

    USGS Publications Warehouse

    Espinar, J.L.

    2006-01-01

    Questions: What is the observed relationship between biomass and species richness across both spatial and temporal scales in communities of submerged annual macrophytes? Does the number of plots sampled affect detection of hump-shaped pattern? Location: Don??ana National Park, southwestern Spain. Methods: A total of 102 plots were sampled during four hydrological cycles. In each hydrological cycle, the plots were distributed randomly along an environmental flooding gradient in three contrasted microhabitats located in the transition zone just below the upper marsh. In each plot (0.5 m x 0.5 m), plant density and above- and below-ground biomass of submerged vegetation were measured. The hump-shaped model was tested by using a generalized linear model (GLM). A bootstrap procedure was used to test the effect of the number of plots on the ability to detect hump-shaped patterns. Result: The area exhibited low species density with a range of 1 - 9 species and low values of biomass with a range of 0.2 - 87.6 g-DW / 0.25 m2. When data from all years and all microhabitats were combined, the relationships between biomass and species richness showed a hump-shaped pattern. The number of plots was large enough to allow detection of the hump-shaped pattern across microhabitats but it was too small to confirm the hump-shaped pattern within each individual microhabitat. Conclusion: This study provides evidence of hump-shaped patterns across microhabitats when GLM analysis is used. In communities of submerged annual macrophytes in Mediterranean wetlands, the highest species density occurs in intermediate values of biomass. The bootstrap procedure indicates that the number of plots affects the detection of hump-shaped patterns. ?? IAVS; Opulus Press.

  10. Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs

    PubMed Central

    Chaudhary, Abhishek; Burivalova, Zuzana; Koh, Lian Pin; Hellweg, Stefanie

    2016-01-01

    Forests managed for timber have an important role to play in conserving global biodiversity. We evaluated the most common timber production systems worldwide in terms of their impact on local species richness by conducting a categorical meta-analysis. We reviewed 287 published studies containing 1008 comparisons of species richness in managed and unmanaged forests and derived management, taxon, and continent specific effect sizes. We show that in terms of local species richness loss, forest management types can be ranked, from best to worse, as follows: selection and retention systems, reduced impact logging, conventional selective logging, clear-cutting, agroforestry, timber plantations, fuelwood plantations. Next, we calculated the economic profitability in terms of the net present value of timber harvesting from 10 hypothetical wood-producing Forest Management Units (FMU) from around the globe. The ranking of management types is altered when the species loss per unit profit generated from the FMU is considered. This is due to differences in yield, timber species prices, rotation cycle length and production costs. We thus conclude that it would be erroneous to dismiss or prioritize timber production regimes, based solely on their ranking of alpha diversity impacts. PMID:27040604

  11. Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs

    NASA Astrophysics Data System (ADS)

    Chaudhary, Abhishek; Burivalova, Zuzana; Koh, Lian Pin; Hellweg, Stefanie

    2016-04-01

    Forests managed for timber have an important role to play in conserving global biodiversity. We evaluated the most common timber production systems worldwide in terms of their impact on local species richness by conducting a categorical meta-analysis. We reviewed 287 published studies containing 1008 comparisons of species richness in managed and unmanaged forests and derived management, taxon, and continent specific effect sizes. We show that in terms of local species richness loss, forest management types can be ranked, from best to worse, as follows: selection and retention systems, reduced impact logging, conventional selective logging, clear-cutting, agroforestry, timber plantations, fuelwood plantations. Next, we calculated the economic profitability in terms of the net present value of timber harvesting from 10 hypothetical wood-producing Forest Management Units (FMU) from around the globe. The ranking of management types is altered when the species loss per unit profit generated from the FMU is considered. This is due to differences in yield, timber species prices, rotation cycle length and production costs. We thus conclude that it would be erroneous to dismiss or prioritize timber production regimes, based solely on their ranking of alpha diversity impacts.

  12. Impact of Forest Management on Species Richness: Global Meta-Analysis and Economic Trade-Offs.

    PubMed

    Chaudhary, Abhishek; Burivalova, Zuzana; Koh, Lian Pin; Hellweg, Stefanie

    2016-04-04

    Forests managed for timber have an important role to play in conserving global biodiversity. We evaluated the most common timber production systems worldwide in terms of their impact on local species richness by conducting a categorical meta-analysis. We reviewed 287 published studies containing 1008 comparisons of species richness in managed and unmanaged forests and derived management, taxon, and continent specific effect sizes. We show that in terms of local species richness loss, forest management types can be ranked, from best to worse, as follows: selection and retention systems, reduced impact logging, conventional selective logging, clear-cutting, agroforestry, timber plantations, fuelwood plantations. Next, we calculated the economic profitability in terms of the net present value of timber harvesting from 10 hypothetical wood-producing Forest Management Units (FMU) from around the globe. The ranking of management types is altered when the species loss per unit profit generated from the FMU is considered. This is due to differences in yield, timber species prices, rotation cycle length and production costs. We thus conclude that it would be erroneous to dismiss or prioritize timber production regimes, based solely on their ranking of alpha diversity impacts.

  13. Correlation between the habitats productivity and species richness (amphibians and reptiles) in Portugal through remote sensed data

    NASA Astrophysics Data System (ADS)

    Teodoro, A. C.; Sillero, N.; Alves, S.; Duarte, L.

    2013-10-01

    Several biogeographic theories propose that the species richness depends on the structure and ecosystems diversity. The habitat productivity, a surrogate for these variables, can be evaluated through satellite imagery, namely using vegetation indexes (e.g. NDVI). We analyzed the correlation between species richness (from the Portuguese Atlas of Amphibians and Reptiles) and NDVI (from Landsat, MODIS, and Vegetation images). The species richness database contains more than 80000 records, collected from bibliographic sources (at 1 or 10 km of spatial resolution) and fieldwork sampling stations (recorded with GPS devices). Several study areas were chosen for Landsat images (three subsets), and all Portugal for MODIS and Vegetation images. The Landsat subareas had different climatic and habitat characteristics, located in the north, center and south of Portugal. Different species richness datasets were used depending on the image spatial resolution: data with metric resolution were used for Landsat, and with 1 km resolution, for MODIS and Vegetation images. The NDVI indexes and all the images were calculated/processed in an open source software (Quantum GIS). Several plug-ins were applied in order to automatize several procedures. We did not find any correlation between the species richness of amphibians and reptiles (not even after separating both groups by species of Atlantic and Mediterranean affinity) and the NDVI calculated with Landsat, MODIS and Vegetation images. Our results may fail to find a relationship because as the species richness is not correlated with only one variable (NDVI), and thus other environmental variables must be considered.

  14. Native species richness buffers invader impact in undisturbed but not disturbed grassland assemblages

    Treesearch

    Sarah M. Pinto; Yvette K. Ortega

    2016-01-01

    Many systems are prone to both exotic plant invasion and frequent natural disturbances. Native species richness can buffer the effects of invasion or disturbance when imposed in isolation, but it is largely unknown whether richness provides substantial resistance against invader impact in the face of disturbance. We experimentally examined how disturbance (...

  15. Affect influences feature binding in memory: Trading between richness and strength of memory representations.

    PubMed

    Spachtholz, Philipp; Kuhbandner, Christof; Pekrun, Reinhard

    2016-10-01

    Research has shown that long-term memory representations of objects are formed as a natural product of perception even without any intentional memorization. It is not known, however, how rich these representations are in terms of the number of bound object features. In particular, because feature binding rests on resource-limited processes, there may be a context-dependent trade-off between the quantity of stored features and their memory strength. The authors examined whether affective state may bring about such a trade-off. Participants incidentally encoded pictures of real-world objects while experiencing positive or negative affect, and the authors later measured memory for 2 features. Results showed that participants traded between richness and strength of memory representations as a function of affect, with positive affect tuning memory formation toward richness and negative affect tuning memory formation toward strength. These findings demonstrate that memory binding is a flexible process that is modulated by affective state. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Species richness and composition of epiphytic bryophytes in flooded forests of Caxiuanã National Forest, Eastern Amazon, Brazil.

    PubMed

    Cerqueira, Gabriela R; Ilkiu-Borges, Anna Luiza; Ferreira, Leandro V

    2017-01-01

    This study aimed to compare the richness and composition of the epiphytic bryoflora between várzea and igapó forests in Caxiuanã National Forest, Brazilian Amazon. Bryophytes were collected on 502 phorophytes of Virola surinamensis. Average richness per phorophyte and composition between forests and between dry and rainy periods was tested by two-way analysis and by cluster analysis, respectively. In total, 54 species of 13 families were identified. Richness was greater in igapó forest (44 species) compared to várzea forest (38 species). There was no significant difference in the number of species between the studied periods. Cluster analysis showed the bryoflora composition was different between várzea and igapó, but not between dry and rainy periods. Results did not corroborate the hypothesis that várzea forests harbor higher species richness than igapó forests.

  17. Predicting assemblages and species richness of endemic fish in the upper Yangtze River.

    PubMed

    He, Yongfeng; Wang, Jianwei; Lek-Ang, Sithan; Lek, Sovan

    2010-09-01

    The present work describes the ability of two modeling methods, Classification and Regression Tree (CART) and Random Forest (RF), to predict endemic fish assemblages and species richness in the upper Yangtze River, and then to identify the determinant environmental factors contributing to the models. The models included 24 predictor variables and 2 response variables (fish assemblage and species richness) for a total of 46 site units. The predictive quality of the modeling approaches was judged with a leave-one-out validation procedure. There was an average success of 60.9% and 71.7% to assign each site unit to the correct assemblage of fish, and 73% and 84% to explain the variance in species richness, by using CART and RF models, respectively. RF proved to be better than CART in terms of accuracy and efficiency in ecological applications. In any case, the mixed models including both land cover and river characteristic variables were more powerful than either individual one in explaining the endemic fish distribution pattern in the upper Yangtze River. For instance, altitude, slope, length, discharge, runoff, farmland and alpine and sub-alpine meadow played important roles in driving the observed endemic fish assemblage structure, while farmland, slope grassland, discharge, runoff, altitude and drainage area in explaining the observed patterns of endemic species richness. Therefore, the various effects of human activity on natural aquatic ecosystems, in particular, the flow modification of the river and the land use changes may have a considerable effect on the endemic fish distribution patterns on a regional scale. Copyright 2010 Elsevier B.V. All rights reserved.

  18. [Altitudinal patterns of species richness and species range size of vascular plants in Xiaolong- shan Reserve of Qinling Mountain: a test of Rapoport' s rule].

    PubMed

    Zheng, Zhi; Gong, Da-Jie; Sun, Cheng-Xiang; Li, Xiao-Jun; Li, Wan-Jiang

    2014-09-01

    Altitudinal patterns of species richness and species range size and their underlying mechanisms have long been a key topic in biogeography and biodiversity research. Rapoport's rule stated that the species richness gradually declined with the increasing altitude, while the species ranges became larger. Using altitude-distribution database from Xiaolongshan Reverse, this study explored the altitudinal patterns of vascular plant species richness and species range in Qinling Xiaolongshan Reserve, and examined the relationships between species richness and their distributional middle points in altitudinal bands for different fauna, taxonomic units and growth forms and tested the Rapoport's rule by using Stevens' method, Pagel's method, mid-point method and cross-species method. The results showed that the species richness of vascular plants except small-range species showed a unimodal pattern along the altitude in Qinling Xiaolongshan Reserve and the highest proportion of small-range species was found at the lower altitudinal bands and at the higher altitudinal bands. Due to different assemblages and examining methods, the relationships between species distributing range sizes and the altitudes were different. Increasing taxonomic units was easier to support Rapoport's rule, which was related to niche differences that the different taxonomic units occupied. The mean species range size of angiosperms showed a unimodal pattern along the altitude, while those of the gymnosperms and pteridophytes were unclearly regular. The mean species range size of the climbers was wider with the increasing altitude, while that of the shrubs which could adapt to different environmental situations was not sensitive to the change of altitude. Pagel's method was easier to support the Rapoport's rule, and then was Steven's method. On the contrary, due to the mid-domain effect, the results of the test by using the mid-point method showed that the mean species range size varied in a unimodal

  19. Comparison of species-rich cover crop mixtures in Hungarian vineyards

    NASA Astrophysics Data System (ADS)

    Donkó, Adam; Miglécz, Tamas; Valkó, Orsolya; Török, Peter; Deák, Balazs; Kelemen, Andras; Zanathy, Gabor; Drexler, Dora

    2014-05-01

    In case of vine growing, agricultural practices of the past decades - as mechanical cultivation on steep vineyard slopes - can endanger the soil of vineyards. Moreover, climate change scenarios predict heavier rainstorms, which can also promote the degradation of the soil. These are some of the reasons why sustainable floor management plays an increasingly important role in viticulture recently. The use of cover crops in the inter-row has a special importance, especially on steep slopes and in case of organic farming to provide conditions for environmental friendly soil management. Species-rich cover crop seed mixtures may help to prevent erosion and create easier cultivation circumstances. Furthermore they have a positive effect on soil structure, soil fertility and ecosystem functions. However, it is important to find suitable seed mixtures for specific production sites, consisting ideally of native species from local provenance, adapted to the local climate/vine region/vineyard. Requirements for suitable cover crop species are as follows: they should save the soil from erosion and also from compaction caused by the movement of workers and machines, they should not compete significantly with the grapevines, or influence produce quality. We started to develop and apply several species-rich cover crop seed mixtures in spring 2012. During the experiments, three cover crop seed mixtures (Biocont-Ecovin mixture, mixture of legumes, mixture of grasses and herbs) were compared in vineyards of the Tokaj and Szekszárd vine regions of Hungary. Each mixture was sown in three consecutive inter-rows at each experimental site (all together 10 sites). Besides botanical measurements, yield, must quality, and pruning weight was studied in every treatment. The botanical survey showed that the following species of the mixtures established successfully and prospered during the years 2012 and 2013: Coronilla varia, Lotus corniculatus, Medicago lupulina, Onobrychis viciifolia

  20. Likeability of Garden Birds: Importance of Species Knowledge & Richness in Connecting People to Nature.

    PubMed

    Cox, Daniel T C; Gaston, Kevin J

    2015-01-01

    Interacting with nature is widely recognised as providing many health and well-being benefits. As people live increasingly urbanised lifestyles, the provision of food for garden birds may create a vital link for connecting people to nature and enabling them to access these benefits. However, it is not clear which factors determine the pleasure that people receive from watching birds at their feeders. These may be dependent on the species that are present, the abundance of individuals and the species richness of birds around the feeders. We quantitatively surveyed urban households from towns in southern England to determine the factors that influence the likeability of 14 common garden bird species, and to assess whether people prefer to see a greater abundance of individuals or increased species richness at their feeders. There was substantial variation in likeability across species, with songbirds being preferred over non-songbirds. Species likeability increased for people who fed birds regularly and who could name the species. We found a strong correlation between the number of species that a person could correctly identify and how connected to nature they felt when they watched garden birds. Species richness was preferred over a greater number of individuals of the same species. Although we do not show causation this study suggests that it is possible to increase the well-being benefits that people gain from watching birds at their feeders. This could be done first through a human to bird approach by encouraging regular interactions between people and their garden birds, such as through learning the species names and providing food. Second, it could be achieved through a bird to human approach by increasing garden songbird diversity because the pleasure that a person receives from watching an individual bird at a feeder is dependent not only on its species but also on the diversity of birds at the feeder.

  1. Likeability of Garden Birds: Importance of Species Knowledge & Richness in Connecting People to Nature

    PubMed Central

    Cox, Daniel T. C.; Gaston, Kevin J.

    2015-01-01

    Interacting with nature is widely recognised as providing many health and well-being benefits. As people live increasingly urbanised lifestyles, the provision of food for garden birds may create a vital link for connecting people to nature and enabling them to access these benefits. However, it is not clear which factors determine the pleasure that people receive from watching birds at their feeders. These may be dependent on the species that are present, the abundance of individuals and the species richness of birds around the feeders. We quantitatively surveyed urban households from towns in southern England to determine the factors that influence the likeability of 14 common garden bird species, and to assess whether people prefer to see a greater abundance of individuals or increased species richness at their feeders. There was substantial variation in likeability across species, with songbirds being preferred over non-songbirds. Species likeability increased for people who fed birds regularly and who could name the species. We found a strong correlation between the number of species that a person could correctly identify and how connected to nature they felt when they watched garden birds. Species richness was preferred over a greater number of individuals of the same species. Although we do not show causation this study suggests that it is possible to increase the well-being benefits that people gain from watching birds at their feeders. This could be done first through a human to bird approach by encouraging regular interactions between people and their garden birds, such as through learning the species names and providing food. Second, it could be achieved through a bird to human approach by increasing garden songbird diversity because the pleasure that a person receives from watching an individual bird at a feeder is dependent not only on its species but also on the diversity of birds at the feeder. PMID:26560968

  2. Physical factors affecting the abundance and species richness of fishes in the shallow waters of the southern Bothnian Sea (Sweden)

    NASA Astrophysics Data System (ADS)

    Thorman, Staffan

    1986-03-01

    The relationship between the composition of the fish assemblages and the abiotic environment in seven shallow areas within the same geographical range in the southern Bothnian Sea were studied in May, July, September and November 1982. Eighteen species were found in the areas and the major species were Pungitius pungitius (L.), Pomatoschistus minutus (Pallas), Gasterosteus aculeatus (L.), Phoxinus phoxinus (L.), Pomatoschistus microps (Krøyer) and Gobius niger L. The main purpose of the study was to examine the possible effects of exposure, organic contents in sediments and habitat heterogeneity on species richness and abundance of the assemblages. There was a negative correlation between the organic contents of the sediment and exposure. There were no significant correlations between exposure, organic contents, size of the areas and species numbers but habitat heterogeneity was positively correlated with species number. There were no correlations between fish abundance and heterogeneity of the areas. Negative correlations occurred between the exposure of the areas and fish abundance. The amounts of the pooled benthic fauna were negatively correlated to the exposure. The species/area hypothesis finds no support in the results, because there was no correlation between habitat heterogeneity of an area and its size. The effective fetch combined with the heterogeneity measurement of the areas seemed to be useful indicators of the species composition and fish abundance. Habitat heterogeneity and exposure were the most important structuring factors of these shallow water fish assemblages during the ice-free period and within the local geographical range. The assemblages consist of a mixture of species with marine or limnic origin and they have probably not evolved in the Bothnian Sea or together. They are most likely regulated by their physiological plasticity and not by interactions with other species.

  3. Geographic analysis of species richness and community attributes of forest birds from survey data in the mid-Atlantic integrated assessment region

    USGS Publications Warehouse

    Cam, E.; Sauer, J.R.; Nichols, J.D.; Hines, J.E.; Flather, C.H.

    2000-01-01

    Species richness of local communities is a state variable commonly used in community ecology and conservation biology. Investigation of spatial and temporal variations in richness and identification of factors associated with these variations form a basis for specifying management plans, evaluating these plans, and for testing hypotheses of theoretical interest. However, estimation of species richness is not trivial: species can be missed by investigators during sampling sessions. Sampling artifacts can lead to erroneous conclusions on spatial and temporal variation in species richness. Here we use data from the North American Breeding Bird Survey to estimate parameters describing the state of bird communities in the Mid-Atlantic Assessment (MAIA) region: species richness, extinction probability, turnover and relative species richness. We use a recently developed approach to estimation of species richness and related parameters that does not require the assumption that all the species are detected during sampling efforts. The information presented here is intended to visualize the state of bird communities in the MAIA region. We provide information on 1975 and 1990. We also quantified the changes between these years. We summarized and mapped the community attributes at a scale of management interest (watershed units).

  4. Age and area predict patterns of species richness in pumice rafts contingent on oceanic climatic zone encountered.

    PubMed

    Velasquez, Eleanor; Bryan, Scott E; Ekins, Merrick; Cook, Alex G; Hurrey, Lucy; Firn, Jennifer

    2018-05-01

    The theory of island biogeography predicts that area and age explain species richness patterns (or alpha diversity) in insular habitats. Using a unique natural phenomenon, pumice rafting, we measured the influence of area, age, and oceanic climate on patterns of species richness. Pumice rafts are formed simultaneously when submarine volcanoes erupt, the pumice clasts breakup irregularly, forming irregularly shaped pumice stones which while floating through the ocean are colonized by marine biota. We analyze two eruption events and more than 5,000 pumice clasts collected from 29 sites and three climatic zones. Overall, the older and larger pumice clasts held more species. Pumice clasts arriving in tropical and subtropical climates showed this same trend, where in temperate locations species richness (alpha diversity) increased with area but decreased with age. Beta diversity analysis of the communities forming on pumice clasts that arrived in different climatic zones showed that tropical and subtropical clasts transported similar communities, while species composition on temperate clasts differed significantly from both tropical and subtropical arrivals. Using these thousands of insular habitats, we find strong evidence that area and age but also climatic conditions predict the fundamental dynamics of species richness colonizing pumice clasts.

  5. Long-term nitrogen addition leads to loss of species richness due to litter accumulation and soil acidification in a temperate steppe.

    PubMed

    Fang, Ying; Xun, Fen; Bai, Wenming; Zhang, Wenhao; Li, Linghao

    2012-01-01

    Although community structure and species richness are known to respond to nitrogen fertilization dramatically, little is known about the mechanisms underlying specific species replacement and richness loss. In an experiment in semiarid temperate steppe of China, manipulative N addition with five treatments was conducted to evaluate the effect of N addition on the community structure and species richness. Species richness and biomass of community in each plot were investigated in a randomly selected quadrat. Root element, available and total phosphorus (AP, TP) in rhizospheric soil, and soil moisture, pH, AP, TP and inorganic N in the soil were measured. The relationship between species richness and the measured factors was analyzed using bivariate correlations and stepwise multiple linear regressions. The two dominant species, a shrub Artemisia frigida and a grass Stipa krylovii, responded differently to N addition such that the former was gradually replaced by the latter. S. krylovii and A. frigida had highly-branched fibrous and un-branched tap root systems, respectively. S. krylovii had higher height than A. frigida in both control and N added plots. These differences may contribute to the observed species replacement. In addition, the analysis on root element and AP contents in rhizospheric soil suggests that different calcium acquisition strategies, and phosphorus and sodium responses of the two species may account for the replacement. Species richness was significantly reduced along the five N addition levels. Our results revealed a significant relationship between species richness and soil pH, litter amount, soil moisture, AP concentration and inorganic N concentration. Our results indicate that litter accumulation and soil acidification accounted for 52.3% and 43.3% of the variation in species richness, respectively. These findings would advance our knowledge on the changes in species richness in semiarid temperate steppe of northern China under N

  6. Logging impacts on avian species richness and composition differ across latitudes and foraging and breeding habitat preferences.

    PubMed

    LaManna, Joseph A; Martin, Thomas E

    2017-08-01

    Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta-analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower-latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher-temperate latitudes generally replaced late-successional specialists with early-successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta-analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes. © 2016 Cambridge Philosophical Society.

  7. Herptofaunal species richness responses to forest landscape structure in Arkansas

    Treesearch

    Craig Loehle; T. Bently Wigley; Paul A. Shipman; Stanley F. Fox; Scott Rutzmoser; Ronald E. Thill; M. Anthony Melchiors

    2005-01-01

    Species accumulation curves were used to study reiationships between herpetofaunal richness and habitat characteristics on four watersheds in Arkansas that differed markedly with respect to management intensity. Selected habitat characteristics were estimated for stands containing the sample points and within buffers with radii of 250. 500 m, and 1 km surrounding the...

  8. The importance of plot size and the number of sampling seasons on capturing macrofungal species richness.

    PubMed

    Li, Huili; Ostermann, Anne; Karunarathna, Samantha C; Xu, Jianchu; Hyde, Kevin D; Mortimer, Peter E

    2018-07-01

    The species-area relationship is an important factor in the study of species diversity, conservation biology, and landscape ecology. A deeper understanding of this relationship is necessary, in order to provide recommendations on how to improve the quality of data collection on macrofungal diversity in different land use systems in future studies, a systematic assessment of methodological parameters, in particular optimal plot sizes. The species-area relationship of macrofungi in tropical and temperate climatic zones and four different land use systems were investigated by determining the macrofungal species richness in plot sizes ranging from 100 m 2 to 10 000 m 2 over two sampling seasons. We found that the effect of plot size on recorded species richness significantly differed between land use systems with the exception of monoculture systems. For both climate zones, land use system needs to be considered when determining optimal plot size. Using an optimal plot size was more important than temporal replication (over two sampling seasons) in accurately recording species richness. Copyright © 2018 British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  9. Effects of Management on Lichen Species Richness, Ecological Traits and Community Structure in the Rodnei Mountains National Park (Romania).

    PubMed

    Ardelean, Ioana Violeta; Keller, Christine; Scheidegger, Christoph

    2015-01-01

    Lichens are valuable bio-indicators for evaluating the consequences of human activities that are increasingly changing the earth's ecosystems. Since a major objective of national parks is the preservation of biodiversity, our aim is to analyse how natural resource management, the availability of lichen substrates and environmental parameters influence lichen diversity in Rodnei Mountains National Park situated in the Eastern Carpathians. Three main types of managed vegetation were investigated: the transhumance systems in alpine meadows, timber exploitation in mixed and pure spruce forests, and the corresponding conserved sites. The data were sampled following a replicated design. For the analysis, we considered not only all lichen species, but also species groups from different substrates such as soil, trees and deadwood. The lichen diversity was described according to species richness, red-list status and substrate-specialist species richness. The variation in species composition was related to the environmental variables. Habitat management was found to negatively influence species richness and alter the lichen community composition, particularly for threatened and substrate-specialist species. It reduced the mean level of threatened species richness by 59%, when all lichen species were considered, and by 81%, when only epiphytic lichens were considered. Management-induced disturbance significantly decreased lichen species richness in forest landscapes with long stand continuity. The diversity patterns of the lichens indicate a loss of species richness and change in species composition in areas where natural resources are still exploited inside the borders of the national park. It is thus imperative for protected areas, in particular old-growth forests and alpine meadows, to receive more protection than they have received in the past to ensure populations of the characteristic species remain viable in the future.

  10. Roles of Spatial Scale and Rarity on the Relationship between Butterfly Species Richness and Human Density in South Africa.

    PubMed

    Mecenero, Silvia; Altwegg, Res; Colville, Jonathan F; Beale, Colin M

    2015-01-01

    Wildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2' to 60' across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation.

  11. Patterns of species richness and diversity of insects associated with cucurbit fruits in the southern part of Cameroon.

    PubMed

    Mokam, Didi Gaëlle; Djiéto-Lordon, Champlain; Bilong Bilong, Charles-Félix

    2014-01-01

    Patterns of species diversity and community structure of insects associated with fruits of domesticated cucurbits were investigated from January 2009 to 2011 in three localities from two agroecological zones in the southern part of Cameroon. Rarefaction curves combined with nonparametric estimators of species richness were used to extrapolate species richness beyond our own data. Sampling efforts of over 92% were reached in each of the three study localities. Data collected revealed a total of 66 insect morphospecies belonging to 37 families and five orders, identified from a set of 57,510 insects. The orders Diptera (especially Tephritidae and Lonchaeidae) and Hymenoptera (mainly Braconidae and Eulophidae) were the most important, in terms of both abundance and species richness on the one hand, and effects on agronomic performance on the other. Values for both the species diversity (Shannon and Simpson) and the species richness indices (Margalef and Berger-Parker) calculated showed that the insect communities were species-rich but dominated, all to a similar extent, by five main species (including four fruit fly species and one parasitoid). Species abundance distributions in these communities ranged from the Zipf-Mandelbrot to Mandelbrot models. The communities are structured as tritrophic networks, including cucurbit fruits, fruit-feeding species (fruit flies) and carnivorous species (parasitoids). Within the guild of the parasitoids, about 30% of species, despite their low abundance, may potentially be of use in biological control of important pests. Our field data contribute in important ways to basic knowledge of biodiversity patterns in agrosystems and constitute baseline data for the planned implementation of biological control in Integrated Pest Management. © The Author 2014. Published by Oxford University Press on behalf of the Entomological Society of America.

  12. Species richness and variety of life in Arizona’s ponderosa pine forest type

    Treesearch

    David R. Patton; Richard W. Hofstetter; John D. Bailey; Mary Ann Benoit

    2014-01-01

    Species richness (SR) is a tool that managers can use to include diversity in planning and decision-making and is a convenient and useful way to characterize the first level of biological diversity. A richness list derived from existing inventories enhances a manager’s understanding of the complexity of the plant and animal communities they manage. Without a list of...

  13. Host population density as the major determinant of endoparasite species richness in floodplain fishes of the upper Paraná River, Brazil.

    PubMed

    Takemoto, R M; Pavanelli, G C; Lizama, M A P; Luque, J L; Poulin, R

    2005-03-01

    A comparative analysis of parasite species richness was performed across 53 species of fish from the floodplain of the upper Paraná River, Brazil. Values of catch per unit effort, CPUE (number of individuals of a given fish species captured per 1000 m(2) of net during 24 h) were used as a rough measure of population density for each fish species in order to test its influence on endoparasite species richness. The effects of several other host traits (body size, social behaviour, reproductive behaviour, spawning type, trophic category, feeding habits, relative position in the food web, preference for certain habitats and whether the fish species are native or exotic) on metazoan endoparasite species richness were also evaluated. The CPUE was the sole significant predictor of parasite species richness, whether controlling for the confounding influences of host phylogeny and sampling effort or not. The results suggest that in the floodplain of the upper Paraná River (with homogeneous physical characteristics and occurrence of many flood pulses), population density of different host species might be the major determinant of their parasite species richness.

  14. Staged invasions across disparate grasslands: effects of seed provenance, consumers and disturbance on productivity and species richness.

    PubMed

    Maron, John L; Auge, Harald; Pearson, Dean E; Korell, Lotte; Hensen, Isabell; Suding, Katharine N; Stein, Claudia

    2014-04-01

    Exotic plant invasions are thought to alter productivity and species richness, yet these patterns are typically correlative. Few studies have experimentally invaded sites and asked how addition of novel species influences ecosystem function and community structure and examined the role of competitors and/or consumers in mediating these patterns. We invaded disturbed and undisturbed subplots in and out of rodent exclosures with seeds of native or exotic species in grasslands in Montana, California and Germany. Seed addition enhanced aboveground biomass and species richness compared with no-seeds-added controls, with exotics having disproportionate effects on productivity compared with natives. Disturbance enhanced the effects of seed addition on productivity and species richness, whereas rodents reduced productivity, but only in Germany and California. Our results demonstrate that experimental introduction of novel species can alter ecosystem function and community structure, but that local filters such as competition and herbivory influence the magnitude of these impacts. © 2014 John Wiley & Sons Ltd/CNRS.

  15. Description of three new species of Labena Cresson from Mexico (Hymenoptera, Ichneumonidae, Labeninae), with notes on tropical species richness.

    PubMed

    González-Moreno, Alejandra; Bordera, Santiago; Sääksjärvi, Ilari Eerikki

    2015-04-22

    Three new species of Labena Cresson (Ichneumonidae, Labeninae); L. littoralis sp. nov., L. tekalina sp. nov. and L. madoricola sp. nov. are described and illustrated. Material was collected with Malaise traps in 2008 and 2009 in the Biosphere Reserve Ria Lagartos (Mexico). Diagnostic characters to distinguish them from all other New World species of the genus are provided. In addition, the tropical species richness of the genus is shortly discussed.

  16. Aquatic Biodiversity in the Amazon: Habitat Specialization and Geographic Isolation Promote Species Richness

    PubMed Central

    Albert, James S.; Carvalho, Tiago P.; Petry, Paulo; Holder, Meghan A.; Maxime, Emmanuel L.; Espino, Jessica; Corahua, Isabel; Quispe, Roberto; Rengifo, Blanca; Ortega, Hernan; Reis, Roberto E.

    2011-01-01

    Simple Summary The immense rainforest ecosystems of tropical America represent some of the greatest concentrations of biodiversity on the planet. Prominent among these are evolutionary radiations of freshwater fishes, including electric eels, piranhas, stingrays, and a myriad of small-bodied and colorful tetras, cichlids, and armored catfishes. In all, the many thousands of these forms account for nearly 10% of all the vertebrate species on Earth. This article explores the complimentary roles that ecological and geographic filters play in limiting dispersal in aquatic species, and how these factors contribute to the accumulation of species richness over broad geographic and evolutionary time scales. Abstract The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world's land surface area, and less than 0.002% of the world's total liquid water supply. How have so many species come to co-exist in such a small amount of total habitat space? Here we report results of an aquatic faunal survey of the Fitzcarrald region in southeastern Peru, an area of low-elevation upland (200–500 m above sea level) rainforest in the Western Amazon, that straddles the headwaters of four large Amazonian tributaries; the Juruá (Yurúa), Ucayali, Purús, and Madre de Dios rivers. All measures of fish species diversity in this region are high; there is high alpha diversity with many species coexisting in the same locality, high beta diversity with high turnover between habitats, and high gamma diversity with high turnover between adjacent tributary basins. Current data show little species endemism, and no known examples of sympatric sister species, within the Fitzcarrald region, suggesting a lack of localized or recent adaptive divergences. These results support the hypothesis that the fish species of the Fitzcarrald region are relatively ancient

  17. Integrative modelling reveals mechanisms linking productivity and plant species richness.

    PubMed

    Grace, James B; Anderson, T Michael; Seabloom, Eric W; Borer, Elizabeth T; Adler, Peter B; Harpole, W Stanley; Hautier, Yann; Hillebrand, Helmut; Lind, Eric M; Pärtel, Meelis; Bakker, Jonathan D; Buckley, Yvonne M; Crawley, Michael J; Damschen, Ellen I; Davies, Kendi F; Fay, Philip A; Firn, Jennifer; Gruner, Daniel S; Hector, Andy; Knops, Johannes M H; MacDougall, Andrew S; Melbourne, Brett A; Morgan, John W; Orrock, John L; Prober, Suzanne M; Smith, Melinda D

    2016-01-21

    How ecosystem productivity and species richness are interrelated is one of the most debated subjects in the history of ecology. Decades of intensive study have yet to discern the actual mechanisms behind observed global patterns. Here, by integrating the predictions from multiple theories into a single model and using data from 1,126 grassland plots spanning five continents, we detect the clear signals of numerous underlying mechanisms linking productivity and richness. We find that an integrative model has substantially higher explanatory power than traditional bivariate analyses. In addition, the specific results unveil several surprising findings that conflict with classical models. These include the isolation of a strong and consistent enhancement of productivity by richness, an effect in striking contrast with superficial data patterns. Also revealed is a consistent importance of competition across the full range of productivity values, in direct conflict with some (but not all) proposed models. The promotion of local richness by macroecological gradients in climatic favourability, generally seen as a competing hypothesis, is also found to be important in our analysis. The results demonstrate that an integrative modelling approach leads to a major advance in our ability to discern the underlying processes operating in ecological systems.

  18. Solution of the spatial neutral model yields new bounds on the Amazonian species richness

    NASA Astrophysics Data System (ADS)

    Shem-Tov, Yahav; Danino, Matan; Shnerb, Nadav M.

    2017-02-01

    Neutral models, in which individual agents with equal fitness undergo a birth-death-mutation process, are very popular in population genetics and community ecology. Usually these models are applied to populations and communities with spatial structure, but the analytic results presented so far are limited to well-mixed or mainland-island scenarios. Here we combine analytic results and numerics to obtain an approximate solution for the species abundance distribution and the species richness for the neutral model on continuous landscape. We show how the regional diversity increases when the recruitment length decreases and the spatial segregation of species grows. Our results are supported by extensive numerical simulations and allow one to probe the numerically inaccessible regime of large-scale systems with extremely small mutation/speciation rates. Model predictions are compared with the findings of recent large-scale surveys of tropical trees across the Amazon basin, yielding new bounds for the species richness (between 13100 and 15000) and the number of singleton species (between 455 and 690).

  19. Species richness and abundance of ectomycorrhizal basidiomycete sporocarps on a moisture gradient in the Tsuga heterophylla zone

    USGS Publications Warehouse

    O'Dell, Thomas E.; Ammirati, Joseph F.; Schreiner, Edward G.

    1999-01-01

    Sporocarps of epigeous ectomycorrhizal fungi and vegetation data were collected from eight Tsuga heterophylla (Raf.) Sarg. - Pseudotsuga menziesii (Mirb.) Franco stands along a wet to dry gradient in Olympic National Park, Washington, U.S.A. One hundred and fifty species of ectomycorrhizal fungi were collected from a total sample area of 2.08 ha. Over 2 years, fungal species richness ranged from 19 to 67 taxa per stand. Sporocarp standing crop ranged from 0 to 3.8 kg/ha, averaging 0.58 kg/ha, 0.06 kg/ha in spring and 0.97 kg/ha in fall. Sporocarp standing crop and fungal species richness were correlated with precipitation. These results demonstrated that ectomycorrhizal fungal sporocarp abundance and species richness can be partly explained in terms of an environmental gradient.

  20. Positive diversity–invasibility relationship in species-rich semi-natural grassland at the neighbourhood scale

    PubMed Central

    Zeiter, Michaela; Stampfli, Andreas

    2012-01-01

    Background and Aims Attempts to answer the old question of whether high diversity causes high invasion resistance have resulted in an invasion paradox: while large-scale studies often find a positive relationship between diversity and invasibility, small-scale experimental studies often find a negative relationship. Many of the small-scale studies are conducted in artificial communities of even-aged plants. Species in natural communities, however, do not represent one simultaneous cohort and occur at various levels of spatial aggregation at different scales. This study used natural patterns of diversity to assess the relationship between diversity and invasibility within a uniformly managed, semi-natural community. Methods In species-rich grassland, one seed of each of ten species was added to each of 50 contiguous 16 cm2 quadrats within seven plots (8 × 100 cm). The emergence of these species was recorded in seven control plots, and establishment success was measured in relation to the species diversity of the resident vegetation at two spatial scales, quadrat (64 cm2) within plots (800 cm2) and between plots within the site (approx. 400 m2) over 46 months. Key Results Invader success was positively related to resident species diversity and richness over a range of 28–37 species per plot. This relationship emerged 7 months after seed addition and remained over time despite continuous mortality of invaders. Conclusions Biotic resistance to plant invasion may play only a sub-ordinate role in species-rich, semi-natural grassland. As possible alternative explanations for the positive diversity–invasibility relationship are not clear, it is recommended that future studies elaborate fine-scale environmental heterogeneity in resource supplies or potential resource flows from resident species to seedlings by means of soil biological networks established by arbuscular mycorrhizal fungi. PMID:22956533

  1. Threatened species richness along a Himalayan elevational gradient: quantifying the influences of human population density, range size, and geometric constraints.

    PubMed

    Paudel, Prakash Kumar; Sipos, Jan; Brodie, Jedediah F

    2018-02-07

    A crucial step in conserving biodiversity is to identify the distributions of threatened species and the factors associated with species threat status. In the biodiversity hotspot of the Himalaya, very little is known about which locations harbour the highest diversity of threatened species and whether diversity of such species is related to area, mid-domain effects (MDE), range size, or human density. In this study, we assessed the drivers of variation in richness of threatened birds, mammals, reptiles, actinopterygii, and amphibians along an elevational gradient in Nepal Himalaya. Although geometric constraints (MDE), species range size, and human population density were significantly related to threatened species richness, the interaction between range size and human population density was of greater importance. Threatened species richness was positively associated with human population density and negatively associated with range size. In areas with high richness of threatened species, species ranges tend to be small. The preponderance of species at risk of extinction at low elevations in the subtropical biodiversity hotspot could be due to the double impact of smaller range sizes and higher human density.

  2. Roles of Spatial Scale and Rarity on the Relationship between Butterfly Species Richness and Human Density in South Africa

    PubMed Central

    Mecenero, Silvia; Altwegg, Res; Colville, Jonathan F.; Beale, Colin M.

