Sample records for affecting anatomical region

  1. Factors affecting anatomical region of injury, severity, and mortality for road trauma in a high-income developing country: lessons for prevention.

    PubMed

    Eid, Hani O; Barss, Peter; Adam, Shehabeldin H; Torab, Fawaz Chikh; Lunsjo, Karl; Grivna, Michal; Abu-Zidan, Fikri M

    2009-07-01

    To study the factors affecting anatomical region of injury, severity, and mortality among road users in United Arab Emirates so as to improve preventive measures. Data of the Trauma Registry of Al Ain city were collected prospectively over 3 years (2003-2006) at the main trauma hospital. For traffic injuries, the following were assessed: gender, nationality, road user type, anatomical region(s) of injury, systolic blood pressure on admission, Glasgow Coma Scale (GCS), Injury Severity Score (ISS), and mortality. Analysis included frequencies, cross-tabulations, and logistic regression. There were 1070 patients, 89% male, 25% UAE nationals, and with a mean age of 31 years. Expatriates, mainly from non-Arabic speaking, low-income countries, accounted for 88% of injured pedestrians, whilst nationals were overrepresented among vehicle occupants (29%), and motorcyclists 37%. Injuries of the extremities and head were frequent among pedestrians, motorcyclists, and bicyclists, whilst head and spine injuries were most common among front and rear vehicle occupants and drivers. The median ISS was five for pedestrians and four for all other road user types, including rear vehicle occupants. The mean hospitalisation was 9.7 days; 13% of patients were admitted to ICU with mean stay of 6.5 days. Overall mortality was 4%; pedestrians accounted for 61% of deaths. Predictors of mortality were GCS (p<0.001), ISS (p<0.01) and systolic blood pressure on admission (p<0.03). Head injury was a major factor affecting mortality, followed by injury severity and hypotension. To reduce injury incidence and severity, legislation and education are needed to ensure use of seat belts by all vehicle occupants including rear passengers, high-visibility devices by other road users, helmets by motorcyclists and bicyclists, protective clothing and boots for motorcyclists, and traffic engineering for pedestrians.

  2. Anorectal Cancer: Critical Anatomic and Staging Distinctions That Affect Use of Radiation Therapy

    PubMed Central

    Mamon, Harvey J.; Fuchs, Charles S.; Doyle, Leona A.; Tirumani, Sree Harsha; Ramaiya, Nikhil H.; Rosenthal, Michael H.

    2015-01-01

    Although rectal and anal cancers are anatomically close, they are distinct entities with different histologic features, risk factors, staging systems, and treatment pathways. Imaging is at the core of initial clinical staging of these cancers and most commonly includes magnetic resonance imaging for local-regional staging and computed tomography for evaluation of metastatic disease. The details of the primary tumor and involvement of regional lymph nodes are crucial in determining if and how radiation therapy should be used in treatment of these cancers. Unfortunately, available imaging modalities have been shown to have imperfect accuracy for identification of nodal metastases and imaging features other than size. Staging of nonmetastatic rectal cancers is dependent on the depth of invasion (T stage) and the number of involved regional lymph nodes (N stage). Staging of nonmetastatic anal cancers is determined according to the size of the primary mass and the combination of regional nodal sites involved; the number of positive nodes at each site is not a consideration for staging. Patients with T3 rectal tumors and/or involvement of perirectal, mesenteric, and internal iliac lymph nodes receive radiation therapy. Almost all anal cancers warrant use of radiation therapy, but the extent and dose of the radiation fields is altered on the basis of both the size of the primary lesion and the presence and extent of nodal involvement. The radiologist must recognize and report these critical anatomic and staging distinctions, which affect use of radiation therapy in patients with anal and rectal cancers. ©RSNA, 2015 PMID:26562239

  3. Depressive Symptoms, Anatomical Region, and Clinical Outcomes for Patients Seeking Outpatient Physical Therapy for Musculoskeletal Pain

    PubMed Central

    Coronado, Rogelio A.; Beneciuk, Jason M.; Valencia, Carolina; Werneke, Mark W.; Hart, Dennis L.

    2011-01-01

    Background Clinical guidelines advocate the routine identification of depressive symptoms for patients with pain in the lumbar or cervical spine, but not for other anatomical regions. Objective The purpose of this study was to investigate the prevalence and impact of depressive symptoms for patients with musculoskeletal pain across different anatomical regions. Design This was a prospective, associational study. Methods Demographic, clinical, depressive symptom (Symptom Checklist 90–Revised), and outcome data were collected by self-report from a convenience sample of 8,304 patients. Frequency of severe depressive symptoms was assessed by chi-square analysis for demographic and clinical variables. An analysis of variance examined the influence of depressive symptoms and anatomical region on intake pain intensity and functional status. Separate hierarchical multiple regression models by anatomical region examined the influence of depressive symptoms on clinical outcomes. Results Prevalence of severe depression was higher in women, in industrial and pain clinics, and in patients who reported chronic pain or prior surgery. Lower prevalence rates were found in patients older than 65 years and those who had upper- or lower-extremity pain. Depressive symptoms had a moderate to large effect on pain ratings (Cohen d=0.55–0.87) and a small to large effect on functional status (Cohen d=0.28–0.95). In multivariate analysis, depressive symptoms contributed additional variance to pain intensity and functional status for all anatomical locations, except for discharge values for the cervical region. Conclusions Rates of depressive symptoms varied slightly based on anatomical region of musculoskeletal pain. Depressive symptoms had a consistent detrimental influence on outcomes, except on discharge scores for the cervical anatomical region. Expanding screening recommendations for depressive symptoms to include more anatomical regions may be indicated in physical therapy

  4. Anatomic Connections of the Subgenual Cingulate Region.

    PubMed

    Vergani, Francesco; Martino, Juan; Morris, Christopher; Attems, Johannes; Ashkan, Keyoumars; DellʼAcqua, Flavio

    2016-09-01

    The subgenual cingulate gyrus (SCG) has been proposed as a target for deep brain stimulation (DBS) in neuropsychiatric disorders, mainly major depression. Despite promising clinical results, the mechanism of action of DBS in this region is poorly understood. Knowledge of the connections of the SCG can elucidate the network involved by DBS in this area and can help refine the targeting for DBS electrode placement. To investigate the anatomic connections of the SCG region. An anatomic study of the connections of the SCG was performed on postmortem specimens and in vivo with MR diffusion imaging tractography. Postmortem dissections were performed according to the Klingler technique. Specimens were fixed in 10% formalin and frozen at -15°C for 2 weeks. After thawing, dissection was performed with blunt dissectors. Whole brain tractography was performed using spherical deconvolution tractography. Four main connections were found: (1) fibers of the cingulum, originating at the level of the SCG and terminating at the medial aspect of the temporal lobe (parahippocampal gyrus); (2) fibers running toward the base of the frontal lobe, connecting the SCG with frontopolar areas; (3) fibers running more laterally, converging onto the ventral striatum (nucleus accumbens); (4) fibers of the uncinate fasciculus, connecting the orbitofrontal with the anterior temporal region. The SCG shows a wide range of white matter connections with limbic, prefrontal, and mesiotemporal areas. These findings can help to explain the role of the SCG in DBS for psychiatric disorders. DBS, deep brain stimulationSCG, subgenual cingulate gyrus.

  5. Anatomical Regional Targeted (ART) BOTOX Injection Technique: A Novel Paradigm for Migraines and Chronic Headaches

    PubMed Central

    Sanniec, Kyle; Pezeshk, Ronnie; Chung, Michael

    2016-01-01

    Summary: Migraine headaches are a debilitating disease that causes significant socioeconomic problems. One of the speculated etiologies of the generation of migraines is peripheral nerve irritation at different trigger points. The use of Onabotulinum toxin A (BOTOX), although initially a novel approach, has now been determined to be a valid treatment for chronic headaches and migraines as described in the Phase III Research Evaluating Migraine Prophylaxis Therapy trials that prompted the approval by the Food and Drug Administration for treatment of chronic migraines. The injection paradigm established by this trial was one of a broad injection pattern across large muscle groups that did not always correspond to the anatomical locations of nerves. The senior author developed the Anatomical Regional Targeted BOTOX injection paradigm as an alternative to the current injection model. This technique targets both the anatomical location of nerves known to have causal effects with migraines and the region where the pain localizes, to provide relief across a wide distribution of the peripheral nerve. This article serves as a guide to the Anatomical Regional Targeted injection technique, which, to our knowledge, is the first comprehensive BOTOX injection paradigm described in the literature for treatment of migraines that targets nerves and nerve areas rather than purely muscle groups. This technique is based on the most up-to-date anatomical and scientific studies and large-volume migraine surgery experience. PMID:28293532

  6. The Anatomical Society core regional anatomy syllabus for undergraduate medicine.

    PubMed

    Smith, C F; Finn, G M; Stewart, J; Atkinson, M A; Davies, D C; Dyball, R; Morris, J; Ockleford, C; Parkin, I; Standring, S; Whiten, S; Wilton, J; McHanwell, S

    2016-01-01

    The Anatomical Society's core syllabus for anatomy (2003 and later refined in 2007) set out a series of learning outcomes that an individual medical student should achieve on graduation. The core syllabus, with 182 learning outcomes grouped in body regions, referenced in the General Medical Council's Teaching Tomorrow's Doctors, was open to criticism on the grounds that the learning outcomes were generated by a relatively small group of anatomists, albeit some of whom were clinically qualified. We have therefore used a modified Delphi technique to seek a wider consensus. A Delphi panel was constructed involving 'experts' (n = 39). The revised core syllabus of 156 learning outcomes presented here is applicable to all medical programmes and may be used by curriculum planners, teachers and students alike in addressing the perennial question: 'What do I need to know ?' © 2015 Anatomical Society.

  7. Anatomical Society core regional anatomy syllabus for undergraduate medicine: the Delphi process.

    PubMed

    Smith, C F; Finn, G M; Stewart, J; McHanwell, S

    2016-01-01

    A modified Delphi method was employed to seek consensus when revising the UK and Ireland's core syllabus for regional anatomy in undergraduate medicine. A Delphi panel was constructed involving 'expert' (individuals with at least 5 years' experience in teaching medical students anatomy at the level required for graduation). The panel (n = 39) was selected and nominated by members of Council and/or the Education Committee of the Anatomical Society and included a range of specialists including surgeons, radiologists and anatomists. The experts were asked in two stages to 'accept', 'reject' or 'modify' (first stage only) each learning outcome. A third stage, which was not part of the Delphi method, then allowed the original authors of the syllabus to make changes either to correct any anatomical errors or to make minor syntax changes. From the original syllabus of 182 learning outcomes, removing the neuroanatomy component (163), 23 learning outcomes (15%) remained unchanged, seven learning outcomes were removed and two new learning outcomes added. The remaining 133 learning outcomes were modified. All learning outcomes on the new core syllabus achieved over 90% acceptance by the panel. © 2015 Anatomical Society.

  8. Morphometric anatomical and CT study of the human adult sacroiliac region.

    PubMed

    Postacchini, Roberto; Trasimeni, Guido; Ripani, Francesca; Sessa, Pasquale; Perotti, Stefano; Postacchini, Franco

    2017-01-01

    To identify and describe the morphometry and CT features of the articular and extra-articular portions of the sacroiliac region. The resulting knowledge might help to avoid complications in sacroiliac joint (SIJ) fusion. We analyzed 102 dry hemi-sacra, 80 ilia, and 10 intact pelves and assessed the pelvic computerized tomography (CT) scans of 90 patients, who underwent the examination for conditions not involving the pelvis. We assessed both the posterior aspect of sacrum with regard to the depressions located externally to the lateral sacral crest at the level of the proximal three sacral vertebrae and the posteroinferior aspect of ilium. Coronal and axial CT scans of the SIJ of patients were obtained and the joint space was measured. On each side, the sacrum exhibits three bone depressions, not described in anatomic textbooks or studies, facing the medial aspect of the posteroinferior ilium, not yet described in detail. Both structures are extra-articular portions situated posteriorly to the SIJ. Coronal CT scans of patients showing the first three sacral foramens and the interval between sacrum and ilium as a continuous space display only the S1 and S3 portions of SIJ, the intermediate portion being extra-articular. The S2 portion is visible on the most anterior coronal scan. Axial scans show articular and extra-articular portions and features improperly described as anatomic variations. Extra-articular portions of the sacroiliac region, not yet described exhaustively, have often been confused with SIJ. Coronal CT scans through the middle part of sacrum, the most used to evaluate degenerative and inflammatory conditions of SIJ, show articular and extra-articular portions of the region.

  9. Anatomical variations of the carpal tunnel structures

    PubMed Central

    Mitchell, Ryan; Chesney, Amy; Seal, Shane; McKnight, Leslie; Thoma, Achilleas

    2009-01-01

    There are many anatomical variations in and around the carpal tunnel that affect the nerves, tendons and arteries in this area. Awareness of these variations is important both during the clinical examination and during carpal tunnel release. The purpose of the present review is to highlight recognized anatomical variations within the carpal tunnel including variation in nerve anatomy, tendon anatomical variants, vascular anatomical variations and muscle anatomical variations. PMID:20808747

  10. Modular Classification of Endoscopic Endonasal Transsphenoidal Approaches to Sellar Region: Anatomic Quantitative Study.

    PubMed

    Belotti, Francesco; Doglietto, Francesco; Schreiber, Alberto; Ravanelli, Marco; Ferrari, Marco; Lancini, Davide; Rampinelli, Vittorio; Hirtler, Lena; Buffoli, Barbara; Bolzoni Villaret, Andrea; Maroldi, Roberto; Rodella, Luigi Fabrizio; Nicolai, Piero; Fontanella, Marco Maria

    2018-01-01

    Endoscopic visualization does not necessarily correspond to an adequate working space. The need for balancing invasiveness and adequacy of sellar tumor exposure has recently led to the description of multiple endoscopic endonasal transsphenoidal approaches. Comparative anatomic data on these variants are lacking. We sought to quantitatively compare endoscopic endonasal transsphenoidal approaches to the sella and parasellar region, using the concept of "surgical pyramid." Four endoscopic transsphenoidal approaches were performed in 10 injected specimens: 1) hemisphenoidotomy; 2) transrostral; 3) extended transrostral (with superior turbinectomy); and 4) extended transrostral with posterior ethmoidectomy. ApproachViewer software (part of GTx-Eyes II, University Health Network, Toronto, Canada) with a dedicated navigation system was used to quantify the surgical pyramid volume, as well as exposure of sellar and parasellar areas. Statistical analyses were performed with Friedman's tests and Nemenyi's procedure. Hemisphenoidotomy provided limited exposure of the sellar area and a small working volume. A transrostral approach was necessary to expose the entire sella. Exposure of lateral parasellar areas required superior turbinectomy or posterior ethmoidectomy. The differences between each of the modules was statistically significant. The present study validates, from an anatomic point of view, a modular classification of endoscopic endonasal transsphenoidal approaches to the sellar region. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Anatomical calibration for wearable motion capture systems: Video calibrated anatomical system technique.

    PubMed

    Bisi, Maria Cristina; Stagni, Rita; Caroselli, Alessio; Cappello, Angelo

    2015-08-01

    Inertial sensors are becoming widely used for the assessment of human movement in both clinical and research applications, thanks to their usability out of the laboratory. This work aims to propose a method for calibrating anatomical landmark position in the wearable sensor reference frame with an ease to use, portable and low cost device. An off-the-shelf camera, a stick and a pattern, attached to the inertial sensor, compose the device. The proposed technique is referred to as video Calibrated Anatomical System Technique (vCAST). The absolute orientation of a synthetic femur was tracked both using the vCAST together with an inertial sensor and using stereo-photogrammetry as reference. Anatomical landmark calibration showed mean absolute error of 0.6±0.5 mm: these errors are smaller than those affecting the in-vivo identification of anatomical landmarks. The roll, pitch and yaw anatomical frame orientations showed root mean square errors close to the accuracy limit of the wearable sensor used (1°), highlighting the reliability of the proposed technique. In conclusion, the present paper proposes and preliminarily verifies the performance of a method (vCAST) for calibrating anatomical landmark position in the wearable sensor reference frame: the technique is low time consuming, highly portable, easy to implement and usable outside laboratory. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  12. Bayesian reconstruction and use of anatomical a priori information for emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowsher, J.E.; Johnson, V.E.; Turkington, T.G.

    1996-10-01

    A Bayesian method is presented for simultaneously segmenting and reconstructing emission computed tomography (ECT) images and for incorporating high-resolution, anatomical information into those reconstructions. The anatomical information is often available from other imaging modalities such as computed tomography (CT) or magnetic resonance imaging (MRI). The Bayesian procedure models the ECT radiopharmaceutical distribution as consisting of regions, such that radiopharmaceutical activity is similar throughout each region. It estimates the number of regions, the mean activity of each region, and the region classification and mean activity of each voxel. Anatomical information is incorporated by assigning higher prior probabilities to ECT segmentations inmore » which each ECT region stays within a single anatomical region. This approach is effective because anatomical tissue type often strongly influences radiopharmaceutical uptake. The Bayesian procedure is evaluated using physically acquired single-photon emission computed tomography (SPECT) projection data and MRI for the three-dimensional (3-D) Hoffman brain phantom. A clinically realistic count level is used. A cold lesion within the brain phantom is created during the SPECT scan but not during the MRI to demonstrate that the estimation procedure can detect ECT structure that is not present anatomically.« less

  13. Anatomically ordered tapping interferes more with one-digit addition than two-digit addition: a dual-task fMRI study.

    PubMed

    Soylu, Firat; Newman, Sharlene D

    2016-02-01

    Fingers are used as canonical representations for numbers across cultures. In previous imaging studies, it was shown that arithmetic processing activates neural resources that are known to participate in finger movements. Additionally, in one dual-task study, it was shown that anatomically ordered finger tapping disrupts addition and subtraction more than multiplication, possibly due to a long-lasting effect of early finger counting experiences on the neural correlates and organization of addition and subtraction processes. How arithmetic task difficulty and tapping complexity affect the concurrent performance is still unclear. If early finger counting experiences have bearing on the neural correlates of arithmetic in adults, then one would expect anatomically and non-anatomically ordered tapping to have different interference effects, given that finger counting is usually anatomically ordered. To unravel these issues, we studied how (1) arithmetic task difficulty and (2) the complexity of the finger tapping sequence (anatomical vs. non-anatomical ordering) affect concurrent performance and use of key neural circuits using a mixed block/event-related dual-task fMRI design with adult participants. The results suggest that complexity of the tapping sequence modulates interference on addition, and that one-digit addition (fact retrieval), compared to two-digit addition (calculation), is more affected from anatomically ordered tapping. The region-of-interest analysis showed higher left angular gyrus BOLD response for one-digit compared to two-digit addition, and in no-tapping conditions than dual tapping conditions. The results support a specific association between addition fact retrieval and anatomically ordered finger movements in adults, possibly due to finger counting strategies that deploy anatomically ordered finger movements early in the development.

  14. Anatomical Basis for the Cardiac Interventional Electrophysiologist

    PubMed Central

    Sánchez-Quintana, Damián; Doblado-Calatrava, Manuel; Cabrera, José Angel; Macías, Yolanda; Saremi, Farhood

    2015-01-01

    The establishment of radiofrequency catheter ablation techniques as the mainstay in the treatment of tachycardia has renewed new interest in cardiac anatomy. The interventional arrhythmologist has drawn attention not only to the gross anatomic details of the heart but also to architectural and histological characteristics of various cardiac regions that are relevant to the development or recurrence of tachyarrhythmias and procedural related complications of catheter ablation. In this review, therefore, we discuss some anatomic landmarks commonly used in catheter ablations including the terminal crest, sinus node region, Koch's triangle, cavotricuspid isthmus, Eustachian ridge and valve, pulmonary venous orifices, venoatrial junctions, and ventricular outflow tracts. We also discuss the anatomical features of important structures in the vicinity of the atria and pulmonary veins, such as the esophagus and phrenic nerves. This paper provides basic anatomic information to improve understanding of the mapping and ablative procedures for cardiac interventional electrophysiologists. PMID:26665006

  15. [Extended endoscopic endonasal posterior (transclival) approach to tumors of the clival region and ventral posterior cranial fossa. Part 1. Topographic and anatomical features of the clivus and adjacent structures].

    PubMed

    Shkarubo, A N; Koval', K V; Dobrovol'skiy, G F; Shkarubo, M A; Karnaukhov, V V; Kadashev, B A; Andreev, D N; Chernov, I V; Gadzhieva, O A; Aleshkina, O Yu; Anisimova, E A; Kalinin, P L; Kutin, M A; Fomichev, D V; Sharipov, O I; Ismailov, D B; Selivanov, E S

    to describe the main topographic and anatomical features of the clival region and its adjacent structures for improvement and optimization of the extended endoscopic endonasal posterior (transclival) approach for resection of tumors of the clival region and ventral posterior cranial fossa. We performed a craniometric study of 125 human skulls and a topographic anatomical study of heads of 25 cadavers, the arterial and venous bed of which was stained with colored silicone (the staining technique was developed by the authors) to visualize bed features and individual variability. Currently, we have clinical material from more than 120 surgical patients with various skull base tumors of the clival region and ventral posterior cranial fossa (chordomas, pituitary adenomas, meningiomas, cholesteatomas, etc.) who were operated on using the endoscopic transclival approach. We present the main anatomical landmarks and parameters of some anatomical structures that are required for performing the endoscopic endonasal posterior approach. The anatomical landmarks, such as the intradural openings of the abducens and glossopharyngeal nerves, may be used to arbitrarily divide the clival region into the superior, middle, and inferior thirds. The anatomical landmarks important for the surgeon, which are detected during a topographic anatomical study of the skull base, facilitate identification of the boundaries between the different clival portions and the C1 segments of the internal carotid arteries. The superior, middle, and inferior transclival approaches provide an access to the ventral surface of the upper, middle, and lower neurovascular complexes in the posterior cranial fossa. The endoscopic transclival approach may be used to access midline tumors of the posterior cranial fossa. The approach is an alternative to transcranial approaches in surgical treatment of clival region lesions. This approach provides results comparable (and sometimes better) to those of the transcranial

  16. Brain Morphometry Using Anatomical Magnetic Resonance Imaging

    ERIC Educational Resources Information Center

    Bansal, Ravi; Gerber, Andrew J.; Peterson, Bradley S.

    2008-01-01

    The efficacy of anatomical magnetic resonance imaging (MRI) in studying the morphological features of various regions of the brain is described, also providing the steps used in the processing and studying of the images. The ability to correlate these features with several clinical and psychological measures can help in using anatomical MRI to…

  17. A multivariate pattern analysis study of the HIV-related white matter anatomical structural connections alterations

    NASA Astrophysics Data System (ADS)

    Tang, Zhenchao; Liu, Zhenyu; Li, Ruili; Cui, Xinwei; Li, Hongjun; Dong, Enqing; Tian, Jie

    2017-03-01

    It's widely known that HIV infection would cause white matter integrity impairments. Nevertheless, it is still unclear that how the white matter anatomical structural connections are affected by HIV infection. In the current study, we employed a multivariate pattern analysis to explore the HIV-related white matter connections alterations. Forty antiretroviraltherapy- naïve HIV patients and thirty healthy controls were enrolled. Firstly, an Automatic Anatomical Label (AAL) atlas based white matter structural network, a 90 × 90 FA-weighted matrix, was constructed for each subject. Then, the white matter connections deprived from the structural network were entered into a lasso-logistic regression model to perform HIV-control group classification. Using leave one out cross validation, a classification accuracy (ACC) of 90% (P=0.002) and areas under the receiver operating characteristic curve (AUC) of 0.96 was obtained by the classification model. This result indicated that the white matter anatomical structural connections contributed greatly to HIV-control group classification, providing solid evidence that the white matter connections were affected by HIV infection. Specially, 11 white matter connections were selected in the classification model, mainly crossing the regions of frontal lobe, Cingulum, Hippocampus, and Thalamus, which were reported to be damaged in previous HIV studies. This might suggest that the white matter connections adjacent to the HIV-related impaired regions were prone to be damaged.

  18. Phrenic Nerve Palsy and Regional Anesthesia for Shoulder Surgery: Anatomical, Physiologic, and Clinical Considerations.

    PubMed

    El-Boghdadly, Kariem; Chin, Ki Jinn; Chan, Vincent W S

    2017-07-01

    Regional anesthesia has an established role in providing perioperative analgesia for shoulder surgery. However, phrenic nerve palsy is a significant complication that potentially limits the use of regional anesthesia, particularly in high-risk patients. The authors describe the anatomical, physiologic, and clinical principles relevant to phrenic nerve palsy in this context. They also present a comprehensive review of the strategies for reducing phrenic nerve palsy and its clinical impact while ensuring adequate analgesia for shoulder surgery. The most important of these include limiting local anesthetic dose and injection volume and performing the injection further away from the C5-C6 nerve roots. Targeting peripheral nerves supplying the shoulder, such as the suprascapular and axillary nerves, may be an effective alternative to brachial plexus blockade in selected patients. The optimal regional anesthetic approach in shoulder surgery should be tailored to individual patients based on comorbidities, type of surgery, and the principles described in this article.

  19. Radial force distribution changes associated with tangential force production in cylindrical grasping, and the importance of anatomical registration.

    PubMed

    Pataky, Todd C; Slota, Gregory P; Latash, Mark L; Zatsiorsky, Vladimir M

    2012-01-10

    Radial force (F(r)) distributions describe grip force coordination about a cylindrical object. Recent studies have employed only explicit F(r) tasks, and have not normalized for anatomical variance when considering F(r) distributions. The goals of the present study were (i) to explore F(r) during tangential force production tasks, and (ii) to examine the extent to which anatomical registration (i.e. spatial normalization of anatomically analogous structures) could improve signal detectability in F(r) data. Twelve subjects grasped a vertically oriented cylindrical handle (diameter=6 cm) and matched target upward tangential forces of 10, 20, and 30 N. F(r) data were measured using a flexible pressure mat with an angular resolution of 4.8°, and were registered using piecewise-linear interpolation between five manually identified points-of-interest. Results indicate that F(r) was primarily limited to three contact regions: the distal thumb, the distal fingers, and the fingers' metatacarpal heads, and that, while increases in tangential force caused significant increases in F(r) for these regions, they did not significantly affect the F(r) distribution across the hand. Registration was found to substantially reduce between-subject variability, as indicated by both accentuated F(r) trends, and amplification of the test statistic. These results imply that, while subjects focus F(r) primarily on three anatomical regions during cylindrical grasp, inter-subject anatomical differences introduce a variability that, if not corrected for via registration, may compromise one's ability to draw anatomically relevant conclusions from grasping force data. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Parcellation of the human substantia nigra based on anatomical connectivity to the striatum☆

    PubMed Central

    Chowdhury, Rumana; Lambert, Christian; Dolan, Raymond J.; Düzel, Emrah

    2013-01-01

    Substantia nigra/ventral tegmental area (SN/VTA) subregions, defined by dopaminergic projections to the striatum, are differentially affected by health (e.g. normal aging) and disease (e.g. Parkinson's disease). This may have an impact on reward processing which relies on dopaminergic regions and circuits. We acquired diffusion tensor imaging (DTI) with probabilistic tractography in 30 healthy older adults to determine whether subregions of the SN/VTA could be delineated based on anatomical connectivity to the striatum. We found that a dorsomedial region of the SN/VTA preferentially connected to the ventral striatum whereas a more ventrolateral region connected to the dorsal striatum. These SN/VTA subregions could be characterised by differences in quantitative structural imaging parameters, suggesting different underlying tissue properties. We also observed that these connectivity patterns differentially mapped onto reward dependence personality trait. We show that tractography can be used to parcellate the SN/VTA into anatomically plausible and behaviourally meaningful compartments, an approach that may help future studies to provide a more fine-grained synopsis of pathological changes in the dopaminergic midbrain and their functional impact. PMID:23684858

  1. Regional Anatomical Observation of Morphology of Greater Palatine Canal and Surrounding Structures.

    PubMed

    Suzuki, Masashi; Omine, Yuya; Shimoo, Yoshiaki; Yamamoto, Masahito; Kaketa, Akihiro; Kasahara, Masaaki; Serikawa, Masamitu; Rhee, Sunki; Matsubayashi, Tadatoshi; Matsunaga, Satoru; Abe, Shinichi

    2016-01-01

    In maxillary molar region implant therapy, support is sometimes obtained from trabecular bone comprising the maxillary tuberosity, pterygoid process of the sphenoid bone, and pyramidal process of the palatine bone. Great care is necessary in such cases due to the presence of the greater palatine canal, which forms a passageway for the greater palatine artery, vein, and nerve. However, clinical anatomical reports envisioning embedding of pterygomaxillary implants in this trabecular bone region have been limited in number. In this study, the 3-D morphology of the greater palatine canal region, including the maxillary tuberosity region and points requiring particular care in pterygomaxillary implantation, were therefore investigated. Micro-CT was used to image 20 dentulous jaws (40 sides) harvested from the dry skulls of Japanese individuals with a mean age of 28.2 years at time of death. The skulls were obtained from the Jikei University School of Medicine cadaver repository. Three-dimensional reconstruction of the trabecular bone region, including the greater palatine canal, was performed using software for 3-D measurement of trabecular bone structure. Trabecular bone region morphometry was performed with the hamular notch-incisive papilla (HIP) plane as the reference plane. The results showed a truncated-cone structure with the greater palatine foramen as the base extending to the pterygopalatine fossa. This indicates the need for care with respect to proximity of the dental implant body to the greater palatine canal and the risk of perforation if it is embedded in the maxillary tuberosity region at an inclination of 60° toward the lingual side. Moreover, caution must be exercised to avoid possible damage to the medial wall of the maxillary sinus if the inclination of the embedded dental implant body is almost perpendicular to the HIP plane.

  2. Comparison of large-scale human brain functional and anatomical networks in schizophrenia.

    PubMed

    Nelson, Brent G; Bassett, Danielle S; Camchong, Jazmin; Bullmore, Edward T; Lim, Kelvin O

    2017-01-01

    Schizophrenia is a disease with disruptions in thought, emotion, and behavior. The dysconnectivity hypothesis suggests these disruptions are due to aberrant brain connectivity. Many studies have identified connectivity differences but few have been able to unify gray and white matter findings into one model. Here we develop an extension of the Network-Based Statistic (NBS) called NBSm (Multimodal Network-based statistic) to compare functional and anatomical networks in schizophrenia. Structural, resting functional, and diffusion magnetic resonance imaging data were collected from 29 chronic patients with schizophrenia and 29 healthy controls. Images were preprocessed, and average time courses were extracted for 90 regions of interest (ROI). Functional connectivity matrices were estimated by pairwise correlations between wavelet coefficients of ROI time series. Following diffusion tractography, anatomical connectivity matrices were estimated by white matter streamline counts between each pair of ROIs. Global and regional strength were calculated for each modality. NBSm was used to find significant overlap between functional and anatomical components that distinguished health from schizophrenia. Global strength was decreased in patients in both functional and anatomical networks. Regional strength was decreased in all regions in functional networks and only one region in anatomical networks. NBSm identified a distinguishing functional component consisting of 46 nodes with 113 links (p < 0.001), a distinguishing anatomical component with 47 nodes and 50 links (p = 0.002), and a distinguishing intermodal component with 26 nodes (p < 0.001). NBSm is a powerful technique for understanding network-based group differences present in both anatomical and functional data. In light of the dysconnectivity hypothesis, these results provide compelling evidence for the presence of significant overlapping anatomical and functional disruption in people with schizophrenia.

  3. Anatomic and physiopathologic changes affecting the airway of the elderly patient: implications for geriatric-focused airway management

    PubMed Central

    Johnson, Kathleen N; Botros, Daniel B; Groban, Leanne; Bryan, Yvon F

    2015-01-01

    There are many anatomical, physiopathological, and cognitive changes that occur in the elderly that affect different components of airway management: intubation, ventilation, oxygenation, and risk of aspiration. Anatomical changes occur in different areas of the airway from the oral cavity to the larynx. Common changes to the airway include tooth decay, oropharyngeal tumors, and significant decreases in neck range of motion. These changes may make intubation challenging by making it difficult to visualize the vocal cords and/or place the endotracheal tube. Also, some of these changes, including but not limited to, atrophy of the muscles around the lips and an edentulous mouth, affect bag mask ventilation due to a difficult face-mask seal. Physiopathologic changes may impact airway management as well. Common pulmonary issues in the elderly (eg, obstructive sleep apnea and COPD) increase the risk of an oxygen desaturation event, while gastrointestinal issues (eg, achalasia and gastroesophageal reflux disease) increase the risk of aspiration. Finally, cognitive changes (eg, dementia) not often seen as related to airway management may affect patient cooperation, especially if an awake intubation is required. Overall, degradation of the airway along with other physiopathologic and cognitive changes makes the elderly population more prone to complications related to airway management. When deciding which airway devices and techniques to use for intubation, the clinician should also consider the difficulty associated with ventilating the patient, the patient’s risk of oxygen desaturation, and/or aspiration. For patients who may be difficult to bag mask ventilate or who have a risk of aspiration, a specialized supralaryngeal device may be preferable over bag mask for ventilation. Patients with tumors or decreased neck range of motion may require a device with more finesse and maneuverability, such as a flexible fiberoptic broncho-scope. Overall, geriatric-focused airway

  4. Motivation and Organizational Principles for Anatomical Knowledge Representation

    PubMed Central

    Rosse, Cornelius; Mejino, José L.; Modayur, Bharath R.; Jakobovits, Rex; Hinshaw, Kevin P.; Brinkley, James F.

    1998-01-01

    Abstract Objective: Conceptualization of the physical objects and spaces that constitute the human body at the macroscopic level of organization, specified as a machine-parseable ontology that, in its human-readable form, is comprehensible to both expert and novice users of anatomical information. Design: Conceived as an anatomical enhancement of the UMLS Semantic Network and Metathesaurus, the anatomical ontology was formulated by specifying defining attributes and differentia for classes and subclasses of physical anatomical entities based on their partitive and spatial relationships. The validity of the classification was assessed by instantiating the ontology for the thorax. Several transitive relationships were used for symbolically modeling aspects of the physical organization of the thorax. Results: By declaring Organ as the macroscopic organizational unit of the body, and defining the entities that constitute organs and higher level entities constituted by organs, all anatomical entities could be assigned to one of three top level classes (Anatomical structure, Anatomical spatial entity and Body substance). The ontology accommodates both the systemic and regional (topographical) views of anatomy, as well as diverse clinical naming conventions of anatomical entities. Conclusions: The ontology formulated for the thorax is extendible to microscopic and cellular levels, as well as to other body parts, in that its classes subsume essentially all anatomical entities that constitute the body. Explicit definitions of these entities and their relationships provide the first requirement for standards in anatomical concept representation. Conceived from an anatomical viewpoint, the ontology can be generalized and mapped to other biomedical domains and problem solving tasks that require anatomical knowledge. PMID:9452983

  5. Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain

    PubMed Central

    Liang, Winnie S.; Dunckley, Travis; Beach, Thomas G.; Grover, Andrew; Mastroeni, Diego; Walker, Douglas G.; Caselli, Richard J.; Kukull, Walter A.; McKeel, Daniel; Morris, John C.; Hulette, Christine; Schmechel, Donald; Alexander, Gene E.; Reiman, Eric M.; Rogers, Joseph; Stephan, Dietrich A.

    2008-01-01

    In this article, we have characterized and compared gene expression profiles from laser capture microdissected neurons in six functionally and anatomically distinct regions from clinically and histopathologically normal aged human brains. These regions, which are also known to be differentially vulnerable to the histopathological and metabolic features of Alzheimer’s disease (AD), include the entorhinal cortex and hippocampus (limbic and paralimbic areas vulnerable to early neurofibrillary tangle pathology in AD), posterior cingulate cortex (a paralimbic area vulnerable to early metabolic abnormalities in AD), temporal and prefrontal cortex (unimodal and heteromodal sensory association areas vulnerable to early neuritic plaque pathology in AD), and primary visual cortex (a primary sensory area relatively spared in early AD). These neuronal profiles will provide valuable reference information for future studies of the brain, in normal aging, AD and other neurological and psychiatric disorders. PMID:17077275

  6. Femoral anatomical frame: assessment of various definitions.

    PubMed

    Della Croce, U; Camomilla, V; Leardini, A; Cappozzo, A

    2003-06-01

    The reliability of the estimate of joint kinematic variables and the relevant functional interpretation are affected by the uncertainty with which bony anatomical landmarks and underlying bony segment anatomical frames are determined. When a stereo-photogrammetric system is used for in vivo studies, minimising and compensating for this uncertainty is crucial. This paper deals with the propagation of the errors associated with the location of both internal and palpable femoral anatomical landmarks to the estimation of the orientation of the femoral anatomical frame and to the knee joint angles during movement. Given eight anatomical landmarks, and the precision with which they can be identified experimentally, 12 different rules were defined for the construction of the anatomical frame and submitted to comparative assessment. Results showed that using more than three landmarks allows for more repeatable anatomical frame orientation and knee joint kinematics estimation. Novel rules are proposed that use optimization algorithms. On the average, the femoral frame orientation dispersion had a standard deviation of 2, 2.5 and 1.5 degrees for the frontal, transverse, and sagittal plane, respectively. However, a proper choice of the relevant construction rule allowed for a reduction of these inaccuracies in selected planes to 1 degrees rms. The dispersion of the knee adduction-abduction and internal-external rotation angles could also be limited to 1 degrees rms irrespective of the flexion angle value.

  7. Deep sleep divides the cortex into opposite modes of anatomical-functional coupling.

    PubMed

    Tagliazucchi, Enzo; Crossley, Nicolas; Bullmore, Edward T; Laufs, Helmut

    2016-11-01

    The coupling of anatomical and functional connectivity at rest suggests that anatomy is essential for wake-typical activity patterns. Here, we study the development of this coupling from wakefulness to deep sleep. Globally, similarity between whole-brain anatomical and functional connectivity networks increased during deep sleep. Regionally, we found differential coupling: during sleep, functional connectivity of primary cortices resembled more the underlying anatomical connectivity, while we observed the opposite in associative cortices. Increased anatomical-functional similarity in sensory areas is consistent with their stereotypical, cross-modal response to the environment during sleep. In distinction, looser coupling-relative to wakeful rest-in higher order integrative cortices suggests that sleep actively disrupts default patterns of functional connectivity in regions essential for the conscious access of information and that anatomical connectivity acts as an anchor for the restoration of their functionality upon awakening.

  8. Automatic exposure control in CT: the effect of patient size, anatomical region and prescribed modulation strength on tube current and image quality.

    PubMed

    Papadakis, Antonios E; Perisinakis, Kostas; Damilakis, John

    2014-10-01

    To study the effect of patient size, body region and modulation strength on tube current and image quality on CT examinations that use automatic tube current modulation (ATCM). Ten physical anthropomorphic phantoms that simulate an individual as neonate, 1-, 5-, 10-year-old and adult at various body habitus were employed. CT acquisition of head, neck, thorax and abdomen/pelvis was performed with ATCM activated at weak, average and strong modulation strength. The mean modulated mAs (mAsmod) values were recorded. Image noise was measured at selected anatomical sites. The mAsmod recorded for neonate compared to 10-year-old increased by 30 %, 14 %, 6 % and 53 % for head, neck, thorax and abdomen/pelvis, respectively, (P < 0.05). The mAsmod was lower than the preselected mAs with the exception of the 10-year-old phantom. In paediatric and adult phantoms, the mAsmod ranged from 44 and 53 for weak to 117 and 93 for strong modulation strength, respectively. At the same exposure parameters image noise increased with body size (P < 0.05). The ATCM system studied here may affect dose differently for different patient habitus. Dose may decrease for overweight adults but increase for children older than 5 years old. Care should be taken when implementing ATCM protocols to ensure that image quality is maintained. • ATCM efficiency is related to the size of the patient's body. • ATCM should be activated without caution in overweight adult individuals. • ATCM may increase radiation dose in children older than 5 years old. • ATCM efficiency depends on the protocol selected for a specific anatomical region. • Modulation strength may be appropriately tuned to enhance ATCM efficiency.

  9. Microbiome analysis shows enrichment for specific bacteria in separate anatomical regions of the deep-sea carnivorous sponge Chondrocladia grandis.

    PubMed

    Verhoeven, Joost T P; Kavanagh, Alana N; Dufour, Suzanne C

    2017-01-01

    The Cladorhizidae is a unique family of carnivorous marine sponges characterised by either the absence or reduction of the aquiferous system and by the presence of specialised structures to trap and digest mesoplanktonic prey. Previous studies have postulated a key role of host-associated bacteria in enabling carnivory in this family of sponges. In this study, we employed high-throughput Illumina-based sequencing to identify the bacterial community associated with four individuals of the deep-sea sponge Chondrocladia grandis sampled in the Gulf of Maine. By characterising the V6 through V8 region of the 16S rRNA gene, we compared the bacterial community composition and diversity in three distinct anatomical regions with predicted involvement in prey capture (sphere), support (axis) and benthic substrate attachment (root). A high abundance of Tenacibaculum, a known siderophore producing bacterial genus, was present in all anatomical regions and specimens. The abundance of Colwellia and Roseobacter was greater in sphere and axis samples, and bacteria from the hydrocarbon-degrading Robiginitomaculum genus were most abundant in the root. This first description of the bacterial community associated with C. grandis provides novel insights into the contribution of bacteria to the carnivorous lifestyle while laying foundations for future cladorhizid symbiosis studies. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Phosphorylation of ERK/MAP Kinase Is Required for Long-Term Potentiation in Anatomically Restricted Regions of the Lateral Amygdala in Vivo

    ERIC Educational Resources Information Center

    Schafe, Glenn E.; Swank, Michael W.; Rodriguez, Sarina M.; Debiec, Jacek; Doyere, Valerie

    2008-01-01

    We have previously shown that the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/ MAPK) is transiently activated in anatomically restricted regions of the lateral amygdala (LA) following Pavlovian fear conditioning and that blockade of ERK/MAPK activation in the LA impairs both fear memory consolidation and long-term…

  11. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    PubMed Central

    Liu, Yaou; Duan, Yunyun; Li, Kuncheng

    2015-01-01

    The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535

  12. Anatomically-Aided PET Reconstruction Using the Kernel Method

    PubMed Central

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi

    2016-01-01

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest (ROI) quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization (EM) algorithm. PMID:27541810

  13. Anatomically-aided PET reconstruction using the kernel method.

    PubMed

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T; Catana, Ciprian; Qi, Jinyi

    2016-09-21

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.

  14. Anatomically-aided PET reconstruction using the kernel method

    NASA Astrophysics Data System (ADS)

    Hutchcroft, Will; Wang, Guobao; Chen, Kevin T.; Catana, Ciprian; Qi, Jinyi

    2016-09-01

    This paper extends the kernel method that was proposed previously for dynamic PET reconstruction, to incorporate anatomical side information into the PET reconstruction model. In contrast to existing methods that incorporate anatomical information using a penalized likelihood framework, the proposed method incorporates this information in the simpler maximum likelihood (ML) formulation and is amenable to ordered subsets. The new method also does not require any segmentation of the anatomical image to obtain edge information. We compare the kernel method with the Bowsher method for anatomically-aided PET image reconstruction through a simulated data set. Computer simulations demonstrate that the kernel method offers advantages over the Bowsher method in region of interest quantification. Additionally the kernel method is applied to a 3D patient data set. The kernel method results in reduced noise at a matched contrast level compared with the conventional ML expectation maximization algorithm.

  15. Does the anatomical localization of lower extremity venous diseases affect the quality of life?

    PubMed

    Sadikoglu, Ganime; Ozcakir, Alis; Ercan, Ilker; Yildiz, Caner; Sadikoglu, Yurtkuran

    2006-11-01

    To investigate the effects of venous diseases at different anatomical localizations on the qualities of life of patients with varicose veins. The study included 354 cases, which was referred to a private vascular and interventional radiology center in Bursa, Turkey between January 2005 to January 2006. The cases were diagnosed with visual inspection and were clinically indicative of varicose veins. Color Doppler ultrasonography was used to radiologically examine the varicose veins. All cases were accepted as class II criteria according to the Clinical, Etiologic, Anatomic, Pathophysiologic classification. The generic Short Form Health Survey-36 (SF-36) was used to measure physical and mental quality of life (QOL). High scores indicated good QOL. The Statistical Package for Social Sciences version 13.0 program was used for the statistical evaluation. When the life SF-36 quality parameters of cases with different anatomical localizations of the varicose veins were examined, only the mental health scores were found to differ in different groups (p<0.01). In females and males with superficial venous disease, significant differences were found in physical function, physical role and pain among the physical health scale components, and in vitality and emotional role scores among the mental state determinants. When females and males with deep vein disease were compared, significant differences were found among both physical and mental health determinants. Anatomical localization of lower extremity varicose veins can be accepted as a predictive factor in determining the life qualities of patients with varicosities in their lower limb, and should be used to regulate their therapy and follow up protocols.

  16. Recent advances in standards for collaborative Digital Anatomic Pathology

    PubMed Central

    2011-01-01

    Context Collaborative Digital Anatomic Pathology refers to the use of information technology that supports the creation and sharing or exchange of information, including data and images, during the complex workflow performed in an Anatomic Pathology department from specimen reception to report transmission and exploitation. Collaborative Digital Anatomic Pathology can only be fully achieved using medical informatics standards. The goal of the international integrating the Healthcare Enterprise (IHE) initiative is precisely specifying how medical informatics standards should be implemented to meet specific health care needs and making systems integration more efficient and less expensive. Objective To define the best use of medical informatics standards in order to share and exchange machine-readable structured reports and their evidences (including whole slide images) within hospitals and across healthcare facilities. Methods Specific working groups dedicated to Anatomy Pathology within multiple standards organizations defined standard-based data structures for Anatomic Pathology reports and images as well as informatic transactions in order to integrate Anatomic Pathology information into the electronic healthcare enterprise. Results The DICOM supplements 122 and 145 provide flexible object information definitions dedicated respectively to specimen description and Whole Slide Image acquisition, storage and display. The content profile “Anatomic Pathology Structured Report” (APSR) provides standard templates for structured reports in which textual observations may be bound to digital images or regions of interest. Anatomic Pathology observations are encoded using an international controlled vocabulary defined by the IHE Anatomic Pathology domain that is currently being mapped to SNOMED CT concepts. Conclusion Recent advances in standards for Collaborative Digital Anatomic Pathology are a unique opportunity to share or exchange Anatomic Pathology structured

  17. Enhanced anatomical calibration in human movement analysis.

    PubMed

    Donati, Marco; Camomilla, Valentina; Vannozzi, Giuseppe; Cappozzo, Aurelio

    2007-07-01

    The representation of human movement requires knowledge of both movement and morphology of bony segments. The determination of subject-specific morphology data and their registration with movement data is accomplished through an anatomical calibration procedure (calibrated anatomical systems technique: CAST). This paper describes a novel approach to this calibration (UP-CAST) which, as compared with normally used techniques, achieves better repeatability, a shorter application time, and can be effectively performed by non-skilled examiners. Instead of the manual location of prominent bony anatomical landmarks, the description of which is affected by subjective interpretation, a large number of unlabelled points is acquired over prominent parts of the subject's bone, using a wand fitted with markers. A digital model of a template-bone is then submitted to isomorphic deformation and re-orientation to optimally match the above-mentioned points. The locations of anatomical landmarks are automatically made available. The UP-CAST was validated considering the femur as a paradigmatic case. Intra- and inter-examiner repeatability of the identification of anatomical landmarks was assessed both in vivo, using average weight subjects, and on bare bones. Accuracy of the identification was assessed using the anatomical landmark locations manually located on bare bones as reference. The repeatability of this method was markedly higher than that reported in the literature and obtained using the conventional palpation (ranges: 0.9-7.6 mm and 13.4-17.9, respectively). Accuracy resulted, on average, in a maximal error of 11 mm. Results suggest that the principal source of variability resides in the discrepancy between subject's and template bone morphology and not in the inter-examiner differences. The UP-CAST anatomical calibration could be considered a promising alternative to conventional calibration contributing to a more repeatable 3D human movement analysis.

  18. Distribution of syringomyelia along the entire spinal cord in clinically affected Cavalier King Charles Spaniels.

    PubMed

    Loderstedt, Shenja; Benigni, Livia; Chandler, Kate; Cardwell, Jacqueline M; Rusbridge, Clare; Lamb, Christopher R; Volk, Holger A

    2011-12-01

    Chiari-like malformation (CM) and syringomyelia (SM) is an important disease complex in the Cavalier King Charles Spaniel (CKCS) but data about the anatomical distribution of SM along the spinal cord are lacking in veterinary medicine. The objective of this study was to define the anatomic distribution of SM in CKCS clinically affected by CM/SM. Magnetic resonance imaging (MRI) of the brain and the entire spinal cord of 49 dogs was performed and different morphological parameters compared. Syrinx formation was present in the C1-C4 region and in other parts of the spinal cord. The maximal dorsoventral syrinx size can occur in any region of the spinal cord and the total syrinx size was positively correlated with age. Seventy-six per cent of CKCS with a cranial cervical syrinx also have a syrinx affecting more caudal spinal cord regions. MRI restricted to the cervical region may underestimate the extent of SM and the severity of the disease process in the majority of dogs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Multi-template analysis of human perirhinal cortex in brain MRI: Explicitly accounting for anatomical variability

    PubMed Central

    Xie, Long; Pluta, John B.; Das, Sandhitsu R.; Wisse, Laura E.M.; Wang, Hongzhi; Mancuso, Lauren; Kliot, Dasha; Avants, Brian B.; Ding, Song-Lin; Manjón, José V.; Wolk, David A.; Yushkevich, Paul A.

    2016-01-01

    Rational The human perirhinal cortex (PRC) plays critical roles in episodic and semantic memory and visual perception. The PRC consists of Brodmann areas 35 and 36 (BA35, BA36). In Alzheimer's disease (AD), BA35 is the first cortical site affected by neurofibrillary tangle pathology, which is closely linked to neural injury in AD. Large anatomical variability, manifested in the form of different cortical folding and branching patterns, makes it difficult to segment the PRC in MRI scans. Pathology studies have found that in ~97% of specimens, the PRC falls into one of three discrete anatomical variants. However, current methods for PRC segmentation and morphometry in MRI are based on single-template approaches, which may not be able to accurately model these discrete variants Methods A multi-template analysis pipeline that explicitly accounts for anatomical variability is used to automatically label the PRC and measure its thickness in T2-weighted MRI scans. The pipeline uses multi-atlas segmentation to automatically label medial temporal lobe cortices including entorhinal cortex, PRC and the parahippocampal cortex. Pairwise registration between label maps and clustering based on residual dissimilarity after registration are used to construct separate templates for the anatomical variants of the PRC. An optimal path of deformations linking these templates is used to establish correspondences between all the subjects. Experimental evaluation focuses on the ability of single-template and multi-template analyses to detect differences in the thickness of medial temporal lobe cortices between patients with amnestic mild cognitive impairment (aMCI, n=41) and age-matched controls (n=44). Results The proposed technique is able to generate templates that recover the three dominant discrete variants of PRC and establish more meaningful correspondences between subjects than a single-template approach. The largest reduction in thickness associated with aMCI, in absolute terms

  20. The Computerized Anatomical Man (CAM) model

    NASA Technical Reports Server (NTRS)

    Billings, M. P.; Yucker, W. R.

    1973-01-01

    A computerized anatomical man (CAM) model, representing the most detailed and anatomically correct geometrical model of the human body yet prepared, has been developed for use in analyzing radiation dose distribution in man. This model of a 50-percentile standing USAF man comprises some 1100 unique geometric surfaces and some 2450 solid regions. Internal body geometry such as organs, voids, bones, and bone marrow are explicitly modeled. A computer program called CAMERA has also been developed for performing analyses with the model. Such analyses include tracing rays through the CAM geometry, placing results on magnetic tape in various forms, collapsing areal density data from ray tracing information to areal density distributions, preparing cross section views, etc. Numerous computer drawn cross sections through the CAM model are presented.

  1. Human Brain Modeling with Its Anatomical Structure and Realistic Material Properties for Brain Injury Prediction.

    PubMed

    Atsumi, Noritoshi; Nakahira, Yuko; Tanaka, Eiichi; Iwamoto, Masami

    2018-05-01

    Impairments of executive brain function after traumatic brain injury (TBI) due to head impacts in traffic accidents need to be obviated. Finite element (FE) analyses with a human brain model facilitate understanding of the TBI mechanisms. However, conventional brain FE models do not suitably describe the anatomical structure in the deep brain, which is a critical region for executive brain function, and the material properties of brain parenchyma. In this study, for better TBI prediction, a novel brain FE model with anatomical structure in the deep brain was developed. The developed model comprises a constitutive model of brain parenchyma considering anisotropy and strain rate dependency. Validation was performed against postmortem human subject test data associated with brain deformation during head impact. Brain injury analyses were performed using head acceleration curves obtained from reconstruction analysis of rear-end collision with a human whole-body FE model. The difference in structure was found to affect the regions of strain concentration, while the difference in material model contributed to the peak strain value. The injury prediction result by the proposed model was consistent with the characteristics in the neuroimaging data of TBI patients due to traffic accidents.

  2. Anatomical and computed tomographic analysis of the transcochlear and endoscopic transclival approaches to the petroclival region.

    PubMed

    Mason, Eric; Van Rompaey, Jason; Carrau, Ricardo; Panizza, Benedict; Solares, C Arturo

    2014-03-01

    Advances in the field of skull base surgery aim to maximize anatomical exposure while minimizing patient morbidity. The petroclival region of the skull base presents numerous challenges for surgical access due to the complex anatomy. The transcochlear approach to the region provides adequate access; however, the resection involved sacrifices hearing and results in at least a grade 3 facial palsy. An endoscopic endonasal approach could potentially avoid negative patient outcomes while providing a desirable surgical window in a select patient population. Cadaveric study. Endoscopic access to the petroclival region was achieved through an endonasal approach. For comparison, a transcochlear approach to the clivus was performed. Different facets of the dissections, such as bone removal volume and exposed surface area, were computed using computed tomography analysis. The endoscopic endonasal approach provided a sufficient corridor to the petroclival region with significantly less bone removal and nearly equivalent exposure of the surgical target, thus facilitating the identification of the relevant anatomy. The lateral approach allowed for better exposure from a posterolateral direction until the inferior petrosal sinus; however, the endonasal approach avoided labyrinthine/cochlear destruction and facial nerve manipulation while providing an anteromedial viewpoint. The endonasal approach also avoided external incisions and cosmetic deficits. The endonasal approach required significant sinonasal resection. Endoscopic access to the petroclival region is a feasible approach. It potentially avoids hearing loss, facial nerve manipulation, and cosmetic damage. © 2013 The American Laryngological, Rhinological and Otological Society, Inc.

  3. Contribution to the anatomical nomenclature concerning upper limb anatomy.

    PubMed

    Kachlik, David; Musil, Vladimir; Baca, Vaclav

    2017-04-01

    The aim of this article is to revise and extend the existing sections of Terminologia Anatomica dealing with the upper limb structures, which nomenclature belongs to its most neglected and not developing parts, and to justify the use of the proposed anatomical terms in the clinical practice, research, and education. A sample collected from own educational and research experience was matched in the main anatomical textbooks as well as old and recent anatomical journals and compared with four versions of the official Latin anatomical nomenclatures. The authors summarize here 145 terms, completed with their definitions or explanations, concerning both constant and variable (inconstant) morphological structures (bones, joints, muscles, vessels, and nerves) of the pectoral girdle, arm, cubital region, forearm, wrist, and hand, completed with some grammar remarks and several general terms. After a broad discussion on this topic, the Terminologia Anatomica should be revised and extend with the listed terms (or their equivalents).

  4. Anatomic variation of depth-dependent mechanical properties in neonatal bovine articular cartilage.

    PubMed

    Silverberg, Jesse L; Dillavou, Sam; Bonassar, Lawrence; Cohen, Itai

    2013-05-01

    Articular cartilage has well known depth-dependent structure and has recently been shown to have similarly non-uniform depth-dependent mechanical properties. Here, we study anatomic variation of the depth-dependent shear modulus and energy dissipation rate in neonatal bovine knees. The regions we specifically focus on are the patellofemoral groove, trochlea, femoral condyle, and tibial plateau. In every sample, we find a highly compliant region within the first 500 µm of tissue measured from the articular surface, where the local shear modulus is reduced by up to two orders of magnitude. Comparing measurements taken from different anatomic sites, we find statistically significant differences localized within the first 50 µm. Histological images reveal these anatomic variations are associated with differences in collagen density and fiber organization. Copyright © 2012 Orthopaedic Research Society.

  5. Alterations in Anatomical Covariance in the Prematurely Born

    PubMed Central

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Vohr, Betty R.; Schneider, Karen C.; Papademetris, Xenophon; Constable, R. Todd; Ment, Laura R.

    2017-01-01

    Abstract Preterm (PT) birth results in long-term alterations in functional and structural connectivity, but the related changes in anatomical covariance are just beginning to be explored. To test the hypothesis that PT birth alters patterns of anatomical covariance, we investigated brain volumes of 25 PTs and 22 terms at young adulthood using magnetic resonance imaging. Using regional volumetrics, seed-based analyses, and whole brain graphs, we show that PT birth is associated with reduced volume in bilateral temporal and inferior frontal lobes, left caudate, left fusiform, and posterior cingulate for prematurely born subjects at young adulthood. Seed-based analyses demonstrate altered patterns of anatomical covariance for PTs compared with terms. PTs exhibit reduced covariance with R Brodmann area (BA) 47, Broca's area, and L BA 21, Wernicke's area, and white matter volume in the left prefrontal lobe, but increased covariance with R BA 47 and left cerebellum. Graph theory analyses demonstrate that measures of network complexity are significantly less robust in PTs compared with term controls. Volumes in regions showing group differences are significantly correlated with phonological awareness, the fundamental basis for reading acquisition, for the PTs. These data suggest both long-lasting and clinically significant alterations in the covariance in the PTs at young adulthood. PMID:26494796

  6. Perforating and deep lymphatic vessels in the knee region: an anatomical study and clinical implications.

    PubMed

    Pan, Wei-Ren; Zeng, Fan-Qiang; Wang, De-Guang; Qiu, Zhi-Qiang

    2017-05-01

    To determine the relationship between the perforating and deep lymphatic vessels in the knee region for clinical implications. Four lower limbs from two unembalmed human cadavers were used. Under a surgical microscope, 6% hydrogen peroxide was employed to detect lymph vessels accompanying the small saphenous vein, anterior tibial, posterior tibial and fibular blood vessels all commencing from distal ends of specimens. Each lymphatic vessel was inserted by a 30-gauge needle and injected with a barium sulphate mixture. Each specimen was dissected, radiographed and photographed to determine the perforating and deep lymphatic vessels in the region. A perforating lymph vessel was observed in the popliteal fossa of each specimen. It arose from the superficial popliteal lymph node and terminated in the deep popliteal lymph node. The anterior tibial, posterior tibial and peroneal lymph vessels were discovered in the region travelling with the corresponding vascular bundles. After penetrating the vascular aperture of the interosseous membrane between the tibia and fibula, the anterior tibial lymph vessel entered directly into the deep popliteal lymph node or converged to either the posterior tibial or fibular lymph vessel, before entering the node. The posterior tibial and peroneal lymph vessels entered the deep popliteal lymph node. The efferent lymph vessel of the deep popliteal lymph node travelled with the femoral vascular bundle. The perforating and deep lymphatic vessels in the knee region has been presented and discussed. The information advances our anatomical knowledge and the results will benefit clinical management. © 2017 Royal Australasian College of Surgeons.

  7. Semantic dementia and persisting Wernicke's aphasia: linguistic and anatomical profiles.

    PubMed

    Ogar, J M; Baldo, J V; Wilson, S M; Brambati, S M; Miller, B L; Dronkers, N F; Gorno-Tempini, M L

    2011-04-01

    Few studies have directly compared the clinical and anatomical characteristics of patients with progressive aphasia to those of patients with aphasia caused by stroke. In the current study we examined fluent forms of aphasia in these two groups, specifically semantic dementia (SD) and persisting Wernicke's aphasia (WA) due to stroke. We compared 10 patients with SD to 10 age- and education-matched patients with WA in three language domains: language comprehension (single words and sentences), spontaneous speech and visual semantics. Neuroanatomical involvement was analyzed using disease-specific image analysis techniques: voxel-based morphometry (VBM) for patients with SD and overlays of lesion digitized lesion reconstructions in patients with WA. Patients with SD and WA were both impaired on tasks that involved visual semantics, but patients with SD were less impaired in spontaneous speech and sentence comprehension. The anatomical findings showed that different regions were most affected in the two disorders: the left anterior temporal lobe in SD and the left posterior middle temporal gyrus in chronic WA. This study highlights that the two syndromes classically associated with language comprehension deficits in aphasia due to stroke and neurodegenerative disease are clinically distinct, most likely due to distinct distributions of damage in the temporal lobe. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Nucleosome-free DNA regions differentially affect distant communication in chromatin

    PubMed Central

    Nizovtseva, Ekaterina V.; Clauvelin, Nicolas; Todolli, Stefjord; Kulaeva, Olga I.; Wengrzynek, Scott

    2017-01-01

    Abstract Communication between distantly spaced genomic regions is one of the key features of gene regulation in eukaryotes. Chromatin per se can stimulate efficient enhancer-promoter communication (EPC); however, the role of chromatin structure and dynamics in this process remains poorly understood. Here we show that nucleosome spacing and the presence of nucleosome-free DNA regions can modulate chromatin structure/dynamics and, in turn, affect the rate of EPC in vitro and in silico. Increasing the length of internucleosomal linker DNA from 25 to 60 bp results in more efficient EPC. The presence of longer nucleosome-free DNA regions can positively or negatively affect the rate of EPC, depending upon the length and location of the DNA region within the chromatin fiber. Thus the presence of histone-free DNA regions can differentially affect the efficiency of EPC, suggesting that gene regulation over a distance could be modulated by changes in the length of internucleosomal DNA spacers. PMID:27940560

  9. Anatomical study of the auditory region of Arctotherium tarijense (Ursidae, Tremarctinae), an extinct short-faced bear from the Pleistocene of South America.

    PubMed

    Arnaudo, Maria Eugenia; Bona, Paula; Soibelzon, Leopoldo Hector; Schubert, Blaine W

    2016-12-01

    Here we present the most detailed morphological study of the auditory region of a tremarctinae bear, Arctotherium tarijense Ameghino. In addition, we provide new anatomical information of the Tremarctinae inner ear, such as coplanarity and deviation from orthogonality of the semicircular canals, as an approach to infer the head movements which encountered the extinct forms in locomotion. Based on morphological comparisons, A. tarijense exhibits the following particular features: the cavum tympani presents the highest relative volume compared with other ursids; the processus paraoccipitalis has a foramen that is absent in other tremarctines; there is only one (ventral) recess in the anterior region of the cavum tympani; and the recessus epytimpanicus is the smallest for all ursids studied. In relation to the inner ear, A. tarijense shows the lowest values of orthogonality deviation and highest scores of locomotor agility. Based on this, is possible to make a preliminary proposal that this species had a relative high vestibular sensibility and therefore a better ability to explore different kind of habitats. However, this hypothesis might be contrasted among bears taking into account the orientation of each semicircular canal in a phylogenetic framework. © 2016 Anatomical Society.

  10. Affective Learning in Higher Education: A Regional Perspective

    ERIC Educational Resources Information Center

    Evans, Nina; Ziaian, Tahereh; Sawyer, Janet; Gillham, David

    2013-01-01

    A pilot study was conducted in a regional university setting to promote awareness of the value of affective teaching and learning amongst staff and students. Academic staff and students from diverse disciplines at University of South Australia's (UniSA) Centre for Regional Engagement (CRE) were recruited to the study. The research investigated…

  11. Comparison of survival outcomes after anatomical resection and non-anatomical resection in patients with hepatocellular carcinoma

    PubMed Central

    Kim, Seheon; Kim, Seokwhan; Song, Insang

    2015-01-01

    Backgrounds/Aims Liver resection is a curative procedure performed worldwide for hepatocellular carcinoma (HCC). Deciding on the appropriate resection range for postoperative hepatic function preservation is an important surgical consideration. This study compares survival outcomes of HCC patients who underwent anatomical or non-anatomical resection, to determine which offers the best clinical survival benefit. Methods One hundred and thirty-one patients underwent liver resection with HCC, between January 2007 and February 2015, and were divided into two groups: those who underwent anatomical liver resection (n=88) and those who underwent non-anatomical liver resection (n=43). Kaplan-Meier survival analysis and Cox regressions were used to compare the disease-free survival (DFS) and overall survival (OS) rates between the groups. Results The mean follow-up periods were 27 and 40 months in the anatomical and non-anatomical groups, respectively (p=0.229). The 3- and 5-year DFS rates were 70% and 60% in the anatomical group and 62% and 48% in the non-anatomical group, respectively. The 3 and 5-year OS rates were 94% and 78% in the anatomical group, and 86% and 80% in the non-anatomical group, respectively. The anatomical group tended to show better outcomes, but the findings were not significant. However, a relative risk of OS between the anatomical and non-anatomical group was 0.234 (95% CI, 0.061-0.896; p=0.034), which is statistically significant. Conclusions Although statistical significance was not detected in survival curves, anatomical resection showed better results. In this respect, anatomical resection is more likely to perform in HCC patients with preserve liver function than non-anatomical resection. PMID:26693235

  12. Alterations in Anatomical Covariance in the Prematurely Born.

    PubMed

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Vohr, Betty R; Schneider, Karen C; Papademetris, Xenophon; Constable, R Todd; Ment, Laura R

    2017-01-01

    Preterm (PT) birth results in long-term alterations in functional and structural connectivity, but the related changes in anatomical covariance are just beginning to be explored. To test the hypothesis that PT birth alters patterns of anatomical covariance, we investigated brain volumes of 25 PTs and 22 terms at young adulthood using magnetic resonance imaging. Using regional volumetrics, seed-based analyses, and whole brain graphs, we show that PT birth is associated with reduced volume in bilateral temporal and inferior frontal lobes, left caudate, left fusiform, and posterior cingulate for prematurely born subjects at young adulthood. Seed-based analyses demonstrate altered patterns of anatomical covariance for PTs compared with terms. PTs exhibit reduced covariance with R Brodmann area (BA) 47, Broca's area, and L BA 21, Wernicke's area, and white matter volume in the left prefrontal lobe, but increased covariance with R BA 47 and left cerebellum. Graph theory analyses demonstrate that measures of network complexity are significantly less robust in PTs compared with term controls. Volumes in regions showing group differences are significantly correlated with phonological awareness, the fundamental basis for reading acquisition, for the PTs. These data suggest both long-lasting and clinically significant alterations in the covariance in the PTs at young adulthood. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. Anatomical education and surgical simulation based on the Chinese Visible Human: a three-dimensional virtual model of the larynx region.

    PubMed

    Liu, Kaijun; Fang, Binji; Wu, Yi; Li, Ying; Jin, Jun; Tan, Liwen; Zhang, Shaoxiang

    2013-09-01

    Anatomical knowledge of the larynx region is critical for understanding laryngeal disease and performing required interventions. Virtual reality is a useful method for surgical education and simulation. Here, we assembled segmented cross-section slices of the larynx region from the Chinese Visible Human dataset. The laryngeal structures were precisely segmented manually as 2D images, then reconstructed and displayed as 3D images in the virtual reality Dextrobeam system. Using visualization and interaction with the virtual reality modeling language model, a digital laryngeal anatomy instruction was constructed using HTML and JavaScript languages. The volume larynx models can thus display an arbitrary section of the model and provide a virtual dissection function. This networked teaching system of the digital laryngeal anatomy can be read remotely, displayed locally, and manipulated interactively.

  14. An illustrated anatomical ontology of the developing mouse lower urogenital tract

    PubMed Central

    Georgas, Kylie M.; Armstrong, Jane; Keast, Janet R.; Larkins, Christine E.; McHugh, Kirk M.; Southard-Smith, E. Michelle; Cohn, Martin J.; Batourina, Ekatherina; Dan, Hanbin; Schneider, Kerry; Buehler, Dennis P.; Wiese, Carrie B.; Brennan, Jane; Davies, Jamie A.; Harding, Simon D.; Baldock, Richard A.; Little, Melissa H.; Vezina, Chad M.; Mendelsohn, Cathy

    2015-01-01

    Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation. PMID:25968320

  15. SEMANTIC DEMENTIA AND PERSISTING WERNICKE’S APHASIA: LINGUISTIC AND ANATOMICAL PROFILES

    PubMed Central

    Ogar, JM; Baldo, JV; Wilson, SM; Brambati, SM; Miller, BL; Dronkers, NF; Gorno-Tempini, ML

    2011-01-01

    Few studies have directly compared the clinical and anatomical characteristics of patients with progressive aphasia to those of patients with aphasia caused by stroke. In the current study we examined fluent forms of aphasia in these two groups, specifically the semantic dementia (SD) and persisting Wernicke's aphasia (WA) due to stroke. We compared 10 patients with SD to 10 age- and education-matched patients with WA in three language domains: language comprehension (single words and sentences), spontaneous speech and visual semantics. Neuroanatomical involvement was analyzed using disease-specific image analysis techniques: voxel-based morphometry (VBM) for patients with SD and overlays of lesion masks in patients with WA. Patients with SD and WA were both impaired on tasks that involved visual semantics, but patients with SD were less impaired in spontaneous speech and sentence comprehension. The anatomical findings showed that different regions were most affected in the two disorders: the left anterior temporal lobe in SD and the left posterior middle temporal gyrus in chronic WA. This study highlights that the two syndromes classically associated with language comprehension deficits in aphasia due to stroke and neurodegenerative disease are clinically distinct, most likely due to distinct distributions of damage in the temporal lobe. PMID:21315437

  16. Prostatome: A combined anatomical and disease based MRI atlas of the prostate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusu, Mirabela; Madabhushi, Anant, E-mail: anant.madabhushi@case.edu; Bloch, B. Nicolas

    Purpose: In this work, the authors introduce a novel framework, the anatomically constrained registration (AnCoR) scheme and apply it to create a fused anatomic-disease atlas of the prostate which the authors refer to as the prostatome. The prostatome combines a MRI based anatomic and a histology based disease atlas. Statistical imaging atlases allow for the integration of information across multiple scales and imaging modalities into a single canonical representation, in turn enabling a fused anatomical-disease representation which may facilitate the characterization of disease appearance relative to anatomic structures. While statistical atlases have been extensively developed and studied for the brain,more » approaches that have attempted to combine pathology and imaging data for study of prostate pathology are not extant. This works seeks to address this gap. Methods: The AnCoR framework optimizes a scoring function composed of two surface (prostate and central gland) misalignment measures and one intensity-based similarity term. This ensures the correct mapping of anatomic regions into the atlas, even when regional MRI intensities are inconsistent or highly variable between subjects. The framework allows for creation of an anatomic imaging and a disease atlas, while enabling their fusion into the anatomic imaging-disease atlas. The atlas presented here was constructed using 83 subjects with biopsy confirmed cancer who had pre-operative MRI (collected at two institutions) followed by radical prostatectomy. The imaging atlas results from mapping thein vivo MRI into the canonical space, while the anatomic regions serve as domain constraints. Elastic co-registration MRI and corresponding ex vivo histology provides “ground truth” mapping of cancer extent on in vivo imaging for 23 subjects. Results: AnCoR was evaluated relative to alternative construction strategies that use either MRI intensities or the prostate surface alone for registration. The An

  17. Specification and estimation of sources of bias affecting neurological studies in PET/MR with an anatomical brain phantom

    NASA Astrophysics Data System (ADS)

    Teuho, J.; Johansson, J.; Linden, J.; Saunavaara, V.; Tolvanen, T.; Teräs, M.

    2014-01-01

    Selection of reconstruction parameters has an effect on the image quantification in PET, with an additional contribution from a scanner-specific attenuation correction method. For achieving comparable results in inter- and intra-center comparisons, any existing quantitative differences should be identified and compensated for. In this study, a comparison between PET, PET/CT and PET/MR is performed by using an anatomical brain phantom, to identify and measure the amount of bias caused due to differences in reconstruction and attenuation correction methods especially in PET/MR. Differences were estimated by using visual, qualitative and quantitative analysis. The qualitative analysis consisted of a line profile analysis for measuring the reproduction of anatomical structures and the contribution of the amount of iterations to image contrast. The quantitative analysis consisted of measurement and comparison of 10 anatomical VOIs, where the HRRT was considered as the reference. All scanners reproduced the main anatomical structures of the phantom adequately, although the image contrast on the PET/MR was inferior when using a default clinical brain protocol. Image contrast was improved by increasing the amount of iterations from 2 to 5 while using 33 subsets. Furthermore, a PET/MR-specific bias was detected, which resulted in underestimation of the activity values in anatomical structures closest to the skull, due to the MR-derived attenuation map that ignores the bone. Thus, further improvements for the PET/MR reconstruction and attenuation correction could be achieved by optimization of RAMLA-specific reconstruction parameters and implementation of bone to the attenuation template.

  18. The semantic anatomical network: Evidence from healthy and brain-damaged patient populations.

    PubMed

    Fang, Yuxing; Han, Zaizhu; Zhong, Suyu; Gong, Gaolang; Song, Luping; Liu, Fangsong; Huang, Ruiwang; Du, Xiaoxia; Sun, Rong; Wang, Qiang; He, Yong; Bi, Yanchao

    2015-09-01

    Semantic processing is central to cognition and is supported by widely distributed gray matter (GM) regions and white matter (WM) tracts. The exact manner in which GM regions are anatomically connected to process semantics remains unknown. We mapped the semantic anatomical network (connectome) by conducting diffusion imaging tractography in 48 healthy participants across 90 GM "nodes," and correlating the integrity of each obtained WM edge and semantic performance across 80 brain-damaged patients. Fifty-three WM edges were obtained whose lower integrity associated with semantic deficits and together with their linked GM nodes constitute a semantic WM network. Graph analyses of this network revealed three structurally segregated modules that point to distinct semantic processing components and identified network hubs and connectors that are central in the communication across the subnetworks. Together, our results provide an anatomical framework of human semantic network, advancing the understanding of the structural substrates supporting semantic processing. © 2015 Wiley Periodicals, Inc.

  19. Anatomical and neuropsychological effects of cluster munitions.

    PubMed

    Fares, Youssef; Fares, Jawad

    2013-12-01

    The aim of this article is to investigate the effects of cluster munitions on the different environmental, anatomical and neuropsychological levels. We conducted a study to explore the effects of sub-munitions on Lebanese victims. The study included a total of 407 cases that have been subjected to the detonation of unexploded sub-munitions in Lebanon, between 2006 and 2011. In our series, 356 casualties were injured and 51 were dead. 382 were males and 25 were females. We recorded 83 cases of amputations, and injuries involving cranio-facial regions, thorax, abdomen, and upper and lower extremities. These injuries lead to loss of function, body disfiguration, and chronic pain caused by the injuries or the amputations, as well as post-traumatic stress disorder. The peripheral nervous system was mostly affected and patients suffered from significant psychosocial tribulations. Cluster munitions harm human beings and decrease biodiversity. Survivors suffer from physical and psychological impairments. Laws should be passed and enforced to ban the use of these detrimental weapons that have negative effects on ecosystem and societal levels.

  20. Anatomical variations and sinusitis.

    PubMed

    Jorissen, M; Hermans, R; Bertrand, B; Eloy, P

    1997-01-01

    Paranasal sinus anatomy and variations have gained interest with the introduction of functional endoscopic sinus surgery and the concept of the ostiomeatal complex. Anatomical variations can be divided in structural abnormalities, (increased) pneumatization and supplementary openings. Most anatomical variations are equally found in control and sinusitis patients. The anatomical variations which are most commonly associated with sinus pathology are septal deviations, true conchae bullosae and supplementary maxillary ostia but the latter one only when recycling is present. The knowledge of anatomical variations is most important in the surgical management and specifically in the prevention of complications.

  1. Standard Anatomic Terminologies: Comparison for Use in a Health Information Exchange–Based Prior Computed Tomography (CT) Alerting System

    PubMed Central

    Lowry, Tina; Vreeman, Daniel J; Loo, George T; Delman, Bradley N; Thum, Frederick L; Slovis, Benjamin H; Shapiro, Jason S

    2017-01-01

    Background A health information exchange (HIE)–based prior computed tomography (CT) alerting system may reduce avoidable CT imaging by notifying ordering clinicians of prior relevant studies when a study is ordered. For maximal effectiveness, a system would alert not only for prior same CTs (exams mapped to the same code from an exam name terminology) but also for similar CTs (exams mapped to different exam name terminology codes but in the same anatomic region) and anatomically proximate CTs (exams in adjacent anatomic regions). Notification of previous same studies across an HIE requires mapping of local site CT codes to a standard terminology for exam names (such as Logical Observation Identifiers Names and Codes [LOINC]) to show that two studies with different local codes and descriptions are equivalent. Notifying of prior similar or proximate CTs requires an additional mapping of exam codes to anatomic regions, ideally coded by an anatomic terminology. Several anatomic terminologies exist, but no prior studies have evaluated how well they would support an alerting use case. Objective The aim of this study was to evaluate the fitness of five existing standard anatomic terminologies to support similar or proximate alerts of an HIE-based prior CT alerting system. Methods We compared five standard anatomic terminologies (Foundational Model of Anatomy, Systematized Nomenclature of Medicine Clinical Terms, RadLex, LOINC, and LOINC/Radiological Society of North America [RSNA] Radiology Playbook) to an anatomic framework created specifically for our use case (Simple ANatomic Ontology for Proximity or Similarity [SANOPS]), to determine whether the existing terminologies could support our use case without modification. On the basis of an assessment of optimal terminology features for our purpose, we developed an ordinal anatomic terminology utility classification. We mapped samples of 100 random and the 100 most frequent LOINC CT codes to anatomic regions in each

  2. Anatomical and spatial matching in imitation: Evidence from left and right brain-damaged patients.

    PubMed

    Mengotti, Paola; Ripamonti, Enrico; Pesavento, Valentina; Rumiati, Raffaella Ida

    2015-12-01

    Imitation is a sensorimotor process whereby the visual information present in the model's movement has to be coupled with the activation of the motor system in the observer. This also implies that greater the similarity between the seen and the produced movement, the easier it will be to execute the movement, a process also known as ideomotor compatibility. Two components can influence the degree of similarity between two movements: the anatomical and the spatial component. The anatomical component is present when the model and imitator move the same body part (e.g., the right hand) while the spatial component is present when the movement of the model and that of the imitator occur at the same spatial position. Imitation can be achieved by relying on both components, but typically the model's and imitator's movements are matched either anatomically or spatially. The aim of this study was to ascertain the contribution of the left and right hemisphere to the imitation accomplished either with anatomical or spatial matching (or with both). Patients with unilateral left and right brain damage performed an ideomotor task and a gesture imitation task. Lesions in the left and right hemispheres gave rise to different performance deficits. Patients with lesions in the left hemisphere showed impaired imitation when anatomical matching was required, and patients with lesions in the right hemisphere showed impaired imitation when spatial matching was required. Lesion analysis further revealed a differential involvement of left and right hemispheric regions, such as the parietal opercula, in supporting imitation in the ideomotor task. Similarly, gesture imitation seemed to rely on different regions in the left and right hemisphere, such as parietal regions in the left hemisphere and premotor, somatosensory and subcortical regions in the right hemisphere. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Gemelli-obturator complex in the deep gluteal space: an anatomic and dynamic study.

    PubMed

    Balius, Ramon; Susín, Antonio; Morros, Carles; Pujol, Montse; Pérez-Cuenca, Dolores; Sala-Blanch, Xavier

    2018-06-01

    To investigate the behavior of the sciatic nerve during hip rotation at subgluteal space. Sonographic examination (high-resolution ultrasound machine at 5.0-14 MHZ) of the gemelli-obturator internus complex following two approaches: (1) a study on cadavers and (2) a study on healthy volunteers. The cadavers were examined in pronation, pelvis-fixed position by forcing internal and external rotations of the hip with the knee in 90° flexion. Healthy volunteers were examined during passive internal and external hip rotation (prone position; lumbar and pelvic regions fixed). Subjects with a history of major trauma, surgery or pathologies affecting the examined regions were excluded. The analysis included eight hemipelvis from six fresh cadavers and 31 healthy volunteers. The anatomical study revealed the presence of connective tissue attaching the sciatic nerve to the structures of the gemellus-obturator system at deep subgluteal space. The amplitude of the nerve curvature during rotating position was significantly greater than during resting position. During passive internal rotation, the sciatic nerve of both cadavers and healthy volunteers transformed from a straight structure to a curved structure tethered at two points as the tendon of the obturator internus contracted downwards. Conversely, external hip rotation caused the nerve to relax. Anatomically, the sciatic nerve is closely related to the gemelli-obturator internus complex. This relationship results in a reproducible dynamic behavior of the sciatic nerve during passive hip rotation, which may contribute to explain the pathological mechanisms of the obturator internal gemellus syndrome.

