Sample records for affected cell survival

  1. Redox Regulation of Cell Survival

    PubMed Central

    Trachootham, Dunyaporn; Lu, Weiqin; Ogasawara, Marcia A.; Valle, Nilsa Rivera-Del

    2008-01-01

    Abstract Reactive oxygen species (ROS) and reactive nitrogen species (RNS) play important roles in regulation of cell survival. In general, moderate levels of ROS/RNS may function as signals to promote cell proliferation and survival, whereas severe increase of ROS/RNS can induce cell death. Under physiologic conditions, the balance between generation and elimination of ROS/RNS maintains the proper function of redox-sensitive signaling proteins. Normally, the redox homeostasis ensures that the cells respond properly to endogenous and exogenous stimuli. However, when the redox homeostasis is disturbed, oxidative stress may lead to aberrant cell death and contribute to disease development. This review focuses on the roles of key transcription factors, signal-transduction pathways, and cell-death regulators in affecting cell survival, and how the redox systems regulate the functions of these molecules. The current understanding of how disturbance in redox homeostasis may affect cell death and contribute to the development of diseases such as cancer and degenerative disorders is reviewed. We also discuss how the basic knowledge on redox regulation of cell survival can be used to develop strategies for the treatment or prevention of those diseases. Antioxid. Redox Signal. 10, 1343–1374. PMID:18522489

  2. Does renal ageing affect survival?

    PubMed

    Razzaque, M Shawkat

    2007-10-01

    The effects of ageing on progressive deterioration of renal function, both in human and experimental animals, are described elsewhere, but the effect of renal damage on overall survival and longevity is not yet clearly established. The wild-type animals of various genetic backgrounds, fed with regular diet, overtime develop severe age-associated nephropathy, that include but not limited to inflammatory cell infiltration, glomerulosclerosis, and tubulointerstitial fibrosis. Such renal damage significantly reduces their survival. Reducing renal damage, either by caloric restriction or by suppressing growth hormone (GH)/insulin-like growth factor-1 (IGF-1) activity could significantly enhance the longevity of these animals. Available survival studies using experimental animals clearly suggest that kidney pathology is one of the important non-neoplastic lesions that could affect overall survival, and that restoration of renal function by preventing kidney damage could significantly extend longevity. Careful long-term studies are needed to determine the human relevance of these experimental studies.

  3. Curcumin affects cell survival and cell volume regulation in human renal and intestinal cells

    PubMed Central

    Kössler, Sonja; Nofziger, Charity; Jakab, Martin; Dossena, Silvia; Paulmichl, Markus

    2012-01-01

    Curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1E,6E-heptadiene-3,5-dione or diferuloyl methane) is a polyphenol derived from the Curcuma longa plant, commonly known as turmeric. This substance has been used extensively in Ayurvedic medicine for centuries for its anti-oxidant, analgesic, anti-inflammatory and antiseptic activity. More recently curcumin has been found to possess anti-cancer properties linked to its pro-apoptotic and anti-proliferative actions. The underlying mechanisms of these diverse effects are complex, not fully elucidated and subject of intense scientific debate. Despite increasing evidence indicating that different cation channels can be a molecular target for curcumin, very little is known about the effect of curcumin on chloride channels. Since, (i) the molecular structure of curcumin indicates that the substance could potentially interact with chloride channels, (ii) chloride channels play a role during the apoptotic process and regulation of the cell volume, and (iii) apoptosis is a well known effect of curcumin, we set out to investigate whether or not curcumin could (i) exert a modulatory effect (direct or indirect) on the swelling activated chloride current IClswell in a human cell system, therefore (ii) affect cell volume regulation and (iii) ultimately modulate cell survival. The IClswell channels, which are essential for regulating the cell volume after swelling, are also known to be activated under isotonic conditions as an early event in the apoptotic process. Here we show that long-term exposure of a human kidney cell line to extracellular 0.1–10 μM curcumin modulates IClswell in a dose-dependent manner (0.1 μM curcumin is ineffective, 0.5–5.0 μM curcumin increase, while 10 μM curcumin decrease the current), and short-term exposure to micromolar concentrations of curcumin does not affect IClswell neither if applied from the extracellular nor from the intracellular side – therefore, a direct effect of curcumin on

  4. Factors affecting 30-month survival in lung cancer patients.

    PubMed

    Mahesh, P A; Archana, S; Jayaraj, B S; Patil, Shekar; Chaya, S K; Shashidhar, H P; Sunitha, B S; Prabhakar, A K

    2012-10-01

    Age adjusted incidence rate of lung cancer in India ranges from 7.4 to 13.1 per 100,000 among males and 3.9 to 5.8 per 100,000 among females. The factors affecting survival in lung cancer patients in India are not fully understood. The current study was undertaken to evaluate the factors affecting survival in patients diagnosed with lung cancer attending a tertiary care cancer institute in Bangalore, Karnataka, India. Consecutive patients with primary lung cancer attending Bangalore Institute of Oncology, a tertiary care centre at Bangalore, between 2006 and 2009 were included. Demographic, clinical, radiological data were collected retrospectively from the medical records. A total of 170 consecutive subjects (128 males, 42 females) diagnosed to have lung cancer; 151 non-small cell lung cancer (NSCLC) and 19 small cell lung cancer (SCLC) were included. A higher proportion of never-smokers (54.1%) were observed, mostly presenting below the age of 60 yr. Most subjects were in stage IV and III at the time of diagnosis. More than 50 per cent of patients presented with late stage lung cancer even though the duration of symptoms is less than 2 months. The 30-month overall survival rates for smokers and never-smokers were 32 and 49 per cent, respectively. No significant differences were observed in 30 month survival based on age at presentation, gender and type of lung cancer. Cox proportional hazards model identified never-smokers and duration of symptoms less than 1 month as factors adversely affecting survival. Our results showed that lung cancer in Indians involved younger subjects and associated with poorer survival as compared to other ethnic population. Studies on large sample need to be done to evaluate risk factors in lung cancer patients.

  5. Factors affecting 30-month survival in lung cancer patients

    PubMed Central

    Mahesh, P.A.; Archana, S.; Jayaraj, B.S.; Patil, Shekar; Chaya, S.K.; Shashidhar, H.P.; Sunitha, B.S.; Prabhakar, A.K.

    2012-01-01

    Background & objectives: Age adjusted incidence rate of lung cancer in India ranges from 7.4 to 13.1 per 100,000 among males and 3.9 to 5.8 per 100,000 among females. The factors affecting survival in lung cancer patients in India are not fully understood. The current study was undertaken to evaluate the factors affecting survival in patients diagnosed with lung cancer attending a tertiary care cancer institute in Bangalore, Karnataka, India. Methods: Consecutive patients with primary lung cancer attending Bangalore Institute of Oncology, a tertiary care centre at Bangalore, between 2006 and 2009 were included. Demographic, clinical, radiological data were collected retrospectively from the medical records. Results: A total of 170 consecutive subjects (128 males, 42 females) diagnosed to have lung cancer; 151 non-small cell lung cancer (NSCLC) and 19 small cell lung cancer (SCLC) were included. A higher proportion of never-smokers (54.1%) were observed, mostly presenting below the age of 60 yr. Most subjects were in stage IV and III at the time of diagnosis. More than 50 per cent of patients presented with late stage lung cancer even though the duration of symptoms is less than 2 months. The 30-month overall survival rates for smokers and never-smokers were 32 and 49 per cent, respectively. No significant differences were observed in 30 month survival based on age at presentation, gender and type of lung cancer. Cox proportional hazards model identified never-smokers and duration of symptoms less than 1 month as factors adversely affecting survival. Interpretation & conclusions: Our results showed that lung cancer in Indians involved younger subjects and associated with poorer survival as compared to other ethnic population. Studies on large sample need to be done to evaluate risk factors in lung cancer patients. PMID:23168702

  6. Smoking Adversely Affects Survival in Acute Myeloid Leukemia Patients

    PubMed Central

    Varadarajan, Ramya; Licht, Andrea S; Hyland, Andrew J; Ford, Laurie A.; Sait, Sheila N.J.; Block, Annemarie W.; Barcos, Maurice; Baer, Maria R.; Wang, Eunice S.; Wetzler, Meir

    2011-01-01

    Summary Smoking adversely affects hematopoietic stem cell transplantation outcome. We asked whether smoking affected outcome of newly diagnosed acute myeloid leukemia (AML) patients treated with chemotherapy. Data were collected on 280 AML patients treated with high-dose cytarabine and idarubicin-containing regimens at Roswell Park Cancer Institute who had smoking status data at diagnosis. Patients’ gender, age, AML presentation (de novo vs. secondary), white blood cell (WBC) count at diagnosis, karyotype and smoking status (never vs. ever) were analyzed. Among the 161 males and 119 females with a median follow-up of 12.9 months, 101 (36.1%) had never smoked and 179 (63.9%) were ever smokers. The proportion of patients between never and ever smokers was similar with respect to age, AML presentation, WBC count at diagnosis or karyotype based on univariate analysis of these categorical variables. Never smokers had a significantly longer overall survival (60.32 months) compared to ever smokers (30.89; p=0.005). In multivariate analysis incorporating gender, age, AML presentation, WBC count, karyotype, and smoking status as covariates, age, karyotype and smoking status retained prognostic value for overall survival. In summary, cigarette smoking has a deleterious effect on overall survival in AML. PMID:21520043

  7. MALAT1 affects ovarian cancer cell behavior and patient survival

    PubMed Central

    Lin, Qunbo; Guan, Wencai; Ren, Weimin; Zhang, Lingyun; Zhang, Jinguo; Xu, Guoxiong

    2018-01-01

    Epithelial ovarian cancer (EOC) is one of the most lethal malignancies of the female reproductive organs. Increasing evidence has revealed that long non-coding RNAs (lncRNAs) participate in tumorigenesis. Metastasis associated lung adenocarcinoma transcript 1 (MALAT1) is an lncRNA and plays a role in various types of tumors. However, the function of MALAT1 on cellular behavior in EOC remains unclear. The current study explored the expression of MALAT1 in ovarian cancer tissues and in EOC cell lines. Quantitative RT-PCR analysis revealed that the expression of MALAT1 was higher in human ovarian malignant tumor tissues and EOC cells than in normal ovarian tissues and non-tumorous human ovarian surface epithelial cells, respectively. By analyzing the online database Kaplan-Meier Plotter, MALAT1 was identified to be correlated with the overall survival (OS) and progression-free survival (PFS) of patients with ovarian cancer. Furthermore, knockdown of MALAT1 by small interfering RNA (siRNA) significantly decreased EOC cell viability, migration, and invasion. Finally, dual-luciferase reporter assays demonstrated that MALAT1 interacted with miR-143-3p, a miRNA that plays a role in EOC as demonstrated in our previous study. Inhibition of MALAT1 resulted in an increase of miR-143-3p expression, leading to a decrease of CMPK protein expression. In conclusion, our results indicated that MALAT1 was overexpressed in EOC. Silencing of MALAT1 decreased EOC cell viability and inhibited EOC cell migration and invasion. These data revealed that MALAT1 may serve as a new therapeutic target of human EOC. PMID:29693187

  8. Stem cell death and survival in heart regeneration and repair.

    PubMed

    Abdelwahid, Eltyeb; Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-03-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function.

  9. Stem cell death and survival in heart regeneration and repair

    PubMed Central

    Kalvelyte, Audrone; Stulpinas, Aurimas; de Carvalho, Katherine Athayde Teixeira; Guarita-Souza, Luiz Cesar; Foldes, Gabor

    2016-01-01

    Cardiovascular diseases are major causes of mortality and morbidity. Cardiomyocyte apoptosis disrupts cardiac function and leads to cardiac decompensation and terminal heart failure. Delineating the regulatory signaling pathways that orchestrate cell survival in the heart has significant therapeutic implications. Cardiac tissue has limited capacity to regenerate and repair. Stem cell therapy is a successful approach for repairing and regenerating ischemic cardiac tissue; however, transplanted cells display very high death percentage, a problem that affects success of tissue regeneration. Stem cells display multipotency or pluripotency and undergo self-renewal, however these events are negatively influenced by upregulation of cell death machinery that induces the significant decrease in survival and differentiation signals upon cardiovascular injury. While efforts to identify cell types and molecular pathways that promote cardiac tissue regeneration have been productive, studies that focus on blocking the extensive cell death after transplantation are limited. The control of cell death includes multiple networks rather than one crucial pathway, which underlies the challenge of identifying the interaction between various cellular and biochemical components. This review is aimed at exploiting the molecular mechanisms by which stem cells resist death signals to develop into mature and healthy cardiac cells. Specifically, we focus on a number of factors that control death and survival of stem cells upon transplantation and ultimately affect cardiac regeneration. We also discuss potential survival enhancing strategies and how they could be meaningful in the design of targeted therapies that improve cardiac function. PMID:26687129

  10. System-level analysis of genes and functions affecting survival during nutrient starvation in Saccharomyces cerevisiae.

    PubMed

    Gresham, David; Boer, Viktor M; Caudy, Amy; Ziv, Naomi; Brandt, Nathan J; Storey, John D; Botstein, David

    2011-01-01

    An essential property of all cells is the ability to exit from active cell division and persist in a quiescent state. For single-celled microbes this primarily occurs in response to nutrient deprivation. We studied the genetic requirements for survival of Saccharomyces cerevisiae when starved for either of two nutrients: phosphate or leucine. We measured the survival of nearly all nonessential haploid null yeast mutants in mixed populations using a quantitative sequencing method that estimates the abundance of each mutant on the basis of frequency of unique molecular barcodes. Starvation for phosphate results in a population half-life of 337 hr whereas starvation for leucine results in a half-life of 27.7 hr. To measure survival of individual mutants in each population we developed a statistical framework that accounts for the multiple sources of experimental variation. From the identities of the genes in which mutations strongly affect survival, we identify genetic evidence for several cellular processes affecting survival during nutrient starvation, including autophagy, chromatin remodeling, mRNA processing, and cytoskeleton function. In addition, we found evidence that mitochondrial and peroxisome function is required for survival. Our experimental and analytical methods represent an efficient and quantitative approach to characterizing genetic functions and networks with unprecedented resolution and identified genotype-by-environment interactions that have important implications for interpretation of studies of aging and quiescence in yeast.

  11. The Shc protein RAI promotes an adaptive cell survival program in hypoxic neuroblastoma cells.

    PubMed

    Criscuoli, Mattia; Filippi, Irene; Osti, Daniela; Aldinucci, Carlo; Guerrini, Giuditta; Pelicci, Giuliana; Carraro, Fabio; Naldini, Antonella

    2018-05-01

    Neuroblastoma (NB) is a highly malignant pediatric solid tumor where a hypoxic signature correlates with unfavorable patient outcome. The hypoxia-inducible factor (HIF)-1α plays an important role in NB progression, contributing to cell proliferation and invasiveness. RAI belongs to the Shc family proteins, it is mainly neuron specific and protects against cerebral ischemia. RAI is also expressed in several NB cell lines, where it promotes cell survival. In this work, hypoxia differently affected cell survival and pro-apoptotic program in two NB cell lines, either expressing RAI (SKNBE) or not (SKNMC). RAI expression appeared to promote NB cell survival and to reduce some pro-apoptotic markers under hypoxia. Accordingly, the RAI silencing in SKNBE cells resulted in a reduction of cell survival and HIF-1α expression. Furthermore, using SKNMC cells stably expressing RAI, we defined a role of RAI in NB cell responses to hypoxia. Of interest, in hypoxic SKNMC cells expressing RAI HIF-1α protein levels were higher than in control cells. This was associated with a) an increased cell survival; b) an increased expression of anti-apoptotic markers; c) a pro-autophagic and not pro-apoptotic phenotype; and d) an increased metabolic activity. We may conclude that RAI plays an important role in hypoxic signaling in NB cells and the interplay between RAI and HIF-1α may be relevant in the protection of NB cells against hypoxia. Our results may contribute to a further understanding the physiology of NB cells and the molecular mechanisms involved in their survival, with important implications in NB progression. © 2017 Wiley Periodicals, Inc.

  12. Pathophysiological hypoxia affects the redox state and IL-2 signalling of human CD4+ T cells and concomitantly impairs survival and proliferation.

    PubMed

    Gaber, Timo; Tran, Cam Loan; Schellmann, Saskia; Hahne, Martin; Strehl, Cindy; Hoff, Paula; Radbruch, Andreas; Burmester, Gerd-Rüdiger; Buttgereit, Frank

    2013-06-01

    Inflamed areas are characterized by infiltration of immune cells, local hypoxia and alterations of cellular redox states. We investigated the impact of hypoxia on survival, proliferation, cytokine secretion, intracellular energy and redox state of human CD4(+) T cells. We found that pathophysiological hypoxia (<2% O2 ) significantly decreased CD4(+) T-cell survival after mitogenic stimulation. This effect was not due to an increased caspase-3/7-mediated apoptosis or adenosine-5'-triphosphate (ATP) consumption/depletion. However, the ability of stimulated T cells to proliferate was reduced under hypoxic conditions, despite increased expression of CD25. Pathophysiological hypoxia was also found to modify intracellular ROS (iROS) levels in stimulated T cells over time as compared with levels found in normoxia. Physiological hypoxia (5% O2 ) did not decrease CD4(+) T-cell survival and proliferation or modify iROS levels as compared with normoxia. We conclude that pathophysiological hypoxia affects T-cell proliferation and viability via disturbed IL-2R signalling downstream of STAT5a phosphorylation, but not as a result of impaired cellular energy homeostasis. We suggest iROS links early events in T-cell stimulation to the inhibition of the lymphoproliferative response under pathophysiological hypoxic conditions. The level of iROS may therefore act as a mediator of immune functions leading to down-regulation of long-term T-cell activity in inflamed tissues. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Rich Medium Composition Affects Escherichia coli Survival, Glycation, and Mutation Frequency during Long-Term Batch Culture.

    PubMed

    Kram, Karin E; Finkel, Steven E

    2015-07-01

    Bacteria such as Escherichia coli are frequently grown to high density to produce biomolecules for study in the laboratory. To achieve this, cells can be incubated in extremely rich media that increase overall cell yield. In these various media, bacteria may have different metabolic profiles, leading to changes in the amounts of toxic metabolites produced. We have previously shown that stresses experienced during short-term growth can affect the survival of cells during the long-term stationary phase (LTSP). Here, we incubated cells in LB, 2× yeast extract-tryptone (YT), Terrific Broth, or Super Broth medium and monitored survival during the LTSP, as well as other reporters of genetic and physiological change. We observe differential cell yield and survival in all media studied. We propose that differences in long-term survival are the result of changes in the metabolism of components of the media that may lead to increased levels of protein and/or DNA damage. We also show that culture pH and levels of protein glycation, a covalent modification that causes protein damage, affect long-term survival. Further, we measured mutation frequency after overnight incubation and observed a correlation between high mutation frequencies at the end of the log phase and loss of viability after 4 days of LTSP incubation, indicating that mutation frequency is potentially predictive of long-term survival. Since glycation and mutation can be caused by oxidative stress, we measured expression of the oxyR oxidative stress regulator during log-phase growth and found that higher levels of oxyR expression during the log phase are consistent with high mutation frequency and lower cell density during the LTSP. Since these complex rich media are often used when producing large quantities of biomolecules in the laboratory, the observed increase in damage resulting in glycation or mutation may lead to production of a heterogeneous population of plasmids or proteins, which could affect the

  14. Crocetin shifts autophagic cell survival to death of breast cancer cells in chemotherapy.

    PubMed

    Zhang, Ailian; Li, Jincheng

    2017-03-01

    The chemotherapy with fluorouracil is not always effective, in which some breast cancer cells may survive the fluorouracil treatment through enhanced autophagy. Crocetin is the major constituent of saffron, a Chinese traditional herb, which has recently found to have multiple pharmacological effects, including anticancer. However, the effects of Crocetin on the outcome of fluorouracil therapy for breast cancer have not been studied. Here, we showed that fluorouracil treatment inhibited the growth of breast cancer cells, in either a Cell Counting Kit-8 assay or an MTT assay. Inhibition of autophagy further suppressed breast cancer cell growth, suggesting that the breast cancer cells increased autophagic cell survival during fluorouracil treatment. However, Crocetin significantly increased the suppressive effects of fluorouracil on breast cancer cell growth, without affecting either cell apoptosis or autophagy. Inhibition of autophagy at the presence of Crocetin partially abolished the suppressive effects on breast cancer cell growth, suggesting that Crocetin may increase autophagic cell death in fluorouracil-treated breast cancer cells. Furthermore, Crocetin decreased Beclin-1 levels but increased ATG1 levels in fluorouracil-treated breast cancer cells. Together, these data suggest that Crocetin may shift autophagic cell survival to autophagic cell death in fluorouracil-treated breast cancer cells, possibly through modulation of the expression of ATG1 and Beclin-1.

  15. Experimentally induced anhydrobiosis in the tardigrade Richtersius coronifer: phenotypic factors affecting survival.

    PubMed

    Jönsson, K Ingemar; Rebecchi, Lorena

    2002-11-01

    The ability of some animal taxa (e.g., nematodes, rotifers, and tardigrades) to enter an ametabolic (cryptobiotic) state is well known. Nevertheless, the phenotypic factors affecting successful anhydrobiosis have rarely been investigated. We report a laboratory study on the effects of body size, reproductive condition, and energetic condition on anhydrobiotic survival in a population of the eutardigrade Richtersius coronifer. Body size and energetic condition interacted in affecting the probability of survival, while reproductive condition had no effect. Large tardigrades had a lower probability of survival than medium-sized tardigrades and showed a positive response in survival to energetic condition. This suggests that energy constrained the possibility for large tardigrades to enter and to leave anhydrobiosis. As a possible alternative explanation for low survival in the largest specimens we discuss the expression of senescence. In line with the view that processes related to anhydrobiosis are connected with energetic costs we documented a decrease in the size of storage cells over a period of anhydrobiosis, showing for the first time that energy is consumed in the process of anhydrobiosis in tardigrades. Copyright 2002 Wiley-Liss, Inc.

  16. Rewiring carbohydrate catabolism differentially affects survival of pancreatic cancer cell lines with diverse metabolic profiles

    PubMed Central

    Tataranni, Tiziana; Agriesti, Francesca; Ruggieri, Vitalba; Mazzoccoli, Carmela; Simeon, Vittorio; Laurenzana, Ilaria; Scrima, Rosella; Pazienza, Valerio; Capitanio, Nazzareno; Piccoli, Claudia

    2017-01-01

    An increasing body of evidence suggests that targeting cellular metabolism represents a promising effective approach to treat pancreatic cancer, overcome chemoresistance and ameliorate patient's prognosis and survival. In this study, following whole-genome expression analysis, we selected two pancreatic cancer cell lines, PANC-1 and BXPC-3, hallmarked by distinct metabolic profiles with specific concern to carbohydrate metabolism. Functional comparative analysis showed that BXPC-3 displayed a marked deficit of the mitochondrial respiratory and oxidative phosphorylation activity and a higher production of reactive oxygen species and a reduced NAD+/NADH ratio, indicating their bioenergetic reliance on glycolysis and a different redox homeostasis as compared to PANC-1. Both cell lines were challenged to rewire their metabolism by substituting glucose with galactose as carbon source, a condition inhibiting the glycolytic flux and fostering full oxidation of the sugar carbons. The obtained data strikingly show that the mitochondrial respiration-impaired-BXPC-3 cell line was unable to sustain the metabolic adaptation required by glucose deprivation/substitution, thereby resulting in a G2\\M cell cycle shift, unbalance of the redox homeostasis, apoptosis induction. Conversely, the mitochondrial respiration-competent-PANC-1 cell line did not show clear evidence of cell sufferance. Our findings provide a strong rationale to candidate metabolism as a promising target for cancer therapy. Defining the metabolic features at time of pancreatic cancer diagnosis and likely of other tumors, appears to be crucial to predict the responsiveness to therapeutic approaches or coadjuvant interventions affecting metabolism. PMID:28476035

  17. Active smoking may negatively affect response rate, progression-free survival, and overall survival of patients with metastatic renal cell carcinoma treated with sunitinib.

    PubMed

    Keizman, Daniel; Gottfried, Maya; Ish-Shalom, Maya; Maimon, Natalie; Peer, Avivit; Neumann, Avivit; Hammers, Hans; Eisenberger, Mario A; Sinibaldi, Victoria; Pili, Roberto; Hayat, Henry; Kovel, Svetlana; Sella, Avishay; Boursi, Ben; Weitzen, Rony; Mermershtain, Wilmosh; Rouvinov, Keren; Berger, Raanan; Carducci, Michael A

    2014-01-01

    Obesity, smoking, hypertension, and diabetes are risk factors for renal cell carcinoma development. Their presence has been associated with a worse outcome in various cancers. We sought to determine their association with outcome of sunitinib treatment in metastatic renal cell carcinoma (mRCC). An international multicenter retrospective study of sunitinib-treated mRCC patients was performed. Multivariate analyses were performed to determine the association between outcome and the pretreatment status of smoking, body mass index, hypertension, diabetes, and other known prognostic factors. Between 2004 and 2013, 278 mRCC patients were treated with sunitinib: 59 were active smokers, 67 were obese, 73 were diabetic, and 165 had pretreatment hypertension. Median progression-free survival (PFS) was 9 months, and overall survival (OS) was 22 months. Factors associated with PFS were smoking status (past and active smokers: hazard ratio [HR]: 1.17, p = .39; never smokers: HR: 2.94, p < .0001), non-clear cell histology (HR: 1.62, p = .011), pretreatment neutrophil-to-lymphocyte ratio >3 (HR: 3.51, p < .0001), use of angiotensin system inhibitors (HR: 0.63, p = .01), sunitinib dose reduction or treatment interruption (HR: 0.72, p = .045), and Heng risk (good and intermediate risk: HR: 1.07, p = .77; poor risk: HR: 1.87, p = .046). Factors associated with OS were smoking status (past and active smokers: HR: 1.25, p = .29; never smokers: HR: 2.7, p < .0001), pretreatment neutrophil-to-lymphocyte ratio >3 (HR: 2.95, p < .0001), and sunitinib-induced hypertension (HR: 0.57, p = .002). Active smoking may negatively affect the PFS and OS of sunitinib-treated mRCC. Clinicians should consider advising patients to quit smoking at initiation of sunitinib treatment for mRCC.

  18. Nicotine-mediated signals modulate cell death and survival of T lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oloris, Silvia C.S.; Instituto de Ciencias Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, Mossoro, RN; Frazer-Abel, Ashley A.

    The capacity of nicotine to affect the behavior of non-neuronal cells through neuronal nicotinic acetylcholine receptors (nAChRs) has been the subject of considerable recent attention. Previously, we showed that exposure to nicotine activates the nuclear factor of activated T cells (NFAT) transcription factor in lymphocytes and endothelial cells, leading to alterations in cellular growth and vascular endothelial growth factor production. Here, we extend these studies to document effects of nicotine on lymphocyte survival. The data show that nicotine induces paradoxical effects that might alternatively enforce survival or trigger apoptosis, suggesting that depending on timing and context, nicotine might act bothmore » as a survival factor or as an inducer of apoptosis in normal or transformed lymphocytes, and possibly other non-neuronal cells. In addition, our results show that, while having overlapping functions, low and high affinity nAChRs also transmit signals that promote distinct outcomes in lymphocytes. The sum of our data suggests that selective modulation of nAChRs might be useful to regulate lymphocyte activation and survival in health and disease.« less

  19. Red blood cells promote survival and cell cycle progression of human peripheral blood T cells independently of CD58/LFA-3 and heme compounds.

    PubMed

    Fonseca, Ana Mafalda; Pereira, Carlos Filipe; Porto, Graça; Arosa, Fernando A

    2003-07-01

    Red blood cells (RBC) are known to modulate T cell proliferation and function possibly through downregulation of oxidative stress. By examining parameters of activation, division, and cell death in vitro, we show evidence that the increase in survival afforded by RBC is due to the maintenance of the proliferative capacity of the activated T cells. We also show that the CD3+CD8+ T cell subset was preferentially expanded and rescued from apoptosis both in bulk peripheral blood lymphocyte cultures and with highly purified CD8+ T cells. The ability of RBC to induce survival of dividing T cells was not affected by blocking the CD58/CD2 interaction. Moreover, addition of hemoglobin, heme or protoporphyrin IX to cultures of activated T cells did not reproduce the effect of intact RBC. Considering that RBC circulate throughout the body, they could play a biological role in the modulation of T cell differentiation and survival in places of active cell division. Neither CD58 nor the heme compounds studied seem to play a direct relevant role in the modulation of T cell survival.

  20. B-cell homeostasis requires complementary CD22 and BLyS/BR3 survival signals.

    PubMed

    Smith, Susan H; Haas, Karen M; Poe, Jonathan C; Yanaba, Koichi; Ward, Christopher D; Migone, Thi-Sau; Tedder, Thomas F

    2010-08-01

    Peripheral B-cell numbers are tightly regulated by homeostatic mechanisms that influence the transitional and mature B-cell compartments and dictate the size and clonotypic diversity of the B-cell repertoire. B-lymphocyte stimulator (BLyS, a trademark of Human Genome Sciences, Inc.) plays a key role in regulating peripheral B-cell homeostasis. CD22 also promotes peripheral B-cell survival through ligand-dependent mechanisms. The B-cell subsets affected by the absence of BLyS and CD22 signals overlap, suggesting that BLyS- and CD22-mediated survival are intertwined. To examine this, the effects of BLyS insufficiency following neutralizing BLyS mAb treatment in mice also treated with CD22 ligand-blocking mAb were examined. Combined targeting of the BLyS and CD22 survival pathways led to significantly greater clearance of recirculating bone marrow, blood, marginal zone and follicular B cells than either treatment alone. Likewise, BLyS blockade further reduced bone marrow, blood and spleen B-cell numbers in CD22(-/-) mice. Notably, BLyS receptor expression and downstream signaling were normal in CD22(-/-) B cells, suggesting that CD22 does not directly alter BLyS responsiveness. CD22 survival signals were likewise intact in the absence of BLyS, as CD22 mAb treatment depleted blood B cells from mice with impaired BLyS receptor 3 (BR3) signaling. Finally, enforced BclxL expression, which rescues BR3 impairment, did not affect B-cell depletion following CD22 mAb treatment. Thus, the current studies support a model whereby CD22 and BLyS promote the survival of overlapping B-cell subsets but contribute to their maintenance through independent and complementary signaling pathways.

  1. Air pollution affects lung cancer survival.

    PubMed

    Eckel, Sandrah P; Cockburn, Myles; Shu, Yu-Hsiang; Deng, Huiyu; Lurmann, Frederick W; Liu, Lihua; Gilliland, Frank D

    2016-10-01

    Exposure to ambient air pollutants has been associated with increased lung cancer incidence and mortality, but due to the high case fatality rate, little is known about the impacts of air pollution exposures on survival after diagnosis. This study aimed to determine whether ambient air pollutant exposures are associated with the survival of patients with lung cancer. Participants were 352 053 patients with newly diagnosed lung cancer during 1988-2009 in California, ascertained by the California Cancer Registry. Average residential ambient air pollutant concentrations were estimated for each participant's follow-up period. Cox proportional hazards models were used to estimate HRs relating air pollutant exposures to all-cause mortality overall and stratified by stage (localised only, regional and distant site) and histology (squamous cell carcinoma, adenocarcinoma, small cell carcinoma, large cell carcinoma and others) at diagnosis, adjusting for potential individual and area-level confounders. Adjusting for histology and other potential confounders, the HRs associated with 1 SD increases in NO2, O3, PM10, PM2.5 for patients with localised stage at diagnosis were 1.30 (95% CI 1.28 to 1.32), 1.04 (95% CI 1.02 to 1.05), 1.26 (95% CI 1.25 to 1.28) and 1.38 (95% CI 1.35 to 1.41), respectively. Adjusted HRs were smaller in later stages and varied by histological type within stage (p<0.01, except O3). The largest associations were for patients with early-stage non-small cell cancers, particularly adenocarcinomas. These epidemiological findings support the hypothesis that air pollution exposures after lung cancer diagnosis shorten survival. Future studies should evaluate the impacts of exposure reduction. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. Air Pollution Affects Lung Cancer Survival

    PubMed Central

    Eckel, Sandrah P; Cockburn, Myles; Shu, Yu-Hsiang; Deng, Huiyu; Lurmann, Frederick W.; Liu, Lihua; Gilliland, Frank D

    2017-01-01

    Rationale Exposure to ambient air pollutants has been associated with increased lung cancer incidence and mortality but, due to the high case fatality rate, little is known about the impacts of air pollution exposures on survival after diagnosis. This study aimed to determine whether ambient air pollutant exposures are associated with lung cancer patient survival. Methods Participants were 352,053 patients with newly diagnosed lung cancer during 1988–2009 in California, ascertained by the California Cancer Registry. Average residential ambient air pollutant concentrations were estimated for each participant’s follow-up period. Cox proportional hazards models were used to estimate hazard ratios (HRs) relating air pollutant exposures to all-cause mortality overall and stratified by stage (localized only, regional, and distant site) and histology (squamous cell carcinoma, adenocarcinoma, small cell carcinoma, large cell carcinoma, and others) at diagnosis, adjusting for potential individual and area-level confounders. Results Adjusting for histology and other potential confounders, the HR associated with 1 standard deviation increases in NO2, O3, PM10, PM2.5 for patients with localized stage at diagnosis were 1.30 (95% CI: 1.28–1.32), 1.04 (95% CI: 1.02–1.05), 1.26 (95% CI: 1.25–1.28), and 1.38 (95% CI: 1.35–1.41), respectively. Adjusted HR were smaller in later stages, and varied by histological type within stage (p < 0.01, except O3). The largest associations were for patients with early stage non-small cell cancers, particularly adenocarcinomas. Conclusions These epidemiological findings support the hypothesis that air pollution exposures after lung cancer diagnosis shorten survival. Future studies should evaluate the impacts of exposure reduction. PMID:27491839

  3. Multiple Weather Factors Affect Apparent Survival of European Passerine Birds

    PubMed Central

    Salewski, Volker; Hochachka, Wesley M.; Fiedler, Wolfgang

    2013-01-01

    Weather affects the demography of animals and thus climate change will cause local changes in demographic rates. In birds numerous studies have correlated demographic factors with weather but few of those examined variation in the impacts of weather in different seasons and, in the case of migrants, in different regions. Using capture-recapture models we correlated weather with apparent survival of seven passerine bird species with different migration strategies to assess the importance of selected facets of weather throughout the year on apparent survival. Contrary to our expectations weather experienced during the breeding season did not affect apparent survival of the target species. However, measures for winter severity were associated with apparent survival of a resident species, two short-distance/partial migrants and a long-distance migrant. Apparent survival of two short distance migrants as well as two long-distance migrants was further correlated with conditions experienced during the non-breeding season in Spain. Conditions in Africa had statistically significant but relatively minor effects on the apparent survival of the two long-distance migrants but also of a presumably short-distance migrant and a short-distance/partial migrant. In general several weather effects independently explained similar amounts of variation in apparent survival for the majority of species and single factors explained only relatively low amounts of temporal variation of apparent survival. Although the directions of the effects on apparent survival mostly met our expectations and there are clear predictions for effects of future climate we caution against simple extrapolations of present conditions to predict future population dynamics. Not only did weather explains limited amounts of variation in apparent survival, but future demographics will likely be affected by changing interspecific interactions, opposing effects of weather in different seasons, and the potential for

  4. ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells

    PubMed Central

    Karvela, Maria; Baquero, Pablo; Kuntz, Elodie M.; Mukhopadhyay, Arunima; Mitchell, Rebecca; Allan, Elaine K.; Chan, Edmond; Kranc, Kamil R.; Calabretta, Bruno; Salomoni, Paolo; Gottlieb, Eyal; Holyoake, Tessa L.; Helgason, G. Vignir

    2016-01-01

    ABSTRACT A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34+ progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease. PMID:27168493

  5. Bmi1 overexpression in the cerebellar granule cell lineage of mice affects cell proliferation and survival without initiating medulloblastoma formation

    PubMed Central

    Behesti, Hourinaz; Bhagat, Heeta; Dubuc, Adrian M.; Taylor, Michael D.; Marino, Silvia

    2013-01-01

    SUMMARY BMI1 is a potent inducer of neural stem cell self-renewal and neural progenitor cell proliferation during development and in adult tissue homeostasis. It is overexpressed in numerous human cancers – including medulloblastomas, in which its functional role is unclear. We generated transgenic mouse lines with targeted overexpression of Bmi1 in the cerebellar granule cell lineage, a cell type that has been shown to act as a cell of origin for medulloblastomas. Overexpression of Bmi1 in granule cell progenitors (GCPs) led to a decrease in cerebellar size due to decreased GCP proliferation and repression of the expression of cyclin genes, whereas Bmi1 overexpression in postmitotic granule cells improved cell survival in response to stress by altering the expression of genes in the mitochondrial cell death pathway and of Myc and Lef-1. Although no medulloblastomas developed in ageing cohorts of transgenic mice, crosses with Trp53−/− mice resulted in a low incidence of medulloblastoma formation. Furthermore, analysis of a large collection of primary human medulloblastomas revealed that tumours with a BMI1high TP53low molecular profile are significantly enriched in Group 4 human medulloblastomas. Our data suggest that different levels and timing of Bmi1 overexpression yield distinct cellular outcomes within the same cellular lineage. Importantly, Bmi1 overexpression at the GCP stage does not induce tumour formation, suggesting that BMI1 overexpression in GCP-derived human medulloblastomas probably occurs during later stages of oncogenesis and might serve to enhance tumour cell survival. PMID:23065639

  6. Effect of interleukins on the proliferation and survival of B cell chronic lymphocytic leukaemia cells.

    PubMed Central

    Mainou-Fowler, T; Copplestone, J A; Prentice, A G

    1995-01-01

    AIMS--To investigate the effects of interleukin (IL) 1, 2, 4, and 5 on the proliferation and survival of peripheral blood B cells from patients with B chronic lymphocytic leukaemia (B-CLL) and compare them with the effects on normal peripheral blood B cells. METHODS--The proliferation and survival of pokeweed mitogen (PWM) activated B cells from B-CLL (n = 12) and normal peripheral blood (n = 5) were studied in vitro in response to IL-1, IL-2 IL-4, and IL-5. Survival of cells in cultures with or without added interleukins was studied by microscopic examination of cells and DNA agarose gel electrophoresis. RESULTS--Proliferation was observed in both B-CLL and normal peripheral blood cells on culture with IL-2 alone and also in some, but not all, B-CLL and normal peripheral blood cells with IL-1 and IL-4. However, there was greater variability in B-CLL cell responses than in normal peripheral blood cells. Il-5 did not affect normal peripheral blood cell proliferation but it increased proliferation in two B-CLL cases. Synergistic effects of these cytokines were not detected. IL-4 inhibited normal peripheral blood and B-CLL cell proliferation after the addition of IL-2. Inhibition of B-CLL cell responses to IL-2 was also observed with IL-5 and Il-1. Survival of B-CLL cells in cultures was enhanced with IL-4 not by an increase in proliferation but by reduced apoptosis. No such effect was seen in normal peripheral blood cells. IL-2 had a less noticeable antiapoptotic effect; IL-5 enhanced apoptosis in B-CLL cells. CONCLUSIONS--B-CLL and normal peripheral blood cells proliferated equally well in response to IL-2. IL-4 had a much lower effect on B-CLL cell proliferation, but had noticeable antiapoptotic activity. IL-5 enhanced cell death by apoptosis. Images PMID:7629299

  7. CCCTC-binding Factor Mediates Effects of Glucose On Beta Cell Survival

    PubMed Central

    Tsui, Shanli; Dai, Wei; Lu, Luo

    2013-01-01

    Objectives Pancreatic islet β-cell survival is important in regulating insulin activities and maintaining glucose homeostasis. Recently, Pax6 has been shown to be essential for many vital functions in β-cells, though the molecular mechanisms of its regulation in β-cells remain unclear. The present study investigates the novel effects of glucose- and insulin-induced CTCF activity on Pax6 gene expression as well as the subsequent effects of insulin-activated signaling pathways on β-cell proliferation. Material and methods Pancreatic β-TC-1-6 cells were cultured in DMEM medium and stimulated with high concentrations of glucose (5 to 125 mM) and cell viability was assessed by MTT assays. The effect of CTCF on Pax6 was evaluated in high glucose-induced and CCCTC-binding Factor (CTCF)/Erk suppressed cells by promoter reporter and Western analyses. Results Increases in glucose and insulin concentrations up-regulated CTCF and consequently down-regulated Pax6 in β-cell survival and proliferation. Knocking-down CTCF directly affected Pax6 transcription through CTCF binding and blocked the response to glucose. Altered Erk activity mediated the effects of CTCF on controlling Pax6 expression, which partially regulates β-cell proliferation. Conclusions CTCF functions as a molecular mediator between insulin-induced upstream Erk signaling and Pax6 expression in pancreatic β-cells. This pathway may contribute to regulation of β-cell survival and proliferation. PMID:24354619

  8. Lung cells support osteosarcoma cell migration and survival.

    PubMed

    Yu, Shibing; Fourman, Mitchell Stephen; Mahjoub, Adel; Mandell, Jonathan Brendan; Crasto, Jared Anthony; Greco, Nicholas Giuseppe; Weiss, Kurt Richard

    2017-01-25

    Osteosarcoma (OS) is the most common primary bone tumor, with a propensity to metastasize to the lungs. Five-year survival for metastatic OS is below 30%, and has not improved for several decades despite the introduction of multi-agent chemotherapy. Understanding OS cell migration to the lungs requires an evaluation of the lung microenvironment. Here we utilized an in vitro lung cell and OS cell co-culture model to explore the interactions between OS and lung cells, hypothesizing that lung cells would promote OS cell migration and survival. The impact of a novel anti-OS chemotherapy on OS migration and survival in the lung microenvironment was also examined. Three human OS cell lines (SJSA-1, Saos-2, U-2) and two human lung cell lines (HULEC-5a, MRC-5) were cultured according to American Type Culture Collection recommendations. Human lung cell lines were cultured in growth medium for 72 h to create conditioned media. OS proliferation was evaluated in lung co-culture and conditioned media microenvironment, with a murine fibroblast cell line (NIH-3 T3) in fresh growth medium as controls. Migration and invasion were measured using a real-time cell analysis system. Real-time PCR was utilized to probe for Aldehyde Dehydrogenase (ALDH1) expression. Osteosarcoma cells were also transduced with a lentivirus encoding for GFP to permit morphologic analysis with fluorescence microscopy. The anti-OS efficacy of Disulfiram, an ALDH-inhibitor previously shown to inhibit OS cell proliferation and metastasis in vitro, was evaluated in each microenvironment. Lung-cell conditioned medium promoted osteosarcoma cell migration, with a significantly higher attractive effect on all three osteosarcoma cell lines compared to basic growth medium, 10% serum containing medium, and NIH-3 T3 conditioned medium (p <0.05). Lung cell conditioned medium induced cell morphologic changes, as demonstrated with GFP-labeled cells. OS cells cultured in lung cell conditioned medium had increased

  9. IMPACT OF PRE-TRANSPLANT RITUXIMAB ON SURVIVAL AFTER AUTOLOGOUS HEMATOPOIETIC STEM CELL TRANSPLANTATION FOR DIFFUSE LARGE B-CELL LYMPHOMA

    PubMed Central

    Fenske, Timothy S.; Hari, Parameswaran N.; Carreras, Jeanette; Zhang, Mei-Jie; Kamble, Rammurti T.; Bolwell, Brian J.; Cairo, Mitchell S.; Champlin, Richard E.; Chen, Yi-Bin; Freytes, César O.; Gale, Robert Peter; Hale, Gregory A.; Ilhan, Osman; Khoury, H. Jean; Lister, John; Maharaj, Dipnarine; Marks, David I.; Munker, Reinhold; Pecora, Andrew L.; Rowlings, Philip A.; Shea, Thomas C.; Stiff, Patrick; Wiernik, Peter H.; Winter, Jane N.; Rizzo, J. Douglas; van Besien, Koen; Lazarus, Hillard M.; Vose, Julie M.

    2010-01-01

    Incorporation of the anti-CD20 monoclonal antibody rituximab into front-line regimens for diffuse large B-cell lymphoma (DLBCL) has resulted in improved survival. Despite this progress, many patients develop refractory or recurrent DLBCL and then receive autologous hematopoietic stem cell transplantation (AuHCT). It is unclear to what extent pre-transplant exposure to rituximab affects outcomes following AuHCT. Outcomes of 994 patients receiving AuHCT for DLBCL between 1996 and 2003 were analyzed according to whether rituximab was (n=176, “+R” group) or was not (n=818, “ −R” group) administered with front-line or salvage therapy prior to AuHCT. The +R group had superior progression-free survival (50% versus 38%, p=0.008) and overall survival (57% versus 45%, p=0.006) at 3 years. Platelet and neutrophil engraftment were not affected by exposure to rituximab. Non-relapse mortality (NRM) did not differ significantly between the +R and −R groups. In multivariate analysis, the +R group had improved progression-free survival (relative risk of relapse/progression or death 0.64, p<0.001) and improved overall survival (relative risk of death of 0.74, p=0.039). We conclude that pre-transplant rituximab is associated with a lower rate of progression and improved survival following AuHCT for DLBCL, with no evidence of impaired engraftment or increased NRM. PMID:19822306

  10. Metformin selectively affects human glioblastoma tumor-initiating cell viability

    PubMed Central

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirana; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect. PMID:23255107

  11. Red blood cells as modulators of T cell growth and survival.

    PubMed

    Arosa, Fernando A; Pereira, Carlos F; Fonseca, Ana M

    2004-01-01

    T cell homeostasis is largely controlled by a balance between cell death and survival and anomalies in either process account for a number of diseases linked to excessive or faulty T cell growth. Yet, the influence that cells outside the immunological system have on these processes has only recently received attention. Accumulated evidence indicate that homeostasis of the CD4+ and CD8+ T cell pools is highly dynamic and regulated by signals delivered by cells and molecules present in the different internal microenvironments. The major function of red blood cells (RBC) is generally considered to be oxygen and carbon dioxide transport. In recent years, however, RBC have been implicated in the regulation of basic physiological processes, from vascular contraction and platelet aggregation to T cell growth and survival. Regulation of T cell survival by RBC may influence the response of selected subsets of T cells to internal or external stimuli and may help explaining the immunomodulatory activities of red blood cells. By interfering in the balance between death and survival RBC become potential tools that can be manipulated to improve or reverse pathological situations characterized by anomalies in the control of T cell growth.

  12. Cytokines affecting CD4+T regulatory cells in transplant tolerance. III. Interleukin-5 (IL-5) promotes survival of alloantigen-specific CD4+ T regulatory cells.

    PubMed

    Hall, Bruce M; Plain, Karren M; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine M; Nomura, Masaru; Boyd, Rochelle; Hodgkinson, Suzanne J

    2017-08-01

    CD4 + T cells mediate antigen-specific allograft tolerance, but die in culture without activated lymphocyte derived cytokines. Supplementation of the media with cytokine rich supernatant, from ConA activated spleen cells, preserves the capacity of tolerant cells to transfer tolerance and suppress rejection. rIL-2 or rIL-4 alone are insufficient to maintain these cells, however. We observed that activation of naïve CD4 + CD25 + FOXP3 + Treg with alloantigen and the Th2 cytokine rIL-4 induces them to express interleukin-5 specific receptor alpha (IL-5Rα) suggesting that IL-5, a Th2 cytokine that is produced later in the immune response may promote tolerance mediating Treg. This study examined if recombinant IL-5(rIL-5) promoted survival of tolerant CD4 + , especially CD4 + CD25 + T cells. CD4 + T cells, from DA rats tolerant to fully allogeneic PVG heart allografts surviving over 100days without on-going immunosuppression, were cultured with PVG alloantigen and rIL-5. The ability of these cells to adoptively transfer tolerance to specific-donor allograft and suppress normal CD4 + T cell mediated rejection in adoptive DA hosts was examined. Tolerant CD4 + CD25 + T cells' response to rIL-5 and expression of IL-5Rα was also assessed. rIL-5 was sufficient to promote transplant tolerance mediating CD4 + T cells' survival in culture with specific-donor alloantigen. Tolerant CD4 + T cells cultured with rIL-5 retained the capacity to transfer alloantigen-specific tolerance and inhibited naïve CD4 + T cells' capacity to effect specific-donor graft rejection. rIL-5 promoted tolerant CD4 + CD25 + T cells' proliferation in vitro when stimulated with specific-donor but not third-party stimulator cells. Tolerant CD4 + CD25 + T cells expressed IL-5Rα. This study demonstrated that IL-5 promoted the survival of alloantigen-specific CD4 + CD25 + T cells that mediate transplant tolerance. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Multi-OMIC profiling of survival and metabolic signaling networks in cells subjected to photodynamic therapy.

    PubMed

    Weijer, Ruud; Clavier, Séverine; Zaal, Esther A; Pijls, Maud M E; van Kooten, Robert T; Vermaas, Klaas; Leen, René; Jongejan, Aldo; Moerland, Perry D; van Kampen, Antoine H C; van Kuilenburg, André B P; Berkers, Celia R; Lemeer, Simone; Heger, Michal

    2017-03-01

    Photodynamic therapy (PDT) is an established palliative treatment for perihilar cholangiocarcinoma that is clinically promising. However, tumors tend to regrow after PDT, which may result from the PDT-induced activation of survival pathways in sublethally afflicted tumor cells. In this study, tumor-comprising cells (i.e., vascular endothelial cells, macrophages, perihilar cholangiocarcinoma cells, and EGFR-overexpressing epidermoid cancer cells) were treated with the photosensitizer zinc phthalocyanine that was encapsulated in cationic liposomes (ZPCLs). The post-PDT survival pathways and metabolism were studied following sublethal (LC 50 ) and supralethal (LC 90 ) PDT. Sublethal PDT induced survival signaling in perihilar cholangiocarcinoma (SK-ChA-1) cells via mainly HIF-1-, NF-кB-, AP-1-, and heat shock factor (HSF)-mediated pathways. In contrast, supralethal PDT damage was associated with a dampened survival response. PDT-subjected SK-ChA-1 cells downregulated proteins associated with EGFR signaling, particularly at LC 90 . PDT also affected various components of glycolysis and the tricarboxylic acid cycle as well as metabolites involved in redox signaling. In conclusion, sublethal PDT activates multiple pathways in tumor-associated cell types that transcriptionally regulate cell survival, proliferation, energy metabolism, detoxification, inflammation/angiogenesis, and metastasis. Accordingly, tumor cells sublethally afflicted by PDT are a major therapeutic culprit. Our multi-omic analysis further unveiled multiple druggable targets for pharmacological co-intervention.

  14. Cell Survival Signaling in Neuroblastoma

    PubMed Central

    Megison, Michael L.; Gillory, Lauren A.; Beierle, Elizabeth A.

    2013-01-01

    Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Neuroblastoma tumorigenesis and malignant transformation is driven by overexpression and dominance of cell survival pathways and a lack of normal cellular senescence or apoptosis. Therefore, manipulation of cell survival pathways may decrease the malignant potential of these tumors and provide avenues for the development of novel therapeutics. This review focuses on several facets of cell survival pathways including protein kinases (PI3K, AKT, ALK, and FAK), transcription factors (NF-κB, MYCN and p53), and growth factors (IGF, EGF, PDGF, and VEGF). Modulation of each of these factors decreases the growth or otherwise hinders the malignant potential of neuroblastoma, and many therapeutics targeting these pathways are already in the clinical trial phase of development. Continued research and discovery of effective modulators of these pathways will revolutionize the treatment of neuroblastoma. PMID:22934706

  15. Dynamic O-linked N-acetylglucosamine modification of proteins affects stress responses and survival of mesothelial cells exposed to peritoneal dialysis fluids.

    PubMed

    Herzog, Rebecca; Bender, Thorsten O; Vychytil, Andreas; Bialas, Katarzyna; Aufricht, Christoph; Kratochwill, Klaus

    2014-12-01

    The ability of cells to respond and survive stressful conditions is determined, in part, by the attachment of O-linked N-acetylglucosamine (O-GlcNAc) to proteins (O-GlcNAcylation), a post-translational modification dependent on glucose and glutamine. This study investigates the role of dynamic O-GlcNAcylation of mesothelial cell proteins in cell survival during exposure to glucose-based peritoneal dialysis fluid (PDF). Immortalized human mesothelial cells and primary mesothelial cells, cultured from human omentum or clinical effluent of PD patients, were assessed for O-GlcNAcylation under normal conditions or after exposure to PDF. The dynamic status of O-GlcNAcylation and effects on cellular survival were investigated by chemical modulation with 6-diazo-5-oxo-L-norleucine (DON) to decrease or O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc) to increase O-GlcNAc levels. Viability was decreased by reducing O-GlcNAc levels by DON, which also led to suppressed expression of the cytoprotective heat shock protein 72. In contrast, increasing O-GlcNAc levels by PUGNAc or alanyl-glutamine led to significantly improved cell survival paralleled by higher heat shock protein 72 levels during PDF treatment. Addition of alanyl-glutamine increased O-GlcNAcylation and partly counteracted its inhibition by DON, also leading to improved cell survival. Immunofluorescent analysis of clinical samples showed that the O-GlcNAc signal primarily originates from mesothelial cells. In conclusion, this study identified O-GlcNAcylation in mesothelial cells as a potentially important molecular mechanism after exposure to PDF. Modulating O-GlcNAc levels by clinically feasible interventions might evolve as a novel therapeutic target for the preservation of peritoneal membrane integrity in PD. Copyright © 2014 by the American Society of Nephrology.

  16. Alpha tumor necrosis factor contributes to CD8{sup +} T cell survival in the transition phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Meiqing; Ye, Zhenmin; Umeshappa, Keshav Sokke

    Cytokine and costimulation signals determine CD8{sup +} T cell responses in proliferation phase. In this study, we assessed the potential effect of cytokines and costimulations to CD8{sup +} T cell survival in transition phase by transferring in vitro ovalbumin (OVA)-pulsed dendritic cell-activated CD8{sup +} T cells derived from OVA-specific T cell receptor transgenic OT I mice into wild-type C57BL/6 mice or mice with designated gene knockout. We found that deficiency of IL-10, IL-12, IFN-{gamma}, CD28, CD40, CD80, CD40L, and 41BBL in recipients did not affect CD8{sup +} T cell survival after adoptive transfer. In contrast, TNF-{alpha} deficiency in both recipientsmore » and donor CD8{sup +} effector T cells significantly reduced CD8{sup +} T cell survival. Therefore, our data demonstrate that the host- and T cell-derived TNF-{alpha} signaling contributes to CD8{sup +} effector T cell survival and their transition to memory T cells in the transition phase, and may be useful information when designing vaccination.« less

  17. Genetic modification of embryonic stem cells with VEGF enhances cell survival and improves cardiac function.

    PubMed

    Xie, Xiaoyan; Cao, Feng; Sheikh, Ahmad Y; Li, Zongjin; Connolly, Andrew J; Pei, Xuetao; Li, Ren-Ke; Robbins, Robert C; Wu, Joseph C

    2007-01-01

    Cardiac stem cell therapy remains hampered by acute donor cell death posttransplantation and the lack of reliable methods for tracking cell survival in vivo. We hypothesize that cells transfected with inducible vascular endothelial growth factor 165 (VEGF(165)) can improve their survival as monitored by novel molecular imaging techniques. Mouse embryonic stem (ES) cells were transfected with an inducible, bidirectional tetracycline (Bi-Tet) promoter driving VEGF(165) and renilla luciferase (Rluc). Addition of doxycycline induced Bi-Tet expression of VEGF(165) and Rluc significantly compared to baseline (p<0.05). Expression of VEGF(165) enhanced ES cell proliferation and inhibited apoptosis as determined by Annexin-V staining. For noninvasive imaging, ES cells were transduced with a double fusion (DF) reporter gene consisting of firefly luciferase and enhanced green fluorescence protein (Fluc-eGFP). There was a robust correlation between cell number and Fluc activity (R(2)=0.99). Analysis by immunostaining, histology, and RT-PCR confirmed that expression of Bi-Tet and DF systems did not affect ES cell self-renewal or pluripotency. ES cells were differentiated into beating embryoid bodies expressing cardiac markers such as troponin, Nkx2.5, and beta-MHC. Afterward, 5 x 10(5) cells obtained from these beating embryoid bodies or saline were injected into the myocardium of SV129 mice (n=36) following ligation of the left anterior descending (LAD) artery. Bioluminescence imaging (BLI) and echocardiography showed that VEGF(165) induction led to significant improvements in both transplanted cell survival and cardiac function (p<0.05). This is the first study to demonstrate imaging of embryonic stem cell-mediated gene therapy targeting cardiovascular disease. With further validation, this platform may have broad applications for current basic research and further clinical studies.

  18. Two-year survival of severe chronic obstructive pulmonary disease subjects requiring invasive mechanical ventilation and the factors affecting survival.

    PubMed

    Asker, Selvi; Ozbay, Bulent; Ekin, Selami; Yildiz, Hanifi; Sertogullarindan, Bunyamin

    2016-05-01

    To investigate two-year survival rates and the factors affecting survival in patients of severe chronic obstructive pulmonary disease requiring invasive mechanical ventilation. The retrospective study was conducted at Yuzuncuy?l University, Van, Turkey, and comprised record of in-patients with moderate to severe chronic obstructive pulmonary disease who required invasive mechanical ventilation in the intensive care unit of the Pulmonary Diseases Department between January 2007 and December 2010. Correlation between survival and parameters such as age, gender, duration of illness, history of smoking, arterial blood gas values, pulmonary artery pressure, left ventricular ejection fraction, body mass index and laboratory findings were investigated. SPSS 19 was used for statistical analysis. Of the 69 severe COPD subjects available, 20 (29%) were excluded as they did not meet the inclusion criteria. Overall in-hospital mortality rate was 42% (n:29). Of the remaining 20 (29%) who comprised the study group, 14(70%) were men and 6(30%) were women. The mortality rates at the end of 3rd, 6th, 12th and 24th months were 61%, 76%, 84% and 85.5% respectively. There was no correlation between gender and survival in time point (p>0.05). The only factor that affected the rate of mortality at the end of the 3rd month was age (p<0.05). Mortality was high in subjects with advanced ages (p<0.05). Duration of illness affected the survival at the end of the six month (p<0.05). Survival rates were high in subjects with longer illness durations (p<0.05). Haematocrit level was the only factor that affected mortality rates at the end of 12th and 24th months (p<0.05). Subjects with higher haematocrit levels had higher survival rates (p<0.05). Age, duration of illness and haematocrit levels were the most important factors that affected survival in chronic obstructive pulmonary disease patients requiring mechanical ventilation.

  19. Estimation of the initial slope of the cell survival curve after irradiation from micronucleus frequency in cytokinesis-blocked cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, K.; Masunaga, S.; Akaboshi, M.

    1994-04-01

    We have already reported that the {alpha}/{beta} ratio of the cell survival curve could be estimated from the micronucleus frequency in cytokinesis-blocked cells treated with cytochalasin-B after irradiation. In this paper, we investigate the direct relationship between the {alpha} value and the appearance of micronuclei. Cells of the SCCVII, RIF-1, EMT6, V-79, CHO, HeLa and human esophageal cancer cell lines were used for the study. Low-dose-rate irradiation was used to determine the {alpha} component of the relationship between dose and micronucleus frequency according to the linear-quadratic (LQ) model. A reduction of the dose rate from 3.09 to 0.0142 Gy/min correspondinglymore » decreased the micronucleus frequency; however, the fraction of binucleate cells without micronuclei was not affected in SCCVII and RIF-1 cells. When this fraction was defined as the normal nuclear division fraction, it decreased exponentially as a function of radiation dose. Then dose vs normal nuclear division fraction (NNDF) was fitted as follows: -In NNDF = aD + C, where D is radiation dose in grays and C is constant. The slope of the dose vs normal nuclear division fraction was not affected by dose rate. The correlation was also explored between the slope (a) and the {alpha} value of the cell survival curve determined by the colony formation assay in cells of eight cell lines. These two values showed extremely high agreement: {alpha} = 1.01a + 0.00795 (r = 0.99, P < 0.01). This assay was applied to estimate the {alpha} value of the cell survival curve of human esophageal cancer cell lines established from surgical specimens. 13 refs., 5 figs.« less

  20. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines.

    PubMed

    Emadi Baygi, Modjtaba; Soheili, Zahra Soheila; Schmitz, Ingo; Sameie, Shahram; Schulz, Wolfgang A

    2010-12-01

    The epithelial-mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.

  1. Increase of Intracellular Cyclic AMP by PDE4 Inhibitors Affects HepG2 Cell Cycle Progression and Survival.

    PubMed

    Massimi, Mara; Cardarelli, Silvia; Galli, Francesca; Giardi, Maria Federica; Ragusa, Federica; Panera, Nadia; Cinque, Benedetta; Cifone, Maria Grazia; Biagioni, Stefano; Giorgi, Mauro

    2017-06-01

    Type 4 cyclic nucleotide phosphodiesterases (PDE4) are major members of a superfamily of enzymes (PDE) involved in modulation of intracellular signaling mediated by cAMP. Broadly expressed in most human tissues and present in large amounts in the liver, PDEs have in the last decade been key therapeutic targets for several inflammatory diseases. Recently, a significant body of work has underscored their involvement in different kinds of cancer, but with no attention paid to liver cancer. The present study investigated the effects of two PDE4 inhibitors, rolipram and DC-TA-46, on the growth of human hepatoma HepG2 cells. Treatment with these inhibitors caused a marked increase of intracellular cAMP level and a dose- and time-dependent effect on cell growth. The concentrations of inhibitors that halved cell proliferation to about 50% were used for cell cycle experiments. Rolipram (10 μM) and DC-TA-46 (0.5 μM) produced a decrease of cyclin expression, in particular of cyclin A, as well as an increase in p21, p27 and p53, as evaluated by Western blot analysis. Changes in the intracellular localization of cyclin D1 were also observed after treatments. In addition, both inhibitors caused apoptosis, as demonstrated by an Annexin-V cytofluorimetric assay and analysis of caspase-3/7 activity. Results demonstrated that treatment with PDE4 inhibitors affected HepG2 cell cycle and survival, suggesting that they might be useful as potential adjuvant, chemotherapeutic or chemopreventive agents in hepatocellular carcinoma. J. Cell. Biochem. 118: 1401-1411, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Surgical quality of wedge resection affects overall survival in patients with early stage non-small cell lung cancer.

    PubMed

    Ajmani, Gaurav S; Wang, Chi-Hsiung; Kim, Ki Wan; Howington, John A; Krantz, Seth B

    2018-07-01

    Very few studies have examined the quality of wedge resection in patients with non-small cell lung cancer. Using the National Cancer Database, we evaluated whether the quality of wedge resection affects overall survival in patients with early disease and how these outcomes compare with those of patients who receive stereotactic radiation. We identified 14,328 patients with cT1 to T2, N0, M0 disease treated with wedge resection (n = 10,032) or stereotactic radiation (n = 4296) from 2005 to 2013 and developed a subsample of propensity-matched wedge and radiation patients. Wedge quality was grouped as high (negative margins, >5 nodes), average (negative margins, ≤5 nodes), and poor (positive margins). Overall survival was compared between patients who received wedge resection of different quality and those who received radiation, adjusting for demographic and clinical variables. Among patients who underwent wedge resection, 94.6% had negative margins, 44.3% had 0 nodes examined, 17.1% had >5 examined, and 3.0% were nodally upstaged; 16.7% received a high-quality wedge, which was associated with a lower risk of death compared with average-quality resection (adjusted hazard ratio [aHR], 0.74; 95% confidence interval [CI], 0.67-0.82). Compared with stereotactic radiation, wedge patients with negative margins had significantly reduced hazard of death (>5 nodes: aHR, 0.50; 95% CI, 0.43-0.58; ≤5 nodes: aHR, 0.65; 95% CI, 0.60-0.70). There was no significant survival difference between margin-positive wedge and radiation. Lymph nodes examined and margins obtained are important quality metrics in wedge resection. A high-quality wedge appears to confer a significant survival advantage over lower-quality wedge and stereotactic radiation. A margin-positive wedge appears to offer no benefit compared with radiation. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  3. Ciprofloxacin Derivatives Affect Parasite Cell Division and Increase the Survival of Mice Infected with Toxoplasma gondii

    PubMed Central

    Martins-Duarte, Erica S.; Dubar, Faustine; Lawton, Philippe; França da Silva, Cristiane; C. Soeiro, Maria de Nazaré; de Souza, Wanderley; Biot, Christophe; Vommaro, Rossiane C.

    2015-01-01

    Toxoplasmosis, caused by the protozoan Toxoplasma gondii, is a worldwide disease whose clinical manifestations include encephalitis and congenital malformations in newborns. Previously, we described the synthesis of new ethyl-ester derivatives of the antibiotic ciprofloxacin with ~40-fold increased activity against T. gondii in vitro, compared with the original compound. Cipro derivatives are expected to target the parasite’s DNA gyrase complex in the apicoplast. The activity of these compounds in vivo, as well as their mode of action, remained thus far uncharacterized. Here, we examined the activity of the Cipro derivatives in vivo, in a model of acute murine toxoplasmosis. In addition, we investigated the cellular effects T. gondii tachyzoites in vitro, by immunofluorescence and transmission electron microscopy (TEM). When compared with Cipro treatment, 7-day treatments with Cipro derivatives increased mouse survival significantly, with 13–25% of mice surviving for up to 60 days post-infection (vs. complete lethality 10 days post-infection, with Cipro treatment). Light microscopy examination early (6 and 24h) post-infection revealed that 6-h treatments with Cipro derivatives inhibited the initial event of parasite cell division inside host cells, in an irreversible manner. By TEM and immunofluorescence, the main cellular effects observed after treatment with Cipro derivatives and Cipro were cell scission inhibition - with the appearance of ‘tethered’ parasites – malformation of the inner membrane complex, and apicoplast enlargement and missegregation. Interestingly, tethered daughter cells resulting from Cipro derivatives, and also Cipro, treatment did not show MORN1 cap or centrocone localization. The biological activity of Cipro derivatives against C. parvum, an apicomplexan species that lacks the apicoplast, is, approximately, 50 fold lower than that in T. gondii tachyzoites, supporting that these compounds targets the apicoplast. Our results show

  4. Human Periodontal Ligament-Derived Stem Cells Promote Retinal Ganglion Cell Survival and Axon Regeneration After Optic Nerve Injury.

    PubMed

    Cen, Ling-Ping; Ng, Tsz Kin; Liang, Jia-Jian; Zhuang, Xi; Yao, Xiaowu; Yam, Gary Hin-Fai; Chen, Haoyu; Cheung, Herman S; Zhang, Mingzhi; Pang, Chi Pui

    2018-06-01

    Optic neuropathies are the leading cause of irreversible blindness and visual impairment in the developed countries, affecting more than 80 million people worldwide. While most optic neuropathies have no effective treatment, there is intensive research on retinal ganglion cell (RGC) protection and axon regeneration. We previously demonstrated potential of human periodontal ligament-derived stem cells (PDLSCs) for retinal cell replacement. Here, we report the neuroprotective effect of human PDLSCs to ameliorate RGC degeneration and promote axonal regeneration after optic nerve crush (ONC) injury. Human PDLSCs were intravitreally injected into the vitreous chamber of adult Fischer rats after ONC in vivo as well as cocultured with retinal explants in vitro. Human PDLSCs survived in the vitreous chamber and were maintained on the RGC layer even at 3 weeks after ONC. Immunofluorescence analysis of βIII-tubulin and Gap43 showed that the numbers of surviving RGCs and regenerating axons were significantly increased in the rats with human PDLSC transplantation. In vitro coculture experiments confirmed that PDLSCs enhanced RGC survival and neurite regeneration in retinal explants without inducing inflammatory responses. Direct cell-cell interaction and elevated brain-derived neurotrophic factor secretion, but not promoting endogenous progenitor cell regeneration, were the RGC protective mechanisms of human PDLSCs. In summary, our results revealed the neuroprotective role of human PDLSCs by strongly promoting RGC survival and axonal regeneration both in vivo and in vitro, indicating a therapeutic potential for RGC protection against optic neuropathies. Stem Cells 2018;36:844-855. © AlphaMed Press 2018.

  5. Cytokines affecting CD4+T regulatory cells in transplant tolerance. II. Interferon gamma (IFN-γ) promotes survival of alloantigen-specific CD4+T regulatory cells.

    PubMed

    Nomura, Masaru; Hodgkinson, Suzanne J; Tran, Giang T; Verma, Nirupama D; Robinson, Catherine; Plain, Karren M; Boyd, Rochelle; Hall, Bruce M

    2017-06-01

    CD4 + T cells that transfer alloantigen-specific transplant tolerance are short lived in culture unless stimulated with specific-donor alloantigen and lymphocyte derived cytokines. Here, we examined if IFN-γ maintained survival of tolerance transferring CD4 + T cells. Alloantigen-specific transplant tolerance was induced in DA rats with heterotopic adult PVG heart allografts by a short course of immunosuppression and these grafts functioned for >100days with no further immunosuppression. In previous studies, we found the CD4 + T cells from tolerant rats that transfer tolerance to an irradiated DA host grafted with a PVG heart, lose their tolerance transferring ability after 3days of culture, either with or without donor alloantigen, and effect rejection of specific-donor grafts. If cultures with specific-donor alloantigen are supplemented by supernatant from ConA activated lymphocytes the tolerance transferring cells survive, suggesting these cells depend on cytokines for their survival. In this study, we found addition of rIFN-γ to MLC with specific-donor alloantigen maintained the capacity of tolerant CD4 + T cells to transfer alloantigen-specific tolerance and their ability to suppress PVG allograft rejection mediated by co-administered naïve CD4 + T cells. IFN-γ suppressed the in vitro proliferation of tolerant CD4 + T cells. Tolerant CD4 + CD25 + T cells did not proliferate in MLC to PVG stimulator cells with no cytokine added, but did when IFN-γ was present. IFN-γ did not alter proliferation of tolerant CD4 + CD25 + T cells to third-party Lewis. Tolerant CD4 + CD25 + T cells' expression of IFN-γ receptor (IFNGR) was maintained in culture when IFN-γ was present. This study suggested that IFN-γ maintained tolerance mediating alloantigen-specific CD4 + CD25 + T cells. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  6. ATF5 regulates β-cell survival during stress.

    PubMed

    Juliana, Christine A; Yang, Juxiang; Rozo, Andrea V; Good, Austin; Groff, David N; Wang, Shu-Zong; Green, Michael R; Stoffers, Doris A

    2017-02-07

    The stress response and cell survival are necessary for normal pancreatic β-cell function, glucose homeostasis, and prevention of diabetes. The homeodomain transcription factor and human diabetes gene pancreas/duodenum homeobox protein 1 (Pdx1) regulates β-cell survival and endoplasmic reticulum stress susceptibility, in part through direct regulation of activating transcription factor 4 (Atf4). Here we show that Atf5, a close but less-studied relative of Atf4, is also a target of Pdx1 and is critical for β-cell survival under stress conditions. Pdx1 deficiency led to decreased Atf5 transcript, and primary islet ChIP-sequencing localized PDX1 to the Atf5 promoter, implicating Atf5 as a PDX1 target. Atf5 expression was stress inducible and enriched in β cells. Importantly, Atf5 deficiency decreased survival under stress conditions. Loss-of-function and chromatin occupancy experiments positioned Atf5 downstream of and parallel to Atf4 in the regulation of eIF4E-binding protein 1 (4ebp1), a mammalian target of rapamycin (mTOR) pathway component that inhibits protein translation. Accordingly, Atf5 deficiency attenuated stress suppression of global translation, likely enhancing the susceptibility of β cells to stress-induced apoptosis. Thus, we identify ATF5 as a member of the transcriptional network governing pancreatic β-cell survival during stress.

  7. ATF5 regulates β-cell survival during stress

    PubMed Central

    Juliana, Christine A.; Yang, Juxiang; Rozo, Andrea V.; Good, Austin; Groff, David N.; Wang, Shu-Zong; Stoffers, Doris A.

    2017-01-01

    The stress response and cell survival are necessary for normal pancreatic β-cell function, glucose homeostasis, and prevention of diabetes. The homeodomain transcription factor and human diabetes gene pancreas/duodenum homeobox protein 1 (Pdx1) regulates β-cell survival and endoplasmic reticulum stress susceptibility, in part through direct regulation of activating transcription factor 4 (Atf4). Here we show that Atf5, a close but less-studied relative of Atf4, is also a target of Pdx1 and is critical for β-cell survival under stress conditions. Pdx1 deficiency led to decreased Atf5 transcript, and primary islet ChIP-sequencing localized PDX1 to the Atf5 promoter, implicating Atf5 as a PDX1 target. Atf5 expression was stress inducible and enriched in β cells. Importantly, Atf5 deficiency decreased survival under stress conditions. Loss-of-function and chromatin occupancy experiments positioned Atf5 downstream of and parallel to Atf4 in the regulation of eIF4E-binding protein 1 (4ebp1), a mammalian target of rapamycin (mTOR) pathway component that inhibits protein translation. Accordingly, Atf5 deficiency attenuated stress suppression of global translation, likely enhancing the susceptibility of β cells to stress-induced apoptosis. Thus, we identify ATF5 as a member of the transcriptional network governing pancreatic β-cell survival during stress. PMID:28115692

  8. Lesion-induced increase in survival and migration of human neural progenitor cells releasing GDNF

    PubMed Central

    Behrstock, Soshana; Ebert, Allison D.; Klein, Sandra; Schmitt, Melanie; Moore, Jeannette M.; Svendsen, Clive N.

    2009-01-01

    The use of human neural progenitor cells (hNPC) has been proposed to provide neuronal replacement or astrocytes delivering growth factors for brain disorders such as Parkinson’s and Huntington’s disease. Success in such studies likely requires migration from the site of transplantation and integration into host tissue in the face of ongoing damage. In the current study, hNPC modified to release glial cell line derived neurotrophic factor (hNPCGDNF) were transplanted into either intact or lesioned animals. GDNF release itself had no effect on the survival, migration or differentiation of the cells. The most robust migration and survival was found using a direct lesion of striatum (Huntington’s model) with indirect lesions of the dopamine system (Parkinson’s model) or intact animals showing successively less migration and survival. No lesion affected differentiation patterns. We conclude that the type of brain injury dictates migration and integration of hNPC which has important consequences when considering transplantation of these cells as a therapy for neurodegenerative diseases. PMID:19044202

  9. Rapamycin increases RSV RNA levels and survival of RSV-infected dendritic cell depending on T cell contact.

    PubMed

    do Nascimento de Freitas, Deise; Gassen, Rodrigo Benedetti; Fazolo, Tiago; Souza, Ana Paula Duarte de

    2016-10-01

    The macrolide rapamycin inhibits mTOR (mechanist target of rapamycin) function and has been broadly used to unveil the role of mTOR in immune responses. Inhibition of mTOR on dendritic cells (DC) can influence cellular immune response and the survival of DC. RSV is the most common cause of hospitalization in infants and is a high priority candidate to vaccine development. In this study we showed that rapamycin treatment on RSV-infected murine bone marrow-derived DC (BMDC) decreases the frequency of CD8(+)CD44(high) T cells. However, inhibition of mTOR on RSV-infected BMDC did not modify the activation phenotype of these cells. RSV-RNA levels increase when infected BMDC were treated with rapamycin. Moreover, we observed that rapamycin diminishes apoptosis cell death of RSV-infected BMDC co-culture with T cells and this effect was abolished when the cells were co-cultured in a transwell system that prevents cell-to-cell contact or migration. Taken together, these data indicate that rapamycin treatment present a toxic effect on RSV-infected BMDC increasing RSV-RNA levels, affecting partially CD8 T cell differentiation and also increasing BMDC survival in a mechanism dependent on T cell contact. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Incubation under climate warming affects learning ability and survival in hatchling lizards.

    PubMed

    Dayananda, Buddhi; Webb, Jonathan K

    2017-03-01

    Despite compelling evidence for substantial individual differences in cognitive performance, it is unclear whether cognitive ability influences fitness of wild animals. In many animals, environmental stressors experienced in utero can produce substantial variation in the cognitive abilities of offspring. In reptiles, incubation temperatures experienced by embryos can influence hatchling brain function and learning ability. Under climate warming, the eggs of some lizard species may experience higher temperatures, which could affect the cognitive abilities of hatchlings. Whether such changes in cognitive abilities influence the survival of hatchlings is unknown. To determine whether incubation-induced changes in spatial learning ability affect hatchling survival, we incubated velvet gecko, Amalosia lesueurii , eggs using two fluctuating temperature regimes to mimic current (cold) versus future (hot) nest temperatures. We measured the spatial learning ability of hatchlings from each treatment, and released individually marked animals at two field sites in southeastern Australia. Hatchlings from hot-incubated eggs were slower learners than hatchlings from cold-incubated eggs. Survival analyses revealed that hatchlings with higher learning scores had higher survival than hatchlings with poor learning scores. Our results show that incubation temperature affects spatial learning ability in hatchling lizards, and that such changes can influence the survival of hatchlings in the wild. © 2017 The Author(s).

  11. Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells

    PubMed Central

    Bauckman, Kyle; Haller, Edward; Taran, Nicholas; Rockfield, Stephanie; Ruiz-Rivera, Abigail; Nanjundan, Meera

    2015-01-01

    The role of iron in the development of cancer remains unclear. We previously reported that iron reduces cell survival in a Ras/mitogen-activated protein kinase (MAPK)-dependent manner in ovarian cells; however, the underlying downstream pathway leading to reduced survival was unclear. Although levels of intracellular iron, ferritin/CD71 protein and reactive oxygen species did not correlate with iron-induced cell survival changes, we identified mitochondrial damage (via TEM) and reduced expression of outer mitochondrial membrane proteins (translocase of outer membrane: TOM20 and TOM70) in cell lines sensitive to iron. Interestingly, Ru360 (an inhibitor of the mitochondrial calcium uniporter) reversed mitochondrial changes and restored cell survival in HEY ovarian carcinoma cells treated with iron. Further, cells treated with Ru360 and iron also had reduced autophagic punctae with increased lysosomal numbers, implying cross-talk between these compartments. Mitochondrial changes were dependent on activation of the Ras/MAPK pathway since treatment with a MAPK inhibitor restored expression of TOM20/TOM70 proteins. Although glutathione antioxidant levels were reduced in HEY treated with iron, extracellular glutamate levels were unaltered. Strikingly, oxalomalate (inhibitor of aconitase, involved in glutamate production) reversed iron-induced responses in a similar manner to Ru360. Collectively, our results implicate iron in modulating cell survival in a mitochondria-dependent manner in ovarian cancer cells. PMID:25697096

  12. Metallodrug induced apoptotic cell death and survival attempts are characterizable by Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    le Roux, K.; Prinsloo, L. C.; Meyer, D.

    2014-09-01

    Chrysotherapeutics are under investigation as new or additional treatments for different types of cancers. In this study, gold complexes were investigated for their anticancer potential using Raman spectroscopy. The aim of the study was to determine whether Raman spectroscopy could be used for the characterization of metallodrug-induced cell death. Symptoms of cell death such as decreased peak intensities of proteins bonds and phosphodiester bonds found in deoxyribose nucleic acids were evident in the principal component analysis of the spectra. Vibrational bands around 761 cm-1 and 1300 cm-1 (tryptophan, ethanolamine group, and phosphatidylethanolamine) and 1720 cm-1 (ester bonds associated with phospholipids) appeared in the Raman spectra of cervical adenocarcinoma (HeLa) cells after metallodrug treatment. The significantly (p < 0.05, one way analysis of variance) increased intensity of phosphatidylethanolamine after metallodrug treatment could be a molecular signature of induced apoptosis since both the co-regulated phosphatidylserine and phosphatidylethanolamine are externalized during cell death. Treated cells had significantly higher levels of glucose and glycogen vibrational peaks, indicative of a survival mechanism of cancer cells under chemical stress. Cancer cells excrete chemotherapeutics to improve their chances of survival and utilize glucose to achieve this. Raman spectroscopy was able to monitor a survival strategy of cancer cells in the form of glucose uptake to alleviate chemical stress. Raman spectroscopy was invaluable in obtaining molecular information generated by biomolecules affected by anticancer metallodrug treatments and presents an alternative to less reproducible, conventional biochemical assays for cytotoxicity analyses.

  13. The effect of ultraviolet radiation on choroidal melanocytes and melanoma cell lines: cell survival and matrix metalloproteinase production.

    PubMed

    Lai, Kenneth; Di Girolamo, Nick; Conway, Robert M; Jager, Martine J; Madigan, Michele C

    2007-05-01

    Ultraviolet radiation (UVR) can induce DNA damage and regulate the expression of factors important for tumour growth and metastasis, including matrix metalloproteinases (MMPs). Epidemiological studies suggest that chronic UVR exposure, especially during early adulthood, may be a risk factor in patients with choroidal melanoma. However, the effects of UV(R)-B on human choroidal melanocyte survival and growth are unknown. In this study, we investigated if UV(R)-B affected the in vitro survival, growth and MMP production of choroidal melanocytes and melanoma cells. Cultures of primary choroidal melanocytes and melanoma cell lines (OCM-1 and OCM-8) were exposed to UV(R)-B (0-30 mJ/cm(2)). The cell morphology and growth were examined, and cell viability was assessed using an MTT assay. Gelatin zymography was used to assess the enzymatic activity for MMP-2 and -9 in conditioned media following UV(R)-B treatment. UV(R)-B > or =20 mJ/cm(2) was cytotoxic for choroidal melanocytes. Cytotoxic doses of 5 to 10 mJ/cm(2) were found for OCM-8 and OCM-1 melanoma cell lines. Low levels of UV(R)-B (2.5 and 3.5 mJ/cm(2)) significantly reduced melanoma cell viability after 48 h, although melanocyte viability was not affected by doses of UV(R)-B <10 mJ/cm(2). Conditioned media from melanoma cells and melanocytes displayed pro-MMP-2 activity independent of UV(R)-B. Control and UV(R)-B-treated OCM-1 cells secreted active MMP-2 up to 72 h. Pro-MMP-9 activity was seen from 36 h for control and UV(R)-B-treated OCM-1 and OCM-8 cells. Melanocytes appeared more resistant to physiological doses of UV(R)-B than melanoma cells; the potential of melanocytes to initially survive DNA damage following UV(R)-B exposure may be relevant to the subsequent transformation of melanocytes to melanomas. Although UV(R)-B did not induce the production and/or activation of MMP-2 and -9 in melanocytes or melanoma cells, we are currently investigating whether DNA damage-response genes such as p53 and p21 can be

  14. Obesity adversely affects survival in pancreatic cancer patients.

    PubMed

    McWilliams, Robert R; Matsumoto, Martha E; Burch, Patrick A; Kim, George P; Halfdanarson, Thorvardur R; de Andrade, Mariza; Reid-Lombardo, Kaye; Bamlet, William R

    2010-11-01

    Higher body-mass index (BMI) has been implicated as a risk factor for developing pancreatic cancer, but its effect on survival has not been thoroughly investigated. The authors assessed the association of BMI with survival in a sample of pancreatic cancer patients and used epidemiologic and clinical information to understand the contribution of diabetes and hyperglycemia. A survival analysis using Cox proportional hazards by usual adult BMI was performed on 1861 unselected patients with pancreatic adenocarcinoma; analyses were adjusted for covariates that included clinical stage, age, and sex. Secondary analyses incorporated self-reported diabetes and fasting blood glucose in the survival model. BMI as a continuous variable was inversely associated with survival from pancreatic adenocarcinoma (hazard ratio [HR], 1.019 for each increased unit of BMI [kg/m2], P<.001) after adjustment for age, stage, and sex. In analysis by National Institutes of Health BMI category, BMIs of 30 to 34.99 kg/m2 (HR, 1.14; 95% confidence interval [CI], 0.98-1.33), 35 to 39.99 kg/m2 (HR 1.32, 95% CI 1.08-1.62), and ≥40 (HR 1.60, 95% CI 1.26-2.04) were associated with decreased survival compared with normal BMI of 18.5 to 24.99 kg/m2 (overall trend test P<.001). Fasting blood glucose and diabetes did not affect the results. Higher BMI is associated with decreased survival in pancreatic cancer. Although the mechanism of this association remains undetermined, diabetes and hyperglycemia do not appear to account for the observed association. Copyright © 2010 American Cancer Society.

  15. Radiobiological description of the LET dependence of the cell survival of oxic and anoxic cells irradiated by carbon ions.

    PubMed

    Antonovic, L; Brahme, A; Furusawa, Y; Toma-Dasu, I

    2013-01-01

    Light-ion radiation therapy against hypoxic tumors is highly curative due to reduced dependence on the presence of oxygen in the tumor at elevated linear energy transfer (LET) towards the Bragg peak. Clinical ion beams using spread-out Bragg peak (SOBP) are characterized by a wide spectrum of LET values. Accurate treatment optimization requires a method that can account for influence of the variation in response for a broad range of tumor hypoxia, absorbed doses and LETs. This paper presents a parameterization of the Repairable Conditionally-Repairable (RCR) cell survival model that can describe the survival of oxic and hypoxic cells over a wide range of LET values, and investigates the relationship between hypoxic radiation resistance and LET. The biological response model was tested by fitting cell survival data under oxic and anoxic conditions for V79 cells irradiated with LETs within the range of 30-500 keV/µm. The model provides good agreement with experimental cell survival data for the range of LET investigated, confirming the robustness of the parameterization method. This new version of the RCR model is suitable for describing the biological response of mixed populations of oxic and hypoxic cells and at the same time taking into account the distribution of doses and LETs in the incident beam and its variation with depth in tissue. The model offers a versatile tool for the selection of LET and dose required in the optimization of the therapeutic effect, without severely affecting normal tissue in realistic tumors presenting highly heterogeneous oxic and hypoxic regions.

  16. Host-Cell Survival and Death During Chlamydia Infection

    PubMed Central

    Ying, Songmin; Pettengill, Matthew; Ojcius, David M.; Häcker, Georg

    2008-01-01

    Different Chlamydia trachomatis strains are responsible for prevalent bacterial sexually-transmitted disease and represent the leading cause of preventable blindness worldwide. Factors that predispose individuals to disease and mechanisms by which chlamydiae cause inflammation and tissue damage remain unclear. Results from recent studies indicate that prolonged survival and subsequent death of infected cells and their effect on immune effector cells during chlamydial infection may be important in determining the outcome. Survival of infected cells is favored at early times of infection through inhibition of the mitochondrial pathway of apoptosis. Death at later times displays features of both apoptosis and necrosis, but pro-apoptotic caspases are not involved. Most studies on chlamydial modulation of host-cell death until now have been performed in cell lines. The consequences for pathogenesis and the immune response will require animal models of chlamydial infection, preferably mice with targeted deletions of genes that play a role in cell survival and death. PMID:18843378

  17. Cytoplasmic proliferating cell nuclear antigen connects glycolysis and cell survival in acute myeloid leukemia.

    PubMed

    Ohayon, Delphine; De Chiara, Alessia; Chapuis, Nicolas; Candalh, Céline; Mocek, Julie; Ribeil, Jean-Antoine; Haddaoui, Lamya; Ifrah, Norbert; Hermine, Olivier; Bouillaud, Frédéric; Frachet, Philippe; Bouscary, Didier; Witko-Sarsat, Véronique

    2016-10-19

    Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNA replication, has been described as a key element in survival of mature neutrophil granulocytes, which are non-proliferating cells. Herein, we demonstrated an active export of PCNA involved in cell survival and chemotherapy resistance. Notably, daunorubicin-resistant HL-60 cells (HL-60R) have a prominent cytosolic PCNA localization due to increased nuclear export compared to daunorubicin-sensitive HL-60 cells (HL-60S). By interacting with nicotinamide phosphoribosyltransferase (NAMPT), a protein involved in NAD biosynthesis, PCNA coordinates glycolysis and survival, especially in HL-60R cells. These cells showed a dramatic increase in intracellular NAD+ concentration as well as glycolysis including increased expression and activity of hexokinase 1 and increased lactate production. Furthermore, this functional activity of cytoplasmic PCNA was also demonstrated in patients with acute myeloid leukemia (AML). Our data uncover a novel pathway of nuclear export of PCNA that drives cell survival by increasing metabolism flux.

  18. Cytoplasmic proliferating cell nuclear antigen connects glycolysis and cell survival in acute myeloid leukemia

    PubMed Central

    Ohayon, Delphine; De Chiara, Alessia; Chapuis, Nicolas; Candalh, Céline; Mocek, Julie; Ribeil, Jean-Antoine; Haddaoui, Lamya; Ifrah, Norbert; Hermine, Olivier; Bouillaud, Frédéric; Frachet, Philippe; Bouscary, Didier; Witko-Sarsat, Véronique

    2016-01-01

    Cytosolic proliferating cell nuclear antigen (PCNA), a scaffolding protein involved in DNA replication, has been described as a key element in survival of mature neutrophil granulocytes, which are non-proliferating cells. Herein, we demonstrated an active export of PCNA involved in cell survival and chemotherapy resistance. Notably, daunorubicin-resistant HL-60 cells (HL-60R) have a prominent cytosolic PCNA localization due to increased nuclear export compared to daunorubicin-sensitive HL-60 cells (HL-60S). By interacting with nicotinamide phosphoribosyltransferase (NAMPT), a protein involved in NAD biosynthesis, PCNA coordinates glycolysis and survival, especially in HL-60R cells. These cells showed a dramatic increase in intracellular NAD+ concentration as well as glycolysis including increased expression and activity of hexokinase 1 and increased lactate production. Furthermore, this functional activity of cytoplasmic PCNA was also demonstrated in patients with acute myeloid leukemia (AML). Our data uncover a novel pathway of nuclear export of PCNA that drives cell survival by increasing metabolism flux. PMID:27759041

  19. The Ornithine Decarboxylase Gene Is Essential for Cell Survival during Early Murine Development

    PubMed Central

    Pendeville, Hélène; Carpino, Nick; Marine, Jean-Christophe; Takahashi, Yutaka; Muller, Marc; Martial, Joseph A.; Cleveland, John L.

    2001-01-01

    Overexpression and inhibitor studies have suggested that the c-Myc target gene for ornithine decarboxylase (ODC), the enzyme which converts ornithine to putrescine, plays an important role in diverse biological processes, including cell growth, differentiation, transformation, and apoptosis. To explore the physiological function of ODC in mammalian development, we generated mice harboring a disrupted ODC gene. ODC-heterozygous mice were viable, normal, and fertile. Although zygotic ODC is expressed throughout the embryo prior to implantation, loss of ODC did not block normal development to the blastocyst stage. Embryonic day E3.5 ODC-deficient embryos were capable of uterine implantation and induced maternal decidualization yet failed to develop substantially thereafter. Surprisingly, analysis of ODC-deficient blastocysts suggests that loss of ODC does not affect cell growth per se but rather is required for survival of the pluripotent cells of the inner cell mass. Therefore, ODC plays an essential role in murine development, and proper homeostasis of polyamine pools appears to be required for cell survival prior to gastrulation. PMID:11533243

  20. The apical complex couples cell fate and cell survival to cerebral cortical development

    PubMed Central

    Kim, Seonhee; Lehtinen, Maria K.; Sessa, Alessandro; Zappaterra, Mauro; Cho, Seo-Hee; Gonzalez, Dilenny; Boggan, Brigid; Austin, Christina A.; Wijnholds, Jan; Gambello, Michael J.; Malicki, Jarema; LaMantia, Anthony S.; Broccoli, Vania; Walsh, Christopher A.

    2010-01-01

    Cortical development depends upon tightly controlled cell fate and cell survival decisions that generate a functional neuronal population, but the coordination of these two processes is poorly understood. Here we show that conditional removal of a key apical complex protein, Pals1, causes premature withdrawal from the cell cycle, inducing excessive generation of early-born postmitotic neurons followed by surprisingly massive and rapid cell death, leading to the abrogation of virtually the entire cortical structure. Pals1 loss shows exquisite dosage sensitivity, so that heterozygote mutants show an intermediate phenotype on cell fate and cell death. Loss of Pals1 blocks essential cell survival signals, including the mammalian target of rapamycin (mTOR) pathway, while mTORC1 activation partially rescues Pals1 deficiency. These data highlight unexpected roles of the apical complex protein Pals1 in cell survival through interactions with mTOR signaling. PMID:20399730

  1. Obesity does not affect survival outcomes in extremity soft tissue sarcoma.

    PubMed

    Alamanda, Vignesh K; Moore, David C; Song, Yanna; Schwartz, Herbert S; Holt, Ginger E

    2014-09-01

    Obesity is a growing epidemic and has been associated with an increased frequency of complications after various surgical procedures. Studies also have shown adipose tissue to promote a microenvironment favorable for tumor growth. Additionally, the relationship between obesity and prognosis of soft tissue sarcomas has yet to be evaluated. We sought to assess if (1) obesity affects survival outcomes (local recurrence, distant metastasis, and death attributable to disease) in patients with extremity soft tissue sarcomas; and (2) whether obesity affected wound healing and other surgical complications after treatment. A BMI of 30 kg/m(2) or greater was used to define obesity. Querying our prospective database between 2001 and 2008, we identified 397 patients for the study; 154 were obese and 243 were not obese. Mean followup was 4.5 years (SD, 3.1 years) in the obese group and 3.9 years (SD, 3.2 years) in the nonobese group; the group with a BMI of 30 kg/m(2) or greater had a higher proportion of patients with followups of at least 2 years compared with the group with a BMI less than 30 kg/m(2) (76% versus 62%). Outcomes, including local recurrence, distant metastasis, and overall survival, were analyzed after patients were stratified by BMI. Multivariable survival models were used to identify independent predictors of survival outcomes. Wilcoxon rank sum test was used to compare continuous variables. Based on the accrual interval of 8 years, the additional followup of 5 years after data collection, and the median survival time for the patients with a BMI less than 30 kg/m(2) of 3 years, we were able to detect true median survival times in the patients with a BMI of 30 kg/m(2) of 2.2 years or less with 80% power and type I error rate of 0.05. Patients who were obese had similar survival outcomes and wound complication rates when compared with their nonobese counterparts. Patients who were obese were more likely to have lower-grade tumors (31% versus 20%; p = 0.021) and

  2. Hypoxia-activated prodrug TH-302 decreased survival rate of canine lymphoma cells under hypoxic condition.

    PubMed

    Yamazaki, Hiroki; Lai, Yu-Chang; Tateno, Morihiro; Setoguchi, Asuka; Goto-Koshino, Yuko; Endo, Yasuyuki; Nakaichi, Munekazu; Tsujimoto, Hajime; Miura, Naoki

    2017-01-01

    We tested the hypotheses that hypoxic stimulation enhances growth potentials of canine lymphoma cells by activating hypoxia-inducible factor 1α (HIF-1α), and that the hypoxia-activated prodrug (TH-302) inhibits growth potentials in the cells. We investigated how hypoxic culture affects the growth rate, chemoresistance, and invasiveness of canine lymphoma cells and doxorubicin (DOX)-resistant lymphoma cells, and influences of TH-302 on survival rate of the cells under hypoxic conditions. Our results demonstrated that hypoxic culture upregulated the expression of HIF-1α and its target genes, including ATP-binding cassette transporter B1 (ABCB1), ATP-binding cassette transporter G2 (ABCG2), platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and survivin, and enhanced the growth rate, DOX resistance, and invasiveness of the cells. Additionally, TH-302 decreased the survival rate of the cells under hypoxic condition. Our studies suggest that hypoxic stimulation may advance the tumorigenicity of canine lymphoma cells, favoring malignant transformation. Therefore, the data presented may contribute to the development of TH-302-based hypoxia-targeting therapies for canine lymphoma.

  3. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures.

    PubMed

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N W; Walters, Christina

    2014-03-01

    Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm(2) in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches.

  4. Re-evaluating neonatal-age models for ungulates: Does model choice affect survival estimates?

    USGS Publications Warehouse

    Grovenburg, Troy W.; Monteith, Kevin L.; Jacques, Christopher N.; Klaver, Robert W.; DePerno, Christopher S.; Brinkman, Todd J.; Monteith, Kyle B.; Gilbert, Sophie L.; Smith, Joshua B.; Bleich, Vernon C.; Swanson, Christopher C.; Jenks, Jonathan A.