    2015-01-01

    Wildlife and humans tend to prefer the same productive environments, yet high human densities often lead to reduced biodiversity. Species richness is often positively correlated with human population density at broad scales, but this correlation could also be caused by unequal sampling effort leading to higher species tallies in areas of dense human activity. We examined the relationships between butterfly species richness and human population density at five spatial resolutions ranging from 2' to 60' across South Africa. We used atlas-type data and spatial interpolation techniques aimed at reducing the effect of unequal spatial sampling. Our results confirm the general positive correlation between total species richness and human population density. Contrary to our expectations, the strength of this positive correlation did not weaken at finer spatial resolutions. The patterns observed using total species richness were driven mostly by common species. The richness of threatened and restricted range species was not correlated to human population density. None of the correlations we examined were particularly strong, with much unexplained variance remaining, suggesting that the overlap between butterflies and humans is not strong compared to other factors not accounted for in our analyses. Special consideration needs to be made regarding conservation goals and variables used when investigating the overlap between species and humans for biodiversity conservation. PMID:25915899

  3. Novel application of species richness estimators to predict the host range of parasites.

    PubMed

    Watson, David M; Milner, Kirsty V; Leigh, Andrea

    2017-01-01

    Host range is a critical life history trait of parasites, influencing prevalence, virulence and ultimately determining their distributional extent. Current approaches to measure host range are sensitive to sampling effort, the number of known hosts increasing with more records. Here, we develop a novel application of results-based stopping rules to determine how many hosts should be sampled to yield stable estimates of the number of primary hosts within regions, then use species richness estimation to predict host ranges of parasites across their distributional ranges. We selected three mistletoe species (hemiparasitic plants in the Loranthaceae) to evaluate our approach: a strict host specialist (Amyema lucasii, dependent on a single host species), an intermediate species (Amyema quandang, dependent on hosts in one genus) and a generalist (Lysiana exocarpi, dependent on many genera across multiple families), comparing results from geographically-stratified surveys against known host lists derived from herbarium specimens. The results-based stopping rule (stop sampling bioregion once observed host richness exceeds 80% of the host richness predicted using the Abundance-based Coverage Estimator) worked well for most bioregions studied, being satisfied after three to six sampling plots (each representing 25 host trees) but was unreliable in those bioregions with high host richness or high proportions of rare hosts. Although generating stable predictions of host range with minimal variation among six estimators trialled, distribution-wide estimates fell well short of the number of hosts known from herbarium records. This mismatch, coupled with the discovery of nine previously unrecorded mistletoe-host combinations, further demonstrates the limited ecological relevance of simple host-parasite lists. By collecting estimates of host range of constrained completeness, our approach maximises sampling efficiency while generating comparable estimates of the number of primary

  4. Species richness and patterns of invasion in plants, birds, and fishes in the United States

    Treesearch

    Thomas J. Stohlgren; David T. Barnett; Curtis H. Flather; Pam L. Fuller; Bruce G. Peterjohn; John T. Kartesz; Lawrence L. Master

    2006-01-01

    We quantified broad-scale patterns of species richness and species density (mean # species/km2) for native and non-indigenous plants, birds, and fishes in the continental USA and Hawaii. We hypothesized that the species density of native and non-indigenous taxa would generally decrease in northern latitudes and higher elevations following...

  5. Data gaps in anthropogenically driven local-scale species richness change studies across the Earth's terrestrial biomes.

    PubMed

    Murphy, Grace E P; Romanuk, Tamara N

    2016-05-01

    There have been numerous attempts to synthesize the results of local-scale biodiversity change studies, yet several geographic data gaps exist. These data gaps have hindered ecologist's ability to make strong conclusions about how local-scale species richness is changing around the globe. Research on four of the major drivers of global change is unevenly distributed across the Earth's biomes. Here, we use a dataset of 638 anthropogenically driven species richness change studies to identify where data gaps exist across the Earth's terrestrial biomes based on land area, future change in drivers, and the impact of drivers on biodiversity, and make recommendations for where future studies should focus their efforts. Across all drivers of change, the temperate broadleaf and mixed forests and the tropical moist broadleaf forests are the best studied. The biome-driver combinations we have identified as most critical in terms of where local-scale species richness change studies are lacking include the following: land-use change studies in tropical and temperate coniferous forests, species invasion and nutrient addition studies in the boreal forest, and warming studies in the boreal forest and tropics. Gaining more information on the local-scale effects of the specific human drivers of change in these biomes will allow for better predictions of how human activity impacts species richness around the globe.

  6. The influence of vegetation height heterogeneity on forest and woodland bird species richness across the United States.

    PubMed

    Huang, Qiongyu; Swatantran, Anu; Dubayah, Ralph; Goetz, Scott J

    2014-01-01

    Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad scale species richness. Vegetation vertical structure is increasingly used at local scales. However, the spatial arrangement of vegetation height has never been taken into consideration. Our goal was to examine the efficacies of three-dimensional forest structure, particularly the spatial heterogeneity of vegetation height in improving avian richness models across forested ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 2000 (NBCD). The height-structured metrics were compared with other habitat metrics for statistical association with richness of three forest breeding bird guilds across Breeding Bird Survey (BBS) routes: a broadly grouped woodland guild, and two forest breeding guilds with preferences for forest edge and for interior forest. Parametric and non-parametric models were built to examine the improvement of predictability. Height-structured metrics had the strongest associations with species richness, yielding improved predictive ability for the woodland guild richness models (r(2) = ∼ 0.53 for the parametric models, 0.63 the non-parametric models) and the forest edge guild models (r(2) = ∼ 0.34 for the parametric models, 0.47 the non-parametric models). All but one of the linear models incorporating height-structured metrics showed significantly higher adjusted-r2 values than their counterparts without additional metrics. The interior forest guild richness showed a consistent low association with height-structured metrics. Our results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and

  7. The Influence of Vegetation Height Heterogeneity on Forest and Woodland Bird Species Richness across the United States

    PubMed Central

    Huang, Qiongyu; Swatantran, Anu; Dubayah, Ralph; Goetz, Scott J.

    2014-01-01

    Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat structure to model broad scale species richness. Vegetation vertical structure is increasingly used at local scales. However, the spatial arrangement of vegetation height has never been taken into consideration. Our goal was to examine the efficacies of three-dimensional forest structure, particularly the spatial heterogeneity of vegetation height in improving avian richness models across forested ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 2000 (NBCD). The height-structured metrics were compared with other habitat metrics for statistical association with richness of three forest breeding bird guilds across Breeding Bird Survey (BBS) routes: a broadly grouped woodland guild, and two forest breeding guilds with preferences for forest edge and for interior forest. Parametric and non-parametric models were built to examine the improvement of predictability. Height-structured metrics had the strongest associations with species richness, yielding improved predictive ability for the woodland guild richness models (r2 = ∼0.53 for the parametric models, 0.63 the non-parametric models) and the forest edge guild models (r2 = ∼0.34 for the parametric models, 0.47 the non-parametric models). All but one of the linear models incorporating height-structured metrics showed significantly higher adjusted-r2 values than their counterparts without additional metrics. The interior forest guild richness showed a consistent low association with height-structured metrics. Our results suggest that height heterogeneity, beyond canopy height alone, supplements habitat characterization and

  8. Metazoan parasite species richness in Neotropical fishes: hotspots and the geography of biodiversity.

    PubMed

    Luque, J L; Poulin, R

    2007-06-01

    Although research on parasite biodiversity has intensified recently, there are signs that parasites remain an underestimated component of total biodiversity in many regions of the planet. To identify geographical hotspots of parasite diversity, we performed qualitative and quantitative analyses of the parasite-host associations in fishes from Latin America and the Caribbean, a region that includes known hotspots of plant and animal biodiversity. The database included 10,904 metazoan parasite-host associations involving 1660 fish species. The number of host species with at least 1 parasite record was less than 10% of the total known fish species in the majority of countries. Associations involving adult endoparasites in actinopterygian fish hosts dominated the database. Across the whole region, no significant difference in parasite species richness was detected between marine and freshwater fishes. As a rule, host body size and study effort (number of studies per fish species) were good predictors of parasite species richness. Some interesting patterns emerged when we included only the regions with highest fish species biodiversity and study effort (Brazil, Mexico and the Caribbean Islands). Independently of differences in study effort or host body sizes, Mexico stands out as a hotspot of parasite diversity for freshwater fishes, as does Brasil for marine fishes. However, among 57 marine fish species common to all 3 regions, populations from the Caribbean consistently harboured more parasite species. These differences may reflect true biological patterns, or regional discrepancies in study effort and local priorities for fish parasitology research.

  9. Elevational Gradient in Species Richness Pattern of Epigaeic Beetles and Underlying Mechanisms at East Slope of Balang Mountain in Southwestern China

    PubMed Central

    Yu, Xiao-Dong; Lü, Liang; Luo, Tian-Hong; Zhou, Hong-Zhang

    2013-01-01

    We report on the species richness patterns of epigaeic beetles (Coleoptera: Carabidae and Staphylinidae) along a subtropical elevational gradient of Balang Mountain, southwestern China. We tested the roles of environmental factors (e.g. temperature, area and litter cover) and direct biotic interactions (e.g. foods and antagonists) that shape elevational diversity gradients. Beetles were sampled at 19 sites using pitfall traps along the studied elevational gradient ranging from 1500 m–4000 m during the 2004 growing season. A total of 74416 specimens representing 260 species were recorded. Species richness of epigaeic beetles and two families showed unimodal patterns along the elevational gradient, peaking at mid-elevations (c. 2535 m), and the ranges of most beetle species were narrow along the gradient. The potential correlates of both species richness and environmental variables were examined using linear and second order polynomial regressions. The results showed that temperature, area and litter cover had strong explanatory power of beetle species richness for nearly all richness patterns, of beetles as a whole and of Carabidae and Staphylinidae, but the density of antagonists was associated with species richness of Carabidae only. Multiple regression analyses suggested that the three environmental factors combined contributed most to richness patterns for most taxa. The results suggest that environmental factors associated with temperature, area and habitat heterogeneity could account for most variation in richness pattern of epigaeic beetles. Additionally, the mid-elevation peaks and the small range size of most species indicate that conservation efforts should give attention to the entire gradient rather than just mid-elevations. PMID:23874906

  10. Logging impacts on avian species richness and composition differ across latitudes relative to foraging and breeding habitat preferences

    USGS Publications Warehouse

    LaManna, Joseph A.; Martin, Thomas E.

    2017-01-01

    Understanding the causes underlying changes in species diversity is a fundamental pursuit of ecology. Animal species richness and composition often change with decreased forest structural complexity associated with logging. Yet differences in latitude and forest type may strongly influence how species diversity responds to logging. We performed a meta-analysis of logging effects on local species richness and composition of birds across the world and assessed responses by different guilds (nesting strata, foraging strata, diet, and body size). This approach allowed identification of species attributes that might underlie responses to this anthropogenic disturbance. We only examined studies that allowed forests to regrow naturally following logging, and accounted for logging intensity, spatial extent, successional regrowth after logging, and the change in species composition expected due to random assembly from regional species pools. Selective logging in the tropics and clearcut logging in temperate latitudes caused loss of species from nearly all forest strata (ground to canopy), leading to substantial declines in species richness (up to 27% of species). Few species were lost or gained following any intensity of logging in lower-latitude temperate forests, but the relative abundances of these species changed substantially. Selective logging at higher-temperate latitudes generally replaced late-successional specialists with early-successional specialists, leading to no net changes in species richness but large changes in species composition. Removing less basal area during logging mitigated the loss of avian species from all forests and, in some cases, increased diversity in temperate forests. This meta-analysis provides insights into the important role of habitat specialization in determining differential responses of animal communities to logging across tropical and temperate latitudes.

  11. Species richness and biomass explain spatial turnover in ecosystem functioning across tropical and temperate ecosystems.

    PubMed

    Barnes, Andrew D; Weigelt, Patrick; Jochum, Malte; Ott, David; Hodapp, Dorothee; Haneda, Noor Farikhah; Brose, Ulrich

    2016-05-19

    Predicting ecosystem functioning at large spatial scales rests on our ability to scale up from local plots to landscapes, but this is highly contingent on our understanding of how functioning varies through space. Such an understanding has been hampered by a strong experimental focus of biodiversity-ecosystem functioning research restricted to small spatial scales. To address this limitation, we investigate the drivers of spatial variation in multitrophic energy flux-a measure of ecosystem functioning in complex communities-at the landscape scale. We use a structural equation modelling framework based on distance matrices to test how spatial and environmental distances drive variation in community energy flux via four mechanisms: species composition, species richness, niche complementarity and biomass. We found that in both a tropical and a temperate study region, geographical and environmental distance indirectly influence species richness and biomass, with clear evidence that these are the dominant mechanisms explaining variability in community energy flux over spatial and environmental gradients. Our results reveal that species composition and trait variability may become redundant in predicting ecosystem functioning at the landscape scale. Instead, we demonstrate that species richness and total biomass may best predict rates of ecosystem functioning at larger spatial scales. © 2016 The Author(s).

  12. Biomass production in experimental grasslands of different species richness during three years of climate warming

    NASA Astrophysics Data System (ADS)

    de Boeck, H. J.; Lemmens, C. M. H. M.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.

    2007-12-01

    Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Increased resource partitioning, likely mostly through spatial complementarity, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.

  13. Hotspots of species richness, threat and endemism for terrestrial vertebrates in SW Europe

    NASA Astrophysics Data System (ADS)

    Pascual, López-López; Luigi, Maiorano; Alessandra, Falcucci; Emilio, Barba; Luigi, Boitani

    2011-09-01

    The Mediterranean basin, and the Iberian Peninsula in particular, represent an outstanding "hotspot" of biological diversity with a long history of integration between natural ecosystems and human activities. Using deductive distribution models, and considering both Spain and Portugal, we downscaled traditional range maps for terrestrial vertebrates (amphibians, breeding birds, mammals and reptiles) to the finest possible resolution with the data at hand, and we identified hotspots based on three criteria: i) species richness; ii) vulnerability, and iii) endemism. We also provided a first evaluation of the conservation status of biodiversity hotspots based on these three criteria considering both existing and proposed protected areas (i.e., Natura 2000). For the identification of hotspots, we used a method based on the cumulative distribution functions of species richness values. We found no clear surrogacy among the different types of hotspots in the Iberian Peninsula. The most important hotspots (considering all criteria) are located in the western and southwestern portions of the study area, in the Mediterranean biogeographical region. Existing protected areas are not specifically concentrated in areas of high species richness, with only 5.2% of the hotspots of total richness being currently protected. The Natura 2000 network can potentially constitute an important baseline for protecting vertebrate diversity in the Iberian Peninsula although further improvements are needed. We suggest taking a step forward in conservation planning in the Mediterranean basin, explicitly considering the history of the region as well as its present environmental context. This would allow moving from traditional reserve networks (conservation focused on "patterns") to considerations about the "processes" that generated present biodiversity.

  14. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model

    PubMed Central

    Starrfelt, Jostein; Liow, Lee Hsiang

    2016-01-01

    The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543–2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic–Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic. PMID:26977060

  15. How many dinosaur species were there? Fossil bias and true richness estimated using a Poisson sampling model.

    PubMed

    Starrfelt, Jostein; Liow, Lee Hsiang

    2016-04-05

    The fossil record is a rich source of information about biological diversity in the past. However, the fossil record is not only incomplete but has also inherent biases due to geological, physical, chemical and biological factors. Our knowledge of past life is also biased because of differences in academic and amateur interests and sampling efforts. As a result, not all individuals or species that lived in the past are equally likely to be discovered at any point in time or space. To reconstruct temporal dynamics of diversity using the fossil record, biased sampling must be explicitly taken into account. Here, we introduce an approach that uses the variation in the number of times each species is observed in the fossil record to estimate both sampling bias and true richness. We term our technique TRiPS (True Richness estimated using a Poisson Sampling model) and explore its robustness to violation of its assumptions via simulations. We then venture to estimate sampling bias and absolute species richness of dinosaurs in the geological stages of the Mesozoic. Using TRiPS, we estimate that 1936 (1543-2468) species of dinosaurs roamed the Earth during the Mesozoic. We also present improved estimates of species richness trajectories of the three major dinosaur clades: the sauropodomorphs, ornithischians and theropods, casting doubt on the Jurassic-Cretaceous extinction event and demonstrating that all dinosaur groups are subject to considerable sampling bias throughout the Mesozoic. © 2016 The Authors.

  16. Bryophyte Species Richness and Composition along an Altitudinal Gradient in Gongga Mountain, China

    PubMed Central

    Sun, Shou-Qin; Wu, Yan-Hong; Wang, Gen-Xu; Zhou, Jun; Yu, Dong; Bing, Hai-Jian; Luo, Ji

    2013-01-01

    An investigation of terrestrial bryophyte species diversity and community structure along an altitudinal gradient from 2,001 to 4,221 m a.s.l. in Gongga Mountain in Sichuan, China was carried out in June 2010. Factors which might affect bryophyte species composition and diversity, including climate, elevation, slope, depth of litter, vegetation type, soil pH and soil Eh, were examined to understand the altitudinal feature of bryophyte distribution. A total of 14 representative elevations were chosen along an altitudinal gradient, with study sites at each elevation chosen according to habitat type (forests, grasslands) and accessibility. At each elevation, three 100 m × 2 m transects that are 50 m apart were set along the contour line, and three 50 cm × 50 cm quadrats were set along each transect at an interval of 30 m. Species diversity, cover, biomass, and thickness of terrestrial bryophytes were examined. A total of 165 species, including 42 liverworts and 123 mosses, are recorded in Gongga mountain. Ground bryophyte species richness does not show any clear elevation trend. The terrestrial bryophyte cover increases with elevation. The terrestrial bryophyte biomass and thickness display a clear humped relationship with the elevation, with the maximum around 3,758 m. At this altitude, biomass is 700.3 g m−2 and the maximum thickness is 8 cm. Bryophyte distribution is primarily associated with the depth of litter, the air temperature and the precipitation. Further studies are necessary to include other epiphytes types and vascular vegetation in a larger altitudinal range. PMID:23472146

  17. Energy, water and large-scale patterns of reptile and amphibian species richness in Europe

    NASA Astrophysics Data System (ADS)

    Rodríguez, Miguel Á.; Belmontes, Juan Alfonso; Hawkins, Bradford A.

    2005-07-01

    We used regression analyses to examine the relationships between reptile and amphibian species richness in Europe and 11 environmental variables related to five hypotheses for geographical patterns of species richness: (1) productivity; (2) ambient energy; (3) water-energy balance, (4) habitat heterogeneity; and (5) climatic variability. For reptiles, annual potential evapotranspiration (PET), a measure of the amount of atmospheric energy, explained 71% of the variance, with variability in log elevation explaining an additional 6%. For amphibians, annual actual evapotranspiration (AET), a measure of the joint availability of energy and water in the environment, and the global vegetation index, an estimate of plant biomass generated through satellite remote sensing, both described similar proportions of the variance (61% and 60%, respectively) and had partially independent effects on richness as indicated by multiple regression. The two-factor environmental models successfully removed most of the statistically detectable spatial autocorrelation in the richness data of both groups. Our results are consistent with reptile and amphibian environmental requirements, where the former depend strongly on solar energy and the latter require both warmth and moisture for reproduction. We conclude that ambient energy explains the reptile richness pattern, whereas for amphibians a combination of water-energy balance and productivity best explain the pattern.

  18. Geographical, Temporal and Environmental Determinants of Bryophyte Species Richness in the Macaronesian Islands

    PubMed Central

    Aranda, Silvia C.; Gabriel, Rosalina; Borges, Paulo A. V.; Santos, Ana M. C.; de Azevedo, Eduardo Brito; Patiño, Jairo; Hortal, Joaquín; Lobo, Jorge M.

    2014-01-01

    Species richness on oceanic islands has been related to a series of ecological factors including island size and isolation (i.e. the Equilibrium Model of Island Biogeography, EMIB), habitat diversity, climate (i.e., temperature and precipitation) and more recently island ontogeny (i.e. the General Dynamic Model of oceanic island biogeography, GDM). Here we evaluate the relationship of these factors with the diversity of bryophytes in the Macaronesian region (Azores, Madeira, Canary Islands and Cape Verde). The predictive power of EMIB, habitat diversity, climate and the GDM on total bryophyte richness, as well as moss and liverwort richness (the two dominant bryophyte groups), was evaluated through ordinary least squares regressions. After choosing the best subset of variables using inference statistics, we used partial regression analyses to identify the independent and shared effects of each model. The variables included within each model were similar for mosses and liverworts, with orographic mist layer being one of the most important predictors of richness. Models combining climate with either the GDM or habitat diversity explained most of richness variation (up to 91%). There was a high portion of shared variance between all pairwise combinations of factors in mosses, while in liverworts around half of the variability in species richness was accounted for exclusively by climate. Our results suggest that the effects of climate and habitat are strong and prevalent in this region, while geographical factors have limited influence on Macaronesian bryophyte diversity. Although climate is of great importance for liverwort richness, in mosses its effect is similar to or, at least, indiscernible from the effect of habitat diversity and, strikingly, the effect of island ontogeny. These results indicate that for highly vagile taxa on oceanic islands, the dispersal process may be less important for successful colonization than the availability of suitable ecological

  19. A multi-scale study of Orthoptera species richness and human population size controlling for sampling effort

    NASA Astrophysics Data System (ADS)

    Cantarello, Elena; Steck, Claude E.; Fontana, Paolo; Fontaneto, Diego; Marini, Lorenzo; Pautasso, Marco

    2010-03-01

    Recent large-scale studies have shown that biodiversity-rich regions also tend to be densely populated areas. The most obvious explanation is that biodiversity and human beings tend to match the distribution of energy availability, environmental stability and/or habitat heterogeneity. However, the species-people correlation can also be an artefact, as more populated regions could show more species because of a more thorough sampling. Few studies have tested this sampling bias hypothesis. Using a newly collated dataset, we studied whether Orthoptera species richness is related to human population size in Italy’s regions (average area 15,000 km2) and provinces (2,900 km2). As expected, the observed number of species increases significantly with increasing human population size for both grain sizes, although the proportion of variance explained is minimal at the provincial level. However, variations in observed Orthoptera species richness are primarily associated with the available number of records, which is in turn well correlated with human population size (at least at the regional level). Estimated Orthoptera species richness (Chao2 and Jackknife) also increases with human population size both for regions and provinces. Both for regions and provinces, this increase is not significant when controlling for variation in area and number of records. Our study confirms the hypothesis that broad-scale human population-biodiversity correlations can in some cases be artefactual. More systematic sampling of less studied taxa such as invertebrates is necessary to ascertain whether biogeographical patterns persist when sampling effort is kept constant or included in models.

  20. Species pools, community completeness and invasion: disentangling diversity effects on the establishment of native and alien species.

    PubMed

    Bennett, Jonathan A; Riibak, Kersti; Kook, Ene; Reier, Ülle; Tamme, Riin; Guillermo Bueno, C; Pärtel, Meelis

    2016-12-01

    Invasion should decline with species richness, yet the relationship is inconsistent. Species richness, however, is a product of species pool size and biotic filtering. Invasion may increase with richness if large species pools represent weaker environmental filters. Measuring species pool size and the proportion realised locally (completeness) may clarify diversity-invasion relationships by separating environmental and biotic effects, especially if species' life-history stage and origin are accounted for. To test these relationships, we added seeds and transplants of 15 native and alien species into 29 grasslands. Species pool size and completeness explained more variation in invasion than richness alone. Although results varied between native and alien species, seed establishment and biotic resistance to transplants increased with species pool size, whereas transplant growth and biotic resistance to seeds increased with completeness. Consequently, species pools and completeness represent multiple independent processes affecting invasion; accounting for these processes improves our understanding of invasion. © 2016 John Wiley & Sons Ltd/CNRS.

  1. Seed plant phylogenetic diversity and species richness in conservation planning within a global biodiversity hotspot in eastern Asia.

    PubMed

    Li, Rong; Kraft, Nathan J B; Yu, Haiying; Li, Heng

    2015-12-01

    One of the main goals of conservation biology is to understand the factors shaping variation in biodiversity across the planet. This understanding is critical for conservation planners to be able to develop effective conservation strategies. Although many studies have focused on species richness and the protection of rare and endemic species, less attention has been paid to the protection of the phylogenetic dimension of biodiversity. We explored how phylogenetic diversity, species richness, and phylogenetic community structure vary in seed plant communities along an elevational gradient in a relatively understudied high mountain region, the Dulong Valley, in southeastern Tibet, China. As expected, phylogenetic diversity was well correlated with species richness among the elevational bands and among communities. At the community level, evergreen broad-leaved forests had the highest levels of species richness and phylogenetic diversity. Using null model analyses, we found evidence of nonrandom phylogenetic structure across the region. Evergreen broad-leaved forests were phylogenetically overdispersed, whereas other vegetation types tended to be phylogenetically clustered. We suggest that communities with high species richness or overdispersed phylogenetic structure should be a focus for biodiversity conservation within the Dulong Valley because these areas may help maximize the potential of this flora to respond to future global change. In biodiversity hotspots worldwide, we suggest that the phylogenetic structure of a community may serve as a useful measure of phylogenetic diversity in the context of conservation planning. © 2015 Society for Conservation Biology.

  2. Prospects for quantifying structure, floristic composition and species richness of tropical forests

    USGS Publications Warehouse

    Gillespie, T.W.; Brock, J.; Wright, C.W.

    2004-01-01

    Airborne spectral and light detection and ranging (lidar) sensors have been used to quantify biophysical characteristics of tropical forests. Lidar sensors have provided high-resolution data on forest height, canopy topography, volume, and gap size; and provided estimates on number of strata in a forest, successional status of forests, and above-ground biomass. Spectral sensors have provided data on vegetation types, foliar biochemistry content of forest canopies, tree and canopy phenology, and spectral signatures for selected tree species. A number of advances are theoretically possible with individual and combined spectral and lidar sensors for the study of forest structure, floristic composition and species richness. Delineating individual canopies of over-storey trees with small footprint lidar and discrimination of tree architectural types with waveform distributions is possible and would provide scientists with a new method to study tropical forest structure. Combined spectral and lidar data can be used to identify selected tree species and identify the successional status of tropical forest fragments in order to rank forest patches by levels of species richness. It should be possible in the near future to quantify selected patterns of tropical forests at a higher resolution than can currently be undertaken in the field or from space. ?? 2004 Taylor and Francis Ltd.

  3. Functional-diversity indices can be driven by methodological choices and species richness.

    PubMed

    Poos, Mark S; Walker, Steven C; Jackson, Donald A

    2009-02-01

    Functional diversity is an important concept in community ecology because it captures information on functional traits absent in measures of species diversity. One popular method of measuring functional diversity is the dendrogram-based method, FD. To calculate FD, a variety of methodological choices are required, and it has been debated about whether biological conclusions are sensitive to such choices. We studied the probability that conclusions regarding FD were sensitive, and that patterns in sensitivity were related to alpha and beta components of species richness. We developed a randomization procedure that iteratively calculated FD by assigning species into two assemblages and calculating the probability that the community with higher FD varied across methods. We found evidence of sensitivity in all five communities we examined, ranging from a probability of sensitivity of 0 (no sensitivity) to 0.976 (almost completely sensitive). Variations in these probabilities were driven by differences in alpha diversity between assemblages and not by beta diversity. Importantly, FD was most sensitive when it was most useful (i.e., when differences in alpha diversity were low). We demonstrate that trends in functional-diversity analyses can be largely driven by methodological choices or species richness, rather than functional trait information alone.

  4. Tree diversity affects chlorophyll a fluorescence and other leaf traits of tree species in a boreal forest.

    PubMed

    Pollastrini, Martina; Nogales, Ana Garcia; Benavides, Raquel; Bonal, Damien; Finer, Leena; Fotelli, Mariangela; Gessler, Arthur; Grossiord, Charlotte; Radoglou, Kalliopi; Strasser, Reto J; Bussotti, Filippo

    2017-02-01

    An assemblage of tree species with different crown properties creates heterogeneous environments at the canopy level. Changes of functional leaf traits are expected, especially those related to light interception and photosynthesis. Chlorophyll a fluorescence (ChlF) properties in dark-adapted leaves, specific leaf area, leaf nitrogen content (N) and carbon isotope composition (δ13C) were measured on Picea abies (L.) H.Karst., Pinus sylvestris L. and Betula pendula Roth. in monospecific and mixed boreal forests in Europe, in order to test whether they were affected by stand species richness and composition. Photosynthetic efficiency, assessed by induced emission of leaf ChlF, was positively influenced in B. pendula by species richness, whereas P. abies showed higher photosynthetic efficiency in monospecific stands. Pinus sylvestris had different responses when it coexisted with P. abies or B. pendula. The presence of B. pendula, but not of P. abies, in the forest had a positive effect on the efficiency of photosynthetic electron transport and N in P. sylvestris needles, and the photosynthetic responses were positively correlated with an increase of leaf δ13C. These effects on P. sylvestris may be related to high light availability at the canopy level due to the less dense canopy of B. pendula. The different light requirements of coexisting species was the most important factor affecting the distribution of foliage in the canopy, driving the physiological responses of the mixed species. Future research directions claim to enhance the informative potential of the methods to analyse the responses of pure and mixed forests to environmental factors, including a broader set of plant species' functional traits and physiological responses. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Species richness and traits predict overyielding in stem growth in an early-successional tree diversity experiment.

    PubMed

    Grossman, Jake J; Cavender-Bares, Jeannine; Hobbie, Sarah E; Reich, Peter B; Montgomery, Rebecca A

    2017-10-01

    Over the last two decades, empirical work has established that higher biodiversity can lead to greater primary productivity; however, the importance of different aspects of biodiversity in contributing to such relationships is rarely elucidated. We assessed the relative importance of species richness, phylogenetic diversity, functional diversity, and identity of neighbors for stem growth 3 yr after seedling establishment in a tree diversity experiment in eastern Minnesota. Generally, we found that community-weighted means of key functional traits (including mycorrhizal association, leaf nitrogen and calcium, and waterlogging tolerance) as well as species richness were strong, independent predictors of stem biomass growth. More phylogenetically diverse communities did not consistently produce more biomass than expected, and the trait values or diversity of individual functional traits better predicted biomass production than did a multidimensional functional diversity metric. Furthermore, functional traits and species richness best predicted growth at the whole-plot level (12 m 2 ), whereas neighborhood composition best predicted growth at the focal tree level (0.25 m 2 ). The observed effects of biodiversity on growth appear strongly driven by positive complementary effects rather than by species-specific selection effects, suggesting that synergistic species' interactions rather than the influence of a few important species may drive overyielding. © 2017 by the Ecological Society of America.

  6. Fungal Denitrification Activity in Vertical Flow Constructed Wetlands as Impacted by Plant Species Richness, Carbon, Nitrogen and pH Amendments.

    PubMed

    Liu, W L; Zhang, C B; Han, W J; Guan, M; Liu, S Y; Ge, Y; Chang, J

    2017-12-01

    To control potential fungal denitrification rate (PFDR) in vertical flow simulated wetlands (VFSW) microcosms, thirty VFSW microcosms were established and planted with three plant species richness levels (i.e. unplanted, monoculture, and four-species polyculture treatment), and effects of carbon, nitrogen and pH amendments on the PFDR were investigated using a room-incubating method. Among seven carbon compounds, sodium citrate, glycerol, glucose and sodium succinate were more effective in enhancing PFDRs. These enhanced effects were dependant on a given species richness level. Sodium nitrite mostly stimulated PFDRs to a greater extent than the other three nitrogen compound amendments at any richness level. Treatments with pH 5.6 or 8.4 had significantly greater PFDRs than the treatment with pH 2.8 in the three species richness levels. However, no effect of plant species richness on the PFDR was observed among any carbon, nitrogen and pH amendments. Current results suggest carbon, nitrogen and pH factors should be considered when mediating fungal denitrification in VFSW microcosms.

  7. Patterns of species richness and the center of diversity in modern Indo-Pacific larger foraminifera.

    PubMed

    Förderer, Meena; Rödder, Dennis; Langer, Martin R

    2018-05-29

    Symbiont-bearing Larger Benthic Foraminifera (LBF) are ubiquitous components of shallow tropical and subtropical environments and contribute substantially to carbonaceous reef and shelf sediments. Climate change is dramatically affecting carbonate producing organisms and threatens the diversity and structural integrity of coral reef ecosystems. Recent invertebrate and vertebrate surveys have identified the Coral Triangle as the planet's richest center of marine life delineating the region as a top priority for conservation. We compiled and analyzed extensive occurrence records for 68 validly recognized species of LBF from the Indian and Pacific Ocean, established individual range maps and applied Minimum Convex Polygon (MCP) and Species Distribution Model (SDM) methodologies to create the first ocean-wide species richness maps. SDM output was further used for visualizing latitudinal and longitudinal diversity gradients. Our findings provide strong support for assigning the tropical Central Indo-Pacific as the world's species-richest marine region with the Central Philippines emerging as the bullseye of LBF diversity. Sea surface temperature and nutrient content were identified as the most influential environmental constraints exerting control over the distribution of LBF. Our findings contribute to the completion of worldwide research on tropical marine biodiversity patterns and the identification of targeting centers for conservation efforts.

  8. The effect of altitude, patch size and disturbance on species richness and density of lianas in montane forest patches

    NASA Astrophysics Data System (ADS)

    Mohandass, Dharmalingam; Campbell, Mason J.; Hughes, Alice C.; Mammides, Christos; Davidar, Priya

    2017-08-01

    The species richness and density of lianas (woody vines) in tropical forests is determined by various abiotic and biotic factors. Factors such as altitude, forest patch size and the degree of forest disturbance are known to exert strong influences on liana species richness and density. We investigated how liana species richness and density were concurrently influenced by altitude (1700-2360 m), forest patch size, forest patch location (edge or interior) and disturbance intensity in the tropical montane evergreen forests, of the Nilgiri and Palni hills, Western Ghats, southern India. All woody lianas (≥1 cm dbh) were enumerated in plots of 30 × 30 m in small, medium and large forest patches, which were located along an altitudinal gradient ranging from 1700 to 2360 m. A total of 1980 individual lianas were recorded, belonging to 45 species, 32 genera and 21 families, from a total sampling area of 13.86 ha (across 154 plots). Liana species richness and density decreased significantly with increasing altitude and increased with increasing forest patch size. Within forest patches, the proportion of forest edge or interior habitat influenced liana distribution and succession especially when compared across the patch size categories. Liana species richness and density also varied along the altitudinal gradient when examined using eco-physiological guilds (i.e. shade tolerance, dispersal mode and climbing mechanism). The species richness and density of lianas within these ecological guilds responded negatively to increasing altitude and positively to increasing patch size and additionally displayed differing sensitivities to forest disturbance. Importantly, the degree of forest disturbance significantly altered the relationship between liana species richness and density to increasing altitude and patches size, and as such is likely the primary influence on liana response to montane forest succession. Our findings suggest that managing forest disturbance in the examined

  9. Aquatic Biodiversity in the Amazon: Habitat Specialization and Geographic Isolation Promote Species Richness.

    PubMed

    Albert, James S; Carvalho, Tiago P; Petry, Paulo; Holder, Meghan A; Maxime, Emmanuel L; Espino, Jessica; Corahua, Isabel; Quispe, Roberto; Rengifo, Blanca; Ortega, Hernan; Reis, Roberto E

    2011-04-29

    The Neotropical freshwater ichthyofauna has among the highest species richness and density of any vertebrate fauna on Earth, with more than 5,600 species compressed into less than 12% of the world's land surface area, and less than 0.002% of the world's total liquid water supply. How have so many species come to co-exist in such a small amount of total habitat space? Here we report results of an aquatic faunal survey of the Fitzcarrald region in southeastern Peru, an area of low-elevation upland (200-500 m above sea level) rainforest in the Western Amazon, that straddles the headwaters of four large Amazonian tributaries; the Juruá (Yurúa), Ucayali, Purús, and Madre de Dios rivers. All measures of fish species diversity in this region are high; there is high alpha diversity with many species coexisting in the same locality, high beta diversity with high turnover between habitats, and high gamma diversity with high turnover between adjacent tributary basins. Current data show little species endemism, and no known examples of sympatric sister species, within the Fitzcarrald region, suggesting a lack of localized or recent adaptive divergences. These results support the hypothesis that the fish species of the Fitzcarrald region are relatively ancient, predating the Late Miocene-Pliocene (c. 4 Ma) uplift that isolated its several headwater basins. The results also suggest that habitat specialization (phylogenetic niche conservatism) and geographic isolation (dispersal limitation) have contributed to the maintenance of high species richness in this region of the Amazon Basin.

  10. Biomass production in experimental grasslands of different species richness during three years of climate warming

    NASA Astrophysics Data System (ADS)

    de Boeck, H. J.; Lemmens, C. M. H. M.; Zavalloni, C.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.

    2008-04-01

    Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Complementarity effects, likely mostly through both increased aboveground spatial complementarity and facilitative effects of legumes, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.

  11. Geographic variation in species richness, rarity, and the selection of areas for conservation: An integrative approach with Brazilian estuarine fishes

    NASA Astrophysics Data System (ADS)

    Vilar, Ciro C.; Joyeux, Jean-Christophe; Spach, Henry L.

    2017-09-01

    While the number of species is a key indicator of ecological assemblages, spatial conservation priorities solely identified from species richness are not necessarily efficient to protect other important biological assets. Hence, the results of spatial prioritization analysis would be greatly enhanced if richness were used in association to complementary biodiversity measures. In this study, geographic patterns in estuarine fish species rarity (i.e. the average range size in the study area), endemism and richness, were mapped and integrated to identify regions important for biodiversity conservation along the Brazilian coast. Furthermore, we analyzed the effectiveness of the national system of protected areas to represent these regions. Analyses were performed on presence/absence data of 412 fish species in 0.25° latitudinal bands covering the entire Brazilian biogeographical province. Species richness, rarity and endemism patterns differed and strongly reflected biogeographical limits and regions. However, among the existing 154 latitudinal bands, 48 were recognized as conservation priorities by concomitantly harboring high estuarine fish species richness and assemblages of geographically rare species. Priority areas identified for all estuarine fish species largely differed from those identified for Brazilian endemics. Moreover, there was no significant correlation between the different aspects of the fish assemblages considered (i.e. species richness, endemism or rarity), suggesting that designating reserves based on a single variable may lead to large gaps in the overall protection of biodiversity. Our results further revealed that the existing system of protected areas is insufficient for representing the priority bands we identified. This highlights the urgent need for expanding the national network of protected areas to maintain estuarine ecosystems with high conservation value.

  12. Social organization influences the exchange and species richness of medicinal plants in Amazonian homegardens.

    PubMed

    2016-03-01

    Medicinal plants provide indigenous and peasant communities worldwide with means to meet their healthcare needs. Homegardens often act as medicine cabinets, providing easily accessible medicinal plants for household needs. Social structure and social exchanges have been proposed as factors influencing the species diversity that people maintain in their homegardens. Here, we assess the association between the exchange of medicinal knowledge and plant material and medicinal plant richness in homegardens. Using Tsimane' Amazonian homegardens as a case study, we explore whether social organization shapes exchanges of medicinal plant knowledge and medicinal plant material. We also use network centrality measures to evaluate people's location and performance in medicinal plant knowledge and plant material exchange networks. Our results suggest that social organization, specifically kinship and gender relations, influences medicinal plant exchange patterns significantly. Homegardens total and medicinal plant species richness are related to gardeners' centrality in the networks, whereby people with greater centrality maintain greater plant richness. Thus, together with agroecological conditions, social relations among gardeners and the culturally specific social structure seem to be important determinants of plant richness in homegardens. Understanding which factors pattern general species diversity in tropical homegardens, and medicinal plant diversity in particular, can help policy makers, health providers, and local communities to understand better how to promote and preserve medicinal plants in situ. Biocultural approaches that are also gender sensitive offer a culturally appropriate means to reduce the global and local loss of both biological and cultural diversity.

  13. Landscape and Local Correlates of Bee Abundance and Species Richness in Urban Gardens.

    PubMed

    Quistberg, Robyn D; Bichier, Peter; Philpott, Stacy M

    2016-03-31

    Urban gardens may preserve biodiversity as urban population densities increase, but this strongly depends on the characteristics of the gardens and the landscapes in which they are embedded. We investigated whether local and landscape characteristics are important correlates of bee (Hymenoptera: Apiformes) abundance and species richness in urban community gardens. We worked in 19 gardens in the California central coast and sampled bees with aerial nets and pan traps. We measured local characteristics (i.e., vegetation and ground cover) and used the USGS National Land Cover Database to classify the landscape surrounding our garden study sites at 2 km scales. We classified bees according to nesting type (i.e., cavity, ground) and body size and determined which local and landscape characteristics correlate with bee community characteristics. We found 55 bee species. One landscape and several local factors correlated with differences in bee abundance and richness for all bees, cavity-nesting bees, ground-nesting bees, and different sized bees. Generally, bees were more abundant and species rich in bigger gardens, in gardens with higher floral abundance, less mulch cover, more bare ground, and with more grass. Medium bees were less abundant in sites surrounded by more medium intensity developed land within 2 km. The fact that local factors were generally more important drivers of bee abundance and richness indicates a potential for gardeners to promote bee conservation by altering local management practices. In particular, increasing floral abundance, decreasing use of mulch, and providing bare ground may promote bees in urban gardens. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Modeling species richness and abundance of phytoplankton and zooplankton in radioactively contaminated water bodies.