  4. An epidemiological study of immune-mediated skin diseases affecting the oral cavity.

    PubMed

    Carvalho, Cyntia Helena Pereira de; Santos, Bruna Rafaela Martins dos; Vieira, Camila de Castro; Lima, Emeline das Neves de Araújo; Santos, Pedro Paulo de Andrade; Freitas, Roseana de Almeida

    2011-01-01

    Immune-mediated skin diseases encompass a variety of pathologies that present in different forms in the body. The objective of this study was to establish the prevalence of the principal immune-mediated skin diseases affecting the oral cavity. A total of 10,292 histopathology reports stored in the archives of the Anatomical Pathology Laboratory, Department of Oral Pathology, Federal University of Rio Grande do Norte, covering the period from 1988 to 2009, were evaluated. For the cases diagnosed with some type of disease relevant to the study, clinical data such as the gender, age and ethnicity of the patient, the anatomical site of the disease and its symptomatology were collected. Of all the cases registered at the above-mentioned service, 82 (0.8%) corresponded to immune-mediated skin diseases with symptoms affecting the oral cavity. The diseases found in this study were: oral lichen planus, pemphigus vulgaris and benign mucous membrane pemphigoid. Oral lichen planus was the most common lesion, comprising 68.05% of the cases analyzed. Of these cases, 64.3% were women and the cheek mucosa was the anatomical site most commonly affected (46.8%). Immune-mediated skin diseases affecting the oral cavity continue to be rare, the prevalence found in this study being similar to that reported for the majority of regions worldwide. Nevertheless, early diagnosis is indispensable in the treatment of these diseases, bearing in mind that systemic involvement is possible in these patients.

  5. Congenital blindness is associated with large-scale reorganization of anatomical networks.

    PubMed

    Hasson, Uri; Andric, Michael; Atilgan, Hicret; Collignon, Olivier

    2016-03-01

    Blindness is a unique model for understanding the role of experience in the development of the brain's functional and anatomical architecture. Documenting changes in the structure of anatomical networks for this population would substantiate the notion that the brain's core network-level organization may undergo neuroplasticity as a result of life-long experience. To examine this issue, we compared whole-brain networks of regional cortical-thickness covariance in early blind and matched sighted individuals. This covariance is thought to reflect signatures of integration between systems involved in similar perceptual/cognitive functions. Using graph-theoretic metrics, we identified a unique mode of anatomical reorganization in the blind that differed from that found for sighted. This was seen in that network partition structures derived from subgroups of blind were more similar to each other than they were to partitions derived from sighted. Notably, after deriving network partitions, we found that language and visual regions tended to reside within separate modules in sighted but showed a pattern of merging into shared modules in the blind. Our study demonstrates that early visual deprivation triggers a systematic large-scale reorganization of whole-brain cortical-thickness networks, suggesting changes in how occipital regions interface with other functional networks in the congenitally blind. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Reduced hemispheric asymmetry of brain anatomical networks in attention deficit hyperactivity disorder.

    PubMed

    Li, Dandan; Li, Ting; Niu, Yan; Xiang, Jie; Cao, Rui; Liu, Bo; Zhang, Hui; Wang, Bin

    2018-05-11

    Despite many studies reporting a variety of alterations in brain networks in patients with attention deficit hyperactivity disorder (ADHD), alterations in hemispheric anatomical networks are still unclear. In this study, we investigated topology alterations in hemispheric white matter in patients with ADHD and the relationship between these alterations and clinical features of the illness. Weighted hemispheric brain anatomical networks were first constructed for each of 40 right-handed patients with ADHD and 53 matched normal controls. Then, graph theoretical approaches were utilized to compute hemispheric topological properties. The small-world property was preserved in the hemispheric network. Furthermore, a significant group-by-hemisphere interaction was revealed in global efficiency, local efficiency and characteristic path length, attributed to the significantly reduced hemispheric asymmetry of global and local integration in patients with ADHD compared with normal controls. Specifically, reduced asymmetric regional efficiency was found in three regions. Finally, we found that the abnormal asymmetry of hemispheric brain anatomical network topology and regional efficiency were both associated with clinical features (the Adult ADHD Self-Report Scale and Wechsler Adult Intelligence Scale) in patients. Our findings provide new insights into the lateralized nature of hemispheric dysconnectivity and highlight the potential for using brain network measures of hemispheric asymmetry as neural biomarkers for ADHD and its clinical features.

  7. Scoring of anatomic injury after trauma: AIS 98 versus AIS 90--do the changes affect overall severity assessment?

    PubMed

    Skaga, Nils O; Eken, Torsten; Hestnes, Morten; Jones, J Mary; Steen, Petter A

    2007-01-01

    Although several changes were implemented in the 1998 update of the abbreviated injury scale (AIS 98) versus the previous AIS 90, both are still used worldwide for coding of anatomic injury in trauma. This could possibly invalidate comparisons between systems using different AIS versions. Our aim was to evaluate whether the use of different coding dictionaries affected estimation of Injury Severity Score (ISS), New Injury Severity Score (NISS) and probability of survival (Ps) according to TRISS in a hospital-based trauma registry. In a prospective study including 1654 patients from Ulleval University Hospital, a Norwegian trauma referral centre, patients were coded according to both AIS 98 and AIS 90. Agreement between the classifications of ISS, NISS and Ps according to TRISS methodology was estimated using intraclass correlation coefficients (ICC) with 95% CI. ISS changed for 378 of 1654 patients analysed (22.9%). One hundred and forty seven (8.9%) were coded differently due to different injury descriptions and 369 patients (22.3%) had a change in ISS value in one or more regions due to the different scoring algorithm for skin injuries introduced in AIS 98. This gave a minimal change in mean ISS (14.74 versus 14.54). An ICC value of 0.997 (95% CI 0.9968-0.9974) for ISS indicates excellent agreement between the scoring systems. There were no significant changes in NISS and Ps. There was excellent agreement for the overall population between ISS, NISS and Ps values obtained using AIS 90 and AIS 98 for injury coding. Injury descriptions for hypothermia were re-introduced in the recently published AIS 2005. We support this change as coding differences due to hypothermia were encountered in 4.3% of patients in the present study.

  8. Familial intracranial aneurysms: is anatomic vulnerability heritable?

    PubMed

    Mackey, Jason; Brown, Robert D; Moomaw, Charles J; Hornung, Richard; Sauerbeck, Laura; Woo, Daniel; Foroud, Tatiana; Gandhi, Dheeraj; Kleindorfer, Dawn; Flaherty, Matthew L; Meissner, Irene; Anderson, Craig; Rouleau, Guy; Connolly, E Sander; Deka, Ranjan; Koller, Daniel L; Abruzzo, Todd; Huston, John; Broderick, Joseph P

    2013-01-01

    Previous studies have suggested that family members with intracranial aneurysms (IAs) often harbor IAs in similar anatomic locations. IA location is important because of its association with rupture. We tested the hypothesis that anatomic susceptibility to IA location exists using a family-based IA study. We identified all affected probands and first-degree relatives (FDRs) with a definite or probable phenotype in each family. We stratified each IA of the probands by major arterial territory and calculated each family's proband-FDR territory concordance and overall contribution to the concordance analysis. We then matched each family unit to an unrelated family unit selected randomly with replacement and performed 1001 simulations. The median concordance proportions, odds ratios (ORs), and P values from the 1001 logistic regression analyses were used to represent the final results of the analysis. There were 323 family units available for analysis, including 323 probands and 448 FDRs, with a total of 1176 IAs. IA territorial concordance was higher in the internal carotid artery (55.4% versus 45.6%; OR, 1.54 [1.04-2.27]; P=0.032), middle cerebral artery (45.8% versus 30.5%; OR, 1.99 [1.22-3.22]; P=0.006), and vertebrobasilar system (26.6% versus 11.3%; OR, 2.90 [1.05-8.24], P=0.04) distributions in the true family compared with the comparison family. Concordance was also higher when any location was considered (53.0% versus 40.7%; OR, 1.82 [1.34-2.46]; P<0.001). In a highly enriched sample with familial predisposition to IA development, we found that IA territorial concordance was higher when probands were compared with their own affected FDRs than with comparison FDRs, which suggests that anatomic vulnerability to IA formation exists. Future studies of IA genetics should consider stratifying cases by IA location.

  9. An illustrated anatomical ontology of the developing mouse lower urogenital tract.

    PubMed

    Georgas, Kylie M; Armstrong, Jane; Keast, Janet R; Larkins, Christine E; McHugh, Kirk M; Southard-Smith, E Michelle; Cohn, Martin J; Batourina, Ekatherina; Dan, Hanbin; Schneider, Kerry; Buehler, Dennis P; Wiese, Carrie B; Brennan, Jane; Davies, Jamie A; Harding, Simon D; Baldock, Richard A; Little, Melissa H; Vezina, Chad M; Mendelsohn, Cathy

    2015-05-15

    Malformation of the urogenital tract represents a considerable paediatric burden, with many defects affecting the lower urinary tract (LUT), genital tubercle and associated structures. Understanding the molecular basis of such defects frequently draws on murine models. However, human anatomical terms do not always superimpose on the mouse, and the lack of accurate and standardised nomenclature is hampering the utility of such animal models. We previously developed an anatomical ontology for the murine urogenital system. Here, we present a comprehensive update of this ontology pertaining to mouse LUT, genital tubercle and associated reproductive structures (E10.5 to adult). Ontology changes were based on recently published insights into the cellular and gross anatomy of these structures, and on new analyses of epithelial cell types present in the pelvic urethra and regions of the bladder. Ontology changes include new structures, tissue layers and cell types within the LUT, external genitalia and lower reproductive structures. Representative illustrations, detailed text descriptions and molecular markers that selectively label muscle, nerves/ganglia and epithelia of the lower urogenital system are also presented. The revised ontology will be an important tool for researchers studying urogenital development/malformation in mouse models and will improve our capacity to appropriately interpret these with respect to the human situation. © 2015. Published by The Company of Biologists Ltd.

  10. Round and Oval Window Anatomic Variability: Its Implication for the Vibroplasty Technique.

    PubMed

    Mancheño, Marta; Aristegui, Miguel; Sañudo, Jose Ramon

    2017-06-01

    The objective of this study is to evaluate the anatomical variability of round and oval window regions and its relationship with their closest structures, to determine its implication on the fitting and stabilization of the middle ear implant Vibrant Soundbridge. Variations of the anatomy of round and oval window regions were assessed in a total of 85 human dissected temporal bones. Afterward, we evaluated the adaptation and subsequent stabilization of the floating mass transducer (FMT) of the Vibrant Soundbridge in 67 cases in round window (RW) and in 22 cases in oval window (OW), and the influence that the variability of the different anatomical features examined had on this stabilization. We also assessed access and surgeon's view of the RW niche through the facial recess approach. Stabilization of the FMT in the RW was achieved in 53 (79%) of the 67 cases; we found that the less favorable anatomical conditions for stabilization were: membrane smaller than 1.5 mm, presence of a high jugular bulb and a narrow or very narrow RW niche. Frequently, two or more of these conditions happened simultaneously. In seven cases (22%) access to the RW through facial recess approach did not allow positioning the FMT in place. OW stabilization succeeded in 18 (82%) of the 22 cases. Round and oval window vibroplasty are difficult surgical techniques. To place the FMT directly on the OW may be easier as we do not have to drill the niche. In both regions there are some anatomical conditions that hinder fitting the FMT and even make it impossible. Once fitted, the main problem is to achieve good stabilization of the device.

  11. Automatic detection of anatomical regions in frontal x-ray images: comparing convolutional neural networks to random forest

    NASA Astrophysics Data System (ADS)

    Olory Agomma, R.; Vázquez, C.; Cresson, T.; De Guise, J.

    2018-02-01

    Most algorithms to detect and identify anatomical structures in medical images require either to be initialized close to the target structure, or to know that the structure is present in the image, or to be trained on a homogeneous database (e.g. all full body or all lower limbs). Detecting these structures when there is no guarantee that the structure is present in the image, or when the image database is heterogeneous (mixed configurations), is a challenge for automatic algorithms. In this work we compared two state-of-the-art machine learning techniques in order to determine which one is the most appropriate for predicting targets locations based on image patches. By knowing the position of thirteen landmarks points, labelled by an expert in EOS frontal radiography, we learn the displacement between salient points detected in the image and these thirteen landmarks. The learning step is carried out with a machine learning approach by exploring two methods: Convolutional Neural Network (CNN) and Random Forest (RF). The automatic detection of the thirteen landmarks points in a new image is then obtained by averaging the positions of each one of these thirteen landmarks estimated from all the salient points in the new image. We respectively obtain for CNN and RF, an average prediction error (both mean and standard deviation in mm) of 29 +/-18 and 30 +/- 21 for the thirteen landmarks points, indicating the approximate location of anatomical regions. On the other hand, the learning time is 9 days for CNN versus 80 minutes for RF. We provide a comparison of the results between the two machine learning approaches.

  12. Resting state cortico-cerebellar functional connectivity networks: a comparison of anatomical and self-organizing map approaches

    PubMed Central

    Bernard, Jessica A.; Seidler, Rachael D.; Hassevoort, Kelsey M.; Benson, Bryan L.; Welsh, Robert C.; Wiggins, Jillian Lee; Jaeggi, Susanne M.; Buschkuehl, Martin; Monk, Christopher S.; Jonides, John; Peltier, Scott J.

    2012-01-01

    The cerebellum plays a role in a wide variety of complex behaviors. In order to better understand the role of the cerebellum in human behavior, it is important to know how this structure interacts with cortical and other subcortical regions of the brain. To date, several studies have investigated the cerebellum using resting-state functional connectivity magnetic resonance imaging (fcMRI; Krienen and Buckner, 2009; O'Reilly et al., 2010; Buckner et al., 2011). However, none of this work has taken an anatomically-driven lobular approach. Furthermore, though detailed maps of cerebral cortex and cerebellum networks have been proposed using different network solutions based on the cerebral cortex (Buckner et al., 2011), it remains unknown whether or not an anatomical lobular breakdown best encompasses the networks of the cerebellum. Here, we used fcMRI to create an anatomically-driven connectivity atlas of the cerebellar lobules. Timecourses were extracted from the lobules of the right hemisphere and vermis. We found distinct networks for the individual lobules with a clear division into “motor” and “non-motor” regions. We also used a self-organizing map (SOM) algorithm to parcellate the cerebellum. This allowed us to investigate redundancy and independence of the anatomically identified cerebellar networks. We found that while anatomical boundaries in the anterior cerebellum provide functional subdivisions of a larger motor grouping defined using our SOM algorithm, in the posterior cerebellum, the lobules were made up of sub-regions associated with distinct functional networks. Together, our results indicate that the lobular boundaries of the human cerebellum are not necessarily indicative of functional boundaries, though anatomical divisions can be useful. Additionally, driving the analyses from the cerebellum is key to determining the complete picture of functional connectivity within the structure. PMID:22907994

  13. Anatomical and functional organization of the human substantia nigra and its connections

    PubMed Central

    Zhang, Yu; Larcher, Kevin Michel-Herve; Misic, Bratislav

    2017-01-01

    We investigated the anatomical and functional organization of the human substantia nigra (SN) using diffusion and functional MRI data from the Human Connectome Project. We identified a tripartite connectivity-based parcellation of SN with a limbic, cognitive, motor arrangement. The medial SN connects with limbic striatal and cortical regions and encodes value (greater response to monetary wins than losses during fMRI), while the ventral SN connects with associative regions of cortex and striatum and encodes salience (equal response to wins and losses). The lateral SN connects with somatomotor regions of striatum and cortex and also encodes salience. Behavioral measures from delay discounting and flanker tasks supported a role for the value-coding medial SN network in decisional impulsivity, while the salience-coding ventral SN network was associated with motor impulsivity. In sum, there is anatomical and functional heterogeneity of human SN, which underpins value versus salience coding, and impulsive choice versus impulsive action. PMID:28826495

  14. Anatomical versus non-anatomical single bundle anterior cruciate ligament reconstruction: a cadaveric study of comparison of knee stability.

    PubMed

    Lim, Hong-Chul; Yoon, Yong-Cheol; Wang, Joon-Ho; Bae, Ji-Hoon

    2012-12-01

    The purpose of this study was to compare the initial stability of anatomical and non-anatomical single bundle anterior cruciate ligament (ACL) reconstruction and to determine which would better restore intact knee kinematics. Our hypothesis was that the initial stability of anatomical single bundle ACL reconstruction would be superior to that of non-anatomical single bundle ACL reconstruction. Anterior tibial translation (ATT) and internal rotation of the tibia were measured with a computer navigation system in seven pairs of fresh-frozen cadaveric knees under two testing conditions (manual maximum anterior force, and a manual maximum anterior force combined with an internal rotational force). Tests were performed at 0, 30, 60, and 90 degrees of flexion with the ACL intact, the ACL transected, and after reconstruction of one side of a pair with either anatomical or non-anatomical single bundle ACL reconstruction. Under manual maximal anterior force, both reconstruction techniques showed no significant difference of ATT when compared to ACL intact knee state at 30° of knee flexion (p > 0.05). Under the combined anterior and internal rotatory force, non-anatomical single-bundle ACL reconstruction showed significant difference of ATT compared to those in ACL intact group (p < 0.05). In contrast, central anatomical single bundle ACL reconstruction showed no significant difference of ATT compared to those in ACL intact group (p > 0.05). Internal rotation of the tibia showed no significant difference in the ACL intact, the ACL transected, non-anatomical reconstructed and anatomical reconstructed knees. Anatomical single bundle ACL reconstruction restored the initial stability closer to the native ACL under combined anterior and internal rotational forces when compared to non-anatomical ACL single bundle reconstruction.

  15. An anatomically based protocol for the description of foot segment kinematics during gait.

    PubMed

    Leardini, A; Benedetti, M G; Catani, F; Simoncini, L; Giannini, S

    1999-10-01

    To design a technique for the in vivo description of ankle and other foot joint rotations to be applied in routine functional evaluation using non-invasive stereophotogrammetry. Position and orientation of tibia/fibula, calcaneus, mid-foot, 1st metatarsal and hallux segments were tracked during the stance phase of walking in nine asymptomatic subjects. Rigid clusters of reflective markers were used for foot segment pose estimation. Anatomical landmark calibration was applied for the reconstruction of anatomical landmarks. Previous studies have analysed only a limited number of joints or have proposed invasive techniques. Anatomical landmark trajectories were reconstructed in the laboratory frame using data from the anatomical calibration procedure. Anatomical co-ordinate frames were defined using the obtained landmark trajectories. Joint co-ordinate systems were used to calculate corresponding joint rotations in all three anatomical planes. The patterns of the joint rotations were highly repeatable within subjects. Consistent patterns between subjects were also exhibited at most of the joints. The method proposed enables a detailed description of ankle and other foot joint rotations on an anatomical base. Joint rotations can therefore be expressed in the well-established terminology necessary for their clinical interpretation. Functional evaluation of patients affected by foot diseases has recently called for more detailed and non-invasive protocols for the description of foot joint rotations during gait. The proposed method can help clinicians to distinguish between normal and pathological pattern of foot joint rotations, and to quantitatively assess the restoration of normal function after treatment.

  16. The growth and anatomical features of nutrient-deficient seedlings

    Treesearch

    Fred M. Lamb; Wayne K. Murphey

    1968-01-01

    As the tree improvement and genetic programs supply better planting stock, a more suitable environment must be provided if their full potential is to be realized. This will require much more information than we now have on how nutrient deficiencies affect the growth and anatomy of forest trees. The importance of anatomical studies has been shown by Church (1949) and...

  17. Differences in sex distribution, anatomic location and MR imaging appearance of pediatric compared to adult chordomas.

    PubMed

    Sebro, Ronnie; DeLaney, Thomas; Hornicek, Francis; Schwab, Joseph; Choy, Edwin; Nielsen, G Petur; Rosenthal, Daniel I

    2016-09-08

    Chordomas are rare malignancies that primarily affect adults, but also rarely affect pediatric patients. We compared the imaging appearance, demographic and anatomic distributions of adult and pediatric chordomas in a large cohort. We performed a retrospective review of medical records of 220 subjects with histologically confirmed chordomas of the axial skeleton and pre-treatment magnetic resonance imaging studies. Age, sex, type of chordoma (conventional, chondroid or dedifferentiated), the anatomic location of the chordoma, as well as whether the lesion was primarily extra-osseous were recorded. Pediatric subjects were less than 21 years at the time of diagnosis. Binomial two-sample tests of proportions and Fisher's exact tests were used to compare proportions between the pediatric and adult subjects. Fifty six pediatric subjects (58.9 % female) and 164 adult subjects (42.1 % female) were identified. The proportion of female subjects with chordomas was significantly higher in the pediatric cohort compared to the adult cohort (P = 0.04). Most chordomas occur in Caucasians, however African-Americans were more represented in the pediatric cohort than in the adult cohort (P = 0.01). 69.6 % (39/56) of the pediatric chordomas involved the clivus/skull base and cervical spine compared to 29.3 % (48/164) of the adult chordomas (P = 1.99 × 10(-7)). Only 1.8 % (1/56) of the pediatric chordomas was in the sacrococcygeal region compared to 36.0 % (59/164) of the adult chordomas (P = 2.55 × 10(-8)). In cases where pre-treatment imaging was available, 93.8 % (16/17) of pediatric chordomas were predominantly extra-osseous compared to 76.7 % (46/60) of adult chordomas (P = 0.17). Pediatric chordomas more often affect females and occur most frequently at the craniocervical junction with decrease in incidence distally in the spine, whereas adult chordomas most frequently involve the craniocervical and sacrococcygeal regions.

  18. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    PubMed Central

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength were evaluated in plant roots grown in the greenhouse and in the field. Root anatomical phenes were found to be better predictors of root penetrability than root diameter per se and associated with smaller distal cortical region cell size. Smaller outer cortical region cells play an important role in stabilizing the root against ovalization and reducing the risk of local buckling and collapse during penetration, thereby increasing root penetration of hard layers. The use of stele diameter was found to be a better predictor of root tensile strength than root diameter. Cortical thickness, cortical cell count, cortical cell wall area and distal cortical cell size were stronger predictors of root bend strength than root diameter. Our results indicate that root anatomical phenes are important predictors for root penetrability of high-strength layers and root biomechanical properties. PMID:25903914

  19. Using 3D modeling techniques to enhance teaching of difficult anatomical concepts

    PubMed Central

    Pujol, Sonia; Baldwin, Michael; Nassiri, Joshua; Kikinis, Ron; Shaffer, Kitt

    2016-01-01

    Rationale and Objectives Anatomy is an essential component of medical education as it is critical for the accurate diagnosis in organs and human systems. The mental representation of the shape and organization of different anatomical structures is a crucial step in the learning process. The purpose of this pilot study is to demonstrate the feasibility and benefits of developing innovative teaching modules for anatomy education of first-year medical students based on 3D reconstructions from actual patient data. Materials and Methods A total of 196 models of anatomical structures from 16 anonymized CT datasets were generated using the 3D Slicer open-source software platform. The models focused on three anatomical areas: the mediastinum, the upper abdomen and the pelvis. Online optional quizzes were offered to first-year medical students to assess their comprehension in the areas of interest. Specific tasks were designed for students to complete using the 3D models. Results Scores of the quizzes confirmed a lack of understanding of 3D spatial relationships of anatomical structures despite standard instruction including dissection. Written task material and qualitative review by students suggested that interaction with 3D models led to a better understanding of the shape and spatial relationships among structures, and helped illustrate anatomical variations from one body to another. Conclusion The study demonstrates the feasibility of one possible approach to the generation of 3D models of the anatomy from actual patient data. The educational materials developed have the potential to supplement the teaching of complex anatomical regions and help demonstrate the anatomic variation among patients. PMID:26897601

  20. Functional-anatomic correlates of individual differences in memory.

    PubMed

    Kirchhoff, Brenda A; Buckner, Randy L

    2006-07-20

    Memory abilities differ greatly across individuals. To explore a source of these differences, we characterized the varied strategies people adopt during unconstrained encoding. Participants intentionally encoded object pairs during functional MRI. Principal components analysis applied to a strategy questionnaire revealed that participants variably used four main strategies to aid learning. Individuals' use of verbal elaboration and visual inspection strategies independently correlated with their memory performance. Verbal elaboration correlated with activity in a network of regions that included prefrontal regions associated with controlled verbal processing, while visual inspection correlated with activity in a network of regions that included an extrastriate region associated with object processing. Activity in regions associated with use of these strategies was also correlated with memory performance. This study reveals functional-anatomic correlates of verbal and perceptual strategies that are variably used by individuals during encoding. These strategies engage distinct brain regions and may separately influence memory performance.

  1. Anatomical Individualized ACL Reconstruction.

    PubMed

    Rahnemai-Azar, Amir Ata; Sabzevari, Soheil; Irarrázaval, Sebastián; Chao, Tom; Fu, Freddie H

    2016-10-01

    The anterior cruciate ligament (ACL) is composed of two bundles, which work together to provide both antero-posterior and rotatory stability of the knee. Understanding the anatomy and function of the ACL plays a key role in management of patients with ACL injury. Anatomic ACL reconstruction aims to restore the function of the native ACL. Femoral and tibial tunnels should be placed in their anatomical location accounting for both the native ACL insertion site and bony landmarks. One main component of anatomical individualized ACL reconstruction is customizing the treatment according to each patient's individual characteristics, considering preoperative and intraoperative evaluation of the native ACL and knee bony anatomy. Anatomical individualized reconstruction surgery should also aim to restore the size of the native ACL insertion as well. Using this concept, while single bundle ACL reconstruction can restore the function of the ACL in some patients, double bundle reconstruction is indicated in others to achieve optimal outcome.

  2. Trail making test performance in youth varies as a function of anatomical coupling between the prefrontal cortex and distributed cortical regions

    PubMed Central

    Lee, Nancy Raitano; Wallace, Gregory L.; Raznahan, Armin; Clasen, Liv S.; Giedd, Jay N.

    2014-01-01

    While researchers have gained a richer understanding of the neural correlates of executive function in adulthood, much less is known about how these abilities are represented in the developing brain and what structural brain networks underlie them. Thus, the current study examined how individual differences in executive function, as measured by the Trail Making Test (TMT), relate to structural covariance in the pediatric brain. The sample included 146 unrelated, typically developing youth (80 females), ages 9–14 years, who completed a structural MRI scan of the brain and the Halstead-Reitan TMT (intermediate form). TMT scores used to index executive function included those that evaluated set-shifting ability: Trails B time (number-letter sequencing) and the difference in time between Trails B and A (number sequencing only). Anatomical coupling was measured by examining correlations between mean cortical thickness (MCT) across the entire cortical ribbon and individual vertex thickness measured at ~81,000 vertices. To examine how TMT scores related to anatomical coupling strength, linear regression was utilized and the interaction between age-normed TMT scores and both age and sex-normed MCT was used to predict vertex thickness. Results revealed that stronger Trails B scores were associated with greater anatomical coupling between a large swath of prefrontal cortex and the rest of cortex. For the difference between Trails B and A, a network of regions in the frontal, temporal, and parietal lobes was found to be more tightly coupled with the rest of cortex in stronger performers. This study is the first to highlight the importance of structural covariance in in the prediction of individual differences in executive function skills in youth. Thus, it adds to the growing literature on the neural correlates of childhood executive functions and identifies neuroanatomic coupling as a biological substrate that may contribute to executive function and dysfunction in

  3. An anatomic study of nipple position and areola size in Asian men.

    PubMed

    Kasai, Shogo; Shimizu, Yusuke; Nagasao, Tomohisa; Ohnishi, Fumio; Minabe, Toshiharu; Momosawa, Akira; Kishi, Kazuo

    2015-02-01

    In planning gender-reassignment surgery for biological women and treating men with gynecomastia, surgeons must have a thorough understanding of anatomically correct nipple positions and appropriate areola sizes in men. The authors sought to determine whether body height or body mass index (BMI) affects nipple position or areola size in men. Anatomic measurements of the nipples and areolae of 50 Japanese men were obtained. A relative coordinate system was defined, where the medial-lateral and superior-inferior positions of the nipple were quantitatively indicated by distance ratios between anatomic landmarks. Nipple positions were evaluated for each patient by referring to this coordinate system, and the positions were compared between groups categorized by body height or BMI. Nipple position was not significantly affected by body height. However, the nipple tended to be located more laterally in participants with higher BMI. The vertical nipple position differed between standing and supine positions. Tall men had larger areolae than short men; however, areola size did not differ with respect to BMI. Nipple position and areola size vary by body shape. Consideration of the differences is recommended when performing procedures such as female-to-male gender-reassignment surgery or correction of gynecomastia. © 2015 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com.

  4. Extraction of the human cerebral ventricular system from MRI: inclusion of anatomical knowledge and clinical perspective

    NASA Astrophysics Data System (ADS)

    Aziz, Aamer; Hu, Qingmao; Nowinski, Wieslaw L.

    2004-04-01

    The human cerebral ventricular system is a complex structure that is essential for the well being and changes in which reflect disease. It is clinically imperative that the ventricular system be studied in details. For this reason computer assisted algorithms are essential to be developed. We have developed a novel (patent pending) and robust anatomical knowledge-driven algorithm for automatic extraction of the cerebral ventricular system from MRI. The algorithm is not only unique in its image processing aspect but also incorporates knowledge of neuroanatomy, radiological properties, and variability of the ventricular system. The ventricular system is divided into six 3D regions based on the anatomy and its variability. Within each ventricular region a 2D region of interest (ROI) is defined and is then further subdivided into sub-regions. Various strict conditions that detect and prevent leakage into the extra-ventricular space are specified for each sub-region based on anatomical knowledge. Each ROI is processed to calculate its local statistics, local intensity ranges of cerebrospinal fluid and grey and white matters, set a seed point within the ROI, grow region directionally in 3D, check anti-leakage conditions and correct growing if leakage occurs and connects all unconnected regions grown by relaxing growing conditions. The algorithm was tested qualitatively and quantitatively on normal and pathological MRI cases and worked well. In this paper we discuss in more detail inclusion of anatomical knowledge in the algorithm and usefulness of our approach from clinical perspective.

  5. Anatomical curve identification

    PubMed Central

    Bowman, Adrian W.; Katina, Stanislav; Smith, Joanna; Brown, Denise

    2015-01-01

    Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest. PMID:26041943

  6. [Establishment of anatomical terminology in Japan].

    PubMed

    Shimada, Kazuyuki

    2008-12-01

    The history of anatomical terminology in Japan began with the publication of Waran Naikei Ihan-teimŏ in 1805 and Chŏtei Kaitai Shinsho in 1826. Although the establishment of Japanese anatomical terminology became necessary during the Meiji era when many western anatomy books imported into Janan were translated, such terminology was not unified during this period and varied among translators. In 1871, Tsukumo Ono's Kaibŏgaku Gosen was published by the Ministry of Education. Although this book is considered to be the first anatomical glossary terms in Japan, its contents were incomplete. Overseas, the German Anatomical Society established a unified anatomical terminology in 1895 called the Basle Nomina Anatomica (B.N.A.). Based on this development, Kaibŏgaku Meishŭ which follows the BNA, by Buntarŏ Suzuki was published in 1905. With the subsequent establishment in 1935 of Jena Nomina Anatomica (J.N.A.), the unification of anatomical terminology was also accelerated in Japan, leading to the further development of terminology.

  7. Comparative evaluation between anatomic and non-anatomic lateral ligament reconstruction techniques in the ankle joint: A computational study.

    PubMed

    Purevsuren, Tserenchimed; Batbaatar, Myagmarbayar; Khuyagbaatar, Batbayar; Kim, Kyungsoo; Kim, Yoon Hyuk

    2018-03-12

    Biomechanical studies have indicated that the conventional non-anatomic reconstruction techniques for lateral ankle sprain (LAS) tend to restrict subtalar joint motion compared to intact ankle joints. Excessive restriction in subtalar motion may lead to chronic pain, functional difficulties, and development of osteoarthritis. Therefore, various anatomic surgical techniques to reconstruct both the anterior talofibular and calcaneofibular ligaments have been introduced. In this study, ankle joint stability was evaluated using multibody computational ankle joint model to assess two new anatomic reconstruction and three popular non-anatomic reconstruction techniques. An LAS injury, three popular non-anatomic reconstruction models (Watson-Jones, Evans, and Chrisman-Snook), and two common types of anatomic reconstruction models were developed based on the intact ankle model. The stability of ankle in both talocrural and subtalar joint were evaluated under anterior drawer test (150 N anterior force), inversion test (3 Nm inversion moment), internal rotational test (3 Nm internal rotation moment), and the combined loading test (9 Nm inversion and internal moment as well as 1800 N compressive force). Our overall results show that the two anatomic reconstruction techniques were superior to the non-anatomic reconstruction techniques in stabilizing both talocrural and subtalar joints. Restricted subtalar joint motion, which mainly observed in Watson-Jones and Chrisman-Snook techniques, was not shown in the anatomical reconstructions. Evans technique was beneficial for subtalar joint as it does not restrict subtalar motion, though Evans technique was insufficient for restoring talocrural joint inversion. The anatomical reconstruction techniques best recovered ankle stability.

  8. An arthroscopic evaluation of the anatomical "critical zone".

    PubMed

    Naidoo, N; Lazarus, L; Osman, S A; Satyapal, K S

    2017-01-01

    The "critical zone", a region of speculated vascularity, is situated approximately 10 mm proximal to the insertion of the supraspinatus tendon. Despite its obvious role as an anatomical landmark demarcator, its patho-anatomic nature has been identified as the source of rotator cuff pathology. Although many studies have attempted to evaluate the vascularity of this region, the architecture regarding the exact length, width and shape of the critical zone, remains unreported. This study aimed to determine the shape and morphometry of the "critical zone" arthroscopically. The sample series, which was comprised of 38 cases (n = 38) specific to pathological types, employed an anatomical investigation of the critical zone during routine real-time arthroscopy. Demographic representation: i) sex: 19 males, 19 females; ii) age range: 18-76 years; iii) race: white (n = 29), Indian (n = 7) and coloured (n = 2). The incidence of shape and the mean lengths and widths of the critical zone were determined in accordance with the relevant demographic factors and patient history. Although the cresenteric shape was predominant, hemispheric and sail-shaped critical zones were also identified. The lengths and widths of the critical zone appeared markedly increased in male individuals. While the increase in age may account for the increased incidence of rotator cuff degeneration due to poor end-vascular supply, the additional factors of height and weight presented as major determinants of the increase in size of the critical zone. In addition, the comparisons of length and width with each other and shape yielded levels of significant difference, therefore indicating a directly proportional relationship between the length and width of the critical zone. This detailed understanding of the critical zone may prove beneficial for the success of post-operative rotator cuff healing.

  9. Wavelet-based resolution recovery using an anatomical prior provides quantitative recovery for human population phantom PET [11C]raclopride data

    NASA Astrophysics Data System (ADS)

    Shidahara, M.; Tsoumpas, C.; McGinnity, C. J.; Kato, T.; Tamura, H.; Hammers, A.; Watabe, H.; Turkheimer, F. E.

    2012-05-01

    The objective of this study was to evaluate a resolution recovery (RR) method using a variety of simulated human brain [11C]raclopride positron emission tomography (PET) images. Simulated datasets of 15 numerical human phantoms were processed by a wavelet-based RR method using an anatomical prior. The anatomical prior was in the form of a hybrid segmented atlas, which combined an atlas for anatomical labelling and a PET image for functional labelling of each anatomical structure. We applied RR to both 60 min static and dynamic PET images. Recovery was quantified in 84 regions, comparing the typical ‘true’ value for the simulation, as obtained in normal subjects, simulated and RR PET images. The radioactivity concentration in the white matter, striatum and other cortical regions was successfully recovered for the 60 min static image of all 15 human phantoms; the dependence of the solution on accurate anatomical information was demonstrated by the difficulty of the technique to retrieve the subthalamic nuclei due to mismatch between the two atlases used for data simulation and recovery. Structural and functional synergy for resolution recovery (SFS-RR) improved quantification in the caudate and putamen, the main regions of interest, from -30.1% and -26.2% to -17.6% and -15.1%, respectively, for the 60 min static image and from -51.4% and -38.3% to -27.6% and -20.3% for the binding potential (BPND) image, respectively. The proposed methodology proved effective in the RR of small structures from brain [11C]raclopride PET images. The improvement is consistent across the anatomical variability of a simulated population as long as accurate anatomical segmentations are provided.

  10. RootScan: Software for high-throughput analysis of root anatomical traits

    USDA-ARS?s Scientific Manuscript database

    RootScan is a program for semi-automated image analysis of anatomical phenes in root cross-sections. RootScan uses pixel value thresholds to separate the cross-section from its background and to visually dissect it into tissue regions. Area measurements and object counts are performed within various...

  11. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited.

    PubMed

    Thomas, Cibu; Ye, Frank Q; Irfanoglu, M Okan; Modi, Pooja; Saleem, Kadharbatcha S; Leopold, David A; Pierpaoli, Carlo

    2014-11-18

    Tractography based on diffusion-weighted MRI (DWI) is widely used for mapping the structural connections of the human brain. Its accuracy is known to be limited by technical factors affecting in vivo data acquisition, such as noise, artifacts, and data undersampling resulting from scan time constraints. It generally is assumed that improvements in data quality and implementation of sophisticated tractography methods will lead to increasingly accurate maps of human anatomical connections. However, assessing the anatomical accuracy of DWI tractography is difficult because of the lack of independent knowledge of the true anatomical connections in humans. Here we investigate the future prospects of DWI-based connectional imaging by applying advanced tractography methods to an ex vivo DWI dataset of the macaque brain. The results of different tractography methods were compared with maps of known axonal projections from previous tracer studies in the macaque. Despite the exceptional quality of the DWI data, none of the methods demonstrated high anatomical accuracy. The methods that showed the highest sensitivity showed the lowest specificity, and vice versa. Additionally, anatomical accuracy was highly dependent upon parameters of the tractography algorithm, with different optimal values for mapping different pathways. These results suggest that there is an inherent limitation in determining long-range anatomical projections based on voxel-averaged estimates of local fiber orientation obtained from DWI data that is unlikely to be overcome by improvements in data acquisition and analysis alone.

  12. Brain anatomical networks in world class gymnasts: a DTI tractography study.

    PubMed

    Wang, Bin; Fan, Yuanyuan; Lu, Min; Li, Shumei; Song, Zheng; Peng, Xiaoling; Zhang, Ruibin; Lin, Qixiang; He, Yong; Wang, Jun; Huang, Ruiwang

    2013-01-15

    The excellent motor skills of world class gymnasts amaze everyone. People marvel at the way they precisely control their movements and wonder how the brain structure and function of these elite athletes differ from those of non-athletes. In this study, we acquired diffusion images from thirteen world class gymnasts and fourteen matched controls, constructed their anatomical networks, and calculated the topological properties of each network based on graph theory. From a connectivity-based analysis, we found that most of the edges with increased connection density in the champions were linked to brain regions that are located in the sensorimotor, attentional, and default-mode systems. From graph-based metrics, we detected significantly greater global and local efficiency but shorter characteristic path length in the anatomical networks of the champions compared with the controls. Moreover, in the champions we found a significantly higher nodal degree and greater regional efficiency in several brain regions that correspond to motor and attention functions. These included the left precentral gyrus, left postcentral gyrus, right anterior cingulate gyrus and temporal lobes. In addition, we revealed an increase in the mean fractional anisotropy of the corticospinal tract in the champions, possibly in response to long-term gymnastic training. Our study indicates that neuroanatomical adaptations and plastic changes occur in gymnasts' brain anatomical networks either in response to long-term intensive gymnastic training or as an innate predisposition or both. Our findings may help to explain gymnastic skills at the highest levels of performance and aid in understanding the neural mechanisms that distinguish expert gymnasts from novices. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Adverse cardiac events in 56,000 orthopaedic trauma patients: Does anatomic area make a difference?

    PubMed

    Lee, Adam K; Dodd, Ashley C; Lakomkin, Nikita; Yarlagadda, Mahesh; Jahangir, A Alex; Collinge, Cory A; Sethi, Manish K

    2016-08-01

    Postoperative cardiac events in orthopaedic trauma patients constitute severe morbidity and mortality. It is therefore increasingly important to determine patient risk factors that are predictive of postoperative myocardial infarctions and cardiac arrests. This study sought to assess if there is an association between anatomic area and cardiac complications in the orthopaedic trauma patient. From 2006-2013, a total of 361,402 orthopaedic patients were identified in the NSQIP database using Current Procedural Terminology (CPT) codes. Of these, 56,336 (15.6%) patients were identified as orthopaedic trauma patients broken down by anatomic region: 11,905 (21.1%) upper extremity patients (UE), 29,009 (51.5%) hip/pelvis patients (HP), and 15,422 (27.4%) lower extremity patients (LE) using CPT codes. Patients were defined as having adverse cardiac events if they developed myocardial infarctions or cardiac arrests within 30days after surgery. Chi-squared analysis was used to determine if there was an association between anatomic area and rates of cardiac events. Multivariate logistical analysis was used with over 40 patient characteristics including age, gender, history of cardiac disease, and anatomic region as independent predictors to determine whether anatomic area significantly predicted the development of cardiac complications. There were significant differences in baseline demographics among the three groups: HP patients had the greatest average age (77.6 years) compared to 54.8 years for UE patients and 54.1 years in LE patients (p<0.001). HP patients also had the highest average ASA score (3.0) (p<0.001). There was a significant difference in adverse cardiac events based on anatomic area: 0.27% (32/11,905) UE patients developed cardiac complications compared to 2.15% (623/29,009) HP patients and 0.61% (94/15,422) LE patients. After multivariate analysis, HP patients were significantly more likely to develop cardiac complications compared to both UE patients (OR: 6

  14. COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies

    PubMed Central

    2017-01-01

    COMICS is an interactive and open-access web platform for integration and visualization of molecular expression data in anatomograms of zebrafish, carp, and mouse model systems. Anatomical ontologies are used to map omics data across experiments and between an experiment and a particular visualization in a data-dependent manner. COMICS is built on top of several existing resources. Zebrafish and mouse anatomical ontologies with their controlled vocabulary (CV) and defined hierarchy are used with the ontoCAT R package to aggregate data for comparison and visualization. Libraries from the QGIS geographical information system are used with the R packages “maps” and “maptools” to visualize and interact with molecular expression data in anatomical drawings of the model systems. COMICS allows users to upload their own data from omics experiments, using any gene or protein nomenclature they wish, as long as CV terms are used to define anatomical regions or developmental stages. Common nomenclatures such as the ZFIN gene names and UniProt accessions are provided additional support. COMICS can be used to generate publication-quality visualizations of gene and protein expression across experiments. Unlike previous tools that have used anatomical ontologies to interpret imaging data in several animal models, including zebrafish, COMICS is designed to take spatially resolved data generated by dissection or fractionation and display this data in visually clear anatomical representations rather than large data tables. COMICS is optimized for ease-of-use, with a minimalistic web interface and automatic selection of the appropriate visual representation depending on the input data. PMID:29083911

  15. COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies.

    PubMed

    Travin, Dmitrii; Popov, Iaroslav; Guler, Arzu Tugce; Medvedev, Dmitry; van der Plas-Duivesteijn, Suzanne; Varela, Monica; Kolder, Iris C R M; Meijer, Annemarie H; Spaink, Herman P; Palmblad, Magnus

    2018-01-05

    COMICS is an interactive and open-access web platform for integration and visualization of molecular expression data in anatomograms of zebrafish, carp, and mouse model systems. Anatomical ontologies are used to map omics data across experiments and between an experiment and a particular visualization in a data-dependent manner. COMICS is built on top of several existing resources. Zebrafish and mouse anatomical ontologies with their controlled vocabulary (CV) and defined hierarchy are used with the ontoCAT R package to aggregate data for comparison and visualization. Libraries from the QGIS geographical information system are used with the R packages "maps" and "maptools" to visualize and interact with molecular expression data in anatomical drawings of the model systems. COMICS allows users to upload their own data from omics experiments, using any gene or protein nomenclature they wish, as long as CV terms are used to define anatomical regions or developmental stages. Common nomenclatures such as the ZFIN gene names and UniProt accessions are provided additional support. COMICS can be used to generate publication-quality visualizations of gene and protein expression across experiments. Unlike previous tools that have used anatomical ontologies to interpret imaging data in several animal models, including zebrafish, COMICS is designed to take spatially resolved data generated by dissection or fractionation and display this data in visually clear anatomical representations rather than large data tables. COMICS is optimized for ease-of-use, with a minimalistic web interface and automatic selection of the appropriate visual representation depending on the input data.

  16. The Integration of Negative Affect, Pain, and Cognitive Control in the Cingulate Cortex

    PubMed Central

    Shackman, Alexander J.; Salomons, Tim V.; Slagter, Heleen A.; Fox, Andrew S.; Winter, Jameel J.; Davidson, Richard J.

    2011-01-01

    Preface It has been argued that emotion, pain, and cognitive control are functionally segregated in distinct subdivisions of the cingulate cortex. But recent observations encourage a fundamentally different view. Imaging studies indicate that negative affect, pain, and cognitive control activate an overlapping region of dorsal cingulate, the anterior midcingulate cortex (aMCC). Anatomical studies reveal that aMCC constitutes a hub where information about reinforcers can be linked to motor centers responsible for expressing affect and executing goal-directed behavior. Computational modeling and other kinds of evidence suggest that this intimacy reflects control processes that are common to all three domains. These observations compel a reconsideration of dorsal cingulate’s contribution to negative affect and pain. PMID:21331082

  17. Structural brain network analysis in families multiply affected with bipolar I disorder.

    PubMed

    Forde, Natalie J; O'Donoghue, Stefani; Scanlon, Cathy; Emsell, Louise; Chaddock, Chris; Leemans, Alexander; Jeurissen, Ben; Barker, Gareth J; Cannon, Dara M; Murray, Robin M; McDonald, Colm

    2015-10-30

    Disrupted structural connectivity is associated with psychiatric illnesses including bipolar disorder (BP). Here we use structural brain network analysis to investigate connectivity abnormalities in multiply affected BP type I families, to assess the utility of dysconnectivity as a biomarker and its endophenotypic potential. Magnetic resonance diffusion images for 19 BP type I patients in remission, 21 of their first degree unaffected relatives, and 18 unrelated healthy controls underwent tractography. With the automated anatomical labelling atlas being used to define nodes, a connectivity matrix was generated for each subject. Network metrics were extracted with the Brain Connectivity Toolbox and then analysed for group differences, accounting for potential confounding effects of age, gender and familial association. Whole brain analysis revealed no differences between groups. Analysis of specific mainly frontal regions, previously implicated as potentially endophenotypic by functional magnetic resonance imaging analysis of the same cohort, revealed a significant effect of group in the right medial superior frontal gyrus and left middle frontal gyrus driven by reduced organisation in patients compared with controls. The organisation of whole brain networks of those affected with BP I does not differ from their unaffected relatives or healthy controls. In discreet frontal regions, however, anatomical connectivity is disrupted in patients but not in their unaffected relatives. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Multiple variations of the tendons of the anatomical snuffbox.

    PubMed

    Thwin, San San; Fazlin, Fazlin; Than, Myo

    2014-01-01

    Multiple tendons of the abductor pollicis longus (APL) in the anatomical snuffbox of the wrist can lead to the development of de Quervain's syndrome, which is caused by stenosing tenosynovitis. A cadaveric study was performed to establish the variations present in the tendons of the anatomical snuffbox in a Malaysian population, in the hope that this knowledge would aid clinical investigation and surgical treatment of de Quervain's tenosynovitis. Routine dissection of ten upper limbs was performed to determine the variations in the tendons of the anatomical snuffbox of the wrist. In all the dissected upper limbs, the APL tendon of the first extensor compartment was found to have several (3-14) tendon slips. The insertion of the APL tendon slips in all upper limbs were at the base of the first metacarpal bone, trapezium and fascia of the opponens pollicis muscle; however, in seven specimens, they were also found to be attached to the fleshy belly of the abductor pollicis brevis muscle. In two specimens, double tendons of the extensor pollicis longus located in the third extensor compartment were inserted into the capsule of the proximal interphalangeal joints before being joined to the extensor expansion. In two other specimens, the first extensor compartment had two osseofibrous tunnels divided by a septum that separated the APL tendon from the extensor pollicis brevis tendon. Multiple variations were found in the anatomical snuffbox region of the dissected upper limbs. Knowledge of these variations would be useful in interventional radiology and orthopaedic surgery.

  19. Multiple variations of the tendons of the anatomical snuffbox

    PubMed Central

    Thwin, San San; Zaini, Fazlin; Than, Myo

    2014-01-01

    INTRODUCTION Multiple tendons of the abductor pollicis longus (APL) in the anatomical snuffbox of the wrist can lead to the development of de Quervain's syndrome, which is caused by stenosing tenosynovitis. A cadaveric study was performed to establish the variations present in the tendons of the anatomical snuffbox in a Malaysian population, in the hope that this knowledge would aid clinical investigation and surgical treatment of de Quervain's tenosynovitis. METHODS Routine dissection of ten upper limbs was performed to determine the variations in the tendons of the anatomical snuffbox of the wrist. RESULTS In all the dissected upper limbs, the APL tendon of the first extensor compartment was found to have several (3–14) tendon slips. The insertion of the APL tendon slips in all upper limbs were at the base of the first metacarpal bone, trapezium and fascia of the opponens pollicis muscle; however, in seven specimens, they were also found to be attached to the fleshy belly of the abductor pollicis brevis muscle. In two specimens, double tendons of the extensor pollicis longus located in the third extensor compartment were inserted into the capsule of the proximal interphalangeal joints before being joined to the extensor expansion. In two other specimens, the first extensor compartment had two osseofibrous tunnels divided by a septum that separated the APL tendon from the extensor pollicis brevis tendon. CONCLUSION Multiple variations were found in the anatomical snuffbox region of the dissected upper limbs. Knowledge of these variations would be useful in interventional radiology and orthopaedic surgery. PMID:24452976

  20. From Connectivity Models to Region Labels: Identifying Foci of a Neurological Disorder

    PubMed Central

    Venkataraman, Archana; Kubicki, Marek; Golland, Polina

    2014-01-01

    We propose a novel approach to identify the foci of a neurological disorder based on anatomical and functional connectivity information. Specifically, we formulate a generative model that characterizes the network of abnormal functional connectivity emanating from the affected foci. This allows us to aggregate pairwise connectivity changes into a region-based representation of the disease. We employ the variational expectation-maximization algorithm to fit the model and subsequently identify both the afflicted regions and the differences in connectivity induced by the disorder. We demonstrate our method on a population study of schizophrenia. PMID:23864168

  1. Sinonasal anatomical variations: their relationship with chronic rhinosinusitis and effect on the severity of disease-a computerized tomography assisted anatomical and clinical study.

    PubMed

    Kaygusuz, Ahmet; Haksever, Mehmet; Akduman, Davut; Aslan, Sündüs; Sayar, Zeynep

    2014-09-01

    The anatomy of the sinonasal area has a very wide rage of anatomical variations. The significance of these anatomical variations in pathogenesis of rhinosinusitis, which is the commonest disease in the region, is still unclear. The aims of the study were to compare the rate of sinonasal anatomical variations with development and severity of chronic rhinosinusitis patients. CT scan of paranasal sinuses images of 99 individuals were retrospectively reviewed. 65 cases of chronic rhinosinusitis (study group) who had undergone endoscopic sinus surgery were compared with 34 cases without chronic rhinosinusitis (control group). Also in study group Lund-Mackay score of the sinus disease were calculated and compared to the rate of related anatomical variations. There were 74 (74.7 %) males and 25 (25.2 %) females with ages ranging from 13 to 70 years (mean 32.2 years). The anatomical variations recorded were: Septal deviation 47 (72.3) in study and 25 (73.5 %) in control group, concha bullosa 27 (41.5 %) in study and 18 (52.9 %) in control group, overpneumatized ethmoid bulla 17 (26.1 %) in study and 14 (41.1 %) in control group, pneumatized uncinate 3 (4.6 %) in study and 3 (8.8 %) in control group, agger nasi 42 (64.6 %) in study and 19 (55.8 %) in control group, paradoxical middle turbinates 9 (13.8 %) in study and 4 (11.7 %) in control group, Onodi cell 6 (9.2 %) in study and 2 (5.8 %) in control group, Haller's cells (infraorbital ethmoid cell) 9 (13.8 %) in study and 7 (20.5 %) in control group. None of these results were statistically significant between study and control group (p > 0.05). Lund-Mackay score (which was assumed to show the severity of the disease) of the maxillary, ethmoid and frontal sinus were calculated and compared to rate of septal deviation, concha bullosa, agger nasi cells. No significant correlation was conducted (p > 0.05). The results of study showed no statistically significant correlation between sinonasal anatomical

  2. [The anatomic tradition in Venice].

    PubMed

    Capitanio, G; Stracca Pansa, V

    2000-04-01

    Venice had a long tradition and great reputation in the study of anatomical science dating back to the 1300's. The "Serenissima" Republic favoured the study and practice of anatomy as part of medical professional formation. Before the construction of the anatomical theater of San Giacomo dell'Orio, which took place in 1671, anatomical dissections were performed in churches, convents, hospitals and private homes. Even though Venice was not a University seat, it boosted numerous Venetian anatomists, among whom Benedetti, Massa, Santorini, and the medical activity of illustrious professors at the nearby University of Padua such as Vesalio, Falloppio, Spigelio, Vislingio and Morgagni.

  3. Dissociation of functional and anatomical brain abnormalities in unaffected siblings of schizophrenia patients.

    PubMed

    Guo, Wenbin; Song, Yan; Liu, Feng; Zhang, Zhikun; Zhang, Jian; Yu, Miaoyu; Liu, Jianrong; Xiao, Changqing; Liu, Guiying; Zhao, Jingping

    2015-05-01

    Schizophrenia patients and their unaffected siblings share similar brain functional and structural abnormalities. However, no study is engaged to investigate whether and how functional abnormalities are related to structural abnormalities in unaffected siblings. This study was undertaken to examine the association between functional and anatomical abnormalities in unaffected siblings. Forty-six unaffected siblings of schizophrenia patients and 46 age-, sex-, and education-matched healthy controls underwent structural and resting-state functional magnetic resonance imaging scanning. Voxel-based morphometry (VBM), amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) were utilized to analyze imaging data. The VBM analysis showed gray matter volume decreases in the fronto-temporal regions (the left middle temporal gyrus and right inferior frontal gyrus, orbital part) and increases in basal ganglia system (the left putamen). Functional abnormalities measured by ALFF and fALFF mainly involved in the fronto-limbic-sensorimotor circuit (decreased ALFF in bilateral middle frontal gyrus and the right middle cingulate gyrus, and decreased fALFF in the right inferior frontal gyrus, orbital part; and increased ALFF in the left fusiform gyrus and left lingual gyrus, and increased fALFF in bilateral calcarine cortex). No significant correlation was found between functional and anatomical abnormalities in the sibling group. A dissociation pattern of brain regions with functional and anatomical abnormalities is observed in unaffected siblings. Our findings suggest that brain functional and anatomical abnormalities might be present independently in unaffected siblings of schizophrenia patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  4. Anatomical and physical changes in leaves during the production of tamales.

    PubMed

    Angeles, Guillermo; Lascurain, Maite; Davalos-Sotelo, Raymundo; Zarate-Morales, Reyna Paula; Ortega-Escalona, Fernando

    2013-08-01

    Tamale preparation has a long tradition in Mexico. To understand which material properties have been considered important for this purpose throughout the years, a study was conducted of the anatomical, chemical, and mechanical properties of the leaves of four plant species used in tamale preparation in Veracruz, Mexico: Calathea misantlensis, Canna indica, Musa paradisiaca, and Oreopanax capitatus. Four cooking treatments were considered: fresh (F), roasted (soasado, R), steamed (S), and roasted plus steamed (R/S). Chemical, anatomical, and mechanical analyses were conducted before and after each treatment. Leaf samples were tested for tensile strength at both parallel and perpendicular orientation relative to the fibers. Musa paradisiaca had the highest proportion of cellulose, while the remaining species shared similar lower proportions. Leaves were stronger and stiffer in the longitudinal direction of the fibers. Musa paradisiaca leaves had higher values of mechanical strength than the other species. The cooking process that most affected the mechanical properties was steaming. The chemical constituents of the leaves are closely correlated with their physical properties. The treatment that caused the greatest decrease in leaf physical integrity was steaming, while the combination of roasting and steaming showed similar results to those of steaming alone. No evident anatomical changes are produced by any of the treatments. This is one of the few studies comparing physical, chemical, and anatomical characteristics of leaves used for human consumption, before and after cooking.

  5. Investigation of topographical anatomy of Broca's area: an anatomic cadaveric study.

    PubMed

    Eser Ocak, Pınar; Kocaelı, Hasan

    2017-04-01

    The sulci constituting the structure of the pars triangularis and opercularis, considered as 'Broca's area', present wide anatomical and morphological variations between different hemispheres. The boundaries are described differently from one another in various studies. The aim of this study was to explore the topographical anatomy, confirm the morphological asymmetry and highlight anatomical variations in Broca's area. This study was performed with 100 hemispheres to investigate the presence, continuity, patterns and connections of the sulcal structures that constitute the morphological asymmetry of Broca's area. Considerable individual anatomical and morphological variations between the inferior frontal gyrus and related sulcal structures were detected. Rare bilateralism findings supported the morphological asymmetry. The inferior frontal sulcus was identified as a single segment in 54 % of the right and two separate segments in 52 % of the left hemispheres, which was the most common pattern. The diagonal sulcus was present in 48 % of the right and 54 % of the left hemispheres. It was most frequently connected to the ascending ramus on both sides. A 'V' shape was observed in 42.5 % of the right hemispheres and a 'Y' shape in 38.3 % of the left hemispheres, which was the most common shape of the pars triangularis. Moreover, the full results are specified in detail. Knowledge of the anatomical variations in this region is indispensable for understanding the functional structure and performing safe surgery. However, most previously published studies have aimed to determine the anatomical asymmetry of the motor speech area without illuminating the topographical anatomy encountered during surgery.

  6. Anatomical recommendations for safe botulinum toxin injection into temporalis muscle: a simplified reproducible approach.

    PubMed

    Lee, Won-Kang; Bae, Jung-Hee; Hu, Kyung-Seok; Kato, Takafumi; Kim, Seong-Taek

    2017-03-01

    The objective of this study was to simplify the anatomically safe and reproducible approach for BoNT injection and to generate a detailed topographic map of the important anatomical structures of the temporal region by dividing the temporalis into nine equally sized compartments. Nineteen sides of temporalis muscle were used. The topographies of the superficial temporal artery, middle temporal vein, temporalis tendon, and the temporalis muscle were evaluated. Also evaluated was the postural relations among the foregoing anatomical structures in the temporalis muscle, pivoted upon a total of nine compartments. The temporalis above the zygomatic arch exhibited an oblique quadrangular shape with rounded upper right and left corners. The distance between the anterior and posterior margins of the temporalis muscle was equal to the width of the temporalis rectangle, and the distance between the reference line and the superior temporalis margin was equal to its height. The mean ratio of width to height was 5:4. We recommend compartments Am, Mu, and Pm (coordinates of the rectangular outline) as areas in the temporal region for BoNT injection, because using these sites will avoid large blood vessels and tendons, thus improving the safety and reproducibility of the injection.

  7. A biomechanical assessment of isometric handgrip force and fatigue at different anatomical positions.

    PubMed

    Alkurdi, Ziad D; Dweiri, Yazan M

    2010-05-01

    The present work examined the handgrip force at different anatomical positions for both hands. Anthropometrics, handgrip force, and fatigue were obtained from a representative sample of 20 males randomly selected from the German Jordanian University students. The hand dynamometer first was calibrated with respect to the volunteer's maximal grip strength, and he was then asked to squeeze maximally until the grip force decreased to 50% of its maximal due to fatigue; this test was performed for both hands at different anatomical positions with 2 min of rest for recovery of muscle function. The results showed differences in the handgrip force between subjects of the same anatomical positions and for the different anatomical positions, differences in the time for 50% of the force maximal for both right hand and left hand, higher time required to achieve 50% of maximal handgrip force for the nondominant hand, and maximal handgrip force was obtained when arm adduction with 90 degrees forward at the elbow joint. Recommendations for future work are to measure fatigue time at different percentages, 25%, 50%, 60%, and 75% of maximal force and to investigate the factors affecting handgrip force over a larger sample.

  8. Anatomical Basis for Safe and Effective Volumization of the Temple.

    PubMed

    Breithaupt, Andrew D; Jones, Derek H; Braz, Andre; Narins, Rhoda; Weinkle, Susan

    2015-12-01

    One of the earliest but often unaddressed signs of facial aging is volume loss in the temple. Treatment of the area can produce satisfying results for both patient and practitioner. Safe injection requires explicit knowledge of the anatomy to avoid complications related to the multitude of vessels that course throughout the region at various depths. The authors aim to detail the anatomy of the area and provide a safe and easy-to-follow method for injection. The authors review the relevant anatomy of the temporal region and its application to cosmetic filler injections. The authors describe an easy-to-follow approach for a safe and effective injection window based on numerous anatomical studies. Injection in this area is not without risk, including potential blindness. The authors review the potential complications and their treatments. Hollowing of the temple is an early sign of aging that, when corrected, can lead to significant patient and practitioner satisfaction. Proper anatomically knowledge is required to avoid potentially severe complications. In this study, the authors present a reliable technique to safely and effectively augment this often undertreated area of the aging face.

  9. Sonographic investigation of anatomical specimens of infant hip joints.

    PubMed

    Falliner, Axel; Hahne, Hans-Jürgen; Hassenpflug, Joachim

    2002-07-01

    The anatomical foundations of infant hip sonography techniques are ill-defined. We investigated anatomical specimens of infant hip joints in a water bath, with Graf's and Terjesen's methods. Acetabular position was varied in defined increments, with respect to the ultrasound beam. The alpha angles and the femoral head coverage were measured. Plastic acetabular casts were sawn along the sonographic section planes, and the cut sections compared with the sonographic sections. For images to be obtained, which were analysable by the two methods, the ultrasound beam had to intersect with the acetabular inlet plane at defined angles. The acetabular notch had to be anteriorly rotated from the ultrasound beam plane by at least 20 degrees. Beam entry within a 50 degrees sector posterior to the perpendicular on the inlet plane gave analysable images. The alpha angles and femoral head coverage were much affected by coronal-plane transducer tilt. Caudad tilts were associated with lesser values, a fact that should be borne in mind in clinical ultrasound investigations.

  10. Methamphetamine differentially affects BDNF and cell death factors in anatomically defined regions of the hippocampus

    PubMed Central

    Galinato, Melissa H.; Orio, Laura; Mandyam, Chitra D.

    2014-01-01

    hippocampal subregions that may contribute to the altered synaptic activity in the hippocampus, which may underlie enhanced negative affective symptoms and perpetuation of the addiction cycle. PMID:25463524

  11. Historical evolution of anatomical terminology from ancient to modern.

    PubMed

    Sakai, Tatsuo

    2007-06-01

    The historical development of anatomical terminology from the ancient to the modern can be divided into five stages. The initial stage is represented by the oldest extant anatomical treatises by Galen of Pergamon in the Roman Empire. The anatomical descriptions by Galen utilized only a limited number of anatomical terms, which were essentially colloquial words in the Greek of this period. In the second stage, Vesalius in the early 16th century described the anatomical structures in his Fabrica with the help of detailed magnificent illustrations. He coined substantially no anatomical terms, but devised a system that distinguished anatomical structures with ordinal numbers. The third stage of development in the late 16th century was marked by innovation of a large number of specific anatomical terms especially for the muscles, vessels and nerves. The main figures at this stage were Sylvius in Paris and Bauhin in Basel. In the fourth stage between Bauhin and the international anatomical terminology, many anatomical textbooks were written mainly in Latin in the 17th century, and in modern languages in the 18th and 19th centuries. Anatomical terms for the same structure were differently expressed by different authors. The last stage began at the end of the 19th century, when the first international anatomical terminology in Latin was published as Nomina anatomica. The anatomical terminology was revised repeatedly until the current Terminologia anatomica both in Latin and English.

  12. Evidence for a genetic discontinuity between Neandertals and 24,000-year-old anatomically modern Europeans.

    PubMed

    Caramelli, David; Lalueza-Fox, Carles; Vernesi, Cristiano; Lari, Martina; Casoli, Antonella; Mallegni, Francesco; Chiarelli, Brunetto; Dupanloup, Isabelle; Bertranpetit, Jaume; Barbujani, Guido; Bertorelle, Giorgio

    2003-05-27

    During the late Pleistocene, early anatomically modern humans coexisted in Europe with the anatomically archaic Neandertals for some thousand years. Under the recent variants of the multiregional model of human evolution, modern and archaic forms were different but related populations within a single evolving species, and both have contributed to the gene pool of current humans. Conversely, the Out-of-Africa model considers the transition between Neandertals and anatomically modern humans as the result of a demographic replacement, and hence it predicts a genetic discontinuity between them. Following the most stringent current standards for validation of ancient DNA sequences, we typed the mtDNA hypervariable region I of two anatomically modern Homo sapiens sapiens individuals of the Cro-Magnon type dated at about 23 and 25 thousand years ago. Here we show that the mtDNAs of these individuals fall well within the range of variation of today's humans, but differ sharply from the available sequences of the chronologically closer Neandertals. This discontinuity is difficult to reconcile with the hypothesis that both Neandertals and early anatomically modern humans contributed to the current European gene pool.

  13. The female knee: anatomic variations.

    PubMed

    Conley, Sheryl; Rosenberg, Aaron; Crowninshield, Roy

    2007-01-01

    Traditional knee implants have been designed "down the middle,"based on the combined average size and shape of male and female knee anatomy.Sex-based research in the field of orthopaedics has led to new understanding of the anatomic differences between the sexes and the associated implications for women undergoing total knee arthroplasty. Through the use of a comprehensive bone morphology atlas that utilizes novel three-dimensional computed tomography analysis technology, significant anatomic differences have been documented in the shape and size of female knees compared with male knees. This research identifies three notable anatomic differences in the female population: a less prominent anterior condyle, an increased Q angle, and a reduced medial-lateral:anterior-posterior aspect ratio.

  14. Anatomical differences in response to treatment of port-wine stains by the pulsed dye laser

    NASA Astrophysics Data System (ADS)

    Renfro, Lisa; Geronemus, Roy G.

    1992-06-01

    Two-hundred and fifty-seven patients (136 adults and 121 children) with port-wine stains of the head and neck were treated with the flashlamp-pumped pulsed dye laser. The head and neck was subdivided into 8 anatomical regions (forehead/temple, periorbital, medial cheek, nose, upper cutaneous lip, lateral cheek, chin and neck) which were independently evaluated for response. Response to treatment was found to be associated with the anatomical location of the lesion; in both adults and children the mid-facial region (medial cheek, nose and upper cutaneous lip) responded less favorably to treatment than the other regions of the head and neck (periorbital, forehead/temple, lateral cheek, neck and chin). In adults and children, mean percent lesional lightening of the mid-facial regions was 70.7% compared to 82.3% of the other regions of the head and neck with an estimated difference of 11.6% (95% confidence interval: 8.7% - 14.6%). The mean number of treatments for adults was 3.7, while this number in children was 3.9. All side effects were transient, and included cutaneous depressions, hypopigmentation and hyperpigmentation.

  15. Occipital neuralgia: anatomic considerations.

    PubMed

    Cesmebasi, Alper; Muhleman, Mitchel A; Hulsberg, Paul; Gielecki, Jerzy; Matusz, Petru; Tubbs, R Shane; Loukas, Marios

    2015-01-01

    Occipital neuralgia is a debilitating disorder first described in 1821 as recurrent headaches localized in the occipital region. Other symptoms that have been associated with this condition include paroxysmal burning and aching pain in the distribution of the greater, lesser, or third occipital nerves. Several etiologies have been identified in the cause of occipital neuralgia and include, but are not limited to, trauma, fibrositis, myositis, fracture of the atlas, and compression of the C-2 nerve root, C1-2 arthrosis syndrome, atlantoaxial lateral mass osteoarthritis, hypertrophic cervical pachymeningitis, cervical cord tumor, Chiari malformation, and neurosyphilis. The management of occipital neuralgia can include conservative approaches and/or surgical interventions. Occipital neuralgia is a multifactorial problem where multiple anatomic areas/structures may be involved with this pathology. A review of these etiologies may provide guidance in better understanding occipital neuralgia. © 2014 Wiley Periodicals, Inc.

  16. Anatomical popliteal artery entrapment syndrome.

    PubMed

    Kwon, Yong Jae; Kwon, Tae-Won; Gwon, Jun Gyo; Cho, Yong-Pil; Hwang, Seung-Jun; Go, Ki-Young

    2018-05-01

    The aim of this study was to analyze anatomical popliteal artery entrapment syndrome (PAES) and to individualize the treatment of this condition according to the anatomical status of the artery and the adjacent structure. A total of 35 anatomical PAES legs in 23 consecutive patients treated within the Asan Medical Center, Seoul, Korea between 1995 and 2011 were analyzed retrospectively. Anatomical PAES was diagnosed by MRI and/or CT scans of the knee joint, and CT or conventional transfemoral arteriography of the lower extremities. We noted a type II gastrocnemius medial head (GNM) anomaly, a type III GNM anomaly, or an aberrant plantaris muscle in 51.4%, 20%, and 28.6% of PAES legs, respectively. In assessments of the arterial lesions, popliteal or tibial artery occlusion was noted in 19 of 26 symptomatic PAES legs. For cases without popliteal artery lesions, myotomy of the anatomically deranged muscle was performed in 5 of 7 symptomatic and 4 of 9 asymptomatic PAES legs. For occluded popliteal arteries, we performed ten direct repairs of the pathological popliteal artery and 4 femoro-below the knee popliteal bypass surgeries. As a result of the arterial Surgery, 9 direct procedures with myotomy yielded a patent artery, while 3 graft failures were noted in the bypass group. The median follow-up period was 84 months (range, 12-206 months). We recommend that treatment of PAES should be individualized based on pathology, symptoms, and various imaging studies.

  17. Anatomical connections of the functionally-defined “face patches” in the macaque monkey

    PubMed Central

    Saleem, Kadharbatcha S.

    2017-01-01

    The neural circuits underlying face recognition provide a model for understanding visual object representation, social cognition, and hierarchical information processing. A fundamental piece of information lacking to date is the detailed anatomical connections of the face patches. Here, we injected retrograde tracers into four different face patches (PL, ML, AL, AM) to characterize their anatomical connectivity. We found that the patches are strongly and specifically connected to each other, and individual patches receive inputs from extrastriate cortex, the medial temporal lobe, and three subcortical structures (the pulvinar, claustrum, and amygdala). Inputs from prefrontal cortex were surprisingly weak. Patches were densely interconnected to one another in both feedforward and feedback directions, inconsistent with a serial hierarchy. These results provide the first direct anatomical evidence that the face patches constitute a highly specialized system, and suggest that subcortical regions may play a vital role in routing face-related information to subsequent processing stages. PMID:27263973

  18. [Graphic reconstruction of anatomic surfaces].

    PubMed

    Ciobanu, O

    2004-01-01

    The paper deals with the graphic reconstruction of anatomic surfaces in a virtual 3D setting. Scanning technologies and soft provides a greater flexibility in the digitization of surfaces and a higher resolution and accuracy. An alternative cheap method for the reconstruction of 3D anatomic surfaces is presented in connection with some studies and international projects developed by Medical Design research team.

  19. An anatomical analysis of Aikido's second teaching: an investigation of Nikyo.

    PubMed

    Olson, G D; Seitz, F C

    1993-08-01

    One of the strongest subduing techniques of the Martial Art Aikido is classified as Nikyo (Second-teaching). This investigation focused on examining this teaching with the intention of describing the anatomical tissues involved in the etiology of pain experienced with the application of this procedure. Particular focus was placed on the examination of a cadaver's arm musculature affected when this maneuver was applied precisely.

  20. Finite-element modeling of the human neurocranium under functional anatomical aspects.

    PubMed

    Mall, G; Hubig, M; Koebke, J; Steinbuch, R

    1997-08-01

    Due to its functional significance the human skull plays an important role in biomechanical research. The present work describes a new Finite-Element model of the human neurocranium. The dry skull of a middle-aged woman served as a pattern. The model was developed using only the preprocessor (Mentat) of a commercial FE-system (Marc). Unlike that of other FE models of the human skull mentioned in the literature, the geometry in this model was designed according to functional anatomical findings. Functionally important morphological structures representing loci minoris resistentiae, especially the foramina and fissures of the skull base, were included in the model. The results of two linear static loadcase analyses in the region of the skull base underline the importance of modeling from the functional anatomical point of view.

  1. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits.

    PubMed

    Paulesu, Eraldo; Shallice, Tim; Danelli, Laura; Sberna, Maurizio; Frackowiak, Richard S J; Frith, Chris D

    2017-01-01

    Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H 2 15 O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of

  2. Quality Assurance Assessment of Diagnostic and Radiation Therapy–Simulation CT Image Registration for Head and Neck Radiation Therapy: Anatomic Region of Interest–based Comparison of Rigid and Deformable Algorithms

    PubMed Central

    Mohamed, Abdallah S. R.; Ruangskul, Manee-Naad; Awan, Musaddiq J.; Baron, Charles A.; Kalpathy-Cramer, Jayashree; Castillo, Richard; Castillo, Edward; Guerrero, Thomas M.; Kocak-Uzel, Esengul; Yang, Jinzhong; Court, Laurence E.; Kantor, Michael E.; Gunn, G. Brandon; Colen, Rivka R.; Frank, Steven J.; Garden, Adam S.; Rosenthal, David I.

    2015-01-01

    Purpose To develop a quality assurance (QA) workflow by using a robust, curated, manually segmented anatomic region-of-interest (ROI) library as a benchmark for quantitative assessment of different image registration techniques used for head and neck radiation therapy–simulation computed tomography (CT) with diagnostic CT coregistration. Materials and Methods Radiation therapy–simulation CT images and diagnostic CT images in 20 patients with head and neck squamous cell carcinoma treated with curative-intent intensity-modulated radiation therapy between August 2011 and May 2012 were retrospectively retrieved with institutional review board approval. Sixty-eight reference anatomic ROIs with gross tumor and nodal targets were then manually contoured on images from each examination. Diagnostic CT images were registered with simulation CT images rigidly and by using four deformable image registration (DIR) algorithms: atlas based, B-spline, demons, and optical flow. The resultant deformed ROIs were compared with manually contoured reference ROIs by using similarity coefficient metrics (ie, Dice similarity coefficient) and surface distance metrics (ie, 95% maximum Hausdorff distance). The nonparametric Steel test with control was used to compare different DIR algorithms with rigid image registration (RIR) by using the post hoc Wilcoxon signed-rank test for stratified metric comparison. Results A total of 2720 anatomic and 50 tumor and nodal ROIs were delineated. All DIR algorithms showed improved performance over RIR for anatomic and target ROI conformance, as shown for most comparison metrics (Steel test, P < .008 after Bonferroni correction). The performance of different algorithms varied substantially with stratification by specific anatomic structures or category and simulation CT section thickness. Conclusion Development of a formal ROI-based QA workflow for registration assessment demonstrated improved performance with DIR techniques over RIR. After QA, DIR

  3. Automated anatomical labeling method for abdominal arteries extracted from 3D abdominal CT images

    NASA Astrophysics Data System (ADS)

    Oda, Masahiro; Hoang, Bui Huy; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku

    2012-02-01

    This paper presents an automated anatomical labeling method of abdominal arteries. In abdominal surgery, understanding of blood vessel structure concerning with a target organ is very important. Branching pattern of blood vessels differs among individuals. It is required to develop a system that can assist understanding of a blood vessel structure and anatomical names of blood vessels of a patient. Previous anatomical labbeling methods for abdominal arteries deal with either of the upper or lower abdominal arteries. In this paper, we present an automated anatomical labeling method of both of the upper and lower abdominal arteries extracted from CT images. We obtain a tree structure of artery regions and calculate feature values for each branch. These feature values include the diameter, curvature, direction, and running vectors of a branch. Target arteries of this method are grouped based on branching conditions. The following processes are separately applied for each group. We compute candidate artery names by using classifiers that are trained to output artery names. A correction process of the candidate anatomical names based on the rule of majority is applied to determine final names. We applied the proposed method to 23 cases of 3D abdominal CT images. Experimental results showed that the proposed method is able to perform nomenclature of entire major abdominal arteries. The recall and the precision rates of labeling are 79.01% and 80.41%, respectively.

  4. Effects of air pollution on morphological and anatomical characteristics of Pinus Eldarica Wood

    Treesearch

    Vahidreza Safdari; Moinuddin Ahmed; Margaret S. Devall; Vilma Bayramzadeh

    2012-01-01

    Air pollution, including automobile exhaust pollution, can affect anatomical and morphological characteristics of wood. In order to evaluate this subject, the Pinus eldarica trees of Chitgar Park in Tehran, which extends from a crowded highway in the south (polluted site) to the semi polluted midsection and to Alborz Mountain in the north (unpolluted...

  5. An anatomically comprehensive atlas of the adult human brain transcriptome

    PubMed Central

    Guillozet-Bongaarts, Angela L.; Shen, Elaine H.; Ng, Lydia; Miller, Jeremy A.; van de Lagemaat, Louie N.; Smith, Kimberly A.; Ebbert, Amanda; Riley, Zackery L.; Abajian, Chris; Beckmann, Christian F.; Bernard, Amy; Bertagnolli, Darren; Boe, Andrew F.; Cartagena, Preston M.; Chakravarty, M. Mallar; Chapin, Mike; Chong, Jimmy; Dalley, Rachel A.; David Daly, Barry; Dang, Chinh; Datta, Suvro; Dee, Nick; Dolbeare, Tim A.; Faber, Vance; Feng, David; Fowler, David R.; Goldy, Jeff; Gregor, Benjamin W.; Haradon, Zeb; Haynor, David R.; Hohmann, John G.; Horvath, Steve; Howard, Robert E.; Jeromin, Andreas; Jochim, Jayson M.; Kinnunen, Marty; Lau, Christopher; Lazarz, Evan T.; Lee, Changkyu; Lemon, Tracy A.; Li, Ling; Li, Yang; Morris, John A.; Overly, Caroline C.; Parker, Patrick D.; Parry, Sheana E.; Reding, Melissa; Royall, Joshua J.; Schulkin, Jay; Sequeira, Pedro Adolfo; Slaughterbeck, Clifford R.; Smith, Simon C.; Sodt, Andy J.; Sunkin, Susan M.; Swanson, Beryl E.; Vawter, Marquis P.; Williams, Derric; Wohnoutka, Paul; Zielke, H. Ronald; Geschwind, Daniel H.; Hof, Patrick R.; Smith, Stephen M.; Koch, Christof; Grant, Seth G. N.; Jones, Allan R.

    2014-01-01

    Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ~900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography— the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function. PMID:22996553

  6. Radiographic evaluation of anatomical variables in maxilla and mandible in relation to dental implant placement.

    PubMed

    Chandra, Poornima; Govindaraju, Poornima; Chowdhary, Ramesh

    2016-01-01

    Oral rehabilitation using implants is rapidly replacing tooth supported prostheses. The success of implants is largely dependent on the quality and quantity of alveolar bone. In this study, we assessed the location of limiting anatomical structures and the amount of alveolar bone available for implant placement. Six hundred digital panoramic radiographs (300 males and 300 females) of dentate patients aged between 15-60 years were selected from the archives. The radiographs were subdivided into 3 groups with age interval of 15 years. Then the location of mental foramen, anterior loop, mandibular canal and maxillary sinus was determined. The amount of bone available was measured in both maxilla and mandible in the premolar and molar regions. The mental foramen was most commonly located at the apex of the second premolar in both the genders. The anterior loop was more readily visible in the younger age group. The amount of bone available in the premolar and molar region of the mandible is nearly the same, while more bone is available in the premolar region of the maxilla. The location and morphology of anatomical structures of the jaws vary not only in different populations but also within the same population. The amount of bone available also showed variations in the same population and in the same individual on the right and left sides. The limiting anatomical structures govern the amount of bone available for possible implant placement.

  7. Inspection guide for column splice regions affected by premature concrete deterioration.

    DOT National Transportation Integrated Search

    2016-07-01

    This guideline aims to help bridge inspectors and engineers in identifying and assessing the : capability of reinforced concrete column splice regions affected by varying degrees of premature : concrete deterioration due to alkali-silica reaction (AS...

  8. Analysis of anatomic variability in children with low mathematical skills

    NASA Astrophysics Data System (ADS)

    Han, Zhaoying; Fuchs, Lynn; Davis, Nikki; Cannistraci, Christopher J.; Anderson, Adam W.; Gore, John C.; Dawant, Benoit M.

    2008-03-01

    Mathematical difficulty affects approximately 5-9% of the population. Studies on individuals with dyscalculia, a neurologically based math disorder, provide important insight into the neural correlates of mathematical ability. For example, cognitive theories, neuropsychological studies, and functional neuroimaging studies in individuals with dyscalculia suggest that the bilateral parietal lobes and intraparietal sulcus are central to mathematical performance. The purpose of the present study was to investigate morphological differences in a group of third grade children with poor math skills. We compare population averages of children with low math skill (MD) to gender and age matched controls with average math ability. Anatomical data were gathered with high resolution MRI and four different population averaging methods were used to study the effect of the normalization technique on the results. Statistical results based on the deformation fields between the two groups show anatomical differences in the bilateral parietal lobes, right frontal lobe, and left occipital/parietal lobe.