    2014-01-01

    New-hoof growth is regarded as the most reliable metric for predicting age of newborn ungulates, but variation in estimated age among hoof-growth equations that have been developed may affect estimates of survival in staggered-entry models. We used known-age newborns to evaluate variation in age estimates among existing hoof-growth equations and to determine the consequences of that variation on survival estimates. During 2001–2009, we captured and radiocollared 174 newborn (≤24-hrs old) ungulates: 76 white-tailed deer (Odocoileus virginianus) in Minnesota and South Dakota, 61 mule deer (O. hemionus) in California, and 37 pronghorn (Antilocapra americana) in South Dakota. Estimated age of known-age newborns differed among hoof-growth models and varied by >15 days for white-tailed deer, >20 days for mule deer, and >10 days for pronghorn. Accuracy (i.e., the proportion of neonates assigned to the correct age) in aging newborns using published equations ranged from 0.0% to 39.4% in white-tailed deer, 0.0% to 3.3% in mule deer, and was 0.0% for pronghorns. Results of survival modeling indicated that variability in estimates of age-at-capture affected short-term estimates of survival (i.e., 30 days) for white-tailed deer and mule deer, and survival estimates over a longer time frame (i.e., 120 days) for mule deer. Conversely, survival estimates for pronghorn were not affected by estimates of age. Our analyses indicate that modeling survival in daily intervals is too fine a temporal scale when age-at-capture is unknown given the potential inaccuracies among equations used to estimate age of neonates. Instead, weekly survival intervals are more appropriate because most models accurately predicted ages within 1 week of the known age. Variation among results of neonatal-age models on short- and long-term estimates of survival for known-age young emphasizes the importance of selecting an appropriate hoof-growth equation and appropriately defining intervals (i.e., weekly

  5. CXCR4 expression affects overall survival of HCC patients whereas CXCR7 expression does not

    PubMed Central

    Neve Polimeno, Maria; Ierano, Caterina; D'Alterio, Crescenzo; Simona Losito, Nunzia; Napolitano, Maria; Portella, Luigi; Scognamiglio, Giosuè; Tatangelo, Fabiana; Maria Trotta, Anna; Curley, Steven; Costantini, Susan; Liuzzi, Raffaele; Izzo, Francesco; Scala, Stefania

    2015-01-01

    Hepatocellular carcinoma (HCC) is a heterogeneous disease with a poor prognosis and limited markers for predicting patient survival. Because chemokines and chemokine receptors play numerous and integral roles in HCC disease progression, the CXCR4–CXCL12–CXCR7 axis was studied in HCC patients. CXCR4 and CXCR7 expression was analyzed by immunohistochemistry in 86 HCC patients (training cohort) and validated in 42 unrelated HCC patients (validation cohort). CXCR4 levels were low in 22.1% of patients, intermediate in 30.2%, and high in 47.7%, whereas CXCR7 levels were low in 9.3% of patients, intermediate in 44.2% and high in 46.5% of the patients in the training cohort. When correlated to patient outcome, only CXCR4 affected overall survival (P=0.03). CXCR4–CXCL12–CXCR7 mRNA levels were examined in 33/86 patients. Interestingly, the common CXCR4–CXCR7 ligand CXCL12 was expressed at significantly lower levels in tumor tissues compared to adjacent normal liver (P=0.032). The expression and function of CXCR4 and CXCR7 was also analyzed in several human HCC cell lines. CXCR4 was expressed in Huh7, Hep3B, SNU398, SNU449 and SNU475 cells, whereas CXCR7 was expressed in HepG2, Huh7, SNU449 and SNU475 cells. Huh7, SNU449 and SNU475 cells migrated toward CXCL12, and this migration was inhibited by AMD3100/anti-CXCR4 and by CCX771/anti-CXCR7. Moreover, SNU449 and Huh7 cells exhibited matrix invasion in the presence of CXCL12 and CXCL11, a ligand exclusive to CXCR7. In conclusion, CXCR4 affects the prognosis of HCC patients but CXCR7 does not. Therefore, the CXCR4–CXCL12–CXCR7 axis plays a role in the interaction of HCC with the surrounding normal tissue and represents a suitable therapeutic target. PMID:25363530

  6. Chemical ions affect survival of avian cholera organisms in pondwater

    USGS Publications Warehouse

    Price, J.I.; Yandell, B.S.; Porter, W.P.

    1992-01-01

    Avian cholera (Pasteurella multocida) is a major disease of wild waterfowl, but its epizootiology remains little understood. Consequently, we examined whether chemical ions affected survival of avian cholera organisms in water collected from the Nebraska Rainwater Basin where avian cholera is enzootic. We tested the response of P. multocida to ammonium (NH4), calcium (Ca), magnesium (Mg), nitrate (NO3), and ortho-phosphate (PO4) ions individually and in combination using a fractional factorial design divided into 4 blocks. High concentrations of Ca and Mg, singly or in combination, increased survival of P. multocida organisms (P < 0.001). We developed a survival index to predict whether or not specific ponds could be "problem" or "nonproblem" avian cholera sites based on concentrations of these ions in the water.

  7. Oral Contraceptive Use and Reproductive Characteristics Affect Survival in Patients With Epithelial Ovarian Cancer

    PubMed Central

    Kolomeyevskaya, Nonna V.; Szender, J. Brian; Zirpoli, Gary; Minlikeeva, Albina; Friel, Grace; Cannioto, Rikki A.; Brightwell, Rachel M.; Grzankowski, Kassondra S.; Moysich, Kirsten B.

    2015-01-01

    Objectives Prognostic risk factors influencing survival in patients with epithelial ovarian cancer (EOC) include tumor stage, grade, histologic subtype, debulking, and platinum status. Little is known about the impact of hormonal milieu and reproductive factors before cancer diagnosis on clinical outcome. We sought to evaluate whether oral contraceptive (OC) use carries any prognostic significance on overall survival (OS) in patients with EOC. Methods Newly diagnosed patients with EOC, fallopian tube, and primary peritoneal cancers between 1982 and 1998 were prospectively evaluated with a comprehensive epidemiologic questionnaire. A retrospective chart review was performed to abstract clinicopathologic data, including OS. A Kaplan-Meier analysis was performed to compare survival across various exposures. A Cox regression model was used to compute adjusted hazards ratios (aHRs) and 95% confidence intervals (CIs). Results We identified 387 newly diagnosed cancers with evaluable information in this cohort. Decreased risk of death was observed in women who reported prior use of OC (aHR, 0.79; 95% CI, 0.58–1.09), previous pregnancy (aHR, 0.77; 95% CI, 0.57–1.04), or a live birth (aHR, 0.81; 95% CI, 0.60–1.08) after adjusting for age at diagnosis, stage, and histologic subtype. Oral contraceptive use was associated with a crude reduced risk of death (HR, 0.55; 95% CI, 0.42–0.72), with reported median OS of 81 months in OC users versus 46 months in nonusers. Patients who reported a single live birth experienced the largest potential survival advantage (aHR, 0.61; 95% CI, 0.39–0.94). Oral contraceptive use and prior pregnancy were associated with improved survival across all strata. Conclusions Oral contraceptive use may have lasting effects on epithelial ovarian tumor characteristics conferring favorable prognosis. Putative mechanisms that affect tumor biology include complex interactions between ovarian cells, host immune cells, and hormonal microenvironment

  8. A four-gene signature predicts survival in clear-cell renal-cell carcinoma.

    PubMed

    Dai, Jun; Lu, Yuchao; Wang, Jinyu; Yang, Lili; Han, Yingyan; Wang, Ying; Yan, Dan; Ruan, Qiurong; Wang, Shaogang

    2016-12-13

    Clear-cell renal-cell carcinoma (ccRCC) is the most common pathological subtype of renal cell carcinoma (RCC), accounting for about 80% of RCC. In order to find potential prognostic biomarkers in ccRCC, we presented a four-gene signature to evaluate the prognosis of ccRCC. SurvExpress and immunohistochemical (IHC) staining of tissue microarrays were used to analyze the association between the four genes and the prognosis of ccRCC. Data from TCGA dataset revealed a prognostic prompt function of the four genes (PTEN, PIK3C2A, ITPA and BCL3). Further discovery suggested that the four-gene signature predicted survival better than any of the four genes alone. Moreover, IHC staining demonstrated a consistent result with TCGA, indicating that the signature was an independent prognostic factor of survival in ccRCC. Univariate and multivariate Cox proportional hazard regression analysis were conducted to verify the association of clinicopathological variables and the four genes' expression levels with survival. The results further testified that the risk (four-gene signature) was an independent prognostic factors of both Overall Survival (OS) and Disease-free Survival (DFS) (P<0.05). In conclusion, the four-gene signature was correlated with the survival of ccRCC, and therefore, may help to provide significant clinical implications for predicting the prognosis of patients.

  9. Intracellular ice and cell survival in cryo-exposed embryonic axes of recalcitrant seeds of Acer saccharinum: an ultrastructural study of factors affecting cell and ice structures

    PubMed Central

    Wesley-Smith, James; Berjak, Patricia; Pammenter, N. W.; Walters, Christina

    2014-01-01

    Background and Aims Cryopreservation is the only long-term conservation strategy available for germplasm of recalcitrant-seeded species. Efforts to cryopreserve this form of germplasm are hampered by potentially lethal intracellular freezing events; thus, it is important to understand the relationships among cryo-exposure techniques, water content, structure and survival. Methods Undried embryonic axes of Acer saccharinum and those rapidly dried to two different water contents were cooled at three rates and re-warmed at two rates. Ultrastructural observations were carried out on radicle and shoot tips prepared by freeze-fracture and freeze-substitution to assess immediate (i.e. pre-thaw) responses to cooling treatments. Survival of axes was assessed in vitro. Key Results Intracellular ice formation was not necessarily lethal. Embryo cells survived when crystal diameter was between 0·2 and 0·4 µm and fewer than 20 crystals were distributed per μm2 in the cytoplasm. Ice was not uniformly distributed within the cells. In fully hydrated axes cooled at an intermediate rate, the interiors of many organelles were apparently ice-free; this may have prevented the disruption of vital intracellular machinery. Intracytoplasmic ice formation did not apparently impact the integrity of the plasmalemma. The maximum number of ice crystals was far greater in shoot apices, which were more sensitive than radicles to cryo-exposure. Conclusions The findings challenge the accepted paradigm that intracellular ice formation is always lethal, as the results show that cells can survive intracellular ice if crystals are small and localized in the cytoplasm. Further understanding of the interactions among water content, cooling rate, cell structure and ice structure is required to optimize cryopreservation treatments without undue reliance on empirical approaches. PMID:24368198

  10. Intermittent individual housing increases survival of newly proliferated cells.

    PubMed

    Aberg, Elin; Pham, Therese M; Zwart, Mieke; Baumans, Vera; Brené, Stefan

    2005-09-08

    In this study, we analyzed how intermittent individual housing with or without a running wheel influenced corticosterone levels and survival of newly proliferated cells in the dentate gyrus of the hippocampus. Female Balb/c mice, in standard or enhanced housing, were divided into groups that were individually housed with or without running wheels on every second day. Intermittent individual housing without, but not with, running wheels increased survival of proliferated cells in the dentate gyrus as compared with continuous group housing in standard or enhanced conditions. Thus, changes in housing conditions on every second day can, under certain circumstances, have an impact on the survival of newly proliferated cells in the dentate gyrus.

  11. No strict requirement for eosinophils for bone marrow plasma cell survival.

    PubMed

    Bortnick, Alexandra; Chernova, Irene; Spencer, Sean P; Allman, David

    2018-02-14

    Lasting antibody responses are maintained by long-lived plasma cells, which are thought to lodge in the BM in specialized survival niches. Eosinophils have been reported to function as a critical component of the BM survival niche where they are thought to provide pro-survival signals to nearby plasma cells. Recent study shows that many BM plasma cells are recently generated and chiefly short-lived cells, raising the possibility that rare plasma cell-eosinophil interactions are a rate-limiting step needed to establish lasting humoral immunity. To address these issues, we examined the impact of eosinophil depletion on short- and long-lived BM plasma cells in the context of antibody responses induced by both T-cell dependent and T-cell independent antigens. Surprisingly, our results failed to support a role for eosinophils in either plasma cell generation or survival. These studies included examination of plasma cell frequencies in mice lacking eosinophils either after antibody-mediated depletion, or due to mutation of the GATA1 locus. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Potential Sabotage of Host Cell Physiology by Apicomplexan Parasites for Their Survival Benefits

    PubMed Central

    Chakraborty, Shalini; Roy, Sonti; Mistry, Hiral Uday; Murthy, Shweta; George, Neena; Bhandari, Vasundhra; Sharma, Paresh

    2017-01-01

    Plasmodium, Toxoplasma, Cryptosporidium, Babesia, and Theileria are the major apicomplexan parasites affecting humans or animals worldwide. These pathogens represent an excellent example of host manipulators who can overturn host signaling pathways for their survival. They infect different types of host cells and take charge of the host machinery to gain nutrients and prevent itself from host attack. The mechanisms by which these pathogens modulate the host signaling pathways are well studied for Plasmodium, Toxoplasma, Cryptosporidium, and Theileria, except for limited studies on Babesia. Theileria is a unique pathogen taking into account the way it modulates host cell transformation, resulting in its clonal expansion. These parasites majorly modulate similar host signaling pathways, however, the disease outcome and effect is different among them. In this review, we discuss the approaches of these apicomplexan to manipulate the host–parasite clearance pathways during infection, invasion, survival, and egress. PMID:29081773

  13. Partial T-cell depletion improves the composite endpoint graft-versus-host disease-free, relapse-free survival after allogeneic hematopoietic stem cell transplantation.

    PubMed

    Simonetta, Federico; Masouridi-Levrat, Stavroula; Beauverd, Yan; Tsopra, Olga; Tirefort, Yordanka; Koutsi, Aikaterini; Stephan, Caroline; Polchlopek-Blasiak, Karolina; Pradier, Amandine; Dantin, Carole; Ansari, Marc; Roosnek, Eddy; Chalandon, Yves

    2018-03-01

    Graft-versus-host disease (GvHD)-free, relapse-free survival (GRFS) is a recently reported composite endpoint that allows to simultaneously estimate risk of death, relapse and GvHD after allogeneic hematopoietic stem cell transplantation (HSCT). In this retrospective study comprising 333 patients transplanted for hematologic malignancies, we compared GRFS in patients receiving partial T-cell-depleted (pTCD) grafts with patients receiving T-cell-replete grafts (No-TCD). pTCD was associated with a significantly improved GRFS. The beneficial effect of pTCD on GRFS remained highly significant in multivariable analysis taking into account clinical factors differing between patient groups. We observed no effect of pTCD on overall survival, progression-free survival, and relapse cumulative incidence, while non-relapse mortality cumulative incidence was significantly lower in patients receiving pTCD. The results of our retrospective analysis suggest that pTCD could improve GRFS in allogeneic HSCT recipients without significantly affecting OS and PFS, thus improving patients' quality of life without impairing the curative potential of allogeneic HSCT.

  14. MYBL2 (B-Myb): a central regulator of cell proliferation, cell survival and differentiation involved in tumorigenesis

    PubMed Central

    Musa, Julian; Aynaud, Marie-Ming; Mirabeau, Olivier; Delattre, Olivier; Grünewald, Thomas GP

    2017-01-01

    Limitless cell proliferation, evasion from apoptosis, dedifferentiation, metastatic spread and therapy resistance: all these properties of a cancer cell contribute to its malignant phenotype and affect patient outcome. MYBL2 (alias B-Myb) is a transcription factor of the MYB transcription factor family and a physiological regulator of cell cycle progression, cell survival and cell differentiation. When deregulated in cancer cells, MYBL2 mediates the deregulation of these properties. In fact, MYBL2 is overexpressed and associated with poor patient outcome in numerous cancer entities. MYBL2 and players of its downstream transcriptional network can be used as prognostic and/or predictive biomarkers as well as potential therapeutic targets to offer less toxic and more specific anti-cancer therapies in future. In this review, we summarize current knowledge on the physiological roles of MYBL2 and highlight the impact of its deregulation on cancer initiation and progression. PMID:28640249

  15. Bag1 is essential for differentiation and survival of hematopoietic and neuronal cells.

    PubMed

    Götz, Rudolf; Wiese, Stefan; Takayama, Shinichi; Camarero, Guadalupe C; Rossoll, Wilfried; Schweizer, Ulrich; Troppmair, Jakob; Jablonka, Sibylle; Holtmann, Bettina; Reed, John C; Rapp, Ulf R; Sendtner, Michael

    2005-09-01

    Bag1 is a cochaperone for the heat-shock protein Hsp70 that interacts with C-Raf, B-Raf, Akt, Bcl-2, steroid hormone receptors and other proteins. Here we use targeted gene disruption in mice to show that Bag1 has an essential role in the survival of differentiating neurons and hematopoietic cells. Cells of the fetal liver and developing nervous system in Bag1-/- mice underwent massive apoptosis. Lack of Bag1 did not disturb the primary function of Akt or Raf, as phosphorylation of the forkhead transcription factor FKHR and activation of extracellular signal-regulated kinase (Erk)-1/2 were not affected. However, the defect was associated with the disturbance of a tripartite complex formed by Akt, B-Raf and Bag1, in addition to the absence of Bad phosphorylation at Ser136. We also observed reduced expression of members of the inhibitor of apoptosis (IAP) family. Our data show that Bag1 is a physiological mediator of extracellular survival signals linked to the cellular mechanisms that prevent apoptosis in hematopoietic and neuronal progenitor cells.

  16. Lipid degradation promotes prostate cancer cell survival.

    PubMed

    Itkonen, Harri M; Brown, Michael; Urbanucci, Alfonso; Tredwell, Gregory; Ho Lau, Chung; Barfeld, Stefan; Hart, Claire; Guldvik, Ingrid J; Takhar, Mandeep; Heemers, Hannelore V; Erho, Nicholas; Bloch, Katarzyna; Davicioni, Elai; Derua, Rita; Waelkens, Etienne; Mohler, James L; Clarke, Noel; Swinnen, Johan V; Keun, Hector C; Rekvig, Ole P; Mills, Ian G

    2017-06-13

    Prostate cancer is the most common male cancer and androgen receptor (AR) is the major driver of the disease. Here we show that Enoyl-CoA delta isomerase 2 (ECI2) is a novel AR-target that promotes prostate cancer cell survival. Increased ECI2 expression predicts mortality in prostate cancer patients (p = 0.0086). ECI2 encodes for an enzyme involved in lipid metabolism, and we use multiple metabolite profiling platforms and RNA-seq to show that inhibition of ECI2 expression leads to decreased glucose utilization, accumulation of fatty acids and down-regulation of cell cycle related genes. In normal cells, decrease in fatty acid degradation is compensated by increased consumption of glucose, and here we demonstrate that prostate cancer cells are not able to respond to decreased fatty acid degradation. Instead, prostate cancer cells activate incomplete autophagy, which is followed by activation of the cell death response. Finally, we identified a clinically approved compound, perhexiline, which inhibits fatty acid degradation, and replicates the major findings for ECI2 knockdown. This work shows that prostate cancer cells require lipid degradation for survival and identifies a small molecule inhibitor with therapeutic potential.

  17. Regulation of cell survival and death during Flavivirus infections

    PubMed Central

    Ghosh Roy, Sounak; Sadigh, Beata; Datan, Emmanuel; Lockshin, Richard A; Zakeri, Zahra

    2014-01-01

    Flaviviruses, ss(+) RNA viruses, include many of mankind’s most important pathogens. Their pathogenicity derives from their ability to infect many types of cells including neurons, to replicate, and eventually to kill the cells. Flaviviruses can activate tumor necrosis factor α and both intrinsic (Bax-mediated) and extrinsic pathways to apoptosis. Thus they can use many approaches for activating these pathways. Infection can lead to necrosis if viral load is extremely high or to other types of cell death if routes to apoptosis are blocked. Dengue and Japanese Encephalitis Virus can also activate autophagy. In this case the autophagy temporarily spares the infected cell, allowing a longer period of reproduction for the virus, and the autophagy further protects the cell against other stresses such as those caused by reactive oxygen species. Several of the viral proteins have been shown to induce apoptosis or autophagy on their own, independent of the presence of other viral proteins. Given the versatility of these viruses to adapt to and manipulate the metabolism, and thus to control the survival of, the infected cells, we need to understand much better how the specific viral proteins affect the pathways to apoptosis and autophagy. Only in this manner will we be able to minimize the pathology that they cause. PMID:24921001

  18. Inhibition of human lung cancer cell proliferation and survival by wine

    PubMed Central

    2014-01-01

    Background Compounds of plant origin and food components have attracted scientific attention for use as agents for cancer prevention and treatment. Wine contains polyphenols that were shown to have anti-cancer and other health benefits. The survival pathways of Akt and extracellular signal-regulated kinase (Erk), and the tumor suppressor p53 are key modulators of cancer cell growth and survival. In this study, we examined the effects of wine on proliferation and survival of human Non-small cell lung cancer (NSCLC) cells and its effects on signaling events. Methods Human NSCLC adenocarcinoma A549 and H1299 cells were used. Cell proliferation was assessed by thymidine incorporation. Clonogenic assays were used to assess cell survival. Immunoblotting was used to examine total and phosphorylated levels of Akt, Erk and p53. Results In A549 cells red wine inhibited cell proliferation and reduced clonogenic survival at doses as low as 0.02%. Red wine significantly reduced basal and EGF-stimulated Akt and Erk phosphorylation while it increased the levels of total and phosphorylated p53 (Ser15). Control experiments indicated that the anti-proliferative effects of wine were not mediated by the associated contents of ethanol or the polyphenol resveratrol and were independent of glucose transport into cancer cells. White wine also inhibited clonogenic survival, albeit at a higher doses (0.5-2%), and reduced Akt phosphorylation. The effects of both red and white wine on Akt phosphorylation were also verified in H1299 cells. Conclusions Red wine inhibits proliferation of lung cancer cells and blocks clonogenic survival at low concentrations. This is associated with inhibition of basal and EGF-stimulated Akt and Erk signals and enhancement of total and phosphorylated levels of p53. White wine mediates similar effects albeit at higher concentrations. Our data suggest that wine may have considerable anti-tumour and chemoprevention properties in lung cancer and deserves further

  19. Proline oxidase silencing induces proline-dependent pro-survival pathways in MCF-7 cells

    PubMed Central

    Zareba, Ilona; Celinska-Janowicz, Katarzyna; Surazynski, Arkadiusz; Miltyk, Wojciech; Palka, Jerzy

    2018-01-01

    Proline degradation by proline dehydrogenase/proline oxidase (PRODH/POX) contributes to apoptosis or autophagy. The identification of specific pathway of apoptosis/survival regulation is the aim of this study. We generated knocked-down PRODH/POX MCF-7 breast cancer cells (MCF-7shPRODH/POX). PRODH/POX silencing did not affect cell viability. However, it contributed to decrease in DNA and collagen biosynthesis, increase in prolidase activity and intracellular proline concentration as well as increase in the expression of iNOS, NF-κB, mTOR, HIF-1α, COX-2, AMPK, Atg7 and Beclin-1 in MCF-7shPRODH/POX cells. In these cells, glycyl-proline (GlyPro, substrate for prolidase) further inhibited DNA and collagen biosynthesis, maintained high prolidase activity, intracellular concentration of proline and up-regulated HIF-1α, AMPK, Atg7 and Beclin-1, compared to GlyPro-treated MCF-7 cells. In MCF-7 cells, GlyPro increased collagen biosynthesis, concentration of proline and expression of caspase-3, cleaved caspases -3 and -9, iNOS, NF-κB, COX-2 and AMPKβ. PRODH/POX knock-down contributed to pro-survival autophagy pathways in MCF-7 cells and GlyPro-derived proline augmented this process. However, GlyPro induced apoptosis in PRODH/POX-expressing MCF-7 cells as detected by up-regulation of active caspases -3 and -9. The data suggest that PRODH/POX silencing induces autophagy in MCF-7 cells and GlyPro-derived proline supports this process. PMID:29568391

  20. Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0244 TITLE: Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival...2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival...observed effects these particles have on allograft survival. Key Words CTA Composite Tissue Allotransplantation VCA Vascularized Composite

  1. Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival.

    PubMed

    Rotunno, M; Zhao, Y; Bergen, A W; Koshiol, J; Burdette, L; Rubagotti, M; Linnoila, R I; Marincola, F M; Bertazzi, P A; Pesatori, A C; Caporaso, N E; McShane, L M; Wang, E; Landi, M T

    2010-12-07

    MicroRNAs (miRs) have an important role in lung carcinogenesis and progression. Single-nucleotide polymorphisms (SNPs) in genes involved in miR biogenesis may affect miR expression in lung tissue and be associated with lung carcinogenesis and progression. we analysed 12 SNPs in POLR2A, RNASEN and DICER1 genes in 1984 cases and 2073 controls from the Environment And Genetics in Lung cancer Etiology (EAGLE) study. We investigated miR expression profiles in 165 lung adenocarcinoma (AD) and 125 squamous cell carcinoma tissue samples from the same population. We used logistic and Cox regression models to examine the association of individual genotypes and haplotypes with lung cancer risk and with lung cancer-specific survival, respectively. SNPs-miR expression associations in cases were assessed using two-sample t-tests and global permutation tests. a haplotype in RNASEN (Drosha) was significantly associated with shorter lung cancer survival (hazard ratio=1.86, 95% CI=1.19-2.92, P=0.007). In AD cases, a SNP within the same haplotype was associated with reduced RNASEN mRNA expression (P=0.013) and with miR expression changes (global P=0.007) of miRs known to be associated with cancer (e.g., let-7 family, miR-21, miR-25, miR-126 and miR15a). inherited variation in the miR-processing machinery can affect miR expression levels and lung cancer-specific survival. 2010 Cancer Resaerch UK.

  2. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways.

    PubMed

    Ward, Ashley B; Mir, Hina; Kapur, Neeraj; Gales, Dominique N; Carriere, Patrick P; Singh, Shailesh

    2018-06-14

    Despite recent advances in diagnosis and treatment, prostate cancer (PCa) remains the leading cause of cancer-related deaths in men. Current treatments offered in the clinics are often toxic and have severe side effects. Hence, to treat and manage PCa, new agents with fewer side effects or having potential to reduce side effects of conventional therapy are needed. In this study, we show anti-cancer effects of quercetin, an abundant bioflavonoid commonly used to treat prostatitis, and defined quercetin-induced cellular and molecular changes leading to PCa cell death. Cell viability was assessed using MTT. Cell death mode, mitochondrial outer membrane potential, and oxidative stress levels were determined by flow cytometry using Annexin V-7 AAD dual staining kit, JC-1 dye, and ROS detection kit, respectively. Antibody microarray and western blot were used to delineate the molecular changes induced by quercetin. PCa cells treated with various concentrations of quercetin showed time- and dose-dependent decrease in cell viability compared to controls, without affecting normal prostate epithelial cells. Quercetin led to apoptotic and necrotic cell death in PCa cells by affecting the mitochondrial integrity and disturbing the ROS homeostasis depending upon the genetic makeup and oxidative status of the cells. LNCaP and PC-3 cells that have an oxidative cellular environment showed ROS quenching after quercetin treatment while DU-145 showed rise in ROS levels despite having a highly reductive environment. Opposing effects of quercetin were also observed on the pro-survival pathways of PCa cells. PCa cells with mutated p53 (DU-145) and increased ROS showed significant reduction in the activation of pro-survival Akt pathway while Raf/MEK were activated in response to quercetin. PC-3 cells lacking p53 and PTEN with reduced ROS levels showed significant activation of Akt and NF-κB pathway. Although some of these changes are commonly associated with oncogenic response, the

  3. Endothelial Progenitor Cell Mobilization in Preterm Infants With Sepsis Is Associated With Improved Survival.

    PubMed

    Siavashi, Vahid; Asadian, Simin; Taheri-Asl, Masoud; Keshavarz, Samaneh; Zamani-Ahmadmahmudi, Mohamad; Nassiri, Seyed Mahdi

    2017-10-01

    Microvascular dysfunction plays a key role in the pathology of sepsis, leading to multi-organ failure, and death. Circulating endothelial progenitor cells (cEPCs) are critically involved in the maintenance of the vascular homeostasis in both physiological and pathological contexts. In this study, concentration of cEPCs in preterm infants with sepsis was determined to recognize whether the EPC mobilization would affect the clinical outcome of infantile sepsis. One hundred and thirty-three preterm infants (81 with sepsis and 52 without sepsis) were enrolled in this study. The release of EPCs in circulation was first quantified. Thereafter, these cells were cultivated and biological features of these cells such as, proliferation and colony forming efficiency were analyzed. The levels of chemoattractant cytokines were also measured in infants. In mouse models of sepsis, effects of VEGF and SDF-1 as well as anti-VEGF and anti-SDF-1 were evaluated in order to shed light upon the role which the EPC mobilization plays in the overall survival of septic animals. Circulating EPCs were significantly higher in preterm infants with sepsis than in the non-sepsis group. Serum levels of VEGF, SDF-1, and Angiopoietin-2 were also higher in preterm infants with sepsis than in control non-sepsis. In the animal experiments, injection of VEGF and SDF-1 prompted the mobilization of EPCs, leading to an improvement in survival whereas injection of anti-VEGF and anti-SDF-1 was associated with significant deterioration of survival. Overall, our results demonstrated the beneficial effects of EPC release in preterm infants with sepsis, with increased mobilization of these cells was associated with improved survival. J. Cell. Biochem. 118: 3299-3307, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  4. Inhibition of Protein Farnesylation Arrests Adipogenesis and Affects PPARγ Expression and Activation in Differentiating Mesenchymal Stem Cells

    PubMed Central

    Rivas, Daniel; Akter, Rahima; Duque, Gustavo

    2007-01-01

    Protein farnesylation is required for the activation of multiple proteins involved in cell differentiation and function. In white adipose tissue protein, farnesylation has shown to be essential for the successful differentiation of preadipocytes into adipocytes. We hypothesize that protein farnesylation is required for PPARγ2 expression and activation, and therefore for the differentiation of human mesenchymal stem cells (MSCs) into adipocytes. MSCs were plated and induced to differentiate into adipocytes for three weeks. Differentiating cells were treated with either an inhibitor of farnesylation (FTI-277) or vehicle alone. The effect of inhibition of farnesylation in differentiating adipocytes was determined by oil red O staining. Cell survival was quantified using MTS Formazan. Additionally, nuclear extracts were obtained and prelamin A, chaperon protein HDJ-2, PPARγ, and SREBP-1 were determined by western blot. Finally, DNA binding PPARγ activity was determined using an ELISA-based PPARγ activation quantification method. Treatment with an inhibitor of farnesylation (FTI-277) arrests adipogenesis without affecting cell survival. This effect was concomitant with lower levels of PPARγ expression and activity. Finally, accumulation of prelamin A induced an increased proportion of mature SREBP-1 which is known to affect PPARγ activity. In summary, inhibition of protein farnesylation arrests the adipogenic differentiation of MSCs and affects PPARγ expression and activity. PMID:18274630

  5. Monte Carlo based protocol for cell survival and tumour control probability in BNCT.

    PubMed

    Ye, S J

    1999-02-01

    A mathematical model to calculate the theoretical cell survival probability (nominally, the cell survival fraction) is developed to evaluate preclinical treatment conditions for boron neutron capture therapy (BNCT). A treatment condition is characterized by the neutron beam spectra, single or bilateral exposure, and the choice of boron carrier drug (boronophenylalanine (BPA) or boron sulfhydryl hydride (BSH)). The cell survival probability defined from Poisson statistics is expressed with the cell-killing yield, the 10B(n,alpha)7Li reaction density, and the tolerable neutron fluence. The radiation transport calculation from the neutron source to tumours is carried out using Monte Carlo methods: (i) reactor-based BNCT facility modelling to yield the neutron beam library at an irradiation port; (ii) dosimetry to limit the neutron fluence below a tolerance dose (10.5 Gy-Eq); (iii) calculation of the 10B(n,alpha)7Li reaction density in tumours. A shallow surface tumour could be effectively treated by single exposure producing an average cell survival probability of 10(-3)-10(-5) for probable ranges of the cell-killing yield for the two drugs, while a deep tumour will require bilateral exposure to achieve comparable cell kills at depth. With very pure epithermal beams eliminating thermal, low epithermal and fast neutrons, the cell survival can be decreased by factors of 2-10 compared with the unmodified neutron spectrum. A dominant effect of cell-killing yield on tumour cell survival demonstrates the importance of choice of boron carrier drug. However, these calculations do not indicate an unambiguous preference for one drug, due to the large overlap of tumour cell survival in the probable ranges of the cell-killing yield for the two drugs. The cell survival value averaged over a bulky tumour volume is used to predict the overall BNCT therapeutic efficacy, using a simple model of tumour control probability (TCP).

  6. Survival outcomes following salvage surgery for oropharyngeal squamous cell carcinoma: systematic review.

    PubMed

    Kao, S S; Ooi, E H

    2018-04-01

    Recurrent oropharyngeal squamous cell carcinoma causes great morbidity and mortality. This systematic review analyses survival outcomes following salvage surgery for recurrent oropharyngeal squamous cell carcinoma. A comprehensive search of various electronic databases was conducted. Studies included patients with recurrent or residual oropharyngeal squamous cell carcinoma treated with salvage surgery. Primary outcomes were survival rates following salvage surgery. Secondary outcomes included time to recurrence, staging at time of recurrence, post-operative complications, and factors associated with mortality and recurrence. Methodological appraisal and data extraction were conducted as per Joanna Briggs Institute methodology. Eighteen articles were included. The two- and five-year survival rates of the patients were 52 per cent and 30 per cent respectively. Improvements in treatment modalities for recurrent oropharyngeal squamous cell carcinoma were associated with improvements in two-year overall survival rates, with minimal change to five-year overall survival rates. Various factors were identified as being associated with long-term overall survival, thus assisting clinicians in patient counselling and selection for salvage surgery.

  7. Repair-dependent cell radiation survival and transformation: an integrated theory.

    PubMed

    Sutherland, John C

    2014-09-07

    The repair-dependent model of cell radiation survival is extended to include radiation-induced transformations. The probability of transformation is presumed to scale with the number of potentially lethal damages that are repaired in a surviving cell or the interactions of such damages. The theory predicts that at doses corresponding to high survival, the transformation frequency is the sum of simple polynomial functions of dose; linear, quadratic, etc, essentially as described in widely used linear-quadratic expressions. At high doses, corresponding to low survival, the ratio of transformed to surviving cells asymptotically approaches an upper limit. The low dose fundamental- and high dose plateau domains are separated by a downwardly concave transition region. Published transformation data for mammalian cells show the high-dose plateaus predicted by the repair-dependent model for both ultraviolet and ionizing radiation. For the neoplastic transformation experiments that were analyzed, the data can be fit with only the repair-dependent quadratic function. At low doses, the transformation frequency is strictly quadratic, but becomes sigmodial over a wider range of doses. Inclusion of data from the transition region in a traditional linear-quadratic analysis of neoplastic transformation frequency data can exaggerate the magnitude of, or create the appearance of, a linear component. Quantitative analysis of survival and transformation data shows good agreement for ultraviolet radiation; the shapes of the transformation components can be predicted from survival data. For ionizing radiations, both neutrons and x-rays, survival data overestimate the transforming ability for low to moderate doses. The presumed cause of this difference is that, unlike UV photons, a single x-ray or neutron may generate more than one lethal damage in a cell, so the distribution of such damages in the population is not accurately described by Poisson statistics. However, the complete

  8. Control of Cell Survival in Adult Mammalian Neurogenesis.

    PubMed

    Kuhn, H Georg

    2015-10-28

    The fact that continuous proliferation of stem cells and progenitors, as well as the production of new neurons, occurs in the adult mammalian central nervous system (CNS) raises several basic questions concerning the number of neurons required in a particular system. Can we observe continued growth of brain regions that sustain neurogenesis? Or does an elimination mechanism exist to maintain a constant number of cells? If so, are old neurons replaced, or are the new neurons competing for limited network access among each other? What signals support their survival and integration and what factors are responsible for their elimination? This review will address these and other questions regarding regulatory mechanisms that control cell-death and cell-survival mechanisms during neurogenesis in the intact adult mammalian brain. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  9. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells

    PubMed Central

    Bauckman, K A; Haller, E; Flores, I; Nanjundan, M

    2013-01-01

    Ovarian cancer is a leading cause of cancer death in women in the United States. While the majority of ovarian cancers are serous, some rarer subtypes (i.e. clear cell) are often associated with endometriosis, a benign gynecological disease. Iron is rich in the cyst fluid of endometriosis-associated ovarian cancers and induces persistent oxidative stress. The role of iron, an essential nutrient involved in multiple cellular functions, in normal ovarian cell survival and ovarian cancer remains unclear. Iron, presented as ferric ammonium citrate (FAC), dramatically inhibits cell survival in ovarian cancer cell types associated with Ras mutations, while it is without effect in immortalized normal ovarian surface epithelial (T80) and endometriotic epithelial cells (lacking Ras mutations). Interestingly, FAC induced changes in cytoplasmic vacuolation concurrently with increases in LC3-II levels (an autophagy marker); these changes occurred in an ATG5/ATG7-dependent, beclin-1/hVps34-independent, and Ras-independent manner. Knockdown of autophagy mediators in HEY ovarian cancer cells reversed FAC-induced LC3-II levels, but there was little effect on reversing the cell death response. Intriguingly, transmission electron microscopy of FAC-treated T80 cells demonstrated abundant lysosomes (confirmed using Lysotracker) rich in iron particles, which occurred in a Ras-independent manner. Although the mitogen-activated protein kinase (MAPK) inhibitor, U0126, reversed FAC-induced LC3-II/autophagic punctae and lysosomes in a Ras-independent manner, it was remarkable that U0126 reversed cell death in malignant ovarian cells associated with Ras mutations. Moreover, FAC increased heme oxygenase-1 expression in H-Ras-overexpressing T80 cells, which was associated with increased cell death when overexpressed in T80 cells. Disruption of intracellular iron levels, via chelation of intracellular iron (deferoxamine), was also detrimental to malignant ovarian cell survival; thus

  10. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells

    PubMed Central

    Mellado-López, Maravillas; Griffeth, Richard J.; Meseguer-Ripolles, Jose; García, Montserrat

    2017-01-01

    Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100 μM of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death. PMID:29270200

  11. Plasma Rich in Growth Factors Induces Cell Proliferation, Migration, Differentiation, and Cell Survival of Adipose-Derived Stem Cells.

    PubMed

    Mellado-López, Maravillas; Griffeth, Richard J; Meseguer-Ripolles, Jose; Cugat, Ramón; García, Montserrat; Moreno-Manzano, Victoria

    2017-01-01

    Adipose-derived stem cells (ASCs) are a promising therapeutic alternative for tissue repair in various clinical applications. However, restrictive cell survival, differential tissue integration, and undirected cell differentiation after transplantation in a hostile microenvironment are complications that require refinement. Plasma rich in growth factors (PRGF) from platelet-rich plasma favors human and canine ASC survival, proliferation, and delaying human ASC senescence and autophagocytosis in comparison with serum-containing cultures. In addition, canine and human-derived ASCs efficiently differentiate into osteocytes, adipocytes, or chondrocytes in the presence of PRGF. PRGF treatment induces phosphorylation of AKT preventing ASC death induced by lethal concentrations of hydrogen peroxide. Indeed, AKT inhibition abolished the PRGF apoptosis prevention in ASC exposed to 100  μ M of hydrogen peroxide. Here, we show that canine ASCs respond to PRGF stimulus similarly to the human cells regarding cell survival and differentiation postulating the use of dogs as a suitable translational model. Overall, PRGF would be employed as a serum substitute for mesenchymal stem cell amplification to improve cell differentiation and as a preconditioning agent to prevent oxidative cell death.

  12. Acceleration of astrocytic differentiation in neural stem cells surviving X-irradiation.

    PubMed

    Ozeki, Ayumi; Suzuki, Keiji; Suzuki, Masatoshi; Ozawa, Hiroki; Yamashita, Shunichi

    2012-03-28

    Neural stem cells (NSCs) are highly susceptible to DNA double-strand breaks; however, little is known about the effects of radiation in cells surviving radiation. Although the nestin-positive NSCs predominantly became glial fibrillary acidic protein (GFAP)-positive in differentiation-permissive medium, little or no cells were GFAP positive in proliferation-permissive medium. We found that more than half of the cells surviving X-rays became GFAP positive in proliferation-permissive medium. Moreover, localized irradiation stimulated differentiation of cells outside the irradiated area. These results indicate for the first time that ionizing radiation is able to stimulate astrocyte-specific differentiation of surviving NSCs, whose process is mediated both by the direct activation of nuclear factor-κB and by the indirect bystander effect induced by X-irradiation.

  13. The natural killer cell response and tumor debulking are associated with prolonged survival in recurrent glioblastoma patients receiving dendritic cells loaded with autologous tumor lysates

    PubMed Central

    Pellegatta, Serena; Eoli, Marica; Frigerio, Simona; Antozzi, Carlo; Bruzzone, Maria Grazia; Cantini, Gabriele; Nava, Sara; Anghileri, Elena; Cuppini, Lucia; Cuccarini, Valeria; Ciusani, Emilio; Dossena, Marta; Pollo, Bianca; Mantegazza, Renato; Parati, Eugenio A.; Finocchiaro, Gaetano

    2013-01-01

    Recurrent glioblastomas (GBs) are highly aggressive tumors associated with a 6–8 mo survival rate. In this study, we evaluated the possible benefits of an immunotherapeutic strategy based on mature dendritic cells (DCs) loaded with autologous tumor-cell lysates in 15 patients affected by recurrent GB. The median progression-free survival (PFS) of this patient cohort was 4.4 mo, and the median overall survival (OS) was 8.0 mo. Patients with small tumors at the time of the first vaccination (< 20 cm3; n = 8) had significantly longer PFS and OS than the other patients (6.0 vs. 3.0 mo, p = 0.01; and 16.5 vs. 7.0 mo, p = 0.003, respectively). CD8+ T cells, CD56+ natural killer (NK) cells and other immune parameters, such as the levels of transforming growth factor β, vascular endothelial growth factor, interleukin-12 and interferon γ (IFNγ), were measured in the peripheral blood and serum of patients before and after immunization, which enabled us to obtain a vaccination/baseline ratio (V/B ratio). An increased V/B ratio for NK cells, but not CD8+ T cells, was significantly associated with prolonged PFS and OS. Patients exhibiting NK-cell responses were characterized by high levels of circulating IFNγ and E4BP4, an NK-cell transcription factor. Furthermore, the NK cell V/B ratio was inversely correlated with the TGFβ2 and VEGF V/B ratios. These results suggest that tumor-loaded DCs may increase the survival rate of patients with recurrent GB after effective tumor debulking, and emphasize the role of the NK-cell response in this therapeutic setting. PMID:23802079

  14. Novel Anti-CRR9/CLPTM1L Antibodies with Antitumorigenic Activity Inhibit Cell Surface Accumulation, PI3K Interaction, and Survival Signaling

    PubMed Central

    Puskás, László G.; Mán, Imola; Szebeni, Gabor; Tiszlavicz, László; Tsai, Susan; James, Michael A.

    2016-01-01

    We and others have recently shown Cisplatin Resistance-Related Protein 9 (CRR9)/Cleft Lip and Palate Transmembrane 1-Like (CLPTM1L) to affect survival and proliferation in lung and pancreatic tumor cells. Our research has indicated that CLPTM1L affects multiple survival signaling pathways in tumor cells under oncogenic, genotoxic, and microenvironmental stress. We have confirmed the association of CLPTM1L with pancreatic cancer by demonstrating overexpression of CLPTM1L in pancreatic tumors and poor survival in patients with high tumor expression of CLPTM1L. Predicting a transmembrane structure, we determined that CLPTM1L could be targeted at the plasma membrane. Herein, we describe the development of monoclonal antibodies targeting CLPTM1L. Lead antibodies inhibited surface accumulation of CLPTM1L, Akt phosphorylation, anchorage-independent growth, and chemotherapeutic resistance in lung and pancreatic tumor cells. Gemcitabine promoted a physical interaction between CLPTM1L and p110α in pancreatic tumor cells, which was inhibited by anti-CLPTM1L. In-vivo treatment with anti-CLPTM1L robustly inhibited the growth of both lung and pancreatic adenocarcinoma xenografts. The efficacy of anti-CLPTM1L correlated with specific epitopes representing important targets in human cancers, particularly those driven by KRas, for which effective targeted therapies have been elusive. This study is the first to report cell-surface exposure of the tumor survival protein CLPTM1L and inhibition of the function of surface CLPTM1L with novel, systematically developed inhibitory monoclonal antibodies establishing proof of concept of clinically practical agents inhibiting this compelling new tumor survival target in cancer. PMID:26939707

  15. BCL-W has a fundamental role in B cell survival and lymphomagenesis.

    PubMed

    Adams, Clare M; Kim, Annette S; Mitra, Ramkrishna; Choi, John K; Gong, Jerald Z; Eischen, Christine M

    2017-02-01

    Compromised apoptotic signaling is a prerequisite for tumorigenesis. The design of effective therapies for cancer treatment depends on a comprehensive understanding of the mechanisms that govern cell survival. The antiapoptotic proteins of the BCL-2 family are key regulators of cell survival and are frequently overexpressed in malignancies, leading to increased cancer cell survival. Unlike BCL-2 and BCL-XL, the closest antiapoptotic relative BCL-W is required for spermatogenesis, but was considered dispensable for all other cell types. Here, however, we have exposed a critical role for BCL-W in B cell survival and lymphomagenesis. Loss of Bcl-w conferred sensitivity to growth factor deprivation-induced B cell apoptosis. Moreover, Bcl-w loss profoundly delayed MYC-mediated B cell lymphoma development due to increased MYC-induced B cell apoptosis. We also determined that MYC regulates BCL-W expression through its transcriptional regulation of specific miR. BCL-W expression was highly selected for in patient samples of Burkitt lymphoma (BL), with 88.5% expressing BCL-W. BCL-W knockdown in BL cell lines induced apoptosis, and its overexpression conferred resistance to BCL-2 family-targeting BH3 mimetics. Additionally, BCL-W was overexpressed in diffuse large B cell lymphoma and correlated with decreased patient survival. Collectively, our results reveal that BCL-W profoundly contributes to B cell lymphoma, and its expression could serve as a biomarker for diagnosis and aid in the development of better targeted therapies.

  16. BCL-W has a fundamental role in B cell survival and lymphomagenesis

    PubMed Central

    Adams, Clare M.; Kim, Annette S.; Mitra, Ramkrishna; Choi, John K.; Gong, Jerald Z.; Eischen, Christine M.

    2017-01-01

    Compromised apoptotic signaling is a prerequisite for tumorigenesis. The design of effective therapies for cancer treatment depends on a comprehensive understanding of the mechanisms that govern cell survival. The antiapoptotic proteins of the BCL-2 family are key regulators of cell survival and are frequently overexpressed in malignancies, leading to increased cancer cell survival. Unlike BCL-2 and BCL-XL, the closest antiapoptotic relative BCL-W is required for spermatogenesis, but was considered dispensable for all other cell types. Here, however, we have exposed a critical role for BCL-W in B cell survival and lymphomagenesis. Loss of Bcl-w conferred sensitivity to growth factor deprivation–induced B cell apoptosis. Moreover, Bcl-w loss profoundly delayed MYC-mediated B cell lymphoma development due to increased MYC-induced B cell apoptosis. We also determined that MYC regulates BCL-W expression through its transcriptional regulation of specific miR. BCL-W expression was highly selected for in patient samples of Burkitt lymphoma (BL), with 88.5% expressing BCL-W. BCL-W knockdown in BL cell lines induced apoptosis, and its overexpression conferred resistance to BCL-2 family–targeting BH3 mimetics. Additionally, BCL-W was overexpressed in diffuse large B cell lymphoma and correlated with decreased patient survival. Collectively, our results reveal that BCL-W profoundly contributes to B cell lymphoma, and its expression could serve as a biomarker for diagnosis and aid in the development of better targeted therapies. PMID:28094768

  17. In situ method for estimating cell survival in a solid tumor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfieri, A.A.; Hahn, E.W.

    1978-09-01

    The response of the murine Meth-A fibrosarcoma to single and fractionated doses of x-irradiation, actinomycin D chemotherapy, and/or concomitant local tumor hyperthermia was assayed with the use of an in situ method for estimating cell kill within a solid tumor. The cell survival assay was based on a standard curve plotting number of inoculated viable cells with and without radiation-inactivated homologous tumor cells versus the time required for i.m. tumors to grow to 1.0 cu cm. The time for post-treatment tumors to grow to 1.0 cu cm was cross-referenced to the standard curve, and the number of surviving cells contributingmore » to tumor regrowth was estimated. The resulting surviving fraction curves closely resemble those obtained with in vitro systems.« less

  18. Nrf2 but not autophagy inhibition is associated with the survival of wild-type epidermal growth factor receptor non-small cell lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yan

    Non-small cell lung cancer (NSCLC) is one of the most common malignancies in the world. Icotinib and Gefitinib are two epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) that have been used to treat NSCLC. While it is well known that mutations of EGFR can affect the sensitivity of NSCLC to the EGFR-TKI, other mechanisms may also be adopted by lung cancer cells to develop resistance to EGFR-TKI treatment. Cancer cells can use multiple adaptive mechanisms such as activation of autophagy and Nrf2 to protect against various stresses and chemotherapeutic drugs. Whether autophagy or Nrf2 activation contributes to themore » resistance of NSCLC to EGFR-TKI treatment in wild-type EGFR NSCLC cells remains elusive. In the present study, we confirmed that Icotinib and Gefitinib induced apoptosis in EGFR mutant HCC827 but not in EGFR wild-type A549 NSCLC cells. Icotinib and Gefitinib did not induce autophagic flux or inhibit mTOR in A549 cells. Moreover, suppression of autophagy by chloroquine, a lysosomal inhibitor, did not affect Icotinib- or Gefitinib-induced cell death in A549 cells. In contrast, Brusatol, an Nrf2 inhibitor, significantly suppressed the cell survival of A549 cells. However, Brusatol did not further sensitize A549 cells to EGFR TKI-induced cell death. Results from this study suggest that inhibition of Nrf2 can decrease cell vitality of EGFR wild-type A549 cells independent of autophagy. - Highlights: • Cancer cells use adaptive mechanisms against chemotherapy. • Autophagy is not essential for the drug resistance of lung cancer A549 cells. • Inhibition of Nrf2 decreases cell survival of lung cancer A549 cells.« less

  19. Prolonged survival of transplanted stem cells after ischaemic injury via the slow release of pro-survival peptides from a collagen matrix

    PubMed Central

    Lee, Andrew S.; Inayathullah, Mohammed; Lijkwan, Maarten A.; Zhao, Xin; Sun, Wenchao; Park, Sujin; Hong, Wan Xing; Parekh, Mansi B.; Malkovskiy, Andrey V.; Lau, Edward; Qin, Xulei; Pothineni, Venkata Raveendra; Sanchez-Freire, Verónica; Zhang, Wendy Y.; Kooreman, Nigel G.; Ebert, Antje D.; Chan, Charles K. F.; Nguyen, Patricia K.; Rajadas, Jayakumar; Wu, Joseph C.

    2018-01-01

    Stem-cell-based therapies hold considerable promise for regenerative medicine. However, acute donor-cell death within several weeks after cell delivery remains a critical hurdle for clinical translation. Co-transplantation of stem cells with pro-survival factors can improve cell engraftment, but this strategy has been hampered by the typically short half-lives of the factors and by the use of Matrigel and other scaffolds that are not chemically defined. Here, we report a collagen–dendrimer biomaterial crosslinked with pro-survival peptide analogues that adheres to the extracellular matrix and slowly releases the peptides, significantly prolonging stem cell survival in mouse models of ischaemic injury. The biomaterial can serve as a generic delivery system to improve functional outcomes in cell-replacement therapy. PMID:29721363

  20. The Effect of Anatomical Location of Lymph Node Metastases on Cancer Specific Survival in Patients with Clear Cell Renal Cell Carcinoma.

    PubMed

    Nini, Alessandro; Larcher, Alessandro; Cianflone, Francesco; Trevisani, Francesco; Terrone, Carlo; Volpe, Alessandro; Regis, Federica; Briganti, Alberto; Salonia, Andrea; Montorsi, Francesco; Bertini, Roberto; Capitanio, Umberto

    2018-01-01

    Positive nodal status (pN1) is an independent predictor of survival in renal cell carcinoma (RCC) patients. However, no study to date has tested whether the location of lymph node (LN) metastases does affect oncologic outcomes in a population submitted to radical nephrectomy (RN) and extended lymph node dissection (eLND). To describe nodal disease dissemination in clear cell RCC (ccRCC) patients and to assess the effect of the anatomical sites and the number of nodal areas affected on cancer specific mortality (CSM). The study included 415 patients who underwent RN and eLND, defined as the removal of hilar, side-specific (pre/paraaortic or pre/paracaval) and interaortocaval LNs for ccRCC, at two institutions. Descriptive statistics were used to depict nodal dissemination in pN1 patients, stratified according to nodal site and number of involved areas. Multivariable Cox regression analyses and Kaplan-Meier curves were used to explore the relationship between pN1 disease features and survival outcomes. Median number of removed LN was 14 (IQR 9-19); 23% of patients were pN1. Among patients with one involved nodal site, 54 and 26% of patients were positive only in side-specific and interaortocaval station, respectively. The most frequent nodal site was the interaortocaval and side-specific one, for right and left ccRCC, respectively. Interaortocaval nodal positivity (HR 2.3, CI 95%: 1.3-3.9, p < 0.01) represented an independent predictor of CSM. When ccRCC patient harbour nodal disease, its spreading can occur at any nodal station without involving the others. The presence of interoartocaval positive nodes does affect oncologic outcomes. Lymph node invasion in patients with clear cell renal cell carcinoma is not following a fixed anatomical pattern. An extended lymph node dissection, during treatment for primary kidney tumour, would aid patient risk stratification and multimodality upfront treatment.

  1. Coordinated induction of cell survival signaling in the inflamed microenvironment of the prostate.

    PubMed

    McIlwain, David W; Zoetemelk, Marloes; Myers, Jason D; Edwards, Marshé T; Snider, Brandy M; Jerde, Travis J

    2016-06-01

    Both prostate cancer and benign prostatic hyperplasia are associated with inflammatory microenvironments. Inflammation is damaging to tissues, but it is unclear how the inflammatory microenvironment protects specialized epithelial cells that function to proliferate and repair the tissue. The objective of this study is to characterize the cell death and cell survival response of the prostatic epithelium in response to inflammation. We assessed induction of cell death (TNF, TRAIL, TWEAK, FasL) and cell survival factors (IGFs, hedgehogs, IL-6, FGFs, and TGFs) in inflamed and control mouse prostates by ELISA. Cell death mechanisms were determined by immunoblotting and immunofluorescence for cleavage of caspases and TUNEL. Survival pathway activation was assessed by immunoblotting and immunofluorescence for Mcl-1, Bcl-2, Bcl-XL, and survivin. Autophagy was determined by immunoblotting and immunofluorescence for free and membrane associated light chain 3 (LC-3). Cleavage of all four caspases was significantly increased during the first 2 days of inflammation, and survival protein expression was substantially increased subsequently, maximizing at 3 days. By 5 days of inflammation, 50% of prostatic epithelial cells expressed survivin. Autophagy was also evident during the recovery phase (3 days). Finally, immunofluorescent staining of human specimens indicates strong activation of survival proteins juxtaposed to inflammation in inflamed prostate specimens. The prostate responds to deleterious inflammation with induction of cell survival mechanisms, most notably survivin and autophagy, demonstrating a coordinated induction of survival factors that protects and expands a specialized set of prostatic epithelial cells as part of the repair and recovery process during inflammation. © 2016 Wiley Periodicals, Inc.

  2. Natural Killer/T-cell Neoplasms: Analysis of Incidence, Patient Characteristics, and Survival Outcomes in the United States.

    PubMed

    Kommalapati, Anuhya; Tella, Sri Harsha; Ganti, Apar Kishore; Armitage, James O

    2018-05-04

    Limited data are available regarding the incidence, survival patterns, and long-term outcomes of natural killer (NK)/T-cell neoplasms in the United States. We performed a retrospective study of patients with NK/T-cell neoplasms diagnosed from 2001 to 2014 using the Surveillance, Epidemiology, and End Results program database. The Kaplan-Meier method was used to estimate the overall survival difference among the subgroups. Multivariate analyses were used to determine the factors affecting survival. For the 797 patients with NK/T-cell lymphoma, nasal type, the median age at diagnosis was 53 years, and males tended to be younger at diagnosis (P < .0001). The incidence of the disease increased from 0.4 in 2001 to 0.8 in 2014 per 1,000,000 individuals. The incidence was significantly greater in Hispanic patients compared with that in non-Hispanic patients (rate ratio, 3.03; P = .0001). The median overall survival was 20 months (range, 2-73 months) and varied significantly according to the primary site (P < .0001) and the disease stage at diagnosis (P < .0001). NK/T-cell lymphoma patients had an increased risk of acute myeloid leukemia (standardized incidence ratio, 18.77; 95% confidence interval, 2.27-67.81). For the 105 NK/T-cell leukemia patients, the median age at diagnosis was 58 years (range, 4-95 years). The overall incidence of the disease was 0.09 per 1,000,000 individuals and was significantly greater in males (rate ratio, 0.41; P < .0001). Unlike NK/T-cell lymphoma, no racial disparities were found in the incidence. The median overall survival was 17 months (range, 0-36 months). The incidence of NK/T-cell lymphoma, nasal type, in the United States has at least doubled in the past decade, with the greatest predilection among Hispanics. Patients with NK/T-cell lymphoma might have an increased risk of the subsequent development of acute myeloid leukemia. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Progranulin Deficiency Reduces CDK4/6/pRb Activation and Survival of Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    de la Encarnación, Ana; Alquézar, Carolina; Esteras, Noemí; Martín-Requero, Ángeles

    2015-12-01

    Null mutations in GRN are associated with frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). However, the influence of progranulin (PGRN) deficiency in neurodegeneration is largely unknown. In neuroblastoma cells, silencing of GRN gene causes significantly reduced cell survival after serum withdrawal. The following observations suggest that alterations of the CDK4/6/retinoblastoma protein (pRb) pathway, secondary to changes in PI3K/Akt and ERK1/2 activation induced by PGRN deficiency, are involved in the control of serum deprivation-induced apoptosis: (i) inhibiting CDK4/6 levels or their associated kinase activity by sodium butyrate or PD332991 sensitized control SH-SY5Y cells to serum deprivation-induced apoptosis without affecting survival of PGRN-deficient cells; (ii) CDK4/6/pRb seems to be downstream of the PI3K/Akt and ERK1/2 signaling pathways since their specific inhibitors, LY294002 and PD98059, were able to decrease CDK6-associated kinase activity and induce death of control SH-SY5Y cells; (iii) PGRN-deficient cells show reduced stimulation of PI3K/Akt, ERK1/2, and CDK4/6 activities compared with control cells in the absence of serum; and (iv) supplementation of recombinant human PGRN was able to rescue survival of PGRN-deficient cells. These observations highlight the important role of PGRN-mediated stimulation of the PI3K/Akt-ERK1/2/CDK4/6/pRb pathway in determining the cell fate survival/death under serum deprivation.

  4. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras

    PubMed Central

    Keighren, Margaret A.; Flockhart, Jean H.

    2016-01-01

    ABSTRACT The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1−/− null mouse embryos die but a previous study showed that some homozygous Gpi1−/− null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1−/−↔Gpi1c/c chimaera with functional Gpi1−/− null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1−/− null cells in adult Gpi1−/−↔Gpi1c/c chimaeras and determine if Gpi1−/− null germ cells are functional. Analysis of adult Gpi1−/−↔Gpi1c/c chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1−/− null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1−/− null oocytes in one female Gpi1−/−↔Gpi1c/c chimaera were functional and provided preliminary evidence that one male putative Gpi1−/−↔Gpi1c/c chimaera produced functional spermatozoa from homozygous Gpi1−/− null germ cells. Although the male chimaera was almost certainly Gpi1−/−↔Gpi1c/c, this part of the study is considered preliminary because only blood was typed for GPI. Gpi1−/− null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1−/− null germ cells, it successfully identified functional Gpi1−/− null oocytes and revealed that some Gpi1−/− null cells could survive in many adult tissues. PMID:27103217

  5. Low sediment loads affect survival of coral recruits: the first weeks are crucial

    NASA Astrophysics Data System (ADS)

    Moeller, Mareen; Nietzer, Samuel; Schils, Tom; Schupp, Peter J.

    2017-03-01

    Increased sedimentation due to anthropogenic activities is a threat to many nearshore coral reefs. The effects on adult corals have been studied extensively and are well known. Studies about the impact of sedimentation on the early life stages of scleractinian corals, however, are rare although recruitment is essential for conserving and restoring coral reefs. Laboratory and in situ experiments with recruits of different age classes focused on the broadcast-spawning species Acropora hyacinthus and the brooding coral Leptastrea purpurea. Recruits were exposed to different sediment loads over three to five weeks. Applied sediment loads were more than one order of magnitude lower than those known to affect survival of adult coral colonies. Growth and survival of newly settled recruits were negatively affected by sediment loads that had no effect on the growth and survival of one-month-old recruits. All experiments indicated that newly settled coral recruits are most sensitive to sedimentation within the first two to four weeks post settlement. The co-occurrence of moderate sedimentation events during and immediately after periods of coral spawning can therefore reduce recruitment success substantially. These findings provide new information to develop comprehensive sediment management plans for the conservation and recovery of coral reefs affected by chronic or acute sedimentation events.

  6. Effects of pressure and temperature on the survival rate of adherent A-172 cells

    NASA Astrophysics Data System (ADS)

    Yasuhara, Ryo; Kushida, Ryo; Ishii, Shiwori; Yamanoha, Banri; Shimizu, Akio

    2013-06-01

    Preservation of cells under high pressure is an important alternative to cryopreservation. We studied the effect of temperature (4, 25, 37°C) and pressure (0.1-350 MPa) on the survival rate of A-172 glioblastoma cells. The survival rate was not changed by brief (10 min) pressurization of up to 150 MPa, but the survival rate began to decrease from 150 MPa, and most of the A-172 cells died when treated with over 200 MPa. Lengthy pressurization (4 days) at lower pressure (upto 20.1 MPa) without medium exchange showed complex results. The survival rate of cells preserved at 25°C showed two maxima at 1.6 and 20.1 MPa. After preservation, cells adhered and proliferated in the same way as normal cells when cultured at 37°C in a CO2 incubator. The other two temperatures, 4° and 37°C, showed no maximum survival rate. Therefore, a high survival rate can be maintained with high pressure treatment.

  7. Protein Kinase C- ɛ Regulates the Apoptosis and Survival of Glioma Cells

    PubMed Central

    Okhrimenko, Hana; Lu, Wei; Xiang, Cunli; Hamburger, Nathan; Kazimirsky, Gila; Brodie, Chaya

    2005-01-01

    In this study, we examined the role of protein kinase C (PKC)-ɛ in the apoptosis and survival of glioma cells using tumor necrosis factor–related apoptosis inducing ligand (TRAIL)- stimulated cells and silencing of PKCɛ expression. Treatment of glioma cells with TRAIL induced activation, caspase-dependent cleavage, and down-regulation of PKCɛ within 3 to 5 hours of treatment. Overexpression of PKCɛ inhibited the apoptosis induced by TRAIL, acting downstream of caspase 8 and upstream of Bid cleavage and cytochrome c release from the mitochondria. A caspase-resistant PKCɛ mutant (D383A) was more protective than PKCɛ, suggesting that both the cleavage of PKCɛ and its down-regulation contributed to the apoptotic effect of TRAIL. To further study the role of PKCɛ in glioma cell apoptosis, we employed short interfering RNAs directed against the mRNA of PKCɛ and found that silencing of PKCɛ expression induced apoptosis of various glioma cell lines and primary glioma cultures. To delineate the molecular mechanisms involved in the apoptosis induced by silencing of PKCɛ, we examined the expression and phosphorylation of various apoptosis-related proteins. We found that knockdown of PKCɛ did not affect the expression of Bcl2 and Bax or the phosphorylation and expression of Erk1/2, c-Jun-NH2-kinase, p38, or STAT, whereas it selectively reduced the expression of AKT. Similarly, TRAIL reduced the expression of AKT in glioma cells and this decrease was abolished in cells overexpressing PKCɛ. Our results suggest that the cleavage of PKCɛ and its down-regulation play important roles in the apoptotic effect of TRAIL. Moreover, PKCɛ regulates AKT expression and is essential for the survival of glioma cells. PMID:16103081

  8. [Survival of bone marrow mesenchymal stem cells and periodontal ligament stem cells in cell sheets].

    PubMed

    An, Kangkang; Liu, Hongwei

    2014-11-01

    To evaluate the survival of bone marrow mesenchymal stem cells (BMMSC) and periodontal ligament stem cells (PDLSC) in BMMSC/PDLSC cell sheets which transplanted ectopically into subcutaneous dorsum of nude mice. The canine BMMSC and PDLSC from primary culture were tranfected with lentiviral vectors carrying green fluorescent protein (GFP) gene (Lentivirus-GFP) or red fluorescent protein (RFP) gene (Lentivirus-RFP) respectively. The immunophenotypes of GFP-labeled BMMSC and RFP-labeled PDLSC were identified by flow cytometry. Adipogenic and osteogenic differentiation of them were detected by alizarin red or oil red O respectively. Then, both GFP-labeled BMMSC cell sheets and RFP-labeled PDLSC cell sheets were fabricated respectively using normal culture dish (6 cm) after stimulation of extracellular matrix formation. Each was enveloped by collagen membrane (Bio-Gide) and then transplanted into the subcutaneous dorsum of nude mice. In vivo non-invasive biofluorescence imaging(BFI) was performed at 1, 2, 4 and 8 w post-tranplantation to trace and quantify the survival and growth of RFP-labeled PDLSC and GFP-labeled BMMSC via the BFI system of the NightOWL. The fluorescence intensity change of GFP/RFP signal was monitored and compared. The mice were sacrificed 8 weeks after cell sheets transplantation and the survival of stem cells was verified by fluorescence immunohistochemistry. The flow cytometry showed that GFP-labeled BMMSC positively expressed CD29, CD44, CD34, STRO-1 were 93.07%, 92.84%, 3.23%, 67.67%, and RFP-labeled PDLSCs were 89.91%, 88.47%, 6.04%, 74.11%, respectively. Both of them had the potency of differentiating into osteoblasts and adipocytes. The stemness of both of them was almost same. After being transplanted into nude mice, the signal strength of GFP(BMMSC) was weaker and weaker in 1, 2, 4 and 8 w [(83.1±3.1)×10(6), (65.1±2.3)×10(6), (51.5 ± 2.3)×10(6), (33.8 ± 2.0)×10(6) ph/s, respectively.]. The signal strength of RFP(PDLSC) was

  9. No Evidence That Genetic Variation in the Myeloid-Derived Suppressor Cell Pathway Influences Ovarian Cancer Survival.

    PubMed

    Sucheston-Campbell, Lara E; Cannioto, Rikki; Clay, Alyssa I; Etter, John Lewis; Eng, Kevin H; Liu, Song; Battaglia, Sebastiano; Hu, Qiang; Szender, J Brian; Minlikeeva, Albina; Joseph, Janine M; Mayor, Paul; Abrams, Scott I; Segal, Brahm H; Wallace, Paul K; Soh, Kah Teong; Zsiros, Emese; Anton-Culver, Hoda; Bandera, Elisa V; Beckmann, Matthias W; Berchuck, Andrew; Bjorge, Line; Bruegl, Amanda; Campbell, Ian G; Campbell, Shawn Patrice; Chenevix-Trench, Georgia; Cramer, Daniel W; Dansonka-Mieszkowska, Agnieszka; Dao, Fanny; Diergaarde, Brenda; Doerk, Thilo; Doherty, Jennifer A; du Bois, Andreas; Eccles, Diana; Engelholm, Svend Aage; Fasching, Peter A; Gayther, Simon A; Gentry-Maharaj, Aleksandra; Glasspool, Rosalind M; Goodman, Marc T; Gronwald, Jacek; Harter, Philipp; Hein, Alexander; Heitz, Florian; Hillemmanns, Peter; Høgdall, Claus; Høgdall, Estrid V S; Huzarski, Tomasz; Jensen, Allan; Johnatty, Sharon E; Jung, Audrey; Karlan, Beth Y; Klapdor, Reudiger; Kluz, Tomasz; Konopka, Bożena; Kjær, Susanne Krüger; Kupryjanczyk, Jolanta; Lambrechts, Diether; Lester, Jenny; Lubiński, Jan; Levine, Douglas A; Lundvall, Lene; McGuire, Valerie; McNeish, Iain A; Menon, Usha; Modugno, Francesmary; Ness, Roberta B; Orsulic, Sandra; Paul, James; Pearce, Celeste Leigh; Pejovic, Tanja; Pharoah, Paul; Ramus, Susan J; Rothstein, Joseph; Rossing, Mary Anne; Rübner, Matthias; Schildkraut, Joellen M; Schmalfeldt, Barbara; Schwaab, Ira; Siddiqui, Nadeem; Sieh, Weiva; Sobiczewski, Piotr; Song, Honglin; Terry, Kathryn L; Van Nieuwenhuysen, Els; Vanderstichele, Adriaan; Vergote, Ignace; Walsh, Christine S; Webb, Penelope M; Wentzensen, Nicolas; Whittemore, Alice S; Wu, Anna H; Ziogas, Argyrios; Odunsi, Kunle; Chang-Claude, Jenny; Goode, Ellen L; Moysich, Kirsten B

    2017-03-01

    Background: The precise mechanism by which the immune system is adversely affected in cancer patients remains poorly understood, but the accumulation of immunosuppressive/protumorigenic myeloid-derived suppressor cells (MDSCs) is thought to be a prominent mechanism contributing to immunologic tolerance of malignant cells in epithelial ovarian cancer (EOC). To this end, we hypothesized genetic variation in MDSC pathway genes would be associated with survival after EOC diagnoses. Methods: We measured the hazard of death due to EOC within 10 years of diagnosis, overall and by invasive subtype, attributable to SNPs in 24 genes relevant in the MDSC pathway in 10,751 women diagnosed with invasive EOC. Versatile Gene-based Association Study and the admixture likelihood method were used to test gene and pathway associations with survival. Results: We did not identify individual SNPs that were significantly associated with survival after correction for multiple testing ( P < 3.5 × 10 -5 ), nor did we identify significant associations between the MDSC pathway overall, or the 24 individual genes and EOC survival. Conclusions: In this well-powered analysis, we observed no evidence that inherited variations in MDSC-associated SNPs, individual genes, or the collective genetic pathway contributed to EOC survival outcomes. Impact: Common inherited variation in genes relevant to MDSCs was not associated with survival in women diagnosed with invasive EOC. Cancer Epidemiol Biomarkers Prev; 26(3); 420-4. ©2016 AACR . ©2016 American Association for Cancer Research.

  10. Regulation of cell death and cell survival gene expression during ovarian follicular development and atresia.

    PubMed

    Jiang, Jin-Yi; Cheung, Carmen K M; Wang, Yifang; Tsang, Benjamin K

    2003-01-01

    Mammalian ovarian follicular development and atresia is closely regulated by the cross talk of cell death and cell survival signals, which include endocrine hormones (gonadotropins) and intra-ovarian regulators (gonadal steroids, cytokines and growth factors). The fate of the follicle is dependent on a delicate balance in the expression and actions of factors promoting follicular cell proliferation, growth and differentiation and of those inducing programmed cell death (apoptosis). As an important endocrine hormone, FSH binds to its granulosa cell receptors and promotes ovarian follicle survival and growth not only by stimulating proliferation and estradiol secretion of these cells, but also inhibiting the apoptosis by up-regulating the expression of intracellular anti-apoptotic proteins, such as XIAP and FLIP. In addition, intra-ovarian regulators, such as TGF-alpha and TNF-alpha, also play an important role in the control of follicular development and atresia. In response to FSH, Estradiol-17 beta synthesized from the granulosa cells stimulates thecal expression of TGF-alpha, which in turn increases granulosa cell XIAP expression and proliferation. The death receptor and ligand, Fas and Fas ligand, are expressed in granulosa cells following gonadotropin withdrawal, culminating in caspase-mediated apoptosis and follicular atresia. In contrast, TNF-alpha has both survival and pro-apoptotic function in the follicle, depending on the receptor subtype activated, but has been shown to promote granulosa cell survival by increasing XIAP and FLIP expression via the IkappaB-NFkappaB pathway. The pro-apoptotic action of TNF-alpha is mediated through the activation of caspases, via its receptor- (i.e. Caspases-8 and -3) and mitochrondria- (i.e. Caspase-9 and -3) death pathways. In the present manuscript, we have reviewed the actions and interactions of gonadotropins and intra-ovarian regulators in the control of granulosa cell fate and ultimately follicular destiny. We have

  11. Analytic considerations and axiomatic approaches to the concept cell death and cell survival functions in biology and cancer treatment.

    PubMed

    Gkigkitzis, Ioannis; Haranas, Ioannis; Austerlitz, Carlos

    2015-01-01

    This study contains a discussion on the connection between current mathematical and biological modeling systems in response to the main research need for the development of a new mathematical theory for study of cell survival after medical treatment and cell biological behavior in general. This is a discussion of suggested future research directions and relations with interdisciplinary science. In an effort to establish the foundations for a possible framework that may be adopted to study and analyze the process of cell survival during treatment, we investigate the organic connection among an axiomatic system foundation, a predator-prey rate equation, and information theoretic signal processing. A new set theoretic approach is also introduced through the definition of cell survival units or cell survival units indicating the use of "proper classes" according to the Zermelo-Fraenkel set theory and the axiom of choice, as the mathematics appropriate for the development of biological theory of cell survival.

  12. The RBE-LET relationship for rodent intestinal crypt cell survival, testes weight loss, and multicellular spheroid cell survival after heavy-ion irradiation

    NASA Technical Reports Server (NTRS)

    Rodriguez, A.; Alpen, E. L.; Powers-Risius, P.

    1992-01-01

    This report presents data for survival of mouse intestinal crypt cells, mouse testes weight loss as an indicator of survival of spermatogonial stem cells, and survival of rat 9L spheroid cells after irradiation in the plateau region of unmodified particle beams ranging in mass from 4He to 139La. The LET values range from 1.6 to 953 keV/microns. These studies examine the RBE-LET relationship for two normal tissues and for an in vitro tissue model, multicellular spheroids. When the RBE values are plotted as a function of LET, the resulting curve is characterized by a region in which RBE increases with LET, a peak RBE at an LET value of 100 keV/microns, and a region of decreasing RBE at LETs greater than 100 keV/microns. Inactivation cross sections (sigma) for these three biological systems have been calculated from the exponential terminal slope of the dose-response relationship for each ion. For this determination the dose is expressed as particle fluence and the parameter sigma indicates effect per particle. A plot of sigma versus LET shows that the curve for testes weight loss is shifted to the left, indicating greater radiosensitivity at lower LETs than for crypt cell and spheroid cell survival. The curves for cross section versus LET for all three model systems show similar characteristics with a relatively linear portion below 100 keV/microns and a region of lessened slope in the LET range above 100 keV/microns for testes and spheroids. The data indicate that the effectiveness per particle increases as a function of LET and, to a limited extent, Z, at LET values greater than 100 keV/microns. Previously published results for spread Bragg peaks are also summarized, and they suggest that RBE is dependent on both the LET and the Z of the particle.

  13. INPP4B promotes cell survival via SGK3 activation in NPM1-mutated leukemia.

    PubMed

    Jin, Hongjun; Yang, Liyuan; Wang, Lu; Yang, Zailin; Zhan, Qian; Tao, Yao; Zou, Qin; Tang, Yuting; Xian, Jingrong; Zhang, Shuaishuai; Jing, Yipei; Zhang, Ling

    2018-01-17

    Acute myeloid leukemia (AML) with mutated nucleophosmin (NPM1) has been recognized as a distinct leukemia entity in the 2016 World Health Organization (WHO) classification. The genetic events underlying oncogenesis in NPM1-mutated AML that is characterized by a normal karyotype remain unclear. Inositol polyphosphate 4-phosphatase type II (INPP4B), a new factor in the phosphoinositide-3 kinase (PI3K) pathway-associated cancers, has been recently found a clinically relevant role in AML. However, little is known about the specific mechanistic function of INPP4B in NPM1-mutated AML. The INPP4B expression levels in NPM1-mutated AML primary blasts and AML OCI-AML3 cell lines were determined by qRT-PCR and western blotting. The effect of INPP4B knockdown on OCI-AML3 leukemia cell proliferation was evaluated, using the Cell Counting Kit-8 and colony formation assay. After INPP4B overexpression or knockdown, the activation of serum and glucocorticoid-regulated kinase 3 (SGK3) and AKT was assessed. The effects of PI3K signaling pathway inhibitors on the levels of p-SGK3 in OCI-AML3 cells were tested. The mass of PI (3,4) P 2 and PI (3) P was analyzed by ELISA upon INPP4B overexpression. Knockdown of SGK3 by RNA interference and a rescue assay were performed to confirm the critical role of SGK3 in INPP4B-mediated cell survival. In addition, the molecular mechanism underlying INPP4B expression in NPM1-mutated leukemia cells was explored. Finally, Kaplan-Meier survival analysis was conducted on the NPM1-mutated AML cohort stratified into quartiles for INPP4B expression in The Cancer Genome Atlas (TCGA) dataset. High expression of INPP4B was observed in NPM1-mutated AML. Knockdown of INPP4B repressed cell proliferation in OCI-AML3 cells, whereas recovered INPP4B rescued this inhibitory effect in vitro. Mechanically, INPP4B enhanced phosphorylated SGK3 (p-SGK3) status, but did not affect AKT activation. SGK3 was required for INPP4B-induced cell proliferation in OCI-AML3 cells

  14. Metformin selectively affects human glioblastoma tumor-initiating cell viability: A role for metformin-induced inhibition of Akt.

    PubMed

    Würth, Roberto; Pattarozzi, Alessandra; Gatti, Monica; Bajetto, Adirano; Corsaro, Alessandro; Parodi, Alessia; Sirito, Rodolfo; Massollo, Michela; Marini, Cecilia; Zona, Gianluigi; Fenoglio, Daniela; Sambuceti, Gianmario; Filaci, Gilberto; Daga, Antonio; Barbieri, Federica; Florio, Tullio

    2013-01-01

    Cancer stem cell theory postulates that a small population of tumor-initiating cells is responsible for the development, progression and recurrence of several malignancies, including glioblastoma. In this perspective, tumor-initiating cells represent the most relevant target to obtain effective cancer treatment. Metformin, a first-line drug for type II diabetes, was reported to possess anticancer properties affecting the survival of cancer stem cells in breast cancer models. We report that metformin treatment reduced the proliferation rate of tumor-initiating cell-enriched cultures isolated from four human glioblastomas. Metformin also impairs tumor-initiating cell spherogenesis, indicating a direct effect on self-renewal mechanisms. Interestingly, analyzing by FACS the antiproliferative effects of metformin on CD133-expressing subpopulation, a component of glioblastoma cancer stem cells, a higher reduction of proliferation was observed as compared with CD133-negative cells, suggesting a certain degree of cancer stem cell selectivity in its effects. In fact, glioblastoma cell differentiation strongly reduced sensitivity to metformin treatment. Metformin effects in tumor-initiating cell-enriched cultures were associated with a powerful inhibition of Akt-dependent cell survival pathway, while this pathway was not affected in differentiated cells. The specificity of metformin antiproliferative effects toward glioblastoma tumor-initiating cells was confirmed by the lack of significant inhibition of normal human stem cells (umbilical cord-derived mesenchymal stem cells) in vitro proliferation after metformin exposure. Altogether, these data clearly suggest that metformin exerts antiproliferative activity on glioblastoma cells, showing a higher specificity toward tumor-initiating cells, and that the inhibition of Akt pathway may represent a possible intracellular target of this effect.

  15. The Netrin-4/ Neogenin-1 axis promotes neuroblastoma cell survival and migration

    PubMed Central

    Villanueva, Andrea A.; Falcón, Paulina; Espinoza, Natalie; Luis, Solano R.; Milla, Luis A.; Hernandez-SanMiguel, Esther; Torres, Vicente A.; Sanchez-Gomez, Pilar; Palma, Verónica

    2017-01-01

    Neogenin-1 (NEO1) is a transmembrane receptor involved in axonal guidance, angiogenesis, neuronal cell migration and cell death, during both embryonic development and adult homeostasis. It has been described as a dependence receptor, because it promotes cell death in the absence of its ligands (Netrin and Repulsive Guidance Molecule (RGM) families) and cell survival when they are present. Although NEO1 and its ligands are involved in tumor progression, their precise role in tumor cell survival and migration remain unclear. Public databases contain extensive information regarding the expression of NEO1 and its ligands Netrin-1 (NTN1) and Netrin-4 (NTN4) in primary neuroblastoma (NB) tumors. Analysis of this data revealed that patients with high expression levels of both NEO1 and NTN4 have a poor survival rate. Accordingly, our analyses in NB cell lines with different genetic backgrounds revealed that knocking-down NEO1 reduces cell migration, whereas silencing of endogenous NTN4 induced cell death. Conversely, overexpression of NEO1 resulted in higher cell migration in the presence of NTN4, and increased apoptosis in the absence of ligand. Increased apoptosis was prevented when utilizing physiological concentrations of exogenous Netrin-4. Likewise, cell death induced after NTN4 knock-down was rescued when NEO1 was transiently silenced, thus revealing an important role for NEO1 in NB cell survival. In vivo analysis, using the chicken embryo chorioallantoic membrane (CAM) model, showed that NEO1 and endogenous NTN4 are involved in tumor extravasation and metastasis. Our data collectively demonstrate that endogenous NTN4/NEO1 maintain NB growth via both pro-survival and pro-migratory molecular signaling. PMID:28038459

  16. Effect of 3D-scaffold formation on differentiation and survival in human neural progenitor cells.

    PubMed

    Ortinau, Stefanie; Schmich, Jürgen; Block, Stephan; Liedmann, Andrea; Jonas, Ludwig; Weiss, Dieter G; Helm, Christiane A; Rolfs, Arndt; Frech, Moritz J

    2010-11-11

    3D-scaffolds have been shown to direct cell growth and differentiation in many different cell types, with the formation and functionalisation of the 3D-microenviroment being important in determining the fate of the embedded cells. Here we used a hydrogel-based scaffold to investigate the influences of matrix concentration and functionalisation with laminin on the formation of the scaffolds, and the effect of these scaffolds on human neural progenitor cells cultured within them. In this study we used different concentrations of the hydrogel-based matrix PuraMatrix. In some experiments we functionalised the matrix with laminin I. The impact of concentration and treatment with laminin on the formation of the scaffold was examined with atomic force microscopy. Cells from a human fetal neural progenitor cell line were cultured in the different matrices, as well as in a 2D culture system, and were subsequently analysed with antibody stainings against neuronal markers. In parallel, the survival rate of the cells was determined by a live/dead assay. Atomic force microscopy measurements demonstrated that the matrices are formed by networks of isolated PuraMatrix fibres and aggregates of fibres. An increase of the hydrogel concentration led to a decrease in the mesh size of the scaffolds and functionalisation with laminin promoted aggregation of the fibres (bundle formation), which further reduces the density of isolated fibres. We showed that laminin-functionalisation is essential for human neural progenitor cells to build up 3D-growth patterns, and that proliferation of the cells is also affected by the concentration of matrix. In addition we found that 3D-cultures enhanced neuronal differentiation and the survival rate of the cells compared to 2D-cultures. Taken together, we have demonstrated a direct influence of the 3D-scaffold formation on the survival and neuronal differentiation of human neural progenitor cells. These findings emphasize the importance of optimizing 3

  17. Influence of homologous recombinational repair on cell survival and chromosomal aberration induction during the cell cycle in γ-irradiated CHO cells

    PubMed Central

    Wilson, Paul F.; Hinz, John M.; Urbin, Salustra S.; Nham, Peter B.; Thompson, Larry H.

    2010-01-01

    The repair of DNA double-strand breaks (DSB) by homologous recombinational repair (HRR) underlies the high radioresistance and low mutability observed in S-phase mammalian cells. To evaluate the contributions of HRR and nonhomologous end-joining (NHEJ) to overall DSB repair capacity throughout the cell cycle after γ-irradiation, we compared HRR-deficient RAD51D-knockout 51D1 to CgRAD51D-complemented 51D1 (51D1.3) CHO cells for survival and chromosomal aberrations (CAs). Asynchronous cultures were irradiated with 150 or 300 cGy and separated by cell size using centrifugal elutriation. Cell survival of each synchronous fraction (~20 fractions total from early G1 to late G2/M) was measured by colony formation. 51D1.3 cells were most resistant in S, while 51D1 cells were most resistant in early G1 (with survival and chromosome-type CA levels similar to 51D1.3) and became progressively more sensitive throughout S and G2. Both cell lines experienced significantly reduced survival from late S into G2. Metaphases were collected from every third elutriation fraction at the first post-irradiation mitosis and scored for CAs. 51D1 cells irradiated in S and G2 had ~2-fold higher chromatid-type CAs and a remarkable ~25-fold higher level of complex chromatid-type exchanges compared to 51D1.3 cells. Complex exchanges in 51D1.3 cells were only observed in G2. These results show an essential role for HRR in preventing gross chromosomal rearrangements in proliferating cells and, with our previous report of reduced survival of G2-phase NHEJ-deficient prkdc CHO cells [Hinz et al. DNA Repair 4, 782–792, 2005], imply reduced activity/efficiency of both HRR and NHEJ as cells transition from S to G2. PMID:20434408

  18. The relationship between neurotrophic factors and CaMKII in the death and survival of retinal ganglion cells.

    PubMed

    Cooper, N G F; Laabich, A; Fan, W; Wang, X

    2008-01-01

    The scientific discourse relating to the causes and treatments for glaucoma are becoming reflective of the need to protect and preserve retinal neurons from degenerative changes, which result from the injurious environment associated with this disease. Knowledge, in particular, of the signal transduction pathways which affect death and survival of the retinal ganglion cells is critical to this discourse and to the development of a suitable neurotherapeutic strategy for this disease. The goal of this chapter is to review what is known of the chief suspects involved in initiating the cell death/survival pathways in these cells, and what still remains to be uncovered. The least controversial aspect of the subject relates to the potential role of neurotrophic factors in the protection of the retinal ganglion cells. On the other hand, the postulated triggers for signaling cell death in glaucoma remain controversial. Certainly, the restricted flow of neurotrophic factors has been cited as one possible trigger. However, the connections between glaucoma and other factors present in the retina, such as glutamate, long held to be a prospective culprit in retinal ganglion cell death are still being questioned. Whatever the outcome of this particular debate, it is clear that the downstream intersections between the cell death and survival pathways should provide important foci for future studies whose goal is to protect retinal neurons, situated as they are, in the stressful environment of a cell destroying disease. The evidence for CaMKII being one of these intersecting points is discussed.

  19. Dietary Pectin Increases Intestinal Crypt Stem Cell Survival following Radiation Injury.

    PubMed

    Sureban, Sripathi M; May, Randal; Qu, Dongfeng; Chandrakesan, Parthasarathy; Weygant, Nathaniel; Ali, Naushad; Lightfoot, Stan A; Ding, Kai; Umar, Shahid; Schlosser, Michael J; Houchen, Courtney W

    2015-01-01

    Gastrointestinal (GI) mucosal damage is a devastating adverse effect of radiation therapy. We have recently reported that expression of Dclk1, a Tuft cell and tumor stem cell (TSC) marker, 24h after high dose total-body gamma-IR (TBI) can be used as a surrogate marker for crypt survival. Dietary pectin has been demonstrated to possess chemopreventive properties, whereas its radioprotective property has not been studied. The aim of this study was to determine the effects of dietary pectin on ionizing radiation (IR)-induced intestinal stem cell (ISC) deletion, crypt and overall survival following lethal TBI. C57BL/6 mice received a 6% pectin diet and 0.5% pectin drinking water (pre-IR mice received pectin one week before TBI until death; post-IR mice received pectin after TBI until death). Animals were exposed to TBI (14 Gy) and euthanized at 24 and 84h post-IR to assess ISC deletion and crypt survival respectively. Animals were also subjected to overall survival studies following TBI. In pre-IR treatment group, we observed a three-fold increase in ISC/crypt survival, a two-fold increase in Dclk1+ stem cells, increased overall survival (median 10d vs. 7d), and increased expression of Dclk1, Msi1, Lgr5, Bmi1, and Notch1 (in small intestine) post-TBI in pectin treated mice compared to controls. We also observed increased survival of mice treated with pectin (post-IR) compared to controls. Dietary pectin is a radioprotective agent; prevents IR-induced deletion of potential reserve ISCs; facilitates crypt regeneration; and ultimately promotes overall survival. Given the anti-cancer activity of pectin, our data support a potential role for dietary pectin as an agent that can be administered to patients receiving radiation therapy to protect against radiation-induces mucositis.

  20. Method of freezing living cells and tissues with improved subsequent survival

    DOEpatents

    Senkan, Selim M.; Hirsch, Gerald P.

    1980-01-01

    This invention relates to an improved method for freezing red blood cells, ther living cells, or tissues with improved subsequent survival, wherein constant-volume freezing is utilized that results in significantly improved survival compared with constant-pressure freezing; optimization is attainable through the use of different vessel geometries, cooling baths and warming baths, and sample concentrations.

  1. Extremes of urine osmolality - Lack of effect on red blood cell survival

    NASA Technical Reports Server (NTRS)

    Leon, H. A.; Fleming, J. E.

    1980-01-01

    Rats were allowed a third of normal water intake for 20 days, and food consumption decreased. The reticulocyte count indicated a suppression of erythropoiesis. Urine osmolality increased from 2,000 mosmol/kg to 3,390 mosmol/kg. Random hemolysis and senescence of a cohort of red blood cell (RBC) previously labeled with (2-(C-14)) glycine was monitored via the production of (C-14)O. Neither hemolysis nor senescence was affected. Following water restriction, the polydipsic rats generated a hypotonic urine. Urine osmolality decreased to 1,300 mosmol/kg for at least 6 days; a reticulocytosis occurred, but RBC survival was unaffected. These results contradict those previously reported, which suggest that RBC survival is influenced by the osmotic stress imposed on the RBC by extremes of urine tonicity. This discrepancy, it is concluded, is due to differences in the methods employed for measuring RBC survival. The random-labeling technique employed previously assumes a steady state between RBC production and destruction. The cohort-labeling technique used here measures hemolysis and senescence independent of changes in RBC production, which is known to be depressed by fasting.

  2. Heme exporter FLVCR is required for T cell development and peripheral survival.

    PubMed

    Philip, Mary; Funkhouser, Scott A; Chiu, Edison Y; Phelps, Susan R; Delrow, Jeffrey J; Cox, James; Fink, Pamela J; Abkowitz, Janis L

    2015-02-15

    All aerobic cells and organisms must synthesize heme from the amino acid glycine and the tricarboxylic acid cycle intermediate succinyl CoA for incorporation into hemoproteins, such as the cytochromes needed for oxidative phosphorylation. Most studies on heme regulation have been done in erythroid cells or hepatocytes; however, much less is known about heme metabolism in other cell types. The feline leukemia virus subgroup C receptor (FLVCR) is a 12-transmembrane domain surface protein that exports heme from cells, and it was shown to be required for erythroid development. In this article, we show that deletion of Flvcr in murine hematopoietic precursors caused a complete block in αβ T cell development at the CD4(+)CD8(+) double-positive stage, although other lymphoid lineages were not affected. Moreover, FLVCR was required for the proliferation and survival of peripheral CD4(+) and CD8(+) T cells. These studies identify a novel and unexpected role for FLVCR, a major facilitator superfamily metabolite transporter, in T cell development and suggest that heme metabolism is particularly important in the T lineage. Copyright © 2015 by The American Association of Immunologists, Inc.

  3. Red blood cells release factors with growth and survival bioactivities for normal and leukemic T cells.

    PubMed

    Antunes, Ricardo F; Brandão, Cláudia; Maia, Margarida; Arosa, Fernando A

    2011-01-01

    Human red blood cells are emerging as a cell type capable to regulate biological processes of neighboring cells. Hereby, we show that human red blood cell conditioned media contains bioactive factors that favor proliferation of normal activated T cells and leukemic Jurkat T cells, and therefore called erythrocyte-derived growth and survival factors. Flow cytometry and electron microscopy in parallel with bioactivity assays revealed that the erythrocyte factors are present in the vesicle-free supernatant, which contains up to 20 different proteins. The erythrocyte factors are thermosensitive and do not contain lipids. Native polyacrylamide gel electrophoresis followed by passive elution and mass spectrometry identification reduced the potential erythrocyte factors to hemoglobin and peroxiredoxin II. Two-dimensional differential gel electrophoresis of the erythrocyte factors revealed the presence of multiple hemoglobin oxy-deoxy states and peroxiredoxin II isoforms differing in their isoelectric point akin to the presence of β-globin chains. Our results show that red blood cells release protein factors with the capacity to sustain T-cell growth and survival. These factors may have an unforeseen role in sustaining malignant cell growth and survival in vivo.

  4. Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utsumi, H.; Elkind, M.M.

    1983-11-01

    A clone of V79 Chinese hamster cells (V79-AL162/S-10) with unique properties has been isolated after a challenge of parental cells (V79-AL162) with 1 mM ouabain. Compared with parental cells, or with other clones isolated after the ouabain challenge, these cells form smaller colonies, are more sensitive to both x rays and fission-spectrum neutrons, and respond atypically to a postirradiation treatment with caffeine. Their enhanced response to x rays results mainly from a large reduction in the shoulder of their survival curve, probably because in late S phase, the most resistant phase in the cell cycle, the survival curve of thesemore » cells has a reduced shoulder width. Caffeine, and to a lesser extent theophylline, added to the colony-forming medium immediately after exposure appreciably increases the width of the shoulder of these sensitive cells, whereas caffeine has the opposite effect on the response of normal V79 cells. Thus the unique response of the V79-AL162/S-10 cells to a radiation posttreatment with caffeine (increased survival) results from a net increase in their ability to repair damage that is otherwise lethal; caffeine treatment ordinarly prevents normal V79 cells from repairing damage that is only potentially lethal.« less

  5. A Rapid Survival Assay to Measure Drug-Induced Cytotoxicity and Cell Cycle Effects

    PubMed Central

    Valiathan, Chandni; McFaline, Jose L.

    2012-01-01

    We describe a rapid method to accurately measure the cytotoxicity of mammalian cells upon exposure to various drugs. Using this assay, we obtain survival data in a fraction of the time required to perform the traditional clonogenic survival assay, considered the gold standard. The dynamic range of the assay allows sensitivity measurements on a multi-log scale allowing better resolution of comparative sensitivities. Moreover, the results obtained contain additional information on cell cycle effects of the drug treatment. Cell survival is obtained from a quantitative comparison of proliferation between drug-treated and untreated cells. During the assay, cells are treated with a drug and, following a recovery period, allowed to proliferate in the presence of BrdU. Cells that synthesize DNA in the presence of bromodeoxyuridine (BrdU) exhibit quenched Hoechst fluorescence easily detected by flow cytometry; quenching is used to determine relative proliferation in treated versus untreated cells. Finally, the multi-well setup of this assay allows the simultaneous screening of multiple cell lines, multiple doses, or multiple drugs to accurately measure cell survival and cell cycle changes after drug treatment. PMID:22133811

  6. Improved cell metabolism prolongs photoreceptor survival upon retinal-pigmented epithelium loss in the sodium iodate induced model of geographic atrophy

    PubMed Central

    Zieger, Marina; Punzo, Claudio

    2016-01-01

    Age-related macular degeneration (AMD) is characterized by malfunction and loss of retinal-pigmented epithelium (RPE) cells. Because the RPE transfers nutrients from the choriocapillaris to photoreceptor (PR), PRs are affected as well. Geographic atrophy (GA) is an advanced form of AMD characterized by severe vision impairment due to RPE loss over large areas. Currently there is no treatment to delay the degeneration of nutrient deprived PRs once RPE cells die. Here we show that cell-autonomous activation of the key regulator of cell metabolism, the kinase mammalian target of rapamycin complex 1 (mTORC1), delays PR death in the sodium iodate induced model of RPE atrophy. Consistent with this finding loss of mTORC1 in cones accelerates cone death as cones fail to balance demand with supply. Interestingly, promoting rod survival does not promote cone survival in this model of RPE atrophy as both, rods and cones suffer from a sick and dying RPE. The findings suggest that activation of metabolic genes downstream of mTORC1 can serve as a strategy to prolong PR survival when RPE cells malfunction or die. PMID:26883199

  7. Dependence and independence of survival parameters on linear energy transfer in cells and tissues

    PubMed Central

    Ando, Koichi; Goodhead, Dudley T.

    2016-01-01

    Carbon-ion radiotherapy has been used to treat more than 9000 cancer patients in the world since 1994. Spreading of the Bragg peak is necessary for carbon-ion radiotherapy, and is designed based on the linear–quadratic model that is commonly used for photon therapy. Our recent analysis using in vitro cell kills and in vivo mouse tissue reaction indicates that radiation quality affects mainly the alpha terms, but much less the beta terms, which raises the question of whether this is true in other biological systems. Survival parameters alpha and beta for 45 in vitro mammalian cell lines were obtained by colony formation after irradiation with carbon ions, fast neutrons and X-rays. Relationships between survival parameters and linear energy transfer (LET) below 100 keV/μm were obtained for 4 mammalian cell lines. Mouse skin reaction and tumor growth delay were measured after fractionated irradiation. The Fe-plot provided survival parameters of the tissue reactions. A clear separation between X-rays and high-LET radiation was observed for alpha values, but not for beta values. Alpha values/terms increased with increasing LET in any cells and tissues studied, while beta did not show a systematic change. We have found a puzzle or contradiction in common interpretations of the linear-quadratic model that causes us to question whether the model is appropriate for interpreting biological effectiveness of high-LET radiation up to 500 keV/μm, probably because of inconsistency in the concept of damage interaction. A repair saturation model proposed here was good enough to fit cell kill efficiency by radiation of wide-ranged LET. A model incorporating damage complexity and repair saturation would be suitable for heavy-ion radiotherapy. PMID:27380803

  8. Quantitative Differences in a Single Maternal Factor Determine Survival Probabilities among Drosophila Germ Cells.

    PubMed

    Slaidina, Maija; Lehmann, Ruth

    2017-01-23

    Germ cell death occurs in many species [1-3] and has been proposed as a mechanism by which the fittest, strongest, or least damaged germ cells are selected for transmission to the next generation. However, little is known about how the choice is made between germ cell survival and death. Here, we focus on the mechanisms that regulate germ cell survival during embryonic development in Drosophila. We find that the decision to die is a germ cell-intrinsic process linked to quantitative differences in germ plasm inheritance, such that higher germ plasm inheritance correlates with higher primordial germ cell (PGC) survival probability. We demonstrate that the maternal factor lipid phosphate phosphatase Wunen-2 (Wun2) regulates PGC survival in a dose-dependent manner. Since wun2 mRNA levels correlate with the levels of other maternal determinants at the single-cell level, we propose that Wun2 is used as a readout of the overall germ plasm quantity, such that only PGCs with the highest germ plasm quantity survive. Furthermore, we demonstrate that Wun2 and p53, another regulator of PGC survival, have opposite yet independent effects on PGC survival. Since p53 regulates cell death upon DNA damage and various cellular stresses, we hypothesize that together they ensure selection of the PGCs with highest germ plasm quantity and least cellular damage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Host cell processes that influence the intracellular survival of Legionella pneumophila.