    PubMed

    Shuryak, Igor

    2018-06-05

    Water bodies polluted by the Mayak nuclear plant in Russia provide valuable information on multi-generation effects of radioactive contamination on freshwater organisms. For example, lake Karachay was probably the most radioactive lake in the world: its water contained ∼2 × 10 7 Bq/L of radionuclides and estimated dose rates to plankton exceeded 5 Gy/h. We performed quantitative modeling of radiation effects on phytoplankton and zooplankton species richness and abundance in Mayak-contaminated water bodies. Due to collinearity between radioactive contamination, water body size and salinity, we combined these variables into one (called HabitatFactors). We employed a customized machine learning approach, where synthetic noise variables acted as benchmarks of predictor performance. HabitatFactors was the only predictor that outperformed noise variables and, therefore, we used it for parametric modeling of plankton responses. Best-fit model predictions suggested 50% species richness reduction at HabitatFactors values corresponding to dose rates of 10 4 -10 5  μGy/h for phytoplankton, and 10 3 -10 4  μGy/h for zooplankton. Under conditions similar to those in lake Karachay, best-fit models predicted 81-98% species richness reductions for various taxa (Cyanobacteria, Bacillariophyta, Chlorophyta, Rotifera, Cladocera and Copepoda), ∼20-300-fold abundance reduction for total zooplankton, but no abundance reduction for phytoplankton. Rotifera was the only taxon whose fractional abundance increased with contamination level, reaching 100% in lake Karachay, but Rotifera species richness declined with contamination level, as in other taxa. Under severe radioactive and chemical contamination, one species of Cyanobacteria (Geitlerinema amphibium) dominated phytoplankton, and rotifers from the genus Brachionus dominated zooplankton. The modeling approaches proposed here are applicable to other radioecological data sets. The results provide quantitative information

  15. Variation in local abundance and species richness of stream fishes in relation to dispersal barriers: Implications for management and conservation

    USGS Publications Warehouse

    Nislow, K.H.; Hudy, M.; Letcher, B.H.; Smith, E.P.

    2011-01-01

    1.Barriers to immigration, all else being equal, should in principle depress local abundance and reduce local species richness. These issues are particularly relevant to stream-dwelling species when improperly designed road crossings act as barriers to migration with potential impacts on the viability of upstream populations. However, because abundance and richness are highly spatially and temporally heterogeneous and the relative importance of immigration on demography is uncertain, population- and community-level effects can be difficult to detect. 2.In this study, we tested the effects of potential barriers to upstream movements on the local abundance and species richness of a diverse assemblage of resident stream fishes in the Monongahela National Forest, West Virginia, U.S.A. Fishes were sampled using simple standard techniques above- and below road crossings that were either likely or unlikely to be barriers to upstream fish movements (based on physical dimensions of the crossing). We predicted that abundance of resident fishes would be lower in the upstream sections of streams with predicted impassable barriers, that the strength of the effect would vary among species and that variable effects on abundance would translate into lower species richness. 3.Supporting these predictions, the statistical model that best accounted for variation in abundance and species richness included a significant interaction between location (upstream or downstream of crossing) and type (passable or impassable crossing). Stream sections located above predicated impassable culverts had fewer than half the number of species and less than half the total fish abundance, while stream sections above and below passable culverts had essentially equivalent richness and abundance. 4.Our results are consistent with the importance of immigration and population connectivity to local abundance and species richness of stream fishes. In turn, these results suggest that when measured at

  16. Incorporating biodiversity into rangeland health: Plant species richness and diversity in great plains grasslands

    USGS Publications Warehouse

    Symstad, Amy J.; Jonas, Jayne L.

    2011-01-01

    Indicators of rangeland health generally do not include a measure of biodiversity. Increasing attention to maintaining biodiversity in rangelands suggests that this omission should be reconsidered, and plant species richness and diversity are two metrics that may be useful and appropriate. Ideally, their response to a variety of anthropogenic and natural drivers in the ecosystem of interest would be clearly understood, thereby providing a means to diagnose the cause of decline in an ecosystem. Conceptual ecological models based on ecological principles and hypotheses provide a framework for this understanding, but these models must be supported by empirical evidence if they are to be used for decision making. To that end, we synthesize results from published studies regarding the responses of plant species richness and diversity to drivers that are of management concern in Great Plains grasslands, one of North America's most imperiled ecosystems. In the published literature, moderate grazing generally has a positive effect on these metrics in tallgrass prairie and a neutral to negative effect in shortgrass prairie. The largest published effects on richness and diversity were caused by moderate grazing in tallgrass prairies and nitrogen fertilization in shortgrass prairies. Although weather is often cited as the reason for considerable annual fluctuations in richness and diversity, little information about the responses of these metrics to weather is available. Responses of the two metrics often diverged, reflecting differences in their sensitivity to different types of changes in the plant community. Although sufficient information has not yet been published for these metrics to meet all the criteria of a good indicator in Great Plains Grasslands, augmenting current methods of evaluating rangeland health with a measure of plant species richness would reduce these shortcomings and provide information critical to managing for biodiversity.

  17. Relative importance of current and past landscape structure and local habitat conditions for plant species richness in dry grassland-like forest openings.

    PubMed

    Husáková, Iveta; Münzbergová, Zuzana

    2014-01-01

    In fragmented landscapes, plant species richness may depend not only on local habitat conditions but also on landscape structure. In addition, both present and past landscape structure may be important for species richness. There are, however, only a few studies that have investigated the relative importance of all of these factors. The aim of this study was to examine the effect of current and past landscape structures and habitat conditions on species richness at dry grassland-like forest openings in a forested landscape and to assess their relative importance for species richness. We analyzed information on past and present landscape structures using aerial photographs from 1938, 1973, 1988, 2000 and 2007. We calculated the area of each locality and its isolation in the present and in the past and the continuity of localities in GIS. At each locality, we recorded all vascular plant species (296 species in 110 forest openings) and information on abiotic conditions of the localities. We found that the current species richness of the forest openings was significantly determined by local habitat conditions as well as by landscape structure in the present and in the past. The highest species richness was observed on larger and more heterogeneous localities with rocks and shallow soils, which were already large and well connected to other localities in 1938. The changes in the landscape structure in the past can thus have strong effects on current species richness. Future studies attempting to understand determinants of species diversity in fragmented landscapes should also include data on past landscape structure, as it may in fact be more important than the present structure.

  18. Across species-pool aggregation alters grassland productivity and diversity.

    PubMed

    McKenna, Thomas P; Yurkonis, Kathryn A

    2016-08-01

    Plant performance is determined by the balance of intra- and interspecific neighbors within an individual's zone of influence. If individuals interact over smaller scales than the scales at which communities are measured, then altering neighborhood interactions may fundamentally affect community responses. These interactions can be altered by changing the number (species richness), abundances (species evenness), and positions (species pattern) of the resident plant species, and we aimed to test whether aggregating species at planting would alter effects of species richness and evenness on biomass production at a common scale of observation in grasslands. We varied plant species richness (2, 4, or 8 species and monocultures), evenness (0.64, 0.8, or 1.0), and pattern (planted randomly or aggregated in groups of four individuals) within 1 × 1 m plots established with transplants from a pool of 16 tallgrass prairie species and assessed plot-scale biomass production and diversity over the first three growing seasons. As expected, more species-rich plots produced more biomass by the end of the third growing season, an effect associated with a shift from selection to complementarity effects over time. Aggregating conspecifics at a 0.25-m scale marginally reduced biomass production across all treatments and increased diversity in the most even plots, but did not alter biodiversity effects or richness-productivity relationships. Results support the hypothesis that fine-scale species aggregation affects diversity by promoting species coexistence in this system. However, results indicate that inherent changes in species neighborhood relationships along grassland diversity gradients may only minimally affect community (meter) - scale responses among similarly designed biodiversity-ecosystem function studies. Given that species varied in their responses to local aggregation, it may be possible to use such species-specific results to spatially design larger-scale grassland

  19. Pollen Deposition Is More Important than Species Richness for Seed Set in Luffa Gourd.

    PubMed

    Ali, M; Saeed, S; Sajjad, A

    2016-10-01

    In the context of global biodiversity decline, it is imperative to understand the different aspects of bee communities for sustaining the vital ecosystem service of pollination. Bee species can be assigned to functional groups (average difference among species in functionally related traits) on the basis of complementarity (trait variations exhibited by individual organisms) in their behavior but is not yet known which functional group trait is most important for seed set. In this study, first, the functional groups of bees were made based on their five selected traits (pollen deposition, visitation rate, stay time, visiting time of the day, body size) and then related to the seed set of obligate cross-pollinated Luffa gourd (Luffa aegyptiaca). We found that bee diversity and abundance differed significantly among the studied plots, but only the bee species richness was positively related to the seed set. Functional group diversity in terms of pollen deposition explained even more of the variance in seed set (r 2  = 0.74) than did the species richness (r 2  = 0.53) making it the most important trait of bee species for predicting the crop reproductive success.

  20. Rare alluvial sands of El Monte Valley, California (San Diego County), support high herpetofaunal species richness and diversity, despite severe habitat disturbance

    USGS Publications Warehouse

    Richmond, Jonathan Q.; Rochester, Carlton J.; Smith, Nathan W.; Nordland, Jeffrey A.; Fisher, Robert N.

    2016-01-01

    We characterized the species richness, diversity, and distribution of amphibians and reptiles inhabiting El Monte Valley, a heavily disturbed, alluvium-filled basin within the lower San Diego River in Lakeside, California. This rare habitat type in coastal southern California is designated as a critical sand resource by the state of California and is currently under consideration for a large-scale sand mining operation with subsequent habitat restoration. We conducted field surveys from June 2015 to May 2016 using drift fence lines with funnel traps, coverboard arrays, walking transects, and road driving. We recorded 1,208 total captures, revealing high species richness and diversity, but with marked unevenness in species' abundances. Snakes were the most species-rich taxonomic group (13 species representing 11 genera), followed by lizards (11 species representing 9 genera). After the southern Pacific rattlesnake (Crotalus oreganus helleri), the California glossy snake (Arizona elegans occidentalis) was the second most frequently detected snake species (n = 23 captures). Amphibian species richness was limited to only three species in three genera. Despite the relatively limited 12-month sampling period, a longstanding drought, and severe habitat disturbance, our study demonstrates that El Monte Valley harbors a rich herpetofauna that includes many sensitive species.

  1. Biogeographic affinity helps explain productivity-richness relationships at regional and local scales

    USGS Publications Warehouse

    Harrison, S.; Grace, J.B.

    2007-01-01

    The unresolved question of what causes the observed positive relationship between large-scale productivity and species richness has long interested ecologists and evolutionists. Here we examine a potential explanation that we call the biogeographic affinity hypothesis, which proposes that the productivity-richness relationship is a function of species' climatic tolerances that in turn are shaped by the earth's climatic history combined with evolutionary niche conservatism. Using botanical data from regions and sites across California, we find support for a key prediction of this hypothesis, namely, that the productivity-species richness relationship differs strongly and predictably among groups of higher taxa on the basis of their biogeographic affinities (i.e., between families or genera primarily associated with north-temperate, semiarid, or desert zones). We also show that a consideration of biogeographic affinity can yield new insights on how productivity-richness patterns at large geographic scales filter down to affect patterns of species richness and composition within local communities. ?? 2007 by The University of Chicago. All rights reserved.

  2. Estimating Species Richness and Modelling Habitat Preferences of Tropical Forest Mammals from Camera Trap Data

    PubMed Central

    Rovero, Francesco; Martin, Emanuel; Rosa, Melissa; Ahumada, Jorge A.; Spitale, Daniel

    2014-01-01

    Medium-to-large mammals within tropical forests represent a rich and functionally diversified component of this biome; however, they continue to be threatened by hunting and habitat loss. Assessing these communities implies studying species’ richness and composition, and determining a state variable of species abundance in order to infer changes in species distribution and habitat associations. The Tropical Ecology, Assessment and Monitoring (TEAM) network fills a chronic gap in standardized data collection by implementing a systematic monitoring framework of biodiversity, including mammal communities, across several sites. In this study, we used TEAM camera trap data collected in the Udzungwa Mountains of Tanzania, an area of exceptional importance for mammal diversity, to propose an example of a baseline assessment of species’ occupancy. We used 60 camera trap locations and cumulated 1,818 camera days in 2009. Sampling yielded 10,647 images of 26 species of mammals. We estimated that a minimum of 32 species are in fact present, matching available knowledge from other sources. Estimated species richness at camera sites did not vary with a suite of habitat covariates derived from remote sensing, however the detection probability varied with functional guilds, with herbivores being more detectable than other guilds. Species-specific occupancy modelling revealed novel ecological knowledge for the 11 most detected species, highlighting patterns such as ‘montane forest dwellers’, e.g. the endemic Sanje mangabey (Cercocebus sanjei), and ‘lowland forest dwellers’, e.g. suni antelope (Neotragus moschatus). Our results show that the analysis of camera trap data with account for imperfect detection can provide a solid ecological assessment of mammal communities that can be systematically replicated across sites. PMID:25054806

  3. Coral diversity and the severity of disease outbreaks: a cross-regional comparison of Acropora white syndrome in a species-rich region (American Samoa) with a species-poor region (Northwestern Hawaiian Islands).

    USGS Publications Warehouse

    Aeby, G.S.; Bourne, D.G.; Wilson, B.; Work, Thierry M.

    2011-01-01

    The dynamics of the coral disease, Acropora white syndrome (AWS), was directly compared on reefs in the species-poor region of the Northwestern Hawaiian Islands (NWHI) and the species-rich region of American Samoa (AS) with results suggesting that biodiversity, which can affect the abundance of susceptible hosts, is important in influencing the impacts of coral disease outbreaks. The diversity-disease hypothesis predicts that decreased host species diversity should result in increased disease severity of specialist pathogens. We found that AWS was more prevalent and had a higher incidence within the NWHI as compared to AS. Individual Acropora colonies affected by AWS showed high mortality in both regions, but case fatality rate and disease severity was higher in the NWHI. The site within the NWHI had a monospecific stand of A. cytherea; a species that is highly susceptible to AWS. Once AWS entered the site, it spread easily amongst the abundant susceptible hosts. The site within AS contained numerous Acropora species, which differed in their apparent susceptibility to infection and disease severity, which in turn reduced disease spread. Manipulative studies showed AWS was transmissible through direct contact in three Acropora species. These results will help managers predict and respond to disease outbreaks.

  4. Linking species richness curves from non-contiguous sampling to contiguous-nested SAR: An empirical study

    NASA Astrophysics Data System (ADS)

    Lazarina, Maria; Kallimanis, Athanasios S.; Pantis, John D.; Sgardelis, Stefanos P.

    2014-11-01

    The species-area relationship (SAR) is one of the few generalizations in ecology. However, many different relationships are denoted as SARs. Here, we empirically evaluated the differences between SARs derived from nested-contiguous and non-contiguous sampling designs, using plants, birds and butterflies datasets from Great Britain, Greece, Massachusetts, New York and San Diego. The shape of SAR depends on the sampling scheme, but there is little empirical documentation on the magnitude of the deviation between different types of SARs and the factors affecting it. We implemented a strictly nested sampling design to construct nested-contiguous SAR (SACR), and systematic nested but non-contiguous, and random designs to construct non-contiguous species richness curves (SASRs for systematic and SACs for random designs) per dataset. The SACR lay below any SASR and most of the SACs. The deviation between them was related to the exponent f of the power law relationship between sampled area and extent. The lower the exponent f, the higher was the deviation between the curves. We linked SACR to SASR and SAC through the concept of "effective" area (Ae), i.e. the nested-contiguous area containing equal number of species with the accumulated sampled area (AS) of a non-contiguous sampling. The relationship between effective and sampled area was modeled as log(Ae) = klog(AS). A Generalized Linear Model was used to estimate the values of k from sampling design and dataset properties. The parameter k increased with the average distance between samples and with beta diversity, while k decreased with f. For both systematic and random sampling, the model performed well in predicting effective area in both the training set and in the test set which was totally independent from the training one. Through effective area, we can link different types of species richness curves based on sampling design properties, sampling effort, spatial scale and beta diversity patterns.

  5. Species Richness and Phenology of Cerambycid Beetles in Urban Forest Fragments of Northern Delaware

    Treesearch

    K. Handley; J. Hough-Goldstein; L.M. Hanks; J.G. Millar; V. D' amico

    2015-01-01

    Cerambycid beetles are abundant and diverse in forests, but much about their host relationships and adult behavior remains unknown. Generic blends of synthetic pheromones were used as lures in traps, to assess the species richness, and phenology of cerambycids in forest fragments in northern Delaware. More than 15,000 cerambycid beetles of 69 species were trapped over...

  6. Plant responses to fertilization experiments in lowland, species-rich, tropical forests.

    PubMed

    Wright, S Joseph; Turner, Benjamin L; Yavitt, Joseph B; Harms, Kyle E; Kaspari, Michael; Tanner, Edmund V J; Bujan, Jelena; Griffin, Eric A; Mayor, Jordan R; Pasquini, Sarah C; Sheldrake, Merlin; Garcia, Milton N

    2018-05-01

    We present a meta-analysis of plant responses to fertilization experiments conducted in lowland, species-rich, tropical forests. We also update a key result and present the first species-level analyses of tree growth rates for a 15-yr factorial nitrogen (N), phosphorus (P), and potassium (K) experiment conducted in central Panama. The update concerns community-level tree growth rates, which responded significantly to the addition of N and K together after 10 yr of fertilization but not after 15 yr. Our experimental soils are infertile for the region, and species whose regional distributions are strongly associated with low soil P availability dominate the local tree flora. Under these circumstances, we expect muted responses to fertilization, and we predicted species associated with low-P soils would respond most slowly. The data did not support this prediction, species-level tree growth responses to P addition were unrelated to species-level soil P associations. The meta-analysis demonstrated that nutrient limitation is widespread in lowland tropical forests and evaluated two directional hypotheses concerning plant responses to N addition and to P addition. The meta-analysis supported the hypothesis that tree (or biomass) growth rate responses to fertilization are weaker in old growth forests and stronger in secondary forests, where rapid biomass accumulation provides a nutrient sink. The meta-analysis found no support for the long-standing hypothesis that plant responses are stronger for P addition and weaker for N addition. We do not advocate discarding the latter hypothesis. There are only 14 fertilization experiments from lowland, species-rich, tropical forests, 13 of the 14 experiments added nutrients for five or fewer years, and responses vary widely among experiments. Potential fertilization responses should be muted when the species present are well adapted to nutrient-poor soils, as is the case in our experiment, and when pest pressure increases with

  7. Above ground biomass and tree species richness estimation with airborne lidar in tropical Ghana forests

    NASA Astrophysics Data System (ADS)

    Vaglio Laurin, Gaia; Puletti, Nicola; Chen, Qi; Corona, Piermaria; Papale, Dario; Valentini, Riccardo

    2016-10-01

    Estimates of forest aboveground biomass are fundamental for carbon monitoring and accounting; delivering information at very high spatial resolution is especially valuable for local management, conservation and selective logging purposes. In tropical areas, hosting large biomass and biodiversity resources which are often threatened by unsustainable anthropogenic pressures, frequent forest resources monitoring is needed. Lidar is a powerful tool to estimate aboveground biomass at fine resolution; however its application in tropical forests has been limited, with high variability in the accuracy of results. Lidar pulses scan the forest vertical profile, and can provide structure information which is also linked to biodiversity. In the last decade the remote sensing of biodiversity has received great attention, but few studies focused on the use of lidar for assessing tree species richness in tropical forests. This research aims at estimating aboveground biomass and tree species richness using discrete return airborne lidar in Ghana forests. We tested an advanced statistical technique, Multivariate Adaptive Regression Splines (MARS), which does not require assumptions on data distribution or on the relationships between variables, being suitable for studying ecological variables. We compared the MARS regression results with those obtained by multilinear regression and found that both algorithms were effective, but MARS provided higher accuracy either for biomass (R2 = 0.72) and species richness (R2 = 0.64). We also noted strong correlation between biodiversity and biomass field values. Even if the forest areas under analysis are limited in extent and represent peculiar ecosystems, the preliminary indications produced by our study suggest that instrument such as lidar, specifically useful for pinpointing forest structure, can also be exploited as a support for tree species richness assessment.

  8. Plant Species Loss Affects Life-History Traits of Aphids and Their Parasitoids

    PubMed Central

    Petermann, Jana S.; Roscher, Christiane; Weigelt, Alexandra; Weisser, Wolfgang W.; Schmid, Bernhard

    2010-01-01

    The consequences of plant species loss are rarely assessed in a multi-trophic context and especially effects on life-history traits of organisms at higher trophic levels have remained largely unstudied. We used a grassland biodiversity experiment and measured the effects of two components of plant diversity, plant species richness and the presence of nitrogen-fixing legumes, on several life-history traits of naturally colonizing aphids and their primary and secondary parasitoids in the field. We found that, irrespective of aphid species identity, the proportion of winged aphid morphs decreased with increasing plant species richness, which was correlated with decreasing host plant biomass. Similarly, emergence proportions of parasitoids decreased with increasing plant species richness. Both, emergence proportions and proportions of female parasitoids were lower in plots with legumes, where host plants had increased nitrogen concentrations. This effect of legume presence could indicate that aphids were better defended against parasitoids in high-nitrogen environments. Body mass of emerged individuals of the two most abundant primary parasitoid species was, however, higher in plots with legumes, suggesting that once parasitoids could overcome aphid defenses, they could profit from larger or more nutritious hosts. Our study demonstrates that cascading effects of plant species loss on higher trophic levels such as aphids, parasitoids and secondary parasitoids begin with changed life-history traits of these insects. Thus, life-history traits of organisms at higher trophic levels may be useful indicators of bottom-up effects of plant diversity on the biodiversity of consumers. PMID:20700511

  9. Functional Redundancy Patterns Reveal Non-Random Assembly Rules in a Species-Rich Marine Assemblage

    PubMed Central

    Guillemot, Nicolas; Kulbicki, Michel; Chabanet, Pascale; Vigliola, Laurent

    2011-01-01

    The relationship between species and the functional diversity of assemblages is fundamental in ecology because it contains key information on functional redundancy, and functionally redundant ecosystems are thought to be more resilient, resistant and stable. However, this relationship is poorly understood and undocumented for species-rich coastal marine ecosystems. Here, we used underwater visual censuses to examine the patterns of functional redundancy for one of the most diverse vertebrate assemblages, the coral reef fishes of New Caledonia, South Pacific. First, we found that the relationship between functional and species diversity displayed a non-asymptotic power-shaped curve, implying that rare functions and species mainly occur in highly diverse assemblages. Second, we showed that the distribution of species amongst possible functions was significantly different from a random distribution up to a threshold of ∼90 species/transect. Redundancy patterns for each function further revealed that some functions displayed fast rates of increase in redundancy at low species diversity, whereas others were only becoming redundant past a certain threshold. This suggested non-random assembly rules and the existence of some primordial functions that would need to be fulfilled in priority so that coral reef fish assemblages can gain a basic ecological structure. Last, we found little effect of habitat on the shape of the functional-species diversity relationship and on the redundancy of functions, although habitat is known to largely determine assemblage characteristics such as species composition, biomass, and abundance. Our study shows that low functional redundancy is characteristic of this highly diverse fish assemblage, and, therefore, that even species-rich ecosystems such as coral reefs may be vulnerable to the removal of a few keystone species. PMID:22039543

  10. Managed forest landscape structure and avian species richness in the southeastern US

    Treesearch

    Craig Loehle; T. Bently Wigley; Scott Rutzmoser; John A. Gerwin; Patrick D. Keyser; Richard A. Lancia; Christopher J. Reynolds; Ronald E. Thill; Robert Weih; Don White; Petra Bohall Wood

    2005-01-01

    Forest structural features at the stand scale (e.g., snags, stem density, species composition) and habitat attributes at larger spatial scales (e.g., landscape pattern, road density) can influence biological diversity and have been proposed as indicators in sustainable forestry programs. This study investigated relationships between such factors and total richness of...

  11. Terrain and vegetation structural influences on local avian species richness in two mixed-conifer forests

    Treesearch

    Jody C. Vogeler; Andrew T. Hudak; Lee A. Vierling; Jeffrey Evans; Patricia Green; Kerri T. Vierling

    2014-01-01

    Using remotely-sensed metrics to identify regions containing high animal diversity and/or specific animal species or guilds can help prioritize forest management and conservation objectives across actively managed landscapes. We predicted avian species richness in two mixed conifer forests, Moscow Mountain and Slate Creek, containing different management contexts and...

  12. Contrasting Holocene environmental histories may explain patterns of species richness and rarity in a Central European landscape

    NASA Astrophysics Data System (ADS)

    Hájek, Michal; Dudová, Lydie; Hájková, Petra; Roleček, Jan; Moutelíková, Jitka; Jamrichová, Eva; Horsák, Michal

    2016-02-01

    The south-western part of the White Carpathians (Czech Republic, Slovakia) is known for its exceptional grassland diversity and occurrence of many species with disjunct distribution patterns, including isolated populations of continental forest-steppe species. The north-eastern part of the mountain range lacks many of these species and has clearly lower maxima of grassland species richness. While climatic and edaphic conditions of both regions largely overlap, their specific environmental history has been hypothesized to explain the exceptional richness in the south-western part. We explored an entire-Holocene record (9650 BC onwards), the first one from the north-eastern part, to find out whether differences in history may explain regional patterns of species rarity and richness. We analysed pollen, macrofossils and molluscs and dated the sequence with 13 radiocarbon dates. We further reconstructed past human activities using available archaeological evidence. Based on this analysis, the Early-Holocene landscape was reconstructed as semi-open with broad-leaved trees (elm and lime) appearing already around 9500 BC. Lime reached a relative abundance of as much as 60% around 8700 BC. All analysed proxies support the existence of dense lime-dominated woodland during the forest optimum starting after climate moistening around 6800 BC, some 2200 years before the first signs of slight forest opening in the Late Neolithic. During the Bronze and Iron Ages, human pressure increased, which led to a decrease in lime and an increase in oak, hornbeam, grasses and grassland snails; nevertheless, forests still dominated the landscape and beech spread when human impact temporarily decreased. Colonisation after AD 1350 created the modern grassland-rich landscape. All available evidence confirmed an early post-Glacial expansion of broad-leaved trees, supporting the hypothesis on their glacial refugia in the Carpathians, as well as presence of closed-canopy forest well before the

  13. Genotypic richness predicts phenotypic variation in an endangered clonal plant

    PubMed Central

    Sinclair, Elizabeth A.; Poore, Alistair G.B.; Bain, Keryn F.; Vergés, Adriana

    2016-01-01

    Declines in genetic diversity within a species can affect the stability and functioning of populations. The conservation of genetic diversity is thus a priority, especially for threatened or endangered species. The importance of genetic variation, however, is dependent on the degree to which it translates into phenotypic variation for traits that affect individual performance and ecological processes. This is especially important for predominantly clonal species, as no single clone is likely to maximise all aspects of performance. Here we show that intraspecific genotypic diversity as measured using microsatellites is a strong predictor of phenotypic variation in morphological traits and shoot productivity of the threatened, predominantly clonal seagrass Posidonia australis, on the east coast of Australia. Biomass and surface area variation was most strongly predicted by genotypic richness, while variation in leaf chemistry (phenolics and nitrogen) was unrelated to genotypic richness. Genotypic richness did not predict tissue loss to herbivores or epiphyte load, however we did find that increased herbivore damage was positively correlated with allelic richness. Although there was no clear relationship between higher primary productivity and genotypic richness, variation in shoot productivity within a meadow was significantly greater in more genotypically diverse meadows. The proportion of phenotypic variation explained by environmental conditions varied among different genotypes, and there was generally no variation in phenotypic traits among genotypes present in the same meadows. Our results show that genotypic richness as measured through the use of presumably neutral DNA markers does covary with phenotypic variation in functionally relevant traits such as leaf morphology and shoot productivity. The remarkably long lifespan of individual Posidonia plants suggests that plasticity within genotypes has played an important role in the longevity of the species

  14. Spatial patterns of species richness in New World coral snakes and the metabolic theory of ecology

    NASA Astrophysics Data System (ADS)

    Terribile, Levi Carina; Diniz-Filho, José Alexandre Felizola

    2009-03-01

    The metabolic theory of ecology (MTE) has attracted great interest because it proposes an explanation for species diversity gradients based on temperature-metabolism relationships of organisms. Here we analyse the spatial richness pattern of 73 coral snake species from the New World in the context of MTE. We first analysed the association between ln-transformed richness and environmental variables, including the inverse transformation of annual temperature (1/ kT). We used eigenvector-based spatial filtering to remove the residual spatial autocorrelation in the data and geographically weighted regression to account for non-stationarity in data. In a model I regression (OLS), the observed slope between ln-richness and 1/ kT was -0.626 ( r2 = 0.413), but a model II regression generated a much steeper slope (-0.975). When we added additional environmental correlates and the spatial filters in the OLS model, the R2 increased to 0.863 and the partial regression coefficient of 1/ kT was -0.676. The GWR detected highly significant non-stationarity, in data, and the median of local slopes of ln-richness against 1/ kT was -0.38. Our results expose several problems regarding the assumptions needed to test MTE: although the slope of OLS fell within that predicted by the theory and the dataset complied with the assumption of temperature-independence of average body size, the fact that coral snakes consist of a restricted taxonomic group and the non-stationarity of slopes across geographical space makes MTE invalid to explain richness in this case. Also, it is clear that other ecological and historical factors are important drivers of species richness patterns and must be taken into account both in theoretical modeling and data analysis.

  15. Species diversity and composition in old growth and second growth rich coves of the southern Appalachian Mountains

    Treesearch

    Clay Jackson; Dan Pitillo; Lee Allen; Thomas R Wnetworth; Bronson P Bullock; David L. Loftis

    2009-01-01

    Because of ongoing debate over the long term impacts of logging, we conducteda study to assess if second growth (70 6 10 years) rich coves differ from old growth rich coves(. 125 years) in species diversity or composition. We sampled twenty-six 0.1 ha...

  16. Consumer species richness and nutrients interact in determining producer diversity.

    PubMed

    Groendahl, Sophie; Fink, Patrick

    2017-03-17

    While it is crucial to understand the factors that determine the biodiversity of primary producer communities, the relative importance of bottom-up and top-down control factors is still poorly understood. Using freshwater benthic algal communities in the laboratory as a model system, we find an unimodal relationship between nutrient availability and producer diversity, and that increasing number of consumer species increases producer diversity, but overall grazing decreases algal biodiversity. Interestingly, these two factors interact strongly in determining producer diversity, as an increase in nutrient supply diminishes the positive effect of consumer species richness on producer biodiversity. This novel and thus-far overlooked interaction of bottom-up and top-down control mechanisms of biodiversity may have a pronounced impact on ecosystem functioning and thus have repercussions for the fields of biodiversity conservation and restoration.

  17. Restinga forests of the Brazilian coast: richness and abundance of tree species on different soils.

    PubMed

    Magnago, Luiz F S; Martins, Sebastião V; Schaefer, Carlos E G R; Neri, Andreza V

    2012-09-01

    The aim of this study was to determine changes in composition, abundance and richness of species along a forest gradient with varying soils and flood regimes. The forests are located on the left bank of the lower Jucu River, in Jacarenema Natural Municipal Park, Espírito Santo. A survey of shrub/tree species was done in 80 plots, 5x25 m, equally distributed among the forests studied. We included in the sampling all individuals with >3.2 cm diameter at breast height (1.30 m). Soil samples were collected from the surface layer (0-10 cm) in each plot for chemical and physical analysis. The results indicate that a significant pedological gradient occurs, which is influenced by varying seasonal groundwater levels. Restinga forest formations showed significant differences in species richness, except for Non-flooded Forest and Non-flooded Forest Transition. The Canonical Correlation Analysis (CCA) showed that some species are distributed along the gradient under the combined influence of drainage, nutrient concentration and physical characteristics of the soil. Regarding the variables tested, flooding seems to be a more limiting factor for the establishment of plant species in Restinga forests than basic soil fertility attributes.

  18. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa

    USGS Publications Warehouse

    Champagne, Juilette; Paine, C. E. Timothy; Schoolmaster, Donald; Stejskal, Robert; Volařík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim

    2016-01-01

    Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory.

  19. Do the rich get richer? Varying effects of tree species identity and diversity on the richness of understory taxa.

    PubMed

    Chamagne, Juliette; Paine, C E Timothy; Schoolmaster, Donald R; Stejskal, Robert; Volarřík, Daniel; Šebesta, Jan; Trnka, Filip; Koutecký, Tomáš; Švarc, Petr; Svátek, Martin; Hector, Andy; Matula, Radim

    2016-09-01

    Understory herbs and soil invertebrates play key roles in soil formation and nutrient cycling in forests. Studies suggest that diversity in the canopy and in the understory are positively associated, but these studies often confound the effects of tree species diversity with those of tree species identity and abiotic conditions. We combined extensive field sampling with structural equation modeling to evaluate the simultaneous effects of tree diversity on the species diversity of understory herbs, beetles, and earthworms. The diversity of earthworms and saproxylic beetles was directly and positively associated with tree diversity, presumably because species of both these taxa specialize on certain species of trees. Tree identity also strongly affected diversity in the understory, especially for herbs, likely as a result of interspecific differences in canopy light transmittance or litter decomposition rates. Our results suggest that changes in forest management will disproportionately affect certain understory taxa. For instance, changes in canopy diversity will affect the diversity of earthworms and saproxylic beetles more than changes in tree species composition, whereas the converse would be expected for understory herbs and detritivorous beetles. We conclude that the effects of tree diversity on understory taxa can vary from positive to negative and may affect biogeochemical cycling in temperate forests. Thus, maintaining high diversity in temperate forests can promote the diversity of multiple taxa in the understory. © 2016 by the Ecological Society of America.

  20. What is the form of the productivity-animal-species-richness relationship? A critical review and meta-analysis.

    PubMed

    Cusens, Jarrod; Wright, Shane D; McBride, Paul D; Gillman, Len N

    2012-10-01

    The nature of the relationship between productivity and species richness has remained controversial for at least two decades. Recently authors have favored the suggestion that the form of this relationship is highly variable and scale dependent. However, this conclusion is not universally accepted. Here we present the results of a meta-analysis of animal productivity-species-richness relationships (PSRR) in terrestrial and freshwater ecosystems. Initially, 374 separate cases from 273 published studies were identified as potential tests of the animal PSRR. After critically assessing each study, 115 cases were accepted as robust tests of the relationship, and of these 95 had data available for formal meta-analysis. Contrary to expectation, we found no support for the form of the relationship being scale dependent; positive relationships predominated at all scales (geographical extents and grains). Furthermore, positive relationships were the most common form of the animal PSRR in both terrestrial and freshwater ecosystems and among vertebrates, invertebrates, homeotherms and poikilotherms. Therefore, our results also contrast with previous reviews that suggest no particular form of the PSRR is predominant. We demonstrate that the method used for classifying the form of PSRRs is critical to the result and that previous reviews may have been too liberal toward classifying the form of relationships as unimodal. The tendency for positive relationships between productivity and species richness across diverse animal taxa has important implications for understanding the mechanisms behind the latitudinal gradient in species richness.

  1. Landscape correlates of breeding bird richness across the United States mid-Atlantic region

    USGS Publications Warehouse

    Jones, K.B.; Neale, A.C.; Nash, M.S.; Riitters, K.H.; Wickham, J.D.; O'Neill, R. V.; Van Remortel, R. D.

    2000-01-01

    Using a new set of landscape indicator data generated by the U.S.EPA, and a comprehensive breeding bird database from the National Breeding Bird Survey, we evaluated associations between breeding bird richness and landscape characteristics across the entire mid-Atlantic region of the United States. We evaluated how these relationships varied among different groupings (guilds) of birds based on functional, structural, and compositional aspects of individual species demographics. Forest edge was by far the most important landscape attribute affecting the richness of the lumped specialist and generalist guilds; specialist species richness was negatively associated with forest edge and generalist richness was positively associated with forest edge. Landscape variables (indicators) explained a greater proportion of specialist species richness than the generalist guild (46% and 31%, respectively). The lower value in generalists may reflect freer-scale distributions of open habitat that go undetected by the Landsat satellite, open habitats created by roads (the areas from which breeding bird data are obtained), and the lumping of a wide variety of species into the generalist category. A further breakdown of species into 16 guilds showed considerable variation in the response of breeding birds to landscape conditions; forest obligate species had the strongest association with landscape indicators measured in this study (55% of the total variation explained) and forest generalists and open ground nesters the lowest (17% of the total variation explained). The variable response of guild species richness to landscape pattern suggests that one must consider species' demographics when assessing the consequences of landscape change on breeding birds.Using a new set of landscape indicator data generated by the U.S. EPA, and a comprehensive breeding bird database from the National Breeding Bird Survey, we evaluated associations between breeding bird richness and landscape

  2. ELECTROFISHING EFFORT REQUIREMENTS FOR ASSESSING SPECIES RICHNESS AND BIOTIC INTEGRITY IN WESTERN OREGON STREAMS

    EPA Science Inventory

    We empirically examined the sampling effort required to adequately represent species richness and proportionate abundance when backpack electrofishing western Oregon streams. When sampling, we separately recorded data for each habitat unit. In data analyses, we repositioned each...

  3. Microclimatic Divergence in a Mediterranean Canyon Affects Richness, Composition, and Body Size in Saproxylic Beetle Assemblages.

    PubMed

    Buse, Jörn; Fassbender, Samuel; Entling, Martin H; Pavlicek, Tomas

    2015-01-01

    Large valleys with opposing slopes may act as a model system with which the effects of strong climatic gradients on biodiversity can be evaluated. The advantage of such comparisons is that the impact of a change of climate can be studied on the same species pool without the need to consider regional differences. The aim of this study was to compare the assemblage of saproxylic beetles on such opposing slopes at Lower Nahal Oren, Mt. Carmel, Israel (also known as "Evolution Canyon") with a 200-800% higher solar radiation on the south-facing (SFS) compared to the north-facing slope (NFS). We tested specific hypotheses of species richness patterns, assemblage structure, and body size resulting from interslope differences in microclimate. Fifteen flight-interception traps per slope were distributed over three elevation levels ranging from 50 to 100 m a.s.l. Richness of saproxylic beetles was on average 34% higher on the SFS compared with the NFS, with no detected influence of elevation levels. Both assemblage structure and average body size were determined by slope aspect, with more small-bodied beetles found on the SFS. Both the increase in species richness and the higher prevalence of small species on the SFS reflect ecological rules present on larger spatial grain (species-energy hypothesis and community body size shift hypothesis), and both can be explained by the metabolic theory of ecology. This is encouraging for the complementary use of micro- and macroclimatic gradients to study impacts of climate warming on biodiversity.

  4. Climate and soil texture influence patterns of forb species richness and composition in big sagebrush plant communities across their spatial extent in the western US

    USGS Publications Warehouse

    Pennington, Victoria E.; Palmquist, Kyle A.; Bradford, John B.; Lauenroth, William K.

    2017-01-01

    Article for outlet: Plant Ecology. Abstract: Big sagebrush (Artemisia tridentata Nutt.) plant communities are widespread non-forested drylands in western North American and similar to all shrub steppe ecosystems world-wide are composed of a shrub overstory layer and a forb and graminoid understory layer. Forbs account for the majority of plant species diversity in big sagebrush plant communities and are important for ecosystem function. Few studies have explored the geographic patterns of forb species richness and composition and their relationships with environmental variables in these communities. Our objectives were to examine the small and large-scale spatial patterns in forb species richness and composition and the influence of environmental variables. We sampled forb species richness and composition along transects at 15 field sites in Colorado, Idaho, Montana, Nevada, Oregon, Utah, and Wyoming, built species-area relationships to quantify differences in forb species richness at sites, and used Principal Components Analysis and nonmetric multidimensional scaling to identify relationships among environmental variables and forb species richness and composition. We found that species richness was most strongly correlated with soil texture, while species composition was most related to climate. The combination of climate and soil texture influences water availability, with important consequences for forb species richness and composition, which suggests climate-change induced modification of soil water availability may have important implications for plant species diversity in the future. Our paper is the first to our knowledge to examine forb biodiversity patterns in big sagebrush ecosystems in relation to environmental factors across the big sagebrush region.