  9. Introducing 3-Dimensional Printing of a Human Anatomic Pathology Specimen: Potential Benefits for Undergraduate and Postgraduate Education and Anatomic Pathology Practice.

    PubMed

    Mahmoud, Amr; Bennett, Michael

    2015-08-01

    Three-dimensional (3D) printing, a rapidly advancing technology, is widely applied in fields such as mechanical engineering and architecture. Three-dimensional printing has been introduced recently into medical practice in areas such as reconstructive surgery, as well as in clinical research. Three-dimensionally printed models of anatomic and autopsy pathology specimens can be used for demonstrating pathology entities to undergraduate medical, dental, and biomedical students, as well as for postgraduate training in examination of gross specimens for anatomic pathology residents and pathology assistants, aiding clinicopathological correlation at multidisciplinary team meetings, and guiding reconstructive surgical procedures. To apply 3D printing in anatomic pathology for teaching, training, and clinical correlation purposes. Multicolored 3D printing of human anatomic pathology specimens was achieved using a ZCorp 510 3D printer (3D Systems, Rock Hill, South Carolina) following creation of a 3D model using Autodesk 123D Catch software (Autodesk, Inc, San Francisco, California). Three-dimensionally printed models of anatomic pathology specimens created included pancreatoduodenectomy (Whipple operation) and radical nephrectomy specimens. The models accurately depicted the topographic anatomy of selected specimens and illustrated the anatomic relation of excised lesions to adjacent normal tissues. Three-dimensional printing of human anatomic pathology specimens is achievable. Advances in 3D printing technology may further improve the quality of 3D printable anatomic pathology specimens.

  10. TOPICAL REVIEW: Anatomical imaging for radiotherapy

    NASA Astrophysics Data System (ADS)

    Evans, Philip M.

    2008-06-01

    The goal of radiation therapy is to achieve maximal therapeutic benefit expressed in terms of a high probability of local control of disease with minimal side effects. Physically this often equates to the delivery of a high dose of radiation to the tumour or target region whilst maintaining an acceptably low dose to other tissues, particularly those adjacent to the target. Techniques such as intensity modulated radiotherapy (IMRT), stereotactic radiosurgery and computer planned brachytherapy provide the means to calculate the radiation dose delivery to achieve the desired dose distribution. Imaging is an essential tool in all state of the art planning and delivery techniques: (i) to enable planning of the desired treatment, (ii) to verify the treatment is delivered as planned and (iii) to follow-up treatment outcome to monitor that the treatment has had the desired effect. Clinical imaging techniques can be loosely classified into anatomic methods which measure the basic physical characteristics of tissue such as their density and biological imaging techniques which measure functional characteristics such as metabolism. In this review we consider anatomical imaging techniques. Biological imaging is considered in another article. Anatomical imaging is generally used for goals (i) and (ii) above. Computed tomography (CT) has been the mainstay of anatomical treatment planning for many years, enabling some delineation of soft tissue as well as radiation attenuation estimation for dose prediction. Magnetic resonance imaging is fast becoming widespread alongside CT, enabling superior soft-tissue visualization. Traditionally scanning for treatment planning has relied on the use of a single snapshot scan. Recent years have seen the development of techniques such as 4D CT and adaptive radiotherapy (ART). In 4D CT raw data are encoded with phase information and reconstructed to yield a set of scans detailing motion through the breathing, or cardiac, cycle. In ART a set of

  11. A morphometric anatomical and comparative study of the foramen magnum region in a Greek population.

    PubMed

    Natsis, K; Piagkou, M; Skotsimara, G; Piagkos, G; Skandalakis, P

    2013-12-01

    The foramen magnum (FM), a complex area in craniocervical surgery, poses a challenge for neurosurgeons. The knowledge of the detailed anatomy of the FM, occipital condyles (OC) and variations of the region is crucial for the safety of vital structures. This study focuses on the FM and OC morphometry, highlights anatomical variability and investigates correlations between the parameters studied. One hundred and forty-three Greek adult dry skulls were examined using a digital sliding calliper (accuracy, 0.01 mm). Mean FM width and length were found 30.31 ± 2.79 and 35.53 ± 3.06 mm, respectively. The commonest FM shape was two semicircles (25.9 %), whereas the most unusual was irregular (0.7 %). The OC minimum width, maximum width and length were 5.71 ± 1.61, 13.09 ± 1.99 and 25.60 ± 2.91 mm on the right, and 6.25 ± 1.76, 13.01 ± 1.98 and 25.60 ± 2.70 mm on the left side. The commonest OC shape was S-like and the most unusual was ring, bilaterally. The mean anterior and posterior intercondylar distances were 19.30 ± 3.25 and 51.61 ± 5.01 mm, respectively. The OC protruded into the FM in 86.7 % of the skulls. Variations such as a third OC existed in 5.6 % and basilar processes in 2.8 %. Posterior condylar foramina were present in 75.5 %. The gender was correlated with FM width and length, OC length, bilaterally, anterior intercondylar distance (AID) and posterior intercondylar distance (PID). The OC protrusion and existence of posterior condylar foramina were correlated. Bilateral asymmetry for OC shape was statistically significant. Our results provide useful information that will enable effective and reliable surgical intervention in the FM region with the maximum safety and widest possible exposure.

  12. Anatomical masking of pressure footprints based on the Oxford Foot Model: validation and clinical relevance.

    PubMed

    Giacomozzi, Claudia; Stebbins, Julie A

    2017-03-01

    Plantar pressure analysis is widely used in the assessment of foot function. In order to assess regional loading, a mask is applied to the footprint to sub-divide it into regions of interest (ROIs). The most common masking method is based on geometric features of the footprint (GM). Footprint masking based on anatomical landmarks of the foot has been implemented more recently, and involves the integration of a 3D motion capture system, plantar pressure measurement device, and a multi-segment foot model. However, thorough validation of anatomical masking (AM) using pathological footprints has not yet been presented. In the present study, an AM method based on the Oxford Foot Model (OFM) was compared to an equivalent GM. Pressure footprints from 20 young healthy subjects (HG) and 20 patients with clubfoot (CF) were anatomically divided into 5 ROIs using a subset of the OFM markers. The same foot regions were also identified by using a standard GM method. Comparisons of intra-subject coefficient of variation (CV) showed that the OFM-based AM was at least as reliable as the GM for all investigated pressure parameters in all foot regions. Clinical relevance of AM was investigated by comparing footprints from HG and CF groups. Contact time, maximum force, force-time integral and contact area proved to be sensitive parameters that were able to distinguish HG and CF groups, using both AM and GM methods However, the AM method revealed statistically significant differences between groups in 75% of measured variables, compared to 62% using a standard GM method, indicating that the AM method is more sensitive for revealing differences between groups. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Distinct anatomical subtypes of the behavioural variant of frontotemporal dementia: a cluster analysis study.

    PubMed

    Whitwell, Jennifer L; Przybelski, Scott A; Weigand, Stephen D; Ivnik, Robert J; Vemuri, Prashanthi; Gunter, Jeffrey L; Senjem, Matthew L; Shiung, Maria M; Boeve, Bradley F; Knopman, David S; Parisi, Joseph E; Dickson, Dennis W; Petersen, Ronald C; Jack, Clifford R; Josephs, Keith A

    2009-11-01

    The behavioural variant of frontotemporal dementia is a progressive neurodegenerative syndrome characterized by changes in personality and behaviour. It is typically associated with frontal lobe atrophy, although patterns of atrophy are heterogeneous. The objective of this study was to examine case-by-case variability in patterns of grey matter atrophy in subjects with the behavioural variant of frontotemporal dementia and to investigate whether behavioural variant of frontotemporal dementia can be divided into distinct anatomical subtypes. Sixty-six subjects that fulfilled clinical criteria for a diagnosis of the behavioural variant of frontotemporal dementia with a volumetric magnetic resonance imaging scan were identified. Grey matter volumes were obtained for 26 regions of interest, covering frontal, temporal and parietal lobes, striatum, insula and supplemental motor area, using the automated anatomical labelling atlas. Regional volumes were divided by total grey matter volume. A hierarchical agglomerative cluster analysis using Ward's clustering linkage method was performed to cluster the behavioural variant of frontotemporal dementia subjects into different anatomical clusters. Voxel-based morphometry was used to assess patterns of grey matter loss in each identified cluster of subjects compared to an age and gender-matched control group at P < 0.05 (family-wise error corrected). We identified four potentially useful clusters with distinct patterns of grey matter loss, which we posit represent anatomical subtypes of the behavioural variant of frontotemporal dementia. Two of these subtypes were associated with temporal lobe volume loss, with one subtype showing loss restricted to temporal lobe regions (temporal-dominant subtype) and the other showing grey matter loss in the temporal lobes as well as frontal and parietal lobes (temporofrontoparietal subtype). Another two subtypes were characterized by a large amount of frontal lobe volume loss, with one

  14. Comparison of in vitro flows past a mechanical heart valve in anatomical and axisymmetric aorta models

    NASA Astrophysics Data System (ADS)

    Haya, Laura; Tavoularis, Stavros

    2017-06-01

    Flow characteristics past a bileaflet mechanical heart valve were measured under physiological flow conditions in a straight tube with an axisymmetric expansion, similar to vessels used in previous studies, and in an anatomical model of the aorta. We found that anatomical features, including the three-lobed sinus and the aorta's curvature affected significantly the flow characteristics. The turbulent and viscous stresses were presented and discussed as indicators for potential blood damage and thrombosis. Both types of stresses, averaged over the two axial measurement planes, were significantly lower in the anatomical model than in the axisymmetric one. This difference was attributed to the lower height-to-width ratio and more gradual contraction of the anatomical aortic sinus. The curvature of the aorta caused asymmetries in the velocity and stress distributions during forward flow. Secondary flows resulting from the aorta's curvature are thought to have redistributed the fluid stresses transversely, resulting in a more homogeneous stress distribution in the anatomical aortic root than in the axisymmetric root. The results of this study demonstrate the importance of modelling accurately the aortic geometry in experimental and computational studies of prosthetic devices. Moreover, our findings suggest that grafts used for aortic root replacement should approximate as closely as possible the shape of the natural sinuses.

  15. An interactive, web-based tool for learning anatomic landmarks.

    PubMed

    Hallgren, Richard C; Parkhurst, Perrin E; Monson, Carol L; Crewe, Nancy M

    2002-03-01

    To evaluate the effectiveness of a Web-based interactive teaching tool that uses self-assessment exercises with real-time feedback to aid students' learning in a gross anatomy class. A total of 107 of 124 first-year medical students at one school were enrolled in the study. Students were divided into three groups: Group 1 (n = 63) received introductory material and activated their Web-based accounts; Group 2 (n = 44) received introductory material but did not activate their Web-based accounts; and Group 3 (n = 17) were not enrolled in the study and received no introductory material. Students in Group 1 had access to a graphic showing the locations of anatomic landmarks, a drill exercise, and a self-evaluation exercise. Students' ability to identify the anatomic landmarks on a 30-question midterm and a 30-question final exam were compared among the groups. The mean scores of students in Group 1 (midterm = 28.5, final = 28.1) were significantly higher than were the mean scores of students in Group 2 (midterm = 26.8, p <.001; final = 26.9, p <.017) and Group 3 (midterm = 24.8, p <.001; final = 26.4, p <.007). The Web-based tool was effective in improving students' scores on anatomic landmark exams. Future studies will determine whether the tool aids students in identifying structures located in three-dimensional space within regions such as the cranium and the abdominal cavity.

  16. Anatomic Sites and Associated Clinical Factors for Deep Dyspareunia.

    PubMed

    Yong, Paul J; Williams, Christina; Yosef, Ali; Wong, Fontayne; Bedaiwy, Mohamed A; Lisonkova, Sarka; Allaire, Catherine

    2017-09-01

    Deep dyspareunia negatively affects women's sexual function. There is a known association between deep dyspareunia and endometriosis of the cul-de-sac or uterosacral ligaments in reproductive-age women; however, other factors are less clear in this population. To identify anatomic sites and associated clinical factors for deep dyspareunia in reproductive-age women at a referral center. This study involved the analysis of cross-sectional baseline data from a prospective database of 548 women (87% consent rate) recruited from December 2013 through April 2015 at a tertiary referral center for endometriosis and/or pelvic pain. Exclusion criteria included menopausal status, age at least 50 years, previous hysterectomy or oophorectomy, and not sexually active. We performed a standardized endovaginal ultrasound-assisted pelvic examination to palpate anatomic structures for tenderness and reproduce deep dyspareunia. Multivariable regression was used to determine which tender anatomic structures were independently associated with deep dyspareunia severity and to identify clinical factors independently associated with each tender anatomic site. Severity of deep dyspareunia on a numeric pain rating scale of 0 to 10. Severity of deep dyspareunia (scale = 0-10) was independently associated with tenderness of the bladder (b = 0.88, P = .018), pelvic floor (levator ani) (b = 0.66, P = .038), cervix and uterus (b = 0.88, P = .008), and cul-de-sac or uterosacral ligaments (b = 1.39, P < .001), but not with the adnexa (b = -0.16, P = 0.87). The number of tender anatomic sites was significantly correlated with more severe deep dyspareunia (Spearman r = 0.34, P < .001). For associated clinical factors, greater depression symptom severity was specifically associated with tenderness of the bladder (b = 1.05, P = .008) and pelvic floor (b = 1.07, P < .001). A history of miscarriage was specifically associated with tenderness of the cervix and uterus (b = 2.24, P = .001

  17. Development of the ethmoid sinus and extramural migration: the anatomical basis of this paranasal sinus.

    PubMed

    Márquez, Samuel; Tessema, Belachew; Clement, Peter Ar; Schaefer, Steven D

    2008-11-01

    Frontal and/or maxillary sinusitis frequently originates with pathologic processes of the ethmoid sinuses. This clinical association is explained by the close anatomical relationship between the frontal and maxillary sinuses and the ethmoid sinus, since developmental trajectories place the ethmoid in a strategic central position within the nasal complex. The advent of optical endoscopes has permitted improved visualization of these spaces, leading to a renaissance in intranasal sinus surgery. Advancing patient care has consequently driven the need for the proper and accurate anatomical description of the paranasal sinuses, regrettably the continuing subject of persistent confusion and ambiguity in nomenclature and terminology. Developmental tracking of the pneumatization of the ethmoid and adjacent bones, and particularly of the extramural cells of the ethmoid, helps to explain the highly variable adult morphology of the ethmoid air sinus system. To fully understand the nature and underlying biology of this sinus system, multiple approaches were employed here. These include CT imaging of living humans (n = 100), examination of dry cranial material (n = 220), fresh tissue and cadaveric anatomical dissections (n = 168), and three-dimensional volume rendering methods that allow digitizing of the spaces of the ethmoid sinus for graphical examination. Results show the ethmoid sinus to be highly variable in form and structure as well as in the quantity of air cells. The endochondral bony origin of the ethmoid sinuses leads to remarkably thin bony contours of their irregular and morphologically unique borders, making them substantially different from the other paranasal sinuses. These investigations allow development of a detailed anatomical template of this region based on observed patterns of morphological diversity, which can initially mask the underlying anatomy. For example, the frontal recess, ethmoid infundibulum, and hiatus semilunaris are key anatomical

  18. A finite element method model to simulate laser interstitial thermo therapy in anatomical inhomogeneous regions

    PubMed Central

    Mohammed, Yassene; Verhey, Janko F

    2005-01-01

    Background Laser Interstitial ThermoTherapy (LITT) is a well established surgical method. The use of LITT is so far limited to homogeneous tissues, e.g. the liver. One of the reasons is the limited capability of existing treatment planning models to calculate accurately the damage zone. The treatment planning in inhomogeneous tissues, especially of regions near main vessels, poses still a challenge. In order to extend the application of LITT to a wider range of anatomical regions new simulation methods are needed. The model described with this article enables efficient simulation for predicting damaged tissue as a basis for a future laser-surgical planning system. Previously we described the dependency of the model on geometry. With the presented paper including two video files we focus on the methodological, physical and mathematical background of the model. Methods In contrast to previous simulation attempts, our model is based on finite element method (FEM). We propose the use of LITT, in sensitive areas such as the neck region to treat tumours in lymph node with dimensions of 0.5 cm – 2 cm in diameter near the carotid artery. Our model is based on calculations describing the light distribution using the diffusion approximation of the transport theory; the temperature rise using the bioheat equation, including the effect of microperfusion in tissue to determine the extent of thermal damage; and the dependency of thermal and optical properties on the temperature and the injury. Injury is estimated using a damage integral. To check our model we performed a first in vitro experiment on porcine muscle tissue. Results We performed the derivation of the geometry from 3D ultrasound data and show for this proposed geometry the energy distribution, the heat elevation, and the damage zone. Further on, we perform a comparison with the in-vitro experiment. The calculation shows an error of 5% in the x-axis parallel to the blood vessel. Conclusions The FEM technique

  19. Correlative CT and anatomic study of the sciatic nerve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pech, P.; Haughton, V.

    1985-05-01

    Sciatica can be caused by numerous processes affecting the sciatic nerve or its components within the pelvis including tumors, infectious diseases, aneurysms, fractures, and endometriosis. The CT diagnosis of these causes of sciatica has not been emphasized. This study identified the course and appearance of the normal sciatic nerve in the pelvis by correlating CT and anatomic slices in cadavers. For purposes of discussion, the sciatic nerve complex is conveniently divided into three parts: presacral, muscular, and ischial. Each part is illustrated here by two cryosections with corresponding CT images.

  20. Anatomical and functional assemblies of brain BOLD oscillations

    PubMed Central

    Baria, Alexis T.; Baliki, Marwan N.; Parrish, Todd; Apkarian, A. Vania

    2011-01-01

    Brain oscillatory activity has long been thought to have spatial properties, the details of which are unresolved. Here we examine spatial organizational rules for the human brain oscillatory activity as measured by blood oxygen level-dependent (BOLD). Resting state BOLD signal was transformed into frequency space (Welch’s method), averaged across subjects, and its spatial distribution studied as a function of four frequency bands, spanning the full bandwidth of BOLD. The brain showed anatomically constrained distribution of power for each frequency band. This result was replicated on a repository dataset of 195 subjects. Next, we examined larger-scale organization by parceling the neocortex into regions approximating Brodmann Areas (BAs). This indicated that BAs of simple function/connectivity (unimodal), vs. complex properties (transmodal), are dominated by low frequency BOLD oscillations, and within the visual ventral stream we observe a graded shift of power to higher frequency bands for BAs further removed from the primary visual cortex (increased complexity), linking frequency properties of BOLD to hodology. Additionally, BOLD oscillation properties for the default mode network demonstrated that it is composed of distinct frequency dependent regions. When the same analysis was performed on a visual-motor task, frequency-dependent global and voxel-wise shifts in BOLD oscillations could be detected at brain sites mostly outside those identified with general linear modeling. Thus, analysis of BOLD oscillations in full bandwidth uncovers novel brain organizational rules, linking anatomical structures and functional networks to characteristic BOLD oscillations. The approach also identifies changes in brain intrinsic properties in relation to responses to external inputs. PMID:21613505

  1. Anatomical variations between the sciatic nerve and the piriformis muscle: a contribution to surgical anatomy in piriformis syndrome.

    PubMed

    Natsis, Konstantinos; Totlis, Trifon; Konstantinidis, George A; Paraskevas, George; Piagkou, Maria; Koebke, Juergen

    2014-04-01

    To detect the variable relationship between sciatic nerve and piriformis muscle and make surgeons aware of certain anatomical features of each variation that may be useful for the surgical treatment of the piriformis syndrome. The gluteal region of 147 Caucasian cadavers (294 limbs) was dissected. The anatomical relationship between the sciatic nerve and the piriformis muscle was recorded and classified according to the Beaton and Anson classification. The literature was reviewed to summarize the incidence of each variation. The sciatic nerve and piriformis muscle relationship followed the typical anatomical pattern in 275 limbs (93.6 %). In 12 limbs (4.1 %) the common peroneal nerve passed through and the tibial nerve below a double piriformis. In one limb (0.3 %) the common peroneal nerve coursed superior and the tibial nerve below the piriformis. In one limb (0.3 %) both nerves penetrated the piriformis. In one limb (0.3 %) both nerves passed above the piriformis. Four limbs (1.4 %) presented non-classified anatomical variations. When a double piriformis muscle was present, two different arrangements of the two heads were observed. Anatomical variations of the sciatic nerve around the piriformis muscle were present in 6.4 % of the limbs examined. When dissection of the entire piriformis is necessary for adequate sciatic nerve decompression, the surgeon should explore for the possible existence of a second tendon, which may be found either inferior or deep to the first one. Some rare, unclassified variations of the sciatic nerve should be expected during surgical intervention of the region.

  2. Automated segmentation and recognition of the bone structure in non-contrast torso CT images using implicit anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Hayashi, T.; Han, M.; Chen, H.; Hara, T.; Fujita, H.; Yokoyama, R.; Kanematsu, M.; Hoshi, H.

    2009-02-01

    X-ray CT images have been widely used in clinical diagnosis in recent years. A modern CT scanner can generate about 1000 CT slices to show the details of all the human organs within 30 seconds. However, CT image interpretations (viewing 500-1000 slices of CT images manually in front of a screen or films for each patient) require a lot of time and energy. Therefore, computer-aided diagnosis (CAD) systems that can support CT image interpretations are strongly anticipated. Automated recognition of the anatomical structures in CT images is a basic pre-processing of the CAD system. The bone structure is a part of anatomical structures and very useful to act as the landmarks for predictions of the other different organ positions. However, the automated recognition of the bone structure is still a challenging issue. This research proposes an automated scheme for segmenting the bone regions and recognizing the bone structure in noncontrast torso CT images. The proposed scheme was applied to 48 torso CT cases and a subjective evaluation for the experimental results was carried out by an anatomical expert following the anatomical definition. The experimental results showed that the bone structure in 90% CT cases have been recognized correctly. For quantitative evaluation, automated recognition results were compared to manual inputs of bones of lower limb created by an anatomical expert on 10 randomly selected CT cases. The error (maximum distance in 3D) between the recognition results and manual inputs distributed from 3-8 mm in different parts of the bone regions.

  3. Deterioration of abstract reasoning ability in mild cognitive impairment and Alzheimer's disease: correlation with regional grey matter volume loss revealed by diffeomorphic anatomical registration through exponentiated lie algebra analysis.

    PubMed

    Yoshiura, Takashi; Hiwatashi, Akio; Yamashita, Koji; Ohyagi, Yasumasa; Monji, Akira; Takayama, Yukihisa; Kamano, Norihiro; Kawashima, Toshiro; Kira, Jun-Ichi; Honda, Hiroshi

    2011-02-01

    To determine which brain regions are relevant to deterioration in abstract reasoning as measured by Raven's Colored Progressive Matrices (CPM) in the context of dementia. MR images of 37 consecutive patients including 19 with Alzheimer's disease (AD) and 18 with amnestic mild cognitive impairment (aMCI) were retrospectively analyzed. All patients were administered the CPM. Regional grey matter (GM) volume was evaluated according to the regimens of voxel-based morphometry, during which a non-linear registration algorithm called Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra was employed. Multiple regression analyses were used to map the regions where GM volumes were correlated with CPM scores. The strongest correlation with CPM scores was seen in the left middle frontal gyrus while a region with the largest volume was identified in the left superior temporal gyrus. Significant correlations were seen in 14 additional regions in the bilateral cerebral hemispheres and right cerebellum. Deterioration of abstract reasoning ability in AD and aMCI measured by CPM is related to GM loss in multiple regions, which is in close agreement with the results of previous activation studies.

  4. The new vestibular stimuli: sound and vibration-anatomical, physiological and clinical evidence.

    PubMed

    Curthoys, Ian S

    2017-04-01

    The classical view of the otoliths-as flat plates of fairly uniform receptors activated by linear acceleration dragging on otoconia and so deflecting the receptor hair bundles-has been replaced by new anatomical and physiological evidence which shows that the maculae are much more complex. There is anatomical spatial differentiation across the macula in terms of receptor types, hair bundle heights, stiffness and attachment to the overlying otolithic membrane. This anatomical spatial differentiation corresponds to the neural spatial differentiation of response dynamics from the receptors and afferents from different regions of the otolithic maculae. Specifically, receptors in a specialized band of cells, the striola, are predominantly type I receptors, with short, stiff hair bundles and looser attachment to the overlying otoconial membrane than extrastriolar receptors. At the striola the hair bundles project into holes in the otolithic membrane, allowing for fluid displacement to deflect the hair bundles and activate the cell. This review shows the anatomical and physiological evidence supporting the hypothesis that fluid displacement, generated by sound or vibration, deflects the short stiff hair bundles of type I receptors at the striola, resulting in neural activation of the irregular afferents innervating them. So these afferents are activated by sound or vibration and show phase-locking to individual cycles of the sound or vibration stimulus up to frequencies above 2000 Hz, underpinning the use of sound and vibration for clinical tests of vestibular function.

  5. Anatomical study of the proximal origin of hamstring muscles.

    PubMed

    Sato, Kengo; Nimura, Akimoto; Yamaguchi, Kumiko; Akita, Keiichi

    2012-09-01

    It is relatively well accepted that the long head of the biceps femoris and the semitendinosus both originate from the ischial tuberosity as a common tendon. However, it is also widely known that the biceps femoris is consistently injured more than the semitendinosus. The purpose of this study was to examine the origins of the hamstring muscles, to find an anatomic basis for diagnosis and treatment of injuries of the posterior thigh regions. Twenty-eight hips of fourteen adult Japanese cadavers were used in this study. In twenty hips of ten cadavers, the positional relationships among the origins on the ischial tuberosity were examined. In eight hips of four cadavers, histological examination of the origins of the hamstrings was also performed. The origin of the long head of the biceps femoris adjoined that of the semitendinosus. In the proximal regions of these muscles, the long head consisted of the tendinous part; however, the semitendinosus mainly consisted of the muscular part. Some of the fibers of the biceps tendon extended to fuse with the sacrotuberous ligament. The semimembranosus muscle broadly originated from the lateral surface of the ischial tuberosity. The origins of the long head of the biceps femoris and the semitendinosus are found to be almost independent, and the tendon of the long head is partly fused with the sacrotuberous ligament. The high incidence of injuries to the long head of the biceps femoris could be explained by these anatomical configurations.

  6. Anatomical terminology, then and now.

    PubMed

    O'Rahilly, R

    1989-01-01

    Anatomical terminology, which had become chaotic by the nineteenth century, was codified in the BNA of 1895, when some 5,000 terms were carefully selected from among approximately 50,000 names. The BNA and its three major revisions (BR, INA, PNA) are here reviewed and placed in historical perspective. It is emphasized that many anatomical terms are very ancient and that the various nomenclatures are not 'new terminologies' but rather, for the most part, selections of already existing names. This can be seen clearly in the naming of the cranial nerves. Another example, the carpal and tarsal bones, is analysed in detail. Of the 8 carpal bones, for instance, the current names for 7 of them are those proposed by Henle in 1855. All the nomenclatures are, as they should be, in Latin, but it is understood that translations of many terms into other languages are necessary. Although views pro and con have been expressed, current usage favours the erect posture and the anatomical position as a basis, as well as the elimination of eponyms. In both teaching and research, the Nomina has been of great benefit in reducing drastically the number of unnecessary synonyms and in providing a coherent, internationally accepted system that is now the standard in anatomical textbooks. Hence, further use of the Nomina should be encouraged.

  7. Comparative study of anatomical normalization errors in SPM and 3D-SSP using digital brain phantom.

    PubMed

    Onishi, Hideo; Matsutake, Yuki; Kawashima, Hiroki; Matsutomo, Norikazu; Amijima, Hizuru

    2011-01-01

    In single photon emission computed tomography (SPECT) cerebral blood flow studies, two major algorithms are widely used statistical parametric mapping (SPM) and three-dimensional stereotactic surface projections (3D-SSP). The aim of this study is to compare an SPM algorithm-based easy Z score imaging system (eZIS) and a 3D-SSP system in the errors of anatomical standardization using 3D-digital brain phantom images. We developed a 3D-brain digital phantom based on MR images to simulate the effects of head tilt, perfusion defective region size, and count value reduction rate on the SPECT images. This digital phantom was used to compare the errors of anatomical standardization by the eZIS and the 3D-SSP algorithms. While the eZIS allowed accurate standardization of the images of the phantom simulating a head in rotation, lateroflexion, anteflexion, or retroflexion without angle dependency, the standardization by 3D-SSP was not accurate enough at approximately 25° or more head tilt. When the simulated head contained perfusion defective regions, one of the 3D-SSP images showed an error of 6.9% from the true value. Meanwhile, one of the eZIS images showed an error as large as 63.4%, revealing a significant underestimation. When required to evaluate regions with decreased perfusion due to such causes as hemodynamic cerebral ischemia, the 3D-SSP is desirable. In a statistical image analysis, we must reconfirm the image after anatomical standardization by all means.

  8. Anatomical eponyms - unloved names in medical terminology.

    PubMed

    Burdan, F; Dworzański, W; Cendrowska-Pinkosz, M; Burdan, M; Dworzańska, A

    2016-01-01

    Uniform international terminology is a fundamental issue of medicine. Names of various organs or structures have developed since early human history. The first proper anatomical books were written by Hippocrates, Aristotle and Galen. For this reason the modern terms originated from Latin or Greek. In a modern time the terminology was improved in particular by Vasalius, Fabricius and Harvey. Presently each known structure has internationally approved term that is explained in anatomical or histological terminology. However, some elements received eponyms, terms that incorporate the surname of the people that usually describe them for the first time or studied them (e.g., circle of Willis, follicle of Graff, fossa of Sylvious, foramen of Monro, Adamkiewicz artery). Literature and historical hero also influenced medical vocabulary (e.g. Achilles tendon and Atlas). According to various scientists, all the eponyms bring colour to medicine, embed medical traditions and culture to our history but lack accuracy, lead of confusion, and hamper scientific discussion. The current article presents a wide list of the anatomical eponyms with their proper anatomical term or description according to international anatomical terminology. However, since different eponyms are used in various countries, the list could be expanded.

  9. Creation of anatomical models from CT data

    NASA Astrophysics Data System (ADS)

    Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.

    2018-04-01

    Computed tomography is a great source of biomedical data because it allows a detailed exploration of complex anatomical structures. Some structures are not visible on CT scans, and some are hard to distinguish due to partial volume effect. CT datasets require preprocessing before using them as anatomical models in a simulation system. The work describes segmentation and data transformation methods for an anatomical model creation from the CT data. The result models may be used for visual and haptic rendering and drilling simulation in a virtual surgery system.

  10. Anatomical sciences: A foundation for a solid learning experience in dental technology and dental prosthetics.

    PubMed

    Bakr, Mahmoud M; Thompson, C Mark; Massadiq, Magdalena

    2017-07-01

    Basic science courses are extremely important as a foundation for scaffolding knowledge and then applying it in future courses, clinical situations as well as in a professional career. Anatomical sciences, which include tooth morphology, oral histology, oral embryology, and head and neck anatomy form a core part of the preclinical courses in dental technology programs. In this article, the importance and relevance of anatomical sciences to dental personnel with no direct contact with patients (dental technicians) and limited discipline related contact with patients (dental prosthetists) is highlighted. Some light is shed on the role of anatomical sciences in the pedagogical framework and its significance in the educational process and interprofessional learning of dental technicians and prosthetists using oral biology as an example in the dental curriculum. To conclude, anatomical sciences allow dental technicians and prosthetists to a gain a better insight of how tissues function, leading to a better understanding of diagnosis, comprehensive treatment planning and referrals if needed. Patient communication and satisfaction also increases as a result of this deep understanding of oral tissues. Anatomical sciences bridge the gap between basic science, preclinical, and clinical courses, which leads to a holistic approach in patient management. Finally, treatment outcomes are positively affected due to the appreciation of the macro and micro structure of oral tissues. Anat Sci Educ 10: 395-404. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  11. How spatial abilities and dynamic visualizations interplay when learning functional anatomy with 3D anatomical models.

    PubMed

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material presentation formats, spatial abilities, and anatomical tasks. First, to understand the cognitive challenges a novice learner would be faced with when first exposed to 3D anatomical content, a six-step cognitive task analysis was developed. Following this, an experimental study was conducted to explore how presentation formats (dynamic vs. static visualizations) support learning of functional anatomy, and affect subsequent anatomical tasks derived from the cognitive task analysis. A second aim was to investigate the interplay between spatial abilities (spatial visualization and spatial relation) and presentation formats when the functional anatomy of a 3D scapula and the associated shoulder flexion movement are learned. Findings showed no main effect of the presentation formats on performances, but revealed the predictive influence of spatial visualization and spatial relation abilities on performance. However, an interesting interaction between presentation formats and spatial relation ability for a specific anatomical task was found. This result highlighted the influence of presentation formats when spatial abilities are involved as well as the differentiated influence of spatial abilities on anatomical tasks. © 2015 American Association of Anatomists.

  12. Does EMS Perceived Anatomic Injury Predict Trauma Center Need?

    PubMed Central

    Lerner, E. Brooke; Roberts, Jennifer; Guse, Clare E.; Shah, Manish N.; Swor, Robert; Cushman, Jeremy T.; Blatt, Alan; Jurkovich, Gregory J.; Brasel, Karen

    2013-01-01

    Objective Our objective was to determine the predictive value of the anatomic step of the 2011 Field Triage Decision Scheme for identifying trauma center need. Methods EMS providers caring for injured adults transported to regional trauma centers in 3 midsized communities were interviewed over two years. Patients were included, regardless of injury severity, if they were at least 18 years old and were transported by EMS with a mechanism of injury that was an assault, motor vehicle or motorcycle crash, fall, or pedestrian or bicyclist struck. The interview was conducted upon ED arrival and collected physiologic condition and anatomic injury data. Patients who met the physiologic criteria were excluded. Trauma center need was defined as non-orthopedic surgery within 24 hours, intensive care unit admission, or death prior to hospital discharge. Data were analyzed by calculating descriptive statistics including positive likelihood ratios (+LR) with 95% confidence intervals. Results 11,892 interviews were conducted. One was excluded because of missing outcome data and 1,274 were excluded because they met the physiologic step. EMS providers identified 1,167 cases that met the anatomic criteria, of which 307 (26%) needed the resources of a trauma center (38% sensitivity, 91% specificity, +LR 4.4; CI: 3.9 - 4.9). Criteria with a +LR ≥5 were flail chest (9.0; CI: 4.1 - 19.4), paralysis (6.8; CI: 4.2 - 11.2), two or more long bone fractures (6.3; CI: 4.5 - 8.9), and amputation (6.1; CI: 1.5 - 24.4). Criteria with a +LR >2 and <5 were penetrating injury (4.8; CI: 4.2 - 5.6), and skull fracture (4.8; CI: 3.0 - 7.7). Only pelvic fracture (1.9; CI: 1.3 - 2.9) had a +LR less than 2. Conclusions The anatomic step of the Field Triage Guidelines as determined by EMS providers is a reasonable tool for determining trauma center need. Use of EMS perceived pelvic fracture as an indicator for trauma center need should be re-evaluated. PMID:23627418

  13. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits

    PubMed Central

    Paulesu, Eraldo; Shallice, Tim; Danelli, Laura; Sberna, Maurizio; Frackowiak, Richard S. J.; Frith, Chris D.

    2017-01-01

    Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H215O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of functional

  14. Statistical Analyses of Femur Parameters for Designing Anatomical Plates.

    PubMed

    Wang, Lin; He, Kunjin; Chen, Zhengming

    2016-01-01

    Femur parameters are key prerequisites for scientifically designing anatomical plates. Meanwhile, individual differences in femurs present a challenge to design well-fitting anatomical plates. Therefore, to design anatomical plates more scientifically, analyses of femur parameters with statistical methods were performed in this study. The specific steps were as follows. First, taking eight anatomical femur parameters as variables, 100 femur samples were classified into three classes with factor analysis and Q-type cluster analysis. Second, based on the mean parameter values of the three classes of femurs, three sizes of average anatomical plates corresponding to the three classes of femurs were designed. Finally, based on Bayes discriminant analysis, a new femur could be assigned to the proper class. Thereafter, the average anatomical plate suitable for that new femur was selected from the three available sizes of plates. Experimental results showed that the classification of femurs was quite reasonable based on the anatomical aspects of the femurs. For instance, three sizes of condylar buttress plates were designed. Meanwhile, 20 new femurs are judged to which classes the femurs belong. Thereafter, suitable condylar buttress plates were determined and selected.

  15. Anatomical and functional characteristics of carotid sinus stimulation in humans

    NASA Technical Reports Server (NTRS)

    Querry, R. G.; Smith, S. A.; Stromstad, M.; Ide, K.; Secher, N. H.; Raven, P. B.

    2001-01-01

    Transmission characteristics of pneumatic pressure to the carotid sinus were evaluated in 19 subjects at rest and during exercise. Either a percutaneous fluid-filled (n = 12) or balloon-tipped catheter (n = 7) was placed at the carotid bifurcation to record internal transmission of external neck pressure/neck suction (NP/NS). Sustained, 5-s pulses, and rapid ramping pulse protocols (+40 to -80 Torr) were recorded. Transmission of pressure stimuli was less with the fluid-filled catheter compared with that of the balloon-tipped catheter (65% vs. 82% negative pressure, 83% vs. 89% positive pressure; P < 0.05). Anatomical location of the carotid sinus averaged 3.2 cm (left) and 3.6 cm (right) from the gonion of the mandible with a range of 0-7.5 cm. Transmission was not altered by exercise or Valsalva maneuver, but did vary depending on the position of the carotid sinus locus beneath the sealed chamber. These data indicate that transmission of external NP/NS was higher than previously recorded in humans, and anatomical variation of carotid sinus location and equipment design can affect transmission results.

  16. [Ten years after the latest revision International Anatomical Terminology].

    PubMed

    Kachlík, D; Bozdechová, I; Cech, P; Musil, V; Báca, V

    2008-01-01

    Ten years ago, the latest revision of the Latin anatomical nomenclature was approved and published as Terminologia Anatomica (International Anatomical Terminology), and is acknowledged by the organization uniting national anatomical societies--International Federation of Associations of Anatomists. The authors concentrate on new terms included in the nomenclature and on the linguistic changes of terminology. The most frequent errors done by medical specialists in the usage of the Latin anatomical terminology are emphasized and the situation of eponyms in contemporary anatomy is discussed in detail as well. The last version of the nomenclature makes its way very slowly in the professional community and it is necessary to refer to positive changes and advantages it has brought. The usage of this Latin anatomical nomenclature version is suggested by the International Federation to follow in theoretical and clinical fields of medicine. The authors of the article strongly recommend using the recent revision of the Latin anatomical nomenclature both in the oral and written forms, when educating and publishing.

  17. Determining customer satisfaction in anatomic pathology.

    PubMed

    Zarbo, Richard J

    2006-05-01

    Measurement of physicians' and patients' satisfaction with laboratory services has become a standard practice in the United States, prompted by national accreditation requirements. Unlike other surveys of hospital-, outpatient care-, or physician-related activities, no ongoing, comprehensive customer satisfaction survey of anatomic pathology services is available for subscription that would allow continual benchmarking against peer laboratories. Pathologists, therefore, must often design their own local assessment tools to determine physician satisfaction in anatomic pathology. To describe satisfaction survey design that would elicit specific information from physician customers about key elements of anatomic pathology services. The author shares his experience in biannually assessing customer satisfaction in anatomic pathology with survey tools designed at the Henry Ford Hospital, Detroit, Mich. Benchmarks for physician satisfaction, opportunities for improvement, and characteristics that correlated with a high level of physician satisfaction were identified nationally from a standardized survey tool used by 94 laboratories in the 2001 College of American Pathologists Q-Probes quality improvement program. In general, physicians are most satisfied with professional diagnostic services and least satisfied with pathology services related to poor communication. A well-designed and conducted customer satisfaction survey is an opportunity for pathologists to periodically educate physician customers about services offered, manage unrealistic expectations, and understand the evolving needs of the physician customer. Armed with current information from physician customers, the pathologist is better able to strategically plan for resources that facilitate performance improvements in anatomic pathology laboratory services that align with evolving clinical needs in health care delivery.

  18. Neurology of Affective Prosody and Its Functional-Anatomic Organization in Right Hemisphere

    ERIC Educational Resources Information Center

    Ross, Elliott D.; Monnot, Marilee

    2008-01-01

    Unlike the aphasic syndromes, the organization of affective prosody in brain has remained controversial because affective-prosodic deficits may occur after left or right brain damage. However, different patterns of deficits are observed following left and right brain damage that suggest affective prosody is a dominant and lateralized function of…

  19. Quantifying sex, race, and age specific differences in bone microstructure requires measurement of anatomically equivalent regions.

    PubMed

    Ghasem-Zadeh, Ali; Burghardt, Andrew; Wang, Xiao-Fang; Iuliano, Sandra; Bonaretti, Serena; Bui, Minh; Zebaze, Roger; Seeman, Ego

    2017-08-01

    Individuals differ in forearm length. As microstructure differs along the radius, we hypothesized that errors may occur when sexual and racial dimorphisms are quantified at a fixed distance from the radio-carpal joint. Microstructure was quantified ex vivo in 18 cadaveric radii using high resolution peripheral quantitative computed tomography and in vivo in 158 Asian and Caucasian women and men at a fixed region of interest (ROI), a corrected ROI positioned at 4.5-6% of forearm length and using the fixed ROI adjusted for cross sectional area (CSA), forearm length or height. Secular effects of age were assessed by comparing 38 younger and 33 older women. Ex vivo, similar amounts of bone mass fashioned adjacent cross sections. Larger distal cross sections had thinner porous cortices of lower matrix mineral density (MMD), a larger medullary CSA and higher trabecular density. Smaller proximal cross-sections had thicker less porous cortices of higher MMD, a small medullary canal with little trabecular bone. Taller persons had more distally positioned fixed ROIs which moved proximally when corrected. Shorter persons had more proximally positioned fixed ROIs which moved distally when corrected, so dimorphisms lessened. In the corrected ROIs, in Caucasians, women had 0.6 SD higher porosity and 0.6 SD lower trabecular density than men (p<0.01). In Asians, women had 0.25 SD higher porosity (NS) and 0.5 SD lower trabecular density than men (p<0.05). In women, Asians had 0.8 SD lower porosity and 0.3 SD higher trabecular density than Caucasians (p<0.01). In men, Asians and Caucasians had similar porosity and trabecular density. Results were similar using an adjusted fixed ROI. Adjusting for secular effects of age on forearm length resulted in the age-related increment in porosity increasing from 2.08 SD to 2.48 SD (p<0.05). Assessment of sex, race and age related differences in microstructure requires measurement of anatomically equivalent regions. Copyright © 2017 Elsevier

  20. Technical note: Correlation of respiratory motion between external patient surface and internal anatomical landmarks

    PubMed Central

    Fayad, Hadi; Pan, Tinsu; Clément, Jean-François; Visvikis, Dimitris

    2011-01-01

    Purpose Current respiratory motion monitoring devices used for motion synchronization in medical imaging and radiotherapy provide either 1D respiratory signals over a specific region or 3D information based on few external or internal markers. On the other hand, newer technology may offer the potential to monitor the entire patient external surface in real time. The main objective of this study was to assess the motion correlation between such an external patient surface and internal anatomical landmarks motion. Methods Four dimensional Computed Tomography (4D CT) volumes for ten patients were used in this study. Anatomical landmarks were manually selected in the thoracic region across the 4D CT datasets by two experts. The landmarks included normal structures as well as the tumour location. In addition, a distance map representing the entire external patient surface, which corresponds to surfaces acquired by a Time of Flight (ToF) camera or similar devices, was created by segmenting the skin of all 4D CT volumes using a thresholding algorithm. Finally, the correlation between the internal landmarks and external surface motion was evaluated for different regions (placement and size) throughout a patient’s surface. Results Significant variability was observed in the motion of the different parts of the external patient surface. The larger motion magnitude was consistently measured in the central regions of the abdominal and the thoracic areas for the different patient datasets considered. The highest correlation coefficients were observed between the motion of these external surface areas and internal landmarks such as the diaphragm and mediastinum structures as well as the tumour location landmarks (0.8 ± 0.18 and 0.72 ± 0.12 for the abdominal and the thoracic regions respectively). Worse correlation was observed when one considered landmarks not significantly influenced by respiratory motion such as the apex and the sternum. Discussion and conclusions There

  1. Image-guided brachytherapy for cervical cancer: analysis of D2 cc hot spot in three-dimensional and anatomic factors affecting D2 cc hot spot in organs at risk.

    PubMed

    Kim, Robert Y; Dragovic, Alek F; Whitley, Alexander C; Shen, Sui

    2014-01-01

    To analyze the D2 cc hot spot in three-dimensional CT and anatomic factors affecting the D2 cc hot spot in organs at risk (OARs). Thirty-one patients underwent pelvic CT scan after insertion of the applicator. High-dose-rate treatment planning was performed with standard loading patterns. The D2 cc structures in OARs were generated in three dimensional if the total equivalent dose in 2 Gy exceeded our defined dose limits (hot spot). The location of D2 cc hot spot was defined as the center of the largest D2 cc fragment. The relationship between the hot spot and the applicator position was reported in Digital Imaging and Communication in Medicine coordinates. The location of sigmoid, small bowel, and bladder D2 cc hot spots was around the endocervix: The mean location of sigmoid hot spot for lateral view was 1.6 cm posteriorly and 2.3 cm superiorly (Y, 1.6 and Z, 2.3), small bowel was 1.6 cm anteriorly and 2.7 cm superiorly (Y, -1.6 and Z, 2.7). The mean location of bladder hot spot was 1.6 cm anteriorly and 1.6 cm superiorly (Y, -1.6 and Z, 1.6). These hot spots were near the plane of Point A (X, 2.0 or -2.0; Y, 0; and Z, 2.0). The mean location of rectal hot spot was 1.6 cm posteriorly and 1.9 cm inferiorly (Y, 1.6 and Z, -1.9). D2 cc hot spot was affected by uterine wall thickness, uterine tandem position, fibroids, bladder fullness, bowel gas, and vaginal packing. Because of the location of the D2 cc hot spots, larger tumors present a challenge for adequate tumor coverage with a conventional brachytherapy applicator without an interstitial implant. Additionally, anatomic factors were identified which affect the D2 cc hot spot in OARs. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. Assessment of vinyl polysiloxane as an innovative injection material for the anatomical study of vasculature.

    PubMed

    Dargaud, Jacques; Chalvet, Laurane; Del Corso, Marco; Cerboni, Elsa; Feugier, Patrick; Mertens, Patrick; Simon, Emile

    2016-04-01

    There are numerous injection materials for the study of vasculature in anatomical specimens, each having its own advantages and disadvantages. Latex and resins are the most widely used injection materials but need several days to set. The development of new materials taking shorter time to polymerize might be very useful to improve anatomic specimen study conditions. The aim of the present study was to evaluate vinyl polysiloxane (VPS), a silicon material widely used for dental impressions with the advantage to set very rapidly, as an injection material. We assessed the preparation, use, diffusion and setting time of the product in different anatomical regions (central nervous system, external carotid/jugular, lower limb) to observe its behavior in variably sized vessels. Our results suggest that VPS might be of interest for the study of vessels in anatomical specimens. The main strengths of the product are represented by (1) simplicity of use, as it is a ready-to-use material, (2) very rapid polymerization, (3) availability in a range of viscosities making easier the exploration of small vessels, (4) its better elasticity compared to resins, (5) and finally its availability in a range of colors making it a material of choice for vascular system dissections including those with very small caliber vessels.

  3. Anatomical parameterization for volumetric meshing of the liver

    NASA Astrophysics Data System (ADS)

    Vera, Sergio; González Ballester, Miguel A.; Gil, Debora

    2014-03-01

    A coordinate system describing the interior of organs is a powerful tool for a systematic localization of injured tissue. If the same coordinate values are assigned to specific anatomical landmarks, the coordinate system allows integration of data across different medical image modalities. Harmonic mappings have been used to produce parametric coordinate systems over the surface of anatomical shapes, given their flexibility to set values at specific locations through boundary conditions. However, most of the existing implementations in medical imaging restrict to either anatomical surfaces, or the depth coordinate with boundary conditions is given at sites of limited geometric diversity. In this paper we present a method for anatomical volumetric parameterization that extends current harmonic parameterizations to the interior anatomy using information provided by the volume medial surface. We have applied the methodology to define a common reference system for the liver shape and functional anatomy. This reference system sets a solid base for creating anatomical models of the patient's liver, and allows comparing livers from several patients in a common framework of reference.

  4. Interpreting and Integrating Clinical and Anatomic Pathology Results.

    PubMed

    Ramaiah, Lila; Hinrichs, Mary Jane; Skuba, Elizabeth V; Iverson, William O; Ennulat, Daniela

    2017-01-01

    The continuing education course on integrating clinical and anatomical pathology data was designed to communicate the importance of using a weight of evidence approach to interpret safety findings in toxicology studies. This approach is necessary, as neither clinical nor anatomic pathology data can be relied upon in isolation to fully understand the relationship between study findings and the test article. Basic principles for correlating anatomic pathology and clinical pathology findings and for integrating these with other study end points were reviewed. To highlight these relationships, a series of case examples, presented jointly by a clinical pathologist and an anatomic pathologist, were used to illustrate the collaborative effort required between clinical and anatomical pathologists. In addition, the diagnostic utility of traditional liver biomarkers was discussed using results from a meta-analysis of rat hepatobiliary marker and histopathology data. This discussion also included examples of traditional and novel liver and renal biomarker data implementation in nonclinical toxicology studies to illustrate the relationship between discrete changes in biochemistry and tissue morphology.

  5. Standards to support information systems integration in anatomic pathology.

    PubMed

    Daniel, Christel; García Rojo, Marcial; Bourquard, Karima; Henin, Dominique; Schrader, Thomas; Della Mea, Vincenzo; Gilbertson, John; Beckwith, Bruce A

    2009-11-01

    Integrating anatomic pathology information- text and images-into electronic health care records is a key challenge for enhancing clinical information exchange between anatomic pathologists and clinicians. The aim of the Integrating the Healthcare Enterprise (IHE) international initiative is precisely to ensure interoperability of clinical information systems by using existing widespread industry standards such as Digital Imaging and Communication in Medicine (DICOM) and Health Level Seven (HL7). To define standard-based informatics transactions to integrate anatomic pathology information to the Healthcare Enterprise. We used the methodology of the IHE initiative. Working groups from IHE, HL7, and DICOM, with special interest in anatomic pathology, defined consensual technical solutions to provide end-users with improved access to consistent information across multiple information systems. The IHE anatomic pathology technical framework describes a first integration profile, "Anatomic Pathology Workflow," dedicated to the diagnostic process including basic image acquisition and reporting solutions. This integration profile relies on 10 transactions based on HL7 or DICOM standards. A common specimen model was defined to consistently identify and describe specimens in both HL7 and DICOM transactions. The IHE anatomic pathology working group has defined standard-based informatics transactions to support the basic diagnostic workflow in anatomic pathology laboratories. In further stages, the technical framework will be completed to manage whole-slide images and semantically rich structured reports in the diagnostic workflow and to integrate systems used for patient care and those used for research activities (such as tissue bank databases or tissue microarrayers).

  6. Severity scores in trauma patients admitted to ICU. Physiological and anatomic models.

    PubMed

    Serviá, L; Badia, M; Montserrat, N; Trujillano, J

    2018-02-02

    The goals of this project were to compare both the anatomic and physiologic severity scores in trauma patients admitted to intensive care unit (ICU), and to elaborate mixed statistical models to improve the precision of the scores. A prospective study of cohorts. The combined medical/surgical ICU in a secondary university hospital. Seven hundred and eighty trauma patients admitted to ICU older than 16 years of age. Anatomic models (ISS and NISS) were compared and combined with physiological models (T-RTS, APACHE II [APII], and MPM II). The probability of death was calculated following the TRISS method. The discrimination was assessed using ROC curves (ABC [CI 95%]), and the calibration using the Hosmer-Lemeshoẃs H test. The mixed models were elaborated with the tree classification method type Chi Square Automatic Interaction Detection. A 14% global mortality was recorded. The physiological models presented the best discrimination values (APII of 0.87 [0.84-0.90]). All models were affected by bad calibration (P<.01). The best mixed model resulted from the combination of APII and ISS (0.88 [0.83-0.90]). This model was able to differentiate between a 7.5% mortality for elderly patients with pathological antecedents and a 25% mortality in patients presenting traumatic brain injury, from a pool of patients with APII values ranging from 10 to 17 and an ISS threshold of 22. The physiological models perform better than the anatomical models in traumatic patients admitted to the ICU. Patients with low scores in the physiological models require an anatomic analysis of the injuries to determine their severity. Copyright © 2017 Elsevier España, S.L.U. y SEMICYUC. All rights reserved.

  7. [Mediaeval anatomic iconography (Part II)].

    PubMed

    Barg, L

    1996-01-01

    In the second part of his paper the author has presented a mediaeval anatomical draft based on empirical studies. From the first drawings from XVth century showing the places of blood-letting and connected with astrological prognostics, to systematical drawings by Guido de Vigevano. He has stressed the parallel existence of two lines of teaching anatomy; one based on philosophical concepts (discussed in the first part of paper), the second one based on empirical concepts. The latter trend has formed the grounds for final transformation, which has taken place in anatomical science in age of Renaissance.

  8. Evidence-based anatomical review areas derived from systematic analysis of cases from a radiological departmental discrepancy meeting.

    PubMed

    Chin, S C; Weir-McCall, J R; Yeap, P M; White, R D; Budak, M J; Duncan, G; Oliver, T B; Zealley, I A

    2017-10-01

    To produce short checklists of specific anatomical review sites for different regions of the body based on the frequency of radiological errors reviewed at radiology discrepancy meetings, thereby creating "evidence-based" review areas for radiology reporting. A single centre discrepancy database was retrospectively reviewed from a 5-year period. All errors were classified by type, modality, body system, and specific anatomical location. Errors were assigned to one of four body regions: chest, abdominopelvic, central nervous system (CNS), and musculoskeletal (MSK). Frequencies of errors in anatomical locations were then analysed. There were 561 errors in 477 examinations; 290 (46%) errors occurred in the abdomen/pelvis, 99 (15.7%) in the chest, 117 (18.5%) in the CNS, and 125 (19.9%) in the MSK system. In each body system, the five most common location were chest: lung bases on computed tomography (CT), apices on radiography, pulmonary vasculature, bones, and mediastinum; abdominopelvic: vasculature, colon, kidneys, liver, and pancreas; CNS: intracranial vasculature, peripheral cerebral grey matter, bone, parafalcine, and the frontotemporal lobes surrounding the Sylvian fissure; and MSK: calvarium, sacrum, pelvis, chest, and spine. The five listed locations accounted for >50% of all perceptual errors suggesting an avenue for focused review at the end of reporting. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  9. Clinical and anatomical observations of a two-headed lamb.

    PubMed

    Fisher, K R; Partlow, G D; Walker, A F

    1986-04-01

    The clinical and anatomical features of a live-born diprosopic lamb are described. There are no complete anatomical analyses of two-faced lambs in the literature despite the frequency of conjoined twinning in sheep. The lamb had two heads fused in the occipital region. Each head had two eyes. The pinnae of the medial ears were fused. Caudal to the neck the lamb appeared grossly normal. The lamb was unable to raise its heads or stand. Both heads showed synchronous sucking motions and cranial reflexes were present. Nystagmus, strabismus, and limb incoordination were present. The respiratory and heart rates were elevated. There was a grade IV murmur over the left heart base and a palpable thrill on the left side. Each head possessed a normal nasopharynx, oropharynx, and tongue. There was a singular laryngopharnyx and esophagus although the hyoid apparatus was partially duplicated. The cranial and cervical musculature reflected the head duplications. The aortic trunk emerged from the right ventricle just to the right of the conus arteriosus. A ventricular septal defect, patent foramen ovale, and ductus arteriosus were present along with malformed atrioventricular valves. Brainstem fusion began at the cranial medulla oblongata between cranial nerves IX and XII. The cerebella were separate but small. The ventromedial structures from each medulla oblongata were compressed into an extraneous midline remnant of tissue which extended caudally to the level of T2. The clinical signs therefore reflected the anatomical anomalies. A possible etiology for this diprosopus might be the presence early in development of an excessively large block of chordamesoderm. This would allow for the formation of two head folds and hence two "heads."

  10. Improving anatomical mapping of complexly deformed anatomy for external beam radiotherapy and brachytherapy dose accumulation in cervical cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vásquez Osorio, Eliana M., E-mail: e.vasquezosorio@erasmusmc.nl; Kolkman-Deurloo, Inger-Karine K.; Schuring-Pereira, Monica

    Purpose: In the treatment of cervical cancer, large anatomical deformations, caused by, e.g., tumor shrinkage, bladder and rectum filling changes, organ sliding, and the presence of the brachytherapy (BT) applicator, prohibit the accumulation of external beam radiotherapy (EBRT) and BT dose distributions. This work proposes a structure-wise registration with vector field integration (SW+VF) to map the largely deformed anatomies between EBRT and BT, paving the way for 3D dose accumulation between EBRT and BT. Methods: T2w-MRIs acquired before EBRT and as a part of the MRI-guided BT procedure for 12 cervical cancer patients, along with the manual delineations of themore » bladder, cervix-uterus, and rectum-sigmoid, were used for this study. A rigid transformation was used to align the bony anatomy in the MRIs. The proposed SW+VF method starts by automatically segmenting features in the area surrounding the delineated organs. Then, each organ and feature pair is registered independently using a feature-based nonrigid registration algorithm developed in-house. Additionally, a background transformation is calculated to account for areas far from all organs and features. In order to obtain one transformation that can be used for dose accumulation, the organ-based, feature-based, and the background transformations are combined into one vector field using a weighted sum, where the contribution of each transformation can be directly controlled by its extent of influence (scope size). The optimal scope sizes for organ-based and feature-based transformations were found by an exhaustive analysis. The anatomical correctness of the mapping was independently validated by measuring the residual distances after transformation for delineated structures inside the cervix-uterus (inner anatomical correctness), and for anatomical landmarks outside the organs in the surrounding region (outer anatomical correctness). The results of the proposed method were compared with the results of

  11. Reassessing the Anatomic Origin of the Juvenile Nasopharyngeal Angiofibroma.

    PubMed

    McKnight, Colin D; Parmar, Hemant A; Watcharotone, Kuanwong; Mukherji, Suresh K

    A modern imaging review is necessary to further define the anatomic origin of the juvenile nasopharyngeal angiofibroma. After institutional review board approval, a search from January 1998 to January 2013 yielded 33 male patients (aged 10-23 years) with pathologically proven juvenile nasopharyngeal angiofibroma lesions, as well as pretreatment computed tomography/magnetic resonance imaging. Juvenile nasopharyngeal angiofibroma involvement was assessed in the following regions: sphenopalatine foramen, pterygopalatine fossa, vidian canal, nasopharynx, nasal cavity, sphenoid sinus, choana, pterygomaxillary fissure/masticator space, orbit, and sphenoid bone. The choana and nasopharynx were involved in all 33 patients. In contrast, only 22 lesions involved the pterygopalatine fossa, 24 lesions involved the sphenopalatine foramen, and 28 lesions involved the vidian canal. Our results suggest that the juvenile nasopharyngeal angiofibroma origin is in the region of the choana and nasopharynx rather than the sphenopalatine foramen or pterygopalatine fossa.

  12. Lateral Patellofemoral Ligament: An Anatomic Study.

    PubMed

    Shah, Kalpit N; DeFroda, Steven F; Ware, James Kristopher; Koruprolu, Sarath C; Owens, Brett D

    2017-12-01

    Medial instability of the patellofemoral joint is a rare but known phenomenon that may result from an incompetent lateral patellofemoral ligament (LPFL). Surgical reconstruction of the LPFL has been described. However, anatomic details of the ligament have not been the subject of scrutiny. To describe the anatomic origin and insertion of the LPFL. Descriptive laboratory study. Ten fresh-frozen, unpaired human cadaveric knees (mean age, 57 years) were dissected to identify the LPFL. The dissection was carried out by elevating the iliotibial band to expose the deep capsular layer of the knee joint, followed by a medial parapatellar approach to the knee. Then the quadriceps and patellar tendons were sectioned, and the LPFL was isolated by visualization and palpation. The LPFL was dissected to reveal its origin and insertion; these were measured with respect to the lateral epicondyle and the superior-inferior axis of the lateral patella, respectively. On average, the LPFL had a variable point of origin in location as well as width about the lateral epicondyle. The LPFL originated, on average, 2.6 mm distal (range, 13.1 mm proximal to 11.4 mm distal) and 10.8 mm anterior (range, 7.3 mm posterior to 14.9 mm anterior) to the lateral epicondyle. The LPFL insertion on the patella was more reliably found to be about 45% (range, 23.7%-58.4%) of its lateral articular surface. The insertion on the patella was found to be in the middle third of the lateral patella. The LPFL has an origin that is variable but, on average, was found to be distal and anterior to the lateral epicondyle. The patella insertion was more reliably found to be in the middle third of the lateral patella. These anatomic relationships can help the surgeon reconstruct the LPFL in a more anatomic fashion. Surgeons who are tasked with reconstruction of the LPFL of a patient with idiopathic medial instability or a previous aggressive lateral release of the knee may reference this article to perform an anatomic

  13. Standardized anatomic space for abdominal fat quantification

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.

    2014-03-01

    The ability to accurately measure subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from images is important for improved assessment and management of patients with various conditions such as obesity, diabetes mellitus, obstructive sleep apnea, cardiovascular disease, kidney disease, and degenerative disease. Although imaging and analysis methods to measure the volume of these tissue components have been developed [1, 2], in clinical practice, an estimate of the amount of fat is obtained from just one transverse abdominal CT slice typically acquired at the level of the L4-L5 vertebrae for various reasons including decreased radiation exposure and cost [3-5]. It is generally assumed that such an estimate reliably depicts the burden of fat in the body. This paper sets out to answer two questions related to this issue which have not been addressed in the literature. How does one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? At what anatomic location do the volumes of SAT and VAT correlate maximally with the corresponding single-slice area measures? To answer these questions, we propose two approaches for slice localization: linear mapping and non-linear mapping which is a novel learning based strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. We then study the volume-to-area correlations and determine where they become maximal. We demonstrate on 50 abdominal CT data sets that this mapping achieves significantly improved consistency of anatomic localization compared to current practice. Our results also indicate that maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized.

  14. Effects of an oil spill on the leaf anatomical characteristics of a beach plant (Terminalia catappa L.).

    PubMed

    Punwong, Paramita; Juprasong, Yotin; Traiperm, Paweena

    2017-09-01

    This study investigated the short-term impacts of an oil spill on the leaf anatomical structures of Terminalia catappa L. from crude oil leakage in Rayong province, Thailand, in 2013. Approximately 3 weeks after the oil spill, leaves of T. catappa were collected along the coastline of Rayong from one affected site, five adjacent sites, and a control site. Slides of the leaf epidermis were prepared by the peeling method, while leaf and petiole transverse sections were prepared by paraffin embedding. Cell walls of adaxial epidermal cell on leaves in the affected site were straight instead of the jigsaw shape found in leaves from the adjacent and control sites. In addition, the stomatal index of the abaxial leaf surface was significantly lower in the affected site. Leaf and petiole transverse sections collected from the affected site showed increased cuticle thickness, epidermal cell diameter on both sides, and palisade mesophyll thickness; in contrast, vessel diameter and spongy mesophyll thickness were reduced. These significant changes in the leaf anatomy of T. catappa correspond with previous research and demonstrate the negative effects of oil spill pollution on plants. The anatomical changes of T. catappa in response to crude oil pollution are discussed as a possible indicator of pollution and may be used in monitoring crude oil pollution.

  15. A study on automated anatomical labeling to arteries concerning with colon from 3D abdominal CT images

    NASA Astrophysics Data System (ADS)

    Hoang, Bui Huy; Oda, Masahiro; Jiang, Zhengang; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku

    2011-03-01

    This paper presents an automated anatomical labeling method of arteries extracted from contrasted 3D CT images based on multi-class AdaBoost. In abdominal surgery, understanding of vasculature related to a target organ such as the colon is very important. Therefore, the anatomical structure of blood vessels needs to be understood by computers in a system supporting abdominal surgery. There are several researches on automated anatomical labeling, but there is no research on automated anatomical labeling to arteries concerning with the colon. The proposed method obtains a tree structure of arteries from the artery region and calculates features values of each branch. These feature values are thickness, curvature, direction, and running vectors of branch. Then, candidate arterial names are computed by classifiers that are trained to output artery names. Finally, a global optimization process is applied to the candidate arterial names to determine final names. Target arteries of this paper are nine lower abdominal arteries (AO, LCIA, RCIA, LEIA, REIA, SMA, IMA, LIIA, RIIA). We applied the proposed method to 14 cases of 3D abdominal contrasted CT images, and evaluated the results by leave-one-out scheme. The average precision and recall rates of the proposed method were 87.9% and 93.3%, respectively. The results of this method are applicable for anatomical name display of surgical simulation and computer aided surgery.

  16. The linguistic roots of Modern English anatomical terminology.

    PubMed

    Turmezei, Tom D

    2012-11-01

    Previous research focusing on Classical Latin and Greek roots has shown that understanding the etymology of English anatomical terms may be beneficial for students of human anatomy. However, not all anatomical terms are derived from Classical origins. This study aims to explore the linguistic roots of the Modern English terminology used in human gross anatomy. By reference to the Oxford English Dictionary, etymologies were determined for a lexicon of 798 Modern English gross anatomical terms from the 40(th) edition of Gray's Anatomy. Earliest traceable language of origin was determined for all 798 terms; language of acquisition was determined for 747 terms. Earliest traceable languages of origin were: Classical Latin (62%), Classical Greek (24%), Old English (7%), Post-Classical Latin (3%), and other (4%). Languages of acquisition were: Classical Latin (42%), Post-Classical Latin (29%), Old English (8%), Modern French (6%), Classical Greek (5%), Middle English (3%), and other (7%). While the roots of Modern English anatomical terminology mostly lie in Classical languages (accounting for the origin of 86% of terms), the anatomical lexicon of Modern English is actually much more diverse. Interesting and perhaps less familiar examples from these languages and the methods by which such terms have been created and absorbed are discussed. The author suggests that awareness of anatomical etymologies may enhance the enjoyment and understanding of human anatomy for students and teachers alike. Copyright © 2012 Wiley Periodicals, Inc.

  17. Anatomical brain images alone can accurately diagnose chronic neuropsychiatric illnesses.

    PubMed

    Bansal, Ravi; Staib, Lawrence H; Laine, Andrew F; Hao, Xuejun; Xu, Dongrong; Liu, Jun; Weissman, Myrna; Peterson, Bradley S

    2012-01-01

    Diagnoses using imaging-based measures alone offer the hope of improving the accuracy of clinical diagnosis, thereby reducing the costs associated with incorrect treatments. Previous attempts to use brain imaging for diagnosis, however, have had only limited success in diagnosing patients who are independent of the samples used to derive the diagnostic algorithms. We aimed to develop a classification algorithm that can accurately diagnose chronic, well-characterized neuropsychiatric illness in single individuals, given the availability of sufficiently precise delineations of brain regions across several neural systems in anatomical MR images of the brain. We have developed an automated method to diagnose individuals as having one of various neuropsychiatric illnesses using only anatomical MRI scans. The method employs a semi-supervised learning algorithm that discovers natural groupings of brains based on the spatial patterns of variation in the morphology of the cerebral cortex and other brain regions. We used split-half and leave-one-out cross-validation analyses in large MRI datasets to assess the reproducibility and diagnostic accuracy of those groupings. In MRI datasets from persons with Attention-Deficit/Hyperactivity Disorder, Schizophrenia, Tourette Syndrome, Bipolar Disorder, or persons at high or low familial risk for Major Depressive Disorder, our method discriminated with high specificity and nearly perfect sensitivity the brains of persons who had one specific neuropsychiatric disorder from the brains of healthy participants and the brains of persons who had a different neuropsychiatric disorder. Although the classification algorithm presupposes the availability of precisely delineated brain regions, our findings suggest that patterns of morphological variation across brain surfaces, extracted from MRI scans alone, can successfully diagnose the presence of chronic neuropsychiatric disorders. Extensions of these methods are likely to provide biomarkers

  18. Anatomical influences on internally coupled ears in reptiles.

    PubMed

    Young, Bruce A

    2016-10-01

    Many reptiles, and other vertebrates, have internally coupled ears in which a patent anatomical connection allows pressure waves generated by the displacement of one tympanic membrane to propagate (internally) through the head and, ultimately, influence the displacement of the contralateral tympanic membrane. The pattern of tympanic displacement caused by this internal coupling can give rise to novel sensory cues. The auditory mechanics of reptiles exhibit more anatomical variation than in any other vertebrate group. This variation includes structural features such as diverticula and septa, as well as coverings of the tympanic membrane. Many of these anatomical features would likely influence the functional significance of the internal coupling between the tympanic membranes. Several of the anatomical components of the reptilian internally coupled ear are under active motor control, suggesting that in some reptiles the auditory system may be more dynamic than previously recognized.

  19. Anatomic mapping for surgical reconstruction of the proximal tibiofibular ligaments.

    PubMed

    See, Aaron; Bear, Russell R; Owens, Brett D

    2013-01-01

    Injury to the proximal tibiofibular joint is uncommon. Previous studies regarding the anatomy of this region have predominantly focused on joint orientation. As radiographic technology has advanced, later studies have attempted to evaluate the capsular anatomy. However, no reports specifically map the ligaments to this joint. The objectives of the current study were to define specific ligamentous structures that provide stability to the proximal tibiofibular joint, describe easily identifiable and reproducible surgical landmarks to aid in surgical reconstruction, and add to the understanding of the posterolateral structures of the knee previously described by other authors. The proximal tibiofibular joint ligaments were identified in 10 fresh-frozen cadaveric specimens. Average ligament length, width, and thickness and area of the footprints of the tibial and fibular attachments were measured. Distances from the ligament footprints to known anatomic landmarks (eg, Gerdy's tubercle, tibial articular surface, and fibular styloid) were also measured. The anterior ligament tibial attachment was a mean of 15.6 mm lateral and posterior to Gerdy's tubercle and 17.3 mm anterior and inferior from the fibular styloid. Posterior ligament tibial insertion was a mean of 15.7 mm inferior to the tibial articular surface on the tibial side and 14.2 mm medial and slightly inferior from the fibular styloid. Definable ligaments provide stability to the proximal tibiofibular joint and can be reconstructed in an anatomic fashion using the landmarks and parameters described. This information allows for an anatomic reconstruction of the proximal tibiofibular joint, which should provide patients with better outcomes and fewer postoperative sequelae. Copyright 2013, SLACK Incorporated.

  20. Perceptions of science. The anatomical mission to Burma.

    PubMed

    Sappol, Michael

    2003-10-10

    Until the 1830s, most Americans were unfamiliar with the images of anatomy. Then a small vanguard of reformers and missionaries began to preach, at home and around the world, that an identification with the images and concepts of anatomy was a crucial part of the civilizing process. In his essay, Sappol charts the changes in the perception of self that resulted from this anatomical evangelism. Today, as anatomical images abound in the arts and the media, we still believe that anatomical images show us our inner reality.

  1. Using LEAN principles to improve quality, patient safety, and workflow in histology and anatomic pathology.

    PubMed

    Serrano, Leo; Hegge, Pamela; Sato, Brendon; Richmond, Barbara; Stahnke, Lennis

    2010-05-01

    Histology and anatomic pathology have historically been slow to accept many of the process changes that have been widely accepted in the clinical laboratory. In this article, we describe the application of the Toyota Production System (LEAN) to histology and anatomic pathology as implemented at the Avera McKennan Hospital laboratory. Avera McKennan is the flagship hospital of the Avera Health System, a faith based, not for profit healthcare system based in South Dakota. Comprised of 235 hospitals, clinics, and physicians, with over 12,000 employees, Avera Health is one of the largest healthcare systems in the region. Beginning in 2004, Avera McKennan's laboratory began its "LEAN journey" and in the intervening years has expanded it throughout all areas of the laboratory. Following the example set by the laboratory, many other areas of the hospital have joined in the LEAN Process Improvement journey. In January 2009, the Avera McKennan Laboratory became the first hospital laboratory in the US to achieve the CAP ISO-15189 accreditation in both clinical and anatomic pathology.

  2. Effect of anatomical variability in brain on transcranial magnetic stimulation treatment

    NASA Astrophysics Data System (ADS)

    Syeda, F.; Magsood, H.; Lee, E. G.; El-Gendy, A. A.; Jiles, D. C.; Hadimani, R. L.

    2017-05-01

    Transcranial Magnetic Stimulation is a non-invasive clinical therapy used to treat depression and migraine, and shows further promise as treatment for Parkinson's disease, Alzheimer's disease, and other neurological disorders. However, it is yet unclear as to how anatomical differences may affect stimulation from this treatment. We use finite element analysis to model and analyze the results of Transcranial Magnetic Stimulation in various head models. A number of heterogeneous head models have been developed using MRI data of real patients, including healthy individuals as well as patients of Parkinson's disease. Simulations of Transcranial Magnetic Stimulation performed on 22 anatomically different models highlight the differences in induced stimulation. A standard Figure of 8 coil is used with frequency 2.5 kHz, placed 5 mm above the head. We compare cortical stimulation, volume of brain tissue stimulated, specificity, and maximum E-field induced in the brain for models ranging from ages 20 to 60. Results show that stimulation varies drastically between patients of the same age and health status depending upon brain-scalp distance, which is not necessarily a linear progression with age.

  3. Reanalyzing the "far medial" (transcondylar-transtubercular) approach based on three anatomical vectors: the ventral posterolateral corridor.

    PubMed

    Chakravarthi, Srikant; Monroy-Sosa, Alejandro; Gonen, Lior; Fukui, Melanie; Rovin, Richard; Kojis, Nathaniel; Lindsay, Mark; Khalili, Sammy; Celix, Juanita; Corsten, Martin; Kassam, Amin B

    2018-06-01

    Endoscopic endonasal access to the jugular foramen and occipital condyle - the transcondylar-transtubercular approach - is anatomically complex and requires detailed knowledge of the relative position of critical neurovascular structures, in order to avoid inadvertent injury and resultant complications. However, access to this region can be confusing as the orientation and relationships of osseous, vascular, and neural structures are very much different from traditional dorsal approaches. This review aims at providing an organizational construct for a more understandable framework in accessing the transcondylar-transtubercular window. The region can be conceptualized using a three-vector coordinate system: vector 1 represents a dorsal or ventral corridor, vector 2 represents the outer and inner circumferential anatomical limits; in an "onion-skin" fashion, key osseous, vascular, and neural landmarks are organized based on a 360-degree skull base model, and vector 3 represents the final core or target of the surgical corridor. The creation of an organized "global-positioning system" may better guide the surgeon in accessing the far-medial transcondylar-transtubercular region, and related pathologies, and help understand the surgical limits to the occipital condyle and jugular foramen - the ventral posterolateral corridor - via the endoscopic endonasal approach.

  4. Uniportal anatomic combined unusual segmentectomies.

    PubMed

    González-Rivas, Diego; Lirio, Francisco; Sesma, Julio

    2017-01-01

    Nowadays, sublobar anatomic resections are gaining momentum as a valid alternative for early stage lung cancer. Despite being technically demanding, anatomic segmentectomies can be performed by uniportal video-assisted thoracic surgery (VATS) approach to combine the benefits of minimally invasiveness with the maximum lung sparing. This procedure can be even more complex if a combined resection of multiple segments from different lobes has to be done. Here we report five cases of combined and unusual segmentectomies done by the same experienced surgeon in high volume institutions to show uniportal VATS is a feasible approach for these complex resections and to share an excellent educational resource.

  5. Uniportal anatomic combined unusual segmentectomies

    PubMed Central

    Lirio, Francisco; Sesma, Julio

    2017-01-01

    Nowadays, sublobar anatomic resections are gaining momentum as a valid alternative for early stage lung cancer. Despite being technically demanding, anatomic segmentectomies can be performed by uniportal video-assisted thoracic surgery (VATS) approach to combine the benefits of minimally invasiveness with the maximum lung sparing. This procedure can be even more complex if a combined resection of multiple segments from different lobes has to be done. Here we report five cases of combined and unusual segmentectomies done by the same experienced surgeon in high volume institutions to show uniportal VATS is a feasible approach for these complex resections and to share an excellent educational resource. PMID:29078653

  6. Anatomically accurate individual face modeling.

    PubMed

    Zhang, Yu; Prakash, Edmond C; Sung, Eric

    2003-01-01

    This paper presents a new 3D face model of a specific person constructed from the anatomical perspective. By exploiting the laser range data, a 3D facial mesh precisely representing the skin geometry is reconstructed. Based on the geometric facial mesh, we develop a deformable multi-layer skin model. It takes into account the nonlinear stress-strain relationship and dynamically simulates the non-homogenous behavior of the real skin. The face model also incorporates a set of anatomically-motivated facial muscle actuators and underlying skull structure. Lagrangian mechanics governs the facial motion dynamics, dictating the dynamic deformation of facial skin in response to the muscle contraction.

  7. Determination of anatomic landmarks for optimal placement in captive-bolt euthanasia of goats.

    PubMed

    Plummer, Paul J; Shearer, Jan K; Kleinhenz, Katie E; Shearer, Leslie C

    2018-03-01

    OBJECTIVE To determine the optimal anatomic site and directional aim of a penetrating captive bolt (PCB) for euthanasia of goats. SAMPLE 8 skulls from horned and polled goat cadavers and 10 anesthetized horned and polled goats scheduled to be euthanized at the end of a teaching laboratory. PROCEDURES Sagittal sections of cadaver skulls from 8 horned and polled goats were used to determine the ideal anatomic site and aiming of a PCB to maximize damage to the midbrain region of the brainstem for euthanasia. Anatomic sites for ideal placement and directional aiming were confirmed by use of 10 anesthetized horned and polled goats. RESULTS Clinical observation and postmortem examination of the sagittal sections of skulls from the 10 anesthetized goats that were euthanized confirmed that perpendicular placement and firing of a PCB at the intersection of 2 lines, each drawn from the lateral canthus of 1 eye to the middle of the base of the opposite ear, resulted in consistent disruption of the midbrain and thalamus in all goats. Immediate cessation of breathing, followed by a loss of heartbeat in all 10 of the anesthetized goats, confirmed that use of this site consistently resulted in effective euthanasia. CONCLUSIONS AND CLINICAL RELEVANCE Damage to the brainstem and key adjacent structures may be accomplished by firing a PCB perpendicular to the skull over the anatomic site identified at the intersection of 2 lines, each drawn from the lateral canthus of 1 eye to the middle of the base of the opposite ear.

  8. Mistakes in the usage of anatomical terminology in clinical practice.

    PubMed

    Kachlik, David; Bozdechova, Ivana; Cech, Pavel; Musil, Vladimir; Baca, Vaclav

    2009-06-01

    Anatomical terminology serves as a basic communication tool in all the medical fields. Therefore Latin anatomical nomenclature has been repetitively issued and revised from 1895 (Basiliensia Nomina Anatomica) until 1998, when the last version was approved and published as the Terminologia Anatomica (International Anatomical Terminology) by the Federative Committee on Anatomical Terminology. A brief history of the terminology and nomenclature development is mentioned, along with the concept and contributions of the Terminologia Anatomica including the employed abbreviations. Examples of obsolete anatomical terms and their current synonyms are listed. Clinicians entered the process of the nomenclature revision and this aspect is demonstrated with several examples of terms used in clinical fields only, some already incorporated in the Terminologia Anatomica and a few obsolete terms still alive in non-theoretical communication. Frequent mistakes in grammar and orthography are stated as well. Authors of the article strongly recommend the use of the recent revision of the Latin anatomical nomenclature both in theoretical and clinical medicine.

  9. Network of anatomical texts (NAnaTex), an open-source project for visualizing the interaction between anatomical terms.

    PubMed

    Momota, Ryusuke; Ohtsuka, Aiji

    2018-01-01

    Anatomy is the science and art of understanding the structure of the body and its components in relation to the functions of the whole-body system. Medicine is based on a deep understanding of anatomy, but quite a few introductory-level learners are overwhelmed by the sheer amount of anatomical terminology that must be understood, so they regard anatomy as a dull and dense subject. To help them learn anatomical terms in a more contextual way, we started a new open-source project, the Network of Anatomical Texts (NAnaTex), which visualizes relationships of body components by integrating text-based anatomical information using Cytoscape, a network visualization software platform. Here, we present a network of bones and muscles produced from literature descriptions. As this network is primarily text-based and does not require any programming knowledge, it is easy to implement new functions or provide extra information by making changes to the original text files. To facilitate collaborations, we deposited the source code files for the network into the GitHub repository ( https://github.com/ryusukemomota/nanatex ) so that anybody can participate in the evolution of the network and use it for their own non-profit purposes. This project should help not only introductory-level learners but also professional medical practitioners, who could use it as a quick reference.