    PubMed

    Shin, Sunny; Roy, Craig R

    2008-06-01

    Key to the pathogenesis of intracellular pathogens is their ability to manipulate host cell processes, permitting the establishment of an intracellular replicative niche. In turn, the host cell deploys defence mechanisms that limit intracellular infection. The bacterial pathogen Legionella pneumophila, the aetiological agent of Legionnaire's Disease, has evolved virulence mechanisms that allow it to replicate within protozoa, its natural host. Many of these tactics also enable L. pneumophila's survival and replication inside macrophages within a membrane-bound compartment known as the Legionella-containing vacuole. One of the virulence factors indispensable for L. pneumophila's intracellular survival is a type IV secretion system, which translocates a large repertoire of bacterial effectors into the host cell. These effectors modulate multiple host cell processes and in particular, redirect trafficking of the L. pneumophila phagosome and mediate its conversion into an ER-derived organelle competent for intracellular bacterial replication. In this review, we discuss how L. pneumophila manipulates host cells, as well as host cell processes that either facilitate or impede its intracellular survival.

  10. Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival

    PubMed Central

    Thole, Theresa M; Lodrini, Marco; Fabian, Johannes; Wuenschel, Jasmin; Pfeil, Sebastian; Hielscher, Thomas; Kopp-Schneider, Annette; Heinicke, Ulrike; Fulda, Simone; Witt, Olaf; Eggert, Angelika; Fischer, Matthias; Deubzer, Hedwig E

    2017-01-01

    The number of long-term survivors of high-risk neuroblastoma remains discouraging, with 10-year survival as low as 20%, despite decades of considerable international efforts to improve outcome. Major obstacles remain and include managing resistance to induction therapy, which causes tumor progression and early death in high-risk patients, and managing chemotherapy-resistant relapses, which can occur years after the initial diagnosis. Identifying and validating novel therapeutic targets is essential to improve treatment. Delineating and deciphering specific functions of single histone deacetylases in neuroblastoma may support development of targeted acetylome-modifying therapeutics for patients with molecularly defined high-risk neuroblastoma profiles. We show here that HDAC11 depletion in MYCN-driven neuroblastoma cell lines strongly induces cell death, mostly mediated by apoptotic programs. Genes necessary for mitotic cell cycle progression and cell division were most prominently enriched in at least two of three time points in whole-genome expression data combined from two cell systems, and all nine genes in these functional categories were strongly repressed, including CENPA, KIF14, KIF23 and RACGAP1. Enforced expression of one selected candidate, RACGAP1, partially rescued the induction of apoptosis caused by HDAC11 depletion. High-level expression of all nine genes in primary neuroblastomas significantly correlated with unfavorable overall and event-free survival in patients, suggesting a role in mediating the more aggressive biological and clinical phenotype of these tumors. Our study identified a group of cell cycle-promoting genes regulated by HDAC11, being both predictors of unfavorable patient outcome and essential for tumor cell viability. The data indicate a significant role of HDAC11 for mitotic cell cycle progression and survival of MYCN-amplified neuroblastoma cells, and suggests that HDAC11 could be a valuable drug target. PMID:28252645

  11. Dam operations affect route-specific passage and survival of juvenile Chinook salmon at a main-stem diversion dam

    USGS Publications Warehouse

    Perry, Russell W.; Kock, Tobias J.; Couter, Ian I; Garrison, Thomas M; Hubble, Joel D; Child, David B

    2016-01-01

    Diversion dams can negatively affect emigrating juvenile salmon populations because fish must pass through the impounded river created by the dam, negotiate a passage route at the dam and then emigrate through a riverine reach that has been affected by reduced river discharge. To quantify the effects of a main-stem diversion dam on juvenile Chinook salmon in the Yakima River, Washington, USA, we used radio telemetry to understand how dam operations and river discharge in the 18-km reach downstream of the dam affected route-specific passage and survival. We found evidence of direct mortality associated with dam passage and indirect mortality associated with migration through the reach below the dam. Survival of fish passing over a surface spill gate (the west gate) was positively related to river discharge, and survival was similar for fish released below the dam, suggesting that passage via this route caused little additional mortality. However, survival of fish that passed under a sub-surface spill gate (the east gate) was considerably lower than survival of fish released downstream of the dam, with the difference in survival decreasing as river discharge increased. The probability of fish passing the dam via three available routes was strongly influenced by dam operations, with passage through the juvenile fish bypass and the east gate increasing with discharge through those routes. By simulating daily passage and route-specific survival, we show that variation in total survival is driven by river discharge and moderated by the proportion of fish passing through low-survival or high-survival passage routes.

  12. Mathematical Model of Naive T Cell Division and Survival IL-7 Thresholds.

    PubMed

    Reynolds, Joseph; Coles, Mark; Lythe, Grant; Molina-París, Carmen

    2013-01-01

    We develop a mathematical model of the peripheral naive T cell population to study the change in human naive T cell numbers from birth to adulthood, incorporating thymic output and the availability of interleukin-7 (IL-7). The model is formulated as three ordinary differential equations: two describe T cell numbers, in a resting state and progressing through the cell cycle. The third is introduced to describe changes in IL-7 availability. Thymic output is a decreasing function of time, representative of the thymic atrophy observed in aging humans. Each T cell is assumed to possess two interleukin-7 receptor (IL-7R) signaling thresholds: a survival threshold and a second, higher, proliferation threshold. If the IL-7R signaling strength is below its survival threshold, a cell may undergo apoptosis. When the signaling strength is above the survival threshold, but below the proliferation threshold, the cell survives but does not divide. Signaling strength above the proliferation threshold enables entry into cell cycle. Assuming that individual cell thresholds are log-normally distributed, we derive population-average rates for apoptosis and entry into cell cycle. We have analyzed the adiabatic change in homeostasis as thymic output decreases. With a parameter set representative of a healthy individual, the model predicts a unique equilibrium number of T cells. In a parameter range representative of persistent viral or bacterial infection, where naive T cell cycle progression is impaired, a decrease in thymic output may result in the collapse of the naive T cell repertoire.

  13. Improvement of Cell Survival During Human Pluripotent Stem Cell Definitive Endoderm Differentiation

    PubMed Central

    Wang, Han; Luo, Xie; Yao, Li; Lehman, Donna M.

    2015-01-01

    Definitive endoderm (DE) is a vital precursor for internal organs such as liver and pancreas. Efficient protocol to differentiate human embryonic stem cells (hESCs) or induced pluripotent stem cells (iPSCs) to DE is essential for regenerative medicine and for modeling diseases; yet, poor cell survival during DE differentiation remains unsolved. In this study, our use of B27 supplement in modified differentiation protocols has led to a substantial improvement. We used an SOX17-enhanced green fluorescent protein (eGFP) reporter hESC line to compare and modify established DE differentiation protocols. Both total live cell numbers and the percentages of eGFP-positive cells were used to assess differentiation efficiency. Among tested protocols, three modified protocols with serum-free B27 supplement were developed to generate a high number of DE cells. Massive cell death was avoided during DE differentiation and the percentage of DE cells remained high. When the resulting DE cells were further differentiated toward the pancreatic lineage, the expression of pancreatic-specific markers was significantly increased. Similar high DE differentiation efficiency was observed in H1 hESCs and iPSCs through the modified protocols. In B27 components, bovine serum albumin was found to facilitate DE differentiation and cell survival. Using our modified DE differentiation protocols, satisfactory quantities of quality DE can be produced as primary material for further endoderm lineage differentiation. PMID:26132288

  14. Factors affecting breeding season survival of Red-Headed Woodpeckers in South Carolina.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilgo, John, C.; Vukovich, Mark

    2011-11-18

    Red-headed woodpecker (Melanerpes erythrocephalus) populations have declined in the United States and Canada over the past 40 years. However, few demographic studies have been published on the species and none have addressed adult survival. During 2006-2007, we estimated survival probabilities of 80 radio-tagged red-headed woodpeckers during the breeding season in mature loblolly pine (Pinus taeda) forests in South Carolina. We used known-fate models in Program MARK to estimate survival within and between years and to evaluate the effects of foliar cover (number of available cover patches), snag density treatment (high density vs. low density), and sex and age of woodpeckers.more » Weekly survival probabilities followed a quadratic time trend, being lowest during mid-summer, which coincided with the late nestling and fledgling period. Avian predation, particularly by Cooper's (Accipiter cooperii) and sharp-shinned hawks (A. striatus), accounted for 85% of all mortalities. Our best-supported model estimated an 18-week breeding season survival probability of 0.72 (95% CI = 0.54-0.85) and indicated that the number of cover patches interacted with sex of woodpeckers to affect survival; females with few available cover patches had a lower probability of survival than either males or females with more cover patches. At the median number of cover patches available (n = 6), breeding season survival of females was 0.82 (95% CI = 0.54-0.94) and of males was 0.60 (95% CI = 0.42-0.76). The number of cover patches available to woodpeckers appeared in all 3 of our top models predicting weekly survival, providing further evidence that woodpecker survival was positively associated with availability of cover. Woodpecker survival was not associated with snag density. Our results suggest that protection of {ge}0.7 cover patches per ha during vegetation control activities in mature pine forests will benefit survival of this Partners In Flight Watch List species.« less

  15. CXCR7 functions in colon cancer cell survival and migration

    PubMed Central

    WANG, HONGXIAN; TAO, LINYU; QI, KE; ZHANG, HAOYUN; FENG, DUO; WEI, WENJUN; KONG, HENG; CHEN, TIANWEN; LIN, QIUSHENG; CHEN, DAOJIN

    2015-01-01

    C-X-C chemokine receptor 7 (CXCR7) is a known promoter of tumor progression and metastasis; however, little is known about its role in colon cancer. The aim of the present study was to investigate the function of CXCR7 in human colon cancer cells. CXCR7 mRNA levels were examined in HT-29 and SW-480 human colon cancer cell lines using a quantitative polymerase chain reaction. CXCR7-knockdown was performed with small interfering RNA and lentiviral-mediated gene delivery. Immunofluorescence (IF) was conducted to examine CXCR7 expression and localization in colon cancer cells. Cell survival and migration were evaluated using MTT and migration assays, respectively. HT-29 cells expressed higher levels of CXCR7 mRNA and were therefore used in subsequent experiments. IF staining revealed that the CXCR7 protein was expressed on the cell membrane, and its expression decreased following CXCR7-short hairpin RNA lentiviral transfection. Lentiviral CXCR7-knockdown resulted in decreased cell survival and migration; however, MTT assays revealed that the lentiviral vector itself was cytotoxic. This cytotoxicity was indicated as the cell survival of the negative control group cells was significantly decreased compared with that of the blank control group cells (P<0.05). In conclusion, it is becoming increasingly evident that CXCR7 plays a role in colon cancer promotion, suggesting that CXCR7 is a promising biomarker for chemokine receptor-based drug development. Furthermore, the fact that CXCR7 is expressed on the membrane and not intracellularly makes it a prime target for drug-based intervention. PMID:26640542

  16. Extending Human Hematopoietic Stem Cell Survival In Vitro with Adipocytes

    PubMed Central

    Glettig, Dean Liang

    2013-01-01

    Abstract Human hematopoietic stem cells (hHSCs) cannot be maintained in vitro for extended time periods because they rapidly differentiate or die. To extend in vitro culture time, researchers have made attempts to use human mesenchymal stem cells (hMSCs) to create feeder layers that mimic the stem cell niche. We have conducted an array of experiments including adipocytes in these feeder layers that inhibit hHSC differentiation and by that prolong stem cell survival in vitro. The amount of CD34+ cells was quantified using flow cytometry. In a first experiment, feeder layers of undifferentiated hMSCs were compared with feeder layers differentiated toward osteoblasts or adipocytes using minimal medium, showing the highest survival rate where adipocytes were included. The same conclusion was drawn in a second experiment in comparing hMSCs with adipogenic feeder cells, using a culture medium supplemented with a cocktail of hHSC growth factors. In a third experiment, it was shown that direct cell–cell contact is necessary for the supportive effect of the feeder layers. In a fourth and fifth experiment the amount of adipocytes in the feeder layers were varied, and in all experiments a higher amount of adipocytes in the feeder layers showed a less rapid decay of CD34+ cells at later time points. We therefore concluded that adipocytes assist in suppressing hHSC differentiation and aid in prolonging their survival in vitro. PMID:23741628

  17. Discovery of survival factor for primitive chronic myeloid leukemia cells using induced pluripotent stem cells

    PubMed Central

    Suknuntha, Kran; Ishii, Yuki; Tao, Lihong; Hu, Kejin; McIntosh, Brian E.; Yang, David; Swanson, Scott; Stewart, Ron; Wang, Jean Y.J.; Thomson, James; Slukvin, Igor

    2016-01-01

    A definitive cure for chronic myeloid leukemia (CML) requires identifying novel therapeutic targets to eradicate leukemia stem cells (LSCs). However, the rarity of LSCs within the primitive hematopoietic cell compartment remains a major limiting factor for their study in humans. Here we show that primitive hematopoietic cells with typical LSC features, including adhesion defect, increased long-term survival and proliferation, and innate resistance to tyrosine kinase inhibitor (TKI) imatinib, can be generated de novo from reprogrammed primary CML cells. Using CML iPSC-derived primitive leukemia cells, we discovered olfactomedin 4 (OLFM4) as a novel factor that contributes to survival and growth of somatic lin−CD34+ cells from bone marrow of patients with CML in chronic phase, but not primitive hematopoietic cells from normal bone marrow. Overall, this study shows the feasibility and advantages of using reprogramming technology to develop strategies for targeting primitive leukemia cells. PMID:26561938

  18. Metabolic reprogramming ensures cancer cell survival despite oncogenic signaling blockade

    PubMed Central

    Lue, Hui-wen; Podolak, Jennifer; Kolahi, Kevin; Cheng, Larry; Rao, Soumya; Garg, Devin; Xue, Chang-Hui; Rantala, Juha K.; Tyner, Jeffrey W.; Thornburg, Kent L.; Martinez-Acevedo, Ann; Liu, Jen-Jane; Amling, Christopher L.; Truillet, Charles; Louie, Sharon M.; Anderson, Kimberly E.; Evans, Michael J.; O'Donnell, Valerie B.; Nomura, Daniel K.; Drake, Justin M.; Ritz, Anna

    2017-01-01

    There is limited knowledge about the metabolic reprogramming induced by cancer therapies and how this contributes to therapeutic resistance. Here we show that although inhibition of PI3K–AKT–mTOR signaling markedly decreased glycolysis and restrained tumor growth, these signaling and metabolic restrictions triggered autophagy, which supplied the metabolites required for the maintenance of mitochondrial respiration and redox homeostasis. Specifically, we found that survival of cancer cells was critically dependent on phospholipase A2 (PLA2) to mobilize lysophospholipids and free fatty acids to sustain fatty acid oxidation and oxidative phosphorylation. Consistent with this, we observed significantly increased lipid droplets, with subsequent mobilization to mitochondria. These changes were abrogated in cells deficient for the essential autophagy gene ATG5. Accordingly, inhibition of PLA2 significantly decreased lipid droplets, decreased oxidative phosphorylation, and increased apoptosis. Together, these results describe how treatment-induced autophagy provides nutrients for cancer cell survival and identifies novel cotreatment strategies to override this survival advantage. PMID:29138276

  19. Tyrosine kinase receptor EGFR regulates the switch in cancer cells between cell survival and cell death induced by autophagy in hypoxia.

    PubMed

    Chen, Yongqiang; Henson, Elizabeth S; Xiao, Wenyan; Huang, Daniel; McMillan-Ward, Eileen M; Israels, Sara J; Gibson, Spencer B

    2016-06-02

    Autophagy is an intracellular lysosomal degradation pathway where its primary function is to allow cells to survive under stressful conditions. Autophagy is, however, a double-edge sword that can either promote cell survival or cell death. In cancer, hypoxic regions contribute to poor prognosis due to the ability of cancer cells to adapt to hypoxia in part through autophagy. In contrast, autophagy could contribute to hypoxia induced cell death in cancer cells. In this study, we showed that autophagy increased during hypoxia. At 4 h of hypoxia, autophagy promoted cell survival whereas, after 48 h of hypoxia, autophagy increased cell death. Furthermore, we found that the tyrosine phosphorylation of EGFR (epidermal growth factor receptor) decreased after 16 h in hypoxia. Furthermore, EGFR binding to BECN1 in hypoxia was significantly higher at 4 h compared to 72 h. Knocking down or inhibiting EGFR resulted in an increase in autophagy contributing to increased cell death under hypoxia. In contrast, when EGFR was reactivated by the addition of EGF, the level of autophagy was reduced which led to decreased cell death. Hypoxia led to autophagic degradation of the lipid raft protein CAV1 (caveolin 1) that is known to bind and activate EGFR in a ligand-independent manner during hypoxia. By knocking down CAV1, the amount of EGFR phosphorylation was decreased in hypoxia and amount of autophagy and cell death increased. This indicates that the activation of EGFR plays a critical role in the switch between cell survival and cell death induced by autophagy in hypoxia.

  20. Survival of Mycobacterium avium in drinking water biofilms as affected by water flow velocity, availability of phosphorus, and temperature.

    PubMed

    Torvinen, Eila; Lehtola, Markku J; Martikainen, Pertti J; Miettinen, Ilkka T

    2007-10-01

    Mycobacterium avium is a potential pathogen occurring in drinking water systems. It is a slowly growing bacterium producing a thick cell wall containing mycolic acids, and it is known to resist chlorine better than many other microbes. Several studies have shown that pathogenic bacteria survive better in biofilms than in water. By using Propella biofilm reactors, we studied how factors generally influencing the growth of biofilms (flow rate, phosphorus concentration, and temperature) influence the survival of M. avium in drinking water biofilms. The growth of biofilms was followed by culture and DAPI (4',6'-diamidino-2-phenylindole) staining, and concentrations of M. avium were determined by culture and fluorescence in situ hybridization methods. The spiked M. avium survived in biofilms for the 4-week study period without a dramatic decline in concentration. The addition of phosphorus (10 microg/liter) increased the number of heterotrophic bacteria in biofilms but decreased the culturability of M. avium. The reason for this result is probably that phosphorus increased competition with other microbes. An increase in flow velocity had no effect on the survival of M. avium, although it increased the growth of biofilms. A higher temperature (20 degrees C versus 7 degrees C) increased both the number of heterotrophic bacteria and the survival of M. avium in biofilms. In conclusion, the results show that in terms of affecting the survival of slowly growing M. avium in biofilms, temperature is a more important factor than the availability of nutrients like phosphorus.

  1. VEGF improves survival of mesenchymal stem cells in infarcted hearts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pons, Jennifer; Huang Yu; Arakawa-Hoyt, Janice

    2008-11-14

    Bone marrow-derived mesenchymal stem cells (MSC) are a promising source for cell-based treatment of myocardial infarction (MI), but existing strategies are restricted by low cell survival and engraftment. We examined whether vascular endothelial growth factor (VEGF) improve MSC viability in infracted hearts. We found long-term culture increased MSC-cellular stress: expressing more cell cycle inhibitors, p16{sup INK}, p21 and p19{sup ARF}. VEGF treatment reduced cellular stress, increased pro-survival factors, phosphorylated-Akt and Bcl-xL expression and cell proliferation. Co-injection of MSCs with VEGF to MI hearts increased cell engraftment and resulted in better improvement of cardiac function than that injected with MSCs ormore » VEGF alone. In conclusion, VEGF protects MSCs from culture-induce cellular stress and improves their viability in ischemic myocardium, which results in improvements of their therapeutic effect for the treatment of MI.« less

  2. In Vitro Evaluation of the Impact of the Probiotic E. coli Nissle 1917 on Campylobacter jejuni's Invasion and Intracellular Survival in Human Colonic Cells.

    PubMed

    Helmy, Yosra A; Kassem, Issmat I; Kumar, Anand; Rajashekara, Gireesh

    2017-01-01

    Campylobacter jejuni is a leading cause of bacterial food poisoning in humans. Due to the rise in antibiotic-resistant Campylobacter , there exists a need to develop antibiotic-independent interventions to control infections in humans. Here, we evaluated the impact of Escherichia coli Nissle 1917 (EcN), a probiotic strain, on C. jejuni's invasion and intracellular survival in polarized human colonic cells (HT-29). To further understand how EcN mediates its impact, the expression of 84 genes associated with tight junctions and cell adhesion was profiled in HT-29 cells after treatment with EcN and challenge with C. jejuni . The pre-treatment of polarized HT-29 cells with EcN for 4 h showed a significant effect on C. jejuni 's invasion (∼2 log reduction) of the colonic cells. Furthermore, no intracellular C. jejuni were recovered from EcN pre-treated HT-29 cells at 24 h post-infection. Other probiotic strains tested had no significant impact on C. jejuni invasion and intracellular survival. C. jejuni decreased the expression of genes associated with epithelial cells permeability and barrier function in untreated HT-29 cells. However, EcN positively affected the expression of genes that are involved in enhanced intestinal barrier function, decreased cell permeability, and increased tight junction integrity. The results suggest that EcN impedes C. jejuni invasion and subsequent intracellular survival by affecting HT-29 cells barrier function and tight junction integrity. We conclude that EcN might be a viable alternative for controlling C. jejuni infections.

  3. Cytoplasmic vacuolization in cell death and survival

    PubMed Central

    Komissarov, Alexey A.; Rafieva, Lola M.; Kostrov, Sergey V.

    2016-01-01

    Cytoplasmic vacuolization (also called cytoplasmic vacuolation) is a well-known morphological phenomenon observed in mammalian cells after exposure to bacterial or viral pathogens as well as to various natural and artificial low-molecular-weight compounds. Vacuolization often accompanies cell death; however, its role in cell death processes remains unclear. This can be attributed to studying vacuolization at the level of morphology for many years. At the same time, new data on the molecular mechanisms of the vacuole formation and structure have become available. In addition, numerous examples of the association between vacuolization and previously unknown cell death types have been reported. Here, we review these data to make a deeper insight into the role of cytoplasmic vacuolization in cell death and survival. PMID:27331412

  4. Important Role of FTO in the Survival of Rare Panresistant Triple-Negative Inflammatory Breast Cancer Cells Facing a Severe Metabolic Challenge

    PubMed Central

    Singh, Balraj; Kinne, Hannah E.; Milligan, Ryan D.; Washburn, Laura J.; Olsen, Mark; Lucci, Anthony

    2016-01-01

    We have previously shown that only 0.01% cells survive a metabolic challenge involving lack of glutamine in culture medium of SUM149 triple-negative Inflammatory Breast Cancer cell line. These cells, designated as SUM149-MA for metabolic adaptability, are resistant to chemotherapeutic drugs, and they efficiently metastasize to multiple organs in nude mice. We hypothesized that obesity-related molecular networks, which normally help in cellular and organismal survival under metabolic challenges, may help in the survival of MA cells. The fat mass and obesity-associated protein FTO is overexpressed in MA cells. Obesity-associated cis-acting elements in non-coding region of FTO regulate the expression of IRX3 gene, thus activating obesity networks. Here we found that IRX3 protein is significantly overexpressed in MA cells (5 to 6-fold) as compared to the parental SUM149 cell line, supporting our hypothesis. We also obtained evidence that additional key regulators of energy balance such as ARID5B, IRX5, and CUX1 P200 repressor could potentially help progenitor-like TNBC cells survive in glutamine-free medium. MO-I-500, a pharmacological inhibitor of FTO, significantly (>90%) inhibited survival and/or colony formation of SUM149-MA cells as compared to untreated cells or those treated with a control compound MO-I-100. Curiously, MO-I-500 treatment also led to decreased levels of FTO and IRX3 proteins in the SUM149 cells initially surviving in glutamine-free medium as compared to MO-I-100 treatment. Interestingly, MO-I-500 treatment had a relatively little effect on cell growth of either the SUM149 or SUM149-MA cell line when added to a complete medium containing glutamine that does not pose a metabolic challenge. Importantly, once selected and cultured in glutamine-free medium, SUM149-MA cells were no longer affected by MO-I-500 even in Gln-free medium. We conclude that panresistant MA cells contain interconnected molecular networks that govern developmental status and

  5. The Effect of Anatomical Location of Lymph Node Metastases on Cancer Specific Survival in Patients with Clear Cell Renal Cell Carcinoma

    PubMed Central

    Nini, Alessandro; Larcher, Alessandro; Cianflone, Francesco; Trevisani, Francesco; Terrone, Carlo; Volpe, Alessandro; Regis, Federica; Briganti, Alberto; Salonia, Andrea; Montorsi, Francesco; Bertini, Roberto; Capitanio, Umberto

    2018-01-01

    Background Positive nodal status (pN1) is an independent predictor of survival in renal cell carcinoma (RCC) patients. However, no study to date has tested whether the location of lymph node (LN) metastases does affect oncologic outcomes in a population submitted to radical nephrectomy (RN) and extended lymph node dissection (eLND). Objective To describe nodal disease dissemination in clear cell RCC (ccRCC) patients and to assess the effect of the anatomical sites and the number of nodal areas affected on cancer specific mortality (CSM). Design, setting and partecipants The study included 415 patients who underwent RN and eLND, defined as the removal of hilar, side-specific (pre/paraaortic or pre/paracaval) and interaortocaval LNs for ccRCC, at two institutions. Outcome measurement and statistical analysis Descriptive statistics were used to depict nodal dissemination in pN1 patients, stratified according to nodal site and number of involved areas. Multivariable Cox regression analyses and Kaplan-Meier curves were used to explore the relationship between pN1 disease features and survival outcomes. Results and limitations Median number of removed LN was 14 (IQR 9–19); 23% of patients were pN1. Among patients with one involved nodal site, 54 and 26% of patients were positive only in side-specific and interaortocaval station, respectively. The most frequent nodal site was the interaortocaval and side-specific one, for right and left ccRCC, respectively. Interaortocaval nodal positivity (HR 2.3, CI 95%: 1.3–3.9, p < 0.01) represented an independent predictor of CSM. Conclusions When ccRCC patient harbour nodal disease, its spreading can occur at any nodal station without involving the others. The presence of interoartocaval positive nodes does affect oncologic outcomes. Patient summary Lymph node invasion in patients with clear cell renal cell carcinoma is not following a fixed anatomical pattern. An extended lymph node dissection, during treatment for primary

  6. Optimized cell survival and seeding efficiency for craniofacial tissue engineering using clinical stem cell therapy.

    PubMed

    Rajan, Archana; Eubanks, Emily; Edwards, Sean; Aronovich, Sharon; Travan, Suncica; Rudek, Ivan; Wang, Feng; Lanis, Alejandro; Kaigler, Darnell

    2014-12-01

    Traumatic injuries involving the face are very common, yet the clinical management of the resulting craniofacial deficiencies is challenging. These injuries are commonly associated with missing teeth, for which replacement is compromised due to inadequate jawbone support. Using cell therapy, we report the upper jaw reconstruction of a patient who lost teeth and 75% of the supporting jawbone following injury. A mixed population of bone marrow-derived autologous stem and progenitor cells was seeded onto β-tricalcium phosphate (β-TCP), which served as a scaffold to deliver cells directly to the defect. Conditions (temperature, incubation time) to achieve the highest cell survival and seeding efficiency were optimized. Four months after cell therapy, cone beam computed tomography and a bone biopsy were performed, and oral implants were placed to support an engineered dental prosthesis. Cell seeding efficiency (>81%) of the β-TCP and survival during the seeding process (94%) were highest when cells were incubated with β-TCP for 30 minutes, regardless of incubation temperature; however, at 1 hour, cell survival was highest when incubated at 4°C. Clinical, radiographic, and histological analyses confirmed that by 4 months, the cell therapy regenerated 80% of the original jawbone deficiency with vascularized, mineralized bone sufficient to stably place oral implants. Functional and aesthetic rehabilitation of the patient was successfully completed with installation of a dental prosthesis 6 months following implant placement. This proof-of-concept clinical report used an evidence-based approach for the cell transplantation protocol used and is the first to describe a cell therapy for craniofacial trauma reconstruction. ©AlphaMed Press.

  7. The caspase-3/p120 RasGAP stress-sensing module reduces liver cancer incidence but does not affect overall survival in gamma-irradiated and carcinogen-treated mice.

    PubMed

    Vanli, Güliz; Sempoux, Christine; Widmann, Christian

    2017-06-01

    Activation of oncogenes is the initial step in cellular transformation. Oncogenes favor aberrant proliferation, which, at least initially, induces cellular stress. This oncogenic stress can act as a safeguard mechanism against further transformation by inducing senescence or apoptosis. Yet, the few premalignant cells that tolerate and escape these senescent or apoptotic responses are those that will ultimately generate tumors. The caspase-3/p120 RasGAP module is a stress-sensing device that promotes survival under mild stress conditions. A point mutation in RasGAP that prevents its cleavage by caspase-3 inactivates the pro-survival capacity of the device. When the mice homozygous for this mutation (D455A knock-in mice) are patho-physiologically challenged, they experience much stronger cellular damage than their wild-type counterparts and the affected organs rapidly lose their functionality. We reasoned that the caspase-3/p120 RasGAP module could help premalignant cells to cope with oncogenic stress and hence favor the development of tumors. Using gamma-irradiation and N-ethyl-N-nitrosourea (ENU) as tumor initiators, we assessed the survival advantage that the caspase-3/p120 RasGAP module could provide to premalignant cells. No difference in overall mortality between wild-type and D455A knock-in mice were observed. However, the number of ENU-induced liver tumors in the knock-in mice was higher than in control mice. These results indicate that the caspase-3/p120 RasGAP stress-sensing module impacts on carcinogen-induced liver cancer incidence but not sufficiently so as to affect overall survival. Hence, gamma irradiation and ENU-induced tumorigenesis processes do not critically rely on a survival mechanism that contributes to the maintenance of organ homeostasis in stressed healthy tissues. © 2017 Wiley Periodicals, Inc.

  8. Factors affecting survival in neonatal surgery unit in a tertiary care university hospital during 26 years.

    PubMed

    Özden, Önder; Karnak, İbrahim; Çiftçi, Arbay Özden; Tanyel, F Cahit; Şenocak, Mehmet Emin

    2016-01-01

    This clinical study was designed to evaluate mortality rate and the factors that may affect survival in neonatal surgery unit. Randomly chosen 300 (ß: 0.20) patients among 1,439 patients treated in neonatal surgery unit during years 1983 to 2009, were evaluated retrospectively. The patients were separated into three groups according to date of treatment; Group A: 1983 - 1995, Group B: 1996 - 2005 and Group C: 2005 - 2009. M/F ratios did not differ between non-survived and survived patient populations. Mortality rates were 37%, 22% and 13% in Group A, B, and C respectively (p < 0.001). Parenteral nutrition, maternal age, time until admission and gestational age did not affect mortality rate, however median age of newborn was lower in non-survived cases (1 day vs. 3 days, p < 0.001). Associating abnormality, low birth weight ( < 1,500 g), associating sepsis, need of globulin and requirement of respiratory support were determinants of lower survival (p < 0.001). The mortality rate for patients that underwent thoracotomy (42%) and laparotomy (41%) were higher than patients that underwent other operations (8%) and observation (10%) (p < 0.001). Diaphragmatic hernia had higher mortality rates than the other pathologies (p < 0.001). Survival rate is increasing to date in newborn pediatric surgery unit; it is independent from parenteral nutrition, maternal age, time to admission and gestational age however it is affected adversely by the age of patient, associating abnormality, low birth weight, presence of sepsis and requirement of respiratory support. Increase in survival could be related to various additional factors such as development of delicate respiratory support machines, broad spectrum antibiotics, hospital infection control teams, central venous catheters, use of TPN by central route, volume adjustable infusion pumps, monitoring devices, neonatal surgical techniques, prenatal diagnosis of pediatric surgical conditions and developments of environmental control

  9. Doxycycline Enhances Survival and Self-Renewal of Human Pluripotent Stem Cells

    PubMed Central

    Chang, Mi-Yoon; Rhee, Yong-Hee; Yi, Sang-Hoon; Lee, Su-Jae; Kim, Rae-Kwon; Kim, Hyongbum; Park, Chang-Hwan; Lee, Sang-Hun

    2014-01-01

    Summary We here report that doxycycline, an antibacterial agent, exerts dramatic effects on human embryonic stem and induced pluripotent stem cells (hESC/iPSCs) survival and self-renewal. The survival-promoting effect was also manifest in cultures of neural stem cells (NSCs) derived from hESC/iPSCs. These doxycycline effects are not associated with its antibacterial action, but mediated by direct activation of a PI3K-AKT intracellular signal. These findings indicate doxycycline as a useful supplement for stem cell cultures, facilitating their growth and maintenance. PMID:25254347

  10. Hepatocytes and IL-15: a favorable microenvironment for T cell survival and CD8+ T cell differentiation.

    PubMed

    Correia, Margareta P; Cardoso, Elsa M; Pereira, Carlos F; Neves, Rui; Uhrberg, Markus; Arosa, Fernando A

    2009-05-15

    Human intrahepatic lymphocytes are enriched in CD1d-unrestricted T cells coexpressing NKR. Although the origin of this population remains controversial, it is possible to speculate that the hepatic microenvironment, namely epithelial cells or the cytokine milieu, may play a role in its shaping. IL-15 is constitutively expressed in the liver and has a key role in activation and survival of innate and tissue-associated immune cells. In this in vitro study, we examined whether hepatocyte cell lines and/or IL-15 could play a role in the generation of NK-like T cells. The results show that both HepG2 cells and a human immortalized hepatocyte cell line increase survival and drive basal proliferation of T cells. In addition, IL-15 was capable of inducing Ag-independent up-regulation of NKR, including NKG2A, Ig-like receptors, and de novo expression of CD56 and NKp46 in CD8(+)CD56(-) T cells. In conclusion, our study suggests that hepatocytes and IL-15 create a favorable microenvironment for T cells to growth and survive. It can be proposed that the increased percentage of intrahepatic nonclassical NKT cells could be in part due to a local CD8(+) T cell differentiation.

  11. Transplantation of Human Neural Progenitor Cells Expressing IGF-1 Enhances Retinal Ganglion Cell Survival

    PubMed Central

    Guo, Caiwei; Sun, Yu; Liao, Tiffany; Beattie, Ursula; López, Francisco J.; Chen, Dong Feng; Lashkari, Kameran

    2015-01-01

    We have previously characterized human neuronal progenitor cells (hNP) that can adopt a retinal ganglion cell (RGC)-like morphology within the RGC and nerve fiber layers of the retina. In an effort to determine whether hNPs could be used a candidate cells for targeted delivery of neurotrophic factors (NTFs), we evaluated whether hNPs transfected with an vector that expresses IGF-1 in the form of a fusion protein with tdTomato (TD), would increase RGC survival in vitro and confer neuroprotective effects in a mouse model of glaucoma. RGCs co-cultured with hNPIGF-TD cells displayed enhanced survival, and increased neurite extension and branching as compared to hNPTD or untransfected hNP cells. Application of various IGF-1 signaling blockers or IGF-1 receptor antagonists abrogated these effects. In vivo, using a model of glaucoma we showed that IOP elevation led to reductions in retinal RGC count. In this model, evaluation of retinal flatmounts and optic nerve cross sections indicated that only hNPIGF-TD cells effectively reduced RGC death and showed a trend to improve optic nerve axonal loss. RT-PCR analysis of retina lysates over time showed that the neurotrophic effects of IGF-1 were also attributed to down-regulation of inflammatory and to some extent, angiogenic pathways. This study shows that neuronal progenitor cells that hone into the RGC and nerve fiber layers may be used as vehicles for local production and delivery of a desired NTF. Transplantation of hNPIGF-TD cells improves RGC survival in vitro and protects against RGC loss in a rodent model of glaucoma. Our findings have provided experimental evidence and form the basis for applying cell-based strategies for local delivery of NTFs into the retina. Application of cell-based delivery may be extended to other disease conditions beyond glaucoma. PMID:25923430

  12. PERK Signal-Modulated Protein Translation Promotes the Survivability of Dengue 2 Virus-Infected Mosquito Cells and Extends Viral Replication.

    PubMed

    Hou, Jiun-Nan; Chen, Tien-Huang; Chiang, Yi-Hsuan; Peng, Jing-Yun; Yang, Tsong-Han; Cheng, Chih-Chieh; Sofiyatun, Eny; Chiu, Cheng-Hsun; Chiang-Ni, Chuan; Chen, Wei-June

    2017-09-20

    Survival of mosquitoes from dengue virus (DENV) infection is a prerequisite of viral transmission to the host. This study aimed to see how mosquito cells can survive the infection during prosperous replication of the virus. In C6/36 cells, global protein translation was shut down after infection by DENV type 2 (DENV2). However, it returned to a normal level when infected cells were treated with an inhibitor of the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway. Based on a 7-Methylguanosine 5'-triphosphate (m7GTP) pull-down assay, the eukaryotic translation initiation factor 4F (eIF4F) complex was also identified in DENV2-infected cells. This suggests that most mosquito proteins are synthesized via canonical cap-dependent translation. When the PERK signal pathway was inhibited, both accumulation of reactive oxygen species and changes in the mitochondrial membrane potential increased. This suggested that ER stress response was alleviated through the PERK-mediated shutdown of global proteins in DENV2-infected C6/36 cells. In the meantime, the activities of caspases-9 and -3 and the apoptosis-related cell death rate increased in C6/36 cells with PERK inhibition. This reflected that the PERK-signaling pathway is involved in determining cell survival, presumably by reducing DENV2-induced ER stress. Looking at the PERK downstream target, α-subunit of eukaryotic initiation factor 2 (eIF2α), an increased phosphorylation status was only shown in infected C6/36 cells. This indicated that recruitment of ribosome binding to the mRNA 5'-cap structure could have been impaired in cap-dependent translation. It turned out that shutdown of cellular protein translation resulted in a pro-survival effect on mosquito cells in response to DENV2 infection. As synthesis of viral proteins was not affected by the PERK signal pathway, an alternate mode other than cap-dependent translation may be utilized. This finding provides insights into elucidating how the PERK signal

  13. PERK Signal-Modulated Protein Translation Promotes the Survivability of Dengue 2 Virus-Infected Mosquito Cells and Extends Viral Replication

    PubMed Central

    Hou, Jiun-Nan; Chen, Tien-Huang; Chiang, Yi-Hsuan; Peng, Jing-Yun; Yang, Tsong-Han; Cheng, Chih-Chieh; Sofiyatun, Eny; Chiu, Cheng-Hsun; Chiang-Ni, Chuan; Chen, Wei-June

    2017-01-01

    Survival of mosquitoes from dengue virus (DENV) infection is a prerequisite of viral transmission to the host. This study aimed to see how mosquito cells can survive the infection during prosperous replication of the virus. In C6/36 cells, global protein translation was shut down after infection by DENV type 2 (DENV2). However, it returned to a normal level when infected cells were treated with an inhibitor of the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway. Based on a 7-Methylguanosine 5′-triphosphate (m7GTP) pull-down assay, the eukaryotic translation initiation factor 4F (eIF4F) complex was also identified in DENV2-infected cells. This suggests that most mosquito proteins are synthesized via canonical cap-dependent translation. When the PERK signal pathway was inhibited, both accumulation of reactive oxygen species and changes in the mitochondrial membrane potential increased. This suggested that ER stress response was alleviated through the PERK-mediated shutdown of global proteins in DENV2-infected C6/36 cells. In the meantime, the activities of caspases-9 and -3 and the apoptosis-related cell death rate increased in C6/36 cells with PERK inhibition. This reflected that the PERK-signaling pathway is involved in determining cell survival, presumably by reducing DENV2-induced ER stress. Looking at the PERK downstream target, α-subunit of eukaryotic initiation factor 2 (eIF2α), an increased phosphorylation status was only shown in infected C6/36 cells. This indicated that recruitment of ribosome binding to the mRNA 5′-cap structure could have been impaired in cap-dependent translation. It turned out that shutdown of cellular protein translation resulted in a pro-survival effect on mosquito cells in response to DENV2 infection. As synthesis of viral proteins was not affected by the PERK signal pathway, an alternate mode other than cap-dependent translation may be utilized. This finding provides insights into elucidating how the PERK

  14. Cell death versus cell survival instructed by supramolecular cohesion of nanostructures

    NASA Astrophysics Data System (ADS)

    Newcomb, Christina J.; Sur, Shantanu; Ortony, Julia H.; Lee, One-Sun; Matson, John B.; Boekhoven, Job; Yu, Jeong Min; Schatz, George C.; Stupp, Samuel I.

    2014-02-01

    Many naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. Although the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood. Here we report that varying the cohesive forces within nanofibres of supramolecular materials with nearly identical cationic and hydrophobic structure instruct cell death or cell survival. Weak intermolecular bonds promote cell death through disruption of lipid membranes, while materials reinforced by hydrogen bonds support cell viability. These findings provide new strategies to design biomaterials that interact with the cell membrane.

  15. Erythropoietin Augments Survival of Glioma Cells After Radiation and Temozolomide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hassouna, Imam; Sperling, Swetlana; Kim, Ella

    2008-11-01

    Purpose: Despite beneficial effects of irradiation/chemotherapy on survival of glioblastoma (GBM) patients, collateral damage to intact neural tissue leads to 'radiochemobrain' and reduced quality of life in survivors. For prophylactic neuroprotection, erythropoietin (EPO) is a promising candidate, provided that concerns regarding potential tumor promoting effects are alleviated. Methods and Materials: Human GBM-derived cell lines U87, G44, G112, and the gliosarcoma-derived line G28 were treated with EPO, with and without combinations of irradiation or temozolomide (TMZ). Responsiveness of glioma cells to EPO was measured by cell migration from spheroids, cell proliferation, and clonogenic survival. Implantation of U87 cells into brains ofmore » nude mice, followed 5 days later by EPO treatment (5,000 U/kg intraperitoneal every other day for 2 weeks) should reveal effects of EPO on tumor growth in vivo. Reverse transcriptase-polymerase chain reaction was performed for EPOR, HIF-1{alpha}, and epidermal growth factor receptor (EGFR)vIII in cell lines and 22 human GBM specimens. Results: EPO did not modulate basal glioma cell migration and stimulated proliferation in only one of four cell lines. Importantly, EPO did not enhance tumor growth in mouse brains. Preincubation of glioma cells with EPO for 3 h, followed by irradiation and TMZ for another 24 h, resulted in protection against chemoradiation-induced cytotoxicity in three cell lines. Conversely, EPO induced a dose-dependent decrease in survival of G28 gliosarcoma cells. In GBM specimens, expression of HIF-1{alpha} correlated positively with expression of EPOR and EGFRvIII. EPOR and EGFRvIII expression did not correlate. Conclusions: EPO is unlikely to appreciably influence basal glioma growth. However, concomitant use of EPO with irradiation/chemotherapy in GBM patients is not advisable.« less

  16. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.

    PubMed

    Zhao, Yu; Li, Yang; Mao, Shuangshuang; Sun, Wei; Yao, Rui

    2015-11-02

    Three-dimensional (3D) cell printing technology has provided a versatile methodology to fabricate cell-laden tissue-like constructs and in vitro tissue/pathological models for tissue engineering, drug testing and screening applications. However, it still remains a challenge to print bioinks with high viscoelasticity to achieve long-term stable structure and maintain high cell survival rate after printing at the same time. In this study, we systematically investigated the influence of 3D cell printing parameters, i.e. composition and concentration of bioink, holding temperature and holding time, on the printability and cell survival rate in microextrusion-based 3D cell printing technology. Rheological measurements were utilized to characterize the viscoelasticity of gelatin-based bioinks. Results demonstrated that the bioink viscoelasticity was increased when increasing the bioink concentration, increasing holding time and decreasing holding temperature below gelation temperature. The decline of cell survival rate after 3D cell printing process was observed when increasing the viscoelasticity of the gelatin-based bioinks. However, different process parameter combinations would result in the similar rheological characteristics and thus showed similar cell survival rate after 3D bioprinting process. On the other hand, bioink viscoelasticity should also reach a certain point to ensure good printability and shape fidelity. At last, we proposed a protocol for 3D bioprinting of temperature-sensitive gelatin-based hydrogel bioinks with both high cell survival rate and good printability. This research would be useful for biofabrication researchers to adjust the 3D bioprinting process parameters quickly and as a referable template for designing new bioinks.

  17. MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells

    PubMed Central

    Brito, Jose L.R.; Walker, Brian; Jenner, Matthew; Dickens, Nicholas J.; Brown, Nicola J.M.; Ross, Fiona M.; Avramidou, Athanasia; Irving, Julie A.E.; Gonzalez, David; Davies, Faith E.; Morgan, Gareth J.

    2009-01-01

    Background The recurrent immunoglobulin translocation, t(4;14)(p16;q32) occurs in 15% of multiple myeloma patients and is associated with poor prognosis, through an unknown mechanism. The t(4;14) up-regulates fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET domain (MMSET) genes. The involvement of MMSET in the pathogenesis of t(4;14) multiple myeloma and the mechanism or genes deregulated by MMSET upregulation are still unclear. Design and Methods The expression of MMSET was analyzed using a novel antibody. The involvement of MMSET in t(4;14) myelomagenesis was assessed by small interfering RNA mediated knockdown combined with several biological assays. In addition, the differential gene expression of MMSET-induced knockdown was analyzed with expression microarrays. MMSET gene targets in primary patient material was analyzed by expression microarrays. Results We found that MMSET isoforms are expressed in multiple myeloma cell lines, being exclusively up-regulated in t(4;14)-positive cells. Suppression of MMSET expression affected cell proliferation by both decreasing cell viability and cell cycle progression of cells with the t(4;14) translocation. These findings were associated with reduced expression of genes involved in the regulation of cell cycle progression (e.g. CCND2, CCNG1, BRCA1, AURKA and CHEK1), apoptosis (CASP1, CASP4 and FOXO3A) and cell adhesion (ADAM9 and DSG2). Furthermore, we identified genes involved in the latter processes that were differentially expressed in t(4;14) multiple myeloma patient samples. Conclusions In conclusion, dysregulation of MMSET affects the expression of several genes involved in the regulation of cell cycle progression, cell adhesion and survival. PMID:19059936

  18. The Bruton tyrosine kinase inhibitor PCI-32765 thwarts chronic lymphocytic leukemia cell survival and tissue homing in vitro and in vivo

    PubMed Central

    Ponader, Sabine; Chen, Shih-Shih; Buggy, Joseph J.; Balakrishnan, Kumudha; Gandhi, Varsha; Wierda, William G.; Keating, Michael J.; O'Brien, Susan; Chiorazzi, Nicholas

    2012-01-01

    B-cell receptor (BCR) signaling is a critical pathway in the pathogenesis of several B-cell malignancies, including chronic lymphocytic leukemia (CLL), and can be targeted by inhibitors of BCR-associated kinases, such as Bruton tyrosine kinase (Btk). PCI-32765, a selective, irreversible Btk inhibitor, is a novel, molecularly targeted agent for patients with B-cell malignancies, and is particularly active in patients with CLL. In this study, we analyzed the mechanism of action of PCI-32765 in CLL, using in vitro and in vivo models, and performed correlative studies on specimens from patients receiving therapy with PCI-32765. PCI-32765 significantly inhibited CLL cell survival, DNA synthesis, and migration in response to tissue homing chemokines (CXCL12, CXCL13). PCI-32765 also down-regulated secretion of BCR-dependent chemokines (CCL3, CCL4) by the CLL cells, both in vitro and in vivo. In an adoptive transfer TCL1 mouse model of CLL, PCI-32765 affected disease progression. In this model, PCI-32765 caused a transient early lymphocytosis, and profoundly inhibited CLL progression, as assessed by weight, development, and extent of hepatospenomegaly, and survival. Our data demonstrate that PCI-32765 effectively inhibits CLL cell migration and survival, possibly explaining some of the characteristic clinical activity of this new targeted agent. PMID:22180443

  19. SU-E-T-427: Cell Surviving Fractions Derived From Tumor-Volume Variation During Radiotherapy for Non-Small Cell Lung Cancer: Comparison with Predictive Assays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, A; Schwartz, J; Mayr, N

    2014-06-01

    Purpose: To show that a distribution of cell surviving fractions S{sub 2} in a heterogeneous group of patients can be derived from tumor-volume variation curves during radiotherapy for non-small cell lung cancer. Methods: Our analysis was based on two data sets of tumor-volume variation curves for heterogeneous groups of 17 patients treated for nonsmall cell lung cancer with conventional dose fractionation. The data sets were obtained previously at two independent institutions by using megavoltage (MV) computed tomography (CT). Statistical distributions of cell surviving fractions S{sup 2} and cell clearance half-lives of lethally damaged cells T1/2 have been reconstructed in eachmore » patient group by using a version of the two-level cell population tumor response model and a simulated annealing algorithm. The reconstructed statistical distributions of the cell surviving fractions have been compared to the distributions measured using predictive assays in vitro. Results: Non-small cell lung cancer presents certain difficulties for modeling surviving fractions using tumor-volume variation curves because of relatively large fractional hypoxic volume, low gradient of tumor-volume response, and possible uncertainties due to breathing motion. Despite these difficulties, cell surviving fractions S{sub 2} for non-small cell lung cancer derived from tumor-volume variation measured at different institutions have similar probability density functions (PDFs) with mean values of 0.30 and 0.43 and standard deviations of 0.13 and 0.18, respectively. The PDFs for cell surviving fractions S{sup 2} reconstructed from tumor volume variation agree with the PDF measured in vitro. Comparison of the reconstructed cell surviving fractions with patient survival data shows that the patient survival time decreases as the cell surviving fraction increases. Conclusion: The data obtained in this work suggests that the cell surviving fractions S{sub 2} can be reconstructed from the tumor

  20. Bit-1 Mediates Integrin-dependent Cell Survival through Activation of the NFκB Pathway*

    PubMed Central

    Griffiths, Genevieve S.; Grundl, Melanie; Leychenko, Anna; Reiter, Silke; Young-Robbins, Shirley S.; Sulzmaier, Florian J.; Caliva, Maisel J.; Ramos, Joe W.; Matter, Michelle L.

    2011-01-01

    Loss of properly regulated cell death and cell survival pathways can contribute to the development of cancer and cancer metastasis. Cell survival signals are modulated by many different receptors, including integrins. Bit-1 is an effector of anoikis (cell death due to loss of attachment) in suspended cells. The anoikis function of Bit-1 can be counteracted by integrin-mediated cell attachment. Here, we explored integrin regulation of Bit-1 in adherent cells. We show that knockdown of endogenous Bit-1 in adherent cells decreased cell survival and re-expression of Bit-1 abrogated this effect. Furthermore, reduction of Bit-1 promoted both staurosporine and serum-deprivation induced apoptosis. Indeed knockdown of Bit-1 in these cells led to increased apoptosis as determined by caspase-3 activation and positive TUNEL staining. Bit-1 expression protected cells from apoptosis by increasing phospho-IκB levels and subsequently bcl-2 gene transcription. Protection from apoptosis under serum-free conditions correlated with bcl-2 transcription and Bcl-2 protein expression. Finally, Bit-1-mediated regulation of bcl-2 was dependent on focal adhesion kinase, PI3K, and AKT. Thus, we have elucidated an integrin-controlled pathway in which Bit-1 is, in part, responsible for the survival effects of cell-ECM interactions. PMID:21383007

  1. A Hyaluronan-Based Injectable Hydrogel Improves the Survival and Integration of Stem Cell Progeny following Transplantation.

    PubMed

    Ballios, Brian G; Cooke, Michael J; Donaldson, Laura; Coles, Brenda L K; Morshead, Cindi M; van der Kooy, Derek; Shoichet, Molly S

    2015-06-09

    The utility of stem cells and their progeny in adult transplantation models has been limited by poor survival and integration. We designed an injectable and bioresorbable hydrogel blend of hyaluronan and methylcellulose (HAMC) and tested it with two cell types in two animal models, thereby gaining an understanding of its general applicability for enhanced cell distribution, survival, integration, and functional repair relative to conventional cell delivery in saline. HAMC improves cell survival and integration of retinal stem cell (RSC)-derived rods in the retina. The pro-survival mechanism of HAMC is ascribed to the interaction of the CD44 receptor with HA. Transient disruption of the retinal outer limiting membrane, combined with HAMC delivery, results in significantly improved rod survival and visual function. HAMC also improves the distribution, viability, and functional repair of neural stem and progenitor cells (NSCs). The HAMC delivery system improves cell transplantation efficacy in two CNS models, suggesting broad applicability. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Does cochlear implantation and electrical stimulation affect residual hair cells and spiral ganglion neurons?

    PubMed Central

    Coco, Anne; Epp, Stephanie B.; Fallon, James B.; Xu, Jin; Millard, Rodney E.; Shepherd, Robert K.

    2007-01-01

    Increasing numbers of cochlear implant subjects have some level of residual hearing at the time of implantation. The present study examined whether (i) hair cells that have survived one pathological insult (aminoglycoside deafening), can survive and function following long-term cochlear implantation and electrical stimulation (ES); and (ii) chronic ES in these cochleae results in greater trophic support of spiral ganglion neurons (SGNs) compared with cochleae devoid of hair cells. Eight cats, with either partial (n=4) or severe (n=4) sensorineural hearing loss, were bilaterally implanted with scala tympani electrode arrays 2 months after deafening, and received unilateral ES using charge balanced biphasic current pulses for periods of up to 235 days. Frequency-specific compound action potentials and click-evoked auditory brainstem responses (ABRs) were recorded periodically to monitor the residual acoustic hearing. Electrically-evoked ABRs (EABRs) were recorded to confirm the stimulus levels were 3-6 dB above the EABR threshold. On completion of the ES program the cochleae were examined histologically. Partially deafened animals showed no significant increase in acoustic thresholds over the implantation period. Moreover, chronic ES of an electrode array located in the base of the cochlea did not adversely affect hair cells in the middle or apical turns. There was evidence of a small but statistically significant rescue of SGNs in the middle and apical turns of stimulated cochleae in animals with partial hearing. Chronic ES did not, however, prevent a reduction in SGN density for the severely deaf cohort, although SGNs adjacent to the stimulating electrodes did exhibit a significant increase in soma area (p<0.01). In sum, chronic ES in partial hearing animals does not adversely affect functioning residual hair cells apical to the electrode array. Moreover, while there is an increase in the soma area of SGNs close to the stimulating electrodes in severely deaf

  3. Stress-triggered signaling affecting survival or suicide of Streptococcus pneumoniae.

    PubMed

    Cortes, Paulo R; Piñas, Germán E; Cian, Melina B; Yandar, Nubia; Echenique, Jose

    2015-01-01

    Streptococcus pneumoniae is a major human pathogen that can survive to stress conditions, such as the acidic environment of inflammatory foci, and tolerates lethal pH through a mechanism known as the acid tolerance response. We previously described that S. pneumoniae activates acidic-stress induced lysis in response to acidified environments, favoring the release of cell wall compounds, DNA and virulence factors. Here, we demonstrate that F(0)F(1)-ATPase is involved in the response to acidic stress. Chemical inhibitors (DCCD, optochin) of this proton pump repressed the ATR induction, but caused an increased ASIL. Confirming these findings, mutants of the subunit c of this enzyme showed the same phenotypes as inhibitors. Importantly, we demonstrated that F(0)F(1)-ATPase and ATR are necessary for the intracellular survival of the pneumococcus in macrophages. Alternatively, a screening of two-component system (TCS) mutants showed that ATR and survival in pneumocytes were controlled in contrasting ways by ComDE and CiaRH, which had been involved in the ASIL mechanism. Briefly, CiaRH was essential for ATR (ComE represses activation) whereas ComE was necessary for ASIL (CiaRH protects against induction). They did not regulate F0F1-ATPase expression, but control LytA expression on the pneumococcal surface. These results suggest that both TCSs and F(0)F(1)-ATPase control a stress response and decide between a survival or a suicide mechanism by independent pathways, either in vitro or in pneumocyte cultures. This biological model contributes to the current knowledge about bacterial response under stress conditions in host tissues, where pathogens need to survive in order to establish infections. Copyright © 2014 Elsevier GmbH. All rights reserved.

  4. Neutron-energy-dependent cell survival and oncogenic transformation.

    PubMed

    Miller, R C; Marino, S A; Martin, S G; Komatsu, K; Geard, C R; Brenner, D J; Hall, E J

    1999-12-01

    Both cell lethality and neoplastic transformation were assessed for C3H10T1/2 cells exposed to neutrons with energies from 0.040 to 13.7 MeV. Monoenergetic neutrons with energies from 0.23 to 13.7 MeV and two neutron energy spectra with average energies of 0.040 and 0.070 MeV were produced with a Van de Graaff accelerator at the Radiological Research Accelerator Facility (RARAF) in the Center for Radiological Research of Columbia University. For determination of relative biological effectiveness (RBE), cells were exposed to 250 kVp X rays. With exposures to 250 kVp X rays, both cell survival and radiation-induced oncogenic transformation were curvilinear. Irradiation of cells with neutrons at all energies resulted in linear responses as a function of dose for both biological endpoints. Results indicate a complex relationship between RBEm and neutron energy. For both survival and transformation, RBEm was greatest for cells exposed to 0.35 MeV neutrons. RBEm was significantly less at energies above or below 0.35 MeV. These results are consistent with microdosimetric expectation. These results are also compatible with current assessments of neutron radiation weighting factors for radiation protection purposes. Based on calculations of dose-averaged LET, 0.35 MeV neutrons have the greatest LET and therefore would be expected to be more biologically effective than neutrons of greater or lesser energies.

  5. The radiosensitivity of a murine fibrosarcoma as measured by three cell survival assays.

    PubMed Central

    Rice, L.; Urano, M.; Suit, H. D.

    1980-01-01

    The radiation sensitivity of a weakly immunogenic spontaneous fibrosarcoma of the C3Hf/Sed mouse (designated FSa-II) was assessed by three in vivo cell survival methods: end-point dilution (TD50) assay, lung colony (LC) assay, and agar diffusion chamber (ADC) assay. The hypoxic fraction of this tumour was also determined by the ADC method. Although there was a good agreement of the cell survival data between the ADC and LC methods, the TD50 method yielded a considerably less steep cell survival curve. Beneficial aspects and limitations of each assay are discussed. In addition, the use of the ADC method for the growth of xenogeneic cell lines and a preliminary experiment with human tumour cells in non-immunosuppressed hosts suggest that this method may be a valuable adjunct for studying the growth and therapeutic responses of human tumour cells. PMID:6932931

  6. CEACAM1 induces B-cell survival and is essential for protective antiviral antibody production

    PubMed Central

    Khairnar, Vishal; Duhan, Vikas; Maney, Sathish Kumar; Honke, Nadine; Shaabani, Namir; Pandyra, Aleksandra A.; Seifert, Marc; Pozdeev, Vitaly; Xu, Haifeng C.; Sharma, Piyush; Baldin, Fabian; Marquardsen, Florian; Merches, Katja; Lang, Elisabeth; Kirschning, Carsten; Westendorf, Astrid M.; Häussinger, Dieter; Lang, Florian; Dittmer, Ulf; Küppers, Ralf; Recher, Mike; Hardt, Cornelia; Scheffrahn, Inka; Beauchemin, Nicole; Göthert, Joachim R.; Singer, Bernhard B.; Lang, Philipp A.; Lang, Karl S.

    2015-01-01

    B cells are essential for antiviral immune defence because they produce neutralizing antibodies, present antigen and maintain the lymphoid architecture. Here we show that intrinsic signalling of CEACAM1 is essential for generating efficient B-cell responses. Although CEACAM1 exerts limited influence on the proliferation of B cells, expression of CEACAM1 induces survival of proliferating B cells via the BTK/Syk/NF-κB-axis. The absence of this signalling cascade in naive Ceacam1−/− mice limits the survival of B cells. During systemic infection with cytopathic vesicular stomatitis virus, Ceacam1−/− mice can barely induce neutralizing antibody responses and die early after infection. We find, therefore, that CEACAM1 is a crucial regulator of B-cell survival, influencing B-cell numbers and protective antiviral antibody responses. PMID:25692415

  7. CXCR4 engagement promotes dendritic cell survival and maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabashima, Kenji; Sugita, Kazunari; Shiraishi, Noriko

    2007-10-05

    It has been reported that human monocyte derived-dendritic cells (DCs) express CXCR4, responsible for chemotaxis to CXCL12. However, it remains unknown whether CXCR4 is involved in other functions of DCs. Initially, we found that CXCR4 was expressed on bone marrow-derived DCs (BMDCs). The addition of specific CXCR4 antagonist, 4-F-Benzoyl-TN14003, to the culture of mouse BMDCs decreased their number, especially the mature subset of them. The similar effect was found on the number of Langerhans cells (LCs) but not keratinocytes among epidermal cell suspensions. Since LCs are incapable of proliferating in vitro, these results indicate that CXCR4 engagement is important formore » not only maturation but also survival of DCs. Consistently, the dinitrobenzene sulfonic acid-induced, antigen-specific in vitro proliferation of previously sensitized lymph node cells was enhanced by CXCL12, and suppressed by CXCR4 antagonist. These findings suggest that CXCL12-CXCR4 engagement enhances DC maturation and survival to initiate acquired immune response.« less

  8. FBXW7 expression affects the response to chemoradiotherapy and overall survival among patients with oral squamous cell carcinoma: A single-center retrospective study.

    PubMed

    Arita, Hidetaka; Nagata, Masashi; Yoshida, Ryoji; Matsuoka, Yuichiro; Hirosue, Akiyuki; Kawahara, Kenta; Sakata, Junki; Nakashima, Hikaru; Kojima, Taku; Toya, Ryo; Murakami, Ryuji; Hiraki, Akimitsu; Shinohara, Masanori; Nakayama, Hideki

    2017-10-01

    FBXW7 (F-box and WD repeat domain containing-7) is a tumor suppressor protein that regulates the degradation of various oncoproteins in several malignancies. However, limited information is available regarding FBXW7 expression in oral squamous cell carcinoma. Therefore, this study aimed to determine the clinical significance of FBXW7 expression in oral squamous cell carcinoma. The FBXW7 expression patterns in oral squamous cell carcinoma and adjacent normal tissues from 15 patients who underwent radical resection were evaluated using quantitative real-time polymerase chain reaction and immunohistochemical staining. In addition, immunohistochemistry was performed using paraffin-embedded sections from biopsy specimens obtained from 110 patients with oral squamous cell carcinoma who underwent surgery after 5 fluorouracil-based chemoradiotherapy. The associations of FBXW7 expression with various clinicopathological features and prognosis were evaluated in these patients. As a results, in the 15 matched samples, the FBXW7 expression was significantly decreased in the oral squamous cell carcinoma tissues compared to that in the adjacent normal tissues. In the clinicopathological analysis, compared to high protein expression, low FBXW7 expression was found to significantly associate with a poor histological response to preoperative chemoradiotherapy. Kaplan-Meier curve analysis revealed that low FBXW7 expression was significantly associated with a poor prognosis, and FBXW7 expression was found to be an independent predictor of overall survival in the multivariate analysis. Our results suggest that FBXW7 may function as a tumor suppressor protein in oral squamous cell carcinoma. In addition, FBXW7 could be a potential biomarker for predicting not only the clinical response to chemoradiotherapy but also overall survival in patients with oral squamous cell carcinoma.

  9. Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion.

    PubMed

    Cheng, Wei-Hung; Huang, Kuo-Yang; Huang, Po-Jung; Hsu, Jo-Hsuan; Fang, Yi-Kai; Chiu, Cheng-Hsun; Tang, Petrus

    2015-07-25

    Iron plays a pivotal role in the pathogenesis of Trichomonas vaginalis, the causative agent of highly prevalent human trichomoniasis. T. vaginalis resides in the vaginal region, where the iron concentration is constantly changing. Hence, T. vaginalis must adapt to variations in iron availability to establish and maintain an infection. The free radical signaling molecules reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been proven to participate in iron deficiency in eukaryotes. However, little is known about the roles of these molecules in iron-deficient T. vaginalis. T. vaginalis cultured in iron-rich and -deficient conditions were collected for all experiments in this study. Next generation RNA sequencing was conducted to investigate the impact of iron on transcriptome of T. vaginalis. The cell viabilities were monitored after the trophozoites treated with the inhibitors of nitric oxide (NO) synthase (L-NG-monomethyl arginine, L-NMMA) and proteasome (MG132). Hydrogenosomal membrane potential was measured using JC-1 staining. We demonstrated that NO rather than ROS accumulates in iron-deficient T. vaginalis. The level of NO was blocked by MG132 and L-NMMA, indicating that NO production is through a proteasome and arginine dependent pathway. We found that the inhibition of proteasome activity shortened the survival of iron-deficient cells compared with untreated iron-deficient cells. Surprisingly, the addition of arginine restored both NO level and the survival of proteasome-inhibited cells, suggesting that proteasome-derived NO is crucial for cell survival under iron-limited conditions. Additionally, NO maintains the hydrogenosomal membrane potential, a determinant for cell survival, emphasizing the cytoprotective effect of NO on iron-deficient T. vaginalis. Collectively, we determined that NO produced by the proteasome prolonged the survival of iron-deficient T. vaginalis via maintenance of the hydrogenosomal functions. The findings in this

  10. Dendritic Cells in Kidney Transplant Biopsy Samples Are Associated with T Cell Infiltration and Poor Allograft Survival

    PubMed Central

    De Serres, Sacha A.; Safa, Kassem; Bijol, Vanesa; Ueno, Takuya; Onozato, Maristela L.; Iafrate, A. John; Herter, Jan M.; Lichtman, Andrew H.; Mayadas, Tanya N.; Guleria, Indira; Rennke, Helmut G.; Najafian, Nader; Chandraker, Anil

    2015-01-01

    Progress in long-term renal allograft survival continues to lag behind the progress in short-term transplant outcomes. Dendritic cells are the most efficient antigen-presenting cells, but surprisingly little attention has been paid to their presence in transplanted kidneys. We used dendritic cell–specific intercellular adhesion molecule-3–grabbing nonintegrin as a marker of dendritic cells in 105 allograft biopsy samples from 105 kidney transplant recipients. High dendritic cell density was associated with poor allograft survival independent of clinical variables. Moreover, high dendritic cell density correlated with greater T cell proliferation and poor outcomes in patients with high total inflammation scores, including inflammation in areas of tubular atrophy. We then explored the association between dendritic cells and histologic variables associated with poor prognosis. Multivariate analysis revealed an independent association between the densities of dendritic cells and T cells. In biopsy samples with high dendritic cell density, electron microscopy showed direct physical contact between infiltrating lymphocytes and cells that have the ultrastructural morphologic characteristics of dendritic cells. The origin of graft dendritic cells was sought in nine sex-mismatched recipients using XY fluorescence in situ hybridization. Whereas donor dendritic cells predominated initially, the majority of dendritic cells in late allograft biopsy samples were of recipient origin. Our data highlight the prognostic value of dendritic cell density in allograft biopsy samples, suggest a new role for these cells in shaping graft inflammation, and provide a rationale for targeting dendritic cell recruitment to promote long-term allograft survival. PMID:25855773

  11. Merkel Cell Carcinoma: A Population Analysis on Survival.

    PubMed

    Sridharan, Vishwajith; Muralidhar, Vinayak; Margalit, Danielle N; Tishler, Roy B; DeCaprio, James A; Thakuria, Manisha; Rabinowits, Guilherme; Schoenfeld, Jonathan D

    2016-10-01

    Merkel cell carcinoma (MCC) is an aggressive cutaneous malignancy. However, factors associated with disease presentation and outcomes remain uncertain, especially in light of recent changes in workup, such as sentinel lymph node biopsy. Therefore, this study used the SEER database to examine factors that could affect stage at presentation and treatment. We identified 4,543 patients and evaluated associations between sex, race, age, primary disease site, disease presentation, and treatment. We also used univariate and multivariate analyses to examine the effect of these factors on disease-specific survival (DSS) and overall survival (OS). We specifically conducted subgroup analyses on a more modern cohort of patients with MCC treated between 2006 and 2012. Male sex, older age, larger tumor size, and primary tumors of the scalp, neck, or trunk were associated with a higher burden of nodal disease. Multivariate predictors of worse DSS/OS in both the recent and overall cohort included age older than 75 years, number of lymph nodes involved, tumors greater than 5 cm, metastatic disease, or lack of radiation therapy. The number of involved nodes was the best predictor of DSS/OS. Associations with radiation therapy were most pronounced in patients with nodal disease and those not undergoing surgery. Sex, age, tumor size, and primary site of disease correlated with burden of nodal disease in MCC. Associations between disease presentation and treatment strategies such as radiation and DSS and OS have remained relatively constant in the modern era from 2006 to 2012 compared with findings from prior studies. Copyright © 2016 by the National Comprehensive Cancer Network.

  12. Bronchoalveolar carcinoma: clinical, radiologic, and pathologic factors and survival.

    PubMed

    Okubo, K; Mark, E J; Flieder, D; Wain, J C; Wright, C D; Moncure, A C; Grillo, H C; Mathisen, D J

    1999-10-01

    The principal feature of bronchoalveolar carcinoma is that it spreads along airways or aerogenously with multifocality, but many issues are unresolved. We studied 119 patients with pathologically confirmed bronchoalveolar carcinoma. Symptoms, smoking status, radiologic findings, the size of tumor, operative procedures, and complications were reviewed. We studied the pathologic features: presence or absence of aerogenous spread, patterns of growth, cell type, nuclear grade, mitosis, rate of bronchoalveolar carcinoma in adenocarcinoma, and lymphocyte infiltration. The correlation among clinical, radiologic, and pathologic findings was examined, and the factors affecting survival were analyzed. Symptomatic patients had more infiltrative radiographic features, and asymptomatic patients tended to have more mass-like features (P <.0001). Tumors with radiographically infiltrating lesions tended to have mucinous histologic features (P =.006). Tumors with mass lesions by radiograph tended to have nonmucinous and sclerosing histologic features (P =.003). Aerogenous spread was seen in 94% of specimens. The presence of a variety of cell types suggested multiple clonal origin. The overall survival in those patients undergoing resection was 69.1% at 5 years and 56.5% at 10 years. The significant factors affecting survival were radiologic presence of a mass or infiltrate, pathologic findings of the presence of sclerosis, association with a scar, the rate of bronchoalveolar carcinoma in adenocarcinoma, lymphocyte infiltration grade, nodal involvement, and status of complete resection. Mitosis or nuclear grade of tumor cells did not correlate with survival. Bronchoalveolar carcinoma showed good overall survival with appropriate surgical procedures. Certain radiologic or pathologic findings correlated with survival. These findings may enhance the ability to predict long-term survival.

  13. Longitudinal monitoring adipose-derived stem cell survival by PET imaging hexadecyl-4-{sup 124}I-iodobenzoate in rat myocardial infarction model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min Hwan; School of Life Sciences and Biotechnology, Korea University, Seoul; Woo, Sang-Keun

    Highlights: • We developed a safe, simple and appropriate stem cell labeling method with {sup 124}I-HIB. • ADSC survival can be monitored with PET in MI model via direct labeling. • Tracking of ADSC labeled with {sup 124}I-HIB was possible for 3 days in MI model using PET. • ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. • Survival of ADSC in living bodies can be longitudinally tracked with PET imaging. - Abstract: This study aims to monitor how the change of cell survival of transplanted adipose-derived stem cells (ADSCs) responds to myocardial infarction (MI) via themore » hexadecyl-4-{sup 124}I-iodobenzoate ({sup 124}I-HIB) mediated direct labeling method in vivo. Stem cells have shown the potential to improve cardiac function after MI. However, monitoring of the fate of transplanted stem cells at target sites is still unclear. Rat ADSCs were labeled with {sup 124}I-HIB, and radiolabeled ADSCs were transplanted into the myocardium of normal and MI model. In the group of {sup 124}I-HIB-labeled ADSC transplantation, in vivo imaging was performed using small-animal positron emission tomography (PET)/computed tomography (CT) for 9 days. Twenty-one days post-transplantation, histopathological analysis and apoptosis assay were performed. ADSC viability and differentiation were not affected by {sup 124}I-HIB labeling. In vivo tracking of the {sup 124}I-HIB-labeled ADSCs was possible for 9 and 3 days in normal and MI model, respectively. Apoptosis of transplanted cells increased in the MI model compared than that in normal model. We developed a direct labeling agent, {sup 124}I-HIB, and first tried to longitudinally monitor transplanted stem cell to MI. This approach may provide new insights on the roles of stem cell monitoring in living bodies for stem cell therapy from pre-clinical studies to clinical trials.« less

  14. The effects of exercise and stress on the survival and maturation of adult-generated granule cells

    PubMed Central

    Snyder, Jason S.; Glover, Lucas R.; Sanzone, Kaitlin M.; Kamhi, J. Frances; Cameron, Heather A.

    2009-01-01

    Stress strongly inhibits proliferation of granule cell precursors in the dentate gyrus, while voluntary running has the opposite effect. Few studies, however, have examined the possible effects of these environmental manipulations on the maturation and survival of young granule cells. We examined number of surviving granule cells and the proportion of young neurons that were functionally mature, as defined by seizure-induced immediate-early gene expression, in 14 and 21 day-old granule cells in mice that were given access to a running wheel, restrained daily for 2 hours, or given no treatment during this period. Importantly, treatments began two days after BrdU injection, to isolate effects on survival from those on cell proliferation. We found a large increase in granule cell survival in running mice compared with controls at both time points. In addition, running increased the proportion of granule cells expressing the immediate-early gene Arc in response to seizures, suggesting that it speeds incorporation into circuits, i.e., functional maturation. Stressed mice showed no change in Arc expression, compared to control animals, but, surprisingly, showed a transient increase in survival of 14-day-old granule cells, which was gone 7 days later. Examination of cell proliferation, using the endogenous mitotic marker proliferating cell nuclear antigen (PCNA) showed an increase in cell proliferation after 12 days of running but not after 19 days of running. The number of proliferating cells was unchanged 24 hours after the 12th or 19th episode of daily restraint stress. These findings demonstrate that running has strong effects on survival and maturation of young granule cells as well as their birth and that stress can have positive but short-lived effects on granule cell survival. PMID:19156854

  15. Discovery of FDA-Approved Drugs that Promote Retinal Cell Survival or Regeneration

    DTIC Science & Technology

    2015-10-01

    1 AD______________ AWARD NUMBER: W81XWH-14-1-0407 TITLE:Discovery of FDA-Approved Drugs that Promote Retinal Cell Survival or Regeneration...SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-14-1-0407Discovery of FDA-Approved Drugs that Promote Retinal Cell Survival or Regeneration 5c...vivo drug discovery platform named Automated Reporter Quantification in vivo (ARQiv). ARQiv quantifies reporter activity in transgenic zebrafish at

  16. Surgery for brain metastases: An analysis of outcomes and factors affecting survival.

    PubMed

    Sivasanker, Masillamany; Madhugiri, Venkatesh S; Moiyadi, Aliasgar V; Shetty, Prakash; Subi, T S

    2018-05-01

    For patients who develop brain metastases from solid tumors, age, KPS, primary tumor status and presence of extracranial metastases have been identified as prognostic factors. However, the factors that affect survival in patients who are deemed fit to undergo resection of brain metastases have not been clearly elucidated hitherto. This is a retrospective analysis of a prospectively maintained database. All patients who underwent resection of intracranial metastases from solid tumors were included. Various patient, disease and treatment related factors were analyzed to assess their impact on survival. Overall, 124 patients had undergone surgery for brain metastases from various primary sites. The median age and pre-operative performance score were 53 years and 80 respectively. Synchronous metastases were resected in 17.7% of the patients. The postoperative morbidity and mortality rates were 17.7% and 2.4% respectively. Adjuvant whole brain radiation was received by 64 patients. At last follow-up, 8.1% of patients had fresh post-surgical neurologic deficits. The median progression free and overall survival were 6.91 was 8.56 months respectively. Surgical resection of for brain metastases should be considered in carefully selected patients. Gross total resection and receiving adjuvant whole brain RT significantly improves survival in these patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Myocilin Regulates Cell Proliferation and Survival*

    PubMed Central

    Joe, Myung Kuk; Kwon, Heung Sun; Cojocaru, Radu; Tomarev, Stanislav I.

    2014-01-01

    Myocilin, a causative gene for open angle glaucoma, encodes a secreted glycoprotein with poorly understood functions. To gain insight into its functions, we produced a stably transfected HEK293 cell line expressing myocilin under an inducible promoter and compared gene expression profiles between myocilin-expressing and vector control cell lines by a microarray analysis. A significant fraction of differentially expressed genes in myocilin-expressing cells was associated with cell growth and cell death, suggesting that myocilin may have a role in the regulation of cell growth and survival. Increased proliferation of myocilin-expressing cells was demonstrated by the WST-1 proliferation assay, direct cell counting, and immunostaining with antibodies against Ki-67, a cellular proliferation marker. Myocilin-containing conditioned medium also increased proliferation of unmodified HEK293 cells. Myocilin-expressing cells were more resistant to serum starvation-induced apoptosis than control cells. TUNEL-positive apoptotic cells were dramatically decreased, and two apoptotic marker proteins, cleaved caspase 7 and cleaved poly(ADP-ribose) polymerase, were significantly reduced in myocilin-expressing cells as compared with control cells under apoptotic conditions. In addition, myocilin-deficient mesenchymal stem cells exhibited reduced proliferation and enhanced susceptibility to serum starvation-induced apoptosis as compared with wild-type mesenchymal stem cells. Phosphorylation of ERK1/2 and its upstream kinases, c-Raf and MEK, was increased in myocilin-expressing cells compared with control cells. Elevated phosphorylation of ERK1/2 was also observed in the trabecular meshwork of transgenic mice expressing 6-fold higher levels of myocilin when compared with their wild-type littermates. These results suggest that myocilin promotes cell proliferation and resistance to apoptosis via the ERK1/2 MAPK signaling pathway. PMID:24563482

  18. Notch-1-PTEN-ERK1/2 signaling axis promotes HER2+ breast cancer cell proliferation and stem cell survival.

    PubMed

    Baker, Andrew; Wyatt, Debra; Bocchetta, Maurizio; Li, Jun; Filipovic, Aleksandra; Green, Andrew; Peiffer, Daniel S; Fuqua, Suzanne; Miele, Lucio; Albain, Kathy S; Osipo, Clodia

    2018-05-10

    Trastuzumab targets the HER2 receptor on breast cancer cells to attenuate HER2-driven tumor growth. However, resistance to trastuzumab-based therapy remains a major clinical problem for women with HER2+ breast cancer. Breast cancer stem cells (BCSCs) are suggested to be responsible for drug resistance and tumor recurrence. Notch signaling has been shown to promote BCSC survival and self-renewal. Trastuzumab-resistant cells have increased Notch-1 expression. Notch signaling drives cell proliferation in vitro and is required for tumor recurrence in vivo. We demonstrate herein a mechanism by which Notch-1 is required for trastuzumab resistance by repressing PTEN expression to contribute to activation of ERK1/2 signaling. Furthermore, Notch-1-mediated inhibition of PTEN is necessary for BCSC survival in vitro and in vivo. Inhibition of MEK1/2-ERK1/2 signaling in trastuzumab-resistant breast cancer cells mimics effects of Notch-1 knockdown on bulk cell proliferation and BCSC survival. These findings suggest that Notch-1 contributes to trastuzumab resistance by repressing PTEN and this may lead to hyperactivation of ERK1/2 signaling. Furthermore, high Notch-1 and low PTEN mRNA expression may predict poorer overall survival in women with breast cancer. Notch-1 protein expression predicts poorer survival in women with HER2+ breast cancer. These results support a potential future clinical trial combining anti-Notch-1 and anti-MEK/ERK therapy for trastuzumab-resistant breast cancer.

  19. TRPM8 is required for survival and radioresistance of glioblastoma cells

    PubMed Central

    Klumpp, Dominik; Frank, Stephanie C.; Klumpp, Lukas; Sezgin, Efe C.; Eckert, Marita; Edalat, Lena; Bastmeyer, Martin; Zips, Daniel; Ruth, Peter; Huber, Stephan M.

    2017-01-01

    TRPM8 is a Ca2+-permeable nonselective cation channel belonging to the melastatin sub-group of the transient receptor potential (TRP) family. TRPM8 is aberrantly overexpressed in a variety of tumor entities including glioblastoma multiforme where it reportedly contributes to tumor invasion. The present study aimed to disclose further functions of TRPM8 in glioma biology in particular upon cell injury by ionizing radiation. To this end, TCGA data base was queried to expose the TRPM8 mRNA abundance in human glioblastoma specimens and immunoblotting was performed to analyze the TRPM8 protein abundance in primary cultures of human glioblastoma. Moreover, human glioblastoma cell lines were irradiated with 6 MV photons and TRPM8 channels were targeted pharmacologically or by RNA interference. TRPM8 abundance, Ca2+ signaling and resulting K+ channel activity, chemotaxis, cell migration, clonogenic survival, DNA repair, apoptotic cell death, and cell cycle control were determined by qRT-PCR, fura-2 Ca2+ imaging, patch-clamp recording, transfilter migration assay, wound healing assay, colony formation assay, immunohistology, flow cytometry, and immunoblotting. As a result, human glioblastoma upregulates TRPM8 channels to variable extent. TRPM8 inhibition or knockdown slowed down cell migration and chemotaxis, attenuated DNA repair and clonogenic survival, triggered apoptotic cell death, impaired cell cycle and radiosensitized glioblastoma cells. Mechanistically, ionizing radiation activated and upregulated TRPM8-mediated Ca2+ signaling that interfered with cell cycle control probably via CaMKII, cdc25C and cdc2. Combined, our data suggest that TRPM8 channels contribute to spreading, survival and radioresistance of human glioblastoma and, therefore, might represent a promising target in future anti-glioblastoma therapy. PMID:29221175

  20. Personality and morphological traits affect pigeon survival from raptor attacks.

    PubMed

    Santos, Carlos D; Cramer, Julia F; Pârâu, Liviu G; Miranda, Ana C; Wikelski, Martin; Dechmann, Dina K N

    2015-10-22

    Personality traits have recently been shown to impact fitness in different animal species, potentially making them similarly relevant drivers as morphological and life history traits along the evolutionary pathways of organisms. Predation is a major force of natural selection through its deterministic effects on individual survival, but how predation pressure has helped to shape personality trait selection, especially in free-ranging animals, remains poorly understood. We used high-precision GPS tracking to follow whole flocks of homing pigeons (Columba livia) with known personalities and morphology during homing flights where they were severely predated by raptors. This allowed us to determine how the personality and morphology traits of pigeons may affect their risk of being predated by raptors. Our survival model showed that individual pigeons, which were more tolerant to human approach, slower to escape from a confined environment, more resistant to human handling, with larger tarsi, and with lighter plumage, were more likely to be predated by raptors. We provide rare empirical evidence that the personality of prey influences their risk of being predated under free-ranging circumstances.

  1. Personality and morphological traits affect pigeon survival from raptor attacks

    PubMed Central

    Santos, Carlos D.; Cramer, Julia F.; Pârâu, Liviu G.; Miranda, Ana C.; Wikelski, Martin; Dechmann, Dina K. N.

    2015-01-01

    Personality traits have recently been shown to impact fitness in different animal species, potentially making them similarly relevant drivers as morphological and life history traits along the evolutionary pathways of organisms. Predation is a major force of natural selection through its deterministic effects on individual survival, but how predation pressure has helped to shape personality trait selection, especially in free-ranging animals, remains poorly understood. We used high-precision GPS tracking to follow whole flocks of homing pigeons (Columba livia) with known personalities and morphology during homing flights where they were severely predated by raptors. This allowed us to determine how the personality and morphology traits of pigeons may affect their risk of being predated by raptors. Our survival model showed that individual pigeons, which were more tolerant to human approach, slower to escape from a confined environment, more resistant to human handling, with larger tarsi, and with lighter plumage, were more likely to be predated by raptors. We provide rare empirical evidence that the personality of prey influences their risk of being predated under free-ranging circumstances. PMID:26489437

  2. IGFBP2 promotes glioma tumor stem cell expansion and survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsieh, David, E-mail: dhs.zfs@gmail.com; Hsieh, Antony; Stea, Baldassarre

    2010-06-25

    IGFBP2 is overexpressed in the most common brain tumor, glioblastoma (GBM), and its expression is inversely correlated to GBM patient survival. Previous reports have demonstrated a role for IGFBP2 in glioma cell invasion and astrocytoma development. However, the function of IGFBP2 in the restricted, self-renewing, and tumorigenic GBM cell population comprised of tumor-initiating stem cells has yet to be determined. Herein we demonstrate that IGFBP2 is overexpressed within the stem cell compartment of GBMs and is integral for the clonal expansion and proliferative properties of glioma stem cells (GSCs). In addition, IGFBP2 inhibition reduced Akt-dependent GSC genotoxic and drug resistance.more » These results suggest that IGFBP2 is a selective malignant factor that may contribute significantly to GBM pathogenesis by enriching for GSCs and mediating their survival. Given the current dearth of selective molecular targets against GSCs, we anticipate our results to be of high therapeutic relevance in combating the rapid and lethal course of GBM.« less

  3. Early recovery of T-cell function predicts improved survival after T-cell depleted allogeneic transplant.

    PubMed

    Goldberg, Jenna D; Zheng, Junting; Ratan, Ravin; Small, Trudy N; Lai, Kuan-Chi; Boulad, Farid; Castro-Malaspina, Hugo; Giralt, Sergio A; Jakubowski, Ann A; Kernan, Nancy A; O'Reilly, Richard J; Papadopoulos, Esperanza B; Young, James W; van den Brink, Marcel R M; Heller, Glenn; Perales, Miguel-Angel

    2017-08-01

    Infection, relapse, and GVHD can complicate allogeneic hematopoietic stem cell transplantation (allo-HSCT). Although the effect of poor immune recovery on infection risk is well-established, there are limited data on the effect of immune reconstitution on relapse and survival, especially following T-cell depletion (TCD). To characterize the pattern of immune reconstitution in the first year after transplant and its effects on survival and relapse, we performed a retrospective study in 375 recipients of a myeloablative TCD allo-HSCT for hematologic malignancies. We noted that different subsets recover sequentially, CD8 + T cells first, followed by total CD4 + and naïve CD4 + T cells, indicating thymic recovery during the first year after HSCT. In the multivariate model, a fully HLA-matched donor and recovery of T-cell function, assessed by PHA response at 6 months, were the only factors independently associated with OS and EFS. In conclusion, T-cell recovery is an important predictor of outcome after TCD allo-HSCT.

  4. ROCK inhibitor Y-27632 enhances the survivability of dissociated buffalo (Bubalus bubalis) embryonic stem cell-like cells.

    PubMed

    Sharma, Ruchi; George, Aman; Chauhan, Manmohan S; Singla, Suresh; Manik, Radhey S; Palta, Prabhat

    2013-01-01

    This study investigated the effects of supplementation of culture medium with 10 μM Y-27632, a specific inhibitor of Rho kinase activity, for 6 days on self-renewal of buffalo embryonic stem (ES) cell-like cells at Passage 50-80. Y-27632 increased mean colony area (P<0.05) although it did not improve their survival. It decreased OCT4 expression (P<0.05), increased NANOG expression (P<0.05), but had no effect on SOX2 expression. It also increased expression of anti-apoptotic gene BCL-2 (P<0.05) and decreased that of pro-apoptotic genes BAX and BID (P<0.05). It increased plating efficiency of single-cell suspensions of ES cells (P<0.05). Following vitrification, the presence of Y-27632 in the vitrification solution or thawing medium or both did not improve ES cell colony survival. However, following seeding of clumps of ES cells transfected with pAcGFP1N1 carrying green fluorescent protein (GFP), Y-27632 increased colony formation rate (P<0.01). ES cell colonies that formed in all Y-27632-supplemented groups were confirmed for expression of pluripotency markers alkaline phosphatase, SSEA-4 and TRA-1-60, and for their ability to generate embryoid bodies containing cells that expressed markers of ectoderm, mesoderm and endoderm. In conclusion, Y-27632 improves survival of buffalo ES cells under unfavourable conditions such as enzymatic dissociation to single cells or antibiotic-assisted selection after transfection, without compromising their pluripotency.

  5. Pyroglutamic acid promotes survival of retinal ganglion cells after optic nerve injury.

    PubMed

    Oono, Shinichirou; Kurimoto, Takuji; Nakazawa, Toru; Miyoshi, Tomomitsu; Okamoto, Norio; Kashimoto, Ryosuke; Tagami, Yuichi; Ito, Yoshimasa; Mimura, Osamu

    2009-07-01

    To determine whether pyroglutamic acid (PGA) enhances the survival of retinal ganglion cells (RGCs) after optic nerve (ON) transection in vivo and RGCs in culture. The RGCs of rats were retrogradely labeled by Fluorogold (FG)-soaked sponges placed on both superior colliculi. Seven days later, the ON was transected, and PGA was immediately injected into the vitreous. Seven or fourteen days later, the number of FG-labeled RGCs was counted on flat-mounted retinas to obtain the mean densities of FG-labeled RGCs. To determine whether the survival effect of PGA was related to excitatory amino acid transporter (EAAT), L-trans-pyrrolidine-2,4 dicarboxylate (PDC), a nonselective glutamate transport inhibitor, was injected into vitreous with the PGA. In primary retinal cultures, RGCs were identified as cells that were immunopositive to beta III tubulin three days after beginning the culture with and without PDC. The mean density of FG-labeled RGCs was reduced from 2249 +/- 210 to 920 +/- 202 cells/mm(2) (p < 0.001) on day 7 after the ON transection. The mean density RGCs was significantly higher at 1213 +/- 159 cells/mm(2) after 0.5% PGA injection immediately after the ON transaction than eyes injected with the vehicle at 1007 +/- 122 cells/mm(2) (p = 0.035). One percent PGA was the most effective concentration for survival-promoting effects on RGCs, and the mean density of the RGCs was 1464 +/- 102/mm(2) (p < 0.001). Fourteen days after 1% PGA, the mean density of FG-labeled RGCs was significantly higher than that with vehicle (204 +/- 23/mm(2) versus 145 +/- 17 cells/mm(2); p < 0.01). Simultaneous application of 1% PGA and PDC blocked the survival effects of PGA on day 7 after ON transection. The presence of PGA increased the number of beta III tubulin-positive cells. PGA promotes the survival of axotomized RGCs in adult mammalian retinas possibly mediated by the EAATs.

  6. Key role of dual specificity kinase TTK in proliferation and survival of pancreatic cancer cells

    PubMed Central

    Kaistha, B P; Honstein, T; Müller, V; Bielak, S; Sauer, M; Kreider, R; Fassan, M; Scarpa, A; Schmees, C; Volkmer, H; Gress, T M; Buchholz, M

    2014-01-01

    Background: Pancreatic ductal adenocarcinoma (PDAC) is among the most aggressive human malignancies with an overall 5-year survival rate of <5%. Despite significant advances in treatment of the disease during the past decade, the median survival rate (∼6 months) has hardly improved, warranting the need to identify novel targets for therapeutic approaches. Methods: Quantitative real time PCR, western blot analyses and immunohistochemical staining of tissue microarrays were used to analyse the expression of TTK gene in primary PDAC tissues and cell lines. To inhibit TTK kinase expression in a variety of pancreatic cancer cell lines, RNA interference was used. Functional roles of this kinase in the context of PDAC were studied using cell proliferation, viability and anchorage-independent growth assays. Western blotting, fluorescence-activated cell sorting analyses and fluorescence microscopy were used to gain mechanistic insight into the functional effects. Conclusions: We show that the dual specificity kinase TTK (also known as Mps1), is strongly overexpressed in human PDAC. Functionally, cell proliferation was significantly attenuated following TTK knockdown, whereas apoptosis and necrosis rates were significantly increased. In addition, anchorage-independent growth, a hallmark of malignant transformation and metastatic potential, was strongly impaired in the absence of TTK gene function. Interestingly, immortalised normal pancreatic hTERT-HPNE cells were not affected by loss of TTK function. Mechanistically, these effects in cancer cells were associated with increased formation of micronuclei, suggesting that loss of TTK function in pancreatic cancer cells results in chromosomal instability and mitotic catastrophe. Taken together, our data show that TTK function is critical for growth and proliferation of pancreatic cancer cells, thus establishing this kinase as an interesting new target for novel therapeutic approaches in combating this malignancy. PMID:25137017

  7. Propolis Augments Apoptosis Induced by Butyrate via Targeting Cell Survival Pathways

    PubMed Central

    Drago, Eric; Bordonaro, Michael; Lee, Seon; Atamna, Wafa; Lazarova, Darina L.

    2013-01-01

    Diet is one of the major lifestyle factors affecting incidence of colorectal cancer (CC), and despite accumulating evidence that numerous diet-derived compounds modulate CC incidence, definitive dietary recommendations are not available. We propose a strategy that could facilitate the design of dietary supplements with CC-preventive properties. Thus, nutrient combinations that are a source of apoptosis-inducers and inhibitors of compensatory cell proliferation pathways (e.g., AKT signaling) may produce high levels of programmed death in CC cells. Here we report the combined effect of butyrate, an apoptosis inducer that is produced through fermentation of fiber in the colon, and propolis, a honeybee product, on CC cells. We established that propolis increases the apoptosis of CC cells exposed to butyrate through suppression of cell survival pathways such as the AKT signaling. The programmed death of CC cells by combined exposure to butyrate and propolis is further augmented by inhibition of the JNK signaling pathway. Analyses on the contribution of the downstream targets of JNK signaling, c-JUN and JAK/STAT, to the apoptosis of butyrate/propolis-treated CC cells ascertained that JAK/STAT signaling has an anti-apoptotic role; whereas, the role of cJUN might be dependent upon regulatory cell factors. Thus, our studies ascertained that propolis augments apoptosis of butyrate-sensitive CC cells and re-sensitizes butyrate-resistant CC cells to apoptosis by suppressing AKT signaling and downregulating the JAK/STAT pathway. Future in vivo studies should evaluate the CC-preventive potential of a dietary supplement that produces high levels of colonic butyrate, propolis, and diet-derived JAK/STAT inhibitors. PMID:24023824

  8. Curcumin targets FOLFOX-surviving colon cancer cells via inhibition of EGFRs and IGF-1R.

    PubMed

    Patel, Bhaumik B; Gupta, Deepshika; Elliott, Althea A; Sengupta, Vivek; Yu, Yingjie; Majumdar, Adhip P N

    2010-02-01

    Curcumin (diferuloylmethane), which has no discernible toxicity, inhibits initiation, promotion and progression of carcinogenesis. 5-Fluorouracil (5-FU) or 5-FU plus oxaliplatin (FOLFOX) remains the backbone of colorectal cancer chemotherapeutics, but produces an incomplete response resulting in survival of cells (chemo-surviving cells) that may lead to cancer recurrence. The present investigation was, therefore, undertaken to examine whether addition of curcumin to FOLFOX is a superior therapeutic strategy for chemo-surviving cells. Forty-eight-hour treatment of colon cancer HCT-116 and HT-29 cells with FOLFOX resulted in 60-70% survival, accompanied by a marked activation of insulin like growth factor-1 receptor (IGF-1R) and minor to moderate increase in epidermal growth factor receptor (EGFR), v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (HER-2) as well as v-akt murine thymoma viral oncogene homolog 1 (AKT), cyclooxygenase-2 (COX-2) and cyclin-D1. However, inclusion of curcumin to continued FOLFOX treatment for another 48 h greatly reduced the survival of these cells, accompanied by a concomitant reduction in activation of EGFR, HER-2, IGF-1R and AKT, as well as expression of COX-2 and cyclin-D1. More importantly, EGFR tyrosine kinase inhibitor gefitinib or attenuation of IGF-1R expression by the corresponding si-RNA caused a 30-60% growth inhibition of chemo-surviving HCT-116 cells. However, curcumin alone was found to be more effective than both gefitinib and IGF-1R si-RNA mediated growth inhibition of chemo-surviving HCT-116 cells and addition of FOLFOX to curcumin did not increase the growth inhibitory effect of curcumin. Our data suggest that inclusion of curcumin in conventional chemotherapeutic regimens could be an effective strategy to prevent the emergence of chemoresistant colon cancer cells.

  9. Toll-like receptor signaling in cell proliferation and survival

    PubMed Central

    Li, Xinyan; Jiang, Song; Tapping, Richard I.

    2009-01-01

    Toll-like receptors (TLRs) are important sensors of foreign microbial components as well as products of damaged or inflamed self tissues. Upon sensing these molecules, TLRs initiate a series of downstream signaling events that drive cellular responses including the production of cytokines, chemokines and other inflammatory mediators. This outcome results from the intracellular assembly of protein complexes that drive phosphorylation and other signaling cascades ultimately leading to chromatin remodeling and transcription factor activation. In addition to driving inflammatory responses, TLRs also regulate cell proliferation and survival which serves to expand useful immune cells and integrate inflammatory responses and tissue repair processes. In this context, central TLR signaling molecules, such as the mitogen-activated protein kinases (MAPK) and phosphoinositide 3-kinase (PI3K), play key roles. In addition, four major groups of transcription factors which are targets of TLR activation also control cell fate. This review focuses on the role of TLR signaling as it relates to cell proliferation and survival. This topic not only has important implications for understanding host defense and tissue repair, but also cancer which is often associated with conditions of chronic inflammation. PMID:19775907

  10. Protein kinase C and calcineurin cooperatively mediate cell survival under compressive mechanical stress.

    PubMed

    Mishra, Ranjan; van Drogen, Frank; Dechant, Reinhard; Oh, Soojung; Jeon, Noo Li; Lee, Sung Sik; Peter, Matthias

    2017-12-19

    Cells experience compressive stress while growing in limited space or migrating through narrow constrictions. To survive such stress, cells reprogram their intracellular organization to acquire appropriate mechanical properties. However, the mechanosensors and downstream signaling networks mediating these changes remain largely unknown. Here, we have established a microfluidic platform to specifically trigger compressive stress, and to quantitatively monitor single-cell responses of budding yeast in situ. We found that yeast senses compressive stress via the cell surface protein Mid2 and the calcium channel proteins Mid1 and Cch1, which then activate the Pkc1/Mpk1 MAP kinase pathway and calcium signaling, respectively. Genetic analysis revealed that these pathways work in parallel to mediate cell survival. Mid2 contains a short intracellular tail and a serine-threonine-rich extracellular domain with spring-like properties, and both domains are required for mechanosignaling. Mid2-dependent spatial activation of the Pkc1/Mpk1 pathway depolarizes the actin cytoskeleton in budding or shmooing cells, thereby antagonizing polarized growth to protect cells under compressive stress conditions. Together, these results identify a conserved signaling network responding to compressive mechanical stress, which, in higher eukaryotes, may ensure cell survival in confined environments.