  5. An improved nonparametric lower bound of species richness via a modified good-turing frequency formula.

    PubMed

    Chiu, Chun-Huo; Wang, Yi-Ting; Walther, Bruno A; Chao, Anne

    2014-09-01

    It is difficult to accurately estimate species richness if there are many almost undetectable species in a hyper-diverse community. Practically, an accurate lower bound for species richness is preferable to an inaccurate point estimator. The traditional nonparametric lower bound developed by Chao (1984, Scandinavian Journal of Statistics 11, 265-270) for individual-based abundance data uses only the information on the rarest species (the numbers of singletons and doubletons) to estimate the number of undetected species in samples. Applying a modified Good-Turing frequency formula, we derive an approximate formula for the first-order bias of this traditional lower bound. The approximate bias is estimated by using additional information (namely, the numbers of tripletons and quadrupletons). This approximate bias can be corrected, and an improved lower bound is thus obtained. The proposed lower bound is nonparametric in the sense that it is universally valid for any species abundance distribution. A similar type of improved lower bound can be derived for incidence data. We test our proposed lower bounds on simulated data sets generated from various species abundance models. Simulation results show that the proposed lower bounds always reduce bias over the traditional lower bounds and improve accuracy (as measured by mean squared error) when the heterogeneity of species abundances is relatively high. We also apply the proposed new lower bounds to real data for illustration and for comparisons with previously developed estimators. © 2014, The International Biometric Society.

  6. Species richness and trait composition of butterfly assemblages change along an altitudinal gradient.

    PubMed

    Leingärtner, Annette; Krauss, Jochen; Steffan-Dewenter, Ingolf

    2014-06-01

    Species richness patterns along altitudinal gradients are well-documented ecological phenomena, yet very little data are available on how environmental filtering processes influence the composition and traits of butterfly assemblages at high altitudes. We have studied the diversity patterns of butterfly species at 34 sites along an altitudinal gradient ranging from 600 to 2,000 m a.s.l. in the National Park Berchtesgaden (Germany) and analysed traits of butterfly assemblages associated with dispersal capacity, reproductive strategies and developmental time from lowlands to highlands, including phylogenetic analyses. We found a linear decline in butterfly species richness along the altitudinal gradient, but the phylogenetic relatedness of the butterfly assemblages did not increase with altitude. Compared to butterfly assemblages at lower altitudes, those at higher altitudes were composed of species with larger wings (on average 9%) which laid an average of 68% more eggs. In contrast, egg maturation time in butterfly assemblages decreased by about 22% along the altitudinal gradient. Further, butterfly assemblages at higher altitudes were increasingly dominated by less widespread species. Based on our abundance data, but not on data in the literature, population density increased with altitude, suggesting a reversed density-distribution relationship, with higher population densities of habitat specialists in harsh environments. In conclusion, our data provide evidence for significant shifts in the composition of butterfly assemblages and for the dominance of different traits along the altitudinal gradient. In our study, these changes were mainly driven by environmental factors, whereas phylogenetic filtering played a minor role along the studied altitudinal range.

  7. An environmental stress model correctly predicts unimodal trends in overall species richness and diversity along intertidal elevation gradients

    NASA Astrophysics Data System (ADS)

    Zwerschke, Nadescha; Bollen, Merle; Molis, Markus; Scrosati, Ricardo A.

    2013-12-01

    Environmental stress is a major factor structuring communities. An environmental stress model (ESM) predicts that overall species richness and diversity should follow a unimodal trend along the full stress gradient along which assemblages from a regional biota can occur (not to be confused with the intermediate disturbance hypothesis, which makes predictions only for basal species along an intermediate-to-high stress range). Past studies could only provide partial support for ESM predictions because of the limited stress range surveyed or a low sampling resolution. In this study, we measured overall species richness and diversity (considering all seaweeds and invertebrates) along the intertidal elevation gradient on two wave-sheltered rocky shores from Helgoland Island, on the NE Atlantic coast. In intertidal habitats, tides cause a pronounced gradient of increasing stress from low to high elevations. We surveyed up to nine contiguous elevation zones between the lowest intertidal elevation (low stress) and the high intertidal boundary (high stress). Nonlinear regression analyses revealed that overall species richness and diversity followed unimodal trends across elevations on the two studied shores. Therefore, our study suggests that the ESM might constitute a useful tool to predict local richness and diversity as a function of environmental stress. Performing tests on other systems (marine as well as terrestrial) should help to refine the model.

  8. Consumer species richness and nutrients interact in determining producer diversity

    PubMed Central

    Groendahl, Sophie; Fink, Patrick

    2017-01-01

    While it is crucial to understand the factors that determine the biodiversity of primary producer communities, the relative importance of bottom-up and top-down control factors is still poorly understood. Using freshwater benthic algal communities in the laboratory as a model system, we find an unimodal relationship between nutrient availability and producer diversity, and that increasing number of consumer species increases producer diversity, but overall grazing decreases algal biodiversity. Interestingly, these two factors interact strongly in determining producer diversity, as an increase in nutrient supply diminishes the positive effect of consumer species richness on producer biodiversity. This novel and thus-far overlooked interaction of bottom-up and top-down control mechanisms of biodiversity may have a pronounced impact on ecosystem functioning and thus have repercussions for the fields of biodiversity conservation and restoration. PMID:28303953

  9. Anthropogenic Halo Disturbances Alter Landscape and Plant Richness: A Ripple Effect

    PubMed Central

    Liu, Bingliang; Su, Jinbao; Chen, Jianwei; Cui, Guofa; Ma, Jianzhang

    2013-01-01

    Although anthropogenic landscape fragmentation is often considered as the primary threat to biodiversity, other factors such as immediate human disturbances may also simultaneously threaten species persistence in various ways. In this paper, we introduce a conceptual framework applied to recreation landscapes (RLs), with an aim to provide insight into the composite influences of landscape alteration accompanying immediate human disturbances on plant richness dynamics. These impacts largely occur at patch-edges. They can not only alter patch-edge structure and environment, but also permeate into surrounding natural matrices/patches affecting species persistence–here we term these “Halo disturbance effects” (HDEs). We categorized species into groups based on seed or pollen dispersal mode (animal- vs. wind-dispersed) as they can be associated with species richness dynamics. We evaluated the richness of the two groups and total species in our experimental landscapes by considering the distance from patch-edge, the size of RLs and the intensity of human use over a six-year period. Our results show that animal-dispersed species decreased considerably, whereas wind-dispersed species increased while their richness presented diverse dynamics at different distances from patch-edges. Our findings clearly demonstrate that anthropogenic HDEs produce ripple effects on plant, providing an experimental interpretation for the diverse responses of species to anthropogenic disturbances. This study highlights the importance of incorporating these composite threats into conservation and management strategies. PMID:23424648

  10. Diverse effects of degree of urbanisation and forest size on species richness and functional diversity of plants, and ground surface-active ants and spiders.

    PubMed

    Melliger, Ramona Laila; Braschler, Brigitte; Rusterholz, Hans-Peter; Baur, Bruno

    2018-01-01

    Urbanisation is increasing worldwide and is regarded a major driver of environmental change altering local species assemblages in urban green areas. Forests are one of the most frequent habitat types in urban landscapes harbouring many native species and providing important ecosystem services. By using a multi-taxa approach covering a range of trophic ranks, we examined the influence of degree of urbanisation and forest size on the species richness and functional diversity of plants, and ground surface-active ants and spiders. We conducted field surveys in twenty-six forests in the urban region of Basel, Switzerland. We found that a species' response to urbanisation varied depending on trophic rank, habitat specificity and the diversity indices used. In plants, species richness decreased with degree of urbanisation, whereas that of both arthropod groups was not affected. However, ants and spiders at higher trophic rank showed greater shifts in species composition with increasing degree of urbanisation, and the percentage of forest specialists in both arthropod groups increased with forest size. Local abiotic site characteristics were also crucial for plant species diversity and species composition, while the structural diversity of both leaf litter and vegetation was important for the diversity of ants and spiders. Our results highlight that even small urban forests can harbour a considerable biodiversity including habitat specialists. Nonetheless, urbanisation directly and indirectly caused major shifts in species composition. Therefore, special consideration needs to be given to vulnerable species, including those with special habitat requirements. Locally adapted management practices could be a step forward to enhance habitat quality in a way to maximize diversity of forest species and thus ensure forest ecosystem functioning; albeit large-scale factors also remain important.

  11. The economic value of grassland species for carbon storage

    PubMed Central

    Hungate, Bruce A.; Barbier, Edward B.; Ando, Amy W.; Marks, Samuel P.; Reich, Peter B.; van Gestel, Natasja; Tilman, David; Knops, Johannes M. H.; Hooper, David U.; Butterfield, Bradley J.; Cardinale, Bradley J.

    2017-01-01

    Carbon storage by ecosystems is valuable for climate protection. Biodiversity conservation may help increase carbon storage, but the value of this influence has been difficult to assess. We use plant, soil, and ecosystem carbon storage data from two grassland biodiversity experiments to show that greater species richness increases economic value: Increasing species richness from 1 to 10 had twice the economic value of increasing species richness from 1 to 2. The marginal value of each additional species declined as species accumulated, reflecting the nonlinear relationship between species richness and plant biomass production. Our demonstration of the economic value of biodiversity for enhancing carbon storage provides a foundation for assessing the value of biodiversity for decisions about land management. Combining carbon storage with other ecosystem services affected by biodiversity may well enhance the economic arguments for conservation even further. PMID:28435876

  12. Stream salamander species richness and abundance in relation to environmental factors in Shenandoah National Park, Virginia

    USGS Publications Warehouse

    Campbell Grant, Evan H.; Jung, Robin E.; Rice, Karen C.

    2005-01-01

    Stream salamanders are sensitive to acid mine drainage and may be sensitive to acidification and low acid neutralizing capacity (ANC) of a watershed. Streams in Shenandoah National Park, Virginia, are subject to episodic acidification from precipitation events. We surveyed 25 m by 2 m transects located on the stream bank adjacent to the water channel in Shenandoah National Park for salamanders using a stratified random sampling design based on elevation, aspect and bedrock geology. We investigated the relationships of four species (Eurycea bislineata, Desmognathus fuscus, D. monticola and Gyrinophilus porphyriticus) to habitat and water quality variables. We did not find overwhelming evidence that stream salamanders are affected by the acid-base status of streams in Shenandoah National Park. Desmognathus fuscus and D. monticola abundance was greater both in streams that had a higher potential to neutralize acidification, and in higher elevation (>700 m) streams. Neither abundance of E. bislineata nor species richness were related to any of the habitat variables. Our sampling method preferentially detected the adult age class of the study species and did not allow us to estimate population sizes. We suggest that continued monitoring of stream salamander populations in SNP will determine the effects of stream acidification on these taxa.

  13. The positive relationships between plant coverage, species richness, and aboveground biomass are ubiquitous across plant growth forms in semi-steppe rangelands.

    PubMed

    Sanaei, Anvar; Ali, Arshad; Chahouki, Mohammad Ali Zare

    2018-01-01

    The positive relationships between biodiversity and aboveground biomass are important for biodiversity conservation and greater ecosystem functioning and services that humans depend on. However, the interaction effects of plant coverage and biodiversity on aboveground biomass across plant growth forms (shrubs, forbs and grasses) in natural rangelands are poorly studied. Here, we hypothesized that, while accounting for environmental factors and disturbance intensities, the positive relationships between plant coverage, biodiversity, and aboveground biomass are ubiquitous across plant growth forms in natural rangelands. We applied structural equation models (SEMs) using data from 735 quadrats across 35 study sites in semi-steppe rangelands in Iran. The combination of plant coverage and species richness rather than Shannon's diversity or species diversity (a latent variable of species richness and evenness) substantially enhance aboveground biomass across plant growth forms. In all selected SEMs, plant coverage had a strong positive direct effect on aboveground biomass (β = 0.72 for shrubs, 0.84 for forbs and 0.80 for grasses), followed by a positive effect of species richness (β = 0.26 for shrubs, 0.05 for forbs and 0.09 for grasses), and topographic factors. Disturbance intensity had a negative effect on plant coverage, whereas it had a variable effect on species richness across plant growth forms. Plant coverage had a strong positive total effect on aboveground biomass (β = 0.84 for shrubs, 0.88 for forbs, and 0.85 for grasses), followed by a positive effect of species richness, and a negative effect of disturbance intensity across plant growth forms. Our results shed light on the management of rangelands that is high plant coverage can significantly improve species richness and aboveground biomass across plant growth forms. We also found that high disturbance intensity due to heavy grazing has a strong negative effect on plant coverage rather than species

  14. Accelerated increase in plant species richness on mountain summits is linked to warming.

    PubMed

    Steinbauer, Manuel J; Grytnes, John-Arvid; Jurasinski, Gerald; Kulonen, Aino; Lenoir, Jonathan; Pauli, Harald; Rixen, Christian; Winkler, Manuela; Bardy-Durchhalter, Manfred; Barni, Elena; Bjorkman, Anne D; Breiner, Frank T; Burg, Sarah; Czortek, Patryk; Dawes, Melissa A; Delimat, Anna; Dullinger, Stefan; Erschbamer, Brigitta; Felde, Vivian A; Fernández-Arberas, Olatz; Fossheim, Kjetil F; Gómez-García, Daniel; Georges, Damien; Grindrud, Erlend T; Haider, Sylvia; Haugum, Siri V; Henriksen, Hanne; Herreros, María J; Jaroszewicz, Bogdan; Jaroszynska, Francesca; Kanka, Robert; Kapfer, Jutta; Klanderud, Kari; Kühn, Ingolf; Lamprecht, Andrea; Matteodo, Magali; di Cella, Umberto Morra; Normand, Signe; Odland, Arvid; Olsen, Siri L; Palacio, Sara; Petey, Martina; Piscová, Veronika; Sedlakova, Blazena; Steinbauer, Klaus; Stöckli, Veronika; Svenning, Jens-Christian; Teppa, Guido; Theurillat, Jean-Paul; Vittoz, Pascal; Woodin, Sarah J; Zimmermann, Niklaus E; Wipf, Sonja

    2018-04-01

    Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century 1-7 are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch 6 . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying 8, 9 , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.

  15. Modelling patterns of pollinator species richness and diversity using satellite image texture.

    PubMed

    Hofmann, Sylvia; Everaars, Jeroen; Schweiger, Oliver; Frenzel, Mark; Bannehr, Lutz; Cord, Anna F

    2017-01-01

    Assessing species richness and diversity on the basis of standardised field sampling effort represents a cost- and time-consuming method. Satellite remote sensing (RS) can help overcome these limitations because it facilitates the collection of larger amounts of spatial data using cost-effective techniques. RS information is hence increasingly analysed to model biodiversity across space and time. Here, we focus on image texture measures as a proxy for spatial habitat heterogeneity, which has been recognized as an important determinant of species distributions and diversity. Using bee monitoring data of four years (2010-2013) from six 4 × 4 km field sites across Central Germany and a multimodel inference approach we test the ability of texture features derived from Landsat-TM imagery to model local pollinator biodiversity. Textures were shown to reflect patterns of bee diversity and species richness to some extent, with the first-order entropy texture and terrain roughness being the most relevant indicators. However, the texture measurements accounted for only 3-5% of up to 60% of the variability that was explained by our final models, although the results are largely consistent across different species groups (bumble bees, solitary bees). While our findings provide indications in support of the applicability of satellite imagery textures for modeling patterns of bee biodiversity, they are inconsistent with the high predictive power of texture metrics reported in previous studies for avian biodiversity. We assume that our texture data captured mainly heterogeneity resulting from landscape configuration, which might be functionally less important for wild bees than compositional diversity of plant communities. Our study also highlights the substantial variability among taxa in the applicability of texture metrics for modelling biodiversity.

  16. Consistency of mist netting and point counts in assessing landbird species richness and relative abundance during migration

    Treesearch

    Yong Wang; Deborah M. Finch

    2002-01-01

    We compared consistency of species richness and relative abundance data collected concurrently using mist netting and point counts during migration in riparian habitats along the middle Rio Grande of central New Mexico. Mist netting detected 74% and point counts detected 82% of the 197 species encountered during the study. Species that mist netting failed to capture...

  17. Edge-interior differences in the species richness and abundance of drosophilids in a semideciduous forest fragment.

    PubMed

    Penariol, Leiza V; Madi-Ravazzi, Lilian

    2013-12-01

    Habitat fragmentation is the main cause of biodiversity loss, as remnant fragments are exposed to negative influences that include edge effects, prevention of migration, declines in effective population sizes, loss of genetic variability and invasion of exotic species. The Drosophilidae (Diptera), especially species of the genus Drosophila, which are highly sensitive to environmental variation, have been used as bioindicators. A twelve-month field study was conducted to evaluate the abundance and richness of drosophilids in an edge-interior transect in a fragment of semideciduous forest in São Paulo State, Brazil. One objective of the study was to evaluate the applied methodology with respect to its potential use in future studies addressing the monitoring and conservation of threatened areas. The species abundance along the transect showed a clear gradient, with species associated with disturbed environments, such as Drosophila simulans, Scaptodrosophila latifasciaeformis and Zaprionus indianus, being collected at the fragment edge and the species D. willistoni and D. mediostriata being found in the fragment's interior. Replacement of these species occurred at approximately 60 meters from the edge, which may be a reflection of edge effects on species abundance and richness because the species found within the habitat fragment are more sensitive to variations in temperature and humidity than those sampled near the edge. The results support the use of this methodology in studies on environmental impacts.

  18. Visual search for tropical web spiders: the influence of plot length, sampling effort, and phase of the day on species richness.

    PubMed

    Pinto-Leite, C M; Rocha, P L B

    2012-12-01

    Empirical studies using visual search methods to investigate spider communities were conducted with different sampling protocols, including a variety of plot sizes, sampling efforts, and diurnal periods for sampling. We sampled 11 plots ranging in size from 5 by 10 m to 5 by 60 m. In each plot, we computed the total number of species detected every 10 min during 1 hr during the daytime and during the nighttime (0630 hours to 1100 hours, both a.m. and p.m.). We measured the influence of time effort on the measurement of species richness by comparing the curves produced by sample-based rarefaction and species richness estimation (first-order jackknife). We used a general linear model with repeated measures to assess whether the phase of the day during which sampling occurred and the differences in the plot lengths influenced the number of species observed and the number of species estimated. To measure the differences in species composition between the phases of the day, we used a multiresponse permutation procedure and a graphical representation based on nonmetric multidimensional scaling. After 50 min of sampling, we noted a decreased rate of species accumulation and a tendency of the estimated richness curves to reach an asymptote. We did not detect an effect of plot size on the number of species sampled. However, differences in observed species richness and species composition were found between phases of the day. Based on these results, we propose guidelines for visual search for tropical web spiders.

  19. Post-fire salvage logging alters species composition and reduces cover, richness, and diversity in Mediterranean plant communities.

    PubMed

    Leverkus, Alexandro B; Lorite, Juan; Navarro, Francisco B; Sánchez-Cañete, Enrique P; Castro, Jorge

    2014-01-15

    An intense debate exists on the effects of post-fire salvage logging on plant community regeneration, but scant data are available derived from experimental studies. We analyzed the effects of salvage logging on plant community regeneration in terms of species richness, diversity, cover, and composition by experimentally managing a burnt forest on a Mediterranean mountain (Sierra Nevada, S Spain). In each of three plots located at different elevations, three replicates of three treatments were implemented seven months after the fire, differing in the degree of intervention: "Non-Intervention" (all trees left standing), "Partial Cut plus Lopping" (felling 90% of the trees, cutting the main branches, and leaving all the biomass in situ), and "Salvage Logging" (felling and piling the logs, and masticating the woody debris). Plant composition in each treatment was monitored two years after the fire in linear point transects. Post-fire salvage logging was associated with reduced species richness, Shannon diversity, and total plant cover. Moreover, salvaged sites hosted different species assemblages and 25% lower cover of seeder species (but equal cover of resprouters) compared to the other treatments. Cover of trees and shrubs was also lowest in Salvage Logging, which could suggest a potential slow-down of forest regeneration. Most of these results were consistent among the three plots despite plots hosting different plant communities. Concluding, our study suggests that salvage logging may reduce species richness and diversity, as well as the recruitment of woody species, which could delay the natural regeneration of the ecosystem. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Bryophyte species richness on retention aspens recovers in time but community structure does not.

    PubMed

    Oldén, Anna; Ovaskainen, Otso; Kotiaho, Janne S; Laaka-Lindberg, Sanna; Halme, Panu

    2014-01-01

    Green-tree retention is a forest management method in which some living trees are left on a logged area. The aim is to offer 'lifeboats' to support species immediately after logging and to provide microhabitats during and after forest re-establishment. Several studies have shown immediate decline in bryophyte diversity after retention logging and thus questioned the effectiveness of this method, but longer term studies are lacking. Here we studied the epiphytic bryophytes on European aspen (Populus tremula L.) retention trees along a 30-year chronosequence. We compared the bryophyte flora of 102 'retention aspens' on 14 differently aged retention sites with 102 'conservation aspens' on 14 differently aged conservation sites. We used a Bayesian community-level modelling approach to estimate the changes in bryophyte species richness, abundance (area covered) and community structure during 30 years after logging. Using the fitted model, we estimated that two years after logging both species richness and abundance of bryophytes declined, but during the following 20-30 years both recovered to the level of conservation aspens. However, logging-induced changes in bryophyte community structure did not fully recover over the same time period. Liverwort species showed some or low potential to benefit from lifeboating and high potential to re-colonise as time since logging increases. Most moss species responded similarly, but two cushion-forming mosses benefited from the logging disturbance while several weft- or mat-forming mosses declined and did not re-colonise in 20-30 years. We conclude that retention trees do not function as equally effective lifeboats for all bryophyte species but are successful in providing suitable habitats for many species in the long-term. To be most effective, retention cuts should be located adjacent to conservation sites, which may function as sources of re-colonisation and support the populations of species that require old-growth forests.

  1. Psychosocial Environment and Affective Outcomes in Technology-Rich Classrooms: Testing a Causal Model

    ERIC Educational Resources Information Center

    Dorman, Jeffrey P.; Fraser, Barry J.

    2009-01-01

    Research investigated classroom environment antecedent variables and student affective outcomes in Australian high schools. The Technology-Rich Outcomes-Focused Learning Environment Inventory (TROFLEI) was used to assess 10 classroom environment dimensions: student cohesiveness, teacher support, involvement, investigation, task orientation,…

  2. Invasion resistance arises in strongly interacting species-rich model competition communities.

    PubMed Central

    Case, T J

    1990-01-01

    I assemble stable multispecies Lotka-Volterra competition communities that differ in resident species number and average strength (and variance) of species interactions. These are then invaded with randomly constructed invaders drawn from the same distribution as the residents. The invasion success rate and the fate of the residents are determined as a function of community-and species-level properties. I show that the probability of colonization success for an invader decreases with community size and the average strength of competition (alpha). Communities composed of many strongly interacting species limit the invasion possibilities of most similar species. These communities, even for a superior invading competitor, set up a sort of "activation barrier" that repels invaders when they invade at low numbers. This "priority effect" for residents is not assumed a priori in my description for the individual population dynamics of these species; rather it emerges because species-rich and strongly interacting species sets have alternative stable states that tend to disfavor species at low densities. These models point to community-level rather than invader-level properties as the strongest determinant of differences in invasion success. The probability of extinction for a resident species increases with community size, and the probability of successful colonization by the invader decreases. Thus an equilibrium community size results wherein the probability of a resident species' extinction just balances the probability of an invader's addition. Given the distribution of alpha it is now possible to predict the equilibrium species number. The results provide a logical framework for an island-biogeographic theory in which species turnover is low even in the face of persistent invasions and for the protection of fragile native species from invading exotics. PMID:11607132

  3. Potential Changes in Tree Species Richness and Forest Community Types following Climate Change

    Treesearch

    Louis R. Iverson; Anantha M. Prasad

    2001-01-01

    Potential changes in tree species richness and forest community types were evaluated for the eastern United States according to five scenarios of future climate change resulting from a doubling of atmospheric carbon dioxide (CO2). DISTRIB, an empirical model that uses a regression tree analysis approach, was used to generate suitable habitat, or potential future...

  4. Summer Ephemeroptera, Plecoptera, and Trichoptera (EPT) species richness and community structure in the lower Illinois River basin of Illinois

    USGS Publications Warehouse

    DeWalt, R.E.; Webb, D.W.; Harris, M.A.

    1999-01-01

    Ephemeroptera, Plecoptera, and Trichoptera (EPT) species richness is useful for monitoring stream health, but no published studies in Illinois quantitatively document EPT richness or assemblage structure. The objectives of this study were to characterize adult EPT richness and structure and relate these to relative water quality at eight stream sites (160-69,300 km3 area) in the lower Illinois River basin. Adults were ultra-violet light trapped in June, July, and August 1997. Nutrient enrichment by nitrate and nitrite nitrogen was strongly evident, especially in smaller drainages, while critical loss of stable habitat was observed in larger water bodies. Seventy EPT species were identified from 17,889 specimens. Trichoptera were by far the most speciose (41 species), followed by Ephemeroptera (26), and Plecoptera (3). Caddisflies also dominated species richness across sites, contributing 18.0 of the average 28.9 total EPT species collected. Site EPT richness varied significantly (F = 5.51, p = 0.003, df = 7), with smaller drainages supporting greater richness, generally. Differences were also evident for months (F = 21.7, p = 0.0001, df = 2), with June being lower (11.8 average) than either July (20.6) or August (18.1) values. Hilsenhoff biotic index (HBI) scores did not vary significantly across sites (F = 0.7, p = 0.7, df = 7), but were different across months (F = 5.4, p = 0.02, df = 2). June (4.23) and July (4.53) means were not different, but both were lower (of better quality) than August (5.33) scores. The relationship of EPT to HBI scores was not investigated statistically due to problems of sample size and interdependence of monthly samples, but graphical analysis suggested no consistent relationship. This suggested a decoupling of the HBI from the EPT and implied that the gain in taxonomic resolution achieved by using adults outstripped the resolution of the HBI. Use of the HBI to characterize adult aquatic insect communities is discouraged. New state

  5. Day–Night Changes of Energy-rich Compounds in Crassulacean Acid Metabolism (CAM) Species Utilizing Hexose and Starch

    PubMed Central

    CHEN, LI-SONG; NOSE, AKIHIRO

    2004-01-01

    • Background and Aims Plants with crassulacean acid metabolism (CAM) can be divided into two groups according to the major carbohydrates used for malic acid synthesis, either polysaccharide (starch) or monosaccharide (hexose). This is related to the mechanism and affects energy metabolism in the two groups. In Kalanchoë pinnata and K. daigremontiana, which utilize starch, ATP-dependent phosphofructokinase (tonoplast inorganic pyrophosphatase) activity is greater than inorganic pyrophosphate-dependent phosphofructokinase (tonoplast adenosine triphosphatase) activity, but the reverse is the case in pineapple (Ananas comosus) utilizing hexose. To test the hypothesis that the energy metabolism of the two groups differs, day-night changes in the contents of ATP, ADP, AMP, inorganic phosphate (Pi), phosphoenolpyruvate (PEP) and inorganic pyrophosphate (PPi) in K. pinnata and K. daigremontiana leaves and in pineapple chlorenchyma were analysed. • Methods The contents of energy-rich compounds were measured spectrophotometrically in extracts of tissue sampled in the light and dark, using potted plants, kept for 15 d before the experiments in a growth chamber. • Key Results In the three species, ATP content and adenylate energy charge (AEC) increased in the dark and decreased in the light, in contrast to ADP and AMP. Changes in ATP and AEC were greater in Kalanchoë leaves than in pineapple chlorenchyma. PPi content in the three species increased in the dark, but on illumination it decreased rapidly and substantially, remaining little changed through the rest of the light period. Pi content of Kalanchoë leaves did not change between dark and light, whereas Pi in pineapple chlorenchyma increased in the dark and decreased in the light, and the changes were far greater than in Kalanchoë leaves. Light-dark changes in PEP content in the three species were similar. • Conclusions These results corroborate our hypothesis that day–night changes in the contents of energy-rich

  6. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment

    USGS Publications Warehouse

    Korol, Alicia R.; Ahn, Changwoo; Noe, Gregory

    2016-01-01

    The development of soil nitrogen (N) cycling in created wetlands promotes the maturation of multiple biogeochemical cycles necessary for ecosystem functioning. This development proceeds from gradual changes in soil physicochemical properties and influential characteristics of the plant community, such as competitive behavior, phenology, productivity, and nutrient composition. In the context of a 2-year diversity experiment in freshwater mesocosms (0, 1, 2, 3, or 4 richness levels), we assessed the direct and indirect impacts of three plant community characteristics – species richness, total biomass, and tissue N concentration – on three processes in the soil N cycle – soil net ammonification, net nitrification, and denitrification potentials. Species richness had a positive effect on net ammonification potential (NAP) through higher redox potentials and likely faster microbial respiration. All NAP rates were negative, however, due to immobilization and high rates of ammonium removal. Net nitrification was inhibited at higher species richness without mediation from the measured soil properties. Higher species richness also inhibited denitrification potential through increased redox potential and decreased nitrification. Both lower biomass and/or higher tissue ratios of carbon to nitrogen, characteristics indicative of the two annual plants, were shown to have stimulatory effects on all three soil N processes. The two mediating physicochemical links between the young macrophyte community and microbial N processes were soil redox potential and temperature. Our results suggest that early-successional annual plant communities play an important role in the development of ecosystem N multifunctionality in newly created wetland soils.

  7. The economic value of grassland species for carbon storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hungate, Bruce A.; Barbier, Edward B.; Ando, Amy W.

    Carbon storage by ecosystems is valuable for climate protection. Biodiversity conservation may help increase carbon storage, but the value of this influence has been difficult to assess. We use plant, soil, and ecosystem carbon storage data from two grassland biodiversity experiments to show that greater species richness increases economic value: Increasing species richness from 1 to 10 had twice the economic value of increasing species richness from 1 to 2. The marginal value of each additional species declined as species accumulated, reflecting the nonlinear relationship between species richness and plant biomass production. Here, our demonstration of the economic value ofmore » biodiversity for enhancing carbon storage provides a foundation for assessing the value of biodiversity for decisions about land management. Combining carbon storage with other ecosystem services affected by biodiversity may well enhance the economic arguments for conservation even further.« less

  8. The economic value of grassland species for carbon storage

    DOE PAGES

    Hungate, Bruce A.; Barbier, Edward B.; Ando, Amy W.; ...

    2017-04-01

    Carbon storage by ecosystems is valuable for climate protection. Biodiversity conservation may help increase carbon storage, but the value of this influence has been difficult to assess. We use plant, soil, and ecosystem carbon storage data from two grassland biodiversity experiments to show that greater species richness increases economic value: Increasing species richness from 1 to 10 had twice the economic value of increasing species richness from 1 to 2. The marginal value of each additional species declined as species accumulated, reflecting the nonlinear relationship between species richness and plant biomass production. Here, our demonstration of the economic value ofmore » biodiversity for enhancing carbon storage provides a foundation for assessing the value of biodiversity for decisions about land management. Combining carbon storage with other ecosystem services affected by biodiversity may well enhance the economic arguments for conservation even further.« less

  9. Species richness has not increased after long-term protection from grazing on sagebrush, aspen and tall forb rangelands

    Treesearch

    W. A. Laycock; Dale Bartos; Keith Klement

    2001-01-01

    Recent conservation biology and environmental literature contains claims that livestock grazing has caused and continues to cause reduction in species diversity on Western rangelands, especially public rangelands. This paper present quantitative data on species richness (number of species) inside and outside 24 long-term exclosures; 8 exclosures in aspen vegetation in...

  10. Influence of Sampling Effort on the Estimated Richness of Road-Killed Vertebrate Wildlife

    NASA Astrophysics Data System (ADS)

    Bager, Alex; da Rosa, Clarissa A.

    2011-05-01

    Road-killed mammals, birds, and reptiles were collected weekly from highways in southern Brazil in 2002 and 2005. The objective was to assess variation in estimates of road-kill impacts on species richness produced by different sampling efforts, and to provide information to aid in the experimental design of future sampling. Richness observed in weekly samples was compared with sampling for different periods. In each period, the list of road-killed species was evaluated based on estimates the community structure derived from weekly samplings, and by the presence of the ten species most subject to road mortality, and also of threatened species. Weekly samples were sufficient only for reptiles and mammals, considered separately. Richness estimated from the biweekly samples was equal to that found in the weekly samples, and gave satisfactory results for sampling the most abundant and threatened species. The ten most affected species showed constant road-mortality rates, independent of sampling interval, and also maintained their dominance structure. Birds required greater sampling effort. When the composition of road-killed species varies seasonally, it is necessary to take biweekly samples for a minimum of one year. Weekly or more-frequent sampling for periods longer than two years is necessary to provide a reliable estimate of total species richness.

  11. Influence of sampling effort on the estimated richness of road-killed vertebrate wildlife.

    PubMed

    Bager, Alex; da Rosa, Clarissa A

    2011-05-01

    Road-killed mammals, birds, and reptiles were collected weekly from highways in southern Brazil in 2002 and 2005. The objective was to assess variation in estimates of road-kill impacts on species richness produced by different sampling efforts, and to provide information to aid in the experimental design of future sampling. Richness observed in weekly samples was compared with sampling for different periods. In each period, the list of road-killed species was evaluated based on estimates the community structure derived from weekly samplings, and by the presence of the ten species most subject to road mortality, and also of threatened species. Weekly samples were sufficient only for reptiles and mammals, considered separately. Richness estimated from the biweekly samples was equal to that found in the weekly samples, and gave satisfactory results for sampling the most abundant and threatened species. The ten most affected species showed constant road-mortality rates, independent of sampling interval, and also maintained their dominance structure. Birds required greater sampling effort. When the composition of road-killed species varies seasonally, it is necessary to take biweekly samples for a minimum of one year. Weekly or more-frequent sampling for periods longer than two years is necessary to provide a reliable estimate of total species richness.

  12. Mapping of species richness for conservation of biological diversity: conceptual and methodological issues

    Treesearch

    M.J. Conroy; B.R. Noon

    1996-01-01

    Biodiversity mapping (e.g., the Gap Analysis Program [GAP]), in which vegetative features and categories of land use are mapped at coarse spatial scales, has been proposed as a reliable tool for land use decisions (e.g., reserve identification, selection, and design). This implicitly assumes that species richness data collected at coarse spatiotemporal scales provide a...

  13. Sample-based estimation of tree species richness in a wet tropical forest compartment

    Treesearch

    Steen Magnussen; Raphael Pelissier

    2007-01-01

    Petersen's capture-recapture ratio estimator and the well-known bootstrap estimator are compared across a range of simulated low-intensity simple random sampling with fixed-area plots of 100 m? in a rich wet tropical forest compartment with 93 tree species in the Western Ghats of India. Petersen's ratio estimator was uniformly superior to the bootstrap...

  14. Altitudinal patterns in breeding bird species richness and density in relation to climate, habitat heterogeneity, and migration influence in a temperate montane forest (South Korea).

    PubMed

    Kim, Jin-Yong; Lee, Sanghun; Shin, Man-Seok; Lee, Chang-Hoon; Seo, Changwan; Eo, Soo Hyung

    2018-01-01

    Altitudinal patterns in the population ecology of mountain bird species are useful for predicting species occurrence and behavior. Numerous hypotheses about the complex interactions among environmental factors have been proposed; however, these still remain controversial. This study aimed to identify the altitudinal patterns in breeding bird species richness or density and to test the hypotheses that climate, habitat heterogeneity (horizontal and vertical), and heterospecific attraction in a temperate forest, South Korea. We conducted a field survey of 142 plots at altitudes between 200 and 1,400 m a.s.l in the breeding season. A total of 2,771 individuals from 53 breeding bird species were recorded. Altitudinal patterns of species richness and density showed a hump-shaped pattern, indicating that the highest richness and density could be observed at moderate altitudes. Models constructed with 13 combinations of six variables demonstrated that species richness was positively correlated with vertical and horizontal habitat heterogeneity. Density was positively correlated with vertical, but not horizontal habitat heterogeneity, and negatively correlated with migratory bird ratio. No significant relationships were found between spring temperature and species richness or density. Therefore, the observed patterns in species richness support the hypothesis that habitat heterogeneity, rather than climate, is the main driver of species richness. Also, neither habitat heterogeneity nor climate hypotheses fully explains the observed patterns in density. However, vertical habitat heterogeneity does likely help explain observed patterns in density. The heterospecific attraction hypothesis did not apply to the distribution of birds along the altitudinal gradient. Appropriate management of vertical habitat heterogeneity, such as vegetation cover, should be maintained for the conservation of bird diversity in this area.

  15. Wet season cyanobacterial N enrichment highly correlated with species richness and Nostoc in the northern Australian savannah

    NASA Astrophysics Data System (ADS)

    Williams, Wendy; Büdel, Burkhard; Williams, Stephen

    2018-04-01

    The Boodjamulla National Park research station is situated in the north-western Queensland dry savannah, where the climate is dominated by summer monsoons and virtually dry winters. Under shrub canopies and in between the tussock grasses cyanobacterial crusts almost entirely cover the flood plain soil surfaces. Seasonality drives N fixation, and in the savannah this has a large impact on both plant and soil function. Many cyanobacteria fix dinitrogen that is liberated into the soil in both inorganic and organic N forms. We examined cyanobacterial species richness and bioavailable N spanning 7 months of a typical wet season. Over the wet season cyanobacterial richness ranged from 6 to 19 species. N-fixing Scytonema accounted for seasonal averages between 51 and 93 % of the biocrust. Cyanobacterial richness was highly correlated with N fixation and bioavailable N in 0-1 cm. Key N-fixing species such as Nostoc, Symploca and Gloeocapsa significantly enriched soil N although Nostoc was the most influential. Total seasonal N fixation by cyanobacteria demonstrated the variability in productivity according to the number of wet days as well as the follow-on days where the soil retained adequate moisture. Based on total active days per month we estimated that N soil enrichment via cyanobacteria would be ˜ 5.2 kg ha-1 annually which is comparable to global averages. This is a substantial contribution to the nutrient-deficient savannah soils that are almost entirely reliant on the wet season for microbial turnover of organic matter. Such well-defined seasonal trends and synchronisation in cyanobacterial species richness, N fixation, bioavailable N and C fixation (Büdel et al., 2018) provide important contributions to multifunctional microprocesses and soil fertility.

  16. Soil warming increases plant species richness but decreases germination from the alpine soil seed bank.

    PubMed

    Hoyle, Gemma L; Venn, Susanna E; Steadman, Kathryn J; Good, Roger B; McAuliffe, Edward J; Williams, Emlyn R; Nicotra, Adrienne B

    2013-05-01

    Global warming is occurring more rapidly above the treeline than at lower elevations and alpine areas are predicted to experience above average warming in the future. Temperature is a primary factor in stimulating seed germination and regulating changes in seed dormancy status. Thus, plant regeneration from seed will be crucial to the persistence, migration and post disturbance recruitment of alpine plants in future climates. Here, we present the first assessment of the impact of soil warming on germination from the persistent alpine soil seed bank. Contrary to expectations, soil warming lead to reduced overall germination from the soil seed bank. However, germination response to soil temperature was species specific such that total species richness actually increased by nine with soil warming. We further explored the system by assessing the prevalence of seed dormancy and germination response to soil disturbance, the frequency of which is predicted to increase under climate change. Seeds of a significant proportion of species demonstrated physiological dormancy mechanisms and germination of several species appeared to be intrinsically linked to soil disturbance. In addition, we found no evidence of subalpine species and little evidence of exotic weed species in the soil, suggesting that the soil seed bank will not facilitate their invasion of the alpine zone. In conclusion, changes in recruitment via the alpine soil seed bank can be expected under climate change, as a result of altered dormancy alleviation and germination cues. Furthermore, the alpine soil seed bank, and the species richness therein, has the potential to help maintain local species diversity, support species range shift and moderate species dominance. Implications for alpine management and areas for further study are also discussed. © 2013 Blackwell Publishing Ltd.

  17. Using multi-scale sampling and spatial cross-correlation to investigate patterns of plant species richness

    USGS Publications Warehouse

    Kalkhan, M.A.; Stohlgren, T.J.

    2000-01-01

    Land managers need better techniques to assess exoticplant invasions. We used the cross-correlationstatistic, IYZ, to test for the presence ofspatial cross-correlation between pair-wisecombinations of soil characteristics, topographicvariables, plant species richness, and cover ofvascular plants in a 754 ha study site in RockyMountain National Park, Colorado, U.S.A. Using 25 largeplots (1000 m2) in five vegetation types, 8 of 12variables showed significant spatial cross-correlationwith at least one other variable, while 6 of 12variables showed significant spatial auto-correlation. Elevation and slope showed significant spatialcross-correlation with all variables except percentcover of native and exotic species. Percent cover ofnative species had significant spatialcross-correlations with soil variables, but not withexotic species. This was probably because of thepatchy distributions of vegetation types in the studyarea. At a finer resolution, using data from ten1 m2 subplots within each of the 1000 m2 plots, allvariables showed significant spatial auto- andcross-correlation. Large-plot sampling was moreaffected by topographic factors than speciesdistribution patterns, while with finer resolutionsampling, the opposite was true. However, thestatistically and biologically significant spatialcorrelation of native and exotic species could only bedetected with finer resolution sampling. We foundexotic plant species invading areas with high nativeplant richness and cover, and in fertile soils high innitrogen, silt, and clay. Spatial auto- andcross-correlation statistics, along with theintegration of remotely sensed data and geographicinformation systems, are powerful new tools forevaluating the patterns and distribution of native andexotic plant species in relation to landscape structure.