  10. Automated anatomical labeling of bronchial branches extracted from CT datasets based on machine learning and combination optimization and its application to bronchoscope guidance.

    PubMed

    Mori, Kensaku; Ota, Shunsuke; Deguchi, Daisuke; Kitasaka, Takayuki; Suenaga, Yasuhito; Iwano, Shingo; Hasegawa, Yosihnori; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi

    2009-01-01

    This paper presents a method for the automated anatomical labeling of bronchial branches extracted from 3D CT images based on machine learning and combination optimization. We also show applications of anatomical labeling on a bronchoscopy guidance system. This paper performs automated labeling by using machine learning and combination optimization. The actual procedure consists of four steps: (a) extraction of tree structures of the bronchus regions extracted from CT images, (b) construction of AdaBoost classifiers, (c) computation of candidate names for all branches by using the classifiers, (d) selection of best combination of anatomical names. We applied the proposed method to 90 cases of 3D CT datasets. The experimental results showed that the proposed method can assign correct anatomical names to 86.9% of the bronchial branches up to the sub-segmental lobe branches. Also, we overlaid the anatomical names of bronchial branches on real bronchoscopic views to guide real bronchoscopy.

  11. Anatomic features involved in technical complexity of partial nephrectomy.

    PubMed

    Hou, Weibin; Yan, Weigang; Ji, Zhigang

    2015-01-01

    Nephrometry score systems, including RENAL nephrometry, preoperative aspects and dimensions used for an anatomical classification system, C-index, diameter-axial-polar nephrometry, contact surface area score, calculating resected and ischemized volume, renal tumor invasion index, surgical approach renal ranking score, zonal NePhRO score, and renal pelvic score, have been reviewed. Moreover, salient anatomic features like the perinephric fat and vascular variants also have been discussed. We then extract 7 anatomic characteristics, namely tumor size, spatial location, adjacency, exophytic/endophytic extension, vascular variants, pelvic anatomy, and perinephric fat as important features for partial nephrectomy. For novice surgeons, comprehensive and adequate anatomic consideration may help them in their early clinical practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Effect of the anatomical site on telomere length and pref-1 gene expression in bovine adipose tissues

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Tomoya, E-mail: toyamada@affrc.go.jp; Higuchi, Mikito; Nakanishi, Naoto

    Adipose tissue growth is associated with preadipocyte proliferation and differentiation. Telomere length is a biological marker for cell proliferation. Preadipocyte factor-1 (pref-1) is specifically expressed in preadipocytes and acts as a molecular gatekeeper of adipogenesis. In the present study, we investigated the fat depot-specific differences in telomere length and pref-1 gene expression in various anatomical sites (subcutaneous, intramuscular and visceral) of fattening Wagyu cattle. Visceral adipose tissue expressed higher pref-1 mRNA than did subcutaneous and intramuscular adipose tissues. The telomere length in visceral adipose tissue tended to be longer than that of subcutaneous and intramuscular adipose tissues. The telomere lengthmore » of adipose tissue was not associated with adipocyte size from three anatomical sites. No significant correlation was found between the pref-1 mRNA level and the subcutaneous adipocyte size. In contrast, the pref-1 mRNA level was negatively correlated with the intramuscular and visceral adipocyte size. These results suggest that anatomical sites of adipose tissue affect the telomere length and expression pattern of the pref-1 gene in a fat depot-specific manner. - Highlights: • Visceral adipose tissue express higher pref-1 mRNA than other anatomical sites. • Telomere length in visceral adipose tissue is longer than other anatomical sites. • Telomere length of adipose tissue is not associated with adipocyte size. • Pref-1 mRNA is negatively correlated with intramuscular and visceral adipocyte size.« less

  13. Optogenetic manipulation of anatomical re-entry by light-guided generation of a reversible local conduction block.

    PubMed

    Watanabe, Masaya; Feola, Iolanda; Majumder, Rupamanjari; Jangsangthong, Wanchana; Teplenin, Alexander S; Ypey, Dirk L; Schalij, Martin J; Zeppenfeld, Katja; de Vries, Antoine A F; Pijnappels, Daniël A

    2017-03-01

    Anatomical re-entry is an important mechanism of ventricular tachycardia, characterized by circular electrical propagation in a fixed pathway. It's current investigative and therapeutic approaches are non-biological, rather unspecific (drugs), traumatizing (electrical shocks), or irreversible (ablation). Optogenetics is a new biological technique that allows reversible modulation of electrical function with unmatched spatiotemporal precision using light-gated ion channels. We therefore investigated optogenetic manipulation of anatomical re-entry in ventricular cardiac tissue. Transverse, 150-μm-thick ventricular slices, obtained from neonatal rat hearts, were genetically modified with lentiviral vectors encoding Ca2+-translocating channelrhodopsin (CatCh), a light-gated depolarizing ion channel, or enhanced yellow fluorescent protein (eYFP) as control. Stable anatomical re-entry was induced in both experimental groups. Activation of CatCh was precisely controlled by 470-nm patterned illumination, while the effects on anatomical re-entry were studied by optical voltage mapping. Regional illumination in the pathway of anatomical re-entry resulted in termination of arrhythmic activity only in CatCh-expressing slices by establishing a local and reversible, depolarization-induced conduction block in the illuminated area. Systematic adjustment of the size of the light-exposed area in the re-entrant pathway revealed that re-entry could be terminated by either wave collision or extinction, depending on the depth (transmurality) of illumination. In silico studies implicated source-sink mismatches at the site of subtransmural conduction block as an important factor in re-entry termination. Anatomical re-entry in ventricular tissue can be manipulated by optogenetic induction of a local and reversible conduction block in the re-entrant pathway, allowing effective re-entry termination. These results provide distinctively new mechanistic insight into re-entry termination and a

  14. Laparoscopic repair of giant paraesophageal hernia: are there factors associated with anatomic recurrence?

    PubMed

    Antiporda, Michael; Veenstra, Benjamin; Jackson, Chloe; Kandel, Pujan; Daniel Smith, C; Bowers, Steven P

    2018-02-01

    Repair of giant paraesophageal hernia (PEH) is associated with a favorably high rate of symptom improvement; however, rates of recurrence by objective measures remain high. Herein we analyze our experience with laparoscopic giant PEH repair to determine what factors if any can predict anatomic recurrence. We prospectively collected data on PEH characteristics, variations in operative techniques, and surgeon factors for 595 patients undergoing laparoscopic PEH repair from 2008 to 2015. Upper GI study was performed at 6 months postoperatively and selectively thereafter-any supra-diaphragmatic stomach was considered hiatal hernia recurrence. Exclusion criteria included revisional operation (22.4%), size <5 cm (17.6%), inadequate follow-up (17.8%), and confounding concurrent operations (6.9%). Inclusion criteria were met by 202 patients (31% male, median age 71 years, and median BMI 28.7). At a median follow-up of 6 months (IQR 6-12), overall anatomic recurrence rate was 34.2%. Symptom recurrence rate was 9.9% and revisional operation was required in ten patients (4.9%). Neither patient demographics nor PEH characteristics (size, presence of Cameron erosions, esophagitis, or Barrett's) correlated with anatomic recurrence. Technical factors at operation (mobilized intra-abdominal length of esophagus, Collis gastroplasty, number of anterior/posterior stitches, use of crural buttress, use of pledgeted or mattress sutures, or gastrostomy) were also not correlated with recurrence. Regarding surgeon factors, annual volume of fewer than ten cases per year was associated with increased risk of anatomic failure (54 vs 33%, P = 0.02). Multivariate analysis identified surgeon experience (<10 cases per year) as an independent factor associated with early hiatal hernia recurrence (OR 3.7, 95% CI 1.34-10.9). Laparoscopic repair of giant PEH is associated with high anatomic recurrence rate but excellent symptom control. PEH characteristics and technical operative variables do

  15. Anatomical terminology and nomenclature: past, present and highlights.

    PubMed

    Kachlik, David; Baca, Vaclav; Bozdechova, Ivana; Cech, Pavel; Musil, Vladimir

    2008-08-01

    The anatomical terminology is a base for medical communication. It is elaborated into a nomenclature in Latin. Its history goes back to 1895, when the first Latin anatomical nomenclature was published as Basiliensia Nomina Anatomica. It was followed by seven revisions (Jenaiensia Nomina Anatomica 1935, Parisiensia Nomina Anatomica 1955, Nomina Anatomica 2nd to 6th edition 1960-1989). The last revision, Terminologia Anatomica, (TA) created by the Federative Committee on Anatomical Terminology and approved by the International Federation of Associations of Anatomists, was published in 1998. Apart from the official Latin anatomical terminology, it includes a list of recommended English equivalents. In this article, major changes and pitfalls of the nomenclature are discussed, as well as the clinical anatomy terms. The last revision (TA) is highly recommended to the attention of not only teachers, students and researchers, but also to clinicians, doctors, translators, editors and publishers to be followed in their activities.

  16. Extra-Anatomic Revascularization of Extensive Coral Reef Aorta.

    PubMed

    Gaggiano, Andrea; Kasemi, Holta; Monti, Andrea; Laurito, Antonella; Maselli, Mauro; Manzo, Paola; Quaglino, Simone; Tavolini, Valeria

    2017-10-01

    Coral reef aorta (CRA) is a rare, potential lethal disease of the visceral aorta as it can cause visceral and renal infarction. Various surgical approaches have been proposed for the CRA treatment. The purpose of this article is to report different extensive extra-anatomic CRA treatment modalities tailored on the patients' clinical and anatomic presentation. From April 2006 to October 2012, 4 symptomatic patients with extensive CRA were treated at our department. Extra-anatomic aortic revascularization with selective visceral vessels clamping was performed in all cases. Technical success was 100%. No perioperative death was registered. All patients remained asymptomatic during the follow-up period (62, 49, 25, and 94 months, respectively), with bypasses and target vessels patency. The extra-anatomic bypass with selective visceral vessels clamping reduces the aortic occlusion time and the risk of organ ischemia. All approaches available should be considered on a case-by-case basis and in high-volume centers. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Anatomical and physiological evidence for polarisation vision in the nocturnal bee Megalopta genalis.

    PubMed

    Greiner, Birgit; Cronin, Thomas W; Ribi, Willi A; Wcislo, William T; Warrant, Eric J

    2007-06-01

    The presence of a specialised dorsal rim area with an ability to detect the e-vector orientation of polarised light is shown for the first time in a nocturnal hymenopteran. The dorsal rim area of the halictid bee Megalopta genalis features a number of characteristic anatomical specialisations including an increased rhabdom diameter and a lack of primary screening pigments. Optically, these specialisations result in wide spatial receptive fields (Deltarho = 14 degrees ), a common adaptation found in the dorsal rim areas of insects used to filter out interfering effects (i.e. clouds) from the sky. In this specialised eye region all nine photoreceptors contribute their microvilli to the entire length of the ommatidia. These orthogonally directed microvilli are anatomically arranged in an almost linear, anterior-posterior orientation. Intracellular recordings within the dorsal rim area show very high polarisation sensitivity and a sensitivity peak within the ultraviolet part of the spectrum.

  18. Correlated gene expression and anatomical communication support synchronized brain activity in the mouse functional connectome.

    PubMed

    Mills, Brian D; Grayson, David S; Shunmugavel, Anandakumar; Miranda-Dominguez, Oscar; Feczko, Eric; Earl, Eric; Neve, Kim; Fair, Damien A

    2018-05-22

    Cognition and behavior depend on synchronized intrinsic brain activity that is organized into functional networks across the brain. Research has investigated how anatomical connectivity both shapes and is shaped by these networks, but not how anatomical connectivity interacts with intra-areal molecular properties to drive functional connectivity. Here, we present a novel linear model to explain functional connectivity by integrating systematically obtained measurements of axonal connectivity, gene expression, and resting state functional connectivity MRI in the mouse brain. The model suggests that functional connectivity arises from both anatomical links and inter-areal similarities in gene expression. By estimating these effects, we identify anatomical modules in which correlated gene expression and anatomical connectivity support functional connectivity. Along with providing evidence that not all genes equally contribute to functional connectivity, this research establishes new insights regarding the biological underpinnings of coordinated brain activity measured by BOLD fMRI. SIGNIFICANCE STATEMENT Efforts at characterizing the functional connectome with fMRI have risen exponentially over the last decade. Yet despite this rise, the biological underpinnings of these functional measurements are still largely unknown. The current report begins to fill this void by investigating the molecular underpinnings of the functional connectome through an integration of systematically obtained structural information and gene expression data throughout the rodent brain. We find that both white matter connectivity and similarity in regional gene expression relate to resting state functional connectivity. The current report furthers our understanding of the biological underpinnings of the functional connectome and provides a linear model that can be utilized to streamline preclinical animal studies of disease. Copyright © 2018 the authors.

  19. Anatomical and morphological study of the subcoracoacromial canal.

    PubMed

    Le Reun, O; Lebhar, J; Mateos, F; Voisin, J L; Thomazeau, H; Ropars, M

    2016-12-01

    Many clinical anatomy studies have looked into how variations in the acromion, coracoacromial ligament (CAL) and subacromial space are associated with rotator cuff injuries. However, no study up to now had defined anatomically the fibro-osseous canal that confines the supraspinatus muscle in the subcoracoacromial space. Through an anatomical study of the scapula, we defined the bone-related parameters of this canal and its anatomical variations. This study on dry bones involved 71 scapulas. With standardised photographs in two orthogonal views (superior and lateral), the surface area of the subcoracoacromial canal and the anatomical parameters making up this canal were defined and measured using image analysis software. The primary analysis evaluated the anatomical parameters of the canal as a function of three canal surface area groups; the secondary analysis looked into how variations in the canal surface area were related to the type of acromion according to the Bigliani classification. Relative to glenoid width, the group with a large canal surface area (L) had significantly less lateral overhang of the acromion than the group with a small canal surface area (S), with ratios of 0.41±0.23 and 0.58±0.3, respectively (P=0.04). The mean length of the CAL was 46±8mm in the L group and 39±9mm in the S group (P=0.003). The coracoacromial arch angle was 38°±11° in the L group and 34°±9° in the S group; the canal surface area was smaller in specimens with a smaller coracoacromial arch angle (P=0.20). Apart from acromial morphology, there could be innate anatomical features of the scapula that predispose people to extrinsic lesions to the supraspinatus tendon (lateral overhang, coracoacromial arch angle) by reducing the subcoracoacromial canal's surface area. Anatomical descriptive study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex

    PubMed Central

    Ray, Rebecca; Zald, David H.

    2011-01-01

    Ray, R. and D. Zald. Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. NEUROSCI BIOBEHAV REV 36(X) XXX-XXX, 2011. -Psychological research increasingly indicates that emotional processes interact with other aspects of cognition. Studies have demonstrated both the ability of emotional stimuli to influence a broad range of cognitive operations, and the ability of humans to use top-down cognitive control mechanisms to regulate emotional responses. Portions of the prefrontal cortex appear to play a significant role in these interactions. However, the manner in which these interactions are implemented remains only partially elucidated. In the present review we describe the anatomical connections between ventral and dorsal prefrontal areas as well as their connections with limbic regions. Only a subset of prefrontal areas are likely to directly influence amygdalar processing, and as such models of prefrontal control of emotions and models of emotional regulation should be constrained to plausible pathways of influence. We also focus on how the specific pattern of feedforward and feedback connections between these regions may dictate the nature of information flow between ventral and dorsal prefrontal areas and the amygdala. These patterns of connections are inconsistent with several commonly expressed assumptions about the nature of communications between emotion and cognition. PMID:21889953

  1. Inexpensive anatomical trainer for bronchoscopy.

    PubMed

    Di Domenico, Stefano; Simonassi, Claudio; Chessa, Leonardo

    2007-08-01

    Flexible fiberoptic bronchoscopy is an indispensable tool for optimal management of intensive care unit patients. However, the acquisition of sufficient training in bronchoscopy is not straightforward during residency, because of technical and ethical problems. Moreover, the use of commercial simulators is limited by their high cost. In order to overcome these limitations, we realized a low-cost anatomical simulator to acquire and maintain the basic skill to perform bronchoscopy in ventilated patients. We used 1.5 mm diameter iron wire to construct the bronchial tree scaffold; glazier-putty was applied to create the anatomical model. The model was covered by several layers of newspaper strips previously immersed in water and vinilic glue. When the model completely dried up, it was detached from the scaffold by cutting it into six pieces, it was reassembled, painted and fitted with an endotracheal tube. We used very cheap material and the final cost was euro16. The trainer resulted in real-scale and anatomically accurate, with appropriate correspondence on endoscopic view between model and patients. All bronchial segments can be explored and easily identified by endoscopic and external vision. This cheap simulator is a valuable tool for practicing, particularly in a hospital with limited resources for medical training.

  2. Anatomically contoured plates for fixation of rib fractures.

    PubMed

    Bottlang, Michael; Helzel, Inga; Long, William B; Madey, Steven

    2010-03-01

    : Intraoperative contouring of long bridging plates for stabilization of flail chest injuries is difficult and time consuming. This study implemented for the first time biometric parameters to derive anatomically contoured rib plates. These plates were tested on a range of cadaveric ribs to quantify plate fit and to extract a best-fit plating configuration. : Three left and three right rib plates were designed, which accounted for anatomic parameters required when conforming a plate to the rib surface. The length lP over which each plate could trace the rib surface was evaluated on 109 cadaveric ribs. For each rib level 3-9, the plate design with the highest lP value was extracted to determine a best-fit plating configuration. Furthermore, the characteristic twist of rib surfaces was measured on 49 ribs to determine the surface congruency of anatomic plates with a constant twist. : The tracing length lP of the best-fit plating configuration ranged from 12.5 cm to 14.7 cm for ribs 3-9. The corresponding range for standard plates was 7.1-13.7 cm. The average twist of ribs over 8-cm, 12-cm, and 16-cm segments was 8.3 degrees, 20.6 degrees, and 32.7 degrees, respectively. The constant twist of anatomic rib plates was not significantly different from the average rib twist. : A small set of anatomic rib plates can minimize the need for intraoperative plate contouring for fixation of ribs 3-9. Anatomic rib plates can therefore reduce the time and complexity of flail chest stabilization and facilitate spanning of flail segments with long plates.

  3. Unsupervised definition of the tibia-femoral joint regions of the human knee and its applications to cartilage analysis

    NASA Astrophysics Data System (ADS)

    Tamez-Peña, José G.; Barbu-McInnis, Monica; Totterman, Saara

    2006-03-01

    Abnormal MR findings including cartilage defects, cartilage denuded areas, osteophytes, and bone marrow edema (BME) are used in staging and evaluating the degree of osteoarthritis (OA) in the knee. The locations of the abnormal findings have been correlated to the degree of pain and stiffness of the joint in the same location. The definition of the anatomic region in MR images is not always an objective task, due to the lack of clear anatomical features. This uncertainty causes variance in the location of the abnormality between readers and time points. Therefore, it is important to have a reproducible system to define the anatomic regions. This works present a computerized approach to define the different anatomic knee regions. The approach is based on an algorithm that uses unique features of the femur and its spatial relation in the extended knee. The femur features are found from three dimensional segmentation maps of the knee. From the segmentation maps, the algorithm automatically divides the femur cartilage into five anatomic regions: trochlea, medial weight bearing area, lateral weight bearing area, posterior medial femoral condyle, and posterior lateral femoral condyle. Furthermore, the algorithm automatically labels the medial and lateral tibia cartilage. The unsupervised definition of the knee regions allows a reproducible way to evaluate regional OA changes. This works will present the application of this automated algorithm for the regional analysis of the cartilage tissue.

  4. Sex differences in the influence of body mass index on anatomical architecture of brain networks.

    PubMed

    Gupta, A; Mayer, E A; Hamadani, K; Bhatt, R; Fling, C; Alaverdyan, M; Torgerson, C; Ashe-McNalley, C; Van Horn, J D; Naliboff, B; Tillisch, K; Sanmiguel, C P; Labus, J S

    2017-08-01

    The brain has a central role in regulating ingestive behavior in obesity. Analogous to addiction behaviors, an imbalance in the processing of rewarding and salient stimuli results in maladaptive eating behaviors that override homeostatic needs. We performed network analysis based on graph theory to examine the association between body mass index (BMI) and network measures of integrity, information flow and global communication (centrality) in reward, salience and sensorimotor regions and to identify sex-related differences in these parameters. Structural and diffusion tensor imaging were obtained in a sample of 124 individuals (61 males and 63 females). Graph theory was applied to calculate anatomical network properties (centrality) for regions of the reward, salience and sensorimotor networks. General linear models with linear contrasts were performed to test for BMI and sex-related differences in measures of centrality, while controlling for age. In both males and females, individuals with high BMI (obese and overweight) had greater anatomical centrality (greater connectivity) of reward (putamen) and salience (anterior insula) network regions. Sex differences were observed both in individuals with normal and elevated BMI. In individuals with high BMI, females compared to males showed greater centrality in reward (amygdala, hippocampus and nucleus accumbens) and salience (anterior mid-cingulate cortex) regions, while males compared to females had greater centrality in reward (putamen) and sensorimotor (posterior insula) regions. In individuals with increased BMI, reward, salience and sensorimotor network regions are susceptible to topological restructuring in a sex-related manner. These findings highlight the influence of these regions on integrative processing of food-related stimuli and increased ingestive behavior in obesity, or in the influence of hedonic ingestion on brain topological restructuring. The observed sex differences emphasize the importance of

  5. Sex Differences in the Influence of Body Mass Index on Anatomical Architecture of Brain Networks

    PubMed Central

    Gupta, Arpana; Mayer, Emeran A.; Hamadani, Kareem; Bhatt, Ravi; Fling, Connor; Alaverdyan, Mher; Torgenson, Carinna; Ashe-McNalley, Cody; Van Horn, John D; Naliboff, Bruce; Tillisch, Kirsten; Sanmiguel, Claudia P.; Labus, Jennifer S.

    2017-01-01

    Background/Objective The brain plays a central role in regulating ingestive behavior in obesity. Analogous to addiction behaviors, an imbalance in the processing of rewarding and salient stimuli results in maladaptive eating behaviors that override homeostatic needs. We performed network analysis based on graph theory to examine the association between body mass index (BMI) and network measures of integrity, information flow, and global communication (centrality) in reward, salience and sensorimotor regions, and to identify sex-related differences in these parameters. Subjects/Methods Structural and diffusion tensor imaging were obtained in a sample of 124 individuals (61 males and 63 females). Graph theory was applied to calculate anatomical network properties (centrality) for regions of the reward, salience, and sensorimotor networks. General linear models with linear contrasts were performed to test for BMI and sex-related differences in measures of centrality, while controlling for age. Results In both males and females, individuals with high BMI (obese and overweight) had greater anatomical centrality (greater connectivity) of reward (putamen) and salience (anterior insula) network regions. Sex differences were observed both in individuals with normal and elevated BMI. In individuals with high BMI, females compared to males showed greater centrality in reward (amygdala, hippocampus, nucleus accumbens) and salience (anterior mid cingulate cortex) regions, while males compared to females had greater centrality in reward (putamen) and sensorimotor (posterior insula) regions. Conclusions In individuals with increased BMI, reward, salience, and sensorimotor network regions are susceptible to topological restructuring in a sex related manner. These findings highlight the influence of these regions on integrative processing of food-related stimuli and increased ingestive behavior in obesity, or in the influence of hedonic ingestion on brain topological restructuring

  6. Anatomical and functional brain imaging in adult attention-deficit/hyperactivity disorder (ADHD)--a neurological view.

    PubMed

    Schneider, Marc; Retz, Wolfgang; Coogan, Andrew; Thome, Johannes; Rösler, Michael

    2006-09-01

    In this review, we discuss current structural and functional imaging data on ADHD in a neurological and neuroanatomical framework. At present, the literature on adult ADHD is somewhat sparse, and so results from imaging have to therefore be considered mainly from the childhood or adolescence perspective. Most work has considered the impairment of executive functions (motor execution, inhibition, working memory), and as such a number of attention networks and their anatomical correlates are discussed in this review (e.g. the cerebello-(thalamo-)-striato-cortical network seems to play a pivotal role in ADHD pathology from childhood to adulthood). The core findings in ADHD imaging are alterations in the architecture and function of prefrontal cortex and cerebellum. The dorsal part of anterior cingulated cortex (dACC) is an important region for decision making, and executive control is impaired in adult ADHD. Finally, dysfunction of basal ganglia is a consistent finding in childhood and adulthood ADHD, reflecting dysregulation of fronto-striatal circuitry. The cerebellum, and its role in affect and cognition, is also persistently implicated in the pathology of ADHD.

  7. Influence of previous body mass index and sex on regional fat changes in a weight loss intervention.

    PubMed

    Benito, Pedro J; Cupeiro, Rocio; Peinado, Ana B; Rojo, Miguel A; Maffulli, Nicola

    2017-11-01

    Men and women may lose weight in a different fashion. This study compares the changes in different anatomical regions after a well-controlled weight loss program by sex and initial BMI. A total of 180 subjects (48 overweight women, 36 overweight men, and 48 obese women and 48 obese men) were recruited to participate in a 22-week weight loss programme (diet + exercise). Regarding percentage body weight change from baseline, there was no triple interaction (BMI, sex and anatomical region), but there was interaction between BMI and anatomical region (F2,840 = 34.5; p < 0.001), and between sex and anatomical region (F2,840 = 98.8; p < 0.001). Usually, the arms and legs are the regions that lose more weight in obese participants, but men lose the highest percentage of mass from the trunk. There were differences between men and women for the areas of left trunk mass (750g), right trunk mass (700g), total mass of the trunk (1400g), android mass (350g), and finally in the total mass in overweight participants (1300g), with higher values for men than for women. The region that loses more weight and fat is the trunk, followed by the legs, and then the arms, when the loss is observed in function of the total weight or fat lost. Both BMI and sex exert a definite influence fat loss, especially in some anatomical regions.

  8. Anatomical entity mention recognition at literature scale

    PubMed Central

    Pyysalo, Sampo; Ananiadou, Sophia

    2014-01-01

    Motivation: Anatomical entities ranging from subcellular structures to organ systems are central to biomedical science, and mentions of these entities are essential to understanding the scientific literature. Despite extensive efforts to automatically analyze various aspects of biomedical text, there have been only few studies focusing on anatomical entities, and no dedicated methods for learning to automatically recognize anatomical entity mentions in free-form text have been introduced. Results: We present AnatomyTagger, a machine learning-based system for anatomical entity mention recognition. The system incorporates a broad array of approaches proposed to benefit tagging, including the use of Unified Medical Language System (UMLS)- and Open Biomedical Ontologies (OBO)-based lexical resources, word representations induced from unlabeled text, statistical truecasing and non-local features. We train and evaluate the system on a newly introduced corpus that substantially extends on previously available resources, and apply the resulting tagger to automatically annotate the entire open access scientific domain literature. The resulting analyses have been applied to extend services provided by the Europe PubMed Central literature database. Availability and implementation: All tools and resources introduced in this work are available from http://nactem.ac.uk/anatomytagger. Contact: sophia.ananiadou@manchester.ac.uk Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:24162468

  9. The role of long-range connectivity for the characterization of the functional-anatomical organization of the cortex.

    PubMed

    Knösche, Thomas R; Tittgemeyer, Marc

    2011-01-01

    This review focuses on the role of long-range connectivity as one element of brain structure that is of key importance for the functional-anatomical organization of the cortex. In this context, we discuss the putative guiding principles for mapping brain function and structure onto the cortical surface. Such mappings reveal a high degree of functional-anatomical segregation. Given that brain regions frequently maintain characteristic connectivity profiles and the functional repertoire of a cortical area is closely related to its anatomical connections, long-range connectivity may be used to define segregated cortical areas. This methodology is called connectivity-based parcellation. Within this framework, we investigate different techniques to estimate connectivity profiles with emphasis given to non-invasive methods based on diffusion magnetic resonance imaging (dMRI) and diffusion tractography. Cortical parcellation is then defined based on similarity between diffusion tractograms, and different clustering approaches are discussed. We conclude that the use of non-invasively acquired connectivity estimates to characterize the functional-anatomical organization of the brain is a valid, relevant, and necessary endeavor. Current and future developments in dMRI technology, tractography algorithms, and models of the similarity structure hold great potential for a substantial improvement and enrichment of the results of the technique.

  10. [Project HRANAFINA--Croatian anatomical and physiological terminology].

    PubMed

    Vodanović, Marin

    2012-01-01

    HRANAFINA--Croatian Anatomical and Physiological Terminology is a project of the University of Zagreb School of Dental Medicine funded by the Croatian Science Foundation. It is performed in cooperation with other Croatian universities with medical schools. This project has a two-pronged aim: firstly, building of Croatian anatomical and physiological terminology and secondly, Croatian anatomical and physiological terminology usage popularization between health professionals, medical students, scientists and translators. Internationally recognized experts from Croatian universities with medical faculties and linguistics experts are involved in the project. All project activities are coordinated in agreement with the National Coordinator for Development of Croatian Professional Terminology. The project enhances Croatian professional terminology and Croatian language in general, increases competitiveness of Croatian scientists on international level and facilitates the involvement of Croatian scientists, health care providers and medical students in European projects.

  11. Anatomical evidence regarding the existence of sustentaculum facies.

    PubMed

    Frâncu, L L; Hînganu, Delia; Hînganu, M V

    2013-01-01

    The face, seen as a unitary region is subject to the gravitational force. Since it is the main relational and socialization region of each individual, it presents unique ways of suspension. The elevation system of the face is complex, and it includes four different elements: the continuity with the epicranial fascia, the adhesion of superficial structures to the peri- and inter-orbital mimic muscles, ligaments adhesions and fixing ligaments of the superficial layers to the zygomatic process, and also to the facial fat pad. Each of these four elements were evaluated on 12 cephalic extremities, dissected in detail, layer by layer, and the images were captured with an informatics system connected to an operating microscope. The purchased mesoscopic images revealed the presence of a superficial musculo-aponeurotic system (SMAS) through which the anti-gravity suspension of the superficial facial structures become possible. This system acts against face aging and all four elevation structures form what the so-called sustentaculum facies. The participation of each of the four anatomic components and their approach in the facial rejuvenation surgeries are here in discussion.

  12. Brain anatomical networks in early human brain development.

    PubMed

    Fan, Yong; Shi, Feng; Smith, Jeffrey Keith; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2011-02-01

    Recent neuroimaging studies have demonstrated that human brain networks have economic small-world topology and modular organization, enabling efficient information transfer among brain regions. However, it remains largely unknown how the small-world topology and modular organization of human brain networks emerge and develop. Using longitudinal MRI data of 28 healthy pediatric subjects, collected at their ages of 1 month, 1 year, and 2 years, we analyzed development patterns of brain anatomical networks derived from morphological correlations of brain regional volumes. The results show that the brain network of 1-month-olds has the characteristically economic small-world topology and nonrandom modular organization. The network's cost efficiency increases with the brain development to 1 year and 2 years, so does the modularity, providing supportive evidence for the hypothesis that the small-world topology and the modular organization of brain networks are established during early brain development to support rapid synchronization and information transfer with minimal rewiring cost, as well as to balance between local processing and global integration of information. Copyright © 2010. Published by Elsevier Inc.

  13. Disruption of brain anatomical networks in schizophrenia: A longitudinal, diffusion tensor imaging based study.

    PubMed

    Sun, Yu; Chen, Yu; Lee, Renick; Bezerianos, Anastasios; Collinson, Simon L; Sim, Kang

    2016-03-01

    Despite convergent neuroimaging evidence indicating a wide range of brain abnormalities in schizophrenia, our understanding of alterations in the topological architecture of brain anatomical networks and how they are modulated over time, is still rudimentary. Here, we employed graph theoretical analysis of longitudinal diffusion tensor imaging data (DTI) over a 5-year period to investigate brain network topology in schizophrenia and its relationship with clinical manifestations of the illness. Using deterministic tractography, weighted brain anatomical networks were constructed from 31 patients experiencing schizophrenia and 28 age- and gender-matched healthy control subjects. Although the overall small-world characteristics were observed at both baseline and follow-up, a scan-point independent significant deficit of global integration was found in patients compared to controls, suggesting dysfunctional integration of the brain and supporting the notion of schizophrenia as a disconnection syndrome. Specifically, several brain regions (e.g., the inferior frontal gyrus and the bilateral insula) that are crucial for cognitive and emotional integration were aberrant. Furthermore, a significant group-by-longitudinal scan interaction was revealed in the characteristic path length and global efficiency, attributing to a progressive aberration of global integration in patients compared to healthy controls. Moreover, the progressive disruptions of the brain anatomical network topology were associated with the clinical symptoms of the patients. Together, our findings provide insights into the substrates of anatomical dysconnectivity patterns for schizophrenia and highlight the potential for connectome-based metrics as neural markers of illness progression and clinical change with treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. An anatomical and physiological basis for the cardiovascular autonomic nervous system consequences of sport-related brain injury.

    PubMed

    La Fountaine, Michael F

    2017-11-29

    Concussion is defined as a complex pathophysiological process affecting the brain that is induced by the application or transmission of traumatic biomechanical forces to the head. The result of the impact is the onset of transient symptoms that may be experienced for approximately 2weeks in most individuals. However, in some individuals, symptoms may not resolve and persist for a protracted period and a chronic injury ensues. Concussion symptoms are generally characterized by their emergence through changes in affect, cognition, or multi-sensory processes including the visual and vestibular systems. An emerging consequence of concussion is the presence of cardiovascular autonomic nervous system dysfunction that is most apparent through hemodynamic perturbations and provocations. Further interrogation of data that are derived from continuous digital electrocardiograms and/or beat-to-beat blood pressure monitoring often reveal an imbalance of parasympathetic or sympathetic nervous system activity during a provocation after an injury. The disturbance is often greatest early after injury and a resolution of the dysfunction occurs in parallel with other symptoms. The possibility exists that the disturbance may remain if the concussion does not resolve. Unfortunately, there is little evidence in humans to support the etiology for the emergence of this post-injury dysfunction. As such, evidence from experimental models of traumatic brain injury and casual observations from human studies of concussion implicate a transient abnormality of the anatomical structures and functions of the cardiovascular autonomic nervous system. The purpose of this review article is to provide a mechanistic narrative of multi-disciplinary evidence to support the anatomical and physiological basis of cardiovascular autonomic nervous system dysfunction after concussion. The review article will identify the anatomical structures of the autonomic nervous system and propose a theoretical framework

  15. CHOLESTEROL-RELATED GENETIC RISK SCORES ARE ASSOCIATED WITH HYPOMETABOLISM IN ALZHEIMER’S-AFFECTED BRAIN REGIONS

    PubMed Central

    Reiman, Eric M.; Chen, Kewei; Caselli, Richard J.; Alexander, Gene E.; Bandy, Daniel; Adamson, Jennifer L.; Lee, Wendy; Cannon, Ashley; Stephan, Elizabeth A.; Stephan, Dietrich A.; Papassotiropoulos, Andreas

    2008-01-01

    We recently implicated a cluster of nine single nucleotide polymorphisms from seven cholesterol-related genes in the risk of Alzheimer’s disease (AD) in a European cohort, and we proposed calculating an aggregate cholesterol-related genetic score (CREGS) to characterize a person’s risk. In a separate study, we found that apolipoprotein E (APOE) ε4 gene dose, an established AD risk factor, was correlated with fluorodeoxyglucose (FDG) positron emission tomography (PET) measurements of hypometabolism in AD-affected brain regions in a cognitively normal American cohort, and we proposed using PET as a presymptomatic endophenotype to help assess putative modifiers of AD risk. Thus, the objective in the present study is to determine whether CREGS is related to PET measurements of hypometabolism in AD-affected brain regions. DNA and PET data from 141 cognitively normal late middle-aged APOE ε4 homozygotes, heterozygotes and non-carriers were analyzed to evaluate the relationship between CREGS and regional PET measurements. Cholesterol-related genetic risk scores were associated with hypometabolism in AD-affected brain regions, even when controlling for the effects of APOE ε4 gene dose. The results support the role of cholesterol-related genes in the predisposition to AD, and support the value of neuroimaging in the presymptomatic assessment of putative modifiers of AD risk. PMID:18280754

  16. Reliability of bony anatomic landmark asymmetry assessment in the lumbopelvic region: application to osteopathic medical education.

    PubMed

    Stovall, Bradley A; Kumar, Shrawan

    2010-11-01

    The objective of this review is to establish the current state of knowledge on the reliability of clinical assessment of asymmetry in the lumbar spine and pelvis. To search the literature, the authors consulted the databases of MEDLINE, CINAHL, AMED, MANTIS, Academic Search Complete, and Web of Knowledge using different combinations of the following keywords: palpation, asymmetry, inter or intraexaminer reliability, tissue texture, assessment, and anatomic landmark. Of the 23 studies identified, 14 did not meet the inclusion criteria and were excluded. The quality and methods of studies investigating the reliability of bony anatomic landmark asymmetry assessment are variable. The κ statistic ranges without training for interexaminer reliability were as follows: anterior superior iliac spine (ASIS), -0.01 to 0.19; posterior superior iliac spine (PSIS), 0.04 to 0.15; inferior lateral angle, transverse plane (ILA-A/P), -0.03 to 0.11; inferior lateral angles, coronal plane (ILA-S/I), -0.01 to 0.08; sacral sulcus (SS), -0.4 to 0.37; lumbar spine transverse processes L1 through L5, 0.04 to 0.17. The corresponding ranges for intraexaminer reliability were higher for all associated landmarks: ASIS, 0.19 to 0.4; PSIS, 0.13 to 0.49; ILA-A/P, 0.1 to 0.2; ILA-S/I, 0.03 to 0.21; SS, 0.24 to 0.28; lumbar spine transverse processes L1 through L5, not applicable. Further research is needed to better understand the reliability of asymmetry assessment methods in manipulative medicine.

  17. Reliability of Bony Anatomic Landmark Asymmetry Assessment in the Lumbopelvic Region: Application to Osteopathic Medical Education

    PubMed Central

    Stovall, Bradley A.; Kumar, Shrawan

    2011-01-01

    The objective of this review is to establish the current state of knowledge on the reliability of clinical assessment of asymmetry in the lumbar spine and pelvis. To search the literature, the authors consulted the databases of MEDLINE, CINAHL, AMED, MANTIS, Academic Search Complete, and Web of Knowledge using different combinations of the following keywords: palpation, asymmetry, inter- or intraex-aminer reliability, tissue texture, assessment, and anatomic landmark. Of the 23 studies identified, 14 did not meet the inclusion criteria and were excluded. The quality and methods of studies investigating the reliability of bony anatomic landmark asymmetry assessment are variable. The κ statistic ranges without training for interexaminer reliability were as follows: anterior superior iliac spine (ASIS), −0.01 to 0.19; posterior superior iliac spine (PSIS), 0.04 to 0.15; inferior lateral angle, transverse plane (ILA-A/P), −0.03 to 0.11; inferior lateral angles, coronal plane (ILA-S/I), −0.01 to 0.08; sacral sulcus (SS), −0.4 to 0.37; lumbar spine transverse processes L1 through L5, 0.04 to 0.17. The corresponding ranges for intraexaminer reliability were higher for all associated landmarks: ASIS, 0.19 to 0.4; PSIS, 0.13 to 0.49; ILA-A/P, 0.1 to 0.2; ILA-S/I, 0.03 to 0.21; SS, 0.24 to 0.28; lumbar spine transverse processes L1 through L5, not applicable. Further research is needed to better understand the reliability of asymmetry assessment methods in manipulative medicine. PMID:21135198

  18. Anatomical Entity Recognition with a Hierarchical Framework Augmented by External Resources

    PubMed Central

    Xu, Yan; Hua, Ji; Ni, Zhaoheng; Chen, Qinlang; Fan, Yubo; Ananiadou, Sophia; Chang, Eric I-Chao; Tsujii, Junichi

    2014-01-01

    References to anatomical entities in medical records consist not only of explicit references to anatomical locations, but also other diverse types of expressions, such as specific diseases, clinical tests, clinical treatments, which constitute implicit references to anatomical entities. In order to identify these implicit anatomical entities, we propose a hierarchical framework, in which two layers of named entity recognizers (NERs) work in a cooperative manner. Each of the NERs is implemented using the Conditional Random Fields (CRF) model, which use a range of external resources to generate features. We constructed a dictionary of anatomical entity expressions by exploiting four existing resources, i.e., UMLS, MeSH, RadLex and BodyPart3D, and supplemented information from two external knowledge bases, i.e., Wikipedia and WordNet, to improve inference of anatomical entities from implicit expressions. Experiments conducted on 300 discharge summaries showed a micro-averaged performance of 0.8509 Precision, 0.7796 Recall and 0.8137 F1 for explicit anatomical entity recognition, and 0.8695 Precision, 0.6893 Recall and 0.7690 F1 for implicit anatomical entity recognition. The use of the hierarchical framework, which combines the recognition of named entities of various types (diseases, clinical tests, treatments) with information embedded in external knowledge bases, resulted in a 5.08% increment in F1. The resources constructed for this research will be made publicly available. PMID:25343498

  19. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system

    PubMed Central

    van Ee, Benjamin W.; Riina, Ricarda; Berry, Paul E.; Wiedenhoeft, Alex C.

    2017-01-01

    Abstract Background and Aims Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context of these plant habits. Methods Phylogenetic comparative methods were used to test for contingent evolution of habit, habitat and wood anatomy in the mega-diverse genus Croton (Euphorbiaceae), across the largest and most complete molecular phylogeny of the genus to date. Key Results Plant habit and habitat are highly correlated, but most wood anatomical features correlate more strongly with habit. The ancestral Croton was reconstructed as a tree, the wood of which is inferred to have absent or indistinct growth rings, confluent-like axial parenchyma, procumbent ray cells and disjunctive ray parenchyma cell walls. The taxa sampled showed multiple independent origins of the shrub habit in Croton, and this habit shift is contingent on several wood anatomical features (e.g. similar vessel-ray pits, thick fibre walls, perforated ray cells). The only wood anatomical trait correlated with habitat and not habit was the presence of helical thickenings in the vessel elements of mesic Croton. Conclusions Plant functional traits, individually or in suites, are responses to multiple and often confounding contexts in evolution. By establishing an explicit contingent evolutionary framework, the interplay between habit, habitat and wood anatomical diversity was dissected in the genus Croton. Both habit and habitat influence the evolution of wood anatomical characters, and conversely, the wood anatomy of lineages can affect shifts in plant habit and habitat. This study hypothesizes novel putatively functional trait associations in woody plant structure that could be further tested in a variety of other taxa. PMID:28065919

  20. [Study of Japanese anatomical terms, such as 'sphenoid bone'].

    PubMed

    Sawai, Tadashi

    2008-12-01

    Japanese anatomical terms (butterfly-shaped bone) have an interesting history. Galen named a bone (wedge-like). This Greek term was introduced into Latin anatomical texts by transcribing into 'os sphnoides' or translating it as 'os cuneiforme'. Both terms mean equally wedge-like bone. From 16th century on, these two terms prevailed in European anatomical textbooks, but in 18th century some anatomists merged this bone with some kinds of winged creatures and named their wings "Ala major' and 'Ala minor'. In mid-19th century English-Chinese anatomical book, this bone was named (butterfly bone) by a medical missionary Benjamin Hobson. This term was introduced into Japanese textbooks. In Meiji Era both terms were used in Japanese textbooks, and (wedged-like bone). Some anatomists insisted on using because this echoed original Latin term's sense. Eventually, Japanese Associations of Anatomists adopted in 1943.

  1. Using photoshop filters to create anatomic line-art medical images.

    PubMed

    Kirsch, Jacobo; Geller, Brian S

    2006-08-01

    There are multiple ways to obtain anatomic drawings suitable for publication or presentations. This article demonstrates how to use Photoshop to alter digital radiologic images to create line-art illustrations in a quick and easy way. We present two simple to use methods; however, not every image can adequately be transformed and personal preferences and specific changes need to be applied to each image to obtain the desired result. There are multiple ways to obtain anatomic drawings suitable for publication or to prepare presentations. Medical illustrators have always played a major role in the radiology and medical education process. Whether used to teach a complex surgical or radiologic procedure, to define typical or atypical patterns of the spread of disease, or to illustrate normal or aberrant anatomy, medical illustration significantly affects learning (). However, if you are not an accomplished illustrator, the alternatives can be expensive (contacting a professional medical illustrator or buying an already existing stock of digital images) or simply not necessarily applicable to what you are trying to communicate. The purpose of this article is to demonstrate how using Photoshop (Adobe Systems, San Jose, CA) to alter digital radiologic images we can create line-art illustrations in a quick, inexpensive, and easy way in preparation for electronic presentations and publication.

  2. Adaptive algorithms to map how brain trauma affects anatomical connectivity in children

    NASA Astrophysics Data System (ADS)

    Dennis, Emily L.; Prasad, Gautam; Babikian, Talin; Kernan, Claudia; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Asarnow, Robert F.; Thompson, Paul M.

    2015-12-01

    Deficits in white matter (WM) integrity occur following traumatic brain injury (TBI), and often persist long after the visible scars have healed. Heterogeneity in injury types and locations can complicate analyses, making it harder to discover common biomarkers for tracking recovery. Here we apply a newly developed adaptive connectivity method, EPIC (evolving partitions to improve connectomics) to identify differences in structural connectivity that persist longitudinally. This data comes from a longitudinal study, in which we scanned participants (aged 8-19 years) with anatomical and diffusion MRI in both the post-acute and chronic phases (1-6 months and 13-19 months post-injury). To identify patterns of abnormal connectivity, we trained a model on data from 32 TBI patients in the post-acute phase and 45 well-matched healthy controls, reducing an initial 68x68 connectivity matrix to a 14x14 matrix. We then applied this reduced parcellation to the chronic data in participants who had returned for their chronic assessment (21 TBI and 26 healthy controls) and tested for group differences. We found significant differences in two connections, comprising callosal fibers and long anterior-posterior fibers, with the TBI group showing increased fiber density relative to controls. Longitudinal analysis revealed that these were connections that were decreasing over time in the healthy controls, as is a common developmental phenomenon, but they were increasing in the TBI group. While we cannot definitively tell why this may occur with our current data, this study provides targets for longitudinal tracking, and poses questions for future investigation.

  3. Body shape transformation along a shared axis of anatomical evolution in labyrinth fishes (Anabantoidei).

    PubMed

    Collar, David C; Quintero, Michelle; Buttler, Bernardo; Ward, Andrea B; Mehta, Rita S

    2016-03-01

    Major morphological transformations, such as the evolution of elongate body shape in vertebrates, punctuate evolutionary history. A fundamental step in understanding the processes that give rise to such transformations is identification of the underlying anatomical changes. But as we demonstrate in this study, important insights can also be gained by comparing these changes to those that occur in ancestral and closely related lineages. In labyrinth fishes (Anabantoidei), rapid evolution of a highly derived torpedo-shaped body in the common ancestor of the pikehead (Luciocephalus aura and L. pulcher) occurred primarily through exceptional elongation of the head, with secondary contributions involving reduction in body depth and lengthening of the precaudal vertebral region. This combination of changes aligns closely with the primary axis of anatomical diversification in other anabantoids, revealing that pikehead evolution involved extraordinarily rapid change in structures that were ancestrally labile. Finer-scale examination of the anatomical components that determine head elongation also shows alignment between the pikehead evolutionary trajectory and the primary axis of cranial diversification in anabantoids, with much higher evolutionary rates leading to the pikehead. Altogether, our results show major morphological transformation stemming from extreme change along a shared morphological axis in labyrinth fishes. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  4. Pedagogical Affection in Didactics of Mathematics--Amazonas Region from the Phenomenology Perspective

    ERIC Educational Resources Information Center

    Zumaeta Arista, Segundo; Fuster Guillen, Doris; Ocaña Fernández, Yolvi

    2018-01-01

    This research work analyzed the experiences lived in the didactics of the mathematics by the teachers in the Amazonas region, whose emergent significance was the pedagogical affection in teaching understood as a process whereby two or more people interact socially, one of the passions of the mood. The study was conducted using the process of the…

  5. The anatomical basis for wrinkles.

    PubMed

    Pessa, Joel E; Nguyen, Hang; John, George B; Scherer, Philipp E

    2014-02-01

    Light and electron microscopy have not identified a distinct anatomical structure associated with either skin wrinkles or creases, and a histological difference between wrinkled and adjacent skin has not been identified. The authors investigate whether facial wrinkles are related to underlying lymphatic vessels and perilymphatic fat. Lymphatic vessels with a specialized tube of perilymphatic fat were identified beneath palmar creases. Sections of skin, adipose tissue, and muscle were harvested from each of 13 cadavers. Three sites were investigated: the transverse forehead crease, lateral orbicularis oculi wrinkle (crow's feet), and the nasojugal crease. The tissue was paraffin embedded and processed. Two-step indirect immunohistochemistry was performed, and images were examined using laser confocal microscopy. Measurements were taken with software. Every wrinkle examined was found above and within ±1 mm of a major lymphatic vessel and its surrounding tube of adipose tissue. The results satisfied our null hypothesis and were statistically significant. Lymphatic vessels were identified by positive immunofluorescence as well as histological criteria. These findings have been further validated by fluorochrome tracer studies. An anatomical basis for wrinkles was identified among the specimens studied. Lymphatic vessels, along with the surrounding distinct perilymphatic fat, traveled directly beneath wrinkles and creases. Lymphatic dysregulation leads to inflammation, scarring, and fibrosis, but inadvertent injection of these vessels can be avoided with anatomical knowledge.

  6. Anatomic tibial component design can increase tibial coverage and rotational alignment accuracy: a comparison of six contemporary designs.

    PubMed

    Dai, Yifei; Scuderi, Giles R; Bischoff, Jeffrey E; Bertin, Kim; Tarabichi, Samih; Rajgopal, Ashok

    2014-12-01

    The aim of this study was to comprehensively evaluate contemporary tibial component designs against global tibial anatomy. We hypothesized that anatomically designed tibial components offer increased morphological fit to the resected proximal tibia with increased alignment accuracy compared to symmetric and asymmetric designs. Using a multi-ethnic bone dataset, six contemporary tibial component designs were investigated, including anatomic, asymmetric, and symmetric design types. Investigations included (1) measurement of component conformity to the resected tibia using a comprehensive set of size and shape metrics; (2) assessment of component coverage on the resected tibia while ensuring clinically acceptable levels of rotation and overhang; and (3) evaluation of the incidence and severity of component downsizing due to adherence to rotational alignment and overhang requirements, and the associated compromise in tibial coverage. Differences in coverage were statistically compared across designs and ethnicities, as well as between placements with or without enforcement of proper rotational alignment. Compared to non-anatomic designs investigated, the anatomic design exhibited better conformity to resected tibial morphology in size and shape, higher tibial coverage (92% compared to 85-87%), more cortical support (posteromedial region), lower incidence of downsizing (3% compared to 39-60%), and less compromise of tibial coverage (0.5% compared to 4-6%) when enforcing proper rotational alignment. The anatomic design demonstrated meaningful increase in tibial coverage with accurate rotational alignment compared to symmetric and asymmetric designs, suggesting its potential for less intra-operative compromises and improved performance. III.

  7. Prevalence and anatomical location of muscle tenderness in adults with nonspecific neck/shoulder pain.

    PubMed

    Andersen, Lars L; Hansen, Klaus; Mortensen, Ole S; Zebis, Mette K

    2011-07-22

    Many adults experience bothersome neck/shoulder pain. While research and treatment strategies often focus on the upper trapezius, other neck/shoulder muscles may be affected as well. The aim of the present study is to evaluate the prevalence and anatomical location of muscle tenderness in adults with nonspecific neck/shoulder pain. Clinical neck/shoulder examination at two large office workplaces in Copenhagen, Denmark. 174 women and 24 men (aged 25-65 years) with nonspecific neck/shoulder pain for a duration of at least 30 days during the previous year and a pain intensity of at least 2 on a modified VAS-scale of 0-10 participated. Exclusion criteria were traumatic injuries or other serious chronic disease. Using a standardized finger pressure of 2 kg, palpable tenderness were performed of eight anatomical neck/shoulder locations in the left and right side on a scale of 'no tenderness', 'some tenderness' and 'severe tenderness'. In women, the levator scapulae, neck extensors and infraspinatus showed the highest prevalence of severe tenderness (18-30%). In comparison, the prevalence of severe tenderness in the upper trapezius, occipital border and supraspinatus was 13-19%. Severe tenderness of the medial deltoid was least prevalent (0-1%). In men, the prevalence of severe tenderness in the levator scapulae was 13-21%, and ranged between 0-8% in the remainder of the examined anatomical locations. A high prevalence of tenderness exists in several anatomical locations of the neck/shoulder complex among adults with nonspecific neck/shoulder pain. Future research should focus on several neck/shoulder muscles, including the levator scapulae, neck extensors and infraspinatus, and not only the upper trapezius. ISRCTN60264809.

  8. Toledo School of Translators and their influence on anatomical terminology.

    PubMed

    Arráez-Aybar, Luis-Alfonso; Bueno-López, José-L; Raio, Nicolas

    2015-03-01

    Translation facilitates transmission of knowledge between cultures. The fundamental transfer of anatomic terminology from the Ancient Greek and Islamic Golden Age cultures, to medieval Latin Christendom took place in the so-called Toledo School of Translators in the 12th-13th centuries. Translations made in Toledo circulated widely across Europe. They were the foundation of scientific thinking that was born in the boards of first universities. In Toledo, Gerard of Cremona translated Avicenna's Canon of Medicine, the key work of Islamic Golden Age of medicine. Albertus Magnus, Mondino de Luzzi and Guy de Chauliac, the leading authors of anatomical Latin words in the Middle Ages, founded their books on Gerard's translations. The anatomical terms of the Canon retain auctoritas up to the Renaissance. Thus, terms coined by Gerard such as diaphragm, orbit, pupil or sagittal remain relevant in the current official anatomical terminology. The aim of the present paper is to bring new attention to the highly significant influence that the Toledo School of Translators had in anatomical terminology. For this, we shall review here the onomastic origins of a number of anatomical terms (additamentum; coracoid process; coxal; false ribs; femur; panniculus; spondylus; squamous sutures; thorax; xiphoid process, etc.) which are still used today. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Influence of anatomical dominance and hypertension on coronary conduit arterial and microcirculatory flow patterns: a multiscale modeling study.

    PubMed

    Mynard, Jonathan P; Smolich, Joseph J

    2016-07-01

    Coronary hemodynamics are known to be affected by intravascular and extravascular factors that vary regionally and transmurally between the perfusion territories of left and right coronary arteries. However, despite clinical evidence that left coronary arterial dominance portends greater cardiovascular risk, relatively little is known about the effects of left or right dominance on regional conduit arterial and microcirculatory blood flow patterns, particularly in the presence of systemic or pulmonary hypertension. We addressed this issue using a multiscale numerical model of the human coronary circulation situated in a closed-loop cardiovascular model. The coronary model represented left or right dominant anatomies and accounted for transmural and regional differences in vascular properties and extravascular compression. Regional coronary flow dynamics of the two anatomical variants were compared under normotensive conditions, raised systemic or pulmonary pressures with maintained flow demand, and after accounting for adaptations known to occur in acute and chronic hypertensive states. Key findings were that 1) right coronary arterial flow patterns were strongly influenced by dominance and systemic/pulmonary hypertension; 2) dominance had minor effects on left coronary arterial and all microvascular flow patterns (aside from mean circumflex flow); 3) although systemic hypertension favorably increased perfusion pressure, this benefit varied regionally and transmurally and was offset by increased left ventricular and septal flow demands; and 4) pulmonary hypertension had a substantial negative effect on right ventricular and septal flows, which was exacerbated by greater metabolic demands. These findings highlight the importance of interactions between coronary arterial dominance and hypertension in modulating coronary hemodynamics. Copyright © 2016 the American Physiological Society.

  10. Development of quantitative analysis method for stereotactic brain image: assessment of reduced accumulation in extent and severity using anatomical segmentation.

    PubMed

    Mizumura, Sunao; Kumita, Shin-ichiro; Cho, Keiichi; Ishihara, Makiko; Nakajo, Hidenobu; Toba, Masahiro; Kumazaki, Tatsuo

    2003-06-01

    Through visual assessment by three-dimensional (3D) brain image analysis methods using stereotactic brain coordinates system, such as three-dimensional stereotactic surface projections and statistical parametric mapping, it is difficult to quantitatively assess anatomical information and the range of extent of an abnormal region. In this study, we devised a method to quantitatively assess local abnormal findings by segmenting a brain map according to anatomical structure. Through quantitative local abnormality assessment using this method, we studied the characteristics of distribution of reduced blood flow in cases with dementia of the Alzheimer type (DAT). Using twenty-five cases with DAT (mean age, 68.9 years old), all of whom were diagnosed as probable Alzheimer's disease based on NINCDS-ADRDA, we collected I-123 iodoamphetamine SPECT data. A 3D brain map using the 3D-SSP program was compared with the data of 20 cases in the control group, who age-matched the subject cases. To study local abnormalities on the 3D images, we divided the whole brain into 24 segments based on anatomical classification. We assessed the extent of an abnormal region in each segment (rate of the coordinates with a Z-value that exceeds the threshold value, in all coordinates within a segment), and severity (average Z-value of the coordinates with a Z-value that exceeds the threshold value). This method clarified orientation and expansion of reduced accumulation, through classifying stereotactic brain coordinates according to the anatomical structure. This method was considered useful for quantitatively grasping distribution abnormalities in the brain and changes in abnormality distribution.

  11. Ethnomedicine use in the war affected region of northwest Pakistan

    PubMed Central

    2014-01-01

    Background North-West of Pakistan is bestowed with medicinal plant resources due to diverse geographical and habitat conditions. The traditional use of plants for curing various diseases forms an important part of the region’s cultural heritage. The study was carried out to document medicinal plants used in Frontier Region (FR) Bannu, an area affected by the “War on Terror”. Methods Fieldwork was carried out in four different seasons (spring, autumn, summer and winter) from March 2012 to February 2013. Data on medicinal plants was collected using structured and semi-structured questionnaires from 250 respondents. The voucher specimens were collected, processed and identified following standard methods. Results Of the 107 species of ethnomedicinal plants reported, fifty percent species are herbaceous. The majority of the reported species were wild (55%) but a substantial proportion are cultivated (29%). For most of the plant species (34%), leaves are the most commonly used part in the preparation of ethnomedicines. The most common use of species is for carminative purposes (14 species), with the next most common use being for blood purification (11 species). The main methods used in the preparation of ethnomedicinal recipes involves grinding and boiling, and nearly all the remedies are taken orally along with ingredients such as water, milk or honey for ease of ingestion. Traditional healers prepare plant remedies using one or more plants. There was a significant correlation (r2 = 0.95) between the age of local people and the number of plants known to them, which indicates that in the coming 20 years, an approximate decrease of 75% in the indigenous knowledge may be expected. Conclusion Traditional medicines are important to the livelihoods of rural communities in the region affected by the Global war on Terrorism. The medicinal recipes are indigenous; however, there is a threat to their future use on account of rapid modernization and terrorist activities

  12. Greek language: analysis of the cardiologic anatomical etymology: past and present.

    PubMed

    Bezas, Georges; Werneck, Alexandre Lins

    2012-01-01

    The Greek language, the root of most Latin anatomical terms, is deeply present in the Anatomical Terminology. Many studies seek to analyze etymologically the terms stemming from the Greek words. In most of these studies, the terms appear defined according to the etymological understanding of the respective authors at the time of its creation. Therefore, it is possible that the terms currently used are not consistent with its origin in ancient Greek words. We selected cardiologic anatomical terms derived from Greek words, which are included in the International Anatomical Terminology. We performed an etymological analysis using the Greek roots present in the earliest terms. We compared the cardiologic anatomical terms currently used in Greece and Brazil to the Greek roots originating from the ancient Greek language. We used morphological decomposition of Greek roots, prefixes, and suffixes. We also verified their use on the same lexicons and texts from the ancient Greek language. We provided a list comprising 30 cardiologic anatomical terms that have their origins in ancient Greek as well as their component parts in the International Anatomical Terminology. We included the terms in the way they were standardized in Portuguese, English, and Modern Greek as well as the roots of the ancient Greek words that originated them. Many works deal with the true origin of words (etymology) but most of them neither returns to the earliest roots nor relate them to their use in texts of ancient Greek language. By comparing the world's greatest studies on the etymology of Greek words, this paper tries to clarify the differences between the true origin of the Greek anatomical terms as well as the origins of the cardiologic anatomical terms more accepted today in Brazil by health professionals.

  13. Presentation of Anatomical Variations Using the Aurasma Mobile App

    PubMed Central

    Bézard, Georg; Lozanoff, Beth K; Labrash, Steven; Lozanoff, Scott

    2015-01-01

    Knowledge of anatomical variations is critical to avoid clinical complications and it enables an understanding of morphogenetic mechanisms. Depictions are comprised of photographs or illustrations often limiting appreciation of three-dimensional (3D) spatial relationships. The purpose of this study is to describe an approach for presenting anatomical variations utilizing video clips emphasizing 3D anatomical relationships delivered on personal electronic devices. An aberrant right subclavian artery (ARSA) was an incidental finding in a routine dissection of an 89-year-old man cadaver during a medical student instructional laboratory. The specimen was photographed and physical measurements were recorded. Three-dimensional models were lofted and rendered with Maya software and converted as Quicktime animations. Photographs of the first frame of the animations were recorded and registered with Aurasma Mobile App software (www.aurasma.com). Resulting animations were viewed on mobile devices. The ARSA model can be manipulated on the mobile device enabling the student to view and appreciate spatial relationships. Model elements can be de-constructed to provide even greater spatial resolution of anatomical relationships. Animations provide a useful approach for visualizing anatomical variations. Future work will be directed at creating a library of variants and underlying mechanism of formation for presentation through the Aurasma application. PMID:26793410

  14. An Anatomically Resolved Mouse Brain Proteome Reveals Parkinson Disease-relevant Pathways *

    PubMed Central

    Choi, Jong Min; Rousseaux, Maxime W. C.; Malovannaya, Anna; Kim, Jean J.; Kutzera, Joachim; Wang, Yi; Huang, Yin; Zhu, Weimin; Maity, Suman; Zoghbi, Huda Yahya; Qin, Jun

    2017-01-01

    Here, we present a mouse brain protein atlas that covers 17 surgically distinct neuroanatomical regions of the adult mouse brain, each less than 1 mm3 in size. The protein expression levels are determined for 6,500 to 7,500 gene protein products from each region and over 12,000 gene protein products for the entire brain, documenting the physiological repertoire of mouse brain proteins in an anatomically resolved and comprehensive manner. We explored the utility of our spatially defined protein profiling methods in a mouse model of Parkinson's disease. We compared the proteome from a vulnerable region (substantia nigra pars compacta) of wild type and parkinsonian mice with that of an adjacent, less vulnerable, region (ventral tegmental area) and identified several proteins that exhibited both spatiotemporal- and genotype-restricted changes. We validated the most robustly altered proteins using an alternative profiling method and found that these modifications may highlight potential new pathways for future studies. This proteomic atlas is a valuable resource that offers a practical framework for investigating the molecular intricacies of normal brain function as well as regional vulnerability in neurological diseases. All of the mouse regional proteome profiling data are published on line at http://mbpa.bprc.ac.cn/. PMID:28153913

  15. Interactive anatomical teaching: Integrating radiological anatomy within topographic anatomy.

    PubMed

    Abed Rabbo, F; Garrigues, F; Lefèvre, C; Seizeur, R

    2016-03-01

    Hours attributed to teaching anatomy have been reduced in medical curricula through out the world. In consequence, changes in anatomical curriculum as well as in teaching methods are becoming necessary. New methods of teaching are being evaluated. We present in the following paper an example of interactive anatomical teaching associating topographic anatomy with ultrasonographic radiological anatomy. The aim was to explicitly show anatomical structures of the knee and the ankle through dissection and ultrasonography. One cadaver was used as an ultrasonographic model and the other was dissected. Anatomy of the knee and ankle articulations was studied through dissection and ultrasonography. The students were able to simultaneously assimilate both anatomical aspects of radiological and topographic anatomy. They found the teaching very helpful and practical. This body of work provides example of a teaching method combining two important aspects of anatomy to help the students understand both aspects simultaneously. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Anatomical planes: are we teaching accurate surface anatomy?

    PubMed

    Mirjalili, S Ali; McFadden, Sarah L; Buckenham, Tim; Wilson, Ben; Stringer, Mark D

    2012-10-01

    Anatomical planes used in clinical practice and teaching anatomy are largely derived from cadaver studies. Numerous inconsistencies in clinically important surface markings exist between and within anatomical reference texts. The aim of this study was to reassess the accuracy of common anatomical planes in vivo using computed tomographic (CT) imaging. CT scans of the trunk in supine adults at end tidal inspiration were analyzed by dual consensus reporting to determine the anatomy of five anatomical planes: sternal angle, transpyloric, subcostal, supracristal, and the plane of the pubic crest. Patients with kyphosis, scoliosis, or abnormal lordosis, distorting space-occupying lesions, or visceromegaly were excluded. Among 153 thoracic CT scans (mean age 63 years, 53% female), the sternal angle was most common at T4 (females) or T4/5 (males) vertebral level, and the tracheal bifurcation, aortic arch, and pulmonary trunk were most often below this plane. In 108 abdominal CT scans (mean age 60 years, 59% female), the subcostal and supracristal planes were most often at L2 (58%) and L4 (69%), respectively. In 52 thoracoabdominal CT scans (mean age 61 years, 56% female), the transpyloric plane was between lower L1 and upper L2 (75%); in this plane were the superior mesenteric artery (56%), formation of the portal vein (53%), tip of the ninth rib (60%), and the left renal hilum (54%), but the right renal hilum and gallbladder fundus were more often below. The surface anatomy of anatomical planes needs revising in the light of results from living subjects using modern imaging techniques. Copyright © 2012 Wiley Periodicals, Inc.

  17. Analysis of anatomic periarticular tibial plate fit on normal adults.

    PubMed

    Goyal, Kanu S; Skalak, Anthony S; Marcus, Randall E; Vallier, Heather A; Cooperman, Daniel R

    2007-08-01

    Implant manufacturers are producing anatomically contoured periarticular plates to improve the treatment of proximal tibia fractures. We assessed the accuracy of the designation anatomic. We applied eight-hole medial and lateral anatomically contoured periarticular plates to 101 cadaveric tibiae. The tibiae and the plate fits were mapped, quantified, and analyzed using a MicroScribe G2LX digitizer, Rhinoceros software, and MATLAB software. By corresponding the clinical appearance of good fit with our digital findings, we created numerical criteria for plate fit in three planes: coronal (volume of free space between the plate and bone), sagittal (alignment with the tibial plateau and shaft), and axial (match in curvature between the proximal horizontal part of the plate and the tibial plateau). An anatomic fit should mirror the shape of the tibia in all three planes, and only four medial and four lateral plate fits qualified. Recognizing and understanding the substantial variations in fit that exist between anatomically contoured plates and the tibia may help lead to a more stable fixation and prevent malreduction of the fracture and/or soft tissue impingement.

  18. Opening wedge and anatomic-specific plates in foot and ankle applications.

    PubMed

    Kluesner, Andrew J; Morris, Jason B

    2011-08-01

    As surgeons continually push to improve techniques and outcomes, anatomic-specific and procedure-specific fixation options are becoming increasingly available. The unique size, shape, and function of the foot provide an ideal framework for the use of anatomic-specific plates. These distinctive plate characteristics range from anatomic contouring and screw placements to incorporated step-offs and wedges. By optimizing support, compression, and stabilization, patients may return to weight bearing and activity sooner, improving outcomes. This article discusses anatomic-specific plates and their use in forefoot and rearfoot surgical procedures. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Construction of a 3-D anatomical model for teaching temporal lobectomy.

    PubMed

    de Ribaupierre, Sandrine; Wilson, Timothy D

    2012-06-01

    Although we live and work in 3 dimensional space, most of the anatomical teaching during medical school is done on 2-D (books, TV and computer screens, etc). 3-D spatial abilities are essential for a surgeon but teaching spatial skills in a non-threatening and safe educational environment is a much more difficult pedagogical task. Currently, initial anatomical knowledge formation or specific surgical anatomy techniques, are taught either in the OR itself, or in cadaveric labs; which means that the trainee has only limited exposure. 3-D computer models incorporated into virtual learning environments may provide an intermediate and key step in a blended learning approach for spatially challenging anatomical knowledge formation. Specific anatomical structures and their spatial orientation can be further clinically contextualized through demonstrations of surgical procedures in the 3-D digital environments. Recordings of digital models enable learner reviews, taking as much time as they want, stopping the demonstration, and/or exploring the model to understand the anatomical relation of each structure. We present here how a temporal lobectomy virtual model has been developed to aid residents and fellows conceptualization of the anatomical relationships between different cerebral structures during that procedure. We suggest in comparison to cadaveric dissection, such virtual models represent a cost effective pedagogical methodology providing excellent support for anatomical learning and surgical technique training. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The Anatomical Institute at the University of Greifswald during National Socialism: The procurement of bodies and their use for anatomical purposes.

    PubMed

    Alvermann, Dirk; Mittenzwei, Jan

    2016-05-01

    This is the first comprehensive account of body procurement at the Anatomical Institute at Greifswald University during National Socialism (NS). As in all other German anatomical departments, the bodies received during this period included increasing numbers of victims of the NS regime. Prior to 1939, 90% of all bodies came from hospitals, state nursing homes and mental institutions (Heil- und Pflegeanstalten), but dropped to less than 30% after 1941. While the total catchment area for body procurement decreased, the number of suppliers increased and included prisons, POW camps, Gestapo offices and military jurisdiction authorities. Among the 432 documented bodies delivered to the institute, 132 came from state nursing homes and mental institutions, mainly from Ueckermünde. These were bodies of persons, who probably were victims of "euthanasia" crimes. The Anatomical Institute also procured 46 bodies of forced laborers, of whom at least twelve had been executed. Other groups of victims included 21 bodies of executed Wehrmacht soldiers and 16 Russian prisoners of war from the camp Stalag II C in Greifswald, who had died of starvation and exhaustion. From 1941 onwards, the number of bodies delivered from prisons and penitentiaries greatly increased. In total, 60 bodies of prisoners, mainly from the penitentiary in Gollnow, were delivered to the Anatomical Institute. Greifswald Anatomical Institute was not just a passive recipient of bodies from all of these sources, but the anatomists actively lobbied with the authorities for an increased body supply for teaching and research purposes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder

    PubMed Central

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-01-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC–vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder. PMID:28944772

  2. Multimodal Investigation of Network Level Effects Using Intrinsic Functional Connectivity, Anatomical Covariance, and Structure-to-Function Correlations in Unmedicated Major Depressive Disorder.

    PubMed

    Scheinost, Dustin; Holmes, Sophie E; DellaGioia, Nicole; Schleifer, Charlie; Matuskey, David; Abdallah, Chadi G; Hampson, Michelle; Krystal, John H; Anticevic, Alan; Esterlis, Irina

    2018-04-01

    Converging evidence suggests that major depressive disorder (MDD) affects multiple large-scale brain networks. Analyses of the correlation or covariance of regional brain structure and function applied to structural and functional MRI data may provide insights into systems-level organization and structure-to-function correlations in the brain in MDD. This study applied tensor-based morphometry and intrinsic connectivity distribution to identify regions of altered volume and intrinsic functional connectivity in data from unmedicated individuals with MDD (n=17) and healthy comparison participants (HC, n=20). These regions were then used as seeds for exploratory anatomical covariance and connectivity analyses. Reduction in volume in the anterior cingulate cortex (ACC) and lower structural covariance between the ACC and the cerebellum were observed in the MDD group. Additionally, individuals with MDD had significantly lower whole-brain intrinsic functional connectivity in the medial prefrontal cortex (mPFC). This mPFC region showed altered connectivity to the ventral lateral PFC (vlPFC) and local circuitry in MDD. Global connectivity in the ACC was negatively correlated with reported depressive symptomatology. The mPFC-vlPFC connectivity was positively correlated with depressive symptoms. Finally, we observed increased structure-to-function correlation in the PFC/ACC in the MDD group. Although across all analysis methods and modalities alterations in the PFC/ACC were a common finding, each modality and method detected alterations in subregions belonging to distinct large-scale brain networks. These exploratory results support the hypothesis that MDD is a systems level disorder affecting multiple brain networks located in the PFC and provide new insights into the pathophysiology of this disorder.

  3. Investigation of image components affecting the detection of lung nodules in digital chest radiography

    NASA Astrophysics Data System (ADS)

    Bath, Magnus; Hakansson, Markus; Borjesson, Sara; Hoeschen, Christoph; Tischenko, Oleg; Bochud, Francois O.; Verdun, Francis R.; Ullman, Gustaf; Kheddache, Susanne; Tingberg, Anders; Mansson, Lars Gunnar

    2005-04-01

    The aim of this work was to investigate and quantify the effects of system noise, nodule location, anatomical noise and anatomical background on the detection of lung nodules in different regions of the chest x-ray. Simulated lung nodules of diameter 10 mm but with varying detail contrast were randomly positioned in four different kinds of images: 1) clinical images collected with a 200 speed CR system, 2) images containing only system noise (including quantum noise) at the same level as the clinical images, 3) clinical images with removed anatomical noise, 4) artificial images with similar power spectrum as the clinical images but random phase spectrum. An ROC study was conducted with 5 observers. The detail contrast needed to obtain an Az of 0.80, C0.8, was used as measure of detectability. Five different regions of the chest x-ray were investigated separately. The C0.8 of the system noise images ranged from only 2% (the hilar regions) to 20% (the lateral pulmonary regions) of those of the clinical images. Compared with the original clinical images, the C0.8 was 16% lower for the de-noised clinical images and 71% higher for the random phase images, respectively, averaged over all five regions. In conclusion, regarding the detection of lung nodules with a diameter of 10 mm, the system noise is of minor importance at clinically relevant dose levels. The removal of anatomical noise and other noise sources uncorrelated from image to image leads to somewhat better detection, but the major component disturbing the detection is the overlapping of recognizable structures, which are, however, the main aspect of an x-ray image.

  4. Automatic Segmentation of the Cortical Grey and White Matter in MRI Using a Region-Growing Approach Based on Anatomical Knowledge

    NASA Astrophysics Data System (ADS)

    Wasserthal, Christian; Engel, Karin; Rink, Karsten; Brechmann, Andr'e.

    We propose an automatic procedure for the correct segmentation of grey and white matter in MR data sets of the human brain. Our method exploits general anatomical knowledge for the initial segmentation and for the subsequent refinement of the estimation of the cortical grey matter. Our results are comparable to manual segmentations.

  5. The Science and Politics of Naming: Reforming Anatomical Nomenclature, ca. 1886-1955.

    PubMed

    Buklijas, Tatjana

    2017-04-01

    Anatomical nomenclature is medicine's official language. Early in their medical studies, students are expected to memorize not only the bodily geography but also the names for all the structures that, by consensus, constitute the anatomical body. The making and uses of visual maps of the body have received considerable historiographical attention, yet the history of production, communication, and reception of anatomical names-a history as long as the history of anatomy itself-has been studied far less. My essay examines the reforms of anatomical naming between the first modern nomenclature, the 1895 Basel Nomina Anatomica (BNA), and the 1955 Nomina Anatomica Parisiensia (NAP, also known as PNA), which is the basis for current anatomical terminology. I focus on the controversial and ultimately failed attempt to reform anatomical nomenclature, known as Jena Nomina Anatomica (INA), of 1935. Discussions around nomenclature reveal not only how anatomical names are made and communicated, but also the relationship of anatomy with the clinic; disciplinary controversies within anatomy; national traditions in science; and the interplay between international and scientific disciplinary politics. I show how the current anatomical nomenclature, a successor to the NAP, is an outcome of both political and disciplinary tensions that reached their peak before 1945. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Different regions of latest electrical activation during left bundle-branch block and right ventricular pacing in cardiac resynchronization therapy patients determined by coronary venous electro-anatomic mapping.

    PubMed

    Mafi Rad, Masih; Blaauw, Yuri; Dinh, Trang; Pison, Laurent; Crijns, Harry J; Prinzen, Frits W; Vernooy, Kevin

    2014-11-01

    Current targeted left ventricular (LV) lead placement strategy is directed at the latest activated region during intrinsic activation. However, cardiac resynchronization therapy (CRT) is most commonly applied by simultaneous LV and right ventricular (RV) pacing without contribution from intrinsic conduction. Therefore, targeting the LV lead to the latest activated region during RV pacing might be more appropriate. We investigated the difference in LV electrical activation sequence between left bundle-branch block (LBBB) and RV apex (RVA) pacing using coronary venous electro-anatomic mapping (EAM). Twenty consecutive CRT candidates with LBBB underwent intra-procedural coronary venous EAM during intrinsic activation and RVA pacing using EnSite NavX. Left ventricular lead placement was aimed at the latest activated region during LBBB according to current recommendations. In all patients, LBBB was associated with a circumferential LV activation pattern, whereas RVA pacing resulted in activation from the apex of the heart to the base. In 10 of 20 patients, RVA pacing shifted the latest activated region relative to LBBB. In 18 of 20 patients, the LV lead was successfully positioned in the latest activated region during LBBB. For the whole study population, LV lead electrical delay, expressed as percentage of QRS duration, was significantly shorter during RVA pacing than during LBBB (72 ± 13 vs. 82 ± 5%, P = 0.035). Right ventricular apex pacing alters LV electrical activation pattern in CRT patients with LBBB, and shifts the latest activated region in a significant proportion of these patients. These findings warrant reconsideration of the current practice of LV lead targeting for CRT. © 2014 The Authors. European Journal of Heart Failure © 2014 European Society of Cardiology.

  7. Improved Anatomical Specificity of Non-invasive Neuro-stimulation by High Frequency (5 MHz) Ultrasound

    NASA Astrophysics Data System (ADS)

    Li, Guo-Feng; Zhao, Hui-Xia; Zhou, Hui; Yan, Fei; Wang, Jing-Yao; Xu, Chang-Xi; Wang, Cong-Zhi; Niu, Li-Li; Meng, Long; Wu, Song; Zhang, Huai-Ling; Qiu, Wei-Bao; Zheng, Hai-Rong

    2016-04-01

    Low frequency ultrasound (<1 MHz) has been demonstrated to be a promising approach for non-invasive neuro-stimulation. However, the focal width is limited to be half centimeter scale. Minimizing the stimulation region with higher frequency ultrasound will provide a great opportunity to expand its application. This study first time examines the feasibility of using high frequency (5 MHz) ultrasound to achieve neuro-stimulation in brain, and verifies the anatomical specificity of neuro-stimulation in vivo. 1 MHz and 5 MHz ultrasound stimulation were evaluated in the same group of mice. Electromyography (EMG) collected from tail muscles together with the motion response videos were analyzed for evaluating the stimulation effects. Our results indicate that 5 MHz ultrasound can successfully achieve neuro-stimulation. The equivalent diameter (ED) of the stimulation region with 5 MHz ultrasound (0.29 ± 0.08 mm) is significantly smaller than that with 1 MHz (0.83 ± 0.11 mm). The response latency of 5 MHz ultrasound (45 ± 31 ms) is also shorter than that of 1 MHz ultrasound (208 ± 111 ms). Consequently, high frequency (5 MHz) ultrasound can successfully activate the brain circuits in mice. It provides a smaller stimulation region, which offers improved anatomical specificity for neuro-stimulation in a non-invasive manner.

  8. Prevalence and anatomical location of muscle tenderness in adults with nonspecific neck/shoulder pain

    PubMed Central

    2011-01-01

    Background Many adults experience bothersome neck/shoulder pain. While research and treatment strategies often focus on the upper trapezius, other neck/shoulder muscles may be affected as well. The aim of the present study is to evaluate the prevalence and anatomical location of muscle tenderness in adults with nonspecific neck/shoulder pain. Methods Clinical neck/shoulder examination at two large office workplaces in Copenhagen, Denmark. 174 women and 24 men (aged 25-65 years) with nonspecific neck/shoulder pain for a duration of at least 30 days during the previous year and a pain intensity of at least 2 on a modified VAS-scale of 0-10 participated. Exclusion criteria were traumatic injuries or other serious chronic disease. Using a standardized finger pressure of 2 kg, palpable tenderness were performed of eight anatomical neck/shoulder locations in the left and right side on a scale of 'no tenderness', 'some tenderness' and 'severe tenderness'. Results In women, the levator scapulae, neck extensors and infraspinatus showed the highest prevalence of severe tenderness (18-30%). In comparison, the prevalence of severe tenderness in the upper trapezius, occipital border and supraspinatus was 13-19%. Severe tenderness of the medial deltoid was least prevalent (0-1%). In men, the prevalence of severe tenderness in the levator scapulae was 13-21%, and ranged between 0-8% in the remainder of the examined anatomical locations. Conclusions A high prevalence of tenderness exists in several anatomical locations of the neck/shoulder complex among adults with nonspecific neck/shoulder pain. Future research should focus on several neck/shoulder muscles, including the levator scapulae, neck extensors and infraspinatus, and not only the upper trapezius. Trial Registration ISRCTN60264809 PMID:21777478

  9. Anatomical Distribution of Lipids in Human Brain Cortex by Imaging Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Veloso, Antonio; Astigarraga, Egoitz; Barreda-Gómez, Gabriel; Manuel, Iván; Ferrer, Isidro; Teresa Giralt, María; Ochoa, Begoña; Fresnedo, Olatz; Rodríguez-Puertas, Rafael; Fernández, José A.