  11. Protein kinase A inhibitor, H89, enhances survival and clonogenicity of dissociated human embryonic stem cells through Rho-associated coiled-coil containing protein kinase (ROCK) inhibition.

    PubMed

    Zhang, Liang; Xu, Yanqing; Xu, Jiandong; Wei, Yuping; Xu, Xia

    2016-04-01

    Can cell survival of dissociated human embryonic stem cells (hESCs) be increased during culture? A protein kinase A (PKA) inhibitor, H89, can significantly enhance survival and clonogenicity of dissociated hESCs without affecting their pluripotency. hESCs are vulnerable to massive cell death upon cellular detachment and dissociation. hESCs were dissociated into single cells and then cultured in feeder-dependent and -independent manners. H89 was added to the culture medium at different concentrations for 1 day. The statistical results were obtained from at least three independent experiments (n ≥ 4). The group without treatment was used as the negative control. 4 µM H89 was added in the culture medium to promote cell survival and colony formation of dissociated hESCs. MTT method and propidium iodide (PI) staining were used to determine cell proliferation, cell death and cell cycle, respectively. To count colony formation, alkaline phosphatase (AP) staining was carried out. Western blot was performed to determine protein expression. Except AP staining, immunofluorescence, RT-PCR and karyotype analysis were used to confirm the pluripotent state of H89 treated hESCs. H89 inhibits the dissociation-induced phosphorylation of PKA and two substrates of Rho-associated coiled-coil containing protein kinase (ROCK), myosin light chain (MLC2) and myosin phosphatase target subunit 1 (MYPT1), significantly increases cell survival and colony formation, and strongly depresses dissociation-induced cell death and cell blebbing without affecting the pluripotency of hESCs and their differentiation in vitro. Appropriate H89 concentration should be used and 1 day of H89 treatment is sufficient for promoting survival and colony formation of dissociated hESCs. These results provide an alternative for human pluripotent stem cell (hPSC) culture, broaden the scope of participants in the cell death of single hES cells after dissociation and further enlighten clues to understand the

  12. Genitourinary mast cells and survival

    PubMed Central

    Stewart, Julia M.

    2015-01-01

    Mast cells (MCs) are ubiquitous in the body, but they have historically been associated with allergies, and most recently with regulation of immunity and inflammation. However, it remains a puzzle why so many MCs are located in the diencephalon, which regulates emotions and in the genitourinary tract, including the bladder, prostate, penis, vagina and uterus that hardly ever get allergic reactions. A number of papers have reported that MCs have estrogen, gonadotropin and corticotropin-releasing hormone (CRH) receptors. Moreover, animal experiments have shown that diencephalic MCs increase in number during courting in doves. We had reported that allergic stimulation of nasal MCs leads to hypothalamic-pituitary adrenal (HPA) activation. Interestingly, anecdotal information indicates that female patients with mastocytosis or mast cell activation syndrome may have increased libido. Preliminary evidence also suggests that MCs may have olfactory receptors. MCs may, therefore, have been retained phylogenetically not only to “smell danger”, but to promote survival and procreation. PMID:26813805

  13. Genitourinary mast cells and survival.

    PubMed

    Theoharides, Theoharis C; Stewart, Julia M

    2015-10-01

    Mast cells (MCs) are ubiquitous in the body, but they have historically been associated with allergies, and most recently with regulation of immunity and inflammation. However, it remains a puzzle why so many MCs are located in the diencephalon, which regulates emotions and in the genitourinary tract, including the bladder, prostate, penis, vagina and uterus that hardly ever get allergic reactions. A number of papers have reported that MCs have estrogen, gonadotropin and corticotropin-releasing hormone (CRH) receptors. Moreover, animal experiments have shown that diencephalic MCs increase in number during courting in doves. We had reported that allergic stimulation of nasal MCs leads to hypothalamic-pituitary adrenal (HPA) activation. Interestingly, anecdotal information indicates that female patients with mastocytosis or mast cell activation syndrome may have increased libido. Preliminary evidence also suggests that MCs may have olfactory receptors. MCs may, therefore, have been retained phylogenetically not only to "smell danger", but to promote survival and procreation.

  14. PBRM1 and VHL expression correlate in human clear cell renal cell carcinoma with differential association with patient's overall survival.

    PubMed

    Högner, Anica; Krause, Hans; Jandrig, Burkhard; Kasim, Mumtaz; Fuller, Tom Florian; Schostak, Martin; Erbersdobler, Andreas; Patzak, Andreas; Kilic, Ergin

    2018-03-01

    To identify the clinicopathological association of PBRM1 (Polybromo-1 gene) and VHL (von Hippel-Lindau gene) expression at mRNA and protein levels in clear cell renal cell carcinoma (ccRCC) and its role in tumor progression. Immunohistochemical analysis, Western blotting and qPCR analysis of PBRM1 and VHL were performed on fresh-frozen ccRCC and adjacent normal tissue obtained from 70 patients who underwent radical nephrectomy. In addition, a tissue microarray (TMA) from specimens of 326 ccRCC patients was used to evaluate the effect of loss of PBRM1 and VHL immunohistological expression on clinicopathological features as well as patient survival. In frozen tissue, PBRM1 and VHL mRNA were significantly down-regulated in most ccRCC tumors (77.6%/80.6%). Simultaneous weak PBRM1 and VHL protein expression was observed in 21.4% of frozen tumors. In the TMA samples, weak PBRM1 and VHL immunohistochemical staining was observed in 60.4% of the cases and was correlated (P<0.001). The association of PBRM1 and VHL immunohistochemical expression with clinicopathological parameters depicts a variable picture: predominantly weak PBRM1 and VHL expression were significantly associated with higher Fuhrman grade (P = 0.012 and 0.024, respectively) but only weak VHL expression was associated with a higher pT stage (P = 0.023). PBRM1 expression did not affect the overall survival, whereas weak VHL expression was associated with decreased patient overall survival (P = 0.013). Our data suggest that reduced expression of PBRM1 and VHL is correlated with an increased tumor aggressiveness. Low VHL expression was identified as a risk factor for worse patient overall survival, independently from PBRM1 expression pattern. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Aromatase expression increases the survival and malignancy of estrogen receptor positive breast cancer cells.

    PubMed

    Mukhopadhyay, Keya De; Liu, Zhao; Bandyopadhyay, Abhik; Kirma, Nameer B; Tekmal, Rajeshwar R; Wang, Shui; Sun, Lu-Zhe

    2015-01-01

    In postmenopausal women, local estrogen produced by adipose stromal cells in the breast is believed to support estrogen receptor alpha (ERα) positive breast cancer cell survival and growth. This raises the question of how the ERα positive metastatic breast cancer cells survive after they enter blood and lymph circulation, where estrogen level is very low in postmenopausal women. In this study, we show that the aromatase expression increased when ERα positive breast cancer cells were cultured in suspension. Furthermore, treatment with the aromatase substrate, testosterone, inhibited suspension culture-induced apoptosis whereas an aromatase inhibitor attenuated the effect of testosterone suggesting that suspended circulating ERα positive breast cancer cells may up-regulate intracrine estrogen activity for survival. Consistent with this notion, a moderate level of ectopic aromatase expression rendered a non-tumorigenic ERα positive breast cancer cell line not only tumorigenic but also metastatic in female nude mice without exogenous estrogen supplementation. The increased malignant phenotype was confirmed to be due to aromatase expression as the growth of orthotopic tumors regressed with systemic administration of an aromatase inhibitor. Thus, our study provides experimental evidence that aromatase plays an important role in the survival of metastatic ERα breast cancer cells by suppressing anoikis.

  16. An Enzyme-Coated Metal-Organic Framework Shell for Synthetically Adaptive Cell Survival.

    PubMed

    Liang, Kang; Richardson, Joseph J; Doonan, Christian J; Mulet, Xavier; Ju, Yi; Cui, Jiwei; Caruso, Frank; Falcaro, Paolo

    2017-07-10

    A bioactive synthetic porous shell was engineered to enable cells to survive in an oligotrophic environment. Eukaryotic cells (yeast) were firstly coated with a β-galactosidase (β-gal), before crystallization of a metal-organic framework (MOF) film on the enzyme coating; thereby producing a bioactive porous synthetic shell. The β-gal was an essential component of the bioactive shell as it generated nutrients (that is, glucose and galactose) required for cell viability in nutrient-deficient media (lactose-based). Additionally, the porous MOF coating carried out other vital functions, such as 1) shielding the cells from cytotoxic compounds and radiation, 2) protecting the non-native enzymes (β-gal in this instance) from degradation and internalization, and 3) allowing for the diffusion of molecules essential for the survival of the cells. Indeed, this bioactive porous shell enabled the survival of cells in simulated extreme oligotrophic environments for more than 7 days, leading to a decrease in cell viability less than 30 %, versus a 99 % decrease for naked yeast. When returned to optimal growth conditions the bioactive porous exoskeleton could be removed and the cells regained full growth immediately. The construction of bioactive coatings represents a conceptually new and promising approach for the next-generation of cell-based research and application, and is an alternative to synthetic biology or genetic modification. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A novel NFIA-NFκB feed-forward loop contributes to glioblastoma cell survival

    PubMed Central

    Lee, JunSung; Hoxha, Edlira

    2017-01-01

    Abstract Background. The nuclear factor I-A (NFIA) transcription factor promotes glioma growth and inhibits apoptosis in glioblastoma (GBM) cells. Here we report that the NFIA pro-survival effect in GBM is mediated in part via a novel NFIA–nuclear factor-kappaB (NFκB) p65 feed-forward loop. Methods. We examined effects of gain- and loss-of-function manipulations of NFIA and NFκB p65 on each other’s transcription, cell growth, apoptosis and sensitivity to chemotherapy in patient-derived GBM cells and established GBM cell lines. Results. NFIA enhanced apoptosis evasion by activating NFκB p65 and its downstream anti-apoptotic factors tumor necrosis factor receptor-associated factor 1 (TRAF1) and cellular inhibitor of apoptosis proteins (cIAPs). Induction of NFκB by NFIA was required to protect cells from apoptosis, and inhibition of NFκB effectively reversed the NFIA anti-apoptotic effect. Conversely, NFIA knockdown decreased expression of NFκB and anti-apoptotic genes TRAF1 and cIAPs, and increased baseline apoptosis. NFIA positively regulated NFκB transcription and NFκB protein level. Interestingly, NFκB also activated the NFIA promoter and increased NFIA level, and knockdown of NFIA was sufficient to attenuate the NFκB pro-survival effect, suggesting a reciprocal regulation between NFIA and NFκB in governing GBM cell survival. Supporting this, NFIA and NFκB expression levels were highly correlated in human GBM and patient-derived GBM cells. Conclusions. These data define a previously unknown NFIA-NFκB feed-forward regulation that may contribute to GBM cell survival. PMID:27994064

  18. Mastic oil from Pistacia lentiscus var. chia inhibits growth and survival of human K562 leukemia cells and attenuates angiogenesis.

    PubMed

    Loutrari, Heleni; Magkouta, Sophia; Pyriochou, Anastasia; Koika, Vasiliki; Kolisis, Fragiskos N; Papapetropoulos, Andreas; Roussos, Charis

    2006-01-01

    Mastic oil from Pistacia lentiscus var. chia, a natural plant extract traditionally used as a food additive, has been extensively studied for its antimicrobial activity attributed to the combination of its bioactive components. One of them, perillyl alcohol (POH), displays tumor chemopreventive, chemotherapeutic, and antiangiogenic properties. We investigated whether mastic oil would also suppress tumor cell growth and angiogenesis. We observed that mastic oil concentration and time dependently exerted an antiproliferative and proapoptotic effect on K562 human leukemia cells and inhibited the release of vascular endothelial growth factor (VEGF) from K562 and B16 mouse melanoma cells. Moreover, mastic oil caused a concentration-dependent inhibition of endothelial cell (EC) proliferation without affecting cell survival and a significant decrease of microvessel formation both in vitro and in vivo. Investigation of underlying mechanism(s) demonstrated that mastic oil reduced 1) in K562 cells the activation of extracellular signal-regulated kinases 1/2 (Erk1/2) known to control leukemia cell proliferation, survival, and VEGF secretion and 2) in EC the activation of RhoA, an essential regulator of neovessel organization. Overall, our results underscore that mastic oil, through its multiple effects on malignant cells and ECs, may be a useful natural dietary supplement for cancer prevention.

  19. IL-7 receptor blockade following T cell depletion promotes long-term allograft survival

    PubMed Central

    Mai, Hoa-Le; Boeffard, Françoise; Longis, Julie; Danger, Richard; Martinet, Bernard; Haspot, Fabienne; Vanhove, Bernard; Brouard, Sophie; Soulillou, Jean-Paul

    2014-01-01

    T cell depletion is commonly used in organ transplantation for immunosuppression; however, a restoration of T cell homeostasis following depletion leads to increased memory T cells, which may promote transplant rejection. The cytokine IL-7 is important for controlling lymphopoiesis under both normal and lymphopenic conditions. Here, we investigated whether blocking IL-7 signaling with a mAb that targets IL-7 receptor α (IL-7Rα) alone or following T cell depletion confers an advantage for allograft survival in murine transplant models. We found that IL-7R blockade alone induced indefinite pancreatic islet allograft survival if anti–IL-7R treatment was started 3 weeks before graft. IL-7R blockade following anti-CD4– and anti-CD8–mediated T cell depletion markedly prolonged skin allograft survival. Furthermore, IL-7 inhibition in combination with T cell depletion synergized with either CTLA-4Ig administration or suboptimal doses of tacrolimus to induce long-term skin graft acceptance in this stringent transplant model. Together, these therapies inhibited T cell reconstitution, decreased memory T cell numbers, increased the relative frequency of Tregs, and abrogated both cellular and humoral alloimmune responses. Our data suggest that IL-7R blockade following T cell depletion has potential as a robust, immunosuppressive therapy in transplantation. PMID:24569454

  20. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival

    PubMed Central

    Khacho, Mireille; Tarabay, Michelle; Patten, David; Khacho, Pamela; MacLaurin, Jason G.; Guadagno, Jennifer; Bergeron, Richard; Cregan, Sean P.; Harper, Mary-Ellen; Park, David S.; Slack, Ruth S.

    2014-01-01

    Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells. PMID:24686499

  1. Survival features of EBV-stabilized cells from centenarians: morpho-functional and transcriptomic analyses.

    PubMed

    Matarrese, Paola; Tinari, Antonella; Ascione, Barbara; Gambardella, Lucrezia; Remondini, Daniel; Salvioli, Stefano; Tenedini, Elena; Tagliafico, Enrico; Franceschi, Claudio; Malorni, Walter

    2012-12-01

    In the present work, we analyzed the survival features of six different Epstein-Barr virus (EBV)-stabilized lymphoid cell lines obtained from adult subjects and from subjects of more than 95 years. For the first, we found that lymphoid B cells from centenarians were more resistant to apoptosis induction and displayed a more developed lysosomal compartment, the most critical component of phagic machinery, in comparison with lymphoid B cells from adult subjects. In addition, cells from centenarians were capable of engulfing and digesting other cells, i.e., their siblings (even entire cells), whereas lymphoid cells from "control samples", i.e., from adults, did not. This behavior was improved by nutrient deprivation but, strikingly, it was unaffected by the autophagy-modulating drug, rapamycin, an autophagy inducer, and 3-methyladenine, an autophagy inhibitor. Transcriptomic analyses indicated that: (1) aspartyl proteases, (2) cell surface molecules such as integrins and cadherins, and (3) some components of cytoskeletal network could contribute to establish this survival phenotype. Also, Kyoto Encyclopedia of Genes and Genomes pathways such as Wnt signaling pathway, an essential contributor to cell migration and actin cytoskeleton remodeling, appeared as prominent. Although we cannot rule out the possibility that EBV-immortalization could play a role, since we observed this phagic behavior in cells from centenarians but not in those from adults, we hypothesize that it may represent an important survival determinant in cells from centenarians.

  2. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival.

    PubMed

    Curiel, Tyler J; Coukos, George; Zou, Linhua; Alvarez, Xavier; Cheng, Pui; Mottram, Peter; Evdemon-Hogan, Melina; Conejo-Garcia, Jose R; Zhang, Lin; Burow, Matthew; Zhu, Yun; Wei, Shuang; Kryczek, Ilona; Daniel, Ben; Gordon, Alan; Myers, Leann; Lackner, Andrew; Disis, Mary L; Knutson, Keith L; Chen, Lieping; Zou, Weiping

    2004-09-01

    Regulatory T (T(reg)) cells mediate homeostatic peripheral tolerance by suppressing autoreactive T cells. Failure of host antitumor immunity may be caused by exaggerated suppression of tumor-associated antigen-reactive lymphocytes mediated by T(reg) cells; however, definitive evidence that T(reg) cells have an immunopathological role in human cancer is lacking. Here we show, in detailed studies of CD4(+)CD25(+)FOXP3(+) T(reg) cells in 104 individuals affected with ovarian carcinoma, that human tumor T(reg) cells suppress tumor-specific T cell immunity and contribute to growth of human tumors in vivo. We also show that tumor T(reg) cells are associated with a high death hazard and reduced survival. Human T(reg) cells preferentially move to and accumulate in tumors and ascites, but rarely enter draining lymph nodes in later cancer stages. Tumor cells and microenvironmental macrophages produce the chemokine CCL22, which mediates trafficking of T(reg) cells to the tumor. This specific recruitment of T(reg) cells represents a mechanism by which tumors may foster immune privilege. Thus, blocking T(reg) cell migration or function may help to defeat human cancer.

  3. Activated ovarian endothelial cells promote early follicular development and survival.

    PubMed

    Kedem, Alon; Aelion-Brauer, Anate; Guo, Peipei; Wen, Duancheng; Ding, Bi-Sen; Lis, Raphael; Cheng, Du; Sandler, Vladislav M; Rafii, Shahin; Rosenwaks, Zev

    2017-09-19

    New data suggests that endothelial cells (ECs) elaborate essential "angiocrine factors". The aim of this study is to investigate the role of activated ovarian endothelial cells in early in-vitro follicular development. Mouse ovarian ECs were isolated using magnetic cell sorting or by FACS and cultured in serum free media. After a constitutive activation of the Akt pathway was initiated, early follicles (50-150 um) were mechanically isolated from 8-day-old mice and co-cultured with these activated ovarian endothelial cells (AOEC) (n = 32), gel (n = 24) or within matrigel (n = 27) in serum free media for 14 days. Follicular growth, survival and function were assessed. After 6 passages, flow cytometry showed 93% of cells grown in serum-free culture were VE-cadherin positive, CD-31 positive and CD 45 negative, matching the known EC profile. Beginning on day 4 of culture, we observed significantly higher follicular and oocyte growth rates in follicles co-cultured with AOECs compared with follicles on gel or matrigel. After 14 days of culture, 73% of primary follicles and 83% of secondary follicles co-cultured with AOEC survived, whereas the majority of follicles cultured on gel or matrigel underwent atresia. This is the first report of successful isolation and culture of ovarian ECs. We suggest that co-culture with activated ovarian ECs promotes early follicular development and survival. This model is a novel platform for the in vitro maturation of early follicles and for the future exploration of endothelial-follicular communication. In vitro development of early follicles necessitates a complex interplay of growth factors and signals required for development. Endothelial cells (ECs) may elaborate essential "angiocrine factors" involved in organ regeneration. We demonstrate that co-culture with ovarian ECs enables culture of primary and early secondary mouse ovarian follicles.

  4. Overexpression of Gremlin1 in Mesenchymal Stem Cells Improves Hindlimb Ischemia in Mice by Enhancing Cell Survival.

    PubMed

    Xiang, Qiuling; Hong, Dongxi; Liao, Yan; Cao, Yong; Liu, Muyun; Pang, Jun; Zhou, Junjie; Wang, Guang; Yang, Renhao; Wang, Maosheng; Xiang, Andy Peng

    2017-05-01

    Mesenchymal stem cells (MSCs) are a promising cell resource for the treatment of ischemic diseases, partially through paracrine effects. One of the major obstacles of MSC treatment is the poor survival rate and low efficiency of transplanted stem cells due to ischemic or inflammatory environments. Gremlin1 (GREM1), a regulator of growth, differentiation and development, has been identified as a novel proangiogenic factor. However, the role and mechanism of GREM1 in MSCs remains unclear. Therefore, we assessed the putative beneficial effects of GREM1 on MSC-based therapy for hindlimb ischemia. The lentiviral vector, EF1a-GREM1, was constructed using the Multisite Gateway System and used to transduce MSCs. In vitro studies demonstrated increased survival of GREM1-MSCs exposed to H 2 O 2 , which is consistent with the activation of caspase-3. Conditional medium from GREM1-MSCs (GREM1-MSC-CM) increased the anti-apoptotic effects of human umbilical vein endothelial cells (HUVECs), and this effect was attenuated by treatment with the PI3K/Akt pathway inhibitor LY294002. MSCs modified with GREM1 could significantly increase blood perfusion of the ischemic hindlimb in vivo in a mouse model, which was correlated to improved MSC survival. This study demonstrates that overexpression of GREM1 in MSCs have greater therapeutic effects against ischemia compared with wild-type MSCs by enhancing the survival of MSCs and ECs, which may provide new tools for studies investigating the treatment of ischemic diseases. J. Cell. Physiol. 232: 996-1007, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  5. Radiotherapy timing in the treatment of limited-stage small cell lung cancer: the impact of thoracic and brain irradiation on survival.

    PubMed

    Scotti, Vieri; Meattini, Icro; Franzese, Ciro; Saieva, Calogero; Bertocci, Silvia; Meacci, Fiammetta; Furfaro, Ilaria; Scartoni, Daniele; Cecchini, Sara; Desideri, Isacco; Ferrari, Katia; Bruni, Alessio; De Luca Cardillo, Carla; Bastiani, Paolo; Agresti, Benedetta; Mangoni, Monica; Livi, Lorenzo; Biti, Giampaolo

    2014-01-01

    Small cell lung cancer is an aggressive histologic subtype of lung cancer in which the role of chemotherapy and radiotherapy has been well established in limited-stage disease. We retrospectively reviewed a series of limited-stage small cell lung cancers treated with chemotherapy and thoracic and brain radiotherapy. A total of 124 patients affected by limited-stage small cell lung cancer has been treated over 10 years in our Institute. Fifty-three patients (42.8%) had concomitant radio-chemotherapy treatment and 71 patients (57.2%) a sequential treatment. Eighty-eight patients (70.9%) underwent an association of a platinum-derived drug (cisplatinum or carboplatinum) and etoposide. Prophylactic cranial irradiation was planned in all patients with histologically proven complete response to primary radio-chemotherapy. With a mean follow-up of 2.2 years, complete response was obtained in 50.8% of cases. We found a significant difference between different radio-chemotherapy association approaches (P = 0.007): percentages of overall survival were respectively 10.0%, 12.9% and 5.6% in early, late concomitant and sequential radio-chemotherapy timing. Cranial prophylaxis did not seem to influence overall survival (P = 0.21) or disease-free survival for local relapse (P = 0.34). Concomitant radio-chemotherapy is the best approach according to our experience. Our results show a benefit of prophylactic cranial irradiation in distant metastasis-free survival.

  6. Enduring Effects of Paternal Deprivation in California Mice (Peromyscus californicus): Behavioral Dysfunction and Sex-Dependent Alterations in Hippocampal New Cell Survival

    PubMed Central

    Glasper, Erica R.; Hyer, Molly M.; Hunter, Terrence J.

    2018-01-01

    Early-life experiences with caregivers can significantly affect offspring development in human and non-human animals. While much of our knowledge of parent-offspring relationships stem from mother-offspring interactions, increasing evidence suggests interactions with the father are equally as important and can prevent social, behavioral, and neurological impairments that may appear early in life and have enduring consequences in adulthood. In the present study, we utilized the monogamous and biparental California mouse (Peromyscus californicus). California mouse fathers provide extensive offspring care and are essential for offspring survival. Non-sibling virgin male and female mice were randomly assigned to one of two experimental groups following the birth of their first litter: (1) biparental care: mate pairs remained with their offspring until weaning; or (2) paternal deprivation (PD): paternal males were permanently removed from their home cage on postnatal day (PND) 1. We assessed neonatal mortality rates, body weight, survival of adult born cells in the dentate gyrus of the hippocampus, and anxiety-like and passive stress-coping behaviors in male and female young adult offspring. While all biparentally-reared mice survived to weaning, PD resulted in a ~35% reduction in survival of offspring. Despite this reduction in survival to weaning, biparentally-reared and PD mice did not differ in body weight at weaning or into young adulthood. A sex-dependent effect of PD was observed on new cell survival in the dentate gyrus of the hippocampus, such that PD reduced cell survival in female, but not male, mice. While PD did not alter classic measures of anxiety-like behavior during the elevated plus maze task, exploratory behavior was reduced in PD mice. This observation was irrespective of sex. Additionally, PD increased some passive stress-coping behaviors (i.e., percent time spent immobile) during the forced swim task—an effect that was also not sex

  7. Non-encapsulated strains reveal novel insights in invasion and survival of Streptococcus suis in epithelial cells.

    PubMed

    Benga, L; Goethe, R; Rohde, M; Valentin-Weigand, P

    2004-09-01

    Streptococcus suis is a porcine and human pathogen causing invasive diseases, such as meningitis or septicaemia. Host cell interactions of S. suis have been studied mainly with serotype 2 strains, but multiple capsular serotypes as well as non-typeable strains exist with diverse virulence features. At present, S. suis is considered an extracellular pathogen. However, whether or not it can also invade host cells is a matter of controversial discussions. We have assessed adherence and invasion of S. suis for HEp-2 epithelial cells by comparing 10 serotype 2 strains and four non-typeable (NT) strains. Only the NT strains and a non-encapsulated serotype 2 mutant strain, but none of the serotype 2 strains, adhered strongly and were invasive. Invasion seemed to be affected by environmental signals, as suggested from comparison of strains grown in different media. Further phenotypic and genotypic characterization revealed a high diversity among the different strains. Electron microscopic analysis of invasion of selected invasive NT strains indicated different uptake mechanisms. One strain induced large invaginations comparable to those seen in 'caveolae' mediated uptake, whereas invasion of the other strains was accompanied by formation of filipodia-like membrane protrusions. Invasion of all strains, however, was similarly susceptible to hypertonic sucrose, which inhibits receptor-mediated endocytosis. Irrespective of the uptake pathway, streptococci resided in acidified phago-lysosome like vacuoles. All strains, except one, survived intracellularly as well as extracellular acidic conditions. Survival seemed to be associated with the AdiS protein, an environmentally regulated arginine deiminase of S. suis. Concluding, invasion and survival of NT strains of S. suis in epithelial cells revealed novel evidence that S. suis exhibits a broad variety of virulence-associated features depending on genetic variation and regulation.

  8. Trends in incidence, treatment and survival of aggressive B-cell lymphoma in the Netherlands 1989–2010

    PubMed Central

    Issa, Djamila E.; van de Schans, Saskia A.M.; Chamuleau, Martine E.D.; Karim-Kos, Henrike E.; Wondergem, Marielle; Huijgens, Peter C.; Coebergh, Jan Willem W.; Zweegman, Sonja; Visser, Otto

    2015-01-01

    Only a small number of patients with aggressive B-cell lymphoma take part in clinical trials, and elderly patients in particular are under-represented. Therefore, we studied data of the population-based nationwide Netherlands Cancer Registry to determine trends in incidence, treatment and survival in an unselected patient population. We included all patients aged 15 years and older with newly diagnosed diffuse large B-cell lymphoma or Burkitt lymphoma in the period 1989–2010 and mantle cell lymphoma in the period 2001–2010, with follow up until February 2013. We examined incidence, first-line treatment and survival. We calculated annual percentage of change in incidence and carried out relative survival analyses. Incidence remained stable for diffuse large B-cell lymphoma (n=23,527), while for mantle cell lymphoma (n=1,634) and Burkitt lymphoma (n=724) incidence increased for men and remained stable for women. No increase in survival for patients with aggressive B-cell lymphoma was observed during the period 1989–1993 and the period 1994–1998 [5-year relative survival 42% (95%CI: 39%–45%) and 41% (38%–44%), respectively], but increased to 46% (43%–48%) in the period 1999–2004 and to 58% (56%–61%) in the period 2005–2010. The increase in survival was most prominent in patients under 65 years of age, while there was a smaller increase in patients over 75 years of age. However, when untreated patients were excluded, patients over 75 years of age had a similar increase in survival to younger patients. In the Netherlands, survival for patients with aggressive B-cell lymphoma increased over time, particularly in younger patients, but also in elderly patients when treatment had been initiated. The improvement in survival coincided with the introduction of rituximab therapy and stem cell transplantation into clinical practice. PMID:25512643

  9. Assessment of the tumourigenic and metastatic properties of SK-MEL28 melanoma cells surviving electrochemotherapy with bleomycin

    PubMed Central

    Todorovic, Vesna; Sersa, Gregor; Mlakar, Vid; Glavac, Damjan; Cemazar, Maja

    2012-01-01

    Background Electrochemotherapy is a local treatment combining chemotherapy and electroporation and is highly effective treatment approach for subcutaneous tumours of various histologies. Contrary to surgery and radiation, the effect of electrochemotherapy on metastatic potential of tumour cells has not been extensively studied. The aim of the study was to evaluate the effect of electrochemotherapy with bleomycin on the metastatic potential of human melanoma cells in vitro. Materials and methods Viable cells 48 hours after electrochemotherapy were tested for their ability to migrate and invade through Matrigel coated porous membrane. In addition, microarray analysis and quantitative Real-Time PCR were used to detect changes in gene expression after electrochemotherapy. Results Cell migration and invasion were not changed in melanoma cells surviving electrochemotherapy. Interestingly, only a low number of tumourigenesis related genes was differentially expressed after electrochemotherapy. Conclusions Our data suggest that metastatic potential of human melanoma cells is not affected by electrochemotherapy with bleomycin, confirming safe role of electrochemotherapy in the clinics. PMID:22933978

  10. Assessment of the tumourigenic and metastatic properties of SK-MEL28 melanoma cells surviving electrochemotherapy with bleomycin.

    PubMed

    Todorovic, Vesna; Sersa, Gregor; Mlakar, Vid; Glavac, Damjan; Cemazar, Maja

    2012-03-01

    Electrochemotherapy is a local treatment combining chemotherapy and electroporation and is highly effective treatment approach for subcutaneous tumours of various histologies. Contrary to surgery and radiation, the effect of electrochemotherapy on metastatic potential of tumour cells has not been extensively studied. The aim of the study was to evaluate the effect of electrochemotherapy with bleomycin on the metastatic potential of human melanoma cells in vitro. Viable cells 48 hours after electrochemotherapy were tested for their ability to migrate and invade through Matrigel coated porous membrane. In addition, microarray analysis and quantitative Real-Time PCR were used to detect changes in gene expression after electrochemotherapy. Cell migration and invasion were not changed in melanoma cells surviving electrochemotherapy. Interestingly, only a low number of tumourigenesis related genes was differentially expressed after electrochemotherapy. Our data suggest that metastatic potential of human melanoma cells is not affected by electrochemotherapy with bleomycin, confirming safe role of electrochemotherapy in the clinics.

  11. Radiation-induced autophagy promotes esophageal squamous cell carcinoma cell survival via the LKB1 pathway.

    PubMed

    Lu, Chi; Xie, Conghua

    2016-06-01

    Radiotherapy is an important treatment modality for esophageal cancer; however, the clinical efficacy of radiotherapy is limited by tumor radioresistance. In the present study, we explored the hypothesis that radiation induces tumor cell autophagy as a cytoprotective adaptive response, which depends on liver kinase B1 (LKB1) also known as serine/threonine kinase 11 (STK11). Radiation-induced Eca-109 cell autophagy was found to be dependent on signaling through the LKB1 pathway, and autophagy inhibitors that disrupted radiation-induced Eca-109 cell autophagy increased cell cycle arrest and cell death in vitro. Inhibition of autophagy also reduced the clonogenic survival of the Eca-109 cells. When treated with radiation alone, human esophageal carcinoma xenografts showed increased LC3B and p-LKB1 expression, which was decreased by the autophagy inhibitor chloroquine. In vivo inhibition of autophagy disrupted tumor growth and increased tumor apoptosis when combined with 6 Gy of ionizing radiation. In summary, our findings elucidate a novel mechanism of resistance to radiotherapy in which radiation-induced autophagy, via the LKB1 pathway, promotes tumor cell survival. This indicates that inhibition of autophagy can serve as an adjuvant treatment to improve the curative effect of radiotherapy.

  12. The promoting effect of pentadecapeptide BPC 157 on tendon healing involves tendon outgrowth, cell survival, and cell migration.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Lin, Miao-Sui; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2011-03-01

    Pentadecapeptide BPC 157, composed of 15 amino acids, is a partial sequence of body protection compound (BPC) that is discovered in and isolated from human gastric juice. Experimentally it has been demonstrated to accelerate the healing of many different wounds, including transected rat Achilles tendon. This study was designed to investigate the potential mechanism of BPC 157 to enhance healing of injured tendon. The outgrowth of tendon fibroblasts from tendon explants cultured with or without BPC 157 was examined. Results showed that BPC 157 significantly accelerated the outgrowth of tendon explants. Cell proliferation of cultured tendon fibroblasts derived from rat Achilles tendon was not directly affected by BPC 157 as evaluated by MTT assay. However, the survival of BPC 157-treated cells was significantly increased under the H(2)O(2) stress. BPC 157 markedly increased the in vitro migration of tendon fibroblasts in a dose-dependent manner as revealed by transwell filter migration assay. BPC 157 also dose dependently accelerated the spreading of tendon fibroblasts on culture dishes. The F-actin formation as detected by FITC-phalloidin staining was induced in BPC 157-treated fibroblasts. The protein expression and activation of FAK and paxillin were determined by Western blot analysis, and the phosphorylation levels of both FAK and paxillin were dose dependently increased by BPC 157 while the total amounts of protein was unaltered. In conclusion, BPC 157 promotes the ex vivo outgrowth of tendon fibroblasts from tendon explants, cell survival under stress, and the in vitro migration of tendon fibroblasts, which is likely mediated by the activation of the FAK-paxillin pathway.

  13. Induction of neurite extension and survival in pheochromocytoma cells by the Rit GTPase.

    PubMed

    Spencer, Michael L; Shao, Haipeng; Andres, Douglas A

    2002-06-07

    The Rit, Rin, and Ric proteins comprise a distinct and evolutionarily conserved subfamily of the Ras-like small G-proteins. Although these proteins share the majority of core effector domain residues with Ras, recent studies suggest that Rit uses novel effector pathways to regulate NIH3T3 cell proliferation and transformation, while the functions of Rin and Ric remain largely unknown. Since we demonstrate that Rit is expressed in neurons, we investigated the role of Rit signaling in promoting the differentiation and survival of pheochromocytoma cells. In this study, we show that expression of constitutively active Rit (RitL79) in PC6 cells results in neuronal differentiation, characterized by the elaboration of an extensive network of neurite-like processes that are morphologically distinct from those mediated by the expression of oncogenic Ras. Although activated Rit fails to stimulate mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAPK/ERK) signaling pathways in COS cells, RitL79 induced the phosphorylation of ERK1/2 in PC6 cells. We also find that Rit-mediated effects on neurite outgrowth can be blocked by co-expression of dominant-negative mutants of C-Raf1 or mitogen-activated protein kinase kinase 1 (MEK1). Moreover, expression of dominant-negative Rit is sufficient to inhibit NGF-induced neurite outgrowth. Expression of active Rit inhibits growth factor-withdrawal mediated apoptosis of PC6 cells, but does not induce phosphorylation of Akt/protein kinase B, suggesting that survival does not utilize the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Instead, pharmacological inhibitors of MEK block Rit-stimulated cell survival. Taken together, these studies suggest that Rit represents a distinct regulatory protein, capable of mediating differentiation and cell survival in PC6 cells using a MEK-dependent signaling pathway to achieve its effects.

  14. Survival rate of eukaryotic cells following electrophoretic nanoinjection.

    PubMed

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-25

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells.

  15. Survival rate of eukaryotic cells following electrophoretic nanoinjection

    PubMed Central

    Simonis, Matthias; Hübner, Wolfgang; Wilking, Alice; Huser, Thomas; Hennig, Simon

    2017-01-01

    Insertion of foreign molecules such as functionalized fluorescent probes, antibodies, or plasmid DNA to living cells requires overcoming the plasma membrane barrier without harming the cell during the staining process. Many techniques such as electroporation, lipofection or microinjection have been developed to overcome the cellular plasma membrane, but they all result in reduced cell viability. A novel approach is the injection of cells with a nanopipette and using electrophoretic forces for the delivery of molecules. The tip size of these pipettes is approximately ten times smaller than typical microinjection pipettes and rather than pressure pulses as delivery method, moderate DC electric fields are used to drive charged molecules out of the tip. Here, we show that this approach leads to a significantly higher survival rate of nanoinjected cells and that injection with nanopipettes has a significantly lower impact on the proliferation behavior of injected cells. Thus, we propose that injection with nanopipettes using electrophoretic delivery is an excellent alternative when working with valuable and rare living cells, such as primary cells or stem cells. PMID:28120926

  16. Survival of bactericidal antibiotic treatment by tolerant persister cells of Klebsiella pneumoniae.

    PubMed

    Li, Ying; Zhang, Luhua; Zhou, Yingshun; Zhang, Zhikun; Zhang, Xinzhuo

    2018-03-01

    Persister cells, a subpopulation of tolerant cells within the bacterial culture, are commonly thought to be responsible for antibiotic therapy failure and infection recurrence. Klebsiella pneumoniae is a notorious human pathogen for its increasing resistance to antibiotics and wide involvement in severe infections. In this study, we aimed to investigate the persister subpopulation of K. pneumoniae. The presence of persisters in K. pneumoniae was determined by treatment with high concentrations of antibiotics, used alone or in combination. The effect of low level of antibiotics on persister formation was investigated by pre-exposure of cells to antibiotics with low concentrations followed by higher doses. The dependence of persister levels on growth phase was determined by measuring the survival ability of cells along the growth stages upon exposure to a high concentration of antibiotic. Analysis on persister type was carried out by persister elimination assays.Results/Key findings. We show that K. pneumoniae produces high levels of tolerant persister cells to survive treatment by a variety of high concentrations of bactericidal antibiotics and persister formation is prevalent among K. pneumoniae clinical strains. Besides, we find that persister cells can be induced by low concentrations of antibiotics. Finally, we provide evidence that persister formation is growth phase-dependent and Type II persisters dominate the persister subpopulation during the entire exponential phase of K. pneumoniae. Our study describes the formation of tolerant persister cells that allow survival of treatment by high concentrations of antibiotics in K. pneumoniae.

  17. Autologous cytokine-induced killer cell immunotherapy may improve overall survival in advanced malignant melanoma patients.

    PubMed

    Zhang, Yong; Zhu, Yu'nan; Zhao, Erjiang; He, Xiaolei; Zhao, Lingdi; Wang, Zibing; Fu, Xiaomin; Qi, Yalong; Ma, Baozhen; Song, Yongping; Gao, Quanli

    2017-11-01

    Our study was conducted to explore the efficacy of autologous cytokine-induced killer (CIK) cells in patients with advanced malignant melanoma. Materials & Methods: Here we reviewed 113 stage IV malignant melanoma patients among which 68 patients received CIK cell immunotherapy alone, while 45 patients accepted CIK cell therapy combined with chemotherapy. Results: We found that the median survival time in CIK cell group was longer than the combined therapy group (21 vs 15 months, p = 0.07). In addition, serum hemoglobin level as well as monocyte proportion and lymphocyte count were associated with patients' survival time. These indicated that CIK cell immunotherapy might extend survival time in advanced malignant melanoma patients. Furthermore, serum hemoglobin level, monocyte proportion and lymphocyte count could be prognostic indicators for melanoma.

  18. Stochastic modeling and experimental analysis of phenotypic switching and survival of cancer cells under stress

    NASA Astrophysics Data System (ADS)

    Zamani Dahaj, Seyed Alireza; Kumar, Niraj; Sundaram, Bala; Celli, Jonathan; Kulkarni, Rahul

    The phenotypic heterogeneity of cancer cells is critical to their survival under stress. A significant contribution to heterogeneity of cancer calls derives from the epithelial-mesenchymal transition (EMT), a conserved cellular program that is crucial for embryonic development. Several studies have investigated the role of EMT in growth of early stage tumors into invasive malignancies. Also, EMT has been closely associated with the acquisition of chemoresistance properties in cancer cells. Motivated by these studies, we analyze multi-phenotype stochastic models of the evolution of cancers cell populations under stress. We derive analytical results for time-dependent probability distributions that provide insights into the competing rates underlying phenotypic switching (e.g. during EMT) and the corresponding survival of cancer cells. Experimentally, we evaluate these model-based predictions by imaging human pancreatic cancer cell lines grown with and without cytotoxic agents and measure growth kinetics, survival, morphological changes and (terminal evaluation of) biomarkers with associated epithelial and mesenchymal phenotypes. The results derived suggest approaches for distinguishing between adaptation and selection scenarios for survival in the presence of external stresses.

  19. Stadium IB - IIA cervical cancer patient’s survival rate after receiving definitive radiation and radical operation therapy followed by adjuvant radiation therapy along with analysis of factors affecting the patient’s survival rate

    NASA Astrophysics Data System (ADS)

    Ruslim, S. K.; Purwoto, G.; Widyahening, I. S.; Ramli, I.

    2017-08-01

    To evaluate the characteristics and overall survival rates of early stage cervical cancer (FIGO IB-IIA) patients who receive definitive radiation therapy and those who are prescribed adjuvant postoperative radiation and to conduct a factors analysis of the variables that affect the overall survival rates in both groups of therapy. The medical records of 85 patients with cervical cancer FIGO stages IB-IIA who were treated at the Department of Radiotherapy of Cipto Mangunkusumo Hospital were reviewed and analyzed to determine their overall survival and the factors that affected it between a definitive radiation group and an adjuvant postoperative radiation group. There were 25 patients in the definitive radiation and 60 patients in the adjuvant radiation group. The overall survival rates in the adjuvant radiation group at years one, two, and three were 96.7%, 95%, and 93.3%, respectively. Negative lymph node metastasis had an average association with overall survival (p < 0.2). In the definitive radiation group, overall survival at years one, two, and three were 96%, 92%, and 92%, respectively. A hemoglobin (Hb) level >12 g/dl was a factor with an average association with the overall survival (p < 0.2). The differences between both groups of therapy were not statistically significant (92% vs. 93.3%; p = 0.138). This study did not show any statistically significant overall survival for cervical cancer FIGO stage IB-IIA patients who received definitive radiation or adjuvant postoperative radiation. Negative lymph node metastasis had an effect on the overall survival rate in the adjuvant postoperative radiation group, while a preradiation Hb level >12 g/dl tended to affect the overall survival in the definitive radiation group patients.

  20. Hurthle cell carcinoma: an update on survival over the last 35 years.

    PubMed

    Nagar, Sapna; Aschebrook-Kilfoy, Briseis; Kaplan, Edwin L; Angelos, Peter; Grogan, Raymon H

    2013-12-01

    Hurthle cell carcinoma (HCC) of the thyroid is a variant of follicular cell carcinoma (FCC). A low incidence and lack of long-term follow-up data have caused controversy regarding the survival characteristics of HCC. We aimed to clarify this controversy by analyzing HCC survival over a 35-year period using the Surveillance, Epidemiology, and End Results (SEER) database. Cases of HCC and FCC were extracted from the SEER-9 database (1975-2009). Five- and 10-year survival rates were calculated. We compared changes in survival over time by grouping cases into 5-year intervals. We identified 1,416 cases of HCC and 4,973 cases of FCC. For cases diagnosed from 1975 to 1979, HCC showed a worse survival compared with FCC (5 years, 75%; 95% confidence interval [CI], 60.2-85) versus 88.7% (95% CI, 86-90.8; 10 years, 66.7% [95% CI, 51.5-78.1] vs. 79.7% [95% CI, 76.5-82.6]). For cases diagnosed from 2000 to 2004 we found no difference in 5-year survival between HCC and FCC (91.1% [95% CI, 87.6-93.7] vs. 89.1% [95% CI, 86.5-91.2]). For cases diagnosed from 1995 to 1999, there was no difference in 10-year survival between HCC and FCC (80.9% [95% CI, 75.6-85.2] vs. 83.9% [95% CI, 80.8-86.6]). HCC survival improved over the study period while FCC survival rates remained stable (increase in survival at 5 years, 21.7% vs. 0.4%; at 10 years, 21.3% vs. 5.2%). Improvement in HCC survival was observed for both genders, in age ≥45 years, in local and regional disease, for tumors >4 cm, and with white race. HCC survival has improved dramatically over time such that HCC and FCC survival rates are now the same. These findings explain how studies over the last 4 decades have shown conflicting results regarding HCC survival; however, our data do not explain why HCC survival has improved. Copyright © 2013 Mosby, Inc. All rights reserved.

  1. Low Survival Rates of Oral and Oropharyngeal Squamous Cell Carcinoma

    PubMed Central

    da Silva Júnior, Francisco Feliciano; dos Santos, Karine de Cássia Batista; Ferreira, Stefania Jeronimo

    2017-01-01

    Aim To assess the epidemiological and clinical factors that influence the prognosis of oral and oropharyngeal squamous cell carcinoma (SCC). Methods One hundred and twenty-one cases of oral and oropharyngeal SCC were selected. The survival curves for each variable were estimated using the Kaplan-Meier method. The Cox regression model was applied to assess the effect of the variables on survival. Results Cancers at an advanced stage were observed in 103 patients (85.1%). Cancers on the tongue were more frequent (23.1%). The survival analysis was 59.9% in one year, 40.7% in two years, and 27.8% in 5 years. There was a significant low survival rate linked to alcohol intake (p = 0.038), advanced cancer staging (p = 0.003), and procedures without surgery (p < 0.001). When these variables were included in the Cox regression model only surgery procedures (p = 0.005) demonstrated a significant effect on survival. Conclusion The findings suggest that patients who underwent surgery had a greater survival rate compared with those that did not. The low survival rates and the high percentage of patients diagnosed at advanced stages demonstrate that oral and oropharyngeal cancer patients should receive more attention. PMID:28638410

  2. Fear affects parental care, which predicts juvenile survival and exacerbates the total cost of fear on demography.

    PubMed

    Dudeck, Blair P; Clinchy, Michael; Allen, Marek C; Zanette, Liana Y

    2018-01-01

    Fear itself (perceived predation risk) can affect wildlife demography, but the cumulative impact of fear on population dynamics is not well understood. Parental care is arguably what most distinguishes birds and mammals from other taxa, yet only one experiment on wildlife has tested fear effects on parental food provisioning and the repercussions this has for the survival of dependent offspring, and only during early-stage care. We tested the effect of fear on late-stage parental care of mobile dependent offspring, by locating radio-tagged Song Sparrow fledglings and broadcasting predator or non-predator playbacks in their vicinity, measuring their parent's behavior and their own, and tracking the offspring's survival to independence. Fear significantly reduced late-stage parental care, and parental fearfulness (as indexed by their reduction in provisioning when hearing predators) significantly predicted their offspring's condition and survival. Combining results from this experiment with that on early-stage care, we project that fear itself is powerful enough to reduce late-stage survival by 24%, and cumulatively reduce the number of young reaching independence by more than half, 53%. Experiments in invertebrate and aquatic systems demonstrate that fear is commonly as important as direct killing in affecting prey demography, and we suggest focusing more on fear effects and on offspring survival will reveal the same for wildlife. © 2017 by the Ecological Society of America.

  3. Plasma Membrane Integrity and Survival of Melanoma Cells After Nanosecond Laser Pulses

    PubMed Central

    Pérez-Gutiérrez, Francisco G.; Camacho-López, Santiago; Evans, Rodger; Guillén, Gabriel; Goldschmidt, Benjamin S.; Viator, John A.

    2010-01-01

    Circulating tumor cells (CTCs) photoacoustic detection systems can aid clinical decision-making in the treatment of cancer. Interaction of melanin within melanoma cells with nanosecond laser pulses generates photoacoustic waves that make its detection possible. This study aims at: (1) determining melanoma cell survival after laser pulses of 6 ns at λ = 355 and 532 nm; (2) comparing the potential enhancement in the photoacoustic signal using λ = 355 nm in contrast with λ = 532 nm; (3) determining the critical laser fluence at which melanin begins to leak out from melanoma cells; and (4) developing a time-resolved imaging (TRI) system to study the intracellular interactions and their effect on the plasma membrane integrity. Monolayers of melanoma cells were grown on tissue culture-treated clusters and irradiated with up to 1.0 J/cm2. Surviving cells were stained with trypan blue and counted using a hemacytometer. The phosphate buffered saline absorbance was measured with a nanodrop spectrophotometer to detect melanin leakage from the melanoma cells post-laser irradiation. Photoacoustic signal magnitude was studied at both wavelengths using piezoelectric sensors. TRI with 6 ns resolution was used to image plasma membrane damage. Cell survival decreased proportionally with increasing laser fluence for both wavelengths, although the decrease is more pronounced for 355 nm radiation than for 532 nm. It was found that melanin leaks from cells equally for both wavelengths. No significant difference in photoacoustic signal was found between wavelengths. TRI showed clear damage to plasma membrane due to laser-induced bubble formation. PMID:20589533

  4. Migratory herds of wildebeests and zebras indirectly affect calf survival of giraffes.

    PubMed

    Lee, Derek E; Kissui, Bernard M; Kiwango, Yustina A; Bond, Monica L

    2016-12-01

    In long-distance migratory systems, local fluctuations in the predator-prey ratio can exhibit extreme variability within a single year depending upon the seasonal location of migratory species. Such systems offer an opportunity to empirically investigate cyclic population density effects on short-term food web interactions by taking advantage of the large seasonal shifts in migratory prey biomass.We utilized a large-mammal predator-prey savanna food web to evaluate support for hypotheses relating to the indirect effects of "apparent competition" and "apparent mutualism" from migratory ungulate herds on survival of resident megaherbivore calves, mediated by their shared predator. African lions ( Panthera leo ) are generalist predators whose primary, preferred prey are wildebeests ( Connochaetes taurinus ) and zebras ( Equus quagga ), while lion predation on secondary prey such as giraffes ( Giraffa camelopardalis ) may change according to the relative abundance of the primary prey species.We used demographic data from five subpopulations of giraffes in the Tarangire Ecosystem of Tanzania, East Africa, to test hypotheses relating to direct predation and indirect effects of large migratory herds on calf survival of a resident megaherbivore. We examined neonatal survival via apparent reproduction of 860 adult females, and calf survival of 449 giraffe calves, during three precipitation seasons over 3 years, seeking evidence of some effect on neonate and calf survival as a consequence of the movements of large herds of migratory ungulates.We found that local lion predation pressure (lion density divided by primary prey density) was significantly negatively correlated with giraffe neonatal and calf survival probabilities. This supports the apparent mutualism hypothesis that the presence of migratory ungulates reduces lion predation on giraffe calves.Natural predation had a significant effect on giraffe calf and neonate survival, and could significantly affect giraffe

  5. Zebrafish Staufen1 and Staufen2 are required for the survival and migration of primordial germ cells.

    PubMed

    Ramasamy, Srinivas; Wang, Hui; Quach, Helen Ngoc Bao; Sampath, Karuna

    2006-04-15

    In sexually reproducing organisms, primordial germ cells (PGCs) give rise to the cells of the germ line, the gametes. In many animals, PGCs are set apart from somatic cells early during embryogenesis. Work in Drosophila, C. elegans, Xenopus, and zebrafish has shown that maternally provided localized cytoplasmic determinants specify the germ line in these organisms (Raz, E., 2003. Primordial germ-cell development: the zebrafish perspective. Nat. Rev., Genet. 4, 690--700; Santos, A.C., Lehmann, R., 2004. Germ cell specification and migration in Drosophila and beyond. Curr. Biol. 14, R578-R589). The Drosophila RNA-binding protein, Staufen is required for germ cell formation, and mutations in stau result in a maternal effect grandchild-less phenotype (Schupbach,T., Weischaus, E., 1989. Female sterile mutations on the second chromosome of Drosophila melanogaster:1. Maternal effect mutations. Genetics 121, 101-17). Here we describe the functions of two zebrafish Staufen-related proteins, Stau1 and Stau2. When Stau1 or Stau2 functions are compromised in embryos by injecting antisense morpholino modified oligonucleotides or dominant-negative Stau peptides, germ layer patterning is not affected. However, expression of the PGC marker vasa is not maintained. Furthermore, expression of a green fluorescent protein (GFP):nanos 3'UTR fusion protein in germ cells shows that PGC migration is aberrant, and the mis-migrating PGCs do not survive in Stau-compromised embryos. Stau2 is also required for survival of neurons in the central nervous system (CNS). These phenotypes are rescued by co-injection of Drosophila stau mRNA. Thus, staufen has an evolutionarily conserved function in germ cells. In addition, we have identified a function for Stau proteins in PGC migration.

  6. Heterogeneous Nuclear Ribonucleoprotein K Supports Vesicular Stomatitis Virus Replication by Regulating Cell Survival and Cellular Gene Expression

    PubMed Central

    Dinh, Phat X.; Das, Anshuman; Franco, Rodrigo

    2013-01-01

    The heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a member of the family of hnRNPs and was recently shown in a genome-wide small interfering RNA (siRNA) screen to support vesicular stomatitis virus (VSV) growth. To decipher the role of hnRNP K in VSV infection, we conducted studies which suggest that the protein is required for VSV spreading. Virus binding to cells, entry, and nucleocapsid uncoating steps were not adversely affected in the absence of hnRNP K, whereas viral genome transcription and replication were reduced slightly. These results indicate that hnRNP K is likely involved in virus assembly and/or release from infected cells. Further studies showed that hnRNP K suppresses apoptosis of virus-infected cells, resulting in increased cell survival during VSV infection. The increased survival of the infected cells was found to be due to the suppression of proapoptotic proteins such as Bcl-XS and Bik in a cell-type-dependent manner. Additionally, depletion of hnRNP K resulted in not only significantly increased levels of T-cell-restricted intracellular antigen 1 (TIA1) but also switching of the expression of the two isoforms of the protein (TIA1a and TIA1b), both of which inhibited VSV replication. hnRNP K was also found to support expression of several cellular proteins known to be required for VSV infection. Overall, our studies demonstrate hnRNP K to be a multifunctional protein that supports VSV infection via its role(s) in suppressing apoptosis of infected cells, inhibiting the expression of antiviral proteins, and maintaining the expression of proteins required for the virus. PMID:23843646

  7. MAPK1 is required for establishing the pattern of cell proliferation and for cell survival during lens development

    PubMed Central

    Upadhya, Dinesh; Ogata, Masato; Reneker, Lixing W.

    2013-01-01

    The mitogen-activated protein kinases (MAPKs; also known as ERKs) are key intracellular signaling molecules that are ubiquitously expressed in tissues and were assumed to be functionally equivalent. Here, we use the mouse lens as a model system to investigate whether MAPK1 plays a specific role during development. MAPK3 is known to be dispensable for lens development. We demonstrate that, although MAPK1 is uniformly expressed in the lens epithelium, its deletion significantly reduces cell proliferation in the peripheral region, an area referred to as the lens germinative zone in which most active cell division occurs during normal lens development. By contrast, cell proliferation in the central region is minimally affected by MAPK1 deletion. Cell cycle regulators, including cyclin D1 and survivin, are downregulated in the germinative zone of the MAPK1-deficient lens. Interestingly, loss of MAPK1 subsequently induces upregulation of phosphorylated MAPK3 (pMAPK3) levels in the lens epithelium; however, this increase in pMAPK3 is not sufficient to restore cell proliferation in the germinative zone. Additionally, MAPK1 plays an essential role in epithelial cell survival but is dispensable for fiber cell differentiation during lens development. Our data indicate that MAPK1/3 control cell proliferation in the lens epithelium in a spatially defined manner; MAPK1 plays a unique role in establishing the highly mitotic zone in the peripheral region, whereas the two MAPKs share a redundant role in controlling cell proliferation in the central region of the lens epithelium. PMID:23482492

  8. Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug delivery and ultrasound/magnetic resonance imaging of stem cells.

    PubMed

    Kempen, Paul J; Greasley, Sarah; Parker, Kelly A; Campbell, Jos L; Chang, Huan-Yu; Jones, Julian R; Sinclair, Robert; Gambhir, Sanjiv S; Jokerst, Jesse V

    2015-01-01

    Increasing cell survival in stem cell therapy is an important challenge for the field of regenerative medicine. Here, we report theranostic mesoporous silica nanoparticles that can increase cell survival through both diagnostic and therapeutic approaches. First, the nanoparticle offers ultrasound and MRI signal to guide implantation into the peri-infarct zone and away from the most necrotic tissue. Second, the nanoparticle serves as a slow release reservoir of insulin-like growth factor (IGF)-a protein shown to increase cell survival. Mesenchymal stem cells labeled with these nanoparticles had detection limits near 9000 cells with no cytotoxicity at the 250 µg/mL concentration required for labeling. We also studied the degradation of the nanoparticles and showed that they clear from cells in approximately 3 weeks. The presence of IGF increased cell survival up to 40% (p<0.05) versus unlabeled cells under in vitro serum-free culture conditions.

  9. Survivability of Salmonella cells in popcorn after microwave oven and conventional cooking.

    PubMed

    Anaya, I; Aguirrezabal, A; Ventura, M; Comellas, L; Agut, M

    2008-01-01

    The survivability of Salmonella cells in popcorn preparation was determined for two distinct cooking methods. The first method used a standard microwave oven. The second method used conventional cooking in a pan. Prior to thermal processing in independent experiments, 12 suspensions in a range between 1x10(3) and 8x10(6) colony-forming units (CFU) per gram of Salmonella cells were inoculated in both raw microwave popcorn and conventional corn kernels. The influence of the initial concentration of Salmonella cells in the raw products and the lethal effects on Salmonella by thermal treatments for cooking were studied. Survival of Salmonella cells was determined in the thermally processed material by pre-enrichment and enrichment in selective medium, in accordance with the legislation for expanded cereals and cereals in flakes. Viable experimental contaminants were recovered from the conventionally cooked popcorn with initial inoculation concentrations of 9x10(4)cells/g or greater. Salmonella cell viability was significantly reduced after microwave oven treatment, with recoveries only from initial concentrations of 2x10(6)cells/g or superior.

  10. HDAC inhibitors: modulating leukocyte differentiation, survival, proliferation and inflammation.

    PubMed

    Sweet, Matthew J; Shakespear, Melanie R; Kamal, Nabilah A; Fairlie, David P

    2012-01-01

    Therapeutic effects of histone deacetylase (HDAC) inhibitors in cancer models were first linked to their ability to cause growth arrest and apoptosis of tumor cells. It is now clear that these agents also have pleiotropic effects on angiogenesis and the immune system, and some of these properties are likely to contribute to their anti-cancer activities. It is also emerging that inhibitors of specific HDACs affect the differentiation, survival and/or proliferation of distinct immune cell populations. This is true for innate immune cells such as macrophages, as well as cells of the acquired immune system, for example, T-regulatory cells. These effects may contribute to therapeutic profiles in some autoimmune and chronic inflammatory disease models. Here, we review our current understanding of how classical HDACs (HDACs 1-11) and their inhibitors impact on differentiation, survival and proliferation of distinct leukocyte populations, as well as the likely relevance of these effects to autoimmune and inflammatory disease processes. The ability of HDAC inhibitors to modulate leukocyte survival may have implications for the rationale of developing selective inhibitors as anti-inflammatory drugs.

  11. High endothelin-converting enzyme-1 expression independently predicts poor survival of patients with esophageal squamous cell carcinoma.

    PubMed

    Wu, Ching-Fang; Lee, Ching-Tai; Kuo, Yao-Hung; Chen, Tzu-Haw; Chang, Chi-Yang; Chang, I-Wei; Wang, Wen-Lun

    2017-09-01

    Patients with esophageal squamous cell carcinoma have poor survival and high recurrence rate, thus an effective prognostic biomarker is needed. Endothelin-converting enzyme-1 is responsible for biosynthesis of endothelin-1, which promotes growth and invasion of human cancers. The role of endothelin-converting enzyme-1 in esophageal squamous cell carcinoma is still unknown. Therefore, this study investigated the significance of endothelin-converting enzyme-1 expression in esophageal squamous cell carcinoma clinically. We enrolled patients with esophageal squamous cell carcinoma who provided pretreated tumor tissues. Tumor endothelin-converting enzyme-1 expression was evaluated by immunohistochemistry and was defined as either low or high expression. Then we evaluated whether tumor endothelin-converting enzyme-1 expression had any association with clinicopathological findings or predicted survival of patients with esophageal squamous cell carcinoma. Overall, 54 of 99 patients with esophageal squamous cell carcinoma had high tumor endothelin-converting enzyme-1 expression, which was significantly associated with lymph node metastasis ( p = 0.04). In addition, tumor endothelin-converting enzyme-1 expression independently predicted survival of patients with esophageal squamous cell carcinoma, and the 5-year survival was poorer in patients with high tumor endothelin-converting enzyme-1 expression ( p = 0.016). Among patients with locally advanced and potentially resectable esophageal squamous cell carcinoma (stage II and III), 5-year survival was poorer with high tumor endothelin-converting enzyme-1 expression ( p = 0.003). High tumor endothelin-converting enzyme-1 expression also significantly predicted poorer survival of patients in this population. In patients with esophageal squamous cell carcinoma, high tumor endothelin-converting enzyme-1 expression might indicate high tumor invasive property. Therefore, tumor endothelin-converting enzyme-1 expression

  12. Elevated phospholipase D activity in androgen-insensitive prostate cancer cells promotes both survival and metastatic phenotypes.

    PubMed

    Utter, Matthew; Chakraborty, Sohag; Goren, Limor; Feuser, Lucas; Zhu, Yuan-Shan; Foster, David A

    2018-06-01

    Prostate cells are hormonally driven to grow and divide. Typical treatments for prostate cancer involve blocking activation of the androgen receptor by androgens. Androgen deprivation therapy can lead to the selection of cancer cells that grow and divide independently of androgen receptor activation. Prostate cancer cells that are insensitive to androgens commonly display metastatic phenotypes and reduced long-term survival of patients. In this study we provide evidence that androgen-insensitive prostate cancer cells have elevated PLD activity relative to the androgen-sensitive prostate cancer cells. PLD activity has been linked with promoting survival in many human cancer cell lines; and consistent with the previous studies, suppression of PLD activity in the prostate cancer cells resulted in apoptotic cell death. Of significance, suppressing the elevated PLD activity in androgen resistant prostate cancer lines also blocked the ability of these cells to migrate and invade Matrigel™. Since survival signals are generally an early event in tumorigenesis, the apparent coupling of survival and metastatic phenotypes implies that metastasis is an earlier event in malignant prostate cancer than generally thought. This finding has implications for screening strategies designed to identify prostate cancers before dissemination. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Improved survival of mice bearing liver metastases of colon cancer cells treated with a combination of radioimmunotherapy and antiangiogenic therapy.

    PubMed

    Kinuya, Seigo; Yokoyama, Kunihiko; Koshida, Kiyoshi; Mori, Hirofumi; Shiba, Kazuhiro; Watanabe, Naoto; Shuke, Noriyuki; Bai, Jingming; Michigishi, Takatoshi; Tonami, Norihisa

    2004-07-01

    We attempted to determine whether the combined regimen of radioimmunotherapy (RIT) and antiangiogenic therapy would favorably affect the survival of animals bearing liver metastases of colon cancer cells. Daily antiangiogenic therapy with 2-methoxyestradiol (2-ME), 75 mg/kg, was initiated at 3 days following intrasplenic cell inoculation of LS180 colon cancer cells. RIT with 7 MBq of (131)I-A7, an IgG1 anti-colorectal monoclonal antibody, or (131)I-HPMS-1, an irrelevant IgG1, was conducted at 7 days. Production of vascular endothelial growth factor (VEGF) by LS180 cells was assessed in vitro. All nontreated mice died by 31 days following cell inoculation ( n=5). Monotherapy comprising 2-ME treatment resulted in slightly better survival of mice ( n=8) ( P<0.05). (131)I-A7 RIT displayed a marked therapeutic effect ( n=8) ( P<0.001); however, all animals eventually died due to metastases by 99 days. The combined regimen of (131)I-A7 RIT and antiangiogenic therapy demonstrated a superior therapeutic effect in comparison to monotherapy consisting of either RIT or antiangiogenic therapy ( n=10) ( P<0.05); three mice survived the entire 160-day observation period. The combination of antiangiogenic therapy and (131)I-HPMS-1 RIT failed to provide an appreciable benefit ( n=5). Treatment with 2-ME decreased VEGF production by LS180 cells in a dose-dependent fashion. In conclusion, a combination regimen comprising RIT and antiangiogenic therapy initiated at the early stage of metastasis would be of great benefit in terms of improvement of the therapeutic efficacy with respect to liver metastases.

  14. Impact of Pancreatic Rat Islet Density on Cell Survival during Hypoxia

    PubMed Central

    Rodriguez-Brotons, A.; Bietiger, W.; Peronet, C.; Magisson, J.; Sookhareea, C.; Langlois, A.; Mura, C.; Jeandidier, N.; Pinget, M.; Sigrist, S.; Maillard, E.

    2016-01-01

    In bioartificial pancreases (BP), the number of islets needed to restore normoglycaemia in the diabetic patient is critical. However, the confinement of a high quantity of islets in a limited space may impact islet survival, particularly in regard to the low oxygen partial pressure (PO2) in such environments. The aim of the present study was to evaluate the impact of islet number in a confined space under hypoxia on cell survival. Rat islets were seeded at three different concentrations (150, 300, and 600 Islet Equivalents (IEQ)/cm2) and cultured in normal atmospheric pressure (160 mmHg) as well as hypoxic conditions (15 mmHg) for 24 hours. Cell viability, function, hypoxia-induced changes in gene expression, and cytokine secretion were then assessed. Notably, hypoxia appeared to induce a decrease in viability and increasing islet density exacerbated the observed increase in cellular apoptosis as well as the loss of function. These changes were also associated with an increase in inflammatory gene transcription. Taken together, these data indicate that when a high number of islets are confined to a small space under hypoxia, cell viability and function are significantly impacted. Thus, in order to improve islet survival in this environment during transplantation, oxygenation is of critical importance. PMID:26824040

  15. CD24 expression does not affect dopamine neuronal survival in a mouse model of Parkinson's disease.

    PubMed

    Stott, Simon R W; Hayat, Shaista; Carnwath, Tom; Garas, Shaady; Sleeman, Jonathan P; Barker, Roger A

    2017-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative condition that is characterised by the loss of specific populations of neurons in the brain. The mechanisms underlying this selective cell death are unknown but by using laser capture microdissection, the glycoprotein, CD24 has been identified as a potential marker of the populations of cells that are affected in PD. Using in situ hybridization and immunohistochemistry on sections of mouse brain, we confirmed that CD24 is robustly expressed by many of these subsets of cells. To determine if CD24 may have a functional role in PD, we modelled the dopamine cell loss of PD in Cd24 mutant mice using striatal delivery of the neurotoxin 6-OHDA. We found that Cd24 mutant mice have an anatomically normal dopamine system and that this glycoprotein does not modulate the lesion effects of 6-OHDA delivered into the striatum. We then undertook in situ hybridization studies on sections of human brain and found-as in the mouse brain-that CD24 is expressed by many of the subsets of the cells that are vulnerable in PD, but not those of the midbrain dopamine system. Finally, we sought to determine if CD24 is required for the neuroprotective effect of Glial cell-derived neurotrophic factor (GDNF) on the dopaminergic nigrostriatal pathway. Our results indicate that in the absence of CD24, there is a reduction in the protective effects of GDNF on the dopaminergic fibres in the striatum, but no difference in the survival of the cell bodies in the midbrain. While we found no obvious role for CD24 in the normal development and maintenance of the dopaminergic nigrostriatal system in mice, it may have a role in mediating the neuroprotective aspects of GDNF in this system.

  16. Delay of Treatment Initiation Does Not Adversely Affect Survival Outcome in Breast Cancer.

    PubMed

    Yoo, Tae-Kyung; Han, Wonshik; Moon, Hyeong-Gon; Kim, Jisun; Lee, Jun Woo; Kim, Min Kyoon; Lee, Eunshin; Kim, Jongjin; Noh, Dong-Young

    2016-07-01

    Previous studies examining the relationship between time to treatment and survival outcome in breast cancer have shown inconsistent results. The aim of this study was to analyze the overall impact of delay of treatment initiation on patient survival and to determine whether certain subgroups require more prompt initiation of treatment. This study is a retrospective analysis of stage I-III patients who were treated in a single tertiary institution between 2005 and 2008. Kaplan-Meier survival analysis and Cox proportional hazards regression model were used to evaluate the impact of interval between diagnosis and treatment initiation in breast cancer and various subgroups. A total of 1,702 patients were included. Factors associated with longer delay of treatment initiation were diagnosis at another hospital, medical comorbidities, and procedures performed before admission for surgery. An interval between diagnosis and treatment initiation as a continuous variable or with a cutoff value of 15, 30, 45, and 60 days had no impact on disease-free survival (DFS). Subgroup analyses for hormone-responsiveness, triple-negative breast cancer, young age, clinical stage, and type of initial treatment showed no significant association between longer delay of treatment initiation and DFS. Our results show that an interval between diagnosis and treatment initiation of 60 days or shorter does not appear to adversely affect DFS in breast cancer.

  17. ALK5 inhibition maintains islet endothelial cell survival but does not enhance islet graft revascularisation or function.

    PubMed

    King, A J F; Clarkin, C E; Austin, A L F; Ajram, L; Dhunna, J K; Jamil, M O; Ditta, S I; Ibrahim, S; Raza, Z; Jones, P M

    2015-01-01

    Islet transplantation is a potential treatment for Type 1 diabetes but long term graft function is suboptimal. The rich supply of intraislet endothelial cells diminishes rapidly after islet isolation and culture, which affects the revascularisation rate of islets after transplantation. The ALK5 pathway inhibits endothelial cell proliferation and thus inhibiting ALK5 is a potential target for improving endothelial cell survival. The aim of the study was to establish whether ALK5 inhibition prevents the loss of intraislet endothelial cells during islet culture and thus improves the functional survival of transplanted islets by enhancing their subsequent revascularisation after implantation. Islets were cultured for 48 h in the absence or presence of 2 different ALK inhibitors: SB-431542 or A-83-01. Their vascular density after culture was analysed using immunohistochemistry. Islets pre-cultured with the ALK5 inhibitors were implanted into streptozotocin-diabetic mice for either 3 or 7 days and blood glucose concentrations were monitored and vascular densities of the grafts were analysed. Islets cultured with ALK5 inhibitors had higher vascular densities than control-cultured islets. Three days after implantation, endothelial cell numbers in islet grafts were minimal, irrespective of treatment during culture. Seven days after implantation, endothelial cells were evident within the islet grafts but there was no difference between control-cultured islets and islets pre-treated with an ALK5 inhibitor. Blood glucose concentrations were no different between the treatment groups. In conclusion, inhibition of ALK5 improved intraislet endothelial cell numbers after islet culture, but this effect was lost in the early post-transplantation period. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Cooperation between STAT5 and phosphatidylinositol 3-kinase in the IL-3-dependent survival of a bone marrow derived cell line.

    PubMed

    Rosa Santos, S C; Dumon, S; Mayeux, P; Gisselbrecht, S; Gouilleux, F

    2000-02-24

    Cytokine-dependent activation of distinct signaling pathways is a common scheme thought to be required for the subsequent programmation into cell proliferation and survival. The PI 3-kinase/Akt, Ras/MAP kinase, Ras/NFIL3 and JAK/STAT pathways have been shown to participate in cytokine mediated suppression of apoptosis in various cell types. However the relative importance of these signaling pathways seems to depend on the cellular context. In several cases, individual inhibition of each pathway is not sufficient to completely abrogate cytokine mediated cell survival suggesting that cooperation between these pathways is required. Here we showed that individual inhibition of STAT5, PI 3-kinase or MEK activities did not or weakly affected the IL-3 dependent survival of the bone marrow derived Ba/F3 cell line. However, the simultaneous inhibition of STAT5 and PI 3-kinase activities but not that of STAT5 and MEK reduced the IL-3 dependent survival of Ba/F3. Analysis of the expression of the Bcl-2 members indicated that phosphorylation of Bad and Bcl-x expression which are respectively regulated by the PI 3-kinase/Akt pathway and STAT5 probably explain this cooperation. Furthermore, we showed by co-immunoprecipitation studies and pull down experiments with fusion proteins encoding the GST-SH2 domains of p85 that STAT5 in its phosphorylated form interacts with the p85 subunit of the PI 3-kinase. These results indicate that the activations of STAT5 and the PI 3-kinase by IL-3 in Ba/F3 cells are tightly connected and cooperate to mediate IL-3-dependent suppression of apoptosis by modulating Bad phosphorylation and Bcl-x expression.

  19. Cell-based neurotrophin treatment supports long-term auditory neuron survival in the deaf guinea pig.

    PubMed

    Gillespie, Lisa N; Zanin, Mark P; Shepherd, Robert K

    2015-01-28

    The cochlear implant provides auditory cues to profoundly deaf patients by electrically stimulating the primary auditory neurons (ANs) of the cochlea. However, ANs degenerate in deafness; the preservation of a robust AN target population, in combination with advances in cochlear implant technology, may provide improved hearing outcomes for cochlear implant patients. The exogenous delivery of neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3 is well known to support AN survival in deafness, and cell-based therapies provide a potential clinically viable option for delivering neurotrophins into the deaf cochlea. This study utilized cells that were genetically modified to express BDNF and encapsulated in alginate microspheres, and investigated AN survival in the deaf guinea pig following (a) cell-based neurotrophin treatment in conjunction with chronic electrical stimulation from a cochlear implant, and (b) long-term cell-based neurotrophin delivery. In comparison to deafened controls, there was significantly greater AN survival following the cell-based neurotrophin treatment, and there were ongoing survival effects for at least six months. In addition, functional benefits were observed following cell-based neurotrophin treatment and chronic electrical stimulation, with a statistically significant decrease in electrically evoked auditory brainstem response thresholds observed during the experimental period. This study demonstrates that cell-based therapies, in conjunction with a cochlear implant, shows potential as a clinically transferable means of providing neurotrophin treatment to support AN survival in deafness. This technology also has the potential to deliver other therapeutic agents, and to be used in conjunction with other biomedical devices for the treatment of a variety of neurodegenerative conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Survival of Chinese Hamster Ovary Cells Following Ultrahigh Dose Rate Electron and Bremsstrahlung Radiation

    DTIC Science & Technology

    1990-04-01

    and a stepped lead flattening filter. The electron energy used for these studies was 13 MeV. Dosimetry was performed by the Health Physics Division...VolI LJSAFSAPA-TR-90-4 AD-A222 722 SURVIVAL OF CHINESE HAMSTER OVARY CELLS FOLLOWING ULTRAHIGH DOSE RATE ELECTRON AND BREMISSTRAHLUNG RADIATION...Include Security ;a!. iatcn) Survival of Chinese Hamster Ovary Cells Following Ultrahigh Dose Rate Electron and Bremsstrahlung Radiation 12 PERSONAL

  1. FGFR and PTEN signaling interact during lens development to regulate cell survival

    PubMed Central

    Chaffee, Blake R.; Hoang, Thanh V.; Leonard, Melissa R.; Bruney, Devin G.; Wagner, Brad D.; Dowd, Joseph Richard; Leone, Gustavo; Ostrowski, Michael C.; Robinson, Michael L.

    2016-01-01

    Lens epithelial cells express many receptor tyrosine kinases (RTKs) that stimulate PI3K-AKT and RAS-RAF-MEK-ERK intracellular signaling pathways. These pathways ultimately activate the phosphorylation of key cellular transcription factors and other proteins that control proliferation, survival, metabolism, and differentiation in virtually all cells. Among RTKs in the lens, only stimulation of fibroblast growth factor receptors (FGFRs) elicits a lens epithelial cell to fiber cell differentiation response in mammals. Moreover, although the lens expresses three different Fgfr genes, the isolated removal of Fgfr2 at the lens placode stage inhibits both lens cell survival and fiber cell differentiation. Phosphatase and tensin homolog (PTEN), commonly known as a tumor suppressor, inhibits ERK and AKT activation and initiates both apoptotic pathways, and cell cycle arrest. Here, we show that the combined deletion of Fgfr2 and Pten rescues the cell death phenotype associated with Fgfr2 loss alone. Additionally, Pten removal increased AKT and ERK activation, above the levels of controls, in the presence or absence of Fgfr2. However, isolated deletion of Pten failed to stimulate ectopic fiber cell differentiation, and the combined deletion of Pten and Fgfr2 failed to restore differentiation-specific Aquaporin0 and DnaseIIβ expression in the lens fiber cells. PMID:26764128

  2. The effects of oral glutamine on clinical and survival outcomes of non-small cell lung cancer patients treated with chemoradiotherapy.

    PubMed

    Gul, Kanyilmaz; Mehmet, Koc; Meryem, Aktan

    2017-08-01

    To assess the efficacy of oral glutamine (Gln) supplementation on clinical and survival outcomes of patients with locally advanced non-small cell lung cancer (LA-NSCLC). Between 2010 and 2014, 122 stage III NSCLC patients were retrospectively analyzed. All patients received curative intent chemoradiotherapy (CRT). Prophylactic oral Gln powder was applied at a dose of 10 g tid. Effect of oral Gln supplementation in the prevention of severe (≥grade 2-3) acute radiation-induced esophagitis (ARE) and weight loss, and their relation with overall survival (OS) and disease-free survival (DFS) was measured. Median follow-up was 13.14 months (range; 1.97-55.36). Fifty-six (46%) patients had received oral Gln. Severe ARE was significantly lower in Gln-supplemented group (30% vs 70%; p = 0.002). Gln-free patients demonstrated a higher weight loss (p = 0.0001). In multivariate analysis hemoglobin (hb) level (<12 g/dL; p = 0.01) and nodal stage (N3; p = 0.01) were poor prognostic factors that affect OS; Weight loss (p = 0.06) and Gln-free (p = 0.05) reached nearly significant levels that poorly affect OS. Similarly, nodal stage (N3, p = 0.014) and Gln-free (p = 0.035) were poor prognostic factors that affect DFS. Weight loss (≥2%, p = 0.06) and hb level (<12 g/dL, p = 0.07) reached borderline significance that poorly affect DFS. Nodal stage (N3) was the only poor prognostic factor that affect OS and DFS in univariate analysis (p = 0.01, p = 0.009; respectively). Oral Gln supplementation significantly reduces grade 2-3 esophagitis and weight loss and also no negative impact on tumor control and survival outcomes in patients with LA-NSCLC. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  3. Social factors, treatment, and survival in early-stage non-small cell lung cancer.

    PubMed Central

    Greenwald, H P; Polissar, N L; Borgatta, E F; McCorkle, R; Goodman, G

    1998-01-01

    OBJECTIVES: This study assessed the importance of socioeconomic status, race, and likelihood of receiving surgery in explaining mortality among patients with stage-I non-small cell lung cancer. METHODS: Analyses focused on Black and White individuals 75 years of age and younger (n = 5189) diagnosed between 1980 and 1982 with stage-I non-small cell lung cancer in Detroit, San Francisco, and Seattle. The main outcome measure was months of survival after diagnosis. RESULTS: Patients in the highest income decile were 45% more likely to receive surgical treatment and 102% more likely to attain 5-year survival than those in the lowest decile. Whites were 20% more likely to undergo surgery than Blacks and 31% more likely to survive 5 years. Multivariate procedures controlling for age and sex confirmed these observations. CONCLUSIONS: Socioeconomic status and race appear to independently influence likelihood of survival. Failure to receive surgery explains much excess mortality. PMID:9807536

  4. IL-15 signaling promotes adoptive effector T-cell survival and memory formation in irradiation-induced lymphopenia.

    PubMed

    Xu, Aizhang; Bhanumathy, Kalpana Kalyanasundaram; Wu, Jie; Ye, Zhenmin; Freywald, Andrew; Leary, Scot C; Li, Rongxiu; Xiang, Jim

    2016-01-01

    Lymphopenia promotes naïve T-cell homeostatic proliferation and adoptive effector T-cell survival and memory formation. IL-7 plays a critical role in homeostatic proliferation, survival and memory formation of naïve T-cells in lymphopenia, and its underlying molecular mechanism has also been well studied. However, the mechanism for adoptively transferred effector T-cell survival and memory formation is not fully understood. Here, we transferred in vitro-activated transgenic OT-I CD8(+) effector T-cells into irradiation (600 rads)-induced lymphopenic C57BL/6, IL-7 knockout (KO) and IL-15 KO mice, and investigated the survival and memory formation of transferred T-cells in lymphopenia. We demonstrate that transferred T-cells prolong their survival and enhance their memory in lymphopenic mice, in a manner that depends on IL-15 signaling, but not IL-7. We determine that in vitro stimulation of naïve or effector T-cells with IL-7 and IL-15 reduces IL-7Rα, and increases and/or maintains IL-15Rβ expression, respectively. Consistent with these findings, the expression of IL-7Rα and IL-15Rβ is down- and up-regulated, respectively, in vivo on transferred T-cells in an early phase post T-cell transfer in lymphopenia. We further show that in vitro IL-15 restimulation-induced memory T-cells (compared to IL-2 restimulation-induced effector T-cells) and in vivo transferred T-cells in irradiated IL-15-sufficient C57BL/6 mice (compared to IL-15-deficient IL-15 KO mice) have increased mitochondrial content, but less NADH and lower mitochondrial potential (ΔΨm), and demonstrate greater phosphorylation of signal transducers and activators of transcription-5 (STAT5) and Unc-51-like kinase-1 (ULK1), and higher expression of B-cell leukemia/lymphoma-2 (Bcl2) and memory-, autophagy- and mitochondrial biogenesis-related molecules. Irradiation-induced lymphopenia promotes effector T-cell survival via IL-15 signaling the STAT5/Bcl2 pathway, enhances T-cell memory formation via IL

  5. Urinary collecting system invasion is associated with poor survival in patients with clear-cell renal cell carcinoma.

    PubMed

    Bailey, George C; Boorjian, Stephen A; Ziegelmann, Matthew J; Westerman, Mary E; Lohse, Christine M; Leibovich, Bradley C; Cheville, John C; Thompson, R Houston

    2017-04-01

    To evaluate the prognostic significance of urinary collecting system invasion (UCSI) in a large series of patients with clear-cell renal cell carcinoma (RCC). Patients with clear-cell RCC treated with nephrectomy between 2001 and 2010 were reviewed from a prospectively maintained registry. One urological pathologist re-reviewed all slides. Cancer-specific survival was estimated using the Kaplan-Meier method, and associations of UCSI with death from RCC were evaluated using Cox models. Of the 859 patients with clear-cell RCC, 58 (6.8%) had UCSI. At last follow-up, 310 patients had died from RCC at a median of 1.8 years after surgery. The median follow-up for patients alive at last follow-up was 8.2 years. The estimated cancer-specific survival at 10 years after surgery for patients with UCSI was 17%, compared with 60% for patients without UCSI (P < 0.001). In a multivariable model, UCSI remained independently associated with an increased risk of death from RCC (hazard ratio 1.5; P = 0.018). Further, among patients with pT3 RCC, those with USCI had survival outcomes similar to those of patients with pT4 RCC. Collecting system invasion is associated with poor prognosis among patients with clear-cell RCC. If validated, consideration should be given to including UCSI in future staging systems. © 2016 The Authors BJU International © 2016 BJU International Published by John Wiley & Sons Ltd.

  6. CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis

    PubMed Central

    Gouwy, Mieke; Ruytinx, Pieter; Radice, Egle; Claudi, Federico; Van Raemdonck, Katrien; Bonecchi, Raffaella; Locati, Massimo; Struyf, Sofie

    2016-01-01

    Upon inflammation, circulating monocytes leave the bloodstream and migrate into the tissues, where they differentiate after exposure to various growth factors, cytokines or infectious agents. The best defined macrophage polarization types are M1 and M2. However, the platelet-derived CXC chemokine CXCL4 induces the polarization of macrophages into a unique phenotype. In this study, we compared the effect of CXCL4 and its variant CXCL4L1 on the differentiation of monocytes into macrophages and into immature monocyte-derived dendritic cells (iMDDC). Differently to M-CSF and CXCL4, CXCL4L1 is not a survival factor for monocytes. Moreover, the expression of the chemokine receptors CCR2, CCR5 and CXCR3 was significantly higher on CXCL4L1-treated monocytes compared to M-CSF- and CXCL4-stimulated monocytes. IL-1 receptor antagonist (IL-1RN) expression was upregulated by CXCL4 and downregulated by CXCL4L1, respectively, whereas both chemokines reduced the expression of the mannose receptor (MRC). Furthermore, through activation of CXCR3, CXCL4L1-stimulated monocytes released significantly higher amounts of CCL2 and CXCL8 compared to CXCL4-treated monocytes, indicating more pronounced inflammatory traits for CXCL4L1. In contrast, in CXCL4L1-treated monocytes, the production of CCL22 was lower. Compared to iMDDC generated in the presence of CXCL4L1, CXCL4-treated iMDDC showed an enhanced phagocytic capacity and downregulation of expression of certain surface markers (e.g. CD1a) and specific enzymes (e.g. MMP-9 and MMP-12). CXCL4 and CXCL4L1 did not affect the chemokine receptor expression on iMDDC and cytokine production (CCL2, CCL18, CCL22, CXCL8, IL-10) by CXCL4- or CXCL4L1-differentiated iMDDC was similar. We can conclude that both CXCL4 and CXCL4L1 exert a direct effect on monocytes and iMDDC. However, the resulting phenotypes are different, which suggests a unique role for the two CXCL4 variants in physiology and/or pathology. PMID:27828999

  7. CXCL4 and CXCL4L1 Differentially Affect Monocyte Survival and Dendritic Cell Differentiation and Phagocytosis.

    PubMed

    Gouwy, Mieke; Ruytinx, Pieter; Radice, Egle; Claudi, Federico; Van Raemdonck, Katrien; Bonecchi, Raffaella; Locati, Massimo; Struyf, Sofie

    2016-01-01

    Upon inflammation, circulating monocytes leave the bloodstream and migrate into the tissues, where they differentiate after exposure to various growth factors, cytokines or infectious agents. The best defined macrophage polarization types are M1 and M2. However, the platelet-derived CXC chemokine CXCL4 induces the polarization of macrophages into a unique phenotype. In this study, we compared the effect of CXCL4 and its variant CXCL4L1 on the differentiation of monocytes into macrophages and into immature monocyte-derived dendritic cells (iMDDC). Differently to M-CSF and CXCL4, CXCL4L1 is not a survival factor for monocytes. Moreover, the expression of the chemokine receptors CCR2, CCR5 and CXCR3 was significantly higher on CXCL4L1-treated monocytes compared to M-CSF- and CXCL4-stimulated monocytes. IL-1 receptor antagonist (IL-1RN) expression was upregulated by CXCL4 and downregulated by CXCL4L1, respectively, whereas both chemokines reduced the expression of the mannose receptor (MRC). Furthermore, through activation of CXCR3, CXCL4L1-stimulated monocytes released significantly higher amounts of CCL2 and CXCL8 compared to CXCL4-treated monocytes, indicating more pronounced inflammatory traits for CXCL4L1. In contrast, in CXCL4L1-treated monocytes, the production of CCL22 was lower. Compared to iMDDC generated in the presence of CXCL4L1, CXCL4-treated iMDDC showed an enhanced phagocytic capacity and downregulation of expression of certain surface markers (e.g. CD1a) and specific enzymes (e.g. MMP-9 and MMP-12). CXCL4 and CXCL4L1 did not affect the chemokine receptor expression on iMDDC and cytokine production (CCL2, CCL18, CCL22, CXCL8, IL-10) by CXCL4- or CXCL4L1-differentiated iMDDC was similar. We can conclude that both CXCL4 and CXCL4L1 exert a direct effect on monocytes and iMDDC. However, the resulting phenotypes are different, which suggests a unique role for the two CXCL4 variants in physiology and/or pathology.

  8. Hair Follicle Dermal Sheath Derived Cells Improve Islet Allograft Survival without Systemic Immunosuppression

    PubMed Central

    Wang, Xiaojie; Hao, Jianqiang; Leung, Gigi; Breitkopf, Trisia; Wang, Eddy; Kwong, Nicole; Akhoundsadegh, Noushin; Warnock, Garth L.; Shapiro, Jerry; McElwee, Kevin J.

    2015-01-01

    Immunosuppressive drugs successfully prevent rejection of islet allografts in the treatment of type I diabetes. However, the drugs also suppress systemic immunity increasing the risk of opportunistic infection and cancer development in allograft recipients. In this study, we investigated a new treatment for autoimmune diabetes using naturally immune privileged, hair follicle derived, autologous cells to provide localized immune protection of islet allotransplants. Islets from Balb/c mouse donors were cotransplanted with syngeneic hair follicle dermal sheath cup cells (DSCC, group 1) or fibroblasts (FB, group 2) under the kidney capsule of immune-competent, streptozotocin induced, diabetic C57BL/6 recipients. Group 1 allografts survived significantly longer than group 2 (32.2 ± 12.2 versus 14.1 ± 3.3 days, P < 0.001) without administration of any systemic immunosuppressive agents. DSCC reduced T cell activation in the renal lymph node, prevented graft infiltrates, modulated inflammatory chemokine and cytokine profiles, and preserved better beta cell function in the islet allografts, but no systemic immunosuppression was observed. In summary, DSCC prolong islet allograft survival without systemic immunosuppression by local modulation of alloimmune responses, enhancing of beta cell survival, and promoting of graft revascularization. This novel finding demonstrates the capacity of easily accessible hair follicle cells to be used as local immunosuppression agents in islet transplantation. PMID:26000314

  9. Toxicity of benthic dinoflagellates on grazing, behavior and survival of the brine shrimp Artemia salina

    PubMed Central

    Neves, Raquel A. F.; Fernandes, Tainá; dos Santos, Luciano Neves; Nascimento, Silvia M.

    2017-01-01

    Harmful algae may differently affect their primary grazers, causing sub-lethal effects and/or leading to their death. The present study aim to compare the effects of three toxic benthic dinoflagellates on clearance and grazing rates, behavioral changes, and survival of Artemia salina. Feeding assays consisted in 1-h incubations of brine shrimps with the toxic Prorocentrum lima, Gambierdiscus excentricus and Ostreopsis cf. ovata and the non-toxic Tetraselmis sp. Brine shrimps fed unselectively on all toxic and non-toxic algal preys, without significant differences in clearance and ingestion rates. Acute toxicity assays were performed with dinoflagellate cells in two growth phases during 7-h to assess differences in cell toxicity to A. salina. Additionally, exposure to cell-free medium was performed to evaluate its effects on A. salina survival. The behavior of brine shrimps significantly changed during exposure to the toxic dinoflagellates, becoming immobile at the bottom by the end of the trials. Dinoflagellates significantly affected A. salina survival with 100% mortality after 7-h exposure to cells in exponential phase (all treatments) and to P. lima in stationary phase. Mortality rates of brine shrimps exposed to O. cf. ovata and G. excentricus in stationary phase were 91% and 75%, respectively. However, incubations of the brine shrimps with cell-free medium did not affect A. salina survivorship. Significant differences in toxic effects between cell growth phases were only found in the survival rates of A. salina exposed to G. excentricus. Acute exposure to benthic toxic dinoflagellates induced harmful effects on behavior and survival of A. salina. Negative effects related to the toxicity of benthic dinoflagellates are thus expected on their primary grazers making them more vulnerable to predation and vectors of toxins through the marine food webs. PMID:28388672

  10. Toxicity of benthic dinoflagellates on grazing, behavior and survival of the brine shrimp Artemia salina.

    PubMed

    Neves, Raquel A F; Fernandes, Tainá; Santos, Luciano Neves Dos; Nascimento, Silvia M

    2017-01-01

    Harmful algae may differently affect their primary grazers, causing sub-lethal effects and/or leading to their death. The present study aim to compare the effects of three toxic benthic dinoflagellates on clearance and grazing rates, behavioral changes, and survival of Artemia salina. Feeding assays consisted in 1-h incubations of brine shrimps with the toxic Prorocentrum lima, Gambierdiscus excentricus and Ostreopsis cf. ovata and the non-toxic Tetraselmis sp. Brine shrimps fed unselectively on all toxic and non-toxic algal preys, without significant differences in clearance and ingestion rates. Acute toxicity assays were performed with dinoflagellate cells in two growth phases during 7-h to assess differences in cell toxicity to A. salina. Additionally, exposure to cell-free medium was performed to evaluate its effects on A. salina survival. The behavior of brine shrimps significantly changed during exposure to the toxic dinoflagellates, becoming immobile at the bottom by the end of the trials. Dinoflagellates significantly affected A. salina survival with 100% mortality after 7-h exposure to cells in exponential phase (all treatments) and to P. lima in stationary phase. Mortality rates of brine shrimps exposed to O. cf. ovata and G. excentricus in stationary phase were 91% and 75%, respectively. However, incubations of the brine shrimps with cell-free medium did not affect A. salina survivorship. Significant differences in toxic effects between cell growth phases were only found in the survival rates of A. salina exposed to G. excentricus. Acute exposure to benthic toxic dinoflagellates induced harmful effects on behavior and survival of A. salina. Negative effects related to the toxicity of benthic dinoflagellates are thus expected on their primary grazers making them more vulnerable to predation and vectors of toxins through the marine food webs.

  11. Protective effects of dietary antioxidants on proton total-body irradiation-mediated hematopoietic cell and animal survival.

    PubMed

    Wambi, Chris O; Sanzari, Jenine K; Sayers, Carly M; Nuth, Manunya; Zhou, Zhaozong; Davis, James; Finnberg, Niklas; Lewis-Wambi, Joan S; Ware, Jeffrey H; El-Deiry, Wafik S; Kennedy, Ann R

    2009-08-01

    Abstract Dietary antioxidants have radioprotective effects after gamma-radiation exposure that limit hematopoietic cell depletion and improve animal survival. The purpose of this study was to determine whether a dietary supplement consisting of l-selenomethionine, vitamin C, vitamin E succinate, alpha-lipoic acid and N-acetyl cysteine could improve survival of mice after proton total-body irradiation (TBI). Antioxidants significantly increased 30-day survival of mice only when given after irradiation at a dose less than the calculated LD(50/30); for these data, the dose-modifying factor (DMF) was 1.6. Pretreatment of animals with antioxidants resulted in significantly higher serum total white blood cell, polymorphonuclear cell and lymphocyte cell counts at 4 h after 1 Gy but not 7.2 Gy proton TBI. Antioxidants significantly modulated plasma levels of the hematopoietic cytokines Flt-3L and TGFbeta1 and increased bone marrow cell counts and spleen mass after TBI. Maintenance of the antioxidant diet resulted in improved recovery of peripheral leukocytes and platelets after sublethal and potentially lethal TBI. Taken together, oral supplementation with antioxidants appears to be an effective approach for radioprotection of hematopoietic cells and improvement of animal survival after proton TBI.

  12. MicroRNA-124 expression counteracts pro-survival stress responses in glioblastoma.

    PubMed

    Mucaj, V; Lee, S S; Skuli, N; Giannoukos, D N; Qiu, B; Eisinger-Mathason, T S K; Nakazawa, M S; Shay, J E S; Gopal, P P; Venneti, S; Lal, P; Minn, A J; Simon, M C; Mathew, L K

    2015-04-23

    Glioblastomas are aggressive adult brain tumors, characterized by inadequately organized vasculature and consequent nutrient and oxygen (O2)-depleted areas. Adaptation to low nutrients and hypoxia supports glioblastoma cell survival, progression and therapeutic resistance. However, specific mechanisms promoting cellular survival under nutrient and O2 deprivation remain incompletely understood. Here, we show that miR-124 expression is negatively correlated with a hypoxic gene signature in glioblastoma patient samples, suggesting that low miR-124 levels contribute to pro-survival adaptive pathways in this disease. As miR-124 expression is repressed in various cancer types (including glioblastoma), we quantified miR-124 abundance in normoxic and hypoxic regions in glioblastoma patient tissue, and investigated whether ectopic miR-124 expression compromises cell survival during tumor ischemia. Our results indicate that miR-124 levels are further diminished in hypoxic/ischemic regions within individual glioblastoma patient samples, compared with regions replete in O2 and nutrients. Importantly, we also show that increased miR-124 expression affects the ability of tumor cells to survive under O2 and/or nutrient deprivation. Moreover, miR-124 re-expression increases cell death in vivo and enhances the survival of mice bearing intracranial xenograft tumors. miR-124 exerts this phenotype in part by directly regulating TEAD1, MAPK14/p38α and SERP1, factors involved in cell proliferation and survival under stress. Simultaneous suppression of these miR-124 targets results in similar levels of cell death as caused by miR-124 restoration. Importantly, we further demonstrate that SERP1 reintroduction reverses the hypoxic cell death elicited by miR-124, indicating the importance of SERP1 in promoting tumor cell survival. In support of our experimental data, we observed a significant correlation between high SERP1 levels and poor patient outcome in glioblastoma patients

  13. MicroRNA-124 expression counteracts pro-survival stress responses in glioblastoma

    PubMed Central

    Mucaj, Vera; Lee, Samuel S.; Skuli, Nicolas; Giannoukos, Dionysios N.; Qiu, Bo; Eisinger-Mathason, T.S. Karin; Nakazawa, Michael S.; Shay, Jessica E.S.; Gopal, Pallavi P.; Venneti, Sriram; Lal, Priti; Minn, Andy J.; Simon, M. Celeste; Mathew, Lijoy K.