  18. Modelling patterns of pollinator species richness and diversity using satellite image texture

    PubMed Central

    Everaars, Jeroen; Schweiger, Oliver; Frenzel, Mark; Bannehr, Lutz; Cord, Anna F.

    2017-01-01

    Assessing species richness and diversity on the basis of standardised field sampling effort represents a cost- and time-consuming method. Satellite remote sensing (RS) can help overcome these limitations because it facilitates the collection of larger amounts of spatial data using cost-effective techniques. RS information is hence increasingly analysed to model biodiversity across space and time. Here, we focus on image texture measures as a proxy for spatial habitat heterogeneity, which has been recognized as an important determinant of species distributions and diversity. Using bee monitoring data of four years (2010–2013) from six 4 × 4 km field sites across Central Germany and a multimodel inference approach we test the ability of texture features derived from Landsat-TM imagery to model local pollinator biodiversity. Textures were shown to reflect patterns of bee diversity and species richness to some extent, with the first-order entropy texture and terrain roughness being the most relevant indicators. However, the texture measurements accounted for only 3–5% of up to 60% of the variability that was explained by our final models, although the results are largely consistent across different species groups (bumble bees, solitary bees). While our findings provide indications in support of the applicability of satellite imagery textures for modeling patterns of bee biodiversity, they are inconsistent with the high predictive power of texture metrics reported in previous studies for avian biodiversity. We assume that our texture data captured mainly heterogeneity resulting from landscape configuration, which might be functionally less important for wild bees than compositional diversity of plant communities. Our study also highlights the substantial variability among taxa in the applicability of texture metrics for modelling biodiversity. PMID:28973006

  19. Factors affecting plant species composition of hedgerows: relative importance and hierarchy

    NASA Astrophysics Data System (ADS)

    Deckers, Bart; Hermy, Martin; Muys, Bart

    2004-07-01

    Although there has been a clear quantitative and qualitative decline in traditional hedgerow network landscapes during last century, hedgerows are crucial for the conservation of rural biodiversity, functioning as an important habitat, refuge and corridor for numerous species. To safeguard this conservation function, insight in the basic organizing principles of hedgerow plant communities is needed. The vegetation composition of 511 individual hedgerows situated within an ancient hedgerow network landscape in Flanders, Belgium was recorded, in combination with a wide range of explanatory variables, including a selection of spatial variables. Non-parametric statistics in combination with multivariate data analysis techniques were used to study the effect of individual explanatory variables. Next, variables were grouped in five distinct subsets and the relative importance of these variable groups was assessed by two related variation partitioning techniques, partial regression and partial canonical correspondence analysis, taking into account explicitly the existence of intercorrelations between variables of different factor groups. Most explanatory variables affected significantly hedgerow species richness and composition. Multivariate analysis showed that, besides adjacent land use, hedgerow management, soil conditions, hedgerow type and origin, the role of other factors such as hedge dimensions, intactness, etc., could certainly not be neglected. Furthermore, both methods revealed the same overall ranking of the five distinct factor groups. Besides a predominant impact of abiotic environmental conditions, it was found that management variables and structural aspects have a relatively larger influence on the distribution of plant species in hedgerows than their historical background or spatial configuration.

  20. Habitat Availability and Heterogeneity and the Indo-Pacific Warm Pool as Predictors of Marine Species Richness in the Tropical Indo-Pacific

    PubMed Central

    Sanciangco, Jonnell C.; Carpenter, Kent E.; Etnoyer, Peter J.; Moretzsohn, Fabio

    2013-01-01

    Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses, and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity, and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km2 with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction of marine species and that changes in sea surface temperatures may influence the evolutionary potential of the region. PMID:23457533

  1. Habitat availability and heterogeneity and the indo-pacific warm pool as predictors of marine species richness in the tropical Indo-Pacific.

    PubMed

    Sanciangco, Jonnell C; Carpenter, Kent E; Etnoyer, Peter J; Moretzsohn, Fabio

    2013-01-01

    Range overlap patterns were observed in a dataset of 10,446 expert-derived marine species distribution maps, including 8,295 coastal fishes, 1,212 invertebrates (crustaceans and molluscs), 820 reef-building corals, 50 seagrasses, and 69 mangroves. Distributions of tropical Indo-Pacific shore fishes revealed a concentration of species richness in the northern apex and central region of the Coral Triangle epicenter of marine biodiversity. This pattern was supported by distributions of invertebrates and habitat-forming primary producers. Habitat availability, heterogeneity, and sea surface temperatures were highly correlated with species richness across spatial grains ranging from 23,000 to 5,100,000 km(2) with and without correction for autocorrelation. The consistent retention of habitat variables in our predictive models supports the area of refuge hypothesis which posits reduced extinction rates in the Coral Triangle. This does not preclude support for a center of origin hypothesis that suggests increased speciation in the region may contribute to species richness. In addition, consistent retention of sea surface temperatures in models suggests that available kinetic energy may also be an important factor in shaping patterns of marine species richness. Kinetic energy may hasten rates of both extinction and speciation. The position of the Indo-Pacific Warm Pool to the east of the Coral Triangle in central Oceania and a pattern of increasing species richness from this region into the central and northern parts of the Coral Triangle suggests peripheral speciation with enhanced survival in the cooler parts of the Coral Triangle that also have highly concentrated available habitat. These results indicate that conservation of habitat availability and heterogeneity is important to reduce extinction of marine species and that changes in sea surface temperatures may influence the evolutionary potential of the region.

  2. Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness"

    USDA-ARS?s Scientific Manuscript database

    Fraser et al. (Reports, 17 July 2015, p. 302) report a unimodal relationship between productivity and species richness at regional and global scales, which they contrast with the results of Adler et al. (Reports, 23 September 2011, p. 1750). However, both data sets, when analyzed correctly, show cl...

  3. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest

    PubMed Central

    2013-01-01

    Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted

  4. Diverse effects of degree of urbanisation and forest size on species richness and functional diversity of plants, and ground surface-active ants and spiders

    PubMed Central

    Melliger, Ramona Laila; Rusterholz, Hans-Peter; Baur, Bruno

    2018-01-01

    Urbanisation is increasing worldwide and is regarded a major driver of environmental change altering local species assemblages in urban green areas. Forests are one of the most frequent habitat types in urban landscapes harbouring many native species and providing important ecosystem services. By using a multi-taxa approach covering a range of trophic ranks, we examined the influence of degree of urbanisation and forest size on the species richness and functional diversity of plants, and ground surface-active ants and spiders. We conducted field surveys in twenty-six forests in the urban region of Basel, Switzerland. We found that a species’ response to urbanisation varied depending on trophic rank, habitat specificity and the diversity indices used. In plants, species richness decreased with degree of urbanisation, whereas that of both arthropod groups was not affected. However, ants and spiders at higher trophic rank showed greater shifts in species composition with increasing degree of urbanisation, and the percentage of forest specialists in both arthropod groups increased with forest size. Local abiotic site characteristics were also crucial for plant species diversity and species composition, while the structural diversity of both leaf litter and vegetation was important for the diversity of ants and spiders. Our results highlight that even small urban forests can harbour a considerable biodiversity including habitat specialists. Nonetheless, urbanisation directly and indirectly caused major shifts in species composition. Therefore, special consideration needs to be given to vulnerable species, including those with special habitat requirements. Locally adapted management practices could be a step forward to enhance habitat quality in a way to maximize diversity of forest species and thus ensure forest ecosystem functioning; albeit large-scale factors also remain important. PMID:29920553

  5. From the Atlantic Forest to the borders of Amazonia: species richness, distribution, and host association of ectoparasitic flies (Diptera: Nycteribiidae and Streblidae) in northeastern Brazil.

    PubMed

    Barbier, Eder; Bernard, Enrico

    2017-11-01

    Better knowledge of the geographical distribution of parasites and their hosts can contribute to clarifying aspects of host specificity, as well as on the interactions among hosts, parasites, and the environment in which both exist. Ectoparasitic flies of the Nycteribiidae and Streblidae families are highly specialized hematophagous parasites of bats, whose distributional patterns, species richness, and associations with hosts remain underexplored and poorly known in Brazil. Here, we used information available in the literature and unpublished data to verify if the occurrence of bat hosts in a given environment influences the occurrence and distribution of nycteribiid and streblid flies in different ecoregions in the northeastern Brazil. We evaluate species richness and similarity between ecoregions and tested correlations between species richness and the number of studies in each ecoregion and federative unit. We recorded 50 species and 15 genera of bat ectoparasitic flies on 36 species and 27 genera of bat hosts. The Atlantic Forest had the highest fly species richness (n = 31; 62%), followed by Caatinga (n = 27; 54%). We detected the formation of distinct groups, with low species overlap between ecoregions for both flies and bats. Fly species richness was correlated with host species richness and with the number of studies in each federative unit, but not with the number of studies by ecoregion. Due to the formation of distinct groups with low species overlap for both groups, host availability is likely to be one of the factors that most influence the occurrence of highly specific flies. We also discuss host specificity for some species, produced an updated list of species and distribution for both nycteribiid and streblid flies with information on interaction networks, and conclude by presenting recommendations for more effective inventories of bat ectoparasites in the future.

  6. The relative importance of vertical soil nutrient heterogeneity, and mean and depth-specific soil nutrient availabilities for tree species richness in tropical forests and woodlands.

    PubMed

    Shirima, Deo D; Totland, Ørjan; Moe, Stein R

    2016-11-01

    The relative importance of resource heterogeneity and quantity on plant diversity is an ongoing debate among ecologists, but we have limited knowledge on relationships between tree diversity and heterogeneity in soil nutrient availability in tropical forests. We expected tree species richness to be: (1) positively related to vertical soil nutrient heterogeneity; (2) negatively related to mean soil nutrient availability; and (3) more influenced by nutrient availability in the upper than lower soil horizons. Using a data set from 60, 20 × 40-m plots in a moist forest, and 126 plots in miombo woodlands in Tanzania, we regressed tree species richness against vertical soil nutrient heterogeneity, both depth-specific (0-15, 15-30, and 30-60 cm) and mean soil nutrient availability, and soil physical properties, with elevation and measures of anthropogenic disturbance as co-variables. Overall, vertical soil nutrient heterogeneity was the best predictor of tree species richness in miombo but, contrary to our prediction, the relationships between tree species richness and soil nutrient heterogeneity were negative. In the moist forest, mean soil nutrient availability explained considerable variations in tree species richness, and in line with our expectations, these relationships were mainly negative. Soil nutrient availability in the top soil layer explained more of the variation in tree species richness than that in the middle and lower layers in both vegetation types. Our study shows that vertical soil nutrient heterogeneity and mean availability can influence tree species richness at different magnitudes in intensively utilized tropical vegetation types.

  7. Species richness of Eurasian Zephyrus hairstreaks (Lepidoptera: Lycaenidae: Theclini) with implications on historical biogeography: An NDM/VNDM approach

    PubMed Central

    Yago, Masaya; Settele, Josef; Li, Xiushan; Ueshima, Rei; Grishin, Nick V.; Wang, Min

    2018-01-01

    Aim A database based on distributional records of Eurasian Zephyrus hairstreaks (Lepidoptera: Lycaenidae: Theclini) was compiled to analyse their areas of endemism (AoEs), species richness and distribution patterns, to explore their locations of past glacial refugia and dispersal routes. Methods Over 2000 Zephyrus hairstreaks occurrences are analysed using the NDM/VNDM algorithm, for the recognition of AoEs. Species richness was calculated by using the option ‘Number of different classes’ to count the different classes of a variable presented in each 3.0°×3.0° grid cell, and GIS software was used to visualize distribution patterns of endemic species. Results Centres of species richness of Zephyrus hairstreaks are situated in the eastern Qinghai-Tibet Plateau (EQTP), Hengduan Mountain Region (HDMR) and the Qinling Mountain Region (QLMR). Latitudinal gradients in species richness show normal distribution with the peak between 25° N and 35° N in the temperate zone, gradually decreasing towards the poles. Moreover, most parts of central and southern China, especially the area of QLMR-EQTP-HDMR, were identified as AoEs that may have played a significant role as refugia during Quaternary global cooling. There are four major distributional patterns of Zephyrus hairstreaks in Eurasia: Sino-Japanese, Sino-Himalayan, high-mountain and a combined distribution covering all three patterns. Conclusions Zephyrus hairstreaks probably originated at least 23–24 Myr ago in E. Asia between 25° N to 35° N in the temperate zone. Cenozoic orogenies caused rapid speciation of this tribe and extrusion of the Indochina block resulted in vicariance between the Sino-Japanese and the Sino-Himalayan patterns. The four distribution patterns provided two possible dispersal directions: Sino-Japanese dispersal and Sino-Himalayan dispersal. PMID:29351314

  8. Species richness of Eurasian Zephyrus hairstreaks (Lepidoptera: Lycaenidae: Theclini) with implications on historical biogeography: An NDM/VNDM approach.

    PubMed

    Zhuang, Hailing; Yago, Masaya; Settele, Josef; Li, Xiushan; Ueshima, Rei; Grishin, Nick V; Wang, Min

    2018-01-01

    A database based on distributional records of Eurasian Zephyrus hairstreaks (Lepidoptera: Lycaenidae: Theclini) was compiled to analyse their areas of endemism (AoEs), species richness and distribution patterns, to explore their locations of past glacial refugia and dispersal routes. Over 2000 Zephyrus hairstreaks occurrences are analysed using the NDM/VNDM algorithm, for the recognition of AoEs. Species richness was calculated by using the option 'Number of different classes' to count the different classes of a variable presented in each 3.0°×3.0° grid cell, and GIS software was used to visualize distribution patterns of endemic species. Centres of species richness of Zephyrus hairstreaks are situated in the eastern Qinghai-Tibet Plateau (EQTP), Hengduan Mountain Region (HDMR) and the Qinling Mountain Region (QLMR). Latitudinal gradients in species richness show normal distribution with the peak between 25° N and 35° N in the temperate zone, gradually decreasing towards the poles. Moreover, most parts of central and southern China, especially the area of QLMR-EQTP-HDMR, were identified as AoEs that may have played a significant role as refugia during Quaternary global cooling. There are four major distributional patterns of Zephyrus hairstreaks in Eurasia: Sino-Japanese, Sino-Himalayan, high-mountain and a combined distribution covering all three patterns. Zephyrus hairstreaks probably originated at least 23-24 Myr ago in E. Asia between 25° N to 35° N in the temperate zone. Cenozoic orogenies caused rapid speciation of this tribe and extrusion of the Indochina block resulted in vicariance between the Sino-Japanese and the Sino-Himalayan patterns. The four distribution patterns provided two possible dispersal directions: Sino-Japanese dispersal and Sino-Himalayan dispersal.

  9. Human access and landscape structure effects on Andean forest bird richness

    NASA Astrophysics Data System (ADS)

    Aubad, Jorge; Aragón, Pedro; Rodríguez, Miguel Á.

    2010-07-01

    We analyzed the influence of human access and landscape structure on forest bird species richness in a fragmented landscape of the Colombian Andes. In Latin America, habitat loss and fragmentation are considered as the greatest threats to biodiversity because a large number of countryside villagers complement their food and incomes with the extraction of forest resources. Anthropogenic actions may also affect forest species by bird hunting or indirectly through modifying the structure of forest habitats. We surveyed 14 secondary cloud forest remnants to generate bird species richness data for each of them. We also quantified six landscape structure descriptors of forest patch size (patch area and core area), shape (perimeter of each fragment and the Patton's shape index) and isolation (nearest neighbor distance and edge contrast), and generated (using principal components analysis) a synthetic human influence variable based on the distance of each fragment to roads and villages, as well as the total slope of the fragments. Species richness was related to these variables using generalized linear models (GLMs) complemented with model selection techniques based on information theory and partial regression analysis. We found that forest patch size and accessibility were key drivers of bird richness, which increased toward largest patches, but decreased in those more accessible to humans and their potential disturbances. Both patch area and human access effects on forest bird species richness were complementary and similar in magnitude. Our results provide a basis for biodiversity conservation plans and initiatives of Andean forest diversity.

  10. Evaluation of species richness estimators based on quantitative performance measures and sensitivity to patchiness and sample grain size

    NASA Astrophysics Data System (ADS)

    Willie, Jacob; Petre, Charles-Albert; Tagg, Nikki; Lens, Luc

    2012-11-01

    Data from forest herbaceous plants in a site of known species richness in Cameroon were used to test the performance of rarefaction and eight species richness estimators (ACE, ICE, Chao1, Chao2, Jack1, Jack2, Bootstrap and MM). Bias, accuracy, precision and sensitivity to patchiness and sample grain size were the evaluation criteria. An evaluation of the effects of sampling effort and patchiness on diversity estimation is also provided. Stems were identified and counted in linear series of 1-m2 contiguous square plots distributed in six habitat types. Initially, 500 plots were sampled in each habitat type. The sampling process was monitored using rarefaction and a set of richness estimator curves. Curves from the first dataset suggested adequate sampling in riparian forest only. Additional plots ranging from 523 to 2143 were subsequently added in the undersampled habitats until most of the curves stabilized. Jack1 and ICE, the non-parametric richness estimators, performed better, being more accurate and less sensitive to patchiness and sample grain size, and significantly reducing biases that could not be detected by rarefaction and other estimators. This study confirms the usefulness of non-parametric incidence-based estimators, and recommends Jack1 or ICE alongside rarefaction while describing taxon richness and comparing results across areas sampled using similar or different grain sizes. As patchiness varied across habitat types, accurate estimations of diversity did not require the same number of plots. The number of samples needed to fully capture diversity is not necessarily the same across habitats, and can only be known when taxon sampling curves have indicated adequate sampling. Differences in observed species richness between habitats were generally due to differences in patchiness, except between two habitats where they resulted from differences in abundance. We suggest that communities should first be sampled thoroughly using appropriate taxon sampling

  11. Environmental effects on vertebrate species richness: testing the energy, environmental stability and habitat heterogeneity hypotheses.

    PubMed

    Luo, Zhenhua; Tang, Songhua; Li, Chunwang; Fang, Hongxia; Hu, Huijian; Yang, Ji; Ding, Jingjing; Jiang, Zhigang

    2012-01-01

    Explaining species richness patterns is a central issue in biogeography and macroecology. Several hypotheses have been proposed to explain the mechanisms driving biodiversity patterns, but the causes of species richness gradients remain unclear. In this study, we aimed to explain the impacts of energy, environmental stability, and habitat heterogeneity factors on variation of vertebrate species richness (VSR), based on the VSR pattern in China, so as to test the energy hypothesis, the environmental stability hypothesis, and the habitat heterogeneity hypothesis. A dataset was compiled containing the distributions of 2,665 vertebrate species and eleven ecogeographic predictive variables in China. We grouped these variables into categories of energy, environmental stability, and habitat heterogeneity and transformed the data into 100 × 100 km quadrat systems. To test the three hypotheses, AIC-based model selection was carried out between VSR and the variables in each group and correlation analyses were conducted. There was a decreasing VSR gradient from the southeast to the northwest of China. Our results showed that energy explained 67.6% of the VSR variation, with the annual mean temperature as the main factor, which was followed by annual precipitation and NDVI. Environmental stability factors explained 69.1% of the VSR variation and both temperature annual range and precipitation seasonality had important contributions. By contrast, habitat heterogeneity variables explained only 26.3% of the VSR variation. Significantly positive correlations were detected among VSR, annual mean temperature, annual precipitation, and NDVI, whereas the relationship of VSR and temperature annual range was strongly negative. In addition, other variables showed moderate or ambiguous relations to VSR. The energy hypothesis and the environmental stability hypothesis were supported, whereas little support was found for the habitat heterogeneity hypothesis.

  12. Environmental Effects on Vertebrate Species Richness: Testing the Energy, Environmental Stability and Habitat Heterogeneity Hypotheses

    PubMed Central

    Luo, Zhenhua; Tang, Songhua; Li, Chunwang; Fang, Hongxia; Hu, Huijian; Yang, Ji; Ding, Jingjing; Jiang, Zhigang

    2012-01-01

    Background Explaining species richness patterns is a central issue in biogeography and macroecology. Several hypotheses have been proposed to explain the mechanisms driving biodiversity patterns, but the causes of species richness gradients remain unclear. In this study, we aimed to explain the impacts of energy, environmental stability, and habitat heterogeneity factors on variation of vertebrate species richness (VSR), based on the VSR pattern in China, so as to test the energy hypothesis, the environmental stability hypothesis, and the habitat heterogeneity hypothesis. Methodology/Principal Findings A dataset was compiled containing the distributions of 2,665 vertebrate species and eleven ecogeographic predictive variables in China. We grouped these variables into categories of energy, environmental stability, and habitat heterogeneity and transformed the data into 100×100 km quadrat systems. To test the three hypotheses, AIC-based model selection was carried out between VSR and the variables in each group and correlation analyses were conducted. There was a decreasing VSR gradient from the southeast to the northwest of China. Our results showed that energy explained 67.6% of the VSR variation, with the annual mean temperature as the main factor, which was followed by annual precipitation and NDVI. Environmental stability factors explained 69.1% of the VSR variation and both temperature annual range and precipitation seasonality had important contributions. By contrast, habitat heterogeneity variables explained only 26.3% of the VSR variation. Significantly positive correlations were detected among VSR, annual mean temperature, annual precipitation, and NDVI, whereas the relationship of VSR and temperature annual range was strongly negative. In addition, other variables showed moderate or ambiguous relations to VSR. Conclusions/Significance The energy hypothesis and the environmental stability hypothesis were supported, whereas little support was found for the

  13. Staged invasions across disparate grasslands: Effects of seed provenance, consumers and disturbance on productivity and species richness

    Treesearch

    John L. Maron; Harald Auge; Dean E. Pearson; Lotte Korell; Isabell Hensen; Katharine N. Suding; Claudia Stein

    2014-01-01

    Exotic plant invasions are thought to alter productivity and species richness, yet these patterns are typically correlative. Few studies have experimentally invaded sites and asked how addition of novel species influences ecosystem function and community structure and examined the role of competitors and/or consumers in mediating these patterns. We invaded disturbed...

  14. Facilitation influences patterns of perennial species abundance and richness in a subtropical dune system.

    PubMed

    Dalotto, Cecilia E S; Sühs, Rafael B; Dechoum, Michele S; Pugnaire, Francisco I; Peroni, Nivaldo; Castellani, Tânia T

    2018-04-01

    Positive interactions in plant communities are under-reported in subtropical systems most likely because they are not identified as stressful environments. However, environmental factors or disturbance can limit plant growth in any system and lead to stressful conditions. For instance, salinity and low nutrient and water availability generate a gradient of stressful conditions in coastal systems depending on distance to shore. In a tropical coastal system in SE Brazil, we aimed to assess whether Guapira opposita , a shrub common in restinga environments, acted as nurse involved in ecological succession and which factors influenced its facilitation process. We sampled perennial species above 10 cm in height under the canopy of 35 G. opposita individuals and in neighbouring open areas. Shrub height, canopy area and distance to freshwater bodies were measured in the field, and distance to the ocean was obtained from aerial images. In addition, we measured the distance to the closest forest patch as a potential source of seeds. Plant abundance and species richness were higher under the canopy of G. opposita than in open areas. Facilitation by G. opposita was mainly determined by shrub height, which had a positive relationship with woody and bromeliads abundance and species richness while there was no relationship with the other factors. Overall, our data evidence that tropical environments may be highly stressful for plants and that nurse species play a key role in the regeneration of restinga environments, where their presence is critical to maintain ecosystem diversity and function.

  15. Viral Richness is Positively Related to Group Size, but Not Mating System, in Bats.

    PubMed

    Webber, Quinn M R; Fletcher, Quinn E; Willis, Craig K R

    2017-12-01

    Characterizing host traits that influence viral richness and diversification is important for understanding wildlife pathogens affecting conservation and/or human health. Behaviors that affect contact rates among hosts could be important for viral diversification because more frequent intra- and inter-specific contacts among hosts should increase the potential for viral diversification within host populations. We used published data on bats to test the contact-rate hypothesis. We predicted that species forming large conspecific groups, that share their range with more heterospecifics (i.e., sympatry), and with mating systems characterized by high contact rates (polygynandry: multi-male/multi-female), would host higher viral richness than species with small group sizes, lower sympatry, or low contact-rate mating systems (polygyny: single male/multi-female). Consistent with our hypothesis and previous research, viral richness was positively correlated with conspecific group size although the relationship plateaued at group sizes of approximately several hundred thousand bats. This pattern supports epidemiological theory that, up to a point, larger groups have higher contact rates, greater likelihood of acquiring and transmitting viruses, and ultimately greater potential for viral diversification. However, contrary to our hypothesis, there was no effect of sympatry on viral richness and no difference in viral richness between mating systems. We also found no residual effect of host phylogeny on viral richness, suggesting that closely related species do not necessarily host similar numbers of viruses. Our results support the contact-rate hypothesis that intra-specific viral transmission can enhance viral diversification within species and highlight the influence of host group size on the potential of viruses to propagate within host populations.

  16. A multivariate model of plant species richness in forested systems: Old-growth montane forests with a long history of fire

    USGS Publications Warehouse

    Laughlin, D.C.; Grace, J.B.

    2006-01-01

    Recently, efforts to develop multivariate models of plant species richness have been extended to include systems where trees play important roles as overstory elements mediating the influences of environment and disturbance on understory richness. We used structural equation modeling to examine the relationship of understory vascular plant species richness to understory abundance, forest structure, topographic slope, and surface fire history in lower montane forests on the North Rim of Grand Canyon National Park, USA based on data from eighty-two 0.1 ha plots. The questions of primary interest in this analysis were: (1) to what degree are influences of trees on understory richness mediated by effects on understory abundance? (2) To what degree are influences of fire history on richness mediated by effects on trees and/or understory abundance? (3) Can the influences of fire history on this system be related simply to time-since-fire or are there unique influences associated with long-term fire frequency? The results we obtained are consistent with the following inferences. First, it appears that pine trees had a strong inhibitory effect on the abundance of understory plants, which in turn led to lower understory species richness. Second, richness declined over time since the last fire. This pattern appears to result from several processes, including (1) a post-fire stimulation of germination, (2) a decline in understory abundance, and (3) an increase over time in pine abundance (which indirectly leads to reduced richness). Finally, once time-since-fire was statistically controlled, it was seen that areas with higher fire frequency have lower richness than expected, which appears to result from negative effects on understory abundance, possibly by depletions of soil nutrients from repeated surface fire. Overall, it appears that at large temporal and spatial scales, surface fire plays an important and complex role in structuring understory plant communities in old

  17. Bryophyte Species Richness on Retention Aspens Recovers in Time but Community Structure Does Not

    PubMed Central

    Oldén, Anna; Ovaskainen, Otso; Kotiaho, Janne S.; Laaka-Lindberg, Sanna; Halme, Panu

    2014-01-01

    Green-tree retention is a forest management method in which some living trees are left on a logged area. The aim is to offer ‘lifeboats’ to support species immediately after logging and to provide microhabitats during and after forest re-establishment. Several studies have shown immediate decline in bryophyte diversity after retention logging and thus questioned the effectiveness of this method, but longer term studies are lacking. Here we studied the epiphytic bryophytes on European aspen (Populus tremula L.) retention trees along a 30-year chronosequence. We compared the bryophyte flora of 102 ‘retention aspens’ on 14 differently aged retention sites with 102 ‘conservation aspens’ on 14 differently aged conservation sites. We used a Bayesian community-level modelling approach to estimate the changes in bryophyte species richness, abundance (area covered) and community structure during 30 years after logging. Using the fitted model, we estimated that two years after logging both species richness and abundance of bryophytes declined, but during the following 20–30 years both recovered to the level of conservation aspens. However, logging-induced changes in bryophyte community structure did not fully recover over the same time period. Liverwort species showed some or low potential to benefit from lifeboating and high potential to re-colonise as time since logging increases. Most moss species responded similarly, but two cushion-forming mosses benefited from the logging disturbance while several weft- or mat-forming mosses declined and did not re-colonise in 20–30 years. We conclude that retention trees do not function as equally effective lifeboats for all bryophyte species but are successful in providing suitable habitats for many species in the long-term. To be most effective, retention cuts should be located adjacent to conservation sites, which may function as sources of re-colonisation and support the populations of species that require old

  18. Sugar-rich sweet sorghum is distinctively affected by wall polymer features for biomass digestibility and ethanol fermentation in bagasse.

    PubMed

    Li, Meng; Feng, Shengqiu; Wu, Leiming; Li, Ying; Fan, Chunfen; Zhang, Rui; Zou, Weihua; Tu, Yuanyuan; Jing, Hai-Chun; Li, Shizhong; Peng, Liangcai

    2014-09-01

    Sweet sorghum has been regarded as a typical species for rich soluble-sugar and high lignocellulose residues, but their effects on biomass digestibility remain unclear. In this study, we examined total 63 representative sweet sorghum accessions that displayed a varied sugar level at stalk and diverse cell wall composition at bagasse. Correlative analysis showed that both soluble-sugar and dry-bagasse could not significantly affect lignocellulose saccharification under chemical pretreatments. Comparative analyses of five typical pairs of samples indicated that DP of crystalline cellulose and arabinose substitution degree of non-KOH-extractable hemicelluloses distinctively affected lignocellulose crystallinity for high biomass digestibility. By comparison, lignin could not alter lignocellulose crystallinity, but the KOH-extractable G-monomer predominately determined lignin negative impacts on biomass digestions, and the G-levels released from pretreatments significantly inhibited yeast fermentation. The results also suggested potential genetic approaches for enhancing soluble-sugar level and lignocellulose digestibility and reducing ethanol conversion inhibition in sweet sorghum. Copyright © 2014. Published by Elsevier Ltd.

  19. Climatic controls on the global distribution, abundance, and species richness of mangrove forests

    USGS Publications Warehouse

    Osland, Michael J.; Feher, Laura C.; Griffith, Kereen; Cavanaugh, Kyle C.; Enwright, Nicholas M.; Day, Richard H.; Stagg, Camille L.; Krauss, Ken W.; Howard, Rebecca J.; Grace, James B.; Rogers, Kerrylee

    2017-01-01

    Mangrove forests are highly productive tidal saline wetland ecosystems found along sheltered tropical and subtropical coasts. Ecologists have long assumed that climatic drivers (i.e., temperature and rainfall regimes) govern the global distribution, structure, and function of mangrove forests. However, data constraints have hindered the quantification of direct climate-mangrove linkages in many parts of the world. Recently, the quality and availability of global-scale climate and mangrove data have been improving. Here, we used these data to better understand the influence of air temperature and rainfall regimes upon the distribution, abundance, and species richness of mangrove forests. Although our analyses identify global-scale relationships and thresholds, we show that the influence of climatic drivers is best characterized via regional range limit-specific analyses. We quantified climatic controls across targeted gradients in temperature and/or rainfall within 14 mangrove distributional range limits. Climatic thresholds for mangrove presence, abundance, and species richness differed among the 14 studied range limits. We identified minimum temperature-based thresholds for range limits in eastern North America, eastern Australia, New Zealand, eastern Asia, eastern South America, and southeast Africa. We identified rainfall-based thresholds for range limits in western North America, western Gulf of Mexico, western South America, western Australia, Middle East, northwest Africa, east central Africa, and west central Africa. Our results show that in certain range limits (e.g., eastern North America, western Gulf of Mexico, eastern Asia), winter air temperature extremes play an especially important role. We conclude that rainfall and temperature regimes are both important in western North America, western Gulf of Mexico, and western Australia. With climate change, alterations in temperature and rainfall regimes will affect the global distribution, abundance, and

  20. Comparison of Species Richness Estimates Obtained Using Nearly Complete Fragments and Simulated Pyrosequencing-Generated Fragments in 16S rRNA Gene-Based Environmental Surveys▿ †

    PubMed Central

    Youssef, Noha; Sheik, Cody S.; Krumholz, Lee R.; Najar, Fares Z.; Roe, Bruce A.; Elshahed, Mostafa S.

    2009-01-01

    Pyrosequencing-based 16S rRNA gene surveys are increasingly utilized to study highly diverse bacterial communities, with special emphasis on utilizing the large number of sequences obtained (tens to hundreds of thousands) for species richness estimation. However, it is not yet clear how the number of operational taxonomic units (OTUs) and, hence, species richness estimates determined using shorter fragments at different taxonomic cutoffs correlates with the number of OTUs assigned using longer, nearly complete 16S rRNA gene fragments. We constructed a 16S rRNA clone library from an undisturbed tallgrass prairie soil (1,132 clones) and used it to compare species richness estimates obtained using eight pyrosequencing candidate fragments (99 to 361 bp in length) and the nearly full-length fragment. Fragments encompassing the V1 and V2 (V1+V2) region and the V6 region (generated using primer pairs 8F-338R and 967F-1046R) overestimated species richness; fragments encompassing the V3, V7, and V7+V8 hypervariable regions (generated using primer pairs 338F-530R, 1046F-1220R, and 1046F-1392R) underestimated species richness; and fragments encompassing the V4, V5+V6, and V6+V7 regions (generated using primer pairs 530F-805R, 805F-1046R, and 967F-1220R) provided estimates comparable to those obtained with the nearly full-length fragment. These patterns were observed regardless of the alignment method utilized or the parameter used to gauge comparative levels of species richness (number of OTUs observed, slope of scatter plots of pairwise distance values for short and nearly complete fragments, and nonparametric and parametric species richness estimates). Similar results were obtained when analyzing three other datasets derived from soil, adult Zebrafish gut, and basaltic formations in the East Pacific Rise. Regression analysis indicated that these observed discrepancies in species richness estimates within various regions could readily be explained by the proportions of

  1. Influence of richness and seeding density on invasion resistance in experimental tallgrass prairie restorations

    USGS Publications Warehouse

    Nemec, Kristine T.; Allen, Craig R.; Helzer, Christopher J.; Wedin, David A.

    2013-01-01

    In recent years, agricultural producers and non-governmental organizations and agencies have restored thousands of hectares of cropland to grassland in the Great Plains of the United States. However, little is known about the relationships between richness and seeding density in these restorations and resistance to invasive plant species. We assessed the effects of richness and seeding density on resistance to invasive and other unseeded plant species in experimental tallgrass prairie plots in central Nebraska. In 2006, twenty-four 55 m × 55 m plots were planted with six replicates in each of four treatments: high richness (97 species typically planted by The Nature Conservancy), at low and high seeding densities, and low richness (15 species representing a typical Conservation Reserve Program mix, CP25), at low and high seeding densities. There was a significant negative relationship between richness and basal cover of unseeded perennial forbs/legumes and unseeded perennial/annual grasses, abundance of bull thistle (Cirsium vulgare), and the number of inflorescences removed from smooth brome (Bromus inermis) transplants. Invasion resistance may have been higher in the high richness treatments because of the characteristics of the dominant species in these plots or because of greater interspecific competition for limiting resources among forbs/legumes with neighboring plants belonging to the same functional group. Seeding density was not important in affecting invasion resistance, except in the cover of unseeded grasses. Increasing seed mix richness may be more effective than increasing the seeding density for decreasing invasion by unseeded perennial species, bull thistle, and smooth brome.

  2. [Ants’ higher taxa as surrogates of species richness in a chronosequence of fallows, old-grown forests and agroforestry systems in the Eastern Amazon, Brazil].

    PubMed

    Muñoz Gutiérrez, Jhonatan Andrés; Roussea, Guillaume Xavier; Andrade-Silva, Joudellys; Delabie, Jacques Hubert Charles

    2017-03-01

    Deforestation in Amazon forests is one of the main causes for biodiversity loss worldwide. Ants are key into the ecosystem because act like engineers; hence, the loss of ants’ biodiversity may be a guide to measure the loss of essential functions into the ecosystems. The aim of this study was to evaluate soil ant’s richness and to estimate whether higher taxa levels (Subfamily and Genus) can be used as surrogates of species richness in different vegetation types (fallows, old-growth forests and agroforestry systems) in Eastern Amazon. The samples were taken in 65 areas in the Maranhão and Pará States in the period 2011-2014. The sampling scheme followed the procedure of Tropical Soil Biology and Fertility (TSBF). Initially, the vegetation types were characterized according to their age and estimated species richness. Linear and exponential functions were applied to evaluate if higher taxa can be used as surrogates and correlated with the Pearson coefficient. In total, 180 species distributed in 60 genera were identified. The results showed that ant species richness was higher in intermediate fallows (88) and old secondary forest (76), and was lower in agroforestry systems (38) and mature riparian forest (35). The genus level was the best surrogate to estimate the ant’s species richness across the different vegetation types, and explained 72-97 % (P < 0.001) of the total species variability. The results confirmed that the genus level is an excellent surrogate to estimate the ant’s species richness in the region and that both fallows and agroforestry systems may contribute in the conservation of Eastern Amazon ant community.

  3. Vertical gradients in species richness and community composition across the twilight zone in the North Pacific Subtropical Gyre.

    PubMed

    Sommer, Stephanie A; Van Woudenberg, Lauren; Lenz, Petra H; Cepeda, Georgina; Goetze, Erica

    2017-11-01

    Although metazoan animals in the mesopelagic zone play critical roles in deep pelagic food webs and in the attenuation of carbon in midwaters, the diversity of these assemblages is not fully known. A metabarcoding survey of mesozooplankton diversity across the epipelagic, mesopelagic and upper bathypelagic zones (0-1500 m) in the North Pacific Subtropical Gyre revealed far higher estimates of species richness than expected given prior morphology-based studies in the region (4,024 OTUs, 10-fold increase), despite conservative bioinformatic processing. Operational taxonomic unit (OTU) richness of the full assemblage peaked at lower epipelagic-upper mesopelagic depths (100-300 m), with slight shoaling of maximal richness at night due to diel vertical migration, in contrast to expectations of a deep mesopelagic diversity maximum as reported for several plankton groups in early systematic and zoogeographic studies. Four distinct depth-stratified species assemblages were identified, with faunal transitions occurring at 100 m, 300 m and 500 m. Highest diversity occurred in the smallest zooplankton size fractions (0.2-0.5 mm), which had significantly lower % OTUs classified due to poor representation in reference databases, suggesting a deep reservoir of poorly understood diversity in the smallest metazoan animals. A diverse meroplankton assemblage also was detected (350 OTUs), including larvae of both shallow and deep living benthic species. Our results provide some of the first insights into the hidden diversity present in zooplankton assemblages in midwaters, and a molecular reappraisal of vertical gradients in species richness, depth distributions and community composition for the full zooplankton assemblage across the epipelagic, mesopelagic and upper bathypelagic zones. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  4. Testing Dragonflies as Species Richness Indicators in a Fragmented Subtropical Atlantic Forest Environment.

    PubMed

    Renner, S; Sahlén, G; Périco, E

    2016-06-01

    We surveyed 15 bodies of water among remnants of the Atlantic Forest biome in southern Brazil for adult dragonflies and damselflies to test whether an empirical selection method for diversity indicators could be applied in a subtropical ecosystem, where limited ecological knowledge on species level is available. We found a regional species pool of 34 species distributed in a nested subset pattern with a mean of 11.2 species per locality. There was a pronounced difference in species composition between spring, summer, and autumn, but no differences in species numbers between seasons. Two species, Homeoura chelifera (Selys) and Ischnura capreolus (Hagen), were the strongest candidates for regional diversity indicators, being found only at species-rich localities in our surveyed area and likewise in an undisturbed national forest reserve, serving as a reference site for the Atlantic Forest. Using our selection method, we found it possible to obtain a tentative list of diversity indicators without having detailed ecological information of each species, providing a reference site is available for comparison. The method thus allows for indicator species to be selected in blanco from taxonomic groups that are little known. We hence argue that Odonata can already be incorporated in ongoing assessment programs in the Neotropics, which would also increase the ecological knowledge of the group and allow extrapolation to other taxa.

  5. What are the evolutionary mechanisms explaining the similar species richness patterns in tropical mosses? Insights from the phylogeny of the pantropical genus Pelekium.