    2011-02-01

    Molecular mass images of tissues will be biased if differences in the physicochemical properties of the microenvironment affect the intensity of the spectra. To address this issue, we have performed—by means of MALDI-TOF mass spectrometry—imaging on slices and lipidomic analysis in extracts of frontal cortex, both from the same postmortem tissue samples of human brain. An external calibration was used to achieve a mass accuracy of 10 ppm (1 σ) in the spectra of the extracts, although the final assignment was based on a comparison with previously reported species. The spectra recorded directly from tissue slices (imaging) show excellent s/n ratios, almost comparable to those obtained from the extracts. In addition, they retain the information about the anatomical distribution of the molecular species present in autopsied frozen tissue. Further comparison between the spectra from lipid extracts devoid of proteins and those recorded directly from the tissue unambiguously show that the differences in lipid composition between gray and white matter observed in the mass images are not an artifact due to microenvironmental influences of each anatomical area on the signal intensity, but real variations in the lipid composition.

  10. 16 CFR Figure 1 to Part 1203 - Anatomical Planes

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Anatomical Planes 1 Figure 1 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 1 Figure 1 to Part 1203—Anatomical Planes ER10MR98.001 ...

  11. SU-D-BRA-04: Computerized Framework for Marker-Less Localization of Anatomical Feature Points in Range Images Based On Differential Geometry Features for Image-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soufi, M; Arimura, H; Toyofuku, F

    Purpose: To propose a computerized framework for localization of anatomical feature points on the patient surface in infrared-ray based range images by using differential geometry (curvature) features. Methods: The general concept was to reconstruct the patient surface by using a mathematical modeling technique for the computation of differential geometry features that characterize the local shapes of the patient surfaces. A region of interest (ROI) was firstly extracted based on a template matching technique applied on amplitude (grayscale) images. The extracted ROI was preprocessed for reducing temporal and spatial noises by using Kalman and bilateral filters, respectively. Next, a smooth patientmore » surface was reconstructed by using a non-uniform rational basis spline (NURBS) model. Finally, differential geometry features, i.e. the shape index and curvedness features were computed for localizing the anatomical feature points. The proposed framework was trained for optimizing shape index and curvedness thresholds and tested on range images of an anthropomorphic head phantom. The range images were acquired by an infrared ray-based time-of-flight (TOF) camera. The localization accuracy was evaluated by measuring the mean of minimum Euclidean distances (MMED) between reference (ground truth) points and the feature points localized by the proposed framework. The evaluation was performed for points localized on convex regions (e.g. apex of nose) and concave regions (e.g. nasofacial sulcus). Results: The proposed framework has localized anatomical feature points on convex and concave anatomical landmarks with MMEDs of 1.91±0.50 mm and 3.70±0.92 mm, respectively. A statistically significant difference was obtained between the feature points on the convex and concave regions (P<0.001). Conclusion: Our study has shown the feasibility of differential geometry features for localization of anatomical feature points on the patient surface in range images. The proposed

  12. Feature-Based Morphometry: Discovering Group-related Anatomical Patterns

    PubMed Central

    Toews, Matthew; Wells, William; Collins, D. Louis; Arbel, Tal

    2015-01-01

    This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). PMID:19853047

  13. Does winter region affect spring arrival time and body mass of king eiders in northern Alaska?

    USGS Publications Warehouse

    Oppel, Steffen; Powell, Abby N.

    2009-01-01

    Events during the non-breeding season may affect the body condition of migratory birds and influence performance during the following breeding season. Migratory birds nesting in the Arctic often rely on endogenous nutrients for reproductive efforts, and are thus potentially subject to such carry-over effects. We tested whether king eider (Somateria spectabilis) arrival time and body mass upon arrival at breeding grounds in northern Alaska were affected by their choice of a winter region in the Bering Sea. We captured birds shortly after arrival on breeding grounds in early June 2002–2006 at two sites in northern Alaska and determined the region in which individuals wintered using satellite telemetry or stable isotope ratios of head feathers. We used generalized linear models to assess whether winter region explained variation in arrival body mass among individuals by accounting for sex, site, annual variation, and the date a bird was captured. We found no support for our hypothesis that either arrival time or arrival body mass of king eiders differed among winter regions. We conclude that wintering in different regions in the Bering Sea is unlikely to have reproductive consequences for king eiders in our study areas.

  14. Haze variation in valley region its affecting factors

    NASA Astrophysics Data System (ADS)

    Liu, Yinge; Zhao, Aling; Wang, Yan; Wang, Shaoxiong; Dang, Caoni

    2018-02-01

    The haze has a great harm on the environment and human health. Based on the daily meteorological observation data including visibility, relative humidity, wind speed, temperature, air pollution index and weather record of Baoji region in China, and using least squares method, wavelet and correlation analysis method, the temporal and spatial characteristics of haze were analyzed. While the factors affecting the haze change were discussed. The results showed that the haze mainly occurs in plain areas, and in hilly areas and mountain the haze frequency is relatively small. Overall the annual average haze is decreasing, especially in winter and spring the reduction trend of haze is most obvious, however, in summer haze is increasing. The haze has a 5-year short period and 10-year and 15-year long-term cycles change. Moreover, there was a significant negative correlation between temperature and wind speed with haze, while the relative humidity was significantly positively correlated with haze. These studies provide the basis for atmospheric environmental monitor and management.

  15. Anatomical and Physiological Responses of Citrus Trees to Varying Boron Availability Are Dependent on Rootstock.

    PubMed

    Mesquita, Geisa L; Zambrosi, Fernando C B; Tanaka, Francisco A O; Boaretto, Rodrigo M; Quaggio, José A; Ribeiro, Rafael V; Mattos, Dirceu

    2016-01-01

    In Citrus, water, nutrient transport and thereby fruit production, are influenced among other factors, by the interaction between rootstock and boron (B) nutrition. This study aimed to investigate how B affects the anatomical structure of roots and leaves as well as leaf gas exchange in sweet orange trees grafted on two contrasting rootstocks in response to B supply. Plants grafted on Swingle citrumelo or Sunki mandarin were grown in a nutrient solution of varying B concentration (deficient, adequate, and excessive). Those grafted on Swingle were more tolerant to both B deficiency and toxicity than those on Sunki, as revealed by higher shoot and root growth. In addition, plants grafted on Sunki exhibited more severe anatomical and physiological damages under B deficiency, showing thickening of xylem cell walls and impairments in whole-plant leaf-specific hydraulic conductance and leaf CO2 assimilation. Our data revealed that trees grafted on Swingle sustain better growth under low B availablitlity in the root medium and still respond positively to increased B levels by combining higher B absorption and root growth as well as better organization of xylem vessels. Taken together, those traits improved water and B transport to the plant canopy. Under B toxicity, Swingle rootstock would also favor plant growth by reducing anatomical and ultrastructural damage to leaf tissue and improving water transport compared with plants grafted on Sunki. From a practical point of view, our results highlight that B management in citrus orchards shall take into account rootstock varieties, of which the Swingle rootstock was characterized by its performance on regulating anatomical and ultrastructural damages, improving water transport and limiting negative impacts of B stress conditions on plant growth.

  16. Acoustical and anatomical determination of sound production and transmission in West Indian (Trichechus manatus) and Amazonian (T. inunguis) manatees.

    PubMed

    Landrau-Giovannetti, Nelmarie; Mignucci-Giannoni, Antonio A; Reidenberg, Joy S

    2014-10-01

    West Indian (Trichechus manatus) and Amazonian (T. inunguis) manatees are vocal mammals, with most sounds produced for communication between mothers and calves. While their hearing and vocalizations have been well studied, the actual mechanism of sound production is unknown. Acoustical recordings and anatomical examination were used to determine the source of sound generation. Recordings were performed on live captive manatees from Puerto Rico, Cuba and Colombia (T. manatus) and from Peru (T. inunguis) to determine focal points of sound production. The manatees were recorded using two directional hydrophones placed on the throat and nasal region and an Edirol-R44 digital recorder. The average sound intensity level was analyzed to evaluate the sound source with a T test: paired two sample for means. Anatomical examinations were conducted on six T. manatus carcasses from Florida and Puerto Rico. During necropsies, the larynx, trachea, and nasal areas were dissected, with particular focus on identifying musculature and soft tissues capable of vibrating or constricting the airway. From the recordings we found that the acoustical intensity was significant (P < 0.0001) for both the individuals and the pooled manatees in the ventral throat region compared to the nasal region. From the dissection we found two raised areas of tissue in the lateral walls of the manatee's laryngeal lumen that are consistent with mammalian vocal folds. They oppose each other and may be able to regulate airflow between them when they are adducted or abducted by muscular control of arytenoid cartilages. Acoustic and anatomical evidence taken together suggest vocal folds as the mechanism for sound production in manatees. © 2014 Wiley Periodicals, Inc.

  17. Impact of clinical factors on the long-term functional and anatomic outcomes of osteo-odonto-keratoprosthesis and tibial bone keratoprosthesis.

    PubMed

    De La Paz, María Fideliz; De Toledo, Juan Álvarez; Charoenrook, Victor; Sel, Saadettin; Temprano, José; Barraquer, Rafael I; Michael, Ralph

    2011-05-01

    To report the long-term functional and anatomic outcomes of osteo-odonto-keratoprosthesis and tibial bone keratoprosthesis; to analyze the influence of clinical factors, such as surgical technique, primary diagnosis, age, and postoperative complications, on the final outcome. Retrospective cohort study. setting: Centro de Oftalmología Barraquer, between 1974 and 2005. Two hundred twenty-seven patients. intervention: Biological keratoprosthesis using osteo-odonto-keratoprosthesis or tibial bone keratoprosthesis. main outcome measures: Functional survival with success defined as best-corrected visual acuity ≥0.05; anatomic survival with success defined as retention of the keratoprosthesis lamina. Osteo-odonto-keratoprosthesis and tibial bone keratoprosthesis have comparable anatomic survival at 5 and 10 years of follow-up, but osteo-odonto-keratoprosthesis has a significantly better functional success than tibial bone keratoprosthesis at the same time periods. Among the primary diagnoses, Stevens-Johnson syndrome, chemical burn, and trachoma have generally good functional and anatomic outcomes and the least favorable prognosis is for ocular cicatricial pemphigoid. Younger patients fared better than those in older age groups. The most frequent complications were extrusion (28%), retinal detachment (16%), and uncontrolled glaucoma (11%). The glaucoma group had the best anatomic success but the worst functional results, only exceeded by the retinal detachment group in terms of functional outcome. Clinical factors, such as surgical technique, primary diagnosis, age, and postoperative complications, can affect the long-term anatomic and functional successes of biological keratoprosthesis. Knowledge about the impact of each of these factors on survival can help surgeons determine the best approach in every particular case. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Force of habit: shrubs, trees and contingent evolution of wood anatomical diversity using Croton (Euphorbiaceae) as a model system.

    PubMed

    Arévalo, Rafael; van Ee, Benjamin W; Riina, Ricarda; Berry, Paul E; Wiedenhoeft, Alex C

    2017-03-01

    Wood is a major innovation of land plants, and is usually a central component of the body plan for two major plant habits: shrubs and trees. Wood anatomical syndromes vary between shrubs and trees, but no prior work has explicitly evaluated the contingent evolution of wood anatomical diversity in the context of these plant habits. Phylogenetic comparative methods were used to test for contingent evolution of habit, habitat and wood anatomy in the mega-diverse genus Croton (Euphorbiaceae), across the largest and most complete molecular phylogeny of the genus to date. Plant habit and habitat are highly correlated, but most wood anatomical features correlate more strongly with habit. The ancestral Croton was reconstructed as a tree, the wood of which is inferred to have absent or indistinct growth rings, confluent-like axial parenchyma, procumbent ray cells and disjunctive ray parenchyma cell walls. The taxa sampled showed multiple independent origins of the shrub habit in Croton , and this habit shift is contingent on several wood anatomical features (e.g. similar vessel-ray pits, thick fibre walls, perforated ray cells). The only wood anatomical trait correlated with habitat and not habit was the presence of helical thickenings in the vessel elements of mesic Croton . Plant functional traits, individually or in suites, are responses to multiple and often confounding contexts in evolution. By establishing an explicit contingent evolutionary framework, the interplay between habit, habitat and wood anatomical diversity was dissected in the genus Croton . Both habit and habitat influence the evolution of wood anatomical characters, and conversely, the wood anatomy of lineages can affect shifts in plant habit and habitat. This study hypothesizes novel putatively functional trait associations in woody plant structure that could be further tested in a variety of other taxa. Published by Oxford University Press on behalf of the Annals of Botany Company 2017. This work is

  19. An Investigation of Anatomical Competence in Junior Medical Doctors

    ERIC Educational Resources Information Center

    Vorstenbosch, Marc A. T. M.; Kooloos, Jan G. M.; Bolhuis, Sanneke M.; Laan, Roland F. J. M.

    2016-01-01

    Because of a decrease of the time available for anatomy education, decisions need to be made to reduce the relevant content of the anatomy curriculum. Several expert consensus initiatives resulted in lists of structures, lacking analysis of anatomical competence. This study aims to explore the use of anatomical knowledge by medical doctors in an…

  20. Dynamic diaschisis: anatomically remote and context-sensitive human brain lesions.

    PubMed

    Price, C J; Warburton, E A; Moore, C J; Frackowiak, R S; Friston, K J

    2001-05-15

    Functional neuroimaging was used to investigate how lesions to the Broca's area impair neuronal responses in remote undamaged cortical regions. Four patients with speech output problems, but relatively preserved comprehension, were scanned while viewing words relative to consonant letter strings. In normal subjects, this results in left lateralized activation in the posterior inferior frontal, middle temporal, and posterior inferior temporal cortices. Each patient activated normally in the middle temporal region but abnormally in the damaged posterior inferior frontal cortex and the undamaged posterior inferior temporal cortex. In the damaged frontal region, activity was insensitive to the presence of words but in the undamaged posterior inferior temporal region, activity decreased in the presence of words rather than increasing as it did in the normal individuals. The reversal of responses in the left posterior inferior temporal region illustrate the context-sensitive nature of the abnormality and that failure to activate the left posterior temporal region could not simply be accounted for by insufficient demands on the underlying function. We propose that, in normal individuals, visual word presentation changes the effective connectivity among reading areas and, in patients, posterior temporal responses are abnormal when they depend upon inputs from the damaged inferior frontal cortex. Our results serve to introduce the concept of dynamic diaschisis; the anatomically remote and context-sensitive effects of focal brain lesions. Dynamic diaschisis reveals abnormalities of functional integration that may have profound implications for neuropsychological inference, functional anatomy and, vicariously, cognitive rehabilitation.

  1. [Lymphoscintigrams with anatomical landmarks obtained with vector graphics].

    PubMed

    Rubini, Giuseppe; Antonica, Filippo; Renna, Maria Antonia; Ferrari, Cristina; Iuele, Francesca; Stabile Ianora, Antonio Amato; Losco, Matteo; Niccoli Asabella, Artor

    2012-11-01

    Nuclear medicine images are difficult to interpret because they do not include anatomical details. The aim of this study was to obtain lymphoscintigrams with anatomical landmarks that could be easily interpreted by General Physicians. Traditional lymphoscintigrams were processed with Adobe© Photoshop® CS6 and converted into vector images created by Illustrator®. The combination with a silhouette vector improved image interpretation, without resulting in longer radiation exposure or acquisition times.

  2. A combination of spatial and recursive temporal filtering for noise reduction when using region of interest (ROI) fluoroscopy for patient dose reduction in image guided vascular interventions with significant anatomical motion

    NASA Astrophysics Data System (ADS)

    Setlur Nagesh, S. V.; Khobragade, P.; Ionita, C.; Bednarek, D. R.; Rudin, S.

    2015-03-01

    Because x-ray based image-guided vascular interventions are minimally invasive they are currently the most preferred method of treating disorders such as stroke, arterial stenosis, and aneurysms; however, the x-ray exposure to the patient during long image-guided interventional procedures could cause harmful effects such as cancer in the long run and even tissue damage in the short term. ROI fluoroscopy reduces patient dose by differentially attenuating the incident x-rays outside the region-of-interest. To reduce the noise in the dose-reduced regions previously recursive temporal filtering was successfully demonstrated for neurovascular interventions. However, in cardiac interventions, anatomical motion is significant and excessive recursive filtering could cause blur. In this work the effects of three noise-reduction schemes, including recursive temporal filtering, spatial mean filtering, and a combination of spatial and recursive temporal filtering, were investigated in a simulated ROI dose-reduced cardiac intervention. First a model to simulate the aortic arch and its movement was built. A coronary stent was used to simulate a bioprosthetic valve used in TAVR procedures and was deployed under dose-reduced ROI fluoroscopy during the simulated heart motion. The images were then retrospectively processed for noise reduction in the periphery, using recursive temporal filtering, spatial filtering and a combination of both. Quantitative metrics for all three noise reduction schemes are calculated and are presented as results. From these it can be concluded that with significant anatomical motion, a combination of spatial and recursive temporal filtering scheme is best suited for reducing the excess quantum noise in the periphery. This new noise-reduction technique in combination with ROI fluoroscopy has the potential for substantial patient-dose savings in cardiac interventions.

  3. High-resolution anatomic correlation of cyclic motor patterns in the human colon: Evidence of a rectosigmoid brake

    PubMed Central

    Lin, Anthony Y.; Du, Peng; Dinning, Philip G.; Arkwright, John W.; Kamp, Jozef P.; Cheng, Leo K.; Bissett, Ian P.

    2017-01-01

    Colonic cyclic motor patterns (CMPs) have been hypothesized to act as a brake to limit rectal filling. However, the spatiotemporal profile of CMPs, including anatomic origins and distributions, remains unclear. This study characterized colonic CMPs using high-resolution (HR) manometry (72 sensors, 1-cm resolution) and their relationship with proximal antegrade propagating events. Nine healthy volunteers were recruited. Recordings were performed over 4 h, with a 700-kcal meal given after 2 h. Propagating events were visually identified and analyzed by pattern, origin, amplitude, extent of propagation, velocity, and duration. Manometric data were normalized using anatomic landmarks identified on abdominal radiographs. These were mapped over a three-dimensional anatomic model. CMPs comprised a majority of detected propagating events. Most occurred postprandially and were retrograde propagating events (84.9 ± 26.0 retrograde vs. 14.3 ± 11.8 antegrade events/2 h, P = 0.004). The dominant sites of initiation for retrograde CMPs were in the rectosigmoid region, with patterns proximally propagating by a mean distance of 12.4 ± 0.3 cm. There were significant differences in the characteristics of CMPs depending on the direction of travel and site of initiation. Association analysis showed that proximal antegrade propagating events occurred independently of CMPs. This study accurately characterized CMPs with anatomic correlation. CMPs were unlikely to be triggered by proximal antegrade propagating events in our study context. However, the distal origin and prominence of retrograde CMPs could still act as a mechanism to limit rectal filling and support the theory of a “rectosigmoid brake.” NEW & NOTEWORTHY Retrograde cyclic motor patterns (CMPs) are the dominant motor patterns in a healthy prepared human colon. The major sites of initiation are in the rectosigmoid region, with retrograde propagation, supporting the idea of a “rectosigmoid brake.” A significant

  4. The Intermingled History of Occupational Therapy and Anatomical Education: A Retrospective Exploration

    ERIC Educational Resources Information Center

    Carroll, Melissa A.; Lawson, Katherine

    2014-01-01

    Few research articles have addressed the anatomical needs of entry-level occupational therapy students. Given this paucity of empirical evidence, there is a lack of knowledge regarding anatomical education in occupational therapy. This article will primarily serve as a retrospective look at the inclusion of anatomical education in the occupational…

  5. Complex vestibular macular anatomical relationships need a synthetic approach

    NASA Technical Reports Server (NTRS)

    Ross, M. D.

    2001-01-01

    Mammalian vestibular maculae are anatomically organized for complex parallel processing of linear acceleration information. Anatomical findings in rat maculae are provided in order to underscore this complexity, which is little understood functionally. This report emphasizes that a synthetic approach is critical to understanding how maculae function and the kind of information they conduct to the brain.

  6. Soft tissue displacement over pelvic anatomical landmarks during 3-D hip movements.

    PubMed

    Camomilla, V; Bonci, T; Cappozzo, A

    2017-09-06

    The position, in a pelvis-embedded anatomical coordinate system, of skin points located over the following anatomical landmarks (AL) was determined while the hip assumed different spatial postures: right and left anterior superior and posterior superior iliac spines, and the sacrum. Postures were selected as occurring during walking and during a flexion-extension and circumduction movement, as used to determine the hip joint centre position (star-arc movement). Five volunteers, characterised by a wide range of body mass indices (22-37), were investigated. Subject-specific MRI pelvis digital bone models were obtained. For each posture, the pose of the pelvis-embedded anatomical coordinate system was determined by registering this bone model with points digitised over bony prominences of the pelvis, using a wand carrying a marker-cluster and stereophotogrammetry. The knowledge of how the position of the skin points varies as a function of the hip posture provided information regarding the soft tissue artefact (STA) that would affect skin markers located over those points during stereophotogrammetric movement analysis. The STA was described in terms of amplitude (relative to the position of the AL during an orthostatic posture), diameter (distance between the positions of the AL which were farthest away from each other), and pelvis orientation. The STA amplitude, exhibited, over all postures, a median [inter-quartile] value of 9[6] and 16[11]mm, for normal and overweight volunteers, respectively. STA diameters were larger for the star-arc than for the walking postures, and the direction was predominantly upwards. Consequent errors in pelvic orientation were in the range 1-9 and 4-11 degrees, for the two groups respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Frequency in Usage of FCAT-Approved Anatomical Terms by North American Anatomists

    ERIC Educational Resources Information Center

    Martin, Bradford D.; Thorpe, Donna; Barnes, Richard; DeLeon, Michael; Hill, Douglas

    2009-01-01

    It has been 10 years since the Federative Committee on Anatomical Terminology (FCAT) published Terminologia Anatomica (TA), the current authority on anatomical nomenclature. There exists a perceived lack of unity among anatomists to adopt many FCAT recommended anatomical terms in TA. An e-mail survey was sent to members of the American Association…

  8. The Anatomical Distance of Functional Connections Predicts Brain Network Topology in Health and Schizophrenia

    PubMed Central

    Vértes, Petra E.; Stidd, Reva; Lalonde, François; Clasen, Liv; Rapoport, Judith; Giedd, Jay; Bullmore, Edward T.; Gogtay, Nitin

    2013-01-01

    The human brain is a topologically complex network embedded in anatomical space. Here, we systematically explored relationships between functional connectivity, complex network topology, and anatomical (Euclidean) distance between connected brain regions, in the resting-state functional magnetic resonance imaging brain networks of 20 healthy volunteers and 19 patients with childhood-onset schizophrenia (COS). Normal between-subject differences in average distance of connected edges in brain graphs were strongly associated with variation in topological properties of functional networks. In addition, a club or subset of connector hubs was identified, in lateral temporal, parietal, dorsal prefrontal, and medial prefrontal/cingulate cortical regions. In COS, there was reduced strength of functional connectivity over short distances especially, and therefore, global mean connection distance of thresholded graphs was significantly greater than normal. As predicted from relationships between spatial and topological properties of normal networks, this disorder-related proportional increase in connection distance was associated with reduced clustering and modularity and increased global efficiency of COS networks. Between-group differences in connection distance were localized specifically to connector hubs of multimodal association cortex. In relation to the neurodevelopmental pathogenesis of schizophrenia, we argue that the data are consistent with the interpretation that spatial and topological disturbances of functional network organization could arise from excessive “pruning” of short-distance functional connections in schizophrenia. PMID:22275481

  9. Toward frameless stereotaxy: anatomical-vascular correlation and registration

    NASA Astrophysics Data System (ADS)

    Henri, Christopher J.; Cukiert, A.; Collins, D. Louis; Olivier, A.; Peters, Terence M.

    1992-09-01

    We present a method to correlate and register a projection angiogram with volume rendered tomographic data from the same patient. Previously, we have described how this may be accomplished using a stereotactic frame to handle the required coordinate transformations. Here we examine the efficacy of employing anatomically based landmarks as opposed to external fiducials to achieve the same results. The experiments required a neurosurgeon to identify several homologous points in a DSA image and a MRI volume which were subsequently used to compute the coordinate transformations governing the matching procedure. Correlation accuracy was assessed by comparing these results to those employing fiducial markers on a stereotactic frame, and by examining how different levels of noise in the positions of the homologous points affect the resulting coordinate transformations. Further simulations suggest that this method has potential to be used in planning stereotactic procedures without the use of a frame.

  10. Sex differences in the relationship of regional dopamine release to affect and cognitive function in striatal and extrastriatal regions using positron emission tomography and [¹⁸F]fallypride.

    PubMed

    Riccardi, Patrizia; Park, Sohee; Anderson, Sharlet; Doop, Mikisha; Ansari, M Sib; Schmidt, Dennis; Baldwin, Ronald

    2011-02-01

    The purpose of this study was to examine sex differences in the correlations of d-amphetamine (d-AMPH) induced displacements of [¹⁸F]fallypride in striatal and extrastriatal regions in relation to affect and cognition. Seven male and six female healthy subjects, whose mean age was 25.9 years, underwent positron emission tomography (PET) with [¹⁸F]fallypride at baseline and 3 h after a 0.43 mg/kg oral dose of d-AMPH. Percent displacements in striatal and extrastriatal regions were calculated using regions of interest (ROI) analysis and on a pixel-by-pixel basis. Subjects underwent neuropsychological testing prior to the baseline PET study and one hour after d-AMPH administration for the second PET. In order to examine the subjective effect of d-AMPH, subjects rated PANAS at baseline and after administration of amphetamine. Correlations of changes in cognition and affect with regional dopamine (DA) release revealed several significant sex related differences. The results of this study demonstrate in vivo sex related differences in the relationship of regional DA release to affect and cognitive function. Copyright © 2010 Wiley-Liss, Inc.

  11. Optimal mechanical design of anatomical post-systems for endodontic restoration.

    PubMed

    Maceri, Franco; Martignoni, Marco; Vairo, Giuseppe

    2009-02-01

    This paper analyses the mechanical behaviour of a new reinforced anatomical post-systems (RAPS) for endodontic restoration. The composite restorative material (CRM) completely fills the root canal (as do the commonly used cast metal posts) and multiple prefabricated composite posts (PCPs) are employed as reinforcements. Numerical simulations based on 3D linearly elastic finite element models under parafunctional loads were performed in order to investigate the influence of the stiffness of the CRM and of the number of PCPs. Periodontal ligament effects were taken into account using a discretised anisotropic nonlinearly elastic spring system, and the full discrete model was validated by comparing the resulting stress fields with those obtained with conventional restorations (cast gold-alloy post, homogeneous anatomical post and cemented single PCP) and with the natural tooth. Analysis of the results shows that stresses at the cervical/middle region decrease as CRM stiffness increases and, for large and irregular root cavities that apical stress peaks disappear when multiple PCPs are used. Accordingly, from a mechanical point of view, an optimal RAPS will use multiple PCPs when CRM stiffness is equal to or at most twice that of the dentin. This restorative solution minimises stress differences with respect to the natural tooth, mechanical inhomogeneities, stress concentrations on healthy tissues, volumes subject to shrinkage phenomena, fatigue effects and risks of both root fracture and adhesive/cohesive interfacial failure.

  12. The functional anatomical distinction between truth telling and deception is preserved among people with schizophrenia.

    PubMed

    Kaylor-Hughes, Catherine J; Lankappa, Sudheer T; Fung, Robert; Hope-Urwin, Alexandra E; Wilkinson, Iain D; Spence, Sean A

    2011-02-01

    A recently emergent functional neuroimaging literature has described the functional anatomical correlates of deception among healthy volunteers, most often implicating the ventrolateral prefrontal and anterior cingulate cortices. To date, there have been no such imaging studies of people with severe mental illness. To discover whether the brains of people with schizophrenia would manifest a similar functional anatomical distinction between the states of truthfulness and deceit. It is hypothesised that, as with healthy people, persons with schizophrenia will show activation in the ventrolateral prefrontal and anterior cingulate cortices when lying. Fifty-two people satisfying Diagnostic and Statistical Manual of Mental Disorder-IV criteria for schizophrenia or schizoaffective disorder underwent functional magnetic resonance imaging at 3 T while responding truthfully or with lies to questions concerning their recent actions. Half the sample was concurrently experiencing delusions. As hypothesised, patients exhibited greater activity in ventrolateral prefrontal cortices while lying. Truthful responses were not associated with any areas of relatively increased activation. The presence or absence of delusions did not substantially affect these findings, although subtle laterality effects were discernible upon post hoc analyses. As in healthy cohorts, the brains of people with schizophrenia exhibit a functional anatomical distinction between the states of truthfulness and deceit. Furthermore, this distinction pertains even in the presence of delusions. Copyright © 2010 John Wiley & Sons, Ltd.

  13. Affective neuroscience of the emotional BrainMind: evolutionary perspectives and implications for understanding depression

    PubMed Central

    Panksepp, Jaak

    2010-01-01

    Cross-species affective neuroscience studies confirm that primary-process emotional feelings are organized within primitive subcortical regions of the brain that are anatomically, neurochemically, and functionally homologous in all mammals that have been studied. Emotional feelings (affects) are intrinsic values that inform animals how they are faring in the quest to survive. The various positive affects indicate that animals are returning to “comfort zones” that support survival, and negative affects reflect “discomfort zones” that indicate that animals are in situations that may impair survival. They are ancestral tools for living - evolutionary memories of such importance that they were coded into the genome in rough form (as primary brain processes), which are refined by basic learning mechanisms (secondary processes) as well as by higher-order cognitions/thoughts (tertiary processes). To understand why depression feels horrible, we must fathom the affective infrastructure of the mammalian brain. Advances in our understanding of the nature of primary-process emotional affects can promote the development of better preclinical models of psychiatric disorders and thereby also allow clinicians new and useful ways to understand the foundational aspects of their clients' problems. These networks are of clear importance for understanding psychiatric disorders and advancing psychiatric practice. PMID:21319497

  14. The intermingled history of occupational therapy and anatomical education: A retrospective exploration.

    PubMed

    Carroll, Melissa A; Lawson, Katherine

    2014-01-01

    Few research articles have addressed the anatomical needs of entry-level occupational therapy students. Given this paucity of empirical evidence, there is a lack of knowledge regarding anatomical education in occupational therapy. This article will primarily serve as a retrospective look at the inclusion of anatomical education in the occupational therapy curriculum. Focusing on the historical inclusion is the first step to address the gap in existing knowledge. Examining the history of anatomy in occupational therapy provides an educational context for curricular developments and helps current anatomical educators understand the evolution of occupational therapy as a profession. Exploring the educational history also offers anatomy educators an identity, as significant contributors, in the training and preparedness of entry-level professionals while focusing on the ideals of occupational therapy. However, there is a critical need for empirical evidence of best teaching practices in occupational therapy and anatomical education. This manuscript provides a foundation and a starting point for further investigation into the anatomical competencies for entry-level occupational therapists. © 2014 American Association of Anatomists.

  15. The Anatomical Computer (CD-ROM).

    ERIC Educational Resources Information Center

    Duhrkopf, Richard

    1996-01-01

    Describes the Anatomical Computer (CD-ROM) that was designed as a self-study aid for undergraduate and graduate students in anatomy. Provides text with illustrations, definitions along with summary charts, and more than a thousand test questions. Provides a valuable resource for human gross anatomy review. (JRH)

  16. Evaluation of 3D printed anatomically scalable transfemoral prosthetic knee.

    PubMed

    Ramakrishnan, Tyagi; Schlafly, Millicent; Reed, Kyle B

    2017-07-01

    This case study compares a transfemoral amputee's gait while using the existing Ossur Total Knee 2000 and our novel 3D printed anatomically scalable transfemoral prosthetic knee. The anatomically scalable transfemoral prosthetic knee is 3D printed out of a carbon-fiber and nylon composite that has a gear-mesh coupling with a hard-stop weight-actuated locking mechanism aided by a cross-linked four-bar spring mechanism. This design can be scaled using anatomical dimensions of a human femur and tibia to have a unique fit for each user. The transfemoral amputee who was tested is high functioning and walked on the Computer Assisted Rehabilitation Environment (CAREN) at a self-selected pace. The motion capture and force data that was collected showed that there were distinct differences in the gait dynamics. The data was used to perform the Combined Gait Asymmetry Metric (CGAM), where the scores revealed that the overall asymmetry of the gait on the Ossur Total Knee was more asymmetric than the anatomically scalable transfemoral prosthetic knee. The anatomically scalable transfemoral prosthetic knee had higher peak knee flexion that caused a large step time asymmetry. This made walking on the anatomically scalable transfemoral prosthetic knee more strenuous due to the compensatory movements in adapting to the different dynamics. This can be overcome by tuning the cross-linked spring mechanism to emulate the dynamics of the subject better. The subject stated that the knee would be good for daily use and has the potential to be adapted as a running knee.

  17. Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions

    PubMed Central

    Laufs, Helmut; Hamandi, Khalid; Salek-Haddadi, Afraim; Kleinschmidt, Andreas K; Duncan, John S; Lemieux, Louis

    2007-01-01

    A cerebral network comprising precuneus, medial frontal, and temporoparietal cortices is less active both during goal-directed behavior and states of reduced consciousness than during conscious rest. We tested the hypothesis that the interictal epileptic discharges affect activity in these brain regions in patients with temporal lobe epilepsy who have complex partial seizures. At the group level, using electroencephalography-correlated functional magnetic resonance imaging in 19 consecutive patients with focal epilepsy, we found common decreases of resting state activity in 9 patients with temporal lobe epilepsy (TLE) but not in 10 patients with extra-TLE. We infer that the functional consequences of TLE interictal epileptic discharges are different from those in extra-TLE and affect ongoing brain function. Activity increases were detected in the ipsilateral hippocampus in patients with TLE, and in subthalamic, bilateral superior temporal and medial frontal brain regions in patients with extra-TLE, possibly indicating effects of different interictal epileptic discharge propagation. PMID:17133385

  18. Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method

    NASA Astrophysics Data System (ADS)

    Baikejiang, Reheman; Zhao, Yue; Fite, Brett Z.; Ferrara, Katherine W.; Li, Changqing

    2017-05-01

    Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known that FMT image quality can be improved substantially by applying the structural guidance in the FMT reconstruction. An approach to introducing anatomical information into the FMT reconstruction is presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the proposed approach's feasibility. Numerical simulation results indicate that the proposed kernel method can separate two FMT targets with an edge-to-edge distance of 1 mm and is robust to false-positive guidance and inhomogeneity in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed both targets successfully, which further validates the proposed kernel method.

  19. Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method

    PubMed Central

    Baikejiang, Reheman; Zhao, Yue; Fite, Brett Z.; Ferrara, Katherine W.; Li, Changqing

    2017-01-01

    Abstract. Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known that FMT image quality can be improved substantially by applying the structural guidance in the FMT reconstruction. An approach to introducing anatomical information into the FMT reconstruction is presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the proposed approach’s feasibility. Numerical simulation results indicate that the proposed kernel method can separate two FMT targets with an edge-to-edge distance of 1 mm and is robust to false-positive guidance and inhomogeneity in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed both targets successfully, which further validates the proposed kernel method. PMID:28464120

  20. Cognitive and anatomic double dissociation in the representation of concrete and abstract words in semantic variant and behavioral variant frontotemporal degeneration.

    PubMed

    Cousins, Katheryn A Q; York, Collin; Bauer, Laura; Grossman, Murray

    2016-04-01

    We examine the anatomic basis for abstract and concrete lexical representations in semantic memory by assessing patients with focal neurodegenerative disease. Prior evidence from healthy adult studies suggests that there may be an anatomical dissociation between abstract and concrete representations: abstract words more strongly activate the left inferior frontal gyrus relative to concrete words, while concrete words more strongly activate left anterior-inferior temporal regions. However, this double dissociation has not been directly examined. We test this dissociation in two patient groups with focal cortical atrophy in each of these regions, the behavioral variant of Frontotemporal Degeneration (bvFTD) and the semantic variant of Primary Progressive Aphasia (svPPA). We administered an associativity judgment task for abstract and concrete words, where subjects select which of two words is best associated with a given target word. Both bvFTD and svPPA patients were significantly impaired in their overall performance compared to controls. While controls treated concrete and abstract words equally, we found a category-specific double dissociation in patients' judgments: bvFTD patients showed a concreteness effect (CE), with significantly worse performance for abstract compared to concrete words, while svPPA patients showed reversal of the CE, with significantly worse performance for concrete over abstract words. Regression analyses also revealed an anatomic double dissociation: The CE is associated with inferior frontal atrophy in bvFTD, while reversal of the CE is associated with left anterior-inferior temporal atrophy in svPPA. These results support a cognitive and anatomic model of semantic memory organization where abstract and concrete representations are supported by dissociable neuroanatomic substrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Three-Dimensional Display Technologies for Anatomical Education: A Literature Review

    NASA Astrophysics Data System (ADS)

    Hackett, Matthew; Proctor, Michael

    2016-08-01

    Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students' spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display technologies and their associated assessments for anatomical education. In the first segment, the review covers the general function of displays employing 3D techniques. The second segment of the review highlights the use and assessment of 3D technology in anatomical education, focusing on factors such as knowledge gains, student perceptions, and cognitive load. The review found 32 articles on the use of 3D displays in anatomical education and another 38 articles on the assessment of 3D displays. The review shows that the majority (74 %) of studies indicate that the use of 3D is beneficial for many tasks in anatomical education, and that student perceptions are positive toward the technology.

  2. [The anatomical revolution and the transition of anatomical conception in late imperial china].

    PubMed

    Sihn, Kyu Hwan

    2012-04-30

    This paper aimed to examine the anatomical revolution from Yilingaicuo (Correcting the Errors of Medicine) and Quantixinlun(Outline of Anatomy and Physiology) in late imperial China. As the cephalocentrism which the brain superintend human operation of the mind was diffused in China since 16th century, the cephalocentrism and the cardiocentrism had competed for the hegemony of anatomical conception. Because of the advent of Yilingaicuo and Quantixinlun, the cephalocentrism became the main stream in the anatomical conception. The supporters of the Wang Yangming's Xinxue(the Learning of Heart and Mind) argued that the heart was the central organ of perception, sensitivity, and morality of the human body in medicine since 16th century. Even reformist and revolutionary intellectuals like Tan sitong and Mao zedong who had supported the Wang Yangming's Xinxue embraced the cephalocentrism in the late 19th century and the early 20th century. May Fourth intellectuals had not obsessed metaphysical interpretation of human body any more in the New Culture Movement in 1910s. They regarded human body as the object of research and writing. The anatomy was transformed into the instrumental knowledge for mutilation of the body. Yilingaicuo challenged the traditional conception of body, and Chinese intellectuals drew interest in the anatomy knowledge based on real mutilation. Quantixinlun based on Western medicine fueled a controversy about anatomy. Though new knowledge of anatomy was criticized by traditional Chinese medical doctors from the usefulness and morality of anatomy, nobody disavowed new knowledge of anatomy from the institutionalization of Western medicine in medical school. The internal development of cephalocentrism and positivism had influence on anatomy in China since 16th century. The advent of Yilingaicuo and Quantixinlun provided the milestone of new anatomy, though both sides represented traditional Chinese medicine and Western medicine respectively. They

  3. Rupture of the anterior tibial tendon: three clinical cases, anatomical study, and literature review.

    PubMed

    Anagnostakos, Konstantinos; Bachelier, Felix; Fürst, Oliver Alexander; Kelm, Jens

    2006-05-01

    We report three cases of anterior tibial tendon ruptures and the results of an anatomical study in regard to the tendon's insertion site and a literature review. Three patients were referred to our hospital with anterior tibial tendon ruptures. In the anatomical study, 53 feet were dissected, looking in particular for variants of the bony insertion of the tendon. Two patients had surgical treatment (one primary repair and one semimembranosus tendon graft) and one conservative treatment. After a mean followup of 14 weeks all patients had satisfactory outcomes. In the anatomical study, we noted three different insertion sites: in 36 feet the tendon inserted into the medial side of the cuneiform and the base of the first metatarsal bone and in 13 feet only into the medial side of the cuneiform bone. In the remaining four feet the tendon inserted into the cuneiform and the first metatarsal bone, but an additional tendon was noted taking its origin from the anterior tibial tendon near its insertion into the medial cuneiform and attaching to the proximal part of the first metatarsal. According to literature, surgical repair is the treatment of choice for acute ruptures and for patients with high activity levels. For chronic ruptures and patients with low demands, conservative management may lead to an equally good outcome. Knowledge of the anatomy in this region may be helpful for diagnosis and for the interpretation of intraoperative findings and choosing the most appropriate surgical procedure.

  4. Anatomical location of Periglischrus iheringi(Acari: Spinturnicidae) associated with the great fruit-eating bat (Chiroptera: Phyllostomidae).

    PubMed

    Almeida, Juliana; Serra-Freire, Nicolau; Peracchi, Adriano

    2015-01-01

    Spinturnicid mites are ectoparasites that infest the wings of bats, and species of the genus Periglischrus Kolenati, 1857 are associated exclusively with bats of the family Phyllostomidae. We tested the hypothesis that a long-term evolutionary association led P. iheringi to choose very specific wing locations to infest the great fruit-eating bats, Artibeus lituratus. Seven anatomical wing regions and the uropatagium from 140 bats were analyzed and a total of 78 parasites were collected. Periglischrus iheringi had a significant preference for the plagiopatagium and dactylopatgium major wing regions (i.e., large, proximal regions) and infestation was directly correlated to area (r=0.9744). However, other factors may also influence mite choice, such as higher and more stable temperature and humidity, vascularization and lower risk of displacement.

  5. Impact of immediate access to the electronic medical record on anatomic pathology performance.

    PubMed

    Renshaw, Andrew A; Gould, Edwin W

    2013-07-01

    To assess the overall impact of access to the electronic medical record (EMR) on anatomic pathology performance. We reviewed the results of all use of the EMR by 1 pathologist over an 18-month period. Of the 10,107 cases (913 cytology and 9,194 surgical pathology) reviewed, the EMR (excluding anatomic pathology records) was accessed in 222 (2.2% of all cases, 6.5% of all cytology cases, and 1.8% of all surgical pathology cases). The EMR was used to evaluate a critical value in 20 (9.0%) cases and make a more specific diagnosis in 77 (34.7%) cases, a less specific diagnosis in 4 (1.8%) cases, and a systemic rather than localized diagnosis in 4 (1.8%) cases. The percentage of cases in which the physician was contacted decreased from 7.3% for the prior 18 months to 6.7%, but this change was not significant (P = .13). Twelve cases were subsequently sent for interinstitutional consultation, and no disagreements were identified. The EMR was accessed in 2.2% of all surgical pathology and cytology cases and affected the diagnosis in 48% of these cases.

  6. EUROGIN 2014 Roadmap: Differences in HPV infection natural history, transmission, and HPV-related cancer incidence by gender and anatomic site of infection

    PubMed Central

    Giuliano, Anna R.; Nyitray, Alan G.; Kreimer, Aimée R.; Pierce Campbell, Christine M.; Goodman, Marc T.; Sudenga, Staci L.; Monsonego, Joseph; Franceschi, Silvia

    2014-01-01

    Human papillomaviruses (HPVs) cause cancer at multiple anatomic sites in men and women, including cervical, oropharyngeal, anal, vulvar, and vaginal cancers in women and oropharyngeal, anal, and penile cancers in men. In this EUROGIN 2014 roadmap, differences in HPV-related cancer and infection burden by gender and anatomic site are reviewed. The proportion of cancers attributable to HPV varies by anatomic site, with nearly 100% of cervical, 88% of anal, and less than 50% of lower genital tract and oropharyngeal cancers attributable to HPV, depending on world region and prevalence of tobacco use. Often mirroring cancer incidence rates, HPV prevalence and infection natural history varies by gender and anatomic site of infection. Oral HPV infection is rare and significantly differs by gender; yet HPV-related cancer incidence at this site is several-fold higher than at either the anal canal or penile epithelium. HPV seroprevalence is significantly higher among women compared to men, likely explaining the differences in age-specific HPV prevalence and incidence patterns observed by gender. Correspondingly, among heterosexual partners, HPV transmission appears higher from women to men. More research is needed to characterize HPV natural history at each anatomic site where HPV causes cancer in men and women, information that is critical to inform the basic science of HPV natural history and the development of future infection and cancer prevention efforts. PMID:25043222

  7. Anatomic changes due to interspecific grafting in cassava (Manihot esculenta).

    PubMed

    Bomfim, N; Ribeiro, D G; Nassar, N M A

    2011-05-31

    Cassava rootstocks of varieties UnB 201 and UnB 122 grafted with scions of Manihot fortalezensis were prepared for anatomic study. The roots were cut, stained with safranin and alcian blue, and examined microscopically, comparing them with sections taken from ungrafted roots. There was a significant decrease in number of pericyclic fibers, vascular vessels and tyloses in rootstocks. They exhibited significant larger vessels. These changes in anatomic structure are a consequence of genetic effects caused by transference of genetic material from scion to rootstock. The same ungrafted species was compared. This is the first report on anatomic changes due to grafting in cassava.

  8. A reusable anatomically segmented digital mannequin for public health communication.

    PubMed

    Fujieda, Kaori; Okubo, Kosaku

    2016-01-01

    The ongoing development of world wide web technologies has facilitated a change in health communication, which has now become bi-directional and encompasses people with diverse backgrounds. To enable an even greater role for medical illustrations, a data set, BodyParts3D, has been generated and its data set can be used by anyone to create and exchange customised three-dimensional (3D) anatomical images. BP3D comprises more than 3000 3D object files created by segmenting a digital mannequin in accordance with anatomical naming conventions. This paper describes the methodologies and features used to generate an anatomically correct male mannequin.

  9. Factors affecting stream nutrient loads: A synthesis of regional SPARROW model results for the continental United States

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Schwarz, Gregory E.; Crawford, Charles G.

    2011-01-01

    We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models - 6 for total nitrogen and 6 for total phosphorus - all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long-term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  10. Visual Agnosia and Posterior Cerebral Artery Infarcts: An Anatomical-Clinical Study

    PubMed Central

    Martinaud, Olivier; Pouliquen, Dorothée; Gérardin, Emmanuel; Loubeyre, Maud; Hirsbein, David; Hannequin, Didier; Cohen, Laurent

    2012-01-01

    Background To evaluate systematically the cognitive deficits following posterior cerebral artery (PCA) strokes, especially agnosic visual disorders, and to study anatomical-clinical correlations. Methods and Findings We investigated 31 patients at the chronic stage (mean duration of 29.1 months post infarct) with standardized cognitive tests. New experimental tests were used to assess visual impairments for words, faces, houses, and objects. Forty-one healthy subjects participated as controls. Brain lesions were normalized, combined, and related to occipitotemporal areas responsive to specific visual categories, including words (VWFA), faces (FFA and OFA), houses (PPA) and common objects (LOC). Lesions were located in the left hemisphere in 15 patients, in the right in 13, and bilaterally in 3. Visual field defects were found in 23 patients. Twenty patients had a visual disorder in at least one of the experimental tests (9 with faces, 10 with houses, 7 with phones, 3 with words). Six patients had a deficit just for a single category of stimulus. The regions of maximum overlap of brain lesions associated with a deficit for a given category of stimuli were contiguous to the peaks of the corresponding functional areas as identified in normal subjects. However, the strength of anatomical-clinical correlations was greater for words than for faces or houses, probably due to the stronger lateralization of the VWFA, as compared to the FFA or the PPA. Conclusions Agnosic visual disorders following PCA infarcts are more frequent than previously reported. Dedicated batteries of tests, such as those developed here, are required to identify such deficits, which may escape clinical notice. The spatial relationships of lesions and of regions activated in normal subjects predict the nature of the deficits, although individual variability and bilaterally represented systems may blur those correlations. PMID:22276198

  11. Visual agnosia and posterior cerebral artery infarcts: an anatomical-clinical study.

    PubMed

    Martinaud, Olivier; Pouliquen, Dorothée; Gérardin, Emmanuel; Loubeyre, Maud; Hirsbein, David; Hannequin, Didier; Cohen, Laurent

    2012-01-01

    To evaluate systematically the cognitive deficits following posterior cerebral artery (PCA) strokes, especially agnosic visual disorders, and to study anatomical-clinical correlations. We investigated 31 patients at the chronic stage (mean duration of 29.1 months post infarct) with standardized cognitive tests. New experimental tests were used to assess visual impairments for words, faces, houses, and objects. Forty-one healthy subjects participated as controls. Brain lesions were normalized, combined, and related to occipitotemporal areas responsive to specific visual categories, including words (VWFA), faces (FFA and OFA), houses (PPA) and common objects (LOC). Lesions were located in the left hemisphere in 15 patients, in the right in 13, and bilaterally in 3. Visual field defects were found in 23 patients. Twenty patients had a visual disorder in at least one of the experimental tests (9 with faces, 10 with houses, 7 with phones, 3 with words). Six patients had a deficit just for a single category of stimulus. The regions of maximum overlap of brain lesions associated with a deficit for a given category of stimuli were contiguous to the peaks of the corresponding functional areas as identified in normal subjects. However, the strength of anatomical-clinical correlations was greater for words than for faces or houses, probably due to the stronger lateralization of the VWFA, as compared to the FFA or the PPA. Agnosic visual disorders following PCA infarcts are more frequent than previously reported. Dedicated batteries of tests, such as those developed here, are required to identify such deficits, which may escape clinical notice. The spatial relationships of lesions and of regions activated in normal subjects predict the nature of the deficits, although individual variability and bilaterally represented systems may blur those correlations.

  12. ArthroBroström Lateral Ankle Stabilization Technique: An Anatomic Study.

    PubMed

    Acevedo, Jorge I; Ortiz, Cristian; Golano, Pau; Nery, Caio

    2015-10-01

    Arthroscopic ankle lateral ligament repair techniques have recently been developed and biomechanically as well as clinically validated. Although there has been 1 anatomic study relating suture and anchor proximity to anatomic structures, none has evaluated the ArthroBroström procedure. To evaluate the proximity of anatomic structures for the ArthroBroström lateral ankle ligament stabilization technique and to define ideal landmarks and "safe zones" for this repair. Descriptive laboratory study. Ten human cadaveric ankle specimens (5 matched pairs) were screened for the study. All specimens underwent arthroscopic lateral ligament repair according to the previously described ArthroBroström technique with 2 suture anchors in the fibula. Three cadaveric specimens were used to test the protocol, and 7 were dissected to determine the proximity of anatomic structures. Several distances were measured, including those of different anatomic structures to the suture knots, to determine the "safe zones." Measurements were obtained by 2 separate observers, and statistical analysis was performed. None of the specimens revealed entrapment by either of the suture knots of the critical anatomic structures, including the superficial peroneal nerve (SPN), sural nerve, peroneus tertius tendon, peroneus brevis tendon, or peroneus longus tendon. The internervous safe zone between the intermediate branch of the SPN and sural nerve was a mean of 51 mm (range, 39-64 mm). The intertendinous safe zone between the peroneus tertius and peroneus brevis was a mean of 43 mm (range, 37-49 mm). On average, a 20-mm (range, 8-36 mm) safe distance was maintained from the most medial suture to the intermediate branch of the SPN. The amount of inferior extensor retinaculum (IER) grasped by either suture knot varied from 0 to 12 mm, with 86% of repairs including the retinaculum. The results indicate that there is a relatively wide internervous and intertendinous safe zone when performing the Arthro

  13. Age-related differences in regional brain volumes: A comparison of optimized voxel-based morphometry to manual volumetry

    PubMed Central

    Kennedy, Kristen M.; Erickson, Kirk I.; Rodrigue, Karen M.; Voss, Michelle W.; Colcombe, Stan J.; Kramer, Arthur F.; Acker, James D.; Raz, Naftali

    2009-01-01

    Regional manual volumetry is the gold standard of in vivo neuroanatomy, but is labor-intensive, can be imperfectly reliable, and allows for measuring limited number of regions. Voxel-based morphometry (VBM) has perfect repeatability and assesses local structure across the whole brain. However, its anatomic validity is unclear, and with its increasing popularity, a systematic comparison of VBM to manual volumetry is necessary. The few existing comparison studies are limited by small samples, qualitative comparisons, and limited selection and modest reliability of manual measures. Our goal was to overcome those limitations by quantitatively comparing optimized VBM findings with highly reliable multiple regional measures in a large sample (N = 200) across a wide agespan (18–81). We report a complex pattern of similarities and differences. Peak values of VBM volume estimates (modulated density) produced stronger age differences and a different spatial distribution from manual measures. However, when we aggregated VBM-derived information across voxels contained in specific anatomically defined regions (masks), the patterns of age differences became more similar, although important discrepancies emerged. Notably, VBM revealed stronger age differences in the regions bordering CSF and white matter areas prone to leukoaraiosis, and VBM was more likely to report nonlinearities in age-volume relationships. In the white matter regions, manual measures showed stronger negative associations with age than the corresponding VBM-based masks. We conclude that VBM provides realistic estimates of age differences in the regional gray matter only when applied to anatomically defined regions, but overestimates effects when individual peaks are interpreted. It may be beneficial to use VBM as a first-pass strategy, followed by manual measurement of anatomically-defined regions. PMID:18276037

  14. Nonintubated uniportal VATS pulmonary anatomical resections

    PubMed Central

    Navarro-Martinez, Jose; Bolufer, Sergio; Lirio, Francisco; Sesma, Julio; Corcoles, Juan Manuel

    2017-01-01

    Nonintubated procedures have widely developed during the last years, thus nowadays major anatomical resections are performed in spontaneously breathing patients in some centers. In an attempt for combining less invasive surgical approaches with less aggressive anesthesia, nonintubated uniportal video-assisted thoracic surgery (VATS) lobectomies and segmentectomies have been proved feasible and safe, but there are no comparative trials and the evidence is still poor. A program in nonintubated uniportal major surgery should be started in highly experienced units, overcoming first a learning period performing minor procedures and a training program for the management of potential crisis situations when operating on these patients. A multidisciplinary approach including all the professionals in the operating room (OR), emergency protocols and a comprehensive knowledge of the special physiology of nonintubated surgery are mandatory. Some concerns about regional analgesia, vagal block for cough reflex control and oxygenation techniques, combined with some specific surgical tips can make safer these procedures. Specialists must remember an essential global concept: all the efforts are aimed at decreasing the invasiveness of the whole procedure in order to benefit patients’ intraoperative status and postoperative recovery. PMID:29078680

  15. Nonintubated uniportal VATS pulmonary anatomical resections.

    PubMed

    Galvez, Carlos; Navarro-Martinez, Jose; Bolufer, Sergio; Lirio, Francisco; Sesma, Julio; Corcoles, Juan Manuel

    2017-01-01

    Nonintubated procedures have widely developed during the last years, thus nowadays major anatomical resections are performed in spontaneously breathing patients in some centers. In an attempt for combining less invasive surgical approaches with less aggressive anesthesia, nonintubated uniportal video-assisted thoracic surgery (VATS) lobectomies and segmentectomies have been proved feasible and safe, but there are no comparative trials and the evidence is still poor. A program in nonintubated uniportal major surgery should be started in highly experienced units, overcoming first a learning period performing minor procedures and a training program for the management of potential crisis situations when operating on these patients. A multidisciplinary approach including all the professionals in the operating room (OR), emergency protocols and a comprehensive knowledge of the special physiology of nonintubated surgery are mandatory. Some concerns about regional analgesia, vagal block for cough reflex control and oxygenation techniques, combined with some specific surgical tips can make safer these procedures. Specialists must remember an essential global concept: all the efforts are aimed at decreasing the invasiveness of the whole procedure in order to benefit patients' intraoperative status and postoperative recovery.

  16. Pregnancy outcomes among patients with recurrent pregnancy loss and uterine anatomic abnormalities.

    PubMed

    Gabbai, Daniel; Harlev, Avi; Friger, Michael; Steiner, Naama; Sergienko, Ruslan; Kreinin, Andrey; Bashiri, Asher

    2017-07-25

    Different etiologies for recurrent pregnancy loss have been identified, among them are: anatomical, endocrine, genetic, chromosomal and thrombophilia pathologies. To assess medical and obstetric characteristics, and pregnancy outcomes, among women with uterine abnormalities and recurrent pregnancy loss (RPL). This study also aims to assess the impact of uterine anatomic surgical correction on pregnancy outcomes. A retrospective case control study of 313 patients with two or more consecutive pregnancy losses followed by a subsequent (index) pregnancy. Anatomic abnormalities were detected in 80 patients. All patients were evaluated and treated in the RPL clinic at Soroka University Medical Center. Out of 80 patients with uterine anatomic abnormalities, 19 underwent surgical correction, 32 did not and 29 had no clear record of surgical intervention, and thus were excluded from this study. Women with anatomic abnormalities had a higher rate of previous cesarean section (18.8% vs. 8.6%, P=0.022), tended to have a lower number of previous live births (1.05 vs. 1.37, P=0.07), and a higher rate of preterm delivery (22.9% vs. 10%, P=0.037). Using multivariate logistic regression analysis, anatomic abnormality was identified as an independent risk factor for RPL in patients with previous cesarean section after controlling for place of residence, positive genetic/autoimmune/endocrine workup, and fertility problems (OR 7.22; 95% CI 1.17-44.54, P=0.03). Women suffering from anatomic abnormalities tended to have a higher rate of pregnancy loss compared to those without anatomic abnormalities (40% vs. 30.9%, P=0.2). The difference in pregnancy loss rate among women who underwent surgical correction compared to those who did not was not statistically significant. In patients with previous cesarean section, uterine abnormality is an independent risk factor for pregnancy loss. Surgical correction of uterine abnormalities among RPL patients might have the potential to improve live

  17. Evolution of the anatomical theatre in Padova.

    PubMed

    Macchi, Veronica; Porzionato, Andrea; Stecco, Carla; De Caro, Raffaele

    2014-01-01

    The anatomical theatre played a pivotal role in the evolution of medical education, allowing students to directly observe and participate in the process of dissection. Due to the increase of training programs in clinical anatomy, the Institute of Human Anatomy at the University of Padova has renovated its dissecting room. The main guidelines in planning a new anatomical theatre included: (1), the placement of the teacher and students on the same level in a horizontal anatomical theatre where it is possible to see (theatre) and to perform (dissecting room); (2), in the past, dissection activities were concentrated at the center of the theatre, while in the new anatomical theatre, such activities have been moved to the periphery through projection on surrounding screens-thus, students occupy the center of the theatre between the demonstration table, where the dissection can be seen in real time, and the wall screens, where particular aspects are magnified; (3), three groups of tables are placed with one in front with two lateral flanking tables in regards to the demonstration table, in a semicircular arrangement, and not attached to the floor, which makes the room multifunctional for surgical education, medical students and physician's continued professional development courses; (4), a learning station to introduce the students to the subject of the laboratory; (5), cooperation between anatomists and architects in order to combine the practical needs of a dissection laboratory with new technologies; (6), involvement of the students, representing the clients' needs; and (7), creation of a dissecting room of wide measurements with large windows, since a well-illuminated space could reduce the potentially negative psychological impact of the dissection laboratory on student morale. © 2014 American Association of Anatomists.

  18. Mapping anatomical correlations across cerebral cortex (MACACC) using cortical thickness from MRI.

    PubMed

    Lerch, Jason P; Worsley, Keith; Shaw, W Philip; Greenstein, Deanna K; Lenroot, Rhoshel K; Giedd, Jay; Evans, Alan C

    2006-07-01

    We introduce MACACC-Mapping Anatomical Correlations Across Cerebral Cortex-to study correlated changes within and across different cortical networks. The principal topic of investigation is whether the thickness of one area of the cortex changes in a statistically correlated fashion with changes in thickness of other cortical regions. We further extend these methods by introducing techniques to test whether different population groupings exhibit significantly varying MACACC patterns. The methods are described in detail and applied to a normal childhood development population (n = 292), and show that association cortices have the highest correlation strengths. Taking Brodmann Area (BA) 44 as a seed region revealed MACACC patterns strikingly similar to tractography maps obtained from diffusion tensor imaging. Furthermore, the MACACC map of BA 44 changed with age, older subjects featuring tighter correlations with BA 44 in the anterior portions of the superior temporal gyri. Lastly, IQ-dependent MACACC differences were investigated, revealing steeper correlations between BA 44 and multiple frontal and parietal regions for the higher IQ group, most significantly (t = 4.0) in the anterior cingulate.

  19. Detectability of radiological images: the influence of anatomical noise

    NASA Astrophysics Data System (ADS)

    Bochud, Francois O.; Verdun, Francis R.; Hessler, Christian; Valley, Jean-Francois

    1995-04-01

    Radiological image quality can be objectively quantified by the statistical decision theory. This theory is commonly applied with the noise of the imaging system alone (quantum, screen and film noises) whereas the actual noise present on the image is the 'anatomical noise' (sum of the system noise and the anatomical texture). This anatomical texture should play a role in the detection task. This paper compares these two kinds of noises by performing 2AFC experiments and computing the area under the ROC-curve. It is shown that the 'anatomical noise' cannot be considered as a noise in the sense of Wiener spectrum approach and that the detectability performance is the same as the one obtained with the system noise alone in the case of a small object to be detected. Furthermore, the statistical decision theory and the non- prewhitening observer does not match the experimental results. This is especially the case in the low contrast values for which the theory predicts an increase of the detectability as soon as the contrast is different from zero whereas the experimental result demonstrates an offset of the contrast value below which the detectability is purely random. The theory therefore needs to be improved in order to take this result into account.

  20. Anatomical Mercury: Changing Understandings of Quicksilver, Blood, and the Lymphatic System, 1650-1800.

    PubMed

    Hendriksen, Marieke M A

    2015-10-01

    The use of mercury as an injection mass in anatomical experiments and preparations was common throughout Europe in the long eighteenth century, and refined mercury-injected preparations as well as plates of anatomical mercury remain today. The use and meaning of mercury in related disciplines such as medicine and chemistry in the same period have been studied, but our knowledge of anatomical mercury is sparse and tends to focus on technicalities. This article argues that mercury had a distinct meaning in anatomy, which was initially influenced by alchemical and classical understandings of mercury. Moreover, it demonstrates that the choice of mercury as an anatomical injection mass was deliberate and informed by an intricate cultural understanding of its materiality, and that its use in anatomical preparations and its perception as an anatomical material evolved with the understanding of the circulatory and lymphatic systems. By using the material culture of anatomical mercury as a starting point, I seek to provide a new, object-driven interpretation of complex and strongly interrelated historiographical categories such as mechanism, vitalism, chemistry, anatomy, and physiology, which are difficult to understand through a historiography that focuses exclusively on ideas. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Anatomic motor point localization for partial quadriceps block in spasticity.

    PubMed

    Albert, T; Yelnik, A; Colle, F; Bonan, I; Lassau, J P

    2000-03-01

    To identify the location of the vastus intermedius nerve and its motor point (point M) and to precisely identify its coordinates in relation to anatomic surface landmarks. Descriptive study. Anatomy institute of a university school of medicine. Twenty-nine adult cadaver limbs immobilized in anatomic position. Anatomic dissection to identify point M. Anatomic surface landmarks were point F, the issuing point of femoral nerve under the inguinal ligament; point R, the middle of superior edge of the patella; segment FR, which corresponds to thigh length; point M', point M orthogonal projection on segment FR. Absolute vertical coordinate, distance FM, relative vertical coordinate compared to the thigh length, FM'/FR ratio; absolute horizontal coordinate, distance MM'. The absolute vertical coordinate was 11.7+/-2 cm. The relative vertical coordinate was at .29+/-.04 of thigh length. The horizontal coordinate was at 2+/-.5 cm lateral to the FR line. Point M can be defined with relative precision by two coordinates. Application and clinical interest of nerve blocking using these coordinates in quadriceps spasticity should be studied.

  2. Automatic segmentation of pulmonary fissures in x-ray CT images using anatomic guidance

    NASA Astrophysics Data System (ADS)

    Ukil, Soumik; Sonka, Milan; Reinhardt, Joseph M.

    2006-03-01

    The pulmonary lobes are the five distinct anatomic divisions of the human lungs. The physical boundaries between the lobes are called the lobar fissures. Detection of lobar fissure positions in pulmonary X-ray CT images is of increasing interest for the early detection of pathologies, and also for the regional functional analysis of the lungs. We have developed a two-step automatic method for the accurate segmentation of the three pulmonary fissures. In the first step, an approximation of the actual fissure locations is made using a 3-D watershed transform on the distance map of the segmented vasculature. Information from the anatomically labeled human airway tree is used to guide the watershed segmentation. These approximate fissure boundaries are then used to define the region of interest (ROI) for a more exact 3-D graph search to locate the fissures. Within the ROI the fissures are enhanced by computing a ridgeness measure, and this is used as the cost function for the graph search. The fissures are detected as the optimal surface within the graph defined by the cost function, which is computed by transforming the problem to the problem of finding a minimum s-t cut on a derived graph. The accuracy of the lobar borders is assessed by comparing the automatic results to manually traced lobe segments. The mean distance error between manually traced and computer detected left oblique, right oblique and right horizontal fissures is 2.3 +/- 0.8 mm, 2.3 +/- 0.7 mm and 1.0 +/- 0.1 mm, respectively.

  3. Ethical issues surrounding the use of images from donated cadavers in the anatomical sciences.

    PubMed

    Cornwall, Jon; Callahan, David; Wee, Richman

    2016-01-01

    Body donor programs rely on the generosity and trust of the public to facilitate the provision of cadaver resources for anatomical education and research. The uptake and adoption of emerging technologies, including those allowing the acquisition and distribution of images, are becoming more widespread, including within anatomical science education. Images of cadavers are useful for research and education, and their supply and distribution have commercial potential for textbooks and online education. It is unclear whether the utilization of images of donated cadavers are congruent with donor expectations, societal norms and boundaries of established public understanding. Presently, no global "best practices" or standards exist, nor is there a common model requiring specific image-related consent from body donors. As ongoing success of body donation programs relies upon the ethical and institutional governance of body utilization to maintain trust and a positive relationship with potential donors and the community, discussions considering the potential impact of image misuse are important. This paper discusses the subject of images of donated cadavers, commenting on images in non-specific use, education, research, and commercial applications. It explores the role and significance of such images in the context of anatomical science and society, and discusses how misuse - including unconsented use - of images has the potential to affect donor program success, suggesting that informed consent is currently necessary for all images arising from donated cadavers. Its purpose is to encourage discussion to guide responsible utilization of cadaver images, while protecting the interests of body donors and the public. © 2015 Wiley Periodicals, Inc.

  4. [Anatomical Vitamin C-Research during National Socialism and the Post-war Period: Max Clara's Human Experiments at the Munich Anatomical Institute].

    PubMed

    Schûtz, Mathias; Schochow, Maximilian; Waschke, Jens; Marckmann, Georg; Steger, Florian

    2014-01-01

    In autumn of 1942, Max Clara (1899-1966) became chairman of the anatomical institute Munich. There, he intensified his research concerning the proof of vitamin C with the bodies of executed prisoners which were delivered by the Munich-Stadelheim prison. This research on human organs was pursued by applying ascorbic acid (Cebion) to prisoners before their execution. The paper investigates this intensified and radicalized anatomical research through human experiments, which Max Clara conducted in Munich and published from Istanbul during the postwar years, as well as its scientific references from the Nazi period.

  5. Mid-twentieth-century anatomical transparencies and the depiction of three-dimensional form.

    PubMed

    Wall, Shelley

    2010-11-01

    Before the advent of digital visualization, the "anatomical transparency"--layered images of organ systems, printed on a transparent medium--flourished in the mid-twentieth century as an interactive means to represent complex anatomical relationships to medical professionals and lay audiences. This article introduces the transparency work of medical illustrators Gladys McHugh and Ernest W. Beck, situating it in the historical context of strategies to represent three-dimensional anatomical relationships using print media.

  6. Anatomic Guidance For Ablation: Atrial Flutter, Fibrillation, and Outflow Tract Ventricular Tachycardia

    PubMed Central

    Sehar, Nandini; Mears, Jennifer; Bisco, Susan; Patel, Sandeep; Lachman, Nirusha; Asirvatham, Samuel J

    2010-01-01

    After initial documentation of excellent efficacy with radiofrequency ablation, this procedure is being performed increasingly in more complex situations and for more difficult arrhythmia. In these circumstances, an accurate knowledge of the anatomic basis for the ablation procedure will help maintain this efficacy and improve safety. In this review, we discuss the relevant anatomy for electrophysiology interventions for typical right atrial flutter, atrial fibrillation, and outflow tract ventricular tachycardia. In the pediatric population, maintaining safety is a greater challenge, and here again, knowing the neighboring and regional anatomy of the arrhythmogenic substrate for these arrhythmias may go a long way in preventing complications. PMID:20811537

  7. The anatomical problem posed by brain complexity and size: a potential solution.

    PubMed

    DeFelipe, Javier

    2015-01-01

    Over the years the field of neuroanatomy has evolved considerably but unraveling the extraordinary structural and functional complexity of the brain seems to be an unattainable goal, partly due to the fact that it is only possible to obtain an imprecise connection matrix of the brain. The reasons why reaching such a goal appears almost impossible to date is discussed here, together with suggestions of how we could overcome this anatomical problem by establishing new methodologies to study the brain and by promoting interdisciplinary collaboration. Generating a realistic computational model seems to be the solution rather than attempting to fully reconstruct the whole brain or a particular brain region.

  8. A Multi-Anatomical Retinal Structure Segmentation System for Automatic Eye Screening Using Morphological Adaptive Fuzzy Thresholding

    PubMed Central

    Elleithy, Khaled; Elleithy, Abdelrahman

    2018-01-01

    Eye exam can be as efficacious as physical one in determining health concerns. Retina screening can be the very first clue for detecting a variety of hidden health issues including pre-diabetes and diabetes. Through the process of clinical diagnosis and prognosis; ophthalmologists rely heavily on the binary segmented version of retina fundus image; where the accuracy of segmented vessels, optic disc, and abnormal lesions extremely affects the diagnosis accuracy which in turn affect the subsequent clinical treatment steps. This paper proposes an automated retinal fundus image segmentation system composed of three segmentation subsystems follow same core segmentation algorithm. Despite of broad difference in features and characteristics; retinal vessels, optic disc, and exudate lesions are extracted by each subsystem without the need for texture analysis or synthesis. For sake of compact diagnosis and complete clinical insight, our proposed system can detect these anatomical structures in one session with high accuracy even in pathological retina images. The proposed system uses a robust hybrid segmentation algorithm combines adaptive fuzzy thresholding and mathematical morphology. The proposed system is validated using four benchmark datasets: DRIVE and STARE (vessels), DRISHTI-GS (optic disc), and DIARETDB1 (exudates lesions). Competitive segmentation performance is achieved, outperforming a variety of up-to-date systems and demonstrating the capacity to deal with other heterogeneous anatomical structures. PMID:29888146

  9. Lumbar artery perforators: an anatomical study based on computed tomographic angiography imaging.

    PubMed

    Sommeling, Casper Emile; Colebunders, Britt; Pardon, Heleen E; Stillaert, Filip B; Blondeel, Phillip N; van Landuyt, Koenraad

    2017-08-01

    The free lumbar artery perforator flap has recently been introduced as a potentially valuable option for autologous breast reconstruction in a subset of patients. Up to date, few anatomical studies, exploring the lumbar region as a donor site for perforator- based flaps, have been conducted. An anatomical study of the position of the dominant lumbar artery perforator was performed, using the preoperative computed tomographic angiography images of 24 autologous breast reconstruction patients. In total, 61 dominant perforators were determined, 28 on the left and 33 on the right side. A radiologist defined the position of the perforator as coordinates in an xy-grid. Dominant perforators were shown to originate from the lumbar arteries at the level of lumbar vertebrae three or four. Remarkably, approximately 85% of these lumbar artery perforators enter the skin at 7-10 cm lateral from the midline (mean left 8.6 cm, right 8.2 cm). This study concludes a rather constant position of the dominant perforator. Therefore, preoperative-computed tomographic angiography is not always essential to find this perforator and Doppler ultrasound could be considered as an alternative, thereby carefully assessing all advantages and disadvantages inherent to either of these imaging methods.

  10. Altered cortical anatomical networks in temporal lobe epilepsy

    NASA Astrophysics Data System (ADS)

    Lv, Bin; He, Huiguang; Lu, Jingjing; Li, Wenjing; Dai, Dai; Li, Meng; Jin, Zhengyu

    2011-03-01

    Temporal lobe epilepsy (TLE) is one of the most common epilepsy syndromes with focal seizures generated in the left or right temporal lobes. With the magnetic resonance imaging (MRI), many evidences have demonstrated that the abnormalities in hippocampal volume and the distributed atrophies in cortical cortex. However, few studies have investigated if TLE patients have the alternation in the structural networks. In the present study, we used the cortical thickness to establish the morphological connectivity networks, and investigated the network properties using the graph theoretical methods. We found that all the morphological networks exhibited the small-world efficiency in left TLE, right TLE and normal groups. And the betweenness centrality analysis revealed that there were statistical inter-group differences in the right uncus region. Since the right uncus located at the right temporal lobe, these preliminary evidences may suggest that there are topological alternations of the cortical anatomical networks in TLE, especially for the right TLE.

  11. Anatomical models and wax Venuses: art masterpieces or scientific craft works?

    PubMed Central

    Ballestriero, R

    2010-01-01

    The art of wax modelling has an ancient origin but rose to prominence in 14th century Italy with the cult of votive artefacts. With the advent of Neoclassicism this art, now deemed repulsive, continued to survive in a scientific environment, where it flourished in the study of normal and pathological anatomy, obstetrics, zoology and botany. The achievement of having originated the creation of anatomical models in coloured wax must be ascribed to a joint effort undertaken by the Sicilian wax modeller Gaetano Giulio Zumbo and the French surgeon Guillaume Desnoues in the late 17th century. Interest in anatomical wax models spread throughout Europe during the 18th century, first in Bologna with Ercole Lelli, Giovanni Manzolini and Anna Morandi, and then in Florence with Felice Fontana and Clemente Susini. In England, the art of anatomical ceroplastics was brought to London from Florence by the sculptor Joseph Towne. Throughout the centuries many anatomical artists preferred this material due to the remarkable mimetic likeness obtained, far surpassing any other material. Independent of the material used, whether wood, wax or clay, anatomical models were always considered merely craft works confined to hospitals or faculties of medicine and have survived to this day only because of their scientific interest. Italian and English waxes are stylistically different but the remarkable results obtained by Susini and Towne, and the fact that some contemporary artists are again representing anatomical wax bodies in their works, makes the border that formerly separated art and craft indistinguishable. PMID:20002228

  12. Anatomical models and wax Venuses: art masterpieces or scientific craft works?

    PubMed

    Ballestriero, R

    2010-02-01

    The art of wax modelling has an ancient origin but rose to prominence in 14th century Italy with the cult of votive artefacts. With the advent of Neoclassicism this art, now deemed repulsive, continued to survive in a scientific environment, where it flourished in the study of normal and pathological anatomy, obstetrics, zoology and botany. The achievement of having originated the creation of anatomical models in coloured wax must be ascribed to a joint effort undertaken by the Sicilian wax modeller Gaetano Giulio Zumbo and the French surgeon Guillaume Desnoues in the late 17th century. Interest in anatomical wax models spread throughout Europe during the 18th century, first in Bologna with Ercole Lelli, Giovanni Manzolini and Anna Morandi, and then in Florence with Felice Fontana and Clemente Susini. In England, the art of anatomical ceroplastics was brought to London from Florence by the sculptor Joseph Towne. Throughout the centuries many anatomical artists preferred this material due to the remarkable mimetic likeness obtained, far surpassing any other material. Independent of the material used, whether wood, wax or clay, anatomical models were always considered merely craft works confined to hospitals or faculties of medicine and have survived to this day only because of their scientific interest. Italian and English waxes are stylistically different but the remarkable results obtained by Susini and Towne, and the fact that some contemporary artists are again representing anatomical wax bodies in their works, makes the border that formerly separated art and craft indistinguishable.

  13. An anatomical review of spinal cord blood supply.

    PubMed

    Melissano, G; Bertoglio, L; Rinaldi, E; Leopardi, M; Chiesa, R

    2015-10-01

    Knowledge of the spinal cord (SC) vascular supply is important in patients undergoing procedures that involve the thoracic and thoracoabdominal aorta. However, the SC vasculature has a complex anatomy, and teaching is often based only on anatomical sketches with highly variable accuracy; historically, this has required a "leap of faith" on the part of aortic surgeons. Fortunately, this "leap of faith" is no longer necessary given recent breakthroughs in imaging technologies and postprocessing software. Imaging methods have expanded the non-invasive diagnostic ability to determine a patient's SC vascular pattern, particularly in detecting the presence and location of the artery of Adamkiewicz. CT is the imaging modality of choice for most patients with thoracic and thoracoabdominal aortic disease, proving especially useful in the determination of feasibility and planning of endovascular treatment. Thus the data set required for analysis of SC vascular anatomy is usually already available. We have concentrated our efforts on CT angiography, which offers particularly good imaging capabilities with state-of-the-art multidetector scanners. Multidetector row helical CT provides examinations of an extensive range in the craniocaudal direction with thin collimation in a short time interval, giving excellent temporal and spatial resolution. This paper provides examples of the SC vasculature imaging quality that can be obtained with 64 row scanners and appropriate postprocessing. Knowledge of the principal anatomical features of the SC blood supply of individual patients undergoing open or endovascular thoracoabdominal procedures has several potential benefits. For open surgery, analysis of the SC vasculature could tell us the aortic region that feeds the Adamkiewicz artery and thus needs to be reimplanted. For endovascular procedures, we can determine whether the stent-graft will cover the Adamkiewicz artery, thus avoiding unnecessary coverage. CT data can also be used to

  14. Anatomic assessment of sympathetic peri-arterial renal nerves in man.

    PubMed

    Sakakura, Kenichi; Ladich, Elena; Cheng, Qi; Otsuka, Fumiyuki; Yahagi, Kazuyuki; Fowler, David R; Kolodgie, Frank D; Virmani, Renu; Joner, Michael

    2014-08-19

    Although renal sympathetic denervation therapy has shown promising results in patients with resistant hypertension, the human anatomy of peri-arterial renal nerves is poorly understood. The aim of our study was to investigate the anatomic distribution of peri-arterial sympathetic nerves around human renal arteries. Bilateral renal arteries were collected from human autopsy subjects, and peri-arterial renal nerve anatomy was examined by using morphometric software. The ratio of afferent to efferent nerve fibers was investigated by dual immunofluorescence staining using antibodies targeted for anti-tyrosine hydroxylase and anti-calcitonin gene-related peptide. A total of 10,329 nerves were identified from 20 (12 hypertensive and 8 nonhypertensive) patients. The mean individual number of nerves in the proximal and middle segments was similar (39.6 ± 16.7 per section and 39.9 ± 1 3.9 per section), whereas the distal segment showed fewer nerves (33.6 ± 13.1 per section) (p = 0.01). Mean subject-specific nerve distance to arterial lumen was greatest in proximal segments (3.40 ± 0.78 mm), followed by middle segments (3.10 ± 0.69 mm), and least in distal segments (2.60 ± 0.77 mm) (p < 0.001). The mean number of nerves in the ventral region (11.0 ± 3.5 per section) was greater compared with the dorsal region (6.2 ± 3.0 per section) (p < 0.001). Efferent nerve fibers were predominant (tyrosine hydroxylase/calcitonin gene-related peptide ratio 25.1 ± 33.4; p < 0.0001). Nerve anatomy in hypertensive patients was not considerably different compared with nonhypertensive patients. The density of peri-arterial renal sympathetic nerve fibers is lower in distal segments and dorsal locations. There is a clear predominance of efferent nerve fibers, with decreasing prevalence of afferent nerves from proximal to distal peri-arterial and renal parenchyma. Understanding these anatomic patterns is important for refinement of renal denervation procedures. Copyright © 2014

  15. Anatomical exploration of a dicephalous goat kid using sheet plastination (E12).

    PubMed

    Elnady, Fawzy; Sora, Mircea-Constantin

    2009-06-01

    A dicephalous, 1-day-old, female goat kid was presented for anatomical study. Epoxy plastination slices (E12) were used successfully to explore this condition. They provided excellent anatomic and bone detail, demonstrating organ position, shared structures, and vascular anatomy. Sheet plastination (E12) was used as an optimal method to clarify how the two heads were united, especially the neuroanatomy. The plastinated transparent slices allowed detailed study of the anatomical structures, in a non-collapsed and non-dislocated state. Thus, we anatomically explored this rare condition without traditional dissection. The advantages of plastination extended to the preservation at room temperature of this case for further topographical investigation. To the authors' best knowledge, this is the first published report of plastination of a dicephalous goat.