    2014-01-01

    Glioblastomas are aggressive adult brain tumors, characterized by inadequately organized vasculature and consequent nutrient and oxygen (O2)-depleted areas. Adaptation to low nutrients and hypoxia supports glioblastoma cell survival, progression, and therapeutic resistance. However, specific mechanisms promoting cellular survival under nutrient and O2 deprivation remain incompletely understood. Here, we show that miR-124 expression is negatively correlated with a hypoxic gene signature in glioblastoma patient samples, suggesting that low miR-124 levels contribute to pro-survival adaptive pathways in this disease. Since miR-124 expression is repressed in various cancers (including glioblastoma), we quantified miR-124 abundance in normoxic and hypoxic regions in glioblastoma patient tissue, and investigated whether ectopic miR-124 expression compromises cell survival, during tumor ischemia. Our results indicate that miR-124 levels are further diminished in hypoxic/ischemic regions within individual glioblastoma patient samples, compared to regions replete in O2 and nutrients. Importantly, we also show that increased miR-124 expression affects the ability of tumor cells to survive under O2 and/or nutrient deprivation. Moreover, miR-124 re-expression increases cell death in vivo, and enhances the survival of mice bearing intracranial xenograft tumors. miR-124 exerts this phenotype in part by directly regulating TEAD1, MAPK14/p38α and SERP1, factors involved in cell proliferation and survival under stress. Simultaneous suppression of these miR-124 targets results in similar levels of cell death as caused by miR-124 restoration. Importantly, we further demonstrate that SERP1 re-introduction reverses the hypoxic cell death elicited by miR-124, indicating the importance of SERP1 in promoting tumor cell survival. In support of our experimental data, we observed a significant correlation between high SERP1 levels and poor patient outcome in glioblastoma patients

  14. Prolonged survival of patients with non-small-cell lung cancer with leptomeningeal carcinomatosis in the modern treatment era.

    PubMed

    Riess, Jonathan W; Nagpal, Seema; Iv, Michael; Zeineh, Michael; Gubens, Matthew A; Ramchandran, Kavitha; Neal, Joel W; Wakelee, Heather A

    2014-05-01

    Leptomeningeal carcinomatosis (LM) is a severe complication of non-small-cell lung cancer (NSCLC) historically associated with poor prognosis. New chemotherapeutic and targeted treatments could potentially affect the natural history of LM. Patients with a pathologic diagnosis of NSCLC with LM treated at Stanford between 2003 and 2011 were identified via institutional databases and medical records. LM was defined by cerebrospinal fluid (CSF) that was positive for malignant cells or by LM enhancement on magnetic resonance imaging with gadolinium contrast. Retrospective, landmark analyses were performed to estimate survival. Statistical analyses were performed using SAS Enterprise Guide, version 4.3. LM was identified in 30 patients. All cases were adenocarcinoma; 60% of patients had a known or suspected driver mutation. The mean age was 58 years. Of the 30 patients, 67% were women; 70% were nonsmokers; 27% initially presented with LM; 84% received systemic treatment at or after development of LM; and 53% of these patients received modern systemic therapy for their LM, defined as a regimen containing pemetrexed, bevacizumab, or a tyrosine kinase inhibitor. Mean overall survival after LM diagnosis was 6 months (95% CI, 3-12). Patients who received modern systemic therapy for LM had decreased hazard of death (hazard ratio [HR], 0.24; P = .007). In this retrospective, single-institution analysis, median survival with LM was higher compared with historical experience. Patients who received modern systemic therapy for their LM had particularly good outcomes. These data provide evidence for improving survival outcomes in the modern treatment era for this difficult-to-treat complication. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Factors affecting survival of women diagnosed with breast cancer in El-Minia Governorate, Egypt.

    PubMed

    Seedhom, Amany Edward; Kamal, Nashwa Nabil

    2011-07-01

    This study was conducted to determine breast cancer survival time and the association between breast cancer survival and socio-demographic and pathologic factors among women, in El-Minia, Egypt. While there has been much researches regarding prognostic factors for breast cancer but the majority of these studies were from developed countries. El-Minia has a population of approximately 4 million. To date, no research has been performed to determine breast cancer survival and the factors affecting it in El-minia. This retrospective study used data obtained from the cancer registry in the National Institute of Oncology in El-Minia and included 1207 women diagnosed with first primary breast cancer between 1(st) January 2005 and 31(st) December 2009 and followed to 30(th) June 2010. The association between survival and sociodemographic and pathological factors and distant metastasis at diagnosis, and treatment options was investigated using unifactorial chi-square test and multi-factorial (Cox regression) analyses. Kaplan-Meier analysis was used to compare survival time among different groups. Median survival time was 83.8 ± 3.2. Cox regression showed that high vs low educational level (Hazard ratio (HR)= 0.35, 95% CI; 0.27-0.46), metastases to bone (HR = 3.22, 95% CI: 1.71-6.05), metastases to lung (HR= 2.314, 95% CI: 1.225-4.373), tumor size (≤ 2 cm vs ≥ 5 cm: HR = 1.4, 95% CI: 1.1-1.8) and number of involved nodes (1 vs > 10 HR = 5.21, 95%CI: 3.1-9.01) were significantly related to survival. The results showed the need to develop screening programs and standardized treatment regimens in a tax-funded health care system.

  16. TNF-{alpha} promotes cell survival through stimulation of K{sup +} channel and NF{kappa}B activity in corneal epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Ling; Reinach, Peter; Lu, Luo

    2005-11-15

    Tumor necrosis factor (TNF-{alpha}) in various cell types induces either cell death or mitogenesis through different signaling pathways. In the present study, we determined in human corneal epithelial cells how TNF-{alpha} also promotes cell survival. Human corneal epithelial (HCE) cells were cultured in DMEM/F-12 medium containing 10% FBS. TNF-{alpha} stimulation induced activation of a voltage-gated K{sup +} channel detected by measuring single channel activity using patch clamp techniques. The effect of TNF-{alpha} on downstream events included NF{kappa}B nuclear translocation and increases in DNA binding activities, but did not elicit ERK, JNK, or p38 limb signaling activation. TNF-{alpha} induced increases inmore » p21 expression resulting in partial cell cycle attenuation in the G{sub 1} phase. Cell cycle progression was also mapped by flow cytometer analysis. Blockade of TNF-{alpha}-induced K{sup +} channel activity effectively prevented NF{kappa}B nuclear translocation and binding to DNA, diminishing the cell-survival protective effect of TNF-{alpha}. In conclusion, TNF-{alpha} promotes survival of HCE cells through sequential stimulation of K{sup +} channel and NF{kappa}B activities. This response to TNF-{alpha} is dependent on stimulating K{sup +} channel activity because following suppression of K{sup +} channel activity TNF-{alpha} failed to activate NF{kappa}B nuclear translocation and binding to nuclear DNA.« less

  17. Upregulation of LYAR induces neuroblastoma cell proliferation and survival.

    PubMed

    Sun, Yuting; Atmadibrata, Bernard; Yu, Denise; Wong, Matthew; Liu, Bing; Ho, Nicholas; Ling, Dora; Tee, Andrew E; Wang, Jenny; Mungrue, Imran N; Liu, Pei Y; Liu, Tao

    2017-09-01

    The N-Myc oncoprotein induces neuroblastoma by regulating gene transcription and consequently causing cell proliferation. Paradoxically, N-Myc is well known to induce apoptosis by upregulating pro-apoptosis genes, and it is not clear how N-Myc overexpressing neuroblastoma cells escape N-Myc-mediated apoptosis. The nuclear zinc finger protein LYAR has recently been shown to modulate gene expression by forming a protein complex with the protein arginine methyltransferase PRMT5. Here we showed that N-Myc upregulated LYAR gene expression by binding to its gene promoter. Genome-wide differential gene expression studies revealed that knocking down LYAR considerably upregulated the expression of oxidative stress genes including CHAC1, which depletes intracellular glutathione and induces oxidative stress. Although knocking down LYAR expression with siRNAs induced oxidative stress, neuroblastoma cell growth inhibition and apoptosis, co-treatment with the glutathione supplement N-acetyl-l-cysteine or co-transfection with CHAC1 siRNAs blocked the effect of LYAR siRNAs. Importantly, high levels of LYAR gene expression in human neuroblastoma tissues predicted poor event-free and overall survival in neuroblastoma patients, independent of the best current markers for poor prognosis. Taken together, our data suggest that LYAR induces proliferation and promotes survival of neuroblastoma cells by repressing the expression of oxidative stress genes such as CHAC1 and suppressing oxidative stress, and identify LYAR as a novel co-factor in N-Myc oncogenesis.

  18. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    PubMed

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  19. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival.

    PubMed

    Davì, Valeria; Tanimoto, Hirokazu; Ershov, Dmitry; Haupt, Armin; De Belly, Henry; Le Borgne, Rémi; Couturier, Etienne; Boudaoud, Arezki; Minc, Nicolas

    2018-04-23

    How growing cells cope with size expansion while ensuring mechanical integrity is not known. In walled cells, such as those of microbes and plants, growth and viability are both supported by a thin and rigid encasing cell wall (CW). We deciphered the dynamic mechanisms controlling wall surface assembly during cell growth, using a sub-resolution microscopy approach to monitor CW thickness in live rod-shaped fission yeast cells. We found that polar cell growth yielded wall thinning and that thickness negatively influenced growth. Thickness at growing tips exhibited a fluctuating behavior with thickening phases followed by thinning phases, indicative of a delayed feedback promoting thickness homeostasis. This feedback was mediated by mechanosensing through the CW integrity pathway, which probes strain in the wall to adjust synthase localization and activity to surface growth. Mutants defective in thickness homeostasis lysed by rupturing the wall, demonstrating its pivotal role for walled cell survival. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Long-term survival following autologous and allogeneic stem cell transplantation for blastic plasmacytoid dendritic cell neoplasm.

    PubMed

    Aoki, Tomohiro; Suzuki, Ritsuro; Kuwatsuka, Yachiyo; Kako, Shinichi; Fujimoto, Katsuya; Taguchi, Jun; Kondo, Tadakazu; Ohata, Kinya; Ito, Toshiro; Kamoda, Yoshimasa; Fukuda, Takahiro; Ichinohe, Tatsuo; Takeuchi, Kengo; Izutsu, Koji; Suzumiya, Junji

    2015-06-04

    We sought to clarify the role of high-dose chemotherapy followed by autologous hematopoietic stem cell transplantation (auto-HSCT) and allogeneic hematopoietic stem cell transplantation (allo-HSCT) to treat blastic plasmacytoid dendritic cell neoplasm (BPDCN). We retrospectively identified 25 BPDCN patients (allo-HSCT, n = 14; auto-HSCT, n = 11) from registry data of the Japan Society for Hematopoietic Cell Transplantation and analyzed clinicopathologic data and clinical outcomes after transplantation. The median age at HSCT was 58 years (range, 17-67 years). All 11 patients who underwent auto-HSCT were in the first complete remission (CR1). With a median follow-up of 53.5 months, the overall survival rates at 4 years for patients who underwent auto-HSCT and allo-HSCT were 82% and 53% (P = .11), respectively, and progression-free survival rates were 73% and 48% (P = .14), respectively. Auto-HSCT for BPDCN in CR1 appears to provide promising results and deserves further evaluation in the setting of prospective trials. © 2015 by The American Society of Hematology.

  1. The importance of building construction materials relative to other factors affecting structure survival during wildfire

    USGS Publications Warehouse

    Syphard, Alexandra D.; Brennan, Teresa J.; Keeley, Jon E.

    2017-01-01

    Structure loss to wildfire is a serious problem in wildland-urban interface areas across the world. Laboratory experiments suggest that fire-resistant building construction and design could be important for reducing structure destruction, but these need to be evaluated under real wildfire conditions, especially relative to other factors. Using empirical data from destroyed and surviving structures from large wildfires in southern California, we evaluated the relative importance of building construction and structure age compared to other local and landscape-scale variables associated with structure survival. The local-scale analysis showed that window preparation was especially important but, in general, creating defensible space adjacent to the home was as important as building construction. At the landscape scale, structure density and structure age were the two most important factors affecting structure survival, but there was a significant interaction between them. That is, young structure age was most important in higher-density areas where structure survival overall was more likely. On the other hand, newer-construction structures were less likely to survive wildfires at lower density. Here, appropriate defensible space near the structure and accessibility to major roads were important factors. In conclusion, community safety is a multivariate problem that will require a comprehensive solution involving land use planning, fire-safe construction, and property maintenance.

  2. Infused autograft lymphocyte-to-monocyte ratio and survival in T-cell lymphoma post-autologous peripheral blood hematopoietic stem cell transplantation.

    PubMed

    Porrata, Luis F; Inwards, David J; Ansell, Stephen M; Micallef, Ivana N; Johnston, Patrick B; Hogan, William J; Markovic, Svetomir N

    2015-07-03

    The infused autograft lymphocyte-to-monocyte ratio (A-LMR) is a prognostic factor for survival in B-cell lymphomas post-autologous peripheral hematopoietic stem cell transplantation (APHSCT). Thus, we set out to investigate if the A-LMR is also a prognostic factor for survival post-APHSCT in T-cell lymphomas. From 1998 to 2014, 109 T-cell lymphoma patients that underwent APHSCT were studied. Receiver operating characteristic (ROC) and area under the curve (AUC) were used to identify the optimal cut-off value of A-LMR for survival analysis and k-fold cross-validation model to validate the A-LMR cut-off value. Univariate and multivariate Cox proportional hazard models were used to assess the prognostic discriminator power of A-LMR. ROC and AUC identified an A-LMR ≥ 1 as the best cut-off value and was validated by k-fold cross-validation. Multivariate analysis showed A-LMR to be an independent prognostic factor for overall survival (OS) and progression-free survival (PFS). Patients with an A-LMR ≥ 1.0 experienced a superior OS and PFS versus patients with an A-LMR < 1.0 [median OS was not reached vs 17.9 months, 5-year OS rates of 87% (95% confidence interval (CI), 75-94%) vs 26% (95% CI, 13-42%), p < 0.0001; median PFS was not reached vs 11.9 months, 5-year PFS rates of 72% (95% CI, 58-83%) vs 16% (95% CI, 6-32%), p < 0.0001]. A-LMR is also a prognostic factor for clinical outcomes in patients with T-cell lymphomas undergoing APHSCT.

  3. Cerebrospinal fluid cytotoxicity does not affect survival in amyotrophic lateral sclerosis.

    PubMed

    Galán, L; Matías-Guiu, J; Matias-Guiu, J A; Yáñez, M; Pytel, V; Guerrero-Sola, A; Vela-Souto, A; Arranz-Tagarro, J A; Gómez-Pinedo, U; García, A G

    2017-09-01

    Cerebrospinal fluid (CSF) from some patients with amyotrophic lateral sclerosis (ALS) has been demonstrated to significantly reduce the neuronal viability of primary cell cultures of motor neurons. We aimed to study the potential clinical consequences associated with the cytotoxicity of CSF in a cohort of patients with ALS. We collected CSF from thirty-one patients with ALS. We analysed cytotoxicity by incubating it into the primary cultures of motor cortex neurons. Neural viability was quantified after 24 hours using the colorimetric MTT reduction assay. All patients were followed up from the moment of diagnosis to death, and a complete evaluation during disease progression and survival was performed, including gastrostomy and respiratory assistance. Twenty-one patients (67.7%) presented a cytotoxic CSF. There were no significant differences between patients with and without cytotoxicity regarding mean time from symptom onset to the diagnosis, from the diagnosis to death, from the diagnosis to respiratory assistance with BIPAP, from diagnosis to gastrostomy and from the onset of symptoms to death. In Cox regression analysis, bulbar onset, but not cytotoxicity, gender or age at onset, was associated with a lower risk of survival. Cerebrospinal fluid cytotoxicity was not associated with differential survival rates. This suggests that the presence of cytotoxicity in CSF, measured through neuronal viability in primary cultures of motor cortex neurons, could reflect different mechanisms of the disease, but it does not predict disease outcome. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Comparative survival study of glial cells and cells composing walls of blood vessels in crustacean ventral nerve cord after photodynamic treatment

    NASA Astrophysics Data System (ADS)

    Kolosov, Mikhail S.; Shubina, Elena

    2015-03-01

    Photodynamic therapy is a prospective treatment modality of brain cancers. It is of importance to have information about relative survival rate of different cell types in nerve tissue during photodynamic treatment. Particularly, for development of sparing strategy of the photodynamic therapy of brain tumors, which pursuits both total elimination of malignant cells, which are usually of glial origin, and, at the same time, preservation of normal blood circulation as well as normal glial cells in the brain. The aim of this work was to carry out comparative survival study of glial cells and cells composing walls of blood vessels after photodynamic treatment, using simple model object - ventral nerve cord of crustacean.

  5. Preliminary Study on Intrasplenic Implantation of Artificial Cell Bioencapsulated Stem Cells to Increase the Survival of 90% Hepatectomized Rats

    PubMed Central

    Liu, Zun Chang; Chang, Thomas M.S.

    2012-01-01

    We implanted artificial cell bioencapsulated bone marrow mesenchymal stem cells into the spleens of 90% hepatectomized (PH) rats. The resulting 14 days survival rate was 91%. This is compared to a survival rate of 21% in 90% hepatectomized rats and 25% for those receiving free MSCs transplanted the same way. Unlike free MSCs, the bioencapsulated MSCs are retained in the spleens and their hepatotrophic factors can continue to drain directly into the liver without dilution resulting in improved hepatic regeneration. In addition, with time the transdifferentiation of MSCs into hepatocyte-like cells in the spleen renders the spleen as a ectopic liver support. PMID:19132579

  6. Marital status and survival in patients with renal cell carcinoma.

    PubMed

    Li, Yan; Zhu, Ming-Xi; Qi, Si-Hua

    2018-04-01

    Previous studies have shown that marital status is an independent prognostic factor for survival in several types of cancer. In this study, we investigated the effects of marital status on survival outcomes among renal cell carcinoma (RCC) patients.We identified patients diagnosed with RCC between 1973 and 2013 from the Surveillance, Epidemiology and End Results (SEER) database. Kaplan-Meier analysis and Cox regression were used to identify the effects of marital status on overall survival (OS) and cancer-specific survival (CSS).We enrolled 97,662 eligible RCC patients, including 64,884 married patients, and 32,778 unmarried (9831 divorced/separated, 9692 widowed, and 13,255 single) patients at diagnosis. The 5-year OS and CSS rates of the married, separated/divorced, widowed, and single patients were 73.7%, 69.5%, 58.3%, and 73.2% (OS), and 82.2%, 80.7%, 75.7%, and 83.3% (CSS), respectively. Multivariate Cox regression showed that, compared with married patients, widowed individuals showed poorer OS (hazard ratio, 1.419; 95% confidence interval, 1.370-1.469) and CSS (hazard ratio, 1.210; 95% confidence interval, 1.144-1.279). Stratified analyses and multivariate Cox regression showed that, in the insured and uninsured groups, married patients had better survival outcomes while widowed patients suffered worse OS outcomes; however, this trend was not significant for CSS.In RCC patients, married patients had better survival outcomes while widowed patients tended to suffer worse survival outcomes in terms of both OS and CSS.

  7. WE-H-BRA-08: A Monte Carlo Cell Nucleus Model for Assessing Cell Survival Probability Based On Particle Track Structure Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B; Georgia Institute of Technology, Atlanta, GA; Wang, C

    Purpose: To correlate the damage produced by particles of different types and qualities to cell survival on the basis of nanodosimetric analysis and advanced DNA structures in the cell nucleus. Methods: A Monte Carlo code was developed to simulate subnuclear DNA chromatin fibers (CFs) of 30nm utilizing a mean-free-path approach common to radiation transport. The cell nucleus was modeled as a spherical region containing 6000 chromatin-dense domains (CDs) of 400nm diameter, with additional CFs modeled in a sparser interchromatin region. The Geant4-DNA code was utilized to produce a particle track database representing various particles at different energies and dose quantities.more » These tracks were used to stochastically position the DNA structures based on their mean free path to interaction with CFs. Excitation and ionization events intersecting CFs were analyzed using the DBSCAN clustering algorithm for assessment of the likelihood of producing DSBs. Simulated DSBs were then assessed based on their proximity to one another for a probability of inducing cell death. Results: Variations in energy deposition to chromatin fibers match expectations based on differences in particle track structure. The quality of damage to CFs based on different particle types indicate more severe damage by high-LET radiation than low-LET radiation of identical particles. In addition, the model indicates more severe damage by protons than of alpha particles of same LET, which is consistent with differences in their track structure. Cell survival curves have been produced showing the L-Q behavior of sparsely ionizing radiation. Conclusion: Initial results indicate the feasibility of producing cell survival curves based on the Monte Carlo cell nucleus method. Accurate correlation between simulated DNA damage to cell survival on the basis of nanodosimetric analysis can provide insight into the biological responses to various radiation types. Current efforts are directed at producing

  8. β-Adrenergic Regulation of Cardiac Progenitor Cell Death Versus Survival and Proliferation

    PubMed Central

    Khan, Mohsin; Mohsin, Sadia; Avitabile, Daniele; Siddiqi, Sailay; Nguyen, Jonathan; Wallach, Kathleen; Quijada, Pearl; McGregor, Michael; Gude, Natalie; Alvarez, Roberto; Tilley, Douglas G.; Koch, Walter J.; Sussman, Mark A.

    2013-01-01

    Rationale Short-term β-adrenergic stimulation promotes contractility in response to stress but is ultimately detrimental in the failing heart because of accrual of cardiomyocyte death. Endogenous cardiac progenitor cell (CPC) activation may partially offset cardiomyocyte losses, but consequences of long-term β-adrenergic drive on CPC survival and proliferation are unknown. Objective We sought to determine the relationship between β-adrenergic activity and regulation of CPC function. Methods and Results Mouse and human CPCs express only β2 adrenergic receptor (β2-AR) in conjunction with stem cell marker c-kit. Activation of β2-AR signaling promotes proliferation associated with increased AKT, extracellular signal-regulated kinase 1/2, and endothelial NO synthase phosphorylation, upregulation of cyclin D1, and decreased levels of G protein–coupled receptor kinase 2. Conversely, silencing of β2-AR expression or treatment with β2-antagonist ICI 118, 551 impairs CPC proliferation and survival. β1-AR expression in CPC is induced by differentiation stimuli, sensitizing CPC to isoproterenol-induced cell death that is abrogated by metoprolol. Efficacy of β1-AR blockade by metoprolol to increase CPC survival and proliferation was confirmed in vivo by adoptive transfer of CPC into failing mouse myocardium. Conclusions β-adrenergic stimulation promotes expansion and survival of CPCs through β2-AR, but acquisition of β1-AR on commitment to the myocyte lineage results in loss of CPCs and early myocyte precursors. PMID:23243208

  9. Survival of salmonella transformed to express green fluorescent protein on Italian parsley as affected by processing and storage.

    PubMed

    Duffy, E A; Cisneros-Zevallos, L; Castillo, A; Pillai, S D; Ricke, S C; Acuff, G R

    2005-04-01

    To study the effect of processing and storage parameters on the survival of Salmonella on fresh Italian parsley, parsley bunches were dipped for 3 or 15 min in suspensions that were preequilibrated to 5, 25, or 35 degrees C and inoculated with Salmonella transformed to express enhanced green fluorescent protein. Loosely attached and/or associated, strongly attached and/or associated, and internalized and/or entrapped Salmonella cells were enumerated over 0, 1, and 7 days of storage at 25 degrees C and over 0, 1, 7, 14, and 30 days of storage at 4 degrees C using surface-plating procedures. Leaf sections obtained from samples after 0, 1, and 7 days of storage were examined using confocal scanning laser microscopy. Temperature of the dip suspension had little effect on the attachment and survival of Salmonella cells on parsley. Regardless of the temperature or duration of dip, Salmonella was internalized. Immersion for longer times resulted in higher numbers of attached and internalized cells. Microscopic observations supported these results and revealed Salmonella cells near the stomata and within cracks in the cuticle. Storage temperature had the greatest impact on the survival of Salmonella cells on parsley. When stored at 25 degrees C, parsley had a shelf life of 7 days, and Salmonella populations significantly increased over the 7 days of storage. For parsley stored at 4 degrees C, numbers of Salmonella cells decreased over days 0, 1, and 7. After 7 days of storage, there were no viable internalized Salmonella cells detected. Storage temperature represents an important control point for the safety of fresh parsley.

  10. Foxo-dependent Par-4 Upregulation Prevents Long-term Survival of Residual Cells Following PI3K-Akt Inhibition.

    PubMed

    Damrauer, Jeffrey S; Phelps, Stephanie N; Amuchastegui, Katie; Lupo, Ryan; Mabe, Nathaniel W; Walens, Andrea; Kroger, Benjamin R; Alvarez, James V

    2018-04-01

    Tumor recurrence is a leading cause of death and is thought to arise from a population of residual cells that survive treatment. These residual cancer cells can persist, locally or at distant sites, for years or decades. Therefore, understanding the pathways that regulate residual cancer cell survival may suggest opportunities for targeting these cells to prevent recurrence. Previously, it was observed that the proapoptotic protein (PAWR/Par-4) negatively regulates residual cell survival and recurrence in mice and humans. However, the mechanistic underpinnings on how Par-4 expression is regulated are unclear. Here, it is demonstrated that Par-4 is transcriptionally upregulated following treatment with multiple drugs targeting the PI3K-Akt-mTOR signaling pathway, and identify the Forkhead family of transcription factors as mediators of this upregulation. Mechanistically, Foxo3a directly binds to the Par-4 promoter and activates its transcription following inhibition of the PI3K-Akt pathway. This Foxo-dependent Par-4 upregulation limits the long-term survival of residual cells following treatment with therapeutics that target the PI3K-Akt pathway. Taken together, these results indicate that residual breast cancer tumor cell survival and recurrence requires circumventing Foxo-driven Par-4 upregulation and suggest that approaches to enforce Par-4 expression may prevent residual cell survival and recurrence. Mol Cancer Res; 16(4); 599-609. ©2018 AACR . ©2018 American Association for Cancer Research.

  11. Room temperature storage of mouse epididymal spermatozoa: exploration of factors affecting sperm survival.

    PubMed

    Sato, Masahiro; Ishikawa, Aki

    2004-05-01

    To explore optimal conditions for in vitro sperm survival, we examined the effects of several media used for murine egg culture and in vitro fertilization (IVF; including M16, M2, PB1, TYH, and CZB) on motility of murine spermatozoa stored at 22 degrees C under paraffin oil. Of media tested, M2 medium, that had been adjusted to pH 7.2 by adding N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid (HEPES), was found to be the best. Addition of various concentrations of HEPES to TYH did not improve sperm survival, suggesting that HEPES (and probably neutral pH) do not enhance survival of murine sperm. Since M16 has higher amounts of bicarbonate than M2 (25 mM versus 4.15 mM), four variations of M16 media containing 4.15, 8.30, 16.60, or 33.20 mM bicarbonate were prepared and tested. The modified M16 media with 4.15-16.60 mM bicarbonate yielded good sperm survival (comparable to M2 medium), while relatively high concentrations of bicarbonate (ranging from 16.60 to 33.20 mM) were deleterious to isolated sperm, suggesting the need for a minimum level of residual bicarbonate. However, the mechanism by which the lifespan of spermatozoa is extended remains unknown. The in vitro fertilizing abilities of spermatozoa left in M2 medium for 1, 3, and 5 days at 22 degrees C were 52.5, 21.8, and 7.0%, respectively, when the cleavage rate to the two-cell stage was examined. Transfer of two-cell embryos produced in vitro with spermatozoa stored for 1, 3, and 5 days at 22 degrees C resulted in production of fetuses with efficiencies of 42.5, 23.4, and 12.5%, respectively, which were lower than that of embryos derived from in vitro fertilization with fresh spermatozoa (68.1%). In conclusion, spermatozoa kept in M2 medium for up to 5 days at 22 degrees C can fertilize oocytes.

  12. Microbiota promotes systemic T-cell survival through suppression of an apoptotic factor

    PubMed Central

    Petersen, Charisse; Novis, Camille L.; Kubinak, Jason L.; Bell, Rickesha; Stephens, W. Zac; Lane, Thomas E.; Fujinami, Robert S.; Bosque, Alberto; O’Connell, Ryan M.; Round, June L.

    2017-01-01

    Symbiotic microbes impact the severity of a variety of diseases through regulation of T-cell development. However, little is known regarding the molecular mechanisms by which this is accomplished. Here we report that a secreted factor, Erdr1, is regulated by the microbiota to control T-cell apoptosis. Erdr1 expression was identified by transcriptome analysis to be elevated in splenic T cells from germfree and antibiotic-treated mice. Suppression of Erdr1 depends on detection of circulating microbial products by Toll-like receptors on T cells, and this regulation is conserved in human T cells. Erdr1 was found to function as an autocrine factor to induce apoptosis through caspase 3. Consistent with elevated levels of Erdr1, germfree mice have increased splenic T-cell apoptosis. RNA sequencing of Erdr1-overexpressing cells identified the up-regulation of genes involved in Fas-mediated cell death, and Erdr1 fails to induce apoptosis in Fas-deficient cells. Importantly, forced changes in Erdr1 expression levels dictate the survival of auto-reactive T cells and the clinical outcome of neuro-inflammatory autoimmune disease. Cellular survival is a fundamental feature regulating appropriate immune responses. We have identified a mechanism whereby the host integrates signals from the microbiota to control T-cell apoptosis, making regulation of Erdr1 a potential therapeutic target for autoimmune disease. PMID:28487480

  13. Knockdown of microRNA-155 in Kupffer cells results in immunosuppressive effects and prolongs survival of mouse liver allografts.

    PubMed

    Li, Jinzheng; Gong, Junhua; Li, Peizhi; Li, Min; Liu, Yiming; Liang, Shaoyong; Gong, Jianping

    2014-03-27

    Our previous studies have shown that Kupffer cells (KCs) play a crucial role in postoperative pathologic changes. Recent reports have demonstrated that microRNA-155 (miR-155) is associated with inflammation and upregulation of proinflammatory mediators in the peripheral blood and allografts of transplant patients. However, the precise mechanism for this remains unknown. KCs isolated from BALB/c mice were transfected with miR-155 mimic or inhibitor. Levels of suppressor of cytokine signaling 1/Janus kinase/signal transducer and activator of transcription (SOCS1/JAK/STAT) proteins and surface molecules (MHC-II, CD40, and CD86) were then measured. T-cell proliferation and apoptosis were evaluated in mixed lymphocyte reactions. Orthotopic liver transplantation was performed in mice after miR-155 short hairpin RNA lentivirus treatment, and postoperative survival, liver function and histology, and mRNA and protein expression were analyzed. miR-155 knockdown in KCs decreased MHC-II, CD40, and CD86 expression, suppressed antigen-presenting function, and affected SOCS1/JAK/STAT inflammatory pathways. In addition, KCs transfected with miR-155 inhibitor and cocultured with T lymphocytes showed reduced T-cell responses but a greater number of apoptotic T cells. Finally, miR-155 suppression in graft liver prolonged liver allograft survival and improved liver function. The changes were closely associated with the levels of T helper 1 and 2 (Th1/Th2) cytokines and T-cell apoptosis, but a direct mechanistic link in vivo was not established. These data suggest miR-155 regulates the balance of Th1/Th2 cytokines and the maturation and function of KCs in mice. miR-155 repression in KCs positively regulates KC function toward immunosuppression and prolongs liver allograft survival.

  14. Bmi1 regulates auditory hair cell survival by maintaining redox balance.

    PubMed

    Chen, Y; Li, L; Ni, W; Zhang, Y; Sun, S; Miao, D; Chai, R; Li, H

    2015-01-22

    Reactive oxygen species (ROS) accumulation are involved in noise- and ototoxic drug-induced hair cell loss, which is the major cause of hearing loss. Bmi1 is a member of the Polycomb protein family and has been reported to regulate mitochondrial function and ROS level in thymocytes and neurons. In this study, we reported the expression of Bmi1 in mouse cochlea and investigated the role of Bmi1 in hair cell survival. Bmi1 expressed in hair cells and supporting cells in mouse cochlea. Bmi1(-/-) mice displayed severe hearing loss and patched outer hair cell loss from postnatal day 22. Ototoxic drug-induced hair cells loss dramatically increased in Bmi1(-/-) mice compared with that in wild-type controls both in vivo and in vitro, indicating Bmi1(-/-) hair cells were significantly more sensitive to ototoxic drug-induced damage. Cleaved caspase-3 and TUNEL staining demonstrated that apoptosis was involved in the increased hair cell loss of Bmi1(-/-) mice. Aminophenyl fluorescein and MitoSOX Red staining showed the level of free radicals and mitochondrial ROS increased in Bmi1(-/-) hair cells due to the aggravated disequilibrium of antioxidant-prooxidant balance. Furthermore, the antioxidant N-acetylcysteine rescued Bmi1(-/-) hair cells from neomycin injury both in vitro and in vivo, suggesting that ROS accumulation was mainly responsible for the increased aminoglycosides sensitivity in Bmi1(-/-) hair cells. Our findings demonstrate that Bmi1 has an important role in hair cell survival by controlling redox balance and ROS level, thus suggesting that Bmi1 may work as a new therapeutic target for the prevention of hair cell death.

  15. Factors Influencing Relapse-Free Survival in Merkel Cell Carcinoma of the Lower Limb-A Review of 60 Cases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poulsen, Michael, E-mail: michael_poulsen@health.qld.gov.a; Round, Caroline; Keller, Jacqui

    2010-02-01

    Purpose: Factors affecting relapse-free survival (RFS) in patients with Merkel cell carcinoma (MCC) of the lower limb were reviewed. Methods and Materials: The records of 60 patients from 1986 to 2005 with a diagnosis of MCC of the lower limb or buttock were retrospectively reviewed. The patients were treated with curative intent with surgery, radiation, or chemotherapy. Results: The 5-year overall survival, disease-specific survival, and RFS were 53%, 61%, and 20%, respectively. Factors influencing RFS were analyzed using univariate analysis. It appeared that recurrent disease worsened RFS (p = 0.03) and the addition of any radiotherapy improved RFS (p <0.001),more » as did radiotherapy to the inguinal nodes (p = 0.01) or primary site and inguinal nodes (p = 0.003). Age, surgical margins, and stage were not statistically significant. On multivariate analysis, the only significant factor was the addition of radiotherapy (hazard ratio = 0.51 p = 0.03). Conclusion: The addition of radiotherapy improves RFS compared with surgery alone. Elective treatment should be given to the inguinal nodes to reduce the risk of relapse.« less

  16. Downregulation of Metabolic Activity Increases Cell Survival Under Hypoxic Conditions: Potential Applications for Tissue Engineering

    PubMed Central

    Kim, Jaehyun; Andersson, Karl-Erik; Jackson, John D.; Lee, Sang Jin; Atala, Anthony

    2014-01-01

    A major challenge to the success of cell-based implants for tissue regeneration is an insufficient supply of oxygen before host vasculature is integrated into the implants, resulting in premature cell death and dysfunction. Whereas increasing oxygenation to the implants has been a major focus in the field, our strategy is aimed at lowering oxygen consumption by downregulating cellular metabolism of cell-based implants. Adenosine, which is a purine nucleoside that functions as an energy transferring molecule, has been reported to increase under hypoxia, resulting in reducing the adenosine triphosphate (ATP) demands of the Na+/K+ ATPase. In the present study, we investigated whether adenosine could be used to downregulate cellular metabolism to achieve prolonged survival under hypoxic conditions. Murine myoblasts (C2C12) lacking a self-survival mechanism were treated with adenosine under 0.1% hypoxic stress. The cells, cultured in the presence of 5 mM adenosine, maintained their viability under hypoxia, and regained their normal growth and function of forming myotubes when transferred to normoxic conditions at day 11 without further supply of adenosine, whereas nontreated cells failed to survive. An increase in adenosine concentrations shortened the onset of reproliferation after transfer to normoxic conditions. This increase correlated with an increase in metabolic downregulation during the early phase of hypoxia. A higher intracellular ATP level was observed in adenosine-treated cells throughout the duration of hypoxia. This strategy of increasing cell survival under hypoxic conditions through downregulating cellular metabolism may be utilized for cell-based tissue regeneration applications as well as protecting tissues against hypoxic injuries. PMID:24524875

  17. Survival and mortality among users and non-users of hydroxyurea with sickle cell disease.

    PubMed

    de Araujo, Olinda Maria Rodrigues; Ivo, Maria Lúcia; Ferreira Júnior, Marcos Antonio; Pontes, Elenir Rose Jardim Cury; Bispo, Ieda Maria Gonçalves Pacce; de Oliveira, Eveny Cristine Luna

    2015-01-01

    to estimate survival, mortality and cause of death among users or not of hydroxyurea with sickle cell disease. cohort study with retrospective data collection, from 1980 to 2010 of patients receiving inpatient treatment in two Brazilian public hospitals. The survival probability was determined using the Kaplan-Meier estimator, survival calculations (SPSS version 10.0), comparison between survival curves, using the log rank method. The level of significance was p=0.05. of 63 patients, 87% had sickle cell anemia, with 39 using hydroxyurea, with a mean time of use of the drug of 20.0±10.0 years and a mean dose of 17.37±5.4 to 20.94±7.2 mg/kg/day, raising the fetal hemoglobin. In the comparison between those using hydroxyurea and those not, the survival curve was greater among the users (p=0.014). A total of 10 deaths occurred, with a mean age of 28.1 years old, and with Acute Respiratory Failure as the main cause. the survival curve is greater among the users of hydroxyurea. The results indicate the importance of the nurse incorporating therapeutic advances of hydroxyurea in her care actions.

  18. Induced pluripotent stem cell-derived neural cells survive and mature in the nonhuman primate brain.

    PubMed

    Emborg, Marina E; Liu, Yan; Xi, Jiajie; Zhang, Xiaoqing; Yin, Yingnan; Lu, Jianfeng; Joers, Valerie; Swanson, Christine; Holden, James E; Zhang, Su-Chun

    2013-03-28

    The generation of induced pluripotent stem cells (iPSCs) opens up the possibility for personalized cell therapy. Here, we show that transplanted autologous rhesus monkey iPSC-derived neural progenitors survive for up to 6 months and differentiate into neurons, astrocytes, and myelinating oligodendrocytes in the brains of MPTP-induced hemiparkinsonian rhesus monkeys with a minimal presence of inflammatory cells and reactive glia. This finding represents a significant step toward personalized regenerative therapies. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Subretinal Implantation of Retinal Pigment Epithelial Cells Derived From Human Embryonic Stem Cells: Improved Survival When Implanted as a Monolayer

    PubMed Central

    Diniz, Bruno; Thomas, Padmaja; Thomas, Biju; Ribeiro, Ramiro; Hu, Yuntao; Brant, Rodrigo; Ahuja, Ashish; Zhu, Danhong; Liu, Laura; Koss, Michael; Maia, Mauricio; Chader, Gerald; Hinton, David R.; Humayun, Mark S.

    2013-01-01

    Purpose. To evaluate cell survival and tumorigenicity of human embryonic stem cell–derived retinal pigment epithelium (hESC-RPE) transplantation in immunocompromised nude rats. Cells were transplanted as a cell suspension (CS) or as a polarized monolayer plated on a parylene membrane (PM). Methods. Sixty-nine rats (38 male, 31 female) were surgically implanted with CS (n = 33) or PM (n = 36). Cohort subsets were killed at 1, 6, and 12 months after surgery. Both ocular tissues and systemic organs (brain, liver, kidneys, spleen, heart, and lungs) were fixed in 4% paraformaldehyde, embedded in paraffin, and sectioned. Every fifth section was stained with hematoxylin and eosin and analyzed histologically. Adjacent sections were processed for immunohistochemical analysis (as needed) using the following antibodies: anti-RPE65 (RPE-specific marker), anti-TRA-1-85 (human cell marker), anti-Ki67 (proliferation marker), anti-CD68 (macrophage), and anti-cytokeratin (epithelial marker). Results. The implanted cells were immunopositive for the RPE65 and TRA-1-85. Cell survival (P = 0.006) and the presence of a monolayer (P < 0.001) of hESC-RPE were significantly higher in eyes that received the PM. Gross morphological and histological analysis of the eye and the systemic organs after the surgery revealed no evidence of tumor or ectopic tissue formation in either group. Conclusions. hESC-RPE can survive for at least 12 months in an immunocompromised animal model. Polarized monolayers of hESC-RPE show improved survival compared to cell suspensions. The lack of teratoma or any ectopic tissue formation in the implanted rats bodes well for similar results with respect to safety in human subjects. PMID:23833067

  20. Mast cells in the colon of Trypanosoma cruzi-infected patients: are they involved in the recruitment, survival and/or activation of eosinophils?

    PubMed

    Martins, Patrícia Rocha; Nascimento, Rodolfo Duarte; Lopes, Júlia Guimarães; Santos, Mônica Morais; de Oliveira, Cleida Aparecida; de Oliveira, Enio Chaves; Martinelli, Patrícia Massara; d'Ávila Reis, Débora

    2015-05-01

    Megacolon is frequently observed in patients who develop the digestive form of Chagas disease. It is characterized by dilation of the rectum-sigmoid portion and thickening of the colon wall. Microscopically, the affected organ presents denervation, which has been considered as consequence of an inflammatory process that begins at the acute phase and persists in the chronic phase of infection. Inflammatory infiltrates are composed of lymphocytes, macrophages, natural killer cells, mast cells, and eosinophils. In this study, we hypothesized that mast cells producing tryptase could influence the migration and the activation of eosinophils at the site, thereby contributing to the immunopathology of the chronic phase. We seek evidence of interactions between mast cells and eosinophils through (1) evaluation of eosinophils, regarding the expression of PAR2, a tryptase receptor; (2) correlation analysis between densities of mast cells and eosinophils; and (3) ultrastructural studies. The electron microscopy studies revealed signs of activation of mast cells and eosinophils, as well as physical interaction between these cells. Immunohistochemistry and correlation analyses point to the participation of tryptase immunoreactive mast cells in the migration and/or survival of eosinophils at the affected organ.

  1. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kover, Karen, E-mail: kkover@cmh.edu; University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108; Yan, Yun

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up tomore » 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces

  2. Plasma Cytokines Correlated With Disease Characteristics, Progression-Free Survival, and Overall Survival in Testicular Germ-Cell Tumor Patients.

    PubMed

    Svetlovska, Daniela; Miskovska, Viera; Cholujova, Dana; Gronesova, Paulina; Cingelova, Silvia; Chovanec, Michal; Sycova-Mila, Zuzana; Obertova, Jana; Palacka, Patrik; Rajec, Jan; Kalavska, Katarina; Usakova, Vanda; Luha, Jan; Ondrus, Dalibor; Spanik, Stanislav; Mardiak, Jozef; Mego, Michal

    2017-06-01

    Cytokines are the communicators of immune system and are involved in all immune responses. The aim of this study was to assess the correlation among plasma cytokines, patient and tumor characteristics, and clinical outcome in chemonaive testicular germ-cell tumor (TGCT) patients. This study included 92 metastatic chemotherapy-naive TGCT patients treated with platinum-based chemotherapy from July 2010 to March 2014. Plasma was isolated before first administration of chemotherapy, and the concentration of 51 plasma cytokines were analyzed using multiplex bead arrays. At a median follow-up of 33.2 months (range, 0.1-54.8 months), 10.9% of patients experienced disease progression, and 7.6% died. Several cytokines were associated with different baseline clinicopathologic features. Elevated plasma levels of interferon (IFN)-α2, interleukin (IL)-2Rα, IL-16, hepatocyte growth factor (HGF), and monocyte chemotactic protein (MCP)-3 were significantly associated with worse progression-free survival and overall survival (OS). Moreover, elevated levels of stem-cell growth factor (SCGF)-β were also associated with worse OS. Patients with elevated levels of all 6 cytokines experienced significantly worse outcomes compared to patients who had fewer than 6 cytokines elevated (hazard ratio = 12.06; 95% confidence interval, 7.39-19.49; P = .002 for progression-free survival, and hazard ratio = 39.65; 95% confidence interval, 25.03-62.18; P < .00001 for OS, respectively). Results were independent of International Germ Cell Cancer Collaborative Group criteria. We found a correlation among progression free-survival, OS, and circulating cytokines in TGCT. This suggests the existence an association between plasma cytokines and baseline clinicopathologic features in TGCT. Plasma cytokines could be used for identification of high-risk patients who are candidates for new therapeutic approaches. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cell killing mode of liblomycin (NK313), a novel dose-survival relationship different from bleomycins.

    PubMed

    Kuramochi-Motegi, A; Kuramochi, H; Takahashi, K; Takeuchi, T

    1991-04-01

    Liblomycin (NK313) is a novel derivative of bleomycin (BLM) and peplomycin (PEP). The cell kill kinetics of NK313 on rat ascites hepatoma AH66 were compared with those of PEP. NK313 induced intracellular DNA cleavage and arrested cell cycle progression at the G2 phase similarly to PEP. The cytocidal effect of NK313, however, was found to be different from that of PEP as described below: 1) The dose-survival curve for cells exposed to PEP for 1 hour was upward concave, whereas in case of NK313, the survival curve was linear. PEP was more effective to AH66 than NK313 at lower concentration, but at higher concentration, NK313 was much more effective. 2) The time-survival curve for cells treated with either NK313 or PEP was biphasic. NK313, however, did not induce temporary resistance of AH66 cells to NK313, while PEP induced resistance to PEP. 3) NK313 was effective against the cells which became temporarily resistant to PEP by the treatment of PEP. These differences suggest that NK313 might be of value to treat PEP-insensitive tumor cells.

  4. Promoting long-term survival of insulin-producing cell grafts that differentiate from adipose tissue-derived stem cells to cure type 1 diabetes.

    PubMed

    Zhang, Shuzi; Dai, Hehua; Wan, Ni; Moore, Yolonda; Dai, Zhenhua

    2011-01-01

    Insulin-producing cell clusters (IPCCs) have recently been generated in vitro from adipose tissue-derived stem cells (ASCs) to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation. © 2011 Zhang et al.

  5. Promoting Long-Term Survival of Insulin-Producing Cell Grafts That Differentiate from Adipose Tissue-Derived Stem Cells to Cure Type 1 Diabetes

    PubMed Central

    Zhang, Shuzi; Dai, Hehua; Wan, Ni; Moore, Yolonda; Dai, Zhenhua

    2011-01-01

    Background Insulin-producing cell clusters (IPCCs) have recently been generated in vitro from adipose tissue-derived stem cells (ASCs) to circumvent islet shortage. However, it is unknown how long they can survive upon transplantation, whether they are eventually rejected by recipients, and how their long-term survival can be induced to permanently cure type 1 diabetes. IPCC graft survival is critical for their clinical application and this issue must be systematically addressed prior to their in-depth clinical trials. Methodology/Principal Findings Here we found that IPCC grafts that differentiated from murine ASCs in vitro, unlike their freshly isolated islet counterparts, did not survive long-term in syngeneic mice, suggesting that ASC-derived IPCCs have intrinsic survival disadvantage over freshly isolated islets. Indeed, β cells retrieved from IPCC syngrafts underwent faster apoptosis than their islet counterparts. However, blocking both Fas and TNF receptor death pathways inhibited their apoptosis and restored their long-term survival in syngeneic recipients. Furthermore, blocking CD40-CD154 costimulation and Fas/TNF signaling induced long-term IPCC allograft survival in overwhelming majority of recipients. Importantly, Fas-deficient IPCC allografts exhibited certain immune privilege and enjoyed long-term survival in diabetic NOD mice in the presence of CD28/CD40 joint blockade while their islet counterparts failed to do so. Conclusions/Significance Long-term survival of ASC-derived IPCC syngeneic grafts requires blocking Fas and TNF death pathways, whereas blocking both death pathways and CD28/CD40 costimulation is needed for long-term IPCC allograft survival in diabetic NOD mice. Our studies have important clinical implications for treating type 1 diabetes via ASC-derived IPCC transplantation. PMID:22216347

  6. Development of a cell-based treatment for long-term neurotrophin expression and spiral ganglion neuron survival.

    PubMed

    Zanin, M P; Hellström, M; Shepherd, R K; Harvey, A R; Gillespie, L N

    2014-09-26

    Spiral ganglion neurons (SGNs), the target cells of the cochlear implant, undergo gradual degeneration following loss of the sensory epithelium in deafness. The preservation of a viable population of SGNs in deafness can be achieved in animal models with exogenous application of neurotrophins such as brain-derived neurotrophic factor (BDNF) and neurotrophin-3. For translation into clinical application, a suitable delivery strategy that provides ongoing neurotrophic support and promotes long-term SGN survival is required. Cell-based neurotrophin treatment has the potential to meet the specific requirements for clinical application, and we have previously reported that Schwann cells genetically modified to express BDNF can support SGN survival in deafness for 4 weeks. This study aimed to investigate various parameters important for the development of a long-term cell-based neurotrophin treatment to support SGN survival. Specifically, we investigated different (i) cell types, (ii) gene transfer methods and (iii) neurotrophins, in order to determine which variables may provide long-term neurotrophin expression and which, therefore, may be the most effective for supporting long-term SGN survival in vivo. We found that fibroblasts that were nucleofected to express BDNF provided the most sustained neurotrophin expression, with ongoing BDNF expression for at least 30 weeks. In addition, the secreted neurotrophin was biologically active and elicited survival effects on SGNs in vitro. Nucleofected fibroblasts may therefore represent a method for safe, long-term delivery of neurotrophins to the deafened cochlea to support SGN survival in deafness. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Developmental and Evolutionary History Affect Survival in Stressful Environments

    PubMed Central

    Hopkins, Gareth R.; Brodie, Edmund D.; French, Susannah S.

    2014-01-01

    The world is increasingly impacted by a variety of stressors that have the potential to differentially influence life history stages of organisms. Organisms have evolved to cope with some stressors, while with others they have little capacity. It is thus important to understand the effects of both developmental and evolutionary history on survival in stressful environments. We present evidence of the effects of both developmental and evolutionary history on survival of a freshwater vertebrate, the rough-skinned newt (Taricha granulosa) in an osmotically stressful environment. We compared the survival of larvae in either NaCl or MgCl2 that were exposed to salinity either as larvae only or as embryos as well. Embryonic exposure to salinity led to greater mortality of newt larvae than larval exposure alone, and this reduced survival probability was strongly linked to the carry-over effect of stunted embryonic growth in salts. Larval survival was also dependent on the type of salt (NaCl or MgCl2) the larvae were exposed to, and was lowest in MgCl2, a widely-used chemical deicer that, unlike NaCl, amphibian larvae do not have an evolutionary history of regulating at high levels. Both developmental and evolutionary history are critical factors in determining survival in this stressful environment, a pattern that may have widespread implications for the survival of animals increasingly impacted by substances with which they have little evolutionary history. PMID:24748021

  8. Hypoxia-inducible factor-1α promotes cell survival during ammonia stress response in ovarian cancer stem-like cells

    PubMed Central

    Kitajima, Shojiro; Lee, Kian Leong; Hikasa, Hiroki; Sun, Wendi; Huang, Ruby Yun-Ju; Yang, Henry; Matsunaga, Shinji; Yamaguchi, Takehiro; Araki, Marito; Kato, Hiroyuki

    2017-01-01

    Ammonia is a toxic by-product of metabolism that causes cellular stresses. Although a number of proteins are involved in adaptive stress response, specific factors that counteract ammonia-induced cellular stress and regulate cell metabolism to survive against its toxicity have yet to be identified. We demonstrated that the hypoxia-inducible factor-1α (HIF-1α) is stabilized and activated by ammonia stress. HIF-1α activated by ammonium chloride compromises ammonia-induced apoptosis. Furthermore, we identified glutamine synthetase (GS) as a key driver of cancer cell proliferation under ammonia stress and glutamine-dependent metabolism in ovarian cancer stem-like cells expressing CD90. Interestingly, activated HIF-1α counteracts glutamine synthetase function in glutamine metabolism by facilitating glycolysis and elevating glucose dependency. Our studies reveal the hitherto unknown functions of HIF-1α in a biphasic ammonia stress management in the cancer stem-like cells where GS facilitates cell proliferation and HIF-1α contributes to the metabolic remodeling in energy fuel usage resulting in attenuated proliferation but conversely promoting cell survival. PMID:29383096

  9. Early survival factor deprivation in the olfactory epithelium enhances activity-driven survival

    PubMed Central

    François, Adrien; Laziz, Iman; Rimbaud, Stéphanie; Grebert, Denise; Durieux, Didier; Pajot-Augy, Edith; Meunier, Nicolas

    2013-01-01

    The neuronal olfactory epithelium undergoes permanent renewal because of environmental aggression. This renewal is partly regulated by factors modulating the level of neuronal apoptosis. Among them, we had previously characterized endothelin as neuroprotective. In this study, we explored the effect of cell survival factor deprivation in the olfactory epithelium by intranasal delivery of endothelin receptors antagonists to rat pups. This treatment induced an overall increase of apoptosis in the olfactory epithelium. The responses to odorants recorded by electroolfactogram were decreased in treated animal, a result consistent with a loss of olfactory sensory neurons (OSNs). However, the treated animal performed better in an olfactory orientation test based on maternal odor compared to non-treated littermates. This improved performance could be due to activity-dependent neuronal survival of OSNs in the context of increased apoptosis level. In order to demonstrate it, we odorized pups with octanal, a known ligand for the rI7 olfactory receptor (Olr226). We quantified the number of OSN expressing rI7 by RT-qPCR and whole mount in situ hybridization. While this number was reduced by the survival factor removal treatment, this reduction was abolished by the presence of its ligand. This improved survival was optimal for low concentration of odorant and was specific for rI7-expressing OSNs. Meanwhile, the number of rI7-expressing OSNs was not affected by the odorization in non-treated littermates; showing that the activity-dependant survival of OSNs did not affect the OSN population during the 10 days of odorization in control conditions. Overall, our study shows that when apoptosis is promoted in the olfactory mucosa, the activity-dependent neuronal plasticity allows faster tuning of the olfactory sensory neuron population toward detection of environmental odorants. PMID:24399931

  10. Caspase inhibitors promote vestibular hair cell survival and function after aminoglycoside treatment in vivo

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Haque, Asim; Huss, David; Messana, Elizabeth P.; Alosi, Julie A.; Roberson, David W.; Cotanche, Douglas A.; Dickman, J. David; Warchol, Mark E.

    2003-01-01

    The sensory hair cells of the inner ear undergo apoptosis after acoustic trauma or aminoglycoside antibiotic treatment, causing permanent auditory and vestibular deficits in humans. Previous studies have demonstrated a role for caspase activation in hair cell death and ototoxic injury that can be reduced by concurrent treatment with caspase inhibitors in vitro. In this study, we examined the protective effects of caspase inhibition on hair cell death in vivo after systemic injections of aminoglycosides. In one series of experiments, chickens were implanted with osmotic pumps that administrated the pan-caspase inhibitor z-Val-Ala-Asp(Ome)-fluoromethylketone (zVAD) into inner ear fluids. One day after the surgery, the animals received a 5 d course of treatment with streptomycin, a vestibulotoxic aminoglycoside. Direct infusion of zVAD into the vestibule significantly increased hair cell survival after streptomycin treatment. A second series of experiments determined whether rescued hair cells could function as sensory receptors. Animals treated with streptomycin displayed vestibular system impairment as measured by a greatly reduced vestibulo-ocular response (VOR). In contrast, animals that received concurrent systemic administration of zVAD with streptomycin had both significantly greater hair cell survival and significantly increased VOR responses, as compared with animals treated with streptomycin alone. These findings suggest that inhibiting the activation of caspases promotes the survival of hair cells and protects against vestibular function deficits after aminoglycoside treatment.

  11. Biphasic influence of Miz1 on neural crest development by regulating cell survival and apical adhesion complex formation in the developing neural tube

    PubMed Central

    Kerosuo, Laura; Bronner, Marianne E.

    2014-01-01

    Myc interacting zinc finger protein-1 (Miz1) is a transcription factor known to regulate cell cycle– and cell adhesion–related genes in cancer. Here we show that Miz1 also plays a critical role in neural crest development. In the chick, Miz1 is expressed throughout the neural plate and closing neural tube. Its morpholino-mediated knockdown affects neural crest precursor survival, leading to reduction of neural plate border and neural crest specifier genes Msx-1, Pax7, FoxD3, and Sox10. Of interest, Miz1 loss also causes marked reduction of adhesion molecules (N-cadherin, cadherin6B, and α1-catenin) with a concomitant increase of E-cadherin in the neural folds, likely leading to delayed and decreased neural crest emigration. Conversely, Miz1 overexpression results in up-regulation of cadherin6B and FoxD3 expression in the neural folds/neural tube, leading to premature neural crest emigration and increased number of migratory crest cells. Although Miz1 loss effects cell survival and proliferation throughout the neural plate, the neural progenitor marker Sox2 was unaffected, suggesting a neural crest–selective effect. The results suggest that Miz1 is important not only for survival of neural crest precursors, but also for maintenance of integrity of the neural folds and tube, via correct formation of the apical adhesion complex therein. PMID:24307680

  12. EphrinA4 plays a critical role in α4 and αL mediated survival of human CLL cells during extravasation

    PubMed Central

    Trinidad, Eva M.; García, Dolores; Soler, Gloria; Ortuño, Francisco J.; Zapata, Agustín G.; Alonso, Luis M.

    2016-01-01

    A role of endothelial cells in the survival of CLL cells during extravasation is presently unknown. Herein we show that CLL cells but not normal B cells can receive apoptotic signals through physical contact with TNF-α activated endothelium impairing survival in transendothelial migration (TEM) assays. In addition, the CLL cells of patients having lymphadenopathy (LApos) show a survival advantage during TEM that can be linked to increased expression of α4 and αL integrin chains. Within this context, ephrinA4 expressed on the surface of CLL cells sequestrates integrins and inactivates them resulting in reduced adhesion and inhibition of apoptotic/survival signals through them. In agreement, ephrinA4 silencing resulted in increased survival of CLL cells of LApos patients but not LA neg patients. Similarly was observed when a soluble ephrinA4 isoform was added to TEM assays strongly suggesting that accumulation of this isoform in the serum of LApos patients could contribute to CLL cells dissemination and survival in vivo. In supporting, CLL lymphadenopathies showed a preferential accumulation of apoptotic CLL cells around high endothelial venules lacking ephrinA4. Moreover, soluble ephrinA4 isolated from sera of patients increased the number and viability of CLL cells recovered from the lymph nodes of adoptively transferred mice. Finally, we present evidence suggesting that soluble ephrinA4 mediated survival during TEM could enhance a transcellular TEM route of the CLL cells. Together these findings point to an important role of ephrinA4 in the nodal dissemination of CLL cells governing extravasation and survival. PMID:27374180

  13. Adoptive cell transfer after chemotherapy enhances survival in patients with resectable HNSCC.

    PubMed

    Jiang, Pan; Zhang, Yan; J Archibald, Steve; Wang, Hua

    2015-09-01

    The aims of this study were to evaluate the therapeutic efficacy and to determine the immune factors for treatment success in patients with head and neck squamous cell carcinoma (HNSCC) treated with chemotherapy followed by adoptive cell transfer (ACT). A total of 43 HNSCC patients who received radical resection and chemotherapy were analysed in this study. Twenty-one of the patients were repeatedly treated with ACT after chemotherapy (ACT group), and the other twenty-two patients without ACT treatment were included as part of the control group. To investigate the immunological differences underlying these observations, we expanded and profiled improving cytokine-induced killer cells (iCIK) from peripheral blood mononuclear cells (PBMCs) with the timed addition of RetroNectin, OKT3 mAb, IFN γ and IL-2. The median of progression-free survival (PFS) and overall survival (OS) in the ACT group were significantly higher as compared to the control group (56 vs. 40; 58 vs. 45 months). In iCIK culture, there was a significant reduction in CD3+CD4+ T-cell proliferation and cytokines (IL-2, TNF) production from patients who received chemotherapy compared to patients without chemotherapy. Intra-arterial infusion of iCIK, in coordination with chemotherapy, considerably rescued iCIK culture from the suppression of systemic immunity induced by chemotherapy and induced tumour regression. Altogether, these findings suggest that ACT is an effective neo-adjuvant therapy for rescuing systemic immune suppression and improving survival time in patients with HNSCC. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Exosomes Derived from Squamous Head and Neck Cancer Promote Cell Survival after Ionizing Radiation

    PubMed Central

    Mutschelknaus, Lisa; Peters, Carsten; Winkler, Klaudia; Yentrapalli, Ramesh; Heider, Theresa; Atkinson, Michael John; Moertl, Simone

    2016-01-01

    Exosomes are nanometer-sized extracellular vesicles that are believed to function as intercellular communicators. Here, we report that exosomes are able to modify the radiation response of the head and neck cancer cell lines BHY and FaDu. Exosomes were isolated from the conditioned medium of irradiated as well as non-irradiated head and neck cancer cells by serial centrifugation. Quantification using NanoSight technology indicated an increased exosome release from irradiated compared to non-irradiated cells 24 hours after treatment. To test whether the released exosomes influence the radiation response of other cells the exosomes were transferred to non-irradiated and irradiated recipient cells. We found an enhanced uptake of exosomes isolated from both irradiated and non-irradiated cells by irradiated recipient cells compared to non-irradiated recipient cells. Functional analyses by exosome transfer indicated that all exosomes (from non-irradiated and irradiated donor cells) increase the proliferation of non-irradiated recipient cells and the survival of irradiated recipient cells. The survival-promoting effects are more pronounced when exosomes isolated from irradiated compared to non-irradiated donor cells are transferred. A possible mechanism for the increased survival after irradiation could be the increase in DNA double-strand break repair monitored at 6, 8 and 10 h after the transfer of exosomes isolated from irradiated cells. This is abrogated by the destabilization of the exosomes. Our results demonstrate that radiation influences both the abundance and action of exosomes on recipient cells. Exosomes transmit prosurvival effects by promoting the proliferation and radioresistance of head and neck cancer cells. Taken together, this study indicates a functional role of exosomes in the response of tumor cells to radiation exposure within a therapeutic dose range and encourages that exosomes are useful objects of study for a better understanding of tumor

  15. The ThPOK transcription factor differentially affects the development and function of self-specific CD8(+) T cells and regulatory CD4(+) T cells.

    PubMed

    Twu, Yuh-Ching; Teh, Hung-Sia

    2014-03-01

    The zinc finger transcription factor ThPOK plays a crucial role in CD4 T-cell development and CD4/CD8 lineage decision. In ThPOK-deficient mice, developing T cells expressing MHC class II-restricted T-cell receptors are redirected into the CD8 T-cell lineage. In this study, we investigated whether the ThPOK transgene affected the development and function of two additional types of T cells, namely self-specific CD8 T cells and CD4(+) FoxP3(+) T regulatory cells. Self-specific CD8 T cells are characterized by high expression of CD44, CD122, Ly6C, 1B11 and proliferation in response to either IL-2 or IL-15. The ThPOK transgene converted these self-specific CD8 T cells into CD4 T cells. The converted CD4(+) T cells are no longer self-reactive, lose the characteristics of self-specific CD8 T cells, acquire the properties of conventional CD4 T cells and survive poorly in peripheral lymphoid organs. By contrast, the ThPOK transgene promoted the development of CD4(+) FoxP3(+) regulatory T cells resulting in an increased recovery of CD4(+) FoxP3(+) regulatory T cells that expressed higher transforming growth factor-β-dependent suppressor activity. These studies indicate that the ThPOK transcription factor differentially affects the development and function of self-specific CD8 T cells and CD4(+) FoxP3(+) regulatory T cells. © 2013 John Wiley & Sons Ltd.

  16. Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism

    PubMed Central

    Pan, Youdong; Tian, Tian; Park, Chang Ook; Lofftus, Serena Y.; Mei, Shenglin; Liu, Xing; Luo, Chi; O’Malley, John T.; Gehad, Ahmed; Teague, Jessica E.; Divito, Sherrie J.; Fuhlbrigge, Robert; Puigserver, Pere; Krueger, James G.; Hotamisligil, Gökhan S.; Clark, Rachael A.; Kupper, Thomas S.

    2017-01-01

    Tissue-resident memory T (TRM) cells persist indefinitely in epithelial barrier tissues and protect the host against pathogens1–4. However, the biological pathways that enable the long-term survival of TRM cells are obscure4,5. Here we show that mouse CD8+ TRM cells generated by viral infection of the skin differentially express high levels of several molecules that mediate lipid uptake and intracellular transport, including fatty-acid-binding proteins 4 and 5 (FABP4 and FABP5). We further show that T-cell-specific deficiency of Fabp4 and Fabp5 (Fabp4/Fabp5) impairs exogenous free fatty acid (FFA) uptake by CD8+ TRM cells and greatly reduces their long-term survival in vivo, while having no effect on the survival of central memory T (TCM) cells in lymph nodes. In vitro, CD8+ TRM cells, but not CD8+ TCM, demonstrated increased mitochondrial oxidative metabolism in the presence of exogenous FFAs; this increase was not seen in Fabp4/Fabp5 double-knockout CD8+ TRM cells. The persistence of CD8+ TRM cells in the skin was strongly diminished by inhibition of mitochondrial FFA β-oxidation in vivo. Moreover, skin CD8+ TRM cells that lacked Fabp4/Fabp5 were less effective at protecting mice from cutaneous viral infection, and lung Fabp4/Fabp5 double-knockout CD8+ TRM cells generated by skin vaccinia virus (VACV) infection were less effective at protecting mice from a lethal pulmonary challenge with VACV. Consistent with the mouse data, increased FABP4 and FABP5 expression and enhanced extracellular FFA uptake were also demonstrated in human CD8+ TRM cells in normal and psoriatic skin. These results suggest that FABP4 and FABP5 have a critical role in the maintenance, longevity and function of CD8+ TRM cells, and suggest that CD8+ TRM cells use exogenous FFAs and their oxidative metabolism to persist in tissue and to mediate protective immunity. PMID:28219080

  17. Marital status and survival in patients with renal cell carcinoma

    PubMed Central

    Li, Yan; Zhu, Ming-xi; Qi, Si-hua

    2018-01-01

    Abstract Previous studies have shown that marital status is an independent prognostic factor for survival in several types of cancer. In this study, we investigated the effects of marital status on survival outcomes among renal cell carcinoma (RCC) patients. We identified patients diagnosed with RCC between 1973 and 2013 from the Surveillance, Epidemiology and End Results (SEER) database. Kaplan–Meier analysis and Cox regression were used to identify the effects of marital status on overall survival (OS) and cancer-specific survival (CSS). We enrolled 97,662 eligible RCC patients, including 64,884 married patients, and 32,778 unmarried (9831 divorced/separated, 9692 widowed, and 13,255 single) patients at diagnosis. The 5-year OS and CSS rates of the married, separated/divorced, widowed, and single patients were 73.7%, 69.5%, 58.3%, and 73.2% (OS), and 82.2%, 80.7%, 75.7%, and 83.3% (CSS), respectively. Multivariate Cox regression showed that, compared with married patients, widowed individuals showed poorer OS (hazard ratio, 1.419; 95% confidence interval, 1.370–1.469) and CSS (hazard ratio, 1.210; 95% confidence interval, 1.144–1.279). Stratified analyses and multivariate Cox regression showed that, in the insured and uninsured groups, married patients had better survival outcomes while widowed patients suffered worse OS outcomes; however, this trend was not significant for CSS. In RCC patients, married patients had better survival outcomes while widowed patients tended to suffer worse survival outcomes in terms of both OS and CSS. PMID:29668592

  18. The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt-villus axis of small intestine.

    PubMed

    Muglia, C; Mercer, N; Toscano, M A; Schattner, M; Pozner, R; Cerliani, J P; Gobbi, R Papa; Rabinovich, G A; Docena, G H

    2011-05-26

    Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1(-/-)) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1(-/-) mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function.

  19. Positive affect and survival in patients with stable coronary heart disease: findings from the Heart and Soul Study.

    PubMed

    Hoen, Petra W; Denollet, Johan; de Jonge, Peter; Whooley, Mary A

    2013-07-01

    Positive affect can improve survival, but the mechanisms responsible for this association are unknown. We sought to evaluate the association between positive affect and mortality in patients with stable coronary heart disease and to determine biological and behavioral factors that might explain this association. The Heart and Soul Study is a prospective cohort study of 1,018 outpatients with stable coronary heart disease. Participants were recruited between September 11, 2000, and December 20, 2002, and were followed up to June 2011. Baseline positive affect was assessed by using the 10-item positive affect subscale of the Positive and Negative Affect Schedule. Cox proportional hazards regression was used to estimate the risk of mortality (primary outcome measure) and cardiovascular events (heart failure, myocardial infarction, stroke, transient ischemic attack) associated with positive affect, adjusting for baseline cardiac disease severity and depression. We also evaluated the extent to which these associations were explained by potential biological and behavioral mediators. A total of 369 patients (36%) died during a mean ± SD follow-up period of 7.1 ± 2.5 years. Positive affect was not significantly associated with cardiovascular events (hazard ratio [HR]: 0.89; 95% CI, 0.79-1.00; P = .06). However, each standard deviation (8.8-point) increase in positive affect score was associated with a 16% decreased risk of all-cause mortality (HR: 0.84; 95% CI, 0.76-0.92; P = .001). After adjustment for cardiac disease severity and depressive symptoms, positive affect remained significantly associated with improved survival (HR: 0.87; 95% CI, 0.78-0.97; P = .01). The association was no longer significant after adjustment for behavioral factors, and particularly physical activity (HR: 0.92; 95% CI, 0.82-1.03; P = .16). Further adjustment for C-reactive protein and omega-3 fatty acids did not result in any meaningful changes (HR: 0.94; 95% CI, 0.84-1.06; P = .31). In this

  20. Effect of mitochondrially targeted carboxy proxyl nitroxide on Akt-mediated survival in Daudi cells: Significance of a dual mode of action

    PubMed Central

    Variar, Gokul; Pant, Tarun; Singh, Apoorva; Ravichandran, Abinaya; Swami, Sushant; Kalyanaraman, Balaraman; Dhanasekaran, Anuradha

    2017-01-01

    Vicious cycles of mutations and reactive oxygen species (ROS) generation contribute to cancer progression. The use of antioxidants to inhibit ROS generation promotes cytostasis by affecting the mutation cycle and ROS-dependent survival signaling. However, cancer cells select mutations to elevate ROS albeit maintaining mitochondrial hyperpolarization (Δψm), even under hypoxia. From this perspective, the use of drugs that disrupt both ROS generation and Δψm is a viable anticancer strategy. Hence, we studied the effects of mitochondrially targeted carboxy proxyl nitroxide (Mito-CP) and a control ten carbon TPP moiety (Dec-TPP+) in the human Burkitt lymphoma cell line (Daudi) and normal peripheral blood mononuclear cells under hypoxia and normoxia. We found preferential localization, Δψm and adenosine triphosphate loss, and significant cytotoxicity by Mito-CP in Daudi cells alone. Interestingly, ROS levels were decreased and maintained in hypoxic and normoxic cancer cells, respectively, by Mito-CP but not Dec-TPP+, therefore preventing any adaptive signaling. Moreover, dual effects on mitochondrial bioenergetics and ROS by Mito-CP curtailed the cancer survival via Akt inhibition, AMPK-HIF-1α activation and promoted apoptosis via increased BCL2-associated X protein and poly (ADP-ribose) polymerase expression. This dual mode of action by Mito-CP provides a better explanation of the application of antioxidants with specific relevance to cancerous transformation and adaptations in the Daudi cell line. PMID:28426671

  1. A High RORγT/CD3 Ratio is a Strong Prognostic Factor for Postoperative Survival in Advanced Colorectal Cancer: Analysis of Helper T Cell Lymphocytes (Th1, Th2, Th17 and Regulatory T Cells).

    PubMed

    Yoshida, Naohiro; Kinugasa, Tetsushi; Miyoshi, Hiroaki; Sato, Kensaku; Yuge, Kotaro; Ohchi, Takafumi; Fujino, Shinya; Shiraiwa, Sachiko; Katagiri, Mitsuhiro; Akagi, Yoshito; Ohshima, Koichi

    2016-03-01

    Tumor-infiltrating lymphocytes (TILs), part of the host immune response, have been widely reported as influential factors in the tumor microenvironment for the clinical outcome of colorectal cancer (CRC). However, the network of helper T cells is very complex, and which T-cell subtypes affect the progression of CRC and postoperative prognosis remains unclear. This study investigated the expression of several subtypes of TILs including T helper type 1 (Th1), Th2, Th17, and regulatory T (Treg) cells to determine their correlation with clinicopathologic features and postoperative prognosis. The study investigated the expression of TILs using immunohistochemistry of tissue microarray samples for 199 CRC patients. The number of each T-cell subtype infiltrating tumors was counted using ImageJ software. The relationship between TIL marker expression, clinicopathologic features, and prognosis was analyzed. A high RORγT/CD3 ratio (Th17 ratio) was significantly correlated with lymph node metastasis (p = 0.002), and a high of Foxp3/CD3 ratio (Treg ratio) was correlated with tumor location in the colon (p = 0.04), as shown by the Chi square test. In multivariate analysis, a high RORγT/CD3 ratio was the only independent prognostic factor for overall survival (p = 0.04; hazard ratio [HR], 1.84; 95% confidence interval [CI] 1.02-3.45). This study confirmed a high RORγT/CD3 ratio as a strong prognostic marker for postoperative survival. The immunohistochemistry results suggest that Th17 may affect lymph node metastasis in CRC. If new immunotherapies reducing Th17 expression are established, they may improve the efficiency of cancer treatment and prolong the survival of patients with CRC.

  2. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals

    PubMed Central

    Gupta, Subash C.; Kim, Ji Hye; Prasad, Sahdeo

    2010-01-01

    Almost 25 centuries ago, Hippocrates, the father of medicine, proclaimed “Let food be thy medicine and medicine be thy food.” Exploring the association between diet and health continues today. For example, we now know that as many as 35% of all cancers can be prevented by dietary changes. Carcinogenesis is a multistep process involving the transformation, survival, proliferation, invasion, angiogenesis, and metastasis of the tumor and may take up to 30 years. The pathways associated with this process have been linked to chronic inflammation, a major mediator of tumor progression. The human body consists of about 13 trillion cells, almost all of which are turned over within 100 days, indicating that 70,000 cells undergo apoptosis every minute. Thus, apoptosis/cell death is a normal physiological process, and it is rare that a lack of apoptosis kills the patient. Almost 90% of all deaths due to cancer are linked to metastasis of the tumor. How our diet can prevent cancer is the focus of this review. Specifically, we will discuss how nutraceuticals, such as allicin, apigenin, berberine, butein, caffeic acid, capsaicin, catechin gallate, celastrol, curcumin, epigallocatechin gallate, fisetin, flavopiridol, gambogic acid, genistein, plumbagin, quercetin, resveratrol, sanguinarine, silibinin, sulforaphane, taxol, γ-tocotrienol, and zerumbone, derived from spices, legumes, fruits, nuts, and vegetables, can modulate inflammatory pathways and thus affect the survival, proliferation, invasion, angiogenesis, and metastasis of the tumor. Various cell signaling pathways that are modulated by these agents will also be discussed. PMID:20737283

  3. Study of HeLa cells clone survival after X-ray irradiation in the presence of cisplatin

    NASA Astrophysics Data System (ADS)

    Baulin, A. A.; Sukhikh, E. S.; Vasilyev, S. A.; Sukhikh, L. G.; Sheino, I. N.

    2017-09-01

    Radiation therapy in the presence of heavy elements nuclei (Z > 53) is widely developed these days. The presence of such nuclei in cancer cells results in the local increase of energy release from primary photon beam thus increasing relative biological efficiency. In this paper we present the preliminary results of the cell survival study while irradiating cells by X-Ray photon beam in the presence of cisplatin (Pt, Z = 78). The preliminary results show the decrease of the cell survival in the presence of both radiation and cisplatin.

  4. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells.

    PubMed

    Amin, Shayista; Thywissen, Andreas; Heinekamp, Thorsten; Saluz, Hans Peter; Brakhage, Axel A

    2014-07-01

    Aspergillus fumigatus is the most important air-borne pathogenic fungus of humans. Upon inhalation of conidia, the fungus makes close contact with lung epithelial cells, which only possess low phagocytic activity. These cells are in particular interesting to address the question whether there is some form of persistence of conidia of A. fumigatus in the human host. Therefore, by also using uracil-auxotrophic mutant strains, we were able to investigate the interaction of A549 lung epithelial cells and A. fumigatus conidia in detail for long periods. Interestingly, unlike professional phagocytes, our study showed that the presence of conidial dihydroxynaphthalene (DHN) melanin enhanced the uptake of A. fumigatus conidia by epithelial cells when compared with non-pigmented pksP mutant conidia. Furthermore, conidia of A. fumigatus were able to survive within epithelial cells. This was due to the presence of DHN melanin in the cell wall of conidia, because melanised wild-type conidia showed a higher survival rate inside epithelial cells and led to inhibition of acidification of phagolysosomes. Both effects were not observed for white (non-melanised) conidia of the pksP mutant strain. Moreover, in contrast to pksP mutant conidia, melanised wild-type conidia were able to inhibit the extrinsic apoptotic pathway in A549 lung epithelial cells even for longer periods. The anti-apoptotic effect was not restricted to conidia, because both conidia-derived melanin ghosts (cell-free DHN melanin) and a different type of melanin, dihydroxyphenylalanine (DOPA) melanin, acted anti-apoptotically. Taken together, these data indicate the possibility of melanin-dependent persistence of conidia in lung epithelial cells. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. PRAP1 is a novel executor of p53-dependent mechanisms in cell survival after DNA damage

    PubMed Central

    Huang, B H; Zhuo, J L; Leung, C H W; Lu, G D; Liu, J J; Yap, C T; Hooi, S C

    2012-01-01

    p53 has a crucial role in governing cellular mechanisms in response to a broad range of genotoxic stresses. During DNA damage, p53 can either promote cell survival by activating senescence or cell-cycle arrest and DNA repair to maintain genomic integrity for cell survival or direct cells to undergo apoptosis to eliminate extensively damaged cells. The ability of p53 to execute these two opposing cell fates depends on distinct signaling pathways downstream of p53. In this study, we showed that under DNA damage conditions induced by chemotherapeutic drugs, gamma irradiation and hydrogen peroxide, p53 upregulates a novel protein, proline-rich acidic protein 1 (PRAP1). We identified functional p53-response elements within intron 1 of PRAP1 gene and showed that these regions interact directly with p53 using ChIP assays, indicating that PRAP1 is a novel p53 target gene. The induction of PRAP1 expression by p53 may promote resistance of cancer cells to chemotherapeutic drugs such as 5-fluorouracil (5-FU), as knockdown of PRAP1 increases apoptosis in cancer cells after 5-FU treatment. PRAP1 appears to protect cells from apoptosis by inducing cell-cycle arrest, suggesting that the induction of PRAP1 expression by p53 in response to DNA-damaging agents contributes to cancer cell survival. Our findings provide a greater insight into the mechanisms underlying the pro-survival role of p53 in response to cytotoxic treatments. PMID:23235459

  6. PRAP1 is a novel executor of p53-dependent mechanisms in cell survival after DNA damage.

    PubMed

    Huang, B H; Zhuo, J L; Leung, C H W; Lu, G D; Liu, J J; Yap, C T; Hooi, S C

    2012-12-13

    p53 has a crucial role in governing cellular mechanisms in response to a broad range of genotoxic stresses. During DNA damage, p53 can either promote cell survival by activating senescence or cell-cycle arrest and DNA repair to maintain genomic integrity for cell survival or direct cells to undergo apoptosis to eliminate extensively damaged cells. The ability of p53 to execute these two opposing cell fates depends on distinct signaling pathways downstream of p53. In this study, we showed that under DNA damage conditions induced by chemotherapeutic drugs, gamma irradiation and hydrogen peroxide, p53 upregulates a novel protein, proline-rich acidic protein 1 (PRAP1). We identified functional p53-response elements within intron 1 of PRAP1 gene and showed that these regions interact directly with p53 using ChIP assays, indicating that PRAP1 is a novel p53 target gene. The induction of PRAP1 expression by p53 may promote resistance of cancer cells to chemotherapeutic drugs such as 5-fluorouracil (5-FU), as knockdown of PRAP1 increases apoptosis in cancer cells after 5-FU treatment. PRAP1 appears to protect cells from apoptosis by inducing cell-cycle arrest, suggesting that the induction of PRAP1 expression by p53 in response to DNA-damaging agents contributes to cancer cell survival. Our findings provide a greater insight into the mechanisms underlying the pro-survival role of p53 in response to cytotoxic treatments.

  7. Survival and mortality among users and non-users of hydroxyurea with sickle cell disease

    PubMed Central

    de Araujo, Olinda Maria Rodrigues; Ivo, Maria Lúcia; Ferreira, Marcos Antonio; Pontes, Elenir Rose Jardim Cury; Bispo, Ieda Maria Gonçalves Pacce; de Oliveira, Eveny Cristine Luna

    2015-01-01

    OBJECTIVE: to estimate survival, mortality and cause of death among users or not of hydroxyurea with sickle cell disease. METHOD: cohort study with retrospective data collection, from 1980 to 2010 of patients receiving inpatient treatment in two Brazilian public hospitals. The survival probability was determined using the Kaplan-Meier estimator, survival calculations (SPSS version 10.0), comparison between survival curves, using the log rank method. The level of significance was p=0.05. RESULTS: of 63 patients, 87% had sickle cell anemia, with 39 using hydroxyurea, with a mean time of use of the drug of 20.0±10.0 years and a mean dose of 17.37±5.4 to 20.94±7.2 mg/kg/day, raising the fetal hemoglobin. In the comparison between those using hydroxyurea and those not, the survival curve was greater among the users (p=0.014). A total of 10 deaths occurred, with a mean age of 28.1 years old, and with Acute Respiratory Failure as the main cause. CONCLUSION: the survival curve is greater among the users of hydroxyurea. The results indicate the importance of the nurse incorporating therapeutic advances of hydroxyurea in her care actions. PMID:25806633

  8. Feline Calicivirus, Murine Norovirus, Porcine Sapovirus, and Tulane Virus Survival on Postharvest Lettuce.

    PubMed

    Esseili, Malak A; Saif, Linda J; Farkas, Tibor; Wang, Qiuhong

    2015-08-01

    Human norovirus (HuNoV) is the leading cause of foodborne illnesses, with an increasing number of outbreaks associated with leafy greens. Because HuNoV cannot be routinely cultured, culturable feline calicivirus (FCV), murine norovirus (MNV), porcine sapovirus (SaV), and Tulane virus (TV) have been used as surrogates. These viruses are generated in different cell lines as infected cell lysates, which may differentially affect their stability. Our objective was to uniformly compare the survival of these viruses on postharvest lettuce while evaluating the effects of cell lysates on their survival. Viruses were semipurified from cell lysates by ultrafiltration or ultracentrifugation followed by resuspension in sterile water. Virus survival was examined before and after semipurification: in suspension at room temperature (RT) until day 28 and on lettuce leaves stored at RT for 3 days or at 4°C for 7 and 14 days. In suspension, both methods significantly enhanced the survival of all viruses. On lettuce, the survival of MNV in cell lysates was similar to that in water, under all storage conditions. In contrast, the survival of FCV, SaV, and TV was differentially enhanced, under different storage conditions, by removing cell lysates. Following semipurification, viruses showed similar persistence to each other on lettuce stored under all conditions, with the exception of ultracentrifugation-purified FCV, which showed a higher inactivation rate than MNV at 4°C for 14 days. In conclusion, the presence of cell lysates in viral suspensions underestimated the survivability of these surrogate viruses, while viral semipurification revealed similar survivabilities on postharvest lettuce leaves. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  9. Factors related to the relative survival of patients with diffuse large B-cell lymphoma in a population-based study in France: does socio-economic status have a role?

    PubMed

    Le Guyader-Peyrou, Sandra; Orazio, Sébastien; Dejardin, Olivier; Maynadié, Marc; Troussard, Xavier; Monnereau, Alain

    2017-03-01

    The survival of patients with diffuse large B-cell lymphoma has increased during the last decade as a result of addition of anti-CD20 to anthracycline-based chemotherapy. Although the trend is encouraging, there are persistent differences in survival within and between the USA and European countries suggesting that non-biological factors play a role. Our aim was to investigate the influence of such factors on relative survival of patients with diffuse large B-cell lymphoma. We conducted a retrospective, multicenter, registry-based study in France on 1165 incident cases of diffuse large B-cell lymphoma between 2002 and 2008. Relative survival analyses were performed and missing data were controlled with the multiple imputation method. In a multivariate analysis, adjusted for age, sex and International Prognostic Index, we confirmed that time period was associated with a better 5-year relative survival. The registry area, the medical specialty of the care department (onco-hematology versus other), the time to travel to the nearest teaching hospital, the place of treatment (teaching versus not-teaching hospital -borderline significance), a comorbidity burden and marital status were independently associated with the 5-year relative survival. Adjusted for first-course treatment, inclusion in a clinical trial and treatment discussion in a multidisciplinary meeting were strongly associated with a better survival outcome. In contrast, socio-economic status (determined using the European Deprivation Index) was not associated with outcome. Despite therapeutic advances, various non-biological factors affected the relative survival of patients with diffuse large B-cell lymphoma. The notion of lymphoma-specific expertise seems to be essential to achieve optimal care management and reopens the debate regarding centralization of these patients' care in hematology/oncology departments. Copyright© Ferrata Storti Foundation.

  10. Cyclophilin B Supports Myc and Mutant p53 Dependent Survival of Glioblastoma Multiforme Cells

    PubMed Central

    Choi, Jae Won; Schroeder, Mark A.; Sarkaria, Jann N.; Bram, Richard J.

    2014-01-01

    Glioblastoma multiforme (GBM) is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in GBM cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human GBM cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of GBM cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-MAPK pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1 and JAK/STAT3 signaling. Elevated reactive oxygen species, ER expansion and abnormal unfolded protein responses in CypB-depleted GBM cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of GBM tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for GBM therapy. PMID:24272483

  11. Separation of cell survival, growth, migration, and mesenchymal transdifferentiation effects of fibroblast secretome on tumor cells of head and neck squamous cell carcinoma.

    PubMed

    Metzler, Veronika Maria; Pritz, Christian; Riml, Anna; Romani, Angela; Tuertscher, Raphaela; Steinbichler, Teresa; Dejaco, Daniel; Riechelmann, Herbert; Dudás, József

    2017-11-01

    Fibroblasts play a central role in tumor invasion, recurrence, and metastasis in head and neck squamous cell carcinoma. The aim of this study was to investigate the influence of tumor cell self-produced factors and paracrine fibroblast-secreted factors in comparison to indirect co-culture on cancer cell survival, growth, migration, and epithelial-mesenchymal transition using the cell lines SCC-25 and human gingival fibroblasts. Thereby, we particularly focused on the participation of the fibroblast-secreted transforming growth factor beta-1.Tumor cell self-produced factors were sufficient to ensure tumor cell survival and basic cell growth, but fibroblast-secreted paracrine factors significantly increased cell proliferation, migration, and epithelial-mesenchymal transition-related phenotype changes in tumor cells. Transforming growth factor beta-1 generated individually migrating disseminating tumor cell groups or single cells separated from the tumor cell nest, which were characterized by reduced E-cadherin expression. At the same time, transforming growth factor beta-1 inhibited tumor cell proliferation under serum-starved conditions. Neutralizing transforming growth factor beta antibody reduced the cell migration support of fibroblast-conditioned medium. Transforming growth factor beta-1 as a single factor was sufficient for generation of disseminating tumor cells from epithelial tumor cell nests, while other fibroblast paracrine factors supported tumor nest outgrowth. Different fibroblast-released factors might support tumor cell proliferation and invasion, as two separate effects.

  12. Estradiol promotes pentose phosphate pathway addiction and cell survival via reactivation of Akt in mTORC1 hyperactive cells.

    PubMed

    Sun, Y; Gu, X; Zhang, E; Park, M-A; Pereira, A M; Wang, S; Morrison, T; Li, C; Blenis, J; Gerbaudo, V H; Henske, E P; Yu, J J

    2014-05-15

    Lymphangioleiomyomatosis (LAM) is a female-predominant interstitial lung disease that can lead to respiratory failure. LAM cells typically have inactivating TSC2 mutations, leading to mTORC1 activation. The gender specificity of LAM suggests that estradiol contributes to disease development, yet the underlying pathogenic mechanisms are not completely understood. Using metabolomic profiling, we identified an estradiol-enhanced pentose phosphate pathway signature in Tsc2-deficient cells. Estradiol increased levels of cellular NADPH, decreased levels of reactive oxygen species, and enhanced cell survival under oxidative stress. Mechanistically, estradiol reactivated Akt in TSC2-deficient cells in vitro and in vivo, induced membrane translocation of glucose transporters (GLUT1 or GLUT4), and increased glucose uptake in an Akt-dependent manner. (18)F-FDG-PET imaging demonstrated enhanced glucose uptake in xenograft tumors of Tsc2-deficient cells from estradiol-treated mice. Expression array study identified estradiol-enhanced transcript levels of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway. Consistent with this, G6PD was abundant in xenograft tumors and lung metastatic lesions of Tsc2-deficient cells from estradiol-treated mice. Molecular depletion of G6PD attenuated estradiol-enhanced survival in vitro, and treatment with 6-aminonicotinamide, a competitive inhibitor of G6PD, reduced lung colonization of Tsc2-deficient cells. Collectively, these data indicate that estradiol promotes glucose metabolism in mTORC1 hyperactive cells through the pentose phosphate pathway via Akt reactivation and G6PD upregulation, thereby enhancing cell survival under oxidative stress. Interestingly, a strong correlation between estrogen exposure and G6PD was also found in breast cancer cells. Targeting the pentose phosphate pathway may have therapeutic benefit for LAM and possibly other hormonally dependent neoplasms.

  13. Estradiol promotes pentose phosphate pathway addiction and cell survival via reactivation of Akt in mTORC1 hyperactive cells

    PubMed Central

    Sun, Y; Gu, X; Zhang, E; Park, M-A; Pereira, A M; Wang, S; Morrison, T; Li, C; Blenis, J; Gerbaudo, V H; Henske, E P; Yu, J J

    2014-01-01

    Lymphangioleiomyomatosis (LAM) is a female-predominant interstitial lung disease that can lead to respiratory failure. LAM cells typically have inactivating TSC2 mutations, leading to mTORC1 activation. The gender specificity of LAM suggests that estradiol contributes to disease development, yet the underlying pathogenic mechanisms are not completely understood. Using metabolomic profiling, we identified an estradiol-enhanced pentose phosphate pathway signature in Tsc2-deficient cells. Estradiol increased levels of cellular NADPH, decreased levels of reactive oxygen species, and enhanced cell survival under oxidative stress. Mechanistically, estradiol reactivated Akt in TSC2-deficient cells in vitro and in vivo, induced membrane translocation of glucose transporters (GLUT1 or GLUT4), and increased glucose uptake in an Akt-dependent manner. 18F-FDG-PET imaging demonstrated enhanced glucose uptake in xenograft tumors of Tsc2-deficient cells from estradiol-treated mice. Expression array study identified estradiol-enhanced transcript levels of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway. Consistent with this, G6PD was abundant in xenograft tumors and lung metastatic lesions of Tsc2-deficient cells from estradiol-treated mice. Molecular depletion of G6PD attenuated estradiol-enhanced survival in vitro, and treatment with 6-aminonicotinamide, a competitive inhibitor of G6PD, reduced lung colonization of Tsc2-deficient cells. Collectively, these data indicate that estradiol promotes glucose metabolism in mTORC1 hyperactive cells through the pentose phosphate pathway via Akt reactivation and G6PD upregulation, thereby enhancing cell survival under oxidative stress. Interestingly, a strong correlation between estrogen exposure and G6PD was also found in breast cancer cells. Targeting the pentose phosphate pathway may have therapeutic benefit for LAM and possibly other hormonally dependent neoplasms. PMID:24832603

  14. Bacteria survival probability in bactericidal filter paper.

    PubMed

    Mansur-Azzam, Nura; Hosseinidoust, Zeinab; Woo, Su Gyeong; Vyhnalkova, Renata; Eisenberg, Adi; van de Ven, Theo G M

    2014-05-01

    Bactericidal filter papers offer the simplicity of gravity filtration to simultaneously eradicate microbial contaminants and particulates. We previously detailed the development of biocidal block copolymer micelles that could be immobilized on a filter paper to actively eradicate bacteria. Despite the many advantages offered by this system, its widespread use is hindered by its unknown mechanism of action which can result in non-reproducible outcomes. In this work, we sought to investigate the mechanism by which a certain percentage of Escherichia coli cells survived when passing through the bactericidal filter paper. Through the process of elimination, the possibility that the bacterial survival probability was controlled by the initial bacterial load or the existence of resistant sub-populations of E. coli was dismissed. It was observed that increasing the thickness or the number of layers of the filter significantly decreased bacterial survival probability for the biocidal filter paper but did not affect the efficiency of the blank filter paper (no biocide). The survival probability of bacteria passing through the antibacterial filter paper appeared to depend strongly on the number of collision between each bacterium and the biocide-loaded micelles. It was thus hypothesized that during each collision a certain number of biocide molecules were directly transferred from the hydrophobic core of the micelle to the bacterial lipid bilayer membrane. Therefore, each bacterium must encounter a certain number of collisions to take up enough biocide to kill the cell and cells that do not undergo the threshold number of collisions are expected to survive. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Hyperglycaemia does not affect antigen-specific activation and cytolytic killing by CD8+ T cells in vivo.

    PubMed

    Recino, Asha; Barkan, Kerry; Wong, F Susan; Ladds, Graham; Cooke, Anne; Wallberg, Maja

    2017-08-31

    Metabolism is of central importance for T cell survival and differentiation. It is well known that T cells cannot function in the absence of glucose, but it is less clear how they respond to excessive levels of glucose. In the present study, we investigated how increasing levels of glucose affect T-cell-mediated immune responses. We examined the effects of increased levels of glucose on CD8 + T-cell behaviour in vitro by assessing activation and cytokine production, as well as oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and intracellular signalling. In addition, we assessed in vivo proliferation, cytokine production and cytolytic activity of cells in chemically induced diabetic C57BL/6 mice. Elevated levels of glucose in in vitro cultures had modest effects on proliferation and cytokine production, while in vivo hyperglycaemia had no effect on CD8 + T-cell proliferation, interferon γ (IFNγ) production or cytolytic killing. © 2017 The Author(s).

  16. Effect of bisphosphonates on macrophagic THP-1 cell survival in bisphosphonate-related osteonecrosis of the jaw (BRONJ).