    PubMed

    Norhazrina, Nik; Vanderpoorten, Alain; Hedenäs, Lars; Patiño, Jairo

    2016-12-01

    As opposed to angiosperms, moss species richness is similar among tropical regions of the world, in line with the hypothesis that tropical bryophytes are extremely good dispersers. Here, we reconstructed the phylogeny of the pantropical moss genus Pelekium to test the hypothesis that high migration rates erase any difference in species richness among tropical regions. In contrast with this hypothesis, several species considered to have a pantropical range were resolved as a complex of species with a strong geographic structure. Consequently, a significant phylogeographical signal was found in the data, evidencing that cladogenetic diversification within regions takes place at a faster rate than intercontinental migration. The shape of the Pelekium phylogeny, along with the selection of a constant-rate model of diversification among species in the genus, suggests, however, that the cladogenetic speciation patterns observed in Pelekium are not comparable to some of the spectacular examples of tropical radiations reported in angiosperms. Rather, the results presented here point to the constant accumulation of diversity through time in Pelekium. This, combined with evidence for long-distance dispersal limitations in the genus, suggests that the similar patterns of species richness among tropical areas are better explained in terms of comparable rates of diversification across tropical regions than by the homogenization of species richness by recurrent migrations. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Do unpaved, low-traffic roads affect bird communities?

    NASA Astrophysics Data System (ADS)

    Mammides, Christos; Kounnamas, Constantinos; Goodale, Eben; Kadis, Costas

    2016-02-01

    Unpaved, low traffic roads are often assumed to have minimal effects on biodiversity. To explore this assertion, we sampled the bird communities in fifteen randomly selected sites in Pafos Forest, Cyprus and used multiple regression to quantify the effects of such roads on the total species richness. Moreover, we classified birds according to their migratory status and their global population trends, and tested each category separately. Besides the total length of unpaved roads, we also tested: a. the site's habitat diversity, b. the coefficient of variation in habitat (patch) size, c. the distance to the nearest agricultural field, and d. the human population size of the nearest village. We measured our variables at six different distances from the bird point-count locations. We found a strong negative relationship between the total bird richness and the total length of unpaved roads. The human population size of the nearest village also had a negative effect. Habitat diversity was positively related to species richness. When the categories were tested, we found that the passage migrants were influenced more by the road network while resident breeders were influenced by habitat diversity. Species with increasing and stable populations were only marginally affected by the variables tested, but the effect of road networks on species with decreasing populations was large. We conclude that unpaved and sporadically used roads can have detrimental effects on the bird communities, especially on vulnerable species. We propose that actions are taken to limit the extent of road networks within protected areas, especially in sites designated for their rich avifauna, such as Pafos Forest, where several of the affected species are species of European and global importance.

  7. Facilitation influences patterns of perennial species abundance and richness in a subtropical dune system

    PubMed Central

    Dalotto, Cecilia E S; Sühs, Rafael B; Dechoum, Michele S; Pugnaire, Francisco I; Peroni, Nivaldo; Castellani, Tânia T

    2018-01-01

    Abstract Positive interactions in plant communities are under-reported in subtropical systems most likely because they are not identified as stressful environments. However, environmental factors or disturbance can limit plant growth in any system and lead to stressful conditions. For instance, salinity and low nutrient and water availability generate a gradient of stressful conditions in coastal systems depending on distance to shore. In a tropical coastal system in SE Brazil, we aimed to assess whether Guapira opposita, a shrub common in restinga environments, acted as nurse involved in ecological succession and which factors influenced its facilitation process. We sampled perennial species above 10 cm in height under the canopy of 35 G. opposita individuals and in neighbouring open areas. Shrub height, canopy area and distance to freshwater bodies were measured in the field, and distance to the ocean was obtained from aerial images. In addition, we measured the distance to the closest forest patch as a potential source of seeds. Plant abundance and species richness were higher under the canopy of G. opposita than in open areas. Facilitation by G. opposita was mainly determined by shrub height, which had a positive relationship with woody and bromeliads abundance and species richness while there was no relationship with the other factors. Overall, our data evidence that tropical environments may be highly stressful for plants and that nurse species play a key role in the regeneration of restinga environments, where their presence is critical to maintain ecosystem diversity and function. PMID:29644027

  8. First record of bat-pollination in the species-rich genus Tillandsia (Bromeliaceae).

    PubMed

    Aguilar-Rodríguez, Pedro Adrián; MacSwiney G, M Cristina; Krömer, Thorsten; García-Franco, José G; Knauer, Anina; Kessler, Michael

    2014-05-01

    Bromeliaceae is a species-rich neotropical plant family that uses a variety of pollinators, principally vertebrates. Tillandsia is the most diverse genus, and includes more than one-third of all bromeliad species. Within this genus, the majority of species rely on diurnal pollination by hummingbirds; however, the flowers of some Tillandsia species show some characteristics typical for pollination by nocturnal animals, particularly bats and moths. In this study an examination is made of the floral and reproductive biology of the epiphytic bromeliad Tillandsia macropetala in a fragment of humid montane forest in central Veracruz, Mexico. The reproductive system of the species, duration of anthesis, production of nectar and floral scent, as well as diurnal and nocturnal floral visitors and their effectiveness in pollination were determined. Tillandsia macropetala is a self-compatible species that achieves a higher fruit production through outcrossing. Nectar production is restricted to the night, and only nocturnal visits result in the development of fruits. The most frequent visitor (75 % of visits) and the only pollinator of this bromeliad (in 96 % of visits) was the nectarivorous bat Anoura geoffroyi (Phyllostomidae: Glossophaginae). This is the first report of chiropterophily within the genus Tillandsia. The results on the pollination biology of this bromeliad suggest an ongoing evolutionary switch from pollination by birds or moths to bats.

  9. First record of bat-pollination in the species-rich genus Tillandsia (Bromeliaceae)

    PubMed Central

    Aguilar-Rodríguez, Pedro Adrián; MacSwiney G., M. Cristina; Krömer, Thorsten; García-Franco, José G.; Knauer, Anina; Kessler, Michael

    2014-01-01

    Background and Aims Bromeliaceae is a species-rich neotropical plant family that uses a variety of pollinators, principally vertebrates. Tillandsia is the most diverse genus, and includes more than one-third of all bromeliad species. Within this genus, the majority of species rely on diurnal pollination by hummingbirds; however, the flowers of some Tillandsia species show some characteristics typical for pollination by nocturnal animals, particularly bats and moths. In this study an examination is made of the floral and reproductive biology of the epiphytic bromeliad Tillandsia macropetala in a fragment of humid montane forest in central Veracruz, Mexico. Methods The reproductive system of the species, duration of anthesis, production of nectar and floral scent, as well as diurnal and nocturnal floral visitors and their effectiveness in pollination were determined. Key Results Tillandsia macropetala is a self-compatible species that achieves a higher fruit production through outcrossing. Nectar production is restricted to the night, and only nocturnal visits result in the development of fruits. The most frequent visitor (75 % of visits) and the only pollinator of this bromeliad (in 96 % of visits) was the nectarivorous bat Anoura geoffroyi (Phyllostomidae: Glossophaginae). Conclusions This is the first report of chiropterophily within the genus Tillandsia. The results on the pollination biology of this bromeliad suggest an ongoing evolutionary switch from pollination by birds or moths to bats. PMID:24651370

  10. Vector species richness increases haemorrhagic disease prevalence through functional diversity modulating the duration of seasonal transmission.

    PubMed

    Park, Andrew W; Cleveland, Christopher A; Dallas, Tad A; Corn, Joseph L

    2016-06-01

    Although many parasites are transmitted between hosts by a suite of arthropod vectors, the impact of vector biodiversity on parasite transmission is poorly understood. Positive relationships between host infection prevalence and vector species richness (SR) may operate through multiple mechanisms, including (i) increased vector abundance, (ii) a sampling effect in which species of high vectorial capacity are more likely to occur in species-rich communities, and (iii) functional diversity whereby communities comprised species with distinct phenologies may extend the duration of seasonal transmission. Teasing such mechanisms apart is impeded by a lack of appropriate data, yet could highlight a neglected role for functional diversity in parasite transmission. We used statistical modelling of extensive host, vector and microparasite data to test the hypothesis that functional diversity leading to longer seasonal transmission explained variable levels of disease in a wildlife population. We additionally developed a simple transmission model to guide our expectation of how an increased transmission season translates to infection prevalence. Our study demonstrates that vector SR is associated with increased levels of disease reporting, but not via increases in vector abundance or via a sampling effect. Rather, the relationship operates by extending the length of seasonal transmission, in line with theoretical predictions.

  11. Threshold effect of habitat loss on bat richness in cerrado-forest landscapes.

    PubMed

    Muylaert, Renata L; Stevens, Richard D; Ribeiro, Milton C

    2016-09-01

    Understanding how animal groups respond to contemporary habitat loss and fragmentation is essential for development of strategies for species conservation. Until now, there has been no consensus about how landscape degradation affects the diversity and distribution of Neotropical bats. Some studies demonstrate population declines and species loss in impacted areas, although the magnitude and generality of these effects on bat community structure are unclear. Empirical fragmentation thresholds predict an accentuated drop in biodiversity, and species richness in particular, when less than 30% of the original amount of habitat in the landscape remains. In this study, we tested whether bat species richness demonstrates this threshold response, based on 48 sites distributed across 12 landscapes with 9-88% remaining forest in Brazilian cerrado-forest formations. We also examined the degree to which abundance was similarly affected within four different feeding guilds. The threshold value for richness, below which bat diversity declines precipitously, was estimated at 47% of remaining forest. To verify if the response of bat abundance to habitat loss differed among feeding guilds, we used a model selection approach based on Akaike's information criterion. Models accounted for the amount of riparian forest, semideciduous forest, cerrado, tree plantations, secondary forest, and the total amount of forest in the landscape. We demonstrate a nonlinear effect of the contribution of tree plantations to frugivores, and a positive effect of the amount of cerrado to nectarivores and animalivores, the groups that responded most to decreases in amount of forest. We suggest that bat assemblages in interior Atlantic Forest and cerrado regions of southeastern Brazil are impoverished, since we found lower richness and abundance of different groups in landscapes with lower amounts of forest. The relatively higher threshold value of 47% suggests that bat communities have a relatively lower

  12. Tree Species Richness Promotes Invertebrate Herbivory on Congeneric Native and Exotic Tree Saplings in a Young Diversity Experiment.

    PubMed

    Wein, Annika; Bauhus, Jürgen; Bilodeau-Gauthier, Simon; Scherer-Lorenzen, Michael; Nock, Charles; Staab, Michael

    2016-01-01

    Tree diversity in forests is an important driver of ecological processes including herbivory. Empirical evidence suggests both negative and positive effects of tree diversity on herbivory, which can be, respectively, attributed to associational resistance or associational susceptibility. Tree diversity experiments allow testing for associational effects, but evidence regarding which pattern predominates is mixed. Furthermore, it is unknown if herbivory on tree species of native vs. exotic origin is influenced by changing tree diversity in a similar way, or if exotic tree species escape natural enemies, resulting in lower damage that is unrelated to tree diversity. To address these questions, we established a young tree diversity experiment in temperate southwestern Germany that uses high planting density (49 trees per plot; plot size 13 m2). The species pool consists of six congeneric species pairs of European and North American origin (12 species in total) planted in monocultures and mixtures (1, 2, 4, 6 species). We assessed leaf damage by leaf-chewing insects on more than 5,000 saplings of six broadleaved tree species. Plot-level tree species richness increased leaf damage, which more than doubled from monocultures to six-species mixtures, strongly supporting associational susceptibility. However, leaf damage among congeneric native and exotic species pairs was similar. There were marked differences in patterns of leaf damage across tree genera, and only the genera likely having a predominately generalist herbivore community showed associational susceptibility, irrespective of the geographical origin of a tree species. In conclusion, an increase in tree species richness in young temperate forests may result in associational susceptibility to feeding by generalist herbivores.

  13. Functional Richness and Identity Do Not Strongly Affect Invasibility of Constructed Dune Communities

    PubMed Central

    Mason, Tanya J.; French, Kristine; Jolley, Dianne F.

    2017-01-01

    Biotic effects are often used to explain community structure and invasion resistance. We evaluated the contribution of functional richness and identity to invasion resistance and abiotic resource availability using a mesocosm experiment. We predicted that higher functional richness would confer greater invasion resistance through greater resource sequestration. We also predicted that niche pre-emption and invasion resistance would be higher in communities which included functional groups similar to the invader than communities where all functional groups were distinct from the invader. We constructed communities of different functional richness and identity but maintained constant species richness and numbers of individuals in the resident community. The constructed communities represented potential fore dune conditions following invader control activities along the Australian east coast. We then simulated an invasion event by bitou (Chrysanthemoides monilifera ssp. rotundata DC. Norl.), a South African shrub invader. We used the same bitou propagule pressure across all treatments and monitored invasion success and resource availability for 13 months. Contrary to our predictions, we found that functional richness did not mediate the number of bitou individuals or bitou cover and functional identity had little effect on invasion success: there was a trend for the grass single functional group treatment to supress bitou individuals, but this trend was obscured when grasses were in multi functional group treatments. We found that all constructed communities facilitated bitou establishment and suppressed bitou cover relative to unplanted mesocosms. Abiotic resource use was either similar among planted communities, or differences did not relate to invasion success (with the exception of light availability). We attribute invasion resistance to bulk plant biomass across planted treatments rather than their functional group arrangement. PMID:28072854

  14. Reduced taxonomic richness of lice (Insecta: Phthiraptera) in diving birds.

    PubMed

    Felsõ, B; Rózsa, L

    2006-08-01

    Avian lice occupy different habitats in the host plumage that the physical environment outside the host body may affect in several ways. Interactions between host plumage and water may be an important source of such effects. Here, we use a comparative approach to examine the effect of a host's diving behavior on the taxonomic richness of its lice. Louse genera richness was significantly lower in clades of diving birds than on their nondiving sister clades. Species richness of host and body mass did not differ significantly between these clades; thus, these factors did not bias our results. This study suggests that the hosts' diving behavior can effectively influence ectoparasite communities.

  15. Between- and within-lake responses of macrophyte richness metrics to shoreline developmen

    USGS Publications Warehouse

    Beck, Marcus W.; Vondracek, Bruce C.; Hatch, Lorin K.

    2013-01-01

    Aquatic habitat in littoral environments can be affected by residential development of shoreline areas. We evaluated the relationship between macrophyte richness metrics and shoreline development to quantify indicator response at 2 spatial scales for Minnesota lakes. First, the response of total, submersed, and sensitive species to shoreline development was evaluated within lakes to quantify macrophyte response as a function of distance to the nearest dock. Within-lake analyses using generalized linear mixed models focused on 3 lakes of comparable size with a minimal influence of watershed land use. Survey points farther from docks had higher total species richness and presence of species sensitive to disturbance. Second, between-lake effects of shoreline development on total, submersed, emergent-floating, and sensitive species were evaluated for 1444 lakes. Generalized linear models were developed for all lakes and stratified subsets to control for lake depth and watershed land use. Between-lake analyses indicated a clear response of macrophyte richness metrics to increasing shoreline development, such that fewer emergent-floating and sensitive species were correlated with increasing density of docks. These trends were particularly evident for deeper lakes with lower watershed development. Our results provide further evidence that shoreline development is associated with degraded aquatic habitat, particularly by illustrating the response of macrophyte richness metrics across multiple lake types and different spatial scales.

  16. Elevational Gradient of Vascular Plant Species Richness and Endemism in Crete – The Effect of Post-Isolation Mountain Uplift on a Continental Island System

    PubMed Central

    Trigas, Panayiotis; Panitsa, Maria; Tsiftsis, Spyros

    2013-01-01

    Understanding diversity patterns along environmental gradients and their underlying mechanisms is a major topic in current biodiversity research. In this study, we investigate for the first time elevational patterns of vascular plant species richness and endemism on a long-isolated continental island (Crete) that has experienced extensive post-isolation mountain uplift. We used all available data on distribution and elevational ranges of the Cretan plants to interpolate their presence between minimum and maximum elevations in 100-m elevational intervals, along the entire elevational gradient of Crete (0–2400 m). We evaluate the influence of elevation, area, mid-domain effect, elevational Rapoport effect and the post-isolation mountain uplift on plant species richness and endemism elevational patterns. Furthermore, we test the influence of the island condition and the post-isolation mountain uplift to the elevational range sizes of the Cretan plants, using the Peloponnese as a continental control area. Total species richness monotonically decreases with increasing elevation, while endemic species richness has a unimodal response to elevation showing a peak at mid-elevation intervals. Area alone explains a significant amount of variation in species richness along the elevational gradient. Mid-domain effect is not the underlying mechanism of the elevational gradient of plant species richness in Crete, and Rapoport's rule only partly explains the observed patterns. Our results are largely congruent with the post-isolation uplift of the Cretan mountains and their colonization mainly by the available lowland vascular plant species, as high-elevation specialists are almost lacking from the Cretan flora. The increase in the proportion of Cretan endemics with increasing elevation can only be regarded as a result of diversification processes towards Cretan mountains (especially mid-elevation areas), supported by elevation-driven ecological isolation. Cretan plants have

  17. Origin matters: diversity affects the performance of alien invasive species but not of native species.

    PubMed

    Sun, Yan; Müller-Schärer, Heinz; Maron, John L; Schaffner, Urs

    2015-06-01

    At local scales, it has often been found that invasibility decreases with increasing resident plant diversity. However, whether resident community diversity similarly resists invasion by alien versus native species is seldom studied. We examined this issue by invading constructed native plant assemblages that varied in species and functional richness with invasive alien or native Asteraceae species. Assemblages were also invaded with spotted knapweed, Centaurea stoebe, a native European aster that has been previously used in diversity-invasibility experiments in North America. We also conducted a field survey to explore the generality of the patterns generated from our experimental study. Both experimental and observational work revealed that increasing diversity reduced the performance of alien but not native invaders. Centaurea stoebe invading its native community performed poorly regardless of resident diversity, whereas in a parallel, previously published study conducted in North America, C. stoebe easily invaded low-diversity but not high-diversity assemblages. Our results suggest that diversity is an attribute of resident communities that makes them more or less susceptible to invasion by novel invasive alien but not native plant species.

  18. Contributions of Dryland Forest (Caatinga) to Species Composition, Richness and Diversity of Drosophilidae.

    PubMed

    Oliveira, G F; Rohde, C; Garcia, A C L; Montes, M A; Valente, V L S

    2016-10-01

    In this study, semi-arid environments were tested to see if they support insect diversity. This was evaluated through the structure of the composition of assemblies of drosophilids in three conservation units placed in three different ecoregions in the dryland forests, Caatinga. This is a unique biome in northeast Brazil, comprising approximately 10% of the country. Species richness was investigated over 2 years during a prolonged drought, considered the worst affliction the Caatinga ecosystem had experienced in the last 50 years. Alpha diversity indices and the ecological similarity between the samples were calculated to determine how the environments drive the composition of Drosophilidae in such semi-arid places. A total of 7352 specimens were sampled. They were classified into 20 species belonging to four genera: Drosophila, Rhinoleucophenga, Scaptodrosophila, and Zaprionus. Drosophila nebulosa Sturtevant (44.5%) and Drosophila cardini Sturtevant (12.5%) were the most abundant species. The occurrences and abundances of all the species differed greatly between sites. These results and other ecological analyses indicate that although placed in the same biome, there are great variability in the drosophilid species and abundance among the three protected and conserved dryland environments.

  19. Ohio USA stoneflies (Insecta, Plecoptera): species richness estimation, distribution of functional niche traits, drainage affiliations, and relationships to other states

    PubMed Central

    DeWalt, R. Edward; Cao, Yong; Tweddale, Tari; Grubbs, Scott A.; Hinz, Leon; Pessino, Massimo; Robinson, Jason L.

    2012-01-01

    Abstract Ohio is an eastern USA state that historically was >70% covered in upland and mixed coniferous forest; about 60% of it glaciated by the Wisconsinan glacial episode. Its stonefly fauna has been studied in piecemeal fashion until now. The assemblage of Ohio stoneflies was assessed from over 4,000 records accumulated from 18 institutions, new collections, and trusted literature sources. Species richness totaled 102 with estimators Chao2 and ICE Mean predicting 105.6 and 106.4, respectively. Singletons and doubletons totaled 18 species. All North American families were represented with Perlidae accounted for the highest number of species at 34. The family Peltoperlidae contributed a single species. Most species had univoltine–fast life cycles with the vast majority emerging in summer, although there was a significant component of winter stoneflies. Nine United States Geological Survey hierarchical drainage units level 6 (HUC6) were used to stratify specimen data. Species richness was significantly related to the number of unique HUC6 locations, but there was no relationship with HUC6 drainage area. A nonparametric multidimensional scaling analysis found that larger HUC6s in the western part of the state had similar assemblages with lower species richness that were found to align with more savanna and wetland habitat. Other drainages having richer assemblages were aligned with upland deciduous and mixed coniferous forests of the east and south where slopes were higher. The Ohio assemblage was most similar to the well–studied fauna of Indiana (88 spp.) and Kentucky (108 spp.), two neighboring states. Many rare species and several high quality stream reaches should be considered for greater protection. PMID:22539876

  20. Insights into the historical construction of species-rich Mesoamerican seasonally dry tropical forests: the diversification of Bursera (Burseraceae, Sapindales).

    PubMed

    De-Nova, J Arturo; Medina, Rosalinda; Montero, Juan Carlos; Weeks, Andrea; Rosell, Julieta A; Olson, Mark E; Eguiarte, Luis E; Magallón, Susana

    2012-01-01

    • Mesoamerican arid biomes epitomize neotropical rich and complex biodiversity. To document some of the macroevolutionary processes underlying the vast species richness of Mesoamerican seasonally dry tropical forests (SDTFs), and to evaluate specific predictions about the age, geographical structure and niche conservatism of SDTF-centered woody plant lineages, the diversification of Bursera is reconstructed. • Using a nearly complete Bursera species-level phylogeny from nuclear and plastid genomic markers, we estimate divergence times, test for phylogenetic and temporal diversification heterogeneity, test for geographical structure, and reconstruct habitat shifts. • Bursera became differentiated in the earliest Eocene, but diversified during independent early Miocene consecutive radiations that took place in SDTFs. The late Miocene average age of Bursera species, the presence of phylogenetic geographical structure, and its strong conservatism to SDTFs conform to expectations derived from South American SDTF-centered lineages. • The diversification of Bursera suggests that Mesoamerican SDTF richness derives from high speciation from the Miocene onwards uncoupled from habitat shifts, during a period of enhanced aridity resulting mainly from global cooling and regional rain shadows. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.

  1. Two common species dominate the species-rich Euglossine bee fauna of an Atlantic Rainforest remnant in Pernambuco, Brazil.

    PubMed

    Oliveira, R; Pinto, C E; Schlindwein, C

    2015-11-01

    Nowadays, the northern part of the Atlantic Rainforest of Brazil is largely destroyed and forest remnants rarely exceed 100 ha. In a 118 ha forest fragment within a state nature reserve of Pernambuco (Reserva Ecológica Gurjaú), we surveyed the orchid bee fauna (Apidae, Euglossini) using eight different scent baits to attract males. Once a month during one year, the bees were actively collected with entomological nets, from November 2002 to October 2003 by two collectors. We collected 2,908 orchid bee males belonging to 23 species, one of the highest richness values of the Northern Atlantic Rainforest. Bees of only two species, Euglossa carolina (50%) and Eulaema nigrita (25%), which occurred throughout the year, accounted for three quarter of the collected individuals. Both species are typical for open or disturbed areas. Rainforest remnants like those of Gurjaú within the predominant sugar cane monocultures in the coastal plains of the northern Atlantic Rainforest play an important role in orchid bee conservation and maintenance of biodiversity.

  2. Housing is positively associated with invasive exotic plant species richness in New England, USA.

    PubMed

    Gavier-Pizarro, Gregorio I; Radeloff, Volker C; Stewart, Susan I; Huebner, Cynthia D; Keuler, Nicholas S

    2010-10-01

    Understanding the factors related to invasive exotic species distributions at broad spatial scales has important theoretical and management implications, because biological invasions are detrimental to many ecosystem functions and processes. Housing development facilitates invasions by disturbing land cover, introducing nonnative landscaping plants, and facilitating dispersal of propagules along roads. To evaluate relationships between housing and the distribution of invasive exotic plants, we asked (1) how strongly is housing associated with the spatial distribution of invasive exotic plants compared to other anthropogenic and environmental factors; (2) what type of housing pattern is related to the richness of invasive exotic plants; and (3) do invasive plants represent ecological traits associated with specific housing patterns? Using two types of regression analysis (best subset analysis and hierarchical partitioning analysis), we found that invasive exotic plant richness was equally or more strongly related to housing variables than to other human (e.g., mean income and roads) and environmental (e.g., topography and forest cover) variables at the county level across New England. Richness of invasive exotic plants was positively related to area of wildland-urban interface (WUI), low-density residential areas, change in number of housing units between 1940 and 2000, mean income, plant productivity (NDVI), and altitudinal range and rainfall; it was negatively related to forest area and connectivity. Plant life history traits were not strongly related to housing patterns. We expect the number of invasive exotic plants to increase as a result of future housing growth and suggest that housing development be considered a primary factor in plans to manage and monitor invasive exotic plant species.

  3. Offsets and conservation of the species of the EU habitats and birds directives.

    PubMed

    Regnery, Baptiste; Couvet, Denis; Kerbiriou, Christian

    2013-12-01

    Biodiversity offsets are intended to achieve no net loss of biodiversity due to economic and human development. A variety of biodiversity components are addressed by offset policies. It is required that loss of protected species due to development be offset under the EU Habitats and Birds Directives in Europe. We call this type of offset a species-equality offset because the offset pertains to the same species affected by the development project. Whether species equality can be achieved by offset design is unknown. We addressed this gap by reviewing derogation files (i.e., specific files that describe mitigation measures to ensure no net loss under the EU Habitats and Birds Directives) from 85 development projects in France (2009-2010). We collected information on type of effect (reversible vs. irreversible) and characteristics of affected and offset sites (i.e., types of species, total area). We analyzed how the type of effect and the affected-site characteristics influenced the occurrence of offset measures. The proportion of species targeted by offset measures (i.e., offset species) increased with the irreversibility of the effect of development and the conservation status of the species affected by development (i.e., affected species). Not all effects on endangered species (International Union for Conservation of Nature Red List) were offset; on average, 82% of affected species would be offset. Twenty-six percent of species of least concern were offset species. Thirty-five percent of development projects considered all affected species in their offset measures. Species richness was much lower in offset sites than in developed sites even after offset proposals. For developed areas where species richness was relatively high before development, species richness at offset sites was 5-10 times lower. The species-equality principle appears to have been applied only partially in offset policies, as in the EU directives. We suggest the application of this principle

  4. Re-Structuring of Marine Communities Exposed to Environmental Change: A Global Study on the Interactive Effects of Species and Functional Richness

    PubMed Central

    Wahl, Martin; Link, Heike; Alexandridis, Nicolaos; Thomason, Jeremy C.; Cifuentes, Mauricio; Costello, Mark J.; da Gama, Bernardo A. P.; Hillock, Kristina; Hobday, Alistair J.; Kaufmann, Manfred J.; Keller, Stefanie; Kraufvelin, Patrik; Krüger, Ina; Lauterbach, Lars; Antunes, Bruno L.; Molis, Markus; Nakaoka, Masahiro; Nyström, Julia; bin Radzi, Zulkamal; Stockhausen, Björn; Thiel, Martin; Vance, Thomas; Weseloh, Annika; Whittle, Mark; Wiesmann, Lisa; Wunderer, Laura; Yamakita, Takehisa; Lenz, Mark

    2011-01-01

    Species richness is the most commonly used but controversial biodiversity metric in studies on aspects of community stability such as structural composition or productivity. The apparent ambiguity of theoretical and experimental findings may in part be due to experimental shortcomings and/or heterogeneity of scales and methods in earlier studies. This has led to an urgent call for improved and more realistic experiments. In a series of experiments replicated at a global scale we translocated several hundred marine hard bottom communities to new environments simulating a rapid but moderate environmental change. Subsequently, we measured their rate of compositional change (re-structuring) which in the great majority of cases represented a compositional convergence towards local communities. Re-structuring is driven by mortality of community components (original species) and establishment of new species in the changed environmental context. The rate of this re-structuring was then related to various system properties. We show that availability of free substratum relates negatively while taxon richness relates positively to structural persistence (i.e., no or slow re-structuring). Thus, when faced with environmental change, taxon-rich communities retain their original composition longer than taxon-poor communities. The effect of taxon richness, however, interacts with another aspect of diversity, functional richness. Indeed, taxon richness relates positively to persistence in functionally depauperate communities, but not in functionally diverse communities. The interaction between taxonomic and functional diversity with regard to the behaviour of communities exposed to environmental stress may help understand some of the seemingly contrasting findings of past research. PMID:21611170

  5. Local and Landscape Correlates of Spider Activity Density and Species Richness in Urban Gardens.

    PubMed

    Otoshi, Michelle D; Bichier, Peter; Philpott, Stacy M

    2015-08-01

    Urbanization is a major threat to arthropod biodiversity and abundance due to reduction and loss of suitable natural habitat. Green spaces and small-scale agricultural areas may provide habitat and resources for arthropods within densely developed cities. We studied spider activity density (a measure of both abundance and degree of movement) and diversity in urban gardens in Santa Cruz, Santa Clara, and Monterey counties in central California, USA. We sampled for spiders with pitfall traps and sampled 38 local site characteristics for 5 mo in 19 garden sites to determine the relative importance of individual local factors. We also analyzed 16 landscape variables at 500-m and 1-km buffers surrounding each garden to determine the significance of landscape factors. We identified individuals from the most common families to species and identified individuals from other families to morphospecies. Species from the families Lycosidae and Gnaphosidae composed 81% of total adult spider individuals. Most of the significant factors that correlated with spider activity density and richness were local rather than landscape factors. Spider activity density and richness increased with mulch cover and flowering plant species, and decreased with bare soil. Thus, changes in local garden management have the potential to promote diversity of functionally important spiders in urban environments. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Species richness and selenium accumulation of plants in soils with elevated concentration of selenium and salinity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Z.Z.; Wu, L.

    1991-12-01

    Field studies were conducted in soils with elevated concentrations of Se and salinity at Kesterson, California. Biomass distribution, species richness, and selenium accumulation of plants were examined for two sites where 15 cm of surface soil was removed and replaced with fill dirt in the fall of 1989, and two sites were native soil cover. The Se concentrations in the top 15 cm of fill dirt ranged from undetectable to 36 ng g-1. For the native soil sites, Se levels ranged from 75 to 550 ng g-1. Soil Se concentrations below 15 cm ranged from 300 to 700 ng g-1more » and were comparable between the fill dirt and the native soil sites. At least 20 different plant species were brought into the two fill dirt sites with the top soil. Avena fatua L., Bassia hyssopifolia Kuntze Rev. Gen. Pl., Centaurea solstitialis L., Erysimum officianale L., Franseria acanthicarpa Cav. Icon., and Melilotus indica (L.) All. contributed over 60% of the total biomass. Only 5 species were found in the native soil sites, and salt grass (Distichlis spicata L.) was the predominant species and accounted for over 80% of the total biomass. Between 1989 and 1990, two years after the surface soil replacement, the two fill dirt sites had a 70% reduction in species richness. Plant tissue selenium concentrations were found to be quite variable between plant species and between sites of sampling. At the fill dirt sites, the plant species with deep root systems accumulated greater amounts of selenium than the shallow-rooted species. The soil selenium concentration of the field soil had no negative effect on pollen fertility, seed set, and seed germination for the plant species examined. However, seedling growth was impaired by the soil selenium concentrations. This suggests that a selection pressure of soil Se concentration may have been imposed on plant species such as M. indica in an early stage of its life cycle.« less

  7. Nonadditive effects of leaf litter species diversity on breakdown dynamics in a deteritus-bases stream

    Treesearch

    J.S. Kominoski; C.M. Pringle; B.A. Ball; M.A. Bradford; D.C. Coleman; D.B. Hall; M.D. Hunter

    2007-01-01

    Since species loss is predicted to be nonrandom, it is important to understand the manner in which those species that we anticipate losing interact with other species to affect ecosystem function. We tested whether litter species diversity, measured as richness and composition, affects breakdown dynamics in a detritus-based stream. Using full-factorial analyses of...

  8. Indirect effects of predators control herbivore richness and abundance in a benthic eelgrass (Zostera marina) mesograzer community.

    PubMed

    Amundrud, Sarah L; Srivastava, Diane S; O'Connor, Mary I

    2015-07-01

    Herbivore communities can be sensitive to changes in predator pressure (top-down effects) and resource availability (bottom-up effects) in a wide range of systems. However, it remains unclear whether such top-down and bottom-up effects reflect direct impacts of predators and/or resources on herbivores, or are indirect, reflecting altered interactions among herbivore species. We quantified direct and indirect effects of bottom-up and top-down processes on an eelgrass (Zostera marina) herbivore assemblage. In a field experiment, we factorially manipulated water column nutrients (with Osmocote(™) slow-release fertilizer) and predation pressure (with predator exclusion cages) and measured the effects on herbivore abundance, richness and beta diversity. We examined likely mechanisms of community responses by statistically exploring the response of individual herbivore species to trophic manipulations. Predators increased herbivore richness and total abundance, in both cases through indirect shifts in community composition. Increases in richness occurred through predator suppression of common gammarid amphipod species (Monocorophium acherusicum and Photis brevipes), permitting the inclusion of rarer gammarid species (Aoroides columbiae and Pontogeneia rostrata). Increased total herbivore abundance reflected increased abundance of a caprellid amphipod species (Caprella sp.), concurrent with declines in the abundance of other common species. Furthermore, predators decreased beta diversity by decreasing variability in Caprella sp. abundance among habitat patches. Osmocote(™) fertilization increased nutrient concentrations locally, but nutrients dissipated to background levels within 3 m of the fertilizer. Nutrient addition weakly affected the herbivore assemblage, not affecting richness and increasing total abundance by increasing one herbivore species (Caprella sp.). Nutrient addition did not affect beta diversity. We demonstrated that assemblage-level effects of

  9. Intensive removal of signal crayfish (Pacifastacus leniusculus) from rivers increases numbers and taxon richness of macroinvertebrate species.

    PubMed

    Moorhouse, Tom P; Poole, Alison E; Evans, Laura C; Bradley, David C; Macdonald, David W

    2014-02-01

    Invasive species are a major cause of species extinction in freshwater ecosystems, and crayfish species are particularly pervasive. The invasive American signal crayfish Pacifastacus leniusculus has impacts over a range of trophic levels, but particularly on benthic aquatic macroinvertebrates. Our study examined the effect on the macroinvertebrate community of removal trapping of signal crayfish from UK rivers. Crayfish were intensively trapped and removed from two tributaries of the River Thames to test the hypothesis that lowering signal crayfish densities would result in increases in macroinvertebrate numbers and taxon richness. We removed 6181 crayfish over four sessions, resulting in crayfish densities that decreased toward the center of the removal sections. Conversely in control sections (where crayfish were trapped and returned), crayfish density increased toward the center of the section. Macroinvertebrate numbers and taxon richness were inversely correlated with crayfish densities. Multivariate analysis of the abundance of each taxon yielded similar results and indicated that crayfish removals had positive impacts on macroinvertebrate numbers and taxon richness but did not alter the composition of the wider macroinvertebrate community. Synthesis and applications: Our results demonstrate that non-eradication-oriented crayfish removal programmes may lead to increases in the total number of macroinvertebrates living in the benthos. This represents the first evidence that removing signal crayfish from riparian systems, at intensities feasible during control attempts or commercial crayfishing, may be beneficial for a range of sympatric aquatic macroinvertebrates.

  10. Intensive removal of signal crayfish (Pacifastacus leniusculus) from rivers increases numbers and taxon richness of macroinvertebrate species

    PubMed Central

    Moorhouse, Tom P; Poole, Alison E; Evans, Laura C; Bradley, David C; Macdonald, David W

    2014-01-01

    Invasive species are a major cause of species extinction in freshwater ecosystems, and crayfish species are particularly pervasive. The invasive American signal crayfish Pacifastacus leniusculus has impacts over a range of trophic levels, but particularly on benthic aquatic macroinvertebrates. Our study examined the effect on the macroinvertebrate community of removal trapping of signal crayfish from UK rivers. Crayfish were intensively trapped and removed from two tributaries of the River Thames to test the hypothesis that lowering signal crayfish densities would result in increases in macroinvertebrate numbers and taxon richness. We removed 6181 crayfish over four sessions, resulting in crayfish densities that decreased toward the center of the removal sections. Conversely in control sections (where crayfish were trapped and returned), crayfish density increased toward the center of the section. Macroinvertebrate numbers and taxon richness were inversely correlated with crayfish densities. Multivariate analysis of the abundance of each taxon yielded similar results and indicated that crayfish removals had positive impacts on macroinvertebrate numbers and taxon richness but did not alter the composition of the wider macroinvertebrate community. Synthesis and applications: Our results demonstrate that non-eradication-oriented crayfish removal programmes may lead to increases in the total number of macroinvertebrates living in the benthos. This represents the first evidence that removing signal crayfish from riparian systems, at intensities feasible during control attempts or commercial crayfishing, may be beneficial for a range of sympatric aquatic macroinvertebrates. PMID:24634733

  11. Ectomycorrhizal fungi associated with ponderosa pine and Douglas-fir: a comparison of species richness in native western North American forests and Patagonian plantations from Argentina.

    PubMed

    Barroetaveña, C; Cázares, E; Rajchenberg, M

    2007-07-01

    The putative ectomycorrhizal fungal species registered from sporocarps associated with ponderosa pine and Douglas-fir forests in their natural range distribution (i.e., western Canada, USA, and Mexico) and from plantations in south Argentina and other parts of the world are listed. One hundred and fifty seven taxa are reported for native ponderosa pine forests and 514 taxa for native Douglas-fir forests based on available literature and databases. A small group of genera comprises a high proportion of the species richness for native Douglas-fir (i.e., Cortinarius, Inocybe, and Russula), whereas in native ponderosa pine, the species richness is more evenly distributed among several genera. The comparison between ectomycorrhizal species richness associated with both trees in native forests and in Patagonia (Argentina) shows far fewer species in the latter, with 18 taxa for the ponderosa pine and 15 for the Douglas-fir. Epigeous species richness is clearly dominant in native Douglas-fir, whereas a more balanced relation epigeous/hypogeous richness is observed for native ponderosa pine; a similar trend was observed for Patagonian plantations. Most fungi in Patagonian Douglas-fir plantations have not been recorded in plantations elsewhere, except Suillus lakei and Thelephora terrestris, and only 56% of the fungal taxa recorded in Douglas-fir plantations around the world are known from native forests, the other taxa being new associations for this host, suggesting that new tree + ectomycorrhizal fungal taxa associations are favored in artificial situations as plantations.

  12. On the importance of shrub encroachment by sprouters, climate, species richness and anthropic factors for ecosystem multifunctionality in semi-arid Mediterranean ecosystems.