  16. Progressive data transmission for anatomical landmark detection in a cloud.

    PubMed

    Sofka, M; Ralovich, K; Zhang, J; Zhou, S K; Comaniciu, D

    2012-01-01

    In the concept of cloud-computing-based systems, various authorized users have secure access to patient records from a number of care delivery organizations from any location. This creates a growing need for remote visualization, advanced image processing, state-of-the-art image analysis, and computer aided diagnosis. This paper proposes a system of algorithms for automatic detection of anatomical landmarks in 3D volumes in the cloud computing environment. The system addresses the inherent problem of limited bandwidth between a (thin) client, data center, and data analysis server. The problem of limited bandwidth is solved by a hierarchical sequential detection algorithm that obtains data by progressively transmitting only image regions required for processing. The client sends a request to detect a set of landmarks for region visualization or further analysis. The algorithm running on the data analysis server obtains a coarse level image from the data center and generates landmark location candidates. The candidates are then used to obtain image neighborhood regions at a finer resolution level for further detection. This way, the landmark locations are hierarchically and sequentially detected and refined. Only image regions surrounding landmark location candidates need to be trans- mitted during detection. Furthermore, the image regions are lossy compressed with JPEG 2000. Together, these properties amount to at least 30 times bandwidth reduction while achieving similar accuracy when compared to an algorithm using the original data. The hierarchical sequential algorithm with progressive data transmission considerably reduces bandwidth requirements in cloud-based detection systems.

  17. Intraoperative Comparison of Anatomical versus Round Implants in Breast Augmentation: A Randomized Controlled Trial.

    PubMed

    Hidalgo, David A; Weinstein, Andrew L

    2017-03-01

    The purpose of this randomized controlled trial was to determine whether anatomical implants are aesthetically superior to round implants in breast augmentation. Seventy-five patients undergoing primary breast augmentation had a round silicone implant of optimal volume, projection, and diameter placed in one breast and an anatomical silicone device of similar volume and optimal shape placed in the other. After intraoperative photographs were taken, the anatomical device was replaced by a round implant to complete the procedure. A survey designed to measure breast aesthetics was administered to 10 plastic surgeon and 10 lay reviewers for blind evaluation of the 75 cases. No observable difference in breast aesthetics between anatomical and round implants was reported by plastic surgeons in 43.6 percent or by lay individuals in 29.2 percent of cases. When a difference was perceived, neither plastic surgeons nor lay individuals preferred the anatomical side more often than the round side. Plastic surgeons judged the anatomical side superior in 51.1 percent of cases and the round side superior in 48.9 percent of cases (p = 0.496). Lay individuals judged the anatomical side superior in 46.7 percent of cases and the round side superior in 53.3 percent (p = 0.140). Plastic surgeons identified implant shape correctly in only 26.5 percent of cases. This study provides high-level evidence supporting no aesthetic superiority of anatomical over round implants. Given that anatomical implants have important and unique disadvantages, a lack of proven aesthetic superiority argues against their continued use in breast augmentation. Therapeutic, I.

  18. An anatomical study of the transversus nuchae muscle: Application to better understanding occipital neuralgia.

    PubMed

    Watanabe, Koichi; Saga, Tsuyoshi; Iwanaga, Joe; Tabira, Yoko; Yamaki, Koh-Ichi

    2017-01-01

    The transversus nuchae muscle appears inconsistently in the occipital region. It has gained attention as one of the muscles composing the superficial musculoaponeurotic system (SMAS). The purpose of this study was to clarify its detailed anatomical features. We examined 124 sides of 62 cadavers. The transversus nuchae muscle was identified when present and examined after it had been completely exposed. We also examined its relationship to the occipital cutaneous nerves.The transversus nuchae muscle was detected in 40 sides (40/124, 32.2%) of 26 cadavers; it was present bilaterally in 14 and unilaterally in 12. It originated from the external occipital protuberance; 43% of the observed muscles inserted around the mastoid process, and 58% curved upward around the mastoid process and became the uppermost bundle of the platysma. In one case, an additional bundle originated from the lower posterior border of the sternocleidomastoid muscle and coursed obliquely upward along with platysma. Ninety percent of the muscles ran below the sling through which the greater occipital nerve passed; 65% of the lesser occipital nerves ran deep to the muscle, and 55% of the great auricular nerves ran superficial to it. Our observations clarify the unique anatomical features of the transversus nuchae muscle. We found that it occurs at a rate similar to that described in previous reports, but its arrangement is variable. Further investigations will be performed to clarify its innervation and other anatomical features. Clin. Anat. 30:32-38, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  19. A new method to predict anatomical outcome after idiopathic macular hole surgery.

    PubMed

    Liu, Peipei; Sun, Yaoyao; Dong, Chongya; Song, Dan; Jiang, Yanrong; Liang, Jianhong; Yin, Hong; Li, Xiaoxin; Zhao, Mingwei

    2016-04-01

    To investigate whether a new macular hole closure index (MHCI) could predict anatomic outcome of macular hole surgery. A vitrectomy with internal limiting membrane peeling, air-fluid exchange, and gas tamponade were performed on all patients. The postoperative anatomic status of the macular hole was defined by spectral-domain OCT. MHCI was calculated as (M+N)/BASE based on the preoperative OCT status. M and N were the curve lengths of the detached photoreceptor arms, and BASE was the length of the retinal pigment epithelial layer (RPE layer) detaching from the photoreceptors. Postoperative anatomical outcomes were divided into three grades: A (bridge-like closure), B (good closure), and C (poor closure or no closure). Correlation analysis was performed between anatomical outcomes and MHCI. Receiver operating characteristic (ROC) curves were derived for MHCI, indicating good model discrimination. ROC curves were also assessed by the area under the curve, and cut-offs were calculated. Other predictive parameters reported previously, which included the MH minimum, the MH height, the macular hole index (MHI), the diameter hole index (DHI), and the tractional hole index (THI) had been compared as well. MHCI correlated significantly with postoperative anatomical outcomes (r = 0.543, p = 0.000), but other predictive parameters did not. The areas under the curves indicated that MHCI could be used as an effective predictor of anatomical outcome. Cut-off values of 0.7 and 1.0 were obtained for MHCI from ROC curve analysis. MHCI demonstrated a better predictive effect than other parameters, both in the correlation analysis and ROC analysis. MHCI could be an easily measured and accurate predictive index for postoperative anatomical outcomes.

  20. Computer tomographic imaging and anatomic correlation of the human brain: A comparative atlas of thin CT-scan sections and correlated neuro-anatomic preparations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plets, C.; Baert, A.L.; Nijs, G.L.

    1986-01-01

    It is of the greatest importance to the radiologist, the neurologist and the neurosurgeon to be able to localize topographically a pathological brain process on the CT scan as precisely as possible. For that purpose, the identification of as many anatomical structures as possible on the CT scan image are necessary and indispensable. In this atlas a great number of detailed anatomical data on frontal horizontal CT scan sections, each being only 2 mm thick, are indicated, e.g. the cortical gyri, the basal ganglia, details of the white matter, extracranial muscles and blood vessels, parts of the base and themore » vault of the skull, etc. The very precise topographical description of the numerous CT scan images was realized by the author by confrontation of these images with the corresponding anatomical sections of the same brain specimen, performed by an original technique.« less

  1. Structural and Anatomic Restoration of the Anterior Cruciate Ligament Is Associated With Less Cartilage Damage 1 Year After Surgery: Healing Ligament Properties Affect Cartilage Damage

    PubMed Central

    Kiapour, Ata M.; Fleming, Braden C.; Murray, Martha M.

    2017-01-01

    Background: Abnormal joint motion has been linked to joint arthrosis after anterior cruciate ligament (ACL) reconstruction. However, the relationships between the graft properties (ie, structural and anatomic) and extent of posttraumatic osteoarthritis are not well defined. Hypotheses: (1) The structural (tensile) and anatomic (area and alignment) properties of the reconstructed graft or repaired ACL correlate with the total cartilage lesion area 1 year after ACL surgery, and (2) side-to-side differences in anterior-posterior (AP) knee laxity correlate with the total cartilage lesion area 1 year postoperatively. Study Design: Controlled laboratory study. Methods: Sixteen minipigs underwent unilateral ACL transection and were randomly treated with ACL reconstruction or bridge-enhanced ACL repair. The tensile properties, cross-sectional area, and multiplanar alignment of the healing ACL or graft, AP knee laxity, and cartilage lesion areas were assessed 1 year after surgery. Results: In the reconstructed group, the normalized graft yield and maximum failure loads, cross-sectional area, sagittal and coronal elevation angles, and side-to-side differences in AP knee laxity at 60° of flexion were associated with the total cartilage lesion area 1 year after surgery (R 2 > 0.5, P < .04). In the repaired group, normalized ACL yield load, linear stiffness, cross-sectional area, and the sagittal and coronal elevation angles were associated with the total cartilage lesion area (R 2 > 0.5, P < .05). Smaller cartilage lesion areas were observed in the surgically treated knees when the structural and anatomic properties of the ligament or graft and AP laxity values were closer to those of the contralateral ACL-intact knee. Reconstructed grafts had a significantly larger normalized cross-sectional area and sagittal elevation angle (more vertical) when compared with repaired ACLs (P < .02). Conclusion: The tensile properties, cross-sectional area, and multiplanar alignment of the

  2. Anatomical variations within the deep posterior compartment of the leg and important clinical consequences.

    PubMed

    Hislop, M; Tierney, P

    2004-09-01

    The management of musculoskeletal conditions makes up a large part of a sports medicine practitioner's practice. A thorough knowledge of anatomy is an essential component of the armament necessary to decipher the large number of potential conditions that may confront these practitioners. To cloud the issue further, anatomical variations may be present, such as supernumerary muscles, thickened fascial bands or variant courses of nerves and blood vessels, which can themselves manifest as acute or chronic conditions that lead to significant morbidity or limitation of activity. There are a number of contentious areas within the literature surrounding the anatomy of the leg, particularly involving the deep posterior compartment. Conditions such as chronic exertional compartment syndrome, tibial periostitis (shin splints), peripheral nerve entrapment and tarsal tunnel syndrome may all be affected by subtle anatomical variations. This paper primarily focuses on the deep posterior compartment of the leg and uses the gross dissection of cadaveric specimens to describe definitively the anatomy of the deep posterior compartment. Variant fascial attachments of flexor digitorum longus are documented and potential clinical sequelae such as chronic exertional compartment syndrome and tarsal tunnel syndrome are discussed.

  3. Affective blindsight in the absence of input from face processing regions in occipital-temporal cortex.

    PubMed

    Striemer, Christopher L; Whitwell, Robert L; Goodale, Melvyn A

    2017-11-12

    Previous research suggests that the implicit recognition of emotional expressions may be carried out by pathways that bypass primary visual cortex (V1) and project to the amygdala. Some of the strongest evidence supporting this claim comes from case studies of "affective blindsight" in which patients with V1 damage can correctly guess whether an unseen face was depicting a fearful or happy expression. In the current study, we report a new case of affective blindsight in patient MC who is cortically blind following extensive bilateral lesions to V1, as well as face and object processing regions in her ventral visual stream. Despite her large lesions, MC has preserved motion perception which is related to sparing of the motion sensitive region MT+ in both hemispheres. To examine affective blindsight in MC we asked her to perform gender and emotion discrimination tasks in which she had to guess, using a two-alternative forced-choice procedure, whether the face presented was male or female, happy or fearful, or happy or angry. In addition, we also tested MC in a four-alternative forced-choice target localization task. Results indicated that MC was not able to determine the gender of the faces (53% accuracy), or localize targets in a forced-choice task. However, she was able to determine, at above chance levels, whether the face presented was depicting a happy or fearful (67%, p = .006), or a happy or angry (64%, p = .025) expression. Interestingly, although MC was better than chance at discriminating between emotions in faces when asked to make rapid judgments, her performance fell to chance when she was asked to provide subjective confidence ratings about her performance. These data lend further support to the idea that there is a non-conscious visual pathway that bypasses V1 which is capable of processing affective signals from facial expressions without input from higher-order face and object processing regions in the ventral visual stream. Copyright © 2017

  4. Anatomical frame identification and reconstruction for repeatable lower limb joint kinematics estimates.

    PubMed

    Donati, Marco; Camomilla, Valentina; Vannozzi, Giuseppe; Cappozzo, Aurelio

    2008-07-19

    The quantitative description of joint mechanics during movement requires the reconstruction of the position and orientation of selected anatomical axes with respect to a laboratory reference frame. These anatomical axes are identified through an ad hoc anatomical calibration procedure and their position and orientation are reconstructed relative to bone-embedded frames normally derived from photogrammetric marker positions and used to describe movement. The repeatability of anatomical calibration, both within and between subjects, is crucial for kinematic and kinetic end results. This paper illustrates an anatomical calibration approach, which does not require anatomical landmark manual palpation, described in the literature to be prone to great indeterminacy. This approach allows for the estimate of subject-specific bone morphology and automatic anatomical frame identification. The experimental procedure consists of digitization through photogrammetry of superficial points selected over the areas of the bone covered with a thin layer of soft tissue. Information concerning the location of internal anatomical landmarks, such as a joint center obtained using a functional approach, may also be added. The data thus acquired are matched with the digital model of a deformable template bone. Consequently, the repeatability of pelvis, knee and hip joint angles is determined. Five volunteers, each of whom performed five walking trials, and six operators, with no specific knowledge of anatomy, participated in the study. Descriptive statistics analysis was performed during upright posture, showing a limited dispersion of all angles (less than 3 deg) except for hip and knee internal-external rotation (6 deg and 9 deg, respectively). During level walking, the ratio of inter-operator and inter-trial error and an absolute subject-specific repeatability were assessed. For pelvic and hip angles, and knee flexion-extension the inter-operator error was equal to the inter-trial error

  5. Effect of Salinity on Biomass Yield and Physiological and Stem-Root Anatomical Characteristics of Purslane (Portulaca oleracea L.) Accessions

    PubMed Central

    Juraimi, Abdul Shukor; Rafii, M. Y.; Abdul Hamid, Azizah

    2015-01-01

    13 selected purslane accessions were subjected to five salinity levels 0, 8, 16, 24, and 32 dS m−1. Salinity effect was evaluated on the basis of biomass yield reduction, physiological attributes, and stem-root anatomical changes. Aggravated salinity stress caused significant (P < 0.05) reduction in all measured parameters and the highest salinity showed more detrimental effect compared to control as well as lower salinity levels. The fresh and dry matter production was found to increase in Ac1, Ac9, and Ac13 from lower to higher salinity levels but others were badly affected. Considering salinity effect on purslane physiology, increase in chlorophyll content was seen in Ac2, Ac4, Ac6, and Ac8 at 16 dS m−1 salinity, whereas Ac4, Ac9, and Ac12 showed increased photosynthesis at the same salinity levels compared to control. Anatomically, stem cortical tissues of Ac5, Ac9, and Ac12 were unaffected at control and 8 dS m−1 salinity but root cortical tissues did not show any significant damage except a bit enlargement in Ac12 and Ac13. A dendrogram was constructed by UPGMA based on biomass yield and physiological traits where all 13 accessions were grouped into 5 clusters proving greater diversity among them. The 3-dimensional principal component analysis (PCA) has also confirmed the output of grouping from cluster analysis. Overall, salinity stressed among all 13 purslane accessions considering biomass production, physiological growth, and anatomical development Ac9 was the best salt-tolerant purslane accession and Ac13 was the most affected accession. PMID:25802833

  6. Surface mesh to voxel data registration for patient-specific anatomical modeling

    NASA Astrophysics Data System (ADS)

    de Oliveira, Júlia E. E.; Giessler, Paul; Keszei, András.; Herrler, Andreas; Deserno, Thomas M.

    2016-03-01

    Virtual Physiological Human (VPH) models are frequently used for training, planning, and performing medical procedures. The Regional Anaesthesia Simulator and Assistant (RASimAs) project has the goal of increasing the application and effectiveness of regional anesthesia (RA) by combining a simulator of ultrasound-guided and electrical nerve-stimulated RA procedures and a subject-specific assistance system through an integration of image processing, physiological models, subject-specific data, and virtual reality. Individualized models enrich the virtual training tools for learning and improving regional anaesthesia (RA) skills. Therefore, we suggest patient-specific VPH models that are composed by registering the general mesh-based models with patient voxel data-based recordings. Specifically, the pelvis region has been focused for the support of the femoral nerve block. The processing pipeline is composed of different freely available toolboxes such as MatLab, the open Simulation framework (SOFA), and MeshLab. The approach of Gilles is applied for mesh-to-voxel registration. Personalized VPH models include anatomical as well as mechanical properties of the tissues. Two commercial VPH models (Zygote and Anatomium) were used together with 34 MRI data sets. Results are presented for the skin surface and pelvic bones. Future work will extend the registration procedure to cope with all model tissue (i.e., skin, muscle, bone, vessel, nerve, fascia) in a one-step procedure and extrapolating the personalized models to body regions actually being out of the captured field of view.

  7. Anatomical background noise power spectrum in differential phase contrast breast images

    NASA Astrophysics Data System (ADS)

    Garrett, John; Ge, Yongshuai; Li, Ke; Chen, Guang-Hong

    2015-03-01

    In x-ray breast imaging, the anatomical noise background of the breast has a significant impact on the detection of lesions and other features of interest. This anatomical noise is typically characterized by a parameter, β, which describes a power law dependence of anatomical noise on spatial frequency (the shape of the anatomical noise power spectrum). Large values of β have been shown to reduce human detection performance, and in conventional mammography typical values of β are around 3.2. Recently, x-ray differential phase contrast (DPC) and the associated dark field imaging methods have received considerable attention as possible supplements to absorption imaging for breast cancer diagnosis. However, the impact of these additional contrast mechanisms on lesion detection is not yet well understood. In order to better understand the utility of these new methods, we measured the β indices for absorption, DPC, and dark field images in 15 cadaver breast specimens using a benchtop DPC imaging system. We found that the measured β value for absorption was consistent with the literature for mammographic acquisitions (β = 3.61±0.49), but that both DPC and dark field images had much lower values of β (β = 2.54±0.75 for DPC and β = 1.44±0.49 for dark field). In addition, visual inspection showed greatly reduced anatomical background in both DPC and dark field images. These promising results suggest that DPC and dark field imaging may help provide improved lesion detection in breast imaging, particularly for those patients with dense breasts, in whom anatomical noise is a major limiting factor in identifying malignancies.

  8. EUROGIN 2014 roadmap: differences in human papillomavirus infection natural history, transmission and human papillomavirus-related cancer incidence by gender and anatomic site of infection.

    PubMed

    Giuliano, Anna R; Nyitray, Alan G; Kreimer, Aimée R; Pierce Campbell, Christine M; Goodman, Marc T; Sudenga, Staci L; Monsonego, Joseph; Franceschi, Silvia

    2015-06-15

    Human papillomaviruses (HPVs) cause cancer at multiple anatomic sites in men and women, including cervical, oropharyngeal, anal, vulvar and vaginal cancers in women and oropharyngeal, anal and penile cancers in men. In this EUROGIN 2014 roadmap, differences in HPV-related cancer and infection burden by gender and anatomic site are reviewed. The proportion of cancers attributable to HPV varies by anatomic site, with nearly 100% of cervical, 88% of anal and <50% of lower genital tract and oropharyngeal cancers attributable to HPV, depending on world region and prevalence of tobacco use. Often, mirroring cancer incidence rates, HPV prevalence and infection natural history varies by gender and anatomic site of infection. Oral HPV infection is rare and significantly differs by gender; yet, HPV-related cancer incidence at this site is several-fold higher than at either the anal canal or the penile epithelium. HPV seroprevalence is significantly higher among women compared to men, likely explaining the differences in age-specific HPV prevalence and incidence patterns observed by gender. Correspondingly, among heterosexual partners, HPV transmission appears higher from women to men. More research is needed to characterize HPV natural history at each anatomic site where HPV causes cancer in men and women, information that is critical to inform the basic science of HPV natural history and the development of future infection and cancer prevention efforts. © 2014 UICC.

  9. How the distance between regional and human mobility behavior affect the epidemic spreading

    NASA Astrophysics Data System (ADS)

    Wu, Minna; Han, She; Sun, Mei; Han, Dun

    2018-02-01

    The distance between different regions has a lot of impact on the individuals' mobility behavior. Meanwhile, the individuals' mobility could greatly affect the epidemic propagation way. By researching the individuals' mobility behavior, we establish the coupled dynamic model for individual mobility and transmission of infectious disease. The basic reproduction number is theoretically obtained according to the next-generation matrix method. Through this study, we may get that the stability state of the epidemic system will be prolonged under a higher commuting level. The infection density is almost the same in different regions over a sufficiently long time. The results show that, due to the individual movement, the origin of virus can only speed up or delay the outbreak of infectious diseases, however, it have little impact on the final infection size.

  10. Anatomical connections of the visual word form area.

    PubMed

    Bouhali, Florence; Thiebaut de Schotten, Michel; Pinel, Philippe; Poupon, Cyril; Mangin, Jean-François; Dehaene, Stanislas; Cohen, Laurent

    2014-11-12

    The visual word form area (VWFA), a region systematically involved in the identification of written words, occupies a reproducible location in the left occipitotemporal sulcus in expert readers of all cultures. Such a reproducible localization is paradoxical, given that reading is a recent invention that could not have influenced the genetic evolution of the cortex. Here, we test the hypothesis that the VWFA recycles a region of the ventral visual cortex that shows a high degree of anatomical connectivity to perisylvian language areas, thus providing an efficient circuit for both grapheme-phoneme conversion and lexical access. In two distinct experiments, using high-resolution diffusion-weighted data from 75 human subjects, we show that (1) the VWFA, compared with the fusiform face area, shows higher connectivity to left-hemispheric perisylvian superior temporal, anterior temporal and inferior frontal areas; (2) on a posterior-to-anterior axis, its localization within the left occipitotemporal sulcus maps onto a peak of connectivity with language areas, with slightly distinct subregions showing preferential projections to areas respectively involved in grapheme-phoneme conversion and lexical access. In agreement with functional data on the VWFA in blind subjects, the results suggest that connectivity to language areas, over and above visual factors, may be the primary determinant of VWFA localization. Copyright © 2014 the authors 0270-6474/14/3415402-13$15.00/0.

  11. The Benefits and Limitations of Using Ultrasonography to Supplement Anatomical Understanding

    ERIC Educational Resources Information Center

    Sweetman, Greg M.; Crawford, Gail; Hird, Kathryn; Fear, Mark W.

    2013-01-01

    Anatomical understanding is critical to medical education. With reduced teaching time and limited cadaver availability, it is important to investigate how best to utilize in vivo imaging to supplement anatomical understanding and better prepare medical graduates for the proliferation of point-of-care imaging in the future. To investigate whether…

  12. Anatomics: the intersection of anatomy and bioinformatics

    PubMed Central

    Bard, Jonathan BL

    2005-01-01

    Computational resources are now using the tissue names of the major model organisms so that tissue-associated data can be archived in and retrieved from databases on the basis of developing and adult anatomy. For this to be done, the set of tissues in that organism (its anatome) has to be organized in a way that is computer-comprehensible. Indeed, such formalization is a necessary part of what is becoming known as systems biology, in which explanations of high-level biological phenomena are not only sought in terms of lower-level events, but are articulated within a computational framework. Lists of tissue names alone, however, turn out to be inadequate for this formalization because tissue organization is essentially hierarchical and thus cannot easily be put into tables, the natural format of relational databases. The solution now adopted is to organize the anatomy of each organism as a hierarchy of tissue names and linking relationships (e.g. the tibia is PART OF the leg, the tibia IS-A bone) within what are known as ontologies. In these, a unique ID is assigned to each tissue and this can be used within, for example, gene-expression databases to link data to tissue organization, and also used to query other data sources (interoperability), while inferences about the anatomy can be made within the ontology on the basis of the relationships. There are now about 15 such anatomical ontologies, many of which are linked to organism databases; these ontologies are now publicly available at the Open Biological Ontologies website (http://obo.sourceforge.net) from where they can be freely downloaded and viewed using standard tools. This review considers how anatomy is formalized within ontologies, together with the problems that have had to be solved for this to be done. It is suggested that the appropriate term for the analysis, computer formulation and use of the anatome is anatomics. PMID:15679867

  13. Retrieving high-resolution images over the Internet from an anatomical image database

    NASA Astrophysics Data System (ADS)

    Strupp-Adams, Annette; Henderson, Earl

    1999-12-01

    The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.

  14. Renal Tumor Anatomic Complexity: Clinical Implications for Urologists.

    PubMed

    Joshi, Shreyas S; Uzzo, Robert G

    2017-05-01

    Anatomic tumor complexity can be objectively measured and reported using nephrometry. Various scoring systems have been developed in an attempt to correlate tumor complexity with intraoperative and postoperative outcomes. Nephrometry may also predict tumor biology in a noninvasive, reproducible manner. Other scoring systems can help predict surgical complexity and the likelihood of complications, independent of tumor characteristics. The accumulated data in this new field provide provocative evidence that objectifying anatomic complexity can consolidate reporting mechanisms and improve metrics of comparisons. Further prospective validation is needed to understand the full descriptive and predictive ability of the various nephrometry scores. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. TH-E-17A-06: Anatomical-Adaptive Compressed Sensing (AACS) Reconstruction for Thoracic 4-Dimensional Cone-Beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shieh, C; Kipritidis, J; OBrien, R

    2014-06-15

    Purpose: The Feldkamp-Davis-Kress (FDK) algorithm currently used for clinical thoracic 4-dimensional (4D) cone-beam CT (CBCT) reconstruction suffers from noise and streaking artifacts due to projection under-sampling. Compressed sensing theory enables reconstruction of under-sampled datasets via total-variation (TV) minimization, but TV-minimization algorithms such as adaptive-steepest-descent-projection-onto-convex-sets (ASD-POCS) often converge slowly and are prone to over-smoothing anatomical details. These disadvantages can be overcome by incorporating general anatomical knowledge via anatomy segmentation. Based on this concept, we have developed an anatomical-adaptive compressed sensing (AACS) algorithm for thoracic 4D-CBCT reconstruction. Methods: AACS is based on the ASD-POCS framework, where each iteration consists of a TV-minimizationmore » step and a data fidelity constraint step. Prior to every AACS iteration, four major thoracic anatomical structures - soft tissue, lungs, bony anatomy, and pulmonary details - were segmented from the updated solution image. Based on the segmentation, an anatomical-adaptive weighting was applied to the TV-minimization step, so that TV-minimization was enhanced at noisy/streaky regions and suppressed at anatomical structures of interest. The image quality and convergence speed of AACS was compared to conventional ASD-POCS using an XCAT digital phantom and a patient scan. Results: For the XCAT phantom, the AACS image represented the ground truth better than the ASD-POCS image, giving a higher structural similarity index (0.93 vs. 0.84) and lower absolute difference (1.1*10{sup 4} vs. 1.4*10{sup 4}). For the patient case, while both algorithms resulted in much less noise and streaking than FDK, the AACS image showed considerably better contrast and sharpness of the vessels, tumor, and fiducial marker than the ASD-POCS image. In addition, AACS converged over 50% faster than ASD-POCS in both cases. Conclusions: The proposed

  16. Anatomical Data for Analyzing Human Motion.

    ERIC Educational Resources Information Center

    Plagenhoef, Stanley; And Others

    1983-01-01

    Anatomical data obtained from cadavers and from water displacement studies with living subjects were used to determine the weight, center of gravity, and radius of gyration for 16 body segments. A lead model was used to study movement patterns of the trunk section of the body. (Authors/PP)

  17. Two unusual anatomic variations create a diagnostic dilemma in distal ulnar nerve compression.

    PubMed

    Kiehn, Mark W; Derrick, Allison J; Iskandar, Bermans J

    2008-09-01

    Diagnosis of peripheral neuropathies is based upon patterns of functional deficits and electrodiagnostic testing. However, anatomic variations can lead to confounding patterns of physical and electrodiagnostic findings. Authors present a case of ulnar nerve compression due to a rare combination of anatomic variations, aberrant branching pattern, and FCU insertion at the wrist, which posed a diagnostic and therapeutic dilemma. The literature related to isolated distal ulnar motor neuropathy and anatomic variations of the ulnar nerve and adjacent structures is also reviewed. This case demonstrates how anatomic variations can complicate the interpretation of clinical and electrodiagnostic findings and underscores the importance of thorough exploration of the nerve in consideration for possible variations. (c) 2008 Wiley-Liss, Inc.

  18. [Head and neck paragangliomas. Embryological origin and anatomical characteristics: topographic distribution and vascularization pattern].

    PubMed

    Carretero González, José; Blanco Pérez, Pedro; Vázquez Osorio, María Teresa; Benito González, Fernando; Sañudo Tejedo, José Ramón

    2009-02-01

    Paragangliomas are tumors that arise in the extraadrenal paraganglia and result from migration of neural crest cells during embryonic development. Based on their anatomical distribution, innervation and microscopic structure, these tumors can be classified into interrelated families: branchiomeric paraganglia (related to the branchial clefts and arches), intravagal, aortic-sympathetic and visceral-autonomic. Head and neck paragangliomas belong mainly to the first two of these families. The present article is divided into two parts. The first part reviews the embryological origin of these tumors. Special emphasis is placed on the process of neurulation or neural tube formation, neurosegmentation (with a summary of the mechanisms involved in the initial segmentation of the neural tube and of the hindbrain and spinal medulla), and the development of the sensory placodes and secondary inductions in the cranial region. Subsequently, the neural crest is analyzed, with special attention paid to the cranial neural crest. The embryonogenesis of paragangliomas is also described. The second part describes the topographical distribution of head and neck paragangliomas according to their localization: jugulotympanic, orbit, intercarotid, subclavian and laryngeal. The embryonogenesis and most important anatomical characteristics are described for each type.

  19. Chronic ankle instability: Arthroscopic anatomical repair.

    PubMed

    Arroyo-Hernández, M; Mellado-Romero, M; Páramo-Díaz, P; García-Lamas, L; Vilà-Rico, J

    Ankle sprains are one of the most common injuries. Despite appropriate conservative treatment, approximately 20-40% of patients continue to have chronic ankle instability and pain. In 75-80% of cases there is an isolated rupture of the anterior talofibular ligament. A retrospective observational study was conducted on 21 patients surgically treated for chronic ankle instability by means of an arthroscopic anatomical repair, between May 2012 and January 2013. There were 15 men and 6 women, with a mean age of 30.43 years (range 18-48). The mean follow-up was 29 months (range 25-33). All patients were treated by arthroscopic anatomical repair of anterior talofibular ligament. Four (19%) patients were found to have varus hindfoot deformity. Associated injuries were present in 13 (62%) patients. There were 6 cases of osteochondral lesions, 3 cases of posterior ankle impingement syndrome, and 6 cases of peroneal pathology. All these injuries were surgically treated in the same surgical time. A clinical-functional study was performed using the American Orthopaedic Foot and Ankle Society (AOFAS) score. The mean score before surgery was 66.12 (range 60-71), and after surgery it increased up to a mean of 96.95 (range 90-100). All patients were able to return to their previous sport activity within a mean of 21.5 weeks (range 17-28). Complications were found in 3 (14%) patients. Arthroscopic anatomical ligament repair technique has excellent clinical-functional results with a low percentage of complications, and enables patients to return to their previous sport activity within a short period of time. Copyright © 2016 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Correction of partial volume effect in (18)F-FDG PET brain studies using coregistered MR volumes: voxel based analysis of tracer uptake in the white matter.

    PubMed

    Coello, Christopher; Willoch, Frode; Selnes, Per; Gjerstad, Leif; Fladby, Tormod; Skretting, Arne

    2013-05-15

    A voxel-based algorithm to correct for partial volume effect in PET brain volumes is presented. This method (named LoReAn) is based on MRI based segmentation of anatomical regions and accurate measurements of the effective point spread function of the PET imaging process. The objective is to correct for the spill-out of activity from high-uptake anatomical structures (e.g. grey matter) into low-uptake anatomical structures (e.g. white matter) in order to quantify physiological uptake in the white matter. The new algorithm is presented and validated against the state of the art region-based geometric transfer matrix (GTM) method with synthetic and clinical data. Using synthetic data, both bias and coefficient of variation were improved in the white matter region using LoReAn compared to GTM. An increased number of anatomical regions doesn't affect the bias (<5%) and misregistration affects equally LoReAn and GTM algorithms. The LoReAn algorithm appears to be a simple and promising voxel-based algorithm for studying metabolism in white matter regions. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Immediate direct-to-implant breast reconstruction using anatomical implants.

    PubMed

    Kim, Sung-Eun; Jung, Dong-Woo; Chung, Kyu-Jin; Lee, Jun Ho; Kim, Tae Gon; Kim, Yong-Ha; Lee, Soo Jung; Kang, Su Hwan; Choi, Jung Eun

    2014-09-01

    In 2012, a new anatomic breast implant of form-stable silicone gel was introduced onto the Korean market. The intended use of this implant is in the area of aesthetic breast surgery, and many reports are promising. Thus far, however, there have been no reports on the use of this implant for breast reconstruction in Korea. We used this breast implant in breast reconstruction surgery and report our early experience. From November 2012 to April 2013, the Natrelle Style 410 form-stable anatomically shaped cohesive silicone gel-filled breast implant was used in 31 breasts of 30 patients for implant breast reconstruction with an acellular dermal matrix. Patients were treated with skin-sparing mastectomies followed by immediate breast reconstruction. The mean breast resection volume was 240 mL (range, 83-540 mL). The mean size of the breast implants was 217 mL (range, 125-395 mL). Breast shape outcomes were considered acceptable. Infection and skin thinning occurred in one patient each, and hematoma and seroma did not occur. Three cases of wound dehiscence occurred, one requiring surgical intervention, while the others healed with conservative treatment in one month. Rippling did not occur. So far, complications such as capsular contracture and malrotation of breast implant have not yet arisen. By using anatomic breast implants in breast reconstruction, we achieved satisfactory results with aesthetics better than those obtained with round breast implants. Therefore, we concluded that the anatomical implant is suitable for breast reconstruction.

  2. Clinical and radiological outcomes after a quasi-anatomical reconstruction of medial patellofemoral ligament with gracilis tendon autograft.

    PubMed

    Monllau, Joan C; Masferrer-Pino, Àngel; Ginovart, Gerard; Pérez-Prieto, Daniel; Gelber, Pablo E; Sanchis-Alfonso, Vicente

    2017-08-01

    To analyse the clinical and radiological outcomes of a quasi-anatomical reconstruction of the medial patellofemoral ligament (MPFL) with a gracilis tendon autograft. Patients with objective recurrent patellar instability that were operated on from 2006 to 2012 were included. A quasi-anatomical surgical technique was performed using a gracilis tendon autograft. It was anatomically attached at the patella, and the adductor magnus tendon was also used as a pulley for femoral fixation (non-anatomical reconstruction). The IKDC, Kujala and Lysholm scores as well as Tegner and VAS for pain were collected preoperatively and at final follow-up. Radiographic measurements of patellar position tilt and signs of osteoarthritis (OA) as well as trochlear dysplasia were also recorded. Thirty-six patients were included. The mean age at surgery was 25.6 years. After a minimum 27 months of follow-up, all functional scores significantly improved (p < 0.001) with respect to the preoperative values. The VAS dropped from 6 (SD 2.48) to 2 (SD 1.58). No recurrence of dislocation was observed in this series. The apprehension sign was still apparent in one patient. The CT scan evaluation showed a significant decrease in patellar tilt (p < 0.001). On the Crosby and Insall grading scale, there were no changes in the radiological signs of OA. This specific MPFL reconstruction gives good clinical results and corrects patellar tilt. It did not affect the patellofemoral surfaces at the short term, as shown by the absence of radiological signs of OA in the CT scan. The procedure has been shown to be safe and suitable for the treatment of chronic patellar instability, including in adolescents with open physis. A new effective, inexpensive and easy-to-perform technique is described to reconstruct MPFL in the daily clinical practice. Therapeutic case series, Level IV.

  3. Assessment of Anatomical Knowledge and Core Trauma Competency Vascular Skills.

    PubMed

    Granite, Guinevere; Pugh, Kristy; Chen, Hegang; Longinaker, Nyaradzo; Garofalo, Evan; Shackelford, Stacy; Shalin, Valerie; Puche, Adam; Pasley, Jason; Sarani, Babak; Henry, Sharon; Bowyer, Mark; Mackenzie, Colin

    2018-03-01

    Surgical residents express confidence in performing specific vascular exposures before training, but such self-reported confidence did not correlate with co-located evaluator ratings. This study reports residents' self-confidence evaluated before and after Advanced Surgical Skills for Exposure in Trauma (ASSET) cadaver-based training, and 12-18 mo later. We hypothesize that residents will better judge their own skill after ASSET than before when compared with evaluator ratings. Forty PGY2-7 surgical residents performed four procedures: axillary artery (AA), brachial artery (BA), femoral artery exposure and control (FA), and lower extremity fasciotomy (FAS) at the three evaluations. Using 5-point Likert scales, surgeons self-assessed their confidence in anatomical understanding and procedure performance after each procedure and evaluators rated each surgeon accordingly. For all the three evaluations, residents consistently rated their anatomical understanding (p < 0.04) and surgical performance (p < 0.03) higher than evaluators for both FA and FAS. Residents rated their anatomical understanding and surgical performance higher (p < 0.005) than evaluators for BA after training and up to 18 mo later. Only for third AA evaluation were there no rating differences. Residents overrate their anatomical understanding and performance abilities for BA, FA, and FAS even after performing the procedures and being debriefed three times in 18 mo.

  4. An anatomical and functional topography of human auditory cortical areas

    PubMed Central

    Moerel, Michelle; De Martino, Federico; Formisano, Elia

    2014-01-01

    While advances in magnetic resonance imaging (MRI) throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla). Importantly, we illustrate that—whereas a group-based approach to analyze functional (tonotopic) maps is appropriate to highlight the main tonotopic axis—the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e., myelination) as well as of functional properties (e.g., broadness of frequency tuning) is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post-mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions. PMID:25120426

  5. The Anterior Interosseus Artery Perforator Flap: Anatomical Dissections and Clinical Study.

    PubMed

    Panse, Nikhil S; Joshi, Sheetal B; Sahasrabudhe, Parag B; Bahetee, B; Gurude, Pradnya; Chandanwale, Ajay

    2017-05-01

    Reconstruction of upper extremity deformities continues to be a challenge to the reconstructive surgeon. Various loco regional, distant and free flaps are available for reconstruction. However, each has its own set of advantages and disadvantages. Of the commonly performed local flaps, radial artery forearm flap, and the posterior interosseus artery flap stand out prominently. Recently, perforator propeller flaps have been used for resurfacing the upper extremity. The anterior interosseus artery perforator flap is an uncommonly used and described flap. This study was divided into anatomical study and clinical application in a IV level of evidence. In the anatomical study, five upper extremities were studied. Clinically, 12 patients underwent reconstruction using the anterior interosseus artery perforator flap. Flaps were performed by a single surgeon. A retrospective review of these cases from November 2008 to May 2014 is presented. The anterior interosseus artery perforator was identified in four out of five cadaver limbs. The septocutaneous perforator was in the fifth extensor compartment around 4 cm proximal to the wrist joint. Of the twelve flaps, there was complete necrosis in one flap, and partial necrosis in one flap. The patient with complete necrosis underwent skin grafting at a later date. The wound healed secondarily in case of partial flap necrosis. Anterior interosseus artery perforator flap must be considered as an important reconstructive option in the armamentarium of the plastic surgeon, while managing hand and wrist defects.

  6. The Anterior Interosseus Artery Perforator Flap: Anatomical Dissections and Clinical Study

    PubMed Central

    Panse, Nikhil S; Joshi, Sheetal B; Sahasrabudhe, Parag B; Bahetee, B; Gurude, Pradnya; Chandanwale, Ajay

    2017-01-01

    BACKGROUND Reconstruction of upper extremity deformities continues to be a challenge to the reconstructive surgeon. Various loco regional, distant and free flaps are available for reconstruction. However, each has its own set of advantages and disadvantages. Of the commonly performed local flaps, radial artery forearm flap, and the posterior interosseus artery flap stand out prominently. Recently, perforator propeller flaps have been used for resurfacing the upper extremity. The anterior interosseus artery perforator flap is an uncommonly used and described flap. METHODS This study was divided into anatomical study and clinical application in a IV level of evidence. In the anatomical study, five upper extremities were studied. Clinically, 12 patients underwent reconstruction using the anterior interosseus artery perforator flap. Flaps were performed by a single surgeon. A retrospective review of these cases from November 2008 to May 2014 is presented. RESULTS The anterior interosseus artery perforator was identified in four out of five cadaver limbs. The septocutaneous perforator was in the fifth extensor compartment around 4 cm proximal to the wrist joint. Of the twelve flaps, there was complete necrosis in one flap, and partial necrosis in one flap. The patient with complete necrosis underwent skin grafting at a later date. The wound healed secondarily in case of partial flap necrosis. CONCLUSION Anterior interosseus artery perforator flap must be considered as an important reconstructive option in the armamentarium of the plastic surgeon, while managing hand and wrist defects. PMID:28713704

  7. The constant region affects antigen binding of antibodies to DNA by altering secondary structure.

    PubMed

    Xia, Yumin; Janda, Alena; Eryilmaz, Ertan; Casadevall, Arturo; Putterman, Chaim

    2013-11-01

    We previously demonstrated an important role of the constant region in the pathogenicity of anti-DNA antibodies. To determine the mechanisms by which the constant region affects autoantibody binding, a panel of isotype-switch variants (IgG1, IgG2a, IgG2b) was generated from the murine PL9-11 IgG3 autoantibody. The affinity of the PL9-11 antibody panel for histone was measured by surface plasmon resonance (SPR). Tryptophan fluorescence was used to determine wavelength shifts of the antibody panel upon binding to DNA and histone. Finally, circular dichroism spectroscopy was used to measure changes in secondary structure. SPR analysis revealed significant differences in histone binding affinity between members of the PL9-11 panel. The wavelength shifts of tryptophan fluorescence emission were found to be dependent on the antibody isotype, while circular dichroism analysis determined that changes in antibody secondary structure content differed between isotypes upon antigen binding. Thus, the antigen binding affinity is dependent on the particular constant region expressed. Moreover, the effects of antibody binding to antigen were also constant region dependent. Alteration of secondary structures influenced by constant regions may explain differences in fine specificity of anti-DNA antibodies between antibodies with similar variable regions, as well as cross-reactivity of anti-DNA antibodies with non-DNA antigens. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Correlation between the distribution of 3H-labelled enkephalin in rat brain and the anatomical regions involved in enkephalin-induced seizures.

    PubMed

    Haffmans, J; Blankwater, Y J; Ukponmwan, O E; Zijlstra, F J; Vincent, J E; Hespe, W; Dzoljic, M R

    1983-08-01

    The correlation between the distribution of the intraventricularly (i.v.t.) administered delta agonist [3H](D-ala2,D-leu5)-enkephalin ([3H]DADL) and the anatomical regions involved in enkephalin-induced seizures has been studied in rat by using an autoradiographic method and recording of the electromyogram (EMG) and the electroencephalogram (EEG). The results indicate that within 10 min, the radioactivity of the intraventricularly administered drug reached all parts of the ventricular system, including the central canal of the spinal cord. However, within 2.5 min after the intraventricular administration of [3H]DADL, which corresponds to the onset of DADL-induced seizures, the substance appeared mainly in the left lateral ventricle and occasionally in the third ventricle. During the first 2.5 min the substance penetrated regularly into the surrounding periventricular tissue of the striatum, septum and hippocampus to a depth of about 100 microns. The most intensive and long-lasting epileptic discharges, exceeding 30 min were observed in the hippocampus, in contrast to the mild and short-lasting electrophysiological responses of the septum and corpus striatum. The experiments suggest that the short onset of enkephalin-induced excitatory phenomena is due to the rapid distribution and penetration of the substance in the surrounding periventricular tissue. According to these data, it is proposed that activation of delta opiate receptors, localized within the first 100 microns of the periventricular tissue, mainly in the hippocampus, is essential for the triggering of endorphin-induced seizure activity.

  9. The maxillary second molar - anatomical variations (case report).

    PubMed

    Beshkenadze, E; Chipashvili, N

    2015-01-01

    To be acquainted with dental anatomical specificity is of great importance for dental endodontic treatment algorithm. The subject of present publication is 2 clinical cases of upper second molars, detailed characterization of, which is considered very important for enrichment of anatomical knowledge about dental anatomical variations. In one case, the reason for admission to the clinic of a 38-year-old woman was complains as of esthetic character as well as functional misbalance (disturbance of chewing function due to the damage of orthopedic construction). The patient indicated to the existence of coronary defects of large size aesthetic discomforts, damage and discolouration of old orthopedic construction (denture) in maxillary right molar area. According to the data obtained after clinical and visiographical examinations, chronic periodontitis of 17 teeth was identified as a result of incomplete endodontic treatment. According to the data obtained after clinical and visiographical examinations, the diagnosis of chronic periodontitis of 17 teeth was identified, tooth 17 with 2 roots and 2 canals. In the second clinical case, the reason for admission to the clinic of a 39-year-old woman was severe pain in the upper right molar area. The patient indicated to the caries on the tooth 17. After completion of proper survey clinical and visiographical examinations, acute pulpitis (K04.00) - with three roots and 4 canals was diagnosed. In both cases after the proper examinations and agreement with the patients a treatment plan envisaging: 17 teeth endodontic treatment, filling of caries defects and their preparation on one hand for orthopedic construction (denture) and on the other hand for restoration of anatomical integrity by light-cured composite, was scheduled. The present study is designed to prevent complications of endodontic treatment of the second molar, to optimize diagnosis and treatment algorithm, once again proving reliable information indicating to the

  10. Safe Corridor to Access Clivus for Endoscopic Trans-Sphenoidal Surgery: A Radiological and Anatomical Study

    PubMed Central

    Cheng, Ye; Zhang, Siwen; Chen, Yong; Zhao, Gang

    2015-01-01

    Purpose Penetration of the clivus is required for surgical access of the brain stem. The endoscopic transclivus approach is a difficult procedure with high risk of injury to important neurovascular structures. We undertook a novel anatomical and radiological investigation to understand the structure of the clivus and neurovascular structures relevant to the extended trans-nasal trans-sphenoid procedure and determine a safe corridor for the penetration of the clivus. Method We examined the clivus region in the computed tomographic angiography (CTA) images of 220 adults, magnetic resonance (MR) images of 50 adults, and dry skull specimens of 10 adults. Multiplanar reconstruction (MPR) of the CT images was performed, and the anatomical features of the clivus were studied in the coronal, sagittal, and axial planes. The data from the images were used to determine the anatomical parameters of the clivus and neurovascular structures, such as the internal carotid artery and inferior petrosal sinus. Results The examination of the CTA and MR images of the enrolled subjects revealed that the thickness of the clivus helped determine the depth of the penetration, while the distance from the sagittal midline to the important neurovascular structures determined the width of the penetration. Further, data from the CTA and MR images were consistent with those retrieved from the examination of the cadaveric specimens. Conclusion Our findings provided certain pointers that may be useful in guiding the surgery such that inadvertent injury to vital structures is avoided and also provided supportive information for the choice of the appropriate endoscopic equipment. PMID:26368821

  11. TU-F-CAMPUS-I-01: Investigation of the Effective Dose From Bolus Tracking Acquisitions at Different Anatomical Locations in the Chest for CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nowik, P; Bujila, R; Merzan, D

    2015-06-15

    Purpose: Stationary table acquisitions (Bolus tracking) in X-ray Computed Tomography (CT) can Result in dose length products (DLP) comparable to spiral scans. It is today unclear whether or not the effective dose (E) for Bolus Tracking can be approximated using target region specific conversion factors (E/DLP). The purpose of this study was to investigate how E depends on the anatomical location of the Bolus Tracking in relation to Chest CT scans with the same DLP. Methods: Effective doses were approximated for the ICRP 110 adult Reference Male (AM) and adult Reference Female (FM) computational voxel phantoms using software for CTmore » dose approximations (pre-simulated MC data). The effective dose was first approximated for a Chest CT scan using spiral technique and a CTDIvol (32 cm) of 6 mGy. The effective dose from the spiral scan was then compared to E approximated for contiguous Bolus Tracking acquisitions (1 cm separation), with a total collimation of 1 cm, over different locations of the chest of the voxel phantoms. The number of rotations used for the Bolus Tracking acquisitions was adjusted to yield the same DLP (32 cm) as the spiral scan. Results: Depending on the anatomical location of the Bolus Tracking, E ranged by factors of 1.3 to 6.8 for the AM phantom and 1.4 to 3.3 for the AF phantom, compared to the effective dose of the spiral scans. The greatest E for the Bolus Tracking acquisitions was observed for anatomical locations coinciding with breast tissue. This can be expected as breast tissue has a high tissue weighting factor in the calculation of E. Conclusion: For Chest CT scans, the effective dose from Bolus Tracking is highly dependent on the anatomical location where the scan is administered and will not always accurately be represented using target region specific conversion factors.« less

  12. Anatomic pathology laboratory information systems: a review.

    PubMed

    Park, Seung Lyung; Pantanowitz, Liron; Sharma, Gaurav; Parwani, Anil Vasdev

    2012-03-01

    The modern anatomic pathology laboratory depends on a reliable information infrastructure to register specimens, record gross and microscopic findings, regulate laboratory workflow, formulate and sign out report(s), disseminate them to the intended recipients across the whole health system, and support quality assurance measures. This infrastructure is provided by the Anatomical Pathology Laboratory Information Systems (APLIS), which have evolved over decades and now are beginning to support evolving technologies like asset tracking and digital imaging. As digital pathology transitions from "the way of the future" to "the way of the present," the APLIS continues to be one of the key effective enablers of the scope and practice of pathology. In this review, we discuss the evolution, necessary components, architecture and functionality of the APLIS that are crucial to today's practicing pathologist and address the demands of emerging trends on the future APLIS.

  13. Estimating anatomical wrist joint motion with a robotic exoskeleton.

    PubMed

    Rose, Chad G; Kann, Claudia K; Deshpande, Ashish D; O'Malley, Marcia K

    2017-07-01

    Robotic exoskeletons can provide the high intensity, long duration targeted therapeutic interventions required for regaining motor function lost as a result of neurological injury. Quantitative measurements by exoskeletons have been proposed as measures of rehabilitative outcomes. Exoskeletons, in contrast to end effector designs, have the potential to provide a direct mapping between human and robot joints. This mapping rests on the assumption that anatomical axes and robot axes are aligned well, and that movement within the exoskeleton is negligible. These assumptions hold well for simple one degree-of-freedom joints, but may not be valid for multi-articular joints with unique musculoskeletal properties such as the wrist. This paper presents an experiment comparing robot joint kinematic measurements from an exoskeleton to anatomical joint angles measured with a motion capture system. Joint-space position measurements and task-space smoothness metrics were compared between the two measurement modalities. The experimental results quantify the error between joint-level position measurements, and show that exoskeleton kinematic measurements preserve smoothness characteristics found in anatomical measures of wrist movements.

  14. Anatomical variations of uncinate process observed in chronic sinusitis.

    PubMed

    Tuli, Isha Preet; Sengupta, Subhabrata; Munjal, Sudeep; Kesari, Santosh Prasad; Chakraborty, Suvamoy

    2013-04-01

    Chronic Sinusitis, an extremely persistent illness, is surgically best treated by Functional Endoscopic Sinus Surgery. The ostiomeatal complex is the main area targeted and within it uncinate process is the first anatomical structure encountered. The significance of anatomical variations concerning age and sex of uncinate process in chronic sinusitis were evaluated. A prospective study on 50 patients of chronic sinusitis (100 uncinate processes) was done. The results were tabulated and analyzed using Statistical Package for Social Science (SPSS) 16.0. Type I superior attachment of uncinate process (67 %) was the most common variety in all ages and both sexes and a statistically significant relationship between Type I superior attachment of uncinate process and sex was found (p < 0.05). The typical uncinate process was most common (70 %) followed by medial deviation of the uncinate (24 %). This difference in occurrence was significant with respect to both age and sex (p < 0.05). Anatomical variations of uncinate process are not responsible for causing chronic sinusitis. Mere presence of these variations of uncinate is not an indication for FESS.

  15. Prevalence and anatomic characteristics of infarct-like lesions on MR images of middle-aged adults: the atherosclerosis risk in communities study.

    PubMed

    Bryan, R N; Cai, J; Burke, G; Hutchinson, R G; Liao, D; Toole, J F; Dagher, A P; Cooper, L

    1999-08-01

    MR imaging has revealed putative evidence of subclinical cerebrovascular disease (CVD) as reflected by white matter signal changes and infarct-like lesions (ILLs). Nonetheless, the prevalence of this condition in the general population has been defined only to a limited extent. We herein report the prevalence and anatomic characteristics of ILLs seen on cranial MR images obtained as part of a population-based study of cardiovascular disease in middle-aged adults. These results are contrasted to those of previous similar studies, particularly those of an elderly population in the Cardiovascular Health Study (CHS). This Atherosclerosis Risk in Communities (ARIC) cohort consists of a probability sample of community-living persons who were 55 to 72 years old at the time of MR examination. MR imaging of 1890 participants was performed at two ARIC field centers, based on a common protocol. MR studies were evaluated by trained readers at the MR Reading Center using original digital data displayed on a high-resolution workstation. The measures of lesion size, anatomic location, and signal intensity were collected. The definition for an ILL was a non-mass, hyperintense region with an arterial vascular distribution on spin-density and T2-weighted images. Two hundred ninety participants had ILLs, for an overall prevalence of 15.3%. Eighty-two percent of participants with ILLs had lesions that were 3 mm or larger in maximal dimension, although 87% of these lesions were 20 mm or smaller in maximal dimension. The prevalence of ILLs increased with age, from 7.9% in the 55- to 59-year-old age group to 22.9% in the 65- to 72-year-old age group (P < .001). Lesion prevalence was greater in black (20.7%) than in white persons (10.2% [P < .0001]), but did not differ significantly between male and female participants. The basal ganglia and thalamic region was the most commonly affected anatomic site, accounting for 78.9% of the lesions. Considering that the prevalence of self

  16. Development of a patient-specific anatomical foot model from structured light scan data.

    PubMed

    Lochner, Samuel J; Huissoon, Jan P; Bedi, Sanjeev S

    2014-01-01

    The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle-foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.

  17. Multi-region statistical shape model for cochlear implantation

    NASA Astrophysics Data System (ADS)

    Romera, Jordi; Kjer, H. Martin; Piella, Gemma; Ceresa, Mario; González Ballester, Miguel A.

    2016-03-01

    Statistical shape models are commonly used to analyze the variability between similar anatomical structures and their use is established as a tool for analysis and segmentation of medical images. However, using a global model to capture the variability of complex structures is not enough to achieve the best results. The complexity of a proper global model increases even more when the amount of data available is limited to a small number of datasets. Typically, the anatomical variability between structures is associated to the variability of their physiological regions. In this paper, a complete pipeline is proposed for building a multi-region statistical shape model to study the entire variability from locally identified physiological regions of the inner ear. The proposed model, which is based on an extension of the Point Distribution Model (PDM), is built for a training set of 17 high-resolution images (24.5 μm voxels) of the inner ear. The model is evaluated according to its generalization ability and specificity. The results are compared with the ones of a global model built directly using the standard PDM approach. The evaluation results suggest that better accuracy can be achieved using a regional modeling of the inner ear.

  18. Advertising cadavers in the republic of letters: anatomical publications in the early modern Netherlands.

    PubMed

    Margócsy, Dániel

    2009-06-01

    This paper sketches how late seventeenth-century Dutch anatomists used printed publications to advertise their anatomical preparations, inventions and instructional technologies to an international clientele. It focuses on anatomists Frederik Ruysch (1638-1732) and Lodewijk de Bils (1624-69), inventors of two separate anatomical preparation methods for preserving cadavers and body parts in a lifelike state for decades or centuries. Ruysch's and de Bils's publications functioned as an 'advertisement' for their preparations. These printed volumes informed potential customers that anatomical preparations were aesthetically pleasing and scientifically important but did not divulge the trade secrets of the method of production. Thanks to this strategy of non-disclosure and advertisement, de Bils and Ruysch could create a well-working monopoly market of anatomical preparations. The 'advertising' rhetorics of anatomical publications highlight the potential dangers of equating the growth of print culture with the development of an open system of knowledge exchange.

  19. Gross feature recognition of Anatomical Images based on Atlas grid (GAIA): Incorporating the local discrepancy between an atlas and a target image to capture the features of anatomic brain MRI.

    PubMed

    Qin, Yuan-Yuan; Hsu, Johnny T; Yoshida, Shoko; Faria, Andreia V; Oishi, Kumiko; Unschuld, Paul G; Redgrave, Graham W; Ying, Sarah H; Ross, Christopher A; van Zijl, Peter C M; Hillis, Argye E; Albert, Marilyn S; Lyketsos, Constantine G; Miller, Michael I; Mori, Susumu; Oishi, Kenichi

    2013-01-01

    We aimed to develop a new method to convert T1-weighted brain MRIs to feature vectors, which could be used for content-based image retrieval (CBIR). To overcome the wide range of anatomical variability in clinical cases and the inconsistency of imaging protocols, we introduced the Gross feature recognition of Anatomical Images based on Atlas grid (GAIA), in which the local intensity alteration, caused by pathological (e.g., ischemia) or physiological (development and aging) intensity changes, as well as by atlas-image misregistration, is used to capture the anatomical features of target images. As a proof-of-concept, the GAIA was applied for pattern recognition of the neuroanatomical features of multiple stages of Alzheimer's disease, Huntington's disease, spinocerebellar ataxia type 6, and four subtypes of primary progressive aphasia. For each of these diseases, feature vectors based on a training dataset were applied to a test dataset to evaluate the accuracy of pattern recognition. The feature vectors extracted from the training dataset agreed well with the known pathological hallmarks of the selected neurodegenerative diseases. Overall, discriminant scores of the test images accurately categorized these test images to the correct disease categories. Images without typical disease-related anatomical features were misclassified. The proposed method is a promising method for image feature extraction based on disease-related anatomical features, which should enable users to submit a patient image and search past clinical cases with similar anatomical phenotypes.

  20. [Persian terminology in Arabic anatomical texts].

    PubMed

    Barcia Goyanes, J J

    1995-01-01

    The article explains the meaning of some Iranian technical words, which appear in anatomical Arab works. They are interesting, not only because they are nearly unknown, but also because they are evidence of the influence of Iranian culture on the rise of Arabian scientific medicine, and so an encouragement to further investigation on this subject.

  1. Swept-source anatomic optical coherence elastography of porcine trachea

    NASA Astrophysics Data System (ADS)

    Bu, Ruofei; Price, Hillel; Mitran, Sorin; Zdanski, Carlton; Oldenburg, Amy L.

    2016-02-01

    Quantitative endoscopic imaging is at the vanguard of novel techniques in the assessment upper airway obstruction. Anatomic optical coherence tomography (aOCT) has the potential to provide the geometry of the airway lumen with high-resolution and in 4 dimensions. By coupling aOCT with measurements of pressure, optical coherence elastography (OCE) can be performed to characterize airway wall stiffness. This can aid in identifying regions of dynamic collapse as well as informing computational fluid dynamics modeling to aid in surgical decision-making. Toward this end, here we report on an anatomic optical coherence tomography (aOCT) system powered by a wavelength-swept laser source. The system employs a fiber-optic catheter with outer diameter of 0.82 mm deployed via the bore of a commercial, flexible bronchoscope. Helical scans are performed to measure the airway geometry and to quantify the cross-sectional-area (CSA) of the airway. We report on a preliminary validation of aOCT for elastography, in which aOCT-derived CSA was obtained as a function of pressure to estimate airway wall compliance. Experiments performed on a Latex rubber tube resulted in a compliance measurement of 0.68+/-0.02 mm2/cmH2O, with R2=0.98 over the pressure range from 10 to 40 cmH2O. Next, ex vivo porcine trachea was studied, resulting in a measured compliance from 1.06+/-0.12 to 3.34+/-0.44 mm2/cmH2O, (R2>0.81). The linearity of the data confirms the elastic nature of the airway. The compliance values are within the same order-of-magnitude as previous measurements of human upper airways, suggesting that this system is capable of assessing airway wall compliance in future human studies.

  2. Fast correspondences search in anatomical trees

    NASA Astrophysics Data System (ADS)

    dos Santos, Thiago R.; Gergel, Ingmar; Meinzer, Hans-Peter; Maier-Hein, Lena

    2010-03-01

    Registration of multiple medical images commonly comprises the steps feature extraction, correspondences search and transformation computation. In this paper, we present a new method for a fast and pose independent search of correspondences using as features anatomical trees such as the bronchial system in the lungs or the vessel system in the liver. Our approach scores the similarities between the trees' nodes (bifurcations) taking into account both, topological properties extracted from their graph representations and anatomical properties extracted from the trees themselves. The node assignment maximizes the global similarity (sum of the scores of each pair of assigned nodes), assuring that the matches are distributed throughout the trees. Furthermore, the proposed method is able to deal with distortions in the data, such as noise, motion, artifacts, and problems associated with the extraction method, such as missing or false branches. According to an evaluation on swine lung data sets, the method requires less than one second on average to compute the matching and yields a high rate of correct matches compared to state of the art work.

  3. [An anatomical wax of the deep structures of the pelvic limb (by Tramond, 19th century): observation of the tridimensional photographic rotation].

    PubMed

    Cazenoves, A; Le Floch-Prigent, P

    2011-06-01

    Anatomical wax modelling was widely used during the 19(th) century, especially in France and Italy. In Paris, The Tramond house was specialized in the realization of this kind of samples. The sample was placed on two large horizontal marble disks, rotating every 5°. We could then describe the sample, verify its anatomical accuracy and also perform a virtual reconstruction with Quick Time Reality QTVR(®) software. The muscular, nervous and arterial elements were represented. We divided the description in three parts: (1) lumbar, pelvic and femoral; (2) femoro-tibial; and (3) tibio-tarsian. We focused the anatomical description on the sciatic nerve; on the organization of the muscles of the gluteal region and the neurovascular organization; and on arterial segmentation. This sample was getting damaged with time, noticeably the representation of the nerves, which are very thin and so, very fragile. Nowadays, 3D representation of the dissected human body is more common, with new techniques such as plastination (Von Hagen's type), which allows one to preserve all the anatomical elements of the subject. This paper and the realization of the virtual museum also aim to participate in a work memory, which recognize the knowledge of the anatomist of wax makers, their teaching quality remained unequalled as their obvious artistical value. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Cervical extraforaminal ligaments: an anatomical study.

    PubMed

    Arslan, Mehmet; Açar, Halil İbrahim; Cömert, Ayhan

    2017-12-01

    The purpose of this study was to elucidate the anatomy and clinical importance of extraforaminal ligaments in the cervical region. This study was performed on eight embalmed cadavers. The existence and types of extraforaminal ligaments were identified. The morphology, quantity, origin, insertion, and orientation of the extraforaminal ligaments in the cervical region were observed. Extraforaminal ligaments could be divided into two types: transforaminal ligaments and radiating ligaments. It was observed that during their course, transforaminal ligaments cross the intervertebral foramen ventrally. They usually originate from the anteroinferior margin of the anterior tubercle of the cranial transverse process and insert into the superior margin of the anterior tubercle of the caudal transverse process. The dorsal aspect of the transforaminal ligaments adhere loosely to the spinal nerve sheath. The length, width and thickness of these ligaments increased from the cranial to the caudal direction. A single intervertebral foramen contained at least one transforaminal ligament. A total of 98 ligaments in 96 intervertebral foramina were found. The spinal nerves were extraforaminally attached to neighboring anterior and posterior tubercle of the cervical transverse process by the radiating ligaments. The radiating ligaments consisted of the ventral superior, ventral, ventral inferior, dorsal superior and dorsal inferior radiating ligaments. Radiating ligaments originated from the adjacent transverse processes and inserted into the nerve root sheath. The spinal nerve was held like the hub of a wheel by a series of radiating ligaments. The dorsal ligaments were the thickest. From C2-3 to C6-7 at the cervical spine, radiating ligaments were observed. They developed particularly at the level of the C5-C6 intervertebral foramen. This anatomic study may provide a better understanding of the relationship of the extraforaminal ligaments to the cervical nerve root.

  5. Factors Affecting Regional Per-Capita Carbon Emissions in China Based on an LMDI Factor Decomposition Model

    PubMed Central

    Dong, Feng; Long, Ruyin; Chen, Hong; Li, Xiaohui; Yang, Qingliang

    2013-01-01

    China is considered to be the main carbon producer in the world. The per-capita carbon emissions indicator is an important measure of the regional carbon emissions situation. This study used the LMDI factor decomposition model–panel co-integration test two-step method to analyze the factors that affect per-capita carbon emissions. The main results are as follows. (1) During 1997, Eastern China, Central China, and Western China ranked first, second, and third in the per-capita carbon emissions, while in 2009 the pecking order changed to Eastern China, Western China, and Central China. (2) According to the LMDI decomposition results, the key driver boosting the per-capita carbon emissions in the three economic regions of China between 1997 and 2009 was economic development, and the energy efficiency was much greater than the energy structure after considering their effect on restraining increased per-capita carbon emissions. (3) Based on the decomposition, the factors that affected per-capita carbon emissions in the panel co-integration test showed that Central China had the best energy structure elasticity in its regional per-capita carbon emissions. Thus, Central China was ranked first for energy efficiency elasticity, while Western China was ranked first for economic development elasticity. PMID:24353753

  6. Factors affecting regional per-capita carbon emissions in China based on an LMDI factor decomposition model.

    PubMed

    Dong, Feng; Long, Ruyin; Chen, Hong; Li, Xiaohui; Yang, Qingliang

    2013-01-01

    China is considered to be the main carbon producer in the world. The per-capita carbon emissions indicator is an important measure of the regional carbon emissions situation. This study used the LMDI factor decomposition model-panel co-integration test two-step method to analyze the factors that affect per-capita carbon emissions. The main results are as follows. (1) During 1997, Eastern China, Central China, and Western China ranked first, second, and third in the per-capita carbon emissions, while in 2009 the pecking order changed to Eastern China, Western China, and Central China. (2) According to the LMDI decomposition results, the key driver boosting the per-capita carbon emissions in the three economic regions of China between 1997 and 2009 was economic development, and the energy efficiency was much greater than the energy structure after considering their effect on restraining increased per-capita carbon emissions. (3) Based on the decomposition, the factors that affected per-capita carbon emissions in the panel co-integration test showed that Central China had the best energy structure elasticity in its regional per-capita carbon emissions. Thus, Central China was ranked first for energy efficiency elasticity, while Western China was ranked first for economic development elasticity.

  7. Mobilization of the rectum: anatomic concepts and the bookshelf revisited.

    PubMed

    Chapuis, Pierre; Bokey, Les; Fahrer, Marius; Sinclair, Gael; Bogduk, Nikolai

    2002-01-01

    Sound surgical technique is based on accurate anatomic knowledge. In surgery for cancer, the anatomy of the perirectal fascia and the retrorectal plane is the basis for correct mobilization of the rectum to ensure clear surgical margins and to minimize the risk of local recurrence. This review of the literature on the perirectal fascia is based on a translation of the original description by Thoma Jonnesco and a later account by Wilhelm Waldeyer. The Jonnesco description, first published in 1896 in French, is compared with the German account of 1899. These were critically analyzed in the context of our own and other techniques of mobilizing the rectum. Mobilization of the rectum for cancer can be performed along anatomic planes with minimal blood loss, preservation of the pelvic autonomic nerves and a low prevalence of local recurrence. Different techniques including total mesorectal excision are based on the same anatomic principles, however, popular words have been used to replace accepted, established terminology. In particular, the description of total mesorectal excision has been confusing because of its emphasis on the words "total" and "mesorectum." The use of the word "mesorectum" anatomically is inaccurate and the implication that total excision of all the perirectal fat contained within the perirectal fascia "en bloc" in all patients with rectal cancer will minimize local recurrence remains contentious.

  8. Validation and detection of vessel landmarks by using anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Beck, Thomas; Bernhardt, Dominik; Biermann, Christina; Dillmann, Rüdiger

    2010-03-01

    The detection of anatomical landmarks is an important prerequisite to analyze medical images fully automatically. Several machine learning approaches have been proposed to parse 3D CT datasets and to determine the location of landmarks with associated uncertainty. However, it is a challenging task to incorporate high-level anatomical knowledge to improve these classification results. We propose a new approach to validate candidates for vessel bifurcation landmarks which is also applied to systematically search missed and to validate ambiguous landmarks. A knowledge base is trained providing human-readable geometric information of the vascular system, mainly vessel lengths, radii and curvature information, for validation of landmarks and to guide the search process. To analyze the bifurcation area surrounding a vessel landmark of interest, a new approach is proposed which is based on Fast Marching and incorporates anatomical information from the knowledge base. Using the proposed algorithms, an anatomical knowledge base has been generated based on 90 manually annotated CT images containing different parts of the body. To evaluate the landmark validation a set of 50 carotid datasets has been tested in combination with a state of the art landmark detector with excellent results. Beside the carotid bifurcation the algorithm is designed to handle a wide range of vascular landmarks, e.g. celiac, superior mesenteric, renal, aortic, iliac and femoral bifurcation.

  9. Algorithms for bioluminescence tomography incorporating anatomical information and reconstruction of tissue optical properties

    PubMed Central

    Naser, Mohamed A.; Patterson, Michael S.

    2010-01-01

    Reconstruction algorithms are presented for a two-step solution of the bioluminescence tomography (BLT) problem. In the first step, a priori anatomical information provided by x-ray computed tomography or by other methods is used to solve the continuous wave (cw) diffuse optical tomography (DOT) problem. A Taylor series expansion approximates the light fluence rate dependence on the optical properties of each region where first and second order direct derivatives of the light fluence rate with respect to scattering and absorption coefficients are obtained and used for the reconstruction. In the second step, the reconstructed optical properties at different wavelengths are used to calculate the Green’s function of the system. Then an iterative minimization solution based on the L1 norm shrinks the permissible regions where the sources are allowed by selecting points with higher probability to contribute to the source distribution. This provides an efficient BLT reconstruction algorithm with the ability to determine relative source magnitudes and positions in the presence of noise. PMID:21258486

  10. Haemodynamic and anatomic progression of aortic stenosis.

    PubMed

    Nguyen, Virginia; Cimadevilla, Claire; Estellat, Candice; Codogno, Isabelle; Huart, Virginie; Benessiano, Joelle; Duval, Xavier; Pibarot, Philippe; Clavel, Marie Annick; Enriquez-Sarano, Maurice; Vahanian, Alec; Messika-Zeitoun, David

    2015-06-01

    Aortic valve stenosis (AS) is a progressive disease, but the impact of baseline AS haemodynamic or anatomic severity on AS progression remains unclear. In 149 patients (104 mild AS, 36 moderate AS and 9 severe AS) enrolled in 2 ongoing prospective cohorts (COFRASA/GENERAC), we evaluated AS haemodynamic severity at baseline and yearly, thereafter, using echocardiography (mean pressure gradient (MPG)) and AS anatomic severity using CT (degree of aortic valve calcification (AVC)). After a mean follow-up of 2.9±1.0 years, mean MGP increased from 22±11 to 30±16 mm Hg (+3±3 mm Hg/year), and mean AVC from 1108±891 to 1640±1251 AU (arbitrary units) (+188±176 AU/year). Progression of AS was strongly related to baseline haemodynamic severity (+2±3 mm Hg/year in mild AS, +4±3 mm Hg/year in moderate AS and +5±5 mm Hg/year in severe AS (p=0.01)), and baseline haemodynamic severity was an independent predictor of haemodynamic progression (p=0.0003). Annualised haemodynamic and anatomic progression rates were significantly correlated (r=0.55, p<0.0001), but AVC progression rate was also significantly associated with baseline haemodynamic severity (+141±133 AU/year in mild AS, +279±189 AU/year in moderate AS and +361±293 AU/year in severe AS, p<0.0001), and both baseline MPG and baseline AVC were independent determinants of AVC progression (p<0.0001). AS progressed faster with increasing haemodynamic or anatomic severity. Our results suggest that a medical strategy aimed at preventing AVC progression may be useful in all subsets of patients with AS including those with severe AS and support the recommended closer follow-up of patients with AS as AS severity increases. COFRASA (clinicalTrial.gov number NCT 00338676) and GENERAC (clinicalTrial.gov number NCT00647088). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Predicting human age using regional morphometry and inter-regional morphological similarity

    NASA Astrophysics Data System (ADS)

    Wang, Xun-Heng; Li, Lihua

    2016-03-01

    The goal of this study is predicting human age using neuro-metrics derived from structural MRI, as well as investigating the relationships between age and predictive neuro-metrics. To this end, a cohort of healthy subjects were recruited from 1000 Functional Connectomes Project. The ages of the participations were ranging from 7 to 83 (36.17+/-20.46). The structural MRI for each subject was preprocessed using FreeSurfer, resulting in regional cortical thickness, mean curvature, regional volume and regional surface area for 148 anatomical parcellations. The individual age was predicted from the combination of regional and inter-regional neuro-metrics. The prediction accuracy is r = 0.835, p < 0.00001, evaluated by Pearson correlation coefficient between predicted ages and actual ages. Moreover, the LASSO linear regression also found certain predictive features, most of which were inter-regional features. The turning-point of the developmental trajectories in human brain was around 40 years old based on regional cortical thickness. In conclusion, structural MRI could be potential biomarkers for the aging in human brain. The human age could be successfully predicted from the combination of regional morphometry and inter-regional morphological similarity. The inter-regional measures could be beneficial to investigating human brain connectome.

  12. Anatomical characteristics of southern pine stemwood

    Treesearch

    Elaine T. Howard; Floyd G. Manwiller

    1968-01-01

    To obtain a definitive description of the wood and anatomy of all 10 species of southern pine, juvenile, intermediate, and mature wood was sampled at three heights in one tree of each species and examined under a light microscope. Photographs and three-dimensional drawings were made to illustrate the morphology. No significant anatomical differences were found...

  13. HPV Vaccine Effective at Multiple Anatomic Sites

    Cancer.gov

    A new study from NCI researchers finds that the HPV vaccine protects young women from infection with high-risk HPV types at the three primary anatomic sites where persistent HPV infections can cause cancer. The multi-site protection also was observed at l

  14. [Regional nerve block in facial surgery].

    PubMed

    Gramkow, Christina; Sørensen, Jesper

    2008-02-11

    Regional nerve blocking techniques offer a suitable alternative to local infiltration anaesthesia for facial soft tissue-surgery. Moreover, they present several advantages over general anaesthesia, including smoother recovery, fewer side effects, residual analgesia into the postoperative period, earlier discharge from the recovery room and reduced costs. The branches of the trigeminal nerve and the sensory nerves originating from the upper cervical plexus can be targeted at several anatomical locations. We summarize current knowledge on facial nerve block techniques and recommend ten nerve blocks providing efficient anaesthesia for the entire head and upper-neck region.

  15. The benefits and limitations of using ultrasonography to supplement anatomical understanding.

    PubMed

    Sweetman, Greg M; Crawford, Gail; Hird, Kathryn; Fear, Mark W

    2013-01-01

    Anatomical understanding is critical to medical education. With reduced teaching time and limited cadaver availability, it is important to investigate how best to utilize in vivo imaging to supplement anatomical understanding and better prepare medical graduates for the proliferation of point-of-care imaging in the future. To investigate whether using short sessions of in vivo imaging using ultrasonography could benefit students' anatomical knowledge and clinical application, we conducted a 2-hour session on abdominal anatomy using ultrasonography in small groups of five to six students, for both first- and second-year student cohorts. Individual feedback was collected to assess student perceptions. To measure retention and understanding, a short examination containing ultrasound images and questions and performance of a clinical skill (gastrointestinal' tract examination) were assessed. Ultrasonography sessions were highly valued by the students, with 90% of the students reporting their understanding was improved, and over 70% reporting increased confidence in their anatomical knowledge. However, the assessments showed no appreciable impact on skills or understanding related to abdominal anatomy and examination. We conclude that the risk associated with limited exposure increasing confidence without increasing skills remains real and that in vivo imaging is not effective when used as a short adjunct teaching tool. The widespread use of ultrasonography means finding the best way to incorporate ultrasound into medical education remains important. To this end, we are currently implementing an extended program including echocardiography and multiple anatomical sessions that will determine if frequency and repetition of use can positively impact on student performance and understanding. Copyright © 2012 American Association of Anatomists.

  16. Renal mass anatomic characteristics and perioperative outcomes of laparoscopic partial nephrectomy: a critical analysis.

    PubMed

    Tsivian, Matvey; Ulusoy, Said; Abern, Michael; Wandel, Ayelet; Sidi, A Ami; Tsivian, Alexander

    2012-10-01

    Anatomic parameters determining renal mass complexity have been used in a number of proposed scoring systems despite lack of a critical analysis of their independent contributions. We sought to assess the independent contribution of anatomic parameters on perioperative outcomes of laparoscopic partial nephrectomy (LPN). Preoperative imaging studies were reviewed for 147 consecutive patients undergoing LPN for a single renal mass. Renal mass anatomy was recorded: Size, growth pattern (endo-/meso-/exophytic), centrality (central/hilar/peripheral), anterior/posterior, lateral/medial, polar location. Multivariable models were used to determine associations of anatomic parameters with warm ischemia time (WIT), operative time (OT), estimated blood loss (EBL), intra- and postoperative complications, as well as renal function. All models were adjusted for the learning curve and relevant confounders. Median (range) tumor size was 3.3 cm (1.5-11 cm); 52% were central and 14% hilar. While 44% were exophytic, 23% and 33% were mesophytic and endophytic, respectively. Anatomic parameters did not uniformly predict perioperative outcomes. WIT was associated with tumor size (P=0.068), centrality (central, P=0.016; hilar, P=0.073), and endophytic growth pattern (P=0.017). OT was only associated with tumor size (P<0.001). No anatomic parameter predicted EBL. Tumor centrality increased the odds of overall and intraoperative complications, without reaching statistical significance. Postoperative renal function was not associated with any of the anatomic parameters considered after adjustment for baseline function and WIT. Learning curve, considered as a confounder, was independently associated with reduced WIT and OT as well as reduced odds of intraoperative complications. This study provides a detailed analysis of the independent impact of renal mass anatomic parameters on perioperative outcomes. Our findings suggest diverse independent contributions of the anatomic parameters to

  17. Anterolateral ligament anatomy: a comparative anatomical study.

    PubMed

    Ingham, Sheila Jean McNeill; de Carvalho, Rogerio Teixeira; Martins, Cesar A Q; Lertwanich, Pisit; Abdalla, Rene Jorge; Smolinski, Patrick; Lovejoy, C Owen; Fu, Freddie H

    2017-04-01

    Some anatomical studies have indicated that the anterolateral ligament (ALL) of the knee is distinct ligamentous structure in humans. The purpose of this study is to compare the lateral anatomy of the knee among human and various animal specimens. Fifty-eight fresh-frozen knee specimens, from 24 different animal species, were used for this anatomical study. The same researchers dissected all the specimens in this study, and dissections were performed in a careful and standardized manner. An ALL was not found in any of the 58 knees dissected. Another interesting finding in this study is that some primate species (the prosimians: the red and black and white lemurs) have two LCLs. The clinical relevance of this study is the lack of isolation of the ALL as a unique structure in animal species. Therefore, precaution is recommended before assessing the need for surgery to reconstruct the ALL as a singular ligament.

  18. Anatomically shaped cranial collimation (ACC) for lateral cephalometric radiography: a technical report.

    PubMed

    Hoogeveen, R C; van der Stelt, P F; Berkhout, W E R

    2014-01-01

    Lateral cephalograms in orthodontic practice display an area cranial of the base of the skull that is not required for diagnostic evaluation. Attempts have been made to reduce the radiation dose to the patient using collimators combining the shielding of the areas above the base of the skull and below the mandible. These so-called "wedge-shaped" collimators have not become standard equipment in orthodontic offices, possibly because these collimators were not designed for today's combination panoramic-cephalometric imaging systems. It also may be that the anatomical variability of the area below the mandible makes this area unsuitable for standardized collimation. In addition, a wedge-shaped collimator shields the cervical vertebrae; therefore, assessment of skeletal maturation, which is based on the stage of development of the cervical vertebrae, cannot be performed. In this report, we describe our investigations into constructing a collimator to be attached to the cephalostat and shield the cranial area of the skull, while allowing the visualization of diagnostically relevant structures and markedly reducing the size of the irradiated area. The shape of the area shielded by this "anatomically shaped cranial collimator" (ACC) was based on mean measurements of cephalometric landmarks of 100 orthodontic patients. It appeared that this collimator reduced the area of irradiation by almost one-third without interfering with the imaging system or affecting the quality of the image. Further research is needed to validate the clinical efficacy of the collimator.