    PubMed

    Hoefert, Sebastian; Sade Hoefert, Claudia; Munz, Adelheid; Schmitz, Inge; Grimm, Martin; Yuan, Anna; Northoff, Hinnak; Reinert, Siegmar; Alexander, Dorothea

    2016-03-01

    Immune deficiency and bacterial infection have been suggested to play a role in the pathophysiology of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Zoledronate was previously found to promote THP-1 cell death. To examine this hypothesis with all commonly prescribed bisphosphonates, we tested the effect of (nitrogen-containing) ibandronate, risedronate, alendronate, pamidronate, and (non-nitrogen-containing) clodronate on macrophagic THP-1 cells. Activated THP-1 cells were exposed to .5 to 50 μM of nitrogen-containing bisphosphonates and .5 to 500 μM of clodronate. Cell adherence and survival were assessed in vitro using the xCELLigence real-time monitoring system. Results were confirmed histologically and verified with Live/Dead staining. All bisphosphonates inhibited THP-1 cell adherence and survival dose and time dependently, significant for zoledronate, alendronate, pamidronate, and clodronate in high concentrations (50 μM and 500 μM; P < .05). Low concentrations (0.5 μM) of risedronate, alendronate, and pamidronate prolonged the inflexion points of THP-1 cell survival compared with controls (P < .05). THP-1 cells exhibited no cytomorphologic changes at all concentrations. Commonly prescribed bisphosphonates inhibit the survival of macrophagic THP-1 cells dose-dependently without altering morphology. This may suggest a local immune dysfunction reflective of individual bisphosphonate potency leading to the pathogenesis of BRONJ. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Silibinin strongly inhibits the growth kinetics of colon cancer stem cell-enriched spheroids by modulating interleukin 4/6-mediated survival signals

    PubMed Central

    Agarwal, Chapla; Agarwal, Rajesh

    2014-01-01

    Involvement of cancer stem cells (CSC) in initiation, progression, relapse, and therapy-resistance of colorectal cancer (CRC) warrants search for small molecules as ‘adjunct-therapy’ to target both colon CSC and bulk tumor population. Herein, we assessed the potential of silibinin to eradicate colon CSC together with associated molecular mechanisms. In studies examining how silibinin modulates dynamics of CSC spheroids in terms of its effect on kinetics of CSC spheroids generated in presence of mitogenic and interleukin (IL)-mediated signaling which provides an autocrine/paracrine amplification loop in CRC, silibinin strongly decreased colon CSC pool together with cell survival of bulk tumor cells. Silibinin effect on colon CSC was mediated via blocking of pro-tumorigenic signaling, notably IL-4/-6 signaling that affects CSC population. These silibinin effects were associated with decreased mRNA and protein levels of various CSC-associated transcription factors, signaling molecules and markers. Furthermore, 2D and 3D differentiation assays indicated formation of more differentiated clones by silibinin. These results highlight silibinin potential to interfere with kinetics of CSC pool by shifting CSC cell division to asymmetric type via targeting various signals associated with the survival and multiplication of colon CSC pool. Together, our findings further support clinical usefulness of silibinin in CRC intervention and therapy. PMID:24970802

  18. To die or not to die SGK1-sensitive ORAI/STIM in cell survival.

    PubMed

    Lang, Florian; Pelzl, Lisann; Hauser, Stefan; Hermann, Andreas; Stournaras, Christos; Schöls, Ludger

    2018-05-03

    The pore forming Ca 2+ release activated Ca 2+ channel (CRAC) isoforms ORAI1-3 and their regulators STIM1,2 accomplish store operated Ca 2+ entry (SOCE). Activation of SOCE may lead to cytosolic Ca 2+ oscillations, which in turn support cell proliferation and cell survival. ORAI/STIM and thus SOCE are upregulated by the serum and glucocorticoid inducible kinase SGK1, a kinase under powerful genomic regulation and activated by phosphorylation via the phosphoinositol-3-phosphate pathway. SGK1 enhances ORAI1 abundance partially by phosphorylation of Nedd4-2, an ubiquitin ligase priming the channel protein for degradation. The SGK1-phosphorylated Nedd4-2 binds to the protein 14-3-3 and is thus unable to ubiquinate ORAI1. SGK1 further increases the ORAI1 and STIM1 protein abundance by activating nuclear factor kappa B (NF-κB), a transcription factor upregulating the expression of STIM1 and ORAI1. SGK1-sensitive upregulation of ORAI/STIM and thus SOCE is triggered by a wide variety of hormones and growth factors, as well as several cell stressors including ischemia, radiation, and cell shrinkage. SGK1 dependent upregulation of ORAI/STIM confers survival of tumor cells and thus impacts on growth and therapy resistance of cancer. On the other hand, SGK1-dependent upregulation of ORAI1 and STIM1 may support survival of neurons and impairment of SGK1-dependent ORAI/STIM activity may foster neurodegeneration. Clearly, further experimental effort is needed to define the mechanisms linking SGK1-dependent upregulation of ORAI1 and STIM1 to cell survival and to define the impact of SGK1-dependent upregulation of ORAI1 and STIM1 on malignancy and neurodegenerative disease. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Heat Shock Proteins In The Retina: Focus On Hsp70 and Alpha Crystallins In Ganglion Cell Survival

    PubMed Central

    Piri, Natik; Kwong, Jacky MK; Gu, Lei; Caprioli, Joseph

    2016-01-01

    Heat shock proteins (HSPs) belong to a superfamily of stress proteins that are critical constituents of a complex defense mechanism that enhances cell survival under adverse environmental conditions. Cell protective roles of HSPs are related to their chaperone functions, antiapoptotic and antinecrotic effects. HSPs' antiapoptotic and cytoprotective characteristics, their ability to protect cells from a variety of stressful stimuli, and the possibility of their pharmacological induction in cells under pathological stress make these proteins an attractive therapeutic target for various neurodegenerative diseases; these include Alzheimer's, Parkinson's, Huntington's, prion disease, and others. This review discusses the possible roles of HSPs, particularly HSP70 and small HSPs (alpha A and alpha B crystallins) in enhancing the survival of retinal ganglion cells (RGCs) in optic neuropathies such as glaucoma, which is characterized by progressive loss of vision caused by degeneration of RGCs and their axons in the optic nerve. Studies in animal models of RGC degeneration induced by ocular hypertension, optic nerve crush and axotomy show that upregulation of HSP70 expression by hyperthermia, zinc, geranyl-geranyl acetone, 17-AAG (a HSP90 inhibitor), or through transfection of retinal cells with AAV2-HSP70 effectively supports the survival of injured RGCs. RGCs survival was also stimulated by overexpression of alpha A and alpha B crystallins. These findings provide support for translating the HSP70- and alpha crystallin-based cell survival strategy into therapy to protect and rescue injured RGCs from degeneration associated with glaucomatous and other optic neuropathies. PMID:27017896

  20. Cell survival fraction estimation based on the probability densities of domain and cell nucleus specific energies using improved microdosimetric kinetic models.

    PubMed

    Sato, Tatsuhiko; Furusawa, Yoshiya

    2012-10-01

    Estimation of the survival fractions of cells irradiated with various particles over a wide linear energy transfer (LET) range is of great importance in the treatment planning of charged-particle therapy. Two computational models were developed for estimating survival fractions based on the concept of the microdosimetric kinetic model. They were designated as the double-stochastic microdosimetric kinetic and stochastic microdosimetric kinetic models. The former model takes into account the stochastic natures of both domain and cell nucleus specific energies, whereas the latter model represents the stochastic nature of domain specific energy by its approximated mean value and variance to reduce the computational time. The probability densities of the domain and cell nucleus specific energies are the fundamental quantities for expressing survival fractions in these models. These densities are calculated using the microdosimetric and LET-estimator functions implemented in the Particle and Heavy Ion Transport code System (PHITS) in combination with the convolution or database method. Both the double-stochastic microdosimetric kinetic and stochastic microdosimetric kinetic models can reproduce the measured survival fractions for high-LET and high-dose irradiations, whereas a previously proposed microdosimetric kinetic model predicts lower values for these fractions, mainly due to intrinsic ignorance of the stochastic nature of cell nucleus specific energies in the calculation. The models we developed should contribute to a better understanding of the mechanism of cell inactivation, as well as improve the accuracy of treatment planning of charged-particle therapy.

  1. Stress- and Rho-activated ZO-1–associated nucleic acid binding protein binding to p21 mRNA mediates stabilization, translation, and cell survival

    PubMed Central

    Nie, Mei; Balda, Maria S.; Matter, Karl

    2012-01-01

    A central component of the cellular stress response is p21WAF1/CIP1, which regulates cell proliferation, survival, and differentiation. Inflammation and cell stress often up-regulate p21 posttranscriptionally by regulatory mechanisms that are poorly understood. ZO-1–associated nucleic acid binding protein (ZONAB)/DbpA is a Y-box transcription factor that is regulated by components of intercellular junctions that are affected by cytokines and tissue damage. We therefore asked whether ZONAB activation is part of the cellular stress response. Here, we demonstrate that ZONAB promotes cell survival in response to proinflammatory, hyperosmotic, and cytotoxic stress and that stress-induced ZONAB activation involves the Rho regulator GEF-H1. Unexpectedly, stress-induced ZONAB activation does not stimulate ZONAB’s activity as a transcription factor but leads to the posttranscriptional up-regulation of p21 protein and mRNA. Up-regulation is mediated by ZONAB binding to specific sites in the 3′-untranslated region of the p21 mRNA, resulting in mRNA stabilization and enhanced translation. Binding of ZONAB to mRNA is activated by GEF-H1 via Rho stimulation and also mediates Ras-induced p21 expression. We thus identify a unique type of stress and Rho signaling activated pathway that drives mRNA stabilization and translation and links the cellular stress response to p21 expression and cell survival. PMID:22711822

  2. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism.

    PubMed

    Rachakonda, P Sivaramakrishna; Hosen, Ismail; de Verdier, Petra J; Fallah, Mahdi; Heidenreich, Barbara; Ryk, Charlotta; Wiklund, N Peter; Steineck, Gunnar; Schadendorf, Dirk; Hemminki, Kari; Kumar, Rajiv

    2013-10-22

    The telomerase reverse transcriptase (TERT) promoter, an important element of telomerase expression, has emerged as a target of cancer-specific mutations. Originally described in melanoma, the mutations in TERT promoter have been shown to be common in certain other tumor types that include glioblastoma, hepatocellular carcinoma, and bladder cancer. To fully define the occurrence and effect of the TERT promoter mutations, we investigated tumors from a well-characterized series of 327 patients with urothelial cell carcinoma of bladder. The somatic mutations, mainly at positions -124 and -146 bp from ATG start site that create binding motifs for E-twenty six/ternary complex factors (Ets/TCF), affected 65.4% of the tumors, with even distribution across different stages and grades. Our data showed that a common polymorphism rs2853669, within a preexisting Ets2 binding site in the TERT promoter, acts as a modifier of the effect of the mutations on survival and tumor recurrence. The patients with the mutations showed poor survival in the absence [hazard ratio (HR) 2.19, 95% confidence interval (CI) 1.02-4.70] but not in the presence (HR 0.42, 95% CI 0.18-1.01) of the variant allele of the polymorphism. The mutations in the absence of the variant allele were highly associated with the disease recurrence in patients with Tis, Ta, and T1 tumors (HR 1.85, 95% CI 1.11-3.08). The TERT promoter mutations are the most common somatic lesions in bladder cancer with clinical implications. The association of the mutations with patient survival and disease recurrence, subject to modification by a common polymorphism, can be a unique putative marker with individualized prognostic potential.

  3. Comparison of clinicopathologic features and survival between eastern and western population with esophageal squamous cell carcinoma.

    PubMed

    Zhang, Jie; Jiang, Yizhou; Wu, Chunxiao; Cai, Shuang; Wang, Rui; Zhen, Ying; Chen, Sufeng; Zhao, Kuaile; Huang, Yangle; Luketich, James; Chen, Haiquan

    2015-10-01

    Esophageal squamous cell carcinoma (ESCC) is the major histologic subtype of esophageal cancer, characterized by a high mortality rate and geographic differences in incidences. It is unknown whether there is difference between "eastern" ESCC and "western" ESCC. This study is attempted to demonstrate the hypothesis by comparing ESCC between Chinese residents and Caucasians living in the US. The data sources of this study are from United States SEER limited-use database and Shanghai Cancer Registries by Shanghai Municipal Center for Disease Control (SMCDC). Consecutive, non-selected patients with pathologically diagnosed ESCC, between January 1, 2002 and December 31, 2006, were included in this analysis. 1-year, 3-year and 5-year survival estimates were computed and compared between two populations. A Cox proportional hazards model was used to determine factors affecting survival differences. A total of 1,718 Chinese, 1,624 Caucasians ESCC patients with individual American Joint Commission on Cancer (AJCC) staging information were included in this study. The Caucasian group had a significantly higher proportion of female patients than Chinese (38.24% vs. 18.68% P<0.01). ESCC was diagnosed in Chinese patients at an earlier age and stage than Caucasians. Generally, Chinese patients had similar overall survival rate with Caucasian by both univariate and multivariate analysis. Overall survival was significantly worse only in male Caucasians compared to Chinese patients (median survival time, 12.4 vs. 14.5 months, P<0.01, respectively). ESCC from eastern and western countries might have some different features. These differences need to be taken into account for the management of ESCC patients in different ethnic groups.

  4. E-cadherin-defective gastric cancer cells depend on Laminin to survive and invade

    PubMed Central

    Caldeira, Joana; Figueiredo, Joana; Brás-Pereira, Catarina; Carneiro, Patrícia; Moreira, Ana M.; Pinto, Marta T.; Relvas, João B.; Carneiro, Fátima; Barbosa, Mário; Casares, Fernando; Janody, Florence; Seruca, Raquel

    2015-01-01

    Epithelial-cadherin (Ecad) deregulation affects cell–cell adhesion and results in increased invasiveness of distinct human carcinomas. In gastric cancer, loss of Ecad expression is a common event and is associated with disease aggressiveness and poor prognosis. However, the molecular mechanisms underlying the invasive process associated to Ecad dysfunction are far from understood. We hypothesized that deregulation of cell–matrix interactions could play an important role during this process. Thus, we focussed on LM-332, which is a major matrix component, and in Ecad/LM-332 crosstalk in the process of Ecad-dependent invasion. To verify whether matrix deregulation was triggered by Ecad loss, we used the Drosophila model. To dissect the key molecules involved and unveil their functional significance, we used gastric cancer cell lines. The relevance of this relationship was then confirmed in human primary tumours. In vivo, Ecad knockdown induced apoptosis; nonetheless, at the invasive front, cells ectopically expressed Laminin A and βPS integrin. In vitro, we demonstrated that, in two different gastric cancer cell models, Ecad-defective cells overexpressed Laminin γ2 (LM-γ2), β1 and β4 integrin, when compared with Ecad-competent ones. We showed that LM-γ2 silencing impaired invasion and enhanced cell death, most likely via pSrc and pAkt reduction, and JNK activation. In human gastric carcinomas, we found a concomitant decrease in Ecad and increase in LM-γ2. This is the first evidence that ectopic Laminin expression depends on Ecad loss and allows Ecad-dysfunctional cells to survive and invade. This opens new avenues for using LM-γ2 signalling regulators as molecular targets to impair gastric cancer progression. PMID:26246502

  5. E-cadherin-defective gastric cancer cells depend on Laminin to survive and invade.

    PubMed

    Caldeira, Joana; Figueiredo, Joana; Brás-Pereira, Catarina; Carneiro, Patrícia; Moreira, Ana M; Pinto, Marta T; Relvas, João B; Carneiro, Fátima; Barbosa, Mário; Casares, Fernando; Janody, Florence; Seruca, Raquel

    2015-10-15

    Epithelial-cadherin (Ecad) deregulation affects cell-cell adhesion and results in increased invasiveness of distinct human carcinomas. In gastric cancer, loss of Ecad expression is a common event and is associated with disease aggressiveness and poor prognosis. However, the molecular mechanisms underlying the invasive process associated to Ecad dysfunction are far from understood. We hypothesized that deregulation of cell-matrix interactions could play an important role during this process. Thus, we focussed on LM-332, which is a major matrix component, and in Ecad/LM-332 crosstalk in the process of Ecad-dependent invasion. To verify whether matrix deregulation was triggered by Ecad loss, we used the Drosophila model. To dissect the key molecules involved and unveil their functional significance, we used gastric cancer cell lines. The relevance of this relationship was then confirmed in human primary tumours. In vivo, Ecad knockdown induced apoptosis; nonetheless, at the invasive front, cells ectopically expressed Laminin A and βPS integrin. In vitro, we demonstrated that, in two different gastric cancer cell models, Ecad-defective cells overexpressed Laminin γ2 (LM-γ2), β1 and β4 integrin, when compared with Ecad-competent ones. We showed that LM-γ2 silencing impaired invasion and enhanced cell death, most likely via pSrc and pAkt reduction, and JNK activation. In human gastric carcinomas, we found a concomitant decrease in Ecad and increase in LM-γ2. This is the first evidence that ectopic Laminin expression depends on Ecad loss and allows Ecad-dysfunctional cells to survive and invade. This opens new avenues for using LM-γ2 signalling regulators as molecular targets to impair gastric cancer progression. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Reduced Erg Dosage Impairs Survival of Hematopoietic Stem and Progenitor Cells.

    PubMed

    Xie, Ying; Koch, Mia Lee; Zhang, Xin; Hamblen, Melanie J; Godinho, Frank J; Fujiwara, Yuko; Xie, Huafeng; Klusmann, Jan-Henning; Orkin, Stuart H; Li, Zhe

    2017-07-01

    ERG, an ETS family transcription factor frequently overexpressed in human leukemia, has been implicated as a key regulator of hematopoietic stem cells. However, how ERG controls normal hematopoiesis, particularly at the stem and progenitor cell level, and how it contributes to leukemogenesis remain incompletely understood. Using homologous recombination, we generated an Erg knockdown allele (Erg kd ) in which Erg expression can be conditionally restored by Cre recombinase. Erg kd/kd animals die at E10.5-E11.5 due to defects in endothelial and hematopoietic cells, but can be completely rescued by Tie2-Cre-mediated restoration of Erg in these cells. In Erg kd/+ mice, ∼40% reduction in Erg dosage perturbs both fetal liver and bone marrow hematopoiesis by reducing the numbers of Lin - Sca-1 + c-Kit + (LSK) hematopoietic stem and progenitor cells (HSPCs) and megakaryocytic progenitors. By genetic mosaic analysis, we find that Erg-restored HSPCs outcompete Erg kd/+ HSPCs for contribution to adult hematopoiesis in vivo. This defect is in part due to increased apoptosis of HSPCs with reduced Erg dosage, a phenotype that becomes more drastic during 5-FU-induced stress hematopoiesis. Expression analysis reveals that reduced Erg expression leads to changes in expression of a subset of ERG target genes involved in regulating survival of HSPCs, including increased expression of a pro-apoptotic regulator Bcl2l11 (Bim) and reduced expression of Jun. Collectively, our data demonstrate that ERG controls survival of HSPCs, a property that may be used by leukemic cells. Stem Cells 2017;35:1773-1785. © 2017 AlphaMed Press.

  7. Inhibition of sirtuins 1 and 2 impairs cell survival and migration and modulates the expression of P-glycoprotein and MRP3 in hepatocellular carcinoma cell lines.

    PubMed

    Ceballos, María Paula; Decándido, Giulia; Quiroga, Ariel Darío; Comanzo, Carla Gabriela; Livore, Verónica Inés; Lorenzetti, Florencia; Lambertucci, Flavia; Chazarreta-Cifre, Lorena; Banchio, Claudia; Alvarez, María de Luján; Mottino, Aldo Domingo; Carrillo, María Cristina

    2018-06-01

    Sirtuins (SIRTs) 1 and 2 deacetylases are overexpressed in hepatocellular carcinoma (HCC) and are associated with tumoral progression and multidrug resistance (MDR). In this study we analyzed whether SIRTs 1 and 2 activities blockage was able to affect cellular survival and migration and to modulate p53 and FoxO1 acetylation in HepG2 and Huh7 cells. Moreover, we analyzed ABC transporters P-glycoprotein (P-gp) and multidrug resistance-associated protein 3 (MRP3) expression. We used cambinol and EX-527 as SIRTs inhibitors. Both drugs reduced cellular viability, number of colonies and cellular migration and augmented apoptosis. In 3D cultures, SIRTs inhibitors diminished spheroid growth and viability. 3D culture was less sensitive to drugs than 2D culture. The levels of acetylated p53 and FoxO1 increased after treatments. Drugs induced a decrease in ABC transporters mRNA and protein levels in HepG2 cells; however, only EX-527 was able to reduce MRP3 mRNA and protein levels in Huh7 cells. This is the first work demonstrating the regulation of MRP3 by SIRTs. In conclusion, both drugs decreased HCC cells survival and migration, suggesting SIRTs 1 and 2 activities blockage could be beneficial during HCC therapy. Downregulation of the expression of P-gp and MRP3 supports the potential application of SIRTs 1 and 2 inhibitions in combination with conventional chemotherapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Autologous stem cell transplantation in first complete remission may not extend progression-free survival in patients with peripheral T cell lymphomas.

    PubMed

    Yam, Clinton; Landsburg, Daniel J; Nead, Kevin T; Lin, Xinyi; Mato, Anthony R; Svoboda, Jakub; Loren, Alison W; Frey, Noelle V; Stadtmauer, Edward A; Porter, David L; Schuster, Stephen J; Nasta, Sunita D

    2016-07-01

    Patients with peripheral T cell lymphomas (PTCL) generally have a poor prognosis when treated with conventional chemotherapy. Consolidation with autologous stem cell transplantation (ASCT) has been reported to improve progression-free survival. However, these studies have not compared consolidative ASCT with active observation in patients with PTCL achieving first complete remission (CR1) following induction chemotherapy. We conducted a retrospective analysis of PTCL patients treated at the University of Pennsylvania between 1/1/2007 and 12/31/2014. Patients with cutaneous T cell lymphoma, concurrent B cell lymphomas, and anaplastic lymphoma kinase-positive anaplastic large cell lymphoma (ALK-positive ALCL) were excluded from the study. We compared progression-free survival for patients who underwent ASCT in CR1 following CHOP-like induction regimens and patients who underwent active observation during CR1. 48 patients met all inclusion and exclusion criteria and underwent either active observation (28 patients) or consolidative ASCT (20 patients) in CR1. The 1-year cumulative incidence of relapse in the observation and ASCT groups was 50% (95% confidence interval [CI]: 30-67%) and 46% (95% CI: 23-67%), respectively (P = 0.55). Median progression-free survival in the observation and ASCT groups was 15.8 and 12.8 months, respectively (log rank, P = 0.79). Estimated 3-year progression-free survival in the observation and ASCT groups was 37 and 41%, respectively. In conclusion, for PTCL patients achieving CR1 following CHOP-like induction chemotherapy, ASCT does not appear to improve progression-free survival compared to active observation. This finding should be confirmed in a larger, prospective study. Am. J. Hematol. 91:672-676, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Glial cell activation, recruitment, and survival of B-lineage cells following MCMV brain infection.

    PubMed

    Lokensgard, James R; Mutnal, Manohar B; Prasad, Sujata; Sheng, Wen; Hu, Shuxian

    2016-05-20

    Chemokines produced by reactive glia drive migration of immune cells and previous studies from our laboratory have demonstrated that CD19(+) B cells infiltrate the brain. In this study, in vivo and in vitro experiments investigated the role of reactive glial cells in recruitment and survival of B-lineage cells in response to (murine cytomegalovirus) MCMV infection. Flow cytometric analysis was used to assess chemokine receptor expression on brain-infiltrating B cells. Real-time RT-PCR and ELISA were used to measure chemokine levels. Dual-immunohistochemical staining was used to co-localize chemokine production by reactive glia. Primary glial cell cultures and migration assays were used to examine chemokine-mediated recruitment. Astrocyte: B cell co-cultures were used to investigate survival and proliferation. The chemokine receptors CXCR3, CXCR5, CCR5, and CCR7 were detected on CD19(+) cells isolated from the brain during MCMV infection. In particular, CXCR3 was found to be elevated on an increasing number of cells over the time course of infection, and it was the primary chemokine receptor expressed at 60 days post infection Quite different expression kinetics were observed for CXCR5, CCR5, and CCR7, which were elevated on the highest number of cells early during infection and decreased by 14, 30, and 60 days post infection Correspondingly, elevated levels of CXCL9, CXCL10, and CXCL13, as well as CCL5, were found within the brains of infected animals, and only low levels of CCL3 and CCL19 were detected. Differential expression of CXCL9/CXCL10 and CXCL13 between microglia and astrocytes was apparent, and B cells moved towards supernatants from MCMV-infected microglia, but not astrocytes. Pretreatment with neutralizing Abs to CXCL9 and CXCL10 inhibited this migration. In contrast, neutralizing Abs to the ligand of CXCR5 (i.e., CXCL13) did not significantly block chemotaxis. Proliferation of brain-infiltrating B cells was detected at 7 days post infection and

  10. Serine/Threonine Protein Phosphatase PstP of Mycobacterium tuberculosis Is Necessary for Accurate Cell Division and Survival of Pathogen*

    PubMed Central

    Sharma, Aditya K.; Arora, Divya; Singh, Lalit K.; Gangwal, Aakriti; Sajid, Andaleeb; Molle, Virginie; Singh, Yogendra; Nandicoori, Vinay Kumar

    2016-01-01

    Protein phosphatases play vital roles in phosphorylation-mediated cellular signaling. Although there are 11 serine/threonine protein kinases in Mycobacterium tuberculosis, only one serine/threonine phosphatase, PstP, has been identified. Although PstP has been biochemically characterized and multiple in vitro substrates have been identified, its physiological role has not yet been elucidated. In this study, we have investigated the impact of PstP on cell growth and survival of the pathogen in the host. Overexpression of PstP led to elongated cells and partially compromised survival. We find that depletion of PstP is detrimental to cell survival, eventually leading to cell death. PstP depletion results in elongated multiseptate cells, suggesting a role for PstP in regulating cell division events. Complementation experiments performed with PstP deletion mutants revealed marginally compromised survival, suggesting that all of the domains, including the extracellular domain, are necessary for complete rescue. On the other hand, the catalytic activity of PstP is absolutely essential for the in vitro growth. Mice infection experiments establish a definitive role for PstP in pathogen survival within the host. Depletion of PstP from established infections causes pathogen clearance, indicating that the continued presence of PstP is necessary for pathogen survival. Taken together, our data suggest an important role for PstP in establishing and maintaining infection, possibly via the modulation of cell division events. PMID:27758870

  11. Correlation of Particle Traversals with Clonogenic Survival Using Cell-Fluorescent Ion Track Hybrid Detector.

    PubMed

    Dokic, Ivana; Niklas, Martin; Zimmermann, Ferdinand; Mairani, Andrea; Seidel, Philipp; Krunic, Damir; Jäkel, Oliver; Debus, Jürgen; Greilich, Steffen; Abdollahi, Amir

    2015-01-01

    Development of novel approaches linking the physical characteristics of particles with biological responses are of high relevance for the field of particle therapy. In radiobiology, the clonogenic survival of cells is considered the gold standard assay for the assessment of cellular sensitivity to ionizing radiation. Toward further development of next generation biodosimeters in particle therapy, cell-fluorescent ion track hybrid detector (Cell-FIT-HD) was recently engineered by our group and successfully employed to study physical particle track information in correlation with irradiation-induced DNA damage in cell nuclei. In this work, we investigated the feasibility of Cell-FIT-HD as a tool to study the effects of clinical beams on cellular clonogenic survival. Tumor cells were grown on the fluorescent nuclear track detector as cell culture, mimicking the standard procedures for clonogenic assay. Cell-FIT-HD was used to detect the spatial distribution of particle tracks within colony-initiating cells. The physical data were associated with radiation-induced foci as surrogates for DNA double-strand breaks, the hallmark of radiation-induced cell lethality. Long-term cell fate was monitored to determine the ability of cells to form colonies. We report the first successful detection of particle traversal within colony-initiating cells at subcellular resolution using Cell-FIT-HD.

  12. Expressions of topoisomerase IIα and BCRP in metastatic cells are associated with overall survival in small cell lung cancer patients.

    PubMed

    Rijavec, Matija; Silar, Mira; Triller, Nadja; Kern, Izidor; Cegovnik, Urška; Košnik, Mitja; Korošec, Peter

    2011-09-01

    The aim of this study was to investigate the mRNA expression levels of multidrug resistance-associated proteins in chemo-naïve metastatic lung cancer cells and to determine the correlation with response to chemotherapy and overall survival. Metastatic cells were obtained by transbronchial fine needle aspiration biopsy of enlarged mediastinal lymph nodes in 14 patients with small cell lung cancer (SCLC) and 7 patients with non-small cell lung cancer (NSCLC). After cytological confirmation of lung cancer type, total RNA was extracted from biopsy samples and reverse transcribed to cDNA, and real-time PCR for the genes of interest [P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), breast cancer resistance protein (BCRP), lung resistance protein (LRP) and topoisomerase IIα (TOPIIα)], was performed. We observed significantly decreased expression of BCRP and significantly increased expression of TOPIIα in metastatic SCLC cells compared to NSCLC. Furthermore, in SCLC high topoisomerase IIα and low BCRP expression levels positively correlated with longer overall survival. Our results showed higher expression levels of BCRP as well as lower levels of topoisomerase IIα in chemo-naïve metastatic cells in NSCLC than in SCLC. These results correlate with previous observations that metastatic SCLC cells at the beginning of chemotherapy are potentially more sensitive to chemotherapeutic agents while in metastatic NSCLC cells resistance is usually inherent. We also showed that altered levels of topoisomerase IIα and BCRP in SCLC are important factors that contribute to resistance to chemotherapeutics that interfere with the enzyme and/or DNA and are highly associated with overall survival.

  13. Human central nervous system astrocytes support survival and activation of B cells: implications for MS pathogenesis.

    PubMed

    Touil, Hanane; Kobert, Antonia; Lebeurrier, Nathalie; Rieger, Aja; Saikali, Philippe; Lambert, Caroline; Fawaz, Lama; Moore, Craig S; Prat, Alexandre; Gommerman, Jennifer; Antel, Jack P; Itoyama, Yasuto; Nakashima, Ichiro; Bar-Or, Amit

    2018-04-19

    The success of clinical trials of selective B cell depletion in patients with relapsing multiple sclerosis (MS) indicates B cells are important contributors to peripheral immune responses involved in the development of new relapses. Such B cell contribution to peripheral inflammation likely involves antibody-independent mechanisms. Of growing interest is the potential that B cells, within the MS central nervous system (CNS), may also contribute to the propagation of CNS-compartmentalized inflammation in progressive (non-relapsing) disease. B cells are known to persist in the inflamed MS CNS and are more recently described as concentrated in meningeal immune-cell aggregates, adjacent to the subpial cortical injury which has been associated with progressive disease. How B cells are fostered within the MS CNS and how they may contribute locally to the propagation of CNS-compartmentalized inflammation remain to be elucidated. We considered whether activated human astrocytes might contribute to B cell survival and function through soluble factors. B cells from healthy controls (HC) and untreated MS patients were exposed to primary human astrocytes that were either maintained under basal culture conditions (non-activated) or pre-activated with standard inflammatory signals. B cell exposure to astrocytes included direct co-culture, co-culture in transwells, or exposure to astrocyte-conditioned medium. Following the different exposures, B cell survival and expression of T cell co-stimulatory molecules were assessed by flow cytometry, as was the ability of differentially exposed B cells to induce activation of allogeneic T cells. Secreted factors from both non-activated and activated human astrocytes robustly supported human B cell survival. Soluble products of pre-activated astrocytes also induced B cell upregulation of antigen-presenting cell machinery, and these B cells, in turn, were more efficient activators of T cells. Astrocyte-soluble factors could support survival

  14. Changes in cell migration and survival in the olfactory bulb of the pcd/pcd mouse.

    PubMed

    Valero, J; Weruaga, E; Murias, A R; Recio, J S; Curto, G G; Gómez, C; Alonso, J R

    2007-06-01

    Postnatally, the Purkinje cell degeneration mutant mice lose the main projecting neurons of the main olfactory bulb (OB): mitral cells (MC). In adult animals, progenitor cells from the rostral migratory stream (RMS) differentiate into bulbar interneurons that modulate MC activity. In the present work, we studied changes in proliferation, tangential migration, radial migration patterns, and the survival of these newly generated neurons in this neurodegeneration animal model. The animals were injected with bromodeoxyuridine 2 weeks or 2 months before killing in order to label neuroblast incorporation into the OB and to analyze the survival of these cells after differentiation, respectively. Both the organization and cellular composition of the RMS and the differentiation of the newly generated neurons in the OB were studied using specific markers of glial cells, neuroblasts, and mature neurons. No changes were observed in the cell proliferation rate nor in their tangential migration through the RMS, indicating that migrating neuroblasts are only weakly responsive to the alteration in their target region, the OB. However, the absence of MC does elicit differences in the final destination of the newly generated interneurons. Moreover, the loss of MC also produces changes in the survival of the newly generated interneurons, in accordance with the dramatic decrease in the number of synaptic targets available.

  15. Survival patterns in squamous cell carcinoma of the head and neck: pain as an independent prognostic factor for survival.

    PubMed

    Reyes-Gibby, Cielito C; Anderson, Karen O; Merriman, Kelly W; Todd, Knox H; Shete, Sanjay S; Hanna, Ehab Y

    2014-10-01

    Survival outcomes in patients with squamous cell carcinoma of the head and neck (HNSCC) vary by extent of disease, behavioral factors, and socioeconomic factors. We assessed the extent to which pretreatment pain influences survival in 2,340 newly diagnosed patients with HNSCC, adjusting for disease stage, symptoms, pain medications, comorbidities, smoking, alcohol consumption, age, sex, and race/ethnicity. Patients rated their pain at presentation to the cancer center (0 = "no pain" and 10 = "pain as bad as you can imagine"). Survival time was calculated from the date of diagnosis to the date of death of any cause or last follow-up. Five-year overall survival was calculated for all the variables assessed in the study. Severe pain (≥7) was most prevalent among those with oral cancer (20.4%; pharynx = 18.8%; larynx = 16.1%) and significantly varied by tumor stage, fatigue severity, smoking status, comorbid lung disease, and race (all P < .05) across cancer diagnoses. Overall 5-year survival varied by pain for oral (severe pain = 31% vs nonsevere pain = 52%; P < .001) and pharyngeal cancer (severe pain = 33% vs nonsevere pain = 53%; P < .001). Multivariable analyses showed that pain persisted as an independent prognostic factor for survival. Pain reported prior to treatment should be considered in understanding survival outcomes in HNSCC patients. Pretreatment pain was an independent predictor of survival in a large sample of HNSCC patients even after accounting for tumor node metastasis stage, fatigue, age, race/ethnicity, smoking, and alcohol intake. Therefore, symptoms at presentation and before cancer treatment are important factors to be considered in understanding survival outcomes in HNSCC patients. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  16. Trends in Incidence and Factors Affecting Survival of Patients With Cholangiocarcinoma in the United States.

    PubMed

    Mukkamalla, Shiva Kumar R; Naseri, Hussain M; Kim, Byung M; Katz, Steven C; Armenio, Vincent A

    2018-04-01

    Background: Cholangiocarcinoma (CCA) includes cancers arising from the intrahepatic and extrahepatic bile ducts. The etiology and pathogenesis of CCA remain poorly understood. This is the first study investigating both incidence patterns of CCA from 1973 through 2012 and demographic, clinical, and treatment variables affecting survival of patients with CCA. Patients and Methods: Using the SEER database, age-adjusted incidence rates were evaluated from 1973-2012 using SEER*Stat software. A retrospective cohort of 26,994 patients diagnosed with CCA from 1973-2008 was identified for survival analysis. Cox proportional hazards models were used to perform multivariate survival analysis. Results: Overall incidence of CCA increased by 65% from 1973-2012. Extrahepatic CCA (ECC) remained more common than intrahepatic CCA (ICC), whereas the incidence rates for ICC increased by 350% compared with a 20% increase seen with ECC. Men belonging to non-African American and non-Caucasian ethnicities had the highest incidence rates of CCA. This trend persisted throughout the study period, although African Americans and Caucasians saw 50% and 59% increases in incidence rates, respectively, compared with a 9% increase among other races. Median overall survival (OS) was 8 months in patients with ECC compared with 4 months in those with ICC. Our survival analysis found Hispanic women to have the best 5-year survival outcome ( P <.0001). OS diminished with age ( P <.0001), and ECC had better survival outcomes compared with ICC ( P <.0001). Patients who were married, were nonsmokers, belonged to a higher income class, and underwent surgery had better survival outcomes compared with others ( P <.0001). Conclusions: This is the most up-to-date study of CCA from the SEER registry that shows temporal patterns of increasing incidence of CCA across different races, sexes, and ethnicities. We identified age, sex, race, marital status, income, smoking status, anatomic location of CCA, tumor grade

  17. High expression of CXCR4, CXCR7 and SDF-1 predicts poor survival in renal cell carcinoma

    PubMed Central

    2012-01-01

    Background Chemokines and their receptors are known to play important roles in the tumorigenesis of many malignancies. The aim of this study was to evaluate the prognostic impact of the expression of the chemokine SDF-1 and its receptors CXCR4 and CXCR7 in patients with renal cell carcinoma. Methods The expression of CXCR4, CXCR7 and SDF-1 in specimens from 97 renal cell carcinoma patients was evaluated by immunohistochemistry on a tissue microarray. These results were correlated with the clinicopathological parameters and survival of the patients. Results CXCR4 and CXCR7 were expressed in all patients, whereas SDF-1 was expressed in 61 patients (62.9%). No association was observed between the expression of CXCR4, CXCR7 or SDF-1 and the clinical or pathological data except between SDF-1 expression and Fuhrman’s grade (P = 0.015). Patients with high expression of CXCR4, CXCR7 and SDF-1 had shorter overall survival and recurrence-free survival than those with low expression. In a multivariate analysis, the high expression of CXCR4, CXCR7 and SDF-1 correlated with poor overall survival and recurrence-free survival independent of gender, age, AJCC stage, lymph node status, metastasis, histologic variant and Fuhrman’s grade. Conclusions High levels of CXCR4, CXCR7 and SDF-1 were associated with poor overall survival and recurrence-free survival in renal cell carcinoma patients. CXCR4, CXCR7 and SDF-1 may serve as useful prognostic markers and therapeutic targets for renal cell carcinoma. PMID:23039915

  18. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells

    NASA Technical Reports Server (NTRS)

    Durante, M.; Grossi, G. F.; Gialanella, G.; Pugliese, M.; Nappo, M.; Yang, T. C.

    1995-01-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS).

  19. Effects of alpha-particles on survival and chromosomal aberrations in human mammary epithelial cells.

    PubMed

    Durante, M; Grossi, G F; Gialanella, G; Pugliese, M; Nappo, M; Yang, T C

    1995-08-01

    We have studied the radiation responses of a human mammary epithelial cell line, H184B5 F5-1 M/10. This cell line was derived from primary mammary cells after treatment with chemicals and heavy ions. The F5-1 M/10 cells are immortal, density-inhibited in growth, and non-tumorigenic in athymic nude mice and represent an in vitro model of the human epithelium for radiation studies. Because epithelial cells are the target of alpha-particles emitted from radon daughters, we concentrated our studies on the efficiency of alpha-particles. Confluent cultures of M/10 cells were exposed to accelerated alpha-particles [beam energy incident at the cell monolayer = 3.85 MeV, incident linear energy transfer (LET) in cell = 109 keV/microns] and, for comparison, to 80 kVp x-rays. The following endpoints were studied: (1) survival, (2) chromosome aberrations at the first postirradiation mitosis, and (3) chromosome alterations at later passages following irradiation. The survival curve was exponential for alpha-particles (D0 = 0.73 +/- 0.04 Gy), while a shoulder was observed for x-rays (alpha/beta = 2.9 Gy; D0 = 2.5 Gy, extrapolation number 1.6). The relative biological effectiveness (RBE) of high-LET alpha-particles for human epithelial cell killing was 3.3 at 37% survival. Dose-response curves for the induction of chromosome aberrations were linear for alpha-particles and linearquadratic for x-rays. The RBE for the induction of chromosome aberrations varied with the type of aberration scored and was high (about 5) for chromosome breaks and low (about 2) for chromosome exchanges.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Factors affecting route selection and survival of steelhead kelts at Snake River dams in 2012 and 2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harnish, Ryan A.; Colotelo, Alison H. A.; Li, Xinya

    2015-03-31

    In 2012 and 2013, Pacific Northwest National Laboratory (PNNL) conducted a study that summarized the passage route proportions and route-specific survival rates of steelhead kelts that passed through Federal Columbia River Power System (FCRPS) dams. To accomplish this, a total of 811 steelhead kelts were tagged with Juvenile Salmon Acoustic Telemetry System (JSATS) transmitters. Acoustic receivers, both autonomous and cabled, were deployed throughout the FCRPS to monitor the downstream movements of tagged kelts. Kelts were also tagged with passive integrated transponder tags to monitor passage through juvenile bypass systems (JBS) and detect returning fish. The current study evaluated data collectedmore » in 2012 and 2013 to identify environmental, temporal, operational, individual, and behavioral variables that were related to forebay residence time, route of passage, and survival of steelhead kelts at FCRPS dams on the Snake River. Multiple approaches, including 3-D tracking, bivariate and multivariable regression modeling, and decision tree analyses were used to identify the environmental, temporal, operational, individual, and behavioral variables that had the greatest effect on forebay residence time, route of passage, and route-specific and overall dam passage survival probabilities for tagged kelts at Lower Granite (LGR), Little Goose (LGS), and Lower Monumental (LMN) dams. In general, kelt behavior and discharge appeared to work independently to affect forebay residence times. Kelt behavior, primarily approach location, migration depth, and “searching” activities in the forebay, was found to have the greatest influence on their route of passage. The condition of kelts was the single most important factor affecting their survival. The information gathered in this study may be used by dam operators and fisheries managers to identify potential management actions to improve in-river survival of kelts or collection methods for kelt reconditioning programs

  1. Human Mesenchymal Stem Cell Spheroids in Fibrin Hydrogels Exhibit Improved Cell Survival and Potential for Bone Healing

    PubMed Central

    Murphy, Kaitlin C.; Fang, Sophia Y.; Leach, J. Kent

    2014-01-01

    Mesenchymal stem cells (MSC) have great therapeutic potential for the repair of nonhealing bone defects due to their proliferative capacity, multilineage potential, trophic factor secretion, and lack of immunogenicity. However, a major barrier to the translation of cell-based therapies into clinical practice is ensuring their survival and function upon implantation into the defect site. We hypothesized that forming MSC into more physiologic 3-dimensional spheroids, rather than employing dissociated cells from 2-dimensional monolayer culture, would enhance their survival when exposed to a harsh microenvironment while maintaining their osteogenic potential. MSC spheroids were formed using the hanging drop method with increasing cell numbers. Compared to larger spheroids, the smallest spheroids which contained 15,000 cells exhibited increased metabolic activity, reduced apoptosis, and the most uniform distribution of proliferating cells. Spheroids were then entrapped in fibrin gels and cultured in serum-free media and 1% oxygen. Compared to identical numbers of dissociated MSC in fibrin gels, spheroids exhibited significantly reduced apoptosis and secreted up to 100-fold more VEGF. We also observed that fibrin gels containing spheroids and those containing an equivalent number of dissociated cells exhibited similar expression levels of early and late markers of osteogenic differentiation. These data demonstrate that MSC spheroids exhibit greater resistance to apoptosis and enhanced proangiogenic potential, while maintaining similar osteogenic potential to dissociated MSC entrapped in a clinically relevant biomaterial, supporting the use of MSC spheroids in cell-based approaches to bone repair. PMID:24781147

  2. Fluorescent in situ hybridization (FISH) on corneal impression cytology specimens (CICS): study of epithelial cell survival after keratoplasty.

    PubMed

    Catanese, Muriel; Popovici, Cornel; Proust, Hélène; Hoffart, Louis; Matonti, Frédéric; Cochereau, Isabelle; Conrath, John; Gabison, Eric E

    2011-02-22

    To assess corneal epithelial cell survival after keratoplasty. Corneal impression cytology (CIC) was performed on sex-mismatched corneal transplants. Fluorescent in situ hybridization (FISH) with sex chromosome-specific probes was performed to identify epithelial cell mosaicism and therefore allocate the donor or recipient origin of the cells. Twenty-four samples of corneal epithelial cells derived from 21 transplanted patients were analyzed. All patients received post-operative treatment using dexamethasone eye drops, with progressive tapering over 18 months, and nine patients also received 2% cyclosporine eye drops. Out of the 24 samples reaching quality criteria, sex mosaicism was found in 13, demonstrating the presence of donor-derived cells at the center of the graft for at least 211 days post keratoplasty. Kaplan-Meier analysis established a median survival of donor corneal epithelial cells of 385 days. Although not statistically significant, the disappearance of donor cells seemed to be delayed and the average number of persistent cells appeared to be greater when 2% cyclosporine was used topically as an additional immunosuppressive therapy. The combination of corneal impressions and FISH analysis is a valuable tool with negligible side effects to investigate the presence of epithelial cell mosaicism in sex-mismatched donor transplants. Epithelial cells survived at the center of the graft with a median survival of more than one year, suggesting slower epithelial turnover than previously described.

  3. Tumour cell dormancy as a contributor to the reduced survival of GBM patients who received standard therapy.

    PubMed

    Tong, Luqing; Yi, Li; Liu, Peidong; Abeysekera, Iruni Roshanie; Hai, Long; Li, Tao; Tao, Zhennan; Ma, Haiwen; Xie, Yang; Huang, Yubao; Yu, Shengping; Li, Jiabo; Yuan, Feng; Yang, Xuejun

    2018-07-01

    Glioblastoma multiforme (GBM) is a fatal cancer with varying life expectancy, even for patients undergoing the same standard therapy. Identification of differentially expressed genes in GBM patients with different survival rates may benefit the development of effective therapeutic strategies. In the present study, key pathways and genes correlated with survival in GBM patients were screened with bioinformatic analysis. Included in the study were 136 eligible patients who had undertaken surgical resection of GBM followed by temozolomide (TMZ) chemoradiation and long-term therapy with TMZ. A total of 383 differentially expressed genes (DEGs) related to GBM survival were identified. Gene Ontology and pathway enrichment analysis as well as hub gene screening and module analysis were performed. As expected, angiogenesis and migration of GBM cells were closely correlated with a poor prognosis. Importantly, the results also indicated that cell dormancy was an essential contributor to the reduced survival of GBM patients. Given the lack of specific targeted genes and pathways known to be involved in tumour cell dormancy, we proposed enriched candidate genes related to the negative regulation of cell proliferation, signalling pathways regulating pluripotency of stem cells and neuroactive ligand-receptor interaction, and 3 hub genes (FTH1, GRM1 and DDIT3). Maintaining persistent cell dormancy or preventing tumour cells from entering dormancy during chemoradiation should be a promising therapeutic strategy.

  4. Gastrointestinal Viral Load and Enteroendocrine Cell Number Are Associated with Altered Survival in HIV-1 Infected Individuals

    PubMed Central

    van Marle, Guido; Sharkey, Keith A.; Gill, M. John; Church, Deirdre L.

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1) infects and destroys cells of the immune system leading to an overt immune deficiency known as HIV acquired immunodeficiency syndrome (HIV/AIDS). The gut associated lymphoid tissue is one of the major lymphoid tissues targeted by HIV-1, and is considered a reservoir for HIV-1 replication and of major importance in CD4+ T-cell depletion. In addition to immunodeficiency, HIV-1 infection also directly causes gastrointestinal (GI) dysfunction, also known as HIV enteropathy. This enteropathy can manifest itself as many pathological changes in the GI tract. The objective of this study was to determine the association of gut HIV-1 infection markers with long-term survival in a cohort of men who have sex with men (MSM) enrolled pre-HAART (Highly Active Antiretroviral Therapy). We examined survival over 15-years in a cohort of 42 HIV-infected cases: In addition to CD4+ T cell counts and HIV-1 plasma viral load, multiple gut compartment (duodenum and colon) biopsies were taken by endoscopy every 6 months during the initial 3-year period. HIV-1 was cultured from tissues and phenotyped and viral loads in the gut tissues were determined. Moreover, the tissues were subjected to an extensive assessment of enteroendocrine cell distribution and pathology. The collected data was used for survival analyses, which showed that patients with higher gut tissue viral load levels had a significantly worse survival prognosis. Moreover, lower numbers of serotonin (duodenum) and somatostatin (duodenum and colon) immunoreactive cell counts in the gut tissues of patients was associated with significant lower survival prognosis. Our study, suggested that HIV-1 pathogenesis and survival prognosis is associated with altered enteroendocrine cell numbers, which could point to a potential role for enteroendocrine function in HIV infection and pathogenesis. PMID:24146801

  5. Suspension Matrices for Improved Schwann-Cell Survival after Implantation into the Injured Rat Spinal Cord

    PubMed Central

    Patel, Vivek; Joseph, Gravil; Patel, Amit; Patel, Samik; Bustin, Devin; Mawson, David; Tuesta, Luis M.; Puentes, Rocio; Ghosh, Mousumi

    2010-01-01

    Abstract Trauma to the spinal cord produces endogenously irreversible tissue and functional loss, requiring the application of therapeutic approaches to achieve meaningful restoration. Cellular strategies, in particular Schwann-cell implantation, have shown promise in overcoming many of the obstacles facing successful repair of the injured spinal cord. Here, we show that the implantation of Schwann cells as cell suspensions with in-situ gelling laminin:collagen matrices after spinal-cord contusion significantly enhances long-term cell survival but not proliferation, as well as improves graft vascularization and the degree of axonal in-growth over the standard implantation vehicle, minimal media. The use of a matrix to suspend cells prior to implantation should be an important consideration for achieving improved survival and effectiveness of cellular therapies for future clinical application. PMID:20144012

  6. Chronic treatment with AMPA receptor potentiator Org 26576 increases neuronal cell proliferation and survival in adult rodent hippocampus.

    PubMed

    Su, Xiaowei W; Li, Xiao-Yuan; Banasr, Mounira; Koo, Ja Wook; Shahid, Mohammed; Henry, Brian; Duman, Ronald S

    2009-10-01

    Currently available antidepressants upregulate hippocampal neurogenesis and prefrontal gliogenesis after chronic administration, which could block or reverse the effects of stress. Allosteric alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor potentiators (ARPs), which have novel targets compared to current antidepressants, have been shown to have antidepressant properties in neurogenic and behavioral models. This study analyzed the effect of the ARP Org 26576 on the proliferation, survival, and differentiation of neurons and glia in the hippocampus and prelimbic cortex of adult rats. Male Sprague-Dawley rats received acute (single day) or chronic (21 day) twice-daily intraperitoneal injections of Org 26576 (1-10 mg/kg). Bromodeoxyuridine (BrdU) immunohistochemistry was conducted 24 h or 28 days after the last drug injection for the analysis of cell proliferation or survival, respectively. Confocal immunofluorescence analysis was used to determine the phenotype of surviving cells. Acute administration of Org 26576 did not increase neuronal cell proliferation. However, chronic administration of Org 26576 increased progenitor cell proliferation in dentate gyrus (approximately 40%) and in prelimbic cortex (approximately 35%) at the 10-mg/kg dosage. Cells born in response to chronic Org 26576 in dentate gyrus exhibited increased rates of survival (approximately 30%) with the majority of surviving cells expressing a neuronal phenotype. Findings suggest that Org 26576 may have antidepressant properties, which may be attributed, in part, to upregulation of hippocampal neurogenesis and prelimbic cell proliferation.

  7. Cyclophilin B supports Myc and mutant p53-dependent survival of glioblastoma multiforme cells.

    PubMed

    Choi, Jae Won; Schroeder, Mark A; Sarkaria, Jann N; Bram, Richard J

    2014-01-15

    Glioblastoma multiforme is an aggressive, treatment-refractory type of brain tumor for which effective therapeutic targets remain important to identify. Here, we report that cyclophilin B (CypB), a prolyl isomerase residing in the endoplasmic reticulum (ER), provides an essential survival signal in glioblastoma multiforme cells. Analysis of gene expression databases revealed that CypB is upregulated in many cases of malignant glioma. We found that suppression of CypB reduced cell proliferation and survival in human glioblastoma multiforme cells in vitro and in vivo. We also found that treatment with small molecule inhibitors of cyclophilins, including the approved drug cyclosporine, greatly reduced the viability of glioblastoma multiforme cells. Mechanistically, depletion or pharmacologic inhibition of CypB caused hyperactivation of the oncogenic RAS-mitogen-activated protein kinase pathway, induction of cellular senescence signals, and death resulting from loss of MYC, mutant p53, Chk1, and Janus-activated kinase/STAT3 signaling. Elevated reactive oxygen species, ER expansion, and abnormal unfolded protein responses in CypB-depleted glioblastoma multiforme cells indicated that CypB alleviates oxidative and ER stresses and coordinates stress adaptation responses. Enhanced cell survival and sustained expression of multiple oncogenic proteins downstream of CypB may thus contribute to the poor outcome of glioblastoma multiforme tumors. Our findings link chaperone-mediated protein folding in the ER to mechanisms underlying oncogenic transformation, and they make CypB an attractive and immediately targetable molecule for glioblastoma multiforme therapy.

  8. Pou4f1 and Pou4f2 Are Dispensable for the Long-Term Survival of Adult Retinal Ganglion Cells in Mice

    PubMed Central

    Huang, Liang; Hu, Fang; Xie, Xiaoling; Harder, Jeffery; Fernandes, Kimberly; Zeng, Xiang-yun; Libby, Richard; Gan, Lin

    2014-01-01

    Purpose To investigate the role of Pou4f1 and Pou4f2 in the survival of adult retinal ganglion cells (RGCs). Methods Conditional alleles of Pou4f1 and Pou4f2 were generated (Pou4f1loxP and Pou4f2loxP respectively) for the removal of Pou4f1 and Pou4f2 in adult retinas. A tamoxifen-inducible Cre was used to delete Pou4f1 and Pou4f2 in adult mice and retinal sections and flat mounts were subjected to immunohistochemistry to confirm the deletion of both alleles and to quantify the changes in the number of RGCs and other retinal neurons. To determine the effect of loss of Pou4f1 and Pou4f2 on RGC survival after axonal injury, controlled optic nerve crush (CONC) was performed and RGC death was assessed. Results Pou4f1 and Pou4f2 were ablated two weeks after tamoxifen treatment. Retinal interneurons and Müller glial cells are not affected by the ablation of Pou4f1 or Pou4f2 or both. Although the deletion of both Pou4f1 and Pou4f2 slightly delays the death of RGCs at 3 days post-CONC in adult mice, it does not affect the cell death progress afterwards. Moreoever, deletion of Pou4f1 or Pou4f2 or both has no impact on the long-term viability of RGCs at up to 6 months post-tamoxifen treatment. Conclusion Pou4f1 and Pou4f2 are involved in the acute response to damage to RGCs but are dispensable for the long-term survival of adult RGC in mice. PMID:24736625

  9. Effect of incision width on graft survival and endothelial cell loss after DSAEK

    PubMed Central

    Price, Marianne O.; Bidros, Maria; Gorovoy, Mark; Price, Francis W.; Benetz, Beth A.; Menegay, Harry J.; Debanne, Sara M.; Lass, Jonathan H.

    2009-01-01

    Purpose To assess the effect of incision width (5.0 and 3.2 mm) on graft survival and endothelial cell loss six months and one year after Descemet stripping automated endothelial keratoplasty (DSAEK). Methods One hundred sixty-seven subjects with endothelial decompensation from a moderate-risk condition (principally Fuchs’ dystrophy or pseudophakic corneal edema) underwent DSAEK by two experienced surgeons. The donor was folded over and inserted with single point fixation forceps. This retrospective analysis assessed graft survival, complications, and endothelial cell loss, which was calculated from baseline donor and 6-month and 1-year postoperative central endothelial images evaluated by an independent specular microscopy reading center. Results No primary graft failures occurred in either group. One-year graft survival rates were comparable (98% vs. 97%) in the 5.0- and 3.2-mm groups, respectively (P=1.0). Complications included graft dislocation, graft rejection episodes, and elevated intraocular pressure and occurred at similar rates in both groups (P ≥ 0.28). Pupillary block glaucoma did not occur in either group. Mean baseline donor endothelial cell density did not differ: 2782 cells/mm2 in the 5.0-mm (n=64) and 2784 cells/mm2 in the 3.2-mm (n=103) groups. Percent endothelial cell loss was 27±20% (n=55) vs. 40±22% (n=71; 6 months) and 31±19% (n=45) vs. 44±22% (n=62; 12 months) in the 5.0-mm and 3.2-mm incision groups, respectively (both P<0.001). Conclusions One year after DSAEK, overall graft success was comparable for the two groups; however, the 5.0-mm incision width resulted in substantially lower endothelial cell loss at 6 and 12 months. PMID:20299973

  10. Oral cavity squamous cell carcinoma - characteristics and survival in aboriginal and non-aboriginal Western australians.

    PubMed

    Frydrych, A M; Slack-Smith, L M; Parsons, R; Threlfall, T

    2014-01-01

    Squamous cell carcinoma (SCC) is the most common type of malignancy affecting the oral cavity. While exposures to main risk factors for oral SCC such as smoking and alcohol use are higher amongst the Aboriginal people, little is known about oral cancer in this population. This study aimed to describe characteristics and survival of oral SCC in Aboriginal and non-Aboriginal Western Australians. All primary oral SCC cases reported to the Western Australian Cancer Registry (WACR) between 1990 and 1999 were analysed with respect to person characteristics including: date of birth, sex and indigenous status; and disease characteristics including: date of biopsy, disease stage and site as well as date of recurrence and date of death. Exclusion criteria included diagnosis not based on incisional or excisional biopsy, diagnosis other than oral SCC or a history of another malignant neoplasm. Aboriginal individuals were more likely to reside in rural areas. No statistically significant differences in oral SCC characteristics and survival were noted between Aboriginal and non-Aboriginal Western Australians. This study provides new information on person and disease characteristics of Aboriginal Western Australians diagnosed with oral SCC.

  11. c-Met and its ligand hepatocyte growth factor/scatter factor regulate mature B cell survival in a pathway induced by CD74.

    PubMed

    Gordin, Maya; Tesio, Melania; Cohen, Sivan; Gore, Yael; Lantner, Frida; Leng, Lin; Bucala, Richard; Shachar, Idit

    2010-08-15

    The signals regulating the survival of mature splenic B cells have become a major focus in recent studies of B cell immunology. Durable B cell persistence in the periphery is dependent on survival signals that are transduced by cell surface receptors. In this study, we describe a novel biological mechanism involved in mature B cell homeostasis, the hepatocyte growth factor/scatter factor (HGF)/c-Met pathway. We demonstrate that c-Met activation by HGF leads to a survival cascade, whereas its blockade results in induction of mature B cell death. Our results emphasize a unique and critical function for c-Met signaling in the previously described macrophage migration inhibitory factor/CD74-induced survival pathway. Macrophage migration inhibitory factor recruits c-Met to the CD74/CD44 complex and thereby enables the induction of a signaling cascade within the cell. This signal results in HGF secretion, which stimulates the survival of the mature B cell population in an autocrine manner. Thus, the CD74-HGF/c-Met axis defines a novel physiologic survival pathway in mature B cells, resulting in the control of the humoral immune response.

  12. Survival of microbial isolates from clouds toward simulated atmospheric stress factors

    NASA Astrophysics Data System (ADS)

    Joly, Muriel; Amato, Pierre; Sancelme, Martine; Vinatier, Virginie; Abrantes, Magali; Deguillaume, Laurent; Delort, Anne-Marie

    2015-09-01

    In the atmosphere, airborne microbial cells are exposed to conditions that are thought to affect their survival. Here, we investigated the survival of 5 microorganisms among the most represented in the cultivable community of clouds (4 bacteria affiliated to Pseudomonas, Sphingomonas and Arthrobacter and 1 yeast of Dioszegia) after exposition to different atmospheric factors generally considered stressful for cells: artificial solar light (10 h), oxidant (hydrogen peroxide: 0-1 mM for 90 min), osmotic shocks (0.1-2.5 M NaCl) and freeze-thaw cycles (6 cycles of 5 °C/-40 °C). Each condition was applied separately to cell suspensions, and survival rates were examined by culture. Survival was highly strain and stress dependent, with no relationship with pigmentation or ice nucleation activity. In all strains, solar light had no or mitigated influence, and exposition to H2O2 at the concentration measured in cloud water only slightly impacted viability (>70% of the cells survived). The strain Sphingomonas sp. was particularly impacted by osmotic shocks while repeated freeze-thaw was particularly damaging for Arthrobacter and Pseudomonas species. Overall, our results tend to indicate that in the atmosphere, the most stringent selection factors on living organisms are probably freeze-thaw and condensation/evaporation (osmotic shocks) cycles, whereas the impacts of oxidants and of solar light are limited.

  13. Ketone supplementation decreases tumor cell viability and prolongs survival of mice with metastatic cancer

    PubMed Central

    Poff, AM; Ari, C; Arnold, P; Seyfried, TN; D’Agostino, DP

    2014-01-01

    Cancer cells express an abnormal metabolism characterized by increased glucose consumption owing to genetic mutations and mitochondrial dysfunction. Previous studies indicate that unlike healthy tissues, cancer cells are unable to effectively use ketone bodies for energy. Furthermore, ketones inhibit the proliferation and viability of cultured tumor cells. As the Warburg effect is especially prominent in metastatic cells, we hypothesized that dietary ketone supplementation would inhibit metastatic cancer progression in vivo. Proliferation and viability were measured in the highly metastatic VM-M3 cells cultured in the presence and absence of β-hydroxybutyrate (βHB). Adult male inbred VM mice were implanted subcutaneously with firefly luciferase-tagged syngeneic VM-M3 cells. Mice were fed a standard diet supplemented with either 1,3-butanediol (BD) or a ketone ester (KE), which are metabolized to the ketone bodies βHB and acetoacetate. Tumor growth was monitored by in vivo bioluminescent imaging. Survival time, tumor growth rate, blood glucose, blood βHB and body weight were measured throughout the survival study. Ketone supplementation decreased proliferation and viability of the VM-M3 cells grown in vitro, even in the presence of high glucose. Dietary ketone supplementation with BD and KE prolonged survival in VM-M3 mice with systemic metastatic cancer by 51 and 69%, respectively (p < 0.05). Ketone administration elicited anticancer effects in vitro and in vivo independent of glucose levels or calorie restriction. The use of supplemental ketone precursors as a cancer treatment should be further investigated in animal models to determine potential for future clinical use. PMID:24615175

  14. The glycan-binding protein galectin-1 controls survival of epithelial cells along the crypt-villus axis of small intestine

    PubMed Central

    Muglia, C; Mercer, N; Toscano, M A; Schattner, M; Pozner, R; Cerliani, J P; Gobbi, R Papa; Rabinovich, G A; Docena, G H

    2011-01-01

    Intestinal epithelial cells serve as mechanical barriers and active components of the mucosal immune system. These cells migrate from the crypt to the tip of the villus, where different stimuli can differentially affect their survival. Here we investigated, using in vitro and in vivo strategies, the role of galectin-1 (Gal-1), an evolutionarily conserved glycan-binding protein, in modulating the survival of human and mouse enterocytes. Both Gal-1 and its specific glyco-receptors were broadly expressed in small bowel enterocytes. Exogenous Gal-1 reduced the viability of enterocytes through apoptotic mechanisms involving activation of both caspase and mitochondrial pathways. Consistent with these findings, apoptotic cells were mainly detected at the tip of the villi, following administration of Gal-1. Moreover, Gal-1-deficient (Lgals1−/−) mice showed longer villi compared with their wild-type counterparts in vivo. In an experimental model of starvation, fasted wild-type mice displayed reduced villi and lower intestinal weight compared with Lgals1−/− mutant mice, an effect reflected by changes in the frequency of enterocyte apoptosis. Of note, human small bowel enterocytes were also prone to this pro-apoptotic effect. Thus, Gal-1 is broadly expressed in mucosal tissue and influences the viability of human and mouse enterocytes, an effect which might influence the migration of these cells from the crypt, the integrity of the villus and the epithelial barrier function. PMID:21614093

  15. Telomerase Is Involved in IL-7-Mediated Differential Survival of Naive and Memory CD4+ T Cells1

    PubMed Central

    Yang, Yinhua; An, Jie; Weng, Nan-ping

    2008-01-01

    IL-7 plays an essential role in T cell maintenance and survival. The survival effect of IL-7 is thought to be mediated through regulation of Bcl2 family proteins. After a comparative analysis of IL-7-induced growth and cell death of human naive and memory CD4+ T cells, we observed that more memory CD4+ T cells underwent cell division and proceeded to apoptosis than naive cells in response to IL-7. However, IL-7-induced expressions of Bcl2 family members (Bcl2, Bcl-xL, Bax, and Bad) were similar between naive and memory cells. Instead, we found that IL-7 induced higher levels of telomerase activity in naive cells than in memory cells, and the levels of IL-7-induced telomerase activity had a significant inverse correlation with cell death in CD4+ T cells. Furthermore, we showed that reducing expression of telomerase reverse transcriptase and telomerase activity significantly increased cell death of IL-7-cultured CD4+ T cells. Together, these findings demonstrate that telomerase is involved in IL-7-mediated differential survival of naive and memory CD4+ T cells. PMID:18322183

  16. Targeting proapoptotic protein BAD inhibits survival and self-renewal of cancer stem cells.

    PubMed

    Sastry, K S R; Al-Muftah, M A; Li, Pu; Al-Kowari, M K; Wang, E; Ismail Chouchane, A; Kizhakayil, D; Kulik, G; Marincola, F M; Haoudi, A; Chouchane, L

    2014-12-01

    Emerging evidence suggests that the resistance of cancer stem cells (CSC) to many conventional therapies is one of the major limiting factors of cancer therapy efficacy. Identification of mechanisms responsible for survival and self-renewal of CSC will help design new therapeutic strategies that target and eliminate both differentiated cancer cells and CSC. Here we demonstrated the potential role of proapoptotic protein BAD in the biology of CSC in melanoma, prostate and breast cancers. We enriched CD44(+)/CD24(-) cells (CSC) by tumorosphere formation and purified this population by FACS. Both spheres and CSC exhibited increased potential for proliferation, migration, invasion, sphere formation, anchorage-independent growth, as well as upregulation of several stem cell-associated markers. We showed that the phosphorylation of BAD is essential for the survival of CSC. Conversely, ectopic expression of a phosphorylation-deficient mutant BAD induced apoptosis in CSC. This effect was enhanced by treatment with a BH3-mimetic, ABT-737. Both pharmacological agents that inhibit survival kinases and growth factors that are involved in drug resistance delivered their respective cytotoxic and protective effects by modulating the BAD phosphorylation in CSC. Furthermore, the frequency and self-renewal capacity of CSC was significantly reduced by knocking down the BAD expression. Consistent with our in vitro results, significant phosphorylation of BAD was found in CD44(+) CSC of 83% breast tumor specimens. In addition, we also identified a positive correlation between BAD expression and disease stage in prostate cancer, suggesting a role of BAD in tumor advancement. Our studies unveil the role of BAD in the survival and self-renewal of CSC and propose BAD not only as an attractive target for cancer therapy but also as a marker of tumor progression.

  17. Neonatal maternal separation up-regulates protein signalling for cell survival in rat hypothalamus.

    PubMed

    Irles, Claudine; Nava-Kopp, Alicia T; Morán, Julio; Zhang, Limei

    2014-05-01

    We have previously reported that in response to early life stress, such as maternal hyperthyroidism and maternal separation (MS), the rat hypothalamic vasopressinergic system becomes up-regulated, showing enlarged nuclear volume and cell number, with stress hyperresponsivity and high anxiety during adulthood. The detailed signaling pathways involving cell death/survival, modified by adverse experiences in this developmental window remains unknown. Here, we report the effects of MS on cellular density and time-dependent fluctuations of the expression of pro- and anti-apoptotic factors during the development of the hypothalamus. Neonatal male rats were exposed to 3 h-daily MS from postnatal days 2 to 15 (PND 2-15). Cellular density was assessed in the hypothalamus at PND 21 using methylene blue staining, and neuronal nuclear specific protein and glial fibrillary acidic protein immunostaining at PND 36. Expression of factors related to apoptosis and cell survival in the hypothalamus was examined at PND 1, 3, 6, 9, 12, 15, 20 and 43 by Western blot. Rats subjected to MS exhibited greater cell-density and increased neuronal density in all hypothalamic regions assessed. The time course of protein expression in the postnatal brain showed: (1) decreased expression of active caspase 3; (2) increased Bcl-2/Bax ratio; (3) increased activation of ERK1/2, Akt and inactivation of Bad; PND 15 and PND 20 were the most prominent time-points. These data indicate that MS can induce hypothalamic structural reorganization by promoting survival, suppressing cell death pathways, increasing cellular density which may alter the contribution of these modified regions to homeostasis.

  18. ON-retinal bipolar cell survival in RCS rats.

    PubMed

    Zhang, Chen Xing; Yin, Zheng Qin; Chen, Li-Feng; Weng, Chuang-Huang; Zeng, Yu-Xiao

    2010-11-01

    In retinitis pigmentosa (RP), the slow and progressive death of inner retinal neurons is thought to be inevitable after the death of photoreceptors. However, even in the advanced stage of RP, all inner retinal neurons are not completely lost. The morphological and electrophysiological modifications in ON-retinal bipolar cells (ON-RBCs) of Royal College of Surgeons (RCS) rats (RCS-ON-RBCs) were investigated to elucidate the mechanisms of survival of RCS-ON-RBCs in RP. Control (CTR) and RCS rats were divided into age groups according to postnatal stage: postnatal day 21 (Pn21d), postnatal day 30 (Pn30d), postnatal day 60 (Pn60d), and postnatal day 90 (Pn90d). Lucifer yellow staining of single ON-RBCs and double-immunofluorescence of the retinal frozen sections were used to detect the morphological modifications and loss of RCS-ON-RBCs in different retinal regions. The whole-cell patch clamping technique was used to record the electrophysiological properties of ON-RBCs. There was a significant loss of RCS-ON-RBCs compared with CTR (p < 0.01) at Pn60d. Loss of the RCS-ON-RBCs differed by region. From Pn60d onwards, the loss was more severe in the peripheral retinal regions (p < 0.01). From Pn21d, the ectopic neurites from the RCS-ON-RBCs reached the outer and inner nuclear layers. At Pn60d, terminal branches of RCS-ON-RBCs axons vanished and ectopic neurites from the RCS-ON-RBCs became entwined. The resting membrane potential, input resistance and outward membrane current amplitude of RCS-ON-RBCs were significantly higher than those of the ON-RBCs of CTR rats at Pn60d (p < 0.05). Our results indicate that more RCS-ON-RBCs survived in the central retinal area near cone clusters, potentially as a result of ectopic neuritis. Meanwhile the surviving RCS-ON-RBCs remained immature and had no normal electrophysiological characteristics.

  19. Survival and characteristics of murine leukaemic and normal stem cells after hyperthermia: a murine model for human bone marrow purging.

    PubMed

    Gidáli, J; Szamosvölgyi, S; Fehér, I; Kovács, P

    1990-01-01

    The effect of hyperthermia in vitro on the survival and leukaemogenic effectiveness of WEHI 3-B cells and on the survival and transplantation efficiency of bone marrow cells was compared in a murine model system. Normal murine clonogenic haemopoietic cells (day 9 CFU-S and CFU-GM) proved to be significantly less sensitive to 42.5 degrees C hyperthermia (Do values: 54.3 and 41.1 min, respectively) than leukaemic clonogenic cells (CFU-L) derived from suspension culture or from bone marrow of leukaemic mice (Do: 17.8 min). Exposure for 120 min to 42.5 degrees C reduced the surviving fraction of CFU-L to 0.002 and that of CFU-S to 0.2. If comparable graft sizes were transplanted from normal or heat exposed bone marrow, 60-day survival of supralethally irradiated mice was similar. Surviving WEHI 3-B cells were capable of inducing leukaemia in vivo. The two log difference in the surviving fraction of CFU-L and CFU-S after 120 min exposure to 42.5 degrees C suggests that hyperthermia ex vivo may be a suitable purging method for autologous bone marrow transplantation.

  20. Glucose-6-phosphate dehydrogenase, NADPH, and cell survival.

    PubMed

    Stanton, Robert C

    2012-05-01

    Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme of the pentose phosphate pathway. Many scientists think that the roles and regulation of G6PD in physiology and pathophysiology have been well established as the enzyme was first identified 80 years ago. And that G6PD has been extensively studied especially with respect to G6PD deficiency and its association with hemolysis, and with respect to the role G6PD plays in lipid metabolism. But there has been a growing understanding of the central importance of G6PD to cellular physiology as it is a major source of NADPH that is required by many essential cellular systems including the antioxidant pathways, nitric oxide synthase, NADPH oxidase, cytochrome p450 system, and others. Indeed G6PD is essential for cell survival. It has also become evident that G6PD is highly regulated by many signals that affect transcription, post-translation, intracellular location, and interactions with other protein. Pathophysiologic roles for G6PD have also been identified in such disease processes as diabetes, aldosterone-induced endothelial dysfunction, cancer, and others. It is now clear that G6PD is under complex regulatory control and of central importance to many cellular processes. In this review the biochemistry, regulatory signals, physiologic roles, and pathophysiologic roles for G6PD that have been elucidated over the past 20 years are discussed. Copyright © 2012 Wiley Periodicals, Inc.

  1. Fasting protects mice from lethal DNA damage by promoting small intestinal epithelial stem cell survival.

    PubMed

    Tinkum, Kelsey L; Stemler, Kristina M; White, Lynn S; Loza, Andrew J; Jeter-Jones, Sabrina; Michalski, Basia M; Kuzmicki, Catherine; Pless, Robert; Stappenbeck, Thaddeus S; Piwnica-Worms, David; Piwnica-Worms, Helen

    2015-12-22

    Short-term fasting protects mice from lethal doses of chemotherapy through undetermined mechanisms. Herein, we demonstrate that fasting preserves small intestinal (SI) architecture by maintaining SI stem cell viability and SI barrier function following exposure to high-dose etoposide. Nearly all SI stem cells were lost in fed mice, whereas fasting promoted sufficient SI stem cell survival to preserve SI integrity after etoposide treatment. Lineage tracing demonstrated that multiple SI stem cell populations, marked by Lgr5, Bmi1, or HopX expression, contributed to fasting-induced survival. DNA repair and DNA damage response genes were elevated in SI stem/progenitor cells of fasted etoposide-treated mice, which importantly correlated with faster resolution of DNA double-strand breaks and less apoptosis. Thus, fasting preserved SI stem cell viability as well as SI architecture and barrier function suggesting that fasting may reduce host toxicity in patients undergoing dose intensive chemotherapy.

  2. Cell death and survival signalling in the cardiovascular system.

    PubMed

    Tucka, Joanna; Bennett, Martin; Littlewood, Trevor

    2012-01-01

    The loss of cells is an important factor in many diseases, including those of the cardiovascular system. Whereas apoptosis is an essential process in development and tissue homeostasis, its occurrence is often associated with various pathologies. Apoptosis of neurons that fail to make appropriate connections is essential for the selection of correct neural signalling in the developing embryo, but its appearance in adults is often associated with neurodegenerative disease. Similarly, in the cardiovascular system, remodeling of the mammalian outflow tract during the transition from a single to dual series circulation with four chambers is accompanied by a precise pattern of cell death, but apoptosis of cardiomyocytes contributes to ischemia-reperfusion injury in the heart. In many cases, it is unclear whether apoptosis represents a causative association or merely a consequence of the disease itself. There are many excellent reviews on cell death in the cardiovascular system (1-5); in this review we outline the critical signalling pathways that promote the survival of cardiovascular cells, and their relevance to both physiological cell death and disease.

  3. Post-Transplantation Natural Killer Cell Count: A Predictor of Acute Graft-Versus-Host Disease and Survival Outcomes After Allogeneic Hematopoietic Stem Cell Transplantation.

    PubMed

    Kim, Seo Yeon; Lee, Hyewon; Han, Mi-Soon; Shim, Hyoeun; Eom, Hyeon-Seok; Park, Boram; Kong, Sun-Young

    2016-09-01

    Reconstitution of the immune system after allogeneic hematopoietic stem cell transplantation (allo-HSCT) plays an important role in post-transplant outcomes. However, the clinical relevance of the lymphocyte subset (LST) counts to transplant-related complications and survival outcomes after allo-HSCT has not been fully elucidated. A total of 70 patients who had undergone allo-HSCT from 2007 to 2013, with LST results both 7 days before conditioning and 30 or 90 days after allo-HSCT were included. The LST counts in the peripheral blood were determined using 6-color flow cytometry. Clinical information, including transplant-related events during the first 100 days after allo-HSCT, was reviewed, and any association between these events and LST was analyzed. At 30 days after allo-HSCT, the CD4 + T-cell (P = .009) and B-cell (P = .035) counts were lower and the natural killer (NK) cell count was greater (P < .001) than before conditioning. The CD8 + T-cell (P = .001) and NK cell (P < .001) counts were high 90 days after transplantation. The hazard ratios for a low NK cell count on days 30 and 90 for acute graft-versus-host disease were 6.22 and 14.67, respectively. Patients with low NK cell counts at 30 and 90 days after allo-HSCT had poorer overall survival (P = .043 and P = .028, respectively) and greater nonrelapse mortality (P = .036 and P = .033, respectively). A low NK cell count on day 30 was still prognostic for overall survival (P = .039) on multivariable analysis. NK cell counts after allo-HSCT, especially on day 30, were predictive of acute graft-versus-host disease, nonrelapse mortality, and survival. Serial lymphocyte subset analysis can be used to identify and treat patients at risk during the early period after allo-HSCT. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Mitotic MELK-eIF4B signaling controls protein synthesis and tumor cell survival

    PubMed Central

    Wang, Yubao; Begley, Michael; Li, Qing; Huang, Hai-Tsang; Lako, Ana; Eck, Michael J.; Gray, Nathanael S.; Mitchison, Timothy J.; Cantley, Lewis C.; Zhao, Jean J.

    2016-01-01

    The protein kinase maternal and embryonic leucine zipper kinase (MELK) is critical for mitotic progression of cancer cells; however, its mechanisms of action remain largely unknown. By combined approaches of immunoprecipitation/mass spectrometry and peptide library profiling, we identified the eukaryotic translation initiation factor 4B (eIF4B) as a MELK-interacting protein during mitosis and a bona fide substrate of MELK. MELK phosphorylates eIF4B at Ser406, a modification found to be most robust in the mitotic phase of the cell cycle. We further show that the MELK–eIF4B signaling axis regulates protein synthesis during mitosis. Specifically, synthesis of myeloid cell leukemia 1 (MCL1), an antiapoptotic protein known to play a role in cancer cell survival during cell division, depends on the function of MELK-elF4B. Inactivation of MELK or eIF4B results in reduced protein synthesis of MCL1, which, in turn, induces apoptotic cell death of cancer cells. Our study thus defines a MELK–eIF4B signaling axis that regulates protein synthesis during mitosis, and consequently influences cancer cell survival. PMID:27528663

  5. Par-4/THAP1 complex and Notch3 competitively regulated pre-mRNA splicing of CCAR1 and affected inversely the survival of T-cell acute lymphoblastic leukemia cells

    PubMed Central

    Lu, C; Li, J-Y; Ge, Z; Zhang, L; Zhou, G-P

    2013-01-01

    Although the intensification of therapy for children with T-cell acute lymphoblastic leukemia (T-ALL) has substantially improved clinical outcomes, T-ALL remains an important challenge in pediatric oncology. Here, we report that the cooperative synergy between prostate apoptosis response factor-4 (Par-4) and THAP1 induces cell cycle and apoptosis regulator 1 (CCAR1) gene expression and cellular apoptosis in human T-ALL cell line Jurkat cells, CEM cells and primary cultured neoplastic T lymphocytes from children with T-ALL. Par-4 and THAP1 collaborated to activate the promoter of CCAR1 gene. Mechanistic investigations revealed that Par-4 and THAP1 formed a protein complex by the interaction of their carboxyl termini, and THAP1 bound to CCAR1 promoter though its zinc-dependent DNA-binding domain at amino terminus. Par-4/THAP1 complex and Notch3 competitively bound to CCAR1 promoter and competitively modulated alternative pre-mRNA splicing of CCAR1, which resulted in two different transcripts and played an opposite role in T-ALL cell survival. Despite Notch3 induced a shift splicing from the full-length isoform toward a shorter form of CCAR1 mRNA by splicing factor SRp40 and SRp55, Par-4/THAP1 complex strongly antagonized this inductive effect. Our finding revealed a mechanistic rationale for Par-4/THAP1-induced apoptosis in T-ALL cells that would be of benefit to develop a new therapy strategy for T-ALL. PMID:23975424

  6. Ubiquitinated Sirtuin 1 (SIRT1) Function Is Modulated during DNA Damage-induced Cell Death and Survival*

    PubMed Central

    Peng, Lirong; Yuan, Zhigang; Li, Yixuan; Ling, Hongbo; Izumi, Victoria; Fang, Bin; Fukasawa, Kenji; Koomen, John; Chen, Jiandong; Seto, Edward

    2015-01-01

    Downstream signaling of physiological and pathological cell responses depends on post-translational modification such as ubiquitination. The mechanisms regulating downstream DNA damage response (DDR) signaling are not completely elucidated. Sirtuin 1 (SIRT1), the founding member of Class III histone deacetylases, regulates multiple steps in DDR and is closely associated with many physiological and pathological processes. However, the role of post-translational modification or ubiquitination of SIRT1 during DDR is unclear. We show that SIRT1 is dynamically and distinctly ubiquitinated in response to DNA damage. SIRT1 was ubiquitinated by the MDM2 E3 ligase in vitro and in vivo. SIRT1 ubiquitination under normal conditions had no effect on its enzymatic activity or rate of degradation; hypo-ubiquitination, however, reduced SIRT1 nuclear localization. Ubiquitination of SIRT1 affected its function in cell death and survival in response to DNA damage. Our results suggest that ubiquitination is required for SIRT1 function during DDR. PMID:25670865

  7. Dietary Antioxidants Protect Hematopoietic Cells and Improve Animal Survival after Total-Body Irradiation

    PubMed Central

    Wambi, Chris; Sanzari, Jenine; Wan, X. Steven; Nuth, Manunya; Davis, James; Ko, Ying-Hui; Sayers, Carly M.; Baran, Matthew; Ware, Jeffrey H.; Kennedy, Ann R.

    2009-01-01

    The purpose of this study was to determine whether a dietary supplement consisting of L-selenomethionine, vitamin C, vitamin E succinate, α-lipoic acid and N-acetyl cysteine could improve the survival of mice after total-body irradiation. Antioxidants significantly increased the 30-day survival of mice after exposure to a potentially lethal dose of X rays when given prior to or after animal irradiation. Pretreatment of animals with antioxidants resulted in significantly higher total white blood cell and neutrophil counts in peripheral blood at 4 and 24 h after 1 Gy and 8 Gy. Antioxidants were effective in preventing peripheral lymphopenia only after low-dose irradiation. Antioxidant supplementation was also associated with increased bone marrow cell counts after irradiation. Supplementation with antioxidants was associated with increased Bcl2 and decreased Bax, caspase 9 and TGF-β1 mRNA expression in the bone marrow after irradiation. Maintenance of the antioxidant diet was associated with improved recovery of the bone marrow after sublethal or potentially lethal irradiation. Taken together, oral supplementation with antioxidants appears to be an effective approach for radioprotection of hematopoietic cells and improvement of animal survival, and modulation of apoptosis is implicated as a mechanism for the radioprotection of the hematopoietic system by antioxidants. PMID:18363433

  8. TGFBI expression is an independent predictor of survival in adjuvant-treated lung squamous cell carcinoma patients.

    PubMed

    Pajares, M J; Agorreta, J; Salvo, E; Behrens, C; Wistuba, I I; Montuenga, L M; Pio, R; Rouzaut, A

    2014-03-18

    Transforming growth factor β-induced protein (TGFBI) is a secreted protein that mediates cell anchoring to the extracellular matrix. This protein is downregulated in lung cancer, and when overexpressed, contributes to apoptotic cell death. Using a small series of stage IV non-small cell lung cancer (NSCLC) patients, we previously suggested the usefulness of TGFBI as a prognostic and predictive factor in chemotherapy-treated late-stage NSCLC. In order to validate and extend these results, we broaden the analysis and studied TGFBI expression in a large series of samples obtained from stage I-IV NSCLC patients. TGFBI expression was assessed by immunohistochemistry in 364 completely resected primary NSCLC samples: 242 adenocarcinomas (ADCs) and 122 squamous cell carcinomas (SCCs). Kaplan-Meier curves, log-rank tests and the Cox proportional hazards model were used to analyse the association between TGFBI expression and survival. High TGFBI levels were associated with longer overall survival (OS, P<0.001) and progression-free survival (PFS, P<0.001) in SCC patients who received adjuvant platinium-based chemotherapy. Moreover, multivariate analysis demonstrated that high TGFBI expression is an independent predictor of better survival in patients (OS: P=0.030 and PFS: P=0.026). TGFBI may be useful for the identification of a subset of NSCLC who may benefit from adjuvant therapy.

  9. Endothelial Cell Implantation and Survival within Experimental Gliomas

    NASA Astrophysics Data System (ADS)

    Lal, Bachchu; Indurti, Ravi R.; Couraud, Pierre-Olivier; Goldstein, Gary W.; Laterra, John

    1994-10-01

    The delivery of therapeutic genes to primary brain neoplasms opens new opportunities for treating these frequently fatal tumors. Efficient gene delivery to tissues remains an important obstacle to therapy, and this problem has unique characteristics in brain tumors due to the blood-brain and blood-tumor barriers. The presence of endothelial mitogens and vessel proliferation within solid tumors suggests that genetically modified endothelial cells might efficiently transplant to brain tumors. Rat brain endothelial cells immortalized with the adenovirus E1A gene and further modified to express the β-galactosidase reporter were examined for their ability to survive implantation to experimental rat gliomas. Rats received 9L, F98, or C6 glioma cells in combination with endothelial cells intracranially to caudate/putamen or subcutaneously to flank. Implanted endothelial cells were identified by β-galactosidase histochemistry or by polymerase chain reaction in all tumors up to 35 days postimplantation, the latest time examined. Implanted endothelial cells appeared to cooperate in tumor vessel formation and expressed the brain-specific endothelial glucose transporter type 1 as identified by immunohistochemistry. The proliferation of implanted endothelial cells was supported by their increased number within tumors between postimplantation days 14 and 21 (P = 0.015) and by their expression of the proliferation antigen Ki67. These findings establish that genetically modified endothelial cells can be stably engrafted to growing gliomas and suggest that endothelial cell implantation may provide a means of delivering therapeutic genes to brain neoplasms and other solid tumors. In addition, endothelial implantation to brain may be useful for defining mechanisms of brain-specific endothelial differentiation.

  10. Proline oxidase promotes tumor cell survival in hypoxic tumor microenvironments

    PubMed Central

    Liu, Wei; Glunde, Kristine; Bhujwalla, Zaver M.; Raman, Venu; Sharma, Anit; Phang, James M.

    2012-01-01

    Proline is a readily released stress substrate that can be metabolized by proline oxidase (POX) to generate either reactive oxygen species to induce apoptosis or autophagy or ATP during times of nutrient stress. However, the contribution of proline metabolism to tumorigenesis in hypoxic microenvironments has not been explored. In this study, we investigated the different functions of POX under hypoxia and glucose depletion. We found that hypoxia induced POX expression in cancer cells in vitro and that POX upregulation co-localized with hypoxic tissues in vivo. In addition, the combination of hypoxia and low-glucose showed additive effects on POX expression. Similar to conditions of low glucose, hypoxia-mediated POX induction was dependent on AMP-activated protein kinase (AMPK) activation, but was independent of HIF-1α and HIF-2α. Under low-glucose and combined low-glucose and hypoxic conditions, proline catabolized by POX was used preferentially for ATP production, whereas under hypoxia, POX mediated autophagic signaling for survival by generating ROS. Although the specific mechanism was different for hypoxia and glucose deprivation, POX consistently contributed to tumor cell survival under these conditions. Together, our findings offer new insights into the metabolic reprogramming of tumor cells present within a hostile microenvironment and suggest that proline metabolism is a potential target for cancer therapeutics. PMID:22609800

  11. Survival improvement in patients with non-small cell lung cancer between 1983 and 2012: Analysis of the Surveillance, Epidemiology, and End Results database.

    PubMed

    Wang, Shuncong; Sun, Tiantian; Sun, Huanhuan; Li, Xiaobo; Li, Jie; Zheng, Xiaobin; Mallampati, Saradhi; Sun, Hongliu; Zhou, Xiuling; Zhou, Cuiling; Zhang, Hongyu; Cheng, Zhibin; Ma, Haiqing

    2017-05-01

    Non-small cell lung cancer is the most common malignancy in males; it constitutes the majority of lung cancer cases and requires massive medical resources. Despite improvements in managing non-small cell lung cancer, long-term survival remains very low. This study evaluated survival improvement in patients with non-small cell lung cancer in each decade between 1983 and 2012 to determine the impact of race, sex, age, and socioeconomic status on the survival rates in these patients. We extracted data on non-small cell lung cancer cases in each decade between 1983 and 2012 from the Surveillance, Epidemiology, and End Results registries. In total, 573,987 patients with non-small cell lung cancer were identified in 18 Surveillance, Epidemiology, and End Results registry regions during this period. The 12-month relative survival rates improved slightly across three decades, from 39.7% to 40.9% to 45.5%, with larger improvement in the last two decades. However, the 5-year-relative survival rates were very low, with 14.3%, 15.5%, and 18.4%, respectively, in three decades, indicating the urgency for novel comprehensive cancer care. In addition, our data demonstrated superiority in survival time among non-small cell lung cancer patients of lower socioeconomic status and White race. Although survival rates of non-small cell lung cancer patients have improved across the three decades, the 5-year-relative survival rates remain very poor. In addition, widening survival disparities among the race, the sex, and various socioeconomic status groups were confirmed. This study will help in predicting future tendencies of incidence and survival of non-small cell lung cancer, will contribute to better clinical trials by balancing survival disparities, and will eventually improve the clinical management of non-small cell lung cancer.

  12. Impact of prostate edema on cell survival and tumor control after permanent interstitial brachytherapy for early stage prostate cancers

    PubMed Central

    Chen, Zhe (Jay); Roberts, Kenneth; Decker, Roy; Pathare, Pradip; Rockwell, Sara; Nath, Ravinder

    2011-01-01

    Previous studies have shown that the procedure-induced prostate edema during permanent interstitial brachytherapy (PIB) can cause significant variations in the dose delivered to the prostate gland. Because the clinical impact of edema-induced dose variations depends strongly on the magnitude of the edema, the temporal pattern of its resolution and its interplay with the decay of radioactivity and the underlying biological processes of tumor cells (such as tumor potential doubling time), we investigated the impact of edema-induced dose variations on the tumor cell survival and tumor control probability after PIB with the 131Cs, 125I and 103Pd sources used in current clinical practice. The exponential edema resolution model reported by Waterman et al. (Int. J. Radiat. Oncol. Biol. Phys. 41, 1069–1077–1998) was used to characterize the edema evolutions observed previously during clinical PIB for prostate cancer. The concept of biologically effective dose (BED), taking into account tumor cell proliferation and sublethal damage repair during dose delivery, was used to characterize the effects of prostate edema on cell survival and tumor control probability. Our calculation indicated that prostate edema, if not taken into account appropriately, can increase the cell survival and decrease the probability of local control of PIB. The edema-induced increase in cell survival increased with increasing edema severity, decreasing half-life for radioactive decay and decreasing energy of the photons energy emitted by the source. At the doses currently prescribed for PIB and for prostate cancer cells characterized by nominal radiobiology parameters recommended by AAPM TG-137, PIB using 125I sources was less affected by edema than PIB using 131Cs or 103Pd sources due to the long radioactive decay half-life of 125I. The effect of edema on PIB using 131Cs or 103Pd was similar. The effect of edema on 103Pd PIB was slightly greater, even though the decay half-life of 103Pd (17 days

  13. Factors affecting healing and survival after finger amputations in patients with digital artery occlusive disease.

    PubMed

    Landry, Gregory J; McClary, Ashley; Liem, Timothy K; Mitchell, Erica L; Azarbal, Amir F; Moneta, Gregory L

    2013-05-01

    Finger amputations are typically performed as distal as possible to preserve maximum finger length. Failure of primary amputation leads to additional procedures, which could potentially be avoided if a more proximal amputation was initially performed. The effect of single versus multiple procedures on morbidity and mortality is not known. We evaluated factors that predicted primary healing and the effects of secondary procedures on survival. Patients undergoing finger amputations from 1995 to 2011 were evaluated for survival with uni- and multivariate analysis of demographic data and preoperative vascular laboratory studies to assess factors influencing primary healing. Seventy-six patients underwent 175 finger amputations (range 1 to 6 fingers per patient). Forty-one percent had diabetes, 33% had nonatherosclerotic digital artery disease, and 29% were on dialysis. Sex distribution was equal. Primary healing occurred in 78.9%, with the remainder requiring revisions. By logistic regression analysis, nonatherosclerotic digital artery disease was associated with failure of primary healing (odds ratio = 7.5; 95% confidence interval, 1.03 to 54; P = .047). Digital photoplethysmography did not predict primary healing. The overall healing of primary and secondary finger amputations was 96.0%. The mean survival after the initial finger amputation was 34.3 months and did not differ between patients undergoing single (35.6 months) versus multiple procedures (33.6 months). Dialysis dependence was associated with decreased survival (hazard ratio = 2.9; 95% confidence interval, 1.13 to 7.25; P = .026). Failure of primary healing is associated with the presence of nonatherosclerotic digital artery disease and is not predicted by digital photoplethysmographic studies. Dialysis dependence is associated with decreased survival in patients with finger amputations, but failure of primary healing does not adversely affect survival. A strategy of aggressive preservation of finger

  14. Evidence for the involvement of NOD2 in regulating colonic epithelial cell growth and survival.

    PubMed

    Cruickshank, Sheena-M; Wakenshaw, Louise; Cardone, John; Howdle, Peter-D; Murray, Peter-J; Carding, Simon-R

    2008-10-14

    To investigate the function of NOD2 in colonic epithelial cells (CEC). A combination of in vivo and in vitro analyses of epithelial cell turnover in the presence and absence of a functional NOD2 protein and, in response to enteric Salmonella typhimurium infection, were used. shRNA interference was also used to investigate the consequences of knocking down NOD2 gene expression on the growth and survival of colorectal carcinoma cell lines. In the colonic mucosa the highest levels of NOD2 expression were in proliferating crypt epithelial cells. Muramyl dipeptide (MDP), that is recognized by NOD2, promoted CEC growth in vitro. By contrast, the growth of NOD2-deficient CECs was impaired. In vivo CEC proliferation was also reduced and apoptosis increased in Nod2(-/-) mice, which were also evident following enteric Salmonella infection. Furthermore, neutralization of NOD2 mRNA expression in human colonic carcinoma cells by shRNA interference resulted in decreased survival due to increased levels of apoptosis. These findings are consistent with the involvement of NOD2 protein in promoting CEC growth and survival. Defects in proliferation by CECs in cases of CD may contribute to the underlying pathology of disrupted intestinal homeostasis and excessive inflammation.

  15. Evidence for the involvement of NOD2 in regulating colonic epithelial cell growth and survival

    PubMed Central

    Cruickshank, Sheena M; Wakenshaw, Louise; Cardone, John; Howdle, Peter D; Murray, Peter J; Carding, Simon R

    2008-01-01

    AIM: To investigate the function of NOD2 in colonic epithelial cells (CEC). METHODS: A combination of in vivo and in vitro analyses of epithelial cell turnover in the presence and absence of a functional NOD2 protein and, in response to enteric Salmonella typhimurium infection, were used. shRNA interference was also used to investigate the consequences of knocking down NOD2 gene expression on the growth and survival of colorectal carcinoma cell lines. RESULTS: In the colonic mucosa the highest levels of NOD2 expression were in proliferating crypt epithelial cells. Muramyl dipeptide (MDP), that is recognized by NOD2, promoted CEC growth in vitro. By contrast, the growth of NOD2-deficient CECs was impaired. In vivo CEC proliferation was also reduced and apoptosis increased in Nod2-/- mice, which were also evident following enteric Salmonella infection. Furthermore, neutralization of NOD2 mRNA expression in human colonic carcinoma cells by shRNA interference resulted in decreased survival due to increased levels of apoptosis. CONCLUSION: These findings are consistent with the involvement of NOD2 protein in promoting CEC growth and survival. Defects in proliferation by CECs in cases of CD may contribute to the underlying pathology of disrupted intestinal homeostasis and excessive inflammation. PMID:18855982

  16. Phytonutrient genistein is a survival factor for pancreatic β-cells via GPR30-mediated mechanism.

    PubMed

    Luo, Jing; Wang, Aihua; Zhen, Wei; Wang, Yao; Si, Hongwei; Jia, Zhenquan; Alkhalidy, Hana; Cheng, Zhiyong; Gilbert, Elizabeth; Xu, Bin; Liu, Dongmin

    2018-05-12

    We previously discovered that phytonutrient genistein rapidly activates cAMP signaling in β-cells and improves islet mass in diabetic mice. However, the mechanism underlying these actions of genistein is still unclear. Here, we show that pharmacological or molecular inhibition of Gαs blocked genistein-stimulated adenylate cyclase activity in plasma membrane and intracellular cAMP production in INS1 cells and islets. Further, genistein stimulation of cAMP generation was abolished in islets exposed to a specific GPR30 inhibitor G15 or islets from GPR30 deficient (GPR30-/-) mice. In vivo, dietary provision of genistein (0.5 g/kg diet) significantly mitigated streptozotocin-induced hyperglycemia in male WT mice, which was associated with improved blood insulin levels and pancreatic islet mass and survival, whereas these effects were absent in Gpr30-/- mice. Genistein treatment promoted survival of INS1 cells and human islets chronically exposed to palmitate and high glucose. At molecular level, genistein activated CREB phosphorylation and subsequently induced Bcl-2 expression, and knockdown of CREB diminished the protective effect of genistein on β-cells induced by lipoglucotoxicity. Finally, deletion of GPR30 in β-cells or islets ablated genistein-induced CREB phosphorylation and its cytoprotective effect. These findings demonstrate that genistein is a survival factor for β-cells via GPR30-initiated, Gαs-mediated activation of CREB. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Inhibition of endogenous hydrogen sulfide production in clear-cell renal cell carcinoma cell lines and xenografts restricts their growth, survival and angiogenic potential

    PubMed Central

    Sonke, Eric; Verrydt, Megan; Postenka, Carl O.; Pardhan, Siddika; Willie, Chantalle J.; Mazzola, Clarisse R.; Hammers, Matthew D.; Pluth, Michael D.; Lobb, Ian; Power, Nicholas E.; Chambers, Ann F.; Leong, Hon S.; Sener, Alp

    2016-01-01

    Clear cell renal cell carcinoma (ccRCC) is characterized by Von Hippel–Lindau (VHL)-deficiency, resulting in pseudohypoxic, angiogenic and glycolytic tumours. Hydrogen sulfide (H2S) is an endogenously-produced gasotransmitter that accumulates under hypoxia and has been shown to be pro-angiogenic and cytoprotective in cancer. It was hypothesized that H2S levels are elevated in VHL-deficient ccRCC, contributing to survival, metabolism and angiogenesis. Using the H2S-specific probe MeRhoAz, it was found that H2S levels were higher in VHL-deficient ccRCC cell lines compared to cells with wild-type VHL. Inhibition of H2S-producing enzymes could reduce the proliferation, metabolism and survival of ccRCC cell lines, as determined by live-cell imaging, XTT/ATP assay, and flow cytometry respectively. Using the chorioallantoic membrane angiogenesis model, it was found that systemic inhibition of endogenous H2S production was able to decrease vascularization of VHL-deficient ccRCC xenografts. Endogenous H2S production is an attractive new target in ccRCC due to its involvement in multiple aspects of disease. PMID:26068241

  18. Inhibition of HSP27 alone or in combination with pAKT inhibition as therapeutic approaches to target SPARC-induced glioma cell survival

    PubMed Central

    2012-01-01

    Background The current treatment regimen for glioma patients is surgery, followed by radiation therapy plus temozolomide (TMZ), followed by 6 months of adjuvant TMZ. Despite this aggressive treatment regimen, the overall survival of all surgically treated GBM patients remains dismal, and additional or different therapies are required. Depending on the cancer type, SPARC has been proposed both as a therapeutic target and as a therapeutic agent. In glioma, SPARC promotes invasion via upregulation of the p38 MAPK/MAPKAPK2/HSP27 signaling pathway, and promotes tumor cell survival by upregulating pAKT. As HSP27 and AKT interact to regulate the activity of each other, we determined whether inhibition of HSP27 was better than targeting SPARC as a therapeutic approach to inhibit both SPARC-induced glioma cell invasion and survival. Results Our studies found the following. 1) SPARC increases the expression of tumor cell pro-survival and pro-death protein signaling in balance, and, as a net result, tumor cell survival remains unchanged. 2) Suppressing SPARC increases tumor cell survival, indicating it is not a good therapeutic target. 3) Suppressing HSP27 decreases tumor cell survival in all gliomas, but is more effective in SPARC-expressing tumor cells due to the removal of HSP27 inhibition of SPARC-induced pro-apoptotic signaling. 4) Suppressing total AKT1/2 paradoxically enhanced tumor cell survival, indicating that AKT1 or 2 are poor therapeutic targets. 5) However, inhibiting pAKT suppresses tumor cell survival. 6) Inhibiting both HSP27 and pAKT synergistically decreases tumor cell survival. 7) There appears to be a complex feedback system between SPARC, HSP27, and AKT. 8) This interaction is likely influenced by PTEN status. With respect to chemosensitization, we found the following. 1) SPARC enhances pro-apoptotic signaling in cells exposed to TMZ. 2) Despite this enhanced signaling, SPARC protects cells against TMZ. 3) This protection can be reduced by inhibiting p

  19. Surrogate endpoints for overall survival in advanced non-small-cell lung cancer patients with mutations of the epidermal growth factor receptor gene.