    PubMed

    Quero, José L; Maestre, Fernando T; Ochoa, Victoria; García-Gómez, Miguel; Delgado-Baquerizo, Manuel

    2013-11-01

    One of the most important changes taking place in drylands worldwide is the increase of the cover and dominance of shrubs in areas formerly devoid of them (shrub encroachment). A large body of research has evaluated the causes and consequences of shrub encroachment for both ecosystem structure and functioning. However, there are virtually no studies evaluating how shrub encroachment affects the ability of ecosystems to maintain multiple functions and services simultaneously (multifunctionality). We aimed to do so by gathering data from ten ecosystem functions linked to the maintenance of primary production and nutrient cycling and storage (organic C, activity of β-glucosidase, pentoses, hexoses, total N, total available N, amino acids, proteins, available inorganic P and phosphatase activity), and summarizing them in a multifunctionality index ( M ). We assessed how climate, species richness, anthropic factors (distance to the nearest town, sandy and asphalted road, and human population in the nearest town at several historical periods) and encroachment by sprouting shrubs impacted both the functions in isolation and M along a regional (ca. 350 km) gradient in Mediterranean grasslands and shrublands dominated by a non-sprouting shrub. Values of M were higher in those grasslands and shrublands containing sprouting shrubs (43% and 62%, respectively). A similar response was found when analyzing the different functions in isolation, as encroachment by sprouting shrubs increased functions by 2%-80% compared to unencroached areas. Encroachment was the main driver of changes in M along the regional gradient evaluated, followed by anthropic factors and species richness. Climate had little effects on M in comparison to the other factors studied. Similar responses were observed when evaluating the functions in isolation. Overall, our results showed that M was higher at sites with higher sprouting shrub cover, longer distance to roads and higher perennial plant species

  13. On the importance of shrub encroachment by sprouters, climate, species richness and anthropic factors for ecosystem multifunctionality in semi-arid Mediterranean ecosystems

    PubMed Central

    Quero, José L.; Maestre, Fernando T.; Ochoa, Victoria; García-Gómez, Miguel; Delgado-Baquerizo, Manuel

    2016-01-01

    One of the most important changes taking place in drylands worldwide is the increase of the cover and dominance of shrubs in areas formerly devoid of them (shrub encroachment). A large body of research has evaluated the causes and consequences of shrub encroachment for both ecosystem structure and functioning. However, there are virtually no studies evaluating how shrub encroachment affects the ability of ecosystems to maintain multiple functions and services simultaneously (multifunctionality). We aimed to do so by gathering data from ten ecosystem functions linked to the maintenance of primary production and nutrient cycling and storage (organic C, activity of β-glucosidase, pentoses, hexoses, total N, total available N, amino acids, proteins, available inorganic P and phosphatase activity), and summarizing them in a multifunctionality index (M). We assessed how climate, species richness, anthropic factors (distance to the nearest town, sandy and asphalted road, and human population in the nearest town at several historical periods) and encroachment by sprouting shrubs impacted both the functions in isolation and M along a regional (ca. 350 km) gradient in Mediterranean grasslands and shrublands dominated by a non-sprouting shrub. Values of M were higher in those grasslands and shrublands containing sprouting shrubs (43% and 62%, respectively). A similar response was found when analyzing the different functions in isolation, as encroachment by sprouting shrubs increased functions by 2%–80% compared to unencroached areas. Encroachment was the main driver of changes in M along the regional gradient evaluated, followed by anthropic factors and species richness. Climate had little effects on M in comparison to the other factors studied. Similar responses were observed when evaluating the functions in isolation. Overall, our results showed that M was higher at sites with higher sprouting shrub cover, longer distance to roads and higher perennial plant species

  14. Does fragmentation of Urtica habitats affect phytophagous and predatory insects differentially?

    PubMed

    Zabel, Jörg; Tscharntke, Teja

    1998-09-01

    Effects of habitat fragmentation on the insect community of stinging nettle (Urtica dioica L.) were studied, using 32 natural nettle patches of different area and degree of isolation in an agricultural landscape. Habitat fragmentation reduced the species richness of Heteroptera, Auchenorrhyncha, and Coleoptera, and the abundance of populations. Habitat isolation and area reduction did not affect all insect species equally. Monophagous herbivores had a higher probability of absence from small patches than all (monophagous and polyphagous) herbivore species, and the percentage of monophagous herbivores increased with habitat area. Abundance and population variability of species were negatively correlated and could both be used as a predictor of the percentage of occupied habitats. Species richness of herbivores correlated (positively) with habitat area, while species richness of predators correlated (negatively) with habitat isolation. In logistic regressions, the probability of absence of monophagous herbivores from habitat patches could only be explained by habitat area (in 4 out of 10 species) and predator absence probability only by habitat isolation (in 3 out of 14 species). Presumably because of the instability of higher-trophic-level populations and dispersal limitation, predators were more affected by habitat isolation than herbivores, while they did not differ from herbivore populations with respect to abundance or variability. Thus increasing habitat connectivity in the agricultural landscape should primarily promote predator populations.

  15. Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-Rich DNA, and nuclear DNA analyses

    USGS Publications Warehouse

    Freeman, S.; Pham, M.; Rodriguez, R.J.

    1993-01-01

    Molecular genotyping of Colletotrichum species based on arbitrarily primed PCR, A + T-rich DNA, and nuclear DNA analyses. Experimental Mycology 17, 309-322. Isolates of Colletotrichum were grouped into 10 separate species based on arbitrarily primed PCR (ap-PCR), A + T-rich DNA (AT-DNA) and nuclear DNA banding patterns. In general, the grouping of Colletotrichum isolates by these molecular approaches corresponded to that done by classical taxonomic identification, however, some exceptions were observed. PCR amplification of genomic DNA using four different primers allowed for reliable differentiation between isolates of the 10 species. HaeIII digestion patterns of AT-DNA also distinguished between species of Colletotrichum by generating species-specific band patterns. In addition, hybridization of the repetitive DNA element (GcpR1) to genomic DNA identified a unique set of Pst 1-digested nuclear DNA fragments in each of the 10 species of Colletotrichum tested. Multiple isolates of C. acutatum, C. coccodes, C. fragariae, C. lindemuthianum, C. magna, C. orbiculare, C. graminicola from maize, and C. graminicola from sorghum showed 86-100% intraspecies similarity based on ap-PCR and AT-DNA analyses. Interspecies similarity determined by ap-PCR and AT-DNA analyses varied between 0 and 33%. Three distinct banding patterns were detected in isolates of C. gloeosporioides from strawberry. Similarly, three different banding patterns were observed among isolates of C. musae from diseased banana.

  16. Lactobacillus and Pediococcus species richness and relative abundance in the vagina of rhesus monkeys (Macaca mulatta)

    PubMed Central

    Gravett, Michael G.; Jin, Ling; Pavlova, Sylvia I.; Tao, Lin

    2012-01-01

    Background The rhesus monkey is an important animal model to study human vaginal health to which lactic acid bacteria play a significant role. However, the vaginal lactic acid bacterial species richness and relative abundance in rhesus monkeys is largely unknown. Methods Vaginal swab samples were aseptically obtained from 200 reproductive aged female rhesus monkeys. Following Rogosa agar plating, single bacterial colonies representing different morphotypes were isolated and analyzed for whole-cell protein profile, species-specifc PCR, and 16S rRNA gene sequence. Results A total of 510 Lactobacillus strains of 17 species and one Pediococcus acidilactici were identified. The most abundant species was L. reuteri, which colonized the vaginas of 86% monkeys. L. johnsonii was the second most abundant species, which colonized 36% of monkeys. The majority of monkeys were colonized by multiple Lactobacillus species. Conclusions The vaginas of rhesus monkeys are frequently colonized by multiple Lactobacillus species, dominated by L. reuteri. PMID:22429090

  17. Consequences of buffelgrass pasture development for primary productivity, perennial plant richness, and vegetation structure in the drylands of Sonora, Mexico.

    PubMed

    Franklin, Kimberly; Molina-Freaner, Francisco

    2010-12-01

    In large parts of northern Mexico native plant communities are being converted to non-native buffelgrass (Pennisetum ciliare) pastures, and this conversion could fundamentally alter primary productivity and species richness. In Sonora, Mexico land conversion is occurring at a regional scale along a rainfall-driven gradient of primary productivity, across which native plant communities transition from desert scrub to thorn scrub. We used a paired sampling design to compare a satellite-derived index of primary productivity, richness of perennial plant species, and canopy-height profiles of native plant communities with buffelgrass pastures. We sampled species richness across a gradient of primary productivity in desert scrub and thorn scrub vegetation to examine the influence of site productivity on the outcomes of land conversion. We also examined the influence of pasture age on species richness of perennial plants. Index values of primary productivity were lower in buffelgrass pastures than in native vegetation, which suggests a reduction in primary productivity. Land conversion reduced species richness by approximately 50% at local and regional scales, reduced tree and shrub cover by 78%, and reduced canopy height. Land conversion disproportionately reduced shrub species richness, which reflects the common practice among Sonoran ranchers of conserving certain tree and cactus species. Site productivity did not affect the outcomes of land conversion. The age of a buffelgrass pasture was unrelated to species richness within the pasture, which suggests that passive recovery of species richness to preconversion levels is unlikely. Our findings demonstrate that land conversion can result in large losses of plant species richness at local and regional scales and in substantial changes to primary productivity and vegetation structure, which casts doubt on the feasibility of restoring native plant communities without active intervention on the part of land managers.

  18. The origin and evolution of coral species richness in a marine biodiversity hotspot.

    PubMed

    Huang, Danwei; Goldberg, Emma E; Chou, Loke Ming; Roy, Kaustuv

    2018-02-01

    The Coral Triangle (CT) region of the Indo-Pacific realm harbors an extraordinary number of species, with richness decreasing away from this biodiversity hotspot. Despite multiple competing hypotheses, the dynamics underlying this regional diversity pattern remain poorly understood. Here, we use a time-calibrated evolutionary tree of living reef coral species, their current geographic ranges, and model-based estimates of regional rates of speciation, extinction, and geographic range shifts to show that origination rates within the CT are lower than in surrounding regions, a result inconsistent with the long-standing center of origin hypothesis. Furthermore, endemism of coral species in the CT is low, and the CT endemics are older than relatives found outside this region. Overall, our model results suggest that the high diversity of reef corals in the CT is largely due to range expansions into this region of species that evolved elsewhere. These findings strongly support the notion that geographic range shifts play a critical role in generating species diversity gradients. They also show that preserving the processes that gave rise to the striking diversity of corals in the CT requires protecting not just reefs within the hotspot, but also those in the surrounding areas. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  19. Predicting species richness and distribution ranges of centipedes at the northern edge of Europe

    NASA Astrophysics Data System (ADS)

    Georgopoulou, Elisavet; Djursvoll, Per; Simaiakis, Stylianos M.

    2016-07-01

    In recent decades, interest in understanding species distributions and exploring processes that shape species diversity has increased, leading to the development of advanced methods for the exploitation of occurrence data for analytical and ecological purposes. Here, with the use of georeferenced centipede data, we explore the importance and contribution of bioclimatic variables and land cover, and predict distribution ranges and potential hotspots in Norway. We used a maximum entropy analysis (Maxent) to model species' distributions, aiming at exploring centres of distribution, latitudinal spans and northern range boundaries of centipedes in Norway. The performance of all Maxent models was better than random with average test area under the curve (AUC) values above 0.893 and True Skill Statistic (TSS) values above 0.593. Our results showed a highly significant latitudinal gradient of increased species richness in southern grid-cells. Mean temperatures of warmest and coldest quarters explained much of the potential distribution of species. Predictive modelling analyses revealed that south-eastern Norway and the Atlantic coast in the west (inclusive of the major fjord system of Sognefjord), are local biodiversity hotspots with regard to high predictive species co-occurrence. We conclude that our predicted northward shifts of centipedes' distributions in Norway are likely a result of post-glacial recolonization patterns, species' ecological requirements and dispersal abilities.

  20. Species Richness and Functional Trait Diversity for Plants in Southern California's Green Infrastructure along a Climate Gradient

    NASA Astrophysics Data System (ADS)

    Rochford, M. E.; Ibsen, P.; Jenerette, D.

    2016-12-01

    Green infrastructure (GI) is greenery planted to absorb rainwater into the earth as an alternative to grey infrastructure, like storm drains. Not only does GI prevent flooding, but it also performs a number of ecosystem services, including increasing biodiversity, because it allows water to cycle through the environment naturally. Increased biodiversity in plant communities is said to help purify the air and improve the health and resilience of the plants themselves. I want to investigate these claims about GI's benefits by studying types of GI with slightly different functions. This will answer the questions 1) Are different types of green infrastructure's plant communities equally biodiverse in terms of functional trait diversity and species richness? 2) How does functional trait diversity and species richness differ along a temperature gradient in Southern California? To compare biodiversity, I must survey four different types of GI, urban parks, riparian zones, detention basins, and bioswales, in three cities in distinct climate regions. Detention basins are reservoirs lined with vegetation that collect water until it is absorbed into the soil. Bioswales are vegetated gutters that filter out pollutants in storm water. Unlike retention basins, they also add aesthetic value to an area. Even though parks are mainly for recreation and beatification rather than storm water management, they have plenty of permeable surface to absorb storm water. The types of GI that have high levels of interaction with humans should also have higher levels of maintenance. The results should follow the homogenization hypothesis and demonstrate that, regardless of climate, species richness should not differ much between highly maintained areas, like parks, in different cities. Otherwise, in GI that is not as manicured, species richness should be significantly different between cities and the different types of GI. Because types of GI selected vary in expected levels of human

  1. Galling Insects of the Brazilian Páramos: Species Richness and Composition Along High-Altitude Grasslands.

    PubMed

    Coelho, Marcel S; Carneiro, Marco Antônio Alves; Branco, Cristina A; Borges, Rafael Augusto Xavier; Fernandes, G Wilson

    2017-12-08

    In this work, we investigated the factors that determine the distribution of galling insects in high-altitude grasslands, locally called 'campos de altitude' of Mantiqueira Range and tested whether 1) richness of galling insects decreases with altitude, 2) galling insect richness increases with plant richness, 3) variation in galling insect diversity is predominantly a consequence of its β component, and 4) turnover is the main mechanism driving the beta diversity of both galling insects and plants. Galling insect richness did not exhibit a negative relationship with altitude, but it did increase with plant richness. The additive partition of regional richness (γ) into its local and beta components showed that local diversity (α) of galling insects and plants was relatively low in relation to regional diversity; the β component incorporated most of the regional diversity. This pattern was also found in the multiscale analysis of the additive partition for galling insects and plants. The beta diversity of galling insects and plants was driven predominantly by the process of turnover and minimally by nesting. The results reported here point out that the spatial distribution of galling insects is best explained by historical factors, such as the distribution of genera and species of key host plants, as well as their relation to habitat, than ecological effects such as hygrothermal stress - here represented by altitude. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Exploring Genetic Divergence in a Species-Rich Insect Genus Using 2790 DNA Barcodes

    PubMed Central

    Lin, Xiaolong; Stur, Elisabeth; Ekrem, Torbjørn

    2015-01-01

    DNA barcoding using a fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (COI) has proven to be successful for species-level identification in many animal groups. However, most studies have been focused on relatively small datasets or on large datasets of taxonomically high-ranked groups. We explore the quality of DNA barcodes to delimit species in the diverse chironomid genus Tanytarsus (Diptera: Chironomidae) by using different analytical tools. The genus Tanytarsus is the most species-rich taxon of tribe Tanytarsini (Diptera: Chironomidae) with more than 400 species worldwide, some of which can be notoriously difficult to identify to species-level using morphology. Our dataset, based on sequences generated from own material and publicly available data in BOLD, consist of 2790 DNA barcodes with a fragment length of at least 500 base pairs. A neighbor joining tree of this dataset comprises 131 well separated clusters representing 121 morphological species of Tanytarsus: 77 named, 16 unnamed and 28 unidentified theoretical species. For our geographically widespread dataset, DNA barcodes unambiguously discriminate 94.6% of the Tanytarsus species recognized through prior morphological study. Deep intraspecific divergences exist in some species complexes, and need further taxonomic studies using appropriate nuclear markers as well as morphological and ecological data to be resolved. The DNA barcodes cluster into 120–242 molecular operational taxonomic units (OTUs) depending on whether Objective Clustering, Automatic Barcode Gap Discovery (ABGD), Generalized Mixed Yule Coalescent model (GMYC), Poisson Tree Process (PTP), subjective evaluation of the neighbor joining tree or Barcode Index Numbers (BINs) are used. We suggest that a 4–5% threshold is appropriate to delineate species of Tanytarsus non-biting midges. PMID:26406595

  3. Influence of a dominant consumer species reverses at increased diversity.

    PubMed

    Brandt, Margarita; Witman, Jon D; Chiriboga, Angel I

    2012-04-01

    Theory and experiments indicate that changes in consumer diversity affect benthic community structure and ecosystem functioning. Although the effects of consumer diversity have been tested in the laboratory and the field, little is known about effects of consumer diversity in the subtidal zone, one of the largest marine habitats. We investigated the grazing effects of sea urchins on algal abundance and benthic community structure in a natural subtidal habitat of the Galápagos Islands. Three species of urchins (Eucidaris, Lytechinus, and Tripneustes) were manipulated in inclusion cages following a replacement design with three levels of species richness (one, two, and three species) with all possible two-species urchin combinations. Identity was the main factor accounting for changes in the percentage of substrate grazed and benthic community structure. Two out of the three two-species assemblages grazed more than expected, suggesting a richness effect, but analyses revealed that this increased grazing was due to a sampling effect of the largest and commercially valued urchin species, Tripneustes. Benthic community structure in treatments with Eucidaris, Lytechinus, and Tripneustes alone was significantly different at the end of the experiment, suggesting that resource use differentiation occurred. Communities in Tripneustes enclosures were characterized by abundant crustose coralline algae and grazed substrate, while those without it contained abundant green foliose algae (Ulva sp.). An unexpected emergent property of the system was that the most species-rich urchin assemblage underyielded, grazing less than any other assemblage with Tripneustes, effectively reversing its dominant influence observed in the two-species treatments. While further experiments are needed to discern the mechanisms of underyielding, it may be related to changing interspecific interactions as richness increases from two to three species or to density-dependent Tripneustes grazing. This

  4. A CONCEPTUAL FRAMEWORK FOR SELECTING AND ANALYZING STRESSOR DATA TO STUDY SPECIES RICHNESS AT LARGE SPATIAL SCALES

    EPA Science Inventory

    In this paper we develop a conceptual framework for selecting stressor data and anlyzing their relationship to geographic patterns of species richness at large spatial scales. Aspects of climate and topography, which are not stressors per se, have been most strongly linked with g...

  5. Summer distribution and species richness of non-native fishes in the mainstem Willamette River, oregon, 1944-2006

    EPA Science Inventory

    We reviewed the results of seven extensive and two reach-specific fish surveys conducted on the mainstem Willamette River between 1944 and 2006 to document changes in the summer distribution and species richness of non-native fishes through time and the relative abundances of the...

  6. Factors affecting species distribution predictions: A simulation modeling experiment

    Treesearch

    Gordon C. Reese; Kenneth R. Wilson; Jennifer A. Hoeting; Curtis H. Flather

    2005-01-01

    Geospatial species sample data (e.g., records with location information from natural history museums or annual surveys) are rarely collected optimally, yet are increasingly used for decisions concerning our biological heritage. Using computer simulations, we examined factors that could affect the performance of autologistic regression (ALR) models that predict species...

  7. Species replacement dominates megabenthos beta diversity in a remote seamount setting.

    PubMed

    Victorero, Lissette; Robert, Katleen; Robinson, Laura F; Taylor, Michelle L; Huvenne, Veerle A I

    2018-03-07

    Seamounts are proposed to be hotspots of deep-sea biodiversity, a pattern potentially arising from increased productivity in a heterogeneous landscape leading to either high species co-existence or species turnover (beta diversity). However, studies on individual seamounts remain rare, hindering our understanding of the underlying causes of local changes in beta diversity. Here, we investigated processes behind beta diversity using ROV video, coupled with oceanographic and quantitative terrain parameters, over a depth gradient in Annan Seamount, Equatorial Atlantic. By applying recently developed beta diversity analyses, we identified ecologically unique sites and distinguished between two beta diversity processes: species replacement and changes in species richness. The total beta diversity was high with an index of 0.92 out of 1 and was dominated by species replacement (68%). Species replacement was affected by depth-related variables, including temperature and water mass in addition to the aspect and local elevation of the seabed. In contrast, changes in species richness component were affected only by the water mass. Water mass, along with substrate also affected differences in species abundance. This study identified, for the first time on seamount megabenthos, the different beta diversity components and drivers, which can contribute towards understanding and protecting regional deep-sea biodiversity.

  8. Repeated burning of eastern tallgrass prairie increases richness and diversity, stabilizing late successional vegetation.

    PubMed

    Bowles, Marlin L; Jones, Michael D

    2013-03-01

    of C4 and N-fixing species, suggest that these processes are uniform across the TGP biome and not affected by its rainfall-productivity gradient. However, increasing fire frequency in eastern TGP appears to increase richness of summer forbs and stabilize late-successional vegetation in the absence of grazing, and these processes may differ across the longitudinal axis of TGP. Managing species diversity in ungrazed eastern TGP may be dependent upon high fire frequency that removes woody vegetation and prevents biomass accumulation.

  9. High species richness of native pollinators in Brazilian tomato crops.

    PubMed

    Silva-Neto, C M; Bergamini, L L; Elias, M A S; Moreira, G L; Morais, J M; Bergamini, B A R; Franceschinelli, E V

    2017-01-01

    Pollinators provide an essential service to natural ecosystems and agriculture. In tomatoes flowers, anthers are poricidal, pollen may drop from their pore when flowers are shaken by the wind. However, bees that vibrate these anthers increase pollen load on the stigma and in fruit production. The present study aimed to identify the pollinator richness of tomato flowers and investigate their morphological and functional traits related to the plant-pollinator interaction in plantations of Central Brazil. The time of anthesis, flower duration, and the number and viability of pollen grains and ovules were recorded. Floral visitors were observed and collected. Flower buds opened around 6h30 and closed around 18h00. They reopened on the following day at the same time in the morning, lasting on average 48 hours. The highest pollen availability occurred during the first hours of anthesis. Afterwards, the number of pollen grains declined, especially between 10h00 to 12h00, which is consistent with the pollinator visitation pattern. Forty bee species were found in the tomato fields, 30 of which were considered pollinators. We found that during the flowering period, plants offered an enormous amount of pollen to their visitors. These may explain the high richness and amount of bees that visit the tomato flowers in the study areas. The period of pollen availability and depletion throughout the day overlapped with the bees foraging period, suggesting that bees are highly effective in removing pollen grains from anthers. Many of these grains probably land on the stigma of the same flower, leading to self-pollination and subsequent fruit development. Native bees (Exomalopsis spp.) are effective pollinators of tomato flowers and are likely to contribute to increasing crop productivity. On the other hand, here tomato flowers offer large amounts of pollen resource to a high richness and amount of bees, showing a strong plant-pollinator interaction in the study agroecosystem.

  10. How spatial variation in areal extent and configuration of labile vegetation states affect the riparian bird community in Arctic tundra.

    PubMed

    Henden, John-André; Yoccoz, Nigel G; Ims, Rolf A; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  11. How Spatial Variation in Areal Extent and Configuration of Labile Vegetation States Affect the Riparian Bird Community in Arctic Tundra

    PubMed Central

    Henden, John-André; Yoccoz, Nigel G.; Ims, Rolf A.; Langeland, Knut

    2013-01-01

    The Arctic tundra is currently experiencing an unprecedented combination of climate change, change in grazing pressure by large herbivores and growing human activity. Thickets of tall shrubs represent a conspicuous vegetation state in northern and temperate ecosystems, where it serves important ecological functions, including habitat for wildlife. Thickets are however labile, as tall shrubs respond rapidly to both abiotic and biotic environmental drivers. Our aim was to assess how large-scale spatial variation in willow thicket areal extent, configuration and habitat structure affected bird abundance, occupancy rates and species richness so as to provide an empirical basis for predicting the outcome of environmental change for riparian tundra bird communities. Based on a 4-year count data series, obtained through a large-scale study design in low arctic tundra in northern Norway, statistical hierarchical community models were deployed to assess relations between habitat configuration and bird species occupancy and community richness. We found that species abundance, occupancy and richness were greatly affected by willow areal extent and configuration, habitat features likely to be affected by intense ungulate browsing as well as climate warming. In sum, total species richness was maximized in large and tall willow patches of small to intermediate degree of fragmentation. These community effects were mainly driven by responses in the occupancy rates of species depending on tall willows for foraging and breeding, while species favouring other vegetation states were not affected. In light of the predicted climate driven willow shrub encroachment in riparian tundra habitats, our study predicts that many bird species would increase in abundance, and that the bird community as a whole could become enriched. Conversely, in tundra regions where overabundance of large herbivores leads to decreased areal extent, reduced height and increased fragmentation of willow thickets

  12. Environmental Quality and Fertility: The Effects of Plant Density, Species Richness, and Plant Diversity on Fertility Limitation *

    PubMed Central

    Brauner-Otto, Sarah R.

    2013-01-01

    The relationship between the environment and population has been of concern for centuries and climate change is making this an even more pressing area of study. In poor rural areas declining environmental conditions may elicit changes in family related behaviors. This paper explores this relationship in rural Nepal looking specifically at how plant density, species richness, and plant diversity are related to women’s fertility limitation behavior. Taking advantage of a unique data set with detailed micro-level environmental measures and individual fertility behavior I link geographically weighted measures of flora at one point in time to women’s later contraceptive use as a way to examine this complex relationship. I find a significant, positive relationship between plant density, species richness, and plant diversity and the timing of contraceptive use. Women in poor environmental conditions are less likely to terminate childbearing, or do so later, and therefore more likely to have larger families. PMID:25593378

  13. Loss of Rare Fish Species from Tropical Floodplain Food Webs Affects Community Structure and Ecosystem Multifunctionality in a Mesocosm Experiment

    PubMed Central

    Pendleton, Richard M.; Hoeinghaus, David J.; Gomes, Luiz C.; Agostinho, Angelo A.

    2014-01-01

    Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across multiple trophic

  14. Implementing groundwater extraction in life cycle impact assessment: characterization factors based on plant species richness for The Netherlands.

    PubMed

    van Zelm, Rosalie; Schipper, Aafke M; Rombouts, Michiel; Snepvangers, Judith; Huijbregts, Mark A J

    2011-01-15

    An operational method to evaluate the environmental impacts associated with groundwater use is currently lacking in life cycle assessment (LCA). This paper outlines a method to calculate characterization factors that address the effects of groundwater extraction on the species richness of terrestrial vegetation. Characterization factors (CF) were derived for The Netherlands and consist of a fate and an effect part. The fate factor equals the change in drawdown due to a change in groundwater extraction and expresses the amount of time required for groundwater replenishment. It was obtained with a grid-specific steady-state groundwater flow model. Effect factors were obtained from groundwater level response curves of potential plant species richness, which was constructed based on the soil moisture requirements of 625 plant species. Depending on the initial groundwater level, effect factors range up to 9.2% loss of species per 10 cm of groundwater level decrease. The total Dutch CF for groundwater extraction depended on the value choices taken and ranged from 0.09 to 0.61 m(2)·yr/m(3). For tap water production, we showed that groundwater extraction can be responsible for up to 32% of the total terrestrial ecosystem damage. With the proposed approach, effects of groundwater extraction on terrestrial ecosystems can be systematically included in LCA.

  15. Large herbivores maintain termite-caused differences in herbaceous species diversity patterns.

    PubMed

    Okullo, Paul; Moe, Stein R

    2012-09-01

    Termites and large herbivores affect African savanna plant communities. Both functional groups are also important for nutrient redistribution across the landscape. We conducted an experiment to study how termites and large herbivores, alone and in combination, affect herbaceous species diversity patterns in an African savanna. Herbaceous vegetation on large vegetated Macrotermes mounds (with and without large herbivores) and on adjacent savanna areas (with and without large herbivores) was monitored over three years in Lake Mburo National Park, Uganda. We found substantial differences in species richness, alpha diversity, evenness, and stability between termite mound herbaceous vegetation and adjacent savanna vegetation. Within months of fencing, levels of species richness, evenness, and stability were no longer significantly different between savanna and mounds. However, fencing reduced the cumulative number of species, particularly for forbs, of which 48% of the species were lost. Fencing increased the beta diversity (dissimilarity among plots) on the resource-poor (in terms of both nutrients and soil moisture) savanna areas, while it did not significantly affect beta diversity on the resource-rich termite mounds. While termites cause substantial heterogeneity in savanna vegetation, large herbivores further amplify these differences by reducing beta diversity on the savanna areas. Large herbivores are, however, responsible for the maintenance of a large number of forbs at the landscape level. These findings suggest that the mechanisms underlying the effects of termites and large herbivores on savanna plant communities scale up to shape community structure and dynamics at a landscape level.

  16. Long-term monitoring data provide evidence of declining species richness in a river valued for biodiversity conservation

    USGS Publications Warehouse

    Freeman, Mary C.; Hagler, Megan M.; Bumpers, Phillip M.; Wheeler, Kit; Wengerd, Seth J.; Freeman, Byron J.

    2017-01-01

    Free-flowing river segments provide refuges for many imperiled aquatic biota that have been extirpated elsewhere in their native ranges. These biodiversity refuges are also foci of conservation concerns because species persisting within isolated habitat fragments may be particularly vulnerable to local environmental change. We have analyzed long-term (14- and 20-y) survey data to assess evidence of fish species declines in two southeastern U.S. rivers where managers and stakeholders have identified potentially detrimental impacts of current and future land uses. The Conasauga River (Georgia and Tennessee) and the Etowah River (Georgia) form free-flowing headwaters of the extensively dammed Coosa River system. These rivers are valued in part because they harbor multiple species of conservation concern, including three federally endangered and two federally threatened fishes. We used data sets comprising annual surveys for fish species at multiple, fixed sites located at river shoals to analyze occupancy dynamics and temporal changes in species richness. Our analyses incorporated repeated site-specific surveys in some years to estimate and account for incomplete species detection, and test for species-specific (rarity, mainstem-restriction) and year-specific (elevated frequencies of low- or high-flow days) covariates on occupancy dynamics. In the Conasauga River, analysis of 26 species at 13 sites showed evidence of temporal declines in colonization rates for nearly all taxa, accompanied by declining species richness. Four taxa (including one federally endangered species) had reduced occupancy across the Conasauga study sites, with three of these taxa apparently absent for at least the last 5 y of the study. In contrast, a similar fauna of 28 taxa at 10 sites in the Etowah River showed no trends in species persistence, colonization, or occupancy. None of the tested covariates showed strong effects on persistence or colonization rates in either river. Previous studies

  17. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    PubMed

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  18. Spatial patterns of primary productivity derived from the Dynamic Habitat Indices predict patterns of species richness and distributions in the tropics

    NASA Astrophysics Data System (ADS)

    Suttidate, Naparat

    Humans are changing the Earth's ecosystems, which has profound consequences for biodiversity. To understand how species respond to these changes, biodiversity science requires accurate assessments of biodiversity. However, biodiversity assessments are still limited in tropical regions. The Dynamic Habitat Indices (DHIs), derived from satellite data, summarize dynamic patterns of annual primary productivity: (a) cumulative annual productivity, (b) minimum annual productivity, and (c) seasonal variation in productivity. The DHIs have been successfully used in temperate regions, but not yet in the tropics. My goal was to evaluate the importance of primary productivity measured via the DHIs for assessing patterns of species richness and distributions in Thailand. First, I assessed the relationships between the DHIs and tropical bird species richness. I also evaluated the complementarity of the DHIs and topography, climate, latitudinal gradients, habitat heterogeneity, and habitat area in explaining bird species richness. I found that among three DHIs, cumulative annual productivity was the most important factor in explaining bird species richness and that the DHIs outperformed other environmental variables. Second, I developed texture measures derive from DHI cumulative annual productivity, and compared them to habitat composition and fragmentation as predictors of tropical forest bird distributions. I found that adding texture measures to habitat composition and fragmentation models improved the prediction of tropical bird distributions, especially area- and edge-sensitive tropical forest bird species. Third, I predicted the effects of trophic interactions between primary productivity, prey, and predators in relation to habitat connectivity for Indochinese tigers (Panthera tigris). I found that including trophic interactions improved habitat suitability models for tigers. However, tiger habitat is highly fragmented with few dispersal corridors. I also identified

  19. Landscape structure affects specialists but not generalists in naturally fragmented grasslands

    USGS Publications Warehouse

    Miller, Jesse E.D.; Damschen, Ellen Ingman; Harrison, Susan P.; Grace, James B.

    2015-01-01

    Understanding how biotic communities respond to landscape spatial structure is critically important for conservation management as natural landscapes become increasingly fragmented. However, empirical studies of the effects of spatial structure on plant species richness have found inconsistent results, suggesting that more comprehensive approaches are needed. In this study, we asked how landscape structure affects total plant species richness and the richness of a guild of specialized plants in a multivariate context. We sampled herbaceous plant communities at 56 dolomite glades (insular, fire-adapted grasslands) across the Missouri Ozarks, and used structural equation modeling (SEM) to analyze the relative importance of landscape structure, soil resource availability, and fire history for plant communities. We found that landscape spatial structure-defined as the area-weighted proximity of glade habitat surrounding study sites (proximity index)-had a significant effect on total plant species richness, but only after we controlled for environmental covariates. Richness of specialist species, but not generalists, was positively related to landscape spatial structure. Our results highlight that local environmental filters must be considered to understand the influence of landscape structure on communities, and that unique species guilds may respond differently to landscape structure than the community as a whole. These findings suggest that both local environment and landscape context should be considered when developing management strategies for species of conservation concern in fragmented habitats.

  20. Recurring Necrotic Enteritis Outbreaks in Commercial Broiler Chicken Flocks Strongly Influence Toxin Gene Carriage and Species Richness in the Resident Clostridium perfringens Population

    PubMed Central

    Gaucher, Marie-Lou; Perron, Gabriel G.; Arsenault, Julie; Letellier, Ann; Boulianne, Martine; Quessy, Sylvain

    2017-01-01

    Extensive use of antibiotic growth promoters (AGPs) in food animals has been questioned due to the globally increasing problem of antibiotic resistance. For the poultry industry, digestive health management following AGP withdrawal in Europe has been a challenge, especially the control of necrotic enteritis. Much research work has focused on gut health in commercial broiler chicken husbandry. Understanding the behavior of Clostridium perfringens in its ecological niche, the poultry barn, is key to a sustainable and cost-effective production in the absence of AGPs. Using polymerase chain reaction and pulsed-field gel electrophoresis, we evaluated how the C. perfringens population evolved in drug-free commercial broiler chicken farms, either healthy or affected with recurring clinical necrotic enteritis outbreaks, over a 14-month period. We show that a high genotypic richness was associated with an increased risk of clinical necrotic enteritis. Also, necrotic enteritis-affected farms had a significant reduction of C. perfringens genotypic richness over time, an increase in the proportion of C. perfringens strains harboring the cpb2 gene, the netB gene, or both. Thus, necrotic enteritis occurrence is correlated with the presence of an initial highly diverse C. perfringens population, increasing the opportunity for the selective sweep of particularly virulent genotypes. Disease outbreaks also appear to largely influence the evolution of this bacterial species in poultry farms over time. PMID:28567032

  1. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent.

    PubMed

    Tedersoo, Leho; Bahram, Mohammad; Cajthaml, Tomáš; Põlme, Sergei; Hiiesalu, Indrek; Anslan, Sten; Harend, Helery; Buegger, Franz; Pritsch, Karin; Koricheva, Julia; Abarenkov, Kessy

    2016-02-01

    Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se.

  2. Ecological impacts of tropical forest fragmentation: how consistent are patterns in species richness and nestedness?

    PubMed

    Hill, Jane K; Gray, Michael A; Khen, Chey Vun; Benedick, Suzan; Tawatao, Noel; Hamer, Keith C

    2011-11-27

    Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species-area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects.

  3. Dynamic relationships between body size, species richness, abundance, and energy use in a shallow marine epibenthic faunal community

    PubMed Central

    Labra, Fabio A; Hernández-Miranda, Eduardo; Quiñones, Renato A

    2015-01-01

    We study the temporal variation in the empirical relationships among body size (S), species richness (R), and abundance (A) in a shallow marine epibenthic faunal community in Coliumo Bay, Chile. We also extend previous analyses by calculating individual energy use (E) and test whether its bivariate and trivariate relationships with S and R are in agreement with expectations derived from the energetic equivalence rule. Carnivorous and scavenger species representing over 95% of sample abundance and biomass were studied. For each individual, body size (g) was measured and E was estimated following published allometric relationships. Data for each sample were tabulated into exponential body size bins, comparing species-averaged values with individual-based estimates which allow species to potentially occupy multiple size classes. For individual-based data, both the number of individuals and species across body size classes are fit by a Weibull function rather than by a power law scaling. Species richness is also a power law of the number of individuals. Energy use shows a piecewise scaling relationship with body size, with energetic equivalence holding true only for size classes above the modal abundance class. Species-based data showed either weak linear or no significant patterns, likely due to the decrease in the number of data points across body size classes. Hence, for individual-based size spectra, the SRA relationship seems to be general despite seasonal forcing and strong disturbances in Coliumo Bay. The unimodal abundance distribution results in a piecewise energy scaling relationship, with small individuals showing a positive scaling and large individuals showing energetic equivalence. Hence, strict energetic equivalence should not be expected for unimodal abundance distributions. On the other hand, while species-based data do not show unimodal SRA relationships, energy use across body size classes did not show significant trends, supporting energetic

  4. Estimation of avian population sizes and species richness across a boreal landscape in Alaska

    USGS Publications Warehouse

    Handel, Colleen M.; Swanson, S.A.; Nigro, Debora A.; Matsuoka, S.M.

    2009-01-01

    We studied the distribution of birds breeding within five ecological landforms in Yukon-Charley Rivers National Preserve, a 10,194-km2 roadless conservation unit on the Alaska-Canada border in the boreal forest zone. Passerines dominated the avifauna numerically, comprising 97% of individuals surveyed but less than half of the 115 species recorded in the Preserve. We used distance-sampling and discrete-removal models to estimate detection probabilities, densities, and population sizes across the Preserve for 23 species of migrant passerines and five species of resident passerines. Yellow-rumped Warblers (Dendroica coronata) and Dark-eyed Juncos (Junco hyemalis) were the most abundant species, together accounting for 41% of the migrant passerine populations estimated. White-winged Crossbills (Loxia leucoptera), Boreal Chickadees (Poecile hudsonica), and Gray Jays (Perisoreus canadensis) were the most abundant residents. Species richness was greatest in the Floodplain/Terrace landform flanking the Yukon River but densities were highest in the Subalpine landform. Species composition was related to past glacial history and current physiography of the region and differed notably from other areas of the northwestern boreal forest. Point-transect surveys, augmented with auxiliary observations, were well suited to sampling the largely passerine avifauna across this rugged landscape and could be used across the boreal forest region to monitor changes in northern bird distribution and abundance. ?? 2009 The Wilson Ornithological Society.

  5. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    USGS Publications Warehouse

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-01-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03–0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  6. Guild-specific responses of avian species richness to LiDAR-derived habitat heterogeneity

    NASA Astrophysics Data System (ADS)

    Weisberg, Peter J.; Dilts, Thomas E.; Becker, Miles E.; Young, Jock S.; Wong-Kone, Diane C.; Newton, Wesley E.; Ammon, Elisabeth M.

    2014-08-01

    Ecological niche theory implies that more heterogeneous habitats have the potential to support greater biodiversity. Positive heterogeneity-diversity relationships have been found for most studies investigating animal taxa, although negative relationships also occur and the scale dependence of heterogeneity-diversity relationships is little known. We investigated multi-scale, heterogeneity-diversity relationships for bird communities in a semi-arid riparian landscape, using airborne LiDAR data to derive key measures of structural habitat complexity. Habitat heterogeneity-diversity relationships were generally positive, although the overall strength of relationships varied across avian life history guilds (R2 range: 0.03-0.41). Best predicted were the species richness indices of cavity nesters, habitat generalists, woodland specialists, and foliage foragers. Heterogeneity-diversity relationships were also strongly scale-dependent, with strongest associations at the 200-m scale (4 ha) and weakest associations at the 50-m scale (0.25 ha). Our results underscore the value of LiDAR data for fine-grained quantification of habitat structure, as well as the need for biodiversity studies to incorporate variation among life-history guilds and to simultaneously consider multiple guild functional types (e.g. nesting, foraging, habitat). Results suggest that certain life-history guilds (foliage foragers, cavity nesters, woodland specialists) are more susceptible than others (ground foragers, ground nesters, low nesters) to experiencing declines in local species richness if functional elements of habitat heterogeneity are lost. Positive heterogeneity-diversity relationships imply that riparian conservation efforts need to not only provide high-quality riparian habitat locally, but also to provide habitat heterogeneity across multiple scales.

  7. Forested landscapes promote richness and abundance of native bees (Hymenoptera: Apoidea: Anthophila) in Wisconsin apple orchards.

    PubMed

    Watson, J C; Wolf, A T; Ascher, J S

    2011-06-01

    Wild bees provide vital pollination services for many native and agricultural plant species, yet the landscape conditions needed to support wild bee populations are not well understood or appreciated. We assessed the influence of landscape composition on bee abundance and species richness in apple (Malus spp.) orchards of northeastern Wisconsin during the spring flowering period. A diverse community of bee species occurs in these apple orchards, dominated by wild bees in the families Andrenidae and Halictidae and the honey bee, Apis mellifera L. Proportion of forest area in the surrounding landscape was a significant positive predictor of wild bee abundance in orchards, with strongest effects at a GIS (Geographic Information Systems) buffer distance of 1,000 m or greater. Forest area also was positively associated with species richness, showing strongest effects at a buffer distance of 2,000 m. Nonagricultural developed land (homes, lawns, etcetera) was significantly negatively associated with species richness at buffer distances >750 m and wild bee abundance in bowl traps at all distances. Other landscape variables statistically associated with species richness or abundance of wild bees included proportion area of pasture (positive) and proportion area of roads (negative). Forest area was not associated with honey bee abundance at any buffer distance. These results provide clear evidence that the landscape surrounding apple orchards, especially the proportion of forest area, affects richness and abundance of wild bees during the spring flowering period and should be a part of sustainable land management strategies in agro-ecosystems of northeastern Wisconsin and other apple growing regions.