  19. The poor, the Black, and the marginalized as the source of cadavers in United States anatomical education.

    PubMed

    Halperin, Edward C

    2007-07-01

    When the practice of hands-on anatomical dissection became popular in United States medical education in the late 18th and early 19th centuries, demand for cadavers exceeded the supply. Slave bodies and thefts by grave robbers met this demand. Members of the public were aware that graves were being robbed and countered with various protective measures. Since the deterrence of grave robbing took time and money, those elements of society who were least economically and socially advantaged were the most vulnerable. Enslaved and free African Americans, immigrants, and the poor were frequently the target of grave robbing. The politically powerful tolerated this behavior except when it affected their own burial sites. Slave owners sold the bodies of their deceased chattel to medical schools for anatomic dissection. Stories of the "night doctors" buying and stealing bodies became part of African American folklore traditions. The physical and documentary evidence demonstrates the disproportionate use of the bodies of the poor, the Black, and the marginalized in furthering the medical education of white elites. Copyright 2006 Wiley-Liss, Inc.

  20. Segmentation of medical images using explicit anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee

    1999-07-01

    Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.

  1. Anatomic, histologic, and two-dimensional-echocardiographic evaluation of mitral valve anatomy in dogs.

    PubMed

    Borgarelli, Michele; Tursi, Massimiliano; La Rosa, Giuseppe; Savarino, Paolo; Galloni, Marco

    2011-09-01

    To compare echocardiographic variables of dogs with postmortem anatomic measurements and histologic characteristics of the mitral valve (MV). 21 cardiologically normal dogs. The MV was measured echocardiographically by use of the right parasternal 5-chamber long-axis view. Dogs were euthanized, and anatomic measurements of the MV annulus (MVa) were performed at the level of the left circumflex coronary artery. Mitral valve leaflets (MVLs) and chordae tendineae were measured. Structure of the MVLs was histologically evaluated in 3 segments (proximal, middle, and distal). Echocardiographic measurements of MVL length did not differ significantly from anatomic measurements. A positive correlation was detected between body weight and MVa area. There was a negative correlation between MVa area and the percentage by which the MVL area exceeded the MVa area. Anterior MVLs had a significantly higher number of chordae tendineae than did posterior MVLs. Histologically, layering of MVLs was less preserved in the distal segment, whereas the muscular component and adipose tissue were significantly more diffuse in the proximal and middle segments. The MV in cardiologically normal dogs had wide anatomic variability. Anatomic measurements of MVL length were correlated with echocardiographic measurements.

  2. A practical workflow for making anatomical atlases for biological research.

    PubMed

    Wan, Yong; Lewis, A Kelsey; Colasanto, Mary; van Langeveld, Mark; Kardon, Gabrielle; Hansen, Charles

    2012-01-01

    The anatomical atlas has been at the intersection of science and art for centuries. These atlases are essential to biological research, but high-quality atlases are often scarce. Recent advances in imaging technology have made high-quality 3D atlases possible. However, until now there has been a lack of practical workflows using standard tools to generate atlases from images of biological samples. With certain adaptations, CG artists' workflow and tools, traditionally used in the film industry, are practical for building high-quality biological atlases. Researchers have developed a workflow for generating a 3D anatomical atlas using accessible artists' tools. They used this workflow to build a mouse limb atlas for studying the musculoskeletal system's development. This research aims to raise the awareness of using artists' tools in scientific research and promote interdisciplinary collaborations between artists and scientists. This video (http://youtu.be/g61C-nia9ms) demonstrates a workflow for creating an anatomical atlas.

  3. [Association of three anatomical variants of the anterior cerebral circulation].

    PubMed

    Reyes-Soto, Gervith; Pérez-Cruz, Julio; Delgado-Reyes, Luis; Ortega-Gutiérrez, César; Téllez-Palacios, Daniela

    2012-01-01

    As part of a study of the microsurgical anatomy of the pericallosal artery, we describe one brain with three unusual anatomical variants. From the autopsy of a 45 year-old female, we extracted the brain and all the arterial blood vessels were washed off with saline solution to be injected afterwards with red latex. The brain was then immersed in 10% formalin for two months. Finally, we dissected and measured the internal carotid artery segments, using a digital Vernier caliper under a Carl Zeiss OPMI surgical microscope with magnification of 6x up to 40x. The brain's weight was 1250 grams and three rare anatomical variants were found: 1) right accessory middle cerebral artery (ACMA-d), 2) right bihemispheric anterior cerebral artery (ACABihem-d), 3) median artery of the corpus callosum (AMCC). The association of the anatomical variations described previously is inconstant; furthermore, their appearance in a single case is rare.

  4. Regional specificity of aberrant thalamocortical connectivity in autism.

    PubMed

    Nair, Aarti; Carper, Ruth A; Abbott, Angela E; Chen, Colleen P; Solders, Seraphina; Nakutin, Sarah; Datko, Michael C; Fishman, Inna; Müller, Ralph-Axel

    2015-11-01

    Preliminary evidence suggests aberrant (mostly reduced) thalamocortical (TC) connectivity in autism spectrum disorder (ASD), but despite the crucial role of thalamus in sensorimotor functions and its extensive connectivity with cerebral cortex, relevant evidence remains limited. We performed a comprehensive investigation of region-specific TC connectivity in ASD. Resting-state functional MRI and diffusion tensor imaging (DTI) data were acquired for 60 children and adolescents with ASD (ages 7-17 years) and 45 age, sex, and IQ-matched typically developing (TD) participants. We examined intrinsic functional connectivity (iFC) and anatomical connectivity (probabilistic tractography) with thalamus, using 68 unilateral cerebral cortical regions of interest (ROIs). For frontal and parietal lobes, iFC was atypically reduced in the ASD group for supramodal association cortices, but was increased for cingulate gyri and motor cortex. Temporal iFC was characterized by overconnectivity for auditory cortices, but underconnectivity for amygdalae. Occipital iFC was broadly reduced in the ASD group. DTI indices (such as increased radial diffusion) for regions with group differences in iFC further indicated compromised anatomical connectivity, especially for frontal ROIs, in the ASD group. Our findings highlight the regional specificity of aberrant TC connectivity in ASD. Their overall pattern can be largely accounted for by functional overconnectivity with limbic and sensorimotor regions, but underconnectivity with supramodal association cortices. This could be related to comparatively early maturation of limbic and sensorimotor regions in the context of early overgrowth in ASD, at the expense of TC connectivity with later maturing cortical regions. © 2015 Wiley Periodicals, Inc.

  5. Anatomic Distribution of Fluorodeoxyglucose-Avid Para-aortic Lymph Nodes in Patients With Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takiar, Vinita; Fontanilla, Hiral P.; Eifel, Patricia J.

    Purpose: Conformal treatment of para-aortic lymph nodes (PAN) in cervical cancer allows dose escalation and reduces normal tissue toxicity. Currently, data documenting the precise location of involved PAN are lacking. We define the spatial distribution of this high-risk nodal volume by analyzing fluorodeoxyglucose (FDG)-avid lymph nodes (LNs) on positron emission tomography/computed tomography (PET/CT) scans in patients with cervical cancer. Methods and Materials: We identified 72 PANs on pretreatment PET/CT of 30 patients with newly diagnosed stage IB-IVA cervical cancer treated with definitive chemoradiation. LNs were classified as left-lateral para-aortic (LPA), aortocaval (AC), or right paracaval (RPC). Distances from the LNmore » center to the closest vessel and adjacent vertebral body were calculated. Using deformable image registration, nodes were mapped to a template computed tomogram to provide a visual impression of nodal frequencies and anatomic distribution. Results: We identified 72 PET-positive para-aortic lymph nodes (37 LPA, 32 AC, 3 RPC). All RPC lymph nodes were in the inferior third of the para-aortic region. The mean distance from aorta for all lymph nodes was 8.3 mm (range, 3-17 mm), and from the inferior vena cava was 5.6 mm (range, 2-10 mm). Of the 72 lymph nodes, 60% were in the inferior third, 36% were in the middle third, and 4% were in the upper third of the para-aortic region. In all, 29 of 30 patients also had FDG-avid pelvic lymph nodes. Conclusions: A total of 96% of PET positive nodes were adjacent to the aorta; PET positive nodes to the right of the IVC were rare and were all located distally, within 3 cm of the aortic bifurcation. Our findings suggest that circumferential margins around the vessels do not accurately define the nodal region at risk. Instead, the anatomical extent of the nodal basin should be contoured on each axial image to provide optimal coverage of the para-aortic nodal compartment.« less

  6. Dorsal metacarpal veins: anatomic variation and potential clinical implications.

    PubMed

    Elmegarhi, Sara S; Amarin, Justin Z; Hadidi, Maher T; Badran, Darwish H; Massad, Islam M; Bani-Hani, Amjad M; Shatarat, Amjad T

    2018-03-01

    The dorsal metacarpal veins are frequently cannulated. Cannulation success is determined by several variable anatomic features. The objective of this study is to classify, for the first time, the anatomic variants of the dorsal metacarpal veins. In this cross-sectional study, 520 university students and staff were conveniently recruited. The dorsal metacarpal veins in 1040 hands were studied. Venous visibility was enhanced by either tourniquet application or near-infrared illumination. Variant patterns of the dorsal metacarpal veins were classified. The final analysis included 726 hands, for an exclusion rate of 30 %. Eight pattern types were identified. Three anatomic features informed the variation. Bilateral symmetry of the dorsal metacarpal veins was present in 352 participants (83 % of the total). The overall frequency distribution of variants in both hands was similar (P = 0.8). The frequency distribution of variants was subject to sexual dimorphism (P = 0.001), ethnic variation (P < 0.001), and technical variation (P < 0.001). The anatomic variants of the dorsal metacarpal veins were sorted into decreasingly frequent primary, secondary, and tertiary groups. The groups may signify a progressive increase in difficulty of peripheral cannulation, in the mentioned order. As such, primary patterns are the most common and likely the easiest to cannulate, while tertiary patterns are the least common and likely the most difficult to cannulate. The preceding premise, in tandem with the bilateral asymmetry of the veins, is clinically significant. With cannulation difficulty likely signifying an underlying tertiary pattern, the contralateral dorsal metacarpal veins are probabilistically characterized by a primary pattern and are, as such, the easier option for peripheral venous cannulation.

  7. Learning-based stochastic object models for characterizing anatomical variations

    NASA Astrophysics Data System (ADS)

    Dolly, Steven R.; Lou, Yang; Anastasio, Mark A.; Li, Hua

    2018-03-01

    It is widely known that the optimization of imaging systems based on objective, task-based measures of image quality via computer-simulation requires the use of a stochastic object model (SOM). However, the development of computationally tractable SOMs that can accurately model the statistical variations in human anatomy within a specified ensemble of patients remains a challenging task. Previously reported numerical anatomic models lack the ability to accurately model inter-patient and inter-organ variations in human anatomy among a broad patient population, mainly because they are established on image data corresponding to a few of patients and individual anatomic organs. This may introduce phantom-specific bias into computer-simulation studies, where the study result is heavily dependent on which phantom is used. In certain applications, however, databases of high-quality volumetric images and organ contours are available that can facilitate this SOM development. In this work, a novel and tractable methodology for learning a SOM and generating numerical phantoms from a set of volumetric training images is developed. The proposed methodology learns geometric attribute distributions (GAD) of human anatomic organs from a broad patient population, which characterize both centroid relationships between neighboring organs and anatomic shape similarity of individual organs among patients. By randomly sampling the learned centroid and shape GADs with the constraints of the respective principal attribute variations learned from the training data, an ensemble of stochastic objects can be created. The randomness in organ shape and position reflects the learned variability of human anatomy. To demonstrate the methodology, a SOM of an adult male pelvis is computed and examples of corresponding numerical phantoms are created.

  8. Computed tomography-based anatomic characterization of proximal aortic dissection with consideration for endovascular candidacy.

    PubMed

    Moon, Michael C; Greenberg, Roy K; Morales, Jose P; Martin, Zenia; Lu, Qingsheng; Dowdall, Joseph F; Hernandez, Adrian V

    2011-04-01

    Proximal aortic dissections are life-threatening conditions that require immediate surgical intervention to avert an untreated mortality rate that approaches 50% at 48 hours. Advances in computed tomography (CT) imaging techniques have permitted increased characterization of aortic dissection that are necessary to assess the design and applicability of new treatment paradigms. All patients presenting during a 2-year period with acute proximal aortic dissections who underwent CT scanning were reviewed in an effort to establish a detailed assessment of their aortic anatomy. Imaging studies were assessed in an effort to document the location of the primary proximal fenestration, the proximal and distal extent of the dissection, and numerous morphologic measurements pertaining to the aortic valve, root, and ascending aorta to determine the potential for an endovascular exclusion of the ascending aorta. During the study period, 162 patients presented with proximal aortic dissections. Digital high-resolution preoperative CT imaging was performed on 76 patients, and 59 scans (77%) were of adequate quality to allow assessment of anatomic suitability for treatment with an endograft. In all cases, the dissection plane was detectable, yet the primary intimal fenestration was identified in only 41% of the studies. Scans showed 24 patients (32%) appeared to be anatomically amenable to such a repair (absence of valvular involvement, appropriate length and diameter of proximal sealing regions, lack of need to occlude coronary vasculature). Of the 42 scans that were determined not to be favorable for endovascular repair, the most common exclusion finding was the absence of a proximal landing zone (n = 15; 36%). Appropriately protocoled CT imaging provides detailed anatomic information about the aortic root and ascending aorta, allowing the assessment of which dissections have proximal fenestrations that may be amenable to an endovascular repair. Copyright © 2011 Society for

  9. Subarachnoid, subdural and interdural spaces at the clival region: an anatomical study.

    PubMed

    Ayberk, Giyas; Ozveren, Mehmet Faik; Aslan, Sevil; Yaman, Mesut Emre; Yaman, Onur; Kayaci, Selim; Tekdemir, Ibrahim

    2011-01-01

    We aimed to show the significance of the anterior pontine membrane as a determining structure between the subdural and subarachnoid space in the clival region. Five adult cadaver heads and five cerebral hemispheres were used. The skull vault and hemipheres were removed by sectioning through the pontomesencephalic junction. Five other heads hemispheres were removed but the arachnoid membrane was protected and the cerebral side of the clival dura mater was dissected. In another specimen, the dural porus of the abducens nerve was sectioned for histological evaluation. Three cases of hematoma at the clivus were presented to support our findings. The anterior pontine membrane is the arachnoid membrane forming the anterior wall of the prepontine cistern with its lateral extension at the skull base. This membrane forms the subdural and subarachnoid spaces by forming a barrier between the clival dura mater and neurovascular structures of the brainstem. There were rigid fibrous trabeculations between both cerebral and periosteal dural layers forming the basilar plexus as the interdural space in the clivus. The anterior pontine membrane separates the subdural and subarachnoid spaces at the clival region. The hematomas of the clival region require to be evaluated with consideration given to the existance of the subdural space.

  10. AnatomicalTerms.info: heading for an online solution to the anatomical synonym problem hurdles in data-reuse from the Terminologia Anatomica and the foundational model of anatomy and potentials for future development.

    PubMed

    Gobée, O Paul; Jansma, Daniël; DeRuiter, Marco C

    2011-10-01

    The many synonyms for anatomical structures confuse medical students and complicate medical communication. Easily accessible translations would alleviate this problem. None of the presently available resources-Terminologia Anatomica (TA), digital terminologies such as the Foundational Model of Anatomy (FMA), and websites-are fully satisfactory to this aim. Internet technologies offer new possibilities to solve the problem. Several authors have called for an online TA. An online translation resource should be easily accessible, user-friendly, comprehensive, expandable, and its quality determinable. As first step towards this goal, we built a translation website that we named www.AnatomicalTerms.info, based on the database of the FMA. It translates between English, Latin, eponyms, and to a lesser extent other languages, and presently contains over 31,000 terms for 7,250 structures, covering 95% of TA. In addition, it automatically presents searches for images, documents and anatomical variations regarding the sought structure. Several terminological and conceptual issues were encountered in transferring data from TA and FMA into AnatomicalTerms.info, resultant from these resources' different set-ups (paper versus digital) and targets (machine versus human-user). To the best of our knowledge, AnatomicalTerms.info is unique in its combination of user-friendliness and comprehensiveness. As next step, wiki-like expandability will be added to enable open contribution of clinical synonyms and terms in different languages. Specific quality measures will be taken to strike a balance between open contribution and quality assurance. AnatomicalTerms.info's mechanism that "translates" terms to structures furthermore may enhance targeted searching by linking images, descriptions, and other anatomical resources to the structures. Copyright © 2011 Wiley-Liss, Inc.

  11. Long-range population dynamics of anatomically defined neocortical networks

    PubMed Central

    Chen, Jerry L; Voigt, Fabian F; Javadzadeh, Mitra; Krueppel, Roland; Helmchen, Fritjof

    2016-01-01

    The coordination of activity across neocortical areas is essential for mammalian brain function. Understanding this process requires simultaneous functional measurements across the cortex. In order to dissociate direct cortico-cortical interactions from other sources of neuronal correlations, it is furthermore desirable to target cross-areal recordings to neuronal subpopulations that anatomically project between areas. Here, we combined anatomical tracers with a novel multi-area two-photon microscope to perform simultaneous calcium imaging across mouse primary (S1) and secondary (S2) somatosensory whisker cortex during texture discrimination behavior, specifically identifying feedforward and feedback neurons. We find that coordination of S1-S2 activity increases during motor behaviors such as goal-directed whisking and licking. This effect was not specific to identified feedforward and feedback neurons. However, these mutually projecting neurons especially participated in inter-areal coordination when motor behavior was paired with whisker-texture touches, suggesting that direct S1-S2 interactions are sensory-dependent. Our results demonstrate specific functional coordination of anatomically-identified projection neurons across sensory cortices. DOI: http://dx.doi.org/10.7554/eLife.14679.001 PMID:27218452

  12. Ultrasound-guided block of sciatic and femoral nerves: an anatomical study.

    PubMed

    Waag, Sonja; Stoffel, Michael H; Spadavecchia, Claudia; Eichenberger, Urs; Rohrbach, Helene

    2014-04-01

    The sheep is a popular animal model for human biomechanical research involving invasive surgery on the hind limb. These painful procedures can only be ethically justified with the application of adequate analgesia protocols. Regional anaesthesia as an adjunct to general anaesthesia may markedly improve well-being of these experimental animals during the postoperative period due to a higher analgesic efficacy when compared with systemic drugs, and may therefore reduce stress and consequently the severity of such studies. As a first step 14 sheep cadavers were used to establish a new technique for the peripheral blockade of the sciatic and the femoral nerves under sonographic guidance and to evaluate the success rate by determination of the colorization of both nerves after an injection of 0.5 mL of a 0.1% methylene blue solution. First, both nerves were visualized sonographically. Then, methylene blue solution was injected and subsequently the length of colorization was measured by gross anatomical dissection of the target nerves. Twenty-four sciatic nerves were identified sonographically in 12 out of 13 cadavers. In one animal, the nerve could not be ascertained unequivocally and, consequently, nerve colorization failed. Twenty femoral nerves were located by ultrasound in 10 out of 13 cadavers. In three cadavers, signs of autolysis impeded the scan. This study provides a detailed anatomical description of the localization of the sciatic and the femoral nerves and presents an effective and safe yet simple and rapid technique for performing peripheral nerve blocks with a high success rate.

  13. An international ecological study of adult height in relation to cancer incidence for 24 anatomical sites.

    PubMed

    Jiang, Yannan; Marshall, Roger J; Walpole, Sarah C; Prieto-Merino, David; Liu, Dong-Xu; Perry, Jo K

    2015-03-01

    Anthropometric indices associated with childhood growth and height attained in adulthood, have been associated with an increased incidence of certain malignancies. To evaluate the cancer-height relationship, we carried out a study using international data, comparing various cancer rates with average adult height of women and men in different countries. An ecological analysis of the relationship between country-specific cancer incidence rates and average adult height was conducted for twenty-four anatomical cancer sites. Age-standardized rates were obtained from GLOBOCAN 2008. Average female (112 countries) and male (65 countries) heights were sourced and compiled primarily from national health surveys. Graphical and weighted regression analysis was conducted, taking into account BMI and controlling for the random effect of global regions. A significant positive association between a country's average adult height and the country's overall cancer rate was observed in both men and women. Site-specific cancer incidence for females was positively associated with height for most cancers: lung, kidney, colorectum, bladder, melanoma, brain and nervous system, breast, non-Hodgkin lymphoma, multiple myeloma, corpus uteri, ovary, and leukemia. A significant negative association was observed with cancer of the cervix uteri. In males, site-specific cancer incidence was positively associated with height for cancers of the brain and nervous system, kidney, colorectum, non-Hodgkin lymphoma, multiple myeloma, prostate, testicular, lip and oral cavity, and melanoma. Incidence of cancer was associated with tallness in the majority of anatomical/cancer sites investigated. The underlying biological mechanisms are unclear, but may include nutrition and early-life exposure to hormones, and may differ by anatomical site.

  14. Does pelvicaliceal system anatomy affect success of percutaneous nephrolithotomy?

    PubMed

    Binbay, Murat; Akman, Tolga; Ozgor, Faruk; Yazici, Ozgur; Sari, Erhan; Erbin, Akif; Kezer, Cem; Sarilar, Omer; Berberoglu, Yalcın; Muslumanoglu, Ahmet Yaser

    2011-10-01

    To investigate the effect of the pelvicaliceal system (PCS) anatomy on the percutaneous nephrolithotomy (PCNL) success rate. Although the caliceal anatomy is effective for stone clearance after shock wave lithotripsy and retrograde intrarenal lithotripsy, the effect of the caliceal anatomy after PCNL has not been evaluated to date. A total of 498 patients who had undergone PCNL and preoperative intravenous urography were enrolled in our study. Kidney-related anatomic factors, such as the PCS surface area and type, degree of hydronephrosis, infundibulopelvic angle, upper-lower calix angle, infundibular length, and infundibular width were calculated using intravenous urography. The association between the PCNL success rate and kidney-related anatomic factors was retrospectively analyzed using chi-square tests, Fisher's exact test, Mann-Whitney U test, and forward stepwise regression analysis. A success rate of 78.1% was achieved. No difference was seen the success rates among the PCS types. The mean PCS surface area was 20.1 ± 9.7 cm(2) in patients with successful outcomes and 24.5 ± 10.2 cm(2) in patients with remaining stones (P = .001). The mean infundibulopelvic angle, upper-lower calix angle, infundibular length, and infundibular width were similar in both groups. Multivariate binary logistic regression analysis showed that stone configuration and PCS surface area were independent factors affecting the PCNL success rates. The results of our study have shown that the PCS surface area is the only anatomic factor that affects the PCNL success rate and patients with a PCS surface area <20.5 cm(2) have greater PCNL success. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Final anatomic and visual outcomes appear independent of duration of silicone oil intraocular tamponade in complex retinal detachment surgery.

    PubMed

    Rhatigan, Maedbh; McElnea, Elizabeth; Murtagh, Patrick; Stephenson, Kirk; Harris, Elaine; Connell, Paul; Keegan, David

    2018-01-01

    To report anatomic and visual outcomes following silicone oil removal in a cohort of patients with complex retinal detachment, to determine association between duration of tamponade and outcomes and to compare patients with oil removed and those with oil in situ in terms of demographic, surgical and visual factors. We reported a four years retrospective case series of 143 patients with complex retinal detachments who underwent intraocular silicone oil tamponade. Analysis between anatomic and visual outcomes, baseline demographics, duration of tamponade and number of surgical procedures were carried out using Fisher's exact test and unpaired two-tailed t -test. One hundred and six patients (76.2%) had undergone silicone oil removal at the time of review with 96 patients (90.6%) showing retinal reattachment following oil removal. Duration of tamponade was not associated with final reattachment rate or with a deterioration in best corrected visual acuity (BCVA). Patients with oil removed had a significantly better baseline and final BCVA compared to those under oil tamponade ( P =0.0001, <0.0001 respectively). Anatomic and visual outcomes in this cohort are in keeping with those reported in the literature. Favorable outcomes were seen with oil removal but duration of oil tamponade does not affect final attachment rate with modern surgical techniques and should be managed on a case by case basis.

  16. Living AnatoME: Teaching and Learning Musculoskeletal Anatomy through Yoga and Pilates

    ERIC Educational Resources Information Center

    McCulloch, Carrie; Marango, Stephanie Pieczenik; Friedman, Erica S.; Laitman, Jeffrey T.

    2010-01-01

    Living AnatoME, a program designed in 2004 by two medical students in conjunction with the Director of Anatomy, teaches musculoskeletal anatomy through yoga and Pilates. Previously offered as an adjunct to the Gross Anatomy course in 2007, Living AnatoME became an official part of the curriculum. Previous research conducted on the program…

  17. Infrared thermography of the pig thorax: an assessment of selected regions of interest by computed tomographical and anatomical parameters.

    PubMed

    Menzel, A; Siewert, C; Gasse, H; Seifert, H; Hoeltig, D; Hennig-Pauka, I

    2015-04-01

    Current methods of diagnosis of respiratory diseases in swine are invasive, time-consuming and expensive. Infrared thermography (IRT) of the thorax might provide a new method of high specificity to select swine affected with lung alterations for further diagnostics. In this study, layer thickness of different tissues was determined in frozen thorax slices (FTS) by computed tomography (CT) and then related to skin temperatures measured by IRT in healthy pigs. The aim was to determine appropriate regions of interest (ROI) for evaluation of IRT images. Organ layer thicknesses measured in CT images correspond to those measured in FTS. Temperature differences between lung ROIs and abdomen ROIs were positively correlated with lung layer thickness at certain localizations, and negatively correlated with the thickness of the thorax wall and of inner organ layers. Reference values of differences between skin temperatures were established for two ROIs on the thorax with potential practical use for lung health status determination. Respective ROIs were located on vertical lines crossing the 7th (right) and the 10th (left) thoracic vertebrae. The presence of ribs affected skin temperature significantly. © 2014 Blackwell Verlag GmbH.

  18. Automatic anatomical segmentation of the liver by separation planes

    NASA Astrophysics Data System (ADS)

    Boltcheva, Dobrina; Passat, Nicolas; Agnus, Vincent; Jacob-Da, Marie-Andrée, , Col; Ronse, Christian; Soler, Luc

    2006-03-01

    Surgical planning in oncological liver surgery is based on the location of the 8 anatomical segments according to Couinaud's definition and tumors inside these structures. The detection of the boundaries between the segments is then the first step of the preoperative planning. The proposed method, devoted to binary images of livers segmented from CT-scans, has been designed to delineate these segments. It automatically detects a set of landmarks using a priori anatomical knowledge and differential geometry criteria. These landmarks are then used to position the Couinaud's segments. Validations performed on 7 clinical cases tend to prove that the method is reliable for most of these separation planes.

  19. Influence of anatomical location on CT numbers in cone beam computed tomography.

    PubMed

    Oliveira, Matheus L; Tosoni, Guilherme M; Lindsey, David H; Mendoza, Kristopher; Tetradis, Sotirios; Mallya, Sanjay M

    2013-04-01

    To assess the influence of anatomical location on computed tomography (CT) numbers in mid- and full field of view (FOV) cone beam computed tomography (CBCT) scans. Polypropylene tubes with varying concentrations of dipotassium hydrogen phosphate (K₂HPO₄) solutions (50-1200 mg/mL) were imaged within the incisor, premolar, and molar dental sockets of a human skull phantom. CBCT scans were acquired using the NewTom 3G and NewTom 5G units. The CT numbers of the K₂HPO₄ phantoms were measured, and the relationship between CT numbers and K₂HPO₄ concentration was examined. The measured CT numbers of the K₂HPO₄ phantoms were compared between anatomical sites. At all six anatomical locations, there was a strong linear relationship between CT numbers and K₂HPO₄ concentration (R(2)>0.93). However, the absolute CT numbers varied considerably with the anatomical location. The relationship between CT numbers and object density is not uniform through the dental arch on CBCT scans. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. An anatomical comparison of Blair and facelift incisions for parotid surgery.

    PubMed

    Nouraei, S A R; Al-Yaghchi, C; Ahmed, J; Kirkpatrick, N; Mansuri, S; Singh, A; Grant, W E

    2006-12-01

    The rhytidectomy approach for parotidectomy allows the incision to be hidden, and post-operative scarring minimised. Furthermore, separate elevation of the Superficial Musculo-Aponeurotic System (SMAS) reduces the incidence of Frey's syndrome, and provides vascularized soft tissue for contour reconstruction. The technique has gained popularity particularly with plastic surgeons, but concerns persist that with this approach, particularly with lesions located anteriorly, access to the gland may be inadequate, and facial nerve identification may be compromised. We undertook an anatomical study to quantitatively compare the surgical access achieved using the facelift approach with the conventional Blair incision, by comparing the distances between the parotid edge and the retracted flaps. Despite reduced tissue elasticity due to formaldehyde fixation, it proved possible to demonstrate all regions of the parotid gland to the operating surgeon with either approach. There were no significant differences in the distance between the parotid edge and the retracted skin flaps (P > 0.1; paired t-test). The facelift approach provides at least equal access to all regions of the parotid gland when compared to a Blair's incision. It is a superior approach aesthetically and its more widespread use in parotid surgery is advocated.

  1. Inactivation of Parietal Reach Region Affects Reaching But Not Saccade Choices in Internally Guided Decisions.

    PubMed

    Christopoulos, Vassilios N; Bonaiuto, James; Kagan, Igor; Andersen, Richard A

    2015-08-19

    The posterior parietal cortex (PPC) has traditionally been considered important for awareness, spatial perception, and attention. However, recent findings provide evidence that the PPC also encodes information important for making decisions. These findings have initiated a running argument of whether the PPC is critically involved in decision making. To examine this issue, we reversibly inactivated the parietal reach region (PRR), the area of the PPC that is specialized for reaching movements, while two monkeys performed a memory-guided reaching or saccade task. The task included choices between two equally rewarded targets presented simultaneously in opposite visual fields. Free-choice trials were interleaved with instructed trials, in which a single cue presented in the peripheral visual field defined the reach and saccade target unequivocally. We found that PRR inactivation led to a strong reduction of contralesional choices, but only for reaches. On the other hand, saccade choices were not affected by PRR inactivation. Importantly, reaching and saccade movements to single instructed targets remained largely intact. These results cannot be explained as an effector-nonspecific deficit in spatial attention or awareness, since the temporary "lesion" had an impact only on reach choices. Hence, the PPR is a part of a network for reach decisions and not just reach planning. There has been an ongoing debate on whether the posterior parietal cortex (PPC) represents only spatial awareness, perception, and attention or whether it is also involved in decision making for actions. In this study we explore whether the parietal reach region (PRR), the region of the PPC that is specialized for reaches, is involved in the decision process. We inactivated the PRR while two monkeys performed reach and saccade choices between two targets presented simultaneously in both hemifields. We found that inactivation affected only the reach choices, while leaving saccade choices intact

  2. Mangrove forest distributions and dynamics (1975–2005) of the tsunami-affected region of Asia

    USGS Publications Warehouse

    Giri, C.; Zhu, Z.; Tieszen, L.L.; Singh, A.; Gillette, S.; Kelmelis, J.A.

    2008-01-01

    Aim  We aimed to estimate the present extent of tsunami-affected mangrove forests and determine the rates and causes of deforestation from 1975 to 2005.Location  Our study region covers the tsunami-affected coastal areas of Indonesia, Malaysia, Thailand, Burma (Myanmar), Bangladesh, India and Sri Lanka in Asia.Methods  We interpreted time-series Landsat data using a hybrid supervised and unsupervised classification approach. Landsat data were geometrically corrected to an accuracy of plus-or-minus half a pixel, an accuracy necessary for change analysis. Each image was normalized for solar irradiance by converting digital number values to the top-of-the atmosphere reflectance. Ground truth data and existing maps and data bases were used to select training samples and also for iterative labelling. We used a post-classification change detection approach. Results were validated with the help of local experts and/or high-resolution commercial satellite data.Results  The region lost 12% of its mangrove forests from 1975 to 2005, to a present extent of c. 1,670,000 ha. Rates and causes of deforestation varied both spatially and temporally. Annual deforestation was highest in Burma (c. 1%) and lowest in Sri Lanka (0.1%). In contrast, mangrove forests in India and Bangladesh remained unchanged or gained a small percentage. Net deforestation peaked at 137,000 ha during 1990–2000, increasing from 97,000 ha during 1975–90, and declining to 14,000 ha during 2000–05. The major causes of deforestation were agricultural expansion (81%), aquaculture (12%) and urban development (2%).Main conclusions  We assessed and monitored mangrove forests in the tsunami-affected region of Asia using the historical archive of Landsat data. We also measured the rates of change and determined possible causes. The results of our study can be used to better understand the role of mangrove forests in saving lives and property from natural disasters such as the Indian Ocean tsunami

  3. Three-dimensional study of pelvic asymmetry on anatomical specimens and its clinical perspectives.

    PubMed

    Boulay, Christophe; Tardieu, Christine; Bénaim, Charles; Hecquet, Jérome; Marty, Catherine; Prat-Pradal, Dominique; Legaye, Jean; Duval-Beaupère, Ginette; Pélissier, Jacques

    2006-01-01

    The aim of this study was to assess pelvic asymmetry (i.e. to determine whether the right iliac bone and the right part of the sacrum are mirror images of the left), both quantitatively and qualitatively, using three-dimensional measurements. Pelvic symmetry was described osteologically using a common reference coordinate system for a large sample of pelvises. Landmarks were established on 12 anatomical specimens with an electromagnetic Fastrak system. Seventy-one paired variables were tested with a paired t-test and a non-parametric test (Wilcoxon). A Pearson correlation matrix between the right and left values of the same variable was applied exclusively to values that were significantly asymmetric in order to calculate a dimensionless asymmetry index, ABGi, for each variable. Fifteen variables were significantly asymmetric and correlated with the right vs. left sides for the following anatomical regions: sacrum, iliac blades, iliac width, acetabulum and the superior lunate surface of the acetabulum. ABGi values above a threshold of +/- 4.8% were considered significantly asymmetric in seven variables of the pelvic area. Total asymmetry involving the right and the left pelvis seems to follow a spiral path in the pelvis; in the upper part, the iliac blades rotate clockwise, and in the lower part, the pubic symphysis rotates anticlockwise. Thus, pelvic asymmetry may be evaluated in clinical examinations by measuring iliac crest orientation.

  4. Three-dimensional study of pelvic asymmetry on anatomical specimens and its clinical perspectives

    PubMed Central

    Boulay, Christophe; Tardieu, Christine; Bénaim, Charles; Hecquet, Jérome; Marty, Catherine; Prat-Pradal, Dominique; Legaye, Jean; Duval-Beaupère, Ginette; Pélissier, Jacques

    2006-01-01

    The aim of this study was to assess pelvic asymmetry (i.e. to determine whether the right iliac bone and the right part of the sacrum are mirror images of the left), both quantitatively and qualitatively, using three-dimensional measurements. Pelvic symmetry was described osteologically using a common reference coordinate system for a large sample of pelvises. Landmarks were established on 12 anatomical specimens with an electromagnetic Fastrak system. Seventy-one paired variables were tested with a paired t-test and a non-parametric test (Wilcoxon). A Pearson correlation matrix between the right and left values of the same variable was applied exclusively to values that were significantly asymmetric in order to calculate a dimensionless asymmetry index, ABGi, for each variable. Fifteen variables were significantly asymmetric and correlated with the right vs. left sides for the following anatomical regions: sacrum, iliac blades, iliac width, acetabulum and the superior lunate surface of the acetabulum. ABGi values above a threshold of ± 4.8% were considered significantly asymmetric in seven variables of the pelvic area. Total asymmetry involving the right and the left pelvis seems to follow a spiral path in the pelvis; in the upper part, the iliac blades rotate clockwise, and in the lower part, the pubic symphysis rotates anticlockwise. Thus, pelvic asymmetry may be evaluated in clinical examinations by measuring iliac crest orientation. PMID:16420376

  5. Brain Anatomical Network and Intelligence

    PubMed Central

    Li, Jun; Qin, Wen; Li, Kuncheng; Yu, Chunshui; Jiang, Tianzi

    2009-01-01

    Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence. PMID:19492086

  6. Anatomic partial nephrectomy: technique evolution.

    PubMed

    Azhar, Raed A; Metcalfe, Charles; Gill, Inderbir S

    2015-03-01

    Partial nephrectomy provides equivalent long-term oncologic and superior functional outcomes as radical nephrectomy for T1a renal masses. Herein, we review the various vascular clamping techniques employed during minimally invasive partial nephrectomy, describe the evolution of our partial nephrectomy technique and provide an update on contemporary thinking about the impact of ischemia on renal function. Recently, partial nephrectomy surgical technique has shifted away from main artery clamping and towards minimizing/eliminating global renal ischemia during partial nephrectomy. Supported by high-fidelity three-dimensional imaging, novel anatomic-based partial nephrectomy techniques have recently been developed, wherein partial nephrectomy can now be performed with segmental, minimal or zero global ischemia to the renal remnant. Sequential innovations have included early unclamping, segmental clamping, super-selective clamping and now culminating in anatomic zero-ischemia surgery. By eliminating 'under-the-gun' time pressure of ischemia for the surgeon, these techniques allow an unhurried, tightly contoured tumour excision with point-specific sutured haemostasis. Recent data indicate that zero-ischemia partial nephrectomy may provide better functional outcomes by minimizing/eliminating global ischemia and preserving greater vascularized kidney volume. Contemporary partial nephrectomy includes a spectrum of surgical techniques ranging from conventional-clamped to novel zero-ischemia approaches. Technique selection should be tailored to each individual case on the basis of tumour characteristics, surgical feasibility, surgeon experience, patient demographics and baseline renal function.

  7. Reproducibility Between Brain Uptake Ratio Using Anatomic Standardization and Patlak-Plot Methods.

    PubMed

    Shibutani, Takayuki; Onoguchi, Masahisa; Noguchi, Atsushi; Yamada, Tomoki; Tsuchihashi, Hiroko; Nakajima, Tadashi; Kinuya, Seigo

    2015-12-01

    The Patlak-plot and conventional methods of determining brain uptake ratio (BUR) have some problems with reproducibility. We formulated a method of determining BUR using anatomic standardization (BUR-AS) in a statistical parametric mapping algorithm to improve reproducibility. The objective of this study was to demonstrate the inter- and intraoperator reproducibility of mean cerebral blood flow as determined using BUR-AS in comparison to the conventional-BUR (BUR-C) and Patlak-plot methods. The images of 30 patients who underwent brain perfusion SPECT were retrospectively used in this study. The images were reconstructed using ordered-subset expectation maximization and processed using an automatic quantitative analysis for cerebral blood flow of ECD tool. The mean SPECT count was calculated from axial basal ganglia slices of the normal side (slices 31-40) drawn using a 3-dimensional stereotactic region-of-interest template after anatomic standardization. The mean cerebral blood flow was calculated from the mean SPECT count. Reproducibility was evaluated using coefficient of variation and Bland-Altman plotting. For both inter- and intraoperator reproducibility, the BUR-AS method had the lowest coefficient of variation and smallest error range about the Bland-Altman plot. Mean CBF obtained using the BUR-AS method had the highest reproducibility. Compared with the Patlak-plot and BUR-C methods, the BUR-AS method provides greater inter- and intraoperator reproducibility of cerebral blood flow measurement. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  8. Zero ischemia anatomical partial nephrectomy: a novel approach.

    PubMed

    Gill, Inderbir S; Patil, Mukul B; Abreu, Andre Luis de Castro; Ng, Casey; Cai, Jie; Berger, Andre; Eisenberg, Manuel S; Nakamoto, Masahiko; Ukimura, Osamu; Goh, Alvin C; Thangathurai, Duraiyah; Aron, Monish; Desai, Mihir M

    2012-03-01

    We present a novel concept of zero ischemia anatomical robotic and laparoscopic partial nephrectomy. Our technique primarily involves anatomical vascular microdissection and preemptive control of tumor specific, tertiary or higher order renal arterial branch(es) using neurosurgical aneurysm micro-bulldog clamps. In 58 consecutive patients the majority (70%) had anatomically complex tumors including central (67%), hilar (26%), completely intrarenal (23%), pT1b (18%) and solitary kidney (7%). Data were prospectively collected and analyzed from an institutional review board approved database. Of 58 cases undergoing zero ischemia robotic (15) or laparoscopic (43) partial nephrectomy, 57 (98%) were completed without hilar clamping. Mean tumor size was 3.2 cm, mean ± SD R.E.N.A.L. score 7.0 ± 1.9, C-index 2.9 ± 2.4, operative time 4.4 hours, blood loss 206 cc and hospital stay 3.9 days. There were no intraoperative complications. Postoperative complications (22.8%) were low grade (Clavien grade 1 to 2) in 19.3% and high grade (Clavien grade 3 to 5) in 3.5%. All patients had negative cancer surgical margins (100%). Mean absolute and percent change in preoperative vs 4-month postoperative serum creatinine (0.2 mg/dl, 18%), estimated glomerular filtration rate (-11.4 ml/minute/1.73 m(2), 13%), and ipsilateral kidney function on radionuclide scanning at 6 months (-10%) correlated with mean percent kidney excised intraoperatively (18%). Although 21% of patients received a perioperative blood transfusion, no patient had acute or delayed renal hemorrhage, or lost a kidney. The concept of zero ischemia robotic and laparoscopic partial nephrectomy is presented. This anatomical vascular microdissection of the artery first and then tumor allows even complex tumors to be excised without hilar clamping. Global surgical renal ischemia is unnecessary for the majority of patients undergoing robotic and laparoscopic partial nephrectomy at our institution. Copyright © 2012 American

  9. Surface anatomy and anatomical planes in the adult turkish population.

    PubMed

    Uzun, C; Atman, E D; Ustuner, E; Mirjalili, S A; Oztuna, D; Esmer, T S

    2016-03-01

    Surface anatomy and anatomical planes are widely used in education and clinical practice. The planes are largely derived from cadaveric studies and their projections on the skin show discrepancies between and within anatomical reference textbooks. In this study, we reassessed the accuracy of common thoracic and abdominopelvic anatomical planes using computed tomography (CT) imaging in the live adult Turkish population. After patients with distorting pathologies had been excluded, CT images of 150 supine patients at the end tidal inspiration were analyzed. Sternal angle, transpyloric, subcostal, supracristal and pubic crest planes and their relationships to anatomical structures were established by dual consensus. The tracheal bifurcation, azygos vein/superior vena cava (SVC) junction and pulmonary bifurcation were usually below the sternal angle while the concavity of the aortic arch was generally within the plane. The tip of the tenth rib, the superior mesenteric artery and the portal vein were usually within the transpyloric plane while the renal hila and the fundus of the gallbladder were below it. The inferior mesenteric artery was below the subcostal plane and the aortic bifurcation was below the supracristal plane in most adults. Projectional surface anatomy is fundamental to medical education and clinical practice. Modern cross-sectional imaging techniques allow large groups of live patients to be examined. Classic textbook information regarding anatomy needs to be reviewed and updated using the data gathered from these recent studies, taking ethnic differences into consideration. © 2015 Wiley Periodicals, Inc.

  10. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  11. Were Equatorial Regions Less Affected by the 2009 Influenza Pandemic? The Brazilian Experience

    PubMed Central

    Schuck-Paim, Cynthia; Viboud, Cécile; Simonsen, Lone; Miller, Mark A.; Moura, Fernanda E. A.; Fernandes, Roberto M.; Carvalho, Marcia L.; Alonso, Wladimir J.

    2012-01-01

    Although it is in the Tropics where nearly half of the world population lives and infectious disease burden is highest, little is known about the impact of influenza pandemics in this area. We investigated the mortality impact of the 2009 influenza pandemic relative to mortality rates from various outcomes in pre-pandemic years throughout a wide range of latitudes encompassing the entire tropical, and part of the subtropical, zone of the Southern Hemisphere (+5°N to −35°S) by focusing on a country with relatively uniform health care, disease surveillance, immunization and mitigation policies: Brazil. To this end, we analyzed laboratory-confirmed deaths and vital statistics mortality beyond pre-pandemic levels for each Brazilian state. Pneumonia, influenza and respiratory mortality were significantly higher during the pandemic, affecting predominantly adults aged 25 to 65 years. Overall, there were 2,273 and 2,787 additional P&I- and respiratory deaths during the pandemic, corresponding to a 5.2% and 2.7% increase, respectively, over average pre-pandemic annual mortality. However, there was a marked spatial structure in mortality that was independent of socio-demographic indicators and inversely related with income: mortality was progressively lower towards equatorial regions, where low or no difference from pre-pandemic mortality levels was identified. Additionally, the onset of pandemic-associated mortality was progressively delayed in equatorial states. Unexpectedly, there was no additional mortality from circulatory causes. Comparing disease burden reliably across regions is critical in those areas marked by competing health priorities and limited resources. Our results suggest, however, that tropical regions of the Southern Hemisphere may have been disproportionally less affected by the pandemic, and that climate may have played a key role in this regard. These findings have a direct bearing on global estimates of pandemic burden and the assessment of the

  12. Mortimer Frank, Johann Ludwig Choulant, and the history of anatomical illustration.

    PubMed

    Feibel, Robert M

    2018-01-01

    Mortimer Frank (1874-1919) was an ophthalmologist in Chicago, Illinois. He published a number of papers on the history of medicine, and was secretary of the Chicago Society of the History of Medicine and editor of their Bulletin. His major contribution to the history of medicine relates to the history of anatomical illustration. The classic book on that subject had been published in 1852 in German by the physician and historian, Johann Ludwig Choulant (1791-1861). However, by Frank's time this text was both out dated and out of print. Frank took on the tremendous project of translating Choulant's German text into English as History and Bibliography of Anatomic Illustration in Its Relation to Anatomic Science and The Graphic Arts. He improved Choulant's text with the results of his and other scholars' research, greatly enlarging the text. Frank supplemented the original book with a biography of Choulant, essays on anatomists not considered in the original text, and an essay on the history of anatomical illustration prior to those authors discussed by Choulant. This book, now referred to as Choulant/Frank, has been reprinted several times, and is still useful as a reference in this field, though some of its research is now dated.

  13. Systemic Review of Anatomic Single- Versus Double-Bundle Anterior Cruciate Ligament Reconstruction: Does Femoral Tunnel Drilling Technique Matter?

    PubMed

    Zhang, Yang; Xu, Caiqi; Dong, Shiqui; Shen, Peng; Su, Wei; Zhao, Jinzhong

    2016-09-01

    To provide an up-to-date assessment of the difference between anatomic double-bundle anterior cruciate ligament (ACL) reconstruction (DB-ACLR) and anatomic single-bundle ACL reconstruction (SB-ACLR). We hypothesized that anatomic SB-ACLR using independent femoral drilling technique would be able to achieve kinematic stability as with anatomic DB-ACLR. A comprehensive Internet search was performed to identify all therapeutic trials of anatomic DB-ACLR versus anatomic SB-ACLR. Only clinical studies of Level I and II evidence were included. The comparative outcomes were instrument-measured anterior laxity, Lachman test, pivot shift, clinical outcomes including objective/subjective International Knee Documentation Committee (IKDC) score, Lysholm score, Tegner activity scale and complication rates of extension/flexion deficits, graft failure, and early osteoarthritis. Subgroup analyses were performed for femoral tunnel drilling techniques including independent drilling and transtibial (TT) drilling. Twenty-two clinical trials of 2,261 anatomically ACL-reconstructed patients were included in the meta-analysis. Via TT drilling technique, anatomic DB-ACLR led to improved instrument-measured anterior laxity with a standard mean difference (SMD) of -0.42 (95% confidence interval [CI] = -0.81 to -0.02), less rotational instability measured by pivot shift (SMD = 2.76, 95% CI = 1.24 to 6.16), and higher objective IKDC score with odds ratio (OR) of 2.28 (95% CI = 1.19 to 4.36). Via independent drilling technique, anatomic DB-ACLR yielded better pivot shift (SMD = 2.04, 95% CI = 1.36 to 3.05). Anatomic DB-ACLR also revealed statistical significance in subjective IKDC score compared with anatomic SB-ACLR (SMD = 0.27, 95% CI = 0.05 to 0.49). Anatomic DB-ACLR showed better anterior and rotational stability and higher objective IKDC score than anatomic SB-ACLR via TT drilling technique. Via independent drilling technique, however, anatomic DB-ACLR only showed superiority

  14. Anatomical causes of female infertility and their management.

    PubMed

    Abrao, Mauricio S; Muzii, Ludovico; Marana, Riccardo

    2013-12-01

    The main female anatomical causes of infertility include post-infectious tubal damage, endometriosis, and congenital/acquired uterine anomalies. Congenital (septate uterus) and acquired (myomas and synechiae) diseases of the uterus may lead to infertility, pregnancy loss, and other obstetric complications. Pelvic inflammatory disease represents the most common cause of tubal damage. Surgery still remains an important option for tubal factor infertility, with results in terms of reproductive outcome that compare favorably with those of in vitro fertilization. Endometriosis is a common gynecologic condition affecting women of reproductive age, which can cause pain and infertility. The cause of infertility associated with endometriosis remains elusive, suggesting a multifactorial mechanism involving immunologic, genetic, and environmental factors. Despite the high prevalence of endometriosis, the exact mechanisms of its pathogenesis are unknown. Specific combinations of medical, surgical, and psychological treatments can ameliorate the quality of life of women with endometriosis. In the majority of cases, surgical treatment of endometriosis has promoted significant increases in fertilization rates. There are obvious associations between endometriosis and the immune system, and future strategies to treat endometriosis might be based on immunologic concepts. © 2013.

  15. Anatomy of the interosseous region of the sacroiliac joint.

    PubMed

    Rosatelli, Alessandro L; Agur, Anne M; Chhaya, Sam

    2006-04-01

    Anatomical study of the interosseous region of the sacroiliac joint (SIJ) complex. To document and quantify the surface topography of the interosseous region of the SIJ. A review of the literature reveals that little consideration has been given to the interosseous region of the SIJ anatomically, biomechanically, and clinically. The interosseous region of 11 cadaveric specimens (9 formalin embalmed and 2 fresh frozen) were studied. Ten specimens were 55 years of age or older and 1 was 20 years old. To view the interosseous surfaces of the sacrum and ilium the specimens were either axially sectioned (1-cm slices) or disarticulated. One fresh-frozen and 6 embalmed specimens were disarticulated and the remainder axially sectioned. The topography (surface ridging and areas of ossification) of the interosseous region was documented in all specimens and in 2 specimens the surfaces were 3-dimensionally reconstructed using modeling and animation software (MAYA; Autodesk, Inc, San Rafael, CA). Surface characteristics of the SIJ complex observed in specimens 55 years of age or older included moderate to extensive ridging of the interosseous region of the sacrum and ilium in 100% of specimens and ossification of the central interosseous region of the sacroiliac (SI) ligament in 60% of specimens. Central region ossification of the interosseous SI ligament and the presence of ridges and depressions over the opposing interosseous surfaces of the sacrum and ilium are features common to specimens that are in or beyond their sixth decade. These findings further support the contention that there is little to no movement available at this joint in older individuals.

  16. Anatomic variation and orgasm: Could variations in anatomy explain differences in orgasmic success?

    PubMed

    Emhardt, E; Siegel, J; Hoffman, L

    2016-07-01

    Though the public consciousness is typically focused on factors such as psychology, penis size, and the presence of the "G-spot," there are other anatomical and neuro-anatomic differences that could play an equal, or more important, role in the frequency and intensity of orgasms. Discovering these variations could direct further medical or procedural management to improve sexual satisfaction. The aim of this study is to review the available literature of anatomical sexual variation and to explain why this variation may predispose some patients toward a particular sexual experience. In this review, we explored the available literature on sexual anatomy and neuro-anatomy. We used PubMed and OVID Medline for search terms, including orgasm, penile size variation, clitoral variation, Grafenberg spot, and benefits of orgasm. First we review the basic anatomy and innervation of the reproductive organs. Then we describe several anatomical variations that likely play a superior role to popular known variation (penis size, presence of g-spot, etc). For males, the delicate play between the parasympathetic and sympathetic nervous systems is vital to achieve orgasm. For females, the autonomic component is more complex. The clitoris is the primary anatomical feature for female orgasm, including its migration toward the anterior vaginal wall. In conclusions, orgasms are complex phenomena involving psychological, physiological, and anatomic variation. While these variations predispose people to certain sexual function, future research should explore how to surgically or medically alter these. Clin. Anat. 29:665-672, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. Perihilar Glissonian Approach for Anatomical Parenchymal Sparing Liver Resections: Technical Aspects: The Taping Game.

    PubMed

    Figueroa, Rodrigo; Laurenzi, Andrea; Laurent, Alexis; Cherqui, Daniel

    2018-03-01

    To present technical details for central hepatectomy and right anterior and posterior sectionectomies using perihilar Glissonian approach for anatomical delineation and selective inflow occlusion. Central tumors and those deeply located in the right liver may require extensive resections because of their proximity to major vascular structures. In such cases, anatomical more limited resections such as central hepatectomy or sectionectomies may provide an alternative to extensive surgery by assuring both parenchymal sparing and suitable oncologic resection. We present the global concept for performing a perihilar Glissonian approach and its application to each individual anatomical procedure. This includes detailed descriptions, illustrations, and videos demonstrating the technique. This technique was applied since 1991 for anatomical parenchymal resections including central hepatectomy (resection of segments 4, 5, and 8), right anterior sectionectomy (resection of segments 5 and 8), and right posterior sectionectomy (resection of segments 6 and 7). The feasibility rate of the Glissonian approach was 88%. Perihilar Glissonian approach is a safe and reproducible technique that enables anatomical parenchymal preserving liver resections for selected central and right-sided deeply located tumors.

  18. Contextual cueing of tactile search is coded in an anatomical reference frame.

    PubMed

    Assumpção, Leonardo; Shi, Zhuanghua; Zang, Xuelian; Müller, Hermann J; Geyer, Thomas

    2018-04-01

    This work investigates the reference frame(s) underlying tactile context memory, a form of statistical learning in a tactile (finger) search task. In this task, if a searched-for target object is repeatedly encountered within a stable spatial arrangement of task-irrelevant distractors, detecting the target becomes more efficient over time (relative to nonrepeated arrangements), as learned target-distractor spatial associations come to guide tactile search, thus cueing attention to the target location. Since tactile search displays can be represented in several reference frames, including multiple external and an anatomical frame, in Experiment 1 we asked whether repeated search displays are represented in tactile memory with reference to an environment-centered or anatomical reference frame. In Experiment 2, we went on examining a hand-centered versus anatomical reference frame of tactile context memory. Observers performed a tactile search task, divided into a learning and test session. At the transition between the two sessions, we introduced postural manipulations of the hands (crossed ↔ uncrossed in Expt. 1; palm-up ↔ palm-down in Expt. 2) to determine the reference frame of tactile contextual cueing. In both experiments, target-distractor associations acquired during learning transferred to the test session when the placement of the target and distractors was held constant in anatomical, but not external, coordinates. In the latter, RTs were even slower for repeated displays. We conclude that tactile contextual learning is coded in an anatomical reference frame. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  19. Clinical anatomy of the periocular region.

    PubMed

    Shams, Pari N; Ortiz-Pérez, Santiago; Joshi, Naresh

    2013-08-01

    The aims of this article are twofold: (1) to provide the facial plastic surgeon with a comprehensive and up-to-date overview of periocular anatomy including the brow, midface, and temporal region and (2) to highlight important anatomical relationships that must be appreciated in order to achieve the best possible functional and aesthetic surgical outcomes. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  20. Seasonal Variations of Atmospheric CO2 over Fire Affected Regions Based on GOSAT Observations

    NASA Astrophysics Data System (ADS)

    Shi, Y.; Matsunaga, T.

    2016-12-01

    Abstract: The carbon dioxide (CO2) emissions released from biomass burning significantly affect the temporal variations of atmospheric CO2 concentrations. Based on a long-term (July 2009-June 2015) retrieved datasets by the Greenhouse Gases Observing Satellite (GOSAT), the seasonal cycle and interannual variations of column-averaged volume mixing ratios of atmospheric carbon dioxide (XCO2) in four fire affected continental regions were investigated. The results showed Northern Africa had the largest seasonal variations after removing its regional long-term trend of XCO2 with peak-to-peak amplitude of 6.2 ppm within the year, higher than central South America (2.4 ppm), Southern Africa (3.8 ppm) and Australia (1.7 ppm). The detrended regional XCO2 was found to be positively correlated with the fire CO2 emissions during fire activity period and negatively correlated with vegetation photosynthesis activity with different seasonal variabilities. Northern Africa recorded the largest change of seasonal variations of detrended XCO2 with a total of 12.8 ppm during fire seasons, higher than central South America, Southern Africa and Australia with 5.4 ppm, 6.7 ppm and 2.2 ppm, respectively. During fire episode, the positive detrended XCO2 was noticed during June-November in central South America, December-June in Northern Africa, May-November in Southern Africa. The Pearson correlation coefficients between the variations of detrended XCO2 and fire CO2 emissions from GFED4 (Global Fire Emissions Database v4) achieved best correlations in Southern Africa (R=0.77, p<0.05). Meanwhile, Southern Africa also experienced a significant negative relationship between the variations of detrended XCO2 and vegetation activity (R=-0.84, p<0.05). This study revealed that fire CO2 emissions and vegetation activity contributed greatly to the seasonal variations of GOSAT XCO2 dataset.

  1. Atlantoaxial Joint Distraction with a New Expandable Device for the Treatment of Basilar Invagination with Preservation of the C2 Nerve Root: A Cadaveric Anatomical Study.

    PubMed

    Polli, Filippo Maria; Trungu, Sokol; Miscusi, Massimo; Forcato, Stefano; Visocchi, Massimiliano; Raco, Antonino

    2017-01-01

    Atlantoaxial joint distraction has been advocated for the decompression of the brain stem in patients affected by basilar invagination, avoiding direct transoral decompression. This technique requires C2 ganglion resection and it is often impossible to perform due to the peculiar bony anatomy. We describe a cadaveric anatomical study supporting the feasibility of C1-C2 distraction performed with an expandable device, allowing easier insertion of the tool and preservation of the C2 nerve root. In five adult cadaveric specimens, posterior atlantoaxial surgical exposure was performed and an expandable system was inserted within the C1-C2 joint. The expansion of the device, leading to active distraction of the joint space, together with all the surgical steps of the technique was recorded with anatomical pictures and the final results were checked with a computed tomography (CT) scan. Insertion of the device was easily performed in all cases without anatomical conflict with the C2 ganglion; CT scans confirmed the distraction of the C1-C2 joint. This cadaveric anatomical study confirms the feasibility of the introduction of an expandable and flexible device within the C1-C2 joint, allowing it's distraction and preservation of the C2 ganglion.

  2. Pitch-Responsive Cortical Regions in Congenital Amusia.

    PubMed

    Norman-Haignere, Sam V; Albouy, Philippe; Caclin, Anne; McDermott, Josh H; Kanwisher, Nancy G; Tillmann, Barbara

    2016-03-09

    Congenital amusia is a lifelong deficit in music perception thought to reflect an underlying impairment in the perception and memory of pitch. The neural basis of amusic impairments is actively debated. Some prior studies have suggested that amusia stems from impaired connectivity between auditory and frontal cortex. However, it remains possible that impairments in pitch coding within auditory cortex also contribute to the disorder, in part because prior studies have not measured responses from the cortical regions most implicated in pitch perception in normal individuals. We addressed this question by measuring fMRI responses in 11 subjects with amusia and 11 age- and education-matched controls to a stimulus contrast that reliably identifies pitch-responsive regions in normal individuals: harmonic tones versus frequency-matched noise. Our findings demonstrate that amusic individuals with a substantial pitch perception deficit exhibit clusters of pitch-responsive voxels that are comparable in extent, selectivity, and anatomical location to those of control participants. We discuss possible explanations for why amusics might be impaired at perceiving pitch relations despite exhibiting normal fMRI responses to pitch in their auditory cortex: (1) individual neurons within the pitch-responsive region might exhibit abnormal tuning or temporal coding not detectable with fMRI, (2) anatomical tracts that link pitch-responsive regions to other brain areas (e.g., frontal cortex) might be altered, and (3) cortical regions outside of pitch-responsive cortex might be abnormal. The ability to identify pitch-responsive regions in individual amusic subjects will make it possible to ask more precise questions about their role in amusia in future work. Copyright © 2016 the authors 0270-6474/16/362986-09$15.00/0.

  3. Teacher's opinions about learning continuum based on the student's level of competence and specific pedagogical materials on anatomical aspects

    NASA Astrophysics Data System (ADS)

    Astuti, Laili Dwi; Subali, Bambang

    2017-08-01

    This research deals with designing learning continuum for developing a curriculum. The objective of this study is to gather the opinion of public junior and high school teachers about Learning Continuum based on Student's Level of Competence and Specific Pedagogical Material on Anatomical Aspects. This is a survey research. The population of the research is natural science teachers at junior high school and biology teacher at senior high school in Yogyakarta Special Region. Data were collected using a questionnaire. Data were analyzed using a descriptive analysis technique. Based on the results of the survey, the teachers opinion are in accordance with the level of the students they teach. Junior high school teachers argued that anatomical aspects were taught in grade VII,VIII, IX and X on the level of C2 (understanding), the high school teacher argued that anatomical aspects were taught in grade VIII, X and XI on the level of C2 (understanding) and C3 (apply). While according to the opinions of primary school teachers about aspects of anatomy resulted from the research of Subali (2016), anatomy is mostly not taught at the elementary school level, only some of the materials that are taught in this school level. Therefore, the results of the survey can be inferred that the opinions of teachers is still based on the existing curriculum.

  4. [Design of cross-sectional anatomical model focused on drainage pathways of paranasal sinuses].

    PubMed

    Zha, Y; Lv, W; Gao, Y L; Zhu, Z Z; Gao, Z Q

    2018-05-01

    Objective: To design and produce cross-sectional anatomical models of paranasal sinuses for the purpose of demonstrating drainage pathways of each nasal sinus for the young doctors. Method: We reconstructed the three-dimensional model of sinuses area based on CT scan data, and divided it into 5 thick cross-sectional anatomy models by 4 coronal plane,which cross middle points of agger nasi cell, ethmoid bulla, posterior ethmoid sinuses and sphenoid sinus respectively. Then a 3D printerwas used to make anatomical cross-sectional anatomical models. Result: Successfully produced a digital 3D printing cross-sectional models of paranasal sinuses. Sinus drainage pathways were observed on the models. Conclusion: The cross-sectional anatomical models made by us can exactly and intuitively demonstrate the ostia of each sinus cell and they can help the young doctors to understand and master the key anatomies and relationships which are important to the endoscopic sinus surgery. Copyright© by the Editorial Department of Journal of Clinical Otorhinolaryngology Head and Neck Surgery.

  5. Comparing the dosimetric impact of interfractional anatomical changes in photon, proton and carbon ion radiotherapy for pancreatic cancer patients

    NASA Astrophysics Data System (ADS)

    Houweling, Antonetta C.; Crama, Koen; Visser, Jorrit; Fukata, Kyohei; Rasch, Coen R. N.; Ohno, Tatsuya; Bel, Arjan; van der Horst, Astrid

    2017-04-01

    Radiotherapy using charged particles is characterized by a low dose to the surrounding healthy organs, while delivering a high dose to the tumor. However, interfractional anatomical changes can greatly affect the robustness of particle therapy. Therefore, we compared the dosimetric impact of interfractional anatomical changes (i.e. body contour differences and gastrointestinal gas volume changes) in photon, proton and carbon ion therapy for pancreatic cancer patients. In this retrospective planning study, photon, proton and carbon ion treatment plans were created for 9 patients. Fraction dose calculations were performed using daily cone-beam CT (CBCT) images. To this end, the planning CT was deformably registered to each CBCT; gastrointestinal gas volumes were delineated on the CBCTs and copied to the deformed CT. Fraction doses were accumulated rigidly. To compare planned and accumulated dose, dose-volume histogram (DVH) parameters of the planned and accumulated dose of the different radiotherapy modalities were determined for the internal gross tumor volume, internal clinical target volume (iCTV) and organs-at-risk (OARs; duodenum, stomach, kidneys, liver and spinal cord). Photon plans were highly robust against interfractional anatomical changes. The difference between the planned and accumulated DVH parameters for the photon plans was less than 0.5% for the target and OARs. In both proton and carbon ion therapy, however, coverage of the iCTV was considerably reduced for the accumulated dose compared with the planned dose. The near-minimum dose ({{D}98 % } ) of the iCTV reduced with 8% for proton therapy and with 10% for carbon ion therapy. The DVH parameters of the OARs differed less than 3% for both particle modalities. Fractionated radiotherapy using photons is highly robust against interfractional anatomical changes. In proton and carbon ion therapy, such changes can severely reduce the dose coverage of the target.

  6. Korean Type Distal Radius Anatomical Volar Plate System: A Preliminary Report

    PubMed Central

    Kim, Jeong Hwan; Kim, Jihyeung; Kim, Min Bom; Rhee, Seung Hwan; Gong, Hyun Sik; Lee, Young Ho

    2014-01-01

    Background Distal radius fracture is the most common fracture of the upper extremity, and approximately 60,000 distal radius fractures occur annually in Korea. Internal fixation with an anatomical volar locking plate is widely used in the treatment of unstable distal radius fractures. However, most of the currently used distal radius anatomical plate systems were designed based on the anatomical characteristics of Western populations. Recently, the Korean-type distal radius anatomical volar plate (K-DRAVP) system was designed and developed based on the anatomical characteristics of the distal radius of Koreans. The purpose of this study was to evaluate the preliminary results of the new K-DRAVP system, and to compare its radiologic and functional results with those of the other systems. Methods From March 2012 to October 2012, 46 patients with acute distal radius fractures who were treated with the K-DRAVP system at three hospitals were enrolled in this study. Standard posteroanterior and lateral radiographs were obtained to assess fracture healing, and three radiographic parameters (volar tilt, radial inclination, and radial length) were assessed to evaluate radiographic outcomes. The range of motion and grip strength, the Gartland and Werley scoring system, and the disabilities of the arm, shoulder and hand (DASH) questionnaire were used to assess clinical and functional outcomes. Results All radiologic parameters were restored to normal values, and maintained without any loosening or collapse until the time of final follow-up. Grip strength was restored to 84% of the value for the unaffected side. The mean range of motion of the wrist at final follow-up was restored to 77%-95% of the value for the unaffected side. According to the Gartland and Werley scoring system, there were 16 excellent, 26 good, and 4 fair results. The mean DASH score was 8.4 points. There were no complications after surgery. Conclusions The newly developed K-DRAVP system could be used to

  7. Exploring the simulation requirements for virtual regional anesthesia training

    NASA Astrophysics Data System (ADS)

    Charissis, V.; Zimmer, C. R.; Sakellariou, S.; Chan, W.

    2010-01-01

    This paper presents an investigation towards the simulation requirements for virtual regional anaesthesia training. To this end we have developed a prototype human-computer interface designed to facilitate Virtual Reality (VR) augmenting educational tactics for regional anaesthesia training. The proposed interface system, aims to compliment nerve blocking techniques methods. The system is designed to operate in real-time 3D environment presenting anatomical information and enabling the user to explore the spatial relation of different human parts without any physical constrains. Furthermore the proposed system aims to assist the trainee anaesthetists so as to build a mental, three-dimensional map of the anatomical elements and their depictive relationship to the Ultra-Sound imaging which is used for navigation of the anaesthetic needle. Opting for a sophisticated approach of interaction, the interface elements are based on simplified visual representation of real objects, and can be operated through haptic devices and surround auditory cues. This paper discusses the challenges involved in the HCI design, introduces the visual components of the interface and presents a tentative plan of future work which involves the development of realistic haptic feedback and various regional anaesthesia training scenarios.

  8. Increased anteversion of press-fit femoral stems compared with anatomic femur.

    PubMed

    Emerson, Roger H

    2012-02-01

    With contemporary canal-filling press-fit stems, there is no adjustability of stem position in the canal and therefore the canal anatomy determines stem version. Stem version will affect head/neck impingement, polyethylene wear from edge loading, and hip stability, but despite this, the postoperative version of a canal-filling press-fit stem is unclear. Is there a difference between the version of the nonoperated femur and the final version of a canal-filling press-fit femoral component? Could a difference create an alignment problem for the hip replacement? Sixty-four hips were studied with fluoroscopy and 46 nonarthritic and 41 arthritic hips were studied with MRI. A standardized fluoroscopic technique for determining preoperative and postoperative femoral version was developed with the patient supine on a fracture table undergoing supine total hip arthroplasty. To validate the methods, the results were compared with two selected series of axial MRI views of the hip comparing the version of the head with the version of the canal at the base of the neck. For the operated hips, the mean anatomic hip version was less than the stem version: 18.9° versus 27.0°. The difference on average was 8.1° of increased anteversion (SD, 7.4°). Both MRI series showed the femoral neck was more anteverted on average than the femoral head, thereby explaining the operative findings. With a canal-filling press-fit femoral component there is wide variation of postoperative component anteversion with most stems placed in increased anteversion compared with the anatomic head. The surgical technique may need to adjust for this if causing intraoperative impingement or instability.

  9. My Corporis Fabrica: an ontology-based tool for reasoning and querying on complex anatomical models

    PubMed Central

    2014-01-01

    Background Multiple models of anatomy have been developed independently and for different purposes. In particular, 3D graphical models are specially useful for visualizing the different organs composing the human body, while ontologies such as FMA (Foundational Model of Anatomy) are symbolic models that provide a unified formal description of anatomy. Despite its comprehensive content concerning the anatomical structures, the lack of formal descriptions of anatomical functions in FMA limits its usage in many applications. In addition, the absence of connection between 3D models and anatomical ontologies makes it difficult and time-consuming to set up and access to the anatomical content of complex 3D objects. Results First, we provide a new ontology of anatomy called My Corporis Fabrica (MyCF), which conforms to FMA but extends it by making explicit how anatomical structures are composed, how they contribute to functions, and also how they can be related to 3D complex objects. Second, we have equipped MyCF with automatic reasoning capabilities that enable model checking and complex queries answering. We illustrate the added-value of such a declarative approach for interactive simulation and visualization as well as for teaching applications. Conclusions The novel vision of ontologies that we have developed in this paper enables a declarative assembly of different models to obtain composed models guaranteed to be anatomically valid while capturing the complexity of human anatomy. The main interest of this approach is its declarativity that makes possible for domain experts to enrich the knowledge base at any moment through simple editors without having to change the algorithmic machinery. This provides MyCF software environment a flexibility to process and add semantics on purpose for various applications that incorporate not only symbolic information but also 3D geometric models representing anatomical entities as well as other symbolic information like the

  10. Anatomical Study of the Clavicles in a Chinese Population

    PubMed Central

    Qiu, Xu-sheng; Wang, Xiao-bo; Zhang, Yan; Zhu, Yan-Cheng; Guo, Xia; Chen, Yi-xin

    2016-01-01

    Background. A reemergence of interest in clavicle anatomy was prompted because of the advocacy for operative treatment of midshaft clavicle fractures. Several anatomical studies of the clavicle have been performed in western population. However, there was no anatomical study of clavicle in Chinese population. Patients and Methods. 52 patients were included in the present study. Three-dimensional reconstructions of the clavicles were generated. The length of the clavicle, the widths and thicknesses of the clavicle, curvatures of the clavicle, the areas of the intramedullary canal, and sectional areas of the clavicle were measured. All the measurements were compared between genders and two sides. Results. The mean length of the clavicles was 144.2 ± 12.0 mm. Clavicles in males were longer, wider, and thicker than in females; also males have different curvatures in both planes compared with females. The men's intramedullary canals and sectional areas of the clavicle were larger than those of women. No significant difference between the sides was found for all the measurements. Conclusion. This study provided an anatomical data of the clavicle in a Chinese population. These clavicle dimensions can be applied to the modifications of the contemporary clavicle plate or a new development for the Chinese population. PMID:27088088

  11. Effects of anatomical position on esophageal transit time: A biomagnetic diagnostic technique

    PubMed Central

    Cordova-Fraga, Teodoro; Sosa, Modesto; Wiechers, Carlos; la Roca-Chiapas, Jose Maria De; Moreles, Alejandro Maldonado; Bernal-Alvarado, Jesus; Huerta-Franco, Raquel

    2008-01-01

    AIM: To study the esophageal transit time (ETT) and compare its mean value among three anatomical inclinations of the body; and to analyze the correlation of ETT to body mass index (BMI). METHODS: A biomagnetic technique was implemented to perform this study: (1) The transit time of a magnetic marker (MM) through the esophagus was measured using two fluxgate sensors placed over the chest of 14 healthy subjects; (2) the ETT was assessed in three anatomical positions (at upright, fowler, and supine positions; 90º, 45º and 0º, respectively). RESULTS: ANOVA and Tuckey post-hoc tests demonstrated significant differences between ETT mean of the different positions. The ETT means were 5.2 ± 1.1 s, 6.1 ± 1.5 s, and 23.6 ± 9.2 s for 90º, 45º and 0º, respectively. Pearson correlation results were r = -0.716 and P < 0.001 by subjects’ anatomical position, and r = -0.024 and P > 0.05 according the subject’s BMI. CONCLUSION: We demonstrated that using this biomagnetic technique, it is possible to measure the ETT and the effects of the anatomical position on the ETT. PMID:18837088

  12. Encouragers and discouragers affecting medical graduates' choice of regional and rural practice locations.

    PubMed

    McKillop, Ann; Webster, Craig; Bennett, Win; O'Connor, Barbara; Bagg, Warwick

    2017-12-01

    Access to health care as near to where people live as possible is desirable. However, not enough medical graduates choose to work in rural and regional areas, especially in general practice. The career decisions of recent medical graduates are known to be affected by a variety of professional, societal and personal factors. Internationally, medical programmes have exposed students to regional and rural experiences partly to encourage them to seek employment in these areas after graduation. As such, the Pūkawakawa Programme is a year-long regional and rural experience for selected Year 5 students from the University of Auckland‘s Medical Programme in New Zealand in partnership with the Northland District Health Board and two Primary Health Organisations. A lack of clarity about the drivers of rural and regional career decisions underpinned this study, which aimed to explore the barriers and encouragers for students of the programme to return as resident medical officers to the regional hospital where they had gained clinical experience. A mixed-method, descriptive design was used, including a short survey, followed by participation in a focus-group discussion or a one-on-one interview. Survey data were summarised in tabular form and inductive, thematic analysis was applied to transcripts of focus groups and interviews. Nineteen doctors in their first or second year following graduation participated: 15 who had returned to the hospital where they had clinical experience in the programme and four who were employed elsewhere. 'A match of personal goals and intended career intentions' was the reason most frequently selected for junior doctors’ choice of early career employment. Other frequently selected reasons were lifestyle, friends and family close by, and the reputation and experience of the Pūkawakawa Programme. Qualitative data revealed that the learning experience, the unique design of the curriculum and associated support from clinicians were

  13. [3D modeling of the female pelvis by Computer-Assisted Anatomical Dissection: Applications and perspectives].

    PubMed

    Balaya, V; Uhl, J-F; Lanore, A; Salachas, C; Samoyeau, T; Ngo, C; Bensaid, C; Cornou, C; Rossi, L; Douard, R; Bats, A-S; Lecuru, F; Delmas, V

    2016-05-01

    To achieve a 3D vectorial model of a female pelvis by Computer-Assisted Anatomical Dissection and to assess educationnal and surgical applications. From the database of "visible female" of Visible Human Project(®) (VHP) of the "national library of medicine" NLM (United States), we used 739 transverse anatomical slices of 0.33mm thickness going from L4 to the trochanters. The manual segmentation of each anatomical structures was done with Winsurf(®) software version 4.3. Each anatomical element was built as a separate vectorial object. The whole colored-rendered vectorial model with realistic textures was exported in 3Dpdf format to allow a real time interactive manipulation with Acrobat(®) pro version 11 software. Each element can be handled separately at any transparency, which allows an anatomical learning by systems: skeleton, pelvic organs, urogenital system, arterial and venous vascularization. This 3D anatomical model can be used as data bank to teach of the fundamental anatomy. This 3D vectorial model, realistic and interactive constitutes an efficient educational tool for the teaching of the anatomy of the pelvis. 3D printing of the pelvis is possible with the new printers. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Patients’ satisfaction with anatomic polyurethane implants

    PubMed Central

    2017-01-01

    This paper presents patients satisfaction using anatomical polyurethane breast implants. We performed surgery on 525 patients, 370 of which were primary and 155 were secondary to various causes such as capsular contracture, ruptured implants, volume changes, and incorrect positioning of the implant. The advantages of silicone polyurethane covers shown high level of patient satisfaction, low incidence of capsular contracture, and absence of implant rotation, and late seroma. PMID:28497022

  15. Anatomical robust optimization to account for nasal cavity filling variation during intensity-modulated proton therapy: a comparison with conventional and adaptive planning strategies

    NASA Astrophysics Data System (ADS)

    van de Water, Steven; Albertini, Francesca; Weber, Damien C.; Heijmen, Ben J. M.; Hoogeman, Mischa S.; Lomax, Antony J.

    2018-01-01

    The aim of this study is to develop an anatomical robust optimization method for intensity-modulated proton therapy (IMPT) that accounts for interfraction variations in nasal cavity filling, and to compare it with conventional single-field uniform dose (SFUD) optimization and online plan adaptation. We included CT data of five patients with tumors in the sinonasal region. Using the planning CT, we generated for each patient 25 ‘synthetic’ CTs with varying nasal cavity filling. The robust optimization method available in our treatment planning system ‘Erasmus-iCycle’ was extended to also account for anatomical uncertainties by including (synthetic) CTs with varying patient anatomy as error scenarios in the inverse optimization. For each patient, we generated treatment plans using anatomical robust optimization and, for benchmarking, using SFUD optimization and online plan adaptation. Clinical target volume (CTV) and organ-at-risk (OAR) doses were assessed by recalculating the treatment plans on the synthetic CTs, evaluating dose distributions individually and accumulated over an entire fractionated 50 GyRBE treatment, assuming each synthetic CT to correspond to a 2 GyRBE fraction. Treatment plans were also evaluated using actual repeat CTs. Anatomical robust optimization resulted in adequate CTV doses (V95%  ⩾  98% and V107%  ⩽  2%) if at least three synthetic CTs were included in addition to the planning CT. These CTV requirements were also fulfilled for online plan adaptation, but not for the SFUD approach, even when applying a margin of 5 mm. Compared with anatomical robust optimization, OAR dose parameters for the accumulated dose distributions were on average 5.9 GyRBE (20%) higher when using SFUD optimization and on average 3.6 GyRBE (18%) lower for online plan adaptation. In conclusion, anatomical robust optimization effectively accounted for changes in nasal cavity filling during IMPT, providing substantially improved CTV and

  16. Anatomic variations in vascular and collecting systems of kidneys from deceased donors.

    PubMed

    Costa, H C; Moreira, R J; Fukunaga, P; Fernandes, R C; Boni, R C; Matos, A C

    2011-01-01

    Nephroureterectomy for transplantation has increased owing to the greater number of deceased donors. Anatomic variations may complicate the procedure or, if unrecognized, compromise the viability of kidneys for transplantation. We reviewed 254 surgical descriptions of nephroureterectomy specimens from January 2008 to December 2009. All organs collected according by standard techniques were evaluated for age, cause of death, renal function, frequency of injury during the procedure, as well as variations in the vascular and collecting systems. The mean donor age was 42 years (range, 2-74). The mean serum creatinine was 1.2 mg/dL (range, 1.0-7.0). The causes of death were cerebrovascular cause (stroke; n = 130), traumatic brain injury (n = 81) or other cause (n = 43). Among the anatomic variations: 8.6% (n = 22) were right arterial anatomical variations: 19 cases with 2 arteries and 3 cases with 3 arteries. In 25 cases (9.8%) the identified variation was the left artery: 2 arteries (n = 23), 3 arteries (n = 1) and 4 arteries (n = 1). We observed 9.8% on right side and 1.5% on left side venous anatomic variations, including 24 cases with 2 veins on the right side and 4 cases with 2 veins on the left side. Three cases of a retroaortic left renal vein and 1 case of a retro necklace vein (anterior and posterior to the aorta). Two cases of ureteral duplication were noted on the left and 1 on the right kidney. There were 3 horseshoe and 1 pelvic kidney. In 7.5% of cases, an injury to the graft included ureteral (n = 3), arterial (n = 10), or venous (n = 6). The most common anatomic variation was arterial (17.8%). Duplication of the renal vein was more frequent on the right. The high incidences of anatomic variations require more attention in the dissection of the renal hilum to avoid an injury that may compromise the graft. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Proximity of arthroscopic ankle stabilization procedures to surrounding structures: an anatomic study.