    PubMed

    Yoshino, Reiko; Imai, Hisao; Mori, Keita; Takei, Kousuke; Tomizawa, Mai; Kaira, Kyoichi; Yoshii, Akihiro; Tomizawa, Yoshio; Saito, Ryusei; Yamada, Masanobu

    2014-09-01

    Subsequent therapies confound the ability to discern the effect of first-line chemotherapy on overall survival (OS). We investigated whether progression-free survival (PFS), post-progression survival (PPS) and tumor response were valid surrogate endpoints for OS following first-line chemotherapy in individual patients with advanced non-small-cell lung cancer (NSCLC) harboring sensitive epidermal growth factor receptor gene mutations. We retrospectively analyzed 35 patients with advanced NSCLC treated with first-line gefitinib. The associations of PFS, PPS and tumor response with OS were analyzed. PPS was found to be strongly correlated with OS, unlike PFS and tumor shrinkage. The factors significantly associated with PPS were performance status (PS) after first-line treatment, best response to second-line treatment and number of regimens used after disease progression. PPS may be a surrogate for OS in this patient population and further therapy after disease progression following first-line chemotherapy may significantly affect OS. However, a larger study is required to validate these results.

  20. STAT3 Controls the Long-Term Survival and Phenotype of Repair Schwann Cells during Nerve Regeneration.

    PubMed

    Benito, Cristina; Davis, Catherine M; Gomez-Sanchez, Jose A; Turmaine, Mark; Meijer, Dies; Poli, Valeria; Mirsky, Rhona; Jessen, Kristjan R

    2017-04-19

    After nerve injury, Schwann cells convert to a phenotype specialized to promote repair. But during the slow process of axonal regrowth, these repair Schwann cells gradually lose their regeneration-supportive features and eventually die. Although this is a key reason for the frequent regeneration failures in humans, the transcriptional mechanisms that control long-term survival and phenotype of repair cells have not been studied, and the molecular signaling underlying their decline is obscure. We show, in mice, that Schwann cell STAT3 has a dual role. It supports the long-term survival of repair Schwann cells and is required for the maintenance of repair Schwann cell properties. In contrast, STAT3 is less important for the initial generation of repair Schwann cells after injury. In repair Schwann cells, we find that Schwann cell STAT3 activation by Tyr705 phosphorylation is sustained during long-term denervation. STAT3 is required for maintaining autocrine Schwann cell survival signaling, and inactivation of Schwann cell STAT3 results in a striking loss of repair cells from chronically denervated distal stumps. STAT3 inactivation also results in abnormal morphology of repair cells and regeneration tracks, and failure to sustain expression of repair cell markers, including Shh, GDNF, and BDNF. Because Schwann cell development proceeds normally without STAT3, the function of this factor appears restricted to Schwann cells after injury. This identification of transcriptional mechanisms that support long-term survival and differentiation of repair cells will help identify, and eventually correct, the failures that lead to the deterioration of this important cell population. SIGNIFICANCE STATEMENT Although injured peripheral nerves contain repair Schwann cells that provide signals and spatial clues for promoting regeneration, the clinical outcome after nerve damage is frequently poor. A key reason for this is that, during the slow growth of axons through the proximal

  1. Risk factors affecting survival in heart transplant patients.

    PubMed

    Almenar, L; Cardo, M L; Martínez-Dolz, L; García-Palomar, C; Rueda, J; Zorio, E; Arnau, M A; Osa, A; Palencia, M

    2005-11-01

    Certain cardiovascular risk factors have been linked to morbidity and mortality in heart transplant (HT) patients. The sum of various risk factors may have a large cumulative negative effect, leading to a substantially worse prognosis and the need to consider whether HT is contraindicated. The objective of this study was to determine whether the risk factors usually available prior to HT result in an excess mortality in our setting that contraindicates transplantation. Consecutive patients who underwent heart transplantation from November 1987 to January 2004 were included. Heart-lung transplants, retransplants, and pediatric transplants were excluded. Of the 384 patients, 89% were men. Mean age was 52 years (range, 12 to 67). Underlying disease included ischemic heart disease (52%), idiopathic dilated cardiomyopathy (36%), valvular disease (8%), and other (4%). Variables considered risk factors were obesity (BMI >25), dyslipidemia, hypertension, prior thoracic surgery, diabetes, and history of ischemic heart disease. Survival curves by number of risk factors using Kaplan-Meier and log-rank for comparison of curves. Overall patient survival at 1, 5, 10, and 13 years was 76%, 68%, 54%, and 47%, respectively. Survival at 10 years, if fewer than two risk factors were present, was 69%; 59% if two or three factors were present; and 37% if more than three associated risk factors were present (P = .04). The presence of certain risk factors in patients undergoing HT resulted in lower survival rates. The combination of various risk factors clearly worsened outcomes. However, we do not believe this should be an absolute contraindication for transplantation.

  2. Effects of nicotinamide N-methyltransferase on PANC-1 cells proliferation, metastatic potential and survival under metabolic stress.

    PubMed

    Yu, Tao; Wang, Yong-Tao; Chen, Pan; Li, Yu-Hua; Chen, Yi-Xin; Zeng, Hang; Yu, Ai-Ming; Huang, Min; Bi, Hui-Chang

    2015-01-01

    Aberrant expression of Nicotinamide N-methyltransferase (NNMT) has been reported in pancreatic cancer. However, the role of NNMT in pancreatic cancer development remains elusive. Therefore, the present study was to investigate the impact of NNMT on pancreatic cancer cell proliferation, metastatic potential and survival under metabolic stress. Pancreatic cancer cell line PANC-1 was transfected with NNMT expression plasmid or small interfering RNA of NNMT to overexpress or knockdown intracellular NNMT expression, respectively. Rate of cell proliferation was monitored. Transwell migration and matrigel invasion assays were conducted to assess cell migration and invasion capacity. Resistance to glucose deprivation, sensitivity to glycolytic inhibition, mitochondrial inhibtion and resistance to rapamycin were examined to evaluate cell survival under metabolic stress. NNMT silencing markedly reduced cell proliferation, whereas NNMT overexpression promoted cell growth moderately. Knocking down NNMT also significantly suppressed the migration and invasion capacities of PANC-1 cells. Conversely, NNMT upregulation enhanced cell migration and invasion capacities. In addition, NNMT knockdown cells were much less resistant to glucose deprivation and rapamycin as well as glycolytic inhibitor 2-deoxyglucose whereas NNMT-expressing cells showed opposite effects although the effects were not so striking. These data sugguest that NNMT plays an important role in PANC-1 cell proliferation, metastatic potential and survival under metabolic stress. © 2015 S. Karger AG, Basel.

  3. SU-E-T-429: Uncertainties of Cell Surviving Fractions Derived From Tumor-Volume Variation Curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chvetsov, A

    2014-06-01

    Purpose: To evaluate uncertainties of cell surviving fraction reconstructed from tumor-volume variation curves during radiation therapy using sensitivity analysis based on linear perturbation theory. Methods: The time dependent tumor-volume functions V(t) have been calculated using a twolevel cell population model which is based on the separation of entire tumor cell population in two subpopulations: oxygenated viable and lethally damaged cells. The sensitivity function is defined as S(t)=[δV(t)/V(t)]/[δx/x] where δV(t)/V(t) is the time dependent relative variation of the volume V(t) and δx/x is the relative variation of the radiobiological parameter x. The sensitivity analysis was performed using direct perturbation method wheremore » the radiobiological parameter x was changed by a certain error and the tumor-volume was recalculated to evaluate the corresponding tumor-volume variation. Tumor volume variation curves and sensitivity functions have been computed for different values of cell surviving fractions from the practically important interval S{sub 2}=0.1-0.7 using the two-level cell population model. Results: The sensitivity functions of tumor-volume to cell surviving fractions achieved a relatively large value of 2.7 for S{sub 2}=0.7 and then approached zero as S{sub 2} is approaching zero Assuming a systematic error of 3-4% we obtain that the relative error in S{sub 2} is less that 20% in the range S2=0.4-0.7. This Resultis important because the large values of S{sub 2} are associated with poor treatment outcome should be measured with relatively small uncertainties. For the very small values of S2<0.3, the relative error can be larger than 20%; however, the absolute error does not increase significantly. Conclusion: Tumor-volume curves measured during radiotherapy can be used for evaluation of cell surviving fractions usually observed in radiation therapy with conventional fractionation.« less

  4. Light might directly affect retinal ganglion cell mitochondria to potentially influence function.

    PubMed

    del Olmo-Aguado, Susana; Manso, Alberto G; Osborne, Neville N

    2012-01-01

    Visible light (360-760 nm) entering the eye impinges on the many ganglion cell mitochondria in the non-myelinated part of their axons. The same light also disrupts isolated mitochondrial function in vitro and kills cells in culture with the blue light component being particularly lethal whereas red light has little effect. Significantly, a defined light insult only affects the survival of fibroblasts in vitro that contain functional mitochondria supporting the view that mitochondrial photosensitizers are influenced by light. Moreover, a blue light insult to cells in culture causes a change in mitochondrial structure and membrane potential and results in a release of cytochrome c. Blue light also causes an alteration in mitochondria located components of the OXPHOS (oxidative phosphorylation system). Complexes III and IV as well as complex V are significantly upregulated whereas complexes I and II are slightly but significantly up- and downregulated, respectively. Also, blue light causes Dexras1 and reactive oxygen species to be upregulated and for mitochondrial located apoptosis-inducing factor to be activated. A blue light detrimental insult to cells in culture does not involve the activation of caspases but is known to be attenuated by necrostatin-1, typical of a death mechanism named necroptosis. © 2012 Wiley Periodicals, Inc. Photochemistry and Photobiology © 2012 The American Society of Photobiology.

  5. mSEL-1L deficiency affects vasculogenesis and neural stem cell lineage commitment.

    PubMed

    Cardano, Marina; Diaferia, Giuseppe R; Conti, Luciano; Baronchelli, Simona; Sessa, Alessandro; Broccoli, Vania; Barbieri, Andrea; De Blasio, Pasquale; Biunno, Ida

    2018-04-01

    mSEL-1L is a highly conserved ER-resident type I protein, involved in the degradation of misfolded peptides through the ubiquitin-proteasome system (UPS), a pathway known to control the plasticity of the vascular smooth muscle cells (VSMC) phenotype and survival. In this article, we demonstrate that mSEL-1L deficiency interferes with the murine embryonic vascular network, showing particular irregularities in the intracranic and intersomitic neurovascular units and in the cerebral capillary microcirculation. During murine embryogenesis, mSEL-1L is expressed in cerebral areas known to harbor progenitor neural cells, while in the adult brain the protein is specifically restricted to the stem cell niches, co-localizing with Sox2 and Nestin. Null mice are characterized by important defects in the development of telenchephalic regions, revealing conspicuous aberration in neural stem cell lineage commitment. Moreover, mSEL-1L depletion in vitro and in vivo appears to affect the harmonic differentiation of the NSCs, by negatively influencing the corticogenesis processes. Overall, the data presented suggests that the drastic phenotypic characteristics exhibited in mSEL-1L null mice can, in part, be explained by the negative influence it plays on Notch1 signaling pathway. © 2017 Wiley Periodicals, Inc.

  6. Pulsed electromagnetic fields promote survival and neuronal differentiation of human BM-MSCs.

    PubMed

    Urnukhsaikhan, Enerelt; Cho, Hyunjin; Mishig-Ochir, Tsogbadrakh; Seo, Young-Kwon; Park, Jung-Kueg

    2016-04-15

    Pulsed electromagnetic fields (PEMF) are known to affect biological properties such as differentiation, regulation of transcription factor and cell proliferation. However, the cell-protective effect of PEMF exposure is largely unknown. The aim of this study is to understand the mechanisms underlying PEMF-mediated suppression of apoptosis and promotion of survival, including PEMF-induced neuronal differentiation. Treatment of induced human BM-MSCs with PEMF increased the expression of neural markers such as NF-L, NeuroD1 and Tau. Moreover, treatment of induced human BM-MSCs with PEMF greatly decreased cell death in a dose- and time-dependent manner. There is evidence that Akt and Ras are involved in neuronal survival and protection. Activation of Akt and Ras results in the regulation of survival proteins such as Bad and Bcl-xL. Thus, the Akt/Ras signaling pathway may be a desirable target for enhancing cell survival and treatment of neurological disease. Our analyses indicated that PEMF exposure dramatically increased the activity of Akt, Rsk, Creb, Erk, Bcl-xL and Bad via phosphorylation. PEMF-dependent cell protection was reversed by pretreatment with LY294002, a specific inhibitor of phosphatidylinositol 3-kinase (PI3K). Our data suggest that the PI3K/Akt/Bad signaling pathway may be a possible mechanism for the cell-protective effects of PEMF. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Tumor-Infiltrating Merkel Cell Polyomavirus-Specific T Cells Are Diverse and Associated with Improved Patient Survival. | Office of Cancer Genomics

    Cancer.gov

    Tumor-infiltrating CD8+ T cells are associated with improved survival of patients with Merkel cell carcinoma (MCC), an aggressive skin cancer causally linked to Merkel cell polyomavirus (MCPyV). However, CD8+ T-cell infiltration is robust in only 4% to 18% of MCC tumors. We characterized the T-cell receptor (TCR) repertoire restricted to one prominent epitope of MCPyV (KLLEIAPNC, "KLL") and assessed whether TCR diversity, tumor infiltration, or T-cell avidity correlated with clinical outcome.

  8. A simple prognostic model for overall survival in metastatic renal cell carcinoma.

    PubMed

    Assi, Hazem I; Patenaude, Francois; Toumishey, Ethan; Ross, Laura; Abdelsalam, Mahmoud; Reiman, Tony

    2016-01-01

    The primary purpose of this study was to develop a simpler prognostic model to predict overall survival for patients treated for metastatic renal cell carcinoma (mRCC) by examining variables shown in the literature to be associated with survival. We conducted a retrospective analysis of patients treated for mRCC at two Canadian centres. All patients who started first-line treatment were included in the analysis. A multivariate Cox proportional hazards regression model was constructed using a stepwise procedure. Patients were assigned to risk groups depending on how many of the three risk factors from the final multivariate model they had. There were three risk factors in the final multivariate model: hemoglobin, prior nephrectomy, and time from diagnosis to treatment. Patients in the high-risk group (two or three risk factors) had a median survival of 5.9 months, while those in the intermediate-risk group (one risk factor) had a median survival of 16.2 months, and those in the low-risk group (no risk factors) had a median survival of 50.6 months. In multivariate analysis, shorter survival times were associated with hemoglobin below the lower limit of normal, absence of prior nephrectomy, and initiation of treatment within one year of diagnosis.

  9. A simple prognostic model for overall survival in metastatic renal cell carcinoma

    PubMed Central

    Assi, Hazem I.; Patenaude, Francois; Toumishey, Ethan; Ross, Laura; Abdelsalam, Mahmoud; Reiman, Tony

    2016-01-01

    Introduction: The primary purpose of this study was to develop a simpler prognostic model to predict overall survival for patients treated for metastatic renal cell carcinoma (mRCC) by examining variables shown in the literature to be associated with survival. Methods: We conducted a retrospective analysis of patients treated for mRCC at two Canadian centres. All patients who started first-line treatment were included in the analysis. A multivariate Cox proportional hazards regression model was constructed using a stepwise procedure. Patients were assigned to risk groups depending on how many of the three risk factors from the final multivariate model they had. Results: There were three risk factors in the final multivariate model: hemoglobin, prior nephrectomy, and time from diagnosis to treatment. Patients in the high-risk group (two or three risk factors) had a median survival of 5.9 months, while those in the intermediate-risk group (one risk factor) had a median survival of 16.2 months, and those in the low-risk group (no risk factors) had a median survival of 50.6 months. Conclusions: In multivariate analysis, shorter survival times were associated with hemoglobin below the lower limit of normal, absence of prior nephrectomy, and initiation of treatment within one year of diagnosis. PMID:27217858

  10. Microvesicles Derived from Mesenchymal Stem Cells Enhance Survival in a Lethal Model of Acute Kidney Injury

    PubMed Central

    Bruno, Stefania; Grange, Cristina; Collino, Federica; Deregibus, Maria Chiara; Cantaluppi, Vincenzo; Biancone, Luigi; Tetta, Ciro; Camussi, Giovanni

    2012-01-01

    Several studies demonstrated that treatment with mesenchymal stem cells (MSCs) reduces cisplatin mortality in mice. Microvesicles (MVs) released from MSCs were previously shown to favor renal repair in non lethal toxic and ischemic acute renal injury (AKI). In the present study we investigated the effects of MSC-derived MVs in SCID mice survival in lethal cisplatin-induced AKI. Moreover, we evaluated in vitro the effect of MVs on cisplatin-induced apoptosis of human renal tubular epithelial cells and the molecular mechanisms involved. Two different regimens of MV injection were used. The single administration of MVs ameliorated renal function and morphology, and improved survival but did not prevent chronic tubular injury and persistent increase in BUN and creatinine. Multiple injections of MVs further decreased mortality and at day 21 surviving mice showed normal histology and renal function. The mechanism of protection was mainly ascribed to an anti-apoptotic effect of MVs. In vitro studies demonstrated that MVs up-regulated in cisplatin-treated human tubular epithelial cells anti-apoptotic genes, such as Bcl-xL, Bcl2 and BIRC8 and down-regulated genes that have a central role in the execution-phase of cell apoptosis such as Casp1, Casp8 and LTA. In conclusion, MVs released from MSCs were found to exert a pro-survival effect on renal cells in vitro and in vivo, suggesting that MVs may contribute to renal protection conferred by MSCs. PMID:22431999

  11. A novel mechanism by which tissue transglutaminase activates signaling events that promote cell survival.

    PubMed

    Boroughs, Lindsey K; Antonyak, Marc A; Cerione, Richard A

    2014-04-04

    Tissue transglutaminase (tTG) functions as a GTPase and an acyl transferase that catalyzes the formation of protein cross-links. tTG expression is frequently up-regulated in human cancer, where it has been implicated in various aspects of cancer progression, including cell survival and chemo-resistance. However, the extent to which tTG cooperates with other proteins within the context of a cancer cell, versus its intrinsic ability to confer transformed characteristics to cells, is poorly understood. To address this question, we asked what effect the ectopic expression of tTG in a non-transformed cellular background would have on the behavior of the cells. Using NIH3T3 fibroblasts stably expressing a Myc-tagged form of tTG, we found that tTG strongly protected these cells from serum starvation-induced apoptosis and triggered the activation of the PI3-kinase/mTOR Complex 1 (mTORC1)/p70 S6-kinase pathway. We determined that tTG forms a complex with the non-receptor tyrosine kinase c-Src and PI3-kinase, and that treating cells with inhibitors to block tTG function (monodansylcadaverine; MDC) or c-Src kinase activity (PP2) disrupted the formation of this complex, and prevented tTG from activating the PI3-kinase pathway. Moreover, treatment of fibroblasts over-expressing tTG with PP2, or with inhibitors that inactivate components of the PI3-kinase pathway, including PI3-kinase (LY294002) and mTORC1 (rapamycin), ablated the tTG-promoted survival of the cells. These findings demonstrate that tTG has an intrinsic capability to stimulate cell survival through a novel mechanism that activates PI3-kinase signaling events, thus highlighting tTG as a potential target for the treatment of human cancer.

  12. SOLITARY CHEMORECEPTOR CELL SURVIVAL IS INDEPENDENT OF INTACT TRIGEMINAL INNERVATION

    PubMed Central

    Gulbransen, Brian; Silver, Wayne; Finger, Tom

    2008-01-01

    Nasal solitary chemoreceptor cells (SCCs) are a population of specialized chemosensory epithelial cells presumed to broaden trigeminal chemoreceptivity in mammals (Finger et al., 2003). SCCs are innervated by peptidergic trigeminal nerve fibers (Finger et al., 2003) but it is currently unknown if intact innervation is necessary for SCC development or survival. We tested the dependence of SCCs on innervation by eliminating trigeminal nerve fibers during development with neurogenin-1 knockout mice, during early postnatal development with capsaicin desensitization, and during adulthood with trigeminal lesioning. Our results demonstrate that elimination of innervation at any of these times does not result in decreased SCC numbers. In conclusion, neither SCC development nor mature cell maintenance is dependent on intact trigeminal innervation. PMID:18300260

  13. Protein kinase A inhibitor, H89, significantly enhances survival rate of dissociated human embryonic stem cells following cryopreservation.

    PubMed

    Zhang, Liang; Xu, Yanqing; Xu, Jiandong; Wei, Yuping; Xu, Xia

    2016-10-01

    Human embryonic stem cells (hESCs) have huge potential for establishment of disease models and for treating degenerative diseases. However, the extremely low survival level of dissociated hESCs following cryopreservation is been a tremendous problem to allow for their rapid expansion, genetic manipulation and future medical applications. In this study, we have aimed to develop an efficient strategy to improve survival of dissociated hESCs after cryopreservation. Human embryonic stem cells (H9 line), dissociated into single cells, were cryopreserved using the slow-freezing method. Viable cells and their colony numbers in culture after cryopreservation were evaluated when treated with protein kinase A inhibitor H89. Western blotting was carried out to investigate mechanisms of low survival levels of dissociated hESCs following cryopreservation. Immunofluorescence, reverse transcription-polymerase chain reaction (RT-PCR), in vitro and in vivo differentiation were performed to testify to pluripotency and differentiation ability of hte cryopreserved cells treated with H89. H89 significantly improved survival level of dissociated hESCs after cryopreservation through ROCK inhibition. H89-treated cells still maintained their pluripotency and differentiation capacity. This new approach for cryopreservation of single hESCs, using H89, can promote potential use of hESCs in regenerative medicine in the future. © 2016 John Wiley & Sons Ltd.

  14. Human cytomegalovirus immediate early protein 2 enhances myocardin-mediated survival of rat aortic smooth muscle cells.

    PubMed

    Liao, Xing-Hua; Dong, Xiumei; Wu, Chenyu; Wang, Tao; Liu, Fenyong; Zhou, Jun; Zhang, Tong-Cun

    2014-11-04

    Human cytomegalovirus (HCMV) may increase the incidence of restenosis and predispose to atherosclerosis. The lesions of restenosis and atherosclerosis often contain smooth muscle cells (SMCs) with high rates of proliferation and apoptosis. One of the immediate early (IE) gene products of HCMV-IE2 affects transcriptional activities of some cellular factors in SMCs, including myocardin. In this study, we studied the effects of IE2 and myocardin on PI3K pathway inducer wortmannin induced apoptosis in rat aortic SMCs. We show that the transcriptional activity of myocardin on Mcl-1 promoter is enhanced by co-expression of HCMV IE2 in rat aortic SMCs; and the expressions of mRNA and protein of antiapoptotic genes-Mcl-1 and Bcl-2 are upregulated by IE2 alone and co-transfection of myocardin and IE2, but decreased by myocardin-specific shRNA in rat aortic SMCs. We further demonstrate that co-expression of myocardin and HCMV IE2 declines apoptotic cell numbers and caspase-3 activities induced by serum starvation plus wortmannin in rat aortic SMCs. The results suggest that HCMV IE2 enhances myocardin-mediated survival of rat aortic SMCs under serum deprivation and PI3-kinase inhibition, partly via activation of Mcl-1's antiapoptosis effect. Our study connects HCMV IE2 to myocardin-induced transcriptional program for rat aortic SMCs survival and proliferation, involving in HCMV related restenosis and atherosclerosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Squamous cell carcinoma of the breast in the United States: incidence, demographics, tumor characteristics, and survival.

    PubMed

    Yadav, Siddhartha; Yadav, Dhiraj; Zakalik, Dana

    2017-07-01

    Squamous cell carcinoma of breast accounts for less than 0.1% of all breast cancers. The purpose of this study is to describe the epidemiology and survival of this rare malignancy. Data were extracted from the National Cancer Institute's Surveillance, Epidemiology and End Results Registry to identify women diagnosed with squamous cell carcinoma of breast between 1998 and 2013. SEER*Stat 8.3.1 was used to calculate age-adjusted incidence, age-wise distribution, and annual percentage change in incidence. Kaplan-Meier curves were plotted for survival analysis. Univariate and multivariate Cox proportional hazard regression model was used to determine predictors of survival. A total of 445 cases of squamous cell carcinoma of breast were diagnosed during the study period. The median age of diagnosis was 67 years. The overall age-adjusted incidence between 1998 and 2013 was 0.62 per 1,000,000 per year, and the incidence has been on a decline. Approximately half of the tumors were poorly differentiated. Stage II was the most common stage at presentation. Majority of the cases were negative for expression of estrogen and progesterone receptor. One-third of the cases underwent breast conservation surgery while more than half of the cases underwent mastectomy (unilateral or bilateral). Approximately one-third of cases received radiation treatment. The 1-year and 5-year cause-specific survival was 81.6 and 63.5%, respectively. Excluding patient with metastasis or unknown stage at presentation, in multivariate Cox proportional hazard model, older age at diagnosis and higher tumor stage (T3 or T4) or nodal stage at presentation were significant predictors of poor survival. Our study describes the unique characteristics of squamous cell carcinoma of breast and demonstrates that it is an aggressive tumor with a poor survival. Older age and higher tumor or nodal stages at presentation were independent predictors of poor survival for loco-regional stages.

  16. Soil moisture and fungi affect seed survival in California grassland annual plants.

    PubMed

    Mordecai, Erin A

    2012-01-01

    Survival of seeds in the seed bank is important for the population dynamics of many plant species, yet the environmental factors that control seed survival at a landscape level remain poorly understood. These factors may include soil moisture, vegetation cover, soil type, and soil pathogens. Because many soil fungi respond to moisture and host species, fungi may mediate environmental drivers of seed survival. Here, I measure patterns of seed survival in California annual grassland plants across 15 species in three experiments. First, I surveyed seed survival for eight species at 18 grasslands and coastal sage scrub sites ranging across coastal and inland Santa Barbara County, California. Species differed in seed survival, and soil moisture and geographic location had the strongest influence on survival. Grasslands had higher survival than coastal sage scrub sites for some species. Second, I used a fungicide addition and exotic grass thatch removal experiment in the field to tease apart the relative impact of fungi, thatch, and their interaction in an invaded grassland. Seed survival was lower in the winter (wet season) than in the summer (dry season), but fungicide improved winter survival. Seed survival varied between species but did not depend on thatch. Third, I manipulated water and fungicide in the laboratory to directly examine the relationship between water, fungi, and survival. Seed survival declined from dry to single watered to continuously watered treatments. Fungicide slightly improved seed survival when seeds were watered once but not continually. Together, these experiments demonstrate an important role of soil moisture, potentially mediated by fungal pathogens, in driving seed survival.

  17. Neuronal survival in the brain: neuron type-specific mechanisms.

    PubMed

    Pfisterer, Ulrich; Khodosevich, Konstantin

    2017-03-02

    Neurogenic regions of mammalian brain produce many more neurons that will eventually survive and reach a mature stage. Developmental cell death affects both embryonically produced immature neurons and those immature neurons that are generated in regions of adult neurogenesis. Removal of substantial numbers of neurons that are not yet completely integrated into the local circuits helps to ensure that maturation and homeostatic function of neuronal networks in the brain proceed correctly. External signals from brain microenvironment together with intrinsic signaling pathways determine whether a particular neuron will die. To accommodate this signaling, immature neurons in the brain express a number of transmembrane factors as well as intracellular signaling molecules that will regulate the cell survival/death decision, and many of these factors cease being expressed upon neuronal maturation. Furthermore, pro-survival factors and intracellular responses depend on the type of neuron and region of the brain. Thus, in addition to some common neuronal pro-survival signaling, different types of neurons possess a variety of 'neuron type-specific' pro-survival constituents that might help them to adapt for survival in a certain brain region. This review focuses on how immature neurons survive during normal and impaired brain development, both in the embryonic/neonatal brain and in brain regions associated with adult neurogenesis, and emphasizes neuron type-specific mechanisms that help to survive for various types of immature neurons. Importantly, we mainly focus on in vivo data to describe neuronal survival specifically in the brain, without extrapolating data obtained in the PNS or spinal cord, and thus emphasize the influence of the complex brain environment on neuronal survival during development.

  18. Diminished survival of human cytotrophoblast cells exposed to hypoxia/reoxygenation injury and associated reduction of heparin-binding EGF-like growth factor

    PubMed Central

    Leach, Richard E.; Kilburn, Brian A.; Petkova, Anelia; Romero, Roberto; Armant, Randall D.

    2008-01-01

    Objective The anti-apoptotic action of HBEGF and its regulation by O2 constitutes a key factor for trophoblast survival. The hypothesis that cytotrophoblast survival is compromised by exposure to hypoxia–reoxygenation (H/R) injury, which may contribute to preeclampsia and some missed abortions, prompted us to investigate HBEGF regulation and its role as a survival factor during H/R in cytotrophoblast cells Study Design A transformed human first trimester cytotrophoblast cell line HTR-8/SVneo was exposed to H/R (2% O2 followed by 20% O2) and assessed for HBEGF expression and cell death. Results Cellular HBEGF declined significantly within 30 minutes of reoxygenation after culture at 2% O2. H/R significantly reduced proliferation and increased cell death when compared to trophoblast cells cultured continuously at 2% or 20% O2. Restoration of cell survival also was achieved by adding recombinant HBEGF during reoxygenation. HBEGF inhibited apoptosis through its binding to either HER1 or HER4, its cognate receptors. Conclusion These results provide evidence that cytotrophoblast exposure to H/R induces apoptosis and decreased cell proliferation. HBEGF accumulation is diminished under these conditions, while restoration of HBEGF signaling improves trophoblast survival. PMID:18395045

  19. A new biologic prognostic model based on immunohistochemistry predicts survival in patients with diffuse large B-cell lymphoma.

    PubMed

    Perry, Anamarija M; Cardesa-Salzmann, Teresa M; Meyer, Paul N; Colomo, Luis; Smith, Lynette M; Fu, Kai; Greiner, Timothy C; Delabie, Jan; Gascoyne, Randy D; Rimsza, Lisa; Jaffe, Elaine S; Ott, German; Rosenwald, Andreas; Braziel, Rita M; Tubbs, Raymond; Cook, James R; Staudt, Louis M; Connors, Joseph M; Sehn, Laurie H; Vose, Julie M; López-Guillermo, Armando; Campo, Elias; Chan, Wing C; Weisenburger, Dennis D

    2012-09-13

    Biologic factors that predict the survival of patients with a diffuse large B-cell lymphoma, such as cell of origin and stromal signatures, have been discovered by gene expression profiling. We attempted to simulate these gene expression profiling findings and create a new biologic prognostic model based on immunohistochemistry. We studied 199 patients (125 in the training set, 74 in the validation set) with de novo diffuse large B-cell lymphoma treated with rituximab and CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) or CHOP-like therapies, and immunohistochemical stains were performed on paraffin-embedded tissue microarrays. In the model, 1 point was awarded for each adverse prognostic factor: nongerminal center B cell-like subtype, SPARC (secreted protein, acidic, and rich in cysteine) < 5%, and microvascular density quartile 4. The model using these 3 biologic markers was highly predictive of overall survival and event-free survival in multivariate analysis after adjusting for the International Prognostic Index in both the training and validation sets. This new model delineates 2 groups of patients, 1 with a low biologic score (0-1) and good survival and the other with a high score (2-3) and poor survival. This new biologic prognostic model could be used with the International Prognostic Index to stratify patients for novel or risk-adapted therapies.

  20. Epstein-Barr virus ensures B cell survival by uniquely modulating apoptosis at early and late times after infection.

    PubMed

    Price, Alexander M; Dai, Joanne; Bazot, Quentin; Patel, Luv; Nikitin, Pavel A; Djavadian, Reza; Winter, Peter S; Salinas, Cristina A; Barry, Ashley Perkins; Wood, Kris C; Johannsen, Eric C; Letai, Anthony; Allday, Martin J; Luftig, Micah A

    2017-04-20

    Latent Epstein-Barr virus (EBV) infection is causally linked to several human cancers. EBV expresses viral oncogenes that promote cell growth and inhibit the apoptotic response to uncontrolled proliferation. The EBV oncoprotein LMP1 constitutively activates NFκB and is critical for survival of EBV-immortalized B cells. However, during early infection EBV induces rapid B cell proliferation with low levels of LMP1 and little apoptosis. Therefore, we sought to define the mechanism of survival in the absence of LMP1/NFκB early after infection. We used BH3 profiling to query mitochondrial regulation of apoptosis and defined a transition from uninfected B cells (BCL-2) to early-infected (MCL-1/BCL-2) and immortalized cells (BFL-1). This dynamic change in B cell survival mechanisms is unique to virus-infected cells and relies on regulation of MCL-1 mitochondrial localization and BFL-1 transcription by the viral EBNA3A protein. This study defines a new role for EBNA3A in the suppression of apoptosis with implications for EBV lymphomagenesis.

  1. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases*

    PubMed Central

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J.; Nie, Guangjun

    2016-01-01

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. PMID:26895960

  2. Hyaluronan Tumor Cell Interactions in Prostate Cancer Growth and Survival

    DTIC Science & Technology

    2009-12-01

    is a high molecular weight polyanionic polysaccharide that is increased in more advanced prostate cancers. Tumor cell interaction with this... polysaccharide by specific receptors CD44 and RHAMM promote tumor growth, survival and invasion. Work during the last funding period have further defined the... polysaccharide to its cognate receptors. These peptides inhibit tumor growth both in vitro and in vivo and the residues important for the activity

  3. Programmed death-1 controls T cell survival by regulating oxidative metabolism1

    PubMed Central

    Tkachev, Victor; Goodell, Stefanie; Opipari, Anthony W.; Hao, Ling-Yang; Franchi, Luigi; Glick, Gary D.; Ferrara, James L.M.; Byersdorfer, Craig A.

    2015-01-01

    The co-inhibitory receptor programmed death-1 (PD-1) maintains immune homeostasis by negatively regulating T cell function and survival. Blockade of PD-1 increases the severity of graft-versus-host disease (GVHD), but the interplay between PD-1 inhibition and T cell metabolism is not well studied. We found that both murine and human alloreactive T cells concomitantly up-regulated PD-1 expression and increased levels of reactive oxygen species (ROS) following allogeneic bone marrow transplantation. This PD-1HiROSHi phenotype was specific to alloreactive T cells and was not observed in syngeneic T cells during homeostatic proliferation. Blockade of PD-1 signaling decreased both mitochondrial H2O2 and total cellular ROS levels and PD-1 driven increases in ROS were dependent upon the oxidation of fatty acids, as treatment with etomoxir nullified changes in ROS levels following PD-1 blockade. Downstream of PD-1, elevated ROS levels impaired T cell survival in a process reversed by anti-oxidants. Furthermore, PD-1 driven changes in ROS were fundamental to establishing a cell’s susceptibility to subsequent metabolic inhibition, as blockade of PD-1 decreased the efficacy of later F1F0-ATP synthase modulation. These data indicate that PD-1 facilitates apoptosis in alloreactive T cells by increasing reactive oxygen species in a process dependent upon the oxidation of fat. In addition, blockade of PD-1 undermines the potential for subsequent metabolic inhibition, an important consideration given the increasing use of anti-PD-1 therapies in the clinic. PMID:25972478

  4. TGFBI expression is an independent predictor of survival in adjuvant-treated lung squamous cell carcinoma patients

    PubMed Central

    Pajares, M J; Agorreta, J; Salvo, E; Behrens, C; Wistuba, I I; Montuenga, L M; Pio, R; Rouzaut, A

    2014-01-01

    Background: Transforming growth factor β-induced protein (TGFBI) is a secreted protein that mediates cell anchoring to the extracellular matrix. This protein is downregulated in lung cancer, and when overexpressed, contributes to apoptotic cell death. Using a small series of stage IV non-small cell lung cancer (NSCLC) patients, we previously suggested the usefulness of TGFBI as a prognostic and predictive factor in chemotherapy-treated late-stage NSCLC. In order to validate and extend these results, we broaden the analysis and studied TGFBI expression in a large series of samples obtained from stage I–IV NSCLC patients. Methods: TGFBI expression was assessed by immunohistochemistry in 364 completely resected primary NSCLC samples: 242 adenocarcinomas (ADCs) and 122 squamous cell carcinomas (SCCs). Kaplan–Meier curves, log-rank tests and the Cox proportional hazards model were used to analyse the association between TGFBI expression and survival. Results: High TGFBI levels were associated with longer overall survival (OS, P<0.001) and progression-free survival (PFS, P<0.001) in SCC patients who received adjuvant platinium-based chemotherapy. Moreover, multivariate analysis demonstrated that high TGFBI expression is an independent predictor of better survival in patients (OS: P=0.030 and PFS: P=0.026). Conclusions: TGFBI may be useful for the identification of a subset of NSCLC who may benefit from adjuvant therapy. PMID:24481402

  5. Human immune cells' behavior and survival under bioenergetically restricted conditions in an in vitro fracture hematoma model

    PubMed Central

    Hoff, Paula; Maschmeyer, Patrick; Gaber, Timo; Schütze, Tabea; Raue, Tobias; Schmidt-Bleek, Katharina; Dziurla, René; Schellmann, Saskia; Lohanatha, Ferenz Leonard; Röhner, Eric; Ode, Andrea; Burmester, Gerd-Rüdiger; Duda, Georg N; Perka, Carsten; Buttgereit, Frank

    2013-01-01

    The initial inflammatory phase of bone fracture healing represents a critical step for the outcome of the healing process. However, both the mechanisms initiating this inflammatory phase and the function of immune cells present at the fracture site are poorly understood. In order to study the early events within a fracture hematoma, we established an in vitro fracture hematoma model: we cultured hematomas forming during an osteotomy (artificial bone fracture) of the femur during total hip arthroplasty (THA) in vitro under bioenergetically controlled conditions. This model allowed us to monitor immune cell populations, cell survival and cytokine expression during the early phase following a fracture. Moreover, this model enabled us to change the bioenergetical conditions in order to mimic the in vivo situation, which is assumed to be characterized by hypoxia and restricted amounts of nutrients. Using this model, we found that immune cells adapt to hypoxia via the expression of angiogenic factors, chemoattractants and pro-inflammatory molecules. In addition, combined restriction of oxygen and nutrient supply enhanced the selective survival of lymphocytes in comparison with that of myeloid derived cells (i.e., neutrophils). Of note, non-restricted bioenergetical conditions did not show any similar effects regarding cytokine expression and/or different survival rates of immune cell subsets. In conclusion, we found that the bioenergetical conditions are among the crucial factors inducing the initial inflammatory phase of fracture healing and are thus a critical step for influencing survival and function of immune cells in the early fracture hematoma. PMID:23396474

  6. Does the use of vaginal-implant transmitters affect neonate survival rate of white-tailed deer Odocoileus virginianus?

    USGS Publications Warehouse

    Swanson, C.C.; Jenks, J.A.; DePerno, C.S.; Klaver, R.W.; Osborn, R.G.; Tardiff, J.A.

    2008-01-01

    We compared survival of neonate white-tailed deer Odocoileus virginianus captured using vaginal-implant transmitters (VITs) and traditional ground searches to determine if capture method affects neonate survival. During winter 2003, 14 adult female radio-collared deer were fitted with VITs to aid in the spring capture of neonates; neonates were captured using VITs (N=14) and traditional ground searches (N=7). Of the VITs, seven (50%) resulted in the location of birth sites and the capture of 14 neonates. However, seven (50%) VITs were prematurely expelled prior to parturition. Predation accounted for seven neonate mortalities, and of these, five were neonates captured using VITs. During summer 2003, survival for neonates captured using VITs one, two, and three months post capture was 0.76 (SE=0.05; N=14), 0.64 (SE=0.07; N=11) and 0.64 (SE=0.08; N=9), respectively. Neonate survival one, two and three months post capture for neonates captured using ground searches was 0.71 (SE=0.11; N=7), 0.71 (SE=0.15; N=5) and 0.71 (SE=0.15; N=5), respectively. Although 71% of neonates that died were captured <24 hours after birth using VITs, survival did not differ between capture methods. Therefore, use of VITs to capture neonate white-tailed deer did not influence neonate survival. VITs enabled us to capture neonates in dense habitats which would have been difficult to locate using traditional ground searches.

  7. The effects of geography on survival in patients with oral cavity squamous cell carcinoma.

    PubMed

    Zhang, Han; Dziegielewski, Peter T; Jean Nguyen, T T; Jeffery, Caroline C; O'Connell, Daniel A; Harris, Jeffrey R; Seikaly, Hadi

    2015-06-01

    To assess the survival outcomes of oral cavity squamous cell carcinoma (OCSCC) by differing geographical location. Demographic, pathologic, treatment, and survival data was obtained from OCSCC patients from 1998-2010 in Alberta, Canada. 554 patients were included from 660 OCSCC patients. Overall, disease-specific, and disease-free survivals were estimated with Kaplan-Meier and Cox regression analyses. Patients were grouped by geographic locations. Patients from urban locations had improved overall, disease-specific, and disease-free survival compared to rural locations (p<0.05). Two and five year estimates of overall survival were significantly higher in the urban cohort at 84% and 78%, versus rural with 48% and 44%, respectively (p<0.05). Disease-specific and disease-free survival rates were also superior in the urban group (p<0.05). Diagnosis to treatment time for all 3 geographical groups was not found to be statistically significant (p>0.05). This study shows that patients with OCSCC living in urban settings have improved survival compared to rural groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival

    PubMed Central

    Elsing, Alexandra N.; Aspelin, Camilla; Björk, Johanna K.; Bergman, Heidi A.; Himanen, Samu V.; Kallio, Marko J.; Roos-Mattjus, Pia

    2014-01-01

    Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator and HSF2 modulates Hsp expression by interacting with HSF1. Due to global inhibition of transcription in mitosis, including HSF1-mediated expression of Hsps, mitotic cells are highly vulnerable to stress. Here, we show that cells can counteract transcriptional silencing and protect themselves against proteotoxicity in mitosis. We found that the condensed chromatin of HSF2-deficient cells is accessible for HSF1 and RNA polymerase II, allowing stress-inducible Hsp expression. Consequently, HSF2-deficient cells exposed to acute stress display diminished mitotic errors and have a survival advantage. We also show that HSF2 expression declines during mitosis in several but not all human cell lines, which corresponds to the Hsp70 induction and protection against stress-induced mitotic abnormalities and apoptosis. PMID:25202032

  9. Long-term survival in an adolescent with widely metastatic renal cell carcinoma with rhabdoid features.

    PubMed

    Ettinger, L J; Goodell, L A; Javidian, P; Hsieh, Y; Amenta, P

    2000-01-01

    Renal cell carcinoma is rarely seen in children and adolescents. Patients with widespread disease at diagnosis have a particularly poor survival rate. Currently, all known chemotherapy has been ineffective in improving the median survival in patients with advanced disease. A 13-year-old black boy with stage IV renal cell carcinoma with rhabdoid features is a long-term disease-free survivor after aggressive multiagent chemotherapy. After the initial evaluation and histologic diagnosis of renal cell carcinoma, the patient received three courses of an aggressive chemotherapy regimen consisting of vincristine, doxorubicin, cyclophosphamide with mesna uroprotection, granulocyte colony-stimulating factor and erythropoietin (Epogen). After an almost complete response, a radical nephrectomy was performed and results demonstrated a solitary small nodule with viable tumor. After surgery, he received floxuridine infusion for 14 days by circadian schedule at 28-day intervals for a total of 1 year. The patient is well and free of disease 5 years after initial presentation. The dramatic response to treatment and long-term disease-free survival of this patient suggest this chemotherapeutic approach warrants additional investigation.

  10. Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation.

    PubMed

    Martin, David E; De Almeida, Jose Flavio A; Henry, Michael A; Khaing, Zin Z; Schmidt, Christine E; Teixeira, Fabricio B; Diogenes, Anibal

    2014-01-01

    Intracanal disinfection is a crucial step in regenerative endodontic procedures. Most published cases suggest the use of sodium hypochlorite (NaOCl) as the primary irrigant. However, the effect of clinically used concentrations of NaOCl on the survival and differentiation of stem cells is largely unknown. In this study, we tested the effect of various concentrations of NaOCl on the stem cells of the apical papilla (SCAPs) survival and dentin sialophosphoprotein (DSPP) expression. Standardized root canals were created in extracted human teeth and irrigated with NaOCl (0.5%, 1.5%, 3%, or 6%) followed by 17% EDTA or sterile saline. SCAPs in a hyaluronic acid-based scaffold were seeded into the canals and cultured for 7 days. Next, viable cells were quantified using a luminescence assay, and DSPP expression was evaluated using quantitative real-time polymerase chain reaction. There was a significant reduction in survival and DSPP expression in the group treated with 6% NaOCl compared with the untreated control group. Comparable survival was observed in the groups treated with the lower concentrations of NaOCl, but greater DSPP expression was observed in the 1.5% NaOCl group. In addition, 17% EDTA resulted in increased survival and DSPP expression partially reversing the deleterious effects of NaOCl. Collectively, the results suggest that dentin conditioning with high concentrations of NaOCl has a profound negative effect on the survival and differentiation of SCAPs. However, this effect can be prevented with the use of 1.5% NaOCl followed by 17% EDTA. The inclusion of this irrigation regimen might be beneficial in regenerative endodontic procedures. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Response and survival benefit with chemoimmunotherapy in Epstein-Barr virus-positive diffuse large B-cell lymphoma.

    PubMed

    Beltran, Brady E; Quiñones, Pilar; Morales, Domingo; Malaga, Jose M; Chavez, Julio C; Sotomayor, Eduardo M; Castillo, Jorge J

    2018-02-01

    Epstein-Barr virus (EBV)-positive diffuse large B-cell lymphoma (DLBCL) is a haematologic malignancy with poor prognosis when treated with chemotherapy. We evaluated response and survival benefits of chemoimmunotherapy in EBV-positive DLBCL patients. A total of 117 DLBCL patients were included in our retrospective analysis; 33 were EBV-positive (17 treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone [R-CHOP] and 16 with CHOP), and 84 were EBV-negative (all treated with R-CHOP). The outcomes of interest were complete response (CR) and overall survival (OS) in EBV-positive DLBCL patients (R-CHOP versus CHOP) and in DLBCL patients treated with R-CHOP (EBV-positive vs EBV-negative). There were no differences in the clinical characteristics between EBV-positive and EBV-negative DLBCL patients. Among EBV-positive DLBCL patients, R-CHOP was associated with higher odds of CR (OR 3.14, 95% CI 0.75-13.2; P = .10) and better OS (hazard ratio 0.30, 95% confidence interval [CI] 0.09-0.94; P = .04). There were no differences in CR rate (OR 0.52, 95% CI 0.18-1.56; P = .25) or OS (hazard ratio 0.93, 95% CI 0.32-2.67; P = .89) between EBV-positive and EBV-negative DLBCL patients treated with R-CHOP. Based on our study, the addition of rituximab to CHOP is associated with improved response and survival in EBV-positive DLBCL patients. Epstein-Barr virus status does not seem to affect response or survival in DLBCL patients treated with R-CHOP. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Tobacco components stimulate Akt-dependent proliferation and NFkappaB-dependent survival in lung cancer cells.

    PubMed

    Tsurutani, Junji; Castillo, S Sianna; Brognard, John; Granville, Courtney A; Zhang, Chunyu; Gills, Joell J; Sayyah, Jacqueline; Dennis, Phillip A

    2005-07-01

    Retrospective studies have shown that patients with tobacco-related cancers who continue to smoke after their diagnoses have lower response rates and shorter median survival compared with patients who stop smoking. To provide insight into the biologic basis for these clinical observations, we tested whether two tobacco components, nicotine or the tobacco-specific carcinogen, 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK), could activate the Akt pathway and increase lung cancer cell proliferation and survival. Nicotine or NNK, rapidly and potently, activated Akt in non-small cell lung cancer (NSCLC) or small cell lung cancer (SCLC) cells. Nicotinic activation of Akt increased phosphorylation of multiple downstream substrates of Akt in a time-dependent manner, including GSK-3, FKHR, tuberin, mTOR and S6K1. Since nicotine or NNK bind to cell surface nicotinic acetylcholine receptors (nAchR), we used RT-PCR to assess expression of nine alpha and three beta nAchR subunits in five NSCLC cell lines and two types of primary lung epithelial cells. NSCLC cells express multiple nAchR subunits in a cell line-specific manner. Agonists of alpha3/alpha4 or alpha7 subunits activated Akt in a time-dependent manner, suggesting that tobacco components utilize these subunits to activate Akt. Cellular outcomes after nicotine or NNK administration were also assessed. Nicotine or NNK increased proliferation of NSCLC cells in an Akt-dependent manner that was closely linked with changes in cyclin D1 expression. Despite similar induction of proliferation, only nicotine decreased apoptosis caused by serum deprivation and/or chemotherapy. Protection conferred by nicotine was NFkappaB-dependent. Collectively, these results identify tobacco component-induced, Akt-dependent proliferation and NFkappaB-dependent survival as cellular processes that could underlie the detrimental effects of smoking in cancer patients.

  13. Protecting and rescuing the effectors: roles of differentiation and survival in the control of memory T cell development

    PubMed Central

    Kurtulus, Sema; Tripathi, Pulak; Hildeman, David A.

    2013-01-01

    Vaccines, arguably the single most important intervention in improving human health, have exploited the phenomenon of immunological memory. The elicitation of memory T cells is often an essential part of successful long-lived protective immunity. Our understanding of T cell memory has been greatly aided by the development of TCR Tg mice and MHC tetrameric staining reagents that have allowed the precise tracking of antigen-specific T cell responses. Indeed, following acute infection or immunization, naïve T cells undergo a massive expansion culminating in the generation of a robust effector T cell population. This peak effector response is relatively short-lived and, while most effector T cells die by apoptosis, some remain and develop into memory cells. Although the molecular mechanisms underlying this cell fate decision remain incompletely defined, substantial progress has been made, particularly with regards to CD8+ T cells. For example, the effector CD8+ T cells generated during a response are heterogeneous, consisting of cells with more or less potential to develop into full-fledged memory cells. Development of CD8+ T cell memory is regulated by the transcriptional programs that control the differentiation and survival of effector T cells. While the type of antigenic stimulation and level of inflammation control effector CD8+ T cell differentiation, availability of cytokines and their ability to control expression and function of Bcl-2 family members governs their survival. These distinct differentiation and survival programs may allow for finer therapeutic intervention to control both the quality and quantity of CD8+ T cell memory. Effector to memory transition of CD4+ T cells is less well characterized than CD8+ T cells, emerging details will be discussed. This review will focus on the recent progress made in our understanding of the mechanisms underlying the development of T cell memory with an emphasis on factors controlling survival of effector T cells

  14. MicroRNA-133a engineered mesenchymal stem cells augment cardiac function and cell survival in the infarct heart.

    PubMed

    Dakhlallah, Duaa; Zhang, Jianying; Yu, Lianbo; Marsh, Clay B; Angelos, Mark G; Khan, Mahmood

    2015-03-01

    : Cardiovascular disease is the number 1 cause of morbidity and mortality in the United States. The most common manifestation of cardiovascular disease is myocardial infarction (MI), which can ultimately lead to congestive heart failure. Cell therapy (cardiomyoplasty) is a new potential therapeutic treatment alternative for the damaged heart. Recent preclinical and clinical studies have shown that mesenchymal stem cells (MSCs) are a promising cell type for cardiomyoplasty applications. However, a major limitation is the poor survival rate of transplanted stem cells in the infarcted heart. miR-133a is an abundantly expressed microRNA (miRNA) in the cardiac muscle and is downregulated in patients with MI. We hypothesized that reprogramming MSCs using miRNA mimics (double-stranded oligonucleotides) will improve survival of stem cells in the damaged heart. MSCs were transfected with miR-133a mimic and antagomirs, and the levels of miR-133a were measured by quantitative real-time polymerase chain reaction. Rat hearts were subjected to MI and MSCs transfected with miR-133a mimic or antagomir were implanted in the ischemic hearts. Four weeks after MI, cardiac function, cardiac fibrosis, miR-133a levels, and apoptosis-related genes (Apaf-1, Caspase-9, and Caspase-3) were measured in the heart. We found that transfecting MSCs with miR-133a mimic improves survival of MSCs as determined by the MTT assay. Similarly, transplantation of miR-133a mimic transfected MSCs in rat hearts subjected to MI led to a significant increase in cell engraftment, cardiac function, and decreased fibrosis when compared with MSCs only or MI groups. At the molecular level, quantitative real-time polymerase chain reaction data demonstrated a significant decrease in expression of the proapoptotic genes; Apaf-1, caspase-9, and caspase-3 in the miR-133a mimic transplanted group. Furthermore, luciferase reporter assay confirmed that miR-133a is a direct target for Apaf-1. Overall, bioengineering of stem

  15. Pulmonary atelectasis and survival in advanced non-small cell lung carcinoma.

    PubMed

    Bulbul, Yilmaz; Eris, Bulent; Orem, Asim; Gulsoy, Ayhan; Oztuna, Funda; Ozlu, Tevfik; Ozsu, Savas

    2010-08-01

    Atelectasis was reported as a favorable prognostic sign of pulmonary carcinoma; however, the underlying mechanism in those patients is not known. In this study, we aimed to investigate prospectively the potential impact of atelectasis and/or obstructive pneumonitis (AO) on survival and the relation between atelectasis and some laboratory blood parameters. The study was conducted on 87 advanced stage non-small cell lung cancer (NSCLC) patients. Clinical and laboratory parameters of patients at first presentation were recorded, and patients were divided into two groups according to the presence of AO in thorax computed tomography (CT). Survival was calculated using Kaplan-Meier and univariate Cox's regression analyses. Laboratory parameters that might be related with prolonged survival in atelectasis were compared using chi-square, Student's t, and Mann-Whitney U tests. Of the patients, 54% had stage IV disease, and AO was detected in 48.3% of all cases. Overall median survival was 13.2 months for all cases, 10.9 months for patients without AO, and 13.9 months for patients with AO (P=0.067). Survival was significantly longer in stage III patients with AO (14.5 months versus 9.2 months, P=0.032), but not in stage IV patients. Patients with AO in stage III had significantly lower platelet counts (P=0.032) and blood sedimentation rates than did those with no AO (P=0.045). We concluded that atelectasis and/or obstructive pneumonitis was associated with prolonged survival in locally advanced NSCLC. There was also a clear association between atelectasis and/or obstructive pneumonitis and platelets and blood sedimentation rate.

  16. Cell populations can use aneuploidy to survive telomerase insufficiency

    PubMed Central

    Millet, Caroline; Ausiannikava, Darya; Le Bihan, Thierry; Granneman, Sander; Makovets, Svetlana

    2015-01-01

    Telomerase maintains ends of eukaryotic chromosomes, telomeres. Telomerase loss results in replicative senescence and a switch to recombination-dependent telomere maintenance. Telomerase insufficiency in humans leads to telomere syndromes associated with premature ageing and cancer predisposition. Here we use yeast to show that the survival of telomerase insufficiency differs from the survival of telomerase loss and occurs through aneuploidy. In yeast grown at elevated temperatures, telomerase activity becomes limiting: haploid cell populations senesce and generate aneuploid survivors—near diploids monosomic for chromosome VIII. This aneuploidy results in increased levels of the telomerase components TLC1, Est1 and Est3, and is accompanied by decreased abundance of ribosomal proteins. We propose that aneuploidy suppresses telomerase insufficiency through redistribution of cellular resources away from ribosome synthesis towards production of telomerase components and other non-ribosomal proteins. The aneuploidy-induced re-balance of the proteome via modulation of ribosome biogenesis may be a general adaptive response to overcome functional insufficiencies. PMID:26489519

  17. Improved graft mesenchymal stem cell survival in ischemic heart with a hypoxia-regulated heme oxygenase-1 vector.

    PubMed

    Tang, Yao Liang; Tang, Yi; Zhang, Y Clare; Qian, Keping; Shen, Leping; Phillips, M Ian

    2005-10-04

    The goal of this study was to modify mesenchymal stem cells (MSCs) cells with a hypoxia-regulated heme oxygenase-1 (HO-1) plasmid to enhance the survival of MSCs in acute myocardial infarction (MI) heart. Although stem cells are being tested clinically for cardiac repair, graft cells die in the ischemic heart because of the effects of hypoxia/reoxygenation, inflammatory cytokines, and proapoptotic factors. Heme oxygenase-1 is a key component in inhibiting most of these factors. Mesenchymal stem cells from bone marrow were transfected with either HO-1 or LacZ plasmids. Cell apoptosis was assayed in vitro after hypoxia-reoxygen treatment. In vivo, 1 x 10(6) of male MSC(HO-1), MSC(LacZ), MSCs, or medium was injected into mouse hearts 1 h after MI (n = 16/group). Cell survival was assessed in a gender-mismatched transplantation model. Apoptosis, left ventricular remodeling, and cardiac function were tested in a gender-matched model. In the ischemic myocardium, the MSC(HO-1) group had greater expression of HO-1 and a 2-fold reduction in the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate in situ nick end labeling-positive cells compared with the MSC(LacZ) group. At seven days after implantation, the survival MSC(HO-1) was five-fold greater than the MSC(LacZ) group; MSC(HO-1) also attenuated left ventricular remodeling and enhanced the functional recovery of infarcted hearts two weeks after MI. A hypoxia-regulated HO-1 vector modification of MSCs enhances the tolerance of engrafted MSCs to hypoxia-reoxygen injury in vitro and improves their viability in ischemic hearts. This demonstration is the first showing that a physiologically inducible vector expressing of HO-1 genes improves the survival of stem cells in myocardial ischemia.

  18. Small molecule screening with laser cytometry can be used to identify pro-survival molecules in human embryonic stem cells.

    PubMed

    Sherman, Sean P; Pyle, April D

    2013-01-01

    Differentiated cells from human embryonic stem cells (hESCs) provide an unlimited source of cells for use in regenerative medicine. The recent derivation of human induced pluripotent cells (hiPSCs) provides a potential supply of pluripotent cells that avoid immune rejection and could provide patient-tailored therapy. In addition, the use of pluripotent cells for drug screening could enable routine toxicity testing and evaluation of underlying disease mechanisms. However, prior to establishment of patient specific cells for cell therapy it is important to understand the basic regulation of cell fate decisions in hESCs. One critical issue that hinders the use of these cells is the fact that hESCs survive poorly upon dissociation, which limits genetic manipulation because of poor cloning efficiency of individual hESCs, and hampers production of large-scale culture of hESCs. To address the problems associated with poor growth in culture and our lack of understanding of what regulates hESC signaling, we successfully developed a screening platform that allows for large scale screening for small molecules that regulate survival. In this work we developed the first large scale platform for hESC screening using laser scanning cytometry and were able to validate this platform by identifying the pro-survival molecule HA-1077. These small molecules provide targets for both improving our basic understanding of hESC survival as well as a tool to improve our ability to expand and genetically manipulate hESCs for use in regenerative applications.

  19. The impact of prostate edema on cell survival and tumor control after permanent interstitial brachytherapy for early stage prostate cancers

    NASA Astrophysics Data System (ADS)

    (Jay Chen, Zhe; Roberts, Kenneth; Decker, Roy; Pathare, Pradip; Rockwell, Sara; Nath, Ravinder

    2011-08-01

    Previous studies have shown that procedure-induced prostate edema during permanent interstitial brachytherapy (PIB) can cause significant variations in the dose delivered to the prostate gland. Because the clinical impact of edema-induced dose variations strongly depends on the magnitude of the edema, the temporal pattern of its resolution and its interplay with the decay of radioactivity and the underlying biological processes of tumor cells (such as tumor potential doubling time), we investigated the impact of edema-induced dose variations on the tumor cell survival and tumor control probability after PIB with the 131Cs, 125I and 103Pd sources used in current clinical practice. The exponential edema resolution model reported by Waterman et al (1998 Int. J. Radiat. Oncol. Biol. Phys. 41 1069-77) was used to characterize the edema evolutions previously observed during clinical PIB for prostate cancer. The concept of biologically effective dose, taking into account tumor cell proliferation and sublethal damage repair during dose delivery, was used to characterize the effects of prostate edema on cell survival and tumor control probability. Our calculation indicated that prostate edema, if not appropriately taken into account, can increase the cell survival and decrease the probability of local control of PIB. The magnitude of an edema-induced increase in cell survival increased with increasing edema severity, decreasing half-life of radioactive decay and decreasing photon energy emitted by the source. At the doses currently prescribed for PIB and for prostate cancer cells characterized by nominal radiobiology parameters recommended by AAPM TG-137, PIB using 125I sources was less affected by edema than PIB using 131Cs or 103Pd sources due to the long radioactive decay half-life of 125I. The effect of edema on PIB using 131Cs or 103Pd was similar. The effect of edema on 103Pd PIB was slightly greater, even though the decay half-life of 103Pd (17 days) is longer than

  20. Impact of plant extracts tested in attention-deficit/hyperactivity disorder treatment on cell survival and energy metabolism in human neuroblastoma SH-SY5Y cells.

    PubMed

    Schmidt, Andreas Johannes; Krieg, Jürgen-Christian; Hemmeter, Ulrich Michael; Kircher, Tilo; Schulz, Eberhard; Clement, Hans-Willi; Heiser, Philip

    2010-10-01

    Plant extracts such as Hypericum perforatum and Pycnogenol have been tested as alternatives to the classical ADHD drugs. It has been possible to describe neuroprotective effects of such plant extracts. A reduction of ADHD symptoms could be shown in clinical studies after the application of Pycnogenol, which is a pine bark extract. The impacts of the standardized herbal extracts Hypericum perforatum, Pycnogenol and Enzogenol up to a concentration of 5000 ng/mL on cell survival and energy metabolism in human SH-SY5Y neuroblastoma cells has been investigated in the present examination. Hypericum perforatum significantly decreased the survival of cells after treatment with a concentration of 5000 ng/mL, whereas lower concentrations exerted no significant effects. Pycnogenol( induced a significant increase of cell survival after incubation with a concentration of 32.25 ng/mL and a concentration of 250 ng/mL. Other applied concentrations of Pycnogenol failed to exert significant effects. Treatment with Enzogenol did not lead to significant changes in cell survival.Concerning energy metabolism, the treatment of cells with a concentration of 5000 ng/mL Hypericum perforatum led to a significant increase of ATP levels, whereas treatment with a concentration of 500 ng/mL had no significant effect. Incubation of cells with Pycnogenol and Enzogenol exerted no significant effects.None of the tested substances caused any cytotoxic effect when used in therapeutically relevant concentrations. Copyright © 2010 John Wiley & Sons, Ltd.

  1. Solitary chemoreceptor cell survival is independent of intact trigeminal innervation.

    PubMed

    Gulbransen, Brian; Silver, Wayne; Finger, Thomas E

    2008-05-01

    Nasal solitary chemoreceptor cells (SCCs) are a population of specialized chemosensory epithelial cells presumed to broaden trigeminal chemoreceptivity in mammals (Finger et al. [2003] Proc Natl Acad Sci USA 100:8981-8986). SCCs are innervated by peptidergic trigeminal nerve fibers (Finger et al. [2003]) but it is currently unknown if intact innervation is necessary for SCC development or survival. We tested the dependence of SCCs on innervation by eliminating trigeminal nerve fibers during development with neurogenin-1 knockout mice, during early postnatal development with capsaicin desensitization, and during adulthood with trigeminal lesioning. Our results demonstrate that elimination of innervation at any of these times does not result in decreased SCC numbers. In conclusion, neither SCC development nor mature cell maintenance is dependent on intact trigeminal innervation. (c) 2008 Wiley-Liss, Inc.

  2. Id1 expression promotes peripheral CD4{sup +} T cell proliferation and survival upon TCR activation without co-stimulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chen; Jin, Rong; Wang, Hong-Cheng

    2013-06-21

    Highlights: •Id1 expression enables naïve T cell proliferation without anti-CD28 co-stimulation. •Id1 expression facilitates T cells survival when stimulated with anti-CD3. •Elevation of IL-2 production by Id1 contributes increased proliferation and survival. •Id1 potentiates NF-κB activation by anti-CD3 stimulation. -- Abstract: Although the role of E proteins in the thymocyte development is well documented, much less is known about their function in peripheral T cells. Here we demonstrated that CD4 promoter-driven transgenic expression of Id1, a naturally occurring dominant-negative inhibitor of E proteins, can substitute for the co-stimulatory signal delivered by CD28 to facilitate the proliferation and survival of naïvemore » CD4{sup +} cells upon anti-CD3 stimulation. We next discovered that IL-2 production and NF-κB activity after anti-CD3 stimulation were significantly elevated in Id1-expressing cells, which may be, at least in part, responsible for the augmentation of their proliferation and survival. Taken together, results from this study suggest an important role of E and Id proteins in peripheral T cell activation. The ability of Id proteins to by-pass co-stimulatory signals to enable T cell activation has significant implications in regulating T cell immunity.« less

  3. Overall survival with crizotinib and next-generation ALK inhibitors in ALK-positive non-small-cell lung cancer (IFCT-1302 CLINALK): a French nationwide cohort retrospective study.

    PubMed

    Duruisseaux, Michaël; Besse, Benjamin; Cadranel, Jacques; Pérol, Maurice; Mennecier, Bertrand; Bigay-Game, Laurence; Descourt, Renaud; Dansin, Eric; Audigier-Valette, Clarisse; Moreau, Lionel; Hureaux, José; Veillon, Remi; Otto, Josiane; Madroszyk-Flandin, Anne; Cortot, Alexis; Guichard, François; Boudou-Rouquette, Pascaline; Langlais, Alexandra; Missy, Pascale; Morin, Franck; Moro-Sibilot, Denis

    2017-03-28

    Overall survival (OS) with the anaplastic lymphoma kinase (ALK) inhibitor (ALKi) crizotinib in a large population of unselected patients with ALK-positive non-small-cell lung cancer (NSCLC) is not documented. We sought to assess OS with crizotinib in unselected ALK-positive NSCLC patients and whether post-progression systemic treatments affect survival outcomes.ALK-positive NSCLC patients receiving crizotinib in French expanded access programs or as approved drug were enrolled. We collected clinical and survival data, RECIST-defined progressive disease (PD) and post-PD systemic treatment efficacy. We performed multivariable analysis of OS from crizotinib initiation and PD under crizotinib.At time of analysis, 209 (65.7%) of the 318 included patients had died. Median OS with crizotinib was 16.6 months. The line of crizotinib therapy did not impact survival outcomes. Of the 263 patients with PD, 105 received best supportive care, 74 subsequent drugs other than next-generation ALKi and 84 next-generation ALKi. Next-generation ALKi treatment correlated with better survival outcomes in multivariate analysis. These patients had a median post-PD survival of 25.0 months and median OS from metastatic disease diagnosis of 89.6 months.Unselected ALK-positive NSCLC patients achieve good survival outcomes with crizotinib therapy. Next-generation ALKi may provide survival improvement after PD under crizotinib.

  4. Lung cancer survival in England: trends in non-small-cell lung cancer survival over the duration of the National Lung Cancer Audit

    PubMed Central

    Khakwani, A; Rich, A L; Powell, H A; Tata, L J; Stanley, R A; Baldwin, D R; Duffy, J P; Hubbard, R B

    2013-01-01

    Background: In comparison with other European and North American countries, England has poor survival figures for lung cancer. Our aim was to evaluate the changes in survival since the introduction of the National Lung Cancer Audit (NLCA). Methods: We used data from the NLCA to identify people with non-small-cell lung cancer (NSCLC) and stratified people according to their performance status (PS) and clinical stage. Using Cox regression, we calculated hazard ratios (HRs) for death according to the year of diagnosis from 2004/2005 to 2010; adjusted for patient features including age, sex and co-morbidity. We also assessed whether any changes in survival were explained by the changes in surgical resection rates or histological subtype. Results: In this cohort of 120 745 patients, the overall median survival did not change; but there was a 1% annual improvement in survival over the study period (adjusted HR 0.99, 95% confidence interval (CI) 0.98–0.99). Survival improvement was only seen in patients with good PS and early stage (adjusted HR 0.97, 95% CI 0.95–0.99) and this was partly accounted for by changes in resection rates. Conclusion: Survival has only improved for a limited group of people with NSCLC and increasing surgical resection rates appeared to explain some of this improvement. PMID:24052044

  5. Spheroid Culture of Head and Neck Cancer Cells Reveals an Important Role of EGFR Signalling in Anchorage Independent Survival.

    PubMed

    Braunholz, Diana; Saki, Mohammad; Niehr, Franziska; Öztürk, Merve; Borràs Puértolas, Berta; Konschak, Robert; Budach, Volker; Tinhofer, Ingeborg

    2016-01-01

    In solid tumours millions of cells are shed into the blood circulation each day. Only a subset of these circulating tumour cells (CTCs) survive, many of them presumable because of their potential to form multi-cellular clusters also named spheroids. Tumour cells within these spheroids are protected from anoikis, which allows them to metastasize to distant organs or re-seed at the primary site. We used spheroid cultures of head and neck squamous cell carcinoma (HNSCC) cell lines as a model for such CTC clusters for determining the role of the epidermal growth factor receptor (EGFR) in cluster formation ability and cell survival after detachment from the extra-cellular matrix. The HNSCC cell lines FaDu, SCC-9 and UT-SCC-9 (UT-SCC-9P) as well as its cetuximab (CTX)-resistant sub-clone (UT-SCC-9R) were forced to grow in an anchorage-independent manner by coating culture dishes with the anti-adhesive polymer poly-2-hydroxyethylmethacrylate (poly-HEMA). The extent of apoptosis, clonogenic survival and EGFR signalling under such culture conditions was evaluated. The potential of spheroid formation in suspension culture was found to be positively correlated with the proliferation rate of HNSCC cell lines as well as their basal EGFR expression levels. CTX and gefitinib blocked, whereas the addition of EGFR ligands promoted anchorage-independent cell survival and spheroid formation. Increased spheroid formation and growth were associated with persistent activation of EGFR and its downstream signalling component (MAPK/ERK). Importantly, HNSCC cells derived from spheroid cultures retained their clonogenic potential in the absence of cell-matrix contact. Addition of CTX under these conditions strongly inhibited colony formation in CTX-sensitive cell lines but not their resistant subclones. Altogether, EGFR activation was identified as crucial factor for anchorage-independent survival of HNSCC cells. Targeting EGFR in CTC cluster formation might represent an attractive anti

  6. Species differences in behavior and cell proliferation/survival in the adult brains of female meadow and prairie voles

    PubMed Central

    Pan, Yongliang; Liu, Yan; Lieberwirth, Claudia; Zhang, Zhibin; Wang, Zuoxin

    2016-01-01

    Microtine rodents display diverse patterns of social organization and behaviors, and thus provide a useful model for studying the effects of the social environment on physiology and behavior. The current study compared the species differences and the effects of oxytocin (OT) on anxiety-like, social affiliation, and social recognition behaviors in female meadow voles (Microtus pennsylvanicus) and prairie voles (M. ochrogaster). Furthermore, cell proliferation and survival in the brains of adult female meadow and prairie voles were compared. We found that female meadow voles displayed a higher level of anxiety-like behavior but lower levels of social affiliation and social recognition compared to female prairie voles. In addition, meadow voles showed lower levels of cell proliferation (measured by Ki67 staining) and cell survival (measured by BrdU staining) in the ventromedial hypothalamus (VMH) and amygdala (AMY), but not the dentate gyrus of the hippocampus (DG), than prairie voles. Interestingly, the numbers of new cells in the VMH and AMY, but not DG, also correlated with anxiety-like, social affiliation, and social recognition behaviors in a brain region-specific manner. Finally, central OT treatment (200 ng/kg, icv) did not lead to changes in behavior or cell proliferation/survival in the brain. Together, these data indicate a potential role of cell proliferation/survival in selected brain areas on different behaviors between vole species with distinct life strategies. PMID:26708743

  7. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases.

    PubMed

    Song, Xiao; Ding, Yanping; Liu, Gang; Yang, Xiao; Zhao, Ruifang; Zhang, Yinlong; Zhao, Xiao; Anderson, Gregory J; Nie, Guangjun

    2016-04-15

    Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. DO AUTOCHTHONOUS BACTERIA AFFECT GIARDIA CYST SURVIVAL IN NATURAL WATERS?

    EPA Science Inventory

    Giardia lamblia survives in and is transmitted to susceptible human and animal populations via water, where it is present in an environmentally resistant cyst form. Previous research has highlighted the importance of water temperature in cyst survival, and has also suggested the ...

  9. In serum veritas—in serum sanitas? Cell non-autonomous aging compromises differentiation and survival of mesenchymal stromal cells via the oxidative stress pathway

    PubMed Central

    Geißler, S; Textor, M; Schmidt-Bleek, K; Klein, O; Thiele, M; Ellinghaus, A; Jacobi, D; Ode, A; Perka, C; Dienelt, A; Klose, J; Kasper, G; Duda, G N; Strube, P

    2013-01-01

    Even tissues capable of complete regeneration, such as bone, show an age-related reduction in their healing capacity. Here, we hypothesized that this decline is primarily due to cell non-autonomous (extrinsic) aging mediated by the systemic environment. We demonstrate that culture of mesenchymal stromal cells (MSCs) in serum from aged Sprague–Dawley rats negatively affects their survival and differentiation ability. Proteome analysis and further cellular investigations strongly suggest that serum from aged animals not only changes expression of proteins related to mitochondria, unfolded protein binding or involved in stress responses, it also significantly enhances intracellular reactive oxygen species production and leads to the accumulation of oxidatively damaged proteins. Conversely, reduction of oxidative stress levels in vitro markedly improved MSC function. These results were validated in an in vivo model of compromised bone healing, which demonstrated significant increase regeneration in aged animals following oral antioxidant administration. These observations indicate the high impact of extrinsic aging on cellular functions and the process of endogenous (bone) regeneration. Thus, addressing the cell environment by, for example, systemic antioxidant treatment is a promising approach to enhance tissue regeneration and to regain cellular function especially in elderly patients. PMID:24357801

  10. Polyphosphate is a key factor for cell survival after DNA damage in eukaryotic cells.

    PubMed

    Bru, Samuel; Samper-Martín, Bàrbara; Quandt, Eva; Hernández-Ortega, Sara; Martínez-Laínez, Joan M; Garí, Eloi; Rafel, Marta; Torres-Torronteras, Javier; Martí, Ramón; Ribeiro, Mariana P C; Jiménez, Javier; Clotet, Josep

    2017-09-01

    Cells require extra amounts of dNTPs to repair DNA after damage. Polyphosphate (polyP) is an evolutionary conserved linear polymer of up to several hundred inorganic phosphate (Pi) residues that is involved in many functions, including Pi storage. In the present article, we report on findings demonstrating that polyP functions as a source of Pi when required to sustain the dNTP increment essential for DNA repair after damage. We show that mutant yeast cells without polyP produce less dNTPs upon DNA damage and that their survival is compromised. In contrast, when polyP levels are ectopically increased, yeast cells become more resistant to DNA damage. More importantly, we show that when polyP is reduced in HEK293 mammalian cell line cells and in human dermal primary fibroblasts (HDFa), these cells become more sensitive to DNA damage, suggesting that the protective role of polyP against DNA damage is evolutionary conserved. In conclusion, we present polyP as a molecule involved in resistance to DNA damage and suggest that polyP may be a putative target for new approaches in cancer treatment or prevention. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. The Concerted Action of Type 2 and Type 3 Deiodinases Regulates the Cell Cycle and Survival of Basal Cell Carcinoma Cells.

    PubMed

    Miro, Caterina; Ambrosio, Raffaele; De Stefano, Maria Angela; Di Girolamo, Daniela; Di Cicco, Emery; Cicatiello, Annunziata Gaetana; Mancino, Giuseppina; Porcelli, Tommaso; Raia, Maddalena; Del Vecchio, Luigi; Salvatore, Domenico; Dentice, Monica

    2017-04-01

    Thyroid hormones (THs) mediate pleiotropic cellular processes involved in metabolism, cellular proliferation, and differentiation. The intracellular hormonal environment can be tailored by the type 1 and 2 deiodinase enzymes D2 and D3, which catalyze TH activation and inactivation respectively. In many cellular systems, THs exert well-documented stimulatory or inhibitory effects on cell proliferation; however, the molecular mechanisms by which they control rates of cell cycle progression have not yet been entirely clarified. We previously showed that D3 depletion or TH treatment influences the proliferation and survival of basal cell carcinoma (BCC) cells. Surprisingly, we also found that BCC cells express not only sustained levels of D3 but also robust levels of D2. The aim of the present study was to dissect the contribution of D2 to TH metabolism in the BCC context, and to identify the molecular changes associated with cell proliferation and survival induced by TH and mediated by D2 and D3. We used the CRISPR/Cas9 technology to genetically deplete D2 and D3 in BCC cells and studied the consequences of depletion on cell cycle progression and on cell death. Cell cycle progression was analyzed by fluorescence activated cell sorting analysis of synchronized cells, and the apoptosis rate by annexin V incorporation. Mechanistic investigations revealed that D2 inactivation accelerates cell cycle progression thereby enhancing the proportion of S-phase cells and cyclin D1 expression. Conversely, D3 mutagenesis drastically suppressed cell proliferation and enhanced apoptosis of BCC cells. Furthermore, the basal apoptotic rate was oppositely regulated in D2- and D3-depleted cells. Our results indicate that BCC cells constitute an example in which the TH signal is finely tuned by the concerted expression of opposite-acting deiodinases. The dual regulation of D2 and D3 expression plays a critical role in cell cycle progression and cell death by influencing cyclin D1-mediated

  12. Adipose-Derived Mesenchymal Stem Cell Administration Does Not Improve Corneal Graft Survival Outcome

    PubMed Central

    Fuentes-Julián, Sherezade; Arnalich-Montiel, Francisco; Jaumandreu, Laia; Leal, Marina; Casado, Alfonso; García-Tuñon, Ignacio; Hernández-Jiménez, Enrique; López-Collazo, Eduardo; De Miguel, Maria P.

    2015-01-01

    The effect of local and systemic injections of mesenchymal stem cells derived from adipose tissue (AD-MSC) into rabbit models of corneal allograft rejection with either normal-risk or high-risk vascularized corneal beds was investigated. The models we present in this study are more similar to human corneal transplants than previously reported murine models. Our aim was to prevent transplant rejection and increase the length of graft survival. In the normal-risk transplant model, in contrast to our expectations, the injection of AD-MSC into the graft junction during surgery resulted in the induction of increased signs of inflammation such as corneal edema with increased thickness, and a higher level of infiltration of leukocytes. This process led to a lower survival of the graft compared with the sham-treated corneal transplants. In the high-risk transplant model, in which immune ocular privilege was undermined by the induction of neovascularization prior to graft surgery, we found the use of systemic rabbit AD-MSCs prior to surgery, during surgery, and at various time points after surgery resulted in a shorter survival of the graft compared with the non-treated corneal grafts. Based on our results, local or systemic treatment with AD-MSCs to prevent corneal rejection in rabbit corneal models at normal or high risk of rejection does not increase survival but rather can increase inflammation and neovascularization and break the innate ocular immune privilege. This result can be partially explained by the immunomarkers, lack of immunosuppressive ability and immunophenotypical secretion molecules characterization of AD-MSC used in this study. Parameters including the risk of rejection, the inflammatory/vascularization environment, the cell source, the time of injection, the immunosuppression, the number of cells, and the mode of delivery must be established before translating the possible benefits of the use of MSCs in corneal transplants to clinical practice. PMID

  13. Corrupting the DNA damage response: a critical role for Rad52 in tumor cell survival.

    PubMed

    Lieberman, Rachel; You, Ming

    2017-07-15

    The DNA damage response enables cells to survive, maintain genome integrity, and to safeguard the transmission of high-fidelity genetic information. Upon sensing DNA damage, cells respond by activating this multi-faceted DNA damage response leading to restoration of the cell, senescence, programmed cell death, or genomic instability if the cell survives without proper repair. However, unlike normal cells, cancer cells maintain a marked level of genomic instability. Because of this enhanced propensity to accumulate DNA damage, tumor cells rely on homologous recombination repair as a means of protection from the lethal effect of both spontaneous and therapy-induced double-strand breaks (DSBs) in DNA. Thus, modulation of DNA repair pathways have important consequences for genomic instability within tumor cell biology and viability maintenance under high genotoxic stress. Efforts are underway to manipulate specific components of the DNA damage response in order to selectively induce tumor cell death by augmenting genomic instability past a viable threshold. New evidence suggests that RAD52, a component of the homologous recombination pathway, is important for the maintenance of tumor genome integrity. This review highlights recent reports indicating that reducing homologous recombination through inhibition of RAD52 may represent an important focus for cancer therapy and the specific efforts that are already demonstrating potential.

  14. The regrowth kinetic of the surviving population is independent of acute and chronic responses to temozolomide in glioblastoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Andrew Oliveira, E-mail: andrewbiomed@gmail.com; Dalsin, Eloisa, E-mail: dalsineloisa@gmail.com; Onzi, Giovana Ravizzoni, E-mail: gioonzi@gmail.com

    Chemotherapy acts on cancer cells by producing multiple effects on a cell population including cell cycle arrest, necrosis, apoptosis and senescence. However, often a subpopulation of cells survives and the behavior of this subpopulation, which is responsible for cancer recurrence, remains obscure. Here we investigated the in vitro short- and long-term responses of six glioblastoma cell lines to clinically relevant doses of temozolomide for 5 days followed by 23 days of recovery, mimicking the standard schedule used in glioblastoma patient for this drug. These cells presented different profiles of sensitivity to temozolomide with varying levels of cell cycle arrest, autophagymore » and senescence, followed by a regrowth of the surviving cells. The initial reduction in cell number and the subsequent regrowth was analyzed with four new parameters applied to Cumulative Population Doubling (CPD) curves that describe the overall sensitivity of the population and the characteristic of the regrowth: the relative end point CPD (RendCPD); the relative Area Under Curve (rAUC); the Relative Time to Cross a Threshold (RTCT); and the Relative Proliferation Rate (RPR). Surprisingly, the kinetics of regrowth were not predicted by the mechanisms activated after treatment nor by the acute or overall sensitivity. With this study we added new parameters that describe key responses of glioblastoma cell populations to temozolomide treatment. These parameters can also be applied to other cell types and treatments and will help to understand the behavior of the surviving cancer cells after treatment and shed light on studies of cancer resistance and recurrence. - Highlights: • Little is known about the behavior of the glioma cells surviving to TMZ. • The short- and long-term response of six glioma cells lines to TMZ varies considerably. • These glioma cells lines recovered proliferation after therapeutic levels of TMZ. • The growth velocity of the surviving cells was different

  15. EDD enhances cell survival and cisplatin resistance and is a therapeutic target for epithelial ovarian cancer

    PubMed Central

    Bradley, Amber; Zheng, Hui; Eblen, Scott T.

    2014-01-01

    The E3 ubiquitin ligase EDD is overexpressed in recurrent, platinum-resistant ovarian cancers, suggesting a role in tumor survival and/or platinum resistance. EDD knockdown by small interfering RNA (siRNA) induced apoptosis in A2780ip2, OVCAR5 and ES-2 ovarian cancer cells, correlating with loss of the prosurvival protein myeloid cell leukemia sequence 1 (Mcl-1) through a glycogen synthase kinase 3 beta-independent mechanism. SiRNA to EDD or Mcl-1 induced comparable levels of apoptosis in A2780ip2 and ES-2 cells. Stable overexpression of Mcl-1 protected cells from apoptosis following EDD knockdown, accompanied by a loss of endogenous, but not exogenous, Mcl-1 protein, suggesting that EDD regulated Mcl-1 synthesis. Indeed, EDD knockdown induced a 1.87-fold decrease in Mcl-1 messenger RNA and EDD transfection enhanced murine Mcl-1 promoter-driven luciferase expression 5-fold. To separate EDD survival and potential cisplatin resistance functions, we generated EDD shRNA stable cell lines that could survive initial EDD knockdown and showed that these cells were 4- to 21-fold more sensitive to cisplatin. Moreover, transient EDD overexpression in COS-7 cells was sufficient to promote cisplatin resistance 2.4-fold, dependent upon its E3 ligase activity. In vivo, mouse intraperitoneal ES-2 and A2780ip2 xenograft experiments showed that mice treated with EDD siRNA by nanoliposomal delivery [1,2-dioleoyl-sn-glycero-3-phophatidylcholine (DOPC)] and cisplatin had significantly less tumor burden than those treated with control siRNA/DOPC alone (ES-2, 77.9% reduction, P = 0.004; A2780ip2, 75.9% reduction, P = 0.042) or control siRNA/DOPC with cisplatin in ES-2 (64.4% reduction, P = 0.035), with a trend in A2780ip2 (60.3% reduction, P = 0.168). These results identify EDD as a dual regulator of cell survival and cisplatin resistance and suggest that EDD is a therapeutic target for ovarian cancer. PMID:24379240

  16. A PKA survival pathway inhibited by DPT-PKI, a new specific cell permeable PKA inhibitor, is induced by T. annulata in parasitized B-lymphocytes.

    PubMed

    Guergnon, Julien; Dessauge, Frederic; Traincard, François; Cayla, Xavier; Rebollo, Angelita; Bost, Pierre Etienne; Langsley, Gordon; Garcia, Alphonse

    2006-08-01

    T. annulata, an intracellular pathogenic parasite of the Aplicomplexa protozoan family infects bovine B-lymphocytes and macrophages. Parasitized cells that become transformed survive and proliferate independently of exogenous growth factors. In the present study, we used the isogenic non parasitized BL3 and parasitized TBL3 B cell lines, as a model to evaluate the contribution of two-major PI3-K- and PKA-dependent anti-apoptotic pathways in the survival of T. annulata parasitized B lymphocytes. We found that T. annulata increases PKA activity, induces over-expression of the catalytic subunit and down-regulates the pro-survival phosphorylation state of Akt/PKB. Consistent with a role of PKA activation in survival, two pharmacological inhibitors H89 and KT5720 ablate PKA-dependent survival of parasitized cells. To specifically inhibit PKA pro-survival pathways we linked the DPTsh1 peptide shuttle sequence to PKI(5-24) and we generated DPT-PKI, a cell permeable PKI. DPT-PKI specifically inhibited PKA activity in bovine cell extracts and, as expected, also inhibited the PKA-dependent survival of T. annulata parasitized TBL3 cells. Thus, parasite-dependent constitutive activation of PKA in TBL3 cells generates an anti-apoptotic pathway that can protect T. annulata-infected B cells from apoptosis. These results also indicate that DPT-PKI could be a powerful tool to inhibit PKA pathways in other cell types.

  17. A Large-Scale RNAi Screen Identifies SGK1 as a Key Survival Kinase for GBM Stem Cells.

    PubMed

    Kulkarni, Shreya; Goel-Bhattacharya, Surbhi; Sengupta, Sejuti; Cochran, Brent H

    2018-01-01

    Glioblastoma multiforme (GBM) is the most common type of primary malignant brain cancer and has a very poor prognosis. A subpopulation of cells known as GBM stem-like cells (GBM-SC) have the capacity to initiate and sustain tumor growth and possess molecular characteristics similar to the parental tumor. GBM-SCs are known to be enriched in hypoxic niches and may contribute to therapeutic resistance. Therefore, to identify genetic determinants important for the proliferation and survival of GBM stem cells, an unbiased pooled shRNA screen of 10,000 genes was conducted under normoxic as well as hypoxic conditions. A number of essential genes were identified that are required for GBM-SC growth, under either or both oxygen conditions, in two different GBM-SC lines. Interestingly, only about a third of the essential genes were common to both cell lines. The oxygen environment significantly impacts the cellular genetic dependencies as 30% of the genes required under hypoxia were not required under normoxic conditions. In addition to identifying essential genes already implicated in GBM such as CDK4, KIF11 , and RAN , the screen also identified new genes that have not been previously implicated in GBM stem cell biology. The importance of the serum and glucocorticoid-regulated kinase 1 (SGK1) for cellular survival was validated in multiple patient-derived GBM stem cell lines using shRNA, CRISPR, and pharmacologic inhibitors. However, SGK1 depletion and inhibition has little effect on traditional serum grown glioma lines and on differentiated GBM-SCs indicating its specific importance in GBM stem cell survival. Implications: This study identifies genes required for the growth and survival of GBM stem cells under both normoxic and hypoxic conditions and finds SGK1 as a novel potential drug target for GBM. Mol Cancer Res; 16(1); 103-14. ©2017 AACR . ©2017 American Association for Cancer Research.

  18. Heme Oxygenase-1 Promotes Survival of Renal Cancer Cells through Modulation of Apoptosis- and Autophagy-regulating Molecules*

    PubMed Central

    Banerjee, Pallavi; Basu, Aninda; Wegiel, Barbara; Otterbein, Leo E.; Mizumura, Kenji; Gasser, Martin; Waaga-Gasser, Ana Maria; Choi, Augustine M.; Pal, Soumitro

    2012-01-01

    The cytoprotective enzyme heme oxygenase-1 (HO-1) is often overexpressed in different types of cancers and promotes cancer progression. We have recently shown that the Ras-Raf-ERK pathway induces HO-1 to promote survival of renal cancer cells. Here, we examined the possible mechanisms underlying HO-1-mediated cell survival. Considering the growing evidence about the significance of apoptosis and autophagy in cancer, we tried to investigate how HO-1 controls these events to regulate survival of cancer cells. Rapamycin (RAPA) and sorafenib, two commonly used drugs for renal cancer treatment, were found to induce HO-1 expression in renal cancer cells Caki-1 and 786-O; and the apoptotic effect of these drugs was markedly enhanced upon HO-1 knockdown. Overexpression of HO-1 protected the cells from RAPA- and sorafenib-induced apoptosis and also averted drug-mediated inhibition of cell proliferation. HO-1 induced the expression of anti-apoptotic Bcl-xL and decreased the expression of autophagic proteins Beclin-1 and LC3B-II; while knockdown of HO-1 down-regulated Bcl-xL and markedly increased LC3B-II. Moreover, HO-1 promoted the association of Beclin-1 with Bcl-xL and Rubicon, a novel negative regulator of autophagy. Drug-induced dissociation of Beclin-1 from Rubicon and the induction of autophagy were also inhibited by HO-1. Together, our data signify that HO-1 is up-regulated in renal cancer cells as a survival strategy against chemotherapeutic drugs and promotes growth of tumor cells by inhibiting both apoptosis and autophagy. Thus, application of chemotherapeutic drugs along with HO-1 inhibitor may elevate therapeutic efficiency by reducing the cytoprotective effects of HO-1 and by simultaneous induction of both apoptosis and autophagy. PMID:22843690

  19. Gene expression analysis of head and neck squamous cell carcinoma survival and recurrence

    PubMed Central

    Zhi, Xu; Lamperska, Katarzyna; Golusinski, Paweł; Schork, Nicholas J.; Luczewski, Lukasz; Kolenda, Tomasz; Golusinski, Wojciech; Masternak, Michal M.

    2015-01-01

    The squamous cell carcinomas represent about 90 % of all head and neck cancers, ranking the sixth most common human cancer. Approximately 450,000 of new cases of head and neck squamous cell carcinoma (HNSCC) are diagnosed every year. Unfortunately, because of diagnosis at the advanced stages and early metastasis to the lymph nodes, the HNSCC is associated with very high death rate. Identification of signature biomarkers and molecularly targeted therapies could provide more effective and specific cancer treatment, prevent recurrence, and increase survival rate. We used paired tumor and adjacent normal tissue samples to screen with RT² Profiler™ PCR Array Human Cancer PathwayFinderTM. Total of 20 up-regulated genes and two down-regulated genes were screened out. Out of 22 genes, 12 genes were subsequently validated to be significantly altered in the HNSCC; the samples were from all 41 patients. Five year survival and recurrence selected genes that could represent the biomarkers of survival and recurrence of the disease. We believe that comprehensive understanding of the unique genetic characteristics of HNSCC could provide novel diagnostic biomarkers and meet the requirement for molecular-targeted therapy for the HNSCC. PMID:25575813

  20. Sunitinib-induced hypothyroidism predicts progression-free survival in metastatic renal cell carcinoma patients.

    PubMed

    Buda-Nowak, Anna; Kucharz, Jakub; Dumnicka, Paulina; Kuzniewski, Marek; Herman, Roman Maria; Zygulska, Aneta L; Kusnierz-Cabala, Beata

    2017-04-01

    Sunitinib is a tyrosine kinase inhibitor (TKI) used in treatment of metastatic renal cell carcinoma (mRCC), gastrointestinal stromal tumors and pancreatic neuroendocrine tumors. One of the most common side effects related to sunitinib is hypothyroidism. Recent trials suggest correlation between the incidence of hypothyroidism and treatment outcome in patients treated with TKI. This study evaluates whether development of hypothyroidism is a predictive marker of progression-free survival (PFS) in patients with mRCC treated with sunitinib. Twenty-seven patients diagnosed with clear cell mRCC, after nephrectomy and in 'good' or 'intermediate' MSKCC risk prognostic group, were included in the study. All patients received sunitinib as a first-line treatment on a standard schedule (initial dose 50 mg/day, 4 weeks on, 2 weeks off). The thyroid-stimulating hormone serum levels were obtained at the baseline and every 12 weeks of treatment. In statistic analyses, we used Kaplan-Meier method for assessment of progression-free survival; for comparison of survival, we used log-rank test. In our study, the incidence of hypothyroidism was 44%. The patients who had developed hypothyroidism had better median PFS to patients with normal thyroid function 28,3 months [95% (CI) 20.4-36.2 months] versus 9.8 months (6.4-13.1 months). In survival analysis, we perceive that thyroid dysfunction is a predictive factor of a progression-free survival (PFS). In the unified group of patients, the development of hypothyroidism during treatment with sunitinib is a positive marker for PFS. During that treatment, thyroid function should be evaluated regularly.

  1. Glycogen Synthase Kinase-3β is a pro-survival signal for the maintenance of human mast cell homeostasis

    PubMed Central

    Rådinger, Madeleine; Smrž, Daniel; Metcalfe, Dean D.; Gilfillan, Alasdair M.

    2011-01-01

    Homeostasis of mature tissue-resident mast cells is dependent on the relative activation of pro- and anti-apoptotic regulators. In this study we investigated the role of Glycogen Synthase Kinase-3β (GSK3β) in the survival of neoplastic and non-neoplastic human mast cells. GSK3β was observed to be phosphorylated at the Y216 activating residue under resting conditions in both the neoplastic HMC1.2 cell line and in peripheral blood-derived primary human mast cells (HuMCs), suggesting constitutive activation of GSK3β in these cells. Lentiviral-transduced short hairpin RNA (shRNA) knockdown of GSK3β in both the HMC1.2 cells and HuMCs resulted in a significant reduction in cell survival as determined with the MTT assay. The decrease in SCF-mediated survival in the GSK3β knockdown HuMCs was reflected by enhancement of SCF-withdrawal-induced apoptosis, as determined by Annexin V staining and caspase cleavage; and this was associated with a pronounced reduction in SCF-mediated phosphorylation of Src homology 2 domain-containing phosphatase 2 (SHP2) and ERK1/2 and reduced expression of the anti-apoptotic proteins Bcl-xl and Bcl-2. These data show that GSK3β is an essential anti-apoptotic factor in both neopastic and non-transformed primary human mast cells through the regulation of SCF-mediated SHP2 and ERK activation. Our data suggest that targeting of GSK3β with small molecular weight inhibitors such as CHIR 99021 may thus provide a mechanism for limiting mast cell survival and thus subsequently decreasing the intensity of the allergic inflammatory response. PMID:22039301

  2. PARP activity and inhibition in fetal and adult oligodendrocyte precursor cells: Effect on cell survival and differentiation.