  8. Factors associated with grassland bird species richness: The relative roles of grassland area, landscape structure, and prey

    Treesearch

    Tammy L. Hamer; Curtis H. Flather; Barry R. Noon

    2006-01-01

    The factors responsible for widespread declines of grassland birds in the United States are not well understood. This study, conducted in the short-grass prairie of eastern Wyoming, was designed to investigate the relationship between variation in habitat amount, landscape heterogeneity, prey resources, and spatial variation in grassland bird species richness. We...

  9. Thematic and Spatial Resolutions Affect Model-Based Predictions of Tree Species Distribution

    PubMed Central

    Liang, Yu; He, Hong S.; Fraser, Jacob S.; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution. PMID:23861828

  10. Species richness accelerates marine ecosystem restoration in the Coral Triangle.

    PubMed

    Williams, Susan L; Ambo-Rappe, Rohani; Sur, Christine; Abbott, Jessica M; Limbong, Steven R

    2017-11-07

    Ecosystem restoration aims to restore biodiversity and valuable functions that have been degraded or lost. The Coral Triangle is a hotspot for marine biodiversity held in its coral reefs, seagrass meadows, and mangrove forests, all of which are in global decline. These coastal ecosystems support valuable fisheries and endangered species, protect shorelines, and are significant carbon stores, functions that have been degraded by coastal development, destructive fishing practices, and climate change. Ecosystem restoration is required to mitigate these damages and losses, but its practice is in its infancy in the region. Here we demonstrate that species diversity can set the trajectory of restoration. In a seagrass restoration experiment in the heart of the Coral Triangle (Sulawesi, Indonesia), plant survival and coverage increased with the number of species transplanted. Our results highlight the positive role biodiversity can play in ecosystem restoration and call for revision of the common restoration practice of establishing a single target species, particularly in regions having high biodiversity. Coastal ecosystems affect human well-being in many important ways, and restoration will become ever more important as conservation efforts cannot keep up with their loss. Published under the PNAS license.

  11. Diversity within diversity: Parasite species richness in poison frogs assessed by transcriptomics.

    PubMed

    Santos, Juan C; Tarvin, Rebecca D; O'Connell, Lauren A; Blackburn, David C; Coloma, Luis A

    2018-08-01

    Symbionts (e.g., endoparasites and commensals) play an integral role in their host's ecology, yet in many cases their diversity is likely underestimated. Although endoparasites are traditionally characterized using morphology, sequences of conserved genes, and shotgun metagenomics, host transcriptomes constitute an underused resource to identify these organisms' diversity. By isolating non-host transcripts from host transcriptomes, individual host tissues can now simultaneously reveal their endoparasite species richness (i.e., number of different taxa) and provide insights into parasite gene expression. These approaches can be used in host taxa whose endoparasites are mostly unknown, such as those of tropical amphibians. Here, we focus on the poison frogs (Dendrobatidae) as hosts, which are a Neotropical clade known for their bright coloration and defensive alkaloids. These toxins are an effective protection against vertebrate predators (e.g., snakes and birds), bacteria, and skin-biting ectoparasites (e.g., mosquitoes); however, little is known about their deterrence against eukaryotic endoparasites. With de novo transcriptomes of dendrobatids, we developed a bioinformatics pipeline for endoparasite identification that uses host annotated RNA-seq data and set of a priori parasite taxonomic terms, which are used to mine for specific endoparasites. We found a large community of helminths and protozoans that were mostly restricted to the digestive tract and a few systemic parasites (e.g., Trypanosoma). Contrary to our expectations, all dendrobatid frogs regardless of the presence of alkaloid defenses have endoparasites, with their highest species richness located in the frog digestive tract. Some of these organisms (e.g., roundworms) might prove to be generalists, as they were not found to be co-diversifying with their frog hosts. We propose that endoparasites may escape poison frogs' chemical defenses by colonizing tissues with fewer alkaloids than the frog's skin

  12. Dispersal rates affect species composition in metacommunities of Sarracenia purpurea inquilines.

    PubMed

    Kneitel, Jamie M; Miller, Thomas E

    2003-08-01

    Dispersal among local communities can have a variety of effects on species composition and diversity at local and regional scales. Local conditions (e.g., resource and predator densities) can have independent effects, as well as interact with dispersal, to alter these patterns. Based on metacommunity models, we predicted that local diversity would show a unimodal relationship with dispersal frequency. We manipulated dispersal frequencies, resource levels, and the presence of predators (mosquito larvae) among communities found in the water-filled leaves of the pitcher plant Sarracenia purpurea. Diversity and abundance of species of the middle trophic level, protozoa and rotifers, were measured. Increased dispersal frequencies significantly increased regional species richness and protozoan abundance while decreasing the variance among local communities. Dispersal frequency interacted with predation at the local community scale to produce patterns of diversity consistent with the model. When predators were absent, we found a unimodal relationship between dispersal frequency and diversity, and when predators were present, there was a flat relationship. Intermediate dispersal frequencies maintained some species in the inquiline communities by offsetting extinction rates. Local community composition and the degree of connectivity between communities are both important for understanding species diversity patterns at local and regional scales.

  13. Relationships between avian richness and landscape structure at multiple scales using multiple landscapes

    USGS Publications Warehouse

    Mitchell, M.S.; Rutzmoser, S.H.; Wigley, T.B.; Loehle, C.; Gerwin, J.A.; Keyser, P.D.; Lancia, R.A.; Perry, R.W.; Reynolds, C.J.; Thill, R.E.; Weih, R.; White, D.; Wood, P.B.

    2006-01-01

    Little is known about factors that structure biodiversity on landscape scales, yet current land management protocols, such as forest certification programs, place an increasing emphasis on managing for sustainable biodiversity at landscape scales. We used a replicated landscape study to evaluate relationships between forest structure and avian diversity at both stand and landscape-levels. We used data on bird communities collected under comparable sampling protocols on four managed forests located across the Southeastern US to develop logistic regression models describing relationships between habitat factors and the distribution of overall richness and richness of selected guilds. Landscape models generated for eight of nine guilds showed a strong relationship between richness and both availability and configuration of landscape features. Diversity of topographic features and heterogeneity of forest structure were primary determinants of avian species richness. Forest heterogeneity, in both age and forest type, were strongly and positively associated with overall avian richness and richness for most guilds. Road density was associated positively but weakly with avian richness. Landscape variables dominated all models generated, but no consistent patterns in metrics or scale were evident. Model fit was strong for neotropical migrants and relatively weak for short-distance migrants and resident species. Our models provide a tool that will allow managers to evaluate and demonstrate quantitatively how management practices affect avian diversity on landscapes.

  14. Application of DNA barcoding in biodiversity studies of shallow-water octocorals: molecular proxies agree with morphological estimates of species richness in Palau

    NASA Astrophysics Data System (ADS)

    McFadden, C. S.; Brown, A. S.; Brayton, C.; Hunt, C. B.; van Ofwegen, L. P.

    2014-06-01

    The application of DNA barcoding to anthozoan cnidarians has been hindered by their slow rates of mitochondrial gene evolution and the failure to identify alternative molecular markers that distinguish species reliably. Among octocorals, however, multilocus barcodes can distinguish up to 70 % of morphospecies, thereby facilitating the identification of species that are ecologically important but still very poorly known taxonomically. We tested the ability of these imperfect DNA barcodes to estimate species richness in a biodiversity survey of the shallow-water octocoral fauna of Palau using multilocus ( COI, mtMutS, 28S rDNA) sequences obtained from 305 specimens representing 38 genera of octocorals. Numbers and identities of species were estimated independently (1) by a taxonomic expert using morphological criteria and (2) by assigning sequences to molecular operational taxonomic units (MOTUs) using predefined genetic distance thresholds. Estimated numbers of MOTUs ranged from 73 to 128 depending on the barcode and distance threshold applied, bracketing the estimated number of 118 morphospecies. Concordance between morphospecies identifications and MOTUs ranged from 71 to 75 % and differed little among barcodes. For the speciose and ecologically dominant genus Sinularia, however, we were able to identify 95 % of specimens correctly simply by comparing mtMutS sequences and in situ photographs of colonies to an existing vouchered database. Because we lack a clear understanding of species boundaries in most of these taxa, numbers of morphospecies and MOTUs are both estimates of the true species diversity, and we cannot currently determine which is more accurate. Our results suggest, however, that the two methods provide comparable estimates of species richness for shallow-water Indo-Pacific octocorals. Use of molecular barcodes in biodiversity surveys will facilitate comparisons of species richness and composition among localities and over time, data that do not

  15. Increasing fish taxonomic and functional richness affects ecosystem properties of small headwater prairie streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Erika C.; Gido, Keith B.; Bello, Nora

    Stream fish can regulate their environment through direct and indirect pathways, and the relative influence of communities with different taxonomic and functional richness on ecosystem properties likely depends on habitat structure. Given this complexity, it is not surprising that observational studies of how stream fish communities influence ecosystems have shown mixed results. In this study, we evaluated the effect of an observed gradient of taxonomic (zero, one, two or three species) and functional (zero, one or two groups) richness of fishes on several key ecosystem properties in experimental stream mesocosms. Our study simulated small (less than two metres wide) headwatermore » prairie streams with a succession of three pool-riffle structures (upstream, middle and downstream) per mesocosm. Additionally, ecosystem responses included chlorophyll a from floating algal mats and benthic algae, benthic organic matter, macroinvertebrates (all as mass per unit area), algal filament length and stream metabolism (photosynthesis and respiration rate). Ecosystem responses were analysed individually using general linear mixed models. Significant treatment (taxonomic and functional richness) by habitat (pools and riffles) interactions were found for all but one ecosystem response variable. After accounting for location (upstream, middle and downstream) effects, the presence of one or two grazers resulted in shorter mean algal filament lengths in pools compared to no-fish controls. These observations suggest grazers can maintain short algal filaments in pools, which may inhibit long filaments from reaching the surface. Accordingly, floating algal mats decreased in mid- and downstream locations in grazer treatment relative to no-fish controls. At the scale of the entire reach, gross primary productivity and respiration were greater in treatments with two grazer species compared to mixed grazer/insectivore or control treatments. Lastly, the distribution of stream resources

  16. Increasing fish taxonomic and functional richness affects ecosystem properties of small headwater prairie streams

    DOE PAGES

    Martin, Erika C.; Gido, Keith B.; Bello, Nora; ...

    2016-04-06

    Stream fish can regulate their environment through direct and indirect pathways, and the relative influence of communities with different taxonomic and functional richness on ecosystem properties likely depends on habitat structure. Given this complexity, it is not surprising that observational studies of how stream fish communities influence ecosystems have shown mixed results. In this study, we evaluated the effect of an observed gradient of taxonomic (zero, one, two or three species) and functional (zero, one or two groups) richness of fishes on several key ecosystem properties in experimental stream mesocosms. Our study simulated small (less than two metres wide) headwatermore » prairie streams with a succession of three pool-riffle structures (upstream, middle and downstream) per mesocosm. Additionally, ecosystem responses included chlorophyll a from floating algal mats and benthic algae, benthic organic matter, macroinvertebrates (all as mass per unit area), algal filament length and stream metabolism (photosynthesis and respiration rate). Ecosystem responses were analysed individually using general linear mixed models. Significant treatment (taxonomic and functional richness) by habitat (pools and riffles) interactions were found for all but one ecosystem response variable. After accounting for location (upstream, middle and downstream) effects, the presence of one or two grazers resulted in shorter mean algal filament lengths in pools compared to no-fish controls. These observations suggest grazers can maintain short algal filaments in pools, which may inhibit long filaments from reaching the surface. Accordingly, floating algal mats decreased in mid- and downstream locations in grazer treatment relative to no-fish controls. At the scale of the entire reach, gross primary productivity and respiration were greater in treatments with two grazer species compared to mixed grazer/insectivore or control treatments. Lastly, the distribution of stream resources

  17. Richness of ectoparasitic flies (Diptera: Streblidae) of bats (Chiroptera)-a systematic review and meta-analysis of studies in Brazil.

    PubMed

    Lourenço, Elizabete Captivo; Almeida, Juliana Cardoso; Famadas, Kátia Maria

    2016-11-01

    The family Streblidae consists of obligate hematophagous ectoparasites of bats. The richness of Streblidae may be affected by environmental and host-related variables, collection methods, and sampling effort. The purposes of this study were to list the Streblidae species recorded in Brazil, verify their distribution in the Brazilian biomes and states, and pinpoint the parameters that favored the greatest richness. Through queries in online databases and libraries, 86 publications were found containing records of 83 species in 24 genera. The state with the largest number of publications was São Paulo and Federal District presented the highest richness of Streblidae. The largest number of records of Streblidae species was in Cerrado biome. The meta-analyses utilizing 26 Brazilian inventories showed that the richness of Streblidae was positively correlated with the number of flies and richness and abundance of Phyllostomidae. We hope that the results of this study will contribute to a better understanding of the distribution of research on Streblidae in Brazil and confirming the specificity between Streblidae and Phyllostomidae.

  18. Crop biomass not species richness drives weed suppression in warm-season annual grass-legume intercrops in the Northeast

    USDA-ARS?s Scientific Manuscript database

    Intercropping with functionally diverse crops can reduce the availability of resources that could otherwise be used by weeds. An experiment was conducted six times across the northeastern United States in 2013 and 2014 to examine the effects of functional diversity and species richness on weed suppr...

  19. Determinants of bird species richness, endemism, and island network roles in Wallacea and the West Indies: is geography sufficient or does current and historical climate matter?

    PubMed Central

    Dalsgaard, Bo; Carstensen, Daniel W; Fjeldså, Jon; Maruyama, Pietro K; Rahbek, Carsten; Sandel, Brody; Sonne, Jesper; Svenning, Jens-Christian; Wang, Zhiheng; Sutherland, William J

    2014-01-01

    Island biogeography has greatly contributed to our understanding of the processes determining species' distributions. Previous research has focused on the effects of island geography (i.e., island area, elevation, and isolation) and current climate as drivers of island species richness and endemism. Here, we evaluate the potential additional effects of historical climate on breeding land bird richness and endemism in Wallacea and the West Indies. Furthermore, on the basis of species distributions, we identify island biogeographical network roles and examine their association with geography, current and historical climate, and bird richness/endemism. We found that island geography, especially island area but also isolation and elevation, largely explained the variation in island species richness and endemism. Current and historical climate only added marginally to our understanding of the distribution of species on islands, and this was idiosyncratic to each archipelago. In the West Indies, endemic richness was slightly reduced on islands with historically unstable climates; weak support for the opposite was found in Wallacea. In both archipelagos, large islands with many endemics and situated far from other large islands had high importance for the linkage within modules, indicating that these islands potentially act as speciation pumps and source islands for surrounding smaller islands within the module and, thus, define the biogeographical modules. Large islands situated far from the mainland and/or with a high number of nonendemics acted as links between modules. Additionally, in Wallacea, but not in the West Indies, climatically unstable islands tended to interlink biogeographical modules. The weak and idiosyncratic effect of historical climate on island richness, endemism, and network roles indicates that historical climate had little effects on extinction-immigration dynamics. This is in contrast to the strong effect of historical climate observed on the

  20. Disturbance alters local-regional richness relationships in appalachian forests

    USGS Publications Warehouse

    Belote, R.T.; Sanders, N.J.; Jones, R.H.

    2009-01-01

    Whether biological diversity within communities is limited by local interactions or regional species pools remains an important question in ecology. In this paper, we investigate how an experimentally applied tree-harvesting disturbance gradient influenced local-regional richness relationships. Plant species richness was measured at three spatial scales (2 ha = regional; 576 m2 and 1 m2 = local) on three occasions (one year pre-disturbance, one year post-disturbance, and 10 years post-disturbance) across five disturbance treatments (uncut control through clearcut) replicated throughout the southern Appalachian Mountains, USA. We investigated whether species richness in 576-m2 plots and 1-m2 subplots depended on species richness in 2-ha experimental units and whether this relationship changed through time before and after canopy disturbance. We found that, before disturbance, the relationship between local and regional richness was weak or nonexistent. One year after disturbance local richness was a positive function of regional richness, because local sites were colonized from the regional species pool. Ten years after disturbance, the positive relationship persisted, but the slope had decreased by half. These results suggest that disturbance can set the stage for strong influences of regional species pools on local community assembly in temperate forests. However, as time since disturbance increases, local controls on community assembly decouple the relationships between regional and local diversity. ?? 2009 by the Ecological Society of America.

  1. Cross-scale modelling of alien and native vascular plant species richness in Great Britain: where is geodiversity information most relevant?

    NASA Astrophysics Data System (ADS)

    Bailey, Joseph; Field, Richard; Boyd, Doreen

    2016-04-01

    We assess the scale-dependency of the relationship between biodiversity and novel geodiversity information by studying spatial patterns of native and alien (archaeophytes and neophytes) vascular plant species richness at varying spatial scales across Great Britain. Instead of using a compound geodiversity metric, we study individual geodiversity components (GDCs) to advance our understanding of which aspects of 'geodiversity' are most important and at what scale. Terrestrial native (n = 1,490) and alien (n = 1,331) vascular plant species richness was modelled across the island of Great Britain at two grain sizes and several extent radii. Various GDCs (landforms, hydrology, geology) were compiled from existing national datasets and automatically extracted landform coverage information (e.g. hollows, valleys, peaks), the latter using a digital elevation model (DEM) and geomorphometric techniques. More traditional predictors of species richness (climate, widely-used topography metrics, land cover diversity, and human population) were also incorporated. Boosted Regression Tree (BRT) models were produced at all grain sizes and extents for each species group and the dominant predictors were assessed. Models with and without geodiversity data were compared. Overarching patterns indicated a clear dominance of geodiversity information at the smallest study extent (12.5km radius) and finest grain size (1x1km), which substantially decreased for each increase in extent as the contribution of climatic variables increased. The contribution of GDCs to biodiversity models was chiefly driven by landform information from geomorphometry, but hydrology (rivers and lakes), and to a lesser extent materials (soil, superficial deposits, and geology), were important, also. GDCs added significantly to vascular plant biodiversity models in Great Britain, independently of widely-used topographic metrics, particularly for native species. The wider consideration of geodiversity alongside

  2. Species-specific responses to landscape fragmentation: implications for management strategies

    PubMed Central

    Blanchet, Simon; Rey, Olivier; Etienne, Roselyne; Lek, Sovan; Loot, Géraldine

    2010-01-01

    Habitat fragmentation affects the integrity of many species, but little is known about species-specific sensitivity to fragmentation. Here, we compared the genetic structure of four freshwater fish species differing in their body size (Leuciscus cephalus; Leuciscus leuciscus; Gobio gobio and Phoxinus phoxinus) between a fragmented and a continuous landscape. We tested if, overall, fragmentation affected the genetic structure of these fish species, and if these species differed in their sensitivity to fragmentation. Fragmentation negatively affected the genetic structure of these species. Indeed, irrespective of the species identity, allelic richness and heterozygosity were lower, and population divergence was higher in the fragmented than in the continuous landscape. This response to fragmentation was highly species-specific, with the smallest fish species (P. phoxinus) being slightly affected by fragmentation. On the contrary, fish species of intermediate body size (L. leuciscus and G. gobio) were highly affected, whereas the largest fish species (L. cephalus) was intermediately affected by fragmentation. We discuss the relative role of dispersal ability and effective population size on the responses to fragmentation we report here. The weirs studied here are of considerable historical importance. We therefore conclude that restoration programmes will need to consider both this societal context and the biological characteristics of the species sharing this ecosystem. PMID:25567925

  3. Can anthropic fires affect epigaeic and hypogaeic Cerrado ant (Hymenoptera: Formicidae) communities in the same way?

    PubMed

    Canedo-Júnior, Ernesto de Oliveira; Cuissi, Rafael Gonçalves; Nelson Henrique de Almeida, Curi; Demetrio, Guilherme Ramos; Lasmar, Chaim José; Malves, Kira

    2016-03-01

    Fire occurrences are a common perturbation in Cerrado ecosystems, and may differently impact the local biodiversity. Arthropods are one of the taxa affected by fires, and among them, ants are known as good bioindicators. We aimed to evaluate the effect of anthropic fires on epigaeic and hypogaeic ant communities (species richness and composition) in Cerrado areas with different post-fire event recovery periods. We conducted the study in four Cerrado areas during two weeks of 2012 dry season: one unburned and three at different post-fire times (one month, one and two years). We sampled ants with pitfall traps in epigaeic and hypogaeic microhabitats. We collected 71 ant morpho-species from 25 genera. In the epigaeic microhabitat we sampled 56 morpho-species and 42 in the hypogaeic microhabitat. The area with the shortest recovery time presented lower epigaeic ant species richness (4.3 ± 2.00) in comparison to the other areas (8.1 ± 2.68 species on one year area; 10.3 ± 2.66 species on two years area; 10.4 ± 2.31 species on control area), but recovery time did not affect hypogaeic ant species richness. Regarding ant species composition, fire did not directly affect hypogaeic ant species, which remained the same even one month after fire event. However, two years were not enough to reestablish ant species composition in both microhabitats in relation to our control group samples. Our study is the first to assess anthropic fire effects upon epigaeic and hypogaeic ants communities; highlighting the importance of evaluating different microhabitats, to more accurately detect the effects of anthropic disturbances in biological communities. We concluded that ant communities are just partially affected by fire occurrences, and epigaeic assemblages are the most affected ones in comparison to hypogaeic ants. Furthermore the study provides knowledge to aid in the creation of vegetation management programs that allow Cerrado conservation.

  4. Relative abundance and species richness of cerambycid beetles in partial cut and uncut bottomland hardwood forests

    USGS Publications Warehouse

    Newell, P.; King, S.

    2009-01-01

    Partial cutting techniques are increasingly advocated and used to create habitat for priority wildlife. However, partial cutting may or may not benefit species dependent on deadwood; harvesting can supplement coarse woody debris in the form of logging slash, but standing dead trees may be targeted for removal. We sampled cerambycid beetles during the spring and summer of 2006 and 2007 with canopy malaise traps in 1- and 2-year-old partial cut and uncut bottomland hardwood forests of Louisiana. We captured a total of 4195 cerambycid beetles representing 65 species. Relative abundance was higher in recent partial cuts than in uncut controls and with more dead trees in a plot. Total species richness and species composition were not different between treatments. The results suggest partial cuts with logging slash left on site increase the abundance of cerambycid beetles in the first few years after partial cutting and that both partial cuts and uncut forest should be included in the bottomland hardwood forest landscape.

  5. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems.

    PubMed

    Schaller, Jörg; Roscher, Christiane; Hillebrand, Helmut; Weigelt, Alexandra; Oelmann, Yvonne; Wilcke, Wolfgang; Ebeling, Anne; Weisser, Wolfgang W

    2016-09-01

    Plant diversity is an important driver of nitrogen and phosphorus stocks in aboveground plant biomass of grassland ecosystems, but plant diversity effects on other elements also important for plant growth are less understood. We tested whether plant species richness, functional group richness or the presence/absence of particular plant functional groups influences the Si and Ca concentrations (mmol g(-1)) and stocks (mmol m(-2)) in aboveground plant biomass in a large grassland biodiversity experiment (Jena Experiment). In the experiment including 60 temperate grassland species, plant diversity was manipulated as sown species richness (1, 2, 4, 8, 16) and richness and identity of plant functional groups (1-4; grasses, small herbs, tall herbs, legumes). We found positive species richness effects on Si as well as Ca stocks that were attributable to increased biomass production. The presence of particular functional groups was the most important factor explaining variation in aboveground Si and Ca stocks (mmol m(-2)). Grass presence increased the Si stocks by 140 % and legume presence increased the Ca stock by 230 %. Both the presence of specific plant functional groups and species diversity altered Si and Ca stocks, whereas Si and Ca concentration were affected mostly by the presence of specific plant functional groups. However, we found a negative effect of species diversity on Si and Ca accumulation, by calculating the deviation between mixtures and mixture biomass proportions, but in monoculture concentrations. These changes may in turn affect ecosystem processes such as plant litter decomposition and nutrient cycling in grasslands.

  6. Biological invasion by a benthivorous fish reduced the cover and species richness of aquatic plants in most lakes of a large North American ecoregion.

    PubMed

    Bajer, Przemyslaw G; Beck, Marcus W; Cross, Timothy K; Koch, Justine D; Bartodziej, William M; Sorensen, Peter W

    2016-12-01

    Biological invasions are projected to be the main driver of biodiversity and ecosystem function loss in lakes in the 21st century. However, the extent of these future losses is difficult to quantify because most invasions are recent and confounded by other stressors. In this study, we quantified the outcome of a century-old invasion, the introduction of common carp to North America, to illustrate potential consequences of introducing non-native ecosystem engineers to lakes worldwide. We used the decline in aquatic plant richness and cover as an index of ecological impact across three ecoregions: Great Plains, Eastern Temperate Forests and Northern Forests. Using whole-lake manipulations, we demonstrated that both submersed plant cover and richness declined exponentially as carp biomass increased such that plant cover was reduced to <10% and species richness was halved in lakes in which carp biomass exceeded 190 kg ha -1 . Using catch rates amassed from 2000+ lakes, we showed that carp exceeded this biomass level in 70.6% of Great Plains lakes and 23.3% of Eastern Temperate Forests lakes, but 0% of Northern Forests lakes. Using model selection analysis, we showed that carp was a key driver of plant species richness along with Secchi depth, lake area and human development of lake watersheds. Model parameters showed that carp reduced species richness to a similar degree across lakes of various Secchi depths and surface areas. In regions dominated by carp (e.g., Great Plains), carp had a stronger impact on plant richness than human watershed development. Overall, our analysis shows that the introduction of common carp played a key role in driving a severe reduction in plant cover and richness in a majority of Great Plains lakes and a large portion of Eastern Temperate Forests lakes in North America. © 2016 John Wiley & Sons Ltd.

  7. Time-lagged response of carabid species richness and composition to past management practices and landscape context of semi-natural field margins.

    PubMed

    Alignier, Audrey; Aviron, Stéphanie

    2017-12-15

    Field margins are key features for the maintenance of biodiversity and associated ecosystem services in agricultural landscapes. Little is known about the effects of management practices of old semi-natural field margins, and their historical dimension regarding past management practices and landscape context is rarely considered. In this paper, the relative influence of recent and past management practices and landscape context (during the last five years) were assessed on the local biodiversity (species richness and composition) of carabid assemblages of field margins in agricultural landscapes of northwestern France. The results showed that recent patterns of carabid species richness and composition were best explained by management practices and landscape context measured four or five years ago. It suggests the existence of a time lag in the response of carabid assemblages to past environmental conditions of field margins. The relative contribution of past management practices and past landscape context varied depending on the spatial scale at which landscape context was taken into account. Carabid species richness was higher in grazed or sprayed field margins probably due to increased heterogeneity in habitat conditions. Field margins surrounded by grasslands and crops harbored species associated with open habitats whilst forest species dominated field margins surrounded by woodland. Landscape effect was higher at fine spatial scale, within 50 m around field margins. The present study highlights the importance of considering time-lagged responses of biodiversity when managing environment. It also suggests that old semi-natural field margins should not be considered as undisturbed habitats but more as management units being part of farming activities in agricultural landscapes, as for arable fields. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent

    PubMed Central

    Tedersoo, Leho; Bahram, Mohammad; Cajthaml, Tomáš; Põlme, Sergei; Hiiesalu, Indrek; Anslan, Sten; Harend, Helery; Buegger, Franz; Pritsch, Karin; Koricheva, Julia; Abarenkov, Kessy

    2016-01-01

    Plant species richness and the presence of certain influential species (sampling effect) drive the stability and functionality of ecosystems as well as primary production and biomass of consumers. However, little is known about these floristic effects on richness and community composition of soil biota in forest habitats owing to methodological constraints. We developed a DNA metabarcoding approach to identify the major eukaryote groups directly from soil with roughly species-level resolution. Using this method, we examined the effects of tree diversity and individual tree species on soil microbial biomass and taxonomic richness of soil biota in two experimental study systems in Finland and Estonia and accounted for edaphic variables and spatial autocorrelation. Our analyses revealed that the effects of tree diversity and individual species on soil biota are largely context dependent. Multiple regression and structural equation modelling suggested that biomass, soil pH, nutrients and tree species directly affect richness of different taxonomic groups. The community composition of most soil organisms was strongly correlated due to similar response to environmental predictors rather than causal relationships. On a local scale, soil resources and tree species have stronger effect on diversity of soil biota than tree species richness per se. PMID:26172210

  9. Spatial pattern affects diversity-productivity relationships in experimental meadow communities

    NASA Astrophysics Data System (ADS)

    Lamošová, Tereza; Doležal, Jiří; Lanta, Vojtěch; Lepš, Jan

    2010-05-01

    Plant species create aggregations of conspecifics as a consequence of limited seed dispersal, clonal growth and heterogeneous environment. Such intraspecific aggregation increases the importance of intraspecific competition relative to interspecific competition which may slow down competitive exclusion and promote species coexistence. To examine how spatial aggregation impacts the functioning of experimental assemblages of varying species richness, eight perennial grassland species of different growth form were grown in random and aggregated patterns in monocultures, two-, four-, and eight-species mixtures. In mixtures with an aggregated pattern, monospecific clumps were interspecifically segregated. Mixed model ANOVA was used to test (i) how the total productivity and productivity of individual species is affected by the number of species in a mixture, and (ii) how these relationships are affected by spatial pattern of sown plants. The main patterns of productivity response to species richness conform to other studies: non-transgressive overyielding is omnipresent (the productivity of mixtures is higher than the average of its constituent species so that the net diversity, selection and complementarity effects are positive), whereas transgressive overyielding is found only in a minority of cases (average of log(overyielding) being close to zero or negative). The theoretical prediction that plants in a random pattern should produce more than in an aggregated pattern (the distances to neighbours are smaller and consequently the competition among neighbours stronger) was confirmed in monocultures of all the eight species. The situation is more complicated in mixtures, probably as a consequence of complicated interplay between interspecific and intraspecific competition. The most productive species ( Achillea, Holcus, Plantago) were competitively superior and increased their relative productivity with mixture richness. The intraspecific competition of these species is

  10. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico).

    PubMed

    Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe

    2015-01-01

    The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P

  11. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico)

    PubMed Central

    Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe

    2015-01-01

    The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P

  12. Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles

    PubMed Central

    Eo, Soo Hyung; DeWoody, J. Andrew

    2010-01-01

    Rates of biological diversification should ultimately correspond to rates of genome evolution. Recent studies have compared diversification rates with phylogenetic branch lengths, but incomplete phylogenies hamper such analyses for many taxa. Herein, we use pairwise comparisons of confamilial sauropsid (bird and reptile) mitochondrial DNA (mtDNA) genome sequences to estimate substitution rates. These molecular evolutionary rates are considered in light of the age and species richness of each taxonomic family, using a random-walk speciation–extinction process to estimate rates of diversification. We find the molecular clock ticks at disparate rates in different families and at different genes. For example, evolutionary rates are relatively fast in snakes and lizards, intermediate in crocodilians and slow in turtles and birds. There was also rate variation across genes, where non-synonymous substitution rates were fastest at ATP8 and slowest at CO3. Family-by-gene interactions were significant, indicating that local clocks vary substantially among sauropsids. Most importantly, we find evidence that mitochondrial genome evolutionary rates are positively correlated with speciation rates and with contemporary species richness. Nuclear sequences are poorly represented among reptiles, but the correlation between rates of molecular evolution and species diversification also extends to 18 avian nuclear genes we tested. Thus, the nuclear data buttress our mtDNA findings. PMID:20610427

  13. Alcohol and tobacco consumption affects bacterial richness in oral cavity mucosa biofilms.

    PubMed

    Thomas, Andrew Maltez; Gleber-Netto, Frederico Omar; Fernandes, Gustavo Ribeiro; Amorim, Maria; Barbosa, Luisa Fernanda; Francisco, Ana Lúcia Noronha; de Andrade, Arthur Guerra; Setubal, João Carlos; Kowalski, Luiz Paulo; Nunes, Diana Noronha; Dias-Neto, Emmanuel

    2014-10-03

    Today there are more than 2 billion alcohol users and about 1.3 billion tobacco users worldwide. The chronic and heavy use of these two substances is at the heart of numerous diseases and may wreak havoc on the human oral microbiome. This study delves into the changes that alcohol and tobacco may cause on biofilms of the human oral microbiome. To do so, we used swabs to sample the oral biofilm of 22 subjects; including 9 control-individuals with no or very low consumption of alcohol and no consumption of tobacco, 7 who were chronic and heavy users of both substances and 6 active smokers that reported no significant alcohol consumption. DNA was extracted from swabs and the V1 region of the 16S rRNA gene was PCR amplified and sequenced using the Ion Torrent PGM platform, generating 3.7 million high quality reads. DNA sequences were clustered and OTUs were assigned using the ARB SILVA database and Qiime. We found no differences in species diversity and evenness among the groups. However, we found a significant decrease in species richness in only smokers and in smokers/drinkers when compared to controls. We found that Neisseria abundance was significantly decreased in both groups when compared to controls. Smokers had significant increases in Prevotella and Capnocytophaga and reductions in Granulicatella, Staphylococcus, Peptostreptococcus and Gemella when compared to the two other groups. Controls showed higher abundance of Aggregibacter, whilst smokers/drinkers had lower abundances of Fusobacteria. Samples from only smokers clustered closer together than to controls and smokers/drinkers, and also had a significant reduction in inter-group dissimilarity distances, indicating a more homogenous group than controls. Our results indicate that the continued use of tobacco or alcohol plus tobacco significantly reduces bacterial richness, which apparently leads to a reduction in inter-group variability, turning the respective biofilms into a more homogenous microenvironment

  14. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar

    PubMed Central

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T.; Halpern, Malka

    2015-01-01

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness. PMID:26122961

  15. Pyridine-type alkaloid composition affects bacterial community composition of floral nectar.

    PubMed

    Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T; Halpern, Malka

    2015-06-30

    Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness.

  16. Biology and Epidemiology of Venturia Species Affecting Fruit Crops: A Review

    PubMed Central

    González-Domínguez, Elisa; Armengol, Josep; Rossi, Vittorio

    2017-01-01

    The fungal genus Venturia Sacc. (anamorph Fusicladium Bonord.) includes plant pathogens that cause substantial economic damage to fruit crops worldwide. Although Venturia inaequalis is considered a model species in plant pathology, other Venturia spp. also cause scab on other fruit trees. Relative to the substantial research that has been conducted on V. inaequalis and apple scab, little research has been conducted on Venturia spp. affecting other fruit trees. In this review, the main characteristics of plant-pathogenic species of Venturia are discussed with special attention to V. inaequalis affecting apple, V. pyrina affecting European pear, V. nashicola affecting Asian pear, V. carpophila affecting peach and almond, Fusicladium oleagineum affecting olive, F. effusum affecting pecan, and F. eriobotryae affecting loquat. This review has two main objectives: (i) to identify the main gaps in our knowledge regarding the biology and epidemiology of Venturia spp. affecting fruit trees; and (ii) to identify similarities and differences among these Venturia spp. in order to improve disease management. A thorough review has been conducted of studies regarding the phylogenetic relationships, host ranges, biologies, and epidemiologies of Venturia spp. A multiple correspondence analysis (CA) has also been performed on the main epidemiological components of these Venturia spp. CA separated the Venturia spp. into two main groups, according to their epidemiological behavior: the first group included V. inaequalis, V. pyrina, V. nashicola, and V. carpophila, the second F. oleagineum and F. eriobotryae, with F. effusum having an intermediate position. This review shows that Venturia spp. affecting fruit trees are highly host-specific, and that important gaps in understanding the life cycle exist for some species, including V. pyrina; gaps include pseudothecia formation, ascospore and conidia germination, and mycelial growth. Considering the epidemiological information reviewed

  17. Biology and Epidemiology of Venturia Species Affecting Fruit Crops: A Review.

    PubMed

    González-Domínguez, Elisa; Armengol, Josep; Rossi, Vittorio

    2017-01-01

    The fungal genus Venturia Sacc. (anamorph Fusicladium Bonord.) includes plant pathogens that cause substantial economic damage to fruit crops worldwide. Although Venturia inaequalis is considered a model species in plant pathology, other Venturia spp. also cause scab on other fruit trees. Relative to the substantial research that has been conducted on V. inaequalis and apple scab, little research has been conducted on Venturia spp. affecting other fruit trees. In this review, the main characteristics of plant-pathogenic species of Venturia are discussed with special attention to V. inaequalis affecting apple, V. pyrina affecting European pear, V. nashicola affecting Asian pear, V. carpophila affecting peach and almond, Fusicladium oleagineum affecting olive, F. effusum affecting pecan, and F. eriobotryae affecting loquat. This review has two main objectives: (i) to identify the main gaps in our knowledge regarding the biology and epidemiology of Venturia spp. affecting fruit trees; and (ii) to identify similarities and differences among these Venturia spp. in order to improve disease management. A thorough review has been conducted of studies regarding the phylogenetic relationships, host ranges, biologies, and epidemiologies of Venturia spp. A multiple correspondence analysis (CA) has also been performed on the main epidemiological components of these Venturia spp. CA separated the Venturia spp. into two main groups, according to their epidemiological behavior: the first group included V. inaequalis, V. pyrina, V. nashicola , and V. carpophila , the second F. oleagineum and F. eriobotryae , with F. effusum having an intermediate position. This review shows that Venturia spp. affecting fruit trees are highly host-specific, and that important gaps in understanding the life cycle exist for some species, including V. pyrina ; gaps include pseudothecia formation, ascospore and conidia germination, and mycelial growth. Considering the epidemiological information

  18. Effects of soil water table regime on tree community species richness and structure of alluvial forest fragments in Southeast Brazil.

    PubMed

    Silva, A C; Higuchi, P; van den Berg, E

    2010-08-01

    In order to determine the influence of soil water table fluctuation on tree species richness and structure of alluvial forest fragments, 24 plots were allocated in a point bar forest and 30 plots in five forest fragments located in a floodplain, in the municipality of São Sebastião da Bela Vista, Southeast Brazil, totalizing 54, 10 X 20 m, plots. The information recorded in each plot were the soil water table level, diameter at breast height (dbh), total height and botanical identity off all trees with dbh > 5 cm. The water table fluctuation was assessed through 1 m deep observation wells in each plot. Correlations analysis indicated that sites with shallower water table in the flooding plains had a low number of tree species and high tree density. Although the water table in the point bar remained below the wells during the study period, low tree species richness was observed. There are other events taking place within the point bar forest that assume a high ecological importance, such as the intensive water velocity during flooding and sedimentation processes.

  19. Ecological impacts of tropical forest fragmentation: how consistent are patterns in species richness and nestedness?

    PubMed Central

    Hill, Jane K.; Gray, Michael A.; Khen, Chey Vun; Benedick, Suzan; Tawatao, Noel; Hamer, Keith C.

    2011-01-01

    Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species–area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects. PMID:22006967

  20. Chytrid fungus acts as a generalist pathogen infecting species-rich amphibian families in Brazilian rainforests.

    PubMed

    Valencia-Aguilar, Anyelet; Ruano-Fajardo, Gustavo; Lambertini, Carolina; da Silva Leite, Domingos; Toledo, Luís Felipe; Mott, Tamí

    2015-05-11

    The fungus Batrachochytrium dendrobatidis (Bd) is among the main causes of declines in amphibian populations. This fungus is considered a generalist pathogen because it infects several species and spreads rapidly in the wild. To date, Bd has been detected in more than 100 anuran species in Brazil, mostly in the southern portion of the Atlantic forest. Here, we report survey data from some poorly explored regions; these data considerably extend current information on the distribution of Bd in the northern Atlantic forest region. In addition, we tested the hypothesis that Bd is a generalist pathogen in this biome. We also report the first positive record for Bd in an anuran caught in the wild in Amazonia. In total, we screened 90 individuals (from 27 species), of which 39 individuals (from 22 species) were Bd-positive. All samples collected in Bahia (2 individuals), Pernambuco (3 individuals), Pará (1 individual), and Minas Gerais (1 individual) showed positive results for Bd. We found a positive correlation between anuran richness per family and the number of infected species in the Atlantic forest, supporting previous observations that Bd lacks strong host specificity; of 38% of the anuran species in the Atlantic forest that were tested for Bd infection, 25% showed positive results. The results of our study exemplify the pandemic and widespread nature of Bd infection in amphibians.