    PubMed

    Drakos, Mark; Behrens, Steve B; Mulcahey, Mary K; Paller, David; Hoffman, Eve; DiGiovanni, Christopher W

    2013-06-01

    To examine the anatomy of the lateral ankle after arthroscopic repair of the lateral ligament complex (anterior talofibular ligament [ATFL] and calcaneofibular ligament [CFL]) with regard to structures at risk. Ten lower extremity cadaveric specimens were obtained and were screened for gross anatomic defects and pre-existing ankle laxity. The ATFL and CFL were sectioned from the fibula by an open technique. Standard anterolateral and anteromedial arthroscopy portals were made. An additional portal was created 2 cm distal to the anterolateral portal. The articular surface of the fibula was identified, and the ATFL and CFL were freed from the superficial and deeper tissues. Suture anchors were placed in the fibula at the ATFL and CFL origins and were used to repair the origin of the lateral collateral structures. The distance from the suture knot to several local anatomic structures was measured. Measurements were taken by 2 separate observers, and the results were averaged. Several anatomic structures lie in close proximity to the ATFL and CFL sutures. The ATFL sutures entrapped 9 of 55 structures, and no anatomic structures were inadvertently entrapped by the CFL sutures. The proximity of the peroneus tertius and the extensor tendons to the ATFL makes them at highest risk of entrapment, but the proximity of the intermediate branch of the superficial peroneal nerve (when present) is a risk with significant morbidity. Our results indicate that the peroneus tertius and extensor tendons have the highest risk for entrapment and show the smallest mean distances from the anchor knot to the identified structure. Careful attention to these structures, as well as the superficial peroneal nerve, is mandatory to prevent entrapment of tendons and nerves when one is attempting arthroscopic lateral ankle ligament reconstruction. Defining the anatomic location and proximity of the intervening structures adjacent to the lateral ligament complex of the ankle may help clarify the

  18. TU-AB-303-02: A Novel Surrogate to Identify Anatomical Changes During Radiotherapy of Head and Neck Cancer Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gros, S; Roeske, J; Surucu, M

    Purpose: To develop a novel method to monitor external anatomical changes in head and neck cancer patients in order to help guide adaptive radiotherapy decisions. Methods: The method, developed in MATLAB, reveals internal anatomical changes based on variations observed in external anatomy. Weekly kV-CBCT scans from 11 Head and neck patients were retrospectively analyzed. The pre-processing step first corrects each CBCT for artifacts and removes pixels from the immobilization mask to produce an accurate external contour of the patient’s skin. After registering the CBCTs to the initial planning CT, the external contours from each CBCT (CBCTn) are transferred to themore » first week — reference — CBCT{sub 1}. Contour radii, defined as the distances between an external contour and the central pixel of each CBCT slice, are calculated for each scan at angular increments of 1 degree. The changes in external anatomy are then quantified by the difference in radial distance between the external contours of CBCT1 and CBCTn. The radial difference is finally displayed on a 2D intensity map (angle vs radial distance difference) in order to highlight regions of interests with significant changes. Results: The 2D radial difference maps provided qualitative and quantitative information, such as the location and the magnitude of external contour divergences and the rate at which these deviations occur. With this method, anatomical changes due to tumor volume shrinkage and patient weight loss were clearly identified and could be correlated with the under-dosage of targets or over-dosage of OARs. Conclusion: This novel method provides an efficient tool to visualize 3D external anatomical modification on a single 2D map. It quickly pinpoints the location of differences in anatomy during the course of radiotherapy, which can help determine if a treatment plan needs to be adapted.« less

  19. Heterogeneity of anatomic regions by MR volumetry in juvenile myoclonic epilepsy.

    PubMed

    Swartz, B E; Spitz, J; Vu, A L; Mandelkern, M; Su, M L

    2016-10-01

    To investigate brain volumes in patients with well-characterized juvenile myoclonic epilepsy (JME). We studied the MRI images of seventeen subjects with EEG and clinically defined JME and seventeen age- and sex-matched controls using voxel-based morphometry (VBM) and automated and manual volumetry. We found no significant group differences in the cortical volumes by automated techniques for all regions or for the whole brain. However, we found a larger pulvinar nucleus in JME using VBM with small volume correction and a larger thalamus with manual volumetry (P = 0.001; corrected two-tailed t-test). By analysing the individual subjects, we determined that considerable heterogeneity exists even in this highly selected group. Histograms of all JME and matched control regions' volumes showed more subjects with JME had smaller hippocampi and larger thalami (P < 0.05; chi-square). Subjects in whom the first seizure was absence were more likely to have smaller hippocampi than their matched control, while those without absences showed no differences (P < 0.05, chi-square). There is ample evidence for frontal cortical thalamic network changes in JME, but subcortical structural differences were more distinct in this group. Given the heterogeneity of brain volumes in the clinical population, further advancement in the field will require the examination of stringent genetically controlled populations. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Evaluation of influences of the Viennese Anatomical School on the work of the Croatian Anatomist Jelena Krmpotic-Nemanic.

    PubMed

    Dinjar, Kristijan; Toth, Jurica; Atalic, Bruno; Radanovic, Danijela; Maric, Svjetlana

    2012-01-01

    This paper tries to evaluate the connections between the Viennese Anatomical School and the Croatian Anatomist Jelena Krmpotic-Nemanic. 17 papers written by Professor Jelena Krmpotic-Nemanic in the last decade of her life were chosen for analyses. According to their themes they could be divided into three groups: ones which evaluate the anatomical terminology, ones which research the development of anatomical structures, and ones which describe the anatomical variations. Mentioned papers were analysed through their topics, methods of research and cited references. Analyses of the mentioned papers revealed the indirect link between the Viennese Anatomical School and the Professor Jelena Krmpotic-Nemanic, through her mentor Professor Drago Perovic, regarding the themes and the methods of her anatomical researches. It has also showed her preference for Austrian and German anatomical textbooks and atlases, primarily ones published in Vienna and Jena, rather than English and American ones. Finally, her direct connections with the Viennese Institute for the History of Medicine and the Viennese Josephinum Wax Models Museum were emphasized. Mentioned indirect and direct influences of the Viennese Anatomical School on the work of Professor Jelena Krmpotic-Nemanic were critically appraised.

  1. Hemodialysis catheter implantation in the axillary vein by ultrasound guidance versus palpation or anatomical reference

    PubMed Central

    Valencia, Cesar A Restrepo; Villa, Carlos A Buitrago; Cardona, Jose A Chacon

    2013-01-01

    Background We compared the results of four different methods of hemodialysis catheter insertion in the medial segment of the axillary vein: ultrasound guidance, palpation, anatomical reference, and prior transient catheter. Methods All patients that required acute or chronic hemodialysis and for whom it was determined impossible or not recommended either to place a catheter in the internal jugular vein (for instance, those patients with a tracheostomy), or to practice arteriovenous fistula or graft; it was then essential to obtain an alternative vascular access. When the procedure of axillary vein catheter insertion was performed in the Renal Care Facility (RCF), ultrasound guidance was used, but in the intensive care unit (ICU), this resource was unavailable, so the palpation or anatomical reference technique was used. Results Two nephrologists with experience in the technique performed 83 procedures during a period lasting 15 years and 8 months (from January 1997–August 2012): 41 by ultrasound guidance; 19 by anatomical references; 15 by palpation of the contiguous axillary artery; and 8 through a temporary axillary catheter previously placed. The ultrasound-guided patients had fewer punctures than other groups, but the value was not statistically significant. Arterial punctures were infrequent in all techniques. Analyzing all the procedure-related complications, such as hematoma, pneumothorax, brachial-plexus injury, as well as the reasons for catheter removal, no differences were observed among the groups. The functioning time was longer in the ultrasound-guided and previous catheter groups. In 15 years and 8 months of surveillance, no clinical or image evidence for axillary vein stenosis was found. Conclusion The ultrasound guide makes the procedure of inserting catheters in the axillary veins easier, but knowledge of the anatomy of the midaxillary region and the ability to feel the axillary artery pulse (for the palpation method) also allow relatively easy

  2. A role for anterior thalamic nuclei in affective cognition: interaction with environmental conditions.

    PubMed

    Dupire, Alexandra; Kant, Patricia; Mons, Nicole; Marchand, Alain R; Coutureau, Etienne; Dalrymple-Alford, John; Wolff, Mathieu

    2013-05-01

    Damage to anterior thalamic nuclei (ATN) is a well-known cause of diencephalic pathology that produces a range of cognitive deficits reminiscent of a hippocampal syndrome. Anatomical connections of the ATN also extend to cerebral areas that support affective cognition. Enriched environments promote recovery of declarative/relational memory after ATN lesions and are known to downregulate emotional behaviors. Hence, the performance of standard-housed and enriched ATN rats in a range of behavioral tasks engaging affective cognition was compared. ATN rats exhibited reduced anxiety responses in the elevated plus maze, increased activity and reduced corticosterone responses when exploring an open field, and delayed acquisition of a conditioned contextual fear response. ATN rats also exhibited reduced c-Fos and phosphorylated cAMP response element-binding protein (pCREB) immunoreactivity in the hippocampal formation and the amygdala after completion of the contextual fear test. Marked c-Fos hypoactivity and reduced pCREB levels were also evident in the granular retrosplenial cortex and, to a lesser extent, in the anterior cingulate cortex. Unlike standard-housed ATN rats, enriched ATN rats expressed virtually no fear of the conditioned context. These results show that the ATN regulate affective cognition and that damage to this region may produce markedly different behavioral effects as a function of environmental housing conditions. Copyright © 2013 Wiley Periodicals, Inc.

  3. Differences in regional grey matter volumes in currently ill patients with anorexia nervosa.

    PubMed

    Phillipou, Andrea; Rossell, Susan Lee; Gurvich, Caroline; Castle, David Jonathan; Abel, Larry Allen; Nibbs, Richard Grant; Hughes, Matthew Edward

    2018-01-01

    Neurobiological findings in anorexia nervosa (AN) are inconsistent, including differences in regional grey matter volumes. Methodological limitations often contribute to the inconsistencies reported. The aim of this study was to improve on these methodologies by utilising voxel-based morphometry (VBM) analysis with the use of diffeomorphic anatomic registration through an exponentiated lie algebra algorithm (DARTEL), in a relatively large group of individuals with AN. Twenty-six individuals with AN and 27 healthy controls underwent a T1-weighted magnetic resonance imaging (MRI) scan. AN participants were found to have reduced grey matter volumes in a number of areas including regions of the basal ganglia (including the ventral striatum), and parietal and temporal cortices. Body mass index (BMI) and global scores on the Eating Disorder Examination Questionnaire (EDE-Q) were also found to correlate with grey matter volumes in a region of the brainstem (including the substantia nigra and ventral tegmental area) in AN, and predicted 56% of the variance in grey matter volumes in this area. The brain regions associated with grey matter reductions in AN are consistent with regions responsible for cognitive deficits associated with the illness including anhedonia, deficits in affect perception and saccadic eye movement abnormalities. Overall, the findings suggest reduced grey matter volumes in AN that are associated with eating disorder symptomatology. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  4. Comparison of femur tunnel aperture location in patients undergoing transtibial and anatomical single-bundle anterior cruciate ligament reconstruction.

    PubMed

    Lee, Dae-Hee; Kim, Hyun-Jung; Ahn, Hyeong-Sik; Bin, Seong-Il

    2016-12-01

    Although three-dimensional computed tomography (3D-CT) has been used to compare femoral tunnel position following transtibial and anatomical anterior cruciate ligament (ACL) reconstruction, no consensus has been reached on which technique results in a more anatomical position because methods of quantifying femoral tunnel position on 3D-CT have not been consistent. This meta-analysis was therefore performed to compare femoral tunnel location following transtibial and anatomical ACL reconstruction, in both the low-to-high and deep-to-shallow directions. This meta-analysis included all studies that used 3D-CT to compare femoral tunnel location, using quadrant or anatomical coordinate axis methods, following transtibial and anatomical (AM portal or OI) single-bundle ACL reconstruction. Six studies were included in the meta-analysis. Femoral tunnel location was 18 % higher in the low-to-high direction, but was not significant in the deep-to-shallow direction, using the transtibial technique than the anatomical methods, when measured using the anatomical coordinate axis method. When measured using the quadrant method, however, femoral tunnel positions were significantly higher (21 %) and shallower (6 %) with transtibial than anatomical methods of ACL reconstruction. The anatomical ACL reconstruction techniques led to a lower femoral tunnel aperture location than the transtibial technique, suggesting the superiority of anatomical techniques for creating new femoral tunnels during revision ACL reconstruction in femoral tunnel aperture location in the low-to-high direction. However, the mean difference in the deep-to-shallow direction differed by method of measurement. Meta-analysis, Level II.

  5. Utilization management in anatomic pathology.

    PubMed

    Lewandrowski, Kent; Black-Schaffer, Steven

    2014-01-01

    There is relatively little published literature concerning utilization management in anatomic pathology. Nonetheless there are many utilization management opportunities that currently exist and are well recognized. Some of these impact only the cost structure within the pathology department itself whereas others reduce charges for third party payers. Utilization management may result in medical legal liabilities for breaching the standard of care. For this reason it will be important for pathology professional societies to develop national utilization guidelines to assist individual practices in implementing a medically sound approach to utilization management. © 2013.

  6. Giving Ourselves: The Ethics of Anatomical Donation

    ERIC Educational Resources Information Center

    Gunderman, Richard B.

    2008-01-01

    In some European countries, such as Italy, medical education is threatened by a dearth of anatomical specimens. Such a shortage could spread to other nations, including the United States. This article addresses two ethical questions in body donation. Why might people choose to donate their bodies to education and science? What sorts of ethical…

  7. Evolution of the Anatomical Theatre in Padova

    ERIC Educational Resources Information Center

    Macchi, Veronica; Porzionato, Andrea; Stecco, Carla; Caro, Raffaele

    2014-01-01

    The anatomical theatre played a pivotal role in the evolution of medical education, allowing students to directly observe and participate in the process of dissection. Due to the increase of training programs in clinical anatomy, the Institute of Human Anatomy at the University of Padova has renovated its dissecting room. The main guidelines in…

  8. A probabilistic framework to infer brain functional connectivity from anatomical connections.

    PubMed

    Deligianni, Fani; Varoquaux, Gael; Thirion, Bertrand; Robinson, Emma; Sharp, David J; Edwards, A David; Rueckert, Daniel

    2011-01-01

    We present a novel probabilistic framework to learn across several subjects a mapping from brain anatomical connectivity to functional connectivity, i.e. the covariance structure of brain activity. This prediction problem must be formulated as a structured-output learning task, as the predicted parameters are strongly correlated. We introduce a model selection framework based on cross-validation with a parametrization-independent loss function suitable to the manifold of covariance matrices. Our model is based on constraining the conditional independence structure of functional activity by the anatomical connectivity. Subsequently, we learn a linear predictor of a stationary multivariate autoregressive model. This natural parameterization of functional connectivity also enforces the positive-definiteness of the predicted covariance and thus matches the structure of the output space. Our results show that functional connectivity can be explained by anatomical connectivity on a rigorous statistical basis, and that a proper model of functional connectivity is essential to assess this link.

  9. Neuroanatomy of pseudobulbar affect : a quantitative MRI study in multiple sclerosis.

    PubMed

    Ghaffar, Omar; Chamelian, Laury; Feinstein, Anthony

    2008-03-01

    Pseudobulbar affect (PBA) is defined as episodes of involuntary crying, laughing, or both in the absence of a matching subjective mood state. This neuropsychiatric syndrome can be found in a number of neurological disorders including multiple sclerosis (MS). The aim of this study was to identify neuroanatomical correlates of PBA in multiple sclerosis (MS) using a case-control 1.5T MRI study. MS patients with (n = 14) and without (n = 14) PBA were matched on demographic, disease course, and disability variables. Comorbid psychiatric disorders including depressive and anxiety disorders were absent. Hypo- and hyperintense lesion volumes plus measurements of atrophy were obtained and localized anatomically according to parcellated brain regions. Between-group statistical comparisons were undertaken with alpha set at 0.01 for the primary analysis. Discrete differences in lesion volume were noted in six regions: Brainstem hypointense lesions, bilateral inferior parietal and medial inferior frontal hyperintense lesions, and right medial superior frontal hyperintense lesions were all significantly higher in the PBA group. A logistic regression model identified four of these variables (brainstem hypointense, left inferior parietal hyperintense, and left and right medial inferior frontal hyperintense lesion volumes) that accounted for 70% of the variance when it came to explaining the presence of PBA. In conclusion, MS patients with PBA have a distinct distribution of brain lesions when compared to a matched MS sample without PBA. The lesion data support a widely-dispersed neural network involving frontal, parietal, and brainstem regions in the pathophysiology of PBA.

  10. Anterior interhemispheric transsplenial approach to pineal region tumors: anatomical study and illustrative case.

    PubMed

    Yağmurlu, Kaan; Zaidi, Hasan A; Kalani, M Yashar S; Rhoton, Albert L; Preul, Mark C; Spetzler, Robert F

    2018-01-01

    Pineal region tumors are challenging to access because they are centrally located within the calvaria and surrounded by critical neurovascular structures. The goal of this work is to describe a new surgical trajectory, the anterior interhemispheric transsplenial approach, to the pineal region and falcotentorial junction area. To demonstrate this approach, the authors examined 7 adult formalin-fixed silicone-injected cadaveric heads and 2 fresh human brain specimens. One representative case of falcotentorial meningioma treated through an anterior interhemispheric transsplenial approach is also described. Among the interhemispheric approaches to the pineal region, the anterior interhemispheric transsplenial approach has several advantages. 1) There are few or no bridging veins at the level of the pericoronal suture. 2) The parietal and occipital lobes are not retracted, which reduces the chances of approach-related morbidity, especially in the dominant hemisphere. 3) The risk of damage to the deep venous structures is low because the tumor surface reached first is relatively vein free. 4) The internal cerebral veins can be manipulated and dissected away laterally through the anterior interhemispheric route but not via the posterior interhemispheric route. 5) Early control of medial posterior choroidal arteries is obtained. The anterior interhemispheric transsplenial approach provides a safe and effective surgical corridor for patients with supratentorial pineal region tumors that 1) extend superiorly, involve the splenium of the corpus callosum, and push the deep venous system in a posterosuperior or an anteroinferior direction; 2) are tentorial and displace the deep venous system inferiorly; or 3) originate from the splenium of the corpus callosum.

  11. A time dependent anatomically detailed model of cardiac conduction

    NASA Technical Reports Server (NTRS)

    Saxberg, B. E.; Grumbach, M. P.; Cohen, R. J.

    1985-01-01

    In order to understand the determinants of transitions in cardiac electrical activity from normal patterns to dysrhythmias such as ventricular fibrillation, we are constructing an anatomically and physiologically detailed finite element simulation of myocardial electrical propagation. A healthy human heart embedded in paraffin was sectioned to provide a detailed anatomical substrate for model calculations. The simulation of propagation includes anisotropy in conduction velocity due to fiber orientation as well as gradients in conduction velocities, absolute and relative refractory periods, action potential duration and electrotonic influence of nearest neighbors. The model also includes changes in the behaviour of myocardial tissue as a function of the past local activity. With this model, we can examine the significance of fiber orientation and time dependence of local propagation parameters on dysrhythmogenesis.

  12. The "G-Spot" Is Not a Structure Evident on Macroscopic Anatomic Dissection of the Vaginal Wall.

    PubMed

    Hoag, Nathan; Keast, Janet R; O'Connell, Helen E

    2017-12-01

    Controversy exists in the literature regarding the presence or absence of an anatomic "G-spot." However, few studies have examined the detailed topographic or histologic anatomy of the putative G-spot location. To determine the anatomy of the anterior vaginal wall and present detailed, systematic, accessible findings from female cadaveric dissections to provide anatomic clarity with respect to this location. Systematic anatomic dissections were performed on 13 female cadavers (32-97 years old, 8 fixed and 5 fresh) to characterize the gross anatomy of the anterior vaginal wall. Digital photography was used to document dissections. Dissection preserved the anterior vaginal wall, urethra, and clitoris. In 9 cadavers, the vaginal epithelial layer was reflected to expose the underlying urethral wall and associated tissues. In 4 cadavers, the vaginal wall was left intact before preservation. Once photographed, 8 specimens were transversely sectioned for macroscopic inspection and histologic examination. The presence or absence of a macroscopic anatomic structure at detailed cadaveric pelvis dissection that corresponds to the previously described G-spot and gross anatomic description of the anterior vaginal wall. Deep to the lining epithelium of the anterior vaginal wall is the urethra. There is no macroscopic structure other than the urethra and vaginal wall lining in the location of the putative G-spot. Specifically, there is no apparent erectile or "spongy" tissue in the anterior vaginal wall, except where the urethra abuts the clitoris distally. The absence of an anatomic structure corresponding to the putative G-spot helps clarify the controversy on this subject. Limitations to this study include limited access to specimens immediately after death and potential for observational bias. In addition, age, medical history, and cause of death are not publishable for privacy reasons. However, it is one of the most thorough and complete anatomic evaluations documenting the

  13. Anatomical approach to permanent His bundle pacing: Optimizing His bundle capture.

    PubMed

    Vijayaraman, Pugazhendhi; Dandamudi, Gopi

    2016-01-01

    Permanent His bundle pacing is a physiological alternative to right ventricular pacing. In this article we describe our approach to His bundle pacing in patients with AV nodal and intra-Hisian conduction disease. It is essential for the implanters to understand the anatomic variations of the His bundle course and its effect on the type of His bundle pacing achieved. We describe several case examples to illustrate our anatomical approach to permanent His bundle pacing in this article. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Automatic Clustering and Thickness Measurement of Anatomical Variants of the Human Perirhinal Cortex

    PubMed Central

    Xie, Long; Pluta, John; Wang, Hongzhi; Das, Sandhitsu R.; Mancuso, Lauren; Kliot, Dasha; Avants, Brian B.; Ding, Song-Lin; Wolk, David A.; Yushkevich, Paul A.

    2015-01-01

    The entorhinal cortex (ERC) and the perirhinal cortex (PRC) are subregions of the medial temporal lobe (MTL) that play important roles in episodic memory representations, as well as serving as a conduit between other neocortical areas and the hippocampus. They are also the sites where neuronal damage first occurs in Alzheimer’s disease (AD). The ability to automatically quantify the volume and thickness of the ERC and PRC is desirable because these localized measures can potentially serve as better imaging biomarkers for AD and other neurodegenerative diseases. However, large anatomical variation in the PRC makes it a challenging area for analysis. In order to address this problem, we propose an automatic segmentation, clustering, and thickness measurement approach that explicitly accounts for anatomical variation. The approach is targeted to highly anisotropic (0.4×0.4×2.0mm3) T2-weighted MRI scans that are preferred by many authors for detailed imaging of the MTL, but which pose challenges for segmentation and shape analysis. After automatically labeling MTL substructures using multi-atlas segmentation, our method clusters subjects into groups based on the shape of the PRC, constructs unbiased population templates for each group, and uses the smooth surface representations obtained during template construction to extract regional thickness measurements in the space of each subject. The proposed thickness measures are evaluated in the context of discrimination between patients with Mild Cognitive Impairment (MCI) and normal controls (NC). PMID:25320785

  15. Wood Anatomy and Insect Defoliator Systems: Is there an anatomical response to sustained feeding by the western spruce budworm (Choristoneura occidentalis) on Douglas-fir (Pseudotusga menziesii)?

    NASA Astrophysics Data System (ADS)

    Axelson, Jodi; Gärtner, Holger; Alfaro, René; Smith, Dan

    2013-04-01

    The western spruce budworm (Choristoneura occidentalis Freeman) is the most widespread and destructive defoliator of coniferous forests in western North America, and has a long-term coexistence with its primary host tree, Douglas-fir (Pseudotsuga menziesii Franco). Western spruce budworm (WSB) outbreaks usually last for several years, and cause reductions in annual growth, stem defects, and regeneration delays. In British Columbia, the WSB is the second most damaging insect after the mountain pine beetle, and sustained and/or severe defoliation can result in the mortality of host trees. Numerous studies have used tree rings to reconstruct WSB outbreaks across long temporal scales, to evaluate losses in stand productivity, and examine isotope ratios. Although some studies have looked at the impacts of artificial defoliation on balsam fir in eastern North America, there has been no prior research on how WSB outbreaks affect the anatomical structure of the stem as described by intra-annual wood density and potential cell size variations. The objective of this study was to anatomically examine the response of Douglas-fir to sustained WSB outbreaks in two regions of southern British Columbia. We hypothesize that the anatomical intra-annual characteristics of the tree rings, such as cell wall thickness, latewood cell size, and/or lumen area changes during sustained WSB outbreaks. To test this hypothesis we sampled four permanent sample plots in coastal and dry interior sites, which had annually resolved defoliation data collected over a 7-12 year period. At each site diameter-at-breast height (cm), height (m), and crown position were recorded and three increment cores were extracted from 25 trees. Increment cores were prepared to permit anatomical and x-ray density analyses. For each tree, a 15µm thick micro section was cut from the radial plane. Digital images of the micro sections were captured and processed. In each annual ring, features such as cell lumen area (µm2

  16. [History of Japanese Committee for Anatomical Nomenclature].

    PubMed

    Kimura, Kunihiko

    2008-12-01

    This paper records a history of the Japanese Committee of Anatomical Nomenclature since 1990, as a supplement to the previous report (1991), explains a progressing of the edition of Japanese medical terms by the Japanese Association of Medical Sciences and the Ministry of Education, Sciences and Culture, and points out of some problems on terms in Japanese.

  17. Procedure Planning: Anatomical Determinants of Strategy

    PubMed Central

    Hanratty, Colm; Walsh, Simon

    2014-01-01

    In contemporary practice there are three main methods that can be employed when attempting to open a chronic total occlusion (CTO) of a coronary artery; antegrade or retrograde wire escalation, antegrade dissection re-entry and retrograde dissection re-entry. This editorial will attempt to clarify the anatomical features that can be identified to help when deciding which of these strategies to employ initially and help understand the reasons for this decision. PMID:24694102

  18. Factors affecting unmet need for family planning in southern nations, nationalities and peoples region, ethiopia.

    PubMed

    Hailemariam, Assefa; Haddis, Fikrewold

    2011-07-01

    High fertility and low contraceptive prevalence characterize Southern Nations, Nationalities and Peoples Region. In such populations, unmet needs for contraception have a tendency to be high, mainly due to the effect of socio-economic and demographic variables. However, there has not been any study examining the relationship between these variables and unmet need in the region. This study, therefore, identifies the key socio- demographic determinants of unmet need for family planning in the region. The study used data from the 2000 and 2005 Ethiopian Demographic and Health Surveys. A total of 2,133 currently married women age 15-49 from the 2000 survey and 1,988 from the 2005 survey were included in the study. Unmet need for spacing, unmet need for limiting and total unmet need were used as dependent variables. Socio- demographic variables (respondent's age, age at marriage, number of living children, sex composition of living children, child mortality experience, place of residence, respondent's and partner's education, religion and work status) were treated as explanatory variables and their relative importance was examined on each of the dependent variables using multinomial and binary logistic regression models. Unmet need for contraception increased from 35.1% in 2000 to 37.4% in 2005. Unmet need for spacing remained constant at about 25%, while unmet need for limiting increased by 20% between 2000 and 2005. Age, age at marriage, number of living children, place of residence, respondent's education, knowledge of family planning, respondent's work status, being visited by a family planning worker and survey year emerged as significant factors affecting unmet need. On the other hand, number of living children, education, age and age at marriage were the only explanatory variables affecting unmet need for limiting. Number of living children, place of residence, age and age at marriage were also identified as factors affecting total unmet need for contraception

  19. Designing learning spaces for interprofessional education in the anatomical sciences.

    PubMed

    Cleveland, Benjamin; Kvan, Thomas

    2015-01-01

    This article explores connections between interprofessional education (IPE) models and the design of learning spaces for undergraduate and graduate education in the anatomical sciences and other professional preparation. The authors argue that for IPE models to be successful and sustained they must be embodied in the environment in which interprofessional learning occurs. To elaborate these arguments, two exemplar tertiary education facilities are discussed: the Charles Perkins Centre at the University of Sydney for science education and research, and Victoria University's Interprofessional Clinic in Wyndham for undergraduate IPE in health care. Backed by well-conceived curriculum and pedagogical models, the architectures of these facilities embody the educational visions, methods, and practices they were designed to support. Subsequently, the article discusses the spatial implications of curriculum and pedagogical change in the teaching of the anatomical sciences and explores how architecture might further the development of IPE models in the field. In conclusion, it is argued that learning spaces should be designed and developed (socially) with the expressed intention of supporting collaborative IPE models in health education settings, including those in the anatomical sciences. © 2015 American Association of Anatomists.

  20. Joint Segmentation of Anatomical and Functional Images: Applications in Quantification of Lesions from PET, PET-CT, MRI-PET, and MRI-PET-CT Images

    PubMed Central

    Bagci, Ulas; Udupa, Jayaram K.; Mendhiratta, Neil; Foster, Brent; Xu, Ziyue; Yao, Jianhua; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We present a novel method for the joint segmentation of anatomical and functional images. Our proposed methodology unifies the domains of anatomical and functional images, represents them in a product lattice, and performs simultaneous delineation of regions based on random walk image segmentation. Furthermore, we also propose a simple yet effective object/background seed localization method to make the proposed segmentation process fully automatic. Our study uses PET, PET-CT, MRI-PET, and fused MRI-PET-CT scans (77 studies in all) from 56 patients who had various lesions in different body regions. We validated the effectiveness of the proposed method on different PET phantoms as well as on clinical images with respect to the ground truth segmentation provided by clinicians. Experimental results indicate that the presented method is superior to threshold and Bayesian methods commonly used in PET image segmentation, is more accurate and robust compared to the other PET-CT segmentation methods recently published in the literature, and also it is general in the sense of simultaneously segmenting multiple scans in real-time with high accuracy needed in routine clinical use. PMID:23837967

  1. Effect of Cuscuta campestris parasitism on the physiological and anatomical changes in untreated and herbicide-treated sugar beet.

    PubMed

    Saric-Krsmanovic, Marija M; Bozic, Dragana M; Radivojevic, Ljiljana M; Umiljendic, Jelena S Gajic; Vrbnicanin, Sava P

    2017-11-02

    The effects of field dodder on physiological and anatomical processes in untreated sugar beet plants and the effects of propyzamide on field dodder were examined under controlled conditions. The experiment included the following variants: N-noninfested sugar beet plants (control); I - infested sugar beet plants (untreated), and infested plants treated with propyzamide (1500 g a.i. ha -1 (T 1 ) and 2000 g a.i. ha -1 (T 2 )). The following parameters were checked: physiological-pigment contents (chlorophyll a, chlorophyll b, total carotenoids); anatomical -leaf parameters: thickness of epidermis, parenchyma and spongy tissue, mesophyll and underside leaf epidermis, and diameter of bundle sheath cells; petiole parameters: diameter of tracheid, petiole hydraulic conductance, xylem surface, phloem cell diameter and phloem area in sugar beet plants. A conventional paraffin wax method was used to prepare the samples for microscopy. Pigment contents were measured spectrophotometrically after methanol extraction. All parameters were measured: prior to herbicide application (0 assessment), then 7, 14, 21, 28 and 35 days after application (DAA). Field dodder was found to affect the pigment contents in untreated sugar beet plants, causing significant reductions. Conversely, reduction in the treated plants decreased 27% to 4% for chlorophyll a, from 21% to 5% for chlorophyll b, and from 28% to 5% for carotenoids (T 1 ). Also, in treatment T 2, reduction decreased in infested and treated plants from 19% to 2% for chlorophyll a, from 21% to 2% for chlorophyll b, from 23% to 3% for carotenoids and stimulation of 1% and 2% was observed 28 and 35 DAA, respectively. Plants infested (untreated) by field dodder had lower values of most anatomical parameters, compared to noninfested plants. The measured anatomical parameters of sugar beet leaves and petiole had significantly higher values in noninfested plants and plants treated with propyzamide than in untreated plants. Also, the

  2. Variation in stem anatomical characteristics of Campanuloideae species in relation to evolutionary history and ecological preferences.

    PubMed

    Schweingruber, Fritz Hans; Ríha, Pavel; Doležal, Jiří

    2014-01-01

    The detailed knowledge of plant anatomical characters and their variation among closely related taxa is key to understanding their evolution and function. We examined anatomical variation in 46 herbaceous taxa from the subfamily Campanuloideae (Campanulaceae) to link this information with their phylogeny, ecology and comparative material of 56 woody tropical taxa from the subfamily Lobelioideae. The species studied covered major environmental gradients from Mediterranean to Arctic zones, allowing us to test hypotheses on the evolution of anatomical structure in relation to plant competitive ability and ecological preferences. To understand the evolution of anatomical diversity, we reconstructed the phylogeny of studied species from nucleotide sequences and examined the distribution of anatomical characters on the resulting phylogenetic tree. Redundancy analysis, with phylogenetic corrections, was used to separate the evolutionary inertia from the adaptation to the environment. A large anatomical diversity exists within the Campanuloideae. Traits connected with the quality of fibres were the most congruent with phylogeny, and the Rapunculus 2 ("phyteumoid") clade was especially distinguished by a number of characters (absence of fibres, pervasive parenchyma, type of rays) from two other clades (Campanula s. str. and Rapunculus 1) characterized by the dominance of fibres and the absence of parenchyma. Septate fibres are an exclusive trait in the Lobelioideae, separating it clearly from the Campanuloideae where annual rings, pervasive parenchyma and crystals in the phellem are characteristic features. Despite clear phylogenetic inertia in the anatomical features studied, the ecological attributes and plant height had a significant effect on anatomical divergence. From all three evolutionary clades, the taller species converged towards similar anatomical structure, characterized by a smaller number of early wood vessels of large diameter, thinner cell-walls and

  3. Variation in Stem Anatomical Characteristics of Campanuloideae Species in Relation to Evolutionary History and Ecological Preferences

    PubMed Central

    Schweingruber, Fritz Hans; Říha, Pavel; Doležal, Jiří

    2014-01-01

    Background The detailed knowledge of plant anatomical characters and their variation among closely related taxa is key to understanding their evolution and function. We examined anatomical variation in 46 herbaceous taxa from the subfamily Campanuloideae (Campanulaceae) to link this information with their phylogeny, ecology and comparative material of 56 woody tropical taxa from the subfamily Lobelioideae. The species studied covered major environmental gradients from Mediterranean to Arctic zones, allowing us to test hypotheses on the evolution of anatomical structure in relation to plant competitive ability and ecological preferences. Methodology/Principal Findings To understand the evolution of anatomical diversity, we reconstructed the phylogeny of studied species from nucleotide sequences and examined the distribution of anatomical characters on the resulting phylogenetic tree. Redundancy analysis, with phylogenetic corrections, was used to separate the evolutionary inertia from the adaptation to the environment. A large anatomical diversity exists within the Campanuloideae. Traits connected with the quality of fibres were the most congruent with phylogeny, and the Rapunculus 2 (“phyteumoid”) clade was especially distinguished by a number of characters (absence of fibres, pervasive parenchyma, type of rays) from two other clades (Campanula s. str. and Rapunculus 1) characterized by the dominance of fibres and the absence of parenchyma. Septate fibres are an exclusive trait in the Lobelioideae, separating it clearly from the Campanuloideae where annual rings, pervasive parenchyma and crystals in the phellem are characteristic features. Conclusions/Significance Despite clear phylogenetic inertia in the anatomical features studied, the ecological attributes and plant height had a significant effect on anatomical divergence. From all three evolutionary clades, the taller species converged towards similar anatomical structure, characterized by a smaller number

  4. The posterior auricular muscle: a useful anatomical landmark for otoplasty.

    PubMed

    Stephen, C; Lowrie, A G

    2017-05-01

    The correct anatomical placement of conchomastoid sutures during suture otoplasty can sometimes prove challenging. If the suture vector is inaccurate, reduction can be difficult and this may lead to malrotation of the pinna. This paper describes the adoption of the auricularis posterior muscle, which runs from the mastoid to the concha and whose function is to adduct the pinna, as a marker for conchomastoid suture placement. The muscle is easily identified and dissected, providing a landmark for the placement of sutures onto the adjacent concha and mastoid fascia. This allows for an anatomical reduction of the pinna. It is believed that this approach will prove useful to the otoplasty surgeon.

  5. A voxelwise approach to determine consensus regions-of-interest for the study of brain network plasticity.

    PubMed

    Rajtmajer, Sarah M; Roy, Arnab; Albert, Reka; Molenaar, Peter C M; Hillary, Frank G

    2015-01-01

    Despite exciting advances in the functional imaging of the brain, it remains a challenge to define regions of interest (ROIs) that do not require investigator supervision and permit examination of change in networks over time (or plasticity). Plasticity is most readily examined by maintaining ROIs constant via seed-based and anatomical-atlas based techniques, but these approaches are not data-driven, requiring definition based on prior experience (e.g., choice of seed-region, anatomical landmarks). These approaches are limiting especially when functional connectivity may evolve over time in areas that are finer than known anatomical landmarks or in areas outside predetermined seeded regions. An ideal method would permit investigators to study network plasticity due to learning, maturation effects, or clinical recovery via multiple time point data that can be compared to one another in the same ROI while also preserving the voxel-level data in those ROIs at each time point. Data-driven approaches (e.g., whole-brain voxelwise approaches) ameliorate concerns regarding investigator bias, but the fundamental problem of comparing the results between distinct data sets remains. In this paper we propose an approach, aggregate-initialized label propagation (AILP), which allows for data at separate time points to be compared for examining developmental processes resulting in network change (plasticity). To do so, we use a whole-brain modularity approach to parcellate the brain into anatomically constrained functional modules at separate time points and then apply the AILP algorithm to form a consensus set of ROIs for examining change over time. To demonstrate its utility, we make use of a known dataset of individuals with traumatic brain injury sampled at two time points during the first year of recovery and show how the AILP procedure can be applied to select regions of interest to be used in a graph theoretical analysis of plasticity.

  6. The Adult Mouse Anatomical Dictionary: a tool for annotating and integrating data

    PubMed Central

    Hayamizu, Terry F; Mangan, Mary; Corradi, John P; Kadin, James A; Ringwald, Martin

    2005-01-01

    We have developed an ontology to provide standardized nomenclature for anatomical terms in the postnatal mouse. The Adult Mouse Anatomical Dictionary is structured as a directed acyclic graph, and is organized hierarchically both spatially and functionally. The ontology will be used to annotate and integrate different types of data pertinent to anatomy, such as gene expression patterns and phenotype information, which will contribute to an integrated description of biological phenomena in the mouse. PMID:15774030

  7. Towards anatomic scale agent-based modeling with a massively parallel spatially explicit general-purpose model of enteric tissue (SEGMEnT_HPC).

    PubMed

    Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary

    2015-01-01

    Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis.

  8. Towards Anatomic Scale Agent-Based Modeling with a Massively Parallel Spatially Explicit General-Purpose Model of Enteric Tissue (SEGMEnT_HPC)

    PubMed Central

    Cockrell, Robert Chase; Christley, Scott; Chang, Eugene; An, Gary

    2015-01-01

    Perhaps the greatest challenge currently facing the biomedical research community is the ability to integrate highly detailed cellular and molecular mechanisms to represent clinical disease states as a pathway to engineer effective therapeutics. This is particularly evident in the representation of organ-level pathophysiology in terms of abnormal tissue structure, which, through histology, remains a mainstay in disease diagnosis and staging. As such, being able to generate anatomic scale simulations is a highly desirable goal. While computational limitations have previously constrained the size and scope of multi-scale computational models, advances in the capacity and availability of high-performance computing (HPC) resources have greatly expanded the ability of computational models of biological systems to achieve anatomic, clinically relevant scale. Diseases of the intestinal tract are exemplary examples of pathophysiological processes that manifest at multiple scales of spatial resolution, with structural abnormalities present at the microscopic, macroscopic and organ-levels. In this paper, we describe a novel, massively parallel computational model of the gut, the Spatially Explicitly General-purpose Model of Enteric Tissue_HPC (SEGMEnT_HPC), which extends an existing model of the gut epithelium, SEGMEnT, in order to create cell-for-cell anatomic scale simulations. We present an example implementation of SEGMEnT_HPC that simulates the pathogenesis of ileal pouchitis, and important clinical entity that affects patients following remedial surgery for ulcerative colitis. PMID:25806784

  9. Anatomical landmarks of radical prostatecomy.

    PubMed

    Stolzenburg, Jens-Uwe; Schwalenberg, Thilo; Horn, Lars-Christian; Neuhaus, Jochen; Constantinides, Costantinos; Liatsikos, Evangelos N

    2007-03-01

    In the present study, we review current literature and based on our experience, we present the anatomical landmarks of open and laparoscopic/endoscopic radical prostatectomy. A thorough literature search was performed with the Medline database on the anatomy and the nomenclature of the structures surrounding the prostate gland. The correct handling of puboprostatic ligaments, external urethral sphincter, prostatic fascias and neurovascular bundle is necessary for avoiding malfunction of the urogenital system after radical prostatectomy. When evaluating new prostatectomy techniques, we should always take into account both clinical and final oncological outcomes. The present review adds further knowledge to the existing "postprostatectomy anatomical hazard" debate. It emphasizes upon the role of the puboprostatic ligaments and the course of the external urethral sphincter for urinary continence. When performing an intrafascial nerve sparing prostatectomy most urologists tend to approach as close to the prostatic capsula as possible, even though there is no concurrence regarding the nomenclature of the surrounding fascias and the course of the actual neurovascular bundles. After completion of an intrafascial technique the specimen does not contain any periprostatic tissue and thus the detection of pT3a disease is not feasible. This especially becomes problematic if the tumour reaches the resection margin. Nerve sparing open and laparoscopic radical prostatectomy should aim in maintaining sexual function, recuperating early continence after surgery, without hindering the final oncological outcome to the procedure. Despite the different approaches for radical prostatectomy the key for better results is the understanding of the anatomy of the bladder neck and the urethra.

  10. Safety issues in didactic anatomical dissection in regions of high HIV prevalence.

    PubMed

    Prayer Galletti, Matteo; Bauer, Henry H

    2009-01-01

    Ruggiero et al. (2009) have recently reviewed the importance of dissection in the training of physicians, the role played by students' fears of infection, and the evidence that those sometimes extreme fears are unwarranted even respecting HIV and AIDS, whose dangers continue to be featured prominently in popular media as though everyone were at constant risk. It is not especially surprising that the risk of accidental infection by HIV is negligibly low in random dissections in Italy where, as in Europe generally, the prevalence of HIV is only a fraction of a percent. The question arises, however, what the risk might be in regions where the prevalence of HIV is considerably higher. South Africa is an obvious candidate for investigating this issue since the prevalence of HIV there is among the highest reported by UNAIDS and other official bodies. Furthermore, its recordkeeping system is more reliable than that of most other countries in sub-Saharan Africa, the global region that is universally regarded as the epicenter of the HIV/AIDS epidemic. In addition, South Africa has a globally recognized reputation in the teaching of human anatomy. Perhaps surprisingly, the risks in South Africa also seem to be much less than might be anticipated on the basis of the conventional wisdom. One reason for this counter-intuitive conclusion is that estimates of HIV prevalence and of AIDS deaths issued by international bodies are significantly overblown, with some estimates being 20 times or more greater than locally recorded numbers. A second basis for the unexpected conclusion is that the possibility of false-positive HIV tests has been ignored despite the considerable range of evidence that false-positives can be a significant part, perhaps even a major part, of positive tests in certain groups or certain regions, saliently among people of African ancestry.

  11. A topo-graph model for indistinct target boundary definition from anatomical images.

    PubMed

    Cui, Hui; Wang, Xiuying; Zhou, Jianlong; Gong, Guanzhong; Eberl, Stefan; Yin, Yong; Wang, Lisheng; Feng, Dagan; Fulham, Michael

    2018-06-01

    It can be challenging to delineate the target object in anatomical imaging when the object boundaries are difficult to discern due to the low contrast or overlapping intensity distributions from adjacent tissues. We propose a topo-graph model to address this issue. The first step is to extract a topographic representation that reflects multiple levels of topographic information in an input image. We then define two types of node connections - nesting branches (NBs) and geodesic edges (GEs). NBs connect nodes corresponding to initial topographic regions and GEs link the nodes at a detailed level. The weights for NBs are defined to measure the similarity of regional appearance, and weights for GEs are defined with geodesic and local constraints. NBs contribute to the separation of topographic regions and the GEs assist the delineation of uncertain boundaries. Final segmentation is achieved by calculating the relevance of the unlabeled nodes to the labels by the optimization of a graph-based energy function. We test our model on 47 low contrast CT studies of patients with non-small cell lung cancer (NSCLC), 10 contrast-enhanced CT liver cases and 50 breast and abdominal ultrasound images. The validation criteria are the Dice's similarity coefficient and the Hausdorff distance. Student's t-test show that our model outperformed the graph models with pixel-only, pixel and regional, neighboring and radial connections (p-values <0.05). Our findings show that the topographic representation and topo-graph model provides improved delineation and separation of objects from adjacent tissues compared to the tested models. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Characterization of Capsicum species using anatomical and molecular data.

    PubMed

    Dias, G B; Gomes, V M; Moraes, T M S; Zottich, U P; Rabelo, G R; Carvalho, A O; Moulin, M; Gonçalves, L S A; Rodrigues, R; Da Cunha, M

    2013-02-28

    Capsicum species are frequently described in terms of genetic divergence, considering morphological, agronomic, and molecular databases. However, descriptions of genetic differences based on anatomical characters are rare. We examined the anatomy and the micromorphology of vegetative and reproductive organs of several Capsicum species. Four Capsicum accessions representing the species C. annuum var. annuum, C. baccatum var. pendulum, C. chinense, and C. frutescens were cultivated in a greenhouse; leaves, fruits and seeds were sampled and their organ structure analyzed by light and scanning electronic microscopy. Molecular accession characterization was made using ISSR markers. Polymorphism was observed among tector trichomes and also in fruit color and shape. High variability among accessions was detected by ISSR markers. Despite the species studied present a wide morphological and molecular variability that was not reflected by anatomical features.

  13. Anatomical frame plate osteosynthesis in Ada-Miller Type 2 or 4 scapula fractures.

    PubMed

    Esenkaya, İrfan; Ünay, Koray

    2011-01-01

    The aim of this prospective study was to evaluate the results of anatomical frame plate osteosynthesis in patients with Ada and Miller Type 2 or 4 scapula fractures. Eleven Ada and Miller Type 2 or 4 scapula fractures in nine patients were treated with anatomical frame plate osteosynthesis. The mean follow-up time was 39.8 (12-77) months. The results were evaluated using the Herscovici score. No complications, such as neurovascular injury, postoperative hematoma, infection, delayed wound healing, implant failure, delayed union, or nonunion occurred. Based on the Herscovici score, the results were excellent. Osteosynthesis with anatomical frame plates appears to be a safe method that allows early range of motion and that provides excellent results in Ada and Miller Type 2 or 4 scapula fractures.

  14. The influence of artery wall curvature on the anatomical assessment of stenosis severity derived from fractional flow reserve: a computational fluid dynamics study.

    PubMed

    Govindaraju, Kalimuthu; Viswanathan, Girish N; Badruddin, Irfan Anjum; Kamangar, Sarfaraz; Salman Ahmed, N J; Al-Rashed, Abdullah A A A

    2016-11-01

    This study aims to investigate the influence of artery wall curvature on the anatomical assessment of stenosis severity and to identify a region of misinterpretation in the assessment of per cent area stenosis (AS) for functionally significant stenosis using fractional flow reserve (FFR) as standard. Five artery models of different per cent AS severity (70, 75, 80, 85 and 90%) were considered. For each per cent AS severity, the angle of curvature of the arterial wall varied from straight to an increasingly curved model (0°, 30°, 60°, 90° and 120°). Computational fluid dynamics was performed under transient physiologic hyperemic flow conditions to investigate the influence of artery wall curvature on the pressure drop and the FFR. The findings in this study may be useful in in vitro anatomical assessment of functionally significant stenosis. The FFR decreased with increasing stenosis severity for a given curvature of the artery wall. Moreover, a significant decrease in FFR was found between straight and curved models discussed for a given severity condition. These findings indicate that the curvature effect was included in the FFR assessment in contrast to minimum lumen area (MLA) or per cent AS assessment. The MLA or per cent AS assessment may lead to underestimation of stenosis severity. From this numerical study, an uncertainty region could be evaluated using the clinical FFR cutoff value of 0.8. This value was observed at 81.98 and 79.10% AS for arteries with curvature angles of 0° and 120° respectively. In conclusion, the curvature of the artery should not be neglected in in vitro anatomical assessment.

  15. Esophageal cancer: anatomic particularities, staging, and imaging techniques.

    PubMed

    Encinas de la Iglesia, J; Corral de la Calle, M A; Fernández Pérez, G C; Ruano Pérez, R; Álvarez Delgado, A

    2016-01-01

    Cancer of the esophagus is a tumor with aggressive behavior that is usually diagnosed in advanced stages. The absence of serosa allows it to spread quickly to neighboring mediastinal structures, and an extensive lymphatic drainage network facilitates tumor spread even in early stages. The current TNM classification, harmonized with the classification for gastric cancer, provides new definitions for the anatomic classification, adds non-anatomic characteristics of the tumor, and includes tumors of the gastroesophageal junction. Combining endoscopic ultrasound, computed tomography, positron emission tomography, and magnetic resonance imaging provides greater accuracy in determining the initial clinical stage, and these imaging techniques play an essential role in the selection, planning, and evaluation of treatment. In this article, we review some particularities that explain the behavior of this tumor and we describe the current TNM staging system; furthermore, we discuss the different imaging tests available for its evaluation and include a diagnostic algorithm. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Teaching of anatomical sciences: A blended learning approach.

    PubMed

    Khalil, Mohammed K; Abdel Meguid, Eiman M; Elkhider, Ihsan A

    2018-04-01

    Blended learning is the integration of different learning approaches, new technologies, and activities that combine traditional face-to-face teaching methods with authentic online methodologies. Although advances in educational technology have helped to expand the selection of different pedagogies, the teaching of anatomical sciences has been challenged by implementation difficulties and other limitations. These challenges are reported to include lack of time, costs, and lack of qualified teachers. Easy access to online information and advances in technology make it possible to resolve these limitations by adopting blended learning approaches. Blended learning strategies have been shown to improve students' academic performance, motivation, attitude, and satisfaction, and to provide convenient and flexible learning. Implementation of blended learning strategies has also proved cost effective. This article provides a theoretical foundation for blended learning and proposes a validated framework for the design of blended learning activities in the teaching and learning of anatomical sciences. Clin. Anat. 31:323-329, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  17. Measuring quality in anatomic pathology.

    PubMed

    Raab, Stephen S; Grzybicki, Dana Marie

    2008-06-01

    This article focuses mainly on diagnostic accuracy in measuring quality in anatomic pathology, noting that measuring any quality metric is complex and demanding. The authors discuss standardization and its variability within and across areas of care delivery and efforts involving defining and measuring error to achieve pathology quality and patient safety. They propose that data linking error to patient outcome are critical for developing quality improvement initiatives targeting errors that cause patient harm in addition to using methods of root cause analysis, beyond those traditionally used in cytologic-histologic correlation, to assist in the development of error reduction and quality improvement plans.

  18. Anatomical Variations of the Biliary Tree Found with Endoscopic Retrograde Cholagiopancreatography in a Referral Center in Southern Iran.

    PubMed

    Taghavi, Seyed Alireza; Niknam, Ramin; Alavi, Seyed Ehsan; Ejtehadi, Fardad; Sivandzadeh, Gholam Reza; Eshraghian, Ahad

    2017-10-01

    BACKGROUND Anatomical variations in the biliary system have been proven to be of clinical importance. Awareness of the pattern of these variations in a specific population may help to prevent and manage biliary injuries during surgical and endoscopic procedures. Knowledge of the biliary anatomy will be also of great help in planning the drainage of adequate percentage of liver parenchyma in endoscopic or radiological procedures. METHODS All consecutive patients undergoing endoscopic retrograde cholangiopancreatography (ERCP) from April 2013 to April 2015 at Nemazee Hospital, a referral center in the south of Iran, were included in this cross-sectional study. The patients with previous hepatic or biliary surgery, liver injury or destructive biliary disease were excluded from the study. All ERCPs were reviewed by two expert gastroenterologists in this field. The disagreed images by the two gastroenterologists were excluded. Huang classification was used for categorizing the different structural variants of the biliary tree, and the frequency of each variant was recorded. RESULTS Totally, 362 patients (181 men and 181 women) were included in the study. 163 patients (45%) had type A1 Huang classification (right dominant), which was the most prevalent type among our patients. 55% of them had non-right dominant anatomy. The result of the Chi-square test revealed that there was no statistically significant difference between the men and women regarding the anatomical variations (p = 0.413). CONCLUSION The anatomical variation in the biliary system among Iranian patients is comparable to other regions of the world. Significant proportions of our patients are non-right dominant and may need bilateral biliary drainage.

  19. An interactive three-dimensional virtual body structures system for anatomical training over the internet.

    PubMed

    Temkin, Bharti; Acosta, Eric; Malvankar, Ameya; Vaidyanath, Sreeram

    2006-04-01

    The Visible Human digital datasets make it possible to develop computer-based anatomical training systems that use virtual anatomical models (virtual body structures-VBS). Medical schools are combining these virtual training systems and classical anatomy teaching methods that use labeled images and cadaver dissection. In this paper we present a customizable web-based three-dimensional anatomy training system, W3D-VBS. W3D-VBS uses National Library of Medicine's (NLM) Visible Human Male datasets to interactively locate, explore, select, extract, highlight, label, and visualize, realistic 2D (using axial, coronal, and sagittal views) and 3D virtual structures. A real-time self-guided virtual tour of the entire body is designed to provide detailed anatomical information about structures, substructures, and proximal structures. The system thus facilitates learning of visuospatial relationships at a level of detail that may not be possible by any other means. The use of volumetric structures allows for repeated real-time virtual dissections, from any angle, at the convenience of the user. Volumetric (3D) virtual dissections are performed by adding, removing, highlighting, and labeling individual structures (and/or entire anatomical systems). The resultant virtual explorations (consisting of anatomical 2D/3D illustrations and animations), with user selected highlighting colors and label positions, can be saved and used for generating lesson plans and evaluation systems. Tracking users' progress using the evaluation system helps customize the curriculum, making W3D-VBS a powerful learning tool. Our plan is to incorporate other Visible Human segmented datasets, especially datasets with higher resolutions, that make it possible to include finer anatomical structures such as nerves and small vessels. (c) 2006 Wiley-Liss, Inc.

  20. Digital preservation of anatomical variation: 3D-modeling of embalmed and plastinated cadaveric specimens using uCT and MRI.

    PubMed

    Moore, Colin W; Wilson, Timothy D; Rice, Charles L

    2017-01-01

    Anatomy educators have an opportunity to teach anatomical variations as a part of medical and allied health curricula using both cadaveric and three-dimensional (3D) digital models of these specimens. Beyond published cadaveric case reports, anatomical variations identified during routine gross anatomy dissection can be powerful teaching tools and a medium to discuss several anatomical sub-disciplines from embryology to medical imaging. The purpose of this study is to document how cadaveric anatomical variation identified during routine dissection can be scanned using medical imaging techniques to create two-dimensional axial images and interactive 3D models for teaching and learning of anatomical variations. Three cadaveric specimens (2 formalin embalmed, 1 plastinated) depicting anatomical variations and an embryological malformation were scanned using magnetic resonance imaging (MRI) and micro-computed tomography (μCT) for visualization in cross-section and for creation of 3D volumetric models. Results provide educational options to enable visualization and facilitate learning of anatomical variations from cross-sectional scans. Furthermore, the variations can be highlighted, digitized, modeled and manipulated using 3D imaging software and viewed in the anatomy laboratory in conjunction with traditional anatomical dissection. This study provides an example for anatomy educators to teach and describe anatomical variations in the undergraduate medical curriculum. Copyright © 2016 Elsevier GmbH. All rights reserved.

  1. Investigations of Anatomical Variations of the Thorax and Heart, and Anatomical Knowledge for First Year Medical Dental and Podiatry Students

    ERIC Educational Resources Information Center

    Verenna, Anne-Marie

    2013-01-01

    The universal presence of anatomy in healthcare professions is undeniable. It is a cornerstone to each of the clinical and basic sciences. Therefore, further expansion of current anatomical knowledge and effective methods to teach anatomy is essential. In this work, the relationship of the dorsal scapular artery with the trunks of the brachial…

  2. Evidence of educational inadequacies in region-specific musculoskeletal medicine.

    PubMed

    Day, Charles S; Yeh, Albert C

    2008-10-01

    Recent studies suggest US medical schools are not effectively addressing musculoskeletal medicine in their curricula. We examined if there were specific areas of weakness by analyzing students' knowledge of and confidence in examining specific anatomic regions. A cross-sectional survey study of third- and fourth-year students at Harvard Medical School was conducted during the 2005 to 2006 academic year. One hundred sixty-two third-year students (88% response) and 87 fourth-year students (57% response) completed the Freedman and Bernstein cognitive mastery examination in musculoskeletal medicine and a survey eliciting their clinical confidence in examining the shoulder, elbow, hand, back, hip, knee, and foot on a one to five Likert scale. We specifically analyzed examination questions dealing with the upper extremity, lower extremity, back, and others, which included more systemic conditions such as arthritis, metabolic bone diseases, and cancer. Students failed to meet the established passing benchmark of 70% in all subgroups except for the others category. Confidence scores in performing a physical examination and in generating a differential diagnosis indicated students felt below adequate confidence (3.0 of 5) in five of the seven anatomic regions. Our study provides evidence that region-specific musculoskeletal medicine is a potential learning gap that may need to be addressed in the undergraduate musculoskeletal curriculum.

  3. Investigation on location dependent detectability in cone beam CT images with uniform and anatomical backgrounds

    NASA Astrophysics Data System (ADS)

    Han, Minah; Baek, Jongduk

    2017-03-01

    We investigate location dependent lesion detectability of cone beam computed tomography images for different background types (i.e., uniform and anatomical), image planes (i.e., transverse and longitudinal) and slice thicknesses. Anatomical backgrounds are generated using a power law spectrum of breast anatomy, 1/f3. Spherical object with a 5mm diameter is used as a signal. CT projection data are acquired by the forward projection of uniform and anatomical backgrounds with and without the signal. Then, projection data are reconstructed using the FDK algorithm. Detectability is evaluated by a channelized Hotelling observer with dense difference-of-Gaussian channels. For uniform background, off-centered images yield higher detectability than iso-centered images for the transverse plane, while for the longitudinal plane, detectability of iso-centered and off-centered images are similar. For anatomical background, off-centered images yield higher detectability for the transverse plane, while iso-centered images yield higher detectability for the longitudinal plane, when the slice thickness is smaller than 1.9mm. The optimal slice thickness is 3.8mm for all tasks, and the transverse plane at the off-center (iso-center and off-center) produces the highest detectability for uniform (anatomical) background.

  4. [Analysis of anatomical pieces preservation with polyester resin for human anatomy study].

    PubMed

    de Oliveira, Ítalo Martins; Mindêllo, Marcela Maria Aguiar; Martins, Yasmin de Oliveira; da Silva Filho, Antônio Ribeiro

    2013-01-01

    To evaluate the use of polyester resin in preserving anatomical specimens for the study of human anatomy. We used 150 anatomical specimens, comprised of unfixed (fresh), fixed in 10% formalin and vascular casts of organs injected with vinyl acetate and polyester resin. The solution used consisted of polyester resin with the diluent styrene monomer and catalyst (peroxol). After embedding in this solution, models in transparent resin were obtained, allowing full observation of structures and conservation of the specimens used. upon evaluation of the specimens, we observed a high degree of transparency, which promoted a complete visualization of structures with perfect preservation of the anatomy. The average time for the completion of the embedding was 48 hours. Only 14 specimens (9.3%) were lost during the preparation. Polyester resin can be used for preserving anatomical specimens for teaching human anatomy in a practical, aesthetic and durable way.

  5. A theoretical analysis of anatomical and functional intestinal slow wave re-entry.

    PubMed

    Du, Peng; O'Grady, Gregory; Cheng, Leo K

    2017-07-21

    Intestinal bioelectrical slow waves are a key regulator of intestinal motility. Peripheral pacemakers, ectopic initiations and sustained periods of re-entrant activities have all been experimentally observed to be important factors in setting the frequency of intestinal slow waves, but the tissue-level mechanisms underpinning these activities are unclear. This theoretical analysis aimed to define the initiation, maintenance, and termination criteria of two classes of intestinal re-entrant activities: anatomical re-entry and functional re-entry. Anatomical re-entry was modeled in a three-dimensional (3D) cylindrical model, and functional rotor was modeled in a 2D rectangle model. A single-pulse stimulus was used to invoke an anatomical re-entry and a prolonged refractory block was used to invoke the rotor. In both cases, the simulated re-entrant activities operated at frequencies above the baseline entrainment frequency. The anatomical re-entry simulation results demonstrated that a temporary functional refractory block would be required to initiate the re-entrant activity in a single direction around the cylindrical model. The rotor could be terminated by a single-pulse stimulus delivered around the core of the rotor. In conclusion, the simulation results provide the following new insights into the mechanisms of intestinal re-entry: (i) anatomical re-entry is only maintained within a specific range of velocities, outside of which the re-entrant activities become either an ectopic activity or simultaneous activations of the intestinal wall; (ii) a maintained rotor entrained slow waves faster in the antegrade direction than in the retrograde direction. Simulations are shown to be a valuable tool for achieving novel insights into the mechanisms of intestinal slow wave dysrhythmia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging☆

    PubMed Central

    Oishi, Kenichi; Faria, Andreia V.; Yoshida, Shoko; Chang, Linda; Mori, Susumu

    2013-01-01

    The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a “growth percentile chart,” which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced

  7. Longitudinal retention of anatomical knowledge in second-year medical students.

    PubMed

    Doomernik, Denise E; van Goor, Harry; Kooloos, Jan G M; Ten Broek, Richard P

    2017-06-01

    The Radboud University Medical Center has a problem-based, learner-oriented, horizontally, and vertically integrated medical curriculum. Anatomists and clinicians have noticed students' decreasing anatomical knowledge and the disability to apply knowledge in diagnostic reasoning and problem solving. In a longitudinal cohort, the retention of anatomical knowledge gained during the first year of medical school among second-year medical students was assessed. In May 2011, 346 medical students applied for the second-year gastro-intestinal (GI) tract course. The students were asked to participate in a reexamination of a selection of anatomical questions of an examination from October 2009. The examination consisted of a clinical anatomy case scenario and two computed tomography (CT) images of thorax and abdomen in an extended matching format. A total of 165 students were included for analysis. In 2011, students scored significantly lower for the anatomy examination compared to 2009 with a decline in overall examination score of 14.7% (±11.7%). Decrease in knowledge was higher in the radiological questions, compared to the clinical anatomy cases 17.5% (±13.6%) vs. 7.9% (±10.0%), respectively, d = 5.17. In both years, male students scored slightly better compared to female students, and decline of knowledge seems somewhat lower in male students (13.1% (±11.1%) vs. 15.5% (±12.0%), respectively), d = -0.21. Anatomical knowledge in the problem-oriented horizontal and vertical integrated medical curriculum, declined by approximately 15% 1.5 year after the initial anatomy course. The loss of knowledge in the present study is relative small compared to previous studies. Anat Sci Educ 10: 242-248. © 2016 American Association of Anatomists. © 2016 American Association of Anatomists.

  8. Comparison of directly measured arterial blood pressure at various anatomic locations in anesthetized dogs.

    PubMed

    Acierno, Mark J; Domingues, Michelle E; Ramos, Sara J; Shelby, Amanda M; da Cunha, Anderson F

    2015-03-01

    To determine whether directly measured arterial blood pressure differs among anatomic locations and whether arterial blood pressure is influenced by body position. 33 client-owned dogs undergoing anesthesia. Dogs undergoing anesthetic procedures had 20-gauge catheters placed in both the superficial palmar arch and the contralateral dorsal pedal artery (group 1 [n = 20]) or the superficial palmar arch and median sacral artery (group 2 [13]). Dogs were positioned in dorsal recumbency, and mean arterial blood pressure (MAP), systolic arterial blood pressure (SAP), and diastolic arterial blood pressure (DAP) were recorded for both arteries 4 times (2-minute interval between successive measurements). Dogs were positioned in right lateral recumbency, and blood pressure measurements were repeated. Differences were detected between pressures measured at the 2 arterial sites in both groups. This was especially true for SAP measurements in group 1, in which hind limb measurements were a mean of 16.12 mm Hg higher than carpus measurements when dogs were in dorsal recumbency and 14.70 mm Hg higher than carpus measurements when dogs were in lateral recumbency. Also, there was significant dispersion about the mean for all SAP, DAP, and MAP measurements. Results suggested that arterial blood pressures may be dependent on anatomic location and body position. Because this may affect outcomes of studies conducted to validate indirect blood pressure measurement systems, care must be used when developing future studies or interpreting previous results.

  9. Laser technique for anatomical-functional study of the medial prefrontal cortex of the brain

    NASA Astrophysics Data System (ADS)

    Sanchez-Huerta, Laura; Hernandez, Adan; Ayala, Griselda; Marroquin, Javier; Silva, Adriana B.; Khotiaintsev, Konstantin S.; Svirid, Vladimir A.; Flores, Gonzalo; Khotiaintsev, Sergei N.

    1999-05-01

    The brain represents one of the most complex systems that we know yet. In its study, non-destructive methods -- in particular, behavioral studies play an important role. By alteration of brain functioning (e.g. by pharmacological means) and observation of consequent behavior changes an important information on brain organization and functioning is obtained. For inducing local alterations, permanent brain lesions are employed. However, for correct results this technique has to be quasi-non-destructive, i.e. not to affect the normal brain function. Hence, the lesions should be very small, accurate and applied precisely over the structure (e.g. the brain nucleus) of interest. These specifications are difficult to meet with the existing techniques for brain lesions -- specifically, neurotoxical, mechanical and electrical means because they result in too extensive damage. In this paper, we present new laser technique for quasi-non- destructive anatomical-functional mapping in vivo of the medial prefrontal cortex (MPFC) of the rat. The technique is based on producing of small-size, well-controlled laser- induced lesions over some areas of the MPFC. The anesthetized animals are subjected to stereotactic surgery and certain points of the MPFC are exposed the confined radiation of the 10 W cw CO2 laser. Subsequent behavioral changes observed in neonatal and adult animals as well as histological data prove effectiveness of this technology for anatomical- functional studies of the brain by areas, and as a treatment method for some pathologies.

  10. Chinook wind barosinusitis: an anatomic evaluation.

    PubMed

    Rudmik, Luke; Muzychuk, Adam; Oddone Paolucci, Elizabeth; Mechor, Brad

    2009-01-01

    Chinook, or föhn, is a weather phenomenon characterized by a rapid influx of warm, high-pressured winds into a specific location. Pressure changes associated with chinook winds induce facial pain similar to acute sinusitis. The purpose of this study was to determine the relationship between sinonasal anatomy and chinook headaches. Retrospective computed tomography (CT) sinonasal anatomy analysis of 38 patients with chinook headaches and 27 controls (no chinook headaches). The chinook headache status was blinded from the CT reviewer. Forty-one sinonasal anatomy variants, Lund-Mackay status, and sinus size (cm(3)) were recorded. There were three statistically significant sinonasal anatomy differences between patients with and without chinook headaches. The presence of a concha bullosa and sphenoethmoidal cell (Onodi cell) appeared to predispose to chinook headaches (p = 0.004). Chinook headache patients had larger maxillary sinus size (right, p = 0.015, and left, p = 0.002). The Lund-Mackay score was higher in the control patients (p = 0.003) indicating that chronic sinusitis does not play a role in chinook headaches. Chinook winds are a common source of facial pain and pressure. This is the first study to show that sinonasal anatomic variations may be a predisposing factor. Anatomic variants may induce facial pain by blocking the natural sinus ostia, thus preventing adequate pressure equilibrium.

  11. Anatomic Peculiarities of Pig and Human Liver.

    PubMed

    Nykonenko, Andriy; Vávra, Petr; Zonča, Pavel

    2017-02-01

    Many investigations on surgical methods and medical treatment are currently done on pigs. This is possible because the pig is sufficiently close genetically to humans. In recent years, progress in liver surgery has opened new possibilities in surgical treatment of liver diseases. Because the methods are relatively novel, various improvements are still needed, and it is thus helpful to conduct experimental surgeries on pig livers. We reviewed the literature to compare the anatomic and functional features of pig and human livers, information that will be of great importance for improving surgical techniques. During the literature review, we used various sources, such as PubMed, Scopus, and veterinary journals. Our results were summarized in diagrams to facilitate understanding of the vascular structure and biliary systems. We conclude that, although the shapes of the human and pig livers are quite different, the pig liver is divided into the same number of segments as the human liver, which also shows a common structure of the vascular system. Thus, with the anatomic and structural features of the pig liver taken into account, this animal model can be used in experimental hepatic surgery.

  12. Anatomical classification of breast sentinel lymph nodes using computed tomography-lymphography.

    PubMed

    Fujita, Tamaki; Miura, Hiroyuki; Seino, Hiroko; Ono, Shuichi; Nishi, Takashi; Nishimura, Akimasa; Hakamada, Kenichi; Aoki, Masahiko

    2018-05-03

    To evaluate the anatomical classification and location of breast sentinel lymph nodes, preoperative computed tomography-lymphography examinations were retrospectively reviewed for sentinel lymph nodes in 464 cases clinically diagnosed with node-negative breast cancer between July 2007 and June 2016. Anatomical classification was performed based on the numbers of lymphatic routes and sentinel lymph nodes, the flow direction of lymphatic routes, and the location of sentinel lymph nodes. Of the 464 cases reviewed, anatomical classification could be performed in 434 (93.5 %). The largest number of cases showed single route/single sentinel lymph node (n = 296, 68.2 %), followed by multiple routes/multiple sentinel lymph nodes (n = 59, 13.6 %), single route/multiple sentinel lymph nodes (n = 53, 12.2 %), and multiple routes/single sentinel lymph node (n = 26, 6.0 %). Classification based on the flow direction of lymphatic routes showed that 429 cases (98.8 %) had outward flow on the superficial fascia toward axillary lymph nodes, whereas classification based on the height of sentinel lymph nodes showed that 323 cases (74.4 %) belonged to the upper pectoral group of axillary lymph nodes. There was wide variation in the number of lymphatic routes and their branching patterns and in the number, location, and direction of flow of sentinel lymph nodes. It is clinically very important to preoperatively understand the anatomical morphology of lymphatic routes and sentinel lymph nodes for optimal treatment of breast cancer, and computed tomography-lymphography is suitable for this purpose.

  13. SU-C-207B-02: Maximal Noise Reduction Filter with Anatomical Structures Preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maitree, R; Guzman, G; Chundury, A

    Purpose: All medical images contain noise, which can result in an undesirable appearance and can reduce the visibility of anatomical details. There are varieties of techniques utilized to reduce noise such as increasing the image acquisition time and using post-processing noise reduction algorithms. However, these techniques are increasing the imaging time and cost or reducing tissue contrast and effective spatial resolution which are useful diagnosis information. The three main focuses in this study are: 1) to develop a novel approach that can adaptively and maximally reduce noise while preserving valuable details of anatomical structures, 2) to evaluate the effectiveness ofmore » available noise reduction algorithms in comparison to the proposed algorithm, and 3) to demonstrate that the proposed noise reduction approach can be used clinically. Methods: To achieve a maximal noise reduction without destroying the anatomical details, the proposed approach automatically estimated the local image noise strength levels and detected the anatomical structures, i.e. tissue boundaries. Such information was used to adaptively adjust strength of the noise reduction filter. The proposed algorithm was tested on 34 repeating swine head datasets and 54 patients MRI and CT images. The performance was quantitatively evaluated by image quality metrics and manually validated for clinical usages by two radiation oncologists and one radiologist. Results: Qualitative measurements on repeated swine head images demonstrated that the proposed algorithm efficiently removed noise while preserving the structures and tissues boundaries. In comparisons, the proposed algorithm obtained competitive noise reduction performance and outperformed other filters in preserving anatomical structures. Assessments from the manual validation indicate that the proposed noise reduction algorithm is quite adequate for some clinical usages. Conclusion: According to both clinical evaluation (human expert

  14. Aortic anatomic severity grade correlates with resource utilization.

    PubMed

    Rasheed, Khurram; Cullen, John P; Seaman, Matthew J; Messing, Susan; Ellis, Jennifer L; Glocker, Roan J; Doyle, Adam J; Stoner, Michael C

    2016-03-01

    Potential cost effectiveness of endovascular aneurysm repair (EVAR) compared with open aortic repair (OAR) is offset by the use of intraoperative adjuncts (components) or late reinterventions. Anatomic severity grade (ASG) can be used preoperatively to assess abdominal aortic aneurysms, and provide a quantitative measure of anatomic complexity. The hypothesis of this study is that ASG is directly related to the use of intraoperative adjuncts and cost of aortic repair. Patients who undergo elective OAR and EVAR for abdominal aortic aneurysms were identified over a consecutive 3-year period. ASG scores were calculated manually using three-dimensional reconstruction software by two blinded reviewers. Statistical analysis of cost data was performed using a log transformation. Regression analyses, with a continuous or dichotomous outcome, used a generalized estimating equations approach with the sandwich estimator, being robust with respect to deviations from model assumptions. One hundred forty patients were identified for analysis, n = 33 OAR and n = 107 EVAR. The mean total cost (± standard deviation) for OAR was per thousand (k) $38.3 ± 49.3, length of stay (LOS) 13.5 ± 14.2 days, ASG score 18.13 ± 3.78; for EVAR, mean total cost was k $24.7 ± 13.0 (P = .016), LOS 3.0 ± 4.4 days (P = .012), ASG score 15.9 ± 4.13 (P = .010). In patients who underwent EVAR, 25.2% required intraoperative adjuncts, and analysis of this group revealed a mean total cost of k $31.5 ± 15.9, ASG score 18.48 ± 3.72, and LOS 3.9 ± 4.5, which were significantly greater compared with cases without adjunctive procedures. An ASG score of ≥15 correlated with an increased propensity for requirement of intraoperative adjuncts; odds ratio, 5.75 (95% confidence interval, 1.82-18.19). ASG >15 was also associated with chronic kidney disease, end stage renal disease, hypertension, female sex, increased cost, and use of adjunctive procedures. Complex aneurysm anatomy correlates with increased

  15. Anatomical connectivity influences both intra- and inter-brain synchronizations.

    PubMed

    Dumas, Guillaume; Chavez, Mario; Nadel, Jacqueline; Martinerie, Jacques

    2012-01-01

    Recent development in diffusion spectrum brain imaging combined to functional simulation has the potential to further our understanding of how structure and dynamics are intertwined in the human brain. At the intra-individual scale, neurocomputational models have already started to uncover how the human connectome constrains the coordination of brain activity across distributed brain regions. In parallel, at the inter-individual scale, nascent social neuroscience provides a new dynamical vista of the coupling between two embodied cognitive agents. Using EEG hyperscanning to record simultaneously the brain activities of subjects during their ongoing interaction, we have previously demonstrated that behavioral synchrony correlates with the emergence of inter-brain synchronization. However, the functional meaning of such synchronization remains to be specified. Here, we use a biophysical model to quantify to what extent inter-brain synchronizations are related to the anatomical and functional similarity of the two brains in interaction. Pairs of interacting brains were numerically simulated and compared to real data. Results show a potential dynamical property of the human connectome to facilitate inter-individual synchronizations and thus may partly account for our propensity to generate dynamical couplings with others.

  16. AQUATIC PLANT SPECIATION AFFECTED BY DIVERSIFYING SELECTION OF ORGANELLE DNA REGIONS(1).

    PubMed

    Kato, Syou; Misawa, Kazuharu; Takahashi, Fumio; Sakayama, Hidetoshi; Sano, Satomi; Kosuge, Keiko; Kasai, Fumie; Watanabe, Makoto M; Tanaka, Jiro; Nozaki, Hisayoshi

    2011-10-01

    Many of the genes that control photosynthesis are carried in the chloroplast. These genes differ among species. However, evidence has yet to be reported revealing the involvement of organelle genes in the initial stages of plant speciation. To elucidate the molecular basis of aquatic plant speciation, we focused on the unique plant species Chara braunii C. C. Gmel. that inhabits both shallow and deep freshwater habitats and exhibits habitat-based dimorphism of chloroplast DNA (cpDNA). Here, we examined the "shallow" and "deep" subpopulations of C. braunii using two nuclear DNA (nDNA) markers and cpDNA. Genetic differentiation between the two subpopulations was measured in both nDNA and cpDNA regions, although phylogenetic analyses suggested nuclear gene flow between subpopulations. Neutrality tests based on Tajima's D demonstrated diversifying selection acting on organelle DNA regions. Furthermore, both "shallow" and "deep" haplotypes of cpDNA detected in cultures originating from bottom soils of three deep environments suggested that migration of oospores (dormant zygotes) between the two habitats occurs irrespective of the complete habitat-based dimorphism of cpDNA from field-collected vegetative thalli. Therefore, the two subpopulations are highly selected by their different aquatic habitats and show prezygotic isolation, which represents an initial process of speciation affected by ecologically based divergent selection of organelle genes. © 2011 Phycological Society of America.

  17. An Anatomical Study of Maxillary-Zygomatic Complex Using Three-Dimensional Computerized Tomography-Based Zygomatic Implantation

    PubMed Central

    Zhao, Shijie; Liu, Hui; Sun, Zhipeng; Wang, Jianwei

    2017-01-01

    Objective To obtain anatomical data of maxillary-zygomatic complex based on simulating the zygomatic implantation using cadaver heads and three-dimensional computerized tomography (3D-CT). Methods Simulating zygomatic implantation was performed using seven cadaver heads and 3D-CT images from forty-eight adults. After measuring the maxillary-zygomatic complex, we analyzed the position between the implantation path and the maxillary sinus cavity as well as the distance between the implantation path and the zygomatic nerve. Results The distance from the starting point to the endpoint of the implant was 56.85 ± 5.35 mm in cadaver heads and 58.15 ± 7.37 mm in 3D-CT images. For the most common implantation path (80.20%), the implant went through the maxillary sinus cavity completely. The projecting points of the implant axis (IA) on the surface of zygoma were mainly located in the region of frontal process of zygomatic bone close to the lateral orbital wall. The distances between IA and zygomatic nerve in 53 sides were shorter than 2 mm. Conclusion The simulating zygomatic implantation on cadaver skulls and 3D-CT imaging provided useful anatomical data of the maxillary-zygomatic complex. It is necessary to take care to avoid the zygomatic nerve injury during implantation, because it frequently appears on the route of implantation. PMID:29376077

  18. [Sigismund Laskowski and his anatomical preparations technique].

    PubMed

    Gryglewski, Ryszard W

    2015-01-01

    Fixation of the entire bodies or individual organs, and later as well tissues and cellular structures, was and still is often a challenge for anatomists and histologists. Technique that combines extensive knowledge of natural sciences, as well as technical skills, was by those best researchers as Frederik Ruysch, brought to perfection. Preparations, if done with care and talent, are really propelling progress in anatomical studies and determining the quality of education for medical students and young physicians. And as it is true for many of today's medical disciplines and natural sciences, the nineteenth century was in many ways a breaking point for preparatory techniques in the realm of anatomy and histology. Among those who have achieved success, earning notoriety during their lifetime and often going into the annals of European most distinguished scholars were some Polish names: Louis Maurice Hirschfeld, whose preparations of the nervous system earned him well-deserved, international fame, Louis Charles Teichmann, who was the very first so precisely describing the lymphatic system and a creator of unique injection mass, Henry Kadyi, known for his outstanding preparations, especially of vascular system. Henry Frederick Hoyer sen., who was one of the first to use formalin regularly for accurate microscopic preparations, is seen by many as the founder of the Polish histology. In this group of innovators and precursors of modern preparation techniques place should be reserved for Zygmunt (Sigismund) Laskowski, Polish patriot, fighting in January Uprising, later an immigrant, a professor at the university sequentially Paris and Geneva. Acclaimed author of anatomical tables and certainly creator of one of the groundbreaking techniques in anatomical preparations. Based after many years of research on the simple glycerine-phenol mixture achieved excellent results both in fixation of entire bodies and organs or tissues. Quality of those preparations was as high and

  19. Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction

    PubMed Central

    Hoshino, Yuichi; Kim, Donghwi; Fu, Freddie H.

    2012-01-01

    Anatomic study related to the anterior cruciate ligament (ACL) reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D) to three-dimensional (3D) image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction. PMID:22567310

  20. Anatomic documentation of the G-spot complex role in the genesis of anterior vaginal wall ballooning.

    PubMed

    Ostrzenski, Adam

    2014-09-01

    To expand previous G-spot anatomical and histological investigations; to examine the G-spot complex anatomic role in the anterior vaginal wall ballooning bio-mechanisms; and to determine, which division of autonomic nervous system (sympathetic or parasympathetic) dominates at the time of female sudden death. A prospective-descriptive case series anatomical study on eleven consecutive fresh humane female cadavers was conducted. Anterior vaginal wall stratum-by-stratum macro-dissections were executed in axial, coronal and sagittal plains. Upon G-spot extirpations, micro-dissections were performed. The G-spot tissues were stained with hematoxilin and eosin for histological examinations to authenticate the G-spot anatomical and histological characteristic features. The G-spot complex was identified and present in all subjects on either the distal vaginal left (more often) or on the right side from the lateral margin of the urethra; the G-spot anatomical and microscopic characteristic features have been authenticated; the G-spot complex expansion elevated anterior vaginal walls in each subject; the autonomic parasympathetic nervous system was the dominant division at the time of female subject sudden death. This study advances our anatomical and histological understanding of the G-spot complex and its role in the genesis of anterior vaginal ballooning bio-mechanisms. The G-spot complex is under parasympathetic nervous system domination at the time of female sudden death. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.