    PubMed

    Baldassarro, Vito A; Marchesini, Alessandra; Giardino, Luciana; Calzà, Laura

    2017-07-01

    Poly (ADP-ribose) polymerase (PARP) family members are ubiquitously expressed and play a key role in cellular processes, including DNA repair and cell death/survival balance. Accordingly, PARP inhibition is an emerging pharmacological strategy for cancer and neurodegenerative diseases. Consistent evidences support the critical involvement of PARP family members in cell differentiation and phenotype maturation. In this study we used an oligodendrocyte precursor cells (OPCs) enriched system derived from fetal and adult brain to investigate the role of PARP in OPCs proliferation, survival, and differentiation. The PARP inhibitors PJ34, TIQ-A and Olaparib were used as pharmacological tools. The main results of the study are: (i) PARP mRNA expression and PARP activity are much higher in fetal than in adult-derived OPCs; (ii) the culture treatment with PARP inhibitors is cytotoxic for OPCs derived from fetal, but not from adult, brain; (iii) PARP inhibition reduces cell number, according to the inhibitory potency of the compounds; (iv) PARP inhibition effect on fetal OPCs is a slow process; (v) PARP inhibition impairs OPCs maturation into myelinating OL in fetal, but not in adult cultures, according to the inhibitory potency of the compounds. These results have implications for PARP-inhibition therapies for diseases and lesions of the central nervous system, in particular for neonatal hypoxic/ischemic encephalopathy. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. The Rice Receptor-Like Kinases DWARF AND RUNTISH SPIKELET1 and 2 Repress Cell Death and Affect Sugar Utilization during Reproductive Development

    PubMed Central

    Song, Feng-Yan; Zhao, Ying; Wang, Chun-Yan; Zhang, Yong-Cun; Yang, Qian; Wang, Jiao; Bu, Shuo-Lei; Sun, Li-Jing; Zhang, Sheng-Wei; Zhang, Su-Qiao; Sun, Da-Ye

    2017-01-01

    Cell-to-cell communication precisely controls the creation of new organs during reproductive growth. However, the sensor molecules that mediate developmental signals in monocot plants are poorly understood. Here, we report that DWARF AND RUNTISH SPIKELET1 (DRUS1) and DRUS2, two closely related receptor-like kinases (RLKs), redundantly control reproductive growth and development in rice (Oryza sativa). A drus1-1 drus2 double knockout mutant, but not either single mutant, showed extreme dwarfism and barren inflorescences that harbored sterile spikelets. The gibberellin pathway was not impaired in this mutant. A phenotypic comparison of mutants expressing different amounts of DRUS1 and 2 revealed that reproductive growth requires a threshold level of DRUS1/2 proteins. DRUS1 and 2 maintain cell viability by repressing protease-mediated cell degradation and likely by affecting sugar utilization or conversion. In the later stages of anther development, survival of the endothecium requires DRUS1/2, which may stimulate expression of the UDP-glucose pyrophosphorylase gene UGP2 and starch biosynthesis in pollen. Unlike their Arabidopsis thaliana ortholog FERONIA, DRUS1 and 2 mediate a fundamental signaling process that is essential for cell survival and represents a novel biological function for the CrRLK1L RLK subfamily. PMID:28082384

  4. Camouflaging endothelial cells: does it prolong graft survival?

    PubMed

    Stuhlmeier, K M; Lin, Y

    1999-08-05

    Camouflaging antigens on the surface of cells seems an appealing way to prevent activation of the immune system. We explored the possibility of preventing hyperacute rejection by chemically camouflaging endothelial cells (EC). In vitro as well as in vivo experiments were performed. First, the ability of mPEG coating to prevent antibody-antigen interactions was evaluated. Second, we tested the degree to which mPEG coating prevents activation of EC by stimuli such as TNF-alpha and LPS. Third, in vivo experiments were performed to test the ability of mPEG coating to prolong xenograft survival. We demonstrate that binding of several antibodies to EC or serum proteins can be inhibited by mPEG. Furthermore, binding of TNF-alpha as well as LPS to EC is blocked since mPEG treatment of EC inhibits the subsequent up-regulation of E-selectin by these stimuli. However, in vivo experiments revealed that currently this method alone is not sufficient to prevent hyperacute rejection.

  5. Myotube formation is affected by adipogenic lineage cells in a cell-to-cell contact-independent manner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takegahara, Yuki; Yamanouchi, Keitaro, E-mail: akeita@mail.ecc.u-tokyo.ac.jp; Nakamura, Katsuyuki

    2014-05-15

    Intramuscular adipose tissue (IMAT) formation is observed in some pathological conditions such as Duchenne muscular dystrophy (DMD) and sarcopenia. Several studies have suggested that IMAT formation is not only negatively correlated with skeletal muscle mass but also causes decreased muscle contraction in sarcopenia. In the present study, we examined w hether adipocytes affect myogenesis. For this purpose, skeletal muscle progenitor cells were transfected with siRNA of PPARγ (siPPARγ) in an attempt to inhibit adipogenesis. Myosin heavy chain (MHC)-positive myotube formation was promoted in cells transfected with siPPARγ compared to that of cells transfected with control siRNA. To determine whether directmore » cell-to-cell contact between adipocytes and myoblasts is a prerequisite for adipocytes to affect myogenesis, skeletal muscle progenitor cells were cocultured with pre- or mature adipocytes in a Transwell coculture system. MHC-positive myotube formation was inhibited when skeletal muscle progenitor cells were cocultured with mature adipocytes, but was promoted when they were cocultured with preadipocytes. Similar effects were observed when pre- or mature adipocyte-conditioned medium was used. These results indicate that preadipocytes play an important role in maintaining skeletal muscle mass by promoting myogenesis; once differentiated, the resulting mature adipocytes negatively affect myogenesis, leading to the muscle deterioration observed in skeletal muscle pathologies. - Highlights: • We examined the effects of pre- and mature adipocytes on myogenesis in vitro. • Preadipocytes and mature adipocytes affect myoblast fusion. • Preadipocytes play an important role in maintaining skeletal muscle mass. • Mature adipocytes lead to muscle deterioration observed in skeletal muscle pathologies.« less

  6. Does overall environmental quality affect end-stage renal disease survival?

    EPA Science Inventory

    Prevalence of end-stage renal disease (ESRD) in the U.S. increased by 74% from 2000 to 2013, with a 5-year survival of only 42%. To investigate associations between environmental quality and ESRD survival time, we used the Environmental Quality Index (EQI), an aggregate measure o...

  7. PTEN modulates cell cycle progression and cell survival by regulating phosphatidylinositol 3,4,5,-trisphosphate and Akt/protein kinase B signaling pathway.

    PubMed

    Sun, H; Lesche, R; Li, D M; Liliental, J; Zhang, H; Gao, J; Gavrilova, N; Mueller, B; Liu, X; Wu, H

    1999-05-25

    To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten-/- ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27(KIP1), a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten-/- cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4, 5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.

  8. Cell surface characteristics enable encrustation-free survival of neutrophilic iron-oxidizing bacteria

    NASA Astrophysics Data System (ADS)

    Saini, G.; Chan, C. S.

    2011-12-01

    Microbial growth in mineralizing environments depends on the cells' ability to evade surface precipitation. Cell-mineral interactions may be required for metabolism, but if unmoderated, cells could become encrusted, which would limit diffusion of nutrients and waste across cell walls. A combination of cell surface charge and hydrophobicity could enable the survival of microbes in such environments by inhibiting mineral attachment. To investigate this mechanism, we characterized the surfaces of two neutrophilic iron-oxidizing bacteria (FeOB): Mariprofundus ferrooxydans, a Zetaproteobacterium from Fe(II)-rich submarine hydrothermal vents and a Betaproteobacterium Gallionellales strain R-1, recently isolated from a ferrous groundwater seep. Both bacteria produce iron oxyhydroxides, yet successfully escape surface encrustation while inhabiting milieu where iron minerals are also produced by abiotic processes. SEM-EDX and TEM-EELS analyses of cultured bacteria revealed no iron on the cell surfaces. Zeta potential measurements showed that these bacteria have very small negative surface charge (0 to -4 mV) over a pH range of 4-9, indicating near-neutrally charged surfaces. Water contact angle measurements and thermodynamic calculations demonstrate that both bacteria and abiotically-formed Fe oxhydroxides are hydrophilic. Extended-DLVO calculations showed that hydrophilic repulsion between cells and minerals dominates over electrostatic and Lifshitz-van der Waals interactions. This leads to overall repulsion between microbes and minerals, thus preventing surface encrustation. Low surface charge and hydrophilicity (determined by microbial adhesion to hydrocarbon assay) were common features for both live and azide-inhibited cells, which shows that surface characteristics do not depend on active metabolism. It is remarkable that these two phylogenetically-distant bacteria from different environments employ similar adaptations to prevent surface mineralization. Our results

  9. Survival trends among patients with advanced renal cell carcinoma in the United States.

    PubMed

    Shah, Binay Kumar; Ghimire, Krishna Bilas

    2015-01-01

    Since the approval of sorafenib in December 2005, several targeted therapeutic agents have been approved by the FDA for the treatment of advanced renal cell carcinoma (RCC). This study was conducted to find out whether the improvements in survival of advanced RCC patients with targeted agents have translated into a survival benefit in a population-based cohort. We analyzed the SEER 18 (Surveillance, Epidemiology and End RESULTS) registry database to calculate the relative survival rates for advanced RCC patients during 2001-2009, 2001-2005, 2006-2007 and 2008-2009. We also evaluated the survival rates by age (<65 and ≥65 years) and sex. The total number of advanced RCC patients during 2001-2009, 2001-2005, 2006-2007 and 2008-2009 were 7,047, 4,059, 1,548 and 1,440, respectively. During 2001-2009, the 1- and 3-year relative survival rates were 26.7±0.6 and 10.0±0.4%, respectively. There was no significant difference in 1-year relative survival rates for patients diagnosed during 2006-2007 and 2008-2009 compared to those diagnosed during 2001-2005. Similarly, the 3-year survival rates for patients diagnosed during 2006-2007 were similar to those diagnosed during 2001-2005. This population-based study showed that there was no significant improvement in relative survival rates among advanced RCC patients in the era of targeted agents. © 2014 S. Karger AG, Basel.

  10. Zinc Finger Nuclease Mediated Knockout of ADP-Dependent Glucokinase in Cancer Cell Lines: Effects on Cell Survival and Mitochondrial Oxidative Metabolism

    PubMed Central

    Richter, Susan; Morrison, Shona; Connor, Tim; Su, Jiechuang; Print, Cristin G.; Ronimus, Ron S.; McGee, Sean L.; Wilson, William R.

    2013-01-01

    Zinc finger nucleases (ZFN) are powerful tools for editing genes in cells. Here we use ZFNs to interrogate the biological function of ADPGK, which encodes an ADP-dependent glucokinase (ADPGK), in human tumour cell lines. The hypothesis we tested is that ADPGK utilises ADP to phosphorylate glucose under conditions where ATP becomes limiting, such as hypoxia. We characterised two ZFN knockout clones in each of two lines (H460 and HCT116). All four clones had frameshift mutations in all alleles at the target site in exon 1 of ADPGK, and were ADPGK-null by immunoblotting. ADPGK knockout had little or no effect on cell proliferation, but compromised the ability of H460 cells to survive siRNA silencing of hexokinase-2 under oxic conditions, with clonogenic survival falling from 21±3% for the parental line to 6.4±0.8% (p = 0.002) and 4.3±0.8% (p = 0.001) for the two knockouts. A similar increased sensitivity to clonogenic cell killing was observed under anoxia. No such changes were found when ADPGK was knocked out in HCT116 cells, for which the parental line was less sensitive than H460 to anoxia and to hexokinase-2 silencing. While knockout of ADPGK in HCT116 cells caused few changes in global gene expression, knockout of ADPGK in H460 cells caused notable up-regulation of mRNAs encoding cell adhesion proteins. Surprisingly, we could discern no consistent effect on glycolysis as measured by glucose consumption or lactate formation under anoxia, or extracellular acidification rate (Seahorse XF analyser) under oxic conditions in a variety of media. However, oxygen consumption rates were generally lower in the ADPGK knockouts, in some cases markedly so. Collectively, the results demonstrate that ADPGK can contribute to tumour cell survival under conditions of high glycolytic dependence, but the phenotype resulting from knockout of ADPGK is cell line dependent and appears to be unrelated to priming of glycolysis in these lines. PMID:23799003

  11. Human Hepatocyte Growth Factor (hHGF)-Modified Hepatic Oval Cells Improve Liver Transplant Survival

    PubMed Central

    Li, Li; Ran, Jiang-Hua; Li, Xue-Hua; Liu, Zhi-Heng; Liu, Gui-Jie; Gao, Yan-Chao; Zhang, Xue-Li; Sun, Hiu-Dong

    2012-01-01

    Despite progress in the field of immunosuppression, acute rejection is still a common postoperative complication following liver transplantation. This study aims to investigate the capacity of the human hepatocyte growth factor (hHGF) in modifying hepatic oval cells (HOCs) administered simultaneously with orthotopic liver transplantation as a means of improving graft survival. HOCs were activated and isolated using a modified 2-acetylaminofluorene/partial hepatectomy (2-AAF/PH) model in male Lewis rats. A HOC line stably expressing the HGF gene was established following stable transfection of the pBLAST2-hHGF plasmid. Our results demonstrated that hHGF-modified HOCs could efficiently differentiate into hepatocytes and bile duct epithelial cells in vitro. Administration of HOCs at the time of liver transplantation induced a wider distribution of SRY-positive donor cells in liver tissues. Administration of hHGF-HOC at the time of transplantation remarkably prolonged the median survival time and improved liver function for recipients compared to these parameters in the other treatment groups (P<0.05). Moreover, hHGF-HOC administration at the time of liver transplantation significantly suppressed elevation of interleukin-2 (IL-2), tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) levels while increasing the production of IL-10 and TGF-β1 (P<0.05). HOC or hHGF-HOC administration promoted cell proliferation, reduced cell apoptosis, and decreased liver allograft rejection rates. Furthermore, hHGF-modified HOCs more efficiently reduced acute allograft rejection (P<0.05 versus HOC transplantation only). Our results indicate that the combination of hHGF-modified HOCs with liver transplantation decreased host anti-graft immune responses resulting in a reduction of allograft rejection rates and prolonging graft survival in recipient rats. This suggests that HOC-based cell transplantation therapies can be developed as a means of treating severe liver injuries. PMID

  12. Renal Allograft Survival in Nonhuman Primates Infused With Donor Antigen-Pulsed Autologous Regulatory Dendritic Cells.

    PubMed

    Ezzelarab, M B; Raich-Regue, D; Lu, L; Zahorchak, A F; Perez-Gutierrez, A; Humar, A; Wijkstrom, M; Minervini, M; Wiseman, R W; Cooper, D K C; Morelli, A E; Thomson, A W

    2017-06-01

    Systemic administration of autologous regulatory dendritic cells (DCreg; unpulsed or pulsed with donor antigen [Ag]), prolongs allograft survival and promotes transplant tolerance in rodents. Here, we demonstrate that nonhuman primate (NHP) monocyte-derived DCreg preloaded with cell membrane vesicles from allogeneic peripheral blood mononuclear cells induce T cell hyporesponsiveness to donor alloantigen (alloAg) in vitro. These donor alloAg-pulsed autologous DCreg (1.4-3.6 × 10 6 /kg) were administered intravenously, 1 day before MHC-mismatched renal transplantation to rhesus monkeys treated with costimulation blockade (cytotoxic T lymphocyte Ag 4 immunoglobulin [CTLA4] Ig) and tapered rapamycin. Prolongation of graft median survival time from 39.5 days (no DCreg infusion; n = 6 historical controls) and 29 days with control unpulsed DCreg (n = 2), to 56 days with donor Ag-pulsed DCreg (n = 5) was associated with evidence of modulated host CD4 + and CD8 + T cell responses to donor Ag and attenuation of systemic IL-17 production. Circulating anti-donor antibody (Ab) was not detected until CTLA4 Ig withdrawal. One monkey treated with donor Ag-pulsed DCreg rejected its graft in association with progressively elevated anti-donor Ab, 525 days posttransplant (160 days after withdrawal of immunosuppression). These findings indicate a modest but not statistically significant beneficial effect of donor Ag-pulsed autologous DCreg infusion on NHP graft survival when administered with a minimal immunosuppressive drug regimen. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  13. GM-CSF production by glioblastoma cells has a functional role in eosinophil survival, activation and growth factor production for enhanced tumor cell proliferation

    PubMed Central

    Curran, Colleen S.; Evans, Michael D.; Bertics, Paul J.

    2011-01-01

    Medicinal interventions of limited efficacy are currently available for the treatment of glioblastoma multiforme (GBM), the most common and lethal primary brain tumor in adults. The eosinophil is a pivotal immune cell in the pathobiology of atopic disease that is also found to accumulate in certain tumor tissues. Inverse associations between atopy and GBM risk suggest that the eosinophil may play a functional role in certain tumor immune responses. To assess the potential interactions between eosinophils and GBM, human primary blood eosinophils were cultured with two separate human GBM-derived cell lines (A172, U87-MG) or conditioned media generated in the presence or absence of TNF-α. Results revealed differential eosinophil adhesion and increased survival in response to co-culture with GBM cell lines. Eosinophil responses to GBM cell line-conditioned media included increased survival, activation, CD11b expression and S100A9 release. Addition of GM-CSF neutralizing antibodies to GBM cell cultures or conditioned media reduced eosinophil adhesion, survival and activation, linking tumor cell-derived GM-CSF to the functions of eosinophils in the tumor microenvironment. Dexamethasone, which has been reported to inhibit eosinophil recruitment and shrink GBM lesions on contrast enhanced scans, reduced the production of tumor cell-derived GM-CSF. Furthermore, culture of GBM cells in eosinophil-conditioned media increased tumor cell viability, and generation of eosinophil-conditioned media in the presence of GM-CSF enhanced the effect. These data support the idea of a paracrine loop between GM-CSF producing tumors and eosinophil-derived growth factors in tumor promotion/progression. PMID:21705618

  14. Pulmonary atelectasis and survival in advanced non-small cell lung carcinoma

    PubMed Central

    2010-01-01

    Atelectasis was reported as a favorable prognostic sign of pulmonary carcinoma; however, the underlying mechanism in those patients is not known. In this study, we aimed to investigate prospectively the potential impact of atelectasis and/or obstructive pneumonitis (AO) on survival and the relation between atelectasis and some laboratory blood parameters. The study was conducted on 87 advanced stage non-small cell lung cancer (NSCLC) patients. Clinical and laboratory parameters of patients at first presentation were recorded, and patients were divided into two groups according to the presence of AO in thorax computed tomography (CT). Survival was calculated using Kaplan-Meier and univariate Cox's regression analyses. Laboratory parameters that might be related with prolonged survival in atelectasis were compared using chi-square, Student's t, and Mann-Whitney U tests. Of the patients, 54% had stage IV disease, and AO was detected in 48.3% of all cases. Overall median survival was 13.2 months for all cases, 10.9 months for patients without AO, and 13.9 months for patients with AO (P = 0.067). Survival was significantly longer in stage III patients with AO (14.5 months versus 9.2 months, P = 0.032), but not in stage IV patients. Patients with AO in stage III had significantly lower platelet counts (P = 0.032) and blood sedimentation rates than did those with no AO (P = 0.045). We concluded that atelectasis and/or obstructive pneumonitis was associated with prolonged survival in locally advanced NSCLC. There was also a clear association between atelectasis and/or obstructive pneumonitis and platelets and blood sedimentation rate. PMID:20636252

  15. Celastrol supports survival of retinal ganglion cells injured by optic nerve crush.

    PubMed

    Kyung, Haksu; Kwong, Jacky M K; Bekerman, Vlad; Gu, Lei; Yadegari, Daniel; Caprioli, Joseph; Piri, Natik

    2015-06-03

    The present study evaluates the effect of celastrol on the survival of retinal ganglion cells (RGCs) injured by optic nerve crush (ONC). Celastrol, a quinine methide triterpene extracted from the perennial vine Tripterygium wilfordii (Celastraceae), has been identified as a potential neuroprotective candidate in a comprehensive drug screen against various neurodegenerative diseases. Two weeks after ONC, the average density of remaining RGCs in retinas of animals treated with daily intraperitoneal (i.p.) injections of celastrol (1mg/kg) was approximately 1332 cells/mm(2), or 40.8% of the Celastrol/Control group. In retinas of the Vehicle/ONC group about 381 RGCs/mm(2) were counted, which is 9.6% of the total number of RGCs in the DMSO/Control group. This corresponds to approximately a 250% increase in RGC survival mediated by celastrol treatment compared to Vehicle/ONC group. Furthermore, the average RGC number in retinas of ONC animals treated with a single intravitreal injection of 1mg/kg or 5mg/kg of celastrol was increased by approximately 80% (760 RGCs/mm(2)) and 78% (753 RGCs/mm(2)), respectively, compared to Vehicle/ONC controls (422 cells/mm(2)). Injection of 0.2mg/kg of celastrol had no significant effect on cell survival, with the average number of RGCs being 514 cells/mm(2) in celastrol-treated animals versus 422 cells/mm(2) in controls. The expression levels of Hsp70, Hsf1, Hsf2, HO-1 and TNF-alpha in the retina were analyzed to evaluate the roles of these proteins in the celastrol-mediated protection of injured RGCs. No statistically significant change in HO-1, Hsf1 and Hsp70 levels was seen in animals with ONC. An approximately 2 fold increase in Hsf2 level was observed in celastrol-treated animals with or without injury. Hsf2 level was also increased 1.8 fold in DMSO-treated animals with ONC injury compared to DMSO-treated animals with no injury suggesting that Hsf2 induction has an injury-induced component. Expression of TNF-alpha in retinas of

  16. Calmodulin-mediated activation of Akt regulates survival of c-Myc-overexpressing mouse mammary carcinoma cells.

    PubMed

    Deb, Tushar B; Coticchia, Christine M; Dickson, Robert B

    2004-09-10

    c-Myc-overexpressing mammary epithelial cells are proapoptotic; their survival is strongly promoted by epidermal growth factor (EGF). We now demonstrate that EGF-induced Akt activation and survival in transgenic mouse mammary tumor virus-c-Myc mouse mammary carcinoma cells are both calcium/calmodulin-dependent. Akt activation is abolished by the phospholipase C-gamma inhibitor U-73122, by the intracellular calcium chelator BAPTA-AM, and by the specific calmodulin antagonist W-7. These results implicate calcium/calmodulin in the activation of Akt in these cells. In addition, Akt activation by serum and insulin is also inhibited by W-7. EGF-induced and calcium/calmodulin-mediated Akt activation occurs in both tumorigenic and non-tumorigenic mouse and human mammary epithelial cells, independent of their overexpression of c-Myc. These results imply that calcium/calmodulin may be a common regulator of Akt activation, irrespective of upstream receptor activator, mammalian species, and transformation status in mammary epithelial cells. However, only c-Myc-overexpressing mouse mammary carcinoma cells (but not normal mouse mammary epithelial cells) undergo apoptosis in the presence of the calmodulin antagonist W-7, indicating the vital selective role of calmodulin for survival of these cells. Calcium/calmodulin-regulated Akt activation is mediated directly by neither calmodulin kinases nor phosphatidylinositol 3-kinase (PI-3 kinase). Pharmacological inhibitors of calmodulin kinase kinase and calmodulin kinases II and III do not inhibit EGF-induced Akt activation, and calmodulin antagonist W-7 does not inhibit phosphotyrosine-associated PI-3 kinase activation. Akt is, however, co-immunoprecipitated with calmodulin in an EGF-dependent manner, which is inhibited by calmodulin antagonist W-7. We conclude that calmodulin may serve a vital regulatory function to direct the localization of Akt to the plasma membrane for its activation by PI-3 kinase.

  17. Modeling Stochastic Variability in the Numbers of Surviving Salmonella enterica, Enterohemorrhagic Escherichia coli, and Listeria monocytogenes Cells at the Single-Cell Level in a Desiccated Environment

    PubMed Central

    Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso

    2016-01-01

    ABSTRACT Despite effective inactivation procedures, small numbers of bacterial cells may still remain in food samples. The risk that bacteria will survive these procedures has not been estimated precisely because deterministic models cannot be used to describe the uncertain behavior of bacterial populations. We used the Poisson distribution as a representative probability distribution to estimate the variability in bacterial numbers during the inactivation process. Strains of four serotypes of Salmonella enterica, three serotypes of enterohemorrhagic Escherichia coli, and one serotype of Listeria monocytogenes were evaluated for survival. We prepared bacterial cell numbers following a Poisson distribution (indicated by the parameter λ, which was equal to 2) and plated the cells in 96-well microplates, which were stored in a desiccated environment at 10% to 20% relative humidity and at 5, 15, and 25°C. The survival or death of the bacterial cells in each well was confirmed by adding tryptic soy broth as an enrichment culture. Changes in the Poisson distribution parameter during the inactivation process, which represent the variability in the numbers of surviving bacteria, were described by nonlinear regression with an exponential function based on a Weibull distribution. We also examined random changes in the number of surviving bacteria using a random number generator and computer simulations to determine whether the number of surviving bacteria followed a Poisson distribution during the bacterial death process by use of the Poisson process. For small initial cell numbers, more than 80% of the simulated distributions (λ = 2 or 10) followed a Poisson distribution. The results demonstrate that variability in the number of surviving bacteria can be described as a Poisson distribution by use of the model developed by use of the Poisson process. IMPORTANCE We developed a model to enable the quantitative assessment of bacterial survivors of inactivation procedures

  18. Modeling Stochastic Variability in the Numbers of Surviving Salmonella enterica, Enterohemorrhagic Escherichia coli, and Listeria monocytogenes Cells at the Single-Cell Level in a Desiccated Environment.

    PubMed

    Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu

    2017-02-15

    Despite effective inactivation procedures, small numbers of bacterial cells may still remain in food samples. The risk that bacteria will survive these procedures has not been estimated precisely because deterministic models cannot be used to describe the uncertain behavior of bacterial populations. We used the Poisson distribution as a representative probability distribution to estimate the variability in bacterial numbers during the inactivation process. Strains of four serotypes of Salmonella enterica, three serotypes of enterohemorrhagic Escherichia coli, and one serotype of Listeria monocytogenes were evaluated for survival. We prepared bacterial cell numbers following a Poisson distribution (indicated by the parameter λ, which was equal to 2) and plated the cells in 96-well microplates, which were stored in a desiccated environment at 10% to 20% relative humidity and at 5, 15, and 25°C. The survival or death of the bacterial cells in each well was confirmed by adding tryptic soy broth as an enrichment culture. Changes in the Poisson distribution parameter during the inactivation process, which represent the variability in the numbers of surviving bacteria, were described by nonlinear regression with an exponential function based on a Weibull distribution. We also examined random changes in the number of surviving bacteria using a random number generator and computer simulations to determine whether the number of surviving bacteria followed a Poisson distribution during the bacterial death process by use of the Poisson process. For small initial cell numbers, more than 80% of the simulated distributions (λ = 2 or 10) followed a Poisson distribution. The results demonstrate that variability in the number of surviving bacteria can be described as a Poisson distribution by use of the model developed by use of the Poisson process. We developed a model to enable the quantitative assessment of bacterial survivors of inactivation procedures because the presence of

  19. P02.03INCREASED COUNTS OF NK AND NKT CELLS ARE ASSOCIATED WITH PROLONGED SURVIVAL IN PRIMARY GLIOBLASTOMA PATIENTS TREATED WITH DENDRITIC CELL IMMUNOTHERAPY IN COMBINATION WITH RADIO- AND CHEMO-THERAPY

    PubMed Central

    Pellegatta, S.; Eoli, M.; Cantini, G.; Anghileri, E.; Antozzi, C.; Frigerio, S.; Bruzzone, M.; Pollo, B.; Parati, E.; Finocchiaro, G.

    2014-01-01

    Two clinical studies, DENDR1 and DENDR2 including, respectively, the treatment of first diagnosis and recurrent glioblastoma (GB) patients with dendritic cells (DCs) loaded with autologous tumor lysate are currently active at Istituto Neurologico Besta, Milan. Our first results obtained on a group of recurrent GB patients demonstrated that the response of NK cells correlates with significantly prolonged survival. Here we provide results of the interim analysis on 22 patients affected by primary GB. Patients with post-surgery volume ≤10 cc underwent leukapheresis before radiotherapy and chemotherapy with temozolomide (TMZ). Three intradermal injections of mature DC were done before adjuvant chemotherapy. The subsequent 4 injections were performed 17 ± 3 days after adjuvant TMZ. MRI, clinical and immunological follow-up were performed every 2 months. The median age at surgery was 54.5 years (28-69). RT-TMZ induced significant lymphopenia (<1000 lymphocytes/microl) in 17/22 patients (77.2%). Patients with >1000 lymphocytes/microl (5/22) before first vaccination had shorter PFS than others (p < 0.005). Peripheral Blood Lymphocytes (PBLs) were analyzed by flow cytometry to identify CD8+ T cells, NK and NKT cells before and after DC vaccines. The ratio of vaccination/baseline frequencies and counts (V/B ratio) of all of the immunological parameters for each patient was calculated, and the median of all of the observations used as the cut off value to separate patients. V/B ratio was correlated with the progression free survival (PFS) of each patient. Increased V/B ratio for NK cells and in particular NKT cells, but not for CD8 T lymphocytes, was significantly associated with prolonged PFS (median PFS 14 vs 8.0 mo, p = 0.01; 15.0 vs 8.0 mo, respectively). Interferon (IFN)-γ in PBLs was significantly higher in patients with PFS12 (p < 0.02), increasing immediately after the second vaccination as evaluated by real time-PCR. No changes in the expression levels of IFN

  20. Earlier defibrotide initiation post-diagnosis of veno-occlusive disease/sinusoidal obstruction syndrome improves Day +100 survival following haematopoietic stem cell transplantation.

    PubMed

    Richardson, Paul G; Smith, Angela R; Triplett, Brandon M; Kernan, Nancy A; Grupp, Stephan A; Antin, Joseph H; Lehmann, Leslie; Miloslavsky, Maja; Hume, Robin; Hannah, Alison L; Nejadnik, Bijan; Soiffer, Robert J

    2017-07-01

    Hepatic veno-occlusive disease/sinusoidal obstruction syndrome (VOD/SOS) is a progressive, potentially fatal complication of conditioning for haematopoietic stem cell transplant (HSCT). The VOD/SOS pathophysiological cascade involves endothelial-cell activation and damage, and a prothrombotic-hypofibrinolytic state. Severe VOD/SOS (typically characterized by multi-organ dysfunction) may be associated with >80% mortality. Defibrotide is approved for treating severe hepatic VOD/SOS post-HSCT in the European Union, and for hepatic VOD/SOS with renal or pulmonary dysfunction post-HSCT in the United States. Previously, defibrotide (25 mg/kg/day in 4 divided doses for a recommended ≥21 days) was available through an expanded-access treatment protocol for patients with VOD/SOS. Data from this study were examined post-hoc to determine if the timing of defibrotide initiation post-VOD/SOS diagnosis affected Day +100 survival post-HSCT. Among 573 patients, defibrotide was started on the day of VOD/SOS diagnosis in approximately 30%, and within 7 days in >90%. The relationship between Day +100 survival and treatment initiation before/after specific days post-diagnosis showed superior survival when treatment was initiated closer to VOD/SOS diagnosis with a statistically significant trend over time for better outcomes with earlier treatment initiation (P < 0·001). These results suggest that initiation of defibrotide should not be delayed after diagnosis of VOD/SOS. © 2017 The Authors. British Journal of Haematology published by John Wiley & Sons Ltd.

  1. Regulatory dendritic cell infusion prolongs kidney allograft survival in nonhuman primates.

    PubMed

    Ezzelarab, M B; Zahorchak, A F; Lu, L; Morelli, A E; Chalasani, G; Demetris, A J; Lakkis, F G; Wijkstrom, M; Murase, N; Humar, A; Shapiro, R; Cooper, D K C; Thomson, A W

    2013-08-01

    We examined the influence of regulatory dendritic cells (DCreg), generated from cytokine-mobilized donor blood monocytes in vitamin D3 and IL-10, on renal allograft survival in a clinically relevant rhesus macaque model. DCreg expressed low MHC class II and costimulatory molecules, but comparatively high levels of programmed death ligand-1 (B7-H1), and were resistant to pro-inflammatory cytokine-induced maturation. They were infused intravenously (3.5-10 × 10(6) /kg), together with the B7-CD28 costimulation blocking agent CTLA4Ig, 7 days before renal transplantation. CTLA4Ig was given for up to 8 weeks and rapamycin, started on Day -2, was maintained with tapering of blood levels until full withdrawal at 6 months. Median graft survival time was 39.5 days in control monkeys (no DC infusion; n = 6) and 113.5 days (p < 0.05) in DCreg-treated animals (n = 6). No adverse events were associated with DCreg infusion, and there was no evidence of induction of host sensitization based on circulating donor-specific alloantibody levels. Immunologic monitoring also revealed regulation of donor-reactive memory CD95(+) T cells and reduced memory/regulatory T cell ratios in DCreg-treated monkeys compared with controls. Termination allograft histology showed moderate combined T cell- and Ab-mediated rejection in both groups. These findings justify further preclinical evaluation of DCreg therapy and their therapeutic potential in organ transplantation. © Copyright 2013 The American Society of Transplantation and the American Society of Transplant Surgeons.

  2. Fibronectin is a survival factor for differentiated osteoblasts

    NASA Technical Reports Server (NTRS)

    Globus, R. K.; Doty, S. B.; Lull, J. C.; Holmuhamedov, E.; Humphries, M. J.; Damsky, C. H.

    1998-01-01

    The skeletal extracellular matrix produced by osteoblasts contains the glycoprotein fibronectin, which regulates the adhesion, differentiation and function of various adherent cells. Interactions with fibronectin are required for osteoblast differentiation in vitro, since fibronectin antagonists added to cultures of immature fetal calvarial osteoblasts inhibit their progressive differentiation. To determine if fibronectin plays a unique role in fully differentiated osteoblasts, cultures that had already formed mineralized nodules in vitro were treated with fibronectin antagonists. Fibronectin antibodies caused >95% of the cells in the mature cultures to display characteristic features of apoptosis (nuclear condensation, apoptotic body formation, DNA laddering) within 24 hours. Cells appeared to acquire sensitivity to fibronectin antibody-induced apoptosis as a consequence of differentiation, since antibodies failed to kill immature cells and the first cells killed were those associated with mature nodules. Intact plasma fibronectin, as well as fragments corresponding to the amino-terminal, cell-binding, and carboxy-terminal domains of fibronectin, independently induced apoptosis of mature (day-13), but not immature (day-4), osteoblasts. Finally, transforming growth factor-beta1 partially protected cells from the apoptotic effects of fibronectin antagonists. Thus, in the course of maturation cultured osteoblasts switch from depending on fibronectin for differentiation to depending on fibronectin for survival. These data suggest that fibronectin, together with transforming growth factor-beta1, may affect bone formation, in part by regulating the survival of osteoblasts.

  3. Targeting Sirtuin-1 prolongs murine renal allograft survival and function

    PubMed Central

    Levine, Matthew H.; Wang, Zhonglin; Xiao, Haiyan; Jiao, Jing; Wang, Liqing; Bhatti, Tricia R.; Hancock, Wayne W.; Beier, Ulf H.

    2016-01-01

    Current immunosuppressive medications used after transplantation have significant toxicities. Foxp3+ T-regulatory (Treg) cells can prevent allograft rejection without compromising protective host immunity. Interestingly, inhibiting the class III histone/protein deacetylase Sirtuin-1 can augment Foxp3+ Treg suppressive function through increasing Foxp3 acetylation. Here we determined whether Sirtuin-1 targeting can stabilize biological allograft function. BALB/c kidney allografts were transplanted into C57BL/6 recipients with a CD4-conditional deletion of Sirtuin-1 (Sirt1fl/flCD4cre) or mice treated with a Sirtuin-1 specific inhibitor (EX-527), and the native kidneys removed. Blood chemistries and hematocrit were followed weekly. Sirt1fl/flCD4cre recipients showed markedly longer survival and improved kidney function. Sirt1fl/flCD4cre recipients exhibited donor specific tolerance, accepted BALB/c, but rejected third-party C3H cardiac allografts. C57BL/6 recipients of BALB/c renal allografts that were treated with EX-527 showed improved survival and renal function at 1, but not 10 mg/kg/day. Pharmacologic inhibition of Sirtuin-1 also improved renal allograft survival and function with dosing effects having relevance to outcome. Thus, inhibiting Sirtuin-1 can be a useful asset in controlling T-cell mediated rejection. However, effects on non-T cells that could adversely affect allograft survival and function merit consideration. PMID:27083279

  4. Neuro-peptide treatment with Cerebrolysin improves the survival of neural stem cell grafts in an APP transgenic model of Alzheimer disease.

    PubMed

    Rockenstein, Edward; Desplats, Paula; Ubhi, Kiren; Mante, Michael; Florio, Jazmin; Adame, Anthony; Winter, Stefan; Brandstaetter, Hemma; Meier, Dieter; Masliah, Eliezer

    2015-07-01

    Neural stem cells (NSCs) have been considered as potential therapy in Alzheimer's disease (AD) but their use is hampered by the poor survival of grafted cells. Supply of neurotrophic factors to the grafted cells has been proposed as a way to augment survival of the stem cells. In this context, we investigated the utility of Cerebrolysin (CBL), a peptidergic mixture with neurotrophic-like properties, as an adjunct to stem cell therapy in an APP transgenic (tg) model of AD. We grafted murine NSCs into the hippocampus of non-tg and APP tg that were treated systemically with CBL and analyzed after 1, 3, 6 and 9months post grafting. Compared to vehicle-treated non-tg mice, in the vehicle-treated APP tg mice there was considerable reduction in the survival of the grafted NSCs. Whereas, CBL treatment enhanced the survival of NSCs in both non-tg and APP tg with the majority of the surviving NSCs remaining as neuroblasts. The NSCs of the CBL treated mice displayed reduced numbers of caspase-3 and TUNEL positive cells and increased brain derived neurotrophic factor (BDNF) and furin immunoreactivity. These results suggest that CBL might protect grafted NSCs and as such be a potential adjuvant therapy when combined with grafting. Copyright © 2015. Published by Elsevier B.V.

  5. Non-monotonic changes in clonogenic cell survival induced by disulphonated aluminum phthalocyanine photodynamic treatment in a human glioma cell line

    PubMed Central

    2010-01-01

    Background Photodynamic therapy (PDT) involves excitation of sensitizer molecules by visible light in the presence of molecular oxygen, thereby generating reactive oxygen species (ROS) through electron/energy transfer processes. The ROS, thus produced can cause damage to both the structure and the function of the cellular constituents resulting in cell death. Our preliminary investigations of dose-response relationships in a human glioma cell line (BMG-1) showed that disulphonated aluminum phthalocyanine (AlPcS2) photodynamically induced loss of cell survival in a concentration dependent manner up to 1 μM, further increases in AlPcS2concentration (>1 μM) were, however, observed to decrease the photodynamic toxicity. Considering the fact that for most photosensitizers only monotonic dose-response (survival) relationships have been reported, this result was unexpected. The present studies were, therefore, undertaken to further investigate the concentration dependent photodynamic effects of AlPcS2. Methods Concentration-dependent cellular uptake, sub-cellular localization, proliferation and photodynamic effects of AlPcS2 were investigated in BMG-1 cells by absorbance and fluorescence measurements, image analysis, cell counting and colony forming assays, flow cytometry and micronuclei formation respectively. Results The cellular uptake as a function of extra-cellular AlPcS2 concentrations was observed to be biphasic. AlPcS2 was distributed throughout the cytoplasm with intense fluorescence in the perinuclear regions at a concentration of 1 μM, while a weak diffuse fluorescence was observed at higher concentrations. A concentration-dependent decrease in cell proliferation with accumulation of cells in G2+M phase was observed after PDT. The response of clonogenic survival after AlPcS2-PDT was non-monotonic with respect to AlPcS2 concentration. Conclusions Based on the results we conclude that concentration-dependent changes in physico-chemical properties of sensitizer

  6. Creatine Enhances Mitochondrial-Mediated Oligodendrocyte Survival After Demyelinating Injury.

    PubMed

    Chamberlain, Kelly A; Chapey, Kristen S; Nanescu, Sonia E; Huang, Jeffrey K

    2017-02-08

    Chronic oligodendrocyte loss, which occurs in the demyelinating disorder multiple sclerosis (MS), contributes to axonal dysfunction and neurodegeneration. Current therapies are able to reduce MS severity, but do not prevent transition into the progressive phase of the disease, which is characterized by chronic neurodegeneration. Therefore, pharmacological compounds that promote oligodendrocyte survival could be beneficial for neuroprotection in MS. Here, we investigated the role of creatine, an organic acid involved in adenosine triphosphate (ATP) buffering, in oligodendrocyte function. We found that creatine increased mitochondrial ATP production directly in oligodendrocyte lineage cell cultures and exerted robust protection on oligodendrocytes by preventing cell death in both naive and lipopolysaccharide-treated mixed glia. Moreover, lysolecithin-mediated demyelination in mice deficient in the creatine-synthesizing enzyme guanidinoacetate-methyltransferase ( Gamt ) did not affect oligodendrocyte precursor cell recruitment, but resulted in exacerbated apoptosis of regenerated oligodendrocytes in central nervous system (CNS) lesions. Remarkably, creatine administration into Gamt -deficient and wild-type mice with demyelinating injury reduced oligodendrocyte apoptosis, thereby increasing oligodendrocyte density and myelin basic protein staining in CNS lesions. We found that creatine did not affect the recruitment of macrophages/microglia into lesions, suggesting that creatine affects oligodendrocyte survival independently of inflammation. Together, our results demonstrate a novel function for creatine in promoting oligodendrocyte viability during CNS remyelination. SIGNIFICANCE STATEMENT We report that creatine enhances oligodendrocyte mitochondrial function and protects against caspase-dependent oligodendrocyte apoptosis during CNS remyelination. This work has important implications for the development of therapeutic targets for diseases characterized by

  7. Creatine Enhances Mitochondrial-Mediated Oligodendrocyte Survival After Demyelinating Injury

    PubMed Central

    Nanescu, Sonia E.

    2017-01-01

    Chronic oligodendrocyte loss, which occurs in the demyelinating disorder multiple sclerosis (MS), contributes to axonal dysfunction and neurodegeneration. Current therapies are able to reduce MS severity, but do not prevent transition into the progressive phase of the disease, which is characterized by chronic neurodegeneration. Therefore, pharmacological compounds that promote oligodendrocyte survival could be beneficial for neuroprotection in MS. Here, we investigated the role of creatine, an organic acid involved in adenosine triphosphate (ATP) buffering, in oligodendrocyte function. We found that creatine increased mitochondrial ATP production directly in oligodendrocyte lineage cell cultures and exerted robust protection on oligodendrocytes by preventing cell death in both naive and lipopolysaccharide-treated mixed glia. Moreover, lysolecithin-mediated demyelination in mice deficient in the creatine-synthesizing enzyme guanidinoacetate-methyltransferase (Gamt) did not affect oligodendrocyte precursor cell recruitment, but resulted in exacerbated apoptosis of regenerated oligodendrocytes in central nervous system (CNS) lesions. Remarkably, creatine administration into Gamt-deficient and wild-type mice with demyelinating injury reduced oligodendrocyte apoptosis, thereby increasing oligodendrocyte density and myelin basic protein staining in CNS lesions. We found that creatine did not affect the recruitment of macrophages/microglia into lesions, suggesting that creatine affects oligodendrocyte survival independently of inflammation. Together, our results demonstrate a novel function for creatine in promoting oligodendrocyte viability during CNS remyelination. SIGNIFICANCE STATEMENT We report that creatine enhances oligodendrocyte mitochondrial function and protects against caspase-dependent oligodendrocyte apoptosis during CNS remyelination. This work has important implications for the development of therapeutic targets for diseases characterized by

  8. Mitochondrial complex II is a source of the reserve respiratory capacity that is regulated by metabolic sensors and promotes cell survival.

    PubMed

    Pfleger, J; He, M; Abdellatif, M

    2015-07-30

    The survival of a cell depends on its ability to meet its energy requirements. We hypothesized that the mitochondrial reserve respiratory capacity (RRC) of a cell is a critical component of its bioenergetics that can be utilized during an increase in energy demand, thereby, enhancing viability. Our goal was to identify the elements that regulate and contribute to the development of RRC and its involvement in cell survival. The results show that activation of metabolic sensors, including pyruvate dehydrogenase and AMP-dependent kinase, increases cardiac myocyte RRC via a Sirt3-dependent mechanism. Notably, we identified mitochondrial complex II (cII) as a target of these metabolic sensors and the main source of RRC. Moreover, we show that RRC, via cII, correlates with enhanced cell survival after hypoxia. Thus, for the first time, we show that metabolic sensors via Sirt3 maximize the cellular RRC through activating cII, which enhances cell survival after hypoxia.

  9. Hes-1 SUMOylation by protein inhibitor of activated STAT1 enhances the suppressing effect of Hes-1 on GADD45α expression to increase cell survival

    PubMed Central

    2014-01-01

    Background Hairy and Enhancer of split 1 (Hes-1) is a transcriptional repressor that plays an important role in neuronal differentiation and development, but post-translational modifications of Hes-1 are much less known. In the present study, we aimed to investigate whether Hes-1 could be SUMO-modified and identify the candidate SUMO acceptors on Hes-1. We also wished to examine the role of the SUMO E3 ligase protein inhibitor of activated STAT1 (PIAS1) in SUMOylation of Hes-1 and the molecular mechanism of Hes-1 SUMOylation. Further, we aimed to identify the molecular target of Hes-1 and examine how Hes-1 SUMOylation affects its molecular target to affect cell survival. Results In this study, by using HEK293T cells, we have found that Hes-1 could be SUMO-modified and Hes-1 SUMOylation was greatly enhanced by the SUMO E3 ligase PIAS1 at Lys8, Lys27 and Lys39. Furthermore, Hes-1 SUMOylation stabilized the Hes-1 protein and increased the transcriptional suppressing activity of Hes-1 on growth arrest and DNA damage-inducible protein alpha (GADD45α) expression. Overexpression of GADD45α increased, whereas knockdown of GADD45αα expression decreased cell apoptosis. In addition, H2O2 treatment increased the association between PIAS1 and Hes-1 and enhanced the SUMOylation of Hes-1 for endogenous protection. Overexpression of Hes-1 decreased H2O2-induced cell death, but this effect was blocked by transfection of the Hes-1 triple sumo-mutant (Hes-1 3KR). Overexpression of PIAS1 further facilitated the anti-apoptotic effect of Hes-1. Moreover, Hes-1 SUMOylation was independent of Hes-1 phosphorylation and vice versa. Conclusions The present results revealed, for the first time, that Hes-1 could be SUMO-modified by PIAS1 and GADD45α is a novel target of Hes-1. Further, Hes-1 SUMOylation mediates cell survival through enhanced suppression of GADD45α expression. These results revealed a novel role of Hes-1 in addition to its involvement in Notch signaling. They also

  10. Potentiation of Inflammatory CXCL8 Signalling Sustains Cell Survival in PTEN-deficient Prostate Carcinoma

    PubMed Central

    Maxwell, Pamela J.; Coulter, Jonathan; Walker, Steven M.; McKechnie, Melanie; Neisen, Jessica; McCabe, Nuala; Kennedy, Richard D.; Salto-Tellez, Manuel; Albanese, Chris; Waugh, David J.J.

    2014-01-01

    Background: Inflammation and genetic instability are enabling characteristics of prostate carcinoma (PCa). Inactivation of the tumour suppressor gene phosphatase and tensin homolog (PTEN) is prevalent in early PCa. The relationship of PTEN deficiency to inflammatory signalling remains to be characterised. Objective: To determine how loss of PTEN functionality modulates expression and efficacy of clinically relevant, proinflammatory chemokines in PCa. Design, setting, and participants: Experiments were performed in established cell-based PCa models, supported by pathologic analysis of chemokine expression in prostate tissue harvested from PTEN heterozygous (Pten+/−) mice harbouring inactivation of one PTEN allele. Interventions: Small interfering RNA (siRNA)–or small hairpin RNA (shRNA)–directed strategies were used to repress PTEN expression and resultant interleukin-8 (CXCL8) signalling, determined under normal and hypoxic culture conditions. Outcome measurements and statistical analysis: Changes in chemokine expression in PCa cells and tissue were analysed by real-time polymerase chain reaction (PCR), immunoblotting, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry; effects of chemokine signalling on cell function were assessed by cell cycle analysis, apoptosis, and survival assays. Results and limitations: Transient (siRNA) or prolonged (shRNA) PTEN repression increased expression of CXCL8 and its receptors, chemokine (C-X-C motif) receptor (CXCR) 1 and CXCR2, in PCa cells. Hypoxia-induced increases in CXCL8, CXCR1, and CXCR2 expression were greater in magnitude and duration in PTEN-depleted cells. Autocrine CXCL8 signalling was more efficacious in PTEN-depleted cells, inducing hypoxia-inducible factor-1 (HIF-1) and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) transcription and regulating genes involved in survival and angiogenesis. Increased expression of the orthologous chemokine KC was observed in regions

  11. Downregulation of cell survival signalling pathways and increased cell damage in hydrogen peroxide-treated human renal proximal tubular cells by alpha-erythropoietin.

    PubMed

    Andreucci, M; Fuiano, G; Presta, P; Lucisano, G; Leone, F; Fuiano, L; Bisesti, V; Esposito, P; Russo, D; Memoli, B; Faga, T; Michael, A

    2009-08-01

    Erythropoietin has been shown to have a protective effect in certain models of ischaemia-reperfusion, and in some cases the protection has been correlated with activation of signalling pathways known to play a role in cell survival and proliferation. We have studied whether erythropoietin would overcome direct toxic effects of hydrogen peroxide (H(2)O(2)) treatment to human renal proximal tubular (HK-2) cells. HK-2 cells were incubated with H(2)O(2) (2 mm) for 2 h with or without erythropoietin at concentrations of 100 and 400 U/ml, and cell viability/proliferation was assessed by chemical reduction of MTT. Changes in phosphorylation state of the kinases Akt, glycogen synthase kinase-3beta (GSK-3beta), mammalian target of rapamycin (mTOR) and extracellular signal-regulated kinase 1 and 2 (ERK1/ERK2) were also analysed. Cells incubated with H(2)O(2) alone showed a significant decrease in viability, which did not significantly change by addition of erythropoietin at concentration of 100 U/ml, but was further reduced when concentration of erythropoietin was increased to 400 U/ml. Phosphorylation state of the kinases Akt, GSK-3beta, mTOR and ERK1/ERK2 of H(2)O(2)-treated HK-2 cells was slightly altered in the presence of erythropoietin at concentration of 100 U/ml, but was significantly less in the presence of erythropoietin at a concentration of 400 U/ml. Phosphorylation of forkhead transcription factor FKHRL1 was diminished in cells incubated with H(2)O(2) and erythropoietin at a concentration of 400 U/ml. Erythropoietin, at high concentrations, may significantly increase cellular damage in HK-2 cells subjected to oxidative stress, which may be due in part to decrease in activation of important signalling pathways involved in cell survival and/or cell proliferation.

  12. Renal Allograft Survival in Nonhuman Primates Infused with Donor Antigen-Pulsed Autologous Regulatory Dendritic Cells

    PubMed Central

    Ezzelarab, M.B.; Raich-Regue, D.; Lu, L.; Zahorchak, A.F.; Perez-Gutierrez, A.; Humar, A.; Wijkstrom, M.; Minervini, M.; Wiseman, R.W.; Cooper, D.K.C.; Morelli, A.E.; Thomson, A.W.

    2017-01-01

    Systemic administration of autologous regulatory dendritic cells (DCreg; unpulsed or pulsed with donor antigen [Ag]), prolongs allograft survival and promotes transplant tolerance in rodents. Here, we demonstrate that nonhuman primate (NHP) monocyte-derived DCreg pre-loaded with cell membrane vesicles from allogeneic PBMC, induce T cell hyporesponsiveness to donor alloAg in vitro. These donor alloAg-pulsed autologous DCreg (1.4–3.6 x 106/kg) were administered intravenously, one day before MHC-mismatched renal transplantation to rhesus monkeys treated with costimulation blockade (cytotoxic T lymphocyte Ag 4 [CTLA4] Ig) and tapered rapamycin. Prolongation of graft median survival time from 39.5 days (no DCreg infusion; n=6 historical controls) and 29 days with control unpulsed DCreg (n=2), to 56 days with donor Ag-pulsed DCreg (n=5), was associated with evidence of modulated host CD4+ and CD8+ T cell responses to donor Ag and attenuation of systemic IL-17 production. Circulating anti-donor antibody (Ab) was not detected until CTLA4Ig withdrawal. One monkey treated with donor Ag-pulsed DCreg rejected its graft in association with progressively elevated anti-donor Ab, 525 days post-transplant (160 days after withdrawal of immunosuppression). These findings indicate a modest but not statistically significant beneficial effect of donor Ag-pulsed autologous DCreg infusion on NHP graft survival when administered with a minimal immunosuppressive drug regimen. PMID:28009481

  13. Redundant Function of Plasmacytoid and Conventional Dendritic Cells Is Required To Survive a Natural Virus Infection.

    PubMed

    Kaminsky, Lauren W; Sei, Janet J; Parekh, Nikhil J; Davies, Michael L; Reider, Irene E; Krouse, Tracy E; Norbury, Christopher C

    2015-10-01

    Viruses that spread systemically from a peripheral site of infection cause morbidity and mortality in the human population. Innate myeloid cells, including monocytes, macrophages, monocyte-derived dendritic cells (mo-DC), and dendritic cells (DC), respond early during viral infection to control viral replication, reducing virus spread from the peripheral site. Ectromelia virus (ECTV), an orthopoxvirus that naturally infects the mouse, spreads systemically from the peripheral site of infection and results in death of susceptible mice. While phagocytic cells have a requisite role in the response to ECTV, the requirement for individual myeloid cell populations during acute immune responses to peripheral viral infection is unclear. In this study, a variety of myeloid-specific depletion methods were used to dissect the roles of individual myeloid cell subsets in the survival of ECTV infection. We showed that DC are the primary producers of type I interferons (T1-IFN), requisite cytokines for survival, following ECTV infection. DC, but not macrophages, monocytes, or granulocytes, were required for control of the virus and survival of mice following ECTV infection. Depletion of either plasmacytoid DC (pDC) alone or the lymphoid-resident DC subset (CD8α(+) DC) alone did not confer lethal susceptibility to ECTV. However, the function of at least one of the pDC or CD8α(+) DC subsets is required for survival of ECTV infection, as mice depleted of both populations were susceptible to ECTV challenge. The presence of at least one of these DC subsets is sufficient for cytokine production that reduces ECTV replication and virus spread, facilitating survival following infection. Prior to the eradication of variola virus, the orthopoxvirus that causes smallpox, one-third of infected people succumbed to the disease. Following successful eradication of smallpox, vaccination rates with the smallpox vaccine have significantly dropped. There is now an increasing incidence of zoonotic

  14. Brain-Derived Neurotrophic Factor Induces Cell Survival and the Migration of Murine Adult Hippocampal Precursor Cells During Differentiation In Vitro.

    PubMed

    Ortiz-López, Leonardo; Vega-Rivera, Nelly Maritza; Babu, Harish; Ramírez-Rodríguez, Gerardo Bernabé

    2017-01-01

    The generation of new neurons during adulthood involves local precursor cell migration and terminal differentiation in the dentate gyrus. These events are influenced by the hippocampal microenvironment. Brain-derived neurotrophic factor (BDNF) is relevant for hippocampal neuronal development and behavior. Interestingly, studies that have been performed in controlled in vitro systems that involve isolated precursor cells that were derived from the dentate gyrus (AHPCs) have shown that BDNF induces the activation of the TrkB receptor and, consequentially, might activate signaling pathways that favor survival and neuronal differentiation. Based on the fact that the cellular events of AHPCs that are induced by single factors can be studied in this controlled in vitro system, we investigated the ability of BDNF and the involvement of protein kinase C (PKC), as one of the TrkB-downstream activated signaling proteins, in the regulation of migration, here reflected by motility, of AHPCs. Precursor cells were cultured following a concentration-response curve (1-640 ng/ml) for 24 or 96 h. We found that BDNF favored cell survival without altering the viability under culture proliferative conditions of the AHPCs. Concomitantly, glial- and neuronal-differentiated precursor cells increased as a consequence of survival promoted by BDNF. Additionally, pharmacological approaches showed that BDNF (40 ng/ml)-induced migration of AHPCs was blocked with the compounds K252a and GF109203x, which prevent the activation of TrkB and PKC, respectively. The results indicate that in the in vitro migration of differentiated AHPCs it is involved the BDNF and TrkB cascade. Our results provide additional information about the mechanism by which BDNF impacts adult neurogenesis in the hippocampus.

  15. p63 and Ki-67 immunostainings in laryngeal squamous cell carcinoma are related to survival.

    PubMed

    Re, M; Zizzi, A; Ferrante, L; Stramazzotti, D; Goteri, G; Gioacchini, F M; Olivieri, F; Magliulo, G; Rubini, C

    2014-06-01

    To examine the prognostic significance of the immunohistochemical expression of p63 and Ki-67 oncoproteins in patients with laryngeal squamous cell carcinoma, a retrospective evaluation was carried out on a cohort of 108 patients with primary laryngeal squamous cell carcinoma (LSCC) treated by primary surgery. For the immunohistochemical evaluation, tissue section obtained by formalin-fixed and paraffin-embedded tissue blocks from resection of each patient was used. Clinicopathologic data were associated with the immunostaining results. The association among the considered variables was assessed by Fisher's exact test, Mann-Whitney test, non-parametric χ(2) test, and Spearman's rho rank test was used to assess the relations among them. Differences in p63 and Ki-67 immunoreactivity among the different groups were compared via Kruskal-Wallis test and post hoc tests were performed using Mann-Whitney test with Bonferroni correction. The overall survival rate was estimated via Kaplan-Meier method, and the cumulative incidence functions for different groups were compared using log-rank statistics. Cox proportional hazard model was employed in a multivariate analysis to assess the effect of prognostic factors in the overall survival rate. Furthermore, taking into account death due to other causes, we estimated LSCC-related survival and disease-free survival rates using competing risk analysis. The results of immunohistochemical examination showed a statistically significant relationship between the up-regulation of P63 and Ki-67, an increase in histological grading, and primary tumours associated with lymph node metastases. p63 and Ki-67 up-regulation was related to a shorter disease-free survival and a significant association was found between p63 and Ki-67 percentage of positive cells and patient survival. Finally, we noticed a significant relation between p63 and Ki-67 (ρ = 0.87). On the other hand, no statistically significant associations were found between p63 and

  16. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival

    PubMed Central

    Li, Xuezhi; Lavigne, Pierre; Lavoie, Christine

    2015-01-01

    Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses. PMID:26446845

  17. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells.

    PubMed

    Takada, Honami; Imadome, Ken-Ichi; Shibayama, Haruna; Yoshimori, Mayumi; Wang, Ludan; Saitoh, Yasunori; Uota, Shin; Yamaoka, Shoji; Koyama, Takatoshi; Shimizu, Norio; Yamamoto, Kouhei; Fujiwara, Shigeyoshi; Miura, Osamu; Arai, Ayako

    2017-01-01

    Epstein-Barr virus (EBV) has been detected in several T- and NK-cell neoplasms such as extranodal NK/T-cell lymphoma nasal type, aggressive NK-cell leukemia, EBV-positive peripheral T-cell lymphoma, systemic EBV-positive T-cell lymphoma of childhood, and chronic active EBV infection (CAEBV). However, how this virus contributes to lymphomagenesis in T or NK cells remains largely unknown. Here, we examined NF-κB activation in EBV-positive T or NK cell lines, SNT8, SNT15, SNT16, SNK6, and primary EBV-positive and clonally proliferating T/NK cells obtained from the peripheral blood of patients with CAEBV. Western blotting, electrophoretic mobility shift assays, and immunofluorescent staining revealed persistent NF-κB activation in EBV-infected cell lines and primary cells from patients. Furthermore, we investigated the role of EBV in infected T cells. We performed an in vitro infection assay using MOLT4 cells infected with EBV. The infection directly induced NF-κB activation, promoted survival, and inhibited etoposide-induced apoptosis in MOLT4 cells. The luciferase assay suggested that LMP1 mediated NF-κB activation in MOLT4 cells. IMD-0354, a specific inhibitor of NF-κB that suppresses NF-κB activation in cell lines, inhibited cell survival and induced apoptosis. These results indicate that EBV induces NF-κB-mediated survival signals in T and NK cells, and therefore, may contribute to the lymphomagenesis of these cells.

  18. EBV induces persistent NF-κB activation and contributes to survival of EBV-positive neoplastic T- or NK-cells

    PubMed Central

    Shibayama, Haruna; Yoshimori, Mayumi; Wang, Ludan; Saitoh, Yasunori; Uota, Shin; Yamaoka, Shoji; Koyama, Takatoshi; Shimizu, Norio; Yamamoto, Kouhei; Fujiwara, Shigeyoshi; Miura, Osamu

    2017-01-01

    Epstein–Barr virus (EBV) has been detected in several T- and NK-cell neoplasms such as extranodal NK/T-cell lymphoma nasal type, aggressive NK-cell leukemia, EBV-positive peripheral T-cell lymphoma, systemic EBV-positive T-cell lymphoma of childhood, and chronic active EBV infection (CAEBV). However, how this virus contributes to lymphomagenesis in T or NK cells remains largely unknown. Here, we examined NF-κB activation in EBV-positive T or NK cell lines, SNT8, SNT15, SNT16, SNK6, and primary EBV-positive and clonally proliferating T/NK cells obtained from the peripheral blood of patients with CAEBV. Western blotting, electrophoretic mobility shift assays, and immunofluorescent staining revealed persistent NF-κB activation in EBV-infected cell lines and primary cells from patients. Furthermore, we investigated the role of EBV in infected T cells. We performed an in vitro infection assay using MOLT4 cells infected with EBV. The infection directly induced NF-κB activation, promoted survival, and inhibited etoposide-induced apoptosis in MOLT4 cells. The luciferase assay suggested that LMP1 mediated NF-κB activation in MOLT4 cells. IMD-0354, a specific inhibitor of NF-κB that suppresses NF-κB activation in cell lines, inhibited cell survival and induced apoptosis. These results indicate that EBV induces NF-κB-mediated survival signals in T and NK cells, and therefore, may contribute to the lymphomagenesis of these cells. PMID:28346502

  19. Prolonged survival of dendritic cell-vaccinated melanoma patients correlates with tumor-specific delayed type IV hypersensitivity response and reduction of tumor growth factor beta-expressing T cells.

    PubMed

    López, Mercedes N; Pereda, Cristian; Segal, Gabriela; Muñoz, Leonel; Aguilera, Raquel; González, Fermín E; Escobar, Alejandro; Ginesta, Alexandra; Reyes, Diego; González, Rodrigo; Mendoza-Naranjo, Ariadna; Larrondo, Milton; Compán, Alvaro; Ferrada, Carlos; Salazar-Onfray, Flavio

    2009-02-20

    The aim of this work was to assess immunologic response, disease progression, and post-treatment survival of melanoma patients vaccinated with autologous dendritic cells (DCs) pulsed with a novel allogeneic cell lysate (TRIMEL) derived from three melanoma cell lines. Forty-three stage IV and seven stage III patients were vaccinated four times with TRIMEL/DC vaccine. Specific delayed type IV hypersensitivity (DTH) reaction, ex vivo cytokine production, and regulatory T-cell populations were determined. Overall survival and disease progression rates were analyzed using Kaplan-Meier curves and compared with historical records. The overall survival for stage IV patients was 15 months. More than 60% of patients showed DTH-positive reaction against the TRIMEL. Stage IV/DTH-positive patients displayed a median survival of 33 months compared with 11 months observed for DTH-negative patients (P = .0014). All stage III treated patients were DTH positive and remained alive and tumor free for a median follow-up period of 48 months (range, 33 to 64 months). DTH-positive patients showed a marked reduction in the proportion of CD4+ transforming growth factor (TGF) beta+ regulatory T cells compared to DTH-negative patients (1.54% v 5.78%; P < .0001). Our findings strongly suggest that TRIMEL-pulsed DCs provide a standardized and widely applicable source of melanoma antigens, very effective in evoking antimelanoma immune response. To our knowledge, this is the first report describing a correlation between vaccine-induced reduction of CD4+TGFbeta+ regulatory T cells and in vivo antimelanoma immune response associated to improved patient survival and disease stability.

  20. Cystatin F Affects Natural Killer Cell Cytotoxicity

    PubMed Central

    Perišić Nanut, Milica; Sabotič, Jerica; Švajger, Urban; Jewett, Anahid; Kos, Janko

    2017-01-01

    Cystatin F is a cysteine peptidase inhibitor which, unlike other cystatin family members, is targeted to endosomal/lysosomal compartments. It is synthesized as an inactive disulfide-linked dimer which is then converted to an active monomer by proteolytic cleavage of 15 N-terminal residues. Cystatin F has been suggested to regulate the cytotoxicity of natural killer (NK) cells by inhibiting the major granzyme convertases, cathepsins C and H. To test this hypothesis, we prepared variants of cystatin F and analyzed their uptake, subcellular trafficking, and peptidase inhibition, as well as their impact on the cytotoxicity of NK-92 cells and primary NK cells. The N-glycosylation pattern is responsible for the secretion, uptake, and subcellular sorting of cystatin F in HeLa and Hek293 cells, whereas the legumain binding site had no effect on these processes. Active, N-terminally truncated, monomeric cystatin F can also be internalized by recipient cells and targeted to endo/lysosomes, affecting also cells lacking the activating peptidase. Cystatin F mutants capable of cell internalization and trafficking through the endo/lysosomal pathway significantly decreased cathepsin C and H activities, both in situ, following transfection and in trans, using conditioned media. Further, incubation of IL-2 stimulated NK-92 and primary NK cells with full-length and N-terminally truncated cystatin F mutants led to suppression of their granule-mediated cytotoxicity. This effect was most significant with the N-terminally truncated mutants. These results suggest that cystatin F can be an important mediator within tumor microenvironment affecting the cytotoxicity of NK cells and consequently antitumor immune response. PMID:29180998

  1. Enforced expression of KDR receptor promotes proliferation, survival and megakaryocytic differentiation of TF1 progenitor cell line.

    PubMed

    Coppola, S; Narciso, L; Feccia, T; Bonci, D; Calabrò, L; Morsilli, O; Gabbianelli, M; De Maria, R; Testa, U; Peschle, C

    2006-01-01

    Vascular endothelial growth factor (VEGF) receptor-2/kinase insert domain-containing receptor (KDR) is expressed in primitive hematopoietic cells, in megakaryocytes and platelets. In primitive hematopoiesis KDR mediates cell survival via autocrine VEGF, while its effect on cell growth and differentiation has not been elucidated. We induced enforced KDR expression in the granulocyte macrophage-colony-stimulating factor (GM-CSF)-dependent TF1 progenitor cell line (TF1-KDR), treated the cells with VEGF and analyzed their response. In GM-CSF-deprived cells, VEGF induces cell proliferation and protection against apoptosis, followed by enhanced expression of megakaryocytic (MK) markers. Combined with GM-CSF, VEGF induces a mild proliferative stimulus, followed by cell adherence, accumulation in G0/G1, massive MK differentiation and Fas-mediated apoptosis. Accordingly, we observed that MK-differentiating cells, derived from hematopoietic progenitors, produce VEGF, express KDR, inhibition of which reduces MK differentiation, indicating a key role of KDR in megakaryopoiesis. In conclusion, TF1-KDR cells provide a reliable model to investigate the biochemical and molecular mechanisms underlying hematopoietic progenitor proliferation, survival and MK differentiation.

  2. Toll-Like Receptor 4 Stimulation before or after Streptococcus pneumoniae Induced Sepsis Improves Survival and Is Dependent on T-Cells

    PubMed Central

    Martin, Edward N.; Scheld, W. Michael

    2014-01-01

    Introduction Endotoxin tolerance improves outcomes from gram negative sepsis but the underlying mechanism is not known. We determined if endotoxin tolerance before or after pneumococcal sepsis improved survival and the role of lymphocytes in this protection. Methods Mice received lipopolysaccharide (LPS) or vehicle before or after a lethal dose of Streptococcus pneumoniae. Survival, quantitative bacteriology, liver function, and cytokine concentrations were measured. We confirmed the necessity of Toll-like receptor 4 (TLR4) for endotoxin tolerance using C3H/HeN (TLR4 replete) and C3H/HeJ (TLR4 deficient) mice. The role of complement was investigated through A/J mice deficient in C5 complement. CBA/CaHN-Btkxid//J mice with dysfunctional B cells and Rag-1 knockout (KO) mice deficient in T and B cells delineated the role of lymphocytes. Results Endotoxin tolerance improved survival from pneumococcal sepsis in mice with TLR4 that received LPS pretreatment or posttreatment. Survival was associated with reduced bacterial burden and serum cytokine concentrations. Death was associated with abnormal liver function and blood glucose concentrations. Endotoxin tolerance improved survival in A/J and CBA/CaHN-Btkxid//J mice but not Rag-1 KO mice. Conclusions TLR4 stimulation before or after S. pneumoniae infection improved survival and was dependent on T-cells but did not require an intact complement cascade or functional B cells. PMID:24465843

  3. The effect of adjuvant radiation on survival in early stage clear cell ovarian carcinoma.

    PubMed

    Hogen, Liat; Thomas, Gillian; Bernardini, Marcus; Bassiouny, Dina; Brar, Harinder; Gien, Lilian T; Rosen, Barry; Le, Lisa; Vicus, Danielle

    2016-11-01

    To assess the impact of adjuvant radiotherapy (RT) on survival in patients with stage I and II ovarian clear cell carcinoma (OCCC). Data collection and analysis of stage I and II OCCC patients treated at two tertiary centers in Toronto, between 1995 and 2014, was performed. Descriptive statistics and Kaplan-Meier survival probability estimates were completed. The log-rank test was used to compare survival curves. 163 patients were eligible. 44 (27%) patients were treated with adjuvant RT: 37 of them received adjuvant chemotherapy (CT), and 7 had RT only. In the no-RT group, there were 119 patients: 83 patients received adjuvant CT and 36 had no adjuvant treatment. The 10year progression free survival (PFS) was 65% for patients treated with RT, and 59% no-RT patients. There were a total of 41 (25%) recurrences in the cohort: 12 (27.2%) patients in RT group and 29 (24.3%) in the no-RT group. On multivariable analysis, adjuvant RT was not significantly associated with an increased PFS (0.85 (0.44-1.63) p=0.63) or overall survival (OS) (0.84 (0.39-1.82) p=0.66). In the subset of 59 patients defined as high-risk: stage IC with positive cytology and/or surface involvement and stage II: RT was not found to be associated with a better PFS (HR 1.18 (95% CI: 0.55-2.54) or O S(HR 1.04 (95% CI: 0.40-2.69)). Adjuvant RT was not found to be associated with a survival benefit in patients with stage I and II ovarian clear cell carcinoma or in a high risk subset of patients including stage IC cytology positive/surface involvement and stage II patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Donor B cells in Transplants Augment Clonal Expansion and Survival of Pathogenic CD4+ T cells That Mediate Autoimmune-like Chronic GVHD

    PubMed Central

    Young, James S; Wu, Tao; Chen, Yuhong; Zhao, Dongchang; Liu, Hongjun; Yi, Tangsheng; Johnston, Heather; Racine, Jeremy; Li, Xiaofan; Wang, Audrey; Todorov, Ivan; Zeng, Defu

    2013-01-01

    We reported that both donor CD4+ T and B cells in transplants were required for induction of an autoimmune-like chronic graft versus host disease (cGVHD) in a murine model of DBA/2 donor to BALB/c recipient, but mechanisms whereby donor B cells augment cGVHD pathogenesis remain unknown. Here, we report that, although donor B cells have little impact on acute GVHD (aGVHD) severity, they play an important role in augmenting the persistence of tissue damage in the acute and chronic GVHD overlapping target organs (i.e. skin and lung); they also markedly augment damage in a prototypical cGVHD target organ- the salivary gland. During cGVHD pathogenesis, donor B cells are activated by donor CD4+ T cells to upregulate MHC II and co-stimulatory molecules. Acting as efficient APCs, donor B cells augment donor CD4+ T clonal expansion, autoreactivity, IL-7Rα expression, and survival. These qualitative changes markedly augment donor CD4+ T cells' capacity in mediating autoimmune-like cGVHD, so that they mediate disease in the absence of donor B cells in secondary recipients. Therefore, a major mechanism whereby donor B cells augment cGVHD is through augmenting the clonal expansion, differentiation and survival of pathogenic CD4+ T cells. PMID:22649197

  5. Neutrophil-to-lymphocyte ratio as an independent predictor for survival in patients with localized clear cell renal cell carcinoma after radiofrequency ablation: a propensity score matching analysis.

    PubMed

    Chang, Xiaofeng; Zhang, Fan; Liu, Tieshi; Wang, Wei; Guo, Hongqian

    2017-06-01

    To investigate the role of neutrophil-to-lymphocyte ratio as a prognostic indicator in patients with localized clear cell renal cell carcinoma treated with radiofrequency ablation. We retrospectively analyzed data from patients with renal cell carcinoma who underwent radiofrequency ablation from 2006 to 2013. The Kaplan-Meier method was used to generate the survival curves according to different categories of neutrophil-to-lymphocyte ratio. Relationships between preoperative neutrophil-to-lymphocyte ratio or the change of neutrophil-to-lymphocyte ratio and survival were evaluated with multivariable Cox proportional hazards regression analysis. A propensity score matching analysis was carried out to avoid confounding bias. A total of 185 patients were included in present study. When stratified by preoperative neutrophil-to-lymphocyte ratio cutoff value of 2.79, 5-year recurrence-free survival, 5-year disease-free survival, and 5-year overall survival rates of neutrophil-to-lymphocyte ratio <2.79 versus ≥2.79 were 100, 98.5, and 99.2% versus 80.5, 72.6, and 90.6%, respectively (P < 0.001, P < 0.001, P = 0.003). In terms of propensity score matching analysis, 5-year recurrence-free survival, 5-year disease-free survival, and 5-year overall survival rates of neutrophil-to-lymphocyte ratio <2.79 versus ≥2.79 were 100, 97.9, and 100% versus 82.3, 73.4, and 89.4%, respectively (P = 0.003, P = 0.001, P = 0.022). When combining preoperative neutrophil-to-lymphocyte ratio with the change of neutrophil-to-lymphocyte ratio, patients with both preoperative neutrophil-to-lymphocyte ratio ≥2.79 and the change of neutrophil-to-lymphocyte ratio ≥0.40 had the worst disease-free survival. Results of multivariable analysis showed that preoperative neutrophil-to-lymphocyte ratio and the change of neutrophil-to-lymphocyte ratio correlated with cancer relapse remarkably. High preoperative neutrophil-to-lymphocyte ratio and elevated postoperative neutrophil

  6. An Optic Nerve Crush Injury Murine Model to Study Retinal Ganglion Cell Survival

    PubMed Central

    Tang, Zhongshu; Zhang, Shuihua; Lee, Chunsik; Kumar, Anil; Arjunan, Pachiappan; Li, Yang; Zhang, Fan; Li, Xuri

    2011-01-01

    Injury to the optic nerve can lead to axonal degeneration, followed by a gradual death of retinal ganglion cells (RGCs), which results in irreversible vision loss. Examples of such diseases in human include traumatic optic neuropathy and optic nerve degeneration in glaucoma. It is characterized by typical changes in the optic nerve head, progressive optic nerve degeneration, and loss of retinal ganglion cells, if uncontrolled, leading to vision loss and blindness. The optic nerve crush (ONC) injury mouse model is an important experimental disease model for traumatic optic neuropathy, glaucoma, etc. In this model, the crush injury to the optic nerve leads to gradual retinal ganglion cells apoptosis. This disease model can be used to study the general processes and mechanisms of neuronal death and survival, which is essential for the development of therapeutic measures. In addition, pharmacological and molecular approaches can be used in this model to identify and test potential therapeutic reagents to treat different types of optic neuropathy. Here, we provide a step by step demonstration of (I) Baseline retrograde labeling of retinal ganglion cells (RGCs) at day 1, (II) Optic nerve crush injury at day 4, (III) Harvest the retinae and analyze RGC survival at day 11, and (IV) Representative result. PMID:21540827

  7. Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells.

    PubMed

    Uchiyama, Masateru; Jin, Xiangyuan; Zhang, Qi; Hirai, Toshihito; Amano, Atsushi; Bashuda, Hisashi; Niimi, Masanori

    2012-03-23

    untreated recipients. Flow cytometry studies showed an increased CD4+CD25+ Forkhead box P3 (Foxp3)+ cell population in splenocytes from those mice. Our findings indicate that exposure to opera music, such as La traviata, could affect such aspects of the peripheral immune response as generation of regulatory CD4+CD25+ cells and up-regulation of anti-inflammatory cytokines, resulting in prolonged allograft survival.

  8. Auditory stimulation of opera music induced prolongation of murine cardiac allograft survival and maintained generation of regulatory CD4+CD25+ cells

    PubMed Central

    2012-01-01

    that from splenocytes of untreated recipients. Flow cytometry studies showed an increased CD4+CD25+ Forkhead box P3 (Foxp3)+ cell population in splenocytes from those mice. Conclusion Our findings indicate that exposure to opera music, such as La traviata, could affect such aspects of the peripheral immune response as generation of regulatory CD4+CD25+ cells and up-regulation of anti-inflammatory cytokines, resulting in prolonged allograft survival. PMID:22445281

  9. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity

    PubMed Central

    Thathia, Shabnam H.; Ferguson, Stuart; Gautrey, Hannah E.; van Otterdijk, Sanne D.; Hili, Michela; Rand, Vikki; Moorman, Anthony V.; Meyer, Stefan; Brown, Robert; Strathdee, Gordon

    2012-01-01

    Background Altered regulation of many transcription factors has been shown to be important in the development of leukemia. TWIST2 modulates the activity of a number of important transcription factors and is known to be a regulator of hematopoietic differentiation. Here, we investigated the significance of epigenetic regulation of TWIST2 in the control of cell growth and survival and in response to cytotoxic agents in acute lymphoblastic leukemia. Design and Methods TWIST2 promoter methylation status was assessed quantitatively, by combined bisulfite and restriction analysis (COBRA) and pyrosequencing assays, in multiple types of leukemia and TWIST2 expression was determined by quantitative reverse transcriptase polymerase chain reaction analysis. The functional role of TWIST2 in cell proliferation, survival and response to chemotherapy was assessed in transient and stable expression systems. Results We found that TWIST2 was inactivated in more than 50% of cases of childhood and adult acute lymphoblastic leukemia through promoter hypermethylation and that this epigenetic regulation was especially prevalent in RUNX1-ETV6-driven cases. Re-expression of TWIST2 in cell lines resulted in a dramatic reduction in cell growth and induction of apoptosis in the Reh cell line. Furthermore, re-expression of TWIST2 resulted in increased sensitivity to the chemotherapeutic agents etoposide, daunorubicin and dexamethasone and TWIST2 hypermethylation was almost invariably found in relapsed adult acute lymphoblastic leukemia (91% of samples hypermethylated). Conclusions This study suggests a dual role for epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia, initially through altering cell growth and survival properties and subsequently by increasing resistance to chemotherapy. PMID:22058208

  10. Survival of akinetes (resting-state cells of cyanobacteria) in low earth orbit and simulated extraterrestrial conditions.

    PubMed

    Olsson-Francis, Karen; de la Torre, Rosa; Towner, Martin C; Cockell, Charles S

    2009-12-01

    Cyanobacteria are photosynthetic organisms that have been considered for space applications, such as oxygen production in bioregenerative life support systems, and can be used as a model organism for understanding microbial survival in space. Akinetes are resting-state cells of cyanobacteria that are produced by certain genera of heterocystous cyanobacteria to survive extreme environmental conditions. Although they are similar in nature to endospores, there have been no investigations into the survival of akinetes in extraterrestrial environments. The aim of this work was to examine the survival of akinetes from Anabaena cylindrica in simulated extraterrestrial conditions and in Low Earth Orbit (LEO). Akinetes were dried onto limestone rocks and sent into LEO for 10 days on the ESA Biopan VI. In ground-based experiments, the rocks were exposed to periods of desiccation, vacuum (0.7×10(-3) kPa), temperature extremes (-80 to 80°C), Mars conditions (-27°C, 0.8 kPa, CO(2)) and UV radiation (325-400 nm). A proportion of the akinete population was able to survive a period of 10 days in LEO and 28 days in Mars simulated conditions, when the rocks were not subjected to UV radiation. Furthermore, the akinetes were able to survive 28 days of exposure to desiccation and low temperature with high viability remaining. Yet long periods of vacuum and high temperature were lethal to the akinetes. This work shows that akinetes are extreme-tolerating states of cyanobacteria that have a practical use in space applications and yield new insight into the survival of microbial resting-state cells in space conditions.

  11. Curcumin Promotes Autophagic Survival of a Sub-Set of Colon Cancer Stem Cells, which are Ablated by DCLK1-siRNA

    PubMed Central

    Kantara, Carla; O’Connell, Malaney; Sarkar, Shubhashish; Moya, Stephanie; Ullrich, Robert; Singh, Pomila

    2014-01-01

    Curcumin is known to induce apoptosis of cancer cells by different mechanisms, but its effects on cancer stem-like cells have been less investigated. Here we report that curcumin promotes the survival of DCLK1-positive colon cancer stem-like cells (CSC), potentially confounding application of its anticancer properties. At optimal concentrations, curcumin greatly reduced expression levels of stem cell markers (DCLK1/CD44/ALDHA1/Lgr5/Nanog) in 3D spheroid cultures and tumor xenografts derived from colon cancer cells. However, curcumin unexpectedly induced proliferation and autophagic survival of a subset of DCLK1-positive CSCs. Spheroid cultures were disintegrated by curcumin in vitro but re-grew within 30–40 days of treatment, suggesting a survival benefit from autophagy, permitting long-term persistence of CRC. Notably, RNAi-mediated silencing of DCLK1 triggered apoptotic cell death of colon cancer cells in vitro and in vivo, and abolished CRC survival in response to curcumin; combination of DCLK1-siRNA and curcumin dramatically reversed CSC phenotype, contributing to attenuation of the growth of spheroid cultures and tumor xenografts. Taken together, our findings confirm a role of DCLK1 in colon cancer stem cells and highlight DCLK1 as a target to enhance antitumor properties of curcumin. PMID:24626093

  12. Over-expression of Thioredoxin-1 mediates growth, survival, and chemoresistance and is a druggable target in diffuse large B-cell lymphoma

    PubMed Central

    Li, Changping; Thompson, Michael A.; Tamayo, Archito T.; Zuo, Zhuang; Lee, John; Vega, Francisco; Ford, Richard J.; Pham, Lan V.

    2012-01-01

    Diffuse Large B cell lymphomas (DLBCL) are the most prevalent of the non-Hodgkin lymphomas and are currently initially treated fairly successfully, but frequently relapse as refractory disease, resulting in poor salvage therapy options and short survival. The greatest challenge in improving survival of DLBCL patients is overcoming chemo-resistance, whose basis is poorly understood. Among the potential mediators of DLBCL chemo-resistance is the thioredxoin (Trx) family, primarily because Trx family members play critical roles in the regulation of cellular redox homeostasis, and recent studies have indicated that dysregulated redox homeostasis also plays a key role in chemoresistance. In this study, we showed that most of the DLBCL-derived cell lines and primary DLBCL cells express higher basal levels of Trx-1 than normal B cells and that Trx-1 expression level is associated with decreased patients survival. Our functional studies showed that inhibition of Trx-1 by small interfering RNA or a Trx-1 inhibitor (PX-12) inhibited DLBCL cell growth, clonogenicity, and also sensitized DLBCL cells to doxorubicin-induced cell growth inhibition in vitro. These results indicate that Trx-1 plays a key role in cell growth and survival, as well as chemoresistance, and is a potential target to overcome drug resistance in relapsed/refractory DLBCL. PMID:22447839

  13. Deletion of eIF2β lysine stretches creates a dominant negative that affects the translation and proliferation in human cell line: A tool for arresting the cell growth.

    PubMed

    Salton, Gabrielle Dias; Laurino, Claudia Cilene Fernandes Correia; Mega, Nicolás Oliveira; Delgado-Cañedo, Andrés; Setterblad, Niclas; Carmagnat, Maryvonnick; Xavier, Ricardo Machado; Cirne-Lima, Elizabeth; Lenz, Guido; Henriques, João Antonio Pêgas; Laurino, Jomar Pereira

    2017-08-03

    Eukaryote initiation factor 2 subunit β (eIF2β) plays a crucial role in regulation protein synthesis, which mediates the interaction of eIF2 with mRNA. eIF2β contains evolutionarily conserved polylysine stretches in amino-terminal region and a zinc finger motif in the carboxy-terminus. The gene eIF2β was cloned under tetracycline transcription control and the polylysine stretches were deleted by site-directed mutagenesis (eIF2βΔ3K). The plasmid was transfected into HEK 293 TetR cells. These cells were analyzed for their proliferative and translation capacities as well as cell death rate. Experiments were performed using gene reporter assays, western blotting, flow cytometry, cell sorting, cell proliferation assays and confocal immunofluorescence. eIF2βΔ3K affected negatively the protein synthesis, cell proliferation and cell survival causing G2 cell cycle arrest and increased cell death, acting in a negative dominant manner against the native protein. Polylysine stretches are also essential for eIF2β translocated from the cytoplasm to the nucleus, accumulating in the nucleolus and eIF2βΔ3K did not make this translocation. eIF2β is involved in the protein synthesis process and should act in nuclear processes as well. eIF2βΔ3K reduces cell proliferation and causes cell death. Since translation control is essential for normal cell function and survival, the development of drugs or molecules that inhibit translation has become of great interest in the scenario of proliferative disorders. In conclusion, our results suggest the dominant negative eIF2βΔ3K as a therapeutic strategy for the treatment of proliferative disorders and that eIF2β polylysine stretch domains are promising targets for this.

  14. Curcumin promotes autophagic survival of a subset of colon cancer stem cells, which are ablated by DCLK1-siRNA.

    PubMed

    Kantara, Carla; O'Connell, Malaney; Sarkar, Shubhashish; Moya, Stephanie; Ullrich, Robert; Singh, Pomila

    2014-05-01

    Curcumin is known to induce apoptosis of cancer cells by different mechanisms, but its effects on cancer stem cells (CSC) have been less investigated. Here, we report that curcumin promotes the survival of DCLK1-positive colon CSCs, potentially confounding application of its anticancer properties. At optimal concentrations, curcumin greatly reduced expression levels of stem cell markers (DCLK1/CD44/ALDHA1/Lgr5/Nanog) in three-dimensional spheroid cultures and tumor xenografts derived from colon cancer cells. However, curcumin unexpectedly induced proliferation and autophagic survival of a subset of DCLK1-positive CSCs. Spheroid cultures were disintegrated by curcumin in vitro but regrew within 30 to 40 days of treatment, suggesting a survival benefit from autophagy, permitting long-term persistence of colorectal cancer. Notably, RNA interference-mediated silencing of DCLK1 triggered apoptotic cell death of colon cancer cells in vitro and in vivo, and abolished colorectal cancer survival in response to curcumin; combination of DCLK1-siRNA and curcumin dramatically reversed CSC phenotype, contributing to attenuation of the growth of spheroid cultures and tumor xenografts. Taken together, our findings confirm a role of DCLK1 in colon CSCs and highlight DCLK1 as a target to enhance antitumor properties of curcumin. ©2014 AACR.

  15. Glucose Starvation Alters Heat Shock Response, Leading to Death of Wild Type Cells and Survival of MAP Kinase Signaling Mutant

    PubMed Central

    Higgins, LeeAnn; Markowski, Todd; Brambl, Robert

    2016-01-01

    A moderate heat shock induces Neurospora crassa to synthesize large quantities of heat shock proteins that are protective against higher, otherwise lethal temperatures. However, wild type cells do not survive when carbohydrate deprivation is added to heat shock. In contrast, a mutant strain defective in a stress-activated protein kinase does survive the combined stresses. In order to understand the basis for this difference in survival, we have determined the relative levels of detected proteins in the mutant and wild type strain during dual stress, and we have identified gene transcripts in both strains whose quantities change in response to heat shock or dual stress. These data and supportive experimental evidence point to reasons for survival of the mutant strain. By using alternative respiratory mechanisms, these cells experience less of the oxidative stress that proves damaging to wild type cells. Of central importance, mutant cells recycle limited resources during dual stress by undergoing autophagy, a process that we find utilized by both wild type and mutant cells during heat shock. Evidence points to inappropriate activation of TORC1, the central metabolic regulator, in wild type cells during dual stress, based upon behavior of an additional signaling mutant and inhibitor studies. PMID:27870869

  16. N-Acetylcysteine Increases Corneal Endothelial Cell Survival in a Mouse Model of Fuchs Endothelial Corneal Dystrophy

    PubMed Central

    Kim, Eun Chul; Meng, Huan; Jun, Albert S.

    2014-01-01

    The present study evaluated survival effects of N-acetylcysteine (NAC) on cultured corneal endothelial cells exposed to oxidative and endoplasmic reticulum (ER) stress and in a mouse model of early-onset Fuchs endothelial corneal dystrophy (FECD). Cultured bovine corneal endothelial cell viability against oxidative and ER stress was determined by CellTiter-Glo® luminescent reagent. Two-month-old homozygous knock-in Col8a2L450W/L450W mutant (L450W) and C57/Bl6 wild-type (WT) animals were divided into two groups of 15 mice. Group I received 7 mg/mL NAC in drinking water and Group II received control water for 7 months. Endothelial cell density and morphology were evaluated with confocal microscopy. Antioxidant gene (iNos) and ER stress/unfolded protein response gene (Grp78 and Chop) mRNA levels and protein expression were measured in corneal endothelium by real time PCR and Western blotting. Cell viability of H2O2 and thapsigargin exposed cells pre-treated with NAC was significantly increased compared to untreated controls (pitalic>0.01). Corneal endothelial cell density (CD) was higher (p=0.001) and percent polymegathism was lower (p=0.04) in NAC treated L450W mice than in untreated L450W mice. NAC treated L450W endothelium showed significant upregulation of iNos, whereas Grp78 and Chop were downregulated compared to untreated L450W endothelium by real time PCR and Western blotting. NAC increases survival in cultured corneal endothelial cells exposed against ER and oxidative stress. Systemic NAC ingestion increases corneal endothelial cell survival which is associated with increased antioxidant and decreased ER stress markers in a mouse model of early-onset FECD. Our study presents in vivo evidence of a novel potential medical treatment for FECD. PMID:24952277

  17. Down-regulation of annexin A1 in the urothelium decreases cell survival after bacterial toxin exposure.

    PubMed

    Monastyrskaya, Katia; Babiychuk, Eduard B; Draeger, Annette; Burkhard, Fiona C

    2013-07-01

    We examined the role of annexins in bladder urothelium. We characterized expression and distribution in normal bladders, biopsies from patients with bladder pain syndrome, cultured human urothelium and urothelial TEU-2 cells. Annexin expression in bladder layers was analyzed by quantitative reverse transcriptase-polymerase chain reaction and immunofluorescence. We assessed cell survival after exposure to the pore forming bacterial toxin streptolysin O by microscopy and alamarBlue® assay. Bladder dome biopsies were obtained from 8 asymptomatic controls and 28 patients with symptoms of bladder pain syndrome. Annexin A1, A2, A5 and A6 were differentially distributed in bladder layers. Annexin A6 was abundant in detrusor smooth muscle and low in urothelium, while annexin A1 was the highest in urothelium. Annexin A2 was localized to the lateral membrane of umbrella cells but excluded from tight junctions. TEU-2 cell differentiation caused up-regulation of annexin A1 and A2 and down-regulation of annexin A6 mRNA. Mature urothelium dedifferentiation during culture caused the opposite effect, decreasing annexin A1 and increasing annexin A6. Annexin A2 influenced TEU-2 cell epithelial permeability. siRNA mediated knockdown of annexin A1 in TEU-2 cells caused significantly decreased cell survival after streptolysin O exposure. Annexin A1 was significantly reduced in biopsies from patients with bladder pain syndrome. Several annexins are expressed in human bladder and TEU-2 cells, in which levels are regulated during urothelial differentiation. Annexin A1 down-regulation in patients with bladder pain syndrome might decrease cell survival and contribute to compromised urothelial function. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  18. Allogeneic hematopoietic stem cell transplant with reduced-intensity conditioning for chronic lymphocytic leukemia in Sweden: does donor T-cell engraftment 3 months after transplant predict survival?

    PubMed

    Machaczka, Maciej; Johansson, Jan-Erik; Remberger, Mats; Hallböök, Helene; Malm, Claes; Lazarevic, Vladimir Lj; Wahlin, Anders; Omar, Hamdy; Juliusson, Gunnar; Kimby, Eva; Hägglund, Hans

    2012-09-01

    Thirty-eight adult patients with chronic lymphocytic leukemia (CLL) underwent reduced-intensity conditioning (RIC) allogeneic stem cell transplant (allo-SCT) in Sweden between 1999 and 2007. The cumulative incidences of acute graft-versus-host disease (GVHD) grades II-IV and chronic GVHD were 29% and 47%, respectively. Rates of non-relapse mortality, progression-free survival (PFS) and overall survival (OS) were 18%, 47% and 74% at 1 year, and 21%, 25% and 45% at 5 years, respectively. T-cell chimerism after transplant was measured in 31 out of 34 patients (91%) surviving beyond day +100. Seventeen patients achieved >90% donor T-cell engraftment at 3 months after allo-SCT and, compared with the 12 patients with ≤90% donor T-cell engraftment, they showed favorable PFS at 1 year (82% vs. 33%, p =0.002) and better long-term PFS and OS (p =0.002 and 0.046, respectively). Donor T-cell engraftment of >90% at 3 months after RIC allo-SCT for CLL seems to predict favorable short-term and long-term outcome.

  19. The synthetic peptide CIGB-300 modulates CK2-dependent signaling pathways affecting the survival and chemoresistance of non-small cell lung cancer cell lines.

    PubMed

    Cirigliano, Stéfano M; Díaz Bessone, María I; Berardi, Damián E; Flumian, Carolina; Bal de Kier Joffé, Elisa D; Perea, Silvio E; Farina, Hernán G; Todaro, Laura B; Urtreger, Alejandro J

    2017-01-01

    Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer-related deaths worldwide. Up to 80% of cancer patients are classified as non-small-cell lung cancer (NSCLC) and cisplatin remains as the gold standard chemotherapy treatment, despite its limited efficacy due to both intrinsic and acquired resistance. The CK2 is a Ser/Thr kinase overexpressed in various types of cancer, including lung cancer. CIGB-300 is an antitumor peptide with a novel mechanism of action, since it binds to CK2 substrates thus preventing the enzyme activity. The aim of this work was to analyze the effects of CIGB-300 treatment targeting CK2-dependent signaling pathways in NSCLC cell lines and whether it may help improve current chemotherapy treatment. The human NSCLC cell lines NCI-H125 and NIH-A549 were used. Tumor spheroids were obtained through the hanging-drop method. A cisplatin resistant A549 cell line was obtained by chronic administration of cisplatin. Cell viability, apoptosis, immunoblotting, immunofluorescence and luciferase reporter assays were used to assess CIGB-300 effects. A luminescent assay was used to monitor proteasome activity. We demonstrated that CIGB-300 induces an anti-proliferative response both in monolayer- and three-dimensional NSCLC models, presenting rapid and complete peptide uptake. This effect was accompanied by the inhibition of the CK2-dependent canonical NF-κB pathway, evidenced by reduced RelA/p65 nuclear levels and NF-κB protein targets modulation in both lung cancer cell lines, as well as conditionally reduced NF-κB transcriptional activity. In addition, NF-κB modulation was associated with enhanced proteasome activity, possibly through its α7/C8 subunit. Neither the peptide nor a classical CK2 inhibitor affected cytoplasmic β-CATENIN basal levels. Given that NF-κB activation has been linked to cisplatin-induced resistance, we explored whether CIGB-300 could bring additional therapeutic benefits to the standard

  20. Regulatory dendritic cell infusion prolongs kidney allograft survival in non-human primates

    PubMed Central

    Ezzelarab, M.; Zahorchak, A.F.; Lu, L.; Morelli, A.E.; Chalasani, G.; Demetris, A.J.; Lakkis, F.G.; Wijkstrom, M.; Murase, N.; Humar, A.; Shapiro, R.; Cooper, D.K.C.; Thomson, A.W.

    2014-01-01

    We examined the influence of regulatory dendritic cells (DCreg), generated from cytokine-mobilized donor blood monocytes in vitamin D3 and IL-10, on renal allograft survival in a clinically-relevant rhesus macaque model. DCreg expressed low MHC class II and costimulatory molecules, but comparatively high levels of programmed death ligand-1 (B7-H1), and were resistant to pro-inflammatory cytokine-induced maturation. They were infused intravenously (3.5–10×106/kg), together with the B7-CD28 costimulation blocking agent CTLA4Ig, 7 days before renal transplantation. CTLA4Ig was given for up to 8 weeks and rapamycin, started on day −2, was maintained with tapering of blood levels until full withdrawal at 6 months. Median graft survival time was 39.5 days in control monkeys (no DC infusion; n=6) and 113.5 days (p< 0.05) in DCreg-treated animals (n=6). No adverse events were associated with DCreg infusion, and there was no evidence of induction of host sensitization based on circulating donor-specific alloantibody levels. Immunologic monitoring also revealed regulation of donor-reactive memory CD95+ T cells and reduced memory/regulatory T cell ratios in DCreg-treated monkeys compared with controls. Termination allograft histology showed moderate combined T cell- and Ab-mediated rejection in both groups. These findings justify further pre-clinical evaluation of DCreg therapy and their therapeutic potential in organ transplantation. PMID:23